

1013NSTM

TA
622
$C 353$
1913
Suppl.

LIBRARY FACULTY OF FORESTRY UANIVERSITY OF TORONTO

SUPPLEMENT

TO THE

Manual of Instructions

FOR THE
 Survey of Canada Lands

DETERMINATION OF THE ASTRONOMICAL AND MAGNETIC MERIDIANS

PROBLEMS CONNECTED WITH THE SYSTEMS OF SURVEY)

TABLES

Issued by authority of the Honourable the Minister of
Mines and Technical Surveys

581816
 14.4. 54

Page
Preface to 1952 Edition V11
Preface to 1917 Edition viii
Index to Notation ix
CHAPTER I - THE ASTRONOMICAL MERIDLAN
Determination of the Astronomical Meridian 1
To Find the Pole Star 1
Pole Star Observation for Azimuth 3
Specimen Observations 4
Determination of the Watch Correction 6
Determination of the Watch Correction by the Meridian Transit of a Star 6
Determination of the Watch Correction by theMeridian Transit of the Sun9
Determination of the Watch Correction by Radio Time Signals 11
The Watch Rate 12
Observation on the Sun for Azimuth 13
Computation for Sun Observation 14
Specimen Observations 16
Observation of Polaris for Azimuth on Governing Surveys 20
Watch Correction 21
Correction for Striding Level 21
Determination of the Value of One Turn of the Micrometer 22
Computation for Azimuth Observation 23
General Remarks on Observing 30
CHAPTER Il - DETERMINATION OF THE MAGNETIC MERIDLAN
Directions for Observing 31
General Remarks 31
Explanation of Specimen Observation 33
Setting a Transit by Means of the Compass 35
Compass of Cooke Transit 36
The Wild Double lmage Prism Compass 36
CHAPTER 111 - INSTRUMENTS
Transit Theodolite for Governing Surveys 38
"Optical" Theodolites 38
Instruments for Use on Winter Surveys 39
General 39
Sidereal Watch 40
Steel Tapes 40
Stadia Rods 41
Clinometer 42
CHAPTER IV - PROBLEMS CONNECTED WITH THE SYSTEM OF SURVEY
Correction for Height Above Sea-Level 43
Latitudes and Longitudes of Points in the System 44
Page
Latitude 44
Longitude, Third System 44
Longitude, First System 45
Longitude, Second and Fourth Systems 45
Effect of Errors of Survey 46
Given the Latitude and Longitude of a Point, to find its Position with regard to the System of Survey Second, Third and Fourth Systems 46
First System of Survey 47
Fractional Township or Range between parts of the Country Surveyed under different Systems of Survey 47
Fractional Township 48
Fractional Range 48
First Example 49
Second Example 51
Fractional Sections Adjoining an Initial Meridian 51
Geodetic Positions 52
Spheroidal Co-ordinates of Section Corners as Determined by the Geodetic Survey of Canada (Table) 53
CHAPTER V - CONSTRUCTION AND USE OF THE TABLES
Table I Lengths of Arcs of Meridians, Parallels, etc., in different Latitudes 57
Radius of Curvature of a Section of the Spher- oid inclined at any angle to a Meridian 59
Radius of Spherical Curvature 59
Table II Corrections to Table I for change in elements of Figure of Earth 59
Table III Latitudes of Base and Correction Lines and Lengths of Arcs of Meridians, Parallels, etc., for First and Second Systems of Survey. 60
Table IV Latitudes of Base and Correction Lines, etc., for Third and Fourth Systems of Survey 62
Table V Chord Azimuths, etc., for Base Lines, First and Second Systems of Survey 62
Table VI Chord Azimuths, etc., for Base Lines, Third and Fourth Systems of Survey 64
Table VII Chord Azimuths, Jogs, etc., for Correction Lines, First and Second Systems of Survey 64
Table VIII Chord Azimuths, Jogs, etc., for Correction Lines, Third and Fourth Systems of Survey 65
Table IX Latitudes, and Widths in Chains, of Northern Boundaries of Sections in First and Second Systems of Survey 66
Page
Table X Latitudes, and Widths in Chains, of Northern Boundaries of Sections in Third and Fourth Systems of Survey 66
Table XI Difference of Latitude between Township Corners and Section and Quarter Section Corners 67
Table XII For Converting Logarithmic Tangents of Small Arcs into Logarithms of Seconds of Arc 67
Table XIII $\log \frac{1}{1-m}$ tabulated with $\log m$ as argument 67
Table XIV Deflection of Trial Line for Deviations from 1 to 149 Links at the end of Eighty-One Chains 68
Table XV Corrections in Links to Slope Measurements 68
Table XVI Table for Laying Out Roads One Chain Wide 68
Table XVII To Convert Time into Arc 68
Table XVIII To Convert a Mean Time Interval to the Equiv- alent Sidereal Time Interval 69
THE ASTRONOMICAL FIELD TABLES
Field Tables for Solar Observations 69
Field Tables for Star Observations 70
The Apparent Motion of Polaris 70
Computation of the Azimuth and Altitude of Polaris 72
TABLES
I Radii of Curvature of Meridians and Parallels, etc. 76
II Corrections to be applied to the Logarithms of $\mathrm{R} \sin 1^{\prime \prime}$ and $\mathrm{N} \sin 1^{\prime \prime}$ in Table I for Clarke's later values of the Dimensions of the Earth 84
III Latitudes, etc., of Base and Correction Lines. First and Second Systems of Survey 85
IV Latitudes, etc., of Base and Correction Lines. Third System of Survey 86
V Chord Azimuths, Deflections, Deflection Offsets, etc., for Base Lines. First and Second Systems of Survey 92
VI Chord Azimuths, Deflections, Deflection Offsets, etc., for Base Lines. Third System of Survey 93
Page
VII Chord Azimuths, Deflections, Deflection Offsets, Jogs, etc., for Correction Lines. First and Second Systems of Survey 95
VIII Chord Azimuths, Deflections, Deflection Offsets, Jogs, etc., for Correction Lines. Third System of Survey 96
IX Latitude, with Logarithms of Secant and Tangent for the North Boundary of each Section, and the Widths of Quarter Sections on such Boundaries. First and Second Systems of Survey 100
X Latitude, etc., for the North Boundary of each Section. Third System of Survey 107
XI Showing the difference of Latitude between Town- ship Corners and Section and Quarter Section Posts on a Township Chord 148
XII For Converting Logarithmic Tangents of Small Arcs into Logarithms of Seconds of Arc 149
XIII $\log \frac{1}{1}$ tabulated with $\log m$ as argument 150
XIV Deflection of a Trial Line for Deviations from 1 to 149 Links at the end of Eighty -one Chains 156
XV Corrections in Links to Slope Measurements 157
XVI Table for Laying Out Roads One Chain Wide 162
XVII To Convert Time into Arc 163
XVIII To Convert a Mean Time Interval to the Equiv- alent Sidereal Time Interval 164

Preface to 1952 edition

In 1930 the Dominion Lands in Manitoba, Saskatchewan, Alberta, and British Columbia were transferred to the respective provinces. In I950, the Territorial Lands Act, describing the public lands of Yukon Territory and Northwest Territories as "Territorial Lands" was passed and the Dominion Lands Act repealed. In December 1951 the Canada Lands Surveys Act became law and superseded the Dominion Lands Surveys Act which was repealed. The Canada Lands Surveys Act generally applies to the public lands in Yukon and Northwest Territories, National Parks, and surrendered lands and reserves as defined in the Indian Act. This revision of the 1917 Supplement is, therefore, called the Supplement to the Manual of Instructions for the Survey of Canada Lands.

Chapter I has been slightly revised to agree with modern practice and instruments.

To Chapter II has been addeda short description of the Wild Double Image Prism Compass.

Chapter III has been considerably revised. Information has been added on modern optical transits, the care of instruments, and the correction for stretch and sag to measurements made by steel tapes.

A table listing the geodetic latitudes and longitudes of section corners has been added to Chapter IV.

The tables have been extended northward to township 244 in latitude $70^{\circ} 17^{\prime}$. Columns in the table tabulating data in degrees and decimals have been omitted since transits with this type of division are no longer in use in Canada. In tables Nos. V, VI, VII, and VIII the convergence of meridians for 100 chains of longitude has been added as a further convenience incertain calculations. Tables have been added for the conversion of time to arc and of mean time intervals to sidereal time intervals.

The table to reduce chains to decimals of a township side has been omitted as it was seldom used.
B. W. Waugh,

Surveyor General.

Preface to 1917 edition

The first Manual of Instructions for the survey of the Dominion Lands, a small 12 mo pamphlet of thirty-two pages, was prepared in 1871 by Col. J. S. Dennis, Surveyor-General; the title was "Manual showing the System of Survey adopted for the Public Lands of Canada in Manitoba and the North-West Territories, with Instructions to Survey ors." It was published by authority of the Honourable the Secretary of State, the Dominion Lands office being then a branch of his department. The Manual contained only one table, "showing the departure in running 81 chains 50 links at any course from 1 to 60 minutes."

The second edition was prepared in 1881 , under the direction of Mr. Lindsay Russell, Surveyor-General, by Dr. Deville; it was considerably enlarged, forming a large octavo book of 86 pages. By that time tive need of tables specially adapted to the survey of Dominion Lands had become imperative: thirteen tables were calculated by Dr. Deville and Dr. King and were appended to that edition.

A number of editions followed, the fourth, published in 1892 , containing six additional tables, or nineteen altogether. The fifth and sixth editions, issued in 1903 and 1905 respectively, contained only eight tables. The tables left out were seldom used and it was considered that when needed they could be consulted in the 1892 edition.

In 1908, when the stock of the fourth edition of the Manual (1892) was exhausted, a reprint of the tables became necessary. They were published as a supplement, and their construction and use fully explained. Problems connected with the system of survey originally published by Dr. King in the Report of the Department of the Interior for 1891, were appended.

For this edition, the Supplement has been completely revised. There have been added two chapters on observing and a chapter briefly describing the instruments kept in stock at the head office, for sale to surveyors employed by the Department. These chapters replace matter which formerly appeared in the Manual of Instructions. The additional chapters and the revision are the work of H. Parry, D. L.S.; he has carefully checked the tables and it is hoped that they will now be found free from errors.

INDEX TO THE NOTATION

```
a.
    equatorial semi-diameter of the earth
b........ polar semi-diameter of the earth.
c........ earth's compression.
e........ eccentricity.
h........ altitude of a star.
K. ........ distance.
L......... latitude.
l........ elevation above sea-level.
M ........ longitude.
N. ....... length of normal to the meridian.
P........ radius of parallel of latitude; also polar distance.
p........ polar distance.
R.A....... right ascension.
R........ radius of curvature of meridian.
S........ radius of curvature.
t ......... hour angle.
Z........ azimuth.
```


CHAPTER I

DETERMINATION OF THE ASTRONOMICAL MERIDIAN

The reference of lines to an astronomic meridian, in order to determine their direction, or to check the accuracy of their production, is most readily made by observations on the Pole star.

The telescopes of most modern surveying transits are amply powerful for observing Polaris at any time during a clear day with the exception of a few hours before or after noon. Many of them are provided with lighting arrangements to facilitate observations at night. For best results observations should be taken within a few hours before dusk or after dawn when the air is not quivering and accurate pointings on the reference object may be made. For night observing the reference object requires to be well lighted. Directing the headlights of an automobile on a line or traverse picket at short range is effective.

TO FIND THE POLE STAR

Whether observations are made in the daytime or at night the star must first be found. To set the telescope at solar focus, focus the eyepiece so that the cross hairs or diaphragm markings are clear and distinct. Then point the telescope on a well defined object a half mile or more distant and adjust the objective focus until the image of the object is as sharp as possible. By slight movements of the eyepiece and objective focussing screws continue the adjustment until the sharpest possible images are obtained of the object and the cross hairs which will remain in constant relation to each other when the eye is moved from side to side, i.e., when there is no parallax.

With the sidereal time and the latitude of the place as arguments the azimuth of the Pole star may be taken from the Astronomical Field Tables, a sample page of which is shown in Figure I; its altitude may be obtained from the same tables.

If the observation is being taken along a survey line, the azimuth of the line will be known and the transit may be set to read the azimuth of Polaris. Otherwise, it may be necessary to orient it by means of the magnetic compass making due allowance for the magnetic declination of the place of observation. When the horizontal plate is properly set, it is merely necessary to tilt the telescope to the proper altitude in order to bring the star into the telescope's field of view.

Practice and patience are required to discover the star in daylight. A slight to and fro motion of the horizontal tangent screw gives a relative motion to the star which aids in its perception and insures that it is not behind the vertical wire of the diaphragm. Once the star is found, the focus of the telescope may be readjusted if necessary. When the solar focus is properly set it is good practice, where possible, to mark the focussing screw with a knife cut or other device so that it can again be brought to the same setting. On some instruments this is not possible. Correct focus is necessary for finding the star in daytime.

ASTRONOMICAL FIELD TABLES

		AZIMUTH OF POLE STAR									
		$\begin{array}{\|c\|} \hline \mathbf{L a t} \\ \mathbf{4 4} \\ \hline \end{array}$	$\begin{array}{l\|} \hline \text { Lat. } \\ \mathbf{4 6} 6^{\circ} \end{array}$	$: \begin{aligned} & \text { Lat. } \\ & \mathbf{4 8}^{\circ} \end{aligned}$	$\begin{aligned} & \text { Lat. } \\ & \mathbf{5} 0^{\circ} \end{aligned}$	$\frac{\text { Lat. }}{\mathbf{5 2}}$	$\frac{\text { Lat. }}{54^{\circ}}$	$\left\lvert\, \begin{gathered} \text { Lat. }^{\circ} \\ \mathbf{5} \mathbf{6}^{\circ} \end{gathered}\right.$	$: \begin{aligned} & \text { Lat } \\ & \mathbf{5 8} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Lat } \\ & 60^{\circ} \end{aligned}$	
27		10.	12.5	15.2	18.2	21.6	$25 \cdot 4$	297	34.6	$40 \cdot 2$	
＝ 25	10	11.6	14.1	16.9	20.0	23.5	27.4	31.8	36.8	42.5	
\bigcirc	20	13.1	15.6	$18 \cdot 5$	21.6	25.2	29.2	$33 \cdot 7$	38.8	44.6	
空 ${ }^{\text {Ha }}$	30	14.4	17.0	19.9	23.1	26.7	30.8	35.4	40.6	46.5	
－518	40	15.6	18.2	21.2	24.5	28.1	32.3	37.0	42.2	$48 \cdot 3$	
最 16	50	16.6	19.3	22.3	$25 \cdot 6$	29.4	33．6	38．3	$43 \cdot 7$	49.8	
边 13	1900	17.5	20.2	23.3	26.6	30．4	34.7 35	39.5	44.9	51．2	
08	$1 \begin{aligned} & 10 \\ & 20\end{aligned}$	18.2 18.8	21.0 21.6	24.1 24.7	27.5 28.2	31.3 32.0	35.6 36.4	40.5 41.3	$\begin{aligned} & 46 \cdot 0 \\ & 46 \cdot 8 \end{aligned}$	52.3 53.2	
06	30	19.3	22.1	25.2	28.7	32.6	37.	41．9	47.5	53．9	
03	40	19.6	22.4	25.5	29.0	33.0	37.4	42.3	48.0	54.4	
01	50	19.7	22.6	25.7	29.2	33.2	37.6	$42 \cdot 6$	48.2	54.7	
02	2000	19.7	22.6	25.7	29.2	33.2	37.6	42.6	48.2	54.7	
04	10	19.6	22.4	25.6	29.1	33.0	37.4	42.4	48.1	54.6	
07	20	19.3	22.1	25.2	28.7	$32 \cdot 7$	37.1	42.0	47.7	54.2	
09	30	18.8	21.6	24.7	28.2	32.2	$36 \cdot 5$	41.5	47.2	53.6	
12	40	18.2	21.0	24.1	27.6	31.5	35.8	40.7	46.4	52.8	
14	50	17.4	20.2	23.3	26.7	30.6	34.9	39.8	45	51．7	
16	2100	16.5	19.3	22.3	$25 \cdot 7$	29.5	33.8	38.7	44.2	50.5	
19	10	15.5	18.2	21.2	24.6	28.3	32.6	37.3	42.8	49.0	
21	20	14.3	16.9	19.9	23.2	26.9	31.1	35.8	41.2	47.3	
	30	12.9	15.5	18.5	21.7	25.4	29.5	34.1	39.4 37.4	45.4	
28	50	11.4 09.8	14.0 12.3	16.9 15.1	20.1	23.7 21.8	27.7	32.2 30.2	37.4 35.2	43.3 41.0	
－ 30	2200	08.0	10.5	13.2	$16 \cdot 3$	19.7	23.5	27.9	32.9	38.5	
－ 32	10	06.1	08.5	11.2	14.2	17.5	21.3	25.5	30.3	$35 \cdot 9$	
34	20	04.1	06.4	09.0	11.9	15.1	18.8	22.9	27.6	33.0	
－ 36	30	02.0	042	06.7	$09 \cdot 5$	12.6	16.2	20.2	24.7	29.9	
38	40	59.7	O1．9	043	07．0	10.0	13.4	17.2	$21 \cdot 6$	26.6	
40	50	57.3	59.4	01.7	04.3	07.2	10.5	14.1	18.	23.2	
42	2300	54.8	56.8	59.0	01．5	04.3	07.4	$10 \cdot 9$	15.0	19.6	
44	10	52.2	54.1	56.2	58.6	01.2	04.2	07.6	11.4	15.8	
45	20	49.5	51.3	53.3	55．5	58.0	00.9	04.1	07.7	$11 \cdot 9$	
47	30	46.7	48.4	503	52.4	54.7	57.4	00.5	03．9	07.8	
48	40	43.8	45.4	47.1	49.1	51．3	53.8	56.7	59.9		\bigcirc
49	50	40.8	42.2	43.9	45.8	47	50.2	52.8	55.8	59.3	

ALTITUDE AND AZIMUTH OF POLARIS

November，December ．．．．．．．．．． 1951
September，October ．．．．．．．．．．．．．． 1952
July，August 1953

POLE STAR OBSERVATION FOR AZIMUTH

The maximum error in the azimuth of the Pole star, as determined from the field tables, is about 0.5 minutes. Where azimuth observations are required to an accuracy of one or two minutes only, the calculations may be made from the data contained in them.

For all astronomical work, whether for time or azimuth, the instrument must be very firmly set up and carefully levelled. In survey ing a lot, subdividing a township, or making a traverse, an observation for azimuth is made with one of the survey lines as a reference line. In each case the bearing by account is generally near enough to the azimuth for the purpose of setting the instrument and finding the star. The reference object should be about one half mile or more distant, so that it can be sighted without parallax when the instrument is at solar focus.

SPECIMEN OBSERVATIONS

Specimen azimuth observations are shown on page 4 The following notes refer to the observation on the upper half of the page.

The observation is supposed to have been made with a double centre transit to determine the bearing of the westerly boundary of lots 14 to 20 , range 1 , in the townsite of Waskesiu very near the northeast corner of section 8 , township 57 , range 1 , west of the 3 rdinitial meridian. The bearing of this reference line is to be referred to the astronomical meridian through the centre of the township.

The bearing of the reference line is known to be about $177^{\circ} 08^{\prime}$. Set the vernier of the horizontal circle to read $177^{\circ} 08^{\prime}$. Using the lower clamp and tangent screw, and with the vertical circle to the right, direct the telescope on the reference line. Read verniers A and B and enter their mean under the heading, H.C.R. on Ref. Line, Circle Right ($177^{\circ} 08^{\prime}$).

From Table X, in this Supplement, note that the latitude of the place is $53^{\circ} 55^{\prime}$; the sidereal watch reads about 19 h 10 m . Entering the Astronomical Field Tables (Figure I), with these arguments, the azimuth of the Pole star is given as $1^{\circ} 35^{\prime} .6$. Loosen the upper clamp and set the vernier of the horizontal plate to read $1^{\circ} 35^{\prime}$.

At sidereal time $19 \mathrm{~h} 10^{\mathrm{m}_{\mathrm{it}}}$ is necessary to subtract 1^{1} from the latitude of the place to obtain the altitude of Polaris (Figure I); therefore, the altitude is $53^{\circ} 55^{\prime}-11^{\prime}=53^{\circ} 44^{\prime}$. Set the telescope at this altitude and Polaris should be in the field of view.

With the vertical tangent screw bring the star to a point immediately above or below the horizontal cross hair, then bisect the star with the vertical cross hair using the upper tangent screw. Note and enter the watch time of the bisection to the nearest second under the heading, Watch Time, Circle Right ($19^{\mathrm{h}} 12^{\mathrm{m}} 16^{\mathrm{s}}$).

Since the vertical cross hair will entirely cover the star, it is good practice to make two or three trial pointings before making the final setting, which in this operation as in all others, should be made by

POLE STAR OBSERVATIONS FOR AZIMUTH

Date. Dec. $10^{\text {th }}$. 1951 Refline N.By.Sec.24,99,2, W. $6^{\text {th }}$ Place 20 Chs W. of NE:Cor.Sec, 24 - Approx, Lat. $57^{\circ} 37^{\prime}$ Observer d. DoeInstrument Wild T.S. No. 500								
Circle	H.C.R. onRef line		H.C.R.on Polaris		Watch Time			
Right	$295{ }^{\circ}$		23°	49^{\prime}	$9^{\text {h }} 58^{m}$	26^{5}		
Left	115	19	203	50	10 01	05		
Mean	295	20	23°	49.5	959	45		
Tab.az.for 9 h .50 m Lat. 56° Difference for 8 m .35 s . Difference for $1^{\circ} 37^{\prime}$ Lat. Azimuth of Polaris				Watch Corr. Sid Time	$\begin{array}{ccc} - & 1 & 10 \\ 9 & 58 & 35 \end{array}$			
				NOTE: If, after observation, any deflection in the line was made, the following information should be supplied. Amount. 3.o Direction N Place NE.Cor: Sec, 21				
			$\begin{array}{cc} 358^{\circ} & 30^{\prime} 2 \\ 23 & 49.5 \\ \hline \end{array}$					
		$\begin{array}{r} -\quad 25 \quad 193 \\ 295 \quad 20 \end{array}$						
Correction to H.C.R. H.C.R.on Ref. line								
Azimuth of Ref. line		$270^{\circ} 00.7$						
Convergence for $23 / 4 \mathrm{mi}$.		- 3.7						
Bearing of Ref. line		269° 57'0						

turning the tangent screw in a positive, or clockwise, direction.

Read the horizontal plate verniers A and B and enter the mean under the heading, H. C. R. on Polaris, Circle Right ($1^{\circ} 34^{\prime}$).

This completes only the first half of the observation because, for azimuth work, it is essential that all observations be made in the two positions of the instrument - circle right, and circle left.

To complete the observation, transit the telescope, set the horizontal circle to read the azimuth of Polaris plus 180°, and reset the altitude in the telescope's new position. Repeat the setting on Polaris as before, entering the Watch Time ($19 \mathrm{~h} 15^{\mathrm{m}} 24^{\mathrm{s}}$), and the H.C.R. on Polaris ($181^{\circ} 35^{\prime}$) in their respective places. Point the telescope on the reference line, read the horizontal circle, and enter under Circle Left ($357^{\circ} 07^{\prime}$).

The observation is now complete and the next stepis to calculate the bearing of the reference line.

First, mean the horizontal circle readings on the reference line $\left(177^{\circ} 07!5\right)$, and on Polaris $\left(1^{\circ} 34!5\right)$, and mean the watch times ($19^{\mathrm{h}} 13^{\mathrm{m}} 50^{\mathrm{s}}$). Let the correction to the watch be $+12^{\mathrm{s}}$, which makes the sidereal time $19^{\mathrm{h}} 14^{\mathrm{m}} 02^{\mathrm{s}}$ (methods of determining the watch correction are described in the next section).

From the Field Tables (Figure I), the azimuth of the Pole star at $19^{\mathrm{h}} 10^{\mathrm{m}}$ for latitude 52° is $1^{\circ} 31!3$, and at $19^{\mathrm{h}} 20^{\mathrm{m}}$ it is $1^{\circ} 32!0$. By direct proportion, the correction to obtain the azimuth at $19{ }^{\mathrm{h}} 14^{\mathrm{m}} 02^{\mathrm{s}}$ is $+0!3$. Similarly, by direct proportion, the correction to obtain the azimuth at latitude $53^{\circ} 55^{\prime}$, the latitude of the place, is $+4!1$. With these corrections, the azimuth of Polaris is $1^{\circ} 35!7$ at the mean time of the observation.

The mean H. C. R. on Polaris, as calculated above, is $1^{\circ} 34!5$. Therefore, the correction to the horizontal circle readings to give true azimuths is $1^{\circ} 35!7-1^{\circ} 34!5=+1!2$. Applying this correction to the mean H. C. R. on the reference line gives the true azimuth as $177^{\circ} 08!7$.

The reference meridian for the survey is the meridian through the centre of the township, almost exactly 1 mile east of the observation point. From the convergence scale of the Field Tables (Figure 2), the convergence per mile at latitude $53^{\circ} 55^{\prime}$ is $1!2$. The bearing of the reference line referred to the central meridian of the township is, therefore, $177^{\circ} 08!7+1!2=177^{\circ} 09!9$, or $177^{\circ} 10^{\prime}$.

Since the observation was taken for the purpose of determining the bearing only of a survey line, no deflection is to be made and the word 'nil' is entered under the proper heading.

The observation on the lower half of page 4 is supposed to have been taken on the north boundary of section $24, \mathrm{Tp} .99, \mathrm{R} .2, \mathrm{~W}$. of the 6th meridian. The chord has been run east from the control meridian and the place of observation was a point 20 chains W . of the N.E.
corner of the section, the reference line lying to the west. Because a single-centre instrument was used, the horizontal plate could not be set to read azimuths.

The bearing of the reference line is known to be about $270^{\circ} 00^{\prime}$ making the horizontal circle reading of $295^{\circ} 21^{\prime}$ on the line $25^{\circ} 21^{\prime}$ greater than the true bearing. From the Astronomical Field Tables (the relevant page is not reproduced here), the azimuth of Polaris for the time and place is about $358^{\circ} 34^{\prime}$, to which must be added $25^{\circ} 21^{\prime}$ to obtain the setting for the horizontal plate in order to find the star.

The remainder of the proceedings and calculations are the same as in the preceding observation, except that as the bearing of the line is required to be $270^{\circ} 00^{\prime}$ it must be corrected by a deflection northward of 3 minutes. Entries recording deflections must never be neglected.

DETERMINATION OF THE WATCH CORRECTION

The watch may be set approximately to local sidereal time by several means. One of these, which involves a knowledge of the local standard time, is given in the Astronomical Field Tables (Figure 2). If the standard time is not known it may be possible to obtain it from radio time signals. Otherwise, an approximation of apparent mean noon and hence of mean noon may be obtained by observing the time of the highest altitude of the sun.

A convenient fact to remember is that around March 21 the local mean time and the local sidereal time are the same, and about September 21 the sidereal time is 12 hours in advance of mean time.

When the sidereal time is known approximately, an observation on the Pole star for azimuth will provide an approximate value of the astronomical meridian on which the time may be observed by the methods that follow. The watch correction thus obtained may be used in re-working the azimuth observation and thus providing a more accurate meridian from which the time may be re-observed. The watch correction should be determined shortly before or after an azimuth observation.

DETERMINATION OF THE WATCH CORRECTION by The meridian transit of a star

During the progress of a survey the bearings of the lines ${ }^{\circ}$ surveyed are known. By applying the convergence from the reference meridian, the azimuth of the astronomical meridian may be calculated and the instrument set on it. If the telescope is then set at the altitude of a time star, the watch time of its transit of the meridian may be observed. The sidereal times of transit of a number of suitable stars are given in the Astronomical Field Tables (not reproduced here). The magnitudes and Polar distances of the stars are also given. The altitude on the meridian to the south may be calculated by subtracting the Polar distance from the supplement of the latitude. In selecting a time star to be used in daylight, it should be remembered that stars are more difficult to see south of the zenith than north of it, and that this difficulty increases as the altitude decreases.

ASTRONOMICAL FIELD TABLES

CONVERSION STANDARD TIME TO LOCAL SIDEREAL TIME CONVERGENCE
FIGURE 2

For the first specimen of azimuth observation given in the preceding section, a convenient star would be a Aquilae. From the Astronomical Field Tables, its magnitude is 1 , so that it should be easy to see; its time of meridian transit, for Nov. 15, 1951, is $19 \mathrm{~h} 48^{\mathrm{m}} 26^{\mathrm{s}}$, which allows sufficient time to set the transit after completing the azimuth observation.

Its altitude on the meridian is $\left(180^{\circ}-53^{\circ} 55^{\prime}\right)-81^{\circ} 16^{\prime}$ (Polar distance $)=44^{\circ} 49^{\prime}$.

The bearing by account of the reference line is $177^{\circ} 08^{\prime}$ and the convergence to be subtracted to obtain azimuths is $1^{t} .2$. Set the horizontal circle at $177^{\circ} 07^{\prime}$, and sight it on the reference line with the lower horizontal movement. Loosen the upper clamp and turn the transit so that the vernier reads 180°. Set the altitude of the star on the vertical circle. Note the time the star passes the vertical wire of the transit, and calculate the watch correction:

Watch time of meridian transit of a Aquilae	$19^{\mathrm{h}} 48^{\mathrm{m}} 14^{\mathrm{s}}$
Sidereal time of meridian transit	
of a Aquilae	$\underline{19 \mathrm{~h}} 48^{\mathrm{m}} 26^{\mathrm{s}}$
Watch Correction, Nov. 15	
(watch slow) +	12^{5}

Since, from the azimuth observation, the bearing by account was in error by about 2 minutes of arc, the setting for the astronomical meridian was also in error by 2 minutes. The error thus introduced into the watch correction can be calculated from the formula $4 \times 2 \mathrm{x} \cos \mathrm{h} \sec \delta$ in seconds, where h and δ are the altitude and declination of the star respectively. Substituting, we get, $4 \times 2 \times \cos$ $44^{\circ} 49^{\prime} \sec 8^{\circ} 44^{\prime}=5.6$ seconds. Since the bearing by account is $2 \mathrm{~min}-$ utes less than the true bearing, the azimuth of the astronomic meridian set on the transit will actually be $180^{\circ} 02^{\prime}$ and the sidereal time of the observation will be $19^{\mathrm{h}} 48^{\mathrm{m}} 32^{\mathrm{s}}$ instead of $19^{\mathrm{h}} 48^{\mathrm{m}} 26^{\mathrm{s}}$ making the watch correction $+18^{5}$.

The effect of the error of the watch correction (5.6 seconds) on the observed azimuth would be less than .01 minute and can be neglected.

To obtain the watch correction for the second specimen azimuth observation, a Leonis, magnitude 1.3 , would be suitable although there is a very small interval of time after the completion of the observation to set the transit for the time star. The reading on the horizontal circle when the transit is set on the reference line with circle right is $295^{\circ} 21^{\prime}$. The bearing of the reference line by account is $270^{\circ} 00^{\prime}$ and the convergence to the reference meridian is $3!7$. The azimuth of the reference line is therefore $270^{\circ} 03!7$. The angle between the reference line and the astronomic meridian towards the south is $270^{\circ} 03!7-180^{\circ} 00^{\prime}=$ $90^{\circ} 0317$. To set the transit in the astronomic meridian, the horizontal plate should be made to read $295^{\circ} 21^{\prime}-90^{\circ} 03!7=205^{\circ} 17^{\prime}$. The altitude setting for the time star is $\left(180^{\circ}-57^{\circ} 37^{\prime}\right)-77^{\circ} 48^{\prime}=44^{\circ} 35^{\prime}$.

of a Leonis	$10^{\mathrm{h}} 07 \mathrm{~m} 00^{\text {s }}$
Sidereal time of meridian transit of a Leonis ..	$10^{\mathrm{h}} 05^{\mathrm{m}} 50^{\mathrm{s}}$
Watch Correction, Dec. 10 (watch fast).	$-1^{\mathrm{m}} 10^{\mathrm{s}}$

The correction due to the error in azimuth is not calculated.

DETERMINATION OF WATCH CORRECTION BY THE MERIDIAN TRANSIT OF THE SUN

The determination of the watch correction by means of the meridian transit of the sun is convenient for several reasons: the observation is made at a time of the day when the instrument is usually on line and can be readily set in the meridian; there is no difficulty in finding the sun; and it can be observed through light clouds or haze when stars are invisible.

The observation is simple. The telescope is set in the meridian as for a star, and the sun glass is attached to the eyepiece. The watch time when each limb of the sun crosses the vertical thread of the diaphragm is noted, and the mean of the two gives the watch time of the meridian transit. The sidereal time of the observation equals the Apparent Right Ascension of the Sun. It may be calculated from Apparent Right Ascension and Declination of the Sun, in the Astronomical Field Tables - a sample page of which is shown in Figure 3.

An example, based on the first specimen of azimuth observation, follows:

From the Astronomical Field Tables (Figure 3), the sun's apparent right ascension at Greenwich apparent noon, on Nov. 15, 1951, is $15 \mathrm{~h} 19^{\mathrm{m}_{33} \mathrm{~s}}$, and the variation in 1 hour is +10 S 2 .

The place of observation is near the northeast corner of section 8 , township 57, range 1 , west of the 3 rd initial meridian. The longitude of the third meridian is $106^{\circ} \mathrm{W}$. The northeast corner of section 8 is four sixths of a range west of the 3 rd meridian, which from Table IV of the Supplement, is 0.1 degrees ($05^{\prime} 57^{\prime \prime}$) west, fixing the longitude of the place as $106.1^{\circ} \mathrm{W}$.

The elapsed time equivalent to 106.1 degrees of longitude

ASTRONOMICAL FIELD TABLES THE SUN'S APPARENT RIGHT ASCENSION

at Greenwich apparent noon and variation for one hour.

등	1951								든
合	September		October		November		December		$\stackrel{+}{\circ}$
	h. m. ${ }_{\text {s. }}$	9.	h. m. ${ }^{\text {m }}$	s.		s.	m. s.	s.	
1	103933	9.1	122731	$9 \cdot 0$	142329	9.8	162658	10.8	1
2	104311	9.1	123108	9.1	142724	9.8	163117	$10 \cdot 8$	2
3	104648	9.1	123446	$9 \cdot 1$	143120	9.8	163536	$10 \cdot 8$	3
4	105025	9.0	123824	$9 \cdot 1$	143516	9.9	163957	10.9	4
5	105402	9.0	124202	$9 \cdot 1$	143914	9.9	164418	$10 \cdot 9$	5
6	105739	9.0	124541	9.1	144312	9.9	164839	10.9	6
7	1110115	9.0	124920	$9 \cdot 1$	144711	10.0	165301	10.9	7
8	110451	9.0	125259	9.1	145111	10.0	165724	10.9	8
9	110827	9.0	125639	$9 \cdot 2$	145512	10.0	170146	11.0	9
10	111203	9.0	$\begin{array}{llll}13 & 00 & 19\end{array}$	$9 \cdot 2$	145913	10.1	170610	11.0	0
11	111539	9.0	130359	9.2	150315	10.1	171034	11.0	11
12	111914	9.0	130740	$9 \cdot 2$	150719	$10 \cdot 2$	171458	11.0	2
13	112249	9.0	131122	$9 \cdot 2$	151123	$10 \cdot 2$	171922	11.0	3
14	112625	$9 \cdot 0$	$13 \quad 1504$	9.3	151528	10.2	172347	11.0	4
15	113000	9.0	131846	$9 \cdot 3$	151933	$10 \cdot 2$	172812	11.1	5
16	113335	9.0	132229	$9 \cdot 3$	152340	$10 \cdot 3$	173238	11.1	6
17	113710	9.0	132613	$9 \cdot 3$	152747	$10 \cdot 3$	173704	11.1	17
18	114045	9.0	132957	$9 \cdot 4$	153156	10.4	174130	11.1	18
19	114420	9.0	133342	9.4	153605	10.4	174556	11.1	9
20	114755	9.0	133728	9.4	154015	10.4	175022	11.1	20
21	115131	9.0	134114	$9 \cdot 4$	154426	10.5	175449	11.1	21
22	115506	9.0	134501	9.5	154837	10.5	175915	11.1	22
23	115841	9.0	134848	9.5	155250	10.5	180342	11.1	23
24	120217	9.0	135236	9.5	155703	10.6	180808	11.1	24
25	120553	9.0	135625	9.6	$\begin{array}{llll}16 & 01 & 17\end{array}$	10.6	181235	11.1	25
26	120929	9.0	140015	9.6	160532	10.6	181702	11.1	26
27	121305	9.0	140405	9.6	160948	$10 \cdot 7$	182128	11.1	27
28	$\begin{array}{lllll}12 & 16 & 41\end{array}$	9.0	140757	9.6	161404		182554	11.1	28
29	122017	9.0	141149	9.7	161821	$10 \cdot 7$	183021	11.1	29
30	122354	9.0	141541	9.7	162239	$10 \cdot 8$	183447	11.1	30
31	122731	9.0	141935	9.7	162658	10.8	183912	11.1	31
32			142329	9.8			184338	11.1	32

is equal to $\frac{106.1}{15}=7.07$ hours. The variation in the sun's apparent right ascension in 7.07 hours is $7.07 \times 10.2=+72^{s}=+1^{\mathrm{m}} 12^{\mathrm{s}}$. Hence the sidereal time at apparent noon is $15^{\mathrm{h}} 19^{\mathrm{m}} 33^{\mathrm{s}}+1^{\mathrm{m}} 12^{\mathrm{s}}=15^{\mathrm{h}} 20^{\mathrm{m}} 45^{\mathrm{s}}$, and the watch correction is $15^{\mathrm{h}} 20^{\mathrm{m}_{4}} 45^{\mathrm{s}}-15^{\mathrm{h}} 20^{\mathrm{m}_{3}} 33^{\mathrm{s}}=+12^{\mathrm{s}}$ (watch slow).

An error of 0.1 degrees, or 6 minutes, in longitude would give an error in time of only 1 second.

A nother example, based on the second specimen of azimuth observation, follows:

Sidereal time at apparent noon

$$
=17^{\mathrm{h}} 06^{\mathrm{m}} 10^{\mathrm{s}}+11.0 \times \frac{(118+0.2)}{15}=17^{\mathrm{h}} 07^{\mathrm{m}} 37^{\mathrm{s}}
$$

Watch correction (watch fast) $=\quad-1^{\mathrm{m}} 10^{\mathrm{s}}$
If, because of clouds or other reason, only one limb can be observed, a correction for the semi-diameter of the sun in sidereal time has to be applied to the observed watch time to give the watch time of transit. The semi-diameter of the sun in sidereal time is given in the Nautical Almanac for every day of the year.

Suppose, for example, that in the above observation the watch time for the first limb only was observed. In that case, it would be necessary to add the semi-diameter in sidereal time, namely $1^{\mathrm{m}} 10^{\mathrm{s}} .86$, to the watch time, $17^{\mathrm{h}} 07^{\mathrm{m}} 36^{\mathrm{s}}$, to give the watch time of transit, 17^{h} $08^{\mathrm{m}} 47^{\mathrm{s}}$. If the second limb only were observed the semi-diameter would have to be subtracted.

DETERMINATION OF THE WATCH CORRECTION BY RADIO TIME SIGNALS

Radio time signals are broadcast from a number of stations in Canada and United States on several wave lengths and at various times. The stations which are most used by surveyors in Canada are stations of the CBC network; CHU Ottawa; NSS Washington; NPG San Francisco; and WWV Washington.

As an example of the usage of time signals, suppose the 1 p. m., Eastern Stand Time, radio signal by CBC were to be heard at the place of the first specimen of azimuth observation, longitude 106° $05^{\prime} 57^{\prime \prime}$, on Nov. 15 , at watch time $14^{\mathrm{h}} 31^{\mathrm{m}} 27^{\mathrm{s}}$.

From the Astronomical Field Tables (Figure 2) the sidereal time at noon Eastern Standard Time, Nov. 11 is .	$15^{\mathrm{h}} 20^{\mathrm{m}} 07^{\mathrm{s}}$
Correction for 4 days $=4 \times 3{ }^{\text {m }}$ 56. ${ }^{\text {s }} 6$	$15^{\mathrm{m}} 46^{\text {s }}$
Correction to 1 p.m. $=1+\frac{1}{24} \times 3^{m_{5}} 56^{s} .6 \ldots$.	$1^{\mathrm{h}} 00^{\mathrm{m}} 10^{\text {s }}$
Sidereal time of signal, longitude 75°	$16^{\mathrm{h}} 36^{\mathrm{m}} 03^{\mathrm{s}}$
$\begin{aligned} \text { Correction for longitude } & =106^{\circ} 05^{\prime} 57^{\prime \prime}-75^{\circ} \\ & =31^{\circ} 05^{\prime} 57^{\prime \prime} \ldots \ldots \end{aligned}$	$2^{\mathrm{h}} 04^{\mathrm{m}} 24^{\mathrm{s}}$
Sidereal time of signal at place of observation	$14^{\mathrm{h}} 31^{\mathrm{m}} 39^{\mathrm{s}}$
Watch time of signal	$14^{\text {h }} 31^{\mathrm{m}} 27^{\mathrm{s}}$
Hence, watch correction is	12^{5}

THE WATCH RATE

It will be noted in the two specimen observations for azimuth that comparatively large errors in the watch correction have little effect on the resulting azimuth. An influence on the error is the apparent rate of travel of Polaris. In the first specimen, this rate is 0.7 minutes of arc in 10 minutes of time and in the second 2.7 minutes in 10 minutes. At the times of upper and lower culmination, i.e., at about $1^{\mathrm{h}} 50^{\mathrm{m}}$ and $13^{\mathrm{h}} 50^{\mathrm{m}}$, the rate is about 4.6 minutes of arc for 10 minutes of time, or nearly 30 seconds of arc for 1 minute of time. In the more precise observations for governing surveys where azimuths are calculated to seconds, it is evident that the watch correction is required with considerable accuracy.

It is not always possible to obtain a time observation and the accuracy of a critical azimuth observation may be adversely effected by an inaccurate watch correction. As a precautionary measure it is good practice to observe for time as opportunities occur, and establish a daily rate for the watch. The daily rate of the watch is the number of seconds it gains or loses in 24 hours. This can be done quite simply in surveying a meridian but in all other surveys allowance must be made for changes in longitude.

In the preceding specimen observations for azimuth a watch correction of $+12^{\mathrm{s}}$ was determined at longitude $106^{\circ} 05^{\prime} 57^{\prime \prime}$ at $15^{\mathrm{h}} 20^{\mathrm{m}}$ 45^{s} on Nov. 15 (page 8) and again determined as $-1^{\mathrm{m}} 10^{\mathrm{s}}$ at longitude $118^{\circ} 10^{\prime} 12^{\prime \prime}$ at $17^{\mathrm{h}} 07^{\mathrm{m}_{37} \mathrm{~s}}$ on Dec. 10 (page 9). At the instant of the second determination, the sidereal time at the place of the first observation would be $17^{\mathrm{h}} 07^{\mathrm{m}} 37^{\mathrm{s}}+\frac{1}{15}\left(118^{\circ} 10^{\prime} 12^{\prime \prime}-106^{\circ} 05^{\prime} 57^{\prime \prime}\right)=17^{\mathrm{h}} 55^{\mathrm{m}}$ 54^{s}. The watch correction would be $17^{\mathrm{h}} 55^{\mathrm{m}} 54^{\mathrm{s}}-17^{\mathrm{h}} 08^{\mathrm{m}} 47^{\mathrm{s}}=+0^{\mathrm{h}}$ $47^{\mathrm{m}_{07}} \mathrm{~s}$. This means that the watch has lost $47^{\mathrm{m}} 07^{\mathrm{s}}-12^{\mathrm{s}}=46^{\mathrm{m}} 5^{\mathrm{s}}$ in $25+\left(17^{\mathrm{h}} 55^{\mathrm{m}}-15^{\mathrm{h}} 20^{\mathrm{m}}\right) \frac{1}{24}=25.1$ days, giving a daily rate of $-46^{\mathrm{m}} 55^{\mathrm{s}}$ $\div 25.1$ or $-1^{\mathrm{m}} 52$. ${ }^{\mathrm{s}} 1$

It is not probable that the watch would maintain an even daily
loss of $1^{\mathrm{mi}} 52.1$ over such a long period as 25 days. In order to establish a reliable rate, time should be observed at intervals not exceeding three or four days.

To illustrate the usage of the daily rate, suppose an azimuth observation was taken at $20^{\mathrm{h}} 30^{\mathrm{m}}$ on Dec. 12 at longitude $119^{\circ} 06^{\prime} 1^{\prime \prime}$, and that it is required to know the watch correction at the time of the observation.

$$
\begin{aligned}
& \text { Watch correction, longitude } 118^{\circ} 10^{\prime} 12^{\prime \prime} \\
& \text { at } 17^{\mathrm{h}} 07^{\mathrm{m}} \text {, Dec. } 10 \ldots \\
& \text { Daily rate, - } 1^{\mathrm{m}} 52 . \frac{\mathrm{S}}{} \text {; elapsed time, } 2.1 \\
& \text { days; watch loss .. } 3^{\mathrm{m}}{ }_{55^{s}} \\
& \text { Watch correction at time of observation } \ldots \ldots . . .+2^{\mathrm{m}} 45^{\text {s }} \\
& \text { Correction for longitude }= \\
& \text { Hence, required watch correction is }-0^{m} 59^{s}
\end{aligned}
$$

OBSERVATION OF THE SUN FOR AZIMUTH

It may happen that star observations are prevented by smoke, haze, or light clouds, and the only method available for the determination of azimuth will be observation on the sun.

The method is not recommended when Polaris can be observed because it is not as accurate and, as it involves more calculation, is subject to a greater number of errors.

The following explanation is based on the use of the inverted eyepiece.

The instrument, carefully set up at the station and levelled, is directed on the reference line, and the horizontal circle is read and recorded, as usual, under the heading H. C. R. on Ref. Line. A sun glass must then be attached to the eyepiece and the instrument directed on the sun.

The next few steps are easy enough if performed methodically. Ingeneral, they consist of placing the image of the sun in the angle formed by the crosshairs of the diaphragm, first in the upper left quadrant with the instrument in circle right position, second in the lower right quadrant with the instrument in the circle left position (Figure 4). This procedure should be followed for an observation in the forenoon. In the afternoon, the other two remaining quadrants, as shown in Figure 5 should be used. In each case, when the cross hairs are tangent to the limbs of the sun's image, the circle readings and the approximate time should be taken.

Rules for Observing:

1. Commence with the sun on the leftof the vertical thread and impinging uponit, above the horizontal thread in the forenoon , and below in the afternoon.
2. Follow the sun with the slow motion screw of the vertical circle until the vertical thread also becomes tangent to the disc. The rules are reversed in the second position of the instrument.
3. Place the sun on the right of the vertical thread and imping ing upon the horizontal thread, below it in the forenoon and above it in the afternoon.
4. Follow the sun with the slow motion screw of the upper plate until the horizontal thread also becomes tangent to the disc.

The readings of the vertical circle on the sun, and of the horizontal circle on both the sun and the reference object, generally one of the line pickets, must be taken in both positions of the instrument and the approximate time of the observation noted.

COMPUTATION FOR THE SUN OBSERVATION

The following formula may be used for the calculation:
$\cos \frac{a}{2}=\sqrt{\cos S \cos (S-P) \sec L \sec h}$
where $S=\frac{h+L+P}{2}$
$h^{\prime}=s^{\prime} n^{\prime} s$ true altitude,
$P=s^{\prime} n^{\prime} s$ polar distance,
$\mathrm{L}=$ latitude of observation station,
$a=$ angle sun makes with the meridian east or west from the north.

Then the azimuth from the north through the east, south and west is the same as "a" for forenoon observations, and is "360-a" for afternoon observations.

The latitude, and the logarithm of its secant, are given in Table X for the north side of every section.

The first step in the reduction of the observation is to calculate the means of the time, H. C. R. on Reference Line, Sun's altitude, and H.C. R. on Sun. Sample observations are shown on pages 16 and 17 .

The sun's true altitude is the mean of the observed altitudes corrected for refraction and parallax. A table of the cormbined mean refraction and parallax is given in the Astronomical Field Tables, a sample page of which is shown in Figure 6. The table also gives the corrections which should be applied for temperature and pressure, in order to find the mean refraction and parallax for the atmospheric conditions at the time of observation. The mean of the observed altitudes is $28^{\circ} 51^{\prime} .5$ (Page 16). The combined refraction and parallax for this altitude is given as 1'.6 (Figure 6). For a barometric pressure of 29 inches a correction of -0.1 must be applied. For a temperature of $70^{\circ} \mathrm{F}$ a correction of $-0!1$ is required. Hence the resultant correction for refraction and parallax is 1'4 - a correction which must always be subtracted from the observed altitude. The sun's true altitude, therefore, is $28^{\circ} 50^{\prime} .1$. The means of the Times, H. C. R. on Ref. Line, and H. C. R. on Sun, can be written in directly.

The next step is to find the sun's Polar distance. The Astronomical Field Tables (Figure 7) give the sun's declination for 0^{h} Greenwich civil time, and the variation for one hour. We must therefore know the time after 0^{h} Greenwich civil time at which the observation was taken. This is obtained by adding the local standard time to the longitude of the reference meridian at the time zone, expressedin time. Thus in the example, the observation was taken at $7^{\mathrm{h}} 19^{\mathrm{m}} \mathrm{a} . \mathrm{m}$., mountain standard time ${ }^{\text {c }}$, which is the local time for longitude $105^{\circ} \mathrm{W}$, and is 7 h behind Greenwich civil time. The Greenwich civil time of the observation is therefore $7^{\mathrm{h}} 19^{\mathrm{m}}+7^{\mathrm{h}}=14^{\mathrm{h}} 19^{\mathrm{m}}=14^{\mathrm{h}}$. 3 . From the table (Figure 7) the sun's declination at 0^{h} on June 1,1951 , is $\mathrm{N} 21^{\circ} 54.9$, and the variation for one hour, $+0!36$. For $14 ?_{3}$ the variation is $5^{!} 1$. Thus, the declination North is $22^{\circ} 0^{\circ} 0$, that is, a Polar distance of $68^{\circ} 00^{\circ} 0$.

The observation sheet (page 16) shows a convenient method of working out the formula. The reduction of the observation then proceeds as for the observation on the Pole star, and needs no further explanation.

The best time for observing is when the sun is on the prime vertical, as an error in the altitude has then the least effect upon the azimuth. Useful observations, however, may be made at other times within certain limits set by practical considerations. For instance, it is considered that for an altitude lower than eight degrees the refraction correction is too uncertain in value. Again, the altitude should not be greater than that at which the rate of change of the azimuth is double the rate of change of the altitude because at higher altitudes, an error in altitude would produce too large an error in azimuth.

When local time is used, as in the observation on page 17 the approximate longitude of the place is required.

SUN OBSERVATIONS FOR AZIMUTH

SUN OBSERVATIONS FOR AZIMUTH

ASTRONOMICAL FIELD TABLES

Table of corrections to Apparent Altitude of sun for REFRACTION and PARALLAX

Mean Refraction Sun's Parallax Bar. 30° Tem. 50^{7}		Correction to the Mean Refraction.	
		For Height of Barometer	For Height of Thermometer
App. Alt.	Refr.	Barometer Reading (inches)	Thermometer Reading (Fahr.)
		262728293031	$-10^{\circ} 10^{\circ} 30^{\circ} 50^{\circ} 70^{\circ} 90^{\circ}$
6°	8.4	-1.1-0.8-0.6-0.3 $0.00+0.3$	$+1.1+0.7+0.30 .0-0.3-0.6$
7	7.3	$\begin{array}{lllll}-1.0 & 0.7 & 0.5 & 0.3 & 0.0+0.3\end{array}$	$+1.00 .600 .30 .0-0.30 .5$
8	6.4	$\begin{array}{llllll}0.9 & 0.6 & 0.4 & 0.2 & 0.0+0.2\end{array}$	$\begin{array}{llllll}+0.9 & 0.6 & 0.3 & 0.0 & -0.2 & 0.5\end{array}$
9	5.7	$\begin{array}{llllll}-0.8 & 0.6 & 0.4 & 0.2 & 0.0+0.2\end{array}$	+0.8 0.5
10	5.2	$\begin{array}{lllll}-0.7 & 0.5 & 0.4 & 0.2 & 0.0+0.2\end{array}$	+0.7 055
11	4.7	$\begin{array}{lllll}-0.6 & 0.5 & 0.3 & 0.2 & 0.0+0.2\end{array}$	$\begin{array}{llllll}+0.6 & 0.4 & 0.2 & 0.0-0.2 & 0.4\end{array}$
12	4.3	$\begin{array}{lllll}-0.6 & 0.4 & 0.3 & 0.2 & 0.0+0.2\end{array}$	$\begin{array}{llllll}+0.6 & 0.4 & 0.2 & 0.0 & 0.2 & 0.3\end{array}$
13	4.0	$\begin{array}{lllll}-05 & 0.4 & 0.3 & 0.1 & 0.0+0.1\end{array}$	+0.5 $0.4 \begin{array}{llllll} & 0.2 & 0.0-0.2 & 0.3\end{array}$
14	3.7	$\begin{array}{lllll}-0.5 & 0.4 & 0.3 & 0.1 & 0.0+0.1\end{array}$	$\begin{gathered}+0.5 \\ 0.3 \\ 0.3 \\ 0.2\end{gathered} 00.0-0.10 .3$
15	3.4	$\begin{array}{lllll}-0.5 & 0.3 & 0.2 & 0.1 & 0.0+0.1\end{array}$	$+0.50 .30 .20 .0-0.1 .0 .3$
16	32	$\begin{array}{lllll}-0.4 & 0.3 & 0.2 & 0.1 & 0.0+0.1\end{array}$	+0.4 0.3 0.3 0.1
17	3.0	$\begin{array}{lllll}-0.4 & 0.3 & 0.2 & 0.1 & 0.0+0.1\end{array}$	+0.4 $0.31011000-0.1$
18	2.8	$\begin{array}{lllll}-0.4 & 0.3 & 0.2 & 0.1 & 0.0+0.1\end{array}$	+0.4 0.3 0.1 $0.10 .0^{-0.1} 10.2$
19	2.7	$\begin{array}{lllll}-0.4 & 0.3 & 0.2 & 0.1 & 0.0+0.1\end{array}$	+0.4 0.2 0.1 $00.0-0.1 \quad 0.2$
20	2.5	$\begin{array}{lllll}-0.3 & 0.3 & 0.2 & 0.1 & 0.0+0.1\end{array}$	$+0.30 .2 \begin{array}{lllll} \\ +0.1 & 0.0-0.1 & 0.2\end{array}$
25	1.9	$\begin{array}{lllll}-0.3 & 0.2 & 0.1 & 0.1 & 0.0+0.1\end{array}$	+0.3 0.2 0.1 0.1
30	1.5	$\begin{array}{lllll}-0.2 & 0.2 & 0.1 & 0.1 & 0.0+0.1\end{array}$	$+0.2 \begin{array}{lllll} \\ +0.2 & 0.1 & 0.0-0.1 & 0.1\end{array}$
35	1.3	-0.2 00.1 0.1 00.0	+0.2 0.1 0.1 $0.0 .0-0.100 .1$
40	1.0	$\begin{array}{lllll}-0.1 & 0.1 & 0.1 & 0.0 & 0.0+0.0\end{array}$	+0.1 0.1 0.1
45	0.9	-0.1-0.1-0.1-0.0 0.0+0.0	$+0.1+0.1+0.0 \quad 0.0-0.0-0.1$

FIGURE 6

ASTRONOMICAL FIELD TABLES

THE SUN'S APPARENT DECLINATION
FOR Oh GREENWICH CIVIL TIME AND VARIATION FOR ONE HOUR
(0 h Greenwich Civil Time is twelve hours before Greenwich Mean Noon of the same date)

	1951								気
䦎	May		June		July		August		-
1	N. $14^{\circ} 45^{\prime} \cdot 8$	0.77	N. $21{ }^{\circ} 54.9$	$0 \cdot 36$	N. $23^{\circ} 11^{\prime} \cdot 0$	$0^{\prime} \cdot 15$	N. $18^{\circ} 17^{\prime} \cdot 2$	$0 \cdot 62$	1
2	$1504 \cdot 1$	0.76	$2203 \cdot 2$	0.34	2307.2	0.17	$18 \quad 02 \cdot 3$	0.63	2
3	1522.1	0.75	$2211 \cdot 2$	0.32	2303.0	0.18	1747.0	0.64	3
4	$\begin{array}{lll}15 & 39.9\end{array}$	0.74	$2218 \cdot 8$	0.31	2258.4	$0 \cdot 20$	1731.5	0.65	4
5	1557.5	0.72	$22.26 \cdot 0$	0.29	2253.4	0.22	$1715 \cdot 7$	0.66	5
6	$\begin{array}{llll}16 & 14.7\end{array}$	0.71	$2232 \cdot 8$	$0 \cdot 28$	2248.0	0.23	1659.6	0.68	6
7	$\begin{array}{lll}16 & 31.7\end{array}$	0.70	$2239 \cdot 3$	0.26	2242.2	0.25	$1643 \cdot 2$	0.69	7
8	1648.4	0.69	$2245 \cdot 3$	0.24	$2235 \cdot 9$	0.27	$1626 \cdot 6$	0.70	8
9	1704.9	0.68	2250.9	0.23	2229.3	0.28	$1609 \cdot 7$	0.71	9
10	$17 \quad 21 \cdot 0$	0.67	2256.1	0.21	2222.4	0.30	1652.5	0.72	10
11	1736.9	0.65	$2300 \cdot 9$	0.20	$2215 \cdot 0$	0.32	1535.1	0.73	11
12	1752.5	0.64	$23 \quad 05 \cdot 3$	0.18	$2207 \cdot 2$	0.33	$15 \quad 17 \cdot 4$	0.74	12
13	$18 \quad 07.7$	0.63	2309.3	0.16	2159.1	0.35	1459.5	0.75	13
14	1822.7	0.62	2312.9	0.14	$2150 \cdot 6$	0.36	1441.4	0.76	14
15	1837.4	0.61	2316.1	0.12	2141.7	0.38	1423.0	0.77	15
16	1851.7	0.59	$2318 \cdot 9$	0.11	2132.5	0.39	1404.4	0.78	16
17	$1905 \cdot 7$	0.58	$2321 \cdot 2$	0.09	$2122 \cdot 8$	0.41	$1345 \cdot 6$	0.79	17
18	1919.4	0.56	$2323 \cdot 2$	0.07	2112.9	0.42	1326.5	0.80	18
19	1932.8	0.55	23 24.7	0.06	2102.5	0.44	$1307 \cdot 3$	0.81	19
20	1945.8	0.54	$23 \quad 25 \cdot 8$	0.04	$2051 \cdot 8$	0.44	$1247 \cdot 8$	0.82	20
21	1958.5	0.52	23 26.6	0.02	$2040 \cdot 8$	0.47	$1228 \cdot 1$	0.82	21
22	$2010 \cdot 8$	0.51	$23.26 \cdot 9$	0.01	2029.4	0.48	1208.3	0.83	22
23	2022.9	0.49	$2326 \cdot 8$	0.01	2017.7	0.50	1148.2	0.84	23
24	2034.5	0.48	23 26.2	0.03	2005.6	0.51	1128.0	0.85	24
25	$2045 \cdot 8$	0.46	2325.3	0.05	1953.2	0.52	1107.5	0.86	25
26	2056.8	0.45	2323.9	0.06	1940.4	0.54	1046.9	0.86	26
27	2107.4	0.43	$23 \quad 22 \cdot 2$	0.08	$1927 \cdot 4$	0.55	1026.1	0.87	27
28	21.17 .6	0.42	$2320 \cdot 0$	0.10	1914.0	0.56	$\begin{array}{lll}10 & 05 \cdot 2\end{array}$	0.88	28
29	$21 \quad 27.5$	0.40	$23 \quad 17 \cdot 4$	0.12	$1900 \cdot 2$	0.58	$944 \cdot 1$	0.88	29
30	2137.0	0.39	2314.4	0.13	1846.2	0.59	922.8	0.89	30
31	2146.1	0.37	N. 2311.0	0.15	1831.9	0.60	901.4	0.90	31
32	N. 2154.9	0.36			N. 18 17.2	0.62	N. 839.8	0.90	32

FIGURE 7

In a sun observation for azimuth, the ordinary surveyor's transit reading to one minute cannot be expected to give results with an accuracy better than three or four minutes. Recently, however, a Solar PrismAttachment has been developed, and when placed over the object glass, it enables the observer to make more accurate pointings on the sun. With a good modern instrument, reading to one second in altitude and in azimuth and without a striding level, azimuths may be determined with an accuracy of about 20 seconds, or less, under good conditions. For results of this accuracy, forward and reverse determinations must be calculated separately, i.e., the altitudes and horizontal circle readings on the sun cannot be meaned, and the sun's declination should be obtained from the Nautical Almanac. The latitude of the place should be known within a tolerance of about 5 seconds.

OBSERVATION OF POLARIS FOR AZIMUTH ON GOVERNING SURVEYS

Ongoverning surveys where great precision is required, the observation for azimuth is made with a six-inch transit theodolite, and the degree of accuracy required makes the observation somewhat more complex in all its details than the methods previously described. Some of the special precautions and refinements are mentioned below.

For accurate work a good solid set-up for the instrument is essential.

When it is intended to read the angle between two pointings on the horizontal circle, care should be taken, on turning the instrument in azimuth, to use the same forward or backward motion for each such pair. This tends to neutralize the effect of any yield in the instrument stand caused by that part of the impulse of revolution which passes down through the foot screws to the stand head.

Loose foot screws are a source of similar error. The pinch screws should always be tightened before finally adjusting the levelling screws, so that the latter turn stiffly in their nuts. Even though this may be less convenient to the observer in bringing quickly, and with nicety, the level bubbles to the desired position, it will eliminate with certainty one source of error.

The tangent and micrometer screws should always be turned so as to push against the counteracting spring, because, in turning in the opposite direction, the spring might fail to bring back the plate until some time in the interval between the observation and the reading of the drum.

The reference object for azimuth work should be, if possible, at such a distance that the telescope is at solar focus when the pointing is made on the reference object.

* For a description of the Solar Prism Attachment see Astronomy Applied to Land Surveying by R. Roclofs, 1950, N. V. Wed. J. Ahrend \& Zoon - Amsterdam, Holland.

In observing for azimuth on governing surveys the following

 program is recommended:1. Level the instrument very carefully using the striding level for this purpose, so that the level correction may be small.
2. Point on the reference object and read the microscopes three times each on forward and backward graduations.
3. Point approximately on Polaris and place the striding level in position (zero of graduation to the right, or east). Point accurately on Polaris noting the time by sidereal watch. Read the striding level, reverse it, and read it again. Read the microscopes three times each on forward and backward graduations.
4. Reverse the telescope in altitude, turn the instrument 180° in azimuth, and repeat as in No.3. The striding level must, of course, be removed while the telescope is being transited.
5. Same as No. 2.

Such an observation, under favourable conditions, will give a result correct to within a few seconds. However, observations in the field are seldom taken under ideal conditions and it is recommended strongly that two or more observations be taken at a station whenever weather conditions will allow. This precaution should always be adopted when the bearing of the line is much in doubt; the range of results will then provide some criterion of the accuracy of observation.

It will be found convenient, in order to prevent mistakes, always to begin the observation with the same position of the instrument.

WATCH CORRECTION

The watch correction should be known with more than usual precision. In observing Polaris near upper or lower transit an error of one second of time corresponds, in the latitude of the western provinces, to an error in azimuth of about half a second of arc.

An observation for time should be taken either shortly before or shortly after every azimuth observation. The instrument should be carefully levelled and the observed transit corrected for azimuth error according to the formula $\Delta \mathrm{t}=4 \times \Delta \mathrm{a} \cos \mathrm{h} \sec \delta$, where $\Delta \mathrm{t}$ is the correction in seconds to the observed time, Δ a the azimuth error in minutes of arc, and h and δ the altitude and declination of the star. The correction is added for all stars south of the zenith if the azimuth correction is plus and subtracted if minus.

The result of observations for time must always be entered in the format the front of the record book of astronomical observations.

CORRECTION FOR STRIDING LEVEL

The striding level is graduated from zero at one end, continuously upwards to the other end. Representing by w and e the readings of the westorleft and eastor right extremities of the bubble respectively when the zero of the graduation is at the east or right end and by w^{\prime} and e^{\prime}, the corresponding westandeast readings after the level is reversed,
that is to say, when the zero of the graduation is at the west or left end, d being the value of one division in seconds of arc, the level correction is:

$$
\frac{d}{4}\left\{\left(w-w^{\prime}\right)+\left(e-e^{\prime}\right\} \tan h\right.
$$

Tan h, the inclination factor for Polaris, is tabulated in the azimuth observation book.

The level correction is applied to the horizontal circle readings according to sign. The level vials are usually chambered and the length of the bubble should be adjusted to about twenty divisions prior to the observation.

The determination of the value of one division of the level in seconds of arc is ordinarily made by the National Research Council. lf, however, the surveyor has no knowledge of his level value and wishes to determine it in the field, he may adopt the following method:

The level is placed on the upper plate, parallel to the plane of revolution of the telescope, and a mark is set up in the direction of one of the foot screws and at a distance such that the telescope may be in solar focus. By turning the foot screw, the bubble is brought close to one end of its run. The telescope is pointed approximately on the mark and firmly clamped.

A more careful pointing is now made with the movable thread of the eyepiece micrometer, and the readings of the micrometer and level are noted.

The foot screw is then turned until the bubble is close to the other end of its run; the drum of the eyepiece micrometeristurned until the movable thread bisects the mark; and the micrometer and level readings are again noted. The difference of micrometer readings gives the angular displacementfrom which the value of one division of the level may be derived. The operation should be repeated several times. The level may be reversed end for end during the course of the determination if desired.

Instead of a distant point, the pointings may be made on the telescope of a transit or level used as a collimator.

DETERMINATION OF THE VALUE OF ONE TURN OF THE MICROMETER

To reduce the micrometer readings to arc, the value of one turn is required. This is ordinarily determined for solar focus by the National Research Council. If, however, the surveyor has no knowledge of this value, he may determine it by methods described in standard text books on astronomy.

The following method will be found convenient:
Set the movable wire of the micrometer close to one end of its run
and move the upper part of the instrument by means of the tangent screw until the movable wire bisects some distant object (solar focus) at the same level as the transit; read the micrometer once and the horizontal circle microscopes three times. Now bring the movable wire close to the other end of its run and again bisect the same object by means of the tangent screw, reading the micrometer and circle microscopes as before. The horizontal angle, as shown by the microscope readings, divided by the difference of micrometer turns gives the value of one turn of the micrometer.

The operation should be repeated a number of times and, in order to decrease the effect of periodic errors of the circle graduation, the instrument should be revolved, by means of the shifting head on the stand, to give readings on different parts of the circle.

The uniformity of the micrometer screw may be tested by measuring the value of one turn over different parts of the screw.

Another transit or a level may be used as a collimator and gives a better reference object than a distant point. Set up the collimator a few feet from the transit to be tested, so that the two telescopes are at the same level. Adjust both to solar focus, and point on the object glass of the transit. Looking now at the collimator through the telescope of the transit, the cross wires or points of the collimator telescope will be seen as at an infinite distance. These cross wires or points make an excellent reference object.

COMPUTATION FOR AZIMUTH OBSERVATION

When the above observation for azimuth has been taken with due attention to the special precuations, it can be reduced by the following formula:

$$
\tan Z=-\frac{\tan P \sec L \sin t}{1-\tan P \tan L \cos t}
$$

where Z, P, L, t, are azimuth, polar distance, latitude and hour angle, respectively. ${ }^{*}$

Writing m for $\tan P \tan L \cos t$ the formula may be written

$$
\tan Z=-\left(\frac{1}{1-m}\right) \tan P \sec L \sin t
$$

Table XIII gives the values of $\log \frac{1}{1-m}$ tabulated with $\log m$ as argument. In using this table attention must be paid to the sign of m which is the same as that of cos t; when t lies between 0^{h} and 6 h , or 18^{h} and $24^{\mathrm{h}}, \mathrm{m}$ is positive and the half of the table as given on pages 150 ,

[^0]In the spherical triangle defined by the star, the zenith and the pole, the hour angle t is measured from upper culmination, and the azimuth Z is positive or negative according as the star is east or west of the meridian.

152 and 154 must be used; when t lies between 6^{h} and 18^{h}, m is negative and the half of the table as given on pages 151,153 and 155 must be used.

Since m is always less than unity, $\frac{1}{1-\mathrm{m}}$ is always positive, and therefore $\tan \mathrm{Z}$ is always of opposite sign to $\tan \mathrm{P} \sec \mathrm{L} \sin \mathrm{t}$. Hence when t is between 0^{h} and 12^{h}, $\tan \mathrm{Z}$ is negative, indicating that Polaris is west of the meridian; and when t is between 12^{h} and $24^{\mathrm{h}}, \tan \mathrm{Z}$ is positive, indicating that Polaris is east of the meridian. In the specimen observations (page 26), the suffix ' n ' has been added to $\log \frac{1}{1-m}$ thus representing $\log -\left(\frac{1}{1-m}\right)$ in the above formula.

Denoting by a the angle which Polaris makes with the meridianeast or west from north, then loga (in seconds) is obtained directly from $\log \tan \mathrm{Z}$ by the use of Table XII, and Polaris is east or west of the meridian according as a is positive or negative.

The logarithms of secant and tangent L are given in Tables IX and X for the north side of every section. For points outside the township system, the latitudes can usually be determined with sufficient accuracy from available maps.

A table giving the Right Ascension and log $\tan \mathrm{P}$ for Polaris for everytendays, is pasted in each record book of astronomical observations sent out to surveyors.

The observations on pages 26 to 29 show the form of record and method of computation.

In the form, R.O. is for reference object;H.C.R. for horizontal circle reading; coll. for collimation; R.A. for right ascension;

By the ordinary formulae of spherical trigonometry
whence $\tan Z=-\frac{\sin P \cos L \sin t}{\cos P-\sin h \sin L}$
Eliminating the altitude h by
$\sin \mathrm{h}=\cos \mathrm{P} \sin \mathrm{L}+\sin \mathrm{P} \cos \mathrm{L} \cos \mathrm{t}$
after reduction

$$
\tan Z=-\frac{\sin t}{\cot P \cos L-\cos t \sin L}
$$

which may also be written

$$
\tan Z=-\frac{\tan P \sec L \sin t}{1-\tan P \tan L \cos t}
$$

and F. and B. for forward and backward readings of the microscopes.
The specimen observationsare taken on a base line according to the program laid down.

The correction for run ${ }^{*}$ of the microscopes in each case is deduced from the means of the forward and backward readings and applied to the forward reading.

In reducing observations taken on base lines, the convergence must be applied to the mean azimuth to reduce it to a bearing as required by the Manual. For observations taken on initial meridians the results may be left as azimuths, for convenience.

A correction in the direction of a survey line, found necessary from the azimuth observation, may be made most easily by offsetting the transit stations in the required direction perpendicular to the line. The amount of the offsets are obtained by multiplying the tangent of the deflection angle by the distances of the transit stations from the point of deflection.

With modern instruments in which the microscopes are automatically meaned, single entries only will be made in the record form under the headings, Microscope A, and Microscope B. For good results three readings should be made and entered for each pointing.

An azimuth observation less in accuracy than that described above may be obtained without a striding level. The programof observing is slightly altered to secure the best results. First sight Polaris approximately. Then bring the plate bubble perpendicular to the line of sight to accurate centre and make the pointing to the star. Next read the reference object, transit the telescope, and repeat the operation. The resulting azimuth, calculated by the method used in governing surveys, will have an accuracy dependent on the sensitivity of the plate bubble. If the calculations are made from the Astronomical Field Tables results

Let $F=$ forward or apparent left reading $B=$ backward or apparent right reading

Then distance between readings $=5^{\prime}+F-B$

$$
\begin{aligned}
& \text { Error of run }=F-B \\
& \text { Correction to } F=-F \times \frac{F-B}{5^{\prime}+F-B} \\
& \text { Corrected reading }=F \times \frac{5^{\prime}}{5^{\prime}+F-B}
\end{aligned}
$$

When $F-B$ is not larger than, say, ten seconds, this formula may be written in a more convenient form, without appreciable error. Thus,

$$
\text { Corrected reading }=F-\frac{F}{5}(F-B)
$$

AZIMUTH OBSERVATION

cho
Place Sta 68-.61:52. W. of N.E. cor sec. 34 tp. 84-1-5
r.о.. S.ta. 70-60.80. ."....".".". . 33 .."."

Date. 12-7.-11
oberever. f. Smith DL.S

FOR GOVERNING SURVEYS

Instrument \#1!2
One turn of micrometer $166^{\prime \prime}: 36$
One division of striding level. 4*.O.

AZIMUTH OBSERVATION

Place Sta. 76-66:7.1. W. of N.E. con. sec. 33 tp. 8.4-2-5. r.о. Sta. 74-74.10..."..................".............................".

FOR GOVERNING SURVEYS

Instrument \# 511
One turn of micrometer . 164:"O7
One division of striding level $, 2,6$

will be less accurate because values aregiven to a tenth of a minute only and since errors may result in interpolation.

GENERAL REMARKS ON OBSERVING

The instrument should be firmly set up with sufficient clearance to permit the unrestricted movement of the observer, and it should be in good adjustment. In azimuth observation on governing surveys, a recorder is necessary to speed the operation and to read the watch at the instant of pointing on the star. The observation point should be protected from wind, and the transit from direct sunlight. When determining the solar focus, the reference object should be one-half mile or more distant and atmospheric conditions should be such that the air is not quivering. When possible a set should include at least three complete observations.

An observation for time should be made as near as possible to the time of observation. The necessity for having an accurate watch correction increases with the nearness of Polaris to the meridian.

CHAPTER II

DETERMINATION OF THE MAGNETIC MERIDIAN

Abstract

Although the compass is not allowed for establishing lines of Canada lands surveys, it is employed for other purposes and a knowledge of the direction of the magnetic meridian or of the magnetic declination is useful. For the determination of this direction, transit theodolites are fitted with especially sensitive needles. As the observation can be made in a few minutes and with very little trouble, it is desired that all surveyors should observe whenever theycan do so without inconvenience.

The observation and the recording formare arranged for the determination of the azimuth of the magnetic needle instead of the magnetic declination. The arrangement is made for the sake of simplicity in observing and recording, the bearing in question being, subject to instrumental corrections, the angle read on the horizontal circle of the transit. Moreover, it is not liable to errors of sign, as in adding or subtracting the declination.

DIRECTIONS FOR OBSERVING

1. Place the instrument on a survey line, and after adjustment, set the vernier to read the bearing of the line.
2. Release the lower clamp, direct the telescope on the line, and fasten the lower clamp.
3. Release the vernier clamp, and turn the vernier plate until the north end of the magnetic needle observed with a magnifying glass, is seen exactly opposite the zeromark. Tap the trough lightly with the pencil, or preferably rit the milled part of one of the footscrews with the finger nail, to be sure that the needle has taken the position of rest. Note the reading of the horizontal circle. Take several readings by repeating the operation.
4. Repeat ops ration No. 3 for the south end of the needle.
5. Enter in the notes the place of observation, date, hour of the day, kind of time used, nature of the weather and any other remarks deemed necessary. It is important to record auroras occurring within 24 hours of the time of observation.

GENERAL REMARKS

For saving trouble and calculations, it is suggested that observations be made on any line of which the azimuth is known.

The direction of the magnetic needle is subject to a daily fluctuation called the diurnal variation. During the greater part of the night the direction is not far from normal. In the early morning, the north end of the needle in Canada moves toward the east, reaching its maximum deflection about. 7 or $8 \mathrm{a} . \mathrm{m}$. The motion is now reversed, the north end travelling westwards, and crossing the normal direction
about 10 or $11 \mathrm{a} . \mathrm{m}$. The extreme western position is reached in the afternoon and then the needle comes back to its normal position at some time after 5 or $6 \mathrm{p} . \mathrm{m}$. This march is subject to wide variations during magnetic storms. The magnitude of the diurnal variation is not constant. In the inhabited parts of Canada, it may exceed 20 minutes. Observations at both eastern and western elongations of the needle on the same day, that is between 7 and $8 \mathrm{a} . \mathrm{m}$. and between 1 and $2 \mathrm{p} . \mathrm{m}$. give the best results, and it is desirable that when convenient they may be taken then. This gives not only the best value for the declination, but also the diurnal variation which it is most useful to know. Failing this, however, the best time to observe is after $5 \mathrm{p} . \mathrm{m}$., when the needle is about in its normal position. It is true that the normal position is crossed generally between 10 and $11 \mathrm{a} . \mathrm{m}$., but the motion being very rapid and the time of crossing uncertain, the afternoon observation is preferable.

Usually when the instruments are sent out from the office the magnetic needle is balanced for Ottawa and the index correction known. If at any time the needle should require rebalancing, the surveyor should proceed as follows:

Raise the needle with the lifter and remove the brass cover. This cover is secured to the trough by four screws, two on each side; when these screws are removed the cover may be lifted off. Now remove the end cover glasses. To do this scrape off the white lead putty around the edges, slide the cover glasses toward the centre and lift them out. The needle may now be taken out of the trough and the counterweight shifted. Then the lifter being still raised, place the needle upon it and lower the lifter gently. If the needle is not yet balanced repeat the operation until a satisfactory balanceis obtained. A carefully balanced needle should give no parallax in reading.

The steel pivct on which the needle swings during observations is made of hard steel shaped to a very sharp point. At the centre of the needle a cupped piece of agate is inserted. Although the needle is made as light as possible, the actual intensity of the pressure between the pivot and agate is probably many tons per square inch, and it is not surprising that in the majority of cases sluggishness in the needle is traceable to a damaged jewel or pivot. Therefore great care must be observed in lowering the needle very gently on the pivot. On no account should the compass be carried with the needle resting on its pivot.

In taking the needle out of the trough whether to rebalance the needle or to clean the agate, care should be taken to see that it is put back in its proper position. If replaced in the reverse position the index correction would be altered. For this reason, to safeguard against error, the position of the compass, whether "compass west"or "compass east" should be enteredin the remarks after each observation when observing.

If the needle is sluggish, the observation cannot be accurate. The sluggishness is generally due to a dull pivot or a scratched cap. To keep both in proper condition, the needle must always be lowered gently on its pivot and never be allowed to play, except when actually in use.

There are instances of the polarity of the needle being reversed by transporting an instrument on an electric car. It is difficult to conceive that a needle may be brought into such an intense magnetic field as that of an electric car without its magnetism being affected in some way; therefore, it is preferable to avoid this mode of transportation.

The place of observation must be at least three or four hundred yards away from wires carrying directelectric current. There must be no iron near the instrument. The observermust scrutinize his clothing and make sure that he has no iron or nickel on his person. Iron is found in buttons, as wire in hat brims, in some forms of neckties, in watches, chains and other articles of jewellery. The pivot in folding reading glasses is frequently made of iron. In case of doubt, the object may be tried close to the compass, measuring the distance at which an appreciable deflection is first produced. If the object is not brought closer than fifteen or twenty times this distance, the effect on the needle is negligible in observations of this kind.

The needle may be deflected by static electricity developed in cleaning the glass cover of the compass trough or the rubber frame of the reading glass. This electricityis dissipated bybreathing on the glass or rubber frame.

When the telescope points to magnetic north, the needle should, if the instrument were accurately constructed, be exactly opposite its zero mark, but it seldom is. The deviation of the needle from the zero mark is the magnetic index correction; it is positive or + when the north end of the needle is to the left or west of the zero mark; when on the right or east, it is negative or - .

With the needle opposite the zero mark, the telescope points in a direction which, in the following explanation, is called "compass north." To bring the telescope into the direction of the magnetic north, it must, if the index correction is positive, be turned to the right by an angle equal to the correction - hence the rule that the index correction is to be algebraically added to the azimuth of compass north in order to obtain the azimuth of magnetic north (azimuth reckoned from 0° to 360°). Inv rsely, the index correction must be algebraically subtracted from the azimuth of magnetic north, such for instance as is taken from a magnetic map, in order to obtain the azimuth of compass north.

The index correction is ascertained by comparison with a standard unifilar magnetometer at the Dominion Observatory. When possible, it is well to have it determined both at the beginning and at the end of a survey.

EXPLANATION OF SPECIMEN OBSERVATION

(a) H.C.R. of compass north.

This is the average of the mean north and south end readings. The transit was adjusted to read correctly the bearing of the survey line, so that the horizontal circle reading of compass north is the

OBSERVATION FOR MAGNETIC DECLINATION

 Time_--.-_15_p.m._-_Instrument No.__2216
Bearing of reference line.-. $89^{\circ}-59^{\prime}$

REMARKS
A few clouds - Windy.
No aurora.
Circle E - compass W.
Mean local time
bearing of compass north. If the transit had not been so adjusted a correction to this reading would have been required.
(b) Correction for convergence.

The correction for convergence is applied in order to reduce the bearing read on the horizontal circle to an azimuth. The value of the correction is taken from the diagram in the Astronomical Field Tables. It is added when the point of observation is to the east of the reference meridian and subtracted if to the west. The rule given in the Manual to convert an azimuth to a bearing is here reversed, the object in this case being to convert a bearing to an azimuth.
(c) Azimuth of compass north.

The bearing has now been reduced to an azimuth.
(d) Index correction.

In the example given, the index correction being negative is subtracted from the azimuth of compass north to obtain the azimuth of magnetic north. If the index correction were positive, it would be added to the azimuth of compass north. The index correction is furnished witheachinstrument after comparison with the unifilar magnetometer.
(e) Azimuth of magnetic north,

The azimuth of magnetic north is the angle formed by the astronomical and magnetic meridians.

SETTING A TRANSIT BY MEANS OF THE COMPASS

In connection with surveys of Canada lands, the most frequent use of the compass is for checking the courses of a traverseor for setting up the transit to read azimuths.

In the first case, it is sufficient to make sure that there is no abnormal change in the reading of the compass north: any sudden change indicates a probable mistake in some of the last courses.

The second case arises when it is desired to observe the Pole star in day time at a place where there is no line of known azimuth. The problem consists in setting up the transit so that it shall read azimuths. If the surveyor has already ascertained the azimuth of compass north with his instrument, he merely sets his vernier to read this azimuth, releases the lower clamp, turns the whole instrument till the needle is exactly opposite the zero mark, fastens the lower clamp and releases the vernier clamp. With the instrument (No.2216) used for the specimen observation and anywhere near the place where the observation was taken, the vernier would be set to read $27^{\circ} 11!8$ or rather $27^{\circ} 12^{\prime}$.

It may be, however, that the surveyor has not ascertained
the azimuth of compass north with his own instrument and has to resort to the azimuth of magnetic north taken from a map or determined by another surveyor. Then the surveyor must, from the azimuth of magnetic north, deduce the azimuth of compass north by applying the index correction of his own instrument after changing the sign. Starting with $27^{\circ} 06$: 0 for azimuth of magnetic north in the case already cited, and the index correction being -5.8 , the surveyor would add 5.8 to $27^{\circ} 06!0$, which would give him $27^{\circ} 11: 8$ for the azimuth of compass north. He would then proceed as already explained.

All these corrections, it may be observed, are generally small and in practice are frequently disregarded.

The above remarks apply particularly to instruments supplied with the trough pattern of compass.

COMPASS OF COOKE TRANSIT

Some Cooke instruments are fitted with a compass of telescopic pattern which may be briefly described. The outer shell of the compass is a brass tube on one end of which an ordinary Ramsden eyepiece is attached. There is a glass diaphragm on which are etched two close parallel vertical lines. The needle is of the regular edge bar type with one end bent up at right angles and ground to a very fine edge. This end swings sufficiently close to the glass diaphragm to give a good definition of the bent up edge of the needle when the eyepiece is focussed on the lines of the diaphragm. A pointing is made by bisecting the space between the two vertical lines with the needle. Only one end of the needle can of course be read. It is found however that this is more than compensated for by the increased accuracy of the readings. The needle lifter is operated by means of a milled head screw at the end of the compass remote from the eyepiece. The method of fastening this compass to the standard is an improvement on that used with the trough compass and assures better permanency of the index correction.

To rebalance the needle or clean the agate loosen the three small central screws and slide the tube apart. Unscrew the large central screw which ordinarily serves to keep the needle on the pivot. The needle may now be removed for balancing or cleaning. The same precautions and delicacy of handling must be observed as with the trough pattern of compass.

THE WLLD DOUBLE IMAGE PRISM COMPASS

Because the Wild transit has a steel centre a separate compass has been made available which may be attached to thetripod when the transit is removed. The attachment has a small telescope for sighting the reference object, a clampand tangent screw for horizontal movement, and a ball and socket levelling device with a circular plate bubble.

The compass circle is graduated in divisions of two degrees of arc. Both sides of the circle are visible through the viewer in the relation shown below. The compass may be read to the nearest degree, and tenths of a degree may be estimated.

Reading 67.3 degrees.
To read the compass the first upright figure on the left is the tens of degrees (60). The number of full divisions to the right from this division to the inverted image of its supplementary angular value $\left(60^{\circ}+180^{\circ}=240^{\circ}\right)$ gives the digits of the reading (7). The tenths of a degree may be estimated more accurately in the centre of the image (0.3). The full reading of 67.3 degrees is the compass azimuth of the reference object. Ten readings should be taken at each observation point. The azimuth of compass north is obtained by subtracting the compass azimuth from the astronomic azimuth, or the astronomic azimuth plus 360 degrees. The index correction must then be applied to obtain the azimuth of magnetic north.

The compass may be balanced by loosening, and moving radially, the balancing screws placed on the face of the circle. The same care must be exercised to protect the steel pivot as with other compasses.

CHAPTER III

INSTRUMENTS

Survey instruments are no longer specially designed for the requirements of Canadian lands surveys. This chapter is therefore confined to certain general observations on the care of instruments likely to be used.

TRANSIT THEODOLITE FOR GOVERNING SURVEYS

For the survey of governing lines no entirely satisfactory replacement has yet been developedfor the six-inch micrometer transit theodolite of 1912. A full description of it is given in Topographical Survey Bulletin No. 34.

These transits are no longer made and, as those still in use become worn, the features most likely to give trouble are the footscrews and the horizontal circle clamp. Wear in these parts may introduce sighting errors when the elevation of the telescope is changed. A check may be made by pressing the telescope sidewise with the finger. The telescope should spring back to the original sight line when the pressure is released. Should an appreciable error be revealed, its source can often be found by pressing in turn the tribach, clamp, standard, etc., and noticing the effect. If the footscrews show looseness, they can sometimes be tightened by more vigorous action on the small binding screws. Otherwise they should be returned to the shop for repair.

Another test, which is particularly useful in the case of clamp trouble, is to sight the telescope on a point and then move it up and down in altitude once or twice, afterwards checking to see if the point is still on the vertical crosswire. If the error reverses after the horizontal tangent screw has been usedinopposite senses, it indicates a worn centre pivot, tangent=screw, or clamp. In such cases the instrument should be sent to a competent instrument maker for repair.

Care should be taken that the micrometer screw drum spindles do not become slightly bent causing the drum to touch the index. Serious errors in angle measurement will be introduced if this occurs.

"OPTICAL" THEODOLITES

Many "optical" theodolites are now on the market, all more or less based on the designs made for the Zeiss firm by Wild. These instruments have more factory adjustments and fewer field ones than in the case of the older types. Striding levels for the se instruments have not yet been sufficiently refined for accurate azimuth observation; the best available has a value of about five seconds of arc per division. The length of the bubble cannot be adjusted.

The "optical" theodolites are characterized by accurately graduated circles, cut on glass, with a device for optically bringing into the field of the micrometer microscope the images of two diametrically opposite points on the circle, or, in some more recent designs, cut on
two circles simultaneously. The various types of micrometer used with this eccentricity-compensating device permit very rapid circle reading with little or no eyestrain.

Due to the complicated nature of the optical trains inside these instruments, and the use of factory adjustments, totally enclosed bearings, etc., verylittle can be done in the field to effect repairs after damage or other trouble. On no account should an attempt be made by the surveyor to dissect any part of an optical theodolite unless he has had previous experience in taking it apart under office conditions. Unless the function of each screw is known, there is grave risk of seriously injuring the instrument, or losing some of the small parts.

INSTRUMENTS FOR USE ON WINTER SURVEYS

Certain greases, originally developed for military purposes and suitable for use over a wide temperature range, are now being used in instruments likely to be required on winter surveys. Before lubricating an instrument with low-temperature grease, all trace of the old lubricant must be removed from every surface by means of ether, or other solvent. All micrometer screws and nuts must be so cleaned, as otherwise a film of the old grease may remain and cause binding at very low temperatures. If a cold chamber is available, the instrument, after being winterized, should be left in it for several hours and all movements checked before removal.

Instruments which have been subjected to extreme cold should never be quickly exposed to warmth because this results in the condensation of moisture which may be particularly harmful in "optical" theodolites having steel parts. If an instrument has to be transferred suddenly from cold to heat, the best course is to pack it first in its box or other fairly air-tight container, and leave it for several hours before removal. In this way the instrument will reach room temperature without an excessive amount of saturated air coming into contact with it.

Most motions of an instrument, even when winterized, will be stiffer at low temperatures. In some examples of the current models (1951) of the Wild theodolite, stiffness at sub-zero points occurs to such a degree, due to differential contraction between the trunnions and their bearings, as to render the instrument unusable.

When an instrument shows excessive stiffness at any temperature, on no account should force be used, as serious damage may result. The only safe treatment is to dismantle the parts carefully, if facilities are available, and find the cause of the trouble.

GENERAL

Extreme care should always be exercised in handling both transits and levels. Sudden jars may break delicate parts or disturb fine adjustments. No weight should be placed on an instrument box whether an instrumentis within itor notand the instrument boxes should always be kept ina safe place. It is preferable to box a transit in moving from one instrument station to another. Otherwise the centre may be 78897-4
strained or the instrument may be damaged through a fall or by parts becoming entangled in tree limbs.

The instruments should be kept dry, clean, and freshly oiled at all times using a fine watch oil. The interval between overhauls should not exceed two years. Lenses should be cleaned with a brush or very lightly rubbed with a clean cloth or tissue to prevent scratching the surface. Clamps should never be excessively tight. In boxing an instrument they should never be tightened more than just sufficient to prevent movement. Tripod head screws should be loosened when the instrument is not in use.

In winter operations the transitman should avoid breathing on the eyepieces of verniers. If the object glass becomes frosted on the inside the frost may sometimes be removed by pointing the telescope towards the sun.

In camp, instruments and instrument boxes must always be kept in a safe place and should never be handled except by, or under the direction of, a competent instrument man.

SIDEREAL WATCH

The sidereal watch is an 18 -size 19 -jewel movement in an open face nickel case. The dial is divided into twenty-four hours.

Before being accepted, each watch is tested at the Dominion Observatory to ascertain if the adjustments have been made with the necessary accuracy.

No timepiece will give good service without reasonable care. Great changes of temperature must be avoided; this can be accomplished by carrying it constantly in an inner pocket where it is maintained at an even temperature by the heat of the body. The pocket must be clean and reserved exclusively for the watch which should be inserted always in the same position. It is a good plan, as a protection against dust, to keep the watch in a tight-fitting case of chamois skin. If exposed to a very low temperature, it may not only stop, but be injured permanently. It must be kept away from electric motors or dynamos, which might magnetize the balance. Windingevery day as nearly as possible at the same hour is essential; this is to be done by turning the crown or the key and not by turning the watch. A watch must be cleaned and oiled at least every fourth year. A watch, particularly of a higher grade, may be ruined easily by an incompetent workman; too much care cannot be exercised in selecting the man to whom it is entrusted. When repairs are required, it is best to have them made through the head office.

STEEL TAPES

The steel tapes most commonly used are $0!' 25$ wide by $0!102$ thick and in lengths of 400 links, 500 links, or 300 feet. Each tape has its correctlength in terms of the Dominion measure of length determined by the National Research Council on the flat (fully supported), under a tension of twenty pounds, and at a temperature of $68^{\circ} \mathrm{F}$. The coefficient
of thermal expansion is about $0.000,006$ per $1^{\circ} \mathrm{F}$., so that the correction for a $10^{\circ} \mathrm{F}$. change in temperature is about 0.006 feet per 100 feet. The weight per 100 feet is 1.68 pounds. Due to variation in cross section the tapes actually in use vary from 1.3 to 1.7 pounds per 100 feet. Young's modulus of elasticity, E, is $30,000,000$ per square inch. Cards giving temperature corrections in tabulated form are available at head office. Sag (catenary) and stretch corrections are calculated from the above data.

The formulae are:

$$
\text { Stretch }=\frac{L \times\left(P-P_{0}\right)}{A \times E}
$$

Where L is the original length of the tape section, P the tension applied in pounds, P o the tension applied in standardizing the tape (20 lbs .), A the area of the cross section of the tape in square inches ($0!125 \times 0!{ }^{\prime} 02$) and E the modulus of elasticity of the tape $(30,000,000)$.

$$
\text { Correction for sag }=\frac{W^{2} L}{24 P^{2}}
$$

Where $W=$ weight of length of tape section in pounds, L the length of the tape section, and P the tension applied in pounds.

Measurements made with steel tapes are subject to correction for temperature, slope, stretch, and sag. The accuracy required in a survey will determine whether any or all of the corrections should be applied. In governing surveys all four corrections should be used.

Steel tapes require considerable care in the field. When not in use they should either be reeled up or put in a safe place to one side of the survey line. To avoid breaks, tapes should never be jerked for straightening purposes, and the chainman should always be on the alert for kinks. At frequent intervals they should be cleaned with an oily rag. In the vicinity of salt water this should be done every evening to prevent pitting. At the close of the season, they should be cleaned thoroughly and fairly heavily greased with vaseline. Repair kits for breakages should always be available.

STADIA RODS

Stadia rods are fifteen feet in length and three inches wide. They fold in the middle. They are graduated in feet and tenths. There are no figures on the rod, the colour scheme being so arranged that they are unnecessary. A folding level is attached to the back of the rod as an aid for holding it vertical.

The stadia wires of the transit theodolite are set by the makers in the supposed ratio of $1: 100$ between outside wires and $1: 200$ between middle and outer wires. As a matter of fact, however, they
are rarely in this exact ratio. The true ratios are furnished for each diaphragm. These ratios are used for calculating a table of the corrections to be applied to the distances read oa the rod. If the surveyor should be without the true stadia constants, he can prepare his table of corrections by chaining a base on level ground and measuring with the stadia the distance of a number of points on the base; the difference between the two measurements gives the correction for each distance. The table is completed by interpolation. The measurement must be made when the air is quite steady and the conditions favourable.

With modern internal focussing instruments the formula, $k r \cos ^{2} V+(f+c) \cos V$, becomes $k r \cos ^{2} V$, since $f+c$ may be neglected and the formula for the vertical component becomes $k r \cos V \sin V$, or $1 / 2 k r \sin 2 V$, where k is the stadia constant, r the rod intercept, and V the angle of inclination of the sight.

In making stadia measurements the stadia rod must be held vertical by centering the cross bubbles in the level attached to the rear of the rod. The bubbles may be adjusted by erecting the rod in a vertical position by means of a long plumb line and centering the bubbles by the adjusting screws. When the rod is being held for sighting it should be turned to catch as much sunlight as possible and yet present sufficient surface to the instrument man on which to make the reading. For best results, the lengths of measurements should not exceed 1,000 feet; the full intercept between the outside stadia lines should be read, and then checked by the summation of the two one-half intercepts; the line of sight through the lower stadia line should always clear the intervening ground by at least three feet.

CLINOMETER

The clinometer, or abneylevel, is used to measure the slope of the tape. In governing surveys, both front and rear chainman should measure and record the slope. All slopes greater than 7 degrees should be measured with a transit.

CHAPTER IV

PROBLEMS CONNECTED WITH THE SYSTEM OF SURVEY

CORRECTION FOR HEIGHT ABOVE SEA-LEVEL

The tables have been calculated from the dimensions of the earth's surface at sea-level.

The township sides are actually measured on surfaces elevat ed above sea-level, and therefore the differences of latitude and longitude calculated from the tables are greater than those actually covered by the township sides.

Any measured distance may be reduced to sea-level by subtracting the correction $\frac{l}{S} x, x$ being the distance, l the elevation above sea-level, and S the radius of curvature of the line under consideration.

In general N (see Table i) can be used instead of S.

Base lines when the system of survey is exactly followed are established by direct measurement from the 49 th parallel, northward along an initial meridian.

Hence the latitude of a base line should be less than that given in the table by $\left(L-49^{\circ}\right) \frac{l}{R}$, where l is the mean elevation of the initial meridian between the 49 th parallel and the base under consideration.

Many base lines, however, have been established, not by this direct measurement, but by the survey of township meridians from other bases. If the actual latitudes of these base lines are required, account must be taken of the elevations of all the north and south lines through which the connection with the 49 th parallel has been made. It is obvious, however, that the average elevation of the country above the sea will give a sufficiently accurate result, since the small errors due to difference of elevation are masked by errors of survey.

On the base lines the effect of elevation above sea-level is to decrease the difference of longitude covered by one range, and this must be allowed for inestablishing an initial meridian by means of chainage along a base line or in estimating the accuracy of measurement of a base line by its closing on an initial meridian, since the initial meridians, except the first, have been placed approximately on even degrees of longitude (every fourth degree). The longitude covered by one range at an elevation l, may be obtained by multiplying the differences of longitude given in Tables III and IV by ($1-\frac{l}{N}$).

The correction for elevation above sea-level is, in latitude $51^{\circ}, 0.00382$ chains for one mile distance at an elevation of 1,000 feet, and varies directly as the elevation and distance. It changes somewhat with the latitude, but slightly, and the correction in any particular case may be taken as the same as that for latitude 51°. If extreme accuracy be required, the formula given above, $\frac{l}{S} x$, may be used.

The error in the length of township chords of course involves an error in deflection angles and azimuths, but this is too small to be appreciable.

LATITUDES AND LONGITUDES OF POINTS IN THE SYSTEM

By "points in the system" is meant the corners of specified sections, or points referred to them by connecting lines. In the latter case the lines, if short, may be reduced to latitude and longitude by means of "latitude and departure" from a traverse table, and by using Table XI.

Thus the problemis reduced to the determination of the latitude and longitude of any section corner.

LATITUDE

The latitude of a section corner can be taken directly from Table IX and Table X.

Since the section corners are presumed to be at a distance of even sections from the north and south boundaries of the township, being established by survey from those boundaries, the latitude found as above must, when the section corner is not on the meridian outline of the township, be increased by the correction given by Table XI.

In the first system the sections are not measured on meridians from the north or south boundary of the township, but on lines parallel to the eastern boundary of the township. Hence, theoretically, the difference of latitude between the given corner and the township outline should be decreased in the ratio of cosine azimuth of the section line to unity; but this correction is insignificant.

The correction for sea-level may also be applied.
LONGITUDE, THIRD SYSTEM

In the second and third systems, the section lines are true meridians from the base line north and south two townships. Hence the longitude of a section corner is the same as that of the corresponding corner on the base line from which the township has been surveyed.

Then if $d M$ be the longitude covered by one range on that base line, and if n be the number of the range in which the section lies, m the number of sections lying between the given section and the eastern boundary of the township, the number of ranges which intervene between the initial meridian and the eastern boundary of the given section is $n-1+\frac{m}{6}$ and the difference in longitude between it and the initial meridian is $\left(n-1+\frac{m}{6}\right) d M$. This added to the longitude of the initial meridian gives the longitude of the eastern boundary of the section.

The longitude of the Principal or Firstmeridian is $97^{\circ} 27^{\prime} \quad 28!' 4$.
The longitudes of the Second, Third, Fourth, etc., meridians
are $102^{\circ}, 106^{\circ}, 110^{\circ}$, etc., subject to certain errors of survey, which cannot be discussed at present.

The difference of longitude should be corrected for height above sea-level if precision is required. This can be done by multiplying it by $\left(1-\frac{l}{N}\right)$.

For example:
The NE corner of sec.16, tp.23, r.17, W. of the Fourth meridian (third system of survey). Here $n=17, m=3$, and the township is surveyed from the 7 th base, for which we find from Table IV, $d M=$ $8^{\prime} 22!' 411=502!' 411$. Therefore longitude of the section line

$$
=110^{\circ}+\left(502!^{\prime} 411 \times 163 / 6\right)=112^{\circ} 18 \cdot 09!^{\prime} 78
$$

The NE corner of sec. 16 is in approximately the same latitude as the NE corner of Sec. 13, and is 3 sections distant from the bounding meridian of the township.

de of NE cor. sec. 13 tp. 23 (Table X)	$50^{\circ} 57 \prime 56!\prime 05$
Correction for 3 sections (Table XI)	0!'07
Latitude of NE cor. sec. 16 tp. 23	$50^{\circ} 57 \cdot 56{ }^{\prime} 12$

LONGITUDE, FIRST SYSTEM

In the first system the procedure for the longitude is a little different. The section lines are drawn parallel to the east side of the township, so that the difference of longitude between the section line and the east boundary of the township is not the same as on the base line, but is equal to the actual distance from the boundary of the township divided by $\mathbf{P} \sin 1^{\prime \prime}, \mathbf{P} \sin 1^{\prime \prime}$ being taken from Table I for the actual latitude of the section post. Thus using the same notation as before
difference of longitude from initial meridian

$$
=(\mathrm{n}-1) \mathrm{dM}+\frac{81.50 \mathrm{~m}}{\mathrm{P} \sin 1^{\prime \prime}}
$$

dM being taken from Table III (lst system) for the governing base line, or it may be calculated by the equivalent formula difference of longitude

$$
=\left(n-1+\frac{m}{6}\right) d M+\frac{Q}{P \sin 1^{\prime \prime}}
$$

where $Q=2 m(40-w)$, w being the width of quarter sections as taken from the last column of Table IX.

LONGITUDE, SECOND AND FOURTH SYSTEMS

Longitudes in the second system are calculated in the same way as those in the third, taking $d M$ from Table III instead of Table IV. In the fourth system the process is the same as for the third system, and the same table is used - Table IV.

EFFECT OF ERRORS OF SURVEY

An error in the latitude of the base line, or an error in the longitude of the initial meridian, of course increases or decreases by the amount of error in the latitude or longitude of the section corner. Similarly, a chainage error on the base line affects the longitudedirectly. In the computation all known errors of this kind must be allowed for.

An error in the latitude of the base line also affects the longitude covered by 486 chains (or 489 chains) measured along the base line, since 486 chains covers a greater longitude if the base line be moved north. The manner in which the effect of an error of this kind may be estimated is shown in the following example.

Suppose the 6th base line (third system) to be placed 10 chains too far north, we find from Table IV

dM for 6th base line	$=$	$498!662$
dM for 6th correction line	$=$	$500!527$

The 6th correction line is two townships, i.e. 966 chains north of the 6th base line, and the difference in dM for these lines is $1 \because 865$. Therefore, dM for the actual position of the 6 th base line, 10 chains north of its theoretical position, is

$$
498!662+1!865 \times \frac{10}{966}=498!681
$$

The correction, in the case supposed, to dM for one range is $0!019$, and in 29 ranges (about the distance apart of two initial meridians) it amounts to $0!019 \times 29=0!55$, or 54 links.

GIVEN THE LATITUDE AND LONGITUDE OF A POINT, TO FIND ITS POSITION WITH REGARD TO THE SURVEY SYSTEM, i.e. to find in what section it is, and the township and range, and its distance from the NE corner of the section.

SECOND, THIRD AND FOURTH SYSTEMS

This is the converse of the preceding problem. The first step is to find, from Table IX or X, the latitude of the section line next north of the given latitude. The difference between these two latitudes is reduced to chains by Table I. This gives the distance (x) in chains to be measured from the point to find the north boundary of the section. For great accuracy the small corrections for altitude and from Table XI may be applied to x.

The number of sections by which the section line is north of the southern boundary of the township in which it lies is to be noted. Call this number a, and the number of the township t.

We also know the number of the nearest base line, i.e., the base line on which depends the survey of township t. From Table IV we take out dM for this base line.

From the given longitude of the point subtract the longitude of the initial meridian. Divide the difference oy dM , with quotient n and remainder r. Divide r by $\frac{d M}{6}$ with quotient b and remainder s. Then s, reduced from seconds of longitude to chains by Table I, with argument, latitude of the given point, gives the distance (y) to be measured east from the point to find the eastern line of the section.

We now know that the given point is x chains south and y chains west of the north-east corner of some section in township No. t and range No. $(n+1)$ west of the initial meridian; and also that the northern boundary of the section is a sections north of the southern boundary of the township, and that the eastern boundary is bsections west of the eastern boundary of the township.

It is now easy by means of a skeleton township diagram to determine the number of the section, e.g., if $a=5, b=3$, the section is 28.

Without a township diagram, the section number can be found from the formula

$$
\text { No. of section }=1 / 2\{12 a-5 \pm(2 b-5)\}
$$

The upper sign is taken when a is odd, and the lower when a is even. These two rules are comprised in the general formula

$$
\text { No. of section }=1 / 2\left\{(12 a-5)-(-1)^{a}(2 b-5)\right\}
$$

The calculation for the second systemis the same as above, using the proper tables for that system. It is also the same for the fourth system.

In this manner have been computed the positions of a great many section corners in British Columbia (fourth system of survey) with reference to points along the line of the Canadian Pacific Railway, the latitudes and longitudes of these points having been first determined by a traverse survey.

FIRST SYSTEM OF SURVEY

The procedure in this system is the same as above, except that the total difference of longitude from the eastern boundary of the township (instead of the nearest section line) must be reduced to chains, and from the distance in chains must be subtracted the nearest multiple of 81.50 .

FRACTIONAL TOWNSHIP OR RANGE BETWEEN PARTS OF THE COUNTRY SURVEYED UNDER DIFFERENT SYSTEMSOF SURVEY

Townships of the first and second systems adjoin each other without overlap or deficiency, since the townships in the se two systems are of the same dimensions. Similarly of the third and fourth systems.

But where townships surveyed under the latter systems abut on townships of the first or second system, a fractional townshipor
range occurs. It is only necessary to consider the case of the third system abutting on the first or second, since the fourth does not occur in juxtaposition with these latter systems.

FRACTIONAL TOWNSHIP

Townships of the third system are 6 chains shorter, measured north and south than the others. The townships in both cases are meas ured north from the 49th parallel, and hence the third system falls short of the other by 6 chains for each township, and the northern boundary of a township of the third system is therefore south of the northern boundary of the same township of the first or second system by 6 chains multiplied by the number of the township.

Thus the 5 th correction line (tp. 18), as surveyed under the third system, is $6 \times 18=108$ chains south of its position under the second system. For twelve ranges west of the Second meridian, the territory from the 5 th correction line northward to the 8 th correction line was surveyed under the second system, while the country south of the former line has been surveyed under the third system. There is therefore an additional township (measuring 108 chains from north to south) lying between township 18 of the third system and township 19 of the second system. (This fractional township is called township 19A, and is subdivided according to the third system. See Manual of Surveys.)

FRACTIONAL RANGE

Townships of the third system are 3 chains narrower (measured east and west along the base line) than those of the first and second systems. The overlap of the latter systems over the third, however, is not equal to 3 chains multiplied by the number of ranges, but exceeds this, since the widths are laid off along base lines which lie in different latitudes, and hence the convergence of meridians comes into play.

The readiest method of calculating this overlap is as follows:
Let $d M_{1}$ be the longitude covered by one range of the base line in the first or second system as found from Table III.

Let $d M$ be the same quantity for the base line of the third system (from Table IV)

Then $d M_{1}-d M$ is the difference of the longitude between the exterior meridians of range one, as surveyed under the two systems.
The difference of longitude at the eastern boundary of the nth range will be

$$
(n-1)\left(d M_{1}-d M\right)
$$

This reduced to chains is

$$
(n-1)\left(d M_{1}-d M\right) P \sin 1^{\prime \prime}
$$

P $\sin 1^{\prime \prime}$ being taken from the proper table for the latitude of the base or section line on which the overlap is required.

FIRST EXAMPLE

The meridian outline between ranges 12 and 13 , west of the Second meridian, from township 19 to township 22, inclusive, is the western boundary of a tract of country surveyedunder the second system of survey. Required: the width of range 13, as surveyed under the third system, on the northern boundaries of townships $19,20,21$ and 22.

The base line on which this meridian outline is based is th. 6th base line, or northern boundary of township 20.

$$
\begin{aligned}
\text { From Table III, } d M_{1} & =8^{\prime} 21:^{\prime} 972 \\
\text { " } \quad " \mathrm{IV}, \mathrm{dM} & =\frac{8^{\prime} 18!^{\prime} 662}{3:^{\prime} 310} \\
\text { whence } d M_{1}-d M & =\frac{1}{2}
\end{aligned}
$$

and at the eastern boundary of the thirteenth range, the difference of longitude is $3.310 \times 12=39: 172$.

We have then for the northern boundary of township 19 (third system):
$\log 39.72=1.5990092$
Table IV, $\log \mathbf{P} \sin 1^{\prime \prime}=\frac{9.9896352}{1.5886444}$
Nat. number $=38.783$
For the northern boundary of township 20:
$\log 39.72=1.5990092$
$\log P \sin 1^{\prime \prime}=9.9888297$
1.5878389

Nat. number $=38.711$
For the northern boundary of township 21:
$\log 39.72=1.5990092$
$\log P \sin 1^{\prime \prime}=9.9880192$
1.5870284

Nat. number $=38.639$
For the northern boundary of township 22:

$$
\log 39.72=1.5990092
$$

$\log P \sin 1^{\prime \prime}=\frac{9.9872086}{1.5862178}$
Nat. number $=38.567$
Hence townships $19,20,21$ and 22 , surveyed under the third system in range 13, have their eastern tiers of sections narrowed by $38.783,38.711,38.639$ and 38.567 chains respectively, along the north boundaries of the different townships.

Now, the full widths of the se sections when regular is got from Table X, by multiplying the "width of quarter section" by two.

Thus, the width of the eastern tier of sections in range 13 is:
Along N. boundary of tp. 19, 80.15-38.78 $=41.37$ chains

$" 1$	$"$	$20,80.00-38.71=41.29$	
$" 1$	$"$	$21,79.85-38.64=41.21$	$"$
$"$	$"$	$22,79.69-38.57=41.12$	

These widths must be increased by one chain for road, if the widths from post to post are required.

For the township lines to the north of the correction line, viz. : $23,24,25$ and 26 , the width of range 13 may be found in the same way, using the dM from Tables III and IV for the 7th instead of the 6th base line.

If the width of the fractional section on the north side of the 6 th correction line is required, that is, the south boundary of township 23 , it must be remembered that here, on account of the correction line being thrown south, from the less depth of the townships of the new system, the southern boundary of township 23 of the third system, which is brought from the 7 th base line, intersects the second system south of the correction line, i.e., on a line brought from the 6 th base line.

Therefore we have
For the second system, Table III, $\mathrm{dM}_{1} 6$ th base $=8^{\prime} 21!972$ " third " " IV, dM 7th base $=\underline{8^{\prime} 22!411}$

$$
\mathrm{dM}_{1}-\mathrm{dM}=-0!439
$$

and for twelve ranges, $12\left(\mathrm{dM}_{1}-\mathrm{dM}\right)=-5^{\prime}: 268$
With the difference of longitude, $5!268$, and the $P \sin 1^{\prime \prime}$ for the 6 th correction line, third system, we get the required jog.

It will be noticed that the overlap is negative, i.e., instead of there being a fractional township there is a surplus.

The heavy lines represent the second system, the dotted ones the third. The line $A^{\prime} B^{\prime}$ is the one which we have just considered; it falls to the east of AB, but to the west of CD.

The lines in the figure are all township lines. Thus it will be seen that there is a small piece of land, $B^{\prime} C^{\prime}$, which is in fact a township of itself. Its designation would be township 23 A , range 12 A .

SECOND EXAMPLE

Required: the depth, north and south, of township 27, range 19, west of the principal meridian.

The north boundary of township 26 is the northern boundary of a tract of country surveyed under the first system.

Since each township of the third system is 6 chains shorter north and south than one of the first system, the northern boundary of township 26 in the third system is $6 \times 26=156$ chains south of the same boundary under the first system.

Therefore the distance from the north boundary of township 26, first system, to the northeast corner of section 12 , township 27 , third system, is $161-156=5$ chains.

Since 1.50 chains must be allowed for road, 3.50 chains is the available width of the strip of land.

FRACTIONAL SECTIONS ADJOINING AN INITIAL MERIDIAN

The longitude of the Principal meridian at the intersection of the 4 th base line is $97^{\circ} 27^{\prime} 28^{\prime \prime} 4$.

The Second, Third, etc., meridians were laid down by survey from the Principal Meridian, with the intention to place them at every fourth degree of longitude $-102^{\circ}, 106^{\circ}, 110^{\circ}$, etc. There is also the Second meridian east of the Principal meridian, laid down by survey from it, in approximate longitude 94°.

The actual longitudes, by astronomical observation, of such as have been determined are:

Second meridian at the north boundary of sec. 13, tp. $15,102^{\circ} 00^{\prime} 16^{\prime}!5$. Third meridian at the north boundary of sec. 13 , tp. $46,106^{\circ} 00^{\prime} 10!1$. Fourth meridian at the north boundary of sec. 36, tp. $49,110^{\circ} 00^{\prime} 18^{\prime \prime} 0$. Fifth meridian at the north boundary of sec. 36 , tp. $52,114^{\circ} 00^{\prime} 07!7$.

The discrepancies from the intended values are due in part to error in the assumed longitude of the Principal meridian, in part to errors of survey. The longitudes of these meridians at points other than those stated, will of course vary with the azimuthal error in surveying the meridians.

The width of the last range in seconds, on a given base line, when closing on an initial meridian is got by subtracting from the difference in longitude (in seconds) between the initial meridians, the nearest integral multiple of dM from Table III or Table IV (according to the system of survey in question).

Thus for the width of the last range on the 18 th base line between the Third and Fourth meridians (third system of survey) we have from Table IV, $\mathrm{dM}=549$! 123 for one range. Assuming the Third and Fourth meridians to be in the above stated longitudes at the 18 th base line, we divide the difference of longitude $4^{\circ} 00^{\prime} 07!9$ or $14407!9$ by $549^{\prime \prime} 123$ with quotient 26 and remainder $130^{\prime \prime} 7$. That is, the width of range 27 on the 18 th base line or the difference of longitude between the meridian forming the eastern boundary of townships 67, 68, 69 and 70, range 27 and the Fourth meridian is $130^{\prime \prime} 7$.

A better result could be obtained by considering the actual latitude of the base line, and its elevation above sea-level. Thus it is
known that the 18 th base line between the Third and Fourth meridians is approximately six chains south of its latitude as given in the tables, and has a mean elevation of about 1,700 feet. Using these figures and proceeding as already explained on pages 43 and 45 , correcting for latitude displacement

$$
\mathrm{dM}=549^{\prime \prime} 123-\frac{6}{966} \times 2!365=549^{\prime \prime} 108
$$

and correcting for altitude

$$
\mathrm{dM}=549^{\prime!} 108\left(1-\frac{l}{\mathrm{~N}}\right)=549^{\prime!} 064
$$

Proceeding now as before using 549:'064 as the longitude covered by one range we find the width of range 27 to be $132:^{\prime} 2$. This difference of longitude can be converted into chains by multiplying by P $\sin l^{\prime \prime}$ for the section line whose length is required, whether the southern boundary of township 67, or the northern boundary of township 70, or any of the intermediate township or section lines.

If the width of the last broken section be required, then if dealing with the third system of survey, integral multiples of $1 / 6 \mathrm{dM}$ (difference of longitude covered by one section) must be subtracted from the width of the fractional township until the remainder is less than $1 / 6 \mathrm{dM}$. This remainder may then be converted to chains by multiplying by $P \sin 1^{\prime \prime}$ taken out of the table for the latitude of the line under consideration. The reason for this is that the widths in seconds of longitude are the same for all sections from the base line to the correction line (second and third systems).

GEODETIC POSITIONS

Owing to the unequal distribution of mass and density in local areas of the earth's surface, the normal to the spheroid does not coincide with the plumb line vertical. In consequence the latitude and longitude of a point determined by astronomical observations may differ from the latitude and longitude as determined by geodetic measurements. Since the amount of the plumb line deflection varies from place to place the distance between any two points calculated from their astronomical positions may not agree with the distance actually measured on the ground. It is therefore desirable that positions in the Canada Lands surveys systems should be geodetic rather than astronomic.

A number of section corners have been tied into the Geodetic Survey of Canada's networks oftriangulation and the resulting spheroidal co-ordinates (1927 North American Datum) are listed in the following table. As the networks are extended further ties will be made and the results tabulated.

Spheroidal Co-ordinates of Section Corners as Determined by the Geodetic Survey of Canada (1927 North American Datum)
West of Principal Meridian.

Tp.	R .	Section	Latitude	Longitude
1	10	22, 1/4 N. By.	$49^{\circ} 03{ }^{\prime} 32!773$	$98^{\circ} 43^{\prime} 41!' 22$
1	17	10, 1/4 E. By.	490117.40	$9939 \quad 37.95$
1	27	26, 1/4 E. By.	$\begin{array}{llll}49 & 03 & 57.93\end{array}$	1005852.01
1	28	28, 1/4 E. By.	$49 \quad 0358.05$	1010937.41
1	30	15, N.E. Cor.	490238.59	1012424.27
1	33	28, 1/4 E. By.	$49 \quad 0356.42$	1014955.55
2	1	10, N. E. Cor.	$\begin{array}{llll}49 & 07 & 05.37\end{array}$	$\begin{array}{llll}97 & 30 & 16.51\end{array}$
2	3	23, 1/4 E. By.	$49 \quad 08 \quad 27.30$	$\begin{array}{llll}97 & 45 & 04.16\end{array}$
2	14	29, N. E. Cor.	$49 \quad 0945.63$	$99 \quad 18 \quad 06.86$
2	16	12, N. E. Cor.	$\begin{array}{llll}49 & 07 & 03.78\end{array}$	$99 \quad 28 \quad 52.04$
3	5	2, N.E. Cor.	4911132.19	$\begin{array}{llll}98 & 01 & 24.67\end{array}$
3	7	19, N.E. Cor.	$\begin{array}{llll}49 & 14 & 12.51\end{array}$	$\begin{array}{llll}98 & 23 & 07.88\end{array}$
3	18	8, 1/4 E. By.	$49 \quad 1201.51$	$99 \quad 51 \quad 20.95$
7	17	31, N. E. Cor.	$\begin{array}{llll}49 & 37 & 14.60\end{array}$	$9945 \quad 24.77$
11	18	35, N. E. Cor.	$4958 \quad 29.92$	994912.79

West of Second Meridian

Tp.	R .	Section	Latitude	Longitude
1	1	16, 1/4 N. By.	$49^{\circ} 02^{\prime} 35!' 32$	$102^{\circ} 05^{\prime} 03!\cdot 51$
1	3	12, 1/4 E. By.	490116.00	$10216 \quad 29.49$
1	5	1, 1/4 S. By.	485957.18	1023316.10
1	6	13, 1/4 E. By.	490209.83	1024040.32
1	12	24, 1/4 N. By.	$4903 \quad 26.95$	1032910.91
1	13	10, 1/4 N. By.	490141.84	1033950.62
1	14	8, 1/4 N. By.	490142.87	1035033.82
1	16	26, N.E. Cor.	$\begin{array}{llll}49 & 04 & 23.28\end{array}$	1040154.93
1	18	28, N.E. Cor.	$49 \quad 04 \quad 20.68$	1042035.05
1	23	17, 1/4 E. By.	490208.65	1050158.66
1	27	7, 1/4 E. By.	$4901 \begin{array}{lll}49 & 17.63\end{array}$	$10535 \quad 21.87$
2	7	$8,1 / 4 \mathrm{~N}$. By.	$4907 \quad 01.64$	1025445.67
2	10	10, N.E. Cor.	$49 \quad 06 \quad 56.90$	$\begin{array}{llll}103 & 15 & 09.83\end{array}$
2	26	12, 1/4 N. By.	$49 \quad 06 \quad 57.34$	$\begin{array}{llll}105 & 21 & 20.10\end{array}$
2	29	22, N.E. Cor.	490843.11	$\begin{array}{llll}105 & 47 & 22.72\end{array}$
5	29	14, N.E. Cor.	$\begin{array}{llll}49 & 23 & 30.21\end{array}$	1054738.56
6	26	25, 1/4 S. By.	$49 \quad 2937.41$	$105 \quad 2246.01$
16	23	24, N.E. Cor.	$\begin{array}{llll}50 & 22 & 03.34\end{array}$	1050148.25
16	29	33, 1/4 E. By.	$\begin{array}{llll}50 & 23 & 22.45\end{array}$	$105 \quad 55 \quad 25.86$
17	20	14, 1/4 E. By.	$\begin{array}{llll}50 & 25 & 59.75\end{array}$	$1 \begin{array}{ll}104 & 38 \quad 25.97\end{array}$
18	24	23, 1/4 E. By.	$\begin{array}{llll}50 & 32 & 06.50\end{array}$	$\begin{array}{llll}105 & 11 & 27.43\end{array}$
20	26	20, N. E. Cor.	$\begin{array}{llll}50 & 43 & 01.67\end{array}$	$\begin{array}{ll}105 & 33 \\ 105\end{array}$
21	24	34, N. E. Cor.	$\begin{array}{llll}50 & 50 & 01.05\end{array}$	$\begin{array}{llll}105 & 14 & 20.97\end{array}$
22	28	24, N.E. Cor.	$\begin{array}{lll}50 & 53 & 30.48\end{array}$	$10544 \quad 50.34$
26	26	6, N.E. Cor.	$\begin{array}{llll}51 & 11 & 51.27\end{array}$	$\begin{array}{llll}105 & 36 & 45.77\end{array}$
28	26	7, 1/4 N. By.	$\begin{array}{llll}51 & 23 & 13.37\end{array}$	1053902.66
28	27	34, N. E. Cor.	$\begin{array}{llll}51 & 26 & 43.03\end{array}$	1054234.06
29	22	32, N.E. Cor.	$\begin{array}{llll}51 & 31 & 57.18\end{array}$	1050311.40

Tp.	R.		Section	Latitude			Longitude		
41	27	27.	N. E. Cor.	52	33	56.08	105	47	38.98
45	20	23,	N. W. Cor.	52	53	59.84	104	48	31.98
45	22	22,	N.E. Cor.	52	56	54.41	105	07	19.81
45	22	18,	1/4 W. By.	52	55	35.27	105	13	08.93
45	24	23,	$1 / 4 \mathrm{E}$. By.	52	53	34.20	105	21	54.30
46	20	22,	N. E. Cor.	52	59	14.18	104	48	33.09
47	22	31.	$1 / 4 \mathrm{E}$. By.	53	05	47.57	105	11	47.74

West of Third Meridian

Tp.	R.	Section	Latitude	Longitude
1	14	4, 1/4 E. By.	$49^{\circ} 00^{\prime} 25!^{\prime} 42$	$107^{\circ} 48^{\prime} 32!^{\prime} 63$
1	22	34, N. E. Cor.	$\begin{array}{llll}49 & 05 & 12.37\end{array}$	1085117.34
2	3	12, N. E. Cor.	$49 \quad 06 \quad 59.32$	$\begin{array}{lll}106 & 16 & 25.29\end{array}$
2	5	33, N. E. Cor.	$\begin{array}{llll}49 & 10 & 28.07\end{array}$	$10636 \quad 26.39$
2	9	20, 1/4 E. By.	$\begin{array}{llll}49 & 08 & 17.34\end{array}$	1070949.58
2	16	31, N.E. Cor.	$\begin{array}{llll}49 & 10 & 27.53\end{array}$	$10807 \quad 14.09$
2	19	4, 1/4 E. By.	$4905 \quad 39.48$	$108 \quad 28 \quad 34.96$
2	24	33, N.E. Cor.	$\begin{array}{llll}49 & 10 & 27.37\end{array}$	$10908 \quad 39.63$
2	25	34, N.E. Cor.	$49 \quad 10 \quad 27.21$	$109 \quad 15 \quad 20.54$
3	1	3, 1/4 E. By.	$49 \quad 10 \quad 54.44$	1060300.62
3	7	2, S.E. Cor.	$\begin{array}{llll}49 & 10 & 28.40\end{array}$	$10650 \quad 07.99$
3	18	9, N.E. Cor.	$\begin{array}{llll}49 & 12 & 12.24\end{array}$	1082134.24
3	20	14, N. E. Cor.	$\begin{array}{llll}49 & 13 & 04.75\end{array}$	1083501.35
4	10	11, 1/4 W. By.	$\begin{array}{llll}49 & 17 & 27.72\end{array}$	1071500.88
4	22	21, N.E. Cor.	$\begin{array}{llll}49 & 19 & 11.37\end{array}$	1085351.33
7	1	36, N. E. Cor.	$4936 \quad 39.40$	1060013.50
10	1	36, S.E. Cor.	495130.72	$10600 \quad 16.65$
10	1	36, N. E. Cor.	495222.91	$10600 \quad 16.60$
40	4	33, N. E. Cor.	$\begin{array}{llll}52 & 29 & 34.49\end{array}$	$10630 \quad 26.70$
40	6	23, N.E. Cor.	$\begin{array}{llll}52 & 27 & 49.57\end{array}$	1064450.33
41	4	31, N. E. Cor.	$\begin{array}{llll}52 & 34 & 48.60\end{array}$	$\begin{array}{llll}106 & 33 & 19.43\end{array}$
42	2	26, 1/4 E. By.	$\begin{array}{llll}52 & 38 & 45.40\end{array}$	$10610 \quad 16.66$
42	3	22, N. E. Cor.	$\begin{array}{llll}52 & 38 & 18.61\end{array}$	$\begin{array}{llll}106 & 20 & 21.55\end{array}$
42	5	21, N.E. Cor.	$\begin{array}{llll}52 & 38 & 18.28\end{array}$	1063904.72
43	15	28, N.E. Cor.	$\begin{array}{llll}52 & 44 & 24.42\end{array}$	1080628.70
44	10	21, N.E. Cor.	$\begin{array}{llll}52 & 48 & 45.48\end{array}$	1072256.48
44	12	36, N.E. Cor.	$\begin{array}{llll}52 & 50 & 30.59\end{array}$	$10735 \quad 59.68$
46	20	19, N.E. Cor.	$\begin{array}{llll}52 & 59 & 14.19\end{array}$	1085256.06
47	24	15, N.W. Cor.	$\begin{array}{llll}53 & 03 & 34.56\end{array}$	$10926 \quad 30.14$
50	1	12, 1/4 E. By.	$\begin{array}{llll}53 & 17 & 59.38\end{array}$	1060012.97
50	26	3, N.E. Cor.	$\begin{array}{llll}53 & 17 & 32.86\end{array}$	1094237.01

West of Fourth Meridian

Tp.	R.	Section	Latitude	Longitude
8	3	5, 1/4 E. By.	$49^{\circ} 37^{\prime} 05!82$	$110^{\circ} 21 \prime 55!71$
8	7	11, 1/4 E. By.	$4937 \quad 57.77$	1105022.29
9	10	$32,1 / 4 \mathrm{~N} . \mathrm{By}$.	494709.50	1111928.44
10	10	25, 1/4 N. By.	495132.36	1111403.98
14	10	7, $1 / 4 \mathrm{~N}$. By.	$\begin{array}{llll}50 & 09 & 51.73\end{array}$	$\begin{array}{llll}111 & 21 & 25.77\end{array}$
15	4	5, 1/4 E. By.	$\begin{array}{llll}50 & 13 & 47.53\end{array}$	$\begin{array}{ll}110 & 30\end{array} 28.92$

Tp.	R.	Section									Latitude

West of Fifth Meridian

Tp.	R.	Section	Latitude	Longitude
27	2	23, N. E. Cor.	$51^{\circ} 19 \prime 44!' 94$	$114^{\circ} 09^{\prime} 53!^{\prime} 86$
31	4	10, N.E. Cor.	513857.67	1142823.83
33	1	8, N.E. Cor.	$\begin{array}{llll}51 & 49 & 26.42\end{array}$	$\begin{array}{llll}114 & 05 & 43.57\end{array}$
34	1	28, 1/4 N. By.	$\begin{array}{llll}51 & 57 & 18.47\end{array}$	1140500.74
51	4	32, 1/4 E. By.	$53 \quad 2648.21$	1143229.07
51	23	21, N.E. Cor.	$\begin{array}{llll}53 & 25 & 29.15\end{array}$	1171901.44
52	1	$8,1 / 4 \mathrm{~N}$. By.	$\begin{array}{llll}53 & 28 & 58.63\end{array}$	1140640.53
52	3	14, N.E. Cor.	$53 \quad 2951.11$	$\begin{array}{llll}114 & 19 & 12.62\end{array}$
52	24	31, N.E. Cor.	$5332 \begin{array}{ll}53 & 27.39\end{array}$	1173047.86
53	1	24, N.E. Cor.	5313556.94	1140003.48
53	2	1, N.E. Cor.	$\begin{array}{llll}53 & 33 & 20.25\end{array}$	1140854.74
53	1	36, N.E. Cor.	$\begin{array}{llll}53 & 37 & 41.74\end{array}$	1140003.50
53	8	11, 1/4 E. By.	$\begin{array}{llll}53 & 33 & 48.05\end{array}$	1150325.10
53	12	23, N.E. Cor.	$53 \quad 3556.66$	11583846.64
53	13	17, N.E. Cor.	$\begin{array}{llll}53 & 35 & 04.92\end{array}$	1155204.11
54	6	32, 1/4 N. By.	534255.97	1145053.00
54	7	$30,1 / 4 \mathrm{~N}$. By.	5314203.16	1150109.90
54	9	17, N.E. Cor.	$\begin{array}{llll}53 & 40 & 19.52\end{array}$	$\begin{array}{llll}115 & 16 & 40.54\end{array}$
54	12	9, N.E. Cor.	$53 \quad 3926.92$	1154145.22
54	13	8, N.E. Cor.	$\begin{array}{llll}53 & 39 & 26.47\end{array}$	$115 \quad 5204.21$
54	18	2, N.E. Cor.	$\begin{array}{llll}53 & 38 & 33.94\end{array}$	1163152.02
55	11	32, 1/4 E. By.	$\begin{array}{llll}53 & 47 & 44.26\end{array}$	1153511.89
55	20	19, N.E. Cor.	$\begin{array}{llll}53 & 46 & 25.60\end{array}$	1165654.19
56	18	19, 1/4 N. By.	535139.31	1163948.23

West of Sixth Meridian
$451 \quad 9$, N.E. Cor. $\quad \begin{array}{llllllll}52 & 52 & 19.26 & 118 & 04 & 17.13\end{array}$

CHAPTER V

CONSTRUCTION AND USE OF THE TABLES

The geodetic tables of the Supplement have been based on the dimensions given by Col. Clarke (1866) for the figure of the earth.

In the computation of the tables, no account has been taken of the irregularities and errors of survey, or of the altitude above sealevel at which the surveys are made. The surveys are considered as based on a parallel of latitude of 49°, and the different townships and sections as having their theoretic dimensions.

The tables therefore, do not strictly represent the geodetic quantities for the different points of the Canada lands system. The method of applying corrections for altitude and known errors of survey is briefly treated on pages 43 and 45 . The actual errors of survey and the imperfections of all geodetical assumptions are too complicated for treatment here.

These discrepancies, however, are always small, and will exert no appreciable influence on the field work of a surveyor. With the exception of the latitudes and differences of longitudes, the errors of the tables are negligible.

TABLE I

LENGTHS OF ARCS OF MERIDIANS, PARALLELS, ETC., IN DIFFERENT LATITUDES

According to Col. A. R. Clarke,R.E., in his "Comparison of Standards of Length" (1866), the spheroid of revolution most nearly approaching the form of the earth has for its major or equatorial semiaxis $20,926,062$ feet, and for its minor or polar semi-axis $20,855,121$ feet.

Representing the semi-major andsemi-minor axis by a and b respectively, we have for the compression

$$
\begin{aligned}
& \mathrm{c}=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}}=\frac{1}{294.98} \text {, and the eccentricity } \mathrm{e} \text { is given by the formula } \\
& \mathrm{e}^{2}=\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}=0.0067686
\end{aligned}
$$

The unit of measure in the Canada lands surveys is the Gunter's, or 66 -foot chain. The equatorial semi-axis in chains is $317,061.545$.

Representing by L the geographical latitude of a place, or the angle which its vertical line makes with the plane of the equator, we have for the radius of curvature of the meridian

$$
R=\frac{a\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} L\right)^{3 / 2}}
$$

for the length of the normal to the meridian terminated by the minor axis

$$
N=\frac{a}{\left(1-e^{2} \sin ^{2} L\right)^{1 / 2}}
$$

and for the radius of the parallel of latitude L

$$
P=N \cos L
$$

The length in chains of one second of latitude is equal to R sin 1"; one second of the great circle perpendicular to the meridian is equal to $N \sin 1^{\prime \prime}$; and one second of longitude is equal to $P \sin l^{\prime \prime}$. The logarithms of these quantities are placed in the second, third and fourth columns of Table I. They have been calculated by means of the logarithmic expansions of R and N.

Thus putting n for $\frac{a-b}{a+b}$ we have

$$
\begin{array}{r}
\log \left(R \sin 1^{\prime \prime}\right)=\log \left[a(1-n)^{2}(1+n) \sin 1^{\prime \prime}\right] \\
-3 \mu n \cos 2 L+3 / 2 \mu n^{2} \cos 4 L-e t c .
\end{array}
$$

where μ is the modulus of the commonsystem of logarithms, and powers of n higher than the second are neglected as being insensible in the eighth decimal place.

Substituting the value of a in chains, as given above, and taking

$$
\begin{aligned}
& n=\frac{a-b}{a+b}=\frac{1}{588.96}, \text { we get } \\
& \begin{aligned}
\log \left(R \sin l^{\prime \prime}\right)=0.18597916 & -0.00221218 \cos 2 L \\
& +0.00000188 \cos 4 L
\end{aligned}
\end{aligned}
$$

In calculating the last two terms by logarithms five places are sufficient.

For $N \sin 1^{\prime \prime}$ we have
$\log \left(N \sin 1^{\prime \prime}\right)=1 / 3 \log \left(R \sin 1^{\prime \prime}\right)+2 / 3\left\{\log a+\log \sin 1^{\prime \prime}+2 \mu n\right\}$
$=1 / 3 \log \left(\mathrm{R} \sin 1^{\prime \prime}\right)+0.12546215$,
and for $P \sin 1^{\prime \prime}$
$\log \left(P \sin 1^{\prime \prime}\right)=\log \left(N \sin 1^{\prime \prime}\right)+\log \cos L$.
The calculation has been made to eight places of decimals to ensure accuracy in the seventh place. In tabulating the eighth figure has been dropped.

The calculation of the logarithms of $R \sin 1^{\prime \prime}$ and $N \sin l^{\prime \prime}$ has also been made directly from the formulae for R and N, by the use of a subsidiary angle.

Thus, finding an angle ψ such that $\sin \psi=e \sin L$, we have

$$
\begin{aligned}
& \mathbf{R} \sin 1^{\prime \prime}=a\left(1-e^{2}\right) \sec ^{3} \psi \sin 1^{\prime \prime} \\
& N \sin 1^{\prime \prime}=a \sec \psi \sin 1^{\prime \prime}
\end{aligned}
$$

Seven figure logarithms were used, and consequently the results could not be depended upon to the seventh figure, but they have been serviceable as a check upon the series computation.
$\log \mathrm{N} \sin 1^{\prime \prime}, \log \mathrm{P} \sin 1^{\prime \prime}$ and $\log \mathrm{R} \sin 1^{\prime \prime}$ are given in the table for every 10^{\prime} of latitude from 42° to 70°. Their values for intermediate latitudes can be obtained by simple interpolation. Where, however, $\log P \sin l^{\prime \prime}$ is required with accuracy for an intermediate latitude, it is better first to obtain $\log \mathrm{N} \sin l^{\prime \prime}$ for the latitude by interpolation from the table and then to add log cos L.

Under the heading 'Chains in $1^{\prime \prime \prime}$ are given the natural numbers corresponding to the logarithms of $R \sin l^{\prime \prime}$ and $P \sin l^{\prime \prime}$. These natural numbers are useful in reducing small differences of latitude and longitude to chains by simple multiplication, being preferable in many cases to the logarithms.

The converse operation of reducing short distances north and south or east and west to seconds of latitude or longitude may be performed by multiplying by the quantities in the two columns headed "Seconds in one Chain." These columns contain the reciprocals of the quantities in the columns "Chains in l"'.

In the last two columns of the table are given the lengths of one degree of latitude and longitude in English miles.

RADIUS OF CURVATURE OF A SECTION OF THE SPHEROID INCLINED AT ANY ANGLE TO A MERIDIAN

In some operationsit is necessaryto find the radius of curvature of the trace on the earth's surface of a "straight" or "transit" line, making a given angle with the meridian.

Representing this radius of curvature by S, and θ being the angle with the meridian, we have the formula

$$
\frac{1}{S}=\frac{\cos ^{2} \theta}{R}+\frac{\sin ^{2} \theta}{N}
$$

and introducing an auxiliary angle X determined by the formula

$$
\begin{aligned}
& \tan X=\sqrt{\frac{R \sin 1^{\prime \prime}}{N \sin 1^{\prime \prime}}} \tan \theta, \text { we have } \\
& S \sin 1^{\prime \prime}=N \sin 1^{\prime \prime} \frac{\sin ^{2} X}{\sin ^{2} \theta}
\end{aligned}
$$

a formula adapted for ready calculation by logarithms.

RADIUS OF SPHERICAL CURVATURE

The mean of the values of S when θ is given all possible values is $\sqrt{N R}$. This is the radius of curvature of the surface or the radius of the sphere to the surface at a given point. Its logarithm is readily found from Table I, being the arithmetical mean of the logarithms of N and R.

TABLE II

CORRECTIONS TO TABLE I FOR CHANGE IN ELEMENTS OF FIGURE OF EARTH

In Table I the data used are Clarke's 1866 values, viz. :
$a=20,926,062$ feet
$\mathrm{n}=\frac{1}{588.96}$
and all the following tables are based on Table I, and therefore on these values. Clarke's later values (Geodesy, 1880) are,

$$
\begin{aligned}
& \mathrm{a}=20,926,202 \text { feet } \\
& \mathrm{n}=\frac{1}{585.93}
\end{aligned}
$$

If, for any purpose, it is desired to use the se values, Table I can be
corrected by means of Table II, which has been computed thus:
Differentiating the formulae,
$\log R \sin 1^{\prime \prime}$
$=\log a+\log \sin 1^{\prime \prime}-\mu\left(n+3 / 2 n^{2}\right)-3 \mu n \cos 2 L+3 / 2 \mu n^{2} \cos 4 L$
$\log \mathrm{N} \sin 1^{\prime \prime}$

$$
=\log a+\log \sin 1^{\prime \prime}+\mu\left(n-1 / 2 n^{2}\right)-\mu n \cos 2 L+1 / 2 \mu n^{2} \cos 4 L
$$

and putting $\frac{1}{n}=p$, we have

$$
\begin{aligned}
& d\left(\log R \sin 1^{\prime \prime}\right)=\mu \frac{d a}{a}+\mu n^{2} d p+3 \mu n^{2} \cos 2 L d p \\
& d\left(\log N \sin 1^{\prime \prime}\right)=\mu \frac{d a}{a}-\mu n^{2} d p+\mu n^{2} \cos 2 L d p
\end{aligned}
$$

μ being the modulus of the common system of logarithms. Terms involving the cubes and higher powers of n are insensible and may be neglected.

To change Clarke's earlier to his later values, we have

$$
\begin{aligned}
\mathrm{da} & =+140 \text { (feet) } \\
\mathrm{d} p & =-3.024 \\
\mathrm{a} & =20926062 \text { (feet) } \\
\mathrm{n} & =\frac{1}{588.96}
\end{aligned}
$$

$$
\text { and } \mu=0.43429448
$$

whence $d \log \left(R \sin 1^{\prime \prime}\right)=-.00000088-.00001136 \cos 2 L$
$d \log \left(N \sin 1^{\prime \prime}\right)=+.00000669-.00000379 \cos 2 L$
These quantities are tabulated in Table 11, with the proper signs of application to $\log \mathrm{R} \sin 1^{\prime \prime}$ and $\log \mathrm{N} \sin 1^{\prime \prime}$ in Table I.

TABLE 111

LATITUDES OF BASE AND CORRECTION LINES AND LENGTHS OF ARCS OF MERIDIANS, PARALLELS, ETC. , FOR FIRST AND SECOND SYSTEMS OF SURVEY

This table is constructed for the first and second systems of survey only. 1t accordingly stops at the 13 th base, township 48, north of which there are no surveys under these systems.

Each township measuring 489 chains each way, the lst correction line is 978 chains north of the 49 th parallel.

The latitude of the 1 st correction line is therefore

$$
49^{\circ}+\frac{978}{R \sin 1^{\prime \prime}}
$$

Here $R \sin 1^{\prime \prime}$ must be taken from Table I for the middle latitude between the 1 st base and the lst correction line. For accuracy it is necessary therefore to compute an approximate difference of latitude, using an approximate value of R sin 1 ". For instance $\mathrm{R} \sin \mathrm{l}^{\prime \prime}$ may be taken from the table for latitude 49°.

The approximate difference of latitude being thus determined, the middle latitude is found from it (this being a sufficiently close
approximation), and the final $R \sin 1^{\prime \prime}$ is taken from Table I for that latitude. Then dividing 978 by this we have a very close approximation to the difference of latitude between the base and the correction line.

From the latitude of the lst correction line, that of the 2nd base line is found by a similar process, and so on in succession as far as the table extends.

The table is checked by applying the same process to a longer distance than 978 chains. For example, the latitude of the 6 th base can be directly determined from that of the first by using 9,780 chains instead of 978 . When long distances are thus taken, a second approximation to the middle latitude may become necessary.

The columns $\log N \sin 1^{\prime \prime}$ and $\log R \sin 1^{\prime \prime}$ are taken from Table I by interpolation, and $\log P \sin 1^{\prime \prime}$ is found by adding $\log \cos \mathrm{L}$ to $\log N \sin 1^{\prime \prime}$.

The width of a township along a base line is 489 chains. The longitude corresponding to this length measured along the parallel of latitude is given in the column headed 'Longitude covered by 489 chains of westing", not only for the base lines but also for the correction lines.

The longitude for 489 chains, along a base line, is the longitude covered by one range of townships. Along a correction line it does not correspond to the longitude covered by a range, since the width of a township along a correction line is greater or less than 489 chains according as the township north or south of the correction line is considered. The tabulated quantity, however, for correction lines can be used to calculate the narrowing or widening of sections at the correction lines.

The township width, 489 chains, is measured along the base line which has such azimuth that its terminal point falls in the same latitude as its initial point.

Thus every township corner along a base line has the same latitude, and the base line is a succession of chords of the latitude circle.

The difference of longitude between one township corner and the next is given by the formula

$$
\mathrm{dM}=\frac{489}{P \sin 1^{\prime \prime}}
$$

It is assumed here that the chord of the arc of the latitude circle is equal to the arc. That the difference between the chord and the arc is inappreciable may be shown thus:

By spherical trigonometry

$$
\sin \frac{\text { chord }}{2 N}=\sin \frac{d M}{2} \cos L
$$

whence chord $=N \cos L d M-N \cos L \sin ^{2} L \frac{d M^{3}}{24}$

$$
=\operatorname{arc}-\operatorname{arc} \times \frac{d M^{2}}{24} \sin ^{2} L
$$

so that the difference between the chord and the arc is equal to

$$
\operatorname{arc} \times \frac{d M^{2}}{24} \sin ^{2} L
$$

dM being in circular measure.

For any township chord this amounts to less than one fiftieth of a link.

The chord always lies north of the arc. The distance between them is greatest at their middle points, amounting there to about 10 links. Hence, at the international boundary line, which is the first base line, since the actual territorial boundary is the curve, and the base line a series of chords, the road allowance which lies along the north side of this base is increased in width by 10 links at the middle of the chords.

The non-coincidence of the chord and arc also has the effect of increasing and decreasing the widths of roads on correction lines, since on account of the jog, the township corners north and south of the road are not opposite one another. The increase or decrease in the width of the road along correction lines, when required, may be easily found by an appice ion of Table XI.

In the first column of Table III are given, for convenience, the numbers of the townships corresponding to the several base and correction lines. Thus the 6th base is the northern boundary of township 20, and so on.

TABLE IV

LATITUDES OF BASE AND CORRECTION LINES, ETC., FOR THIRD AND FOURTH SYSTEMS OF SURVEY

This table is similar to Table III, except that it is made for the third system of survey, where the widths of townships are 486 instead of 489 chains, and their depths, in a north and south direction, 483 instead of 489 chains.

The table also applies, without change, to the fourth system (British Columbia).

In this table, as well as in Table III, the latitudes given are those of the line of posts on the south side of the road allowance. To get the latitude of the posts north of the road on correction lines, the latitude of the correction line, as given in the table, must be corrected by adding the equivalent in latitude of the width of the road, i.e., one chain and a-half for the first and second systems (Table III), and one chain for the third system (Table IV).

TABLE V

CHORD AZIMUTHS, ETC., FOR BASE LINES, FIRST AND SECOND SYSTEMS OF SURVEY

The extremities of the township chord, as above stated, are in the same latitude. Hence the chord is equally inclined to the meridians passing through its terminal points, and its azimuth, east or west of north, is equal to the complement of half the change in azimuth, that is, of half the "convergence of meridians."

Let $d Z$ represent the change in azimuth or convergence of meridians, dM the difference of longitude, and L the latitude.

Then, by spherical trigonometry

$$
\tan 1 / 2 d Z=\tan 1 / 2 d M \sin L
$$

whence, by expansion of the tangents in terms of the arcs,

$$
d Z=d M \sin L+\frac{d M^{3}}{12} \sin L \cos ^{2} L
$$

or, if dZ and dM be expressed in seconds,

$$
\mathrm{dZ}=\mathrm{dM} \sin \mathrm{~L}+\frac{\mathrm{d} \mathrm{M}^{3}}{12} \sin L \cos ^{2} L \sin ^{2} 1^{\prime \prime}
$$

The second term is inappreciable, amounting in latitude 51° to less than one ten-thousandth of a second.

$$
\therefore d Z=d M \sin L
$$

The convergence or "deflection" ($\mathrm{d} Z$), given in Table V , is thus calculated from the difference of longitude (dM) in Table III.

The "chord azimuth" is the complement of half the deflection.
The chord azimuth,convergence for 100 chains and the deflection are given in the table in degrees, minutes and seconds.

In the survey of a base line, the surveyor, when he arrives at a township corner, deflects his line to the north through an angle equal to the "deflection," and thus establishes in azimuth the chord across the next range of townships.

This deflection angle may be turned with the instrument, but more readily by the use of the "deflection offsets" in the table. The tabulated offset is the linear distance in inches between one of the chords and the prolongation of the other, at one chain from the township corner.

Their distance apart at any point is found by multiplying the tabulated offset by the distance, expressed in chains, of the point from the township corner.

For example, if the instrument stand on the prolongation of the first chord at 15 chains past the corner, and the back picket at 40 chains on the other side of the corner, that is, behind the corner, then the instrument must be moved north fifteen times, and the back picket south forty times, the "deflection offset for one chain". The line of the instrument and picket will then be in the correct bearing for the prolongation of the base line.

The angle is thus turned as accurately as a straight line can be produced with the instrument, and much more accurately than the angle can be measured with the graduated arc, while the setting of the instrument at the corner (which may be in low ground, unsuitable for accurate line production) is rendered unnecessary.
"Longitude covered by one range" in the seventh column is merely the longitude in the seventh column of Table III, reduced to time by dividing by 15 . This gives the number of seconds which a watch will gain or lose on local time in being carried across a range. The gain or loss intravelling over any other distance along the base line is proportional to the distance. The column is added for astronomical purposes, especially the determination of azimuth by observation of Polaris at any hour angle.

Table V applies to the first and second systems of survey.

TABLE VI

CHORD AZIMUTHS, ETC., FOR BASE LINES, THIRD AND FOURTH SYSTEMS OF SURVEY

This table is similar to Table V, but is made for the third system of survey.

The calculation is made by the same formulae, changing only the width of the range, which is 486 instead of 489 chains, and using the latitudes of the base lines from Table IV, instead of those from Table III.

$$
\mathrm{dM}=\frac{486}{P \sin 1^{\prime \prime}}, \quad \mathrm{dZ}=\mathrm{dM} \sin L
$$

The table also applies to the fourth system.

TABLE VII

CHORD AZIMUTHS, JOGS, ETC., FOR CORRECTION LINES, FIRST AND SECOND SYSTEMS OF SURVEY

This table gives quantities for correction lines similar to those given in Table V for base lines. It applies to the first and second systems of survey.

The correction lines are posted on both sides of the road. The chord azimuths and deflections are given for the south side of the road, which is that side for which the latitudes of correction lines are given in Table III.

The calculation of the chord azimuth for correction lines is somewhat different from that for base lines.

For the base lines we have

$$
\begin{aligned}
& \mathrm{dM}=\frac{489}{P \sin 1^{\prime \prime}} \\
& \text { deflection }=d M \sin L
\end{aligned}
$$

For the correction lines, one range is not 489 chains, but the distance between meridians which include 489 chains on the nearest base line.

Hence in the formulae: -

$$
\begin{aligned}
& \mathrm{dM}=\frac{489}{P \sin 1^{\prime \prime}} \\
& \text { and deflection }=d M \sin L=\frac{489}{P \sin 1^{\prime \prime}} \sin L
\end{aligned}
$$

we must take P sin $l^{\prime \prime}$ for the next base line south of the correction line, if the difference of longitude and the deflection for the south side of the correction line road are required; while for the north side of that road we must take $P \sin l^{\prime \prime}$ for the next base line north. L of course, is the latitude of the correction line itself.

The length of one range on the correction line is $d M \times P \sin 1^{\prime \prime}$.
If, then, P_{1} and P_{2} represent the radii of parallels for the base lines next north and south, respectively, and P that for the correction line itself; then

$$
\mathrm{d} M_{1}=\frac{489}{P_{1} \sin 1^{\prime \prime}} \quad, \quad \mathrm{dM}_{2}=\frac{489}{P_{2} \sin 1^{\prime \prime}}
$$

and we have for the length of one range on the correction line: -

$$
\begin{aligned}
& \text { North side }=\frac{489}{P_{1} \sin 1^{\prime \prime}} \times P \sin 1^{\prime \prime} \\
& \text { South side }=\frac{489}{P_{2} \sin 1^{\prime \prime}} \times P \sin 1^{\prime \prime}
\end{aligned}
$$

The values of the se quantities are tabulated in the sixth and seventh columns of Table VII.

For extreme accuracy P sin 1 "for the north side of the road should be taken out for a latitude greater by 1.50 chains, or $0!' 98$ greater than that tabulated in Table III; but the difference in the result would be almost inappreciable, being less than one quarter of a link per township.

The difference of lengths of the township lines north and south of the correction line road gives the overlap or jog.

The jog for one range is given in the eighth column of the table. As this jog occurs in each range of townships, its value at any range is the product of the jog for one range by the number of ranges.

The excess of the length of the north side over, or the defect of the south side from 489 chains, is the linear divergence or convergence of the township lines. Since there are twelve half sections in a township side, the convergence or divergence for one half section is one-twelfth of the convergence or divergence for the township, or one twenty-fourth of the jog, the excess of the north side and the defect of the south side being very nearly, though not quite, equal.

This convergence or divergence for one half section is entered in the ninth column of the table. It is used in the second system, where the surplus or deficiency caused by the convergence of meridians is divided equally among all the quarter-sections, Hence, in surveying a correction line under the second system, the width of each quarter section (exclusive of the roads) is forty chains plus or minus this tabulated quantity. The surplus or deficiency on the township line midway between the base and the correction line ishalf of that on the correction line.

In the first system the whole of the surplus or deficiency is thrown into the western tier of quarter sections. This surplus or deficiency is the difference between 489 chains and the quantities in the sixth and seventh columns of Table VII. For example, on the north side of the road on the lst correction line the surplus is 1.75 chains, and the we sterly quarter section of the townshipis therefore 41.75 , all the others being 40 chains.

It is to be observed thatin all cases the whole divergence or convergence is applied to the section itself, and that the road allowance retains its width of 1 chain or $11 / 2$ chains, with the exception of the roads on correction lines, which are subject to a widening or narrowing as explained under Table III.

TABLE VIII
CHORD AZIMUTHS, JOGS, ETC., FOR CORRECTION LINES, THIRD AND FOURTH SYSTEMS OF SURVEY

This table gives for the third and fourth systems the same quantities as are given in Table V1I for the first and second systems.

The surplus or deficiency is in all cases divided equally among all the quarter sections.

TABLE IX

LATITUDES, AND WIDTHS IN CHAINS, OF NORTHERN BOUNDARIES OF SECTIONS IN FIRST AND SECOND SYSTEMS OF SURVEY

This table, with Table XI, gives the latitudes in degrees, minutes and seconds for the northern boundaries of all sections in the first and second systems.

The sections numbered in the second column are those adjacent to the eastern boundary of the township. The latitudes of the northern boundaries of interior sections lying west of these are approximately the same. Thus the northern boundaries of sections $14,15,16$, 17 and 18 have very nearly the same latitude as the north boundary of 13 , and sofor the other east and west tiers of sections. The small corrections required to the latitudes of Tables IX and X to obtain the latitudes of the northeast corners of sections not on the bounding meridians of townships are given in Table XI.

These latitudes are computed by interpolating from the latitudes given in Table III.

The logarithmic secant and tangent of the latitude are given in the table for use in calculation of azimuth observations.

In the last column of the table are given the widths of the north boundaries of the quarter sections (in the second system of survey). These are calculated for the correction lines in the mannerexplained under Table VII, and for the intermediate lines by interpolation.

For quarter sections adjoining correction lines the usual width is given for the north boundary of the quarter section to the south of the correction line; bracketed with it is also given the width, measured along the south boundary, of the quarter section immediately to the north. That is, the two lengths bracketed are the lengths of quarter section sides measured along the south limit and the north.limit, respectively, of the road on correction lines.

TABLE X
LATITUDES, AND WIDTHS IN CHAINS, OF NORTHERN BOUNDARIES OF SECTIONS IN THIRD AND FOURTH SYSTEMS OF SURVEY

This table gives for the third system the same quantities as are given in Table IX for the first and second.

The table may also be applied to the fourth system by correcting the latitudes of the alternate section lines, viz., the north boundaries of sections 1,13 and 25 in each township, by subtracting therefrom $0!\cdot 33$, the equivalent in arc of 50 links. The change in the logarithmic secant and tangent is inappreciable, as these logarithms are given to only five places of decimals. The widths of quarter sections in the last column must be increased by 50 links.

TABLE XI

DIFFERENCE OF LATITUDE BETWEEN TOWNSHIP CORNERS AND SECTION AND QUARTER SECTION CORNERS

This table is used when it is required to find the latitude of any point on a township chord, or within a township, as when it is desired to find the error of the survey lines by connecting with an astronomically determined point.

$$
\begin{aligned}
\text { Let } l= & \text { length of chord, chains. } \\
c= & \text { distance along chord from either end to point at } \\
& \text { which latitude difference is required, chains. } \\
\theta= & \text { convergence of meridians per chain, seconds of } \\
& \text { arc. } \\
\mathrm{dL}= & \text { approximate distance from the parallel to the } \\
& \text { chord, in links. }
\end{aligned}
$$

then $d L=.00024(l-c) c \theta$ (approximately).
The angular difference of latitude may be obtained by use of the conversion factors given in Table I.

Table XI can be used for all systems.

TABLE XII

FOR CONVERTING LOGARITHMIC TANGENTS OF SMALL ARCS INTO LOGARITHMS OF SECONDS OF ARC

This gives the logarithm of the ratio of a small arc expressed in seconds of arc, to its tangent; by adding it to the log tangent, the logarithm of the arc is obtained, and the arc itself is found with a table of logarithms of numbers, without having to compute proportional parts.

TABLE XIII

$\log \frac{1}{1-m}$ tabulated with $\log m$ as argument.
These tables are useful in abridging the work of time-azimuth observations on Polaris; they give by inspection the value of

$$
\log \frac{1}{1-\tan P \tan L \cos t}
$$

when $\log \tan P \tan L \cos t$ is known. The quantity $\tan P \tan L \cos t$ has been represented by m, so that the azimuth formula may be written

$$
\tan Z=-\frac{1}{1-m} \tan P \sec L \sin t
$$

It will be noted that $\log \frac{1}{1-m}$ must be taken out with regard to the sign of m .

DEFLECTION OF A TRLAL LINE FOR DEVIATIONS FROM 1 TO 149 LINKS AT THE END OF EIGHTY-ONE CHAINS

This is useful in deflecting trial lines. It gives the angular deflection of a line for deviations of 1 to 149 links at the end of eightyone chains

TABLE XV

CORRECTIONS IN LINKS TO SLOPE MEASUREMENTS

This table has been computed for the use of surveyors working in mountainous country where the slopes are measured with the traisit; it is not well adapted to ordinary clinometer chaining.

The table has been compiled with the correction as argument, to give an accuracy of one-tenth of a link per chain. A greater degree of accuracy may, of course, be obtained by interpolation to the measured slope, but it is seldom necessary. The corrections are given for every chain length up to nine chains, the object being to simplify the surveyor ${ }^{\dagger}$ s calculation in the field. A convenient method of using the tables is illustrated by the following example.

Required: the slope correction for 3.682 chains at $26^{\circ} 09^{\prime}$.
This slope lies between the tabulated slopes $26^{\circ} 06^{\prime}$ and $26^{\circ} 14^{\prime}$. Taking out the slope corrections for a slope of $26^{\circ} 06^{\prime}$ and the differences of the corrections for $26^{\circ} 14^{\prime}$ and $26^{\circ} 06^{\prime}$:
Correc. for $3 \mathrm{chs} .=30.6 \mathrm{lks}$. with diff. for 8^{\prime} of 0.3 lks .
$" 0.6 \quad "=6.12 \mathrm{n} \quad \mathrm{n} \quad \mathrm{n} \quad \mathrm{n} \quad 0.06 \mathrm{n}$
" $\underline{0.08} "=\underline{0.82} " \quad$ " $\quad \underline{0.01}$ "
$" \overline{3.68} "=\overline{37.54} " \quad " \quad " \quad \overline{0.37} "$
Difference for 3^{\prime} is $3 / 8 \times 0.37=0.14 \mathrm{lks}$.
Correc. for 3.68 chs . at $26^{\circ} 09^{\prime}=37.54+0.14=37.68 \mathrm{lks}$.
$=0.377 \mathrm{chs}$.

TABLE XVI

TABLE FOR LAYING OUT ROADS ONE CHAIN WIDE

Roads are normally posted at points of change of direction, at the intersections of the road limits, as explained in the Manual of Instructions for the Survey of Dominion Lands (Art. 157). Table XVI correlates the diagonal distance between the points of intersection of the limits of road to the angle of deflection, or change of direction. It applies to a road of constant perpendicular width of one chain but may be used for other widths by increasing or decreasing the tabulated distances in direct proportion to the width required.

TABLE XVII

TO CONVERT TIME INTO ARC

For convenience in converting time into arc the equivalents
of hours, minutes and seconds are tabulated in degrees, minutes and seconds.

TABLE XVIII

TO CONVERT A MEAN TIME INTERVAL TO THE EQUIVALENT SIDEREAL TIME INTERVAL

The number of minutes and seconds to be added to a mean time interval to obtain the equivalent sidereal time interval are tabulated with days, hours and minutes as arguments.

Example: To converta mean time interval of 2 days, 6 hours, 12 minutes and 20 seconds to the equivalent sidereal time interval.

	Days	Hours	Min's	Sec's
Mean Time Interval	2	6	12	20
Tabulated addition for				
2 days				7

THE ASTRONOMICAL FIELD TABLES

The Field Tables are issued in two sets, one giving data for sun observations, and the other for star observations. Both sets should be in the hands of all surveyors engaged on Canada lands surveys.

FIELD TABLES FOR SOLAR OBSERVATIONS

The Field Tables for solar observations are issued each year. They give the sun's apparent declination at 0^{h} Greenwich Civil Time with its variation for one hour and the sun's apparent right ascension at Greenwich apparent noon with its variation for one hour. These data, which are taken direct from the American Ephemeris, are tabulated for every day of the year. There is also a table of mean refraction for different altitudes, with the corrections required thereto for temperature and barometric pressure.

The tables of the sun'sdeclination and of the mean refraction are required for observations on the sun for azimuth; the table of the sun's right ascension is required for obtaining the sidereal time by observing the meridian transit of the sun. For both these purposes the approximate longitude is necessary; if not known from the survey it generally can be obtained with sufficient accuracy from a large-scale map of the area.

Full instructions for solar observing with specimen observations are given in Chapter 1.

FIELD TABLES FOR STAR OBSERVATIONS

The Field Tables for star observations are issued for short periods in different years as explained in a subsequent paragraph "Apparent Motion of Polaris'". They contain a table for finding the Pole star and the astronomical meridian, a list of "time stars", the sidereal time at noon, eastern standard time (75° longitude) at ten day intervals, and a diagram showing the convergence of meridians per mile of longitude at latitudes from 44° to 60° inclusive.

Table for Finding the Pole Star and the Astronomical Meridian. - The table is entered with the sidereal time as argument. The first column gives the number of minutes to be added to or subtracted from the latitude to obtain the altitude of the star. In the second column is the argument, the local sidereal time for every ten minutes. In the other columns is the azimuth of the star forevery even degree of latitude for 44° to $60^{\circ} .^{*}$ The table enables the Pole star to be readily found in day time and when it is found and observed, provides an easy means of determining its bearing. When the position of the astronomical meridian is known approximately, as is the case on most surveys, the transit can be setin the direction of the star and to the proper altitude by means of the table. When it is not known, however, the compass needle may be used, the magnetic declination being taken from the current "Magnetic Map of Canada" or from the magnetic diagram shown on many of the large-scale maps.

The method of observing and the use of the field tables are fully explained in Chapter 1.

Time Stars - The Star Field Tables give a list of time stars taken from the American Ephemeris which are suitable for Canada lands survey work. The method of observing the sidereal time of meridian transit of a star is described in Chapter 1.

Latitude and Convergence Per Mile of Longitude. - The diagram is convenient in determining the convergence for referring an observed azimuth to the meridian of the centre of the township or to any other reference meridian.

THE APPARENT MOTION OF POLARIS

The path described by the Pole star on the celestial sphere from 1949 to 1955 is shown on the diagram "Apparent Motion of the Pole Star". It is the combined effect of precession, nutation, aberration, and proper motion. This constant variation in the position of the star produces a slow change in the azimuth from any point, irrespective of the daily variation of azimuth caused by the earth's rotation. Hence, at the same sidereal time on two successive days the star will not have quite the same azimuth. If the azimuth of the star be considered at the same sidereal time each day for a month, there will be found a change which for latitude 60° may amount to $25^{\prime \prime}$, according to the month and the sidereal time chosen. Taken overa whole year this change may be anything up to $80^{\prime \prime}$ for latitude 49° or up to $110^{\prime \prime}$ for latitude 60° according to the sidereal time considered. Hence, if the Field Tables were made out taking a mean position of Polaris for a year, they would be subject to a maximum error of half this amount, that is, about $40^{\prime \prime}$ at latitude 49° and about $55^{\prime \prime}$ at latitude 60°. It will be observed from the diagram * Tables are available for latitudes $62^{\circ}, 64^{\circ}$, and 66° for the months of April to October inclusive, for each year.

APPARENT MOTION OF THE POLE STAR

The mean pasition of the Pole Star adopted for each table is indicated by
FIGURE 8
(Figure 8) that the star crosses its path again and again, occupying approximately the same positions during certain periods of consecutive years. Because of this peculiarity two star tables are issued each year, one for January, February and March of one year and April, May and June of the next, the other for November and December, September and October, and July and August of three successive years. With this arrangement the maximum error at latitude 49° is $24^{\prime \prime}$ and for latitude 60° is $32^{\prime \prime}$.

COMPUTATION OF THE AZIMUTH AND
 ALTITUDE OF POLARIS

Azimuth of the Pole Star. - The azimuth is computed by the formula:

$$
\tan Z=-\frac{\tan P \sec L \sin t}{1-\tan P \tan L \cos t}
$$

Whence, $\cot Z=\sin L \cot t-\cot P \cos L \operatorname{cosec} t$ where Z, P, L, t denote the azimuth, polar distance, latitude and hour angle respectively.

The path of Polaris is plotted for each year by its right as censiol, and declination taken directly from the American Ephemeris. In order to determine a mean position of Polaris for the period specified on each table, the path of the star must be plotted for the three successive years being used. The American Ephemeris for the third year is not available at the time the tables are being prepared. The values for Polaris for this year are extrapolated for the first day of each month from the values tabulated for the foregoing years. The results are sufficiently accurate for plotting the diagram. From the points on the path representing the limiting dates of the table to be calculated, the mean position of Polaris for the table may be obtained graphically and its right ascension and declination read directly from the borders of the diagram.

On the diagram (Figure 8) the mean position, A, of the Pole star for the table comprising the following periods:

November, December	1951
September, October	1952
July, August	1953

has the values

$$
\begin{aligned}
\mathrm{RA} & =1^{\mathrm{h}} 51^{\mathrm{m}} 03^{\mathrm{s}} 5 \\
\mathrm{P} & =90^{\circ}-89^{\circ} 02^{\prime} 38!^{\prime \prime} 4=0^{\circ} 57^{\prime} 21!^{\prime} 6
\end{aligned}
$$

Since the argument in the Field Tables is the sidereal time and not the hour angle, the values of t to be used in the calculation for the azimuth should be the sidereal time minus the right ascension of the mean position.

Altitude of the Pole Star. - The correction to be applied to the latitude to obtain the altitude is given by
$h-L=P \cos t-1 / 2 P^{2} \sin 1^{1} \tan L \sin ^{2} t$, terms involving higher powers of P being inappreciable.

Since the term containing L is small and since the altitude of Polaris is required only to find the star, a value for the mean latitude (Lm) may be used in the calculation. The values of P and t are the same as those used in the corresponding calculation for azimuth.

TABLES
TABLE I

Latitude	$\log \mathrm{N} \sin 1^{\prime \prime}$	$\log \mathrm{P} \sin 1^{\prime \prime}$	$\log R \sin 1{ }^{\prime \prime}$	Chains in 1"		Seconds in one Chain		English Miles in one Degree	
				Latitude	Longitude	Latitude	Longitude	Latitude	Longi tude
- '						"	"		
4200	0.1873775	0.0584510	0.1857461	1.5337	1.1441	0.6520	0.8741	69.02	51.48
10	3818	73144	7589	38	1.1411	20	0.8764	. 02	51.35
20	3860	61711	7717	38	1.1381	20	0.8787	. 02	51.21
30	3903	50212	7845	39	1.1351	20	0.8810	. 02	51.08
40	3946	38645	7973	39	1.1320	19	0.8834	. 03	50.94
50	3989	27010	8101	39	1.1290	19	0.8857	. 03	50.81
4300	4031	15306	8230	40	1.1260	19	0.8881	. 03	50.67
10	4074	0.0503534	8358	40	1.1229	19	0.8905	. 03	50.53
20	4117	0.0491693	8487	41	1.1199	19	0.8930	. 03	50.39
30	4160	79782	8615	41	1.1168	18	0.8954	. 04	50.26
40	4203	67802	8744	42	1.1137	18	0.8979	. 04	50.12
50	4245	55750	8872	42	1.1106	18	0.9004	. 04	49.98
4400	4288	43629	9001	43	1.1075	18	0.9029	. 04	49.84
10	4331	31437	9129	43	1.1044	18	0.9054	. 04	49.70
20	4374	19173	9258	44	1.1013	17	0.9080	. 05	49.56
30	4417	0.0406838	9387	44	1.0982	17	0.9106	. 05	49.42
40	4460	0.0394430	9515	44	1.0951	17	0.9132	. 05	49.28
50	4503	81949	9644	45	1.0919	17	0.9158	. 05	49.14

¢๐ ¢ ¢ 웅ㅇㅇ․	へôocooto		웅ㅇㅇ으ㅇㅡㅜ
ニッャッセ～	$\mathfrak{\sim}$ n n n n n	むさむむむへ	\mathfrak{m} m $\sim \sim \sim 1$

 ก

अ）テ
$\stackrel{\infty}{+}$
panuṭuo - I ヨTg甘I

Latitude	$\log \mathrm{N} \sin 1^{\prime \prime}$	$\log \mathrm{P} \sin 1^{\prime \prime}$	$\log \mathrm{R} \sin 1^{\prime \prime}$	Chains in 1"		Seconds in one Chain		English Miles in one Degree	
				Latitude	Longitude	Latitude	Longitude	Latitude	$\begin{gathered} \text { Longi } \\ \text { tude } \end{gathered}$
49 9 20 40 40 50	0.1875572	0.0045001	0.1862852	1.5356	1.0104	0.6512	0.9897	69.10	45.47
	5615	30469	2980	57	1.0070	12	0.9930	. 11	45.32
	5657	15849	3107	57	1.0037	12	0.9964	. 11	45.16
	5699	0.0001143	3234	58	1.0003	11	0.9997	.11	45.01
	5742	9.9986351	3361	58	0.9969	11	1.0031	. 11	44.86
	5784	71470	3488	58	0.9935	11	1.0066	. 11	44.71
$\begin{array}{rr}50 \quad 00 \\ & 10 \\ & 20 \\ & 30 \\ 40 \\ & 50\end{array}$	5826	56501	3615	59	0.9900	11	1.0101	. 12	44.55
	5869	41444	3742	59	0.9866	11	1.0136	. 12	44.40
	5911	26296	3869	60	0.9832	10	1.0171	. 12	44.24
	5953	9.9911058	3995	60	0.9797	10	1.0207	. 12	44.09
	5995	9.9895730	4122	61	0.9763	10	1.0243	. 12	43.93
	6037	80309	4248	61	0.9728	10	1.0279	. 13	43.78
$51 \quad 00$	6079	64797	4374	62	0.9693	10	1.0316	. 13	43.62
	6121	49192	4500	62	0.9659	10	1.0353	. 13	43.46
	6163	33493	4625	63	0.9624	09	1.0391	.13	43.31
	6205	17701	4751	63	0.9589	09	1.0429	. 13	43.15
	6247	9.9801813	4876	63	0.9554	09	1.0467	. 14	42.99
	6289	9.9785830	5002	64	0.9519	09	1.0506	. 14	42.83

			$\xlongequal[\sim]{\infty} \stackrel{\infty}{\rightarrow} \stackrel{\infty}{\underset{\sim}{\infty}}$
	へたちへへへ	○○○○○ 0	
	ก $\sim_{0}^{\infty} \times \infty$	웃ススN	NヘNッボざ
N N N N N N		$\begin{aligned} & N \\ & \underset{\sim}{N} \underset{\sim}{n} \underset{\sim}{\infty} \underset{\sim}{o} \underset{\sim}{N} \end{aligned}$	
$\begin{aligned} & \text { 옹ㅇㅇ앙 오 } \\ & \text { N } \end{aligned}$		$\begin{aligned} & \text { 옹ㅇㅅ웅 i } \\ & \text { जn } \end{aligned}$	$\begin{aligned} & \text { OOㅇㅇㅇㅇㅇ } \\ & \text { n } \end{aligned}$

TABLE I - Continued.

Latitude	$\log \mathrm{N} \sin 1{ }^{\prime \prime}$	$\log P \sin 1^{\prime \prime}$	$\log \mathrm{R} \sin 1^{\prime \prime}$	Chains in 1"		Seconds in one Chain		English Miles in one Degree	
				Latitude	Longitude	Latitude	Longitude	Latitude	Longi tude
56 00	0.1877310	9.9352927	0.1868065	1.5375	0.8616	0.6504	${ }_{1.1607}$	69.19	38.77
10	7350	34177	8184	75	0.8579	04	1.1657	. 19	38.60
20	7389	9.9315310	8304	76	0.8541	04	1.1708	. 19	38.44
30	7429	9.9296324	8422	76	0.8504	04	1.1759	. 19	38.27
40	7468	77216	8541	76	0.8467	03	1.1811	. 19	38.10
50	7508	57987	8659	77	0.8429	03	1.1863	. 20	37.93
5700	7547	38635	8777	77	0.8392	03	1.1916	. 20	37.76
10	7586	9.9219158	8894	78	0.8354	03	1.1970	. 20	37.59
20	7625	9.9199557	9012	78	0.8317	03	1.2024	. 20	37.43
30	7664	79829	9129	78	0.8279	03	1.2079	. 20	37.26
40	7703	59974	9245	79	0.8241	02	1.2134	. 20	37.09
50	7742	39991	9361	79	0.8203	02	1.2190	. 21	36.92
5800	7781	9.9119877	9478	80	0.8166	02	1.2247	. 21	36.75
10	7819	9.9099633	9593	80	0.8128	02	1.2304	. 21	36.57
20	7858	79257	9709	81	0.8090	02	1.2362	. 21	36.40
30	7896	58747	9824	81	0.8051	02	1.2420	. 21	36.23
40	7934	38102	0.1869938	81	0.8013	01	1.2479	. 22	36.06
50	7972	9.9017321	0.1870053	82	0.7975	01	1.2539	. 22	35.89

NH～N N Nin nim ninm in m			
ごすご○。		のুの次品品	
	¢ ¢ ¢ ¢ ¢－¢		がロロのず

TABLE I - Concluded.

Latitude	$\log \mathrm{N} \sin 11$	$\log P \sin 11$	$\log \mathrm{R} \sin 1^{\prime \prime}$	Chains in 1"		Seconds in one Chain		English Miles in one Degree	
				Latitude	Longi tude	Latitude	Longitude	Latitude	Longitude
6300	0.1878884	9.8449352				0.6497	1.4291		
10	8919	9.8449352 9.8424503	0.1872789 2893	1.5391 92	0.6997	0.6497	1.4291	69.26	31.49
20	8954	9.8399475	2996	92	0.6957 0.6917	97	1.4373 1.4456	. 26	31.31 31.13
30	8988	74262	3100	93	0.6877	97	1.4540	. 27	31.13 30.95
40	9022	48866	3202	93	0.6837	97	1.4626	. 27	30.77
50	9056	9.8323282	3305	93	0.6797	96	1.4712	. 27	30.59
6400	9090	9.8297510	3407	94	0.6757	96	1.4800	. 27	30.41
10	9124	71546	3508	94	0.6717	96	1.4888	. 27	30.41
20	9158	45389	3609	94	0.6676	96	1.4978	. 27	30.04
30	9191	9.8219035	3709	95	0.6636	96	1.5069	. 28	30.04 29.86
40	9225	9.8192482	3809	95	0.6596	96	1.5162	. 28	29.68
50	9258	65730	3909	95	0.6555	95	1.5256	. 28	29.50
6500	9291	38774	4008	96	0.6514	95			
10	9324	9.8111610	4107	96	0.6474	95	1.5351 1.5447 1.544	. 28	29.32 29.13
20	9356	9.8084240	4205	96	0.6433	95	1.5447 1.5544	. 28	29.13 28.95
30	9389	56659	4302	97	0.6392	95	1.5644	. 29	28.77
40	9421	28862	4399	97	0.6352	95	1.5744	. 29	28.58
50	9453	9.8000850	4496	97	0.6311	95	1.5846	. 29	28.40

		ヘin NN in in		$\stackrel{\sim}{\sim}$
			Nั	ñ
				$\begin{array}{r}\text { ¢ } \\ \text { ¢ } \\ \text { ¢ } \\ -1 \\ \hline\end{array}$
ずずずずす。			NべNべする	3 0 0
				n n n 0 0
	$\begin{aligned} & \therefore 8: 300 \\ & \underset{y}{\circ} \mathrm{C} \\ & \underset{\sim}{-1} \end{aligned}$	NOOOMOno		n
				\vec{N} \cdots \cdots \cdots \cdots \cdots
				a \sim \sim \sim N \sim
			N	\sim \sim 0 ∞ \sim \sim
응ㅅㄱ운우	응ㅅN웅우	응ㅇN으운우	으웟우웅	8
$\stackrel{\square}{\circ}$	ก	∞	ชู	$\stackrel{\text { 악 }}{ }$

TABLE II

Latitude	$d\left(\log R \sin 1^{\prime \prime}\right)$	$d\left(\log N \sin 1^{\prime \prime}\right)$	Latitude	$d\left(\log R \sin 1{ }^{\prime \prime}\right)$	$d\left(\log N \sin 1^{\prime \prime}\right)$
-			-		
42.	-0.0000021	+0.0000063	56.......	+0.0000034	+0.0000081
43.	17	64	57.	37	82
44.	13	66	58.	41	84
45.	09	67	59.	45	85
46.	05	68	60.	48	86
47.	-0.0000001	70	61......	51	87
48.	+0.0000003	71	62.....	55	88
49. .	07	72	63.	58	89
50.	11	74	64.......	61	90
51.	15	75	65.	64	91
52.	19	76	66.	67	92
53.	23	77	67........	70	93
54.	26	79	68.......	73	94
	30	80	69........	76	95
55.........			70.......	78	96

TABLE III

No. of Township	Number of Line	Latitude			Log $\mathrm{N} \sin 1^{\prime \prime}$	Log P sin 1"	Log R sin 1"		ngitude ered by westing
		-	1	"				-	"
0	1st Base.	49	00	00.00	0.1875572	0.0045001	0.1862852	8	03.959
2	1st Correction.		10	36.86	5618	0.0029573	2988		05.681
4	2nd Base.		21	13.71	5662	0.0014047	3123		07.421
6	2nd Correction		31	50.53	5707	9.9998425	3258		09.177
8	3rd Base.		42	27.34	5752	9.9982704	3393		10.951
10	3rd Correction.		53	04.12	5797	9.9966886	3527		12.743
12	4th Base.	50	03	40.89	5842	9.9950968	3662		14.552
14	4th Correction		14	17.63	5887	9.9934951	3797		16.379
16	5th Base		24	54.36	5932	9.9918832	3931		18.225
18	5th Correction		35	31.07	5976	9.9902611	4065		20.089
20	6th Base		46	07.75	6021	9.9886289	4199		21.972
22	6th Correction		56	44.42	6065	9.9869863	4333		23.875
24	7th Base	51	07	21.07	6110	9.9853334	4466		25.796
26	7th Correction		17	57.69	6154	9.9836701	4600		27.737
28	8th Base		28	34.30	6199	9.9819962	4733		29.698
30	8th Correctio		39	10.89	6244	9.9803117	4866		31.678
32	9 th Base		49	47.46	6288	9.9786165	4999		33.680
34	9th Correction.	52	00	24.01	6332	9.9769105	5132		35.701
36	10th Base		11	00.54	6376	9.9751935	5264		37.744
38	10th Correction.		21	37.05	6420	9.9734658	5396		39.808
40	11th Base		32	13.54	6464	9.9717268	5529		41.894
42	11th Correction.		42	50.02	6508	9.9699768	5660		44.001
44	12th Base.		53	26.47	6552	9.9682156	5792		46.130
46	12th Correction.	53	04	02.90	6596	9.9664431	5923		48.282
48	13th Base		14	39.32	0.1876640	9.9646592	0.1866055	8	50.456

TABLE IV
Latitudes, etc., of Base and Correction Lines. Third System of Survey.

No. of Township	Number of Line	Latitude			Log $\mathrm{N} \sin 1^{\prime \prime}$	Log P $\sin 1^{\prime \prime}$	Log R sin $1^{\prime \prime}$	Lo cov 486 of	gitude ered by chains
		49	00	"'00				'	"
0	1st Base.	49	00	00.00	0.1875572	0.0045001	0.1862852	8	00.990
2	1 st Correction.		10	29.05	5617	0.0029763	2986		02.681
4	2nd Base.		20	58.08	5661	0.0014430	3119		04.388
6	2nd Correction		31	27.09	5706	9.9999002	3253		06.112
8	3rd Base.		41	56.08	5750	9.9983479	3386		07.852
10	3rd Correction		52	25.06	5795	9.9967860	3519		09.610
12	4th Base	50	02	54.01	5839	9.9952144	3652		11.385
14	4th Correction		13	22.95	5883	9.9936331	3785		13.178
16	5th Base.		23	51.86	5927	9.9920419	3918		14.988
18	5th Correction.		34	20.76	5971	9.9904408	4050		16.816
20	6th Base. .		44	49.63	6016	9.9888298	4182		18.662
22	6th Correction.		55	18.49	6060	9.9872087	4315		20.527
24	7 th Base	51	05	47.33	6104	9.9855775	4447		22.411
26	7th Correction.		16	16.15	6148	9.9839362	4578		24.313
28	8th Base		26	44.95	6192	9.9822845	4710		26.235
30	8th Correction.		37	13.73	6235	9.9806225	4842		28.176
32	9 th Base.		47	42.49	6279	9.9789501	4973		30.136
34	9th Correction.		58	11.24	6323	9.9772672	5104		32.117
36	10th Base...	52		39.96	6366	9.9755738	5235		34.118
38	10th Correction.		19	08.66	6410	9.9738696	5366		36.139

	$\begin{array}{llll} \sharp \sim & m & N & \text { nn } \\ \sim \end{array}$			
$\begin{aligned} & \circ \text { o } 0 \infty \\ & \text { N in } \\ & \text { in o } \hat{\sim} \text { in in } \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \underset{\sim}{\infty} \underset{\sim}{\circ} \stackrel{\infty}{\sim} \stackrel{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \text { n } N \infty \text { が } \\ & \sim \\ & \sim \\ & \sim \\ & \sim \end{aligned}$	
				 m m m N N ののののの かのかの
$\begin{gathered} \text { No 웅 } \\ \text { in } \\ \text { n } \end{gathered}$	$\underset{\sim}{N} \tilde{m} \underset{\sim}{n} \text { in } \hat{0}$	$\pm \begin{gathered}\text { din } \\ \text { ¢ }\end{gathered}$	$\begin{aligned} & \circ \sim \sim \infty \times \infty \\ & \text { in } \\ & \text { in } \end{aligned}$	
			$\begin{array}{r:c} \vdots & \vdots \end{array}: \vdots$	
		$0 \sim \overrightarrow{0} 0 \infty$	○NホN	$0_{\infty}^{\sim} \sim_{\infty} \infty_{\infty}^{\infty}$

TABLE IV - Continued

No. of Township	Number of Line	Latitude			Log $\mathrm{N} \sin 1^{\prime \prime}$	Log $P \sin 1^{\prime \prime}$	Log R sin $1^{\prime \prime}$	Lon cov 486 of	gitude red by chains sting
		-	'	"				1	"
90	23rd Correction	56	51	28.47	0.1877514	9.9255142	0.1868676	9	36.929
92	24th Base.	57	01	56.68	7555	9.9234857	8800		39.630
94	24th Correction. .		12	24.87	7596	9.9214437	8923		42.362
96	25th Base		22	53.04	7637	9.9193880	9045		45.125
98	25th Correction.		33	21.19	7677	9.9173186	9168		47.919
100	26th Base.		43	49.33	7718	9.9152352	9290		50.747
102	26th Correction.		54	17.45	7759	9.9131377	9411		53.607
104	27th Base....	58	04	45.55	7799	9.9110260	9533		56.500
106	27th Correction.		15	13.63	7839	9.9088999	9654	9	59.427
108	28th Base.			41.70	7879	9.9067593	9774	10	02.389
110	28th Correction.		36	09.75	7920	9.9046041	0.1869894		05.386
112	29th Base.... . .		46	37.78	7960	9.9024341	0.1870014		08.418
114	29th Correction.		57	05.80	7999	9.9002491	0134		11.487
116	30th Base.	59		33.79	8039	9.8980491	0253		14.592
118	30th Correction.			01.77	8079	9.8958338	0371		17.735
120	31st Base.....		28	29.74	8118	9.8936032	0489		20.916
122	31 st Correction.		38	57.68	8157	9.8913570	0607		24.136
124	32nd Base.		49	25.61	8196	9.8890950	0725		27.395
126	32nd Correction		59	53.52	3235	9.8868172	0842		30.695
128	33rd Base.	60	10	21.42	8274	9.8845233	0959		34.035

9.8454898
9.8428944
9.8402793
9.8376442
9.8349890

 H．
o
0
o
o
o

	サ～®N゚	$\stackrel{\infty}{\infty} \times \sim \sim \sim \sim$		
がべべへ		べ凶ูヘ		றัomin
べすべへ				으ㅇㅡㅔ m
$\stackrel{\rightharpoonup}{0}$	$\stackrel{\square}{0}$	N	กั	J

TABLE IV - Concluded.

No. of Township	Number of Line	Latitude			$\log \mathrm{N} \sin 1^{\prime \prime}$	Log $P \sin 1^{\prime \prime}$	Log $\mathrm{R} \sin 1^{\prime \prime}$		gitude ered by chains westing
		-	,	"					
180	46th Base	64	42	20.98	0.1879233	9.8186215	0.1873833	12	17.929
182	46th Correction.		52	48.45	9267	9.8158183	3937		22.708
184	47th Base	65	03	15.90	9302	9.8129928	4040		27.556
186	47th Correction.		13	43.33	9336	9.8101448	4143		32.474
188	48th Base		24	10.75	9370	9.8072739	4245		37.465
190	48th Correction.		34	38.16	9404	9.8043799	4347		42.529
192	49th Base.		45	05.55	9437	9.8014625	4448		47.668
194	49th Correction.		55	32.92	9471	9.7985213	4549		52.885
196	50th Base.	66	06	00.28	9504	9.7955559	4649	12	58.180
198	50 th Correction		16	27.63	9538	9.7925661	4749	13	03.556
200	51 st Base		26	54.96	9571	9.7895516	4848		09.014
202	51 st Correction.		37	22.28	9604	9.7865120	4947		14.556
204	52nd Base		47	49.58	9636	9.7834470	5045		20.183
206	52nd Correction		58	16.87	9669	9.7803561	5142		25.898
208	53 rd Base.	67	08	44.14	9701	9.7772390	5239		31.703
210	53 rd Correction		19	11.40	9733	9.7740953	5335		37.600
212	54th Base		29	38.65	9765	9.7709246	5431		43.591
214	54th Correction.		40	05.89	9797	9.7677266	5526		49.678
216	55th Base..........		50	33.11	9329	9.7645009	5620	13	55.864
218	55th Correction.	68	01	00.31	9860	9.7612470	5714	14	02.150

TABLE V
Chord Azimuths, Deflections, Deflection Offsets, etc., for Base Lines.
First and Second Systems of Survey.

No. of Base Line	Chord Azimuth		Convergence for 100 Chains	Deflec tion	Deflection Offset For one Chain Distance	Longitude covered by one Range	No. of Township
	- '	"	"	' ${ }^{\prime}$	inches	s.	
1	8956	57.4	74.69	605.2	1.402	32.3	0
2		55.1	75.63	09.8	1.420	32.5	4
3		52.8	76.58	14.5	1.438	32.7	8
4		50.4	77.54	19.2	1.456	33.0	12
5		48.0	78.52	24.0	1.474	33.2	16
6		45.6	79.51	28.8	1.493	33.5	20
7		43.1	80.52	33.8	1.512	33.7	24
8		40.6	81.55	38.8	1.531	34.0	28
9		38.1	82.58	43.8	1.551	34.2	32
10		35.5	83.64	49.0	1.570	34.5	36
11		32.9	84.71	54.3	1.591	34.8	40
12		30.2	85.80	59.6	1.611	35.1	44
13		27.5	86.91	705.0	1.632	35.4	48

TABLE VI

Chord Azimuths, Deflections, Deflection Offsets, etc., for Base Lines.
Third System of Survey

TABLE VI - Concluded
Chord Azimuths, Deflections, Deflection Offsets, etc., for Base Lines.
Third System of Survey.

No. of Base Line	Chord Azimuth		Convergence for 100 Chains	Defi	flec ion	Deflection Offset For one Chain Distance	Longitude covered by one Range	No, of Township
	- '	"	"	'	"	inches	s.	
36	8955	13.0	118.12	9	34.1	2.204	43.7	140
37		08.8	119.84		42.4	2.236	44.2	144
38		04.5	121.60		51.0	2.269	44.7	148
39		00.1	123.40		59.7	2.303	45.2	152
40	8954	55.7	125.24		08.7	2.337	45.7	156
41		51.1	127.13		17.8	2.372	46.2	160
42		46.4	129.06		27.2	2.408	46.8	164
43		41.6	131.04		36.9	2.445	47.4	168
44		36.6	133.07		46.7	2.483	48.0	172
45		31.6	135.15		56.8	2.522	48.6	176
46		26.4	137.28		07.2	2.562	49.2	180
47		21.1	139.47		17.8	2.603	49.8	184
48		15.6	141.71		28.7	2.645	50.5	188
49		10.0	144.02		39.9	2.688	51.2	192
50		04.3	146.39		51.5	2.732	51.9	198
51	8953	58.4	148.82	12	03.3	2.777	52.6	200
52		52.3	151.33		15.5	2.824	53.3	204
53		46.0	153.90		28.0	2.872	54.1	208
54		39.6	156.56		40.9	2.921	54.9	212
55		32.9	159.29		54.1	2.972	55.7	216
56		26.1	162.10	13	07.8	3.025	56.6	220
57		19.1	165.00		21.9	3.079	57.4	224
58		11.8	167.99		36.4	3.135	58.3	228
59		04.3	171.08		51.4	3.192	59.3	232
60	8952	56.5	174.26		06.9	3.252	60.2	236
61		48.5	177.56		22.9	3.313	61.2	240
62		40.3	180.96		39.5	3.377	62.3	244

TABLE VII
Chord Azimuths, Deflections, Deflection Offsets, Jogs, etc., for Correction Lines.

	Chord Azimuth	Convergence for 100 Chains on South side of Road	Deflec tion	Deflection Offset for one Chain Distance	Length of one Range on Correction Line		Jog for 1 Range		No. of Township
					North side of Road	South side of Road			
	- 11	11	' 11	inches	chains	chains	chains	links	
1	895656.9	75.16	606.2	1.406	490.751	487.266	3.485	14.5	2
2	84.6 56.9	76.10	10.8	1.424	. 773	. 244	. 529	14.7	6
3	52.3	77.06	15.5	1.442	. 796	. 222	. 574	14.9	10
4	49.9	78.03	20.2	1.460	. 818	. 200	. 618	15.1	14
5	47.5	79.02	25.0	1.478	. 841	. 177	. 664	15.3	18
6	45.1	80.02	29.8	1.497	. 865	. 154	. 711	15.5	22
7	42.7	81.03	34.7	1.516	. 888	. 131	. 758	15.7	26
8	40.2	82.06	39.7	1.535	. 913	. 107	. 806	15.9	30
9	37.6	83.11	44.8	1.554	. 937	. 083	.r. 54	16.1	34
10	35.0	84.17	50.0	1.574	. 962	. 058	. 904	16.3	38
	32.4	85.26	55.2	1.594	490.987	. 034	3.953	16.5	42
12	32.4 29.7	86.36	700.6	1.615	491.012	487.008	4.004	16.7	46

TABLE VIII
Chord Azimuths, Deflections, Deflection Offsets, Jogs, etc., for Correction Lines.

	Chord Azimuth	Convergence for 100 Chains on South side of Road	$\begin{gathered} \text { Deflec - } \\ \text { tion } \end{gathered}$	Deflection Offset for one Chain Distance	Length of one Range on Correction Line		Jog for1 Range		No. of Township
					North side of Road	South side of Road			
	- 1 1	"	' $"$	inches	chains	chains	chains	links	
1	895658.0	75:15	604.0	1.398	487.719	484.298	3.421	14.3	2
2	55.7	76.08	08.5	1.415	. 740	. 277	. 463	14.4	6
3	53.5	77.03	13.0	1.432	. 762	. 255	. 507	14.6	10
4	51.2	77.99	17.6	1.450	. 784	. 234	. 550	14.8	14
5	48.8	78.96	22.3	1.468	. 806	. 212	. 594	15.0	18
6	46.4	79.95	27.1	1.486	. 829	. 189	. 640	15.2	22
7	44.0	80.95	31.9	1.505	. 852	. 167	. 685	15.4	26
8	41.6	81.97	36.8	1.524	. 875	. 144	. 731	15.5	30
9	39.1	83.00	41.8	1.543	. 899	. 120	. 779	15.7	34
10	36.5	84.05	46.9	1.562	. 923	. 097	. 826	15.9	38
11	34.0	85.12	52.0	1.582	. 947	. 072	. 875	16.1	42
12	31.4	86.20	57.2	1.602	. 972	. 048	. 924	16.4	46
13	28.7	87.30	702.6	1.622	487.997	484.023	3.974	16.6	50
14	26.0	88.42	07.9	1.643	488.023	483.998	4.025	16.8	54
15	23.3	89.56	13.4	1.664	. 049	. 972	. 077	17.0	58

TABLE VIII - Concluded
Chord Azimuths, Deflections, Deflection Offsets, Jogs, etc., for Correction Lines.

	Chord Azimuth	Convergence for 100 Chains on South side of Road	Deflection	Deflection Offset for one Chain Distance	Length of one Range on Correction Line		Jog for 1 Range		No. of Township
					North side of Road	South side of Road			
	'	"	$1{ }^{\prime}$	inches	chains	chains	chains	links	
41	895450.6	128.09	1018.8	2.376	488.935	483.104	5.831	24.3	162
42	45.9	130.04	28.2	2.412	488.980	. 060	5.920	24.7	166
43	41.1	132.05	37.8	2.449	489.026	483.015	6.011	25.0	170
44	36.1	134.10	47.7	2.487	. 074	482.969	. 105	25.4	174
45	31.1	136.21	57.8	2.526	. 122	. 922	. 201	25.8	178
46	25.9	138.37	1108.1	2.565	. 172	. 873	. 299	26.2	182
47	20.6	140.58	18.8	2.606	. 223	. 823	. 400	26.7	186
48	15.1	142.86	29.7	2.648	. 276	. 772	. 503	27.1	190
49	09.5	145.19	40.9	2.691	. 330	. 720	. 610	27.5	194
50	03.8	147.60	52.4	2.735	. 385	. 666	. 719	28.0	198
51	895357.9	150.07	1204.2	2.781	. 442	. 610	. 832	28.5	202
52	51.8	152.61	16.4	2.828	. 501	. 553	6.947	28.9	206
53	45.5	155.22	28.9	2.876	. 561	. 495	7.066	29.4	210
54	39.1	157.91	41.8	2.925	. 623	. 434	. 189	30.0	214
55	32.4	160.68	55.1	2.976	. 687	. 372	. 315	30.5	218

$\begin{array}{lllll} N & 0 & 0 & H & \infty \\ N & N & M & N & N \end{array}$	$\underset{\sim}{N}$
$\begin{array}{ll} 0 & N \\ \dot{m} & n \\ m & \dot{N} \\ m \end{array}$	$\stackrel{o}{m}$
	$\begin{aligned} & 0 \\ & \underline{0} \\ & \cdots \end{aligned}$
	$\begin{aligned} & 0 \\ & n \\ & \dot{0} \\ & \stackrel{1}{\infty} \\ & \underset{i}{n} \end{aligned}$
mーNはの $\begin{array}{llll}n & n & 0 & 0 \\ \sim & \infty & \infty & 0\end{array}$ $\therefore \infty \infty$ $\begin{array}{ll} 0 & 0 \\ \alpha & 0 \\ \infty & 0 \\ q_{1} & \dot{4} \end{array}$	$\begin{aligned} & \text { I } \\ & \underset{0}{2} \\ & \text { g } \end{aligned}$
$\begin{array}{ccccc} a & m & \infty & 0 & 0 \\ N & \infty & m & 0 & n \\ 0 & 0 & \ddots & \ddots & n \\ \dot{m} & \dot{m} & \dot{m} & \dot{m} & \dot{m} \end{array}$	$\stackrel{N}{m}$
$\infty \infty$ サれの ∞ N～NN $0 \sim m$ in 0 9	$\begin{aligned} & a \\ & \underset{N}{n} \end{aligned}$
$\begin{array}{llll} \dot{r} & \infty & n & 0 \\ 0 \\ n & 0 & 0 & 0 \\ \dot{m} & 0 & \dot{j} & \dot{N} \\ \underline{0} & i n \\ -1 & -1 & n \end{array}$	$\begin{aligned} & \dot{N} \\ & \text { N } \\ & \dot{N} \end{aligned}$
$\begin{array}{lll} 0 & 0 & \infty \\ i n \\ n & 0 \\ n & m & 0 \\ 0 & n \end{array}$	$\begin{aligned} & 0 \\ & \infty \\ & +1 \end{aligned}$
$0 \sim \infty$ o o in in in in 0	$\overrightarrow{0}$

TABLE IX

Latitude, with Logarithms of Secant and Tangent for the North Boundary of each Section, and the widths of Quarter

Sections on such Boundaries.
First and Second Systems of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter
1	36		0.18306	0.06084	$\begin{aligned} & \text { chains } \\ & 40.000 \end{aligned}$
	1	$00 \quad 53.07$	19	0.06106	39.988
	12	0146.14	31	29	. 976
	13	$\begin{array}{lll}02 & 39.22\end{array}$	44	51	. 964
	24	$03 \quad 32.29$	57	74	. 952
	25	$04 \quad 25.36$	70	97	. 940
	36	$05 \quad 18.43$	83	0.06219	. 928
2	1	0611.51	96	42	. 916
	12	0704.58	0.18409	64	. 904
	13	0757.65	22	87	. 892
	24	0850.72	35	$0.063 \quad 09$. 880
	25	0943.79	48	32	. 868
	36	$10 \quad 36.86$	60	55	(39.856
					(40.146
3	1	$11 \quad 29.93$	73	77	. 134
	12	$12 \quad 23.01$	86	0.06400	. 122
	13	1316.08	99	22	.109
	24	$14 \quad 09.15$	$0.185 \quad 12$	45	. 097
	25	1502.22	25	68	. 085
	36	$15 \quad 55.29$	38	90	. 073
4	1	$16 \quad 48.36$	51	$0.065 \quad 13$. 061
	12	1741.43	64	35	. 049
	13	$18 \quad 34.50$	77	58	. 036
	24	$19 \quad 27.57$	90	81	. 024
	25	$20 \quad 20.64$	0.18603	0.06603	. 012
	36	$21 \quad 13.71$	16	26	40.000
5	1	$22 \quad 06.78$	29	48	39.988
	12	$22 \quad 59.85$	42	71	. 976
	13	$23 \quad 52.92$	55	94	.963
	24	$24 \quad 45.98$	68	0.06716	. 951
	25	$25 \quad 39.05$	81	39	. 939
	36	$26 \quad 32.12$	94	61	. 927
6	1	$27 \quad 25.19$	$0.187 \quad 07$	84	39.915
	12	$28 \quad 18.26$	21	$0.068 \quad 07$. 902
	13	2911.33	34	29	. 890
	24	$30 \quad 04.40$	47	52	. 878
	25	$30 \quad 57.46$	60	75	. 866
	36	$31 \quad 50.53$	73	97	(39.854
					(40.148

TABLE IX - Continued

Latitude, with Logarithms of Secant and Tangent, etc.
First and Second Systems of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
7		- 1"			chains
	1	$\begin{array}{lll}49 & 32 & 43.60\end{array}$	0.18786	0.06920	.135
	12	$\begin{array}{lll}33 & 36.67\end{array}$	99	42	. 123
	13	$34 \quad 29.74$	0.18812	65	. 111
	24	$\begin{array}{lll}35 & 22.80\end{array}$	25	88	. 099
	25	$\begin{array}{lll}36 & 15.87\end{array}$	38	$0.070 \quad 10$. 086
	36	$\begin{array}{lll}37 & 08.94\end{array}$	52	33	. 074
8	1	$38 \quad 02.00$	65	56	. 062
	12	$\begin{array}{lll}38 & 55.07\end{array}$	78	78	. 049
	13	$39 \quad 48.14$	91	0.07101	. 037
	24	$40 \quad 41.20$	0.18904	24	. 025
	25	$41 \quad 34.27$	17	46	. 012
	36	$42 \quad 27.34$	30	69	40.000
9	1	$43 \quad 20.40$	44	92	39.988
	12	$\begin{array}{ll}44 & 13.47\end{array}$	57	$0.072 \quad 14$. 975
	13	$45 \quad 06.54$	70	37	. 963
	24	$45 \quad 59.60$	83	60	. 951
	25	$46 \quad 52.67$	96	82	. 938
	36	$47 \quad 45.73$	$0.190 \quad 10$	0.07305	. 926
10	1	$\begin{array}{lll}48 & 38.80\end{array}$	23	28	. 914
	12	$49 \quad 31.86$	36	50	. 901
	13	$50 \quad 24.93$	49	73	. 889
	24	$\begin{array}{lll}51 & 17.99\end{array}$	63	96	. 877
	25	$52 \quad 11.06$	76	0.07418	. 864
	36	5304.12	89	41	$\left\{\begin{array}{l}39.852 \\ 40.150\end{array}\right.$
11	1	$53 \quad 57.19$	0.19102	64	. 137
	12	$54 \quad 50.25$	16	86	. 125
	13	$\begin{array}{lll}55 & 43.32\end{array}$	29	$0.075 \quad 09$. 112
	24	$\begin{array}{lll}56 & 36.38\end{array}$	42	32	. 100
	25	$\begin{array}{lll}57 & 29.44\end{array}$	55	54	. 087
	36	$\begin{array}{lll}58 & 22.51\end{array}$	69	77	. 075
12	1	$\begin{array}{llll}49 & 59 & 15.57\end{array}$	82	$0.076 \quad 00$	40.062
	12	$\begin{array}{lll}50 & 00 & 08.63\end{array}$	95	22	. 050
	13	0101.70	0.19209	45	. 037
	24	0154.76	22	68	. 025
	25	0247.82	35	90	. 013
	36	0340.89	49	0.07713	40.000

TABLE IX - Continued

Latitude, with Logarithms of Secant and Tangent, etc.
First and Second Systems of Survey.

Township	Section	Latitude L.		Log Sec L.		Log Tan L.		Quarter Section		
13		\cdot 50	" 33.95	0.192		0.077		chains		
	1	$50 \quad 04$	33.95					39.988		
	12	05	27.01		75		59	. 975		
	13	06	20.08		89	0.078	81	. 963		
	24	07	13.14	0.193	02		04	. 950		
	25	08	06.20		16		27	. 938		
	36	08	59.26		29		49	. 925		
14	1	09	52.32	42566983960.194		0.079	72	.913		
	12		45.39			95	. 900			
	13		38.45			17	. 888			
	24	12	31.51			40	. 875			
	25	13	24.57			63	. 863			
	36	$14 \quad 17.63$					$\left\{\begin{array}{l}39.850 \\ 40.152\end{array}\right.$			
				86						
15	1	$\begin{array}{lll}15 & 10.69\end{array}$				0.194	23	0.080	08	. 139
	12	16	03.76		36	31	. 126			
	13	16	56.82		50	54	. 114			
	24		49.88		63		77	.101		
	25	18	42.94		77		99	. 088		
	36		36.00		90	0.081	22	.076		
16	1	20	29.06	0.195	04	0.082	45	. 063		
	12	21	22.12		17		67	. 050		
	13	22	15.18		31		90	. 038		
	24	23	08.24		44		13	. 025		
	25	24	01.30		57		36	. 013		
	36		54.36		71		58	40.000		
17	1	25	47.42	0.196	85	0.083	81	39.987		
	12	26	40.48		98		04	. 975		
	13	27	33.54		12		27	. 962		
	24	28	26.60 .		25		49	. 949		
	25	29	19.66		39		72	. 937		
	36	30	12.71		52		95	. 924		
18	1	31	05.77	0.197	66	0.084	18	39.911		
	12	31	58.83		79		41	. 899		
	13	32	51.89		93		63	. 886		
	24	33	44.95		06	0.085	86	. 873		
	25	34	38.01		20		8632	. 861		
	36		31.07		34			(39.848		
								\{40.153		

TABLE IX - Continued

Latitude, with Logarithms of Secant and Tangent, etc.
First and Second Systems of Survey.

TABLE IX - Continued

Latitude, with Logarithms of Secant and Tangent, etc.
First and Second Systems of Survey.

TABLE IX - Continued

Latitude, with Logarithms of Secant and Tangent, etc.
First and Second Systems of Survey.

TABLE IX - Concluded

Latitude, with Logarithms of Secant and Tangent, etc.
First and Second Systems of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section		
48		0	1	1			
	1	53	10	14.15	0.222	26	0.125
	12		11	07.18		48	chains
	13	12	00.21		51		81

TABLE X

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

TABLE X - Continued
Latitude, etc., for the North Boundary of each Section. Third System of Survey.

TABLE X - Continued
Latitude, etc., for the North Boundary of each Section.
Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
19		- 1"			chains
	1	$\begin{array}{llll}50 & 35 & 13.49\end{array}$	0.19729	$0.085 \quad 24$	40.138
	12	3605.57	43	46	. 125
	13	3658.30	56	69	. 113
	24	$37 \quad 50.38$	69	91	. 100
	25	$\begin{array}{lll}38 & 43.12\end{array}$	83	0.08614	. 088
	36	3935.20	96	36	. 075
20	1	$40 \quad 27.93$	0.19810	59	. 063
	12	$41 \quad 20.01$	23	81	. 050
	13	$42 \quad 12.74$	37	$0.087 \quad 04$. 038
	24	4304.82	50	26	. 025
	25	4357.55	64	49	. 013
	36	$44 \quad 49.63$	77	72	40.000
21	1	$45 \quad 42.36$	91	94	39.987
	12	$46 \quad 34.44$	0.19904	$0.088 \quad 17$. 975
	13	$47 \quad 27.18$	18	39	. 962
	24	$48 \quad 19.26$	31	62	. 950
	25	$49 \quad 11.99$	45	84	. 937
	36	$50 \quad 04.07$	58	$0.089 \quad 07$. 925
22	1	$50 \quad 56.80$	72	29	. 912
	12	5148.87	85	52	. 899
	13	5241.60	99	74	. 887
	24	5333.68	0.20013	97	. 874
	25	$54 \quad 26.41$	26	$0.090 \quad 20$. 862
	36	$55 \quad 18.49$	40	42	(39.849
					(40.152
23	1	$56 \quad 11.22$	53	65	. 140
	12	5703.30	67	87	. 127
	13	$57 \quad 56.03$	81	0.09110	. 114
	24	58 48.11	94	32	. 102
	25	5940.83	0.20108	55	. 089
	36	$\begin{array}{llll}51 & 00 & 32.91\end{array}$	21	77	. 076
24		0125.64	35	0.09200	. 064
	12	0217.72	49	22	. 051
	13	0310.45	62	45	. 038
	24	0402.52	76	68	. 025
	25	0455.25	90	90	. 013
	36	0547.33	0.20203	0.09313	40.000

TABLE X - Continued
Latitude, etc., for the North Boundary of each Section. Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
25		- ' ${ }^{\text {- }}$			chains
	1	510640.06	0.20217	0.09335	39.987
	12	$07 \quad 32.13$	31	58	. 975
	13	$08 \quad 24.86$	44	81	. 962
	24	0916.94	58	0.09403	. 949
	25	$10 \quad 09.67$	72	26	. 936
	36	11101.74	85	48	. 924
26	1	1154.47	99	71	. 911
	12	1246.54	0.20313	93	. 898
	13	$13 \quad 39.27$	27	0.09516	. 885
	24	1431.35	40	39	. 873
	25	$15 \quad 24.07$	54	61	. 860
	36	$16 \quad 16.15$	68	84	(39.847
					(40.154
27	1	$17 \quad 08.87$	82	0.09607	. 141
	12	$18 \quad 00.95$	95	29	. 129
	13	1853.68	0.20409	52	. 116
	24	1945.75	23	74	. 103
	25	$20 \quad 38.48$	37	97	. 090
	36	2130.55	51	0.09719	. 077
28		$22 \quad 23.28$		42	. 064
	12	2315.35	78	65	. 051
	13	2408.08	92	87	. 039
	24	2500.15	0.20506	0.09810	. 026
	25	$25 \quad 52.87$	20	33	. 013
	36	$26 \quad 44.95$	33	55	40.000
29	1	$27 \quad 37.67$	47	78	39.987
	12	$28 \quad 29.75$	61	0.09900	. 974
	13	2922.47	75	23	. 961
	24	$30 \quad 14.54$	89	46	. 948
	25	3107.27	0.20603	69	. 936
	36	$31 \quad 59.34$	17	91	. 923
30	1	3252.07	31	$0.100 \quad 14$. 910
	12	3344.14	44	36	. 897
	13	3436.86	58	59	. 884
	24	3528.93	72	82	. 871
	25	3621.66	86	0.10105	. 858
	36	$37 \quad 13.73$	0.20700	27	$\left\{\begin{array}{l}39.845 \\ 40.156\end{array}\right.$

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
37		- 1 "			chains
	1	$\begin{array}{lll}52 & 09 & 32.68\end{array}$	$0.212 \quad 21$	0.10968	39.987
	12	$10 \quad 24.74$	35	90	. 974
	13	1117.46	49	$0.110 \quad 13$. 960
	24	$12 \quad 09.53$	63	36	. 947
	25	1302.25	77	59	. 934
	36	$13 \quad 54.31$	92	81	. 921
38	1	$14 \quad 47.03$	0.21306	0.11104	. 907
	12	$15 \quad 39.10$	20	27	. 894
	13	$16 \quad 31.81$	34	50	. 881
	24	$17 \quad 23.88$	49	73	. 868
	25	$18 \quad 16.60$	63	96	. 855
	36	1908.66	77	0.11218	(39.841
					(40.160
39	1	$20 \quad 01.38$	92	41	.147
	12	$20 \quad 53.45$	0.21406	64	. 134
	13	2146.16	20	87	.120
	24	2238.23	34	0.11309	. 107
	25	$\begin{array}{lll}23 & 30.94\end{array}$	49	32	. 093
	36	$24 \quad 23.01$	63	55	. 080
40	1	$25 \quad 15.72$	77	78	. 067
	12	$26 \quad 07.79$	92	0.11401	. 053
	13	$27 \quad 00.51$	0.21506	24	. 040
	24	$\begin{array}{ll}27 & 52.57\end{array}$	20	46	. 027
	25	$28 \quad 45.29$	35	69	. 013
	36	$29 \quad 37.35$	49	92	40.000
41	1	$30 \quad 30.06$	64	$0.115 \quad 15$	39.987
	12	$31 \quad 22.13$	78	38	. 973
	13	$\begin{array}{ll}32 & 14.84\end{array}$	92	61	. 960
	24	3306.91	$0.216 \quad 07$	83	. 946
	25	$33 \quad 59.62$	21	0.11606	. 933
	36	$34 \quad 51.69$	35	29	. 920
42		$\begin{array}{ll}35 & 44.40\end{array}$	50	52	. 906
	12	$36 \quad 36.46$	64	75	. 893
	13	$\begin{array}{lll}37 & 29.18\end{array}$	79	98	. 879
	24	$38 \quad 21.24$	93	$0.117 \quad 21$. 866
	25	$\begin{array}{ll}39 & 13.95\end{array}$	$0.217 \quad 08$	44	. 853
	36	$40 \quad 06.02$	22	66	(39.839
					(40.162

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section.
Third System of Survey.

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

TABLE X - Continued
Latitude, etc., for the North Boundary of each Section. Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
55		- 53 ' 13			chains
	1	$\begin{array}{lll}53 & 43 & 50.33\end{array}$	0.22799	0.13445	40.155
	12	$\begin{array}{ll}44 & 42.39\end{array}$	0.22813	68	. 140
	13	$45 \quad 35.09$	29	91	. 126
	24	$46 \quad 27.14$	44	0.13514	. 112
	25	$47 \quad 19.85$	59	38	. 098
	36	$48 \quad 11.90$	74	61	. 084
56	1	4904.60	89	84	. 070
	12	4956.65	0.22904	$0.136 \quad 07$. 056
	13	$50 \quad 49.36$	19	30	. 042
	24	$\begin{array}{lll}51 & 41.41\end{array}$	34	53	. 028
	25	5234.11	49	77	. 014
	36	$\begin{array}{lll}53 & 26.17\end{array}$	64	0.13700	40.000
57	1	$\begin{array}{lll}54 & 18.87\end{array}$	79	23	39.986
	12	$\begin{array}{lll}55 & 10.92\end{array}$	95	46	. 972
	13	$\begin{array}{lll}56 & 03.62\end{array}$	$0.230 \quad 10$	69	. 958
	24	$\begin{array}{ll}56 & 55.67\end{array}$	25	92	. 944
	25	5748.37	40	0.13816	. 930
	36	$58 \quad 40.43$	55	39	. 915
58		$\begin{array}{lll}59 & 33.13\end{array}$	70	62	. 901
	12	$\begin{array}{llll}54 & 00 & 25.18\end{array}$	85	85	. 887
	13	$01 \quad 17.88$	0.23101	0.13908	. 873
	24	0209.93	16	31	. 859
	25	0302.63	31	55	. 845
	36	0354.68	46	78	(39.831
					(40.171
59		0447.38	62	0.14001	. 157
	12	$05 \quad 39.43$	77	24	. 142
	13	$06 \quad 32.13$	92	48	. 128
	24	$07 \quad 24.18$	$0.232 \quad 07$	71	. 114
	25	0816.88	23	94	. 100
	36	$09 \quad 08.93$	38	$0.141 \quad 17$. 085
60	1	$10 \quad 01.63$	53	41	. 071
	12	$10 \quad 53.68$	68	64	. 057
	13	1146.38	84	87	. 043
	24	1238.43	99	$0.142 \quad 10$. 028
	25	$13 \quad 31.13$	0.23314	34	. 014
	36	$14 \quad 23.18$	29	57	40.000

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
61		- ' $\quad 1$			chains
	1	$\begin{array}{llll}54 & 15 & 15.88\end{array}$	0.23345	0.14280	39.986
	12	$16 \quad 07.93$	60	0.14303	. 971
	13	1700.63	75	27	. 957
	24	$17 \quad 52.68$	91	50	. 943
	25	1845.38	0.23406	73	. 929
	36	1937.42	21	96	. 914
62	1	$20 \quad 30.12$	37	$0.144 \quad 20$. 900
	12	$21 \quad 22.17$	52	43	. 886
	13	$22 \quad 14.87$	68	66	. 872
	24	$23 \quad 06.92$	83	89	. 857
	25	$23 \quad 59.62$	98	$0.145 \quad 13$. 843
	36	$24 \quad 51.66$	$0.235 \quad 14$	36	$\{39.829$
					(40.173
63	1	$25 \quad 44.36$	29	59	. 159
	12	$26 \quad 36.41$	45	83	. 144
	13	$27 \quad 29.10$	60	$0.146 \quad 06$.130
	24	$28 \quad 21.15$	75	29	. 115
	25	$\begin{array}{lll}29 & 13.85\end{array}$	91	53	. 101
	36	$30 \quad 05.90$	0.23606	76	. 086
64	1	$30 \quad 58.59$	22	99	. 072
	12	3150.64	37	$0.147 \quad 22$. 058
	13	3243.34	53	46	. 043
	24	$33 \quad 35.38$	68	69	. 029
	25	$34 \quad 28.08$	84	93	. 014
	36	$35 \quad 20.12$	99	$0.148 \quad 16$	40.000
65	1	$36 \quad 12.82$	0.23715	39	39.986
	12	$\begin{array}{lll}37 & 04.87\end{array}$	30	63	. 971
	13	$37 \quad 57.56$	46	86	. 957
	24	3849.61	61	$0.149 \quad 09$. 942
	25	$\begin{array}{ll}39 & 42.30\end{array}$	77	33	. 928
	36	$40 \quad 34.35$	92	56	. 913
66	1	$41 \quad 27.04$	0.23808	80	. 899
	12	$\begin{array}{lll}42 & 19.09\end{array}$	24	$0.150 \quad 03$. 884
	13	$\begin{array}{lll}43 & 11.78\end{array}$	39	26	. 870
	24	$44 \quad 03.83$	55	50	. 856
	25	$44 \quad 56.52$	70	73	. 841
	36	$45 \quad 48.57$	86	96	\{39.827
					(40.175

TABLE X - Continued
Latitude, etc., for the North Boundary of each Section. Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
67		- ' ${ }^{\prime}$			chains
	1	$\begin{array}{llll}54 & 46 & 41.26\end{array}$	0.23902	0.15120	40.161
	12	4733.31	17	43	. 146
	13	4826.00	33	67	. 131
	24	4918.04	49	90	. 117
	25	$50 \quad 10.74$	64	0.15214	. 102
	36	$51 \quad 02.78$	80	37	. 088
68	1	5155.48	96	60	. 073
	12	5247.52	0.24011	84	. 058
	13	5340.21	27	$0.153 \quad 07$. 044
	24	$54 \quad 32.26$	43	31	. 029
	25	$55 \quad 24.95$	58	54	. 015
	36	$56 \quad 16.99$	74	77	40.000
69	1	$\begin{array}{lll}57 & 09.69\end{array}$	90	0.15401	39.985
	12	$\begin{array}{lll}58 & 01.73\end{array}$	0.24105	24	. 971
	13	5854.42	21	48	. 956
	24	5946.46	37	71	. 941
	25	$\begin{array}{llll}55 & 00 & 39.16\end{array}$	53	95	. 927
	36	0131.20	68	$0.155 \quad 18$. 912
70	1	0223.89	84	42	. 898
	12	$03 \quad 15.93$	0.24200	65	. 883
	13	$04 \quad 08.62$	16	89	. 868
	24	$05 \quad 00.67$	31	$0.156 \quad 12$. 854
	25	$05 \quad 53.36$	47	36	. 839
	36	0645.40	63	59	
					${ }_{40.177}$
71	1	$07 \quad 38.09$	79	83	. 163
	12	$08 \quad 30.13$	95	0.15706	. 148
	13	0922.82	0.24311	30	. 133
	24	1014.86	26	53	. 118
	25	1107.56	42	77	. 104
	36	1159.60	58	0.15800	. 089
72	1	1252.29	74	24	. 074
	12	1344.33	90	47	. 059
	13	1437.02	0.24406	71	. 044
	24	$15 \quad 29.06$	22	94	. 030
	25	$16 \quad 21.75$	38	0.15918	. 015
	36	$17 \quad 13.79$	53	41	40.000

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section.
Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
73		- 11			chains
	1	$\begin{array}{lll}55 & 18 & 06.48\end{array}$	0.24469	0.15965	39.985
	12	1858.52	85	89	. 970
	13	1951.21	0.24501	$0.160 \quad 12$. 956
	24	$20 \quad 43.25$	17	36	. 941
	25	$21 \quad 35.94$	33	59	. 926
	36	$22 \quad 27.98$	49	83	. 911
74	1	$23 \quad 20.67$	65	$0.161 \quad 07$. 896
	12	$\begin{array}{lll}24 & 12.70\end{array}$	81	30	. 881
	13	$25 \quad 05.39$	97	54	. 867
	24	$25 \quad 57.43$	$0.246 \quad 13$	77	. 852
	25	$26 \quad 50.12$	29	0.16201	. 837
	36	$27 \quad 42.16$	45	24	$\left\{\begin{array}{l}39.822 \\ 40.180\end{array}\right.$
					(40.180
75	1	$28 \quad 34.85$	61	48	. 165
	12	$29 \quad 26.89$	77	72	. 150
	13	3019.57	93	95	. 135
	24	$31 \quad 11.61$	0.24709	0.16319	. 120
	25	3204.30	25	43	. 105
	36	3256.34	41	66	.090
76	1	$33 \quad 49.02$	57	90	. 075
	12	$34 \quad 41.06$	73	$0.164 \quad 13$. 060
	13	$35 \quad 33.75$	90	37	. 045
	24	$\begin{array}{lll}36 & 25.79\end{array}$	0.24806	61	. 030
	25	$\begin{array}{lll}37 & 18.47\end{array}$	22	85	. 015
	36	$\begin{array}{lll}38 & 10.51\end{array}$	38	0.16508	40.000
77	1	3903.20	54	32	39.985
	12	3955.23	70	55	. 970
	13	$40 \quad 47.92$	86	79	. 955
	24	$41 \quad 39.96$	0.24902	$0.166 \quad 03$. 940
	25	$42 \quad 32.64$	19	27	. 925
	36	$43 \quad 24.68$	35	50	. 910
78	1	$44 \quad 17.37$	51	74	. 895
	12	$\begin{array}{lll}45 & 09.40\end{array}$	67	97	. 880
	13	$46 \quad 02.09$	83	$0.167 \quad 21$. 865
	24	$46 \quad 54.12$	0.25000	45	. 850
	25	$47 \quad 46.81$	16	69	. 835
	36	$48 \quad 38.85$	32	92	(39.820
					$\{40.182$

78897-9

TABLE X - Continued
Latitude, etc., for the North Boundary of each Section. Third System of Survey.

Township	Section	Latitude L.	Log Sec	L.	Log Ta	n L.	Quarter Section
79	1	$55 \quad 4931.53$	0.250	48	0.168		$\begin{aligned} & \text { chains } \\ & 40.167 \end{aligned}$
	12	50 03.57		64		40	. 152
	13	$\begin{array}{lll}51 & 16.25\end{array}$		81		64	. 137
	24	5208.29	0.251	97	0.169	87	. 122
	25	5300.97		13		11	. 106
	36	5353.01		30		35	. 091
80	1	5445.69		46	0.170	59	. 076
	12	$55 \quad 37.72$		62		82	. 061
	13	5630.41		79		06	. 046
	24	5722.44		95		30	. 030
	25	$\begin{array}{lll}58 & 15.13\end{array}$	0.252	11		54	. 015
	36	$59 \quad 07.16$		27		77	40.000
81	1	5959.84	0.253	44	0.171	01	39.985
	12	$\begin{array}{llll}56 & 00 & 51.88\end{array}$		60		25	. 970
	13	0144.56		77		49	. 954
	24	0236.60		93		72	. 939
	25	0329.28		09		96	. 924
	36	0421.31		26	0.172	20	. 909
82	1	0514.00	0.254	42	0.173	44	. 893
	12	0606.03		58		68	. 878
	13	0658.71		75		92	. 863
	24	$07 \quad 50.74$		91		15	. 848
	25	0843.43		08		39	. 833
	36	0935.46		24		63	(39.817
							\{40.185
83	1	$10 \quad 28.14$	0.255	41	0.174	87	. 169
	12	11120.17		57		11	. 154
	13	1212.86		74		35	. 138
	24	1304.89		90		58	. 123
	25	$13 \quad 57.57$		06		82	. 108
	36	1449.60		23	0.175	06	. 092
84	1	1542.28	0.256	39	0.176	30	. 077
	12	1634.31		56		54	. 062
	13	$17 \quad 27.00$		72		78	. 046
	24	1819.03		89		01	. 031
	25	$19 \quad 11.71$		06		26	. 015
	36	$20 \quad 03.74$		22		49	40.000

TABLE X - Continued
Latitude, etc., for the North Boundary of each Section. Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
85		- "			chains
	1	$\begin{array}{lll}56 & 20 & 56.42\end{array}$	0.25639	0.17673	39.985
	12	2148.45	55	97	. 969
	13	$22 \quad 41.13$	72	$0.177 \quad 21$. 954
	24	$23 \quad 33.16$	88	45	. 938
	25	$24 \quad 25.84$	0.25705	69	. 923
	36	$\begin{array}{lll}25 & 17.87\end{array}$	21	93	. 908
86	1	$26 \quad 10.55$	38	$0.178 \quad 17$. 892
	12	$27 \quad 02.58$	55	41	. 877
	13	$27 \quad 55.26$	71	65	. 861
	24	$28 \quad 47.29$	88	88	. 846
	25	2939.97	0.25805	$0.179 \quad 13$. 830
	36	$30 \quad 32.00$	21	36	$(39.815$
					(40.187
87	1	3124.68	38	60	. 171
	12	3216.71	55	84	. 156
	13	3309.39	71	$0.180 \quad 08$. 140
	24	3401.42	88	32	. 125
	25	$34 \quad 54.10$	0.25905	56	. 109
	36	3546.12	21	80	. 093
88	1	3638.80	38	0.18104	. 078
	12	$37 \quad 30.83$	55	28	. 062
	13	3823.51	72	52	. 047
	24	$39 \quad 15.54$	88	76	. 031
	25	$40 \quad 08.21$	0.26005	0.18200	. 015
	36	$41 \quad 00.24$	22	24	40.000
89	1	4152.92	39	48	39.984
	12	4244.95	55	72	. 969
	13	$43 \quad 37.63$	72	96	. 953
	24	4429.65	89	0.18320	. 937
	25	$45 \quad 22.33$	0.26106	44	. 922
	36	$46 \quad 14.36$	23	68	. 906
90	1	$47 \quad 07.03$	40	93	. 891
	12	4759.06	56	0.18416	. 875
	13	$48 \quad 51.74$	73	41	. 859
	24	4943.76	90	65	. 844
	25	$50 \quad 36.44$	$0.262 \quad 07$	89	. 828
	36	$51 \quad 28.47$	24	$0.185 \quad 13$	$\left\{\begin{array}{l}39.813 \\ 40.190\end{array}\right.$
					(40.190

78897-91

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.		Quarter Section
91	1	$\begin{array}{ccc}\circ & \prime & \prime \prime \\ 56 & 52 & 21.14\end{array}$	0.26241	0.185		chains 40.174
	12	53 13.17	0.263		61	. 158
	13	$54 \quad 05.85$		0.186	85	. 142
	24	$54 \quad 57.87$			0933	. 126
	25	$55 \quad 50.55$. 111
	36	5642.57			57	. 095
92	1	$\begin{array}{lll}57 & 35.25\end{array}$	0.264	0.187	82	. 079
	12	$58 \quad 27.27$			06	. 063
	13	$\begin{array}{lll}59 & 19.95\end{array}$			30	. 047
	24	$\begin{array}{llll}57 & 00 & 11.98\end{array}$			54	. 032
	25	0104.65			78	. 016
	36	0156.68		0.188	02	40.000
93	1	0249.35	44	26		39.984
	12	0341.38	61	50		. 968
	13	0434.05	78	75		. 953
	24	$05 \quad 26.07$	95 $0.265 \quad 12$	0.189	99	. 937
	25	0618.75	0.265		2347	. 921
	36	$07 \quad 10.77$. 905
94	1	$08 \quad 03.45$	46	71		. 889
	12	$08 \quad 55.47$	63	95		. 873
	13	0948.14	80	0.190		. 858
	24	$10 \quad 40.17$	$\begin{array}{ll} & 97 \\ 0.266 & 15 \\ & 32\end{array}$	44		. 842
	25	$11 \quad 32.84$		68		$\left\{\begin{array}{r}.826 \\ 39.810 \\ 40.192\end{array}\right.$
	36	$12 \quad 24.87$			92	
95	1	1317.54	49	0.191	17	.176
	12	$14 \quad 09.56$	66	41		. 160
	13	$15 \quad 02.24$	0.2678	65		. 144
	24	$15 \quad 54.26$		89		. 128
	25	1646.93	17	0.192	13	. 112
	36	$17 \quad 38.95$	34		38	. 096
96	112	$18 \quad 31.63$	52	62		. 080
		1923.65	69	0.193	86	. 064
	13	$20 \quad 16.32$	 0.268 86 03 20 38		10	. 048
	24	$21 \quad 08.34$			35	. 032
	25	$\begin{array}{ll}22 & 01.02\end{array}$			5983	. 016
	36	2253.04				40.000

TABLE X - Continued
Latitude, etc., for the North Boundary of each Section. Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
97		- 1			chains
	1	$\begin{array}{lll}57 & 23 & 45.71\end{array}$	0.26855	$0.194 \quad 07$	39.984
	12	$24 \quad 37.73$	72	32	. 968
	13	$\begin{array}{ll}25 & 30.40\end{array}$	89	56	. 952
	24	$26 \quad 22.42$	0.26907	80	. 936
	25	$27 \quad 15.10$	24	0.19505	. 920
	36	2807.12	41	29	. 904
98	1	$28 \quad 59.79$	58	53	. 888
	12	$29 \quad 51.81$	76	77	. 872
	13	$30 \quad 44.48$	93	0.19602	. 856
	24	$31 \quad 36.50$	$0.270 \quad 10$	26	. 840
	25	$\begin{array}{lll}32 & 29.17\end{array}$	28	51	. 824
	36	$33 \quad 21.19$	45	75	$\{39.808$
					\{40.195
99	1	$\begin{array}{ll}34 & 13.86\end{array}$	62	99	. 178
	12	$\begin{array}{lll}35 & 05.88\end{array}$	80	0.19724	. 162
	13	$35 \quad$ b8.55	97	48	. 146
	24	$36 \quad 50.57$	0.27114	72	. 130
	25	$37 \quad 43.24$	32	97	. 114
	36	$38 \quad 35.26$	49	$0.198 \quad 21$. 097
100	1	$\begin{array}{lll}39 & 27.93\end{array}$	67	45	. 081
	12	$\begin{array}{ll}40 & 19.95\end{array}$	84	70	. 065
	13	$41 \quad 12.62$	0.27201	94	. 049
	24	$42 \quad 04.64$	19	0.19919	. 032
	25	$42 \quad 57.31$	36	43	. 016
	36	$43 \quad 49.33$	54	67	40.000
101	1	$44 \quad 42.00$	71	92	39.984
	12	$45 \quad 34.02$	89	$0.200 \quad 16$. 968
	13	$46 \quad 26.69$	0.27306	41	. 951
	24	$\begin{array}{lll}47 & 18.70\end{array}$	24	65	. 935
	25	$\begin{array}{lll}48 & 11.37\end{array}$	41	90	. 919
	36	$49 \quad 03.39$	59	0.20114	.902
102	1	$49 \quad 56.06$	76	39	. 886
	12	$\begin{array}{lll}50 & 48.08\end{array}$	94	63	. 870
	13	$51 \quad 40.74$	0.27411	87	. 854
	24	$52 \quad 32.76$	29	0.20212	. 837
	25	$\begin{array}{lll}53 & 25.43\end{array}$	46	36	. 821
	36	$54 \quad 17.45$	64	61	(39.805
					$\{40.197$

TABLE X - Continued
Latitude, etc., for the North Boundary of each Section. Third System of Survey.

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section.
Third System of Survey.

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section.
Third System of Survey.

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section.
Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
121		- 11			chains
	1	$\begin{array}{lll}59 & 29 & 22.39\end{array}$	0.29440	0.22967	39.983
	12	$30 \quad 14.39$	58	92	. 965
	13	3107.05	77	0.23017	. 948
	24	$\begin{array}{lll}31 & 59.05\end{array}$	96	43	. 930
	25	3251.71	0.29515	68	. 913
	36	$33 \quad 43.71$	33	93	. 896
122	1	$34 \quad 36.36$	52	0.23118	. 878
	12	$\begin{array}{lll}35 & 28.37\end{array}$	71	43	. 861
	13	$36 \quad 21.02$	90	69	. 843
	24	$\begin{array}{ll}37 & 13.02\end{array}$	0.29608	94	. 826
	25	$\begin{array}{lll}38 & 05.68\end{array}$	27	0.23219	. 808
	36	$38 \quad 57.68$	46	44	(39.791
					(40.212
123	1	$39 \quad 50.33$	65	70	. 194
	12	$40 \quad 42.34$	84	95	. 176
	13	$41 \quad 34.99$	0.29702	0.23320	. 159
	24	$42 \quad 26.99$	21	46	. 141
	25	$\begin{array}{lll}43 & 19.65\end{array}$	40	71	. 123
	36	$44 \quad 11.65$	59	96	. 106
124	1	$45 \quad 04.30$	78	$0.234 \quad 22$. 088
	12	$45 \quad 56.30$	97	47	. 071
	13	$46 \quad 48.96$	0.29816	72	. 053
	24	$47 \quad 40.96$	35	97	. 035
	25	$48 \quad 33.61$	54	$0.235 \quad 23$. 018
	36	$49 \quad 25.61$	72	48	40.000
125	1	$\begin{array}{lll}50 & 18.26\end{array}$	92	74	39.982
	12	$\begin{array}{lll}51 & 10.26\end{array}$	0.29910	99	. 965
	13	$\begin{array}{lll}52 & 02.91\end{array}$	29	$0.236 \quad 24$. 947
	24	5254.92	48	50	. 929
	25	$\begin{array}{lll}53 & 47.57\end{array}$	67	75	.912
	36	$54 \quad 39.57$	86	0.23700	. 894
126	1	$55 \quad 32.22$	$0.300 \quad 05$	26	. 876
	12	$56 \quad 24.22$	24	51	. 859
	13	$\begin{array}{lll}57 & 16.87\end{array}$	44	77	. 841
	24	$\begin{array}{lll}58 & 08.87\end{array}$	63	$0.238 \quad 02$. 824
	25	$59 \quad 01.52$	82	28	. 80 t
	36	$59 \quad 53.52$	0.30101	53	(39.78)
					\{40.2.4

TABLE X - Continued
Latitude, etc., for the North Boundary of each Section. Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
127		- 1			chains
	1	$\begin{array}{lll}60 & 00 & 46.17\end{array}$	0.30120	0.23879	40.197
	12	0138.17	39	0.23904	. 179
	13	0230.82	58	29	. 161
	24	$03 \quad 22.82$	77	55	. 143
	25	$\begin{array}{ll}04 & 15.47\end{array}$	96	80	. 125
	36	$05 \quad 07.47$	0.30215	$0.240 \quad 06$.107
128	1	$06 \quad 00.12$	35	31	. 089
	12	$06 \quad 52.12$	54	57	. 072
	13	0744.77	73	82	. 054
	24	$08 \quad 36.77$	92	0.24108	. 036
	25	0929.42	0.30311	33	. 018
	36	$10 \quad 21.42$	30	59	40.000
129	1	1114.07	50	84	39.982
	12	1206.06	69	0.24210	. 964
	13	$12 \quad 58.71$	88	36	. 946
	24	1350.71	$0.304 \quad 07$	61	. 928
	25	1443.36	27	87	. 910
	36	$15 \quad 35.36$	46	0.24312	.893
130	1	$16 \quad 28.01$	65	38	. 875
	12	$17 \quad 20.00$	84	63	. 857
	13	1812.65	$0.305 \quad 04$	89	. 839
	24	1904.65	23	0.24414	. 821
	25	$19 \quad 57.30$	43	40	. 803
	36	$20 \quad 49.30$	62	66	(39.785
					$\{40.218$
131	1	$21 \quad 41.94$	81	91	. 199
	12	$22 \quad 33.94$	0.30601	$0.245 \quad 17$. 181
	13	$23 \quad 26.59$	20	43	. 163
	24	2418.58	39	68	. 145
	25	$25 \quad 11.23$	59	94	. 127
	36	$26 \quad 03.23$	78	$0.246 \quad 20$.109
132	1	$26 \quad 55.88$	98	45	. 091
	12	$27 \quad 47.87$	0.30717	71	. 073
	13	$28 \quad 40.52$	37	97	. 054
	24	$29 \quad 32.51$	56	$0.247 \quad 22$. 036
	25	$30 \quad 25.16$	75	48	. 018
	36	$31 \quad 17.16$	95	74	40.000

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section.
Third System of Survey.

TABLE X - Continued
Latitude, etc., for the North Boundary of each Section.
Third System of Survey.

Township	Section	Latitude L.	Log Sec	L.	Log Tan L.		Quarter Section	
139	1	$\begin{array}{lll} 61 & 03 & 33.28 \end{array}$	0.315	24	0.257	31	chains40.205	
	12	$04 \quad 25.28$	44			57	. 187	
	13	$05 \quad 17.92$	64		0.258	83	. 168	
	24	0609.91	0.316	84		09	. 149	
	2536	$07 \quad 0255$		0424		35	.131	
		$07 \quad 54.54$				61	. 112	
140	1	0847.18	44		0.259	87	. 093	
	12	0939.17	64				. 075	
	13	1031.81	0.317	84	39		. 056	
	24	1123.81		04	65		. 037	
	25	1216.45		24	0.260	91	. 019	
	36	1308.44		44		17	40.000	
141	1	1401.08	64		44		39.981	
	12	1453.07	$0.318{ }^{8}$	84	69		. 963	
	13	1545.71		04	0.261	96	. 944	
	24	$16 \quad 37.70$	24			22	. 925	
	$\begin{aligned} & 25 \\ & 36 \end{aligned}$	$17 \quad 30.34$	44			48	. 906	
		$18 \quad 22.33$	64			74	. 888	
142	1	$19 \quad 14.97$	0.319	85	0.262	00	. 869	
	12	$20 \quad 06.96$		05	26		. 851	
	13	$20 \quad 59.60$		25	53		. 832	
	24	2151.59		45	0.263	79	. 813	
	25	2244.23		65		05		
	36	$23 \quad 36.22$		85		31	$\left\{\begin{array}{l} 39.776 \\ 40.227 \end{array}\right.$	
143	1	$24 \quad 28.85$	0.320	06	57		. 208	
	12	$25 \quad 20.84$	26		84		.189.170	
	13	$26 \quad 13.48$	46668686					
	24	$27 \quad 05.47$			0.264	36	.170 .151	
	25	$27 \quad 58.11$			62	.133.114		
	36	$28 \quad 50.10$			88			
144	11213242536	2942.74	27			0.265	1541	. 095
		$30 \quad 34.73$	47		. 076			
		$31 \quad 27.36$	68		67		. 057	
		$\begin{array}{ll} 32 & 19.35 \\ 33 & 11.99 \end{array}$	0.322	$\begin{aligned} & 88 \\ & 08 \\ & 28 \end{aligned}$.038.019	
		$34 \quad 03.98$					40.000	

TABLE X - Continued
Latitude, etc., for the North Boundary of each Section. Third System of Survey.

Township	Section	Latitude L.	Log Sec L.		Log Tan L.		Quarter Section		
145	1	$\begin{array}{lll} 61 & 34 & 56.63 \end{array}$	0.32249		0.266	73	chains39.981		
	12	3548.61	6	69		99	. 962		
	13	$36 \quad 41.25$	0.323	90	0.267	25	. 943		
	24	$37 \quad 33.24$		10		51	. 924		
	25	$38 \quad 25.88$		30	0.268	78	. 905		
	36	$39 \quad 17.86$		51		04	. 886		
146	1	$40 \quad 10.50$	779$0.324 \quad 1$		31		. 867		
	12	$41 \quad 02.49$		92	57		. 848		
	13	4155.12		12	0.269	83	. 829		
	24	4247.11	355	33		10	. 810		
	25	$43 \quad 39.75$		53		36	. 791		
	36	$44 \quad 31.73$	73			62		$\left\{\begin{array}{l}39.772 \\ 40.230\end{array}\right.$	
147		$45 \quad 24.37$	0.325	94	0.270		. 211		
	12	$46 \quad 16.36$		14		89 15	. 192		
	13	$47 \quad 08.99$		35		42	. 173		
	24	$48 \quad 00.98$		56		68	. 154		
	25	$48 \quad 53.62$		76	0.271	95	. 134		
	36	4945.60		97		21	. 115		
148	1	$50 \quad 38.24$	0.326	17	48		. 096		
	12	5130.22		38		74	. 077		
	13	$52 \quad 22.86$		59	0.272	01	. 058		
	24	5314.84		79		27	. 038		
	25	$54 \quad 07.48$	0.327	00		54	. 019		
	36	$54 \quad 59.46$		20		80	40.000		
149	1	$55 \quad 52.10$		41	0.273	07	39.981		
	12	5644.08		62		33	. 962		
	13	$57 \quad 36.72$		82		60	. 942		
	24	$58 \quad 28.70$	0.328	03		86	. 923		
	25	$59 \quad 21.34$		24	0.274	13	. 904		
	36	$\begin{array}{llll}62 & 00 & 13.32\end{array}$		44		39	. 885		
150	1	$01 \quad 05.96$		65		66	. 865		
	12	0157.94		86		92	. 846		
	13	0250.58	0.329	07	0.275	19	. 827		
	24	0342.56		27		46	. 808		
	25	0435.19		48		72	. 788		
	36	$05 \quad 27.18$		69		99	(39.769		
							\{40.234		

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section Third System of Survey.

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
157	1	$\begin{array}{lll} 62 & 37 & 42.85 \end{array}$	0.33747	0.28591	chains 39.980
	12	$\begin{array}{ll}38 & 34.83\end{array}$	68	$0.286 \quad 17$. 960
	13	$39 \quad 27.46$	90	45	. 941
	24	$\begin{array}{ll}40 & 19.44\end{array}$	0.33811	71	. 921
	25	$\begin{array}{lll}41 & 12.07\end{array}$	32	99	. 901
	36	4204.05	54	$0.287 \quad 25$. 881
158	1	$42 \quad 56.68$	75	53	. 861
	12	$43 \quad 48.66$	96	80	. 842
	13	$44 \quad 41.28$	0.33918	0.28807	. 822
	24	$45 \quad 33.26$	39	34	. 802
	25	$46 \quad 25.89$	61	61	. 782
	36	$47 \quad 17.87$	82	88	$\left\{\begin{array}{l}39.762\end{array}\right.$
					(40.241
159	1	$48 \quad 10.50$	$0.340 \quad 03$	0.28915	. 221
	12	$49 \quad 02.48$	25	42	. 201
	13	$49 \quad 55.11$	46	69	. 181
	24	$50 \quad 47.08$	68	96	. 161
	25	$\begin{array}{ll}51 & 39.71\end{array}$	89	0.29023	. 141
	36	5231.69	0.34111	50	. 120
160	1	$53 \quad 24.32$	32	78	. 100
	12	$\begin{array}{lll}54 & 16.29\end{array}$	54	0.29105	. 080
	13	5508.92	75	32	. 060
	24	5600.90	97	59	. 040
	25	$\begin{array}{lll}56 & 53.53\end{array}$	$0.342 \quad 18$	86	. 020
	36	$57 \quad 45.50$	40	0.29213	40.000
161	1	$\begin{array}{lll}58 & 38.13\end{array}$	62	41	39.980
	12	$59 \quad 30.11$	83	68	. 960
	13	$\begin{array}{llll}63 & 00 & 22.74\end{array}$	0.34305	95	. 940
	24	$01 \quad 14.71$	26	0.29322	. 920
	25	0207.34	48	50	. 899
	36	$02 \quad 59.32$	70	77	. 879
162	1	$03 \quad 51.94$	91	$0.294 \quad 04$. 859
	12	0443.92	0.34413	31	. 839
	13	$05 \quad 36.54$	35	59	. 819
	24	$06 \quad 28.52$	56	86	. 799
	25	$07 \quad 21.15$	78	0.29513	. 779
	36	$08 \quad 13.12$	0.34500	41	(39.759
					(40.245

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

Township	Section	Latitude L.	Log Sec	L.	Log Ta	L.	Quarter Section	
163	1	- 11	0.345	22	0.295		chains	
		$\begin{array}{lll}63 & 09 & 05.75\end{array}$					40.224	
	12	0957.72		43		95	. 204	
	13	$10 \quad 50.35$		65	0.296	23	. 183	
	24	$11 \quad 42.32$		87		50	. 163	
	25	1234.95	0.346	09		77	.143	
	36	$13 \quad 26.93$		30	0.297	05	.122	
164	1	$\begin{array}{lll}14 & 19.55\end{array}$	52		32		. 102	
	12	1511.53	74		59		. 082	
	13	1604.15	0.347	96	0.298	87	. 061	
	24	$16 \quad 56.13$		1840		1442	. 041	
	25	1748.75					. 020	
	36	1840.72	62			69	40.000	
165	1	1933.35	0.348	84	0.299	97	39.980	
	12	$20 \quad 25.32$		05		24	. 959	
	13	$21 \quad 17.95$		27		52	. 939	
	24	$22 \quad 09.92$		49	0.300	79	. 918	
	25	$23 \quad 02.55$		71		07	. 898	
	36	2354.52		93		34	. 878	
166	1	$24 \quad 47.14$	0.349	15	62		. 857	
	12	$25 \quad 39.12$	37		0.301	89	. 837	
	13	$26 \quad 31.74$	59			17	. 816	
	24	$27 \quad 23.71$	81		44		.796.77539.75540.248	
	25	$28 \quad 16.34$	0.350	03	7299			
	36	$29 \quad 08.31$		25				
167	1	$30 \quad 00.93$	48		0.302		.228	
	12	$30 \quad 52.91$	70		0.303	54	.207	
	13	$\begin{array}{ll}30 & 52.91 \\ 31 & 45.53\end{array}$	92			82	. 186	
	24	$32 \quad 37.50$	0.351	1436		820937	. 166	
	25	$33 \quad 30.13$					$\begin{aligned} & .145 \\ & .124 \end{aligned}$	
	36	$34 \quad 22.10$	58			65		
168	1	$35 \quad 14.72$	0.352	80	0.304	9320	. 103	
	12	$36 \quad 06.69$		02			. 083	
	13	$36 \quad 59.31$		25		48	. 062	
	24	$37 \quad 51.29$		47	0.305	75	. 041	
	25	$\begin{array}{ll}38 & 43.91\end{array}$		6991		03	. 021	
	36	$39 \quad 35.88$				31	40.000	

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
169		- 11			chains
	1	$\begin{array}{lll}63 & 40 & 28.50\end{array}$	0.35314	$0.305 \quad 59$	39.979
	12	$41 \quad 20.48$	36	86	. 959
	13	$\begin{array}{ll}42 & 13.10\end{array}$	58	$0.306 \quad 14$. 938
	24	$43 \quad 05.07$	80	42	. 917
	25	$43 \quad 57.69$	0.35403	69	. 896
	36	$44 \quad 49.66$	25	97	. 876
170	1	$45 \quad 42.28$	47	0.30725	. 855
	12	$46 \quad 34.25$	70	53	. 834
	13	$47 \quad 26.87$	92	80	. 813
	24	$\begin{array}{lll}48 & 18.85\end{array}$	$0.355 \quad 14$	0.30808	. 793
	25	$\begin{array}{lll}49 & 11.47\end{array}$	37	36	. 772
	36	$50 \quad 03.44$	59	64	(39.751
					$\{40.252$
171	1	$50 \quad 56.06$	82	92	. 231
	12	5148.03	0.35604	0.30919	. 210
	13	5240.65	27	47	. 189
	24	$\begin{array}{lll}53 & 32.62\end{array}$	49	75	. 168
	25	$54 \quad 25.24$	72	$0.310 \quad 03$. 147
	36	$55 \quad 17.21$	94	31	. 126
172	1	$\begin{array}{lll}56 & 09.83\end{array}$	0.35717	59	. 105
	12	$57 \quad 01.80$	39	87	. 084
	13	$57 \quad 54.42$	62	0.31115	. 063
	24	- 5846.39	84	42	. 042
	25	[5939.01	$0.358 \quad 07$	71	. 021
	36	$\begin{array}{lll}64 & 00 & 30.98\end{array}$	29	98	40.000
173	1	$01 \quad 23.60$	52	$0.312 \quad 27$	39.979
	12	$\begin{array}{lll}02 & 15.57\end{array}$	74	54	. 958
	13	$03 \quad 08.18$	97	82	. 937
	- 24	$04 \quad 00.15$	0.35920	0.31310	. 916
	25	$04 \quad 52.77$	42	38	. 895
	36	$05 \quad 44.74$	65	66	. 874
174	1	$06 \quad 37.36$	88	94	. 853
	12	$07 \quad 29.33$	$0.360 \quad 10$	0.31422	. 832
	13	$08 \quad 21.95$	33	51	. 811
	24	0913.92	56	78	. 790
	25	$10 \quad 06.53$	79	0.31507	. 768
	36	$10 \quad 58.50$	0.36101	35	$\{39.747$
					(40.256

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section.
Third System of Survey.

Township	Section	Latitude L.	Log Sec	L.	Log Tan L.		Quarter Section
175	1	$\begin{array}{lll} 64 & 11 & 51.12 \end{array}$	0.361		0.315		chains40.235
	12	$12 \quad 43.09$		47	91		. 213
	13	$13 \quad 35.70$	70		0.316		. 192
	24	$14 \quad 27.67$	92		47		. 171
	25	$15 \quad 20.29$	0.362		0.317	75	. 149
	36	$16 \quad 12.26$		38			. 128
176	1	$17 \quad 04.87$	0.363	61	0.318	32	. 107
	12	$17 \quad 56.84$		84		60	. 085
	13	$18 \quad 49.46$		0730		88	. 064
	24	$19 \quad 41.43$				16	. 043
	25	$20 \quad 34.04$		53		44	. 021
	36	$21 \quad 26.01$		75		72	40.100
177	1	$22 \quad 18.63$	98		0.319	01	39.979
	12	$23 \quad 10.59$	0.364			29	. 957
	13	$24 \quad 03.21$		44	57		. 936
	24	$24 \quad 55.18$	67		85		. 914
	25	$25 \quad 47.79$	90		0.320	14	. 893
	36	$26 \quad 39.76$	0.365	13		42	. 872
178	1	$27 \quad 32.38$	0.366	36			. 850
	12	$28 \quad 24.34$		59	7099		. 829
	13	$29 \quad 16.96$		8306	0.321	99 27	. 808
	24	$30 \quad 08.92$				55	. 786
	25	3101.54		29		84	. 765
	36	3153.50		52	0.322	12	$\left\{\begin{array}{l}39.743 \\ 40.260\end{array}\right.$
179	1	$32 \quad 46.12$	0.367	75	40		. 238
	12	$33 \quad 38.09$		98	69		. 217
	13	$34 \quad 30.70$		21	97$0.323 ~$. 195
	24	$35 \quad 22.67$		44	0.323	25	. 173
	25	$\begin{array}{lll}36 & 15.28\end{array}$		68		54	. 152
	36	$37 \quad 07.25$		91	82		. 130
180	1	$37 \quad 59.86$	0.368	1437	0.324	11	. 108
	12	$38 \quad 51.83$				39	. 087
	13	3944.44		60	$\begin{array}{r} \\ 0.325 \\ \hline 96 \\ \\ \hline\end{array}$. 065
	24	$40 \quad 36.41$	0.369	84			. 043
	25	$\begin{array}{lll}41 & 29.02\end{array}$		$\begin{aligned} & 07 \\ & 30 \end{aligned}$. 022
	36	$42 \quad 20.98$					40.000

TABLE X - Continued
Latitude, etc. for the North Boundary of each Section.
Third System of Survey.

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section.
Third System of Survey.

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section.
Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
205		- 11			chains
	1	$\begin{array}{lll}66 & 48 & 42.18\end{array}$	0.40478	$0.368 \quad 19$	40.976
	12	4934.13	0.40503	49	. 952
	13	$50 \quad 26.73$	29	80	. 928
	24	$\begin{array}{lll}51 & 18.68\end{array}$	55	$0.369 \quad 10$. 904
	25	$\begin{array}{lll}52 & 11.28\end{array}$	80	41	. 880
	36	5303.23	0.40606	71	. 856
206	1	$\begin{array}{lll}53 & 55.82\end{array}$	32	$0.370 \quad 02$. 832
	12	$54 \quad 47.77$	58	32	. 808
	13	$\begin{array}{lll}55 & 40.37\end{array}$	84	63	. 785
	24	56 32.32	$0.407 \quad 09$	93	. 761
	25	$57 \quad 24.92$	35	0.37124	. 737
	36	$58 \quad 16.87$	61	54	$\{39.713$
					(40.292
207	1	$59 \quad 09.47$	87	85	. 267
	12	$67 \quad 0001.42$	$\begin{array}{ll}0.408 & 13\end{array}$	0.37216	. 243
	13	$00 \quad 54.01$	39	46	. 219
	24	0145.96	65	77	. 195
	25	0238.56	91	0.37308	. 170
	36	0330.51	0.40917	38	. 146
208	1	$04 \quad 23.11$	43	69	. 122
	12	$05 \quad 15.05$	69	$0.374 \quad 00$. 097
	13	0607.65	95	30	. 073
	24	$06 \quad 59.60$	$0.410 \quad 21$	61	. 049
	25	$07 \quad 52.20$	47	92	. 024
	36	$08 \quad 44.14$	73	$0.375 \quad 22$	40.000
209	1	$09 \quad 36.74$	99	53	39.976
	12	$10 \quad 28.69$	0.41125	84	. 951
	13	$11 \quad 21.28$	52	$0.376 \quad 15$. 927
	24	$12 \quad 13.23$	78	46	. 903
	25	$13 \quad 05.83$	0.41204	77	. 878
	36	$13 \quad 57.78$	30	$0.377 \quad 07$. 854
210	1	$\begin{array}{ll}14 & 50.37\end{array}$	57	38	. 830
	12	1542.32	83	69	. 805
	13	$16 \quad 34.92$	0.41309	0.37800	. 781
	24	$17 \quad 26.86$	35	31	. 757
	25	$18 \quad 19.46$	62	62	$.732$
	36	1911.40	88	93	$\left\{\begin{array}{l}39.708 \\ 40.297\end{array}\right.$

TABLE X - Continued
Latitude, etc., for the North Boundary of each Section.
Third System of Survey.

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

TABLEX - Continued
Latitude, etc., for the North Boundary of each Section.
Third System of Survey.

Township	Section	Latitude L.	Log Sec L.	Log Tan L.	Quarter Section
223		- 11			chains
	1	$\begin{array}{lll}68 & 22 & 47.27\end{array}$	0.43362	0.40194	40.287
	12	$\begin{array}{lll}23 & 39.21\end{array}$	89	0.40226	. 261
	13	$24 \quad 31.80$	$0.434 \quad 17$	58	. 235
	24	$\begin{array}{lll}25 & 23.74\end{array}$	45	90	. 209
	25	$\begin{array}{ll}26 & 16.33\end{array}$	73	0.40322	. 182
	36	$27 \quad 08.27$	0.43501	54	. 156
224	1	$28 \quad 00.86$	29	87	. 130
	12	$28 \quad 52.80$	57	0.40419	. 104
	13	$\begin{array}{ll}29 & 45.39\end{array}$	85	51	. 078
	24	$\begin{array}{ll}30 & 37.32\end{array}$	0.43612	83	. 052
	25	$31 \quad 29.91$	41	0.40516	. 026
	36	$32 \quad 21.85$	68	48	40.000
225	1	3314.44	97	80	39.974
	12	3406.38	0.43724	$0.406 \quad 13$. 948
	13	$\begin{array}{lll}34 & 58.97\end{array}$	53	45	. 922
	24	$35 \quad 50.90$	80	77	. 896
	25	$36 \quad 43.49$	0.43809	0.40710	. 869
	36	$37 \quad 35.43$	37	42	. 843
226	1	$\begin{array}{lll}38 & 28.02\end{array}$	65	75	. 817
	12	$\begin{array}{lll}39 & 19.95\end{array}$	93	$0.408 \quad 07$. 791
	13	$40 \quad 12.54$	0.43921	40	. 765
	24	4104.48	49	72	. 739
	25	$41 \quad 57.07$	78	0.40905	. 713
	36	$42 \quad 49.00$	$0.440 \quad 06$	37	(39.687
					(40.318
227	1	$43 \quad 41.59$	34	70	.292
	12	4433.53	62	$0.410 \quad 02$. 265
	13	$45 \quad 26.11$	91	35	. 239
	24	$\begin{array}{ll}46 & 18.05\end{array}$	0.44119	67	.212
	25	$47 \quad 10.64$	47	0.41100	. 186
	36	$48 \quad 02.58$	76	32	. 159
228	1	$48 \quad 55.16$	$0.442 \quad 04$	65	. 133
	12	$49 \quad 47.10$	32	98	. 106
	13	$\begin{array}{lll}50 & 39.68\end{array}$	61	0.41231	. 080
	24	$51 \quad 31.62$	89	63	. 053
	25	$52 \quad 24.21$	0.44318	96	. 026
	36	5316.14	46	$0.413 \quad 29$	40.000

TABLE X - Continued

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

TABLE X - Continued
Latitude, etc., for the North Boundary of each Section.
Third System of Survey.

Township	Section	Latitude L.	Log Sec L.		Log Tan L.		Quarter Section	
235		- ' "	0.454		0.425	53	chains 40.303	
	1	$\begin{array}{llll}69 & 25 \quad 30.07\end{array}$						
	12	$26 \quad 22.00$		45		86	. 275	
	13	$\begin{array}{ll}27 & 14.58\end{array}$		74	0.426		. 248	
	24	$28 \quad 06.51$	0.455	04		53	. 220	
	25	$28 \quad 59.10$		33	0.427	87	. 193	
	36	2951.03		62		20	. 165	
236	1	$\begin{array}{lll}30 & 43.61\end{array}$	0.456	92	5488		$\begin{aligned} & .138 \\ & .110 \end{aligned}$	
	12	$31 \quad 35.54$		21				
	13	$32 \quad 28.13$		51	0.428	21	. 083	
	24	3320.06	0.457	80	5589$0.429 \quad 22$. 055	
	25	$\begin{array}{lll}34 & 12.64\end{array}$		10			. 027	
	36	3504.57		39			40.000	
237	1	$35 \quad 57.15$	0.458	69	5689		39.972	
	12	3649.08		99			. 945	
	13	$37 \quad 41.67$		28	0.430			
	24	$38 \quad 33.60$		58		23 57	$.890$	
	25	$\begin{array}{ll}39 & 26.18\end{array}$	0.459	88	 0.431 91 04		$\begin{aligned} & .862 \\ & .835 \end{aligned}$	
	36	$40 \quad 18.11$		17				
238		$41 \quad 10.69$	0.460	47	5892		. 807	
	12	$42 \quad 02.62$		77			. 780	
	13	4255.20		07	0.432	26	. 752	
	24	$43 \quad 47.13$		36		60	. 724	
	25	$44 \quad 39.72$		66	0.433	$\begin{aligned} & 94 \\ & 27 \end{aligned}$	$\begin{array}{r} .697 \\ 39.669 \\ 40.337 \end{array}$	
	36	$45 \quad 31.65$		96				
239		$46 \quad 24.23$	0.461		6195		. 309	
	12	$47 \quad 16.16$		55			. 280	
	13	$48 \quad 08.74$	0.462	86	0.434	29	. 252	
	24	$49 \quad 00.67$		15		63	. 224	
	25	4953.25		45	0.435	97	. 196	
	36	$50 \quad 45.18$		75		31	. 168	
240	1	5137.76	0.463	05		65	.140.112	
	12	5229.69		35	99			
	13	$53 \quad 22.27$		65	0.436	33	. 084	
	24	$\begin{array}{ll}54 & 14.20\end{array}$		95		67	$\begin{aligned} & .056 \\ & .028 \end{aligned}$	
	25	$\begin{array}{lll}55 & 06.78\end{array}$	0.4642	26	0.437	02		
	36	$55 \quad 58.71$		55		36	40.000	

TABLE X - Concluded
Latitude, etc., for the North Boundary of each Section. Third System of Survey.

Township	Section	Latitude L.	Log Sec L.		Log Tan L.		Quarter Section
241		- '					chains
	1	$69 \quad 5651.29$	0.464	86	0.437	70	39.972
	12	5743.22	0.465	16	0.438	04	. 944
	13	5835.80		46		38	. 916
	24	5927.73		76		72	. 888
	25	$\begin{array}{lll}70 & 00 & 20.31\end{array}$	0.466	07	0.439	07	. 860
	36	$01 \quad 12.24$		37		41	. 832
242	1	0204.81		67	0.440	75	. 803
	12	0256.74	0.467	97		09	. 775
	13	0349.32		28		44	. 747
	24	0441.25		58		78	. 719
	25	$05 \quad 33.83$		88	0.441	13	. 691
	36	$06 \quad 25.76$	0.468	19		47	$(39.663$
							(40.343
243	1	$07 \quad 18.34$		49		81	. 314
	12	$08 \quad 10.27$	0.469	80	0.442		. 286
	13	0902.84		10		50	. 257
	24	0954.77		40		84	. 229
	25	1047.35		71	0.443		. 200
	36	1139.28	0.470	02		53	. 172
244	1	1231.86	0.471	32	0.444	88	. 143
	12	$13 \quad 23.78$		63		22	. 114
	13	$14 \quad 16.36$		93		57	. 086
	24	$15 \quad 08.29$		24	0.445	92	. 057
	25	$16 \quad 00.87$		55		26	. 029
	36	1652.80		85		61	40.000

TABLE XI

Showing the difference of Latitude between Township Corners and Section and Quarter Section Posts on a Township Chord.

Number of Line	dL for $1 / 2 \mathrm{Sec}$. from Corner	dL for 1 Sec . from Corner	dL for $11 / 2$ Secs. from Corner	dL for 2 Secs. from Corner	dL for $21 / 2$ Secs. from Corner	$\begin{gathered} \text { dL } \\ \text { for } \\ 3 \text { Secs. } \\ \text { from } \\ \text { Corner } \end{gathered}$
lst Base	0.02	0.04	9.05	0.06	0.07	0.07
	lks.	lks.	lks.	lks.	lks.	lks.
do	3.2	5.9	7.9	9.4	10.3	10.6
1lth Base	0.02	0.04	0.06	0.07	0.08	0.08
	lks.	1ks.	lks.	lks.	1 ks .	lks.
do	3.7	6.7	9.0	10.6	11.6	12.0
21 st Base	0.103	0.05	0.07	0.08	0.09	0.09
	lks.	lks.	1 ks .	lks.	lks.	lks.
do	4.2	7.6	10.2	12.1	13.2	13.6
31 st Base	0.03	0.06	0.08	0.09	0.10	0.10
	lks.	lks.	lks.	lks.	lks.	lks.
do	4.8	8.7	11.7	13.9	15.2	15.6
41 st Base	0.04	0.06	0.09	0.10	0.111	0.12
	lks.	lks.	lks.	lks.	lks.	lks.
do	5.5	10.0	13.5	16.0	17.5	18.0
5lst Base	0.04	0.08	0.10	${ }^{11} 12$	0.13	0.14
	lks.	lks.	lks.	lks.	lks.	lks.
do	6.4	11.7	15.8	18.7	20.5	21.1
$61 s t$ Base	0.05	0.09	0.12	0.14	0.16	0.16
	lks.	lks.	lks.	lks.	lks.	lks.
do	7.7	14.0	18.9	22.4	24.5	25.2

TABLE XII

For Converting Logarithmic Tangents of Small Arcs into
Logarithms of Seconds of Arc

Log Tan	Log T	Log Tan	$\log T$	Log Tan	Log T
		8.49305		8.64361	
7.92263	5.31442		5.31428	65116	
	41		27		13
8.07156		. 52200		.65849	
	40		26		12
. 15924		.53516	.	.66562	
	39		25		11
.22142		.54753		.67253	
	38		24		10
.26973		.55938		.67921	
	37		23		09
. 30930		.57046		.68570	
	36		22		08
. 34270		. 58099		.69201	
	35		21		07
.37167		.59105		.69814	
	34		20		06
.39713		.60073		. 70410	
	33		19		05
. 41999		.61009		.70991	
	32		18		04
.44072		.61872		.71555	
	31		17		03
.45955		.62745		.72104	
	30		16		02
.47697		.63567		.72639	
	29		15		01

TABLE Xlll
$\log \frac{1}{1-m}$
m positive
that is, when ties between 0^{h} and 6^{h}, or 18^{h} and 24^{h}.

Log m	0		1	2	3	4	5	6	7	8	9
5.	0.00	000	001	001	001	001	001	002	002	003	003
6.0		004	004	005	005	005	005	005	005	005	005
1		006	006	006	006	006	006	006	006	007	007
2		007	007	007	007	008	008	008	008	008	009
3		009	009	009	009	010	010	010	010	010	011
4		011	011	011	012	012	012	013	013	013	013
5		014	014	014	015	015	015	016	016	017	017
6		017	018	018	019	019	019	020	020	021	021
7		022	022	023	023	024	024	025	026	026	027
8		027	028	029	029	030	031	032	032	033	034
9		035	035	036	037	038	039	040	041	042	043
7.0		044	045	046	047	048	049	050	051	052	054
1		055	056	057	059	060	061	063	064	066	067
2		069	071	072	074	076	077	079	081	083	085
3		087	089	091	093	095	097	100	102	104	107
4		109	112	114	117	120	123	125	128	131	134
5		138	141	144	147	151	154	158	162	165	169
6		173	177	181	186	190	194	199	204	208	213
7		218	223	229	234	239	245	251	257	263	269
8		275	281	288	295	302	309	316	323	331	338
9		346	355	363	371	380	389	398	407	417	427
8.00		437	438	439	440	441	442	443	444	445	446
01		447	448	449	450	451	452	453	454	455	456
02		457	458	459	460	461	463	464	465	466	467
03		468	469	470	471	472	473	474	476	477	478
04		479	480	481	482	483	484	486	487	488	489
05		490	491	492	494	495	496	497	498	499	500
06		502	503	504	505	506	507	509	510	511	512
07		513	515	516	517	518	519	521	522	5ここ	524
08		525	527	528	529	530	531	533	534	535	536
09		538	539	540	541	543	544	545	546	548	549
8.10	0.00	550	552	553	554	555	557	558	559	561	562

TABLE XIII. --Continued.
$\log \frac{1}{1-m}$
m negative
that is, when t lies between 6^{h} and 18^{h}.

Log m	0		1	2	3	4	5	6	7	8	9
5. n	$\begin{array}{r} 10.00 \\ 9.99 \end{array}$	000	999	999	999	999	999	998	998	997	997
6.0 n	9.99	996	996	996	995	995	995	995	995	995	995
1 n		995	994	994	994	994	994	994	994	993	993
2 n		993	993	993	993	993	992	992	992	992	992
3 n		991	991	991	991	991	990	990	990	990	989
4 n		989	989	989	988	988	988	988	987	987	987
5 n		986	986	986	985	985	985	984	984	984	983
6 n		983	982	982	982	981	981	980	980	979	979
7 n		978	978	977	977	976	976	975	974	974	973
8 n		973	972	971	971	970	969	969	968	967	966
9 n		966	965	964	963	962	961	960	960	959	958
7.0 n		957	956	955	954	952	951	950	949	948	947
1 n		945	944	943	942	940	939	937	936	934	933
2 n		931	930	928	926	925	923	921	919	917	915
3 n		913	911	909	907	905	903	901	898	896	894
4 n		891	889	886	883	881	878	875	872	869	866
5 n		863	860	856	853	850	846	843	839	835	831
6 n		827	823	819	815	811	806	802	797	793	788
7 n		783	778	773	767	762	757	751	745	739	733
8 n		727	721	714	707	701	694	687	679	672	664
9 n		656	648	640	632	623	615	606	597	587	578
8.00 n		568	567	566	565	564	563	562	561	560	559
01 n		558	557	556	555	554	553	552	551	550	549
02n		548	547	546	545	543	542	541	540	539	538
03n		537	536	535	534	533	532	531	530	529	528
04n		526	525	524	523	522	521	520	519	518	517
05n		515	514	513	512	511	510	509	508	507	505
$06 n$		504	503	502	501	500	499	497	496	495	494
07n		493	492	490	489	488	487	486	485	483	482
08n		481	480	479	477	476	475	474	473	471	470
09n		469	468	467	465	464	463	462	460	459	458
8.10 n	9.99	457	455	454	453	452	450	449	448	447	445

TABLE XIII.--Continued.
$\log \frac{1}{1-m}$
m positive
that is, when ties between 0^{h} and 6^{h}, or 18^{h} and 24^{h}.

Log m	0		1	2	3	4	5	6	7	8	9
8.10	0.00	550	552	553	554	555	557	558	559	561	562
11		563	564	566	567	568	570	571	572	574	575
12		576	578	579	580	582	583	584	586	587	589
13		590	591	593	594	595	597	598	600	601	602
14		604	605	607	608	609	611	612	614	615	616
15		618	619	621	622	624	625	627	628	629	631
16		632	634	635	637	638	640	641	643	644	646
17		647	649	650	652	653	655	656	658	659	661
18		662	664	665	667	669	670	672	673	675	676
19		678	680	681	683	684	686	687	689	691	692
8.20		694	695	697	699	700	702	704	705	707	709
21		710	712	713	715	717	718	720	722	723	725
22		727	729	730	732	734	735	737	739	740	742
23		744	746	747	749	751	753	754	756	758	760
24		761	763	765	767	769	770	772	774	776	777
25		779	781	783	785	787	788	790	792	794	796
26		798	799	801	803	805	807	809	811	813	814
27		816	818	820	822	824	826	828	830	832	834
28		836	838	839	841	843	845	847	849	851	853
29		855	857	859	861	863	865	867	869	871	873
8.30		875	877	879	881	884	886	888	890	892	894
31		896	898	900	902	904	906	909	911	913	915
32		917	919	921	923	926	928	930	932	934	936
33		939	941	943	945	947	950	952	954	956	958
34		961	963	965	967	970	972	974	977	979	981
35		983	986	988	990	993	995	997	000	002	004
36	0.01	007	009	011	014	016	018	021	023	025	028
37		030	033	035	037	040	042	045	047	050	052
38		055	057	059	062	064	067	069	072	074	077
39		079	082	084	087	090	092	095	097	100	102
8.40	0.01	105	107	110	113	115	118	120	123	126	128

TABLE XIII. --Continued.
$\log \frac{1}{1-m}$
m negative
that is, when t lies between 6^{h} and 18^{h}.

Log m	0		1	2	3	4	5	6	7	8	9
8.10n	9.99	457	455	454	453	452	450	449	448	447	445
$11 n$		444	443	442	440	439	438	436	435	434	433
12 n		431	430	429	427	426	425	423	422	421	419
$13 n$		418	417	415	414	413	411	410	409	407	406
$14 n$		405	403	402	401	399	398	396	395	394	392
$15 n$		391	389	388	387	385	384	382	381	380	378
16 n		377	375	374	373	371	370	368	367	365	364
17 n		362	361	359	358	357	355	354	352	351	349
18 n		348	346	345	343	342	340	339	337	336	334
$19 n$		333	331	330	328	326	325	323	322	320	319
8.20n		317	316	314	312	311	309	308	306	305	303
$21 n$		301	300	298	297	295	293	292	290	288	287
22 n		285	284	282	280	279	277	275	274	272	270
23n		269	267	265	264	262	260	259	257	255	254
$24 n$		252	250	248	247	245	243	241	240	238	236
25n		235	233	231	229	228	226	224	222	220	219
26 n		217	215	213	211	210	208	206	204	202	201
27 n		199	197	195	193	191	190	188	186	184	182
28 n		180	178	177	175	173	171	169	167	165	163
$29 n$		161	159	158	156	154	152	150	148	146	144
$8.30 n$		142	140	138	136	134	132	130	128	126	124
31 n		122	120	118	116	114	112	110	108	106	104
32 n		102	100	098	096	094	092	090	088	086	083
$33 n$		081	079	077	075	073	071	069	066	064	062
$34 n$		060	058	056	054	052	049	047	045	043	041
35n		039	036	034	032	030	027	025	023	021	019
36 n		016	014	012	010	007	005	003	001	998	996
37 n	9.98	994	991	989	987	985	982	980	978	975	973
38 n		971	968	966	963	961	959	956	954	952	949
$39 n$		947	944	942	940	937	935	932	930	928	925
8.40 n	9.98	923	920	918	915	913	910	908	905	903	900

TABLE XIIl. --Continued.
$\log \frac{1}{1-\mathrm{m}}$
m positive
that is, when ties between 0^{h} and 6^{h}, or 18^{h} and 24^{h}.

Log m	0		1	2	3	4	5	6	7	8	9
8.40	0.01	105	107	110	113	115	118	120	123	126	128
41		131	134	136	139	142	144	147	150	152	155
42		158	160	163	166	169	171	174	177	179	182
43		185	188	191	193	196	199	202	205	207	210
44		213	216	219	222	224	227	230	233	236	239
45		242	245	247	250	253	256	259	262	265	268
46		271	274	277	280	283	286	289	292	295	298
47		301	304	307	310	313	316	319	323	326	329
48		332	335	338	341	344	347	351	354	357	360
49		363	367	370	373	376	379	383	386	389	392
8.50		396	399	402	405	409	412	415	419	422	425
51		429	432	435	439	442	445	449	452	456	459
52		462	466	469	473	476	480	483	487	490	494
53		497	501	504	508	511	515	518	522	525	529
54		533	536	540	543	547	551	554	558	562	565
55		569	573	576	580	584	587	591	595	599	602
56		606	610	614	618	621	625	629	633	637	640
57		644	648	652	656	660	664	668	672	676	679
58		683	687	691	695	699	703	707	711	715	719
59		723	727	732	736	740	744	748	752	756	760
8.60		764	768	773	777	781	785	789	794	798	802
61		806	811	815	819	823	828	832	836	841	845
62		849	854	858	862	867	871	876	880	884	889
63		893	898	902	907	911	916	920	925	929	934
64		938	943	948	952	957	961	966	971	975	980
65		985	989	994	999	003	008	013	018	022	027
66	0.02	032	037	042	046	051	056	061	066	071	075
67		080	085	090	095	100	105	110	115	120	125
68		130	135	140	145	150	155	160	166	171	176
69		181	186	191	196	202	207	212	217	223	228
8.70	0.02	233	238	244	249	254	260	265	270	276	281

TABLE XIII. --Concluded.
$\log \frac{1}{1-m}$
m negative
that is, when t lies between 6^{h} and 18^{h}.

Log m	0		1	2	3	4	5	6	7	8	9
$8.40 n$	9.98	923	920	918	915	913	910	ソ08	905	903	900
$41 n$		898	895	893	890	888	885	883	880	878	875
42 n		873	870	867	865	862	860	857	854	852	849
43n		847	844	841	839	836	833	831	828	825	823
44 n		820	817	815	812	809	807	804	801	798	796
$45 n$		793	790	787	785	782	779	776	774	771	768
46 n		765	762	760	757	754	751	748	745	743	740
47 n		737	734	731	728	725	722	720	717	714	711
48n		708	705	702	699	696	693	690	687	684	681
$49 n$		678	675	672	669	666	663	660	657	654	651
8.50 n		648	645	642	639	636	633	629	626	623	620
$5 \ln$		617	614	611	608	604	601	598	595	592	588
52 n		585	582	579	576	572	569	566	563	559	556
53 n		553	550	546	543	540	536	533	530	526	523
54 n		520	516	513	510	506	503	499	496	493	489
$55 n$		486	482	479	476	472	469	465	462	458	455
$56 n$		451	448	444	441	437	434	430	426	423	419
57 n		416	412	409	405	401	398	394	390	387	383
58 n		380	376	372	368	365	361	357	354	350	346
$59 n$		342	339	335	331	327	324	320	316	312	308
8.60 n		305	301	297	293	289	285	281	278	274	270
61 n		266	262	258	254	250	246	242	238	234	230
62 n		226	222	218	214	210	206	202	198	194	190
$63 n$		186	182	178	173	169	165	161	157	153	149
$64 n$		144	140	136	132	128	123	119	115	111	106
$65 n$		102	098	094	089	085	081	076	072	068	063
66 n		059	055	050	046	041	037	033	028	024	019
67 n		015	010	006	001	997	992	988	983	979	974
68 n	9.97	970	965	960	956	951	947	942	937	933	928
69 n		923	919	914	909	905	900	895	890	886	881
$8.70 n$	9.97	876	871	867	862	857	852	847	842	838	833

TABLE XIV
Deflection of a Trial Line for Deviations from 1 to 149 Links

σ	$=\underset{\sim}{\sigma} \underset{\sim}{\infty} \underset{\sim}{m}$ が
∞	
\cdots	
\bigcirc	
in	－NoOザ
＋	＝N゙
m	
\sim	
－	 － $0+\infty$ m
－	
n	

TABLE XV
Corrections in Links to Slope Measurements.

TABLE XV - Continued
Corrections in Links to Slope Measurements.

TABLE XV - Continued
Corrections in Links to Slope Measurements.

Slope		$\begin{gathered} 1 \\ \mathrm{ch} \end{gathered}$	$\stackrel{2}{\text { chs. }}$	$\begin{gathered} 3 \\ \text { chs. } \end{gathered}$	$\begin{gathered} 4 \\ \text { chs. } \end{gathered}$	$\begin{array}{r} 5 \\ \text { chs. } \end{array}$	$\begin{array}{r} 6 \\ \text { chs. } \end{array}$	$\begin{gathered} 7 \\ \text { chs. } \end{gathered}$	$\begin{gathered} 8 \\ \text { chs. } \end{gathered}$	$\stackrel{9}{\text { chs. }}$
23										
	04	8.0	16.0	24.0	32.0	40.0	48.0	56.0	64.0	72.0
	13	8.1	16.2	24.3	32.4	40.5	48.6	56.7	64.8	72.9
	22	8.2	16.4	24.6	32.8	41.0	49.2	57.4	65.6	73.8
	31	8.3	16.6	24.9	33.2	41.5	49.8	58.1	66.4	74.7
	39	8.4	16.8	25.2	33.6	42.0	50.4	58.8	67.2	75.6
	48	8.5	17.0	25.5	34.0	42.5	51.0	59.5	68.0	76.5
	56	8.6	17.2	25.8	34.4	43.0	51.6	60.2	68.8	77.4
24	05	8.7	17.4	26.1	34.8	43.5	52.2	60.9	69.6	78.3
	13	8.8	17.6	26.4	35.2	44.0	52.8	61.6	70.4	79.2
	21	8.9	17.8	26.7	35.6	44.5	53.4	62.3	71.2	80.1
25	30	9.0	18.0	27.0	36.0	45.0	54.0	63.0	72.0	81.0
	38	9.1	18.2	27.3	36.4	45.5	54.6	63.7	72.8	81.9
	46	9.2	18.4	27.6	36.8	46.0	55.2	64.4	73.6	82.8
	54	9.3	18.6	27.9	37.2	46.5	55.8	65.1	74.4	83.7
	03	9.4	18.8	28.2	37.6	47.0	56.4	65.8	75.2	84.6
	11	9.5	19.0	28.5	38.0	47.5	57.0	66.5	76.0	85.5
	19	9.6	19.2	28.8	38.4	48.0	57.6	67.2	76.8	86.4
	27	9.7	19.4	29.1	38.8	48.5	58.2	67.9	77.6	87.3
	35	9.8	19.6	29.4	39.2	49.0	58.8	68.6	78.4	88.2
	43	9.9	19.8	29.7	39.6	49.5	59.4	69.3	79.2	89.1
26	51	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0
	58	10.1	20.2	30.3	40.4	50.5	60.6	70.7	80.8	90.9
	06	10.2	20.4	30.6	40.8	51.0	61.2	71.4	81.6	91.8
	14	10.3	20.6	30.9	41.2	51.5	61.8	72.1	82.4	92.7
	22	10.4	20.8	31.2	41.6	52.0	62.4	72.8	83.2	93.6
27	29	10.5	21.0	31.5	42.0	52.5	63.0	73.5	84.0	94.5
	37	10.6	21.2	31.8	42.4	53.0	63.6	74.2	84.8	95.4
	45	10.7	21.4	32.1	42.8	53.5	64.2	74.9	85.6	96.3
	52	10.8	21.6	32.4	43.2	54.0	64.8	75.6	86.4	97.2
	00	10.9	21.8	32.7	43.6	54.5	65.4	76.3	87.2	98.1
	08	11.0	22.0	33.0	44.0	55.0	66.0	77.0	88.0	99.0
	15	11.1	22.2	33.3	44.4	55.5	66.6	77.7	88.8	99.9
	23	11.2	22.4	33.6	44.8	56.0	67.2	78.4	89.6	100.8
	30	11.3	22.6	33.9	45.2	56.5	67.8	79.1	90.4	101.7
	38	11.4	22.8	34.2	45.6	57.0	68.4	79.8	91.2	102.6
28	45	11.5	23.0	34.5	46.0	57.5	69.0	80.5	92.0	103.5
	52	11.6	23.2	34.8	46.4	58.0	69.6	81.2	92.8	104.4
	00	11.7	23.4	35.1	46.8	58.5	70.2	81.9	93.6	105.3
	07	11.8	23.6	35.4	47.2	59.0	70.8	82.6	94.4	106.2
	14	11.9	23.8	35.7	47.6	59.5	71.4	83.3	95.2	107.1

TABLE XV-Continued.
Corrections in Links to Slope Measurements.

Slope		$\begin{array}{r} 1 \\ \mathrm{ch} \end{array}$	$\begin{gathered} 2 \\ \text { chs. } \end{gathered}$	$\begin{gathered} 3 \\ \text { chs. } \end{gathered}$	$\begin{gathered} 4 \\ \text { chs. } \end{gathered}$	$\begin{gathered} 5 \\ \text { chs. } \end{gathered}$	$\begin{gathered} 6 \\ \text { chs. } \end{gathered}$	$\begin{gathered} 7 \\ \text { chs. } \end{gathered}$	$\begin{gathered} 8 \\ \text { chs. } \end{gathered}$	$\begin{gathered} 9 \\ \text { chs. } \end{gathered}$
	21	12.0	24.0	36.0	48.0	60.0	72.0	84.0	96.0	108.0
	29	12.1	24.2	36.3	48.4	60.5	72.6	84.7	96.8	108.9
	36	12.2	24.4	36.6	48.8	61.0	73.2	85.4	97.6	109.8
	43	12.3	24.6	36.9	49.2	61.5	73.8	86.1	98.4	110.7
	50	12.4	24.8	37.2	49.6	62.0	74.4	86.8	99.2	111.6
	57	12.5	25.0	37.5	50.0	62.5	75.0	87.5	100.0	112.5
29	04	12.6	25.2	37.8	50.4	63.0	75.6	88.2	100.8	113.4
	11	12.7	25.4	38.1	50.8	63.5	76.2	88.9	101.6	114.3
	18	12.8	25.6	38.4	51.2	64.0	76.8	89.6	102.4	115.2
	25	12.9	25.8	38.7	51.6	64.5	77.4	90.3	103.2	116.1
	32	13.0	26.0	39.0	52.0	65.0	78.0	91.0	104.0	117.0
	39	13.1	26.2	39.3	52.4	65.5	78.6	91.7	104.8	117.9
	46	13.2	26.4	39.6	52.8	66.0	79.2	92.4	105.6	118.8
	53	13.3	26.6	39.9	53.2	66.5	79.8	93.1	106.4	119.7
30	00	13.4	26.8	40.2	53.6	67.0	80.4	93.8	107.2	120.6
	07	13.5	27.0	40.5	54.0	67.5	81.0	94.5	108.0	121.5
	14	13.6	27.2	40.8	54.4	68.0	81.6	95.2	108.8	122.4
	21	13.7	27.4	41.1	54.8	68.5	82.2	95.9	109.6	123.3
	27	13.8	27.6	41.4	55.2	69.0	82.8	96.6	110.4	124.2
	34	13.9	27.8	41.7	55.6	69.5	83.4	97.3	111.2	125.1
	41	14.0	28.0	42.0	56.0	70.0	84.0	98.0	112.0	126.0
	48	14.1	28.2	42.3	56.4	70.5	84.6	98.7	112.8	126.9
	54	14.2	28.4	42.6	56.8	71.0	85.2	99.4	113.6	127.8
31	01	14.3	28.6	42.9	57.2	71.5	85.8	100.1	114.4	128.7
	08	14.4	28.8	43.2	57.6	72.0	86.4	100.8	115.2	129.6
	14	14.5	29.0	43.5	58.0	72.5	87.0	101.5	116.0	130.5
	21	14.6	29.2	43.8	58.4	73.0	87.6	102.2	116.8	131.4
	28	14.7	29.4	44.1	58.8	73.5	88.2	102.9	117.6	132.3
	34	14.8	29.6	44.4	59.2	74.0	88.8	103.6	118.4	133.2
	41	14.9	29.8	44.7	59.6	74.5	89.4	104.3	119.2	134.1
	47	15.0	30.0	45.0	60.0	75.0	90.0	105.0	120.0	135.0
	54	15.1	30.2	45.3	60.4	75.5	90.6	105.7	120.8	135.9
32	00	15.2	30.4	45.6	60.8	76.0	91.2	106.4	121.6	136.8
	07	15.3	30.6	45.9	61.2	76.5	91.8	107.1	122.4	137.7
	13	15.4	30.8	46.2	61.6	77.0	92.4	107.8	123.2	138.6
	20	15.5	31.0	46.5	62.0	77.5	93.0	108.5	124.0	139.5
	26	15.6	31.2	46.8	62.4	78.0	93.6	109.2	124.8	140.4
	33	15.7	31.4	47.1	62.8	78.5	94.2	109.9	125.6	141.3
	39	15.8	31.6	47.4	63.2	79.0	94.8	110.6	126.4	142.2
	45	15.9	31.8	47.7	63.6	79.5	95.4	111.3	127.2	143.1

TABLE XV - Concluded.
Corrections in Links to Slope Measurements.

Slope		$\begin{gathered} 1 \\ \mathrm{ch} \end{gathered}$	$\begin{gathered} 2 \\ \text { chs. } \end{gathered}$	$\begin{gathered} 3 \\ \text { chs. } \end{gathered}$	$\begin{gathered} 4 \\ \text { chs. } \end{gathered}$	$\begin{gathered} 5 \\ \text { chs. } \end{gathered}$	$\begin{array}{r} 6 \\ \text { chs. } \end{array}$	$\stackrel{7}{\text { chs. }}$	$\begin{gathered} 8 \\ \text { chs. } \end{gathered}$	$\stackrel{9}{\text { chs. }}$
32										
	52	16.0	32.0	48.0	64.0	80.0	96.0	112.0	128.0	144.0
	58	16.1	32.2	48.3	64.4	80.5	96.6	112.7	128.8	144.9
33	04	16.2	32.4	48.6	64.8	81.0	97.2	113.4	129.6	145.8
	11	16.3	32.6	48.9	65.2	81.5	97.8	114.1	130.4	146.7
	17	16.4	32.8	49.2	65.6	82.0	98.4	114.8	131.2	147.6
	23	16.5	33.0	49.5	66.0	82.5	99.0	115.5	132.0	148.5
	29	16.6	33.2	49.8	66.4	83.0	99.6	116.2	132.8	149.4
	36	16.7	33.4	50.1	66.8	83.5	100.2	116.9	133.6	150.3
	42	16.8	33.6	50.4	67.2	84.0	100.8	117.6	134.4	151.2
	48	16.9	33.8	50.7	67.6	84.5	101.4	118.3	135.2	152.1
	54	17.0	34.0	51.0	68.0	85.0	102.0	119.0	136.0	153.0
34	00	17.1	34.2	51.3	68.4	85.5	102.6	119.7	136.8	153.9
	06	17.2	34.4	51.6	68.8	86.0	103.2	120.4	137.6	154.8
	12	17.3	34.6	51.9	69.2	86.5	103.8	121.1	138.4	155.7
	19	17.4	34.8	52.2	69.6	87.0	104.4	121.8	139.2	156.6
	25	17.5	35.0	52.5	70.0	87.5	105.0	122.5	140.0	157.5
	31	17.6	35.2	52.8	70.4	88.0	105.6	123.2	140.8	158.4
	37	17.7	35.4	53.1	70.8	88.5	106.2	123.9	141.6	159.3
	43	17.8	35.6	53.4	71.2	89.0	106.8	124.6	142.4	160.2
	49	17.9	35.8	53.7	71.6	89.5	107.4	125.3	143.2	161.1
	55	18.0	36.0	54.0	72.0	90.0	108.0	126.0	144.0	162.0
35	01	18.1	36.2	54.3	72.4	90.5	108.6	126.7	144.8	162.9
	07	18.2	36.4	54.6	72.8	91.0	109.2	127.4	145.6	163.8
	13	18.3	36.6	54.9	73.2	91.5	109.8	128.1	146.4	164.7
	19	18.4	36.8	55.2	73.6	92.0	110.4	128.8	147.2	165.6
	25	18.5	37.0	55.5	74.0	92.5	111.0	129.5	148.0	166.5
	31	18.6	37.2	55.8	74.4	93.0	111.6	130.2	148.8	167.4
	37	18.7	37.4	56.1	74.8	93.5	112.2	130.9	149.6	168.3
	42	18.8	37.6	56.4	75.2	94.0	112.8	131.6	150.4	169.2
	48	18.9	37.8	56.7	75.6	94.5	113.4	132.3	151.2	170.1
	54	19.0	38.0	57.0	76.0	95.0	114.0	133.0	152.0	171.0
36	00	19.1	38.2	57.3	76.4	95.5	114.6	133.7	152.8	171.9
	06	19.2	38.4	57.6	76.8	96.0	115.2	134.4	153.6	172.8
	12	19.3	38.6	57.9	77.2	96.5	115.8	135.1	154.4	173.7
	18	19.4	38.8	58.2	77.6	97.0	116.4	135.8	155.2	174.6
	23	19.5	39.0	58.5	78.0	97.5	117.0	136.5	156.0	175.5
	29	19.6	39.2	58.8	78.4	98.0	117.6	137.2	156.8	176.4
	35	19.7	39.4	59.1	78.8	98.5	118.2	137.9	157.6	177.3
	41	19.8	39.6	59.4	79.2	99.0	118.8	138.6	158.4	178.2
	46	19.9	39.8	59.7	79.6	99.5	119.4	139.3	159.2	179.1
	52	20.0	40.0	60.0	80.0	100.0	120.0	140.0	160.0	180.0

TABLE XVI

Table for Laying Out Roads One Chain Wide.

Difference of Bearing				告	Difference of Bearing				告	Difference of Bearing				$\xrightarrow{\frac{n}{c}}$
360	$\dot{1}^{\prime} 0$	0		100	275	35			13					
343	52	16		101	274	40	85		136	251	35	108		1
337	16	22	44	102	273	46	86		137	251	06	108	54	172
332	16	27	44	103	272	53	87	07	138	250	38	109	22	173
328	07	31	53	104	272	01	87		139	250	10	109		174
324	30	35	30	105	271	10	88		140	249	42	110	18	175
321	16	38	44	106	270	21	89	39	141	249	15	110	45	176
318	19	41	41	107	269	32	90	28	142	248	48	111	12	177
315	37	44	23	108	268	44	91	16	143	248	22	111	38	178
313	06	46	54	109	267	58	92	02	144	247	56	112	04	179
310	46	49	14	110	267	12	92	48	145	247	30	112	30	180
308	33	51	27	111	266	28	93	32	146	247	05	112	55	181
306	28	53	32	112	265	44	94	16	147	246	40	113	20	182
304	30	55	30	113	265	01	94	59	148	246	15	113	45	183
302	37	57	23	114	264	19	95	41	149	245	50	114	10	184
300	49	59	11	115	263	37	96	23	150	245	26	114	34	185
299	06	60	54	116	262	57	97	03	151	245	03	114	57	186
297	27	62	33	117	262	17	97	43	152	244	39	115	21	187
295	52	64	08	118	261	38	98	22	153	244	16	115	44	188
294	21	65	39	119	260	59	99	01	154	243	53	116	07	189
292	53	67	07	120	260	21	99	39	155	243	31	116	29	190
291	28	68	32	121	259	44	100	16	156	243	09	116	51	191
290	06	69	54	122	259	08	100	52	157	242	47	117	13	192
288	47	71	13	123	258	32	101	28	158	242	25	117	35	193
287	30	72	30	124	257	57	102	03	159	242	03	117	57	194
286	16	73	44	125	257	22	102	38	160	241	42	118	18	195
285	03	74	57	126	256	48	103	12	161	241	21	118	39	196
283	53	76	07	127	256	14	103	46	162	241	01	118	59	197
282	45	77	15	128	255	41	104	19	163	240	40	119	20	198
281	39	78	21	129	255	09	104	51	164	240	20	119	40	199
280	34	79	26	130	254	37	105	23	165	240	00	120	00	200
279	31	80	29	131	254	05	105	55	166					
278	30	81	30	132	253	34	106	26	167					
277	30	82	30	133	253	04	100	56	168					
276	32	83	28	134	252	34	107	26	169					

To Convert Time Into Arc

Hours of Time into Arc

Time	Arc	Time	Arc	Time	Arc	Time	Arc	Time	Arc	Time	Arc
hrs.	0	hrs.	\circ								
1	15	5	75	9	135	13	195	17	255	21	315
2	30	6	90	10	150	14	210	18	270	22	330
3	45	7	105	11	165	15	225	19	285	23	345
4	60	8	120	12	180	16	240	20	300	24	360

Minutes of Time into Arc
Seconds of Time into Arc

m.	- '	m.		m.	- 1	s.	1 "	s.	' ${ }^{\prime}$	s.	1 '
1	$\begin{array}{ll}0 & 15\end{array}$	21	515	41	$10 \quad 15$	1	015	21	515	41	1015
2	030	22	530	42	$10 \quad 30$	2	030	22	530	42	1030
3	045	23	545	43	1045	3	045	23	545	43	1045
4		24		44	110	4	10	24	6	44	11
5	115	25	615	45	1115	5	115	25	615	45	1115
6	130	26	630	46	1130	6	130	26	630	46	1130
7	145	27	645	47	1145	7	145	27	645	47	1145
8	20	28	70	48	120	8	20	28	70	48	12
9	215	29	$7 \quad 15$	49	1215	9	215	29	715	49	12. 15
10	230	30	730	50	1230	10	230	30	30	50	1230
11	245	31	745	51	1245	11	245	31	745	51	1245
12	$3 \begin{array}{ll}3 & 0\end{array}$	32	80	52	130	12	30	32	80	52	13
13	$\begin{array}{lll}3 & 15\end{array}$	33	815	53	1315	13	$\begin{array}{ll}3 & 15\end{array}$	33	815	53	1315
14	330	34	830	54	1330	14	330	34	830	54	1330
15	345	35	845	55	1345	15	345	35	845	55	1345
16		36	90	56	140	16	40	36	90	56	14
17	415	37	915	57	1415	17		37	915	57	14
18	430	38	930	58	1430	18	430	38	930	58	1430
19	445	39	945	59	1445	19	445	39	945	59	1445
20		40	$10 \quad 0$	60	150	20	50	40	$10 \quad 0$	60	15

TABLE XVIII

Conversion of Mean Time Interval To The Equivalent Siderial Time Interval
(Add listed correction to Mean Time Interval)

| Days | Add
 m. | s. | Hours | Add
 m. | s. | | Minutes |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Add |
| :---: |
| |

LIBRARY

FACULTY OF FORESTRY

UAIVERSITY OF TORONTO

TA
622
C353
1913
Supp 7 .

Canada. Topographical Survey Manual of instructions for the survey of dominion lands 8th ed.

Forestry

PLEASE DO NOT REMOVE
CARDS OR SLIPS FROM THIS POCKET

[^0]: * The formula may be deduced as follows:

