8 01537303 OF TORONTO UNIVERSITY 1761 e TA 622 C353 1913 Suppl 4

LIBRARY FACULTY OF FORESTRY UNIVERSITY OF TOPONTO



Canada, Dominica Lands Administration

CANADA

# SUPPLEMENT

TO THE

# Manual of Instructions

FOR THE

Survey of Canada Lands

DETERMINATION OF THE ASTRONOMICAL AND MAGNETIC MERIDIANS

> PROBLEMS CONNECTED WITH THE SYSTEMS OF SURVEY )

> > TABLES

Issued by authority of the Honourable the Minister of Mines and Technical Surveys



### OTTAWA

# 581816 14.4.54

TA 622 C353 1913 Suppl

EDMOND CLOUTIER, C.M.G., O.A., D.S.P. QUEEN'S PRINTER AND CONTROLLER OF STATIONERY OTTAWA, 1953

#### CONTENTS

#### Page

| Preface to 1952 Edition | V11  |
|-------------------------|------|
| Preface to 1917 Edition | viii |
| Index to Notation       | ix   |

#### CHAPTER I - THE ASTRONOMICAL MERIDIAN

| Determination of the Astronomical Meridian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| To Find the Pole Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1  |
| Pole Star Observation for Azimuth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J  |
| Specimen Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *  |
| Determination of the Watch Correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6  |
| Determination of the Watch Correction by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Meridian Transit of a Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6  |
| Determination of the Watch Correction by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Meridian Transit of the Sun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9  |
| Determination of the Watch Correction by Radio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| Time Signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 |
| The Watch Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 |
| Observation on the Sun for Azimuth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 |
| Computation for Sun Observation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14 |
| Specimen Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16 |
| Observation of Polaris for Azimuth on Governing Surveys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 |
| Watch Correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21 |
| Correction for Striding Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21 |
| Determination of the Value of One Turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| of the Micrometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22 |
| Computation for Azimuth Observation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23 |
| General Remarks on Observing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30 |
| and the second s |    |

#### CHAPTER II - DETERMINATION OF THE MAGNETIC MERIDIAN

| Directions for Observing                  | 31 |
|-------------------------------------------|----|
| General Remarks                           | 31 |
| Explanation of Specimen Observation       | 33 |
| Setting a Transit by Means of the Compass | 35 |
| Compass of Cooke Transit                  | 36 |
| The Wild Double Image Prism Compass       | 36 |

#### CHAPTER 111 - INSTRUMENTS

| Transit Theodolite for Governing Surveys | 38 |
|------------------------------------------|----|
| "Optical" Theodolites                    | 38 |
| Instruments for Use on Winter Surveys    | 39 |
| General                                  | 39 |
| Sidereal Watch                           | 40 |
| Steel Tapes                              | 40 |
| Stadia Rods                              | 41 |
| Clinometer                               | 42 |

#### CHAPTER IV - PROBLEMS CONNECTED WITH THE SYSTEM OF SURVEY

| Correction for Height Above Sea-Level            | 43 |
|--------------------------------------------------|----|
| Latitudes and Longitudes of Points in the System | 44 |

| T D |   |   |   |
|-----|---|---|---|
|     | ~ | ~ |   |
|     | æ | ~ | - |

|        | Latit   | ude                                            | 44 |
|--------|---------|------------------------------------------------|----|
|        | Long    | itude, Third System                            | 44 |
|        | Long    | itude, First System                            | 45 |
|        | Long    | itude, Second and Fourth Systems               | 45 |
| Effect | tofE    | rrors of Survey                                | 46 |
| Given  | the L   | atitude and Longitude of a Point, to find its  |    |
| Pos    | ition v | with regard to the System of Survey            |    |
|        | Secor   | nd, Third and Fourth Systems                   | 46 |
| E      | rirst   | System of Survey                               | 41 |
| Fract  | ional   | Iownship or Kange between parts of the         | 47 |
| Cour   | Erro S  | tional Township                                | 41 |
|        | Frac    | tional Pange                                   | 40 |
|        | Firet   | Example                                        | 40 |
|        | Secor   | d Example                                      | 51 |
| Fract  | ional   | Sections Adjoining an Initial Meridian         | 51 |
| Geode  | tic P   | nsitions                                       | 51 |
| Spher  | oidal   | Co. ordinates of Section Corners as Determined | 56 |
| by th  | oiuai   | odetic Survey of Canada (Table)                | 53 |
| by ti  | ie dei  | Succe Barvey of Galada (Table)                 | 55 |
|        | CHAF    | PTER V - CONSTRUCTION AND USE OF THE TABLES    |    |
| Table  | I       | Lengths of Arcs of Meridians, Parallels,       |    |
|        |         | etc., in different Latitudes                   | 57 |
|        |         | Radius of Curvature of a Section of the Spher- |    |
|        |         | oid inclined at any angle to a Meridian        | 59 |
|        |         | Radius of Spherical Curvature                  | 59 |
|        |         | Radius of Spherical Guivature                  | 5) |
| Table  | II      | Corrections to Table I for change in elements  |    |
|        |         | of Figure of Earth                             | 59 |
|        |         |                                                |    |
| Table  | III     | Latitudes of Base and Correction Lines and     |    |
|        |         | Lengths of Arcs of Meridians, Parallels, etc., |    |
|        |         | for First and Second Systems of Survey         | 60 |
|        |         |                                                |    |
| Table  | IV      | Latitudes of Base and Correction Lines, etc.,  |    |
|        |         | for Third and Fourth Systems of Survey         | 62 |
|        |         |                                                |    |
| Table  | V       | Chord Azimuths, etc., for Base Lines, First    |    |
|        |         | and Second Systems of Survey                   | 62 |
|        |         |                                                |    |
| Table  | VI      | Chord Azimuths, etc., for Base Lines, Third    |    |
|        |         | and Fourth Systems of Survey                   | 64 |
| T-11-  | WIT     | Chaud Animutha Jana ata fan Connection         |    |
| Table  | V 11    | Lines First and Greend Furthering of Survey    | 64 |
|        |         | Lines, First and Second Systems of Survey      | 04 |
| Table  | VIII    | Chord Azimuths Logs etc. for Correction        |    |
| Table  | *       | Lines Third and Fourth Systems of Survey       | 65 |
|        |         | sinco, sinta and i outin bystems of barrey     | 00 |
| Table  | IX      | Latitudes, and Widths in Chains, of Northern   |    |
|        |         | Boundaries of Sections in First and Second     |    |
|        |         | Systems of Survey                              | 66 |
|        |         |                                                |    |

Page

|               |                | Boundaries of Sections in Third and Fourth<br>Systems of Survey                                  | 66       |
|---------------|----------------|--------------------------------------------------------------------------------------------------|----------|
| Table         | хı             | Difference of Latitude between Township<br>Corners and Section and Quarter Section<br>Corners    | 67       |
|               |                |                                                                                                  | 0.       |
| Table         | XII            | For Converting Logarithmic Tangents of Small<br>Arcs into Logarithms of Seconds of Arc           | 67       |
| Table         | XIII           | $Log = \frac{1}{1 - m}$ tabulated with log m as argument                                         | 67       |
| Table         | XIV            | Deflection of a Trial Line for Deviations from<br>l to 149 Links at the end of Eighty-One Chains | 68       |
| Table         | хv             | Corrections in Links to Slope Measurements                                                       | 68       |
| Table         | XVI            | Table for Laying Out Roads One Chain Wide                                                        | 68       |
| Table         | XVII           | To Convert Time into Arc                                                                         | 68       |
| Table         | XVIII          | To Converta Mean Time Interval to the Equiv-<br>alent Sidereal Time Interval                     | 69       |
|               |                | THE ASTRONOMICAL FIELD TABLES                                                                    |          |
| Field         | Tables         | for Solar Observations                                                                           | 69       |
| Field         | Tables         | for Star Observations                                                                            | 70       |
| The A<br>Comp | pparen         | of the Azimuth and Altitude of Polaris                                                           | 70<br>72 |
|               |                | TABLES                                                                                           |          |
| I             | Radii          | of Curvature of Meridians and Parallels,                                                         |          |
|               | etc.           |                                                                                                  | 76       |
| II            | Corr           | ections to be applied to the Logarithms of                                                       |          |
|               | R sin          | 1" and N sin 1" in Table I for Clarke's later                                                    |          |
|               | value          | s of the Dimensions of the Earth                                                                 | 84       |
| III           | Latit          | udes, etc., of Base and Correction Lines.                                                        | 0.5      |
|               | FIFSU          | and Second Systems of Survey                                                                     | 85       |
| IV            | Latit<br>Third | udes, etc., of Base and Correction Lines.<br>I System of Survey                                  | 86       |
| v             | Chore          | Azimuths, Deflections, Deflection Offsets,                                                       |          |
|               | etc.,          | for Base Lines. First and Second Systems                                                         | 0.2      |
|               | Ji Du          |                                                                                                  | 92       |
| VI            | Chord<br>etc.  | Azimuths, Deflections, Deflection Offsets,                                                       | 0.7      |
|               | ,              | tor Base Bracs. Third bystem of Survey                                                           | 75       |

Table X Latitudes, and Widths in Chains, of Northern

| VII  | Chord Azimuths, Deflections, Deflection Offsets,<br>Jogs, etc., for Correction Lines. First and<br>Second Systems of Survey                                                                | 95  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| VIII | Chord Azimuths, Deflections, Deflection Offsets,<br>Jogs, etc., for Correction Lines. Third System<br>of Survey                                                                            | 96  |
| IX   | Latitude, with Logarithms of Secant and Tangent<br>for the North Boundary of each Section, and the<br>Widths of Quarter Sections on such Boundaries.<br>First and Second Systems of Survey | 100 |
| х    | Latitude, etc., for the North Boundary of each<br>Section. Third System of Survey                                                                                                          | 107 |
| хı   | Showing the difference of Latitude between Town-<br>ship Corners and Section and Quarter Section<br>Posts on a Township Chord                                                              | 148 |
| XII  | For Converting Logarithmic Tangents of Small<br>Arcs into Logarithms of Seconds of Arc                                                                                                     | 149 |
| XIII | $Log = \frac{1}{1 - m}$ tabulated with log m as argument                                                                                                                                   | 150 |
| XIV  | Deflection of a Trial Line for Deviations from<br>1 to 149 Links at the end of Eighty-one Chains                                                                                           | 156 |
| xv   | Corrections in Links to Slope Measurements                                                                                                                                                 | 157 |
| XVI  | Table for Laying Out Roads One Chain Wide                                                                                                                                                  | 162 |

XVII To Convert Time into Arc ..... XVIII To Convert a Mean Time Interval to the Equivalent Sidereal Time Interval .....

Page

163

164

#### vi

#### Preface to 1952 edition

In 1930 the Dominion Lands in Manitoba, Saskatchewan, Alberta, and British Columbia were transferred to the respective provinces. In 1950, the Territorial Lands Act, describing the public lands of Yukon Territory and Northwest Territories as "Territorial Lands" was passed and the Dominion Lands Act repealed. In December 1951 the Ganada Lands Surveys Act became law and superseded the Dominion Lands Surveys Act which was repealed. The Ganada Lands Surveys Act generally applies to the public lands in Yukon and Northwest Territories, National Parks, and surrendered lands and reserves as defined in the Indian Act. This revision of the 1917 Supplement is, therefore, called the Supplement to the Manual of Instructions for the Survey of Canada Lands.

Chapter I has been slightly revised to agree with modern practice and instruments.

To Chapter II has been added a short description of the Wild Double Image Prism Compass.

Chapter III has been considerably revised. Information has been added on modern optical transits, the care of instruments, and the correction for stretch and sag to measurements made by steel tapes.

A table listing the geodetic latitudes and longitudes of section corners has been added to Chapter IV.

The tables have been extended northward to township 244 in latitude 70\*17'. Columns in the table tabulating data in degrees and decimals have been omitted since transits with this type of division are no longer in use in Ganada. In tables Nos. V, VI, VII, and VIII the convergence of meridians for 100 chains of longitude has been added as a further convension of time to arc and of mean time intervals to sidereal time intervals.

The table to reduce chains to decimals of a township side has been omitted as it was seldom used.

> B. W. Waugh, Surveyor General.

#### Preface to 1917 edition

The first Manual of Instructions for the survey of the Dominion Lands, a small 12 mo pamphlet of thirty-two pages, was prepared in 1871 by Col. J. S. Dennis, Surveyor-General; the title was "Manual showing the System of Survey adopted for the Public Lands of Canada in Manitoba and the North-West Territories, with Instructions to Surveyors." If two spublished by authority of the Honourable the Secretary of State, the Dominion Lands office being then a branch of his department. The Manual contained only one table, "showing the departure in running 81 chains 50 links at any course from 1 to 60 minutes."

The second edition was prepared in 1881, under the direction of Mr. Lindsay Russell, Surveyor-General, by Dr. Deville; it was considerably enlarged, forming a large octavo book of 86 pages. By that time the need of tables specially adapted to the survey of Dominion Lands had become imperative: thirteen tables were calculated by Dr. Deville and Dr. King and were appended to that edition.

A number of editions followed, the fourth, published in 1892, containing six additional tables, or nineteen altogether. The fifth and sixth editions, issued in 1903 and 1905 respectively, contained only eight tables. The tables left out were seldom used and it was considered that when needed they could be consulted in the 1892 edition.

In 1908, when the stock of the fourth edition of the Manual (1892) was exhausted, a reprint of the tables became necessary. They were published as a supplement, and their construction and use fully explained. Problems connected with the system of survey originally published by Dr. King in the Report of the Department of the Interior for 1891, were appended.

For this edition, the Supplement has been completely revised. There have been added two chapters on observing and a chapter briefly describing the instruments kept in stock at the head office, for sale to surveyors employed by the Department. These chapters replace matter which formerly appeared in the Manual of Instructions. The additional chapters and the revision are the work of H. Parry, D. L. S.; he has carefully checked the tables and it is hoped that they will now be found free from errors.

#### INDEX TO THE NOTATION

- a..... equatorial semi-diameter of the earth.
- b..... polar semi-diameter of the earth.
- c.... earth's compression.
- e..... eccentricity.
- h..... altitude of a star.
- K.... distance.
- L.... latitude.
- l ..... elevation above sea-level.
- M ..... longitude.
- N.... length of normal to the meridian.
- P..... radius of parallel of latitude; also polar distance.
- p..... polar distance.
- R.A.... right ascension.
- R..... radius of curvature of meridian.
- S..... radius of curvature.
- t..... hour angle.
- Z..... azimuth.

#### CHAPTER I

#### DETERMINATION OF THE ASTRONOMICAL MERIDIAN

The reference of lines to an astronomic meridian, in order to determine their direction, or to check the accuracy of their production, is most readily made by observations on the Pole star.

The telescopes of most modern surveying transits are amply powerful for observing Polaris at any time during a clear day with the exception of a few hours before or after noon. Many of them are provided with lighting arrangements to facilitate observations at night. For best results observations should be taken within a few hours before dusk or after dawn when the air is not quivering and accurate pointings on the reference object may be made. For night observing the reference object requires to be well lighted. Directing the headlights of an automobile on a line or traverse picket at short range is effective.

#### TO FIND THE POLE STAR

Whether observations are made in the daytime or at night the star must first be found. To set the telescope at solar focus, focus the eyepiece so that the cross hairs or diaphragm markings are clear and distinct. Then point the telescope on a well defined object a half mile or more distant and adjust the objective focus until the image of the object is as sharp as possible. By slight movements of the eyepiece and objective focussing screws continue the adjustment until the sharpest possible images are obtained of the object and the cross hairs which will remain in constant relation to each other when the eye is moved from side to side, i.e., when there is no parallax.

With the sidereal time and the latitude of the place as arguments the azimuth of the Pole star may be taken from the Astronomical Field Tables, a sample page of which is shown in Figure I; its altitude may be obtained from the same tables.

If the observation is being taken along a survey line, the azimuth of the line will be known and the transit may be set to read the azimuth of Polaris. Otherwise, it may be necessary to orient it by means of the magnetic compass making due allowance for the magnetic declination of the place of observation. When the horizontal plate is properly set, it is merely necessary to tilt the telescope to the proper altitude in order to bring the star into the telescope's field of view.

Practice and patience are required to discover the star in daylight. A slight to and fro motion of the horizontal tangent screw gives a relative motion to the star which aids in its perception and insures that it is not behind the vertical wire of the diaphragm. Once the star is found, the focus of the telescope may be readjusted if necessary. When the solar focus is properly set it is good practice, where possible, to mark the focussing screw with a knife cut or other device so that it can again be brought to the same setting. On some instruments this is not possible. Correct focus is necessary for finding the star in daytime.

### ASTRONOMICAL FIELD TABLES

| ude   | Star | real           | AZIMUTH OF POLE STAR |             |             |             |             |             |             | ees         |             |      |
|-------|------|----------------|----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
| Altit | Pole | Side<br>Tin    | Lat.<br>44°          | Lat.<br>46° | Lat.<br>48° | Lat.<br>50° | Lat.<br>52° | Lat.<br>54° | Lat.<br>56° | Lat.<br>58° | Lat.<br>60° | Degr |
| 1     | 27'  | h. m.<br>18 00 | 100                  | 12:5        | 15.2        | 18:2        | 21.6        | 25:4        | 297         | 34.6        | 40.2        |      |
| N     | 25   | 10             | 11.6                 | 14.1        | 16.9        | 20.0        | 23.5        | 27.4        | 31.8        | 36.8        | 42.5        |      |
| 02    | 23   | 20             | 13-1                 | 15.6        | 18.5        | 21.6        | 25.2        | 29.2        | 33.7        | 38.8        | 44.6        |      |
| E     | 20   | 30             | 14.4                 | 17.0        | 19.9        | 23.1        | 26.7        | 30.8        | 35.4        | 40.6        | 46.5        |      |
| HE    | 18   | 40             | 15.6                 | 18.2        | 21.2        | 24.5        | 28.1        | 32.3        | 37.0        | 42.2        | 48.3        |      |
| 191   | 16   | 50             | 16.6                 | 19.3        | 22.3        | 25.6        | 29.4        | 33.6        | 38.3        | 43.7        | 49.8        |      |
| 2E    | 13   | 19 00          | 17.5                 | 20.2        | 23.3        | 26.6        | 30.4        | 34.7        | 39.5        | 44.9        | 51.2        |      |
| E C   | 08   | 10             | 10.2                 | 21.6        | 24.1        | 20.2        | 32.0        | 36.1        | 40.5        | 46.0        | 53.2        |      |
| 15    | 00   | 20             | 10 2                 | 221         | 24.1        | 202         | 32.0        | 30.4        | 415         | 400         | 57.0        |      |
| Ø     | 03   | 30             | 19.5                 | 22.1        | 25.5        | 201         | 33.0        | 37.1        | 41.9        | 41.5        | 51.1        |      |
|       | 01   | 50             | 19.7                 | 22.6        | 25.7        | 29.2        | 33.2        | 37.6        | 42.6        | 48.2        | 54.7        |      |
| -     | 02   | 20.00          | 19.7                 | 22.6        | 25.7        | 20.2        | 33.2        | 37.6        | 12.6        | 48.2        | 54.7        |      |
|       | 04   | 10             | 19.6                 | 22.4        | 25.6        | 29.1        | 33.0        | 37.4        | 42.4        | 48.1        | 54.6        |      |
|       | 07   | 20             | 19.3                 | 22.1        | 25.2        | 28.7        | 32.7        | 37.1        | 42.0        | 47.7        | 54.2        |      |
|       | 09   | 30             | 18.8                 | 21.6        | 24.7        | 28.2        | 32.2        | 36.5        | 41.5        | 47.2        | 53.6        | 0    |
|       | 12   | 40             | 18.2                 | 21.0        | 24.1        | 27.6        | 31.5        | 35.8        | 40.7        | 46.4        | 52.8        | -    |
|       | 14   | 50             | 17.4                 | 20.2        | 23.3        | 26.7        | 30.6        | 34.9        | 39.8        | 45.4        | 51.7        |      |
|       | 16   | 21 00          | 16.5                 | 19.3        | 22.3        | 25.7        | 29.5        | 33.8        | 38.7        | 44.2        | 50.5        |      |
| E     | 19   | 10             | 15.5                 | 18.2        | 21.2        | 24.6        | 28.3        | 32.6        | 37.3        | 42.8        | 49.0        | 1    |
| 18    | 21   | 20             | 14.3                 | 16.9        | 19.9        | 23.2        | 26.9        | 31.1        | 33.8        | 41.2        | 4/.3        |      |
| E     | 25   | 30             | 12.9                 | 15.5        | 18.5        | 21.7        | 25.4        | 29.5        | 34.1        | 39.4        | 45.4        |      |
| E     | 20   | 40             | 11.4                 | 14.0        | 15.1        | 20.1        | 23.1        | 25.7        | 30.2        | 35.2        | 43.3        |      |
|       | 20   | 50             | 030                  | 12.5        | 13.1        | 10.5        | 210         | 23.7        | 07.0        | 33.2        | 41.0        |      |
|       | 32   | 22 00          | 06.1                 | 09.5        | 11.2        | 10.3        | 19.1        | 23.3        | 25.5        | 30.3        | 35.0        |      |
| E     | 34   | 20             | 04.1                 | 06.4        | 09.0        | 11.9        | 15.1        | 18.8        | 22.9        | 27.6        | 33.0        |      |
| A     | 36   | 30             | 02.0                 | 042         | 06.7        | 09.5        | 12.6        | 16.2        | 20.2        | 24.7        | 29.9        |      |
| 9     | 38   | 40             | 59.7                 | 01.9        | 04.3        | 07.0        | 10.0        | 13.4        | 17.2        | 21.6        | 26.6        |      |
|       | 40   | 50             | 57.3                 | 59.4        | 01.7        | 04.3        | 07.2        | 10.5        | 14.1        | 18.4        | 23.2        |      |
|       | 42   | 23 00          | 54.8                 | 56.8        | 59.0        | 01.5        | 04.3        | 07.4        | 10.9        | 15.0        | 19.6        |      |
|       | 44   | 10             | 52.2                 | 54.1        | 56.2        | 58.6        | 01.2        | 04.2        | 07.6        | 11.4        | 15.8        |      |
|       | 45   | 20             | 49.5                 | 51.3        | 53.3        | 55.5        | 58.0        | 00.9        | 041         | 07.7        | 11.9        |      |
|       | 47   | 30             | 46.7                 | 48.4        | 50.3        | 52.4        | 54.7        | 57.4        | 00.5        | 03.9        | 078         | . 1  |
|       | 48   | 40             | 43.8                 | 45.4        | 47.1        | 49.1        | 51.3        | 53.8        | 56.7        | 59.9        | 03.6        | ° I  |
|       | 49   | 50             | 40.8                 | 42.2        | 43.9        | 43.8        | 47.8        | 50.2        | 32.8        | 10.8        | 59.5        |      |

ALTITUDE AND AZIMUTH OF POLARIS

## FIGURE |

#### POLE STAR OBSERVATION FOR AZIMUTH

The maximum error in the azimuth of the Pole star, as determined from the field tables, is about 0.5 minutes. Where azimuth observations are required to an accuracy of one or two minutes only, the calculations may be made from the data contained in them.

For all astronomical work, whether for time or azimuth, the instrument must be very firmly set up and carefully levelled. In surveying a lot, subdividing a township, or making a traverse, an observation for azimuth is made with one of the survey lines as a reference line. In each case the bearing by account is generally near enough to the azimuth for the purpose of setting the instrument and finding the star. The reference object should be about one half mile or more distant, so that it can be sighted without parallax when the instrument is at solar focus.

#### SPECIMEN OBSERVATIONS

Specimen azimuth observations are shown on page 4 The following notes refer to the observation on the upper half of the page.

The observation is supposed to have been made with a double centre transit to determine the bearing of the westerly boundary of lots 14 to 20, range 1, in the townsite of Waskesiu very near the northeast corner of section 8, township 57, range 1, west of the 3rd initial meridian. The bearing of this reference line is to be referred to the astronomical meridian through the centre of the township.

The bearing of the reference line is known to be about 177\*08'. Set the vernier of the horizontal circle to read 177\*08'. Using the lower clamp and tangent screw, and with the vertical circle to the right, direct the telescope on the reference line. Read verniers A and B and enter their mean under the heading, H.C.R. on Ref. Line, Circle Right (177\*08').

From Table X, in this Supplement, note that the latitude of the place is  $53^{\circ}55^{\circ}$ ; the sidereal watch reads about  $19h\ 10^{\rm m}$ . Entering the Astronomical Field Tables (Figure I), with these arguments, the azimuth of the Pole star is given as  $1^{\circ}35'.$  Loosen the upper clamp and set the vernier of the horizontal plate to read  $1^{\circ}35^{\circ}$ .

At sidereal time  $19^{h} \ 10^{m}$ it is necessary to subtract 11' from the latitude of the place to obtain the altitude of Polaris (Figure I); therefore, the altitude is  $53^{*}55^{+}11' = 53^{*}44'$ . Set the telescope at this altitude and Polaris should be in the field of view.

With the vertical tangent screw bring the star to a point immediately above or below the horizontal cross hair, then bisect the star with the vertical cross hair using the upper tangent screw. Note and enter the watch time of the bisection to the nearest second under the heading, Watch Time, Circle Right  $(19^{h} 12^{m} 16^{5})$ .

Since the vertical cross hair will entirely cover the star, it is good practice to make two or three trial pointings before making the final setting, which in this operation as in all others, should be made by

# POLE STAR OBSERVATIONS FOR AZIMUTH

| Date Nov. 15th, 1951. Ref. line W. By Lots. 14 to 20, R. 1          |                                                         |          |                       |                                                                   |        |                 |  |  |  |  |
|---------------------------------------------------------------------|---------------------------------------------------------|----------|-----------------------|-------------------------------------------------------------------|--------|-----------------|--|--|--|--|
| Place NW.Cor. Lot 14, R.I, Townsite Waskesiu - Approx. Lat. 53" 55" |                                                         |          |                       |                                                                   |        |                 |  |  |  |  |
| observer.                                                           | Ubserver J. Loe Instrument Look 7.5 No. 7650            |          |                       |                                                                   |        |                 |  |  |  |  |
| Circle                                                              | Circle H.C.R. on Ref. line H.C.R. on Polaris Watch Time |          |                       |                                                                   |        |                 |  |  |  |  |
| Right                                                               | 177° 08'                                                |          | ° 34'                 | 19 <sup>h</sup>                                                   | 127    | /6 <sup>s</sup> |  |  |  |  |
| Left                                                                | 357 07                                                  | 181      | 35                    | 19                                                                | /5     | 24              |  |  |  |  |
| Mean                                                                | 177 07.5                                                | /°       | 34:5                  | 19                                                                | 13     | 50              |  |  |  |  |
| Tab.az.for.                                                         | 19 n. 10 m. Lat. 52" /                                  | ° 31'3   | Watch Corr.           | · · · ·                                                           |        | 12              |  |  |  |  |
| Difference                                                          | for 4 m. 02 .5. +                                       | 0.3      | Sid. Time             | 19                                                                | 14     | 02              |  |  |  |  |
| Difference                                                          | For 1° 55' Lat. +                                       | 4.1      | NOTE:                 | NOTE : IF, after observation,                                     |        |                 |  |  |  |  |
| Azimuth                                                             | of Polaris                                              | ° 35. 7  | any defle<br>made, th | any deflection in the line was<br>made, the following information |        |                 |  |  |  |  |
| H.C.R. on                                                           | Polaris                                                 | 34.5     | should b              | e supp                                                            | plied. |                 |  |  |  |  |
| Correction                                                          | n to H.C.R. +                                           | 1.2      |                       |                                                                   |        | 13              |  |  |  |  |
| H.C.R. on Ref. line 177 07.5 Amount Nil. Direction                  |                                                         |          |                       |                                                                   |        |                 |  |  |  |  |
| Azimuth                                                             | of Ref. line                                            | 77° 08.7 | Place                 |                                                                   |        |                 |  |  |  |  |
| Convergence for   mi. + 1.2                                         |                                                         |          |                       |                                                                   |        |                 |  |  |  |  |
| Bearing of Ref. line                                                |                                                         |          |                       |                                                                   |        |                 |  |  |  |  |

| Date         Dec. 10 <sup>th</sup> ,         1951         Ref. line, N. By. Sec. 24,99,2, W. 6 <sup>th</sup> Place         20 Chs. W. of N.E. Cor. Sec. 24         — Reprox., Lat. 57°, 37'           Observer         J. Doe         Instrument         Wild T.S. No. 500 |                                                        |       |          |                                                                                                                            |        |                 |      |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------|----------|----------------------------------------------------------------------------------------------------------------------------|--------|-----------------|------|--|--|
| Circle                                                                                                                                                                                                                                                                     | Circle H.C.R. on Ref line H.C.R. on Polaris Watch Time |       |          |                                                                                                                            |        |                 |      |  |  |
| Right                                                                                                                                                                                                                                                                      | 295° 21'                                               |       | 23°      | 49'                                                                                                                        | 94     | 58 <sup>m</sup> | 26 5 |  |  |
| Left                                                                                                                                                                                                                                                                       | 115 19                                                 |       | 203      | 50                                                                                                                         | 10     | 01              | 05   |  |  |
| Mean                                                                                                                                                                                                                                                                       | 295 20                                                 |       | 23°      | 49:5                                                                                                                       | 9      | 59              | 45   |  |  |
| Tab.az.for                                                                                                                                                                                                                                                                 | 9h.50m.Lat.56°                                         | 358   | 3° 32.'0 | Wałch Corr.                                                                                                                |        | /               | 10   |  |  |
| Differenc                                                                                                                                                                                                                                                                  | e for 8 m, 35.s.                                       | +     | 2.1      | Sid Time                                                                                                                   | 9      | 58              | 35   |  |  |
| Difference                                                                                                                                                                                                                                                                 | o for 1°37'Lat.                                        | -     | 3.9      | NOTE : If, after observation ,<br>any deflection in the line was<br>made, the following information<br>should be supplied. |        |                 |      |  |  |
| Azimuth                                                                                                                                                                                                                                                                    | of Polaris                                             | 358   | 3° 30'2  |                                                                                                                            |        |                 |      |  |  |
| H.C.R. on                                                                                                                                                                                                                                                                  | Polaris                                                | 2:    | 3 49.5   |                                                                                                                            |        |                 |      |  |  |
| Correctio                                                                                                                                                                                                                                                                  | on to H.C.R                                            | - 2:  | 5 19 3   |                                                                                                                            |        |                 |      |  |  |
| H.C.R.on I                                                                                                                                                                                                                                                                 | Ref. line                                              | 29    | 5 20     | Amount.                                                                                                                    | 3.'o D | )irection       | n ./ |  |  |
| Azimuth a                                                                                                                                                                                                                                                                  | of Ref. line                                           | 00'.7 | Place .^ | E.Cor.                                                                                                                     | Sec, 2 | 27              |      |  |  |
| Converge                                                                                                                                                                                                                                                                   | ence for 2¾mi.                                         |       | 3.7      |                                                                                                                            |        |                 |      |  |  |
| Bearing                                                                                                                                                                                                                                                                    | of Ref.line                                            | 26    | 9° 57′0  |                                                                                                                            |        | -               |      |  |  |

turning the tangent screw in a positive, or clockwise, direction.

Read the horizontal plate verniers A and B and enter the mean under the heading, H. C. R. on Polaris, Circle Right (1°34').

This completes only the first half of the observation because, for azimuth work, it is essential that all observations be made in the two positions of the instrument - circle right, and circle left.

To complete the observation, transit the telescope, set the horizontal circle to read the azimuth of Polaris plus 180°, and reset the atitude in the telescope's new position. Repeat the setting on Polaris as before, entering the Watch Time  $(19^h 15^m 24^8)$ , and the H. C. R. on Polaris (181°35') in their respective places. Point the telescope on the reference line, read the horizontal circle, and enter under Circle Left (357°07').

The observation is now complete and the next step is to calculate the bearing of the reference line.

First, mean the horizontal circle readings on the reference line (177%075), and on Polaris (1\*345), and mean the watch times (19<sup>h</sup> 13<sup>m</sup>50<sup>s</sup>). Let the correction to the watch be  $\pm 12^{s}$ , which makes the sidereal time 19<sup>h</sup> 14<sup>tm</sup>02<sup>s</sup> (methods of determining the watch correction are described in the next section).

From the Field Tables (Figure I), the azimuth of the Pole star at 19<sup>h</sup> 10<sup>m</sup>for latitude 52° is 1°31:3, and at 19<sup>h</sup> 20<sup>m</sup>it is 1°32:0. By direct proportion, the correction to obtain the azimuth at 19<sup>h</sup> 14<sup>m</sup>02<sup>s</sup> is +0!3. Similarly, by direct proportion, the correction to obtain the azimuth at latitude 53°55', the latitude of the place, is +4!1. With these corrections, the azimuth of Polaris is 1°35!7 at the mean time of the observation.

The mean H. C. R. on Polaris, as calculated above, is 1°34!5. Therefore, the correction to the horizontal circle readings to give true azimuths is 1°35!7 - 1°34!5 = +1!2. Applying this correction to the mean H. C. R. on the reference line gives the true azimuth as 177°08!7.

The reference meridian for the survey is the meridian through the centre of the township, almost exactly 1 mile east of the observation point. From the convergence scale of the Field Tables (Figure 2), the convergence per mile at latitude 53°55' is 1!2. The bearing of the reference line referred to the central meridian of the township is, therefore, 177°08!7 + 1!2 = 177°09!9, or 177°10'.

Since the observation was taken for the purpose of determining the bearing only of a survey line, no deflection is to be made and the word 'nil' is entered under the proper heading.

The observation on the lower half of page 4 is supposed to have been taken on the north boundary of section 24, Tp. 99, R. 2, W. of the 6th meridian. The chord has been run east from the control meridian and the place of observation was a point 20 chains W. of the N.E. corner of the section, the reference line lying to the west. Because a single-centre instrument was used, the horizontal plate could not be set to read azimuths.

The bearing of the reference line is known to be about 270°00' making the horizontal circle reading of 295°21' on the line 25°21' greater than the true bearing. From the Astronomical Field Tables (the relevant page is not reproduced here), the azimuth of Polaris for the time and place is about 358°34', to which must be added 25°21' to obtain the setting for the horizontal plate in order to find the star.

The remainder of the proceedings and calculations are the same as in the preceding observation, except that as the bearing of the line is required to be 270°00' it must be corrected by a deflection northward of 3 minutes. Entries recording deflections must never be neglected.

#### DETERMINATION OF THE WATCH CORRECTION

The watch may be set approximately to local sidereal time by several means. One of these, which involves a knowledge of the local standard time, is given in the Astronomical Field Tables (Figure 2). If the standard time is not known it may be possible to obtain it from radio time signals. Otherwise, an approximation of apparent mean noon and hence of mean noon may be obtained by observing the time of the highest altitude of the sun.

A convenient fact to remember is that around March 21 the local mean time and the local sidereal time are the same, and about September 21 the sidereal time is 12 hours in advance of mean time.

When the sidereal time is known approximately, an observation on the Pole star for azimuth will provide an approximate value of the astronomical meridian on which the time may be observed by the methods that follow. The watch correction thus obtained may be used in re-working the azimuth observation and thus providing a more accurate meridian from which the time may be re-observed. The watch correction should be determined shortly before or after an azimuth observation.

#### DETERMINATION OF THE WATCH CORRECTION BY THE MERIDIAN TRANSIT OF A STAR

During the progress of a survey the bearings of the lines" surveyed are known. By applying the convergence from the reference meridian, the azimuth of the astronomical meridian may be calculated and the instrument set on it. If the telescope is then set at the altitude of a time star, the watch time of its transit of the meridian may be observed. The sidereal times of transit of a number of suitable stars are given in the Astronomical Field Tables (not reproduced here). The magnitudes and Polar distances of the stars are also given. The altitude on the meridian to the south may be calculated by subtracting the Polar distance from the supplement of the latitude. In selecting a time star to be used in daylight, it should be remembered that stars are more difficult to see south of the zenith than north of it, and that this difficulty increases as the altitude decreases.



CONVERSION STANDARD TIME TO LOCAL SIDEREAL TIME CONVERGENCE FIGURE 2

### ASTRONOMICAL FIELD TABLES

For the first specimen of azimuth observation given in the preceding section, a convenient star would be a Aquilae. From the Astronomical Field Tables, its magnitude is 1, so that it should be easy to see; its time of meridian transit, for Nov. 15, 1951, is 19h 48m26<sup>s</sup>, which allows sufficient time to set the transitafter completing the azimuth observation.

Its altitude on the meridian is  $(180^{\circ}-53^{\circ}55^{\circ}) - 81^{\circ}16^{\circ}$  (Polar distance) =  $44^{\circ}49^{\circ}$ .

The bearing by account of the reference line is  $177^{\circ}08^{\circ}$  and the convergence to be subtracted to obtain azimuths is 1.2. Set the horizontal circle at  $177^{\circ}07^{\circ}$ , and sight if on the reference line with the lower horizontal movement. Loosen the upper clamp and turn the transit so that the vernier reads  $180^{\circ}$ . Set the altitude of the star on the vertical circle. Note the time the star passes the vertical wire of the transit, and calculate the watch correction:

| Watch time of meridian transit<br>of a Aquilae    | 19h 48m14s      |
|---------------------------------------------------|-----------------|
| Sidereal time of meridian transit<br>of a Aquilae | 19h 48m26s      |
| Watch Correction, Nov. 15<br>(watch slow)         | 12 <sup>s</sup> |

Since, from the azimuth observation, the bearing by account was in error by about 2 minutes of arc, the setting for the astropomoral meridian was also in error by 2 minutes. The error thus introduced into the watch correction can be calculated from the formula  $4 \ge 2 \ge 36$  seconds, where h and  $\delta$  are the altitude and declination of the star respectively. Substituting, we get,  $4 \ge 2 \ge 36$  seconds. Since the bearing by account is 2 minutes less than the true bearing, the azimuth of the astronomic meridian set on the transit will actually be  $180^{\circ}02^{\circ}$  and the sidereal time of the observation will be  $19^{h} 48^{m}32^{s}$  instead of  $19^{h} 48^{m}26^{s}$  making the watch correction +  $18^{5}$ .

The effect of the error of the watch correction (5.6 seconds) on the observed azimuth would be less than .01 minute and can be neglected.

To obtain the watch correction for the second specimen azimuth observation, a Leonis, magnitude 1.3, would be suitable although there is a very small interval of time after the completion of the observation to set the transit for the time star. The reading on the horizontal circle when the transit is set on the reference line with circle right is  $295^{\circ}21^{\circ}$ . The bearing of the reference line by account is  $270^{\circ}001^{\circ}$  and the convergence to the reference end is 317. The azimuth of the reference line is therefore  $270^{\circ}0317$ . The angle between the reference line and the astronomic meridian towards the south is  $270^{\circ}0317^{\circ}$ . To set the transit in the astronomic meridian, the horizontal plate should be made to read  $295^{\circ}21^{\circ} - 90^{\circ}0317^{\circ}$ . The altitude setting for the time star is  $(180^{\circ}-57^{\circ}377^{\circ}) - 77^{\circ}48^{\circ} = 44^{\circ}35^{\circ}$ .

| Watch time of meridian transit<br>of a Leonis    | 10 <sup>h</sup> 07 <sup>m</sup> 00 <sup>s</sup> |
|--------------------------------------------------|-------------------------------------------------|
| Sidereal time of meridian<br>transit of a Leonis | 10h 05m50s                                      |
| Watch Correction, Dec. 10<br>(watch fast)        | - 1 <sup>m</sup> 10 <sup>s</sup>                |

The correction due to the error in azimuth is not calculated.

#### DETERMINATION OF WATCH CORRECTION BY THE MERIDIAN TRANSIT OF THE SUN

The determination of the watch correction by means of the meridian transit of the sun is convenient for several reasons: the observation is made at a time of the day when the instrument is usually on line and can be readily set in the meridian; there is no difficulty in finding the sun; and it can be observed through light clouds or haze when stars are invisible.

The observation is simple. The telescope is set in the meridian as for a star, and the sun glass is attached to the eyepiece. The watch time when each limb of the sun crosses the vertical thread of the diaphragm is noted, and the mean of the two gives the watch time of the meridian transit. The sidereal time of the observation equals the Apparent Right Ascension of the Sun. It may be calculated from Apparent Right Ascension and Declination of the Sun, in the Astronomical Field Tables - a sample page of which is shown in Figure 3.

An example, based on the first specimen of azimuth observation, follows:

| Date - Nov. 15, 1951.                        |                                                 |
|----------------------------------------------|-------------------------------------------------|
| Place - NW. Cor. lot 14, R.1, Waskesiu Towns | site,                                           |
| Watch time, transit of first limb            | 15 <sup>h</sup> 19 <sup>m</sup> 25 <sup>s</sup> |
| Watch time, transit of second limb           | 15 <sup>h</sup> 21 <sup>m</sup> 41 <sup>s</sup> |
| Mean                                         | 15h 20m33s                                      |

From the Astronomical Field Tables (Figure 3), the sun's apparent right ascension at Greenwich apparent noon, on Nov. 15, 1951, is 15<sup>h</sup> 19<sup>m</sup>33<sup>s</sup>, and the variation in 1 hour is + 10<sup>2</sup>2.

The place of observation is near the northeast corner of section 8, township 57, range 1, west of the 3rd initial meridian. The longitude of the third meridian is  $106^{+}$  W. The northeast corner of section 8 is four sixths of a range west of the 3rd meridian, which from Table IV of the Supplement, is 0.1 degrees ( $05^{+}57^{+}$ ) west, fixing the longitude of the place as  $106.1^{+}$  W.

The elapsed time equivalent to 106.1 degrees of longitude

| Month                      | 1951                                                         |                                                                              |                                                                  |                                                                                         |                            |  |  |  |  |  |  |
|----------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|
| Day of                     | September                                                    | October                                                                      | November                                                         | December                                                                                | Day of N                   |  |  |  |  |  |  |
| 1<br>2<br>3                | h. m. s. s.<br>10 39 33 9 1<br>10 43 11 9 1<br>10 46 48 9 1  | h. m. s. s.<br>12 27 31 9·0<br>12 31 08 9·1<br>12 34 46 9·1                  | h. m. s. s.<br>14 23 29 9.8<br>14 27 24 9.8<br>14 31 20 9.8      | h. m. s. s.<br>16 26 58 10 8<br>16 31 17 10 8<br>16 35 36 10 8                          | 1<br>2<br>3                |  |  |  |  |  |  |
| 4                          | 10 50 25 9.0                                                 | 12 38 24 9·1                                                                 | 14 35 16 9.9                                                     | 16 39 57 10.9                                                                           | 4                          |  |  |  |  |  |  |
| 5                          | 10 54 02 9.0                                                 | 12 42 02 9·1                                                                 | 14 39 14 9.9                                                     | 16 44 18 10.9                                                                           | 5                          |  |  |  |  |  |  |
| 6                          | 10 57 39 9.0                                                 | 12 45 41 9·1                                                                 | 14 43 12 9.9                                                     | 16 48 39 10.9                                                                           | 6                          |  |  |  |  |  |  |
| 7                          | 11 01 15 9·0                                                 | 12 49 20 9·1                                                                 | 14 47 11 10.0                                                    | 16 53 01 10.9                                                                           | 7                          |  |  |  |  |  |  |
| 8                          | 11 04 51 9·0                                                 | 12 52 59 9·1                                                                 | 14 51 11 10.0                                                    | 16 57 24 10.9                                                                           | 8                          |  |  |  |  |  |  |
| 9                          | 11 08 27 9·0                                                 | 12 56 39 9·2                                                                 | 14 55 12 10.0                                                    | 17 01 46 11.0                                                                           | 9                          |  |  |  |  |  |  |
| 10                         | 11 12 03 9.0                                                 | 13 00 19 9·2                                                                 | 14 59 13 10·1                                                    | 17 06 10 11.0                                                                           | 10                         |  |  |  |  |  |  |
| 11                         | 11 15 39 9.0                                                 | 13 03 59 9·2                                                                 | 15 03 15 10·1                                                    | 17 10 34 11.0                                                                           | 11                         |  |  |  |  |  |  |
| 12                         | 11 19 14 9.0                                                 | 13 07 40 9·2                                                                 | 15 07 19 10·2                                                    | 17 14 58 11.0                                                                           | 12                         |  |  |  |  |  |  |
| 13                         | 11 22 49 9.0                                                 | 13 11 22 9·2                                                                 | 15 11 23 10.2                                                    | 17 19 22 11.0                                                                           | 13                         |  |  |  |  |  |  |
| 14                         | 11 26 25 9.0                                                 | 13 15 04 9·3                                                                 | 15 15 28 10.2                                                    | 17 23 47 11.0                                                                           | 14                         |  |  |  |  |  |  |
| 15                         | 11 30 00 9.0                                                 | 13 18 46 9·3                                                                 | 15 19 33 10.2                                                    | 17 28 12 11.1                                                                           | 15                         |  |  |  |  |  |  |
| 16                         | 11 33 35 9.0                                                 | 13 22 29 9.3                                                                 | 15 23 40 10·3                                                    | 17 32 38 11 · 1                                                                         | 16                         |  |  |  |  |  |  |
| 17                         | 11 37 10 9.0                                                 | 13 26 13 9.3                                                                 | 15 27 47 10·3                                                    | 17 37 04 11 · 1                                                                         | 17                         |  |  |  |  |  |  |
| 18                         | 11 40 45 9.0                                                 | 13 29 57 9.4                                                                 | 15 31 56 10·4                                                    | 17 41 30 11 · 1                                                                         | 18                         |  |  |  |  |  |  |
| 19                         | 11 44 20 9.0                                                 | 13 33 42 9.4                                                                 | 15 36 05 10.4                                                    | 17 45 56 11.1                                                                           | 19                         |  |  |  |  |  |  |
| 20                         | 11 47 55 9.0                                                 | 13 37 28 9.4                                                                 | 15 40 15 10.4                                                    | 17 50 22 11.1                                                                           | 20                         |  |  |  |  |  |  |
| 21                         | 11 51 31 9.0                                                 | 13 41 14 9.4                                                                 | 15 44 26 10.5                                                    | 17 54 49 11.1                                                                           | 21                         |  |  |  |  |  |  |
| 22                         | 11 55 06 9.0                                                 | 13 45 01 9.5                                                                 | 15 48 37 10.5                                                    | 17 59 15 11.1                                                                           | 22                         |  |  |  |  |  |  |
| 23                         | 11 58 41 9.0                                                 | 13 48 48 9.5                                                                 | 15 52 50 10.5                                                    | 18 03 42 11.1                                                                           | 23                         |  |  |  |  |  |  |
| 24                         | 12 02 17 9.0                                                 | 13 52 36 9.5                                                                 | 15 57 03 10.6                                                    | 18 08 08 11.1                                                                           | 24                         |  |  |  |  |  |  |
| 25                         | 12 05 53 9.0                                                 | 13 56 25 9.6                                                                 | 16 01 17 10.6                                                    | 18 12 35 11.1                                                                           | 25                         |  |  |  |  |  |  |
| 26                         | 12 09 29 9.0                                                 | 14 00 15 9.6                                                                 | 16 05 32 10.6                                                    | 18 17 02 11.1                                                                           | 26                         |  |  |  |  |  |  |
| 27                         | 12 13 05 9.0                                                 | 14 04 05 9.6                                                                 | 16 09 48 10.7                                                    | 18 21 28 11.1                                                                           | 27                         |  |  |  |  |  |  |
| 28<br>29<br>30<br>31<br>32 | 12 16 41 9.0<br>12 20 17 9.0<br>12 23 54 9.0<br>12 27 31 9.0 | 14 07 57 9.6<br>14 11 49 9.7<br>14 15 41 9.7<br>14 19 35 9.7<br>14 23 29 9.8 | 16 14 04 10·7<br>16 18 21 10·7<br>16 22 39 10·8<br>16 26 58 10·8 | 18 25 54<br>1111<br>18 30 21<br>18 34 47<br>1111<br>18 39 12<br>1111<br>18 43 38<br>111 | 28<br>29<br>30<br>31<br>32 |  |  |  |  |  |  |

### ASTRONOMICAL FIELD TABLES THE SUN'S APPARENT RIGHT ASCENSION

at Greenwich apparent noon and variation for one hour.

FIGURE 3

is equal to  $\frac{106.1}{15}$  = 7.07 hours. The variation in the sun's apparent right ascension in 7.07 hours is 7.07 x 10.2 = + 72<sup>5</sup> = + 1<sup>m</sup> 12<sup>5</sup>. Hence the sidereal time at apparent noon is 15<sup>h</sup> 19<sup>m</sup> 33<sup>s</sup> + 1<sup>m</sup> 12<sup>s</sup> = 15<sup>h</sup> 20<sup>m</sup> 45<sup>s</sup>, and the watch correction is 15<sup>h</sup> 20<sup>m</sup> 45<sup>s</sup> - 15<sup>h</sup> 20<sup>m</sup> 33<sup>s</sup> = + 12<sup>s</sup> (watch slow).

An error of 0.1 degrees, or 6 minutes, in longitude would give an error in time of only 1 second.

Another example, based on the second specimen of azimuth observation, follows:

Watch correction (watch fast) = -1<sup>m</sup>10<sup>s</sup>

If, because of clouds or other reason, only one limb can be observed, a correction for the semi-diameter of the sun in sidereal time has to be applied to the observed watch time to give the watch time of transit. The semi-diameter of the sun in sidereal time is given in the Nautical Almanac for every day of the year.

Suppose, for example, that in the above observation the watch time for the first limb only was observed. In that case, it would be necessary to add the semi-diameter in sidereal time, namely  $1^{m}10^{5}86$ , to the watch time,  $17^{h} 07^{m}36^{5}$ , to give the watch time of transit,  $17^{h} 08^{m}47^{5}$ . If the second limbonly were observed the semi-diameter would have to be subtracted.

#### DETERMINATION OF THE WATCH CORRECTION BY RADIO TIME SIGNALS

Radio time signals are broadcast from a number of stations in Canada and United States on several wave lengths and at various times. The stations which are most used by surveyors in Canada are stations of the CBC network; CHU Ottawa; NSS Washington; NPG San Francisco; and WWV Washington.

As an example of the usage of time signals, suppose the l p.m., Eastern Stand&rd Time, radio signal by CBC were to be heard at the place of the first specimen of azimuth observation, longitude  $106*05^{15}7^{11}$ , on Nov. 15, at watch time  $14h\;31^m27^s$ .

| From the Astronomical Field Tables                                       |                                                 |
|--------------------------------------------------------------------------|-------------------------------------------------|
| (Figure 2) the sidereal time at noon<br>Eastern Standard Time, Nov.ll is | 15 <sup>h</sup> 20 <sup>m</sup> 07 <sup>s</sup> |
| Correction for 4 days = $4 \times 3^{m} 56.6 \dots$                      | 15 <sup>m</sup> 46 <sup>s</sup>                 |
| Correction to 1 p.m. = $1 + 1 \times 3^{m56.6}$ .                        | 1 <sup>h</sup> 00 <sup>m</sup> 10 <sup>s</sup>  |
| Sidereal time of signal, longitude 75°                                   | 16 <sup>h</sup> 36 <sup>m</sup> 03 <sup>s</sup> |
| Correction for longitude = 106°05'57" - 75°<br>= 31°05'57"               | 2 <sup>h</sup> 04 <sup>m</sup> 24 <sup>s</sup>  |
| Sidereal time of signal at place of observation                          | 14 <sup>h</sup> 31 <sup>m</sup> 39 <sup>s</sup> |
| Watch time of signal                                                     | 14 <sup>h</sup> 31 <sup>m</sup> 27 <sup>s</sup> |
| Hence, watch correction is                                               | + 12 <sup>s</sup>                               |

#### THE WATCH RATE

It will be noted in the two specimen observations for azimuth that comparatively large errors in the watch correction have little effect on the resulting azimuth. An influence on the error is the apparent rate of travel of Polaris. In the first specimen, this rate is 0.7 minutes of arc in 10 minutes of time and in the second 2.7 minutes in 10 minutes. At the times of upper and lower culmination, i.e., at about 1<sup>h</sup> 50<sup>m</sup> and 13<sup>h</sup> 50<sup>m</sup>, the rate is about 4.6 minutes of arc for 10 minutes of time, or nearly 30 seconds of arc for 1 minute of time. In the more precise observations for governing surveys where azimuths are calculated to seconds, it is evident that the watch correction is required with considerable accuracy.

It is not always possible to obtain a time observation and the accuracy of a critical azimuth observation may be adversely effected by an inaccurate watch correction. As a precautionary measure it is good practice to observe for time as opportunities occur, and establish a daily rate for the watch. The daily rate of the watch is the number of seconds it gains or loses in 24 hours. This can be done quite simply in surveying a meridian but in all other surveys allowance must be made for changes in longitude.

In the preceding specimen observations for azimuth a watch distribution of + 12<sup>8</sup> was determined at longitude 106°05'5''' at 15<sup>h</sup>20<sup>m</sup> 45<sup>8</sup> on Nov.15 (page 8) and again determined as  $-1^m$ 10<sup>8</sup> at longitude 118°10'12'' at 17<sup>h</sup>07<sup>m</sup>37<sup>8</sup> on Dec. 10 (page 9). At the instant of the second determination, the sidereal time at the place of the first observation would be 17<sup>h</sup> 07<sup>m</sup>37<sup>8</sup> +  $\frac{1}{15}$  (118°10'12'' - 106°05'5'')' = 17<sup>h</sup> 55<sup>m</sup>54<sup>8</sup>. The watch correction would be 17<sup>h</sup> 55<sup>m</sup>54<sup>8</sup> - 17<sup>h</sup> 08<sup>m</sup>47<sup>8</sup> = + 0<sup>h</sup>47<sup>m</sup>07<sup>8</sup>, This means that the watch haslost  $47^m07^8 - 12^8 = 46^m55^8$  in  $25 + (17^h 55^m 51^h 20^m) \frac{1}{24} = 25.1$  days, giving a daily rate of  $-46^m55^8$ 

It is not probable that the watch would maintain an even daily

loss of  $1^{2n}52$ , lover such a long period as 25 days. In order to establish a reliable rate, time should be observed at intervals not exceeding three or four days.

To illustrate the usage of the daily rate, suppose an azimuth observation was taken at  $20^{h}30^{\,m}$  on Dec. 12 at longitude 119°06' 12", and that it is required to know the watch correction at the time of the observation.

| Watch correction, longitude 118°10'12"<br>at 17 <sup>h</sup> 07 <sup>m</sup> , Dec.10 | - | 1 <sup>m</sup> 10 <sup>s</sup> |
|---------------------------------------------------------------------------------------|---|--------------------------------|
| Daily rate, - 1 <sup>m</sup> 52 <sup>s</sup> 1; elapsed time, 2.1<br>days; watch loss |   | 3 <sup>m55s</sup>              |
| Watch correction at time of observation                                               | + | 2m 45 <sup>s</sup>             |
| Correction for longitude =                                                            |   |                                |
| <u>119°06'12" - 118°10'12"</u> = 15                                                   |   | 3 <sup>m</sup> 44 <sup>s</sup> |
| Hence, required watch correction is                                                   | - | 0 <sup>m</sup> 59 <sup>s</sup> |

#### OBSERVATION OF THE SUN FOR AZIMUTH

It may happen that star observations are prevented by smoke, haze, or light clouds, and the only method available for the determination of azimuth will be observation on the sun.

The method is not recommended when Polaris can be observed because it is not as accurate and, as it involves more calculation, is subject to a greater number of errors.

The following explanation is based on the use of the inverted exepiece.

The instrument, carefully set up at the station and levelled, is directed on the reference line, and the horizontal circle is read and recorded, as usual, under the heading H. C. R. on Ref. Line. A sun glass must then be attached to the eyepiece and the instrument directed on the sun.

The next few steps are easy enough if performed methodically. In general, they consist of placing the image of the sun in the angle formed by the cross hairs of the diaphragm, first in the upper left quadrant with the instrument in circle right position, second in the lower right quadrant with the instrument in the circle left position (Figure 4). This procedure should be followed for an observation in the forenoon. In the afternoon, the other two remaining quadrants, as shown in Figure 5 should be used. In each case, when the cross hairs are tangent to the limbs of the sun's image, the circle readings and the approximate time should be taken.



Observation of the sun in the forenoon Observation of the sun in the afternoon with an inverting eyepiece.

Rules for Observing:

- Commence with the sun on the left of the vertical thread and impinging upon it, above the horizontal thread in the forenoon and below in the afternoon.
- Follow the sun with the slow motion screw of the vertical circle until the vertical thread also becomes tangent to the disc. The rules are reversed in the second position of the instrument.
- Place the sun on the right of the vertical thread and impinging upon the horizontal thread, below it in the forenoon and above it in the afternoon.
- Follow the sun with the slow motion screw of the upper plate until the horizontal thread also becomes tangent to the disc.

The readings of the vertical circle on the sun, and of the horizontal circle on both the sun and the reference object, generally one of the line pickets, must be taken in both positions of the instrument and the approximate time of the observation noted.

COMPUTATION FOR THE SUN OBSERVATION

The following formula may be used for the calculation:

 $\cos \frac{a}{2} = \sqrt{\cos S \cos (S \cdot P)} \sec L \sec h$ where  $S = \frac{h + L + P}{2}$ h' = sun's true altitude,
P = sun's polar distance,

- L = latitude of observation station,
- a = angle sun makes with the meridian east or west from the north.

Then the azimuth from the north through the east, south and west is the same as "a" for forenoon observations, and is "360-a" for afternoon observations. The latitude, and the logarithm of its secant, are given in Table X for the north side of every section.

The first step in the reduction of the observation is to calculate the means of the time, H. C. R. on Reference Line, Sun's altitude, and H. C. R. on Sun. Sample observations are shown on pages 16 and 17.

The sun's true altitude is the mean of the observed altitudes corrected for refraction and parallax. A table of the combined mean refraction and parallax is given in the Astronomical Field Tables, a sample page of which is shown in Figure 6. The table also gives the corrections which should be applied for temperature and pressure, in order to find the mean refraction and parallax for the atmospheric conditions at the time of observation. The mean of the observed altitudes is 28°51.<sup>15</sup> (Page 16). The combined refraction and parallax for this altitude is given as 1.<sup>16</sup> (Figure 6). For a barometric pressure of 29 inches a correction of  $-0.^{11}$  must be applied. For a temperature of 70°F a correction of  $-0.^{11}$  is required. Hence the resultant correction for refraction and parallax is 1.<sup>14</sup>. - a correction which must always be subtracted from the observed altitude. The sun's true altitude, therefore, is 28°50.<sup>11</sup>. The means of the Times, H.C.R. on Ref. Line, and H.C.R. on Sun, can be written in directly.

The next step is to find the sun's Polar distance. The Astronomical Field Tables (Figure 7) give the sun's declination for 0<sup>h</sup> Greenwich civil time, and the variation for one hour. We must therefore know the time after 0<sup>h</sup> Greenwich civil time at which the observation was taken. This is obtained by adding the local standard time to the longitude of the reference meridian at the time zone, expressed in time. Thus in the example, the observation was taken at 7<sup>h</sup> 19<sup>m</sup>a.m., mountain standard time<sup>4</sup>, which is the local time for longitude 105<sup>-</sup>W, and is 7<sup>h</sup> behind Greenwich civil time. The Greenwich civil time of the observation is therefore 7<sup>h</sup> 19<sup>m</sup> + 7<sup>h</sup> = 14<sup>h</sup> 19<sup>m</sup> = 14<sup>h</sup> 3. From the table (Figure 7) the sun's declination at 0<sup>h</sup> on June 1, 1951, is N 21<sup>-</sup>54<sup>!</sup>9, and the variation for one hour, + 0<sup>!</sup>36. For 14<sup>h</sup>3 the variation is 5<sup>!</sup>.1. Thus, the declination North is 2<sup>\*</sup>2<sup>!</sup>0<sup>!</sup>0. that is, a Polar distance of 68<sup>\*</sup>0<sup>!</sup>0<sup>!</sup>.

The observation sheet(page 16 ) shows a convenient method of working out the formula. The reduction of the observation then proceeds as for the observation on the Pole star, and needs no further explanation.

The best time for observing is when the sun is on the prime vertical, as an error in the altitude has then the least effect upon the azimuth. Useful observations, however, may be made at other times within certain limits set by practical considerations. For instance, it is considered that for an altitude lower than eightdegrees the refraction correction is too uncertain in value. Again, the altitude should not be greater than that at which the rate of change of the azimuth is double the rate of change of the altitude because at higher altitudes, an error in altitude would produce too large an error in azimuth.

When local time is used, as in the observation on page 17 the approximate longitude of the place is required.

# SUN OBSERVATIONS FOR AZIMUTH

| Date. June 1 <sup>31</sup> , 1951, Ref. line, 14, By, Lots, 14, to, 20, R. I.<br>Place, N.H. Cor, Lot, 14, Weskesiu, Tornsite, Let. 53°55'2, Long, 196°05'. |                                |                 |                      |                    |                      |                         |                         |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|----------------------|--------------------|----------------------|-------------------------|-------------------------|--|--|
| Circle                                                                                                                                                      | Watch                          | H.C.R.on        | Ref. line            | Sun's Alt          | itude                | H.C.R.on                | Sun                     |  |  |
| R,                                                                                                                                                          | 7.h/7.m                        | / <u>7</u> .7°_ | 08'                  | 29°                | 27'                  | 9/°                     | _33'                    |  |  |
| L.                                                                                                                                                          | 7.2/                           |                 | 08                   | 28                 | /6                   | 91                      | 48                      |  |  |
| Mean                                                                                                                                                        | 7 <sup>h</sup> /9 <sup>m</sup> |                 | 08.0                 | 28                 | 5/.5                 | 9/                      | 40.5                    |  |  |
| Obs. Alt. Su                                                                                                                                                | n's Cent                       | 28°             | 51:5                 | Sun's Dec.         | G. 0 <sup>h</sup>    | N 21°                   | 54:9                    |  |  |
| Refraction                                                                                                                                                  | n                              | 7               |                      | Var. for 14        | 3_hrs                | +                       | 5.1                     |  |  |
| Parallax.                                                                                                                                                   | +                              | Ì               | 1.4                  | Dec.at. 7.1        | 9 <u>mam</u>         | N 22°                   | 00:0                    |  |  |
| True Sun's                                                                                                                                                  | s Alt.( <i>h</i> )             |                 | 50.1                 | Sun's Pol.E        | )ist. <i>(P</i> )    | <u>68°</u>              | 00'0                    |  |  |
| Local Std.                                                                                                                                                  | Time                           | 7/              | /9 <sup>m</sup> am   | cos = {c           | os S co              | s <i>(s-P)</i> sec      | L sech}                 |  |  |
| Longitud                                                                                                                                                    | e                              | 7               |                      | <i>P=</i> Polar Di | st. //="             | Fue Alt.Su              | n's Centre              |  |  |
| Greenwich                                                                                                                                                   | n C.Time                       | 14              | /9                   | L= Latitud         | e <i>S</i> =         | P+L+h                   | )                       |  |  |
| h= 28°                                                                                                                                                      | 50:1                           | log sec.        | h = _ 0.0            | 5749               | log c                | os h <u>= 9</u> .       | 94251                   |  |  |
| L = 53                                                                                                                                                      | <u>. 55.2</u>                  | log sec         | L = _ <u>0.</u>      | 2995               | log s                | ec <i>h <u>= 0</u>.</i> | 05749                   |  |  |
| P= <u>68</u>                                                                                                                                                | 00.0                           | log cos         | 5 = _9.4             | 40215              |                      |                         |                         |  |  |
| 25=150                                                                                                                                                      | 45.3                           | log cos(s       | <i>FP)= 9.9</i>      | 99639              | log c                | $\Delta = 9.$           | 97005                   |  |  |
| 5 = _75                                                                                                                                                     | 22.7                           | log cos²        | <del>월</del> = _ 9.6 | 8598               | log s                | ec <u>/</u> = _0.       | 22995                   |  |  |
| S-P=_Z                                                                                                                                                      | 22.7                           | log cos         | $\frac{q}{2} = -9.6$ | 84299              | NOT                  | E If after of           | bservation,             |  |  |
|                                                                                                                                                             |                                |                 | <del>9</del> = 45    | ° <u>50</u> ′7     | any o<br>Was         | made the                | n the line<br>following |  |  |
|                                                                                                                                                             |                                |                 | a <u>= 9</u> !       | 41.4               | infor                | mation sho<br>plied.    | ould be                 |  |  |
| Azimuth                                                                                                                                                     | of Sur                         |                 | = 9/                 | 41.4               | Amount_Nil_Direction |                         |                         |  |  |
| Converse                                                                                                                                                    | ence fo                        | r I mile        | - <del>-</del> +     | 1.2                | Place                |                         |                         |  |  |
| Bearing                                                                                                                                                     | ref. to (                      | ent.Mer         | = 9/                 | 42.6               |                      |                         |                         |  |  |
| H.C.R. on                                                                                                                                                   | Sun                            |                 | =9                   | 40.5               |                      |                         |                         |  |  |
| Correction                                                                                                                                                  | n to H.C                       | .R. on Sur      | n=                   | 2.1                | Bar.                 | 29 inche                | 5                       |  |  |
| H.C.R. on                                                                                                                                                   | Ref. lin                       | e               | = /77                | 08.0               | Tem                  |                         |                         |  |  |
| Bearing                                                                                                                                                     | of Ref                         | line            | . <b>=</b> /77       |                    |                      |                         |                         |  |  |

# SUN OBSERVATIONS FOR AZIMUTH

| Date<br>Place2 | luly 15<br>20 Chs                 | . W. NE.             | Ref. lir<br><i>Cor. Se</i>                  | ne <i>W B</i><br>C. 24, L | y Sec.24<br>at.57°3            | 4,99,2 M<br>6:8, <i>Long</i> . | / 6 <sup>#</sup> /<br>//8°/0.'2 |
|----------------|-----------------------------------|----------------------|---------------------------------------------|---------------------------|--------------------------------|--------------------------------|---------------------------------|
| Circle         | Watch                             | H.C.R.or             | Ref.line                                    | Sun's                     | Altitude                       | H.C.R or                       | Sun                             |
| R              | 4 <sup>h</sup> 55 <sup>m</sup> pm | 270°                 | 00'                                         | 26°                       | <u>33'</u>                     | <u>267°</u>                    | 06'                             |
| L.             | 4 59                              |                      | 0/                                          | 27                        | 47                             | 268                            | 32                              |
| Mean           | 4 57                              | 270                  | 00.5                                        | 27_                       | /0.0                           | 267                            | 49.0                            |
| Obs.Alt.Su     | n's Cent                          | 27°                  | 10.'0                                       | Sun's De                  | ec.G.O <sup>h</sup>            | N 2/°                          | 32'5                            |
| Refraction     | n <del>.</del> .                  | l.]                  |                                             | Var. for.                 | 0.8 hrs.                       |                                | 0.3                             |
| Parallax.      | +.                                | }                    | /.6                                         | Dec.at_                   | 4 <sup>h</sup> 57 <sup>m</sup> | N 2/°                          | 32:2                            |
| True Sun       | sAlt.(h)                          | 27°                  | 08:4                                        | Sun's Pa                  | ).Dist.( <i>P</i> )            | 68°                            | 27.'8                           |
| Local Tir      | ne                                | 4 <sup>h</sup>       | 57 <sup>m</sup> pm                          | cos <del><i>q</i></del> = | {cos S co                      | s(S-P)se                       | c Lsec // 注                     |
| Longitud       | e                                 | 7                    | 53                                          | P=Polar                   | Dist. $h=$                     | True Alt.Su                    | un'sCentre                      |
| Greenwich      | 1/2(P+L+)                         | n) (r                |                                             |                           |                                |                                |                                 |
| h= 27°         | 08:4                              | log sec              | h=_ 0.0                                     | 5066                      | log c                          | $\cos h = 9$                   | 94934                           |
| L = 57         | 36.8                              | log sec              | L=_0.2                                      | 27//3                     | 108' S                         | sec $h = \underline{o}$ .      | 05066                           |
| P= 68          | 27.8                              | log cos              | S = <u>9.</u>                               | 36475                     |                                |                                |                                 |
| 25=/53         | /3.0                              | log cos(S            | 5-P)= <u>9.9</u>                            | 99560                     | log c                          | os $L = \frac{9}{2}$           | 72887                           |
| S=76           | 36.5                              | logcos2              | $\frac{a}{2} = 9.6$                         | 82/4                      | log s                          | $ec \perp = 0$                 | 27//3                           |
| 5-P=8          | 08.7                              | logcos               | $\frac{q}{2} = \frac{9.6}{2}$               | 84/07                     | N07                            | Elfaftero                      | bservation,                     |
|                |                                   |                      | $\frac{a}{2} = 46$                          | ° 05.'4                   | l was                          | made the                       | following                       |
|                |                                   |                      | $a = _{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$ | /0.8                      | sup                            | mation sh<br>µlied.            | ould be                         |
| Azimuth        | of Sur                            | 1                    | <u>26</u>                                   | 7 49.2                    | Amo                            | unt <u>3´</u> Dir              | rection <u>//</u> .             |
| Converge       | ence fo                           | r 2 <i>3</i> /4 mile | e                                           | 3.7                       | Piace                          | NE.Co                          | r.Sec.21                        |
| Bearing        | ref. to C                         | ent Mer.             | 267                                         | 45.5                      |                                |                                |                                 |
| H.C.R. on      | Sun                               |                      | =267                                        | 7 49.0                    |                                |                                |                                 |
| Correction     | n to H.C.                         | .R. on Sur           | 1=                                          | 3.5                       | Bar.                           | 28.0 inc                       | hes                             |
| H.C.R. on      | Ref. lin                          | e                    | 270                                         | 00.5                      | Tem                            | p. 60°/                        | 5                               |
| Bearing        | of Ref.                           | line                 | = 269                                       | 57.0                      | >                              |                                |                                 |

### ASTRONOMICAL FIELD TABLES Table of corrections to Apparent Altitude of sun for REFRACTION and PARALLAX

| Mean R           | efraction                         | Correction to the Mean Refraction. |        |                |                |       |       |                           |       |                |                    |      |
|------------------|-----------------------------------|------------------------------------|--------|----------------|----------------|-------|-------|---------------------------|-------|----------------|--------------------|------|
| Sun's<br>Bar. 30 | Parallax<br>Tem. 50 <sup>°r</sup> |                                    | For He | ight o         | f Baro         | meter |       | For Height of Thermometer |       |                |                    |      |
| App.<br>Alt.     | Refr.<br>and<br>Par.              | 26                                 | Ba     | romete<br>(inc | r Read<br>hes) | ling  | 21    | 100                       | Ther  | nometi<br>(Fah | er Reading<br>Ir.) | 00   |
| _0               | a'.                               | 20                                 | 21     | 20             | 29             | 30    | 31    | -10                       | 10    | 30 :           | 50 70              | 90   |
| 6                | 8.4                               | 1.1-                               | - 0.8  | 0.6            | - 0.3          | 0.0   | 0.3   | +1.1                      | 0.71  | 0.3            | 0.0-0.3-           | -0.0 |
| 7                | 7.3                               | 1.0                                | 0.7    | 0.5            | 0.3            | 0.0   | 0.3   | +1.0                      | 0.6   | 0.3            | 0.0-0.3            | 0.5  |
| 8                | 6.4                               | -0.9                               | 0.6    | 0.4            | 0.2            | 0.0   | 0.2   | +0.9                      | 0.6   | 0.3            | 0.0-0.2            | 0.5  |
| 9                | 5.7                               | -0.8                               | 0.6    | 0.4            | 0.2            | 0.0+  | 0.2   | +0.8                      | 0.5   | 0.2            | 0.0-0.2            | 0.4  |
| 10               | 5.2                               | -0.7                               | 0.5    | 0.4            | 0.2            | 0.0+  | 0.2   | +0.7                      | 05    | 0.2            | 0.0 - 0.2          | 0.4  |
|                  |                                   |                                    |        |                |                |       |       |                           |       |                |                    |      |
| 11               | 4.7                               | -0.6                               | 0.5    | 0.3            | 0.2            | 0.0   | + 0.2 | +0.6                      | 0.4   | 0.2            | 0.0-0.2            | 0.4  |
| 12               | 4.3                               | -0.6                               | 0.4    | 0.3            | 0.2            | 0.0   | 0.2   | +0.6                      | 0.4   | 0.2            | 0.0-0.2            | 0.3  |
| 13               | 4.0                               | -0 5                               | 0.4    | 0.3            | 0.1            | 0.0   | +0.1  | +0.5                      | 0.4   | 0.2            | 0.0-0.2            | 0.3  |
| 14               | 3.7                               | -0.5                               | 0.4    | 0.3            | 0.1            | 0.0   | +0.1  | +0.5                      | 0.3   | 0.2            | 0.0-0.1            | 0.3  |
| 15               | 3.4                               | -0.5                               | 0.3    | 0.2            | 0.1            | 0.0   | + 0.1 | +0.5                      | 0.3   | 0.2            | 0.0-0.1.           | 0.3  |
|                  |                                   |                                    |        |                |                |       |       |                           |       |                |                    |      |
| 16               | 22                                | -0.4                               | 0.3    | 0.2            | 0.1            | 0.0   | + 0.1 | +0.4                      | 0.3   | 0.1            | 0.0-0.1            | 0.3  |
| 17               | 30                                | -0.4                               | 0.3    | 0.2            | 0.1            | 0.0   | +0.1  | +0.4                      | 0.3   | 0.1            | 0.0-0.1            | 0.2  |
| 18               | 28                                | -0.4                               | 0.3    | 0.2            | 0.1            | 0.0   | + 0.1 | +0.4                      | 0.3   | 0.1            | 0.0-0.1            | 0.2  |
| 19               | 27                                | -0.4                               | 0.3    | 0.2            | 0.1            | 0.0   | + 0.1 | +0.4                      | 0.2   | 0.1            | 0.0-0.1            | 0.2  |
| 20               | 25                                | -03                                | 0.3    | 0.2            | 0.1            | 0.0   | + 0.1 | +0.3                      | 0.2   | 0.1            | 0.0-0.1            | 0.2  |
|                  | 2.5                               | 0.0                                | 0.0    |                |                | 0.0   |       |                           |       |                |                    |      |
|                  |                                   |                                    |        |                |                |       |       |                           |       |                |                    |      |
| 25               | 1.9                               | -0.3                               | 0.2    | 0.1            | 0.1            | 0.0   | + 0.1 | +0.3                      | 0.2   | 0.1            | 0.0-0.1            | 0.2  |
| 30               | 1.5                               | -0.2                               | 0.2    | 0.1            | 0.1            | 0.0   | + 0.1 | +0.2                      | 0.2   | 0.1            | 0.0-0.1            | 0.1  |
| 35               | 1.3                               | -0.2                               | 0.1    | 0.1            | 0.0            | 0.0   | 0.0   | +0.2                      | 0.1   | 0.1            | 0.0-0.1            | 0.1  |
| 40               | 1.0                               | -0.1                               | 0.1    | 0.1            | 0.0            | 0.0   | 0.0   | +0.1                      | 0.1   | 0.1            | 0.0 - 0.0          | 0.1  |
| 45               | 0.9                               | -0.1                               | - 0.1  | - 0.1-         | - 0.0          | 0.0   | 0.0   | +0.1-                     | +0.1- | ŀ 0.0          | 0.0-0.0            | -0.1 |
|                  |                                   |                                    |        |                |                |       |       |                           |       |                |                    |      |

FIGURE 6

### ASTRONOMICAL FIELD TABLES THE SUN'S APPARENT DECLINATION

FOR 0b GREENWICH CIVIL TIME AND VARIATION FOR ONE HOUR

(0h Greenwich Civil Time is twelve hours before Greenwich Mean Noon of the same date )

| Month                      | 1951                                     |                                      |                                      |                       |                              |                              |                              |                                      |                                      |                                                    |                                      | Month                      |
|----------------------------|------------------------------------------|--------------------------------------|--------------------------------------|-----------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------|--------------------------------------|----------------------------|
| Day of                     | 1                                        | May                                  |                                      | June                  |                              |                              | July                         |                                      |                                      | Augus                                              | Day of                               |                            |
| 1                          | N.14°4                                   | 45 <sup>:</sup> 8                    | 0'77                                 | N.21°                 | 54 <sup>:</sup> 9            | 0 <sup>:</sup> 36            | N.23                         | 07·2                                 | 0'-15                                | N.18° 17'2                                         | 0'62                                 | 1                          |
| 2                          | 15 (                                     | 04 · I                               | 0.76                                 | 22                    | 03·2                         | 0·34                         | 23                           |                                      | 0-17                                 | 18 02·3                                            | 0.63                                 | 2                          |
| 3                          | 15 2                                     | 22 · I                               | 0.75                                 | 22                    | 11·2                         | 0·32                         | 23                           |                                      | 0-18                                 | 17 47·0                                            | 0.64                                 | 3                          |
| 4                          | 15 3                                     | 39.9                                 | 0.74                                 | 22                    | 18·8                         | 0·31                         | 22                           | 58·4                                 | 0.20                                 | 17 31.5                                            | 0.65                                 | 4                          |
| 5                          | 15 5                                     | 57.5                                 | 0.72                                 | 22                    | 26·0                         | 0·29                         | 22                           | 53·4                                 | 0.22                                 | 17 15.7                                            | 0.66                                 | 5                          |
| 6                          | 16 1                                     | 14.7                                 | 0.71                                 | 22                    | 32·8                         | 0·28                         | 22                           | 48·0                                 | 0.23                                 | 16 59.6                                            | 0.68                                 | 6                          |
| 7                          | 16 3                                     | 31.7                                 | 0.70                                 | 22                    | 39·3                         | 0·26                         | 22                           | 42·2                                 | 0·25                                 | 16 43·2                                            | 0.69                                 | 7                          |
| 8                          | 16 4                                     | 48.4                                 | 0.69                                 | 22                    | 45·3                         | 0·24                         | 22                           | 35·9                                 | 0·27                                 | 16 26·6                                            | 0.70                                 | 8                          |
| 9                          | 17 0                                     | 04.9                                 | 0.68                                 | 22                    | 50·9                         | 0·23                         | 22                           | 29·3                                 | 0·28                                 | 16 09·7                                            | 0.71                                 | 9                          |
| 10                         | 17                                       | 21·0                                 | 0.67                                 | 22                    | 56·I                         | 0·21                         | 22                           | 22·4                                 | 0.30                                 | 16 52·5                                            | 0·72                                 | 10                         |
| 11                         | 17                                       | 36·9                                 | 0.65                                 | 23                    | 00·9                         | 0·20                         | 22                           | 15·0                                 | 0.32                                 | 15 35·1                                            | 0·73                                 | 11                         |
| 12                         | 17                                       | 52·5                                 | 0.64                                 | 23                    | 05·3                         | 0·18                         | 22                           | 07·2                                 | 0.33                                 | 15 17·4                                            | 0·74                                 | 12                         |
| 13                         | 18                                       | 07.7                                 | 0.63                                 | 23                    | 09-3                         | 0·16                         | 21                           | 59·1                                 | 0·35                                 | 14 59·5                                            | 0·75                                 | 13                         |
| 14                         | 18                                       | 22.7                                 | 0.62                                 | 23                    | 12-9                         | 0·14                         | 21                           | 50·6                                 | 0·36                                 | 14 41·4                                            | 0·76                                 | 14                         |
| 15                         | 18                                       | 37.4                                 | 0.61                                 | 23                    | 16-1                         | 0·12                         | 21                           | 41·7                                 | 0·38                                 | 14 23·0                                            | 0·77                                 | 15                         |
| 16                         | 18 .                                     | 51.7                                 | 0·59                                 | 23                    | 18·9                         | 0·11                         | 21                           | 32·5                                 | 0·39                                 | 14 04·4                                            | 0·78                                 | 16                         |
| 17                         | 19 1                                     | 05.7                                 | 0·58                                 | 23                    | 21·2                         | 0·09                         | 21                           | 22·8                                 | 0·41                                 | 13 45·6                                            | 0·79                                 | 17                         |
| 18                         | 19                                       | 19.4                                 | 0·56                                 | 23                    | 23·2                         | 0·07                         | 21                           | 12·9                                 | 0·42                                 | 13 26·5                                            | 0·80                                 | 18                         |
| 19                         | 19                                       | 32·8                                 | 0·55                                 | 23                    | 24.7                         | 0.06                         | 21                           | 02·5                                 | 0-44                                 | 13 07·3                                            | 0·81                                 | 19                         |
| 20                         | 19                                       | 45·8                                 | 0·54                                 | 23                    | 25.8                         | 0.04                         | 20                           | 51·8                                 | 0-44                                 | 12 47·8                                            | 0·82                                 | 20                         |
| 21                         | 19                                       | 58·5                                 | 0·52                                 | 23                    | 26.6                         | 0.02                         | 20                           | 40·8                                 | 0-47                                 | 12 28·1                                            | 0·82                                 | 21                         |
| 22                         | 20                                       | 10·8                                 | 0·51                                 | 23                    | 26·9                         | 0.01                         | 20                           | 29·4                                 | 0·48                                 | 12 08·3                                            | 0·83                                 | 22                         |
| 23                         | 20                                       | 22·9                                 | 0·49                                 | 23                    | 26·8                         | 0.01                         | 20                           | 17·7                                 | 0·50                                 | 11 48·2                                            | 0·84                                 | 23                         |
| 24                         | 20                                       | 34·5                                 | 0·48                                 | 23                    | 26·2                         | 0.03                         | 20                           | 05·6                                 | 0·51                                 | 11 28·0                                            | 0·85                                 | 24                         |
| 25                         | 20                                       | 45·8                                 | 0·4-6                                | 23                    | 25:3                         | 0·05                         | 19                           | 53·2                                 | 0.52                                 | 11 07·5                                            | 0.86                                 | 25                         |
| 26                         | 20                                       | 56·8                                 | 0·4 5                                | 23                    | 23:9                         | 0·06                         | 19                           | 40·4                                 | 0.54                                 | 10 46·9                                            | 0.86                                 | 26                         |
| 27                         | 21                                       | 07·4                                 | 0·4 3                                | 23                    | 22:2                         | 0·08                         | 19                           | 27·4                                 | 0.55                                 | 10 26·1                                            | 0.87                                 | 27                         |
| 28<br>29<br>30<br>31<br>32 | 21<br>21<br>21<br>21<br>21<br>21<br>N,21 | 17·6<br>27·5<br>37·0<br>46·1<br>54·9 | 0.42<br>0.40<br>0.39<br>0.37<br>0.36 | 23<br>23<br>23<br>N23 | 20:0<br>17:4<br>14:4<br>11:0 | 0.10<br>0.12<br>0.13<br>0.15 | 19<br>19<br>18<br>18<br>N.18 | 14.0<br>00.2<br>46.2<br>31.9<br>17.2 | 0.56<br>0.58<br>0.59<br>0.60<br>0.62 | 10 05-2<br>9 44-1<br>9 22-8<br>9 01-4<br>N. 8 39-8 | 0.88<br>0.88<br>0.89<br>0.90<br>0.90 | 28<br>29<br>30<br>31<br>32 |

FIGURE 7

In a sun observation for azimuth, the ordinary surveyor's transit reading to one minute cannot be expected to give results with an accuracy better than three or four minutes. Recently, however, a Solar Prism Attachment<sup>#</sup> has been developed, and when placed over the object glass, it enables the observer to make more accurate pointings on the sun. With a good modern instrument, reading to one second in altitude and in azimuth and without a striding level, azimuths may be determined with an accuracy of about 20 seconds, or less, under good conditions. For results of this accuracy, forward and reverse determinations must be calculated separately, i.e., the altitudes and horizontal circle readings on the sun cannot be meaned, and the sun's declination should be obtained from the Nautical Almanac. The latitude of the place should be known within a tolerance of about 5 seconds.

#### OBSERVATION OF POLARIS FOR AZIMUTH ON GOVERNING SURVEYS

Ongoverning surveys where great precision is required, the observation for azimuth is made with a six-inch transit theodolite, and the degree of accuracy required makes the observation somewhat more complex in all its details than the methods previously described. Some of the special precautions and refinements are mentioned below.

For accurate work a good solid set-up for the instrument is essential.

When it is intended to read the angle between two pointings on the horizontal circle, care should be taken, on turning the instrument in azimuth, to use the same forward or backward motion for each such pair. This tends to neutralize the effect of any yield in the instrument stand caused by that part of the impulse of revolution which passes down through the foot screws to the stand head.

Loose foot screws are a source of similar error. The pinch screws should always be tightened before finally adjusting the levelling screws, so that the latter turn stiffly in their nuts. Even though this may be less convenient to the observer in bringing quickly, and with nicety, the level bubbles to the desired position, it will eliminate with certainty one source of error.

The tangent and micrometer screws should always be turned so as to push against the counteracting spring, because, in turning in the opposite direction, the spring might fail to bring back the plate until some time in the interval between the observation and the reading of the drum.

The reference object for azimuth work should be, if possible, at such a distance that the telescope is at solar focus when the pointing is made on the reference object.

\* For a description of the Solar Prism Attachment see Astronomy Applied to Land Surveying by R. Roclofs, 1950, N.V. Wed. J. Ahrend & Zoon - Amsterdam, Holland. In observing for azimuth on governing surveys the following program is recommended:

- Level the instrument very carefully using the striding level for this purpose, so that the level correction may be small.
- Point on the reference object and read the microscopes three times each on forward and backward graduations.
- 3. Point approximately on Polaris and place the stridinglevel in position (zero of graduation to the right, or east). Point accurately on Polaris noting the time by sidereal watch. Read the striding level, reverse it, and read it again. Read the microscopes three times each on forward and backward graduations.
- Reverse the telescope in altitude, turn the instrument 180° in azimuth, and repeat as in No.3. The striding level must, of course, be removed while the telescope is being transited.
- 5. Same as No. 2.

Such an observation, under favourable conditions, will give a result correct to within a few seconds. However, observations in the field are seldom taken under ideal conditions and it is recommended strongly that two or more observations be taken at a station whenever weather conditions will allow. This precaution should always be adopted when the bearing of the line is much in doubt; the range of results will then provide some criterion of the accuracy of observation.

It will be found convenient, in order to prevent mistakes, always to begin the observation with the same position of the instrument.

#### WATCH CORRECTION

The watch correction should be known with more than usual precision. In observing Polaris near upper or lower transit an error of one second of time corresponds, in the latitude of the western provinces, to an error in azimuth of about half a second of arc.

Anobservation for time should be taken either shortly before or shortly after every azimuth observation. The instrument should be carefully levelled and the observed transit corrected for azimuth error according to the formula  $\Delta t = 4 \times \Delta a \cos h \sec \delta$ , where  $\Delta t$  is the correction in seconds to the observed time,  $\Delta a$  the azimuth error in minutes of arc, and h and  $\delta$  the altitude and declination of the star. The correction is added for all stars south of the zenith if the azimuth correction is plus and subtracted if minus.

The result of observations for time must always be entered in the form at the front of the record book of astronomical observations.

#### CORRECTION FOR STRIDING LEVEL

The striding level is graduated from zero at one end, continuouslyupwards to the other end. Representing by w and e the readings of the westor left and eastor right extremities of the bubble respectively when the zero of the graduation is at the east or right end and by w' and e', the corresponding westand east readings after the level is reversed, that is to say, when the zero of the graduation is at the west or left end, d being the value of one division in seconds of arc, the level correction is:

$$\frac{d}{4} \left\{ (w-w') + (e-e') \tan h \right\}$$

Tan h, the inclination factor for Polaris, is tabulated in the azimuth observation book.

The level correction is applied to the horizontal circle readings according to sign. The level vials are usually chambered and the length of the bubble should be adjusted to about twenty divisions prior to the observation.

The determination of the value of one division of the level in seconds of arc is ordinarily made by the National Research Council. If, however, the surveyor has no knowledge of his level value and wishes to determine it in the field, he may adopt the following method:

The level is placed on the upper plate, parallel to the plane of revolution of the telescope, and a mark is set up in the direction of one of the foot screws and at a distance such that the telescope may be in solar focus. By turning the foot screw, the bubble is brought close to one end of its run. The telescope is pointed approximately on the mark and firmly clamped.

A more careful pointing is now made with the movable thread of the eyepiece micrometer, and the readings of the micrometer and level are noted.

The foot screw is then turned until the bubble is close to the other end of its run; the drum of the eyepiece micrometer is turned until the movable thread bisects the mark; and the micrometer and level readings are again noted. The difference of micrometer readings gives the angular displacement from which the value of one division of the level may be derived. The operation should be repeated several times. The level may be reversed end for end during the course of the determination if desired.

Instead of a distant point, the pointings may be made on the telescope of a transit or level used as a collimator.

# DETERMINATION OF THE VALUE OF ONE TURN OF THE MICROMETER

To reduce the micrometer readings to arc, the value of one turn is required. This is ordinarily determined for solar focus by the National Research Council. If, however, the surveyor has no knowledge of this value, he may determine it by methods described in standard text books on astronomy.

The following method will be found convenient:

Set the movable wire of the micrometer close to one end of its run
and move the upper part of the instrument by means of the tangent screw until the movable wire bisects some distant object (solar focus) at the same level as the transit; read the micrometer once and the horizontal circle microscopes three times. Now bring the movable wire close to the other end of its run and again bisect the same object by means of the tangent screw, reading the micrometer and circle microscope s as before. The horizontal angle, as shown by the microscope readings, divided by the difference of micrometer turns gives the value of one turn of the micrometer.

The operation should be repeated a number of times and, in order to decrease the effect of periodic errors of the circle graduation, the instrument should be revolved, by means of the shifting head on the stand, to give readings on different parts of the circle.

The uniformity of the micrometer screw may be tested by measuring the value of one turn over different parts of the screw.

Another transit or a level may be used as a collimator and gives a better reference object than a distant point. Set up the collimator a few feet from the transit to be tested, so that the two telescopes are at the same level. Adjust both to solar focus, and point on the object glass of the transit. Looking now at the collimator through the telescope of the transit, the cross wires or points of the collimator telescope will be seen as at an infinite distance. These cross wires or points make an excellent reference object.

#### COMPUTATION FOR AZIMUTH OBSERVATION

When the above observation for azimuth has been taken with due attention to the special precuations, it can be reduced by the following formula:

$$\tan Z = - \frac{\tan P \sec L \sin t}{1 - \tan P \tan L \cos t}$$

where Z, P, L, t, are azimuth, polar distance, latitude and hour angle, respectively.  $^{\pm}$ 

Writing m for tan P tan L cos t the formula may be written

$$\tan Z = -\left(\frac{1}{1-m}\right)\tan P \sec L \sin t$$

Table XIII gives the values of  $\log \frac{1}{1-m}$  tabulated with  $\log m$  as argument. In using this table attention must be paid to the sign of m which is the same as that of cos t; when t lies between 0h and 6h, or 18h and 24h, m is positive and the half of the table as given on pages 150,

#### \* The formula may be deduced as follows:

In the spherical triangle defined by the star, the zenith and the pole, the hour angle t is measured from upper culmination, and the azimuth Z is positive or negative according as the star is east or west of the meridian. 152 and 154 must be used; when t lies between 6<sup>h</sup> and 18<sup>h</sup>, mis negative and the half of the table as given on pages 151, 153 and 155 must be used.

Since m is always less than unity,  $\frac{1}{1-m}$  is always positive, and therefore tan Z is always of opposite sign to tan P sec L sin t. Hence when t is between 0<sup>h</sup> and 12<sup>h</sup>, tan Z is negative, indicating that Polaris is west of the meridian; and when t is between 12h and 24h, tan Z is positive, indicating that Polaris is east of the meridian. In the specimen observations (page 26 ), the suffix 'n' has been added to  $\log \frac{1}{1-m}$  thus representing  $\log -\left(\frac{1}{1-m}\right)$  in the above formula.

Denoting by a the angle which Polaris makes with the meridian east or west from north, then log a (in seconds) is obtained directly from log tan Z by the use of Table XII, and Polaris is east or west of the meridian according as a is positive or negative.

The logarithms of secant and tangent L are given in Tables IX and X for the north side of every section. For points outside the township system, the latitudes can usually be determined with sufficient accuracy from available maps.

A table giving the Right Ascension and log tan P for Polaris for everytendays, is pasted in each record book of astronomical observations sent out to surveyors.

The observations on pages 26 to 29 show the form of record and method of computation.

In the form, R.O. is for reference object; H.C.R. for horizontal circle reading; coll. for collimation; R.A. for right ascension;



and F. and B. for forward and backward readings of the microscopes.

The specimen observations are taken on a base line according to the program laid down.

The correction for run<sup>#</sup> of the microscopes in each case is deduced from the means of the forward and backward readings and applied to the forward reading.

In reducing observations taken on base lines, the convergence must be applied to the mean azimuth to reduce it to a bearing as required by the Manual. For observations taken on initial meridians the results may be left as azimuths, for convenience.

A correction in the direction of a survey line, found necessary from the azimuth observation, may be made most easily by offsetting the transit stations in the required direction perpendicular to the line. The amount of the offsets are obtained by multiplying the tangent of the deflection angle by the distances of the transit stations from the point of deflection.

With modern instruments in which the microscopes are automatically meaned, single entries only will be made in the record form under the headings, Microscope A, and Microscope B. For good results three readings should be made and entered for each pointing.

An azimuth observation less in accuracy than that described above may be obtained without a striding level. The program of observing is slightly altered to secure the best results. First sight Polaris approximately. Then bring the plate bubble perpendicular to the line of sight to accurate centre and make the pointing to the star. Next read the reference object, transit the telescope, and repeat the operation. The resulting azimuth, calculated by the method used in governing surveys, will have an accuracy dependent on the sensitivity of the plate bubble. If the calculations are made from the Astronomical Field Tables results

Let F = forward or apparent left reading

B = backward or apparent right reading

Then distance between readings = 5' + F - B

Error of run = F - B

Correction to  $F = -F \times \frac{F-B}{5^{1}+F-B}$ Corrected reading =  $F \times \frac{5^{1}}{5^{1}+F-E}$ 

When F - B is not larger than, say, ten seconds, this formula may be written in a more convenient form, without appreciable error. Thus,

Corrected reading = 
$$F - \frac{F}{5} (F - B)$$

78897-31

# AZIMUTH OBSERVATION

ско Place Sta. 68-61.52. W. of. N.E. сот. sec. 34 tp. 84-1-5. R.O. Sta. 70-60.80. """.33. "" Date. 12-7-11. Observer J. Smith. DL.S.

| ion        | 8 u          |              | Horizontal Circle Readings |            |           |           |       |         |          |        |        |                 |           |
|------------|--------------|--------------|----------------------------|------------|-----------|-----------|-------|---------|----------|--------|--------|-----------------|-----------|
| osit       | ointi<br>No. |              | Refe                       | rence      | Objec     | t         |       |         | 1        | Polari | s      |                 |           |
| <u>n</u> i | ŭ            | Micro        | scope                      | A Micro. B |           | Micro     | scope | A       | Micro. B |        | в      |                 |           |
|            |              |              | F.                         | в.         |           | F.        | в.    |         | F.       | в.     |        | F.              | в.        |
| Righ       | 1            | 359°21′      | 39"                        | 36"        | 22'       | 55"       | 58"   | 87°25′  | 07"      | 07"    | 26'    | 28"             | 30"       |
| cle l      | 2            |              | 36                         | 37         |           | 56        | 58    |         | 08       | 07     |        | 26              | 32        |
| Dr. C      | 3            |              | 38                         | 35         |           | 54        | 59    |         | 09       | 07     |        | 27              | 32        |
| M          | ean          | 359°21       | 37"                        | •1         | 22        | 56        | ".9   | 87° 25' | 08"      | •0     | 26'    | 28"             | 2         |
| t t        | 1            | 179° 22'     | 45"                        | 48"        | 24'       | 11"       | 05"   | 267°23' | 55       | 60"    | 25'    | 17"             | 21"       |
| 1 1        | z            |              | 45                         | 48         |           | 09        | 08    |         | 58       | 61     |        | 19              | 21        |
| Circl      | 3            |              | 46                         | 48         |           | 11        | 06    |         | 59       | 60     |        | 18              | 22        |
| Me         | an           | 179° 27      | 2'46                       | .8         | 24        | '07'      | .0    | 267°2   | 3' 59    | .7     | 25'    | 18"             | .2        |
|            |              |              |                            |            | Circle    | Right     | _     | Circle  | : Left   |        |        |                 |           |
| Maank      | ICRO         | Pol          |                            | 87         | ° 25      | ' 48      | "     | 267° ;  | 4' 3     | 9"     | Mean   | watch           | time      |
| Level      | correcti     | on           |                            | + '        |           | 5         |       | + .     |          | 9      | Watc   | hcorr           |           |
| Corre      | cted H.C     | RofPol       |                            | 87         | 25        | 53        | _     | 267 2   | 24 4     | -8     | Sider  | ealtin          | ne        |
|            | H.C          | R.of R.O.    |                            | 359        | 22        | 17        |       | 179 2   | 23 2     | 27     | R.A.   | of Pola         | ris       |
| Angle      | Pol. to R    | .0           |                            | 88         | 03        | 36        | W     | 88 (    | DI 2     | W      | tint   | ime             |           |
|            |              |              |                            |            |           | -         |       |         |          |        | t in a | rc              |           |
| Pol.fr     | omcolli      | mation       | log.                       |            |           |           |       |         |          |        | Log t  | an P            |           |
| One tur    | rnmicro      | ometer       | log.                       |            |           |           |       |         |          |        | Log t  | an & s          | ec.L      |
| Altitud    | le Pol       | log          | .sec.                      |            |           |           |       |         |          |        | Log    | :05 & S         | in t      |
|            |              |              | Sum                        |            |           |           |       |         |          |        | Sum    |                 |           |
| Pol.fr     | coll.red     | duced to hor | riz'al                     |            |           |           |       |         |          |        | Log    | $-\frac{1}{1-}$ | m         |
| Level      | correct      | ion          |                            |            |           |           |       |         |          |        | Log t  | an Z            |           |
| Micro      | m.angle      | Pol.fr.coll  |                            |            |           |           |       |         |          |        | Log    | r               |           |
| R.O.fr     | om colli     | mation       | .log.                      |            |           |           |       |         |          |        | Log a  | (sec            | s.)       |
| One tu     | rn micro     | meter        | .log.                      |            |           |           |       |         |          |        | Azim   | uthof           | Pol.      |
| Altitud    | le R.O.      | log          | sec.                       |            |           |           |       |         |          |        | Angle  | Pol.t           | 0 R . O.  |
|            |              |              | Sum                        |            |           |           |       |         |          |        | Azim   | uth of          | R.O.      |
| Micro      | m.angle      | R.O.from c   | :011                       |            |           |           |       |         |          |        | Mean   |                 |           |
| Angle      | Pol. to R    | .0           |                            |            |           |           |       |         |          |        | Conve  | ergeno          | e         |
|            |              |              |                            |            |           |           |       |         |          |        | Bear   | ing of          | R.O.      |
| Direct     | ion of de    | flection     |                            |            | • • • • • | • • • • • |       | Amour   | nt       |        |        | • • • • •       | • • • • • |
| -          |              |              |                            |            | _         |           |       |         | _        |        |        |                 |           |

# FOR GOVERNING SURVEYS

Instrument #112

One turn of micrometer 166.36

One division of striding level . 4.0

|                                                | Micromete                  | er Read     | lings       | Level                         |                                         |                    |                                 |
|------------------------------------------------|----------------------------|-------------|-------------|-------------------------------|-----------------------------------------|--------------------|---------------------------------|
| Watch Time                                     | Polaris                    | R           | 0.          | w.                            | I                                       | Ε.                 | Corrn.                          |
| 5 <sup>h</sup> 34 <sup>m</sup> 16 <sup>s</sup> |                            |             |             | 25.7<br>6.4                   | 8<br>24                                 | . 1<br>.0          | + 3.4 × 1.0<br>× 1.54           |
|                                                |                            |             |             | +19.3                         | - 15                                    | .9                 | = + 5"                          |
| 5 <sup>h</sup> 43 <sup>m</sup> 46 <sup>s</sup> |                            |             |             | 26.8<br>6.0                   | 9<br>23-                                | -0-8               | +6.0×1.0<br>×1.54               |
|                                                |                            |             |             | + 20.8                        | - 14                                    | - 8                | = + 9"                          |
| Circle                                         | Right                      |             |             | Ci                            | rcle L                                  | eft                |                                 |
| 5 <sup>h</sup> 34 <sup>m</sup><br>+ 6          | 16 <sup>5</sup><br>12      |             |             | 5 <sup>h</sup><br>+           | 43 <sup>m</sup><br>6                    | 46                 | 5                               |
| 5 40<br>1 27                                   | 28<br>08                   |             |             | 5<br>I                        | 49<br>27                                | 58<br>08           |                                 |
| 4 13 20<br>63° 20' 00"                         |                            |             |             | 4<br>65°                      | 22<br>42'                               | 50<br>30'          | u                               |
| 2.31083<br>0.17649<br>1.65205                  | 2.3108<br>0.2562<br>1.9511 | 3<br>2<br>6 | 2<br>0<br>1 | 2.31083<br>0.17649<br>1.61425 |                                         | 2<br>0<br>1        | .31083<br>.25622<br>.95974      |
| 2.13937                                        | 2.5182<br>0.0060           | 1<br>3 n    | 2           | 2.10157                       |                                         | 2<br>0             | .52679<br>.00552 n              |
|                                                | 2.52424<br>5.3142          | 4 n<br>6    |             |                               |                                         | 2<br>5             | .53231 n<br>.31426              |
|                                                | 3.83850                    | ) n         |             |                               |                                         | 3.                 | .84657 n                        |
|                                                | 358°05'05<br>88 03 36      | 5"<br>6 W   |             |                               | 3                                       | 35 B'<br>88        | °02′56″<br>01 21 W              |
|                                                | 270 01 29                  | 3           | p.          | ./                            | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 270<br>270<br>270° | 01 35<br>01 32<br>19<br>01' 13" |
| Place Lone re-r                                | un prom                    | iour        | nsni        | n corn                        | er                                      |                    | • • • • • • • • • • • • • • •   |

# AZIMUTH OBSERVATION

Place Sta. 76-66.71. W. of N.E. cor. sec. 33 tp. 84-2-5. R.O. Sta. 74-74.10. """ 34 "" Date 20-7-11. Observer. J. Smith. D.L.S.

| ę                       | 0      | 0      | Horizontal Circle Readings |        |       |        |       |      |              |         |          |                 |                  |        |
|-------------------------|--------|--------|----------------------------|--------|-------|--------|-------|------|--------------|---------|----------|-----------------|------------------|--------|
| sitic                   | ntin   | .°     |                            | Refe   | rence | Ohier  | +     |      |              | 8       | Polari   | •               |                  |        |
| Po                      | Poi    | 4      | Micro                      | scone  | A     |        | dicro | B    | Micros       | LCODE   | A        | Micro, B        |                  |        |
|                         |        |        | MICTO                      | F      | -     |        | F     | 12   | MICTOR       | F       | <u> </u> | M               | F                | 12     |
| ght .                   |        |        | 250°00'                    | 22"    | 22"   |        | 04"   | D.   | 270°04'      | 45"     | D.       | A6'             | 00"              | u"     |
| R.                      | 2      | 1      | 228.08                     | 25     | 23    | 11     | 04    | 02   | 210 04       | 45      | #1       | 00              | 09               |        |
| ircle                   |        | 2      |                            | 23     | 25    |        | 06    | 05   |              | 45      | 48       |                 | 09               | 11     |
| ΰı                      | ĥ      | 3      |                            | 21     | 25    |        | 05    | 02   |              | 45      | 50       |                 | 10               | 12     |
| 1                       | lean   |        | 359°09                     | 24".   | .0    | 11'    | 04"   | .6   | 270 04 48 .1 |         |          | 06' 09".7       |                  |        |
| Left                    |        | 1      | 179°10                     | 17"    | 15"   | 11'    | 47"   | 50"  | 30, 03,      | 14"     | 18"      | 10              | 43"              | 40     |
| cle                     |        | 2      |                            | 18     | 16    |        | 49    | 49   |              | 17      | 18       |                 | 43               | 40     |
| ü                       |        | 3      |                            | 17     | 17    |        | 49    | 50   |              | 14      | 18       |                 | 43               | 41     |
|                         | Mean   |        | 179° 10                    | 17".   | . 2   | u'     | 48"   | - 8  | 90° 09'      | 17".    | 6        | 10'             | 42".             | 6      |
|                         |        |        |                            |        | (     | Circle | Right |      | Circl        | e Left  |          |                 |                  |        |
| Mean                    | H.C.   | R.of   | Pol                        |        | 270   | o° o   | 5'29  | э"   | 90° I        | 0'0     | 0"       | Mean            | watch            | time   |
| Level correction        |        |        |                            | +      |       | 1      |       | -    |              | 6       | Watch    | corr.           |                  |        |
| Corrected H.C.R. of Pol |        | [      | 270                        | 0 0    | 5 30  |        | 90 C  | 9 5  | 1            | Sider   | ealtin   | 1e              |                  |        |
| " H.C.R.of R.O          |        |        | 359                        | ə 10   | 0 14  | .      | 179 1 | 1 0  | 3            | R.A.o   | f Pola   | ris             |                  |        |
| Angle Pol.to R.O.       |        | [      | 89                         | ) 0    | 4 44  | E      | 89 0  | 0 10 | 9 E          | t in ti | me       |                 |                  |        |
|                         |        |        |                            |        |       |        |       |      |              |         |          | t in a          | rc               |        |
| Pol.                    | rom    | colli  | mation                     | log.   |       |        |       |      |              |         |          | Log t           | an P             |        |
| One                     | urnm   | icre   | ometer                     | log.   |       |        |       |      |              |         |          | Log t           | an & se          | c.L    |
| Altit                   | ude P  | ol     | log                        | .sec.  |       |        |       |      |              |         |          | Log cos & sin t |                  |        |
|                         |        |        |                            | Sum    |       |        |       |      |              |         |          | Sum             |                  |        |
| Pol.                    | [r.col | 1. re  | duced to ho                | riz'al |       |        |       |      |              |         |          | Log             | $-\frac{1}{1-1}$ | n      |
| Leve                    | l cor  | rect   | ion                        |        |       |        |       |      |              |         |          | Log t           | an Z             |        |
| Micz                    | om.a   | ngle   | Pol.fr.coll                |        |       |        |       |      |              |         |          | Log 1           | 7                |        |
| R.O.                    | from   | c oll: | imation                    | .log.  |       |        |       |      |              |         |          | Log a           | (sec'            | s.)    |
| One                     | urn n  | nicro  | ometer                     | .log.  |       |        |       |      |              |         |          | Azim            | uth of I         | Pol.   |
| Altit                   | ude R  | .0.    | log                        | .sec.  |       |        |       |      |              |         |          | Angle           | Pol.t            | o R.O. |
|                         |        |        |                            | Sum    |       |        |       |      |              |         |          | Azim            | uth of           | R.O.   |
| Mici                    | om.a   | ngle   | R.O.from                   | colL . |       |        |       |      |              |         |          | Mean            |                  |        |
| Angl                    | e Pol. | to R   | .o                         |        |       |        |       |      |              |         |          | Conve           | rgenc            | e      |
|                         |        |        |                            |        |       |        |       |      |              |         |          | Bear            | ing of           | R.O.   |
| Dire                    | ction  | ofde   | flection                   |        |       |        |       |      | Amou         | nt. Ng  | 0.0      | rre             | tio              | n      |
|                         |        |        |                            |        |       |        |       | 1    |              |         |          |                 |                  |        |

# FOR GOVERNING SURVEYS

Instrument # 511

One turn of micrometer 164."07

One division of striding level 2.6

|                                                           | Micromet                                                                                                                 | er Rea      | dings             | Level                                    |                                                                      |                                                                                                                                     |  |  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| watch Time                                                | Polaris                                                                                                                  | F           | R. O.             | W.                                       | E.                                                                   | Corrn.                                                                                                                              |  |  |
| 15 <sup>h</sup> 14 <sup>m</sup> 20 <sup>s</sup>           |                                                                                                                          |             |                   | 34.1<br>13.6                             | 14.0<br>33.5                                                         | +1.0×0.65<br>×1.45                                                                                                                  |  |  |
|                                                           |                                                                                                                          |             |                   | + 20.5                                   | - 19.5                                                               | = +   "                                                                                                                             |  |  |
| 15 <sup>h</sup> 22 <sup>m</sup> 04 <sup>s</sup>           |                                                                                                                          |             |                   | 31.8<br>15.0                             | 12.0<br>35.0                                                         | -6.2×0.65<br>× 1.45                                                                                                                 |  |  |
|                                                           |                                                                                                                          |             |                   | + 16-8                                   | -23.0                                                                | = -6"                                                                                                                               |  |  |
| Circle<br>15 <sup>h</sup> 14 <sup>m</sup><br>- 3<br>15 11 | Right<br>20 <sup>5</sup><br>15<br>05                                                                                     |             |                   | 15 <sup>h</sup> 2<br>-<br>15 I           | 17cle Left<br>22 <sup>m</sup> 04 <sup>s</sup><br>3 15<br>18 49       |                                                                                                                                     |  |  |
| 1 27                                                      | 17                                                                                                                       |             |                   | 1 2                                      | 27 17                                                                |                                                                                                                                     |  |  |
| 13 43<br>205° 57'                                         | 48<br>00″                                                                                                                |             |                   | 13 5<br>207° 5                           | 51 32<br>53' 00"                                                     |                                                                                                                                     |  |  |
| 2.31077<br>0.17649<br>7.95384 n<br>2.44110 n              | 2.31077<br>0.25622<br>1.64106<br>2.20805<br>1.98817<br>2.19622<br>5.31439<br>3.51061<br>0°54'00'<br>89 04 44<br>89 58 44 | n<br>n<br>E | 2<br>0<br>T.<br>2 | .31077<br>.17649<br>.94640 n<br>.43366 n | 2.<br>0.<br>1.<br>2.<br>2.<br>3.<br>0°<br>89<br>89<br>89<br>+<br>89° | 31077<br>25622<br>66994 n<br>23693 n<br>98837 n<br>22530<br>31438<br>53968<br>57'45"<br>01 09 E<br>58 54<br>58 49<br>1 05<br>59'54" |  |  |
| Place                                                     | •••••                                                                                                                    |             |                   |                                          |                                                                      |                                                                                                                                     |  |  |

will be less accurate because values are given to a tenth of a minute only and since errors may result in interpolation.

#### GENERAL REMARKS ON OBSERVING

The instrument should be firmly setup with sufficient clearance to permit the unrestricted movement of the observer, and it should be in good adjustment. In azimuth observation on governing surveys, a recorder is necessary to speed the operation and to read the watch at the instant of pointing on the star. The observation point should be protected from wind, and the transit from direct sunlight. When determining the solar focus, the reference object should be one-half mile or more distant and atmospheric conditions should be such that the air is not quivering. When possible a set should include at least three complete observations.

An observation for time should be made as near as possible to the time of observation. The necessity for having an accurate watch correction increases with the nearness of Polaris to the meridian.

#### CHAPTER II

#### DETERMINATION OF THE MAGNETIC MERIDIAN

Although the compass is not allowed for establishing lines of Canada lands surveys, it is employed for other purposes and a knowledge of the direction of the magnetic meridian or of the magnetic declination is useful. For the determination of this direction, transit theodolites are fitted with especially sensitive needles. As the observation can be made in a few minutes and with very little trouble, it is desired that all surveyors should observe whenever they can do so without inconvenience.

The observation and the recording form are arranged for the determination of the azimuth of the magnetic needle instead of the magnetic declination. The arrangement is made for the sake of simplicity in observing and recording, the bearing in question being, subject to instrumental corrections, the angle read on the horizontal circle of the transit. Moreover, it is not liable to errors of sign, as in adding or subtracting the declination.

#### DIRECTIONS FOR OBSERVING

- Place the instrument on a survey line, and after adjustment, set the vernier to read the bearing of the line.
- Release the lower clamp, direct the telescope on the line, and fasten the lower clamp.
- 3. Release the vernier clamp, and turn the vernier plate until the north end of the magnetic needle observed with a magnifying glass, is seen exactly opposite the zero mark. Tap the trough lightly with the pencil, or preferably rit the milled part of one of the footscrews with the finger nail, to be sure that the needle has taken the position of rest. Note the reading of the horizontal circle. Take several readings by repeating the operation.
- Repeat operation No. 3 for the south end of the needle.
- Enter in the notes the place of observation, date, hour of the day, kind of time used, nature of the weather and any other remarks deemed necessary. It is important to record auroras occurring within 24 hours of the time of observation.

#### GENERAL REMARKS

For saving trouble and calculations, it is suggested that observations be made on any line of which the azimuth is known.

The direction of the magnetic needle is subject to a daily fluctuation called the diurnal variation. During the greater part of the night the direction is not far from normal. In the early morning, the north end of the needle in Ganada moves toward the east, reaching its maximum deflection about 7 or 8 a.m. The motion is now reversed, the north end travelling westwards, and crossing the normal direction about 10 or 11 a.m. The extreme western position is reached in the afternoon and then the needle comes back to its normal position at some time after 5 or 6 p.m. This march is subject to wide variations during magnetic storms. The magnitude of the diurnal variation is not constant. In the inhabited parts of Ganada, it may exceed 20 minutes. Observations at both eastern and western elongations of the needle on the same day, that is between 7 and 8 a.m. and between 1 and 2 p.m. give the best results, and it is desirable that when convenient they may be taken then. This gives not only the best value for the declination, but also the diurnal variation which it is most useful to know. Failing this, however, the best two to observe is after 5 p.m., when the needle is about in its normal position. It is true that the normal position is crossed generally between 10 and 11 a.m., but the motion being very rapid and the time of crossing uncertain.

Usually when the instruments are sent out from the office the magnetic needle is balanced for Ottawa and the index correction known. If at any time the needle should require rebalancing, the surveyor should proceed as follows:

Raise the needle with the lifter and remove the brass cover. This cover is secured to the trough by four screws, two on each side; move the end cover glasses. To do this scrape off the white lead putty around the edges, slide the cover glasses toward the centre and lift them out. The needle may now be taken out of the trough and the counterweight shifted. Then the lifter being still raised, place the needle upon it and lower the lifter gently. If the needle is not yet balanced repeat the operation until a satisfactory balance is obtained.

The steel pivot on which the needle swings during observations is made of hard steel shaped to a very sharp point. At the centre of the needle a cupped piece of agate is inserted. Although the needle is made as light as possible, the actual intensity of the pressure between the pivot and agate is probably many tons per square inch, and it is not surprising that in the majority of cases sluggishness in the needle is traceable to a damaged jewel or pivot. Therefore great care must be observed in lowering the needle very gently on the pivot. On no account should the compass be carried with the needle resting on its pivot.

In taking the needle out of the trough whether to rebalance the needle or to clean the agate, care should be taken to see that it is put back in its proper position. If replaced in the reverse position the index correction would be altered. For this reason, to safeguard against error, the position of the compass, whether "compass west" or "compass east" should be entered in the remarks after each observation when observing.

If the needle is sluggish, the observation cannot be accurate. The sluggishness is generally due to a dull pivot or a scratched cap. To keep both in proper condition, the needle must always be lowered gently on its pivot and never be allowed to play, except when actually in use. There are instances of the polarity of the needle being reversed by transporting an instrument on an electric car. It is difficult to conceive that a needle may be brought into such an intense magnetic field as that of an electric car without its magnetism being affected in some way; therefore, it is preferable to avoid this mode of transportation.

The place of observation must be at least three or four hundred yards away from wires carrying direct electric current. There must be no iron near the instrument. The observer must scrutinize his clothing and make sure that he has no iron or nickel on his person. Iron is found in buttons, as wire in hat brims, in some forms of neckties, in watches, chains and other articles of jewellery. The pivot in folding reading glasses is frequently made of iron. In case of doubt, the object may be tried close to the compass, measuring the distance at which an appreciable deflection is first produced. If the object is not brought closer than fifteen or twenty times this distance, the effect on the needle is negligible in observations of this kind.

The needle may be deflected by static electricity developed in cleaning the glass cover of the compass trough or the rubber frame of the reading glass. This electricity is dissipated by breathing on the glass or rubber frame.

When the telescope points to magnetic north, the needle should, if the instrument were accurately constructed, be exactly opposite its zero mark, but it seldom is. The deviation of the needle from the zero mark is the magnetic index correction; it is positive or + when the north end of the needle is to the left or west of the zero mark; when on the right or east, it is negative or -.

With the needle opposite the zero mark, the telescope points in a direction which, in the following explanation, is called "compass north." To bring the telescope into the direction of the magnetic north, it must, if the index correction is positive, be turned to the right by an angle equal to the correction - hence the rule that the index correction is to be algebraically added to the azimuth of compass north in order to obtain the azimuth of magnetic north (azimuth reckoned from 0° to 360°). Inv rsely, the index correction must be algebraically subtracted from the azimuth of magnetic north, such for instance as is taken from a magnetic map, in order to obtain the azimuth of compass north.

The index correction is ascertained by comparison with a standard unifilar magnetometer at the Dominion Observatory. When possible, it is well to have it determined both at the beginning and at the end of a survey.

#### EXPLANATION OF SPECIMEN OBSERVATION

(a) H. C. R. of compass north.

Thisis the average of the mean north and south end readings. The transit was adjusted to read correctly the bearing of the survey line, so that the horizontal circle reading of compass north is the

## OBSERVATION FOR MAGNETIC DECLINATION

H.C.R. FOR DIRECTION OF MAGNETIC NEEDLE

|          | NORTH        | END         | 50      | ОТН В      | IND         |
|----------|--------------|-------------|---------|------------|-------------|
| (1)      | <u>27°</u>   |             |         | 27°        | 17'         |
| (2)      |              | //          |         |            | /6          |
| (3)      |              | 12          |         |            |             |
| (4)      |              | //          |         |            | 10          |
| (5)      |              | 10          |         |            | 12          |
| Mean     | of North E   | nd 27°//.'8 | Mean of | South      | End 27°/3.0 |
| (a) H.C. | R.of compa   | ss north_   |         | <u>27°</u> | 12:4        |
| (b) Cor. | for convers  | ence        |         |            | - 00.6      |
| (c)Azir  | nuth of comp | ass north   |         | 27         | //.8        |
| (d) Inde | × correction |             |         |            | - 05.8      |
| (e) Azir | nuth of magn | etic north. |         | 27°        | 06'         |

#### REMARKS

A few clouds — Windy. No aurora. Circle E — compass W. Mean local time bearing of compass north. If the transit had not been so adjusted a correction to this reading would have been required.

(b) Correction for convergence.

The correction for convergence is applied in order to reduce the bearing read on the horizontal circle to an azimuth. The value of the correction is taken from the diagram in the Astronomical Field Tables. It is added when the point of observation is to the east of the reference meridian and subtracted if to the west. The rule given in the Manual to convert an azimuth to a bearing is here reversed, the object in this case being to convert a bearing to an azimuth.

(c) Azimuth of compass north.

The bearing has now been reduced to an azimuth.

(d) Index correction,

In the example given, the index correction being negative is subtracted from the azimuth of compass north to obtain the azimuth of magnetic north. If the index correction were positive, it would be added to the azimuth of compass north. The index correction is furnished with each instrument after comparison with the unifilar magnetometer.

(e) Azimuth of magnetic north,

The azimuth of magnetic north is the angle formed by the astronomical and magnetic meridians.

### SETTING A TRANSIT BY MEANS OF THE COMPASS

In connection with surveys of Ganada lands, the most frequent use of the compass is for checking the courses of a traverse or for setting up the transit to read azimuths.

In the first case, it is sufficient to make sure that there is no abnormal change in the reading of the compass north: any sudden change indicates a probable mistake in some of the last courses.

The second case arises when it is desired to observe the Pole star in day time at a place where there is no line of known azimuth. The problem consists in setting up the transit so that it shall read azimuths. If the surveyor has already ascertained the azimuth of compass north with his instrument, he merely sets his vernier to read this azimuth, releases the lower clamp, turns the whole instrument till the needle is exactly opposite the zero mark, fastens the lower clamp and releases the vernier clamp. With the instrument (No.2216) used for the specimen observation and anywhere near the place where the observation was taken, the vernier would be set to read 27°11:8 or rather 27°12'. the azimuth of compass north with his own instrument and has to resort to the azimuth of magnetic north taken from a map or determined by another surveyor. Then the surveyor must, from the azimuth of magnetic north, deduce the azimuth of compass north by applying the index correction of his own instrument after changing the sign. Starting with  $2^{\circ} 06!0$  for azimuth of magnetic north in the case already cited, and the index correction being-5.8, the surveyor would add 5.8 to 27°06!0, which would give him 27°11!8 for the azimuth of compass north. He would then proceed as already explained.

All these corrections, it may be observed, are generally small and in practice are frequently disregarded.

The above remarks apply particularly to instruments supplied with the trough pattern of compass.

#### COMPASS OF COOKE TRANSIT

Some Cooke instruments are fitted with a compass of telescopic pattern which may be briefly described. The outer shell of the compass is a brass tube on one end of which an ordinary Ramsden eyepiece is attached. There is a glass diaphragm on which are etched two close parallel vertical lines. The needle is of the regular edge bar type with one end bent up at right angles and ground to a very fine edge. This end swings sufficiently close to the glass diaphragm to give a good definition of the bent up edge of the needle when the eyepiece is focussed on the lines of the diaphragm. A pointing is made by bisecting the space between the two vertical lines with the needle. Only one end of the needle can of course be read. It is found however that this is more than compensated for by the increased accuracy of the readings. The needle lifter is operated by means of a milled head screw at the end of the compass remote from the eyepiece. The method of fastening this compass to the standard is an improvement on that used with the trough compase and assures better permanency of the index correction.

To rebalance the needle or clean the agate loosen the three small central screws and slide the tube apart. Unscrew the large central screw which ordinarily serves to keep the needle on the pivot. The needle may now be removed for balancing or cleaning. The same precautions and delicacy of handling must be observed as with the trough pattern of compass.

#### THE WILD DOUBLE IMAGE PRISM COMPASS

Because the Wild transit has a steel centre a separate compass has been made available which may be attached to the tripod when the transit is removed. The attachment has a small telescope for sighting the reference object, a clamp and tangent screw for horizontal movement, and a ball and socket levelling device with a circular plate bubble.

The compass circle is graduated in divisions of two degrees of arc. Both sides of the circle are visible through the viewer in the relation shown below. The compass may be read to the nearest degree, and tenths of a degree may be estimated.



Reading 67.3 degrees.

To read the compass the first upright figure on the left is the tens of degrees (60). The number of full divisions to the right from this division to the inverted image of its supplementary angular value (60° + 180° = 240°) gives the digits of the reading (7). The tenths of a degree may be estimated more accurately in the centre of the image (0.3). The full reading of 67.3 degrees is the compass azimuth of the reference object. Ten readings should be taken at each observation point. The azimuth of compass north is obtained by subtracting the compass azimuth from the astronomic azimuth, or the astronomic azimuth plus 360 degrees. The index correction must then be applied to obtain the azimuth of magnetic north.

The compass may be balanced by loosening, and moving radially, the balancing screws placed on the face of the circle. The same care must be exercised to protect the steel pivot as with other compasses.

#### CHAPTER III

#### INSTRUMENTS

Survey instruments are no longer specially designed for the requirements of Canadian lands surveys. This chapter is therefore confined to certain general observations on the care of instruments likely to be used.

## TRANSIT THEODOLITE FOR GOVERNING SURVEYS

For the survey of governing lines no entirely satisfactory replacement has yet been developed for the six-inch micrometer transit theodolite of 1912. A full description of it is given in Topographical Survey Bulletin No. 34.

These transits are no longer made and, as those still in use become worn, the features most likely to give trouble are the footscrews and the horizontal circle clamp. Wear in these parts may introduce sighting errors when the elevation of the telescope is changed. A check may be made by pressing the telescope sidewise with the finger. The telescope should appreciable error be revealed, its source can often be found by pressing in turn the tribach, clamp, standard, etc., and noticing the effect. If the footscrews show looseness, they can sometimes be tightened by more vigorous action on the small binding screws. Otherwise they should be returned to the shop for repair.

Another test, which is particularly useful in the case of clamp trouble, is to sight the telescope on a point and then move it up and down in altitude once or twice, afterwards checking to see if the point is still on the vertical crosswire. If the error reverses after the horizontal tangent screw has been used in opposite senses, it indicates a worn centre pivot, tangent=screw, or clamp. In such cases the instrument should be sent to a competent instrument maker for repair.

Care should be taken that the micrometer screw drum spindles do not become slightly bent causing the drum to touch the index. Serious errors in angle measurement will be introduced if this occurs.

#### "OPTICAL" THEODOLITES

Many "optical" theodolites are now on the market, all more or less based on the designs made for the Zeiss firm by Wild. These instruments have more factory adjustments and fewer field ones than in the case of the older types. Striding levels for these instruments have not yet been sufficiently refined for accurate azimuth observation; the best available has a value of about five seconds of arc per division. The length of the bubble cannot be adjusted.

The "optical" theodolites are characterized by accurately graduated circles, cut on glass, with a device for optically bringing into the field of the micrometer microscope the images of two diametrically opposite points on the circle, or, in some more recent designs, cut on two circles simultaneously. The various types of micrometer used with this eccentricity-compensating device permit very rapid circle reading with little or no eyestrain.

Due to the complicated nature of the optical trains inside these instruments, and the use of factory adjustments, totally enclosed bearings, etc., very little can be done in the field to effect repairs after damage or other trouble. On no account should an attempt be made by the surveyor to dissect any part of an optical theodolite unless he has had previous experience in taking it apart under office conditions. Unless the function of each screw is known, there is grave risk of seriously injuring the instrument, or losing some of the small parts.

#### INSTRUMENTS FOR USE ON WINTER SURVEYS

Certain greases, originally developed for military purposes and suitable for use over a wide temperature range, are now being used in instruments likely to be required on winter surveys. Before lubricating an instrument with low-temperature grease, all trace of the old lubricant must be removed from every surface by means of ether, or other solvent. All micrometer screws and nuts must be so cleaned, as otherwise a film of the old grease may remain and cause binding at very low temperatures. If a cold chamber is available, the instrument, after being winterized, should be left in it for several hours and all movements checked before removal.

Instruments which have been subjected to extreme cold should never be quickly exposed to warmth because this results in the condensation of moisture which may be particularly harmful in "optical" theodolites having steel parts. If an instrument has to be transferred suddenly from cold to heat, the best course is to pack it first in its box or other fairly air-tight container, and leave it for several hours before removal. In this way the instrument will reach room temperature with out an excessive amount of saturated air coming into contact with it.

Most motions of an instrument, even when winterized, will be stiffer at low temperatures. In some examples of the current models (1951) of the Wild theodolite, stiffness at sub-zero points occurs to such a degree, due to differential contraction between the trunnions and their bearings, as to render the instrument unusable.

When an instrument shows excessive stiffness at any temperature, on no account should force be used, as serious damage may result. The only safe treatment is to dismantle the parts carefully, if facilities are available, and find the cause of the trouble.

#### GENERAL

Extreme care should always be exercised in handling both transits and levels. Sudden jars may break delicate parts or disturb fine adjustments. No weight should be placed on an instrument box whether an instrument is within it or not and the instrument boxes should always be kept in a safe place. It is preferable to box a transit in moving from one instrument station to another. Otherwise the centre may be 78897-4 strained or the instrument may be damaged through a fall or by parts becoming entangled in tree limbs.

The instruments should be kept dry, clean, and freshly oiled at all times using a fine watch oil. The interval between overhauls should not exceed two years. Lenses should be cleaned with a brush or very lightly rubbed with a clean cloth or tissue to prevent scratching the surface. Clamps should never be excessively tight. In boxing an instrument they should never be tightened more than just sufficient to prevent movement. Tripod head screws should be loosened when the instrument is not in use.

In winter operations the transitman should avoid breathing on the eyepieces of verniers. If the object glass becomes frosted on the inside the frost may sometimes be removed by pointing the telescope towards the sun.

In camp, instruments and instrument boxes must always be kept in a safe place and should never be handled except by, or under the direction of, a competent instrument man.

#### SIDEREAL WATCH

The sidereal watch is an l8-size 19-jewel movement in an open face nickel case. The dial is divided into twenty-four hours.

Before being accepted, each watch is tested at the Dominion Observatory to ascertain if the adjustments have been made with the necessary accuracy.

No timepiece will give good service without reasonable care. Great changes of temperature must be avoided; this can be accomplished by carrying it constantly in an inner pocket where it is maintained at an even temperature by the heat of the body. The pocket must be clean and reserved exclusively for the watch which should be inserted always in the same position. It is a good plan, as a protection against dust, to keep the watch in a tight-fitting case of chamois skin. If exposed to a very low temperature, it may not only stop, but be injured permanently. It must be kept away from electric motors or dynamos, which might magnetize the balance. Winding every day as nearly as possible at the same hour is essential; this is to be done by turning the crown or the key and not by turning the watch. A watch must be cleaned and oiled at least every fourth year. A watch, particularly of a higher grade, may be ruined easily by an incompetent workman; too much care cannot be exercised in selecting the man to whom it is entrusted. When repairs are required, it is best to have them made through the head office.

#### STEEL TAPES

The stel tapes most commonly used are 0!25 wide by 0!'02 thick and in lengths of 400 links, 500 links, or 300 feet. Each tape has its correct length in terms of the Dominion measure of length determined by the National Research Council on the flat (fully supported), under a tension of twenty pounds, and at a temperature of 68°F. The coefficient of thermal expansion is about 0.000,006 per 1°Fr., so that the correction for a 10°F. change in temperature is about 0.006 feet per 100 feet. The weight per 100 feet is 1.68 pounds. Due to variation in cross section the tapes actually in use vary from 1.3 to 1.7 pounds per 100 feet. Young's modulus of elasticity, E, is 30,000,000 per square inch. Cards giving temperature corrections in tabulated form are available at head office. Sag (catenary) and stretch corrections are calculated from the above data.

The formulae are:

Stretch = 
$$\frac{L \times (P - P_*)}{A \times E}$$

Where L is the original length of the tape section, P the tension applied in pounds, P\* the tension applied in standardizing the tape (20 lbs.). A the area of the cross section of the tape in square inches  $(0!'25 \times 0!'02)$  and E the modulus of elasticity of the tape (30,000,000).

Correction for sag = 
$$\frac{W^2 L}{24 P^2}$$

Where W = weight of length of tape section in pounds, L the length of the tape section, and P the tension applied in pounds.

Measurements made with steel tapes are subject to correction for temperature, slope, stretch, and sag. The accuracy required in a survey will determine whether any or all of the corrections should be applied. In governing surveys all four corrections should be used.

Steel tapes require considerable care in the field. When not in use they should either be reeled up or put in a safe place to one side of the survey line. To avoid breaks, tapes should never be jerked for straightening purposes, and the chainman should always be on the alert for kinks. At frequent intervals they should be cleaned with an oily rag. In the vicinity of salt water this should be done every evening to prevent pitting. At the close of the season, they should be cleaned thoroughly and fairly heavily greased with vaseline. Repair kits for breakages should always be available.

#### STADIA RODS

Stadia rods are fifteen feet in length and three inches wide. They fold in the middle. They are graduated in feet and tenths. There are no figures on the rod, the colour scheme being so arranged that they are unnecessary. A folding level is attached to the back of the rod as an aid for holding it vertical.

The stadia wires of the transit theodolite are set by the makers in the supposed ratio of 1:100 between outside wires and 1:200 between middle and outer wires. As a matter of fact, however, they are rarely in this exact ratio. The true ratios are furnished for each diaphragm. These ratios are used for calculating a table of the corrections to be applied to the distances read on the rod. If the surveyor should be without the true stadia constants, he can prepare his table of corrections by chaining a base on level ground and measuring with the stadia the distance of a number of points on the base; the difference between the two measurements gives the correction for each distance. The table is completed by interpolation. The measurement must be made when the air is quite steady and the conditions favourable.

With modern internal focussing instruments the formula,  $k r \cos^2 V + (f + c) \cos V$ , becomes  $k r \cos^2 V$ , since f + c may be neglected and the formula for the vertical component becomes  $k r \cos V \sin V$ , or  $1/2 k r \sin 2V$ , where k is the stadia constant, r the rod intercept, and V the angle of inclination of the sight.

In making stadia measurements the stadia rod must be held vertical by centering the cross bubbles in the level attached to the rear of the rod. The bubbles may be adjusted by erecting the rod in a vertical position by means of a long plumb line and centering the bubbles by the adjusting screws. When the rod is being held for sighting it should be turned to catch as much sunlight as possible and yet present sufficient surface to the instrument man on which to make the reading. For best results, the lengths of measurements should not exceed 1,000 feet; the full intercept between the outside stadia lines should be read, and then checked by the summation of the two one-half intercepts; the line of sight through the lower stadia line should always clear the intervening ground by at least three feet.

#### CLINOMETER

The clinometer, or abney level, is used to measure the slope of the tape. In governing surveys, both front and rear chainman should measure and record the slope. All slopes greater than 7 degrees should be measured with a transit.

#### CHAPTER IV

#### PROBLEMS CONNECTED WITH THE SYSTEM OF SURVEY

#### CORRECTION FOR HEIGHT ABOVE SEA-LEVEL

The tables have been calculated from the dimensions of the earth's surface at sea-level.

The township sides are actually measured on surfaces elevated above sea-level, and therefore the differences of latitude and longitude calculated from the tables are greater than those actually covered by the township sides.

Any measured distance may be reduced to sea-level by subtracting the correction  $\frac{L}{S}$  x, x being the distance, *l* the elevation above sea-level, and Sthe radius of curvature of the line under consideration.

In general N (see Table I) can be used instead of S.

Base lines when the system of survey is exactly followed are established by direct measurement from the 49th parallel, northward along an initial meridian.

Hence the latitude of a base line should be less than that given in the table by  $(L-49^{\circ}) \frac{L}{R}$ , where l is the mean elevation of the initial meridian between the 49th parallel and the base under consideration.

Many base lines, however, have been established, not by this direct measurement, but by the survey of township meridians from other bases. If the actual latitudes of these base lines are required, account must be taken of the elevations of all the north and south lines through which the connection with the 49th parallel has been made. It is obvious, however, that the average elevation of the country above the sea will give a sufficiently accurate result, since the small errors.due to difference of elevation are masked by errors of survey.

On the base lines the effect of elevation above sea-level is to decrease the difference of longitude covered by one range, and this must be allowed for in establishing an initial meridian by means of chainage along a base line or in estimating the accuracy of measurement of a base line by its closing on an initial meridian, since the initial meridians, except the first, have been placed approximately on even degrees of longitude (every fourth degree). The longitude covered by one range at an elevation  $l_{\star}$  may be obtained by multiplying the differences of longitude given in Tables III and IV by  $(1 - \frac{l_{\star}}{L_{\star}})$ .

The correction for elevation above sea-level is, in latitude 51°, 0.00382 chains for one mile distance at an elevation of 1,000 feet, and varies directly as the elevation and distance. It changes somewhat with the latitude, but slightly, and the correction in any particular case may be taken as the same as that for latitude 51°. If extreme accuracy be required, the formula given above,  $\frac{1}{\sqrt{2}} \propto x$ , may be used. The error in the length of township chords of course involves an error in deflection angles and azimuths, but this is too small to be appreciable.

### LATITUDES AND LONGITUDES OF POINTS IN THE SYSTEM

By "points in the system" is meant the corners of specified sections, or points referred to them by connecting lines. In the latter case the lines, if short, may be reduced to latitude and longitude by means of "latitude and departure" from a traverse table, and by using Table XL.

Thus the problem is reduced to the determination of the latitude and longitude of any section corner.

#### LATITUDE

The latitude of a section corner can be taken directly from Table IX and Table X.

Since the section corners are presumed to be at a distance of even sections from the north and south boundaries of the township, being established by survey from those boundaries, the latitude found as above must, when the section corner is not on the meridian outline of the township, be increased by the correction given by Table XI.

In the first system the sections are not measured on meridians from the north or south boundary of the township, but on lines parallel to the eastern boundary of the township. Hence, theoretically, the difference of latitude between the given corner and the township outline should be decreased in the ratio of cosine azimuth of the section line to unity; but this correction is insignificant.

The correction for sea-level may also be applied.

#### LONGITUDE, THIRD SYSTEM

In the second and third systems, the section lines are true meridians from the base line north and south two townships. Hence the longitude of a section corner is the same as that of the corresponding corner on the base line from which the township has been surveyed.

Then if dM be the longitude covered by one range on that base line, and if n be the number of the range in which the section lies, m the number of sections lying between the given section and the eastern boundary of the township, the number of ranges which intervene between the initial meridian and the eastern boundary of the given section is  $n-1+\frac{D}{D}$  and the difference in longitude between it and the initial meridian gives the longitude of the eastern boundary of the section.

The longitude of the Principal or First meridian is 97°27' 28!'4.

The longitudes of the Second, Third, Fourth, etc., meridians

are 102°, 106°, 110°, etc., subject to certain errors of survey, which cannot be discussed at present.

The difference of longitude should be corrected for height above sea-level if precision is required. This can be done by multiplying it by  $(1 - \frac{L}{2})$ .

For example:

The NE corner of sec.16, tp.23, r.17, W. of the Fourth meridian (third system of survey). Here n = 17, m = 3, and the township is surveyed from the 7th base, for which we find from Table IV,  $dM = 8^{+}22^{+}411 = 502^{+}411$ . Therefore longitude of the section line

=  $110^{\circ} + (502!'411 \times 16^{-3}/_{6}) = 112^{\circ}18' \cdot 09!'78.$ 

The NE corner of sec. 16 is in approximately the same latitude as the NE corner of Sec. 13, and is 3 sections distant from the bounding meridian of the township.

| Latitude of NE | cor. sec. 13 tp. 23 (Table X) | 50°57'56!'05 |
|----------------|-------------------------------|--------------|
| Correction for | 3 sections (Table XI)         | 0!'07        |
| Latitude of NE | cor.sec.16 tp.23              | 50°57'56!'12 |

#### LONGITUDE, FIRST SYSTEM

In the first system the procedure for the longitude is a little different. The section lines are drawn parallel to the east side of the township, so that the difference of longitude between the section line and the east boundary of the township is not the same as on the base line, but is equal to the actual distance from the boundary of the township divided by P sin 1", P sin 1" being taken from Table I for the actual latitude of the section post. Thus using the same notation as before

difference of longitude from initial meridian

$$= (n-1)dM + \frac{81.50 m}{P \sin 1''}$$

dM being taken from Table III (1st system) for the governing base line, or it may be calculated by the equivalent formula difference of longitude

$$= \left(n - 1 + \frac{m}{6}\right) dM + \frac{Q}{P \sin 1''}$$

where Q = 2m(40-w), w being the width of quarter sections as taken from the last column of Table IX.

#### LONGITUDE, SECOND AND FOURTH SYSTEMS

Longitudes in the second system are calculated in the same way as those in the third, taking dM from Table III instead of Table IV. In the fourth system the process is the same as for the third system, and the same table is used - Table IV.

#### EFFECT OF ERRORS OF SURVEY

An error in the latitude of the base line, or an error in the longitude of the initial meridian, of course increases or decreases by the amount of error in the latitude or longitude of the section corner. Similarly, a chainage error on the base line affects the longitude directly. In the computation all known errors of this kind must be allowed for.

An error in the latitude of the base line also affects the longitude covered by 486 chains (or 489 chains) measured along the base line, since 486 chains covers a greater longitude if the base line be moved north. The manner in which the effect of an error of this kind may be estimated is shown in the following example.

Suppose the 6th base line (third system) to be placed 10 chains too far north, we find from Table IV

| dM | for | 6th | base line       | × | 498''662 |
|----|-----|-----|-----------------|---|----------|
| dМ | for | 6th | correction line | = | 500'!527 |

The 6th correction line is two townships, i.e. 966 chains north of the 6th base line, and the difference in dM for these lines is 1"865. Therefore, dM for the actual position of the 6th base line, 10 chains north of its theoretical position, is

 $498''662 + 1''865 \times \frac{10}{966} = 498''681$ 

The correction, in the case supposed, to dM for one range is 0':019, and in 29 ranges (about the distance apart of two initial meridians) it amounts to 0':019 x 29 = 0': 55, or 54 links.

GIVEN THE LATITUDE AND LONGITUDE OF A POINT, TO FIND ITS POSITION WITH REGARD TO THE SURVEY SYSTEM, i.e. to find in what section it is, and the township and range, and its distance from the NE corner of the section.

#### SECOND, THIRD AND FOURTH SYSTEMS

This is the converse of the preceding problem. The first step is to find, from Table IX or X, the latitude of the section line next north of the given latitude. The difference between these two latitudes is reduced to chains by Table I. This gives the distance (x) in chains to be measured from the point to find the north boundary of the section. For great accuracy the small corrections for altitude and from Table XI may be applied to x.

The number of sections by which the section line is north of the southern boundary of the township in which it lies is to be noted. Call this number a, and the number of the township t.

We also know the number of the nearest base line, i.e., the base line on which depends the survey of township t. From Table IV we take out dM for this base line. From the given longitude of the point subtract the longitude of the initial meridian. Divide the difference by dM, with quotient n and remainder r. Divide r by  $\frac{dM}{b}$  with quotient b and remainder s. There s, reduced from seconds of longitude to chains by Table I, with argument, latitude of the given point, gives the distance (y) to be measured east from the point to find the eastern line of the section.

We now know that the given point is x chains south and y chains west of the north-east corner of some section in township No.t and range No.(n + 1) west of the initial meridian; and also that the northern boundary of the section is a sections north of the southern boundary of the township, and that the eastern boundary is b sections west of the eastern boundary of the township.

It is now easy by means of a skeleton township diagram to determine the number of the section, e.g., if a = 5, b = 3, the section is 28.

Without a township diagram, the section number can be found from the formula

No. of section = 
$$\frac{1}{2}$$
 { 12a - 5 + (2b - 5) }

The upper sign is taken when a is odd, and the lower when a is even. These two rules are comprised in the general formula

No. of section = 
$$\frac{1}{2}$$
 { (12a-5) - (-1)<sup>a</sup>(2b-5) }

The calculation for the second system is the same as above, , using the proper tables for that system. It is also the same for the fourth system.

In this manner have been computed the positions of a great many section corners in British Columbia (fourth system of survey) with reference to points along the line of the Canadian Pacific Railway, the latitudes and longitudes of these points having been first determined by a traverse survey.

#### FIRST SYSTEM OF SURVEY

The procedure in this system is the same as above, except that the total difference of longitude from the eastern boundary of the township (instead of the nearest section line) must be reduced to chains, and from the distance in chains must be subtracted the nearest multiple of \$1.50.

#### FRACTIONAL TOWNSHIP OR RANGE BETWEEN PARTS OF THE COUNTRY SURVEYED UNDER DIFFERENT SYSTEMS OF SURVEY

Townships of the first and second systems adjoin each other without overlap or deficiency, since the townships in these two systems are of the same dimensions. Similarly of the third and fourth systems.

But where townships surveyed under the latter systems abut on townships of the first or second system, a fractional townshipor range occurs. It is only necessary to consider the case of the third system abutting on the first or second, since the fourth does not occur in juxtaposition with these latter systems.

#### FRACTIONAL TOWNSHIP

Townships of the third system are 6 chains shorter, measured north and south than the others. The townships in both cases are measured north from the 49th parallel, and hence the third system falls short of the other by 6 chains for each township, and the northern boundary of a township of the third system is therefore south of the northern boundary of the same township of the first or second system by 6 chains multiplied by the number of the township.

Thus the 5th correction line (tp. 18), as surveyed under the third system, is 6 x 18 = 108 chains south of its position under the second system. For twelve ranges west of the Second meridian, the territory from the 5th correction line northward to the 8th correction line was surveyed under the second system, while the country south of the former line has been surveyed under the third system. There is therefore an additional township (measuring 108 chains from north to south) lying between township 18 of the third system and township 19 of the second system. (This fractional township is called township 19A, and is subdivided according to the third system. See Manual of Surveys.)

#### FRACTIONAL RANGE

Townships of the third system are 3 chains narrower (measured east and west along the base line) than those of the first and second systems. The overlap of the latter systems over the third, however, is not equal to 3 chains multiplied by the number of ranges, but exceeds this, since the widths are laid off along base lines which lie in different latitudes, and hence the convergence of meridians comes into play.

The readiest method of calculating this overlap is as follows:

Let  $dM_1$  be the longitude covered by one range of the base line in the first or second system as found from Table III.

Let dM be the same quantity for the base line of the third system (from Table IV)

Then  $dM_1 - dM$  is the difference of the longitude between the exterior meridians of range one, as surveyed under the two systems.

The difference of longitude at the eastern boundary of the nth range will be

$$(n - 1) (dM_1 - dM)$$

This reduced to chains is

 $(n - 1) (dM_1 - dM) P sin 1''$ 

**P** sin 1" being taken from the proper table for the latitude of the base or section line on which the overlap is required.

The meridian outline between ranges 12 and 13, west of the Second meridian, from township 19 to township 22, inclusive, is the western boundary of a tract of country surveyed under the second system of survey. Required: the width of range 13, as surveyed under the third system, on the northern boundaries of townships 19, 20, 21 and 22.

The base line on which this meridian outline is based is the 6th base line, or northern boundary of township 20.

> From Table III, dM<sub>1</sub> = 8'21'972 " " IV, dM = 8'18'662 whence dM<sub>1</sub> - dM = 3:'310

and at the eastern boundary of the thirteenth range, the difference of longitude is  $3.310 \times 12 = 39$ . 72.

We have then for the northern boundary of township 19 (third system):

|       |     | L    | og 3 | 9.72  | = | 1.5990092 |
|-------|-----|------|------|-------|---|-----------|
| Table | IV, | Log  | P si | n l'' | = | 9.9896352 |
|       |     |      |      |       |   | 1.5886444 |
|       |     | Nat. | nun  | ıber  | = | 38,783    |

For the northern boundary of township 20:

```
Log 39.72 = 1.5990092
Log P sin 1" = <u>9.9888297</u>
1.5878389
Nat. number = <u>38.711</u>
```

For the northern boundary of township 21:

Log 39.72 = 1.5990092 Log P sin 1" = <u>9.9880192</u> 1.5870284 Nat. number = 38.639

For the northern boundary of township 22:

```
Log 39.72 = 1.5990092
Log P sin 1" = <u>9.9872086</u>
1.5862178
Nat. number = <u>38.567</u>
```

Hence townships 19, 20, 21 and 22, surveyed under the third system in range 13, have their eastern tiers of sections narrowed by 38.783, 38.711, 38.639 and 38.567 chains respectively, along the north boundaries of the different townships.

Now, the full widths of these sections when regular is got from Table X, by multiplying the "width of quarter section" by two. Thus, the width of the eastern tier of sections in range 13 is:

| Along | N. boundary | of tp.19, | 80.15 - | 38.78 | = | 41.37 | chains |
|-------|-------------|-----------|---------|-------|---|-------|--------|
|       |             | 20,       | 80.00 - | 38.71 | = | 41.29 |        |
|       |             | 21,       | 79.85 - | 38.64 | = | 41.21 |        |
|       |             | 22,       | 79.69 - | 38.57 | = | 41.12 |        |

These widths must be increased by one chain for road, if the widths from post to post are required.

For the township lines to the north of the correction line, viz.: 23, 24, 25 and 26, the width of range 13 may be found in the same way, using the dM from Tables III and IV for the 7th instead of the 6th base line.

If the width of the fractional section on the north side of the 6th correction line is required, that is, the south boundary of township 23, it must be remembered that here, on account of the correction line being thrown south, from the less depth of the townships of the new system, the southern boundary of township 23 of the third system, which is brought from the 7th base line, intersects the second system south of the correction line, i.e., on a line brought from the 6th base line.

Therefore we have

For the second system, Table III,  $dM_1$  6th base =  $8^{+}21^{+}972$ " third " " IV,  $dM_1$  7th base =  $8^{+}22^{+}411$   $dM_1 - dM = -0^{+}339$ and for twelve ranges,  $12 (dM_1 - dM) = -5^{+}268$ 

With the difference of longitude, 5".268, and the P sin 1" for the 6th correction line, third system, we get the required jog.

It will be noticed that the overlap is negative, i.e., instead of there being a fractional township there is a surplus.





The lines in the figure are all township lines. Thus it will be seen that there is a small piece of land,  $B^{\prime}C^{\prime}$ , which is in fact a township of itself. Its designation would be township 23A, range 12A.

#### SECOND EXAMPLE

Required: the depth, north and south, of township 27, range 19, west of the principal meridian.

The north boundary of township 26 is the northern boundary of a tract of country surveyed under the first system.

Since each township of the third system is 6 chains shorter north and south than one of the first system, the northern boundary of township 26 in the third system is 6 x 26 = 156 chains south of the same boundary under the first system.

Therefore the distance from the north boundary of township 26, first system, to the northeast corner of section 12, township 27, third system, is 161-156 = 5 chains.

Since 1.50 chains must be allowed for road, 3.50 chains is the available width of the strip of land.

#### FRACTIONAL SECTIONS ADJOINING AN INITIAL MERIDIAN

The longitude of the Principal meridian at the intersection of the 4th base line is 97°27'28".4.

The Second, Third, etc., meridians were laid down by survey from the Principal Meridian, with the intention to place them at every fourth degree of longitude - 102°, 106°, 110°, etc. There is also the Second meridian east of the Principal meridian, laid down by survey from it, in approximate longitude 94°.

The actual longitudes, by astronomical observation, of such as have been determined are:

Second meridian at the north boundary of sec. 13, tp.15, 102\*00'16''5. Third meridian at the north boundary of sec. 13, tp.46, 106\*00'10''1. Fourth meridian at the north boundary of sec. 36, tp.49, 110\*00'18''0. Fifth meridian at the north boundary of sec. 36, tp.52, 114\*00'07''7.

The discrepancies from the intended values are due in part to error in the assumed longitude of the Principal meridian, in part to errors of survey. The longitudes of these meridians at points other than those stated, will of course vary with the azimuthal error in surveying the meridians.

The width of the last range in seconds, on a given base line, when closing on an initial meridian is got by subtracting from the difference in longitude (in seconds) between the initial meridians, the nearest integral multiple of dM from Table III or Table IV (according to the system of survey in question).

Thus for the width of the last range on the 18th base line between the Third and Fourth meridians (third system of survey) we have from Table IV,  $dM = 549^{11}$  123 for one range. Assuming the Third and Fourth meridians to be in the above stated longitudes at the 18th base line, we divide the difference of longitude 4'00'07".9 or 14407".9 by 549" 123 with quotient 26 and remainder 130".7. That is, the width of range 27 on the 18th base line or the difference of longitude between the meridian forming the eastern boundary of townships 67, 68, 69 and 70, range 27 and the Fourth meridian is 130".7.

A better result could be obtained by considering the actual latitude of the base line, and its elevation above sea-level. Thus it is known that the 18th base line between the Third and Fourth meridians is approximately six chains south of its latitude as given in the tables, and has a mean elevation of about 1,700 feet. Using these figures and proceeding as already explained on pages 43 and 45, correcting for latitude displacement

$$dM = 549!!123 - \frac{6}{966} \times 2!!365 = 549!!108$$

and correcting for altitude

$$dM = 549!! 108 \left(1 - \frac{l}{N}\right) = 549!! 064$$

Proceeding now as before using 549:'064 as the longitude covered by one range we find the width of range 27 to be 132.'2. This difference of longitude can be converted into chains by multiplying by P sin 1" for the section line whose length is required, whether the southern boundary of township 67, or the northern boundary of township 70, or any of the intermediate township or section lines.

If the width of the last broken section be required, then if dealing with the third system of survey, integral multiples of 1/6 dM (difference of longitude covered by one section) must be subtracted from the width of the fractional township until the remainder is less than 1/6 dM. This remainder may then be converted tochains by multiplying by P sin 1" taken out of the table for the latitude of the line under consideration. The reason for this is that the widths in seconds of longitude are the same for all sections from the base line to the correction line (second and third systems).

#### GEODETIC POSITIONS

Owing to the unequal distribution of mass and density in local areas of the earth's surface, the normal to the spheroid does not coincide with the plumb line vertical. In consequence the latitude and longitude of a point determined by astronomical observations may differ from the latitude and longitude as determined by geodetic measurements. Since the amount of the plumb line deflection varies from place to place the distance between any two points calculated from their astronomical positions may not agree with the distance actually measured on the ground. It is therefore desirable that positions in the Canada Lands surveys systems should be geodetic rather than astronomic.

A number of section corners have been tied into the Geodetic Survey of Canada's networks of triangulation and the resulting spheroidal co-ordinates (1927 North American Datum) are listed in the following table. As the networks are extended further ties will be made and the results tabulated.

## Spheroidal Co-ordinates of Section Cormers as Determined by the Geodetic Survey of Canada (1927 North American Datum)

West of Principal Meridian.

| Tp. | R. | Section        | Latitude      | Longitude    |
|-----|----|----------------|---------------|--------------|
| 1   | 10 | 22, 1/4 N. By. | 49°03' 32!'73 | 98°43'41!'22 |
| 1   | 17 | 10, 1/4 E. By. | 49 01 17.40   | 99 39 37.95  |
| 1   | 27 | 26, 1/4 E. By. | 49 03 57.93   | 100 58 52.01 |
| 1   | 28 | 28, 1/4 E. By. | 49 03 58.05   | 101 09 37.41 |
| 1   | 30 | 15, N.E. Cor.  | 49 02 38.59   | 101 24 24.27 |
| 1   | 33 | 28, 1/4 E. By. | 49 03 56.42   | 101 49 55.55 |
| 2   | 1  | 10, N.E. Cor.  | 49 07 05.37   | 97 30 16.51  |
| 2   | 3  | 23, 1/4 E. By. | 49 08 27.30   | 97 45 04.16  |
| 2   | 14 | 29, N.E. Cor.  | 49 09 45.63   | 99 18 06.86  |
| 2   | 16 | 12, N.E. Cor.  | 49 07 03.78   | 99 28 52.04  |
| 3   | 5  | 2, N.E. Cor.   | 49 11 32.19   | 98 01 24.67  |
| 3   | 7  | 19, N.E. Cor.  | 49 14 12.51   | 98 23 07.88  |
| 3   | 18 | 8, 1/4 E. By.  | 49 12 01.51   | 99 51 20.95  |
| 7   | 17 | 31, N.E. Cor.  | 49 37 14.60   | 99 45 24.77  |
| 11  | 18 | 35, N.E. Cor.  | 49 58 29.92   | 99 49 12.79  |

West of Second Meridian

| Tp. | R. | Section        | Latitude     | Longitude     |
|-----|----|----------------|--------------|---------------|
| 1   | 1  | 16, 1/4 N. By. | 49°02'35!'32 | 102°05'03!'51 |
| 1   | 3  | 12, 1/4 E. By. | 49 01 16.00  | 102 16 29.49  |
| 1   | 5  | 1, 1/4 S. By.  | 48 59 57.18  | 102 33 16.10  |
| 1   | 6  | 13, 1/4 E. By. | 49 02 09.83  | 102 40 40.32  |
| 1   | 12 | 24, 1/4 N. By. | 49 03 26.95  | 103 29 10.91  |
| 1   | 13 | 10, 1/4 N. By. | 49 01 41.84  | 103 39 50.62  |
| 1   | 14 | 8, 1/4 N. By.  | 49 01 42.87  | 103 50 33.82  |
| 1   | 16 | 26, N.E. Cor.  | 49 04 23.28  | 104 01 54.93  |
| 1   | 18 | 28, N.E. Cor.  | 49 04 20.68  | 104 20 35.05  |
| 1   | 23 | 17, 1/4 E. By. | 49 02 08.65  | 105 01 58.66  |
| 1   | 27 | 7, 1/4 E. By.  | 49 01 17.63  | 105 35 21.87  |
| 2   | 7  | 8, 1/4 N. By.  | 49 07 01.64  | 102 54 45.67  |
| 2   | 10 | 10, N.E. Cor.  | 49 06 56.90  | 103 15 09.83  |
| 2   | 26 | 12, 1/4 N. By. | 49 06 57.34  | 105 21 20.10  |
| 2   | 29 | 22, N.E. Cor.  | 49 08 43.11  | 105 47 22.72  |
| 5   | 29 | 14, N.E. Cor.  | 49 23 30.21  | 105 47 38.56  |
| 6   | 26 | 25, 1/4 S. By. | 49 29 37.41  | 105 22 46.01  |
| 16  | 23 | 24, N.E. Cor.  | 50 22 03.34  | 105 01 48.25  |
| 16  | 29 | 33, 1/4 E. By. | 50 23 22.45  | 105 55 25.86  |
| 17  | 20 | 14, 1/4 E. By. | 50 25 59.75  | 104 38 25.97  |
| 18  | 24 | 23, 1/4 E. By. | 50 32 06.50  | 105 11 27.43  |
| 20  | 26 | 20, N.E. Cor.  | 50 43 01.67  | 105 33 45.75  |
| 21  | 24 | 34, N.E. Cor.  | 50 50 01.05  | 105 14 20.97  |
| 22  | 28 | 24, N.E. Cor.  | 50 53 30.48  | 105 44 50.34  |
| 26  | 26 | 6, N.E. Cor.   | 51 11 51.27  | 105 36 45.77  |
| 28  | 26 | 7, 1/4 N. By.  | 51 23 13.37  | 105 39 02.66  |
| 28  | 27 | 34, N.E. Cor.  | 51 26 43.03  | 105 42 34.06  |
| 29  | 22 | 32, N.E. Cor.  | 51 31 57.18  | 105 03 11.40  |

| Тp. | R. | Section        | Latitude    | Longitude    |  |
|-----|----|----------------|-------------|--------------|--|
| 41  | 27 | 27, N.E. Cor.  | 52 33 56.08 | 105 47 38.98 |  |
| 45  | 20 | 23, N.W. Cor.  | 52 53 59.84 | 104 48 31.98 |  |
| 45  | 22 | 22, N.E. Cor.  | 52 56 54.41 | 105 07 19.81 |  |
| 45  | 22 | 18, 1/4 W. By. | 52 55 35.27 | 105 13 08.93 |  |
| 45  | 24 | 23, 1/4 E. By. | 52 53 34.20 | 105 21 54.30 |  |
| 46  | 20 | 22, N.E. Cor.  | 52 59 14.18 | 104 48 33.09 |  |
| 47  | 22 | 31, 1/4 E. By. | 53 05 47.57 | 105 11 47.74 |  |

West of Third Meridian

| Тр.                     | R. | Section        | Latitude      | Longitude      |
|-------------------------|----|----------------|---------------|----------------|
| 1                       | 14 | 4, 1/4 E. By.  | 49°00' 25!'42 | 107°48' 32!'63 |
| 1                       | 22 | 34, N.E. Cor.  | 49 05 12.37   | 108 51 17.34   |
| 2                       | 3  | 12, N.E. Cor.  | 49 06 59.32   | 106 16 25.29   |
| 2                       | 5  | 33, N.E. Cor.  | 49 10 28.07   | 106 36 26.39   |
| 2                       | 9  | 20, 1/4 E. By. | 49 08 17.34   | 107 09 49.58   |
| Z                       | 16 | 31, N.E. Cor.  | 49 10 27.53   | 108 07 14.09   |
| 2                       | 19 | 4, 1/4 E. By.  | 49 05 39.48   | 108 28 34.96   |
| 2                       | 24 | 33, N.E. Cor.  | 49 10 27.37   | 109 08 39.63   |
| 2                       | 25 | 34, N.E. Cor.  | 49 10 27.21   | 109 15 20.54   |
| 3                       | 1  | 3, 1/4 E. By.  | 49 10 54.44   | 106 03 00.62   |
| 3                       | 7  | 2, S.E. Cor.   | 49 10 28.40   | 106 50 07.99   |
| 3                       | 18 | 9, N.E. Cor.   | 49 12 12.24   | 108 21 34.24   |
| 3                       | 20 | 14, N.E. Cor.  | 49 13 04.75   | 108 35 01.35   |
| 4                       | 10 | 11, 1/4 W. By. | 49 17 27.72   | 107 15 00.88   |
| 4                       | 22 | 21, N.E. Cor.  | 49 19 11.37   | 108 53 51.33   |
| 7                       | 1  | 36, N.E. Cor.  | 49 36 39.40   | 106 00 13.50   |
| 10                      | 1  | 36, S.E. Cor.  | 49 51 30.72   | 106 00 16.65   |
| 10                      | 1  | 36, N.E. Cor.  | 49 52 22.91   | 106 00 16.60   |
| 40                      | 4  | 33, N.E. Cor.  | 52 29 34.49   | 106 30 26.70   |
| 40                      | 6  | 23, N.E. Cor.  | 52 27 49.57   | 106 44 50.33   |
| 41                      | 4  | 31, N.E. Cor.  | 52 34 48.60   | 106 33 19.43   |
| 42                      | 2  | 26, 1/4 E. By. | 52 38 45.40   | 106 10 16.66   |
| 42                      | 3  | 22, N.E. Cor.  | 52 38 18.61   | 106 20 21.55   |
| 42                      | 5  | 21, N.E. Cor.  | 52 38 18.28   | 106 39 04.72   |
| 43                      | 15 | 28, N.E. Cor.  | 52 44 24.42   | 108 06 28.70   |
| 44                      | 10 | 21, N.E. Cor.  | 52 48 45.48   | 107 22 56.48   |
| 44                      | 12 | 36, N.E. Cor.  | 52 50 30.59   | 107 35 59.68   |
| 46                      | 20 | 19, N.E. Cor.  | 52 59 14.19   | 108 52 56.06   |
| 47                      | 24 | 15, N.W. Cor.  | 53 03 34.56   | 109 26 30.14   |
| 50                      | 1  | 12, 1/4 E. By. | 53 17 59.38   | 106 00 12.97   |
| 50                      | 26 | 3, N.E. Cor.   | 53 17 32.86   | 109 42 37.01   |
| West of Fourth Meridian |    |                |               |                |
| Тр.                     | R. | Section        | Latitude      | Longitude      |
| 8                       | 3  | 5, 1/4 E. By.  | 49°37'05!'82  | 110°21'55!'71  |

| 8  | 3  | 5, 1/4 E. By.  | 49°37'05!'82 | 110°21'55!'71 |
|----|----|----------------|--------------|---------------|
| 8  | 7  | 11, 1/4 E. By. | 49 37 57.77  | 110 50 22.29  |
| 9  | 10 | 32, 1/4 N. By. | 49 47 09.50  | 111 19 28.44  |
| 10 | 10 | 25, 1/4 N. By. | 49 51 32.36  | 111 14 03.98  |
| 14 | 10 | 7, 1/4 N. By.  | 50 09 51.73  | 111 21 25.77  |
| 15 | 4  | 5, 1/4 E. By.  | 50 13 47.53  | 110 30 28.92  |

| Tp. | R. | Section        | Latitude      | Longitude    |
|-----|----|----------------|---------------|--------------|
| 17  | 10 | 23, 1/4 N. By. | 50 27 19.42   | 111 16 30.61 |
| 19  | 10 | 36, N.E. Cor.  | 50 39 33.93   | 111 14 59.60 |
| 18  | 13 | 3, 1/4 N. By.  | 50 29 57.27   | 111 42 37.90 |
| 18  | 14 | 18, 1/4 E. By. | 50 31 15.84   | 111 54 20.02 |
| 20  | 15 | 23, 1/4 E. By. | 50 42 36.78   | 111 57 57.02 |
| 21  | 18 | 25, N.E. Cor.  | 50 49 09.95   | 112 21 29.92 |
| 22  | 27 | 22, N.E. Cor.  | 50 53 32.36   | 113 39 04.55 |
| 22  | 29 | 24, N.E. Cor.  | 50 53 31.88   | 113 52 55.32 |
| 23  | 20 | 22, N.E. Cor.  | 50 58 46.49   | 112 42 07.04 |
| 23  | 23 | 9, N.E. Cor.   | 50 57 01.48   | 113 08 37.40 |
| 23  | 26 | 3, S.E. Cor.   | 50 55 17.60   | 113 32 20.72 |
| 40  | 26 | 24, N.E. Cor.  | 52 27 46.51   | 113 36 09.38 |
| 43  | 26 | 27, 1/4 N. By. | 52 44 29.45   | 113 41 29.03 |
| 47  | 25 | 12, N.E. Cor.  | 53 02 48.51   | 113 30 42.77 |
| 47  | 26 | 27, N.E. Cor.  | 53 05 25.08   | 113 42 25.24 |
| 48  | 25 | 22, N.E. Cor.  | 53 09 47.36   | 113 33 38.56 |
| 48  | 25 | 22, 1/4 N. By. | 53 09 47.10   | 113 34 21.89 |
| 48  | 4  | 36, N.E. Cor.  | 53 11 26.76 • | 110 26 32.63 |
| 48  | 27 | 34, N.E. Cor.  | 53 11 31.87   | 113 51 11.57 |
| 49  | 8  | 31, N.E. Cor.  | 53 16 38.94   | 111 09 00.13 |
| 50  | 1  | 36, 1/4 E. By. | 53 21 28.65   | 110 00 17.42 |
| 50  | 2  | 20, N.E. Cor.  | 53 20 10.02   | 110 14 54.93 |
| 50  | 3  | 22, 1/4 N. By. | 53 20 09.68   | 110 21 28.90 |
| 50  | 5  | l, N.E. Cor.   | 53 17 32.61   | 110 35 23.41 |
| 50  | 7  | l, N.E. Cor.   | 53 17 31.83   | 110 52 56.04 |
| 50  | 24 | 26, N.E. Cor.  | 53 21 08.01   | 113 23 22.91 |
| 51  | 1  | 8, 1/4 E. By.  | 53 23 16.38   | 110 06 11.64 |
| 51  | 3  | 16, 1/4 E. By. | 53 24 09.01   | 110 22 25.25 |
| 51  | 6  | 29, N.E. Cor.  | 53 26 19.69   | 110 50 28.12 |
| 51  | 8  | 31, 1/4 N. By. | 53 27 14.66   | 111 10 08.24 |
| 51  | 11 | 24, 1/4 N. By. | 53 25 29.68   | 111 29 15.62 |
| 51  | 25 | 12, N.E. Cor.  | 53 23 44.31   | 113 32 24.08 |
| 52  | 13 | 9, 1/4 E. By.  | 53 28 33.49   | 111 50 39.43 |
| 52  | 19 | 35, N.E. Cor.  | 53 32 28.88   | 112 40 48.34 |
| 52  | 23 | 14, 1/4 E. By. | 53 29 24.45   | 113 16 13.46 |
| 52  | 24 | 8, 1/4 N. By.  | 53 28 58.62   | 113 30 11.60 |
| 52  | 27 | 19, N.E. Cor.  | 53 30 42.65   | 113 57 29.56 |
| 53  | 11 | 30, 1/4 N. By. | 53 36 50.22   | 111 36 38.66 |
| 53  | 12 | 19, N.E. Cor.  | 53 35 57.65   | 111 44 45.84 |
| 53  | 16 | 20, 1/4 N. By. | 53 35 58.48   | 112 19 23.50 |
| 53  | 24 | 27, 1/4 E. By. | 53 36 24.62   | 113 26 31.12 |
| 53  | 25 | 21, N.E. Cor.  | 53 35 57.54   | 113 36 50.80 |
| 53  | 28 | 24, 1/4 N. By. | 53 35 57.01   | 114 00 00.16 |
| 54  | 14 | 28, N.E. Cor.  | 53 42 05.31   | 111 59 30.37 |
| 55  | 16 | 8, N.E. Cor.   | 53 44 39.03   | 112 19 51.88 |
| 55  | 18 | 22, 1/4 E. By. | 53 46 00.59   | 112 34 41.55 |
| 55  | 20 | 9, N.E. Cor.   | 53 44 42.28   | 112 54 02.59 |
| 56  | 19 | 34, 1/4 N. By. | 53 53 25.95   | 112 44 21.86 |
| 56  | 22 | 28, 1/4 N. By. | 53 52 34.53   | 113 12 37.27 |

| Tp. | R. | Section        | Latitude      | Longitude      |
|-----|----|----------------|---------------|----------------|
| 27  | 2  | 23, N.E. Cor.  | 51°19' 44!'94 | 114°09' 53!'86 |
| 31  | 4  | 10, N.E. Cor.  | 51 38 57.67   | 114 28 23.83   |
| 33  | 1  | 8, N.E. Cor.   | 51 49 26.42   | 114 05 43.57   |
| 34  | 1  | 28, 1/4 N. By. | 51 57 18.47   | 114 05 00.74   |
| 51  | 4  | 32, 1/4 E. By. | 53 26 48.21   | 114 32 29.07   |
| 51  | 23 | 21, N.E. Cor.  | 53 25 29.15   | 117 19 01.44   |
| 52  | 1  | 8, 1/4 N. By.  | 53 28 58.63   | 114 06 40.53   |
| 52  | 3  | 14, N.E. Cor.  | 53 29 51.11   | 114 19 12.62   |
| 52  | 24 | 31, N.E. Cor.  | 53 32 27.39   | 117 30 47.86   |
| 53  | 1  | 24, N.E. Cor.  | 53 35 56.94   | 114 00 03.48   |
| 53  | 2  | l, N.E. Cor.   | 53 33 20.25   | 114 08 54.74   |
| 53  | 1  | 36, N.E. Cor.  | 53 37 41.74   | 114 00 03.50   |
| 53  | 8  | 11, 1/4 E. By. | 53 33 48.05   | 115 03 25.10   |
| 53  | 12 | 23, N.E. Cor.  | 53 35 56.66   | 115 38 46.64   |
| 53  | 13 | 17, N.E. Cor.  | 53 35 04.92   | 115 52 04.11   |
| 54  | 6  | 32, 1/4 N. By. | 53 42 55.97   | 114 50 53.00   |
| 54  | 7  | 30, 1/4 N. By. | 53 42 03.16   | 115 01 09.90   |
| 54  | 9  | 17, N.E. Cor.  | 53 40 19.52   | 115 16 40.54   |
| 54  | 12 | 9, N.E. Cor.   | 53 39 26.92   | 115 41 45.22   |
| 54  | 13 | 8, N.E. Cor.   | 53 39 26.47   | 115 52 04.21   |
| 54  | 18 | 2, N.E. Cor.   | 53 38 33.94   | 116 31 52.02   |
| 55  | 11 | 32, 1/4 E. By. | 53 47 44.26   | 115 35 11.89   |
| 55  | 20 | 19, N.E. Cor.  | 53 46 25.60   | 116 56 54.19   |
| 56  | 18 | 19, 1/4 N. By. | 53 51 39.31   | 116 39 48.23   |
|     |    | West of Sixt   | h Meridian    |                |
| 45  | 1  | 9, N.E. Cor.   | 52 52 19.26   | 118 04 17.13   |

West of Fifth Meridian

#### CHAPTER V

#### CONSTRUCTION AND USE OF THE TABLES

The geodetic tables of the Supplement have been based on the dimensions given by Col. Clarke (1866) for the figure of the earth.

In the computation of the tables, no account has been taken of the irregularities and errors of survey, or of the altitude above sealevel at which the surveys are made. The surveys are considered as based on a parallel of latitude of 49°, and the different townships and sections as having their theoretic dimensions.

The tables therefore, do not strictly represent the geodetic quantities for the different points of the Canada lands system. The method of applying corrections for altitude and known errors of survey is briefly treated on pages 43 and 45. The actual errors of survey and the imperfections of all geodetical assumptions are too complicated for treatment here.

These discrepancies, however, are always small, and will exert no appreciable influence on the field work of a surveyor. With the exception of the latitudes and differences of longitudes, the errors of the tables are negligible.

#### TABLE I

#### LENGTHS OF ARCS OF MERIDIANS, PARALLELS, ETC., IN DIFFERENT LATITUDES

According to Col. A. R. Clarke, R. E., in his "Comparison of Standards of Length" (1866), the spheroid of revolution most nearly approaching the form of the earth has for its major or equatorial semiaxis 20,926,062 feet, and for its minor or polar semi-axis 20,855,121 feet.

Representing the semi-major and semi-minor axis by a and b respectively, we have for the compression

 $c = \frac{a - b}{a} = \frac{1}{294.98}$ , and the eccentricity e is given by the formula  $e^2 = \frac{a^2 - b^2}{a^2} = 0.0067686$ 

The unit of measure in the Canada lands surveys is the Gunter's, or 66-foot chain. The equatorial semi-axis in chains is 317,061.545.

Representing by L the geographical latitude of a place, or the angle which its vertical line makes with the plane of the equator, we have for the radius of curvature of the meridian

$$R = \frac{a(1 - e^2)}{(1 - e^2 \sin^2 L)^{\frac{3}{2}}}$$

for the length of the normal to the meridian terminated by the minor axis

$$N = \frac{a}{(1 - e^2 \sin^2 L)^{\frac{1}{2}}}$$

and for the radius of the parallel of latitude L

$$P = N \cos L$$
.

78897-51

The length in chains of one second of latitude is equal to R sin l'; one second of the great circle perpendicular to the meridian is equal to N sin l'; and one second of longitude is equal to P sin l'. The logarithms of these quantities are placed in the second, third and fourth columns of Table I. They have been calculated by means of the logarithmic expansions of R and N.

Thus putting n for 
$$\frac{a-b}{a+b}$$
 we have  
 $\log (R \sin 1^{\prime\prime}) = \log [a(1-n)^2(1+n) \sin 1^{\prime\prime}]$   
 $-3\mu n \cos 2L + \frac{3}{2} \mu n^2 \cos 4L - etc.$ 

where  $\mu$  is the modulus of the common system of logarithms, and powers of n higher than the second are neglected as being insensible in the eighth decimal place.

Substituting the value of a in chains, as given above, and taking

$$n = \frac{a-b}{a+b} = \frac{1}{588.96}$$
, we get

log (R sin 1") = 0.18597916 - 0.00221218 cos 2L

+0.00000188 cos 4L.

In calculating the last two terms by logarithms five places are sufficient.

For N sin 1" we have  $\log (N \sin 1") = \frac{1}{3} \log (R \sin 1") + \frac{2}{3} \{ \log a + \log \sin 1" + 2\mu n \}$   $= \frac{1}{3} \log (R \sin 1") + 0.12546215,$ and for P sin 1"

 $\log (P \sin 1'') = \log (N \sin 1'') + \log \cos L.$ 

The calculation has been made to eight places of decimals to ensure accuracy in the seventh place. In tabulating the eighth figure has been dropped.

The calculation of the logarithms of R sin 1" and N sin 1" has also been made directly from the formulæ for R and N, by the use of a subsidiary angle.

> Thus, finding an angle  $\psi$  such that  $\sin \psi = e \sin L$ , we have  $R \sin 1^{"} = a(1 - e^2) \sec^3 \psi \sin 1^{"}$  $N \sin 1^{"} = a \sec \psi \sin 1^{"}$

Seven figure logarithms were used, and consequently the results could not be depended upon to the seventh figure, but they have been serviceable as a check upon the series computation.

Log N sin 1", log P sin 1" and log R sin 1" are given in the table for every 10' of latitude from 42° to 70°. Their values for intermediate latitudes can be obtained by simple interpolation. Where, however, log P sin 1" is required with accuracy for an intermediate latitude, it is better first to obtain log N sin 1" for the latitude by interpolation from the table and then to add log cos L.

Under the heading 'Chains in 1"' are given the natural numbers corresponding to the logarithms of R sin 1" and P sin 1". These natural numbers are useful in reducing small differences of latitude and longitude to chains by simple multiplication, being preferable in many cases to the logarithms.
The converse operation of reducing short distances north and south or east and west to seconds of latitude or longitude may be performed by multiplying by the quantities in the two columns headed "Seconds in one Chain." These columns contain the reciprocals of the quantities in the columns "Chains in 1"".

In the last two columns of the table are given the lengths of one degree of latitude and longitude in English miles.

# RADIUS OF CURVATURE OF A SECTION OF THE SPHEROID INCLINED AT ANY ANGLE TO A MERIDIAN

In some operations it is necessary to find the radius of curvature of the trace on the earth's surface of a "straight" or "transit" line, making a given angle with the meridian.

Representing this radius of curvature by S, and  $\theta$  being the angle with the meridian, we have the formula

$$\frac{1}{S} = \frac{\cos^2 \theta}{R} + \frac{\sin^2 \theta}{N}$$

and introducing an auxiliary angle X determined by the formula

$$\tan X = \sqrt{\frac{R \sin 1''}{N \sin 1''}} \tan \theta, \text{ we have}$$
  
S sin 1'' = N sin 1''  $\frac{\sin^2 X}{\sin^2 \theta}$ 

a formula adapted for ready calculation by logarithms.

# RADIUS OF SPHERICAL CURVATURE

The mean of the values of S when  $\theta$  is given all possible values is  $\sqrt{NR}$ . This is the radius of curvature of the surface or the radius of the sphere to the surface at a given point. Its logarithm is readily found from Table I, being the arithmetical mean of the logarithms of N and R.

#### TABLE II

# CORRECTIONS TO TABLE I FOR CHANGE IN ELEMENTS OF FIGURE OF EARTH

In Table I the data used are Clarke's 1866 values, viz.:

$$a = 20,926,062$$
 fe  
 $n = \frac{1}{588,96}$ 

and all the following tables are based on Table I, and therefore on these values. Clarke's later values (Geodesy, 1880) are,

$$a = 20,926,202 \text{ feet}$$
$$n = \frac{1}{585.93}$$

If, for any purpose, it is desired to use these values, Table I can be

corrected by means of Table II, which has been computed thus:

Differentiating the formulae,

log R sin 1"

 $= \log a + \log \sin 1'' - \mu (n + \frac{3}{2} n^2) - 3\mu n \cos 2L + \frac{3}{2} \mu n^2 \cos 4L$ log N sin 1''

$$= \log a + \log \sin 1'' + \mu (n - 1/2n^2) - \mu n \cos 2L + \frac{1}{2} \mu n^2 \cos 4L$$
  
and putting  $\frac{1}{n} = p$ , we have

$$\begin{split} d(\log R \sin 1") &= \mu \, \frac{da}{a} + \mu \, n^2 dp + 3\mu n^2 \cos 2L dp \\ d(\log N \sin 1") &= \mu \, \frac{da}{a} - \mu \, n^2 dp + \mu \, n^2 \, \cos 2 \, L dp \end{split}$$

 $\mu$  being the modulus of the common system of logarithms. Terms involving the cubes and higher powers of n are insensible and may be neglected.

To change Clarke's earlier to his later values, we have

$$da = + 140 (feet) dp = - 3.024 a = 20926062 (feet) n = \frac{1}{588.96}$$

and  $\mu = 0.43429448$ whence d log (R sin 1'') = -.00000088 -.00001136 cos 2L d log (N sin 1'') = +.00000669 -.00000379 cos 2L

These quantities are tabulated in Table 11, with the proper signs of application to log R sin 1" and log N sin 1" in Table I.

#### TABLE 111

# LATITUDES OF BASE AND CORRECTION LINES AND LENGTHS OF ARCS OF MERIDIANS, PARALLELS, ETC., FOR FIRST AND SECOND SYSTEMS OF SURVEY

This table is constructed for the first and second systems of survey only. It accordingly stops at the 13th base, township 48, north of which there are no surveys under these systems.

Each township measuring 489 chains each way, the 1st correction line is 978 chains north of the 49th parallel.

The latitude of the 1st correction line is therefore

$$49^{\circ} + \frac{978}{R \sin 1''}$$

Here R sin 1" must be taken from Table I for the middle latitude between the 1st base and the 1st correction line. For accuracy it is necessary therefore to compute an approximate difference of latitude, using an approximate value of R sin 1". For instance R sin 1" may be taken from the table for latitude 49°.

The approximate difference of latitude being thus determined, the middle latitude is found from it (this being a sufficiently close approximation), and the final R sin  $1^{n}$  is taken from Table I for that latitude. Then dividing 978 by this we have a very close approximation to the difference of latitude between the base and the correction line.

From the latitude of the 1st correction line, that of the 2nd base line is found by a similar process, and so on in succession as far as the table extends.

The table is checked by applying the same process to a longer distance than 978 chains. For example, the latitude of the 6th base can be directly determined from that of the first by using 9,780 chains instead of 978. When long distances are thus taken, a second approximation to the middle latitude may become necessary.

The columns log N sin 1" and log R sin 1" are taken from Table I by interpolation, and log P sin 1" is found by adding log cos L to log N sin 1".

The width of a township along a base line is 489 chains. The longitude corresponding to this length measured along the parallel of latitude is given in the column headed "Longitude covered by 489 chains of westing", not only for the base lines but also for the correction lines.

The longitude for 489 chains, along a base line, is the longitude covered by one range of townships. Along a correction line it does not correspond to the longitude covered by a range, since the width of a township along a correction line is greater or less than 489 chains according as the township north or south of the correction line is considered. The tabulated quantity, however, for correction lines can be used to calculate the narrowing or widening of sections at the correction lines.

The township width, 489 chains, is measured along the base line which has such azimuth that its terminal point falls in the same latitude as its initial point.

Thus every township corner along a base line has the same latitude, and the base line is a succession of chords of the latitude circle.

The difference of longitude between one township corner and the next is given by the formula

$$dM = \frac{489}{P \sin 1''}$$

It is assumed here that the chord of the arc of the latitude circle is equal to the arc. That the difference between the chord and the arc is inappreciable may be shown thus:

By spherical trigonometry

$$\sin \frac{c hord}{2N} = \sin \frac{dM}{2} \cos L$$
  
whence chord = N cos L dM - N cos L sin<sup>2</sup> L  $\frac{dM^3}{24}$   
= arc - arc x  $\frac{dM^2}{24} \sin^2 L$ 

so that the difference between the chord and the arc is equal to

$$\operatorname{arc} x \frac{\mathrm{d} M^2}{24} \sin^2 L$$

dM being in circular measure.

For any township chord this amounts to less than one fiftieth'

of a link.

The chord always lies north of the arc. The distance between them is greatest at their middle points, amounting there to about 10 links. Hence, at the international boundary line, which is the first base line, since the actual territorial boundary is the curve, and the base line a series of chords, the road allowance which lies along the north side of this base is increased in width by 10 links at the middle of the chords.

The non-coincidence of the chord and arc also has the effect of increasing and decreasing the widths of roads on correction lines, since on account of the jog, the township corners north and south of the road are not opposite one another. The increase or decrease in the width of the road along correction lines, when required, may be easily found by an applic, ion of Table XI.

In the first column of Table III are given, for convenience, the numbers of the townships corresponding to the several base and correction lines. Thus the 6th base is the northern boundary of township 20, and so on.

#### TABLE IV

#### LATITUDES OF BASE AND CORRECTION LINES, ETC., FOR THIRD AND FOURTH SYSTEMS OF SURVEY

This table is similar to Table III, except that it is made for the third system of survey, where the widths of townships are 486 instead of 489 chains, and their depths, in a north and south direction, 483 instead of 489 chains.

The table also applies, without change, to the fourth system (British Columbia).

In this table, as well as in Table III, the latitudes given are those of the line of posts on the south side of the road allowance. To get the latitude of the posts north of the road on correction lines, the latitude of the correction line, as given in the table, must be corrected by adding the equivalent in latitude of the width of the road, i.e., one chain and a-half for the first and second systems (Table III), and one chain for the third system (Table IV).

#### TABLE V

#### CHORD AZIMUTHS, ETC., FOR BASE LINES, FIRST AND SECOND SYSTEMS OF SURVEY

The extremities of the township chord, as above stated, are in the same latitude. Hence the chord is equally inclined to the meridians passing through its terminal points, and its azimuth, east or west of north, is equal to the complement of half the change in azimuth, that is, of half the "convergence of meridians."

Let dZ represent the change in azimuth or convergence of meridians, dM the difference of longitude, and L the latitude.

Then, by spherical trigonometry

 $\tan \frac{l}{2} dZ = \tan \frac{l}{3} dM \sin L$ 

whence, by expansion of the tangents in terms of the arcs,

$$dZ = dM \sin L + \frac{dM^3}{12} \sin L \cos^2 L$$

or, if dZ and dM be expressed in seconds,

$$dZ = dM \sin L + \frac{dM^3}{12} \sin L \cos^2 L \sin^2 l''$$

The second term is inappreciable, amounting in latitude 51° to less than one ten-thousandth of a second.

 $\therefore dZ = dM sin L$ 

The convergence or "deflection" (dZ), given in Table V, is thus calculated from the difference of longitude (dM) in Table III.

The "chord azimuth" is the complement of half the deflection. The chord azimuth, convergence for 100 chains and the deflection are given in the table in degrees, minutes and seconds.

In the survey of a base line, the surveyor, when he arrives at a township corner, deflects his line to the north through an angle equal to the "deflection," and thus establishes in azimuth the chord across the next range of townships.

This deflection angle may be turned with the instrument, but more readily by the use of the "deflection offsets" in the table. The tabulated offset is the linear distance in inches between one of the chords and the prolongation of the other, at one chain from the township corner.

Their distance apart at any point is found by multiplying the tabulated offset by the distance, expressed in chains, of the point from the township corner.

For example, if the instrument stand on the prolongation of the first chord at 15 chains past the corner, and the back picket at 40 chains on the other side of the corner, that is, behind the corner, then the instrument must be moved north fifteen times, and the back picket south forty times, the "deflection offset for one chain". The line of the instrument and picket will then be in the correct bearing for the prolongation of the base line.

The angle is thus turned as accurately as a straight line can be produced with the instrument, and much more accurately than the angle can be measured with the graduated arc, while the setting of the instrument at the corner (which may be in low ground, unsuitable for accurate line production ) is rendered unnecessary.

"Longitude covered by one range" in the seventh column is merely the longitude in the seventh column of Table III, reduced to time by dividing by 15. This gives the number of seconds which a watch will gain or lose on local time in being carried across a range. The gain or loss in travelling over any other distance along the base line is proportional to the distance. The column is added for astronomical purposes, especially the determination of azimuth by observation of Polaris at any hour angle.

Table V applies to the first and second systems of survey.

#### TABLE VI

#### CHORD AZIMUTHS, ETC., FOR BASE LINES, THIRD AND FOURTH SYSTEMS OF SURVEY

This table is similar to Table V, but is made for the third system of survey.

The calculation is made by the same formulæ, changing only the width of the range, which is 486 instead of 489 chains, and using the latitudes of the base lines from Table IV. instead of those from Table III.

 $dM = \frac{486}{P \sin 1''} , \quad dZ = dM \sin L$ 

The table also applies to the fourth system.

#### TABLE VII

#### CHORD AZIMUTHS, JOGS, ETC., FOR CORRECTION LINES, FIRST AND SECOND SYSTEMS OF SURVEY

This table gives quantities for correction lines similar to those given in Table V for base lines. It applies to the first and second systems of survey.

The correction lines are posted on both sides of the road. The chord azimuths and deflections are given for the south side of the road, which is that side for which the latitudes of correction lines are given in Table III.

The calculation of the chord azimuth for correction lines is somewhat different from that for base lines.

For the base lines we have

 $dM = \frac{489}{P \sin 1''}$ deflection = dM sin L

For the correction lines, one range is not 489 chains, but the distance between meridians which include 489 chains on the nearest base line.

Hence in the formulae: -

$$dM = \frac{489}{P \sin 1''}$$
  
and deflection = dM sin L =  $\frac{489}{P \sin 1''}$  sin L

we must take P sin 1" for the next base line south of the correction line, if the difference of longitude and the deflection for the south side of the correction line road are required; while for the north side of that road we must take P sin 1" for the next base line north. L of course, is the latitude of the correction line itself.

> The length of one range on the correction line is dMxP sin 1". If, then, P<sub>1</sub> and P<sub>2</sub> represent the radii of parallels for the

base lines next north and south, respectively, and P that for the correction line itself; then

$$dM_1 = \frac{489}{P_1 \sin 1''}$$
,  $dM_2 = \frac{489}{P_2 \sin 1''}$ 

and we have for the length of one range on the correction line: -

North side = 
$$\frac{489}{P_1 \sin 1''} \times P \sin 1''$$
  
South side =  $\frac{489}{P_2 \sin 1''} \times P \sin 1''$ 

The values of these quantities are tabulated in the sixth and seventh columns of Table VII.

For extreme accuracy P sin 1" for the north side of the road should be taken out for a latitude greater by 1.50 chains, or 0:98 greater than that tabulated in Table III; but the difference in the result would be almost inappreciable, being less than one quarter of alink per township.

The difference of lengths of the township lines north and south of the correction line road gives the overlap or jog.

The jog for one range is given in the eighth column of the table. As this jog occurs in each range of townships, its value at any range is the product of the jog for one range by the number of ranges.

The excess of the length of the north side over, or the defect of the south side from 489 chains, is the linear divergence or convergence of the township lines. Since there are twelve half sections in a township side, the convergence or divergence for one half section is one-twelfth of the convergence or divergence for the township, or one twenty-fourth of the jog, the excess of the north side and the defect of the south side being very nearly, though not quite, equal.

This convergence or divergence for one half section is entered in the ninth column of the table. It is used in the second system, where the surplus or deficiency caused by the convergence of meridians is divided equally among all the quarter-sections. Hence, in surveying a correction line under the second system, the width of each quarter section (exclusive of the roads) is forty chains plus or minus this tabulated quantity. The surplus or deficiency on the township line midway between the base and the correction line is half of that on the correction line.

In the first system the whole of the surplus or deficiency is thrown into the western tier of quarter sections. This surplus or deficiency is the difference between 489 chains and the quantities in the sixth and seventh columns of Table VII. For example, on the north side of the road on the 1st correction line the surplus is 1.75 chains, and the westerly quarter section of the township is therefore 41.75, all the others being 40 chains.

It is to be observed that in all cases the whole divergence or convergence is applied to the section itself, and that the road allowance retains its width of 1 chain or 1 1/2 chains, with the exception of the roads on correction lines, which are subject to a widening or narrowing as explained under Table III.

#### TABLE VIII

#### CHORD AZIMUTHS, JOGS, ETC., FOR CORRECTION LINES, THIRD AND FOURTH SYSTEMS OF SURVEY

This table gives for the third and fourth systems the same quantities as are given in Table VII for the first and second systems. The surplus or deficiency is in all cases divided equally among all the quarter sections.

#### TABLE IX

#### LATITUDES, AND WIDTHS IN CHAINS, OF NORTHERN BOUNDARIES OF SECTIONS IN FIRST AND SECOND SYSTEMS OF SURVEY

This table, with Table XI, gives the latitudes in degrees, minutes and seconds for the northern boundaries of all sections in the first and second systems.

The sections numbered in the second column are those adjacent to the eastern boundary of the township. The latitudes of the northern boundaries of interior sections lying west of these are approximately the same. Thus the northern boundaries of sections 14, 15, 16, 17 and 18 have very nearly the same latitude as the north boundary of 13, and so for the other east and west tiers of sections. The small corrections required to the latitudes of Tables IX and X to obtain the latitudes of the northeast corners of sections not on the bounding meridians of townships are given in Table XI.

These latitudes are computed by interpolating from the latitudes given in Table III.

The logarithmic secant and tangent of the latitude are given in the table for use in calculation of azimuth observations.

In the last column of the table are given the widths of the north boundaries of the quarter sections (in the second system of survey). These are calculated for the correction lines in the manner explained under Table VII, and for the intermediate lines by interpolation.

For quarter sections adjoining correction lines the usual width is given for the north boundary of the quarter section to the south of the correction line; bracketed with it is also given the width, measured along the south boundary, of the quarter section immediately to the north. That is, the two lengths bracketed are the lengths of quarter section sides measured along the south limit and the north.limit, respectively, of the road on correction lines.

# TABLE X

# LATITUDES, AND WIDTHS IN CHAINS, OF NORTHERN BOUNDARIES OF SECTIONS IN THIRD AND FOURTH SYSTEMS OF SURVEY

This table gives for the third system the same quantities as are given in Table IX for the first and second.

The table may also be applied to the fourth system by correcting the latitudes of the alternate section lines, viz., the north boundaries of sections 1, 13 and 25 in each township, by subtracting therefrom 0'33, the equivalent in arc of 50 links. The change in the logarithmic secant and tangent is inappreciable, as these logarithms are given to only five places of decimals. The widths of quarter sections in the last column must be increased by 50 links.

#### TABLE XI

# DIFFERENCE OF LATITUDE BETWEEN TOWNSHIP CORNERS AND SECTION AND QUARTER SECTION CORNERS

This table is used when it is required to find the latitude of any point on a township chord, or within a township, as when it is desired to find the error of the survey lines by connecting with an astronomically determined point.

Let l = length of chord, chains.

- c = distance along chord from either end to point at which latitude difference is required, chains.
- θ = convergence of meridians per chain, seconds of arc.
- dL = approximate distance from the parallel to the chord, in links.

then  $dL = .00024 (l - c)c\theta$  (approximately).

The angular difference of latitude may be obtained by use of the conversion factors given in Table I.

Table XI can be used for all systems.

#### TABLE XII

# FOR CONVERTING LOGARITHMIC TANGENTS OF SMALL ARCS INTO LOGARITHMS OF SECONDS OF ARC

This gives the logarithm of the ratio of a small arc expressed in seconds of arc, to its tangent; by adding it to the log tangent, the logarithm of the arc is obtained, and the arc itself is found with a table of logarithms of numbers, without having to compute proportional parts.

#### TABLE XIII

Log 
$$\frac{1}{1-m}$$
 tabulated with log m as argument.

These tables are useful in abridging the work of time-azimuth observations on Polaris; they give by inspection the value of

log <u>1</u> 1 - tan P tan L cos t

when log tan P tan L cos t is known. The quantity tan P tan L cos t has been represented by m, so that the azimuth formula may be written

$$\tan Z = -\frac{1}{1-m} \tan P \sec L \sin t$$

It will be noted that log  $\frac{1}{1-m}$  must be taken out with regard

to the sign of m.

#### TABLE XIV

# DEFLECTION OF A TRIAL LINE FOR DEVIATIONS FROM 1 TO 149 LINKS AT THE END OF EIGHTY-ONE CHAINS

This is useful in deflecting trial lines. It gives the angular deflection of a line for deviations of 1 to 149 links at the end of eightyone chains

#### TABLE XV

#### CORRECTIONS IN LINKS TO SLOPE MEASUREMENTS

This table has been computed for the use of surveyors working in mountainous country where the slopes are measured with the transit; it is not well adapted to ordinary clinometer chaining.

The table has been compiled with the correction as argument, to give an accuracy of one-tenth of a link per chain. A greater degree of accuracy may, of course, be obtained by interpolation to the measured slope, but it is seldom necessary. The corrections are given for every chain length up to nine chains, the object being to simplify the surveyor's calculation in the field. A convenient method of using the tables is illustrated by the following example.

> Required: the slope correction for 3.682 chains at  $26^{\circ}09^{\circ}$ . This slope lies between the tabulated slopes  $26^{\circ}06^{\circ}$  and  $26^{\circ}14^{\circ}$ . Taking out the slope corrections for a slope of  $26^{\circ}06^{\circ}$  and the differences of the corrections for  $26^{\circ}14^{\circ}$  and  $26^{\circ}06^{\circ}$ :

| Correc. for | • 3    | chs | . = | 30.6  | lks. | with diff. | for 8' of | 0.3  | lks. |
|-------------|--------|-----|-----|-------|------|------------|-----------|------|------|
|             | 0.6    |     | =   | 6.12  |      |            |           | 0.06 | 11   |
|             | 0.08   |     | =   | 0.82  |      |            |           | 0.01 |      |
|             | 3.68   |     | =   | 37.54 |      |            |           | 0.37 |      |
| Difforence  | fam 21 |     | 31  |       | 27 - | 0 14 1160  |           |      |      |

Difference for 3' is  $\frac{3}{8} \times 0.37 = 0.14$  lks. Correc. for 3.68 chs. at  $26^{\circ}09' = 37.54 + 0.14 = 37.68$  lks. = 0.377chs.

#### TABLE XVI

#### TABLE FOR LAYING OUT ROADS ONE CHAIN WIDE

Roads are normally posted at points of change of direction, at the intersections of the road limits, as explained in the Manual of Instructions for the Survey of Dominion Lands (Art. 157). Table XVI correlates the diagonal distance between the points of intersection of the limits of road to the angle of deflection, or change of direction. It applies to a road of constant perpendicular width of one chain but may be used for other widths by increasing or decreasing the tabulated distances in direct proportion to the width required.

#### TABLE XVII

#### TO CONVERT TIME INTO ARC

For convenience in converting time into arc the equivalents

of hours, minutes and seconds are tabulated in degrees, minutes and seconds.

#### TABLE XVIII

# TO CONVERT A MEAN TIME INTERVAL TO THE EQUIVALENT SIDEREAL TIME INTERVAL

The number of minutes and seconds to be added to a mean time interval to obtain the equivalent sidereal time interval are tabulated with days, hours and minutes as arguments.

Example: To convert a mean time interval of 2 days, 6 hours, 12 minutes and 20 seconds to the equivalent sidereal time interval.

|                                     | Days | Hours | Min's | Sec's       |
|-------------------------------------|------|-------|-------|-------------|
| Mean Time Interval                  | 2    | 6     | 12    | 20          |
| Tabulated addition for              |      |       |       |             |
| 2 days                              |      |       | 7     | 53.1        |
| 6 hours                             |      |       |       | 59.1        |
| 12 minutes                          |      |       |       | 1.6)<br>.3) |
| 20 seconds $\frac{1}{3} \times 0.2$ |      |       |       | .1          |
| Sidereal Time Interval              | 2    | 6     | 21    | 14          |

# THE ASTRONOMICAL FIELD TABLES

The Field Tables are issued in two sets, one giving data for sun observations, and the other for star observations. Both sets should be in the hands of all surveyors engaged on Ganada lands surveys.

#### FIELD TABLES FOR SOLAR OBSERVATIONS

The Field Tables for solar observations are issued each year. They give the sun's apparent declination at 0<sup>th</sup> Greenwich Givil Time with its variation for one hour and the sun's apparent right ascension at Greenwich apparent noon with its variation for one hour. These data, which are taken direct from the American Ephemeris, are tabulated for every day of the year. There is also atable of mean refraction for different altitudes, with the corrections required thereto fortemperature and barometric pressure.

The tables of the sun's declination and of the mean refraction are required for observations on the sun for azimuth; the table of the sun's right ascension is required for obtaining the sidereal time by observing the meridian transit of the sun. For both these purposes the approximate longitude is necessary; if not known from the survey it generally can be obtained with sufficient accuracy from a large-scale map of the area.

Full instructions for solar observing with specimen observations are given in Chapter 1.

#### FIELD TABLES FOR STAR OBSERVATIONS

The Field Tables for star observations are issued for short periods in different years as explained in a subsequent paragraph "Apparent Motion of Polaris". They contain a table for finding the Pole star and the astronomical meridian, a list of "time stars", the sidereal time at noon, eastern standard time (75° longitude) at ten day intervals, and a diagram showing the convergence of meridians per mile of longitude at latitudes from 44° to 60° inclusive.

Table for Finding the Pole Star and the Astronomical Meridian. - The table is entered with the sidereal time as argument. The first column gives the number of minutes to be added to or subtracted from the latitude to obtain the altitude of the star. In the second column is the argument, the local sidereal time for every ten minutes. In the other columns is the azimuthof the star for every even degree of latitude for 44° to 60°. <sup>4</sup> The table enables the Pole star to be readily found in day time and when it is found and observed, provides an easy means of determining its bearing. When the position of the astronomical meridian is known approximately, as is the case on most surveys, the transit can be set in the direction of the star and to the proper altitude by means of the table. When it is not known, however, the compass needle may be used, the magnetic declination being taken from the current "Magnetic Map of Canada" or from the magnetic diagram shown on many of the large-scale maps.

The method of observing and the use of the field tables are fully explained in Chapter 1.

Time Stars - The Star Field Tables give a list of time stars taken from the American Ephemeris which are suitable for Canada lands survey work. The method of observing the sidereal time of meridian transit of a star is described in Chapter 1.

Latitude and Convergence Per Mile of Longitude. - The diagram is convenient in determining the convergence for referring an observed azimuth to the meridian of the centre of the township or to any other reference meridian.

# THE APPARENT MOTION OF POLARIS

The path described by the Pole star on the celestial sphere from 1949 to 1955 is shown on the diagram "Apparent Motion of the Pole Star". It is the combined effect of precession, nutation, aberration, and proper motion. This constant variation in the position of the star produces a slow change in the azimuth from any point, irrespective of the daily variation of azimuth caused by the earth's rotation. Hence, at the same sidereal time on two successive days the star will not have quite the same azimuth. If the azimuth of the star be considered at the same sidereal time each day for a month, there will be found a change which for latitude 60° may amount to 25", according to the month and the sidereal time chosen. Taken over a whole year this change may be anything up to 80" for latitude 49° or up to 110" for latitude 60° according to the sidereal time considered. Hence, if the Field Tables were made out taking a mean position of Polaris for a year, they would be subject to a maximum error of half this amount, that is, about 40" at latitude 49° and about 55" at latitude 60°. It will be observed from the diagram

Tables are available for latitudes 62°, 64°, and 66° for the months of April to October inclusive, for each year.



FIGURE 8

(Figure 8) that the star crosses its path again and again, occupying approximately the same positions during certain periods of consecutive years. Because of this peculiarity two star tables are issued each year, one for January, February and March of one year and April, May and June of the next, the other for November and December, September and October, and July and August of three successive years. With this arrangement the maximum error at latitude 49° is 24" and for latitude 60° is 32".

#### COMPUTATION OF THE AZIMUTH AND ALTITUDE OF POLARIS

Azimuth of the Pole Star. - The azimuth is computed by the formula:

$$\tan Z = -\frac{\tan P \sec L \sin t}{1 - \tan P \tan L \cos t}$$

Whence, cot Z = sin L cot t - cot P cos L cosec t where Z, P, L, t denote the azimuth.polar distance, latitude and hour angle respectively.

The path of Polaris is plotted for each year by its right ascensio. and declination taken directly from the American Ephemeris. In order to determine a mean position of Polaris for the period specified on each table, the path of the star must be plotted for the three successive years being used. The American Ephemeris for the third year is not available at the time the tables are being prepared. The values for Polaris for this year are extrapolated for the first day of each month from the values tabulated for the foregoing years. The results are sufficiently accurate for plotting the diagram. From the points on the path representing the limiting dates of the table to be calculated, the mean position of Polaris for the table may be obtained graphically and its right ascension and declination read directly from the borders of the diagram.

On the diagram (Figure 8) the mean position, A, of the Pole star for the table comprising the following periods:

| November, December        | 1951 |
|---------------------------|------|
| September, October        | 1952 |
| July, August              | 1953 |
| $RA = 1^{h} 51^{m} 03.55$ |      |

 $P = 90^{\circ} - 89^{\circ} 02^{\circ} 38!!4 = 0^{\circ} 57! 21!!6$ 

Since the argument in the Field Tables is the sidereal time and not the hour angle, the values of t to be used in the calculation for the azimuth should be the sidereal time minus the right ascension of the mean position.

Altitude of the Pole Star. - The correction to be applied to the latitude to obtain the altitude is given by

has the values

 $h-L \ = \ P \ cos \ t - \ \frac{l_2}{2} \ P^2 \ sin \ l^1 \ tan \ L \ sin^2 \ t \ ,$  terms involving higher powers of P being inappreciable.

Since the term containing L is small and since the altitude of Polaris is required only to find the star, a value for the mean latitude (Lm) may be used in the calculation. The values of P and t are the same as those used in the corresponding calculation for azimuth.

# TABLES

TABLE I

Radii of Curvature of Meridians and Parallels, etc.

| n Miles<br>Degree    | Longi<br>tude  |     | 51.48     | 51.35  | 51.21  | 51.08  | 50.94  | 50.81  | 50.67      | 50.53     | 50.39     | 50.26  | 50.12  | 49.98  | 49.84  | 49.70  | 49.56  | 49.42     | 49.28     | 49.14  |
|----------------------|----------------|-----|-----------|--------|--------|--------|--------|--------|------------|-----------|-----------|--------|--------|--------|--------|--------|--------|-----------|-----------|--------|
| Englis<br>in one     | Lati-<br>tude  |     | 69.02     | .02    | .02    | .02    | .03    | .03    | .03        | .03       | .03       | .04    | .04    | .04    | .04    | .04    | .05    | .05       | .05       | .05    |
| nds<br>Chain         | Longi-<br>tude | =   | 0.8741    | 0.8764 | 0.8787 | 0.8810 | 0.8834 | 0.8857 | <br>0.8881 | 0.8905    | 0.8930    | 0.8954 | 0.8979 | 0.9004 | 0.9029 | 0.9054 | 0.9080 | 0.9106    | 0.9132    | 0.9158 |
| Secc<br>in one       | Lati-<br>tude  | =   | 0.6520    | 20     | 20     | 20     | 19     | 19     | 19         | 19        | 19        | 18     | 18     | 18     | 18     | 18     | 17     | 17        | 17        | 17     |
| in 1"                | Longi-<br>tude |     | 1.1441    | 1.1411 | 1.1381 | 1.1351 | 1.1320 | 1.1290 | <br>1.1260 | 1.1229    | 1.1199    | 1.1168 | 1.1137 | 1.1106 | 1.1075 | 1.1044 | 1.1013 | 1.0982    | 1.0951    | 1.0919 |
| Chains               | Lati-<br>tude  |     | 1.5337    | 38     | 38     | 39     | 39     | 39     | 40         | 40        | 41        | 41     | 42     | 42     | 43     | 43     | 44     | 44        | 44        | 45     |
|                      | 4<br>12<br>12  |     | 0.1857461 | 7589   | 7717   | 7845   | 7973   | 8101   | 8230       | 8358      | 8487      | 8615   | 8744   | 8872   | 9001   | 9129   | 9258   | 9387      | 9515      | 9644   |
| Dog D<br>sin l:<br>1 | 4              |     | 0.0584510 | 73144  | 61711  | 50212  | 38645  | 27010  | 15306      | 0.0503534 | 0.0491693 | 79782  | 67802  | 55750  | 43629  | 31437  | 19173  | 0.0406838 | 0.0394430 | 81949  |
| in and not           |                |     | 0.1873775 | 3818   | 3860   | 3903   | 3946   | 3989   | 4031       | 4074      | 4117      | 4160   | 4203   | 4245   | 4288   | 4331   | 4374   | 4417      | 4460      | 4503   |
| atitude              |                | - 0 | 42 00     | 10     | 20     | 30     | 40     | 50     | 43 00      | 10        | 20        | 30     | 40     | 50     | 44 00  | 10     | 20     | 30        | 40        | 50     |

TABLE I - Continued.

Radii of Curvature of Meridians and Parallels, etc.

|       |         | -     |             |             | Chains        | ' in 1"        | Seco<br>in one | onds<br>Chain  | English<br>in one ] | i Miles<br>Degree |
|-------|---------|-------|-------------|-------------|---------------|----------------|----------------|----------------|---------------------|-------------------|
| Laumo | e 10g N | I UIS | I UIS J BOT | 1 mie v Soi | Lati-<br>tude | Longi-<br>tude | Lati-<br>tude  | Longi-<br>tude | Lati-<br>tude       | Longi-<br>tude    |
| 49    | 0 0.18  | 75572 | 0.0045001   | 0.1862852   | 1.5356        | 1.0104         | 0.6512         | 0.9897         | 69.10               | 45.47             |
|       | 0       | 5615  | 30469       | 2980        | 57            | 1.0070         | 12             | 0.9930         | .11                 | 45.32             |
| . ~   |         | 5657  | 15849       | 3107        | 57            | 1.0037         | 12             | 0.9964         | .11                 | 45.16             |
| e     | 0       | 5699  | 0.0001143   | 3234        | 58            | 1.0003         | 11             | 79997          | .11                 | 45.01             |
| 4     | 0       | 5742  | 9.9986351   | 3361        | 58            | 0.9969         | 11             | 1.0031         | .11                 | 44.86             |
| 5     | 0       | 5784  | 71470       | 3488        | 58            | 0.9935         | 11             | 1.0066         | 11.                 | 44.71             |
|       |         |       |             |             |               |                |                |                |                     |                   |
| 50 0  | 0       | 5826  | 56501       | 3615        | ,59           | 0.9900         | 11             | 1.0101         | .12                 | 44.55             |
| -     | 0       | 5869  | 41444       | 3742        | 59            | 0.9866         | 11             | 1.0136         | .12                 | 44.40             |
| 2     |         | 5911  | 26296       | 3869        | 60            | 0.9832         | 10             | 1.0171         | .12                 | 44.24             |
| e     | 0       | 5953  | 9.9911058   | 3995        | 60            | 0.9797         | 10             | 1.0207         | .12                 | 44.09             |
| 4     | 0       | 5995  | 9.9895730   | 4122        | 61            | 0.9763         | 10             | 1.0243         | .12                 | 43.93             |
| ŝ     | 0       | 6037  | 80309       | 4248        | 61            | 0.9728         | 10             | 1.0279         | .13                 | 43.78             |
| 13    |         | 6070  | 64707       | 4374        | 62            | 0.9693         | 10             | 1.0316         | .13                 | 43.62             |
|       | 2 0     | 6121  | 49192       | 4500        | 62            | 0.9659         | 10             | 1.0353         | .13                 | 43.46             |
| ~     | 0       | 6163  | 33493       | 4625        | 63            | 0.9624         | 60             | 1.0391         | .13                 | 43.31             |
|       | 0       | 6205  | 17701       | 4751        | 63            | 0.9589         | 60             | 1.0429         | .13                 | 43.15             |
| 4     | 0       | 6247  | 9.9801813   | 4876        | 63            | 0.9554         | 60             | 1.0467         | .14                 | 42.99             |
| ŝ     | 0       | 6289  | 9.9785830   | 5002        | 64            | 0.9519         | 60             | 1.0506         | .14                 | 42.83             |

| 42.68  | 42.52  | 42.36  | 42.20  | 42.04     | 41.88     |   | 41.72  | 41.56  | 41.40  | 41.24  | 41.07     | 40.91     | 40.75  | 40.59  | 40.42  | 40.26     | 40.09     | 39.93  | _ | 39.77  | 39.60  | 39.44  | 39.27     | 39.10     | 38.94     |
|--------|--------|--------|--------|-----------|-----------|---|--------|--------|--------|--------|-----------|-----------|--------|--------|--------|-----------|-----------|--------|---|--------|--------|--------|-----------|-----------|-----------|
| .14    | .14    | .14    | .15    | .15       | .15       |   | 5I.    | .15    | .16    | .16    | .16       | .16       | .16    | .16    | .17    | .17       | .17       | .17    |   | .17    | .18    | .18    | .18       | .18       | 69.18     |
| 1.0544 | 1.0584 | 1.0624 | 1.0664 | 1.0704    | 1.0745    |   | 1.0786 | 1.0828 | 1.0870 | 1.0913 | 1.0956    | 1.0999    | 1.1043 | 1.1088 | 1.1132 | 1.1178    | 1.1223    | 1.1270 |   | 1.1316 | 1.1363 | 1.1411 | 1.1459    | 1.1508    | 1.1557    |
| 60     | 08     | 08     | 08     | 08        | 08        | 1 | 07     | 07     | 07     | 07     | 07        | 07        | 06     | 90     | 90     | 90        | 90        | 05     |   | 05     | 05     | 05     | 05        | 05        | 0.6504    |
| 0.9484 | 0.9448 | 0.9413 | 0.9378 | 0.9342    | 0.9307    |   | 0.9271 | 0.9235 | 0.9199 | 0.9163 | 0.9127    | 0.9091    | 0.9055 | 0.9019 | 0.8983 | 0.8946    | 0.8910    | 0.8873 |   | 0.8837 | 0.8800 | 0.8763 | 0.8727    | 0.8690    | 0.8653    |
| 64     | 65     | 65     | 66     | 66        | 66        |   | 67     | 67     | 68     | 68     | 69        | 69        | 20     | 20     | 20     | 71        | 71        | 72     |   | 72     | 73     | 73     | 73        | 74        | 1.5374    |
| 5127   | 5252   | 5376   | 5501   | 5625      | 5749      |   | 5873   | 2665   | 6120   | 6244   | 6367      | 6490      | 6612   | 6735   | 6857   | 6269      | 7101      | 7222   |   | 7343   | 7464   | 7585   | 7705      | 7826      | 0.1867945 |
| 69750  | 53574  | 37299  | 20926  | 9.9704454 | 9.9687882 |   | 71209  | 54435  | 37559  | 20579  | 9.9603495 | 9.9586307 | 69012  | 51612  | 34104  | 9.9516488 | 9.9498763 | 80928  |   | 62982  | 44924  | 26754  | 9.9408470 | 9.9390072 | 71557     |
| 6330   | 6372   | 6413   | 6455   | 6496      | 6538      |   | 6239   | 6620   | 6662   | 6703   | 6744      | 6785      | 6826   | 6866   | 2069   | 6948      | 6988      | 7029   |   | 7069   | 2109   | 7150   | 2190      | 7230      | 0.1877270 |
| 2 00   | 10     | 20     | 30     | 40        | 50        |   | 3 00   | 10     | 20     | 30     | 40        | 50        | 4 00   | 10     | 20     | 30        | 40        | 50     |   | 5 00   | 10     | 20     | 30        | 40        | 50        |
| 5      |        |        |        |           |           |   | 5      |        |        |        |           |           | S      |        |        |           |           |        |   | 5      |        |        |           |           |           |

TABLE I - Continued.

Radii of Curvature of Meridians and Parallels, etc.

| h Miles<br>Degree | Long           | 38.77     | 38.60  | 38.44     | 38.27     | 38.10  | 37.93  | 37.76  | 37.59     | 37.43     | 37.26  | 37.09  | 36.92  | 36.76     | c1.0C     | 36.57     | 36.40  | 36.23  | 36.06     | 35.89     |
|-------------------|----------------|-----------|--------|-----------|-----------|--------|--------|--------|-----------|-----------|--------|--------|--------|-----------|-----------|-----------|--------|--------|-----------|-----------|
| Englis <br>in one | Lati-<br>tude  | 69.19     | .19    | .19       | .19       | .19    | .20    | .20    | .20       | .20       | .20    | .20    | .21    | ć         | 17.       | .21       | .21    | .21    | .22       | .22       |
| onds<br>Chain     | Longi-<br>tude | 1.1607    | 1.1657 | 1.1708    | 1.1759    | 1.1811 | 1.1863 | 1.1916 | 1.1970    | 1.2024    | 1.2079 | 1.2134 | 1.2190 |           | 1.66%     | 1.2304    | 1.2362 | 1.2420 | 1.2479    | 1.2539    |
| Sec.<br>in one    | Lati-<br>tude  | 0.6504    | 04     | 04        | 04        | 03     | 03     | 03     | 03        | 03        | 03     | 02     | 02     | 60        | 70        | 02        | 02     | 02     | 01        | 01        |
| in l''            | Longi-<br>tude | 0.8616    | 0.8579 | 0.8541    | 0.8504    | 0.8467 | 0.8429 | 0.8392 | 0.8354    | 0.8317    | 0.8279 | 0.8241 | 0.8203 | 1710 0    | 0010.0    | 0.8128    | 0.8090 | 0.8051 | 0.8013    | 0.7975    |
| Chains            | Lati-<br>tude  | 1.5375    | 75     | 76        | 76        | 76     | 77     | 77     | 78        | 78        | 78     | 79     | 6.2    | 00        | 00        | 80        | 81     | 81     | 81        | 82        |
|                   |                | 0.1868065 | 8184   | 8304      | 8422      | 8541   | 8659   | 8777   | 8894      | 9012      | 9129   | 9245   | 9361   | 0410      | 7410      | 9593      | 6026   | 9824   | 0.1869938 | 0.1870053 |
|                   | 1 1116 1 201   | 9.9352927 | 34177  | 9.9315310 | 9.9296324 | 77216  | 57987  | 38635  | 9.9219158 | 9.9199557 | 79829  | 59974  | 39991  | 2200110 0 | 1106116-6 | 9.9099633 | 79257  | 58747  | 38102     | 9.9017321 |
| N sol             | 1 110 11 2001  | 0.1877310 | 7350   | 7389      | 7429      | 7468   | 7508   | 7547   | 7586      | 7625      | 7664   | 7703   | 7742   | 1022      | 1011      | 7819      | 7858   | 7896   | 7934      | 7972      |
| T stitude         |                | ° ' 56 00 | 10     | 20        | 30        | 40     | 50     | 57 00  | 10        | 20        | 30     | 40     | 50     | 00        | 00 00     | 10        | 20     | 30     | 40        | 50        |

1.4

ĥ

|                                         | 8010 | 9.8996403 | 0167      | 82     | 0.7937 | 01     | 1.2600 | .22   | 35.72 |
|-----------------------------------------|------|-----------|-----------|--------|--------|--------|--------|-------|-------|
| 80                                      | 48   | 75347     | 0280      | 83     | 0.7898 | 01     | 1 2661 | .22   | 35.54 |
| 80                                      | 86   | 54150     | 0393      | 83     | 0.7860 | 01     | 1.2723 | .22   | 35.37 |
| 81                                      | 24   | 32812     | 0506      | 83     | 0.7821 | 01     | 1.2786 | .23   | 35.20 |
| 81                                      | 61   | 9.8911331 | 0619      | 84     | 07783  | 00     | 1.2849 | .23   | 35.02 |
| 81                                      | 98   | 9.8889706 | 0731      | 84     | 0.7744 | 00     | 1.2913 | .23   | 34.85 |
| 82                                      | 36   | 67936     | 0843      | 85     | 0.7705 | 00     | 1.2978 | .23   | 34.67 |
| 8                                       | 273  | 46018     | 0955      | 85     | 0.7667 | 00     | 1.3044 | .23   | 34.50 |
| 00                                      | 310  | 23952     | 1066      | 85     | 0.7628 | 00     | 1.3110 | .23   | 34.32 |
| 8                                       | 347  | 9.8801735 | 1176      | 86     | 0.7589 | 0.6500 | 1.3177 | .24   | 34.15 |
| 8                                       | 384  | 9.8779367 | 1287      | 86     | 0.7550 | 0.6499 | 1.3245 | .24   | 33.97 |
| 80                                      | 420  | 56845     | 1397      | 86     | 0.7511 | 66     | 1.3314 | .24   | 33.80 |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 457  | 34169     | 1506      | 87     | 0.7472 | 66     | 1.3384 | .24   | 33.62 |
| 80                                      | 493  | 9.8711336 | 1615      | 87     | 0.7432 | 66     | 1.3454 | .24   | 33.45 |
| 80                                      | 529  | 9.8688345 | 1724      | 88     | 0.7393 | 66     | 1.3526 | .24   | 33.27 |
| 8                                       | 565  | 65194     | 1832      | 88     | 0.7354 | 66     | 1.3598 | .25   | 33.09 |
| 80                                      | 601  | 41882     | 1940      | 88     | 0.7315 | 98     | 1.3671 | .25   | 32.92 |
| 8                                       | 637  | 9.8618406 | 2048      | 89     | 0.7275 | 98     | 1.3745 | .25   | 32.74 |
| 00                                      | 673  | 9.8594766 | 2155      | 89     | 0.7236 | 98     | 1.3820 | .25   | 32.56 |
| 00                                      | 209  | 70959     | 2262      | 06     | 0.7196 | 98     | 1.3896 | .25   | 32.38 |
| 00                                      | 744  | 46982     | 2368      | 06     | 0.7156 | 98     | 1.3973 | .25   | 32.20 |
| 80                                      | 622  | 9.8522835 | 2474      | 06     | 0.7117 | 98     | 1.4051 | .26   | 32.03 |
| 00                                      | 814  | 9.8498516 | 2579      | 91     | 0.7077 | 26     | 1.4130 | .26   | 31.85 |
| 3788                                    | 349  | 74022     | 0.1872684 | 1.5391 | 0.7037 | 0.6497 | 1.4210 | 69.26 | 31.67 |

TABLE I - Concluded.

Radii of Curvature of Meridians and Parallels, etc.

| Latitude   | log N sin 1" | log P sin 1" | log R sin 1" | Chain  | s in l'' | Sec<br>in one | onds<br>Chain | Englisl<br>ìn one | n Miles<br>Degree |
|------------|--------------|--------------|--------------|--------|----------|---------------|---------------|-------------------|-------------------|
|            |              |              | )            | Lati - | Longi -  | Lati-         | Longi-        | Lati-             | Longi-            |
|            |              |              |              | tude   | tude     | tude          | tude          | tude              | tude              |
|            |              |              |              |        |          | 2             | =             |                   |                   |
| 63 00      | 0.1878884    | 9.8449352    | 0.1872789    | 1.5391 | 0.6997   | 0.6497        | 1.4291        | 69.26             | 31.49             |
| 10         | 8919         | 9.8424503    | 2893         | 92     | 0.6957   | 79            | 1.4373        | .26               | 31.31             |
| 20         | 8954         | 9.8399475    | 2996         | 92     | 0.6917   | 67            | 1.4456        | .26               | 31.13             |
| 30         | 8988         | 74262        | 3100         | 93     | 0.6877   | 26            | 1.4540        | .27               | 30.95             |
| 40         | 9022         | 48866        | 3202         | 93     | 0.6837   | 7.6           | 1.4626        | 27                | 30.77             |
| 50         | 9056         | 9.8323282    | 3305         | 93     | 0.6797   | 96            | 1.4712        | .27               | 30.59             |
| 00 17      |              |              |              |        |          |               |               |                   |                   |
| 00 +0      | 0606         | 9.8297510    | 3407         | 94     | 0.6757   | 96            | 1.4800        | .27               | 30.41             |
| 10         | 9124         | 71546        | 3508         | 94     | 0.6717   | 96            | 1.4888        | .27               | 30.23             |
| 07         | 9158         | 45389        | 3609         | 94     | 0.6676   | 96            | 1.4978        | .27               | 30.04             |
| 30         | 6161         | 9.8219035    | 3709         | 95     | 0.6636   | 96            | 1.5069        | .28               | 29.86             |
| 40         | 9225         | 9.8192482    | 3809         | 95     | 0.6596   | 96            | 1.5162        | .28               | 29.68             |
| 0,         | 9258         | 65730        | 3909         | 95     | 0.6555   | 95            | 1.5256        | .28               | 29.50             |
| 65 00      | 9291         | 38774        | 4008         | аĥ     | 0 6514   | 90            | 1 5351        | 0 6               |                   |
| 10         | 9324         | 9.8111610    | 4107         | 96     | 0.6474   | 05            | 10001         | 07.               | 20.12             |
| 20         | 9356         | 9.8084240    | 4205         | 96     | 0.6433   | 05            | 15544         | 07.               | 20.05             |
| 30         | 9389         | 56650        | 1207         |        |          |               |               | 07.               | 66.07             |
| 40         | 1270         | 6,000        | 700%         | 16     | 0.6392   | 66            | 1.5644        | .29               | 28.77             |
|            | 1324         | 70007        | 4399         | 1.6    | 0.6352   | 95            | 1.5744        | .29               | 28.58             |
| <b>N</b> C | 5 0 4 9      | 0480008.6    | 4496         | 26     | 0.6311   | 95            | 1.5846        | .29               | 28.40             |
|            |              |              |              |        |          |               |               |                   |                   |

| 28.21                  | 28.03              | 27.85                  | 27.66                  | 27.48              | 27.29                  | 27.11                  | 26.92              | 26.73              | 26.55                  | 26.36                  | 26.17              | 25.99                  | 25.80                  | 25.61              | 25.43                  | 25.24                       | 25.05                   | 24.86                  | 24.67                  | 24.49              | 24.30                  | 24.11                  | 23.92              | 23.73                            |
|------------------------|--------------------|------------------------|------------------------|--------------------|------------------------|------------------------|--------------------|--------------------|------------------------|------------------------|--------------------|------------------------|------------------------|--------------------|------------------------|-----------------------------|-------------------------|------------------------|------------------------|--------------------|------------------------|------------------------|--------------------|----------------------------------|
| .29                    | .29                | .29                    | .29                    | .30                | .30                    | .30                    | .30                | .30                | .30                    | .31                    | .31                | .31                    | .31                    | .31                | .31                    | .31                         | .31                     | .32                    | .32                    | .32                | .32                    | .32                    | .32                | 69.32                            |
| 1.5949                 | 1.6054             | 1.6160                 | 1.6268                 | 1.6378             | 1.6489                 | 1.6602                 | 1.6716             | 1.6833             | 1.6951                 | 1.7070                 | 1.7192             | 1.7316                 | 1.7441                 | 1.7569             | 1.7698                 | 1.7830                      | 1.7964                  | 1.8100                 | 1.8238                 | 1.8378             | 1.8521                 | 1.8666                 | 1.8814             | 1.8964                           |
| 94                     | 94                 | 94                     | 94                     | 94                 | 94                     | 94                     | 93                 | 93                 | 93                     | 93                     | 93                 | 93                     | 93                     | 92                 | 92                     | 92                          | 92                      | 92                     | 92                     | 92                 | 92                     | 91                     | 91                 | 0.6491                           |
| 0.6270                 | 0.6229             | 0.6188                 | 0.6147                 | 0.6106             | 0.6065                 | 0.6023                 | 0.5982             | 0.5941             | 0.5900                 | 0.5858                 | 0.5817             | 0.5775                 | 0.5734                 | 0.5692             | 0.5650                 | 0.5609                      | 0.5567                  | 0.5525                 | 0.5483                 | 0.5441             | 0.5399                 | 0.5357                 | 0.5315             | 0.5273                           |
| 98                     | 98                 | 98                     | 66                     | 66                 | 1.5399                 | 1.5400                 | 00                 | 00                 | 01                     | 01                     | 01                 | 02                     | 02                     | 02                 | 03                     | 03                          | 03                      | 04                     | 04                     | 04                 | 05                     | 05                     | 05                 | 1.5405                           |
|                        |                    |                        |                        |                    |                        |                        | _                  |                    |                        |                        |                    |                        |                        | _                  |                        | _                           |                         |                        | _                      |                    |                        |                        |                    |                                  |
| 4592                   | 4688               | 4783                   | 4877                   | 4971               | 5065                   | 5158                   | 5251               | 5343               | 5434                   | 5525                   | 5615               | 5705                   | 5795                   | 5883               | 5972                   | 6059                        | 6147                    | 6233                   | 6319                   | 6405               | 6490                   | 6574                   | 6658               | 0.1876741                        |
| 9.7972618 4592         | 44164 4688         | 9.7915485 4783         | 9.7886577 4877         | 57439 4971         | 9.7828065 5065         | 0.7798454 5158         | 68602 5251         | 38506 5343         | 9.7708163 5434         | 9.7677568 5525         | 46718 5615         | 9.7615610 5705         | 9.7584241 5795         | 52605 5883         | 9.7520699 5972         | 9.7488520 6059              | 56064 6147              | 9.7423324 6233         | 9.7390298 6319         | 56983 6405         | 9.7323371 6490         | 9.7289460 6574         | 55244 6658         | 9.7220719 0.1876741              |
| 9485 9.7972618 4592    | 9517 44164 4688    | 9549 9.7915485 4783    | 9580 9.7886577 4877    | 9612 57439 4971    | 9643 9.7828065 5065    | 9674 9.7798454 5158    | 9705 68602 5251    | 9736 38506 5343    | 9766 9.7708163 5434    | 9796 9.7677568 5525    | 9827 46718 5615    | 9857 9.7615610 5705    | 9.7584241 5795         | 9916 52605 5883    | 9945 9.7520699 5972    | 0.1879975 9.7488520 6059    | 0.1880004 56064 6147    | 0032 9.7423324 6233    | 0061 9.7390298 6319    | 0090 56983 6405    | 0118 9.7323371 6490    | 0146 9.7289460 6574    | 0174 55244 6658    | 0.1880202 9.7220719 0.1876741    |
| 00 9485 9.7972618 4592 | 10 9517 44164 4688 | 20 9549 9.7915485 4783 | 30 9580 9.7886577 4877 | 40 9612 57439 4971 | 50 9643 9.7828065 5065 | 00 9674 9.7798454 5158 | 10 9705 68602 5251 | 20 9736 38506 5343 | 30 9766 9.7708163 5434 | 40 9796 9.7677568 5525 | 50 9827 46718 5615 | 00 9857 9.7615610 5705 | 10 9886 9.7584241 5795 | 20 9916 52605 5883 | 30 9945 9.7520699 5972 | 40 0.1879975 9.7488520 6059 | 50 0.1880004 56064 6147 | 00 0032 9.7423324 6233 | 10 0061 9.7390298 6319 | 20 0090 56983 6405 | 30 0118 9.7323371 6490 | 40 0146 9.7289460 6574 | 50 0174 55244 6658 | 00 0.1880202 9.7220719 0.1876741 |

TABLE II

Corrections to be applied to the Logarithms of R sin 1" and N sin 1" in Table I, for Clarke's later values of the Dimensions of the Earth

| d(log N sin 1") |   | +0.0000081 | 82 | 84 | 85 | 86 | 87        | 88        | 89  | 06  | 61 | 92 | 93  | 94 | 95   | 96 |  |
|-----------------|---|------------|----|----|----|----|-----------|-----------|-----|-----|----|----|-----|----|------|----|--|
| d(log R sin 1") |   | +0.0000034 | 37 | 41 | 45 | 48 | 51        | 55        | 58  | 61  | 64 | 67 | 70  | 73 | . 76 | 78 |  |
| Latitude        | • | 56         | 57 | 58 | 59 | 60 | 61        | 62        | 63  | 64  | 65 | 66 | 67  | 68 | 69   | 70 |  |
| d(log N sin 1") |   | +0.000063  | 64 | 99 | 67 | 68 | 70        | 71        | 72  | 74  | 75 | 76 | 77  | 79 | 80   |    |  |
| d(log R sin 1") |   | -0.0000021 | 17 | 13 | 60 | 05 | -0.000001 | +0.000003 | 07  | 11  | 15 | 19 | 23  | 26 | 30   |    |  |
| Latitude        | 0 | 42         | 43 | 44 | 45 | 46 | 47        | 48.       | 49. | 50. | 51 | 52 | 53. | 54 | 55   |    |  |

| 1 |   |
|---|---|
| 6 | ą |
| ā | 1 |
| < | ¢ |
| t | 1 |

Latitudes, etc., of Base and Correction Lines. First and Second Systems of Survey.

| Longitude<br>covered by<br>489 chains<br>of westing | 8 03.959  | 05.681         | 07.421    | 09.177         | 10.951    | 12.743         | 14.552    | 16.379         | 18.225    | 20.089         | 21.972    | 23.875         | 25.796    | 27.737         | 29.698    | 31.678         | 33.680    | 35.701         | 37.744    | 39.808          | 41.894    | 44.001           | 46.130    | 48.282          | 8 50.456  |
|-----------------------------------------------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|-----------------|-----------|------------------|-----------|-----------------|-----------|
| Log R sin 1"                                        | 0.1862852 | 2988           | 3123      | 3258           | 3393      | 3527           | 3662      | 3797           | 3931      | 4065           | 4199      | 4333           | 4466      | 4600           | 4733      | 4866           | 4999      | 5132           | 5264      | 5396            | 5529      | 5660             | 5792      | 5923            | 0.1866055 |
| Log P sin 1"                                        | 0.0045001 | 0.0029573      | 0.0014047 | 9.9998425      | 9.9982704 | 9.9966886      | 9.9950968 | 9.9934951      | 9.9918832 | 9.9902611      | 9.9886289 | 9.9869863      | 9.9853334 | 9.9836701      | 9.9819962 | 9.9803117      | 9.9786165 | 9.9769105      | 9.9751935 | 9.9734658       | 9.9717268 | 9.9699768        | 9.9682156 | 9.9664431       | 9.9646592 |
| Log N sin 1"                                        | 0.1875572 | 5618           | 5662      | 5707           | 5752      | 5797           | 5842      | 5887           | 5932      | 5976           | 6021      | 6065           | 6110      | 6154           | 6199      | 6244           | 6288      | 6332           | 6376      | 6420            | 6464      | 6508             | 6552      | 6596            | 0.1876640 |
| atitude                                             | 00.00     | 10 36.86       | 21 13.71  | 31 50.53       | 42 27.34  | 53 04.12       | 03 40.89  | 14 17.63       | 24 54.36  | 35 31.07       | 46 07.75  | 56 44.42       | 7 21.07   | 17 57.69       | 28 34.30  | 39 10.89       | 49 47.46  | 00 24.01       | 11 00.54  | 21 37.05        | 32 13.54  | 12 50.02         | 53 26.47  | 04 02.90        | 4 39.32   |
| L                                                   | • 4       |                |           |                | -         |                | 50        |                |           |                | -         |                | 51        |                |           |                |           | 52             |           |                 |           | 7                | ω,        | 53 (            |           |
| Number of Line                                      | lst Base  | 1st Correction | 2nd Base  | 2nd Correction | 3rd Base  | 3rd Correction | 4th Base  | 4th Correction | 5th Base  | 5th Correction | 6th Base  | 6th Correction | 7th Base  | 7th Correction | 8th Base  | 8th Correction | 9th Base  | 9th Correction | 10th Base | 10th Correction | 11th Base | 1 1th Correction | 12th Base | 12th Correction | 13th Base |
| 4                                                   |           |                |           |                |           |                |           |                |           |                |           |                |           |                |           |                |           |                |           |                 |           |                  |           |                 |           |

TABLE IV

Latitudes, etc., of Base and Correction Lines. Third System of Survey.

|       | Longitude<br>covered by<br>486 chains<br>of westing | - | 8 00.990    | 02.681         | 04.388    | 06.112         | 07.852    | 019 00         | 11 385      | 12120          | 14.988    | 16.816         | 677 01    | 700.01         | 179.07      | 22.411      | 24.313        | 26.235    | 28.176         | 30.136    | 32.117         | 34.118      | 36 120           |
|-------|-----------------------------------------------------|---|-------------|----------------|-----------|----------------|-----------|----------------|-------------|----------------|-----------|----------------|-----------|----------------|-------------|-------------|---------------|-----------|----------------|-----------|----------------|-------------|------------------|
|       | Log R sin 1"                                        |   | 0.1862852   | 2986           | 3119      | 3253           | 3386      | 3510           | 3652        | 3785           | 3918      | 4050           | 011       | 7014           | 4315        | 4447        | 4578          | 4710      | 4842           | 4973      | 5104           | 5235        | 5366             |
|       | Log P sin 1"                                        |   | 0.0045001   | 0.0029763      | 0.0014430 | 9.9999002      | 9.9983479 | 9.9967860      | 9.9952144   | 9.9936331      | 9.9920419 | 9.9904408      | 0 0888308 | 0.00070004     | 7.9012001   | 9.9855775   | 9.9839362     | 9.9822845 | 9.9806225      | 9.9789501 | 9.9772672      | 9.9755738   | 9 973R696        |
|       | Log N sin 1"                                        |   | 0.1875572   | 5617           | 5661      | 5706           | 5750      | 5795           | 5839        | 5883           | 5927      | 5971           | 9109      | 0100           | 0000        | 6104        | 6148          | 6192      | 6235           | 6279      | 6323           | 6366        | 6410             |
|       | Latitude                                            |   | 49 00 00.00 | 10 29.05       | 20 58.08  | 31 27.09       | 41 56.08  | 52 25.06       | 50 02 54.01 | 13 22.95       | 23 51.86  | 34 20.76       | 44 40 63  | EE 10 40       | 51 0C 17 32 | 55.14 CO IC | 16 16.15      | 26 44.95  | 37 13.73       | 47 42.49  | 58 11.24       | 52 08 39.96 | 19 08 66         |
|       | Number of Line                                      |   | 1st Base    | 1st Correction | 2nd Base  | 2nd Correction | 3rd Base  | 3rd Correction | 4th Base    | 4th Correction | 5th Base  | 5th Correction | 6th Base  | 6th Correction | 7th Bage    | I'm Dase    | th Correction | 8th Base  | 8th Correction | 9th Base  | 9th Correction | 10th Base   | 10th Correction. |
| To of | rown-<br>ship                                       |   | 0           | 2              | 4         | 9              | ~         | 10             | 12          | 14             | 16        | 18             | 20        | 22             | 1 7         | #           | 97            | 28        | 30             | 32        | 34             | 36          | 38               |

86

| 38.181<br>40.245<br>42.329<br>44.435<br>46.563                                                        | 48.714<br>50.887<br>53.083<br>55.302<br>57.545                                                              | 8 59.811<br>9 02.102<br>04.417<br>06.758<br>09.123 | 11.515<br>13.932<br>16.376<br>18.847<br>21.345                                                              | 23.870<br>26.424<br>29.006<br>31.618<br>34.258                                                                            |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 5496<br>5626<br>5756<br>5886<br>6016                                                                  | 6145<br>6274<br>6403<br>6532<br>6660                                                                        | 6788<br>6916<br>7044<br>7171<br>7298               | 7425<br>7552<br>7678<br>7804<br>7929                                                                        | 8055<br>8180<br>8304<br>8429<br>0.1868553                                                                                 |
| 9.9721546<br>9.9704288<br>9.9669444<br>9.9651856<br>9.9651856                                         | 9.9634157<br>9.9616344<br>9.9598417<br>9.9580376<br>9.9562219                                               | 9.9543946<br>9.9525555<br>9.9488415<br>9.9469665   | 9.9450793<br>9.9431799<br>9.9412681<br>9.9393438<br>9.9374068                                               | 9.9354571<br>9.9334947<br>9.9315193<br>9.925308<br>9.9275292                                                              |
| 6454<br>6497<br>6540<br>6584<br>6627                                                                  | 6670<br>6713<br>6756<br>6799<br>6842                                                                        | 6884<br>6927<br>6969<br>7012<br>7054               | 7097<br>7139<br>7181<br>7223<br>7265                                                                        | 7306<br>7348<br>7389<br>7431<br>0.1877472                                                                                 |
| 37.35<br>06.02<br>34.67<br>03.30<br>31.91                                                             | 00.50<br>29.07<br>57.63<br>26.17<br>54.68                                                                   | 23.18<br>51.66<br>20.12<br>48.57<br>16.99          | 45.40<br>13.79<br>42.16<br>10.51<br>38.85                                                                   | 07.16<br>35.46<br>03.74<br>32.00<br>00.24                                                                                 |
| 29<br>40<br>50<br>01<br>11                                                                            | 22<br>32<br>53<br>03                                                                                        | 14<br>24<br>45<br>56<br>56                         | 06<br>17<br>27<br>38<br>48                                                                                  | 59<br>09<br>20<br>41                                                                                                      |
| 53                                                                                                    | 5                                                                                                           |                                                    | 5.5                                                                                                         | 56<br>56                                                                                                                  |
| 11th Base           11th Correction           12th Base           12th Correction           13th Base | 13th Correction           14th Base           14th Correction           15th Base           15th Correction | 16th Base                                          | 18th Correction           19th Base           19th Correction           20th Base           20th Correction | 21st Base         21st Correction           21st Correction         22nd Base           22nd Correction         23rd Base |
| 40<br>44<br>46<br>48<br>48                                                                            | 56<br>54<br>56<br>58                                                                                        | 60<br>64<br>66<br>68                               | 70<br>72<br>74<br>76<br>76<br>78                                                                            | 80<br>84<br>86<br>88<br>88                                                                                                |

| σ        |
|----------|
| e)       |
| ā.       |
| а        |
| - 2      |
|          |
| R        |
| 0        |
| ()       |
| ~        |
|          |
|          |
| ~        |
| <u> </u> |
| -        |
| 6.7      |
| щ        |
| ٦.       |
| -        |
| щ        |
| ₫.       |
| _        |
| e î.     |

Latitudes, etc., of Base and Correction Lines. Third System of Survey.

| No. of<br>Town-<br>ship | Number of Line  |    | atitude  | Log N sin 1" | Log P sin 1" | Log R sin 1" | Longitude<br>covered by<br>486 chains<br>of westing |
|-------------------------|-----------------|----|----------|--------------|--------------|--------------|-----------------------------------------------------|
|                         |                 | 0  | -        |              |              |              | н 1                                                 |
| 06                      | 23rd Correction | 56 | 51 28.47 | 0.1877514    | 9.9255142    | 0.1868676    | 9 36.929                                            |
| 92                      | 24th Base       | 57 | 01 56.68 | 7555         | 9.9234857    | 8800         | 39.630                                              |
| 94                      | 24th Correction |    | 12 24.87 | 7596         | 9.9214437    | 8923         | 42.362                                              |
| 96                      | 25th Base       |    | 22 53.04 | 7637         | 9.9193880    | 9045         | 45.125                                              |
| 98                      | 25th Correction |    | 33 21.19 | 7677         | 9.9173186    | 9168         | 47.919                                              |
|                         |                 |    |          |              |              |              |                                                     |
| 100                     | 26th Base       |    | 43 49.33 | 7718         | 9.9152352    | 9290         | 50.747                                              |
| 102                     | 26th Correction |    | 54 17.45 | 7759         | 9.9131377    | 9411         | 53.607                                              |
| 104                     | 27th Base       | 58 | 04 45.55 | 6677         | 9.9110260    | 9533         | 56.500                                              |
| 106                     | 27th Correction |    | 15 13.63 | 7839         | 9.9088999    | 9654         | 9 59.427                                            |
| 108                     | 28th Base       |    | 25 41.70 | 7879         | 9.9067593    | 9774         | 10 02.389                                           |
|                         |                 |    |          |              |              |              |                                                     |
| 110                     | 28th Correction |    | 36 09.75 | 7920         | 9.9046041    | 0.1869894    | 05.386                                              |
| 112                     | 29th Base       |    | 46 37.78 | 1960         | 9.9024341    | 0.1870014    | 08.418                                              |
| 114                     | 29th Correction |    | 57 05.80 | 1999         | 9.9002491    | 0134         | 11.487                                              |
| 116                     | 30th Base       | 59 | 07 33.79 | 8039         | 9.8980491    | 0253         | 14.592                                              |
| 118                     | 30th Correction |    | 18 01.77 | 8079         | 9.8958338    | 0371         | 17.735                                              |
|                         |                 |    |          |              |              |              |                                                     |
| 120                     | 31st Base       |    | 28 29.74 | 8118         | 9.8936032    | 0489         | 20.916                                              |
| 122                     | 31st Correction |    | 38 57.68 | 8157         | 9.8913570    | 0607         | 24.136                                              |
| 124                     | 32nd Base       |    | 49 25.61 | 8196         | 9.8890950    | 0725         | 27.395                                              |
| 126                     | 32nd Correction |    | 59 53.52 | 9235         | 9.8868172    | 0842         | 30.695                                              |
| 128                     | 33rd Base       | 60 | 10 21.42 | 8274         | 9.8845233    | 0959         | 34.035                                              |

| 37.416<br>40.840<br>44.307<br>47.817<br>51.372                        | 54.973<br>58.619<br>1 02.312<br>06.054<br>09.844              | 13.683<br>17.574<br>21.516<br>25.510<br>29.558<br>33.660<br>37.818<br>42.305<br>50.636                                                         | 55.027<br>59.480<br>2 03.996<br>08.575<br>13.219                                                            |
|-----------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                                                       | 22                                                            |                                                                                                                                                | 22                                                                                                          |
| 1075<br>1191<br>1306<br>1421<br>1535                                  | 1649<br>1763<br>0.1871876<br>1989<br>2101                     | 2213<br>2325<br>2325<br>2656<br>2656<br>2656<br>2765<br>2983<br>3091<br>3198                                                                   | 3305<br>3412<br>3518<br>3623<br>3728                                                                        |
| 9.8822132<br>9.8758867<br>9.8775437<br>9.8751839<br>9.8751839         | 9.8704133<br>9.8680021<br>9.8655735<br>9.8631271<br>9.8606628 | 9.8581804<br>9.85516798<br>9.85516798<br>9.85506227<br>9.8456858<br>9.8454898<br>9.8454898<br>9.8425443<br>9.8425443<br>9.8376442<br>9.8376442 | 9.8323135<br>9.8296174<br>9.8269004<br>9.8241623<br>9.8214027                                               |
| 8313<br>8352<br>8390<br>8467<br>8467                                  | 8505<br>8542<br>0.1878580<br>8617<br>8655                     | 8693<br>8730<br>8730<br>8864<br>8840<br>8840<br>8813<br>8913<br>8949<br>8945<br>8985<br>9021                                                   | 9056<br>9092<br>9127<br>9163<br>9198                                                                        |
| 49.30<br>17.16<br>45.00<br>12.83<br>40.64                             | 08.44<br>36.22<br>03.98<br>31.73<br>59.46                     | 27.18<br>54.88<br>22.56<br>50.22<br>17.87<br>45.50<br>13.12<br>45.50<br>13.12<br>40.72<br>08.31<br>35.88                                       | 03.44<br>30.98<br>58.50<br>26.01<br>53.50                                                                   |
| 20<br>52<br>02<br>02                                                  | 13<br>23<br>44<br>54                                          | 05<br>115<br>336<br>08<br>339<br>339                                                                                                           | 50<br>00<br>21<br>31                                                                                        |
| 61                                                                    | 61                                                            | 62 63                                                                                                                                          | 64                                                                                                          |
| 33rd Correction34th Base34th Correction34th Correction35th Correction | 36th Base                                                     | 38th Correction<br>39th Ease                                                                                                                   | 43rd Correction           44th Base           44th Correction           45th Base           45th Correction |
| 130<br>132<br>134<br>136<br>138                                       | 140<br>142<br>144<br>146<br>148                               | 150<br>152<br>154<br>156<br>156<br>156<br>166<br>166<br>166                                                                                    | 170<br>172<br>174<br>176<br>178                                                                             |

| -             |
|---------------|
| · U           |
| 63            |
| _             |
|               |
| - AL          |
| -             |
| -             |
| 11            |
| ~             |
| C .           |
| 5             |
| 0             |
| 13            |
| 0             |
|               |
|               |
|               |
|               |
|               |
| -             |
| >             |
| N             |
| N             |
| NI C          |
| ΞI            |
| EIV           |
| LE IV         |
| LE IV         |
| <b>3LE IV</b> |
| BLE IV        |
| BLE IV        |
| ABLE IV       |
| CABLE IV      |

Latitudes, etc., of Base and Correction Lines. Third System of Survey.

| Longitude<br>covered by<br>486 chains<br>of westing |        | 12 17.929   | 22.708          | 27.556      | 32.474          | 37.465    | 42.529          | 47.668    | 52.885          | 12 58.180   | 13 03.556       | 09.014    | 14.556          | 20.183    | 25.898          | 31.703      | 37.600          | 43.591    | 49.678          | 13 55.864 | 14 02.150       |
|-----------------------------------------------------|--------|-------------|-----------------|-------------|-----------------|-----------|-----------------|-----------|-----------------|-------------|-----------------|-----------|-----------------|-----------|-----------------|-------------|-----------------|-----------|-----------------|-----------|-----------------|
| Log R sin 1"                                        |        | 0.1873833   | 3937            | 4040        | 4143            | 4245      | 4347            | 4448      | 4549            | 4649        | 4749            | 4848      | 4947            | 5045      | 5142            | 5239        | <br>5335        | 5431      | 5526            | 5620      | 5714            |
| Log P sin 1"                                        |        | 9.8186215   | 9.8158183       | 9.8129928   | 9.8101448       | 9.8072739 | 9.8043799       | 9.8014625 | 9.7985213       | 9.7955559   | 9.7925661       | 9.7895516 | 9.7865120       | 9.7834470 | 9.7803561       | 9.7772390   | 9.7740953       | 9.7709246 | 9.7677266       | 9.7645009 | 9.7612470       |
| Log N sin 1"                                        |        | 0.1879233   | 9267            | 9302        | 9336            | 9370      | 9404            | 9437      | 9471            | 9504        | 9538            | 9571      | 9604            | 9636      | 9669            | 9701        | 9733            | 9765      | 2679            | 9329      | 9860            |
| Latitude                                            | 11 1 0 | 64 42 20.98 | 52 48.45        | 65 03 15.90 | 13 43.33        | 24 10.75  | 34 38.16        | 45 05.55  | 55 32.92        | 66 06 00.28 | 16 27.63        | 26 54.96  | 37 22.28        | 47 49.58  | 58 16.87        | 67 08 44.14 | 19 11.40        | 29 38.65  | 40 05.89        | 50 33.11  | 68 01 00.31     |
| Number of Line                                      |        | 46th Base   | 46th Correction | 47th Base   | 47th Correction | 48th Base | 48th Correction | 49th Base | 49th Correction | 50th Base   | 50th Correction | 51st Base | 51st Correction | 52nd Base | 52nd Correction | 53rd Base   | 53rd Correction | 54th Base | 54th Correction | 55th Base | 55th Correction |
| No. of<br>Town-<br>ship                             |        | 180         | 182             | 184         | 186             | 188       | 190             | 192       | 194             | 196         | 198             | 200       | 202             | 204       | 2.06            | 208         | 210             | 212       | 214             | 216       | 2.18            |

| 08.539<br>15.034<br>21.638<br>28.352<br>35.179<br>35.179<br>42.124<br>49.187<br>14 56.373<br>15 03.684<br>11.125                                  | 18.697<br>26.405<br>15 34.251             |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 5808<br>5900<br>5922<br>5084<br>6175<br>6175<br>6355<br>6355<br>6444<br>6533<br>6533                                                              | 6708<br>6794<br>0.1876880                 |
| 9.7579644<br>9.751917<br>9.7546527<br>9.7513117<br>9.7419407<br>9.7445392<br>9.7411068<br>9.7316431<br>9.7316431<br>9.730585<br>9.720585          | 9.7234641<br>9.7198356<br>9.7161725       |
| 9890<br>9921<br>9952<br>0.1879983<br>0.1880013<br>0.1880013<br>0.132<br>01073<br>0132<br>0132                                                     | 0191<br>0220<br>0.1880249                 |
| 27.51<br>54.69<br>21.85<br>49.00<br>16.14<br>43.27<br>10.38<br>37.48<br>04.57<br>31.65                                                            | 58.71<br>25.76<br>52.80                   |
| 11<br>21<br>32<br>32<br>53<br>53<br>53<br>14<br>14<br>24<br>24<br>25<br>35<br>45                                                                  | 55<br>06<br>16                            |
| 69                                                                                                                                                | 70                                        |
| 56th Base<br>57th Base<br>57th Base<br>57th Base<br>57th Base<br>57th Base<br>57th Base<br>57th Base<br>60th Base<br>60th Base<br>60th Correction | 61st Base<br>61st Correction<br>62nd Base |
| 220<br>222<br>224<br>224<br>228<br>228<br>230<br>233<br>233<br>233<br>233<br>233                                                                  | 240<br>242<br>244                         |

# TABLE V

# Chord Azimuths, Deflections, Deflection Offsets, etc., for Base Lines. First and Second Systems of Survey.

| No. of<br>Base<br>Line | Cho<br>Azir | ord<br>nuth | Conver-<br>gence for<br>100 Chains | De | eflec -<br>tion | Deflection<br>Offset For<br>one Chain<br>Distance | Longitude<br>covered by<br>one Range | No. of<br>Town-<br>ship |
|------------------------|-------------|-------------|------------------------------------|----|-----------------|---------------------------------------------------|--------------------------------------|-------------------------|
|                        | ° 1         | 11          | 11                                 | 1  | 11              | inches                                            | s.                                   |                         |
| 1                      | 89 56       | 57.4        | 74.69                              | 6  | 05.2            | 1.402                                             | 32.3                                 | 0                       |
| 2                      |             | 55.1        | 75.63                              |    | 09.8            | 1.420                                             | 32.5                                 | 4                       |
| 3                      |             | 52.8        | 76.58                              |    | 14.5            | 1.438                                             | 32.7                                 | 8                       |
| 4                      |             | 50.4        | 77.54                              |    | 19.2            | 1.456                                             | 33.0                                 | 12                      |
| 5                      |             | 48.0        | 78.52                              |    | 24.0            | 1.474                                             | 33.2                                 | 16                      |
|                        |             |             |                                    |    |                 |                                                   |                                      |                         |
| 6                      |             | 45.6        | 79.51                              |    | 28.8            | 1.493                                             | 33.5                                 | 20                      |
| 7                      |             | 43.1        | 80.52                              |    | 33.8            | 1.512                                             | 33.7                                 | 24                      |
| 8                      |             | 40.6        | 81.55                              | 1  | 38.8            | 1.531                                             | 34.0                                 | 28                      |
| 9                      |             | 38.1        | 82.58                              |    | 43.8            | 1.551                                             | 34.2                                 | 32                      |
| 10                     | 1           | 35.5        | 83.64                              |    | 49.0            | 1.570                                             | 34.5                                 | 36                      |
|                        |             |             |                                    |    |                 |                                                   |                                      |                         |
| 11                     |             | 32.9        | 84.71                              |    | 54.3            | 1.591                                             | 34.8                                 | 40                      |
| 12                     |             | 30.2        | 85.80                              |    | 59.6            | 1.611                                             | 35.1                                 | 44                      |
| 13                     |             | 27.5        | 86.91                              | 7  | 05.0            | 1.632                                             | 35.4                                 | 48                      |

# TABLE VI

# Chord Azimuths, Deflections, Deflection Offsets, etc., for Base Lines. Third System of Survey.

|        |            |            |    |        | Deflection |            |        |
|--------|------------|------------|----|--------|------------|------------|--------|
| No. of | Chord      | Conver-    | D  | eflec- | Offset For | Longitude  | No. of |
| Base   | Azimuth    | gence for  |    | tion   | one Chain  | covered by | Town-  |
| Line   | 110111100  | 100 Chains |    |        | Distance   | one Range  | ship   |
| Line   |            | 100 0      |    |        | 2          |            | 1      |
|        | 0 I II     |            | ,  | п      | inches     | s.         |        |
| 1      | 89 56 58.5 | 74.69      | 6  | 03.0   | 1.394      | 32.1       | 0      |
| 2      | 56.3       | 75.62      |    | 07.5   | 1.411      | 32.3       | 4      |
| 3      | 54.0       | 76.56      |    | 12.1   | 1.429      | 32.5       | 8      |
| 4      | 51.7       | 77.51      |    | 16.7   | 1.446      | 32.8       | 12     |
| 5      | 49.4       | 78.47      |    | 21.4   | 1.464      | 33.0       | 16     |
|        |            |            |    |        |            |            |        |
| 6      | 46.9       | 79.45      |    | 26.1   | 1.483      | 33.2       | 20     |
| 7      | 44.5       | 80.45      |    | 31.0   | 1.501      | 33.5       | 24     |
| 8      | 42.1       | 81.46      |    | 35.9   | 1.520      | 33.7       | 28     |
| 9      | 39.6       | 82.48      |    | 40.9   | 1.539      | 34.0       | 32     |
| 10     | 37.0       | 83.52      |    | 45.9   | 1.559      | 34.3       | 36     |
|        |            |            |    |        |            |            |        |
| 11     | 34.5       | 84.58      |    | 51.1   | 1.578      | 34.5       | 40     |
| 12     | 31.9       | 85.66      |    | 56.3   | 1.598      | 34.8       | 44     |
| 13     | 29.2       | 86.75      | 7  | 01.6   | 1.619      | 35.1       | 48     |
| 14     | 26.5       | 87.85      | ļ. | 07.0   | 1.639      | 35.4       | 52     |
| 15     | 23.8       | 88.98      | 1  | 12.5   | 1.661      | 35.7       | 56     |
| 16     | 21.0       | 90.13      |    | 18.0   | 1.682      | 36.0       | 60     |
| 10     | 18.2       | 91.30      | ļ. | 23.7   | 1.704      | 36.3       | 64     |
| 19     | 15.2       | 92.48      |    | 29.5   | 1.726      | 36.6       | 68     |
| 10     | 12.3       | 93.69      | ł  | 35.3   | 1.748      | 36.9       | 72     |
| 20     | 09.4       | 94.92      |    | 41.3   | 1.771      | 37.3       | 76     |
| 20     | 0,.4       | 74.72      |    |        |            |            |        |
| 21     | 06.3       | 96.17      |    | 47.4   | 1.795      | 37.6       | 80     |
| 22     | 03.2       | 97.44      |    | 53.6   | 1.818      | 37.9       | 84     |
| 23     | 00.1       | 98.74      |    | 59.9   | 1.843      | 38.3       | 88     |
| 24     | 89 55 56.9 | 100.06     | 8  | 06.3   | 1.867      | 38.6       | 92     |
| 25     | 53.6       | 101.41     |    | 12.8   | 1.892      | 39.0       | 96     |
| 26     | 50.3       | 102.78     |    | 19.5   | 1.918      | 39.4       | 100    |
| 27     | 46.8       | 104.18     | 1  | 26.3   | 1.944      | 39.8       | 104    |
| 28     | 43.4       | 105.60     |    | 33.2   | 1.971      | 40.2       | 108    |
| 29     | 39.9       | 107.06     |    | 40.3   | 1.998      | 40.6       | 112    |
| 30     | 36.2       | 108.54     |    | 47.5   | 2.025      | 41.0       | 116    |
| 31     | 32.6       | 110.05     |    | 54.9   | 2.054      | 41.4       | 120    |
| 32     | 28.8       | 111.60     | 9  | 02.4   | 2.083      | 41.8       | 124    |
| 33     | 25.0       | 113.18     | ľ  | 10.0   | 2,112      | 42.3       | 128    |
| 34     | 21.1       | 114.79     |    | 17.9   | 2,142      | 42.7       | 132    |
| 35     | 17.1       | 116.44     |    | 25.9   | 2,173      | 43.2       | 136    |
| 35     |            |            | 1  |        |            |            | 1      |

#### TABLE VI - Concluded

### Chord Azimuths, Deflections, Deflection Offsets, etc., for Base Lines. Third System of Survey.

| No. of<br>Base<br>Line | Chord<br>Azimuth |    |      | Conver-<br>gence for<br>100 Chains | Deflec-<br>tion |      | Deflection<br>Offset For<br>one Chain<br>Distance | Longitude<br>covered by<br>one Range | No. of<br>Town-<br>ship |
|------------------------|------------------|----|------|------------------------------------|-----------------|------|---------------------------------------------------|--------------------------------------|-------------------------|
|                        | •                | 1  | "    | 11                                 | 1               | н    | inches                                            | s.                                   |                         |
| 36                     | 89               | 55 | 13.0 | 118.12                             | 9               | 34.1 | 2.204                                             | 43.7                                 | 140                     |
| 37                     |                  |    | 08.8 | 119.84                             |                 | 42.4 | 2.236                                             | 44.2                                 | 144                     |
| 38                     |                  |    | 04.5 | 121.60                             |                 | 51.0 | 2.269                                             | 44.7                                 | 148                     |
| 39                     |                  |    | 00.1 | 123.40                             |                 | 59.7 | 2.303                                             | 45.2                                 | 152                     |
| 40                     | 89               | 54 | 55.7 | 125.24                             | 10              | 08.7 | 2.337                                             | 45.7                                 | 156                     |
| 41                     |                  |    | 51.1 | 127.13                             |                 | 17.8 | 2.372                                             | 46.2                                 | 160                     |
| 42                     |                  |    | 46.4 | 129.06                             |                 | 27.2 | 2.408                                             | 46.8                                 | 164                     |
| 43                     |                  |    | 41.6 | 131.04                             |                 | 36.9 | 2.445                                             | 47.4                                 | 168                     |
| 44                     |                  |    | 36.6 | 133.07                             |                 | 46.7 | 2.483                                             | 48.0                                 | 172                     |
| 45                     |                  |    | 31.6 | 135.15                             |                 | 56.8 | 2.522                                             | 48.6                                 | 176                     |
| 46                     |                  |    | 26.4 | 137.28                             | 11              | 07.2 | 2.562                                             | 49.2                                 | 180                     |
| 47                     |                  |    | 21.1 | 139.47                             |                 | 17.8 | 2,603                                             | 49.8                                 | 184                     |
| 48                     |                  |    | 15.6 | 141.71                             |                 | 28.7 | 2.645                                             | 50.5                                 | 188                     |
| 49                     |                  |    | 10.0 | 144.02                             |                 | 39.9 | 2,688                                             | 51.2                                 | 192                     |
| 50                     |                  |    | 04.3 | 146.39                             |                 | 51.5 | 2.732                                             | 51.9                                 | 198                     |
| 51                     | 80               | 53 | 58 4 | 148 82                             | 12              | 033  | 2.777                                             | 52.6                                 | 200                     |
| 52                     | 0,               | 55 | 52.3 | 151.33                             | 10              | 15.5 | 2.824                                             | 53.3                                 | 204                     |
| 53                     |                  |    | 46.0 | 153.90                             |                 | 28.0 | 2.872                                             | 54.1                                 | 208                     |
| 54                     |                  |    | 39.6 | 156.56                             |                 | 40.9 | 2.921                                             | 54.9                                 | 212                     |
| 55                     |                  |    | 32.9 | 159.29                             |                 | 54.1 | 2.972                                             | 55.7                                 | 216                     |
| 56                     |                  |    | 26.1 | 162.10                             | 13              | 07.8 | 3.025                                             | 56.6                                 | 220                     |
| 57                     |                  |    | 10 1 | 165.00                             | 1.5             | 21.9 | 3.079                                             | 57.4                                 | 224                     |
| 58                     |                  |    | 11.8 | 167.00                             |                 | 36.4 | 3 1 3 5                                           | 58.3                                 | 228                     |
| 59                     |                  |    | 04.3 | 171.08                             |                 | 51.4 | 3,192                                             | 59.3                                 | 232                     |
| 60                     | 89               | 52 | 56.5 | 174.26                             | 14              | 06.9 | 3.252                                             | 60.2                                 | 236                     |
| 61                     |                  |    | 48.5 | 177 56                             |                 | 22.0 | 3 3 3 3                                           | 61.2                                 | 240                     |
| 62                     |                  |    | 40.3 | 180.96                             |                 | 39.5 | 3.377                                             | 62.3                                 | 244                     |
|                        |                  |    |      |                                    |                 |      |                                                   |                                      |                         |
TABLE VII

Chord Azimuths, Deflections, Deflection Offsets, Jogs, etc., for Correction Lines. First and Second Systems of Survey.

| No. of                           | Town-<br>ship             |        | 2          | 9     | 10    | 14    | 18    | 2.2  | 1       | 70    | 30    | 34     | 38    | 1 | 42      | 46      |
|----------------------------------|---------------------------|--------|------------|-------|-------|-------|-------|------|---------|-------|-------|--------|-------|---|---------|---------|
| ergence<br>vergence<br>fiSection | VnoD<br>or Dial<br>IsH no | links  | 14.5       | 14.7  | 14.9  | 15.1  | 15.3  | 16.6 |         | 15.7  | 15.9  | 16.1   | 16.3  |   | 16.5    | 16.7    |
| Jog for                          | l Range                   | chains | 3.485      | .529  | .574  | .618  | .664  | 112  |         | .758  | .806  | . 1.54 | .904  |   | 3.953   | 4.004   |
| one Range<br>tion Line           | South side<br>of Road     | chains | 487.266    | .244  | .222  | .200  | .177  | 16.4 | 1.01.   | .131  | .107  | .083   | .058  |   | .034    | 487.008 |
| Length of o<br>on Correc         | North side<br>of Road     | chains | 490.751    | .773  | .796  | .818  | .841  | 07.6 | C 0 2 . | .888  | .913  | .937   | .962  |   | 490.987 | 491.012 |
| Deflection<br>Offset             | for one Chain<br>Distance | inches | 1.406      | 1.424 | 1.442 | 1.460 | 1.478 |      | 1.491   | 1.516 | 1.535 | 1.554  | 1.574 |   | 1.594   | 1.615   |
| Deflec-                          | tion                      | =      | 6 06.2     | 10.8  | 15.5  | 20.2  | 25.0  | 1    | 29.8    | 34.7  | 39.7  | 44.8   | 50.0  |   | 55.2    | 7 00.6  |
| Convergence<br>for 100 Chains    | on South side<br>of Road  |        | 75.16      | 76.10 | 77.06 | 78.03 | 79.02 |      | 80.02   | 81.03 | 82.06 | 83.11  | 84.17 |   | 85.26   | 86.36   |
| Chord                            | Azimuth                   | 0      | 89 56 56.9 | 54.6  | 5.2.3 | 0.07  | 47.5  |      | 45.1    | 42.7  | 40.2  | 37.6   | 35.0  |   | 32.4    | 29.7    |
| ło .<br>noitos<br>eni            | Corr<br>Corr<br>No        |        | -          | • •   | 1 ~   | 0 4   | * .c. |      | 9       | 2     | - 0   | 0      | 10    | 2 | 1       | 12      |

TABLE VIII

Chord Azimuths, Deflections, Deflection Offsets, Jogs, etc., for Correction Lines. Third System of Survey.

| No. of<br>Town-<br>ship                                   | 6 2                          | 10<br>14<br>18          | 22<br>26<br>34<br>38                      | 42<br>56<br>54<br>58                         |
|-----------------------------------------------------------|------------------------------|-------------------------|-------------------------------------------|----------------------------------------------|
| Convergence<br>or Divergence<br>on Hall Section           | links<br>14.3<br>14.4        | 14.6<br>14.8<br>15.0    | 15.2<br>15.4<br>15.5<br>15.7<br>15.9      | 16.1<br>16.4<br>16.6<br>16.8<br>16.8<br>17.0 |
| Jog for<br>1 Range                                        | chains<br>3.421<br>.463      | .507<br>.550<br>.594    | .640<br>.685<br>.731<br>.779<br>.826      | .875<br>.924<br>3.974<br>4.025<br>.077       |
| one Range<br>tion Line<br>South side<br>of Road           | chains<br>484.298<br>.277    | .255<br>.234<br>.212    | .189<br>.167<br>.144<br>.120<br>.097      | .072<br>.048<br>484.023<br>483.998           |
| Length of on Correct on Correct North side of Road        | chains<br>487.719<br>.740    | .762<br>.784<br>.806    | .829<br>.852<br>.875<br>.899              | .947<br>.972<br>487.997<br>488.023<br>.049   |
| Deflection<br>Offset<br>for one Chain<br>Distance         | inches<br>1.398<br>1.415     | 1.432<br>1.450<br>1.468 | 1.486<br>1.505<br>1.524<br>1.524<br>1.562 | 1.582<br>1.602<br>1.622<br>1.643<br>1.664    |
| Deflec-<br>tion                                           | 6 04.0<br>08.5               | 13.0<br>17.6<br>22.3    | 27.1<br>31.9<br>36.8<br>41.8<br>46.9      | 52.0<br>57.2<br>7 02.6<br>07.9<br>13.4       |
| Convergence<br>for 100 Chains<br>on South side<br>of Road | "<br>75:15<br>76.08          | 77.03<br>77.99<br>78.96 | 79.95<br>80.95<br>81.97<br>83.00<br>84.05 | 85.12<br>86.20<br>87.30<br>88.42<br>89.56    |
| Chord<br>Azimuth                                          | ° ' ''<br>89 56 58.0<br>55.7 | 53.5<br>51.2<br>48.8    | 46.4<br>44.0<br>41.6<br>39.1<br>36.5      | 34.0<br>31.4<br>28.7<br>26.0<br>23.3         |
| No. of<br>Correction<br>Line                              | 2                            | w 4t ru                 | 6 7 6<br>10 9 8 7 6                       | 11<br>12<br>13<br>14                         |

h.

| <br>22.6<br>23.2<br>23.2<br>23.6<br>23.6                                                         | .416<br>.495<br>.576<br>.659<br>.744                                  | .309<br>.270<br>.230<br>.189<br>483.147                      | .726<br>.765<br>.806<br>.848                                                 | 2.208<br>2.240<br>2.273<br>2.306<br>2.341                                     | 35.0<br>43.4<br>51.9<br>10 00.7<br>09.6                        | 118.97<br>120.71<br>122.50<br>124.32<br>126.18                     | 12.5<br>08.3<br>04.0<br>54 59.6<br>55.2 |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|
| <br>21.0<br>21.3<br>21.9<br>21.9<br>22.22<br>22.25<br>23.2<br>23.2<br>23.2<br>23.2<br>23.2<br>23 | 5.045<br>.116<br>.188<br>.263<br>.339<br>.416<br>.416<br>.576<br>.576 | .493<br>.458<br>.385<br>.385<br>.347<br>.309<br>.270<br>.230 | .538<br>.574<br>.610<br>.648<br>.686<br>.686<br>.728<br>.866<br>.868<br>.866 | 2.057<br>2.086<br>2.116<br>2.146<br>2.176<br>2.208<br>2.208<br>2.233<br>2.306 | 55.8<br>9 03.3<br>11.0<br>18.8<br>26.8<br>35.0<br>43.4<br>51.9 | 110.82<br>112.39<br>115.61<br>117.27<br>118.97<br>118.97<br>122.50 |                                         |
| <br>20.4                                                                                         | .907<br>4.976                                                         | .561                                                         | .468                                                                         | 2.029                                                                         | 41.3                                                           | 107.79                                                             |                                         |
| <br>20.2                                                                                         | 677.<br>840                                                           | -594                                                         | .401<br>.434                                                                 | 1.948                                                                         | 27.3<br>34.2                                                   | 104.89                                                             | -                                       |
| <br>19.6                                                                                         | .711                                                                  | .658                                                         | .369                                                                         | 1.922                                                                         | 20.5                                                           | 103.47                                                             | 8                                       |
| <br>19.4                                                                                         | .647                                                                  | 069.                                                         | .337                                                                         | 1.896                                                                         | 13.8                                                           | 102.09                                                             | * *                                     |
| <br>18.9                                                                                         | .586                                                                  | .750                                                         | .275                                                                         | 1.846<br>1.871                                                                | 8 00.8<br>07.3                                                 | 99.40<br>100.73                                                    | 94                                      |
| <br>18.6                                                                                         | .465                                                                  | .780                                                         | .245                                                                         | 1.822                                                                         | 54.5                                                           | 98.09                                                              | 7                                       |
| <br>18.4                                                                                         | 4.407                                                                 | 483.809                                                      | 488.216                                                                      | 1.798                                                                         | 7 48.3                                                         | 96.80                                                              | 80                                      |
| <br>17.9                                                                                         | 4.350                                                                 | .865<br>483.837                                              | .158                                                                         | 1.752                                                                         | 36.3<br>7 42.3                                                 | 94.30<br>95.54                                                     | 8                                       |
| 17.7                                                                                             | .237                                                                  | .893                                                         | .130                                                                         | 1.729                                                                         | 30.4                                                           | 93.08                                                              |                                         |
| <br>17.4                                                                                         | .183                                                                  | .920                                                         | .103                                                                         | 1.680                                                                         | 19.0                                                           | 90.71<br>91.89                                                     | 50 1-                                   |

TABLE VIII - Concluded

Chord Azimuths, Deflections, Deflection Offsets, Jogs, etc., for Correction Lines. Third System of Survey.

| No. of<br>Town-<br>ship                                   | 162<br>166<br>170<br>174<br>178                             | 182<br>186<br>190<br>194<br>198                | 202<br>206<br>210<br>214<br>218                |
|-----------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Convergence<br>or Divergence<br>on Hall Section           | links<br>24.3<br>24.7<br>25.0<br>25.4<br>25.8               | 26.2<br>26.7<br>27.1<br>27.5<br>27.5<br>28.0   | 28.5<br>28.9<br>29.4<br>30.0<br>30.5           |
| Jog for<br>I Range                                        | chains<br>5.831<br>5.920<br>6.011<br>.105<br>.201           | .299<br>.400<br>.503<br>.610<br>.719           | .832<br>6.947<br>7.066<br>.189<br>.315         |
| one Range<br>tion Line<br>South side<br>of Road           | chains<br>483.104<br>483.0060<br>483.015<br>482.969<br>.922 | .873<br>.823<br>.772<br>.720<br>.666           | .610<br>.553<br>.495<br>.434<br>.372           |
| Length of<br>on Correc<br>North side<br>of Road           | chains<br>488.935<br>488.980<br>489.026<br>.074<br>.122     | .172<br>.223<br>.276<br>.330<br>.385           | .442<br>.501<br>.561<br>.623<br>.687           |
| Deflection<br>Offset<br>for one Chain<br>Distance         | inches<br>2.376<br>2.412<br>2.449<br>2.487<br>2.526         | 2.565<br>2.606<br>2.648<br>2.691<br>2.735      | 2.781<br>2.828<br>2.876<br>2.925<br>2.976      |
| Deflec-<br>tion                                           | 10 18.8<br>28.2<br>37.8<br>47.7<br>57.8                     | 11 08.1<br>18.8<br>29.7<br>40.9<br>52.4        | 12 04.2<br>16.4<br>28.9<br>41.8<br>55.1        |
| Convergence<br>for 100 Chains<br>on South side<br>of Road | "<br>128.09<br>130.04<br>132.05<br>134.10<br>136.21         | 138.37<br>140.58<br>142.86<br>145.19<br>147.60 | 150.07<br>152.61<br>155.22<br>157.91<br>160.68 |
| Chord<br>Azimuth                                          | ° ' 6"<br>89 54 50.6<br>45.9<br>41.1<br>36.1<br>31.1        | 25.9<br>20.6<br>15.1<br>09.5<br>03.8           | 89 53 57.9<br>51.8<br>45.5<br>39.1<br>32.4     |
| No. of<br>Correction<br>Line                              | 41<br>42<br>44<br>45                                        | 46<br>47<br>49<br>50                           | 51<br>52<br>54<br>55                           |

| 222<br>226<br>230<br>234<br>238                | 242     |
|------------------------------------------------|---------|
| 31.0<br>31.6<br>32.2<br>32.7<br>33.4           | 34.0    |
| .445<br>.579<br>.718<br>7.860<br>8.008         | 8.160   |
| .308<br>.242<br>.174<br>.104<br>482.031        | 481.956 |
| .753<br>.821<br>.892<br>489.964<br>490.039     | 490.117 |
| 3.029<br>3.083<br>3.138<br>3.196<br>3.256      | 3.317   |
| 13 08.8<br>22.8<br>37.4<br>52.4<br>14 07.9     | 23.9    |
| 163.54<br>166.48<br>169.52<br>172.66<br>175.90 | 179.24  |
| 25.6<br>18.6<br>11.3<br>03.8<br>89 52 56.0     | 48.0    |
| 56<br>58<br>59<br>60                           | 61      |

## TABLE IX

#### Latitude, with Logarithms of Secant and Tangent for the North Boundary of each Section, and the widths of Quarter Sections on such Boundaries. First and Second Systems of Survey.

| Township | Section | Latitu | de L. | Log Se | cL. | Log Ta | n L. | Quarter<br>Section |
|----------|---------|--------|-------|--------|-----|--------|------|--------------------|
|          |         | • 1    |       |        |     |        |      | chaine             |
|          | 36      | 49 00  | 00.00 | 0.183  | 06  | 0.060  | 84   | 40.000             |
| 1        | 1       | 00     | 53.07 |        | 19  | 0.061  | 06   | 39.988             |
| •        | 12      | 01     | 46 14 |        | 31  | 0.001  | 29   | 976                |
|          | 13      | 02     | 39.22 |        | 44  |        | 51   | 964                |
|          | 2.4     | 03     | 32.29 |        | 57  |        | 74   | 952                |
|          | 25      | 04     | 25.36 |        | 70  |        | 97   | .940               |
|          | 36      | 05     | 18.43 |        | 83  | 0.062  | 19   | .928               |
| 2        |         |        |       |        |     |        | 43   | 01/                |
| 2        | 1 12    | 00     | 04 59 | 0.194  | 90  |        | 42   | .916               |
|          | 12      | 07     | 04.58 | 0.184  | 09  |        | 64   | .904               |
|          | 15      | 07     | 57.65 |        | 22  | 0.0/2  | 87   | .892               |
|          | 24      | 08     | 50.72 |        | 35  | 0.063  | 22   | .880               |
|          | 25      | 09     | 43.19 |        | 40  |        | 52   | .000               |
|          | 36      | 10     | 36.80 |        | 60  |        | 55   | (39.856            |
|          |         |        |       |        |     |        |      | (40.146            |
| 3        | 1       | 11     | 29.93 |        | 73  |        | 77   | .134               |
|          | 12      | 12     | 23.01 |        | 86  | 0.064  | 00   | .122               |
|          | 13      | 13     | 16.08 |        | 99  |        | 22   | .109               |
|          | 24      | 14     | 09.15 | 0.185  | 12  |        | 45   | .097               |
|          | 25      | 15     | 02.22 |        | 25  |        | 68   | .085               |
|          | 36      | 15     | 55.29 |        | 38  |        | 90   | .073               |
| 4        | 1       | 16     | 48.36 |        | 51  | 0.065  | 13   | .061               |
|          | 12      | 17     | 41.43 |        | 64  |        | 35   | .049               |
|          | 13      | 18     | 34.50 |        | 77  |        | 58   | .036               |
|          | 24      | 19     | 27.57 |        | 90  |        | 81   | .024               |
|          | 25      | 20     | 20.64 | 0.186  | 03  | 0.066  | 03   | .012               |
|          | 36      | 21     | 13.71 |        | 16  |        | 26   | 40.000             |
| 5        | 1       | 22     | 06.78 |        | 29  |        | 48   | 39.988             |
|          | 12      | 22     | 59.85 |        | 42  |        | 71   | .976               |
|          | 13      | 23     | 52.92 |        | 55  |        | 94   | .963               |
|          | 24      | 24     | 45.98 |        | 68  | 0.067  | 16   | .951               |
|          | 25      | 25     | 39.05 |        | 81  |        | 39   | .939               |
|          | 36      | 26     | 32.12 |        | 94  |        | 61   | .927               |
| 6        | 1       | 27     | 25.19 | 0.187  | 07  |        | 84   | 39,915             |
| -        | 12      | 28     | 18.26 |        | 21  | 0.068  | 07   | .902               |
|          | 13      | 29     | 11.33 |        | 34  | 2.000  | 29   | .890               |
|          | 24      | 30     | 04.40 |        | 47  |        | 52   | .878               |
|          | 25      | 30     | 57.46 |        | 60  |        | 75   | .866               |
|          | 36      | 31     | 50.53 |        | 73  |        | 97   | (39.854            |
|          |         |        |       |        |     |        | . 1  | (40.148            |

|          |         |    |      |       |        |     |       | A REAL PROPERTY AND ADDRESS |                    |
|----------|---------|----|------|-------|--------|-----|-------|-----------------------------|--------------------|
| Township | Section | La | titu | de L. | Log Se | cL. | Log T | an L.                       | Quarter<br>Section |
|          |         | 0  | 1    |       |        |     | 1     |                             | chains             |
| 7        | 1       | 49 | 32   | 43.60 | 0.187  | 86  | 0.069 | 20                          | .135               |
|          | 12      |    | 33   | 36.67 | 1      | 99  |       | 42                          | .123               |
|          | 13      |    | 34   | 29.74 | 0.188  | 12  |       | 65                          | .111               |
|          | 24      |    | 35   | 22.80 | 1      | 25  |       | 88                          | .099               |
|          | 25      |    | 36   | 15.87 |        | 38  | 0.070 | 10                          | .086               |
|          | 36      |    | 37   | 08.94 |        | 52  |       | 33                          | .074               |
| 8        | 1       |    | 38   | 02.00 |        | 65  |       | 56                          | .062               |
|          | 12      |    | 38   | 55.07 |        | 78  |       | 78                          | .049               |
|          | 13      |    | 39   | 48.14 |        | 91  | 0.071 | 01                          | .037               |
|          | 24      |    | 40   | 41.20 | 0.189  | 04  |       | 24                          | .025               |
|          | 25      |    | 41   | 34.27 |        | 17  |       | 46                          | .012               |
|          | 36      |    | 42   | 27.34 |        | 30  |       | 69                          | 40.000             |
| 9        | 1       |    | 43   | 20.40 |        | 44  |       | 92                          | 39.988             |
|          | 12      |    | 44   | 13.47 |        | 57  | 0.072 | 14                          | .975               |
|          | 13      |    | 45   | 06.54 |        | 70  | Ì     | 37                          | .963               |
|          | 24      |    | 45   | 59.60 |        | 83  |       | 60                          | .951               |
|          | 25      |    | 46   | 52.67 |        | 96  |       | 82                          | .938               |
|          | 36      |    | 47   | 45.73 | 0.190  | 10  | 0.073 | 05                          | .926               |
| 10       | 1       |    | 48   | 38.80 |        | 23  |       | 28                          | .914               |
|          | 12      |    | 49   | 31.86 |        | 36  |       | 50                          | .901               |
|          | 13      |    | 50   | 24.93 |        | 49  |       | 73                          | .889               |
|          | 24      |    | 51   | 17.99 |        | 63  |       | 96                          | .877               |
|          | 25      |    | 52   | 11.06 |        | 76  | 0.074 | 18                          | .864               |
|          | 36      |    | 53   | 04.12 |        | 89  |       | 41                          | (39.852            |
|          |         |    |      |       |        |     |       |                             | (40.150            |
| 11       | 1       |    | 53   | 57.19 | 0.191  | 02  |       | 64                          | .137               |
|          | 12      |    | 54   | 50.25 |        | 16  |       | 86                          | .125               |
|          | 13      |    | 55   | 43.32 |        | 29  | 0.075 | 09                          | .112               |
|          | 24      |    | 56   | 36.38 |        | 42  |       | 32                          | .100               |
|          | 25      |    | 57   | 29.44 |        | 55  |       | 54                          | .087               |
|          | 36      |    | 58   | 22.51 |        | 69  |       | 77                          | .075               |
| 12       | 1       | 49 | 59   | 15.57 |        | 82  | 0.076 | 00                          | 40.062             |
|          | 12      | 50 | 00   | 08.63 |        | 95  |       | 22                          | .050               |
|          | 13      |    | 01   | 01.70 | 0.192  | 09  |       | 45                          | .037               |
|          | 24      |    | 01   | 54.76 |        | 22  |       | 68                          | .025               |
|          | 25      |    | 02   | 47.82 |        | 35  |       | 90                          | .013               |
|          | 36      |    | 03   | 40.89 |        | 49  | 0.077 | 13                          | 40.000             |
|          |         |    |      |       |        |     |       |                             |                    |

## Latitude, with Logarithms of Secant and Tangent, etc. First and Second Systems of Survey.

| Township | Section | Latitu | de L. | Log Se | cL. | Log Ta | an L. | Quarter<br>Section |
|----------|---------|--------|-------|--------|-----|--------|-------|--------------------|
|          |         | ۰ ı    | u     |        |     |        |       | chains             |
| 13       | 1       | 50 04  | 33.95 | 0.192  | 62  | 0.077  | 36    | 39,988             |
| 15       | 12      | 05     | 27.01 | 0.17.  | 75  | 0.011  | 59    | .975               |
|          | 13      | 06     | 20.08 |        | 89  |        | 81    | .963               |
|          | 24      | 07     | 13.14 | 0.193  | 02  | 0.078  | 04    | .950               |
|          | 2.5     | 08     | 06.20 | 0.175  | 16  | 0.0.0  | 27    | .938               |
|          | 36      | 08     | 59.26 |        | 29  |        | 49    | .925               |
| 14       | 1       | 09     | 52.32 |        | 42  |        | 72    | .913               |
|          | 12      | 10     | 45.39 |        | 56  |        | 95    | .900               |
|          | 13      | 11     | 38.45 |        | 69  | 0.079  | 17    | .888               |
|          | 24      | 12     | 31.51 |        | 83  |        | 40    | .875               |
|          | 25      | 13     | 24.57 |        | 96  |        | 63    | .863               |
|          | 36      | 14     | 17.63 | 0.194  | 09  |        | 86    | (39.850            |
|          |         |        |       |        |     |        |       | 40.152             |
| 15       | 1 1     | 15     | 10.69 |        | 23  | 0.080  | 08    | .139               |
|          | 12      | 16     | 03.76 |        | 36  |        | 31    | .126               |
|          | 13      | 16     | 56.82 |        | 50  |        | 54    | .114               |
|          | 24      | 17     | 49.88 |        | 63  |        | 77    | .101               |
|          | 25      | 18     | 42.94 |        | 77  |        | 99    | .088               |
|          | 36      | 19     | 36.00 |        | 90  | 0.081  | 22    | .076               |
| 16       | 1       | 20     | 29.06 | 0.195  | 04  |        | 45    | .063               |
|          | 12      | 21     | 22.12 |        | 17  |        | 67    | .050               |
|          | 13      | 22     | 15.18 |        | 31  |        | 90    | .038               |
|          | 24      | 23     | 08.24 |        | 44  | 0.082  | 13    | .025               |
|          | 25      | 24     | 01.30 |        | 57  |        | 36    | .013               |
|          | 36      | 24     | 54.36 |        | 71  |        | 58    | 40.000             |
| 17       | 1       | 25     | 47.42 |        | 85  |        | 81    | 39.987             |
|          | 12      | 26     | 40.48 |        | 98  | 0.083  | 04    | .975               |
|          | 13      | 27     | 33.54 | 0.196  | 12  |        | 27    | .962               |
|          | 24      | 28     | 26.60 |        | 25  |        | 49    | .949               |
|          | 25      | 29     | 19.66 |        | 39  |        | 72    | .937               |
|          | 36      | 30     | 12.71 |        | 52  |        | 95    | .924               |
| 18       | 1       | 31     | 05.77 |        | 66  | 0.084  | 18    | 39.911             |
|          | 12      | 31     | 58.83 |        | 79  |        | 41    | .899               |
|          | 13      | 32     | 51.89 |        | 93  |        | 63    | .886               |
|          | 24      | 33     | 44.95 | 0.197  | 06  |        | 86    | .873               |
|          | 25      | 34     | 38.01 |        | 20  | 0.085  | 09    | .861               |
|          | 36      | 35     | 31.07 |        | 34  |        | 32    | (39.848            |
|          |         |        |       |        |     |        |       | (40.153            |

#### Latitude, with Logarithms of Secant and Tangent, etc. First and Second Systems of Survey.

|          |         |          | _   |        | -   |        |       |                    |
|----------|---------|----------|-----|--------|-----|--------|-------|--------------------|
| Township | Section | Latitude | L.  | Log Se | cL. | Log Ta | an L. | Quarter<br>Section |
|          |         | Q 1      |     |        |     |        |       | chains             |
| 19       | 1       | 50 36 24 | .12 | 0.197  | 47  | 0.085  | 54    | .141               |
|          | 12      | 37 17    | .18 |        | 61  |        | 77    | .128               |
|          | 13      | 38 10    | .24 |        | 75  | 0.086  | 00    | .115               |
|          | 24      | 39 03    | .30 |        | 88  |        | 23    | .102               |
|          | 25      | 39 56    | .35 | 0.198  | 02  |        | 46    | .089               |
|          | 36      | 40 49    | .41 |        | 15  |        | 68    | .077               |
| 20       | 1       | 41 42    | .47 |        | 29  |        | 91    | .064               |
|          | 12      | 42 35    | .53 |        | 43  | 0.087  | 14    | .051               |
|          | 13      | 43 28    | .58 |        | 56  |        | 37    | .038               |
|          | 24      | 44 21    | .64 |        | 70  |        | 59    | .026               |
|          | 25      | 45 14    | .70 |        | 84  |        | 82    | .013               |
|          | 36      | 46 07    | .75 |        | 97  | 0.088  | 05    | 40.000             |
| 21       | 1       | 47 00    | .81 | 0.199  | 11  |        | 28    | 39.987             |
|          | 12      | 47 53    | .86 |        | 25  |        | 51    | .974               |
|          | 13      | 48 46    | .92 |        | 38  |        | 74    | .962               |
|          | 24      | 49 39    | .98 |        | 52  |        | 96    | .949               |
|          | 25      | 50 33    | .03 |        | 66  | 0.089  | 19    | .936               |
|          | 36      | 51 26    | .09 |        | 80  |        | 42    | .923               |
| 22       | 1       | 52 19    | .14 |        | 93  |        | 65    | .910               |
|          | 12      | 53 12    | .20 | 0.200  | 07  |        | 88    | .897               |
|          | 13      | 54 05    | .25 |        | 21  | 0.090  | 10    | .885               |
|          | 24      | 54 58    | .31 |        | 35  |        | 33    | .872               |
|          | 25      | 55 51    | .36 |        | 48  |        | 56    | .859               |
|          | 36      | 56 44    | .42 |        | 62  |        | 79    | (39.846            |
|          |         |          |     |        |     | 1      |       | (40.155            |
| 23       | 1       | 57 37    | .47 |        | 76  | 0.091  | 02    | .142               |
|          | 12      | 58 30    | .53 |        | 90  |        | 25    | .130               |
|          | 13      | 50 59 23 | .58 | 0.201  | 03  |        | 47    | .117               |
|          | 24      | 51 00 16 | .64 |        | 17  |        | 70    | .104               |
|          | 25      | 01 09    | .69 |        | 31  |        | 93    | .091               |
|          | 36      | 02 02    | .74 |        | 45  | 0.092  | 16    | .078               |
| 24       | 1       | 02 55    | .80 |        | 59  | 0.092  | 39    | 40.065             |
|          | 12      | 03 48    | .85 |        | 72  |        | 62    | .052               |
|          | 13      | 04 41    | .91 |        | 86  |        | 84    | .039               |
|          | 24      | 05 34    | .96 | 0.202  | 00  | 0.093  | 07    | .026               |
|          | 25      | 06 28    | .01 |        | 14  |        | .30   | .013               |
|          | 36      | 07 21    | .07 |        | 28  |        | 53    | 40.000             |
|          |         |          |     |        |     |        |       |                    |

## Latitude, with Logarithms of Secant and Tangent, etc. First and Second Systems of Survey.

| Township | Section | Lat | itud | e L.  | Log Sec | : L. | Log Ta | nL. | Quarter<br>Section |
|----------|---------|-----|------|-------|---------|------|--------|-----|--------------------|
|          |         | 0   | 1    | "     |         |      |        |     | chains             |
| 25       | 1       | 51  | 08   | 14.12 | 0.202   | 42   | 0.093  | 76  | 39.987             |
|          | 12      |     | 09   | 07.17 |         | 56   |        | 99  | .974               |
|          | 13      |     | 10   | 00.22 |         | 69   | 0.094  | 22  | .961               |
|          | 24      |     | 10   | 53.28 |         | 83   |        | 45  | .948               |
|          | 25      |     | 11   | 46.33 |         | 97   |        | 67  | .935               |
|          | 36      |     | 12   | 39.38 | 0.203   | 11   |        | 90  | .922               |
| 26       | 1       |     | 13   | 32.43 |         | 25   | 0.095  | 13  | .909               |
|          | 12      |     | 14   | 25.49 |         | 39   |        | 36  | .896               |
|          | 13      |     | 15   | 18.54 |         | 53   |        | 59  | .883               |
|          | 24      |     | 16   | 11.59 |         | 67   |        | 82  | .870               |
|          | 25      |     | 17   | 04.64 |         | 81   | 0.096  | 05  | .857               |
|          | 36      |     | 17   | 57.70 |         | 95   |        | 28  | (39.844            |
|          |         |     |      |       |         |      |        |     | (40.157            |
| 27       | 1       |     | 18   | 50.75 | 0.204   | 08   |        | 50  | .144               |
|          | 12      |     | 19   | 43.80 |         | 22   |        | 73  | .131               |
|          | 13      | ļ   | 20   | 36.85 |         | 36   |        | 96  | .118               |
|          | 24      |     | 21   | 29.90 |         | 50   | 0.097  | 19  | .105               |
|          | 25      |     | 22   | 22.95 |         | 64   |        | 42  | .092               |
|          | 36      |     | 23   | 16.00 |         | 78   |        | 65  | .079               |
| 28       | 1       |     | 24   | 09.05 |         | 92   |        | 88  | .066               |
|          | 12      |     | 25   | 02.10 | 0.205   | 06   | 0.098  | 11  | .052               |
|          | 13      |     | 25   | 55.15 |         | 20   |        | 34  | .039               |
|          | 24      |     | 26   | 48.20 |         | 34   |        | 57  | .026               |
|          | 25      |     | 27   | 41.25 |         | 48   |        | 80  | .013               |
|          | 36      |     | 28   | 34.30 |         | 62   | 0.099  | 02  | 40.000             |
| 29       | 1       |     | 29   | 27.35 |         | 76   |        | 25  | 39.987             |
|          | 12      |     | 30   | 20.40 |         | 90   |        | 48  | .974               |
|          | 13      |     | 31   | 13.45 | 0.206   | 04   |        | 71  | .961               |
| •        | 24      |     | 32   | 06.50 |         | 19   |        | 94  | .947               |
|          | 25      |     | 32   | 59.55 |         | 33   | 0.100  | 17  | .934               |
|          | 36      |     | 33   | 52.60 |         | 47   |        | 40  | .921               |
| 30       | 1       |     | 34   | 45.65 |         | 61   |        | 63  | 39.908             |
|          | 12      |     | 35   | 38.70 |         | 75   |        | 86  | .895               |
|          | 13      |     | 36   | 31.75 |         | 89   | 0.101  | 09  | .882               |
|          | 24      |     | 37   | 24.79 | 0.207   | 03   |        | 32  | .868               |
|          | 25      |     | 38   | 17.84 |         | 17   |        | 55  | .055               |
|          | 36      | 51  | 39   | 10.89 | 0.207   | 31   | 0.101  | 18  | 59.842             |
| 41       | 36      | 52  | 37   | 31.78 | 0.216   | 80   | 0.116  | 99  | 39.918             |

# Latitude, with Logarithms of Secant and Tangent, etc. First and Second Systems of Survey.

|          |         |    | _    |       |        |     |       |       |                    |
|----------|---------|----|------|-------|--------|-----|-------|-------|--------------------|
| Township | Section | La | titu | de L. | Log Se | cL. | Log T | an L. | Quarter<br>Section |
|          |         | o  | ,    | 11    |        |     |       |       | chains             |
| 47       | 1       | 52 | 38   | 24.82 | 0.216  | 94  | 0.117 | 22    | .904               |
| 16       | 12      |    | 39   | 17.86 | 0.217  | 09  |       | 45    | .891               |
|          | 13      |    | 40   | 10.90 |        | 23  |       | 69    | .877               |
|          | 24      |    | 41   | 03.94 |        | 38  |       | 92    | .863               |
|          | 25      |    | 41   | 56.98 |        | 53  | 0.118 | 15    | .850               |
|          | 36      |    | 42   | 50.02 | l l    | 67  |       | 38    | (39.836            |
|          |         |    |      |       |        |     |       |       | (40.166            |
| 43       | 1       |    | 43   | 43.05 |        | 82  |       | 61    | .152               |
|          | 12      |    | 44   | 36.09 |        | 97  |       | 84    | .138               |
|          | 13      |    | 45   | 29.13 | 0.218  | 11  | 0.119 | 08    | .124               |
|          | 24      |    | 46   | 22.17 |        | 26  |       | 31    | .110               |
|          | 25      |    | 47   | 15.21 |        | 41  |       | 54    | .097               |
|          | 36      |    | 48   | 08.24 |        | 56  |       | 77    | .083               |
| 44       | 1       |    | 49   | 01.28 |        | 70  | 0.120 | 00    | .069               |
|          | 12      |    | 49   | 54.32 |        | 85  |       | 23    | .055               |
|          | 13      |    | 50   | 47.36 | 0.219  | 00  |       | 47    | .041               |
|          | 24      |    | 51   | 40.39 |        | 14  |       | 70    | .028               |
|          | 25      |    | 52   | 33.43 |        | 29  |       | 93    | .014               |
|          | 36      |    | 53   | 26.47 |        | 44  | 0.121 | 16    | 40.000             |
| 45       | 1       |    | 54   | 19.50 |        | 59  |       | 39    | 39.986             |
|          | 12      | -  | 55   | 12.54 |        | 73  |       | 63    | .972               |
|          | 13      |    | 56   | 05.58 |        | 88  |       | 86    | .959               |
|          | 24      |    | 56   | 58.61 | 0.220  | 03  | 0.122 | 09    | .945               |
|          | 25      |    | 57   | 51.65 |        | 18  |       | 32    | .931               |
|          | 36      |    | 58   | 44.69 |        | 33  |       | 56    | .917               |
| 46       | 1       | 52 | 59   | 37.72 |        | 47  |       | 79    | 39.903             |
|          | 12      | 53 | 00   | 30.76 |        | 62  | 0.123 | 02    | .889               |
|          | 13      |    | 01   | 23.79 |        | 77  |       | 25    | .876               |
|          | 24      |    | 02   | 16.83 |        | 92  |       | 49    | .862               |
|          | 25      | ł  | 03   | 09.87 | 0.221  | 07  | 1     | 72    | .848               |
|          | 36      |    | 04   | 02.90 |        | 22  |       | 95    | 139.834            |
|          |         |    |      |       |        |     |       |       | (40.160            |
| 47       | 1       |    | 04   | 55.94 |        | 37  | 0.124 | 18    | .154               |
|          | 12      |    | 05   | 48.97 |        | 51  |       | 42    | .140               |
|          | 13      |    | 06   | 42.01 |        | 66  |       | 65    | .126               |
|          | 24      |    | 07   | 35.04 |        | 81  | 0.125 | 88    | .112               |
|          | 25      |    | 08   | 28.08 | 0.333  | 96  | 0.125 | 11    | .098               |
|          | 36      |    | 09   | 21.11 | 0.222  | 11  |       | 55    | .084               |

## TABLE IX - Concluded

| Township | Section                         | Latitude L.                                                               | Log Sec L.                                   | Log Tan L.                                   | Quarter<br>Section                                       |
|----------|---------------------------------|---------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------|
| 48       | 1<br>12<br>13<br>24<br>25<br>36 | <pre>* ' " 53 10 14.15 11 07.18 12 00.21 12 53.25 13 46.28 14 39.32</pre> | 0.222 26<br>41<br>56<br>71<br>86<br>0.223 00 | 0.125 58<br>81<br>0.126 04<br>28<br>51<br>74 | chains<br>.070<br>.056<br>.042<br>.028<br>.014<br>40.000 |

Latitude, with Logarithms of Secant and Tangent, etc. First and Second Systems of Survey.

#### TABLE X

| Township | Section | Latitude L. | Log Sec L. | Log Tan L. | Quarter<br>Section |
|----------|---------|-------------|------------|------------|--------------------|
|          |         | • • •       |            |            | chains             |
|          | 36      | 49 00 00.00 | 0.183 06   | 0.060 84   | 40.000             |
| 1        | 1       | 00 52.75    | 19         | 0.061 06   | 39.988             |
|          | 12      | 01 44.84    | 31         | 28         | .976               |
|          | 13      | 02 37.59    | 44         | 51         | .965               |
|          | 2.4     | 03 29.69    | 57         | 73         | .953               |
|          | 2.5     | 04 22.43    | 69         | 95         | .941               |
|          | 36      | 05 14.53    | 82         | 0.062 17   | .929               |
|          |         | 04 07 07    |            | 10         | 017                |
| 2        |         | 06 07.27    | 95         | 40         | .917               |
|          | 12      | 06 59.37    | 0.184 08   | 62         | .905               |
|          | 13      | 07 52.11    | 20         | 85         | .894               |
|          | 24      | 08 44.21    | 33         | 0.063 07   | .882               |
|          | 25      | 09 36.96    | 46         | 29         | .870               |
|          | 36      | 10 29.05    | 59         | 51         | (39.858            |
|          |         |             |            |            | (40.143            |
| 3        | 1       | 11 21.80    | 71         | 74         | .131               |
|          | 12      | 12 13.89    | 84         | 96         | .119               |
|          | 13      | 13 06.63    | 97         | 0.064 18   | .107               |
|          | 24      | 13 58.73    | 0.185 10   | 41         | .095               |
|          | 25      | 14 51.47    | 23         | 63         | .084               |
|          | 36      | 15 43.57    | 35         | 85         | .072               |
| 4        | 1       | 16 36.31    | 48         | 0.065 08   | .060               |
| -        | 12      | 17 28.41    | 61         | 30         | .048               |
|          | 13      | 18 21.15    | 74         | 52         | .036               |
|          | 24      | 19 13.24    | 87         | 74         | .024               |
|          | 2.5     | 20 05.99    | 0.186 00   | 97         | .012               |
|          | 36      | 20 58.08    | 12         | 0.066 19   | 40.000             |
| 5        | I       | 21 50 82    | 25         | 42         | 30 088             |
| 5        | 12      | 22 42 02    | 39         | 64         | 076                |
|          | 13      | 22 35 66    | 51         | 94         | .910               |
|          | 24      | 24 27 75    | 64         | 0.067.08   | 952                |
|          | 25      | 25 20 50    | 77         | 31         | 040                |
|          | 36      | 26 12.59    | 90         | 53         | .928               |
| ,        |         |             |            |            |                    |
| 6        | 1       | 27 05.33    | 0.187 03   | 76         | .916               |
|          | 12      | 27 57.42    | 15         | 98         | .904               |
|          | 13      | 28 50.17    | 28         | 0.068 20   | .892               |
|          | 24      | 29 42.26    | 41         | 43         | .880               |
|          | 25      | 30 35.00    | 54         | 65         | .868               |
|          | 36      | 31 27.09    | 67         | 87         | 39.856             |
|          |         |             |            |            | 140,145            |

|          |         |       |        | -     |         |    |        |      |                    |
|----------|---------|-------|--------|-------|---------|----|--------|------|--------------------|
| ſownship | Section | Latit | ud     | eL.   | Log Sec | L. | Log Ta | n L. | Quarter<br>Section |
|          |         | 0 1   | _      |       |         |    |        |      | chains             |
| 7        | ,       | 10 3  | 2      | 10.83 | 0 187   | 80 | 0.069  | 10   | 40,133             |
| (        | 12      | 49 5  | 2      | 11.02 | 0.107   | 93 | 0.007  | 32   | .121               |
|          | 12      | 2     | э<br>л | 04 67 | 0 188   | 06 |        | 54   | .109               |
|          | 13      | 2     | 1      | 56 76 | 0.100   | 19 |        | 77   | .097               |
|          | 24      | 2     | и<br>а | 40.50 |         | 32 |        | 99   | .085               |
|          | 26      | 3     | 6      | 41 59 |         | 45 | 0.070  | 21   | .073               |
|          | 30      |       | 0      | ,     |         |    |        |      |                    |
| 8        | 1       | 3     | 7      | 34.33 |         | 58 |        | 44   | .060               |
|          | 12      | 3     | 8      | 26.42 |         | 71 |        | 66   | .048               |
|          | 13      | 3     | 9      | 19.16 |         | 84 |        | 89   | .036               |
|          | 24      | 4     | 0      | 11.25 |         | 97 | 0.071  | 11   | .024               |
|          | 25      | 4     | 1      | 03.99 | 0.189   | 10 |        | 33   | .012               |
|          | 36      | 4     | 1      | 56.08 |         | 23 |        | 56   | 40.000             |
| 0        |         |       | 2      | 48 82 |         | 36 |        | 78   | 39,988             |
| 9        | 12      |       | 3      | 40.02 | i i     | 49 | 0.072  | 00   | .976               |
|          | 12      | 4     | Δ      | 33 65 |         | 62 |        | 23   | .964               |
|          | 24      |       | 5      | 25 74 |         | 75 |        | 45   | .951               |
|          | 25      | 1     | 6      | 18 48 |         | 88 |        | 68   | .939               |
|          | 36      | 4     | 7      | 10.40 | 0.190   | 01 |        | 90   | .927               |
|          | 50      | 1     |        | 10151 | 0.170   |    |        |      |                    |
| 10       | 1       | 4     | 8      | 03.31 |         | 14 | 0.073  | 12   | .915               |
|          | 12      | 4     | 8      | 55.40 |         | 27 |        | 35   | .903               |
|          | 13      | 4     | 9      | 48.14 |         | 40 |        | 57   | .891               |
|          | 24      | 5     | 0      | 40.23 |         | 53 |        | 79   | .879               |
|          | 25      | 5     | 1      | 32.97 |         | 66 | 0.074  | 02   | .867               |
|          | 36      | 5     | 2      | 25.06 |         | 79 |        | 24   | 39.855             |
|          |         |       |        |       |         |    |        |      | (40.147            |
| 11       | 1       |       | 3      | 17.80 |         | 93 |        | 47   | .135               |
| 11       | 12      | 6     | 4      | 09.88 | 0.191   | 06 |        | 69   | .122               |
|          | 12      | -     | 5      | 02.62 | 0.1.71  | 19 |        | 92   | .110               |
|          | 24      | -     | 5      | 54.71 |         | 32 | 0.075  | 14   | .098               |
|          | 25      | -     | 6      | 47.45 |         | 45 |        | 36   | .086               |
|          | 36      | 1     | 57     | 39.54 |         | 58 |        | 59   | .073               |
|          | 50      |       |        | - ,   |         |    |        |      |                    |
| 12       | 1       | 5     | 58     | 32.27 |         | 71 |        | 81   | .061               |
|          | 12      | 5     | 59     | 24.36 |         | 84 | 0.076  | 03   | .049               |
|          | 13      | 50 0  | 00     | 17.10 |         | 98 |        | 26   | .037               |
|          | 24      | (     | )1     | 09.19 | 0.192   | 11 |        | 48   | .024               |
|          | 25      | 0     | )2     | 01.92 |         | 24 |        | 71   | .012               |
|          | 36      | 0     | 2      | 54.01 |         | 37 |        | 93   | 40.000             |
|          |         |       |        |       |         |    |        |      |                    |

| Township | Section | Latitu | de L. | Log Se | c L. | Log T | an L. | Quarter<br>Section |
|----------|---------|--------|-------|--------|------|-------|-------|--------------------|
|          |         | 0 1    | 11    |        |      |       |       | chains             |
| 13       | 1       | 50 03  | 46.75 | 0.192  | 50   | 0.077 | 16    | 39.988             |
|          | 12      | 04     | 38.83 |        | 63   |       | 38    | .975               |
|          | 13      | 05     | 31.57 |        | 77   |       | 60    | .963               |
|          | 24      | 06     | 23.66 |        | 90   |       | 83    | .951               |
|          | 25      | 07     | 16.39 | 0.193  | 03   | 0.078 | 05    | .939               |
|          | 36      | 08     | 08.48 |        | 16   |       | 28    | .926               |
| 14       | 1       | 09     | 01.22 |        | 29   |       | 50    | .914               |
|          | 12      | 09     | 53.30 |        | 43   |       | 72    | .902               |
|          | 13      | 10     | 46.04 |        | 56   |       | 95    | .890               |
|          | 24      | 11     | 38.12 |        | 69   | 0.079 | 17    | .877               |
|          | 25      | 12     | 30.86 |        | 82   |       | 40    | .865               |
|          | 36      | 13     | 22.95 |        | 96   |       | 62    | (39.853            |
|          |         |        |       |        |      |       |       | (40.149            |
| 15       | 1       | 14     | 15.68 | 0.194  | 09   |       | 85    | .136               |
|          | 12      | 15     | 07.77 |        | 22   | 0.080 | 07    | .124               |
|          | 13      | 16     | 00.50 |        | 35   |       | 30    | .112               |
|          | 24      | 16     | 52.59 |        | 49   |       | 52    | .099               |
|          | 25      | 17     | 45.32 |        | 62   |       | 75    | .087               |
|          | 36      | 18     | 37.41 |        | 75   |       | 97    | .074               |
| 16       | 1       | 19     | 30.14 |        | 89   | 0.081 | 20    | .062               |
|          | 12      | 20     | 22.22 | 0.195  | 02   |       | 42    | .050               |
|          | 13      | 21     | 14.96 |        | 15   |       | 64    | .037               |
|          | 24      | 22     | 07.04 |        | 28   |       | 87    | .025               |
|          | 25      | 22     | 59.78 |        | 42   | 0.082 | 09    | .012               |
|          | 36      | 23     | 51.86 |        | 55   |       | 32    | 40.000             |
| 17       | 1       | 24     | 44.59 |        | 69   |       | 54    | 39.988             |
|          | 12      | 25     | 36.68 |        | 82   |       | 77    | .975               |
|          | 13      | 26     | 29.41 |        | 95   |       | 99    | .963               |
|          | 24      | 27     | 21.49 | 0.196  | 09   | 0.083 | 22    | .950               |
|          | 25      | 28     | 14.23 |        | 22   |       | 44    | .938               |
|          | 36      | 29     | 06.31 |        | 35   |       | 67    | .925               |
| 18       | 1       | 29     | 59.04 |        | 49   |       | 89    | .913               |
|          | 12      | 30     | 51.13 |        | 62   | 0.084 | 11    | .901               |
|          | 13      | 31     | 43.86 |        | 76   |       | 34    | .888               |
|          | 24      | 32     | 35.94 |        | 89   |       | 56    | .876               |
|          | 25      | 33     | 28.67 | 0.197  | 02   | 0.00- | 79    | .863               |
|          | 36      | 34     | 20.76 |        | 16   | 0.085 | 01    | (39.851)           |

| and the second division of the second divisio | 1       | the second se |            |            | and a second second |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|------------|------------|---------------------|
| Township                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Section | Latitude L.                                                                                                     | Log Sec L. | Log Tan L. | Quarter<br>Section  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | o 1 11                                                                                                          |            |            | chains              |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1       | 50 35 13.49                                                                                                     | 0.197 29   | 0.085 24   | 40.138              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12      | 36 05.57                                                                                                        | 43         | 46         | .125                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13      | 36 58.30                                                                                                        | 56         | 69         | .113                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24      | 37 50.38                                                                                                        | 69         | 91         | .100                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25      | 38 43.12                                                                                                        | 83         | 0.086 14   | .088                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36      | 39 35.20                                                                                                        | 96         | 36         | .075                |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1       | 40 27.93                                                                                                        | 0.198 10   | 59         | .063                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12      | 41 20.01                                                                                                        | 23         | 81         | .050                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13      | 42 12.74                                                                                                        | 37         | 0.087 04   | .038                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24      | 43 04.82                                                                                                        | 50         | 26         | .025                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25      | 43 57.55                                                                                                        | 64         | 49         | .013                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36      | 44 49.63                                                                                                        | 77         | 72         | 40.000              |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1       | 45 42.36                                                                                                        | 91         | 94         | 39.987              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12      | 46 34.44                                                                                                        | 0.199 04   | 0.088 17   | .975                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13      | 47 27.18                                                                                                        | 18         | 39         | .962                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24      | 48 19.26                                                                                                        | 31         | 62         | .950                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25      | 49 11.99                                                                                                        | 45         | 84         | .937                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36      | 50 04.07                                                                                                        | 58         | 0.089 07   | .925                |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1       | 50 56.80                                                                                                        | 72         | 29         | .912                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12      | 51 48.87                                                                                                        | 85         | 52         | .899                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13      | 52 41.60                                                                                                        | 99         | 74         | .887                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24      | 53 33.68                                                                                                        | 0.200 13   | 97         | .874                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25      | 54 26.41                                                                                                        | 26         | 0.090 20   | .862                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36      | 55 18.49                                                                                                        | 40         | 42         | (39.849             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                 |            |            | (40.152             |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1       | 56 11.22                                                                                                        | 53         | 65         | .140                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12      | 57 03.30                                                                                                        | 67         | 87         | .127                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13      | 57 56.03                                                                                                        | 81         | 0.091 10   | .114                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24      | 58 48.11                                                                                                        | 94         | 32         | .102                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25      | 59 40.83                                                                                                        | 0.201 08   | 55         | .089                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36      | 51 00 32.91                                                                                                     | 21         | 77         | .076                |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1       | 01 25.64                                                                                                        | 35         | 0.092 00   | .064                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12      | 02 17.72                                                                                                        | 49         | 22         | .051                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13      | 03 10.45                                                                                                        | 62         | 45         | .038                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24      | 04 02.52                                                                                                        | 76         | 68         | .025                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25      | 04 55.25                                                                                                        | 90         | 90         | .013                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36      | 05 47.33                                                                                                        | 0.202 03   | 0.093 13   | 40.000              |

| Latitude, | etc., | for the North | Boundary of | each Section. |
|-----------|-------|---------------|-------------|---------------|
|           |       | Third System  | of Survey.  |               |

| Township | Section | Lat | tituo | le L. | Log Sec | L. | Log Ta | ın L. | Quarter<br>Section |
|----------|---------|-----|-------|-------|---------|----|--------|-------|--------------------|
|          |         | •   | 1     | "     |         |    |        |       | chains             |
| 25       | 1       | 51  | 06    | 40.06 | 0.202   | 17 | 0.093  | 35    | 39.987             |
|          | 12      |     | 07    | 32.13 |         | 31 |        | 58    | .975               |
|          | 13      |     | 08    | 24.86 |         | 44 |        | 81    | .962               |
|          | 24      |     | 09    | 16.94 |         | 58 | 0.094  | 03    | .949               |
|          | 25      |     | 10    | 09.67 |         | 72 |        | 26    | .936               |
|          | 36      |     | 11    | 01.74 |         | 85 |        | 48    | .924               |
| 26       | 1       |     | 11    | 54.47 |         | 99 |        | 71    | .911               |
|          | 12      | 1   | 12    | 46.54 | 0.203   | 13 |        | 93    | .898               |
|          | 13      |     | 13    | 39.27 |         | 27 | 0.095  | 16    | .885               |
|          | 24      |     | 14    | 31.35 |         | 40 |        | 39    | .873               |
|          | 25      |     | 15    | 24.07 |         | 54 |        | 61    | .860               |
|          | 36      |     | 16    | 16.15 |         | 68 |        | 84    | (39.847            |
|          |         |     |       |       |         |    |        |       | (40.154            |
| 27       | 1       |     | 17    | 08.87 |         | 82 | 0.096  | 07    | .141               |
|          | 12      |     | 18    | 00.95 |         | 95 |        | 29    | .129               |
|          | 13      |     | 18    | 53.68 | 0.204   | 09 |        | 52    | .116               |
|          | 24      | 1   | 19    | 45.75 |         | 23 |        | 74    | .103               |
|          | 25      |     | 20    | 38.48 |         | 37 |        | 97    | .090               |
|          | 36      |     | 21    | 30.55 |         | 51 | 0.097  | 19    | .077               |
| 28       | 1       |     | 22    | 23.28 |         | 64 |        | 42    | .064               |
|          | 12      | 1   | 23    | 15.35 |         | 78 |        | 65    | .051               |
|          | 13      |     | 24    | 08.08 |         | 92 |        | 87    | .039               |
|          | 24      |     | 25    | 00.15 | 0.205   | 06 | 0.098  | 10    | .026               |
|          | 25      |     | 25    | 52.87 |         | 20 | -      | 33    | .013               |
|          | 36      |     | 26    | 44.95 |         | 33 |        | 55    | 40.000             |
| 29       | 1       |     | 27    | 37.67 |         | 47 |        | 78    | 39.987             |
|          | 12      |     | 28    | 29.75 |         | 61 | 0.099  | 00    | .974               |
|          | 13      |     | 29    | 22.47 |         | 75 |        | 23    | .961               |
|          | 24      |     | 30    | 14.54 |         | 89 |        | 46    | .948               |
|          | 25      | 1   | 31    | 07.27 | 0.206   | 03 |        | 69    | .936               |
|          | 36      |     | 31    | 59.34 |         | 17 |        | 91    | .923               |
| 30       | 1       |     | 32    | 52.07 |         | 31 | 0.100  | 14    | .910               |
|          | 12      |     | 33    | 44.14 |         | 44 |        | 36    | .897               |
|          | 13      |     | 34    | 36.86 |         | 58 |        | 59    | .884               |
|          | 24      |     | 35    | 28.93 |         | 72 |        | 82    | .871               |
|          | 25      |     | 36    | 21.66 |         | 86 | 0.101  | 05    | .858               |
|          | 36      |     | 37    | 13.73 | 0.207   | 00 |        | 27    | (39.845            |
|          |         |     |       |       |         |    |        |       | (40.156            |

| Fownship | Section | Lat | itud | eL.   | Log Sec | L. | Log Ta | n L. | Quarter<br>Section |
|----------|---------|-----|------|-------|---------|----|--------|------|--------------------|
|          |         | 0   | ,    | 11    |         |    |        |      | chains             |
| 31       | 1       | 51  | 38   | 06.45 | 0.207   | 14 | 0.101  | 50   | 40.143             |
|          | 12      |     | 38   | 58.52 |         | 28 |        | 72   | .130               |
|          | 13      | ļ   | 39   | 51.25 |         | 42 |        | 95   | .117               |
|          | 24      |     | 40   | 43.32 |         | 56 | 0.102  | 18   | .104               |
|          | 25      |     | 41   | 36.04 |         | 70 |        | 41   | .091               |
|          | 36      |     | 42   | 28.11 |         | 84 |        | 63   | .078               |
| 32       | 1       | ļ   | 43   | 20.83 |         | 98 |        | 86   | .065               |
|          | 12      |     | 44   | 12.91 | 0.208   | 12 | 0.103  | 08   | .052               |
|          | 13      |     | 45   | 05.63 |         | 26 |        | 31   | .039               |
|          | 24      |     | 45   | 57.70 |         | 40 |        | 54   | .026               |
|          | 25      |     | 46   | 50.42 |         | 54 |        | 77   | .013               |
|          | 36      |     | 47   | 42.49 |         | 68 |        | 99   | 40.000             |
| 33       | 1       |     | 48   | 35.21 |         | 82 | 0.104  | 22   | 39.987             |
|          | 12      |     | 49   | 27.28 |         | 96 |        | 45   | .974               |
|          | 13      |     | 50   | 20.00 | 0.209   | 10 |        | 67   | .961               |
|          | 24      |     | 51   | 12.07 |         | 24 |        | 90   | .948               |
|          | 25      |     | 52   | 04.80 |         | 38 | 0.105  | 13   | .935               |
|          | 36      |     | 52   | 56.87 |         | 52 |        | 35   | .922               |
| 34       | 1       |     | 53   | 49.59 |         | 66 |        | 58   | .909               |
|          | 12      |     | 54   | 41.66 |         | 80 |        | 81   | .896               |
|          | 13      |     | 55   | 34.38 |         | 94 | 0.106  | 04   | .883               |
|          | 24      |     | 56   | 26.45 | 0.210   | 08 |        | 26   | .869               |
|          | 25      |     | 57   | 19.17 |         | 22 |        | 49   | .856               |
|          | 36      |     | 58   | 11.24 |         | 36 |        | 72   | (39.843            |
|          |         |     |      |       |         |    |        |      | (40.158            |
| 35       | 1       |     | 59   | 03.95 |         | 51 |        | 95   | .145               |
| 20       | 12      | 1   | 59   | 56.02 |         | 65 | 0.107  | 17   | .132               |
|          | 13      | 52  | 00   | 48.74 | 1       | 79 |        | 40   | .119               |
|          | 2.4     |     | 01   | 40.81 |         | 93 |        | 63   | .106               |
|          | 25      |     | 02   | 33.53 | 0.211   | 07 |        | 86   | .092               |
|          | 36      |     | 03   | 25.60 |         | 21 | 0.108  | 08   | .079               |
| 36       | 1       |     | 04   | 18 32 |         | 36 |        | 31   | .066               |
| 20       | 12      |     | 05   | 10.30 |         | 50 |        | 54   | .053               |
|          | 13      |     | 06   | 03 10 |         | 64 |        | 77   | .040               |
|          | 24      |     | 06   | 55 17 |         | 78 |        | 99   | .026               |
|          | 25      |     | 07   | 47.89 |         | 92 | 0.109  | 22   | .013               |
|          | 36      |     | 0.8  | 39.96 | 0.212   | 06 |        | 45   | 40.000             |
|          | 1 30    |     | 00   | 57.70 | 0.0.0   |    | 1      |      |                    |

| Latitude, | etc., | for the | North  | Boundary  | of | each | Section. |
|-----------|-------|---------|--------|-----------|----|------|----------|
|           |       | Third S | Svstem | of Survey |    |      |          |

|          |         |     |       |       |         | _  |        |       |                    |
|----------|---------|-----|-------|-------|---------|----|--------|-------|--------------------|
| Township | Section | Lat | tituo | le L. | Log Sec | L. | Log Ta | an L. | Quarter<br>Section |
|          |         |     |       |       |         |    |        |       |                    |
| 37       | 1       | 52  | 00    | 37.68 | 0 212   | 21 | 0 100  | 4.0   | chains             |
| 5,       | 12      | 152 | 10    | 24 74 | 0.212   | 35 | 0.109  | 90    | 59.901             |
|          | 13      |     | 11    | 17.46 |         | 49 | 0 110  | 13    | 960                |
|          | 24      |     | 12    | 09.53 |         | 63 | 0.110  | 36    | 947                |
|          | 25      |     | 13    | 02.25 |         | 77 |        | 59    | .934               |
|          | 36      |     | 13    | 54.31 |         | 92 |        | 81    | .921               |
| 38       | 1       |     | 14    | 47.03 | 0.213   | 06 | 0.111  | 04    | .907               |
|          | 12      |     | 15    | 39.10 |         | 20 |        | 27    | .894               |
|          | 13      | ļ   | 16    | 31.81 |         | 34 |        | 50    | .881               |
|          | 24      |     | 17    | 23.88 |         | 49 |        | 73    | .868               |
|          | 25      |     | 18    | 16.60 |         | 63 |        | 96    | .855               |
|          | 36      |     | 19    | 08.66 | 1       | 77 | 0.112  | 18    | (39.841            |
|          |         |     |       |       |         |    |        |       | (40.160            |
| 39       | 1       |     | 20    | 01.38 |         | 92 |        | 41    | .147               |
|          | 12      |     | 20    | 53.45 | 0.214   | 06 |        | 64    | .134               |
|          | 13      |     | 21    | 46.16 |         | 20 |        | 87    | .120               |
|          | 24      |     | 22    | 38.23 |         | 34 | 0.113  | 09    | .107               |
|          | 25      |     | 23    | 30.94 |         | 49 |        | 32    | .093               |
|          | 36      |     | 24    | 23.01 |         | 63 |        | 55    | .080               |
| 40       | 1       |     | 25    | 15.72 |         | 77 |        | 78    | .067               |
|          | 12      |     | 26    | 07.79 |         | 92 | 0.114  | 01    | .053               |
|          | 13      |     | 27    | 00.51 | 0.215   | 06 |        | 24    | .040               |
|          | 24      |     | 27    | 52.57 |         | 20 |        | 46    | .027               |
|          | 25      |     | 28    | 45.29 |         | 35 |        | 69    | .013               |
|          | 36      |     | 29    | 37.35 |         | 49 |        | 92    | 40.000             |
| 41       | 1       |     | 30    | 30.06 |         | 64 | 0.115  | 15    | 39.987             |
|          | 12      |     | 31    | 22.13 |         | 78 |        | 38    | .973               |
|          | 13      |     | 32    | 14.84 |         | 92 |        | 61    | .960               |
|          | 24      |     | 33    | 06.91 | 0.216   | 07 |        | 83    | .946               |
|          | 25      |     | 33    | 59.62 |         | 21 | 0.116  | 06    | .933               |
|          | 36      |     | 34    | 51.69 |         | 35 |        | 29    | .920               |
| 42       | 1       |     | 35    | 44.40 |         | 50 |        | 52    | .906               |
|          | 12      |     | 36    | 36.46 |         | 64 |        | 75    | .893               |
|          | 13      |     | 37    | 29.18 |         | 79 |        | 98    | .879               |
|          | 24      |     | 38    | 21.24 |         | 93 | 0.117  | 21    | .866               |
|          | 25      |     | 39    | 13.95 | 0.217   | 08 |        | 44    | .853               |
|          | 36      |     | 40    | 06.02 |         | 22 |        | 66    | (39.839            |
|          |         |     |       |       |         |    |        |       | (40.162            |

| Township | Section | Latitu | de L. | Log Sec | L. | Log Ta | in L. | Quarter<br>Section |
|----------|---------|--------|-------|---------|----|--------|-------|--------------------|
| 12       |         | • 1    | "     | 0.317   | 27 | 0.117  | 0.0   | chains             |
| 43       | 1       | 52 40  | 58.73 | 0.217   | 51 | 0.117  | 13    | 40.149             |
|          | 12      | 41     | 43 51 |         | 51 | 0.110  | 35    | 122                |
|          | 24      | 43     | 35 57 |         | 80 |        | 58    | 108                |
|          | 25      | 44     | 28.28 |         | 95 |        | 81    | .095               |
|          | 36      | 45     | 20.35 | 0.218   | 09 | 0.119  | 04    | .081               |
| 44       | 1       | 46     | 13.06 |         | 24 |        | 27    | .068               |
|          | 12      | 47     | 05.12 |         | 38 |        | 49    | .054               |
|          | 13      | 47     | 57.83 |         | 53 |        | 73    | .041               |
|          | 24      | 48     | 49.89 |         | 67 |        | 95    | .027               |
|          | 25      | 49     | 42.61 |         | 82 | 0.120  | 18    | .014               |
|          | 36      | 50     | 34.67 |         | 96 |        | 41    | 40.000             |
| 45       | 1       | 51     | 27.38 | 0.219   | 11 |        | 64    | 39.986             |
|          | 12      | 52     | 19.44 |         | 25 |        | 87    | .973               |
|          | 13      | 53     | 12.15 |         | 40 | 0.121  | 10    | .959               |
|          | 24      | 54     | 04.21 |         | 54 |        | 33    | .946               |
|          | 25      | 54     | 56.92 |         | 69 |        | 56    | .932               |
|          | 36      | 55     | 48.98 |         | 84 |        | 79    | .919               |
| 46       | 1       | 56     | 41.69 |         | 98 | 0.122  | 02    | .905               |
|          | 12      | 57     | 33.76 | 0.220   | 13 |        | 25    | .891               |
|          | 13      | 58     | 26.47 |         | 43 |        | 48    | .878               |
|          | 24      | 57     | 18.55 |         | 42 |        | 10    | -004               |
|          | 25      | 55 00  | 02 30 |         | 71 | 0.123  | 16    | (30.837            |
|          | 30      | 01     | 03.30 |         | 11 | 0.125  | 10    | (40.164            |
| 47       | ,       | 01     | 56.01 |         | 86 |        | 39    | .151               |
| 11       | 12      | 02     | 48.07 | 0.221   | 01 |        | 62    | .137               |
|          | 13      | 03     | 40.78 |         | 15 |        | 85    | .123               |
|          | 24      | 04     | 32.84 |         | 30 | 0.124  | 08    | .110               |
|          | 25      | 05     | 25.55 |         | 45 |        | 31    | .096               |
|          | 36      | 06     | 17.61 |         | 59 |        | 54    | .082               |
| 48       | 1       | 07     | 10.31 |         | 74 |        | 77    | .068               |
|          | 12      | 08     | 02.37 |         | 89 | 0.125  | 00    | .055               |
|          | 13      | 08     | 55.08 | 0.222   | 04 |        | 23    | .041               |
|          | 24      | 09     | 47.14 |         | 18 |        | 46    | .027               |
|          | 25      | 10     | 39,85 |         | 33 |        | 69    | .014               |
|          | 36      | 11     | 51.91 |         | 48 |        | 92    | 40.000             |

| Township | Section | Lat | itud | e L.  | Log Sec | L. | Log Ta | n L. | Quarter<br>Section |
|----------|---------|-----|------|-------|---------|----|--------|------|--------------------|
|          |         |     | 1    | н     |         |    |        |      | chains             |
| 49       | 1       | 53  | 12   | 24.62 | 0.222   | 63 | 0.126  | 15   | 39.986             |
| - /      | 12      |     | 13   | 16.67 |         | 77 |        | 38   | .973               |
|          | 13      |     | 14   | 09.38 |         | 92 |        | 61   | .959               |
|          | 24      |     | 15   | 01.44 | 0.223   | 07 |        | 84   | .945               |
|          | 25      |     | 15   | 54.15 |         | 22 | 0.127  | 07   | .931               |
|          | 36      |     | 16   | 46.21 |         | 36 |        | 30   | .918               |
| 50       | 1       |     | 17   | 38.91 |         | 51 |        | 53   | .904               |
|          | 12      |     | 18   | 30.97 |         | 66 |        | 76   | .890               |
|          | 13      |     | 19   | 23.68 |         | 81 |        | 99   | .876               |
|          | 24      |     | 20   | 15.74 |         | 96 | 0.128  | 22   | .863               |
|          | 25      |     | 21   | 08.44 | 0.224   | 10 |        | 45   | -849               |
|          | 36      |     | 22   | 00.50 |         | 25 |        | 68   | (39.835            |
|          |         |     |      |       |         |    |        |      | (40.166            |
| 51       | 1       |     | 22   | 53.21 |         | 40 | 1      | 91   | .153               |
|          | 12      |     | 23   | 45.26 | 1       | 55 | 0.129  | 14   | .139               |
|          | 13      | 1   | 24   | 37.97 | 1       | 70 |        | 37   | .125               |
|          | 24      |     | 25   | 30.03 |         | 85 |        | 60   | .111               |
|          | 25      | 1   | 26   | 22.73 | 0.225   | 00 |        | 83   | .097               |
|          | 36      |     | 27   | 14.79 |         | 14 | 0.130  | 06   | .083               |
| 52       | 1       |     | 28   | 07.50 |         | 29 |        | 30   | .069               |
|          | 12      |     | 28   | 59.55 | 1       | 44 |        | 53   | .055               |
|          | 13      |     | 29   | 52.26 |         | 59 |        | 76   | .042               |
|          | 24      |     | 30   | 44.31 |         | 74 |        | 99   | .028               |
|          | 25      |     | 31   | 37.02 |         | 89 | 0.131  | 22   | .014               |
|          | 36      |     | 32   | 29.07 | 0.226   | 04 |        | 45   | 40.000             |
| 53       | 1       |     | 33   | 21.78 |         | 19 |        | 68   | 39.986             |
|          | 12      |     | 34   | 13.83 |         | 34 |        | 91   | .972               |
|          | 13      |     | 35   | 06.54 |         | 49 | 0.132  | 14   | .958               |
|          | 24      |     | 35   | 58.59 |         | 63 |        | 37   | .944               |
|          | 25      | 1   | 36   | 51.30 |         | 79 | 1      | 60   | .930               |
|          | 36      |     | 37   | 43.35 |         | 93 |        | 83   | .917               |
| 54       | 1       |     | 38   | 36.06 | 0.227   | 08 | 0.133  | 07   | .903               |
|          | 12      |     | 39   | 28.11 |         | 23 |        | 30   | .889               |
|          | 13      |     | 40   | 20.82 |         | 38 |        | 53   | .875               |
|          | 24      |     | 41   | 12.87 |         | 53 |        | 76   | .861               |
|          | 25      |     | 42   | 05.58 |         | 68 |        | 99   | .847               |
|          | 36      |     | 42   | 57.63 |         | 83 | 0.134  | 22   | (39.833            |
|          |         | 1   |      |       |         |    |        |      | 1 (40.169          |

|          |         |          |            |       |         | _    |        |       |                    |
|----------|---------|----------|------------|-------|---------|------|--------|-------|--------------------|
| Township | Section | Lati     | tuc        | le L. | Log See | c L. | Log Ta | in L. | Quarter<br>Section |
|          |         | 0        | t          | 11    |         |      |        |       | chains             |
| 55       | 1       | 53       | 43         | 50.33 | 0.227   | 99   | 0.134  | 45    | 40.155             |
|          | 12      |          | 44         | 42.39 | 0.228   | 13   |        | 68    | .140               |
|          | 13      | ·        | 45         | 35.09 |         | 29   |        | 91    | .126               |
|          | 24      |          | 46         | 27.14 |         | 44   | 0.135  | 14    | .112               |
|          | 25      | -        | 47         | 19.85 |         | 59   |        | 38    | .098               |
|          | 36      | <u> </u> | 48         | 11.90 |         | 74   |        | 61    | .084               |
| 56       | 1       | 4        | 49         | 04.60 |         | 89   |        | 84    | .070               |
|          | 12      | 4        | <b>1</b> 9 | 56.65 | 0.229   | 04   | 0.136  | 07    | .056               |
|          | 13      | 1        | 50         | 49.36 |         | 19   |        | 30    | .042               |
|          | 24      | 5        | 51         | 41.41 |         | 34   |        | 53    | .028               |
|          | 25      |          | 52         | 34.11 |         | 49   |        | 77    | .014               |
|          | 36      |          | 53         | 26.17 |         | 64   | 0.137  | 00    | 40.000             |
| 57       | 1       | 5        | 54         | 18.87 |         | 79   |        | 23    | 39.986             |
|          | 12      | 5        | 55         | 10.92 |         | 95   |        | 46    | .972               |
|          | 13      | 5        | 56         | 03.62 | 0.230   | 10   |        | 69    | .958               |
|          | 24      | 5        | 6          | 55.67 |         | 25   |        | 92    | .944               |
|          | 25      | 5        | 57         | 48.37 |         | 40   | 0.138  | 16    | .930               |
|          | 36      | 5        | 8          | 40.43 |         | 55   |        | 39    | .915               |
| 58       | 1       | 5        | 9          | 33.13 |         | 70   |        | 62    | .901               |
|          | 12      | 54 0     | 00         | 25.18 |         | 85   |        | 85    | .887               |
|          | 13      | 0        | 1          | 17.88 | 0.231   | 01   | 0.139  | 08    | .873               |
|          | 24      | 0        | Z          | 09.93 |         | 16   |        | 31    | .859               |
|          | 25      | 0        | 13         | 02.63 |         | 31   |        | 55    | .845               |
|          | 36      | 0        | 3          | 54.68 |         | 46   |        | 78    | (39.831            |
|          |         |          |            |       |         |      |        |       | (40.171            |
| 59       | 1       | 0        | 4          | 47.38 |         | 62   | 0.140  | 01    | .157               |
|          | 12      | 0        | 5          | 39.43 |         | 77   |        | 24    | .142               |
|          | 13      | 0        | 6          | 32.13 |         | 92   |        | 48    | .128               |
|          | 24      | 0        | 7          | 24.18 | 0.232   | 07   |        | 71    | .114               |
|          | 25      | 0        | 8          | 16.88 |         | 23   |        | 94    | .100               |
|          | 30      | 0        | 9          | 08.93 |         | 38   | 0.141  | 17    | .085               |
| 60       | 1       | 1        | 0          | 01.63 |         | 53   |        | 41    | .071               |
|          | 12      | 1        | 0          | 53.68 |         | 68   |        | 64    | .057               |
|          | 13      | 1        | 1          | 46.38 |         | 84   |        | 87    | .043               |
|          | 24      | 1.       | 4          | 38.43 |         | 99   | 0.142  | 10    | .028               |
|          | 20      | 1.       | о .<br>А   | 22.10 | 0.233   | 14   |        | 34    | .014               |
|          | 30      | 1.       | *          | 63.18 |         | 29   |        | 51    | 40.000             |

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

| Latitude, | etc., | for the North | Boundary of | each Section. |
|-----------|-------|---------------|-------------|---------------|
|           |       | Third System  | of Survey.  |               |

| Township | Section | Latitu | de L. | Log Sec | cL. | Log Ta | an L. | Quarter<br>Section |
|----------|---------|--------|-------|---------|-----|--------|-------|--------------------|
|          |         | • 1    |       |         |     |        |       | chains             |
| 61       | 1       | 54 15  | 15.88 | 0.233   | 45  | 0.142  | 80    | 39.986             |
|          | 12      | 16     | 07.93 |         | 60  | 0.143  | 03    | .971               |
|          | 13      | 17     | 00.63 |         | 75  |        | 27    | .957               |
|          | 24      | 17     | 52.68 | }       | 91  |        | 50    | .943               |
|          | 25      | 18     | 45.38 | 0.234   | 06  |        | 73    | .929               |
|          | 36      | 19     | 37.42 |         | 21  |        | 96    | .914               |
| 62       | 1       | 20     | 30.12 |         | 37  | 0.144  | 20    | .900               |
|          | 12      | 21     | 22.17 |         | 52  |        | 43    | .886               |
|          | 13      | 22     | 14.87 |         | 68  | 1      | 66    | .872               |
|          | 24      | 23     | 06.92 |         | 83  |        | 89    | .857               |
|          | 25      | 23     | 59.62 |         | 98  | 0.145  | 13    | .843               |
|          | 36      | 24     | 51.66 | 0.235   | 14  |        | 36    | (39.829            |
|          |         |        |       |         |     |        |       | (40.173            |
| 63       | 1       | 25     | 44.36 | 1       | 29  |        | 59    | .159               |
|          | 12      | 26     | 36.41 |         | 45  |        | 83    | .144               |
|          | 13      | 27     | 29.10 |         | 60  | 0.146  | 06    | .130               |
|          | 24      | 28     | 21.15 |         | 75  |        | 29    | .115               |
|          | 25      | 29     | 13.85 |         | 91  |        | 53    | .101               |
|          | 36      | 30     | 05.90 | 0.236   | 06  | 3      | 76    | .086               |
| 64       | 1       | 30     | 58.59 |         | 22  |        | 99    | .072               |
|          | 12      | 31     | 50.64 |         | 37  | 0.147  | 22    | .058               |
|          | 13      | 32     | 43.34 |         | 53  |        | 46    | .043               |
|          | 24      | 33     | 35.38 |         | 68  |        | 69    | .029               |
|          | 25      | 34     | 28.08 |         | 84  |        | 93    | .014               |
|          | 36      | 35     | 20.12 |         | 99  | 0.148  | 16    | 40.000             |
| 65       | 1       | 36     | 12.82 | 0.237   | 15  |        | 39    | 39.986             |
|          | 12      | 37     | 04.87 |         | 30  |        | 63    | .971               |
|          | 13      | 51     | 57.56 |         | 46  |        | 86    | .957               |
|          | 24      | 38     | 49.61 |         | 61  | 0.149  | 09    | .942               |
|          | 25      | 39     | 44.30 |         | 0.2 |        | 55    | .928               |
|          | 30      | 40     | 34.35 |         | 92  |        | 56    | .913               |
| 66       | 1       | 41     | 27.04 | 0.238   | 08  |        | 80    | -899               |
|          | 12      | 42     | 19.09 |         | 24  | 0.150  | 03    | .884               |
|          | 13      | 43     | 11.78 |         | 39  |        | 26    | .870               |
|          | 24      | 44     | 03.83 |         | 55  |        | 50    | .856               |
|          | 25      | 44     | 56.52 |         | 10  |        | 73    | .841               |
|          | 36      | 45     | 48.57 |         | 86  |        | 96    | 39.827             |
|          |         |        |       |         |     |        | 1     | (40.175            |

| Fownship | Section | Lat | itud | eL.   | Log Sec | L. | Log Ta | n L. | Quarter<br>Section |
|----------|---------|-----|------|-------|---------|----|--------|------|--------------------|
|          |         | ۰   | ,    | "     |         |    |        |      | chains             |
| 67       | 1       | 54  | 46   | 41.26 | 0.239   | 02 | 0.151  | 20   | 40.161             |
|          | 12      |     | 47   | 33.31 |         | 17 |        | 43   | .146               |
|          | 13      |     | 48   | 26.00 |         | 33 |        | 67   | .131               |
|          | 24      |     | 49   | 18.04 |         | 49 |        | 90   | .117               |
|          | 25      |     | 50   | 10.74 |         | 64 | 0.152  | 14   | .102               |
|          | 36      |     | 51   | 02.78 |         | 80 |        | 31   | .088               |
| 68       | 1       |     | 51   | 55.48 |         | 96 |        | 60   | .073               |
|          | 12      |     | 52   | 47.52 | 0.240   | 11 |        | 84   | .058               |
|          | 13      |     | 53   | 40.21 |         | 27 | 0.153  | 07   | .044               |
|          | 24      |     | 54   | 32.26 |         | 43 |        | 31   | .029               |
|          | 25      |     | 55   | 24.95 |         | 58 |        | 54   | .015               |
|          | 36      |     | 56   | 16.99 |         | 74 |        | 77   | 40.000             |
| 69       | 1       |     | 57   | 09.69 |         | 90 | 0.154  | 01   | 39.985             |
|          | 12      |     | 58   | 01.73 | 0.241   | 05 |        | 24   | .971               |
|          | 13      |     | 58   | 54.42 |         | 21 |        | 48   | .956               |
|          | 24      |     | 59   | 46.46 |         | 37 |        | 71   | .941               |
|          | 25      | 55  | 00   | 39.16 |         | 53 |        | 95   | .927               |
|          | 36      |     | 01   | 31.20 |         | 68 | 0.155  | 18   | .912               |
| 70       | 1       |     | 02   | 23.89 |         | 84 |        | 42   | .898               |
|          | 12      |     | 03   | 15.93 | 0.242   | 00 |        | 65   | .883               |
|          | 13      |     | 04   | 08.62 |         | 16 |        | 89   | .868               |
|          | 24      |     | 05   | 00.67 |         | 31 | 0.156  | 12   | .854               |
|          | 25      |     | 05   | 53.36 |         | 47 |        | 36   | .839               |
|          | 36      |     | 06   | 45.40 |         | 63 |        | 59   | (39.824            |
|          |         |     |      |       |         |    |        |      | (40.177            |
| 71       | 1       |     | 07   | 38.09 |         | 79 |        | 83   | .163               |
|          | 12      |     | 08   | 30.13 |         | 95 | 0.157  | 06   | .148               |
|          | 13      |     | 09   | 22.82 | 0.243   | 11 |        | 30   | .133               |
|          | 24      |     | 10   | 14.86 |         | 26 |        | 53   | .118               |
|          | 25      |     | 11   | 07.56 |         | 42 |        | 77   | .104               |
|          | 36      |     | 11   | 59.60 |         | 58 | 0.158  | 00   | .089               |
| 72       | 1       |     | 12   | 52.29 |         | 74 |        | 24   | .074               |
|          | 12      |     | 13   | 44.33 |         | 90 |        | 47   | .059               |
|          | 13      |     | 14   | 37.02 | 0.244   | 06 |        | 71   | .044               |
|          | 24      |     | 15   | 29.06 |         | 22 |        | 94   | .030               |
|          | 25      |     | 16   | 21.75 |         | 38 | 0.159  | 18   | .015               |
|          | 36      |     | 17   | 13.79 |         | 53 |        | 41   | 40.000             |

| Township | Section | Latitu | de L. | Log Sec | L. | Log Ta | n L. | Quarter<br>Section |
|----------|---------|--------|-------|---------|----|--------|------|--------------------|
|          |         | 0 1    | *1    |         |    |        |      | chains             |
| 73       | 1       | 55 18  | 06.48 | 0.244   | 69 | 0.159  | 65   | 39.985             |
|          | 12      | 18     | 58.52 |         | 85 |        | 89   | .970               |
|          | 13      | 19     | 51.21 | 0.245   | 01 | 0.160  | 12   | .956               |
|          | 24      | 20     | 43.25 |         | 17 |        | 36   | .941               |
|          | 25      | 21     | 35.94 |         | 33 |        | 59   | .926               |
|          | 36      | 22     | 27.98 |         | 49 |        | 83   | .911               |
| 74       | 1       | 23     | 20.67 |         | 65 | 0.161  | 07   | .896               |
|          | 12      | 24     | 12.70 |         | 81 |        | 30   | .881               |
|          | 13      | 25     | 05.39 |         | 97 |        | 54   | .867               |
|          | 24      | 25     | 57.43 | 0.246   | 13 |        | 77   | .852               |
|          | 25      | 26     | 50.12 |         | 29 | 0.162  | 01   | .837               |
|          | 36      | 27     | 42.16 |         | 45 |        | 24   | (39.822            |
|          |         |        |       |         |    |        |      | (40.180            |
| 75       | 1       | 28     | 34.85 |         | 61 |        | 48   | .165               |
|          | 12      | 29     | 26.89 |         | 77 |        | 72   | .150               |
|          | 13      | 30     | 19.57 |         | 93 |        | 95   | .135               |
|          | 24      | 31     | 11.61 | 0.247   | 09 | 0.163  | 19   | .120               |
|          | 25      | 32     | 04.30 |         | 25 | 1      | 43   | .105               |
|          | 36      | 32     | 56.34 |         | 41 |        | 66   | .090               |
| 76       | 1       | 33     | 49.02 |         | 57 |        | 90   | .075               |
|          | 12      | 34     | 41.06 |         | 73 | 0.164  | 13   | .060               |
|          | 13      | 35     | 33.75 |         | 90 |        | 37   | .045               |
|          | 24      | 36     | 25.79 | 0.248   | 06 |        | 61   | .030               |
|          | 25      | 37     | 18.47 |         | 22 |        | 85   | .015               |
|          | 36      | 38     | 10.51 |         | 38 | 0.165  | 08   | 40.000             |
| 77       | 1       | 39     | 03.20 |         | 54 |        | 32   | 39.985             |
|          | 12      | 39     | 55.23 |         | 70 |        | 55   | .970               |
|          | 13      | 40     | 47.92 |         | 86 |        | 79   | .955               |
|          | 24      | 41     | 39.96 | 0.249   | 02 | 0.166  | 03   | .940               |
|          | 25      | 42     | 32.64 |         | 19 |        | 27   | .925               |
|          | 36      | 43     | 24.68 |         | 35 |        | 50   | .910               |
| 78       | 1       | 44     | 17.37 |         | 51 |        | 74   | .895               |
|          | 12      | 45     | 09.40 |         | 67 |        | 97   | .880               |
|          | 13      | 46     | 02.09 |         | 83 | 0.167  | 21   | .865               |
|          | 24      | 46     | 54.12 | 0.250   | 00 |        | 45   | .850               |
|          | 25      | 47     | 46.81 |         | 16 |        | 69   | .835               |
|          | 36      | 48     | 38.85 |         | 32 |        | 92   | (39.820            |
|          |         |        |       |         |    |        |      | (40.182            |

| Fownship | Section | Lat | ituo | le L. | Log Sec | : L. | Log Ta | n L. | Quarter<br>Section |
|----------|---------|-----|------|-------|---------|------|--------|------|--------------------|
|          |         |     |      |       |         |      |        |      | chains             |
| 79       | 1       | 55  | 49   | 31.53 | 0.250   | 48   | 0.168  | 16   | 40.167             |
|          | 12      |     | 50   | 23.57 |         | 64   |        | 40   | .152               |
|          | 13      |     | 51   | 16.25 |         | 81   |        | 64   | .137               |
|          | 24      |     | 52   | 08.29 |         | 97   |        | 87   | .122               |
|          | 25      |     | 53   | 00.97 | 0.251   | 13   | 0.169  | 11   | .106               |
|          | 36      |     | 53   | 53.01 |         | 30   |        | 35   | .091               |
| 80       | 1       |     | 54   | 45.69 |         | 46   |        | 59   | .076               |
|          | 12      |     | 55   | 37.72 | 1       | 62   |        | 82   | .061               |
|          | 13      |     | 56   | 30.41 |         | 79   | 0.170  | 06   | .046               |
|          | 24      |     | 57   | 22.44 |         | 95   |        | 30   | .030               |
|          | 25      |     | 58   | 15.13 | 0.252   | 11   |        | 54   | .015               |
|          | 36      |     | 59   | 07.16 |         | 27   |        | 77   | 40.000             |
| 81       | 1       |     | 59   | 59.84 |         | 44   | 0.171  | 01   | 39.985             |
|          | 12      | 56  | 00   | 51.88 |         | 60   |        | 25   | .970               |
|          | 13      |     | 01   | 44.56 |         | 77   |        | 49   | .954               |
|          | 24      |     | 02   | 36.60 |         | 93   |        | 72   | .939               |
|          | 25      |     | 03   | 29.28 | 0.253   | 09   |        | 96   | .924               |
|          | 36      |     | 04   | 21.31 |         | 26   | 0.172  | 20   | .909               |
| 82       | 1       |     | 05   | 14.00 |         | 42   |        | 44   | .893               |
|          | 12      |     | 06   | 06.03 |         | 58   |        | 68   | .878               |
|          | 13      |     | 06   | 58.71 |         | 75   |        | 92   | .863               |
|          | 24      |     | 07   | 50.74 |         | 91   | 0.173  | 15   | .848               |
|          | 25      |     | 08   | 43.43 | 0.254   | 08   |        | 39   | .833               |
|          | 36      |     | 09   | 35.46 |         | 24   |        | 63   | (39.817            |
|          |         |     |      |       |         |      |        |      | (40.185            |
| 83       | 1       |     | 10   | 28.14 |         | 41   |        | 87   | .169               |
|          | 12      |     | 11   | 20.17 |         | 57   | 0.174  | 11   | .154               |
|          | 13      |     | 12   | 12.86 |         | 74   |        | 35   | .138               |
|          | 24      |     | 13   | 04.89 |         | 90   |        | 58   | .123               |
|          | 25      |     | 13   | 57.57 | 0.255   | 06   |        | 82   | .108               |
|          | 36      |     | 14   | 49.60 |         | 23   | 0.175  | 06   | .092               |
| 84       | 1       |     | 15   | 42.28 |         | 39   |        | 30   | .077               |
|          | 12      |     | 16   | 34.31 |         | 56   |        | 54   | .062               |
|          | 13      |     | 17   | 27.00 |         | 72   |        | 78   | .046               |
|          | 24      |     | 18   | 19.03 |         | 89   | 0.176  | 01   | .031               |
|          | 25      |     | 19   | 11.71 | 0.256   | 06   |        | 26   | .015               |
|          | 36      |     | 20   | 03.74 |         | 22   |        | 49   | 40.000             |
|          | 1       |     |      |       |         |      |        |      |                    |

| Latitude, | etc., | for the | North  | Boundary  | of | each | Section. |
|-----------|-------|---------|--------|-----------|----|------|----------|
|           |       | Third S | System | of Survey |    |      |          |

| Township | Section | Latitu | de L. | Log Sec | L. | Log Tar | ıL. | Quarter<br>Section |
|----------|---------|--------|-------|---------|----|---------|-----|--------------------|
|          |         | • •    | 11    |         |    |         |     | chains             |
| 85       | 1       | 56 20  | 56.42 | 0.256   | 39 | 0.176   | 73  | 39.985             |
|          | 12      | 21     | 48.45 |         | 55 |         | 97  | .969               |
|          | 13      | 22     | 41.13 |         | 72 | 0.177   | 21  | .954               |
|          | 24      | 23     | 33.16 |         | 88 |         | 45  | .938               |
|          | 25      | 24     | 25.84 | 0.257   | 05 |         | 69  | .923               |
|          | 36      | 25     | 17.87 |         | 21 |         | 93  | .908               |
| 86       | 1       | 26     | 10.55 |         | 38 | 0.178   | 17  | .892               |
|          | 12      | 27     | 02.58 |         | 55 |         | 41  | .877               |
|          | 13      | 27     | 55.26 |         | 71 |         | 65  | .861               |
|          | 24      | 28     | 47.29 |         | 88 |         | 88  | .846               |
|          | 25      | 29     | 39.97 | 0.258   | 05 | 0.179   | 13  | .830               |
|          | 36      | 30     | 32.00 |         | 21 |         | 36  | (39.815            |
|          |         |        |       |         |    |         |     | (40.187            |
| 87       | 1       | 31     | 24.68 |         | 38 | 1       | 60  | .171               |
|          | 12      | 32     | 16.71 |         | 55 |         | 84  | .156               |
|          | 13      | 33     | 09.39 |         | 71 | 0.180   | 08  | .140               |
|          | 24      | 34     | 01.42 |         | 88 |         | 32  | .125               |
|          | 25      | 34     | 54.10 | 0.259   | 05 |         | 56  | .109               |
|          | 36      | 35     | 46.12 |         | 21 |         | 80  | .093               |
| 88       | 1       | 36     | 38.80 |         | 38 | 0.181   | 04  | .078               |
|          | 12      | 37     | 30.83 |         | 55 | 1       | 28  | .062               |
|          | 13      | 38     | 23.51 |         | 72 |         | 52  | .047               |
|          | 24      | 39     | 15.54 | 1       | 88 |         | 76  | .031               |
|          | 25      | 40     | 08.21 | 0.260   | 05 | 0.182   | 00  | .015               |
|          | 36      | 41     | 00.24 |         | 22 |         | 24  | 40.000             |
| 89       | 1       | 41     | 52.92 |         | 39 |         | 48  | 39.984             |
|          | 12      | 42     | 44.95 |         | 55 |         | 72  | .969               |
|          | 13      | 43     | 37.63 |         | 72 |         | 96  | .953               |
|          | 24      | 44     | 29.65 |         | 89 | 0.183   | 20  | .937               |
|          | 25      | 45     | 22.33 | 0.261   | 06 |         | 44  | .922               |
|          | 36      | 46     | 14.36 |         | 23 |         | 68  | .906               |
| 90       | 1       | 47     | 07.03 |         | 40 |         | 93  | .891               |
|          | 12      | 47     | 59.06 |         | 56 | 0.184   | 16  | .875               |
|          | 13      | 48     | 51.74 |         | 73 |         | 41  | .859               |
|          | 24      | 49     | 43.76 |         | 90 |         | 65  | .844               |
|          | 25      | 50     | 36.44 | 0.262   | 07 |         | 89  | .828               |
|          | 36      | 51     | 28.47 |         | 24 | 0.185   | 13  | (39.813            |
|          |         |        |       |         |    | 1       |     | (40.190            |

| Township | Section | La | tituc | le L. | Log Sec | L. | Log Tar | L. | Quarter<br>Section |
|----------|---------|----|-------|-------|---------|----|---------|----|--------------------|
|          |         | 0  | ,     | "     |         |    |         |    | chains             |
| 91       | 1       | 56 | 52    | 21.14 | 0.262   | 41 | 0.185   | 37 | 40.174             |
|          | 12      |    | 53    | 13.17 |         | 58 |         | 61 | .158               |
|          | 13      |    | 54    | 05.85 |         | 75 |         | 85 | .142               |
|          | 24      |    | 54    | 57.87 | 1       | 91 | 0.186   | 09 | .126               |
|          | 25      |    | 55    | 50.55 | 0.263   | 08 |         | 33 | .111               |
|          | 36      |    | 56    | 42.57 |         | 25 |         | 57 | .095               |
| 92       | 1       |    | 57    | 35.25 |         | 42 |         | 82 | .079               |
|          | 12      |    | 58    | 27.27 |         | 59 | 0.187   | 06 | .063               |
|          | 13      |    | 59    | 19.95 |         | 76 | 1       | 30 | .047               |
|          | 24      | 57 | 00    | 11.98 |         | 93 |         | 54 | .032               |
|          | 25      |    | 01    | 04.65 | 0.264   | 10 |         | 78 | .016               |
|          | 36      |    | 01    | 56.68 |         | 27 | 0.188   | 02 | 40.000             |
| 93       | 1       |    | 02    | 49.35 |         | 44 |         | 26 | 39.984             |
|          | 12      |    | 03    | 41.38 | ł       | 61 |         | 50 | .968               |
|          | 13      |    | 04    | 34.05 |         | 78 |         | 75 | .953               |
|          | 24      |    | 05    | 26.07 |         | 95 |         | 99 | .937               |
|          | 25      |    | 06    | 18.75 | 0.265   | 12 | 0.189   | 23 | .921               |
|          | 36      |    | 07    | 10.77 |         | 29 |         | 47 | .905               |
| 94       | · 1     |    | 08    | 03.45 |         | 46 |         | 71 | .889               |
|          | 12      |    | 08    | 55.47 |         | 63 |         | 95 | .873               |
|          | 13      |    | 09    | 48.14 |         | 80 | 0.190   | 20 | .858               |
|          | 24      |    | 10    | 40.17 |         | 97 |         | 44 | .842               |
|          | 25      |    | 11    | 32.84 | 0.266   | 15 |         | 68 | .826               |
|          | 36      |    | 12    | 24.87 |         | 32 |         | 92 | (39.810            |
|          |         |    |       |       |         |    |         |    | (40.192            |
| 95       | 1       |    | 13    | 17.54 | 1       | 49 | 0.191   | 17 | .176               |
|          | 12      |    | 14    | 09.56 |         | 66 |         | 41 | .160               |
|          | 13      |    | 15    | 02.24 |         | 83 |         | 65 | .144               |
|          | 24      |    | 15    | 54.26 | 0.267   | 00 |         | 89 | .128               |
|          | 25      |    | 16    | 46.93 |         | 17 | 0.192   | 13 | .112               |
|          | 36      |    | 17    | 38.95 |         | 34 |         | 38 | .096               |
| 96       | 1       |    | 18    | 31.63 |         | 52 |         | 62 | .080               |
|          | 12      |    | 19    | 23.65 |         | 69 |         | 86 | .064               |
|          | 13      |    | 20    | 16.32 |         | 86 | 0.193   | 10 | .048               |
|          | 24      |    | 21    | 08.34 | 0.268   | 03 |         | 35 | .032               |
|          | 25      |    | 22    | 01.02 |         | 20 |         | 59 | .016               |
|          | 36      |    | 22    | 53.04 |         | 38 |         | 83 | 40.000             |

| Township | Section | La | tituo | le L. | Log Sec | L. | Log Ta | in L. | Quarter<br>Section |
|----------|---------|----|-------|-------|---------|----|--------|-------|--------------------|
|          |         | •  | 1     | 11    |         |    |        |       | chains             |
| 97       | 1       | 57 | 23    | 45.71 | 0.268   | 55 | 0.194  | 07    | 39.984             |
|          | 12      |    | 24    | 37.73 |         | 72 |        | 32    | .968               |
|          | 13      | [  | 25    | 30.40 |         | 89 |        | 56    | .952               |
|          | 24      |    | 26    | 22.42 | 0.269   | 07 |        | 80    | .936               |
|          | 25      |    | 27    | 15.10 |         | 24 | 0.195  | 05    | .920               |
|          | 36      |    | 28    | 07.12 |         | 41 |        | 29    | .904               |
| 98       | 1       |    | 28    | 59.79 |         | 58 |        | 53    | .888               |
|          | 12      |    | 29    | 51.81 |         | 76 |        | 77    | .872               |
|          | 13      |    | 30    | 44.48 |         | 93 | 0.196  | 02    | .856               |
|          | 24      |    | 31    | 36.50 | 0.270   | 10 |        | 26    | .840               |
|          | 25      |    | 32    | 29.17 |         | 28 |        | 51    | .824               |
|          | 36      |    | 33    | 21.19 |         | 45 |        | 75    | (39.808            |
|          |         |    |       |       |         |    |        |       | (40.195            |
| 99       | 1       |    | 34    | 13.86 |         | 62 |        | 99    | .178               |
|          | 12      |    | 35    | 05.88 |         | 80 | 0.197  | 24    | .162               |
|          | 13      |    | 35    | 58.55 |         | 97 |        | 48    | .146               |
|          | 24      |    | 36    | 50.57 | 0.271   | 14 |        | 72    | .130               |
|          | 25      |    | 37    | 43.24 |         | 32 |        | 97    | .114               |
|          | 36      |    | 38    | 35.26 |         | 49 | 0.198  | 21    | .097               |
| 100      | 1       |    | 39    | 27.93 |         | 67 |        | 45    | .081               |
|          | 12      |    | 40    | 19.95 |         | 84 |        | 70    | .065               |
|          | 13      |    | 41    | 12.62 | 0.272   | 01 |        | 94    | .049               |
|          | 24      |    | 42    | 04.64 |         | 19 | 0.199  | 19    | .032               |
|          | 25      |    | 42    | 57.31 |         | 36 |        | 43    | .016               |
|          | 36      |    | 43    | 49.33 |         | 54 | 1      | 67    | 40.000             |
| 101      | 1       |    | 44    | 42.00 |         | 71 |        | 92    | 39.984             |
|          | 12      |    | 45    | 34.02 |         | 89 | 0.200  | 16    | .968               |
|          | 13      |    | 46    | 26.69 | 0.273   | 06 |        | 41    | .951               |
|          | 24      |    | 47    | 18.70 |         | 24 |        | 65    | .935               |
|          | 25      |    | 48    | 11.37 |         | 41 |        | 90    | .919               |
|          | 36      |    | 49    | 03.39 |         | 59 | 0.201  | 14    | .902               |
| 102      | 1       |    | 49    | 56.06 |         | 76 |        | 39    | .886               |
|          | 12      |    | 50    | 48.08 |         | 94 |        | 63    | .870               |
|          | 13      |    | 51    | 40.74 | 0.274   | 11 |        | 87    | .854               |
|          | 24      |    | 52    | 32.76 |         | 29 | 0.202  | 12    | .837               |
|          | 25      |    | 53    | 25.43 |         | 46 |        | 36    | .821               |
|          | 36      |    | 54    | 17.45 |         | 64 |        | 61    | 39.805             |
|          |         |    |       |       |         |    |        |       | (40.197            |

| Fownship | Section | La | titud | le L. | Log Sec | L. | Log Ta | nL. | Quarter<br>Section |
|----------|---------|----|-------|-------|---------|----|--------|-----|--------------------|
|          |         |    | ,     |       |         |    |        |     |                    |
| 103      | 1       | 57 | 55    | 10.12 | 0.274   | 82 | 0 202  | 85  | 40 181             |
| 105      | 12      | 5. | 56    | 02.13 | 0.0.1   | 99 | 0.203  | 10  | .165               |
|          | 13      |    | 56    | 54.80 | 0.275   | 17 |        | 34  | .148               |
|          | 24      |    | 57    | 46.82 |         | 34 |        | 59  | .132               |
|          | 25      |    | 58    | 39.48 |         | 52 |        | 83  | .115               |
|          | 36      |    | 59    | 31.50 |         | 69 | 0.204  | 08  | .099               |
| 104      | 1       | 58 | 00    | 24.17 |         | 87 |        | 32  | .082               |
|          | 12      |    | 01    | 16.18 | 0.276   | 05 |        | 57  | .066               |
|          | 13      |    | 02    | 08.85 |         | 23 |        | 81  | .049               |
|          | 24      |    | 03    | 00.87 |         | 40 | 0.205  | 06  | .033               |
|          | 25      |    | 03    | 53.53 |         | 58 |        | 31  | .017               |
|          | 36      |    | 04    | 45.55 |         | 75 |        | 55  | 40.000             |
| 105      | 1       |    | 05    | 38.22 |         | 93 |        | 80  | 39.984             |
|          | 12      |    | 06    | 30.23 | 0.277   | 11 | 0.206  | 04  | .967               |
|          | 13      |    | 07    | 22.90 |         | 29 |        | 29  | .951               |
|          | 24      |    | 08    | 14.91 |         | 46 |        | 53  | .934               |
|          | 25      |    | 09    | 07.58 |         | 64 |        | 78  | .918               |
|          | 36      |    | 09    | 59.59 |         | 82 | 0.207  | 02  | .901               |
| 106      | 1       |    | 10    | 52.26 | 0.278   | 00 |        | 27  | .885               |
|          | 12      |    | 11    | 44.27 |         | 17 |        | 52  | .868               |
|          | 13      |    | 12    | 36.94 |         | 35 |        | 76  | .852               |
|          | 24      |    | 13    | 28.95 |         | 53 | 0.208  | 01  | .835               |
|          | 25      |    | 14    | 21.62 |         | (1 |        | 26  | .819               |
|          | 30      |    | 15    | 13.63 |         | 88 |        | 50  | (40.200            |
| 107      | ,       |    | 16    | 06.30 | 0.279   | 06 |        | 75  | 183                |
| 107      | 12      |    | 16    | 58 31 | 0.217   | 24 |        | 99  | 167                |
|          | 13      |    | 17    | 50.98 |         | 42 | 0.209  | 2.4 | .150               |
|          | 2.4     |    | 18    | 42.99 |         | 60 | 0120 / | 49  | .133               |
|          | 25      |    | 19    | 35.66 |         | 78 |        | 73  | .117               |
|          | 36      |    | 20    | 27.67 |         | 95 |        | 98  | .100               |
| 108      | 1       |    | 21    | 20.33 | 0.280   | 13 | 0.210  | 23  | .083               |
|          | 12      |    | 22    | 12.35 |         | 31 |        | 47  | .067               |
|          | 13      |    | 23    | 05.01 |         | 49 |        | 72  | .050               |
|          | 24      |    | 23    | 57.02 |         | 67 |        | 97  | .033               |
|          | 25      |    | 24    | 49.69 |         | 85 | 0.211  | 22  | .017               |
|          | 36      |    | 25    | 41.70 | 0.281   | 03 |        | 46  | 40.000             |
|          |         |    |       |       |         |    |        |     |                    |

| Township | Section | Latit | ude L.   | Log Sec | : L. | Log Ta  | in L. | Quarter<br>Section |
|----------|---------|-------|----------|---------|------|---------|-------|--------------------|
|          |         | ٥     | , 11     |         |      |         |       | chains             |
| 109      | 1       | 58 2  | 6 34.36  | 0.281   | 21   | 0.211   | 71    | 39.983             |
|          | 12      | 2     | 7 26.38  |         | 39   |         | 95    | .967               |
|          | 13      | 2     | 8 19.04  |         | 57   | 0.212   | 20    | .950               |
|          | 24      | 2     | 9 11.05  |         | 75   |         | 45    | .933               |
|          | 25      | 3     | 0 03.72  |         | 93   |         | 70    | .916               |
|          | 36      | 3     | 0 55.73  | 0.282   | 11   |         | 94    | .900               |
| 110      | 1       | 3     | 1 48.39  |         | 29   | 0.213   | 19    | .883               |
|          | 12      | 3     | 2 40.40  |         | 47   |         | 44    | .866               |
|          | 13      | 3     | 3 33.06  |         | 65   |         | 69    | .850               |
|          | 24      | 3     | 4 25.08  |         | 83   |         | 93    | .833               |
|          | 25      | 3     | 5 17.74  | 0.283   | 01   | 0.214   | 18    | .816               |
|          | 36      | 3     | 6 09.75  |         | 19   |         | 43    | (39.800            |
|          |         |       |          |         |      |         |       | (40.203            |
| 111      | 1       | 3     | 7 02.41  |         | 37   | 1       | 68    | .186               |
|          | 12      | 3     | 7 54.42  |         | 55   |         | 93    | .169               |
|          | 13      | 3     | 8 47.08  |         | 73   | 1, 7.43 | 17    | .152               |
|          | 24      | 3     | 9 39.10  |         | 21   |         | 4.    | .135               |
|          | 25      | 4     | 0 31.76  | 0.28    | 40   | 17      | 67    | -1.7               |
|          | 36      | 4     | 1 23.77  |         | 59   | 1       | 92    | .101               |
| · 112    | 1       | 4     | 2 16.43  | 32      | 2ó   | 0.216   | 17    | .085               |
|          | 12      | 4     | 3 08.44  | 25      | 64   |         | 41    | .068               |
|          | 13      | 1 4   | 16 11.10 | 7.0     | 82   |         | 66    | .051               |
|          | 24      | 4     | 4 53.11  | 1.285   | 00   |         | 91    | .034               |
|          | 25      | 4     | 5 45.77  |         | 18   | 0.217   | 16    | .017               |
|          | 36      | 4     | 6 37.78  |         | 36   |         | 41    | 40.000             |
| 113      | 1       | 4     | 7 30.44  |         | 55   |         | 66    | 39.983             |
|          | 12      | 4     | 8 22.45  |         | 73   |         | 91    | .966               |
|          | 13      | 4     | 9 15.11  |         | 91   | 0.218   | 16    | .949               |
|          | 24      | 5     | 0 07.12  | 0.286   | 09   |         | 40    | .932               |
|          | 25      | 5     | 0 59.78  |         | 27   |         | 65    | .915               |
|          | 36      | 5     | 1 51.79  |         | 45   |         | 90    | .898               |
| 114      | 1       | 5     | 2 44.45  |         | 64   | 0.219   | 15    | .881               |
|          | 12      | 5     | 3 36.46  |         | 82   |         | 40    | .865               |
|          | 13      | 5     | 4 29.12  | 0.287   | 00   |         | 65    | .848               |
|          | 24      | 5     | 5 21.13  |         | 18   |         | 90    | .831               |
|          | 25      | 5     | 6 13.79  |         | 37   | 0.220   | 15    | .814               |
|          | 36      | 5     | 7 05.80  |         | 55   |         | 40    | (39.797            |
|          |         |       |          |         |      |         |       | (40.206            |

1

| Township | Section | La | titud | eL.   | Log Sec | L. | Log Ta | nL. | Quarter<br>Section |
|----------|---------|----|-------|-------|---------|----|--------|-----|--------------------|
|          |         |    | ,     | 11    |         |    |        |     | chains             |
| 115      | 1       | 58 | 57    | 58.45 | 0.287   | 73 | 0.220  | 65  | 40.189             |
|          | 12      |    | 58    | 50.46 |         | 92 |        | 89  | .171               |
|          | 13      |    | 59    | 43.12 | 0.288   | 10 | 0.221  | 15  | .154               |
|          | 24      | 59 | 00    | 35.13 |         | 28 |        | 39  | .137               |
|          | 25      |    | 01    | 27.79 |         | 47 |        | 65  | .120               |
|          | 36      |    | 02    | 19.80 |         | 65 | ļ      | 89  | .103               |
| 116      | 1       |    | 03    | 12.45 |         | 84 | 0.222  | 14  | .086               |
|          | 12      | ł  | 04    | 04.46 | 0.289   | 02 |        | 39  | .069               |
|          | 13      |    | 04    | 57.12 |         | 20 |        | 64  | .051               |
|          | 24      |    | 05    | 49.13 |         | 39 |        | 89  | .034               |
|          | 25      |    | 06    | 41.79 |         | 57 | 0.223  | 14  | .017               |
|          | 36      |    | 07    | 33.79 |         | 75 |        | 39  | 40.000             |
| 117      | 1       |    | 08    | 26.45 |         | 94 |        | 64  | 39.983             |
|          | 12      |    | 09    | 18.46 | 0.290   | 12 |        | 89  | .966               |
|          | 13      |    | 10    | 11.11 |         | 31 | 0.224  | 15  | .948               |
|          | ż       | 1  | 11    | 03.12 |         | 49 |        | 39  | .931               |
|          | 1       |    | 09    | 05.78 |         | 68 |        | 65  | .914               |
|          | 36      |    | 09    | 57.78 |         | 86 |        | 90  | .897               |
| 118      | 1       |    | 10    | 50.44 | 0.291   | 05 | 0.225  | 15  | .880               |
|          | 12      |    | 14    | 42.45 |         | 23 |        | 40  | .863               |
|          | 13      |    | 15    | 36.10 |         | 42 |        | 65  | .845               |
|          | 24      |    | 16    | 1811  |         | 63 | 1 9    | 90  | .828               |
|          | 25      |    | 17    | 09.11 | 1       | 79 | 0.440  | 1   | .811               |
|          | 36      |    | 18    | 01.77 |         | 97 |        | 40  | 39.794             |
|          |         |    |       |       | -       |    |        |     | (40.209            |
| 119      | 1       |    | 18    | 54.43 | 0.292   | 16 | 1      | 65  | .191               |
|          | 12      | 1  | 19    | 46.43 |         | 35 |        | 90  | .174               |
|          | 13      |    | 20    | 39.09 |         | 53 | 0.227  | 15  | .156               |
|          | 24      |    | 21    | 31.10 |         | 72 | 1      | 40  | .139               |
|          | 25      |    | 22    | 23.75 |         | 90 |        | 66  | .122               |
|          | 36      |    | 23    | 15.76 | 0.293   | 09 |        | 91  | .104               |
| 120      | 1       |    | 24    | 08.41 |         | 28 | 0.228  | 16  | .087               |
|          | 12      |    | 25    | 00.42 |         | 46 |        | 41  | .070               |
|          | 13      |    | 25    | 53.07 |         | 65 |        | 66  | .052               |
|          | 24      |    | 26    | 45.08 |         | 84 |        | 91  | .035               |
|          | 25      | 1  | 27    | 37.73 | 0.294   | 02 | 0.229  | 17  | .017               |
|          | 36      | 1  | 28    | 29.74 |         | 21 |        | 42  | 40.000             |

| Township | Section | Lat | titud | le L. | Log Sec | L. | Log Ta | n L. | Quarter<br>Section |
|----------|---------|-----|-------|-------|---------|----|--------|------|--------------------|
|          |         | •   | ١     | п     |         |    |        |      | chains             |
| 121      | 1       | 59  | 29    | 22.39 | 0.294   | 40 | 0.229  | 67   | 39.983             |
|          | 12      |     | 30    | 14.39 |         | 58 |        | 92   | .965               |
|          | 13      |     | 31    | 07.05 |         | 77 | 0.230  | 17   | .948               |
|          | 24      | l   | 31    | 59.05 |         | 96 |        | 43   | .930               |
|          | 25      |     | 32    | 51.71 | 0.295   | 15 |        | 68   | .913               |
|          | 36      |     | 33    | 43.71 |         | 33 | ]      | 93   | .896               |
| 122      | 1       | ĺ   | 34    | 36.36 |         | 52 | 0.231  | 18   | .878               |
|          | 12      |     | 35    | 28.37 |         | 71 | 1      | 43   | .861               |
|          | 13      |     | 36    | 21.02 |         | 90 |        | 69   | .843               |
|          | 24      |     | 37    | 13.02 | 0.296   | 08 |        | 94   | .826               |
|          | 25      |     | 38    | 05.68 |         | 27 | 0.232  | 19   | .808               |
|          | 36      |     | 38    | 57.68 |         | 46 |        | 44   | (39.791            |
|          |         |     |       |       |         |    |        |      | (40.212            |
| 123      | 1       |     | 39    | 50.33 |         | 65 |        | 70   | .194               |
|          | 12      |     | 40    | 42.34 |         | 84 |        | 95   | .176               |
|          | 13      |     | 41    | 34.99 | 0.297   | 02 | 0.233  | 20   | .159               |
|          | 24      |     | 42    | 26.99 |         | 21 |        | 46   | .141               |
|          | 25      |     | 43    | 19.65 |         | 40 |        | 71   | .123               |
|          | 36      |     | 44    | 11.65 |         | 59 | 1      | 96   | .106               |
| 124      | 1       |     | 45    | 04.30 |         | 78 | 0.234  | 22   | .088               |
|          | 12      |     | 45    | 56.30 |         | 97 |        | 47   | .071               |
|          | 13      |     | 46    | 48.96 | 0.298   | 16 |        | 72   | .053               |
|          | 24      |     | 47    | 40.96 |         | 35 |        | 97   | .035               |
|          | 25      |     | 48    | 33.61 |         | 54 | 0.235  | 23   | .018               |
|          | 36      |     | 49    | 25.61 |         | 72 |        | 48   | 40.000             |
| 125      | 1       |     | 50    | 18.26 |         | 92 |        | 74   | 39.982             |
|          | 12      |     | 51    | 10.26 | 0.299   | 10 | 1      | 99   | .965               |
|          | 13      |     | 52    | 02.91 |         | 29 | 0.236  | 24   | .947               |
|          | 24      |     | 52    | 54.92 |         | 48 |        | 50   | .929               |
|          | 25      |     | 53    | 47.57 |         | 67 |        | 75   | .912               |
|          | 36      |     | 54    | 39.57 |         | 86 | 0.237  | 00   | .894               |
| 126      | 1       |     | 55    | 32.22 | 0.300   | 05 |        | 26   | .876               |
|          | 12      |     | 56    | 24.22 |         | 24 |        | 51   | .859               |
|          | 13      |     | 57    | 16.87 |         | 44 |        | 77   | .841               |
|          | 24      |     | 58    | 08.87 |         | 63 | 0.238  | 02   | .824               |
|          | 25      |     | 59    | 01.52 |         | 82 |        | 28   | .806               |
|          | 36      |     | 59    | 53.52 | 0.301   | 01 |        | 53   | (39.78/            |
|          |         |     |       |       |         |    |        |      | 140.2.4            |

|          | T. Contraction of the second s |        | and the second se |         |     |        |       | the second se |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|--------|-------|-----------------------------------------------------------------------------------------------------------------|
| Township | Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Latitu | de L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Log Sec | cL. | Log Ta | in L. | Quarter<br>Section                                                                                              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |     |        |       | chains                                                                                                          |
| 127      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60 00  | 46.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.301   | 20  | 0.238  | 79    | 40.197                                                                                                          |
|          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01     | 38.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 39  | 0.239  | 04    | .179                                                                                                            |
|          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02     | 30.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 58  |        | 29    | .161                                                                                                            |
|          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 03     | 22.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 77  |        | 55    | .143                                                                                                            |
|          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 04     | 15.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 96  |        | 80    | .125                                                                                                            |
|          | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05     | 07.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.302   | 15  | 0.240  | 06    | .107                                                                                                            |
| 128      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06     | 00.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 35  |        | 31    | .089                                                                                                            |
|          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06     | 52.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 54  |        | 57    | .072                                                                                                            |
|          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07     | 44.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 73  |        | 82    | .054                                                                                                            |
|          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 08     | 36.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 92  | 0.241  | 08    | .036                                                                                                            |
|          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 09     | 29.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.303   | 11  |        | 33    | .018                                                                                                            |
|          | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10     | 21.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 30  |        | 59    | 40.000                                                                                                          |
| 129      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11     | 14.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 50  |        | 84    | 39.982                                                                                                          |
|          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12     | 06.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 69  | 0.242  | 10    | .964                                                                                                            |
|          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12     | 58.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 88  |        | 36    | .946                                                                                                            |
|          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13     | 50.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.304   | 07  |        | 61    | .928                                                                                                            |
|          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14     | 43.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 27  |        | 87    | .910                                                                                                            |
|          | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15     | 35.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 46  | 0.243  | 12    | .893                                                                                                            |
| 130      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16     | 28.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 65  |        | 38    | .875                                                                                                            |
|          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17     | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 84  |        | 63    | .857                                                                                                            |
|          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18     | 12.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.305   | 04  |        | 89    | .839                                                                                                            |
|          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19     | 04.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 23  | 0.244  | 14    | .821                                                                                                            |
|          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19     | 57.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 43  |        | 40    | .803                                                                                                            |
|          | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20     | 49.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 62  |        | 66    | (39.785                                                                                                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |     |        |       | (40.218                                                                                                         |
| 131      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21     | 41.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 81  |        | 91    | .199                                                                                                            |
|          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22     | 33.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.306   | 01  | 0.245  | 17    | .181                                                                                                            |
|          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23     | 26.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 20  |        | 43    | .163                                                                                                            |
|          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24     | 18.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 39  |        | 68    | .145                                                                                                            |
|          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25     | 11.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 59  |        | 94    | .127                                                                                                            |
|          | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26     | 03.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 78  | 0.246  | 20    | .109                                                                                                            |
| 132      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26     | 55.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 98  |        | 45    | .091                                                                                                            |
|          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27     | 47.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.307   | 17  |        | 71    | .073                                                                                                            |
|          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28     | 40.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 37  |        | 97    | .054                                                                                                            |
|          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29     | 32.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 56  | 0.247  | 22    | .036                                                                                                            |
|          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30     | 25.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 75  |        | 48    | .018                                                                                                            |
|          | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31     | 17.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 95  |        | 74    | 40.000                                                                                                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |     |        |       |                                                                                                                 |

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

| Latitude, | etc., | for the | North  | Boundary  | of | each | Section. |
|-----------|-------|---------|--------|-----------|----|------|----------|
|           |       | Third S | System | of Survey |    |      |          |

| Township | Section | Latitud | le L. | Log Sec | : L. | Log Ta | nL. | Quarter<br>Section |
|----------|---------|---------|-------|---------|------|--------|-----|--------------------|
|          |         |         |       |         |      |        |     | chains             |
| 133      | 1       | 60 32   | 09.80 | 0.308   | 14   | 0.248  | 00  | 39.982             |
|          | 12      | 33      | 01.80 |         | 34   |        | 25  | .964               |
|          | 13      | 33      | 54.44 |         | 53   |        | 51  | .946               |
|          | 24      | 34      | 46.44 |         | 73   | ļ      | 77  | .927               |
|          | 25      | 35      | 39.09 |         | 93   | 0.249  | 03  | .909               |
|          | 36      | 36      | 31.08 | 0.309   | 12   |        | 28  | .891               |
| 134      | 1       | 37      | 23.73 |         | 32   |        | 54  | .873               |
|          | 12      | 38      | 15.72 |         | 51   |        | 80  | .855               |
|          | 13      | 39      | 08.37 |         | 71   | 0.250  | 05  | .837               |
|          | 24      | 40      | 00.36 |         | 90   |        | 31  | .818               |
|          | 25      | 40      | 53.01 | 0.310   | 10   |        | 57  | .800               |
|          | 36      | 41      | 45.00 |         | 30   |        | 83  | (39.782            |
|          |         |         |       |         |      |        |     | (40.221            |
| 135      | 1       | 42      | 37.65 | 1       | 49   | 0.251  | 09  | .202               |
|          | 12      | 43      | 29.64 |         | 69   |        | 34  | .184               |
|          | 13      | 44      | 22.29 | 1       | 89   |        | 60  | .165               |
|          | 24      | 45      | 14.28 | 0.311   | 08   |        | 86  | .147               |
|          | 25      | 46      | 06.92 |         | 28   | 0.252  | 12  | .129               |
|          | 36      | 46      | 58.92 |         | 48   |        | 38  | .110               |
| 136      | 1       | 47      | 51.56 |         | 67   |        | 64  | .092               |
|          | 12      | 48      | 43.56 |         | 87   |        | 90  | .074               |
|          | 13      | 49      | 36.20 | 0.312   | 07   | 0.253  | 16  | .055               |
|          | 24      | 50      | 28.19 |         | 26   |        | 41  | .037               |
|          | 25      | 51      | 20.84 |         | 46   |        | 67  | .018               |
|          | 36      | 52      | 12.83 |         | 66   |        | 93  | 40.000             |
| 137      | 1       | 53      | 05.47 |         | 86   | 0.254  | 19  | 39.981             |
|          | 12      | 53      | 57.47 | 0.313   | 05   |        | 45  | .963               |
|          | 13      | 54      | 50.11 |         | 25   |        | 71  | .945               |
|          | 24      | 55      | 42.10 |         | 45   |        | 97  | .926               |
|          | 25      | 56      | 34.75 |         | 65   | 0.255  | 23  | .908               |
|          | 36      | 57      | 26.74 |         | 85   |        | 49  | 889                |
| 138      | 1       | 58      | 19.38 | 0.314   | 05   |        | 75  | .871               |
|          | 12      | 59      | 11.37 |         | 24   | 0.256  | 01  | .853               |
|          | 13      | 61 00   | 04.02 |         | 44   |        | 27  | .834               |
|          | 24      | 00      | 56.01 |         | 64   |        | 53  | .816               |
|          | 25      | 01      | 48.65 |         | 84   |        | 19  | .797               |
|          | 36      | 02      | 40.64 | 0.315   | 04   | 0.257  | 05  | 39.779             |
|          |         |         |       |         |      |        |     | 40.224             |

| Township | Section | Latitud | le L. | Log Sec | L. | Log Ta | n L. | Quarter<br>Section |
|----------|---------|---------|-------|---------|----|--------|------|--------------------|
|          |         | • 1     | u     |         |    |        |      | chains             |
| 139      | 1       | 61 03   | 33.28 | 0.315   | 24 | 0.257  | 31   | 40.205             |
|          | 12      | 04      | 25.28 |         | 44 |        | 57   | .187               |
|          | 13      | 05      | 17.92 |         | 64 |        | 83   | .168               |
|          | 24      | 06      | 09.91 |         | 84 | 0.258  | 09   | .149               |
|          | 25      | 07      | 02 55 | 0.316   | 04 |        | 35   | .131               |
|          | 36      | 07      | 54.54 |         | 24 |        | 61   | .112               |
| 140      | 1       | 08      | 47.18 |         | 44 |        | 87   | .093               |
|          | 12      | 09      | 39.17 | 1       | 64 | 0.259  | 13   | .075               |
|          | 13      | 10      | 31.81 |         | 84 |        | 39   | .056               |
|          | 24      | 11      | 23.81 | 0.317   | 04 |        | 65   | .037               |
|          | 25      | 12      | 16.45 |         | 24 |        | 91   | .019               |
|          | 36      | 13      | 08.44 |         | 44 | 0.260  | 17   | 40.000             |
| 141      | 1       | 14      | 01.08 |         | 64 |        | 44   | 39.981             |
|          | 12      | 14      | 53.07 |         | 84 |        | 69   | .963               |
|          | 13      | 15      | 45.71 | 0.318   | 04 |        | 96   | .944               |
|          | 24      | 16      | 37.70 |         | 24 | 0.261  | 22   | .925               |
|          | 25      | 17      | 30.34 |         | 44 |        | 48   | .906               |
|          | 36      | 18      | 22.33 |         | 64 |        | 74   | .888               |
| 142      | 1       | 19      | 14.97 |         | 85 | 0.262  | 00   | .869               |
|          | 12      | 20      | 06.96 | 0.319   | 05 |        | 26   | .851               |
|          | 13      | 20      | 59.60 |         | 25 |        | 53   | .832               |
|          | 24      | 21      | 51.59 |         | 45 |        | 79   | .813               |
|          | 25      | 22      | 44.23 |         | 65 | 0.263  | 05   | .794               |
|          | 36      | 23      | 36.22 |         | 85 |        | 31   | (39.776            |
|          |         |         |       |         |    |        |      | (40.227            |
| 143      | 1       | 24      | 28.85 | 0.320   | 06 |        | 57   | .208               |
|          | 12      | 25      | 20.84 |         | 26 |        | 84   | .189               |
|          | 13      | 26      | 13.48 |         | 46 | 0.264  | 10   | .170               |
|          | 24      | 27      | 05.47 |         | 66 |        | 36   | .151               |
|          | 25      | 27      | 58.11 |         | 86 |        | 62   | .133               |
|          | 36      | 28      | 50.10 | 0.321   | 07 |        | 88   | .114               |
| 144      | 1       | 29      | 42.74 |         | 27 | 0.265  | 15   | .095               |
|          | 12      | 30      | 34.73 |         | 47 |        | 41   | .076               |
|          | 13      | 31      | 27.36 |         | 68 |        | 67   | .057               |
|          | 24      | 32      | 19.35 |         | 88 |        | 94   | .038               |
|          | 25      | 33      | 11.99 | 0.322   | 08 | 0.266  | 20   | .019               |
|          | 36      | 34      | 03.98 |         | 28 |        | 46   | 40.000             |
|          |         |     | _     |       |         |    |        |     |                    |
|----------|---------|-----|-------|-------|---------|----|--------|-----|--------------------|
| Township | Section | Lat | titud | le L. | Log Sec | L. | Log Ta | nL. | Quarter<br>Section |
|          |         | 0   | ,     | 11    |         |    |        |     | choire             |
| 145      | 1       | 61  | 34    | 56.63 | 0.322   | 49 | 0.266  | 73  | 39.981             |
| 115      | 12      | 0.  | 35    | 48.61 | 0.522   | 69 | 0.200  | 99  | .962               |
|          | 13      |     | 36    | 41.25 |         | 90 | 0.267  | 25  | .943               |
|          | 24      |     | 37    | 33.24 | 0.323   | 10 |        | 51  | .924               |
|          | 25      |     | 38    | 25.88 |         | 30 |        | 78  | .905               |
|          | 36      |     | 39    | 17.86 |         | 51 | 0.268  | 04  | .886               |
| 146      | 1       |     | 40    | 10.50 |         | 71 |        | 31  | .867               |
|          | 12      |     | 41    | 02.49 |         | 92 | 1      | 57  | .848               |
|          | 13      |     | 41    | 55.12 | 0.324   | 12 |        | 83  | .829               |
|          | 24      |     | 42    | 47.11 |         | 33 | 0.269  | 10  | .810               |
|          | 25      |     | 43    | 39.75 |         | 53 |        | 36  | .791               |
|          | 36      |     | 44    | 31.73 |         | 73 |        | 62  | (39.772            |
|          |         |     |       |       |         |    |        |     | (40.230            |
| 147      | 1       |     | 45    | 24.37 |         | 94 |        | 89  | .211               |
|          | 12      |     | 46    | 16.36 | 0.325   | 14 | 0.270  | 15  | .192               |
|          | 13      |     | 47    | 08.99 |         | 35 |        | 42  | .173               |
|          | 24      |     | 48    | 00.98 |         | 56 | 1      | 68  | .154               |
|          | 25      |     | 48    | 53.62 |         | 76 |        | 95  | .134               |
|          | 36      |     | 49    | 45.60 |         | 97 | 0.271  | 21  | .115               |
| 148      | 1       |     | 50    | 38.24 | 0.326   | 17 |        | 48  | .096               |
|          | 12      |     | 51    | 30.22 |         | 38 |        | 74  | .077               |
|          | 13      |     | 52    | 22.86 |         | 59 | 0.272  | 01  | .058               |
|          | 24      |     | 53    | 14.84 |         | 79 |        | 27  | .038               |
|          | 25      |     | 54    | 07.48 | 0.327   | 00 |        | 54  | .019               |
|          | 36      |     | 54    | 59.46 |         | 20 |        | 80  | 40.000             |
| 149      | 1       |     | 55    | 52.10 |         | 41 | 0.273  | 07  | 39.981             |
|          | 12      |     | 56    | 44.08 |         | 62 |        | 33  | .962               |
|          | 13      |     | 57    | 36.72 |         | 82 |        | 60  | .942               |
|          | 24      |     | 58    | 28.70 | 0.328   | 03 |        | 86  | .923               |
|          | 25      |     | 59    | 21.34 |         | 24 | 0.274  | 13  | .904               |
|          | 36      | 62  | 00    | 13.32 |         | 44 |        | 39  | .885               |
| 150      | 1       |     | 01    | 05,96 |         | 65 |        | 66  | .865               |
|          | 12      |     | 01    | 57.94 |         | 86 |        | 92  | .846               |
|          | 13      |     | 02    | 50.58 | 0.329   | 07 | 0.275  | 19  | .827               |
|          | 24      |     | 03    | 42.56 |         | 27 |        | 46  | .808               |
|          | 25      |     | 04    | 35.19 |         | 48 |        | 72  | .788               |
|          | 36      |     | 05    | 27.18 |         | 69 |        | 99  | 39.769             |
|          |         |     |       |       |         |    |        |     | (40.234            |

| ſownship | Section | Latitud | eL.   | Log Sec | L. | Log Ta | n L. | Quarter<br>Section |
|----------|---------|---------|-------|---------|----|--------|------|--------------------|
|          |         | 0 1     | n     |         |    |        |      | chains             |
| 151      | 1       | 62 06   | 19.81 | 0.329   | 90 | 0.276  | 26   | 40.214             |
|          | 12      | 07      | 11.79 | 0.330   | 10 |        | 52   | .195               |
|          | 13      | 08      | 04.43 |         | 31 |        | 79   | .175               |
|          | 24      | 08      | 56.41 |         | 52 | 0.277  | 05   | .156               |
|          | 25      | 09      | 49.05 |         | 73 |        | 32   | .136               |
|          | 36      | 10      | 41.03 |         | 94 |        | 59   | .117               |
| 152      | 1       | 11      | 33.66 | 0.331   | 15 |        | 86   | .097               |
|          | 12      | 12      | 25.64 |         | 36 | 0.278  | 12   | .078               |
|          | 13      | 13      | 18.28 |         | 57 | 1      | 39   | .058               |
|          | 24      | 14      | 10.26 |         | 77 |        | 66   | .039               |
|          | 25      | 15      | 02.89 |         | 99 |        | 93   | .019               |
|          | 36      | 15      | 54.88 | 0.332   | 19 | 0.279  | 19   | 40.000             |
| 153      | 1       | 16      | 47.51 |         | 40 |        | 46   | 39.980             |
|          | 12      | 17      | 39.49 |         | 61 |        | 73   | .961               |
|          | 13      | 18      | 32.12 |         | 82 | 0.280  | 00   | .941               |
|          | 24      | 19      | 24.10 | 0.333   | 03 |        | 26   | .922               |
|          | 25      | 20      | 16.74 |         | 24 |        | 53   | .902               |
|          | 36      | 21      | 08.72 |         | 45 |        | 80   | .883               |
| 154      | 1       | 22      | 01.35 |         | 66 | 0.281  | 07   | .863               |
|          | 12      | 22      | 53.33 | 1       | 87 |        | 33   | .844               |
|          | 13      | 23      | 45.96 | 0.334   | 08 |        | 60   | .824               |
|          | 24      | 24      | 37.94 |         | Z9 |        | 87   | .805               |
|          | 25      | 25      | 30.58 |         | 51 | 0.282  | 14   | .765               |
|          | 36      | 26      | 22.56 |         | 12 |        | 41   | 40.237             |
| 155      | ,       | 27      | 15.10 |         | 03 |        | 68   | .218               |
| 155      | 12      | 20      | 07.17 | 0 325   | 14 |        | 94   | .198               |
|          | 12      | 20      | 50.90 | 0.555   | 35 | 0.283  | 21   | .178               |
|          | 24      | 20      | 51 78 |         | 56 |        | 48   | .158               |
|          | 25      | 30      | 44 41 |         | 77 |        | 75   | .138               |
|          | 36      | 31      | 36.39 |         | 98 | 0.284  | 02   | .119               |
| 154      | 1       | 22      | 29.02 | 0.336   | 20 |        | 29   | .099               |
| 100      | 12      | 32      | 21 00 | 0.550   | 41 |        | 56   | .079               |
|          | 13      | 33      | 13.63 |         | 62 |        | 83   | .059               |
|          | 24      | 25      | 05.61 |         | 83 | 0.285  | 10   | .040               |
|          | 25      | 35      | 58.24 | 0.337   | 05 |        | 37   | .020               |
|          | 36      | 36      | 50.22 |         | 26 |        | 64   | 40.000             |
|          |         |         |       |         |    |        |      |                    |

|          |         |     | _  |        |         |      |        |    |         |
|----------|---------|-----|----|--------|---------|------|--------|----|---------|
| Township | Section | Lat |    | Je T   | 1 6-    |      | Lee Te |    | Quarter |
| rownsmp  | Section | Lat |    | 16 12. | LOg Set | L L. | LOg 13 | ш. | Section |
|          |         | 0   | ,  | и      |         |      | _      |    | chains  |
| 157      | 1       | 62  | 37 | 42.85  | 0.337   | 47   | 0.285  | 91 | 39.980  |
|          | 12      |     | 38 | 34.83  |         | 68   | 0.286  | 17 | .960    |
|          | 13      |     | 39 | 27.46  |         | 90   |        | 45 | .941    |
|          | 24      |     | 40 | 19.44  | 0.338   | 11   |        | 71 | .921    |
|          | 25      |     | 41 | 12.07  |         | 32   |        | 99 | .901    |
|          | 36      |     | 42 | 04.05  |         | 54   | 0.287  | 25 | .881    |
| 158      | 1       |     | 42 | 56.68  |         | 75   |        | 53 | .861    |
|          | 12      |     | 43 | 48.66  |         | 96   |        | 80 | .842    |
|          | 13      |     | 44 | 41.28  | 0.339   | 18   | 0.288  | 07 | .822    |
|          | 24      |     | 45 | 33.26  |         | 39   |        | 34 | .802    |
|          | 25      |     | 46 | 25.89  |         | 61   |        | 61 | .782    |
|          | 36      |     | 47 | 17.87  |         | 82   |        | 88 | (39.762 |
|          |         |     |    |        |         |      |        |    | (40.241 |
| 159      | 1       |     | 48 | 10.50  | 0.340   | 03   | 0.289  | 15 | .221    |
|          | 12      |     | 49 | 02.48  |         | 25   |        | 42 | .201    |
|          | 13      |     | 49 | 55.11  |         | 46   |        | 69 | .181    |
|          | 24      |     | 50 | 47.08  |         | 68   |        | 96 | .161    |
|          | 25      |     | 51 | 39.71  |         | 89   | 0.290  | 23 | .141    |
|          | 36      |     | 52 | 31.69  | 0.341   | 11   |        | 50 | .120    |
| 160      | 1       |     | 53 | 24.32  |         | 32   |        | 78 | .100    |
|          | 12      |     | 54 | 16.29  |         | 54   | 0.291  | 05 | .080    |
|          | 13      |     | 55 | 08.92  |         | 75   |        | 32 | .060    |
|          | 24      |     | 56 | 00.90  |         | 97   |        | 59 | .040    |
|          | 25      |     | 56 | 53.53  | 0.342   | 18   |        | 86 | .020    |
|          | 36      |     | 57 | 45.50  |         | 40   | 0.292  | 13 | 40.000  |
| 161      | 1       |     | 58 | 38.13  |         | 62   |        | 41 | 39.980  |
|          | 12      |     | 59 | 30.11  |         | 83   |        | 68 | .960    |
|          | 13      | 63  | 00 | 22.74  | 0.343   | 05   |        | 95 | .940    |
|          | 24      |     | 01 | 14.71  |         | 26   | 0.293  | 22 | .920    |
|          | 25      |     | 02 | 07.34  |         | 48   |        | 50 | -899    |
|          | 36      |     | 02 | 59.32  |         | 70   |        | 77 | .879    |
| 162      | 1       |     | 03 | 51.94  |         | 91   | 0.294  | 04 | .859    |
|          | 12      | 1   | 04 | 43.92  | 0.344   | 13   |        | 31 | .839    |
|          | 13      |     | 05 | 36.54  |         | 35   |        | 59 | .819    |
|          | 24      |     | 06 | 28.52  |         | 56   |        | 86 | .799    |
|          | 25      | 1   | 07 | 21.15  |         | 78   | 0.295  | 13 | .779    |
|          | 36      | 1   | 08 | 13.12  | 0.345   | 00   |        | 41 | 39.759  |
|          |         |     |    |        |         |      |        |    | (40.245 |

| Township | Section | Latitud | e L.  | Log Sec | L. | Log Tan L. | Quarter<br>Section |
|----------|---------|---------|-------|---------|----|------------|--------------------|
|          |         | 0 1     | 11    |         |    |            | chains             |
| 163      | 1 1     | 63 09   | 05.75 | 0.345   | 22 | 0.295 68   | 40.224             |
| 105      | 12      | 09      | 57.72 |         | 43 | 95         | .204               |
|          | 13      | 10      | 50.35 |         | 65 | 0.296 23   | .183               |
|          | 24      | 11      | 42.32 |         | 87 | 50         | .163               |
|          | 25      | 12      | 34.95 | 0.346   | 09 | 77         | .143               |
|          | 36      | 13      | 26.93 |         | 30 | 0.297 05   | .122               |
| 164      | 1       | 14      | 19.55 |         | 52 | 32         | .102               |
|          | 12      | 15      | 11.53 |         | 74 | 59         | .082               |
|          | 13      | 16      | 04.15 |         | 96 | 87         | .061               |
|          | 24      | 16      | 56.13 | 0.347   | 18 | 0.298 14   | .041               |
|          | 25      | 17      | 48.75 |         | 40 | 42         | .020               |
|          | 36      | 18      | 40.72 |         | 62 | 69         | 40.000             |
| 165      | 1       | 19      | 33.35 |         | 84 | 97         | 39.980             |
|          | 12      | 20      | 25.32 | 0.348   | 05 | 0.299 24   | .959               |
|          | 13      | 21      | 17.95 |         | 27 | 52         | .939               |
|          | 24      | 22      | 09.92 |         | 49 | 79         | .918               |
|          | 25      | 23      | 02.55 |         | 71 | 0.300 07   | .898               |
|          | 36      | 23      | 54.52 |         | 93 | 34         | .878               |
| 166      | 1       | 24      | 47.14 | 0.349   | 15 | 62         | .857               |
|          | 12      | 25      | 39.12 |         | 37 | 89         | .837               |
|          | 13      | 26      | 31.74 |         | 59 | 0.301 17   | .816               |
|          | 24      | 27      | 23.71 |         | 81 | 44         | .796               |
|          | 25      | 28      | 16.34 | 0.350   | 03 | 72         | .775               |
|          | 36      | 29      | 08.31 |         | 25 | 99         | (39.755)           |
| 167      | 1       | 30      | 00.93 |         | 48 | 0.302 27   | .228               |
|          | 12      | 30      | 52.91 |         | 70 | 54         | .207               |
|          | 13      | 31      | 45.53 |         | 92 | 82         | .186               |
|          | 24      | 32      | 37.50 | 0.351   | 14 | 0.303 09   | .166               |
|          | 25      | 33      | 30.13 |         | 36 | 37         | .145               |
|          | 36      | 34      | 22.10 |         | 58 | 65         | .124               |
| 168      | 1       | 35      | 14.72 |         | 80 | 93         | .103               |
|          | 12      | 36      | 06.69 | 0.352   | 02 | 0.304 20   | .083               |
|          | 13      | 36      | 59.31 |         | 25 | 48         | .062               |
|          | 24      | 37      | 51.29 |         | 47 | 75         | .041               |
|          | 25      | 38      | 43.91 |         | 69 | 0.305 03   | .021               |
|          | 36      | 39      | 35.88 |         | 91 | 31         | 40.000             |

| Township | Section | Lat | ituc | le L. | Log Sec | L. | Log Ta | n L. | Quarter<br>Section |
|----------|---------|-----|------|-------|---------|----|--------|------|--------------------|
|          |         | 0   | ,    | 11    |         |    |        |      | chains             |
| 169      | 1       | 63  | 40   | 28.50 | 0.353   | 14 | 0.305  | 59   | 39.979             |
|          | 12      |     | 41   | 20.48 |         | 36 |        | 86   | .959               |
|          | 13      |     | 42   | 13.10 |         | 58 | 0.306  | 14   | .938               |
|          | 24      |     | 43   | 05.07 | 1       | 80 |        | 42   | .917               |
|          | 25      |     | 43   | 57.69 | 0.354   | 03 |        | 69   | .896               |
|          | 36      |     | 44   | 49.66 |         | 25 |        | 97   | .876               |
| 170      | 1       |     | 45   | 42.28 |         | 47 | 0.307  | 25   | .855               |
|          | 12      |     | 46   | 34.25 |         | 70 |        | 53   | .834               |
|          | 13      |     | 47   | 26.87 |         | 92 | 1      | 80   | .813               |
|          | 24      |     | 48   | 18.85 | 0.355   | 14 | 0.308  | 08   | .793               |
|          | 25      |     | 49   | 11.47 |         | 37 |        | 36   | .772               |
| •        | 36      |     | 50   | 03.44 |         | 59 |        | 64   | (39.751            |
|          |         |     |      |       |         |    | 1      |      | (40.252            |
| 171      | 1       |     | 50   | 56.06 |         | 82 |        | 92   | .231               |
|          | 12      |     | 51   | 48.03 | 0.356   | 04 | 0.309  | 19   | .210               |
|          | 13      |     | 52   | 40.65 |         | 27 |        | 47   | .189               |
|          | 24      |     | 53   | 32.62 |         | 49 |        | 75   | .168               |
|          | 25      |     | 54   | 25.24 |         | 72 | 0.310  | 03   | .147               |
|          | 36      |     | 55   | 17.21 |         | 94 |        | 31   | .126               |
| 172      | 1       |     | 56   | 09.83 | 0.357   | 17 |        | 59   | .105               |
|          | 12      |     | 57   | 01.80 |         | 39 |        | 87   | .084               |
|          | 13      |     | 57   | 54.42 |         | 62 | 0.311  | 15   | .063               |
|          | 24      | •   | 58   | 46.39 | 1       | 84 |        | 42   | .042               |
|          | 25      |     | 59   | 39.01 | 0.358   | 07 |        | 71   | .021               |
|          | 36      | 64  | 00   | 30.98 |         | 29 |        | 98   | 40.000             |
| 173      | 1       |     | 01   | 23.60 |         | 52 | 0.312  | 27   | 39.979             |
|          | 12      |     | 02   | 15.57 |         | 74 |        | 54   | .958               |
|          | 13      | ł   | 03   | 08.18 |         | 97 |        | 82   | .937               |
|          | • 24    |     | 04   | 00.15 | 0.359   | 20 | 0.313  | 10   | .916               |
|          | 25      |     | 04   | 52.77 |         | 42 |        | 38   | .895               |
|          | 36      |     | 05   | 44.74 |         | 65 |        | 66   | .874               |
| 174      | 1       |     | 06   | 37.36 |         | 88 |        | 94   | .853               |
|          | 12      |     | 07   | 29.33 | 0.360   | 10 | 0.314  | 22   | .832               |
|          | 13      |     | 08   | 21.95 |         | 33 |        | 51   | .811               |
|          | 24      |     | 09   | 13.92 |         | 56 |        | 78   | .790               |
|          | 25      |     | 10   | 06.53 |         | 79 | 0.315  | 07   | .768               |
|          | 36      |     | 10   | 58.50 | 0.361   | 01 |        | 35   | (39.747            |
|          |         |     |      |       |         |    |        |      | (40.256            |

| the second se |         |         |       | -       |    |        |       |                    |
|-----------------------------------------------------------------------------------------------------------------|---------|---------|-------|---------|----|--------|-------|--------------------|
| Township                                                                                                        | Section | Latitud | eL.   | Log Sec | L. | Log Ta | an L. | Quarter<br>Section |
|                                                                                                                 |         | • 1     |       |         |    |        |       | chains             |
| 175                                                                                                             | 1       | 64 11   | 51.12 | 0.361   | 24 | 0.315  | 63    | 40.235             |
|                                                                                                                 | 12      | 12      | 43.09 |         | 47 |        | 91    | .213               |
|                                                                                                                 | 13      | 13      | 35.70 |         | 70 | 0.316  | 19    | .192               |
|                                                                                                                 | 24      | 14      | 27.67 |         | 92 |        | 47    | .171               |
|                                                                                                                 | 25      | 15      | 20.29 | 0.362   | 15 |        | 75    | .149               |
|                                                                                                                 | 36      | 16      | 12.26 |         | 38 | 0.317  | 03    | .128               |
| 176                                                                                                             | 1       | 17      | 04.87 |         | 61 |        | 32    | .107               |
|                                                                                                                 | 12      | 17      | 56.84 |         | 84 |        | 60    | .085               |
|                                                                                                                 | 13      | 18      | 49.46 | 0.363   | 07 |        | 88    | .064               |
|                                                                                                                 | 24      | 19      | 41.43 |         | 30 | 0.318  | 16    | .043               |
|                                                                                                                 | 25      | 20      | 34.04 |         | 53 |        | 44    | .021               |
|                                                                                                                 | 36      | 21      | 26.01 |         | 75 |        | 72    | 40.000             |
| 177                                                                                                             | 1       | 22      | 18.63 |         | 98 | 0.319  | 01    | 39.979             |
|                                                                                                                 | 12      | 23      | 10.59 | 0.364   | 21 |        | 29    | .957               |
|                                                                                                                 | 13      | 24      | 03.21 |         | 44 |        | 57    | .936               |
|                                                                                                                 | 24      | 24      | 55.18 |         | 67 |        | 85    | .914               |
|                                                                                                                 | 25      | 25      | 47.79 |         | 90 | 0.320  | 14    | .893               |
|                                                                                                                 | 36      | 26      | 39.76 | 0.365   | 13 |        | 42    | .872               |
| 178                                                                                                             | 1       | 27      | 32.38 |         | 36 |        | 70    | .850               |
|                                                                                                                 | 12      | 28      | 24.34 |         | 59 |        | 99    | .829               |
|                                                                                                                 | 13      | 29      | 16.96 |         | 83 | 0.321  | 27    | .808               |
|                                                                                                                 | 24      | 30      | 08.92 | 0.366   | 06 |        | 55    | .786               |
|                                                                                                                 | 25      | 31      | 01.54 |         | 29 |        | 84    | .765               |
|                                                                                                                 | 36      | 31      | 53.50 |         | 52 | 0.322  | 12    | (39.743            |
|                                                                                                                 |         |         |       |         |    |        |       | (40.260            |
| 179                                                                                                             | 1       | 32      | 46.12 |         | 75 |        | 40    | .238               |
|                                                                                                                 | 12      | 33      | 38.09 |         | 98 |        | 69    | .217               |
|                                                                                                                 | 13      | 34      | 30.70 | 0.367   | 21 |        | 97    | .195               |
|                                                                                                                 | 24      | 35      | 22.67 |         | 44 | 0.323  | 25    | .173               |
|                                                                                                                 | 25      | 36      | 15.28 |         | 68 |        | 54    | .152               |
|                                                                                                                 | 36      | 37      | 07.25 |         | 91 |        | 82    | .130               |
| 180                                                                                                             | 1       | 37      | 59.86 | 0.368   | 14 | 0.324  | 11    | .108               |
|                                                                                                                 | 12      | 38      | 51.83 |         | 37 |        | 39    | .087               |
|                                                                                                                 | 13      | 39      | 44.44 |         | 60 |        | 68    | .065               |
|                                                                                                                 | 24      | 40      | 36.41 |         | 84 |        | 96    | .043               |
|                                                                                                                 | 25      | 41      | 29.02 | 0.369   | 07 | 0.325  | 25    | .022               |
|                                                                                                                 | 36      | 42      | 20.98 |         | 30 |        | 53    | 40.000             |

Latitude, etc., for the North Boundary of each Section. Third System of Survey.

| Latitude, | etc. i | for the North | Boundary of | each Section. |
|-----------|--------|---------------|-------------|---------------|
|           |        | Third System  | of Survey.  |               |

| and the local data and t |         | 1           |    |       |        |     | 1      |       |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|----|-------|--------|-----|--------|-------|--------------------|
| Township                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Section | Latitude L. |    |       | Log Se | cL. | Log Ta | an L. | Quarter<br>Section |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 0           | 1  | 17    |        |     |        |       | chains             |
| 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,       | 64          | 43 | 13.60 | 0 360  | 54  | 0.325  | 87    | 30 078             |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12      | 04          | 44 | 05.56 | 0.307  | 77  | 0.326  | 10    | 957                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13      |             | 44 | 58 18 | 0 370  | 00  | 0.520  | 30    | 935                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24      |             | 45 | 50.14 | 0.510  | 23  |        | 67    | 913                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25      |             | 46 | 42 75 |        | 47  |        | 96    | 891                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36      |             | 47 | 34.72 |        | 70  | 0.327  | 24    | .870               |
| 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |             | 48 | 27.33 |        | 94  |        | 53    | .848               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12      |             | 49 | 19.30 | 0.371  | 17  |        | 81    | .826               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13      |             | 50 | 11.91 |        | 41  | 0.328  | 10    | .805               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24      |             | 51 | 03.87 |        | 64  |        | 39    | .783               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25      |             | 51 | 56.49 |        | 88  |        | 67    | .761               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36      | }           | 52 | 48.45 | 0.372  | 11  |        | 96    | (39.739            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |             |    |       |        |     |        |       | (40.264            |
| 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |             | 53 | 41.06 |        | 34  | 0.329  | 25    | .242               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12      |             | 54 | 33.02 |        | 58  |        | 53    | .220               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13      |             | 55 | 25.64 |        | 82  |        | 82    | .198               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24      |             | 56 | 17.60 | 0.373  | 05  | 0.330  | 11    | .176               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25      |             | 57 | 10.21 |        | 29  |        | 39    | .154               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36      |             | 58 | 02.17 |        | 52  |        | 68    | .132               |
| 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |             | 58 | 54.79 |        | 76  |        | 97    | .110               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12      |             | 59 | 46.75 |        | 99  | 0.331  | 25    | .088               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13      | 65          | 00 | 39.36 | 0.374  | 23  |        | 54    | .066               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24      |             | 01 | 31.32 |        | 46  |        | 83    | .044               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25      |             | 02 | 23.94 |        | 70  | 0.332  | 12    | .022               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36      |             | 03 | 15.90 |        | 94  |        | 41    | 40.000             |
| 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |             | 04 | 08.51 | 0.375  | 18  |        | 69    | 39.978             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12      | 1           | 05 | 00.47 |        | 41  |        | 98    | .956               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13      | ł           | 05 | 53.08 |        | 65  | 0.333  | 27    | .934               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24      |             | 06 | 45.04 |        | 89  |        | 56    | .912               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25      |             | 07 | 37.66 | 0.376  | 12  |        | 85    | .890               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36      |             | 08 | 29.62 |        | 36  | 0.334  | 13    | .868               |
| 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |             | 09 | 22.23 |        | 60  |        | 43    | .846               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12      |             | 10 | 14.19 |        | 84  |        | 71    | .824               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13      |             | 11 | 06.80 | 0.377  | 08  | 0.335  | 00    | .801               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24      |             | 11 | 58.76 |        | 31  |        | 29    | .779               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25      |             | 12 | 51.37 |        | 55  |        | 58    | .757               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36      |             | 13 | 45.53 |        | 79  |        | 87    | 39.735             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |             |    |       |        |     |        |       | (40.269            |

| Fownship | Section | Lati | itud | eL.   | Log Sec | L. | Log Tai | ıL. | Quarter<br>Section |
|----------|---------|------|------|-------|---------|----|---------|-----|--------------------|
|          |         |      |      |       |         |    |         |     |                    |
|          |         | ۰    | 1    | 0     |         |    |         |     | chains             |
| 187      | 1       | 65   | 14   | 35.94 | 0.378   | 03 | 0.336   | 16  | 40.246             |
|          | 12      |      | 15   | 27.90 |         | 27 |         | 45  | .224               |
|          | 13      |      | 16   | 20.51 |         | 51 |         | 74  | .201               |
|          | 24      |      | 17   | 12.47 |         | 74 | 0.337   | 03  | .179               |
|          | 25      |      | 18   | 05.08 |         | 99 |         | 32  | .157               |
|          | 36      |      | 18   | 57.04 | 0.379   | 22 |         | 61  | .134               |
| 188      | 1       |      | 19   | 49.65 |         | 46 |         | 90  | .112               |
|          | 12      |      | 20   | 41.61 |         | 70 | 0.338   | 19  | .090               |
|          | 13      |      | 21   | 34.22 |         | 94 |         | 48  | .067               |
|          | 24      |      | 22   | 26.18 | 0.380   | 18 |         | 77  | .045               |
|          | 25      |      | 23   | 18.79 |         | 42 | 0.339   | 06  | .022               |
|          | 36      |      | 24   | 10.75 |         | 66 |         | 35  | 40.000             |
| 189      | 1       |      | 25   | 03.36 |         | 91 |         | 64  | 39.978             |
|          | 12      |      | 25   | 55.32 | 0.381   | 14 |         | 93  | .955               |
|          | 13      |      | 26   | 47.93 |         | 39 | 0.340   | 23  | .933               |
|          | 24      |      | 27   | 39.89 |         | 63 |         | 51  | .910               |
|          | 25      |      | 28   | 32.50 |         | 87 |         | 81  | .888               |
|          | 36      |      | 29   | 24.45 | 0.382   | 11 | 0.341   | 10  | .865               |
| 190      | 1       |      | 30   | 17.06 |         | 35 |         | 39  | .843               |
|          | 12      |      | 31   | 09.02 |         | 59 |         | 68  | .821               |
|          | 13      |      | 32   | 01.63 |         | 84 |         | 97  | .798               |
|          | 24      |      | 32   | 53.59 | 0.383   | 08 | 0.342   | 27  | .776               |
|          | 25      |      | 33   | 46.20 |         | 32 |         | 56  | . (53              |
|          | 36      |      | 34   | 38.16 |         | 56 |         | 85  | (39.731            |
|          |         |      |      |       |         |    |         |     | (40.275            |
| 191      | 1       |      | 35   | 30.76 |         | 80 | 0.343   | 14  | .250               |
|          | 12      |      | 36   | 22.72 | 0.384   | 05 |         | 43  | .227               |
|          | 13      |      | 37   | 15.33 |         | 29 |         | 73  | .205               |
|          | 24      |      | 38   | 07.29 |         | 53 | 0.344   | 02  | .182               |
|          | 25      |      | 38   | 59.89 |         | 78 |         | 32  | .159               |
|          | 36      |      | 39   | 51.85 | 0.385   | 02 |         | 61  | .136               |
| 192      | 1       |      | 40   | 44.46 |         | 26 |         | 90  | .114               |
|          | 12      |      | 41   | 36.42 |         | 51 | 0.345   | 19  | .091               |
|          | 13      |      | 42   | 29.02 |         | 75 |         | 49  | .068               |
|          | 24      |      | 43   | 20.98 |         | 99 |         | 78  | .045               |
|          | 25      |      | 44   | 13.59 | 0.386   | 24 | 0.346   | 08  | .023               |
|          | 36      |      | 45   | 05.55 |         | 48 |         | 37  | 40.000             |

| Township | Section | La | titud | le L. | Log Sec | L. | Log Ta | n L. | Quarter<br>Section |
|----------|---------|----|-------|-------|---------|----|--------|------|--------------------|
|          |         | -  |       |       |         |    |        |      | chains             |
| 193      | 1       | 65 | 45    | 58.15 | 0.386   | 73 | 0.346  | 66   | 39.977             |
|          | 12      |    | 46    | 50.11 |         | 97 |        | 96   | .954               |
|          | 13      |    | 47    | 42.71 | 0.387   | 22 | 0.347  | 25   | .932               |
|          | 24      |    | 48    | 34.67 |         | 46 |        | 54   | .909               |
|          | 25      |    | 49    | 27.28 |         | 71 |        | 84   | .886               |
|          | 36      |    | 50    | 19.23 |         | 95 | 0.348  | 13   | .863               |
| 194      | 1       |    | 51    | 11.84 | 0.388   | 20 |        | 43   | .841               |
|          | 12      |    | 52    | 03.80 |         | 44 |        | 72   | .818               |
|          | 13      |    | 52    | 56.40 |         | 69 | 0.349  | 02   | .795               |
|          | 24      |    | 53    | 48.36 |         | 93 |        | 31   | .772               |
|          | 25      |    | 54    | 40.96 | 0.389   | 18 |        | 61   | .749               |
|          | 36      |    | 55    | 32.92 |         | 43 |        | 91   | (39.727            |
|          |         |    |       |       |         |    |        |      | (40.277            |
| 195      | 1       |    | 56    | 25.53 |         | 67 | 0.350  | 20   | .254               |
|          | 12      |    | 57    | 17.48 |         | 92 |        | 50   | .231               |
|          | 13      |    | 58    | 10.09 | 0.390   | 17 |        | 79   | .208               |
|          | 24      |    | 59    | 02.04 |         | 41 | 0.351  | 09   | .185               |
|          | 25      |    | 59    | 54.65 |         | 66 |        | 39   | .162               |
|          | 36      | 66 | 00    | 46.60 |         | 91 | 1      | 68   | .139               |
| 196      | 1       |    | 01    | 39.21 | 0.391   | 16 |        | 98   | .116               |
|          | 12      |    | 02    | 31.16 |         | 40 | 0.352  | 27   | .092               |
|          | 13      |    | 03    | 23.77 |         | 65 |        | 57   | .069               |
|          | 24      |    | 04    | 15.72 |         | 90 |        | 87   | .046               |
|          | 25      |    | 05    | 08.33 | 0.392   | 15 | 0.353  | 17   | .023               |
|          | 36      |    | 06    | 00.28 |         | 39 | 1      | 46   | 40.000             |
| 197      | 1       |    | 06    | 52.88 |         | 64 |        | 76   | 39.977             |
|          | 12      |    | 07    | 44.84 |         | 89 | 0.354  | 06   | .954               |
|          | 13      |    | 08    | 37.44 | 0.393   | 14 |        | 36   | .931               |
|          | 24      | 1  | 09    | 29.40 |         | 39 |        | 65   | .907               |
|          | 25      |    | 10    | 22.00 |         | 64 |        | 95   | .884               |
|          | 36      | [  | 11    | 13.96 |         | 89 | 0.355  | 25   | .861               |
| 198      | 1       |    | 12    | 06.56 | 0.394   | 14 |        | 55   | .838               |
|          | 12      |    | 12    | 58.51 |         | 39 |        | 84   | .815               |
|          | 13      |    | 13    | 51.12 |         | 64 | 0.356  | 14   | .792               |
|          | 24      |    | 14    | 43.07 |         | 89 |        | 44   | .768               |
|          | 25      |    | 15    | 35.67 | 0.395   | 14 |        | 74   | .745               |
|          | 36      |    | 16    | 27.63 |         | 39 | 0.357  | 04   | (39.722            |
|          |         |    |       |       |         |    |        |      | 1 (40.282          |

|          |         |         | And a state of the local diversion of the loc |         |    |        |      |                    |
|----------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|--------|------|--------------------|
| ſownship | Section | Latitud | le L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Log Sec | L. | Log Ta | n L. | Quarter<br>Section |
|          |         | 0 1     | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |    |        |      | chains             |
| 199      | 1       | 66 17   | 20.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.395   | 64 | 0.357  | 34   | 40.259             |
|          | 12      | 18      | 12.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1       | 89 |        | 64   | .235               |
|          | 13      | 19      | 04.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.396   | 14 |        | 94   | .212               |
|          | 24      | 19      | 56.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 39 | 0.358  | 23   | .188               |
|          | 25      | 20      | 49.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 64 |        | 54   | ,165               |
|          | 36      | 21      | 41.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 89 |        | 83   | .141               |
| 200      | 1       | 22      | 33.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.397   | 15 | 0.359  | 13   | .118               |
|          | 12      | 23      | 25.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 40 |        | 43   | .094               |
|          | 13      | 24      | 18.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 65 |        | 73   | .070               |
|          | 24      | 25      | 10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 90 | 0.360  | 03   | .047               |
|          | 25      | 26      | 03.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.398   | 15 |        | 33   | .023               |
|          | 36      | 26      | 54.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 41 |        | 63   | 40.000             |
| 201      | 1       | 27      | 47.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 66 |        | 94   | 39.976             |
|          | 12      | 28      | 39.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 91 | 0.361  | 23   | .953               |
|          | 13      | 29      | 32.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.399   | 17 |        | 54   | .929               |
|          | 24      | 30      | 24.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 42 |        | 84   | .906               |
|          | 25      | 31      | 16.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 67 | 0.362  | 14   | .882               |
|          | 36      | 32      | 08.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 92 |        | 44   | .859               |
| 202      | 1       | 33      | 01.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.400   | 18 |        | 74   | .835               |
|          | 12      | 33      | 53.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 43 | 0.363  | 04   | .812               |
|          | 13      | 34      | 45.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 69 |        | 35   | .788               |
|          | 24      | 35      | 37.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 94 |        | 65   | .765               |
|          | 25      | 36      | 30.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.401   | 20 |        | 95   | .741               |
|          | 36      | 37      | 22.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 45 | 0.364  | 25   | (39.717            |
|          |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |    |        |      | (40.287            |
| 203      | 1       | 38      | 14.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 70 |        | 55   | .263               |
|          | 12      | 39      | 06.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 96 |        | 85   | .239               |
|          | 13      | 39      | 59.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.402   | 21 | 0.365  | 16   | .215               |
|          | 24      | 40      | 51.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 47 |        | 46   | .191               |
|          | 25      | 41      | 43.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 73 | 1      | 76   | .167               |
|          | 36      | 42      | 35.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 98 | 0.366  | 07   | .143               |
| 204      | 1       | 43      | 28.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.403   | 24 |        | 37   | .120               |
|          | 12      | 44      | 20.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 49 |        | 67   | .096               |
|          | 13      | 45      | 13.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 75 |        | 98   | .072               |
|          | 24      | 46      | 05.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.404   | 00 | 0.367  | 28   | .048               |
|          | 25      | 46      | 57.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 26 | 1      | 58   | .024               |
|          | 36      | 47      | 49.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 52 |        | 89   | 40.000             |
|          |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |    |        |      |                    |

# Latitude, etc., for the North Boundary of each Section. Third System of Survey.

=

| The second |         |    | _    |                |         | _  |        |       |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|------|----------------|---------|----|--------|-------|--------------------|
| Township                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Section | La | titu | de L.          | Log Sec | L. | Log Ta | an L. | Quarter<br>Section |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |    | 1    | 1 <sup>1</sup> |         |    |        |       | chains             |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       | 66 | 48   | 42.18          | 0.404   | 78 | 0.368  | 19    | 40.976             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12      |    | 49   | 34.13          | 0.405   | 03 |        | 49    | .952               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13      |    | 50   | 26.73          |         | 29 |        | 80    | .928               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24      |    | 51   | 18.68          |         | 55 | 0.369  | 10    | .904               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25      |    | 52   | 11.28          |         | 80 |        | 41    | .880               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36      |    | 53   | 03.23          | 0.406   | 06 |        | 71    | .856               |
| 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       |    | 53   | 55.82          |         | 32 | 0.370  | 02    | .832               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12      |    | 54   | 47.77          |         | 58 |        | 32    | .808               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13      |    | 55   | 40.37          |         | 84 |        | 63    | .785               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24      |    | 56   | 32.32          | 0.407   | 09 |        | 93    | .761               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25      |    | 57   | 24.92          |         | 35 | 0.371  | 24    | .737               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36      |    | 58   | 16.87          |         | 61 |        | 54    | (39.713            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |    |      |                |         |    |        |       | (40.292            |
| 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       |    | 59   | 09.47          |         | 87 |        | 85    | .267               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12      | 67 | 00   | 01.42          | 0.408   | 13 | 0.372  | 16    | .243               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13      |    | 00   | 54.01          |         | 39 |        | 46    | .219               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24      |    | 01   | 45.96          |         | 65 |        | 77    | .195               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25      |    | 02   | 38.56          |         | 91 | 0.373  | 08    | .170               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36      |    | 03   | 30.51          | 0.409   | 17 |        | 38    | .146               |
| 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       |    | 04   | 23.11          |         | 43 |        | 69    | .122               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12      |    | 05   | 15.05          | 1       | 69 | 0.374  | 00    | .097               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13      |    | 06   | 07.65          |         | 95 |        | 30    | .073               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24      |    | 06   | 59.60          | 0.410   | 21 |        | 61    | .049               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25      |    | 07   | 52.20          |         | 47 |        | 92    | .024               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36      |    | 08   | 44.14          |         | 73 | 0.375  | 22    | 40.000             |
| 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       |    | 09   | 36.74          |         | 99 |        | 53    | 39.976             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12      |    | 10   | 28.69          | 0.411   | 25 |        | 84    | .951               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13      |    | 11   | 21.28          |         | 52 | 0.376  | 15    | .927               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24      |    | 12   | 13.23          | 1       | 78 |        | 46    | .903               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25      |    | 13   | 05.83          | 0.412   | 04 |        | 77    | .878               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36      |    | 13   | 57.78          |         | 30 | 0.377  | 07    | .854               |
| 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       |    | 14   | 50.37          |         | 57 |        | 38    | .830               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12      |    | 15   | 42.32          |         | 83 |        | 69    | .805               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13      |    | 16   | 34.92          | 0.413   | 09 | 0.378  | 00    | .781               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24      |    | 17   | 26.86          |         | 35 |        | 31    | .757               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25      |    | 18   | 19.46          |         | 62 |        | 62    | .732               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36      |    | 19   | 11.40          |         | 88 |        | 93    | 39.708             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |    |      |                | 1       |    |        |       | (40.297            |

| Township | Section | Latitud | le L. | Log Sec | L.  | Log Ta | n L. | Quarter<br>Section |
|----------|---------|---------|-------|---------|-----|--------|------|--------------------|
|          |         | 0 1     | "     |         |     |        |      | chains             |
| 211      | 1       | 67 20   | 04.00 | 0.414   | 14  | 0.379  | 2.4  | 40.272             |
| 5        | 12      | 20      | 55.95 |         | 41  | 0.517  | 54   | .247               |
| 1        | 13      | 21      | 48.54 |         | 67  |        | 86   | .223               |
| 1        | 24      | 22      | 40.49 |         | 93  | 0.380  | 16   | 198                |
| I        | 25      | 23      | 33.08 | 0.415   | 20  | 0.500  | 48   | .173               |
| I        | 36      | 24      | 25.03 | 0       | 46  |        | 78   | .148               |
| 1        | 50      |         | 23103 |         | *0  |        |      |                    |
| 212      | 1       | 25      | 17.62 |         | 73  | 0.381  | 10   | .124               |
| I        | 12      | 26      | 09.57 |         | 99  |        | 40   | .099               |
| l        | 13      | 27      | 02.17 | 0.416   | 26  |        | 72   | .074               |
| I        | 24      | 27      | 54.11 |         | 52  | 0.382  | 03   | .049               |
|          | 25      | 28      | 46.71 |         | 79  |        | 34   | .025               |
|          | 36      | 29      | 38.65 | 0.417   | 05  |        | 65   | 40.000             |
|          |         |         |       |         |     |        |      |                    |
| 213      | 1       | 30      | 31.25 |         | 32  |        | 96   | 39.975             |
|          | 12      | 31      | 23.19 |         | 58  | 0.383  | 27   | .950               |
|          | 13      | 32      | 15.79 |         | 85  |        | 58   | .926               |
|          | 24      | 33      | 07.73 | 0.418   | 12  |        | 89   | .901               |
|          | 25      | 34      | 00.33 |         | 38  | 0.384  | 21   | .876               |
|          | 36      | 34      | 52.27 |         | 65  |        | 52   | .851               |
|          |         |         |       |         | ••• |        |      |                    |
| 214      | 1       | 35      | 44.86 | 1       | 92  | 1      | 83   | .827               |
|          | 12      | 36      | 36.81 | 0.419   | 18  | 0.385  | 14   | .802               |
|          | 13      | 37      | 29.40 |         | 45  | [      | 46   | .777               |
|          | 24      | 38      | 21.35 |         | 72  |        | 77   | .752               |
|          | 25      | 39      | 13.94 |         | 99  | 0.386  | 08   | .728               |
|          | 36      | 40      | 05.89 | 0.420   | 25  |        | 39   | (39.703            |
|          |         |         |       |         |     |        |      | 40.302             |
|          |         |         |       |         |     |        |      |                    |
| 215      | 1       | 40      | 58.48 |         | 52  |        | 71   | .277               |
|          | 12      | 41      | 50.42 |         | 79  | 0.387  | 02   | .252               |
|          | 13      | 42      | 43.02 | 0.421   | 06  |        | 34   | .226               |
|          | 24      | 43      | 34.96 |         | 33  |        | 65   | .201               |
|          | 25      | 44      | 27.55 |         | 60  |        | 96   | .176               |
|          | 36      | 45      | 19.50 |         | 86  | 0.388  | 28   | .151               |
|          |         |         |       |         |     |        |      |                    |
| 216      | 1       | 46      | 12.09 | 0.422   | 13  |        | 59   | .126               |
|          | 12      | 47      | 04.03 |         | 40  |        | 90   | .101               |
|          | 13      | 47      | 56.63 |         | 67  | 0.389  | 22   | .075               |
|          | 24      | 48      | 48.57 |         | 94  |        | 53   | .050               |
|          | 25      | 49      | 41.16 | 0.423   | 21  |        | 85   | .025               |
|          | 36      | 50      | 33.11 |         | 48  | 0.390  | 16   | 40.000             |

|          |         | _   | _     |       |         |    |        |      |                    |
|----------|---------|-----|-------|-------|---------|----|--------|------|--------------------|
| Township | Section | Lat | titud | le L. | Log Sec | L. | Log Ta | n L. | Quarter<br>Section |
|          |         |     |       |       |         |    |        |      |                    |
|          |         | •   |       | -     |         |    |        |      | chains             |
| 217      | 1       | 67  | 51    | 25.70 | 0.423   | 75 | 0.390  | 48   | 39.975             |
|          | 12      |     | 52    | 17.64 | 0.424   | 02 |        | 79   | .950               |
|          | 13      |     | 53    | 10.23 |         | 30 | 0.391  | 11   | .924               |
|          | 24      |     | 54    | 02.18 |         | 56 |        | 43   | .899               |
|          | 25      |     | 54    | 54.77 |         | 84 |        | 74   | .874               |
|          | 36      |     | 55    | 46.71 | 0.425   | 11 | 0.392  | 06   | .849               |
| 218      | 1       |     | 56    | 39.30 |         | 38 |        | 37   | .824               |
|          | 12      |     | 57    | 31.25 |         | 65 |        | 69   | .798               |
|          | 13      |     | 58    | 23.84 |         | 92 | 0.393  | 01   | .773               |
|          | 24      |     | 59    | 15.78 | 0.426   | 19 |        | 32   | .748               |
|          | 25      | 68  | 00    | 08.37 |         | 47 |        | 64   | .723               |
|          | 36      |     | 01    | 00.31 |         | 74 |        | 96   | (39.698            |
|          |         |     |       |       |         |    |        |      | (40.307            |
| 219      | 1       |     | 01    | 52.90 | 0.427   | 01 | 0.394  | 28   | .282               |
|          | 12      |     | 02    | 44.85 |         | 28 |        | 59   | .256               |
|          | 13      |     | 03    | 37.44 |         | 56 |        | 91   | .230               |
|          | 24      |     | 04    | 29.38 |         | 83 | 0.395  | 23   | .205               |
|          | 25      |     | 05    | 21.97 | 0.428   | 11 |        | 55   | .179               |
|          | 36      |     | 06    | 13.91 |         | 38 |        | 86   | .154               |
| 220      | 1       |     | 07    | 06.50 |         | 65 | 0.396  | 18   | .128               |
|          | 12      |     | 07    | 58.44 |         | 93 |        | 50   | .102               |
|          | 13      |     | 08    | 51.03 | 0.429   | 20 |        | 82   | .077               |
|          | 24      |     | 09    | 42.97 |         | 48 | 0.397  | 13   | .051               |
|          | 25      |     | 10    | 35.56 |         | 75 |        | 46   | .026               |
|          | 36      |     | 11    | 27.51 | 0.430   | 02 |        | 77   | 40.000             |
| 221      | 1       |     | 12    | 20.10 |         | 30 | 0.398  | 09   | 39.974             |
|          | 12      |     | 13    | 12.04 |         | 58 |        | 41   | .949               |
|          | 13      |     | 14    | 04.63 |         | 85 |        | 73   | .923               |
|          | 24      |     | 14    | 56.57 | 0.431   | 13 | 0.399  | 05   | .897               |
|          | 25      |     | 15    | 49.16 |         | 40 |        | 37   | .872               |
|          | 36      |     | 16    | 41.10 | -       | 68 |        | 69   | .846               |
| 222      | 1       |     | 17    | 33.69 |         | 96 | 0.400  | 01   | .821               |
|          | 12      |     | 18    | 25.63 | 0.432   | 23 |        | 33   | .795               |
|          | 13      |     | 19    | 18.22 |         | 51 |        | 65   | .769               |
|          | 24      |     | 20    | 10.16 |         | 78 |        | 97   | .744               |
|          | 25      |     | 21    | 02.74 | 0.433   | 06 | 0.401  | 29   | ./18               |
|          | 36      |     | 21    | 54.69 |         | 54 |        | 61   | 39.692             |
|          |         |     |       |       |         |    |        |      | (*±0.313           |

| ſownship | Section | Latitud | eL.   | Log Sec | L. | Log Ta | n L. | Quarter<br>Section |
|----------|---------|---------|-------|---------|----|--------|------|--------------------|
|          |         | 0 1     | п     |         |    |        |      | chains             |
| 223      | 1       | 68 22   | 47.27 | 0.433   | 62 | 0 401  | 94   | 40 287             |
|          | 12      | 23      | 39.21 | 0.135   | 89 | 0.402  | 26   | 261                |
|          | 13      | 24      | 31.80 | 0.434   | 17 |        | 58   | .235               |
|          | 24      | 25      | 23.74 |         | 45 |        | 90   | .209               |
|          | 25      | 26      | 16.33 |         | 73 | 0.403  | 22   | .182               |
|          | 36      | 27      | 08.27 | 0.435   | 01 |        | 54   | .156               |
| 224      | 1       | 28      | 00.86 |         | 29 |        | 87   | .130               |
|          | 12      | 28      | 52.80 |         | 57 | 0.404  | 19   | .104               |
|          | 13      | 29      | 45.39 |         | 85 |        | 51   | .078               |
|          | 24      | 30      | 37.32 | 0.436   | 12 |        | 83   | .052               |
|          | 25      | 31      | 29.91 |         | 41 | 0.405  | 16   | .026               |
|          | 36      | 32      | 21.85 |         | 68 |        | 48   | 40.000             |
| 225      | 1       | 33      | 14.44 |         | 97 |        | 80   | 39.974             |
|          | 12      | 34      | 06.38 | 0.437   | 24 | 0.406  | 13   | .948               |
|          | 13      | 34      | 58.97 |         | 53 | 1      | 45   | .922               |
|          | 24      | 35      | 50.90 |         | 80 |        | 77   | .896               |
|          | 25      | 36      | 43.49 | 0.438   | 09 | 0.407  | 10   | .869               |
|          | 36      | 37      | 35.43 |         | 37 |        | 42   | .843               |
| 226      | 1       | 38      | 28.02 |         | 65 |        | 75   | .817               |
|          | 12      | 39      | 19.95 |         | 93 | 0.408  | 07   | .791               |
|          | 13      | 40      | 12.54 | 0.439   | 21 |        | 40   | .765               |
|          | 24      | 41      | 04.48 |         | 49 | 0.400  | 72   | .739               |
|          | 36      | 41      | 10.00 | 0 440   | 18 | 0.409  | 05   | .713               |
|          | 50      | 42      | 49.00 | 0.440   | 00 |        | 51   | 39.687             |
|          |         |         |       |         |    |        | 1    | (40.318            |
| 227      | 1       | 43      | 41.59 |         | 34 |        | 70   | .292               |
|          | 12      | 44      | 33.53 |         | 62 | 0.410  | 02   | .265               |
|          | 13      | 45      | 26.11 |         | 91 |        | 35   | .239               |
|          | 24      | 46      | 18.05 | 0.441   | 19 |        | 67   | .212               |
|          | 25      | 47      | 10.64 |         | 47 | 0.411  | 00   | .186               |
|          | 36      | 48      | 02.58 |         | 76 |        | 32   | .159               |
| 228      | 1       | 48      | 55.16 | 0.442   | 04 |        | 65   | .133               |
| 1        | 12      | 49      | 47.10 |         | 32 |        | 98   | .106               |
| 1        | 13      | 50      | 39.68 |         | 61 | 0.412  | 31   | .080               |
|          | 24      | 51      | 31.62 |         | 89 |        | 63   | .053               |
|          | 25      | 52      | 24.21 | 0.443   | 18 | 0.415  | 96   | .026               |
|          | 36      | 53      | 16.14 |         | 46 | 0.413  | 29   | 40.000             |

| -        |         |     |       |       |         |    |        |     | and the second second second |
|----------|---------|-----|-------|-------|---------|----|--------|-----|------------------------------|
| Township | Section | La  | titud | le L. | Log Sec | L. | Log Ta | nL. | Quarter<br>Section           |
| •        |         |     | ,     | 11    | 1       |    |        |     |                              |
| 229      |         | 6.8 | 5.4   | 08 73 | 0 443   | 75 | 0.413  | 62  | 20 073                       |
| 22)      | 12      | 00  | 55    | 00.67 | 0.444   | 03 | 0.415  | 94  | 947                          |
|          | 13      |     | 55    | 53.25 | 0.111   | 32 | 0.414  | 27  | .920                         |
|          | 24      | [   | 56    | 45.19 |         | 60 |        | 60  | .894                         |
|          | 25      |     | 57    | 37.77 |         | 89 |        | 93  | .867                         |
|          | 36      |     | 58    | 29.71 | 0.445   | 18 | 0.415  | 25  | .841                         |
| 230      | 1       |     | 59    | 22.29 |         | 46 |        | 59  | .814                         |
|          | 12      | 69  | 00    | 14.23 |         | 75 |        | 91  | .787                         |
|          | 13      |     | 01    | 06.81 | 0.446   | 04 | 0.416  | 24  | .761                         |
|          | 24      |     | 01    | 58.75 |         | 32 |        | 57  | .734                         |
|          | 25      |     | 02    | 51.33 |         | 61 |        | 90  | .708                         |
|          | 36      |     | 03    | 43.27 |         | 90 | 0.417  | 23  | (39.681                      |
|          |         |     |       |       |         |    |        |     | (40.324                      |
| 231      | 1       |     | 04    | 35.85 | 0.447   | 19 |        | 56  | .297                         |
|          | 12      |     | 05    | 27.79 |         | 47 |        | 89  | .270                         |
|          | 13      |     | 06    | 20.37 |         | 76 | 0.418  | 22  | .243                         |
|          | 24      |     | 07    | 12.31 | 0.448   | 05 |        | 55  | .216                         |
|          | 25      |     | 08    | 04.89 |         | 34 |        | 88  | .189                         |
|          | 36      |     | 08    | 56.83 |         | 63 | 0.419  | 21  | .162                         |
| 2.32     | 1       |     | 09    | 49.41 |         | 92 |        | 54  | .135                         |
|          | 12      |     | 10    | 41.35 | 0.449   | 21 |        | 87  | .108                         |
|          | 13      |     | 11    | 33.93 |         | 50 | 0.420  | 21  | .081                         |
|          | 24      |     | 12    | 25.86 |         | 78 |        | 54  | .054                         |
|          | 25      |     | 13    | 18.45 | 0.450   | 08 |        | 87  | .027                         |
|          | 36      |     | 14    | 10.38 |         | 36 | 0.421  | 20  | 40.000                       |
| 233      | 1       |     | 15    | 02.97 |         | 66 |        | 53  | 39.973                       |
|          | 12      |     | 15    | 54.90 |         | 95 | 10     | 86  | .946                         |
|          | 13      |     | 16    | 47.48 | 0.451   | 24 | 0.422  | 20  | .919                         |
|          | 24      |     | 17    | 39.42 |         | 53 |        | 53  | .892                         |
|          | 25      |     | 18    | 32.00 |         | 82 | 1      | 86  | .865                         |
|          | 36      |     | 19    | 23.93 | 0.452   | 11 | 0.423  | 19  | .838                         |
| 234      | 1       |     | 20    | 16.52 |         | 40 |        | 53  | .811                         |
|          | 12      |     | 21    | 08.45 |         | 69 |        | 86  | .784                         |
|          | 13      |     | 22    | 01.03 |         | 99 | 0.424  | 20  | .756                         |
|          | 24      |     | 22    | 52.97 | 0.453   | 28 |        | 53  | .729                         |
|          | 25      |     | 23    | 45.55 |         | 57 | 0.475  | 86  | .702                         |
|          | 36      |     | 24    | 37.48 |         | 86 | 0.425  | 20  | 39.675                       |
|          |         |     |       |       |         |    |        |     | (40.330                      |

| Township | Section | Lat | itu | de L. | Log See | c L. | Log T | an L. | Quarter<br>Section |
|----------|---------|-----|-----|-------|---------|------|-------|-------|--------------------|
|          |         | 0   | 1   |       |         |      |       |       |                    |
| 235      | 1       | 69  | 25  | 30.07 | 0 454   | 16   | 0.425 | 5.2   | do 202             |
|          | 12      |     | 26  | 22.00 | 0.131   | 45   | 0.125 | 86    | 275                |
|          | 13      |     | 27  | 14.58 |         | 74   | 0.426 | 20    | .248               |
|          | 24      |     | 28  | 06.51 | 0.455   | 04   | 1     | 53    | .220               |
|          | 25      |     | 28  | 59.10 |         | 33   |       | 87    | .193               |
|          | 36      |     | 29  | 51.03 |         | 62   | 0.427 | 20    | .165               |
| 236      | 1       |     | 30  | 43.61 |         | 92   |       | 54    | .138               |
|          | 12      |     | 31  | 35.54 | 0.456   | 21   |       | 88    | .110               |
|          | 13      |     | 32  | 28.13 |         | 51   | 0.428 | 21    | .083               |
|          | 24      |     | 33  | 20.06 |         | 80   |       | 55    | .055               |
|          | 25      |     | 34  | 12.64 | 0.457   | 10   |       | 89    | .027               |
|          | 36      |     | 35  | 04.57 |         | 39   | 0.429 | 22    | 40.000             |
| 237      | 1       |     | 35  | 57.15 |         | 69   |       | 56    | 39.972             |
|          | 12      |     | 36  | 49.08 |         | 99   |       | 89    | .945               |
|          | 13      |     | 37  | 41.67 | 0.458   | 28   | 0.430 | 23    | .917               |
|          | 24      |     | 38  | 33.60 |         | 58   |       | 57    | .890               |
|          | 25      |     | 39  | 26.18 |         | 88   |       | 91    | .862               |
|          | 36      |     | 40  | 18.11 | 0.459   | 17   | 0.431 | 24    | .835               |
| 238      | 1       |     | 41  | 10.69 |         | 47   |       | 58    | .807               |
|          | 12      |     | 42  | 02.62 |         | 77   |       | 92    | .780               |
|          | 13      |     | 42  | 55.20 | 0.460   | 07   | 0.432 | 26    | .752               |
|          | 24      |     | 43  | 47.13 |         | 36   |       | 60    | .724               |
|          | 25      |     | 44  | 39.72 |         | 66   |       | 94    | .697               |
|          | 36      |     | 45  | 31.65 |         | 96   | 0.433 | 27    | (39.669            |
|          |         |     |     |       |         |      |       |       | (40.337            |
| 239      | 1       |     | 46  | 24.23 | 0.461   | 26   |       | 61    | .309               |
|          | 12      |     | 47  | 16.16 |         | 55   |       | 95    | .280               |
|          | 13      |     | 48  | 08.74 |         | 86   | 0.434 | 29    | .252               |
|          | 24      |     | 49  | 00.67 | 0.462   | 15   |       | 63    | .224               |
|          | 25      |     | 49  | 55.25 |         | 45   | 0 435 | 97    | .196               |
|          | 30      |     | 50  | 45.18 |         | 15   | 0.435 | 31    | .168               |
| 240      | 1       | 1   | 51  | 37.76 | 0.463   | 05   |       | 65    | .140               |
|          | 12      | 1   | 52  | 29.69 |         | 35   |       | 99    | .112               |
|          | 13      | 1   | 53  | 22.27 |         | 65   | 0.436 | 33    | .084               |
| 1        | 24      | 1   | 54  | 14.20 |         | 95   |       | 67    | .056               |
|          | 25      | 1   | 55  | 06.78 | 0.464   | 26   | 0.437 | 02    | .028               |
|          | 36      | 1   | 55  | 58.71 |         | 55   |       | 36    | 40.000             |

# TABLE X - Concluded

| Township | Section | La | titu | de L. | Log Sec | L. | Log Ta | in L. | Quarter<br>Section |
|----------|---------|----|------|-------|---------|----|--------|-------|--------------------|
|          |         | 0  | ,    | 17    |         |    |        |       | chains             |
| 241      | 1       | 69 | 56   | 51.29 | 0.464   | 86 | 0.437  | 70    | 39.972             |
|          | 12      |    | 57   | 43.22 | 0.465   | 16 | 0.438  | 04    | .944               |
|          | 13      |    | 58   | 35.80 |         | 46 |        | 38    | .916               |
|          | 24      | ł  | 59   | 27.73 |         | 76 |        | 72    | .888               |
|          | 25      | 70 | 00   | 20.31 | 0.466   | 07 | 0.439  | 07    | .860               |
|          | 36      |    | 01   | 12.24 |         | 37 |        | 41    | .832               |
| 242      | 1       |    | 02   | 04.81 | -       | 67 |        | 75    | .803               |
|          | 12      |    | 02   | 56.74 |         | 97 | 0.440  | 09    | .775               |
|          | 13      |    | 03   | 49.32 | 0.467   | 28 |        | 44    | .747               |
|          | 24      |    | 04   | 41.25 |         | 58 |        | 78    | .719               |
|          | 25      |    | 05   | 33.83 |         | 88 | 0.441  | 13    | .691               |
|          | 36      | 1  | 06   | 25.76 | 0.468   | 19 |        | 47    | (39.663            |
|          |         |    |      |       |         |    | -      |       | (40.343            |
| 243      | 1       |    | 07   | 18.34 |         | 49 |        | 81    | .314               |
|          | 12      |    | 08   | 10.27 |         | 80 | 0.442  | 16    | .286               |
|          | 13      |    | 09   | 02.84 | 0.469   | 10 |        | 50    | .257               |
|          | 24      |    | 09   | 54.77 |         | 40 |        | 84    | .229               |
|          | 25      |    | 10   | 47.35 |         | 71 | 0.443  | 19    | .200               |
|          | 36      |    | 11   | 39.28 | 0.470   | 02 |        | 53    | .172               |
| 244      | 1       |    | 12   | 31.86 |         | 32 |        | 88    | .143               |
|          | 12      |    | 13   | 23.78 |         | 63 | 0.444  | 22    | .114               |
|          | 13      |    | 14   | 16.36 |         | 93 |        | 57    | .086               |
|          | 24      |    | 15   | 08.29 | 0.471   | 24 |        | 92    | .057               |
|          | 25      |    | 16   | 00.87 |         | 55 | 0.445  | 26    | .029               |
|          | 36      |    | 16   | 52.80 |         | 85 |        | 61    | 40.000             |

#### TABLE XI

|                       |                       |                     |                          |                      |                          | A                    |
|-----------------------|-----------------------|---------------------|--------------------------|----------------------|--------------------------|----------------------|
| Number of             | dL<br>for<br>1/2 Sec. | dL<br>for<br>1 Sec. | dL<br>for<br>1 1/2 Secs. | dL<br>for<br>2 Secs. | dL<br>for<br>2 1/2 Secs. | dL<br>for<br>3 Secs. |
| Line                  | Corner                | Corner              | Corner                   | Corner               | Corner                   | Corner               |
| lst Base              | 0.02<br>lks.          | 0.04<br>lks.        | 0.05<br>lks.             | 0.06<br>lks.         | 0.07<br>lks.             | 0.07<br>lks.         |
| do                    | 3.2                   | 5.9                 | 7.9                      | 9.4                  | 10.3                     | 10.6                 |
| llth Base             | 0.02                  | 0.04<br>1ks         | 0.06                     | 0.07                 | 0.08                     | 0.08                 |
| do                    | 3.7                   | 6.7                 | 9.0                      | 10.6                 | 11.6                     | 12.0                 |
| 21st Base             | 0.03<br>lks.          | 0.05<br>lks.        | 0.07<br>1ks.             | 0.08<br>lks.         | 0.09<br>lks.             | 0.09<br>lks.         |
| do                    | 4.2                   | 7.6                 | 10.2                     | 12.1                 | 13.2                     | 13.6                 |
| 31st Base             | 0.03<br>lks.          | 0.06<br>lks.        | 0.08<br>lks.             | 0.09<br>1ks.         | 0.10<br>lks.             | 0.10<br>lks.         |
| do<br>41st Base<br>do | 4.8<br>0.04<br>lks.   | 8.7<br>0.06<br>1ks. | 0.09<br>lks.             | 0.10<br>lks.         | 0.11<br>lks.             | 0.12<br>lks.         |
| 51st Base             | 0.04<br>lks.          | 0.08<br>1ks.        | 0.10<br>lks.             | 0.12<br>lks.         | 0.13<br>lks.             | 0.14<br>lks.         |
| do                    | 6.4                   | 11.7                | 15.8                     | 18.7                 | 20.5                     | 21.1                 |
| 61st Base             | 0.05<br>lks.          | 0.09<br>lks.        | 0.12<br>lks.             | 0.14<br>lks.         | 0.16<br>lks.             | 0.16<br>lks.         |
| do                    | 7.7                   | 14.0                | 18.9                     | 22.4                 | 24.5                     | 25.2                 |

Showing the difference of Latitude between Township Corners and Section and Quarter Section Posts on a Township Chord.

# TABLE XII

| Log Tan | Log T   | Log Tan | Log T   | Log Tan | Log T   |
|---------|---------|---------|---------|---------|---------|
|         |         | 8.49305 |         | 8.64361 |         |
|         | 5.31442 |         | 5.31428 |         | 5.31414 |
| 7.92263 |         | .50802  |         | .65116  |         |
|         | 41      | 63300   | 27      | (5040   | 13      |
| 8.07156 | 40      | .52200  | 34      | .65849  | 12      |
| 15024   | 40      | 62614   | 20      | 66562   | 16      |
| .15924  | 30      | .53510  | 25      | .00502  | 11      |
| .22142  | 3/      | .54753  |         | .67253  |         |
|         | 38      |         | 24      |         | 10      |
| .26973  |         | .55938  |         | .67921  |         |
|         | 37      |         | 23      |         | 09      |
| .30930  |         | .57046  |         | .68570  |         |
|         | 36      |         | 22      | (       | 08      |
| .34270  | 25      | .58099  |         | .69201  | 07      |
| 271/7   | 35      | 50105   | 21      | 60814   | 07      |
| .3/16/  | 3.4     | .59105  | 20      | .07014  | 06      |
| 39713   | 74      | .60073  | 20      | .70410  | 00      |
| .3/113  | 33      |         | 19      |         | 05      |
| .41999  |         | .61009  |         | .70991  |         |
|         | 32      | 1       | 18      |         | 04      |
| .44072  |         | .61872  |         | .71555  |         |
|         | 31      |         | 17      |         | 03      |
| .45955  |         | .62745  |         | .72104  | 0.2     |
| 47/07   | 30      | (25/7   | 16      | 726.20  | 02      |
| .4/697  | 20      | .63567  | 15      | .12039  | 01      |
|         | 29      |         | 15      |         | 01      |

# For Converting Logarithmic Tangents of Small Arcs into Logarithms of Seconds of Arc

# TABLE XIII

$$Log \frac{1}{1-m}$$

m positive that is, when t lies between  $0^h$  and  $6^h$ , or  $18^h$  and  $24^h$ .

|       | And the second se |     |     |     |     |     |     |     |     | the second se |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----------------------------------------------------------------------------------------------------------------|
| Log m | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9                                                                                                               |
| 5.    | 0.00 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 001 | 001 | 001 | 001 | 001 | 002 | 002 | 003 | 003                                                                                                             |
| 6.0   | 004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 004 | 005 | 005 | 005 | 005 | 005 | 005 | 005 | 005                                                                                                             |
| 1     | 006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 006 | 006 | 006 | 006 | 006 | 006 | 006 | 007 | 007                                                                                                             |
| 2     | 007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 007 | 007 | 007 | 008 | 008 | 008 | 008 | 008 | 009                                                                                                             |
| 3     | 009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 009 | 009 | 009 | 010 | 010 | 010 | 010 | 010 | 011                                                                                                             |
| 4     | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 011 | 011 | 012 | 012 | 012 | 013 | 013 | 013 | 013                                                                                                             |
| 5     | 014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 014 | 014 | 015 | 015 | 015 | 016 | 016 | 017 | 017                                                                                                             |
| 6     | 017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 018 | 018 | 019 | 019 | 019 | 020 | 020 | 021 | 021                                                                                                             |
| 7     | 022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 022 | 023 | 023 | 024 | 024 | 025 | 026 | 026 | 027                                                                                                             |
| 8     | 027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 028 | 029 | 029 | 030 | 031 | 032 | 032 | 033 | 034                                                                                                             |
| 9     | 035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 035 | 036 | 037 | 038 | 039 | 040 | 041 | 042 | 043                                                                                                             |
| 7.0   | 044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 045 | 046 | 047 | 048 | 049 | 050 | 051 | 052 | 054                                                                                                             |
| 1     | 055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 056 | 057 | 059 | 060 | 061 | 063 | 064 | 066 | 067                                                                                                             |
| 2     | 069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 071 | 072 | 074 | 076 | 077 | 079 | 081 | 083 | 085                                                                                                             |
| 3     | 087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 089 | 091 | 093 | 095 | 097 | 100 | 102 | 104 | 107                                                                                                             |
| 4     | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112 | 114 | 117 | 120 | 123 | 125 | 128 | 131 | 134                                                                                                             |
| 5     | 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 141 | 144 | 147 | 151 | 154 | 158 | 162 | 165 | 169                                                                                                             |
| 6     | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 177 | 181 | 186 | 190 | 194 | 199 | 204 | 208 | 213                                                                                                             |
| 7     | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 223 | 229 | 234 | 239 | 245 | 251 | 257 | 263 | 269                                                                                                             |
| 8     | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 281 | 288 | 295 | 302 | 309 | 316 | 323 | 331 | 338                                                                                                             |
| 9     | 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 355 | 363 | 371 | 380 | 389 | 398 | 407 | 417 | 427                                                                                                             |
| 8.00  | 437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446                                                                                                             |
| 01    | 447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 448 | 449 | 450 | 451 | 452 | 453 | 454 | 455 | 456                                                                                                             |
| 02    | 457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 458 | 459 | 460 | 461 | 463 | 464 | 465 | 466 | 467                                                                                                             |
| 03    | 468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 469 | 470 | 471 | 472 | 473 | 474 | 476 | 477 | 478                                                                                                             |
| 04    | 479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 480 | 481 | 482 | 483 | 484 | 486 | 487 | 488 | 489                                                                                                             |
| 05    | 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 491 | 492 | 494 | 495 | 496 | 497 | 498 | 499 | 500                                                                                                             |
| 06    | 502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 503 | 504 | 505 | 506 | 507 | 509 | 510 | 511 | 512                                                                                                             |
| 07    | 513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 515 | 516 | 517 | 518 | 519 | 521 | 522 | 520 | 524                                                                                                             |
| 08    | 525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 527 | 528 | 529 | 530 | 531 | 533 | 534 | 535 | 536                                                                                                             |
| 09    | 538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 539 | 540 | 541 | 543 | 544 | 545 | 546 | 548 | 549                                                                                                             |
| 8.10  | 0.00 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 552 | 553 | 554 | 555 | 557 | 558 | 559 | 561 | 562                                                                                                             |

 $Log \frac{l}{l-m}$ 

m negative that is, when t lies between  $6^{\rm h}$  and  $18^{\rm h}.$ 

|      | -  |       |     |     |     |     |     |     |     |     |     | _   |
|------|----|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Log  | m  | 0     |     | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
| 5.   | n  | 10.00 | 000 | 999 | 999 | 999 | 999 | 999 | 998 | 998 | 997 | 997 |
| 6.0  | n  | 9.99  | 996 | 996 | 996 | 995 | 995 | 995 | 995 | 995 | 995 | 995 |
| 1    | n  |       | 995 | 994 | 994 | 994 | 994 | 994 | 994 | 994 | 993 | 993 |
| 2    | n  |       | 993 | 993 | 993 | 993 | 993 | 992 | 992 | 992 | 992 | 992 |
| 3    | n  |       | 991 | 991 | 991 | 991 | 991 | 990 | 990 | 990 | 990 | 989 |
| 4    | n  |       | 989 | 989 | 989 | 988 | 988 | 988 | 988 | 987 | 987 | 987 |
| 5    | n  |       | 986 | 986 | 986 | 985 | 985 | 985 | 984 | 984 | 984 | 983 |
| 6    | n  |       | 983 | 982 | 982 | 982 | 981 | 981 | 980 | 980 | 979 | 979 |
| 7    | n  |       | 978 | 978 | 977 | 977 | 976 | 976 | 975 | 974 | 974 | 973 |
| 8    | n  |       | 973 | 972 | 971 | 971 | 970 | 969 | 969 | 968 | 967 | 966 |
| 9    | n  |       | 966 | 965 | 964 | 963 | 962 | 961 | 960 | 960 | 959 | 958 |
| 7.0  | n  |       | 957 | 956 | 955 | 954 | 952 | 951 | 950 | 949 | 948 | 947 |
| 1    | n  |       | 945 | 944 | 943 | 942 | 940 | 939 | 937 | 936 | 934 | 933 |
| 2    | n  |       | 931 | 930 | 928 | 926 | 925 | 923 | 921 | 919 | 917 | 915 |
| 3    | n  |       | 913 | 911 | 909 | 907 | 905 | 903 | 901 | 898 | 896 | 894 |
| 4    | n  |       | 891 | 889 | 886 | 883 | 881 | 878 | 875 | 872 | 869 | 866 |
| 5    | n  |       | 863 | 860 | 856 | 853 | 850 | 846 | 843 | 839 | 835 | 831 |
| 6    | n  |       | 827 | 823 | 819 | 815 | 811 | 806 | 802 | 797 | 793 | 788 |
| 7    | n  |       | 783 | 778 | 773 | 767 | 762 | 757 | 751 | 745 | 739 | 733 |
| 8    | n  |       | 727 | 721 | 714 | 707 | 701 | 694 | 687 | 679 | 672 | 664 |
| 9    | n  |       | 656 | 648 | 640 | 632 | 623 | 615 | 606 | 597 | 587 | 578 |
| 8.00 | Dn |       | 568 | 567 | 566 | 565 | 564 | 563 | 562 | 561 | 560 | 559 |
| 0    | ln |       | 558 | 557 | 556 | 555 | 554 | 553 | 552 | 551 | 550 | 549 |
| 07   | 2n |       | 548 | 547 | 546 | 545 | 543 | 542 | 541 | 540 | 539 | 538 |
| 0    | 3n |       | 537 | 536 | 535 | 534 | 533 | 532 | 531 | 530 | 529 | 528 |
| 0.   | 4n |       | 526 | 525 | 524 | 523 | 522 | 521 | 520 | 519 | 518 | 517 |
| 0    | 5n |       | 515 | 514 | 513 | 512 | 511 | 510 | 509 | 508 | 507 | 505 |
| 06   | ón |       | 504 | 503 | 502 | 501 | 500 | 499 | 497 | 496 | 495 | 494 |
| 0'   | 7n |       | 493 | 492 | 490 | 489 | 488 | 487 | 486 | 485 | 483 | 482 |
| 0    | Bn |       | 481 | 480 | 479 | 477 | 476 | 475 | 474 | 473 | 471 | 470 |
| 0    | 9n |       | 469 | 468 | 467 | 465 | 464 | 463 | 462 | 460 | 459 | 458 |
| 8.10 | On | 9.99  | 457 | 455 | 454 | 453 | 452 | 450 | 449 | 448 | 447 | 445 |

# $\frac{\log l}{l-m}$

m positive that is, when t lies between  $0^h$  and  $6^h$ , or  $18^h$  and  $24^h$ .

| Log m | o    | )   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
|-------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 8.10  | 0.00 | 550 | 552 | 553 | 554 | 555 | 557 | 558 | 559 | 561 | 562 |
| 11    |      | 563 | 564 | 566 | 567 | 568 | 570 | 571 | 572 | 574 | 575 |
| 12    |      | 576 | 578 | 579 | 580 | 582 | 583 | 584 | 586 | 587 | 589 |
| 13    |      | 590 | 591 | 593 | 594 | 595 | 597 | 598 | 600 | 601 | 602 |
| 14    |      | 604 | 605 | 607 | 608 | 609 | 611 | 612 | 614 | 615 | 616 |
| 15    |      | 618 | 619 | 621 | 622 | 624 | 625 | 627 | 628 | 629 | 631 |
| 16    |      | 632 | 634 | 635 | 637 | 638 | 640 | 641 | 643 | 644 | 646 |
| 17    |      | 647 | 649 | 650 | 652 | 653 | 655 | 656 | 658 | 659 | 661 |
| 18    |      | 662 | 664 | 665 | 667 | 669 | 670 | 672 | 673 | 675 | 676 |
| 19    |      | 678 | 680 | 681 | 683 | 684 | 686 | 687 | 689 | 691 | 692 |
| 8.20  |      | 694 | 695 | 697 | 699 | 700 | 702 | 704 | 705 | 707 | 709 |
| 21    |      | 710 | 712 | 713 | 715 | 717 | 718 | 720 | 722 | 723 | 725 |
| 2.2   |      | 727 | 729 | 730 | 732 | 734 | 735 | 737 | 739 | 740 | 742 |
| 23    |      | 744 | 746 | 747 | 749 | 751 | 753 | 754 | 756 | 758 | 760 |
| 24    |      | 761 | 763 | 765 | 767 | 769 | 770 | 772 | 774 | 776 | 777 |
| 25    |      | 779 | 781 | 783 | 785 | 787 | 788 | 790 | 792 | 794 | 796 |
| 26    |      | 798 | 799 | 801 | 803 | 805 | 807 | 809 | 811 | 813 | 814 |
| 27    |      | 816 | 818 | 820 | 822 | 824 | 826 | 828 | 830 | 832 | 834 |
| 2.8   | 1    | 836 | 838 | 839 | 841 | 843 | 845 | 847 | 849 | 851 | 853 |
| 29    |      | 855 | 857 | 859 | 861 | 863 | 865 | 867 | 869 | 871 | 873 |
| 8 30  |      | 875 | 877 | 879 | 881 | 884 | 886 | 888 | 890 | 892 | 894 |
| 31    |      | 896 | 898 | 900 | 902 | 904 | 906 | 909 | 911 | 913 | 915 |
| 32    |      | 917 | 919 | 921 | 923 | 926 | 928 | 930 | 932 | 934 | 936 |
| 33    |      | 939 | 941 | 943 | 945 | 947 | 950 | 952 | 954 | 956 | 958 |
| 34    |      | 961 | 963 | 965 | 967 | 970 | 972 | 974 | 977 | 979 | 981 |
| 35    |      | 983 | 986 | 988 | 990 | 993 | 995 | 997 | 000 | 002 | 004 |
| 36    | 0.01 | 007 | 009 | 011 | 014 | 016 | 018 | 021 | 023 | 025 | 028 |
| 37    | 0.01 | 030 | 033 | 035 | 037 | 040 | 042 | 045 | 047 | 050 | 052 |
| 38    |      | 055 | 057 | 059 | 062 | 064 | 067 | 069 | 072 | 074 | 077 |
| 39    |      | 079 | 082 | 084 | 087 | 090 | 092 | 095 | 097 | 100 | 102 |
| 8.40  | 0.01 | 105 | 107 | 110 | 113 | 115 | 118 | 120 | 123 | 126 | 128 |

 $Log \frac{1}{1-m}$ 

m negative that is, when t lies between  $6^{\rm h}$  and  $18^{\rm h}.$ 

|       |      |     |     |     |     |     |     |     |     |     | _   |
|-------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Log m | 0    |     | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
| 8.10n | 9.99 | 457 | 455 | 454 | 453 | 452 | 450 | 449 | 448 | 447 | 445 |
| lln   |      | 444 | 443 | 442 | 440 | 439 | 438 | 436 | 435 | 434 | 433 |
| 12n   | .    | 431 | 430 | 429 | 427 | 426 | 425 | 423 | 422 | 421 | 419 |
| 13n   |      | 418 | 417 | 415 | 414 | 413 | 411 | 410 | 409 | 407 | 406 |
| 14n   |      | 405 | 403 | 402 | 401 | 399 | 398 | 396 | 395 | 394 | 392 |
| 15n   |      | 391 | 389 | 388 | 387 | 385 | 384 | 382 | 381 | 380 | 378 |
| 16n   | :    | 377 | 375 | 374 | 373 | 371 | 370 | 368 | 367 | 365 | 364 |
| 17n   |      | 362 | 361 | 359 | 358 | 357 | 355 | 354 | 352 | 351 | 349 |
| 18n   | :    | 348 | 346 | 345 | 343 | 342 | 340 | 339 | 337 | 336 | 334 |
| 19n   |      | 333 | 331 | 330 | 328 | 326 | 325 | 323 | 322 | 320 | 319 |
| 8.20n |      | 317 | 316 | 314 | 312 | 311 | 309 | 308 | 306 | 305 | 303 |
| Zln   |      | 301 | 300 | 298 | 297 | 295 | 293 | 292 | 290 | 288 | 287 |
| 22n   |      | 285 | 284 | 282 | 280 | 279 | 277 | 275 | 274 | 272 | 270 |
| 23n   |      | 269 | 267 | 265 | 264 | 262 | 260 | 259 | 257 | 255 | 254 |
| 24n   |      | 252 | 250 | 248 | 247 | 245 | 243 | 241 | 240 | 238 | 236 |
| 25n   |      | 235 | 233 | 231 | 229 | 228 | 226 | 224 | 222 | 220 | 219 |
| 26n   |      | 217 | 215 | 213 | 211 | 210 | 208 | 206 | 204 | 202 | 201 |
| 27n   |      | 199 | 197 | 195 | 193 | 191 | 190 | 188 | 186 | 184 | 182 |
| 28n   |      | 180 | 178 | 177 | 175 | 173 | 171 | 169 | 167 | 165 | 163 |
| 29n   |      | 161 | 159 | 158 | 156 | 154 | 152 | 150 | 148 | 146 | 144 |
| 8.30n |      | 142 | 140 | 138 | 136 | 134 | 132 | 130 | 128 | 126 | 124 |
| 31n   |      | 122 | 120 | 118 | 116 | 114 | 112 | 110 | 108 | 106 | 104 |
| 32n   | 1    | 102 | 100 | 098 | 096 | 094 | 092 | 090 | 088 | 086 | 083 |
| 33n   | (    | 081 | 079 | 077 | 075 | 073 | 071 | 069 | 066 | 064 | 062 |
| 34n   |      | 060 | 058 | 056 | 054 | 052 | 049 | 047 | 045 | 043 | 041 |
| 35n   |      | 039 | 036 | 034 | 032 | 030 | 027 | 025 | 023 | 021 | 019 |
| 36n   | 1    | 016 | 014 | 012 | 010 | 007 | 005 | 003 | 001 | 998 | 996 |
| 37n   | 9.98 | 994 | 991 | 989 | 987 | 985 | 982 | 980 | 978 | 975 | 973 |
| 38n   |      | 971 | 968 | 966 | 963 | 961 | 959 | 956 | 954 | 952 | 949 |
| 39n   |      | 947 | 944 | 942 | 940 | 937 | 935 | 932 | 930 | 928 | 925 |
| 8.40n | 9.98 | 923 | 920 | 918 | 915 | 913 | 910 | 908 | 905 | 903 | 900 |

 $\frac{\log \frac{1}{1-m}}{1-m}$ 

m positive that is, when t lies between  $0^{\rm h}$  and  $6^{\rm h}, \mbox{ or } 18^{\rm h}$  and  $24^{\rm h}.$ 

|       |      |     |     |     |     |     |     |     |     |     | _   |
|-------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Log m | 0    |     | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
| 8.40  | 0.01 | 105 | 107 | 110 | 113 | 115 | 118 | 120 | 123 | 126 | 128 |
| 41    |      | 131 | 134 | 136 | 139 | 142 | 144 | 147 | 150 | 152 | 155 |
| 42    |      | 158 | 160 | 163 | 166 | 169 | 171 | 174 | 177 | 179 | 182 |
| 43    |      | 185 | 188 | 191 | 193 | 196 | 199 | 202 | 205 | 207 | 210 |
| 44    |      | 213 | 216 | 219 | 222 | 224 | 227 | 230 | 233 | 236 | 239 |
| 45    |      | 242 | 245 | 247 | 250 | 253 | 256 | 259 | 262 | 265 | 268 |
| 46    |      | 271 | 274 | 277 | 280 | 283 | 286 | 289 | 292 | 295 | 298 |
| 47    |      | 301 | 304 | 307 | 310 | 313 | 316 | 319 | 323 | 326 | 329 |
| 48    |      | 332 | 335 | 338 | 341 | 344 | 347 | 351 | 354 | 357 | 360 |
| 49    |      | 363 | 367 | 370 | 373 | 376 | 379 | 383 | 386 | 389 | 392 |
| 8.50  |      | 396 | 399 | 402 | 405 | 409 | 412 | 415 | 419 | 422 | 425 |
| 51    |      | 429 | 432 | 435 | 439 | 442 | 445 | 449 | 452 | 456 | 459 |
| 52    |      | 462 | 466 | 469 | 473 | 476 | 480 | 483 | 487 | 490 | 494 |
| 53    |      | 497 | 501 | 504 | 508 | 511 | 515 | 518 | 522 | 525 | 529 |
| 54    |      | 533 | 536 | 540 | 543 | 547 | 551 | 554 | 558 | 562 | 565 |
| 55    |      | 569 | 573 | 576 | 580 | 584 | 587 | 591 | 595 | 599 | 602 |
| 56    |      | 606 | 610 | 614 | 618 | 621 | 625 | 629 | 633 | 637 | 640 |
| 57    |      | 644 | 648 | 652 | 656 | 660 | 664 | 668 | 672 | 676 | 679 |
| 58    |      | 683 | 687 | 691 | 695 | 699 | 703 | 707 | 711 | 715 | 719 |
| 59    |      | 723 | 727 | 732 | 736 | 740 | 744 | 748 | 752 | 756 | 760 |
| 8.60  |      | 764 | 768 | 773 | 777 | 781 | 785 | 789 | 794 | 798 | 802 |
| 61    | 1    | 806 | 811 | 815 | 819 | 823 | 828 | 832 | 836 | 841 | 845 |
| 62    | 1    | 849 | 854 | 858 | 862 | 867 | 871 | 876 | 880 | 884 | 889 |
| 63    |      | 893 | 898 | 902 | 907 | 911 | 916 | 920 | 925 | 929 | 934 |
| 64    |      | 938 | 943 | 948 | 952 | 957 | 961 | 966 | 971 | 975 | 980 |
| 65    |      | 985 | 989 | 994 | 999 | 003 | 008 | 013 | 018 | 022 | 027 |
| 66    | 0.02 | 032 | 037 | 042 | 046 | 051 | 056 | 061 | 066 | 071 | 075 |
| 67    |      | 080 | 085 | 090 | 095 | 100 | 105 | 110 | 115 | 120 | 125 |
| 68    |      | 130 | 135 | 140 | 145 | 150 | 155 | 160 | 166 | 171 | 176 |
| 69    |      | 181 | 186 | 191 | 196 | 202 | 207 | 212 | 217 | 223 | 228 |
| 8.70  | 0.02 | 233 | 238 | 244 | 249 | 254 | 260 | 265 | 270 | 276 | 281 |

 $Log \frac{1}{1-m}$ 

m negative that is, when t lies between  $6^{h}$  and  $18^{h}$ .

|       | and the second sec |     |     |     |     |     |     |     |     |     |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Log m | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
| 8.40n | 9.98 923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 920 | 918 | 915 | 913 | 910 | 908 | 905 | 903 | 900 |
| 4ln   | 898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 895 | 893 | 890 | 888 | 885 | 883 | 880 | 878 | 875 |
| 42n   | 873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 870 | 867 | 865 | 862 | 860 | 857 | 854 | 852 | 849 |
| 43n   | 847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 844 | 841 | 839 | 836 | 833 | 831 | 828 | 825 | 823 |
| 44n   | 820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 817 | 815 | 812 | 809 | 807 | 804 | 801 | 798 | 796 |
| 45n   | 793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 790 | 787 | 785 | 782 | 779 | 776 | 774 | 771 | 768 |
| 46 n  | 765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 762 | 760 | 757 | 754 | 751 | 748 | 745 | 743 | 740 |
| 47n   | 737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 734 | 731 | 728 | 725 | 722 | 720 | 717 | 714 | 711 |
| 48n   | 708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 705 | 702 | 699 | 696 | 693 | 690 | 687 | 684 | 681 |
| 49n   | 678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 675 | 672 | 669 | 666 | 663 | 660 | 657 | 654 | 651 |
| 8.50n | 648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 645 | 642 | 639 | 636 | 633 | 629 | 626 | 623 | 620 |
| 51n   | 617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 614 | 611 | 608 | 604 | 601 | 598 | 595 | 592 | 588 |
| 52n   | 585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 582 | 579 | 576 | 572 | 569 | 566 | 563 | 559 | 556 |
| 53n   | 553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 550 | 546 | 543 | 540 | 536 | 533 | 530 | 526 | 523 |
| 54n   | 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 516 | 513 | 510 | 506 | 503 | 499 | 496 | 493 | 489 |
| 55n   | 486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 482 | 479 | 476 | 472 | 469 | 465 | 462 | 458 | 455 |
| 56n   | 451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 448 | 444 | 441 | 437 | 434 | 430 | 426 | 423 | 419 |
| 57n   | 416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 412 | 409 | 405 | 401 | 398 | 394 | 390 | 387 | 383 |
| 58n   | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 376 | 372 | 368 | 365 | 361 | 357 | 354 | 350 | 346 |
| 59n   | 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 339 | 335 | 331 | 327 | 324 | 320 | 316 | 312 | 308 |
| 8.60n | 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 301 | 297 | 293 | 289 | 285 | 281 | 278 | 274 | 270 |
| 61n   | 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 262 | 258 | 254 | 250 | 246 | 242 | 238 | 234 | 230 |
| 62n   | 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 222 | 218 | 214 | 210 | 206 | 202 | 198 | 194 | 190 |
| 63n   | 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 182 | 178 | 173 | 169 | 165 | 161 | 157 | 153 | 149 |
| 64n   | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140 | 136 | 132 | 128 | 123 | 119 | 115 | 111 | 106 |
| 65n   | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 098 | 094 | 089 | 085 | 081 | 076 | 072 | 068 | 063 |
| 66n   | 059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 055 | 050 | 046 | 041 | 037 | 033 | 028 | 024 | 019 |
| 67n   | 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 010 | 006 | 001 | 997 | 992 | 988 | 983 | 979 | 974 |
| 68n   | 9.97 970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 965 | 960 | 956 | 951 | 947 | 942 | 937 | 933 | 928 |
| 69n   | 923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 919 | 914 | 909 | 905 | 900 | 895 | 890 | 886 | 881 |
| 8.70n | 9.97 876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 871 | 867 | 862 | 857 | 852 | 847 | 842 | 838 | 833 |

TABLE XIV

# Deflection of a Trial Line for Deviations from 1 to 149 Links at the end of Eighty-one Ghains.

Deflection in Minutes and Seconds of Arc.

|                  |       | : | 40  | È è    | 4<br>7   | 18  | 33  | 48  |     | 0.2 | 1  | - 1 | 32  | 46         | 2   | 10 |   | 5    | 30   | 45  | 50     |         | :   |
|------------------|-------|---|-----|--------|----------|-----|-----|-----|-----|-----|----|-----|-----|------------|-----|----|---|------|------|-----|--------|---------|-----|
|                  | 6     | - | 5   | n      | ×        | 12  | 16  | 2.0 | 1   | 25  |    | 67  | 33  | 37         |     | 7  |   | 46   | 50   | 54  | 30     | 1       | 6   |
|                  |       | = | 4 0 | # 1    | 20       | 53  | 08  | 22  | 1   | 37  |    | 79  | 90  | 10         | 1 1 | 53 | 1 | 50   | 05   | 19  | 24     |         | 40  |
|                  | 00    | - | ¢   | 0      | 2        | Ξ   | 16  | 00  | 2   | 24  | 3  | 287 | 33  | 27         | 5   | 41 | 1 | 45   | 50   | 54  | 0<br>U | 0       | 70  |
|                  |       | = | 0   | x<br>n | 13       | 28  | 42  | 57  | -   | 11  | -  | 26  | 41  |            |     | 2  |   | 25   | 39   | 54  |        |         | 53  |
|                  | -     | - | ſ   | 7      | 2        | 11  | 15  | 10  | 1 7 | V C | 4  | 28  | 32  | 1 1        | 00  | 41 |   | 45   | 49   | 53  | 1 0    | 0       | 79  |
|                  |       | : |     | 33     | 47       | 02  | 17  | 1 0 | 1   | 44  | 0  | 01  | 3   |            | 20  | 44 |   | 59   | 14   | 80  | 3 1    | 4 r     | 15  |
|                  | 9     | - |     | 2      | 9        | 11  | 15  | 0   | 14  |     | C7 | 28  | 2.2 | 3,0        | 50  | 40 |   | 44   | 49   | 2 2 |        | 19      | 61  |
| F                |       | : |     |        | 22       | 37  | 15  |     |     |     |    | 35  | 0   |            | 14  | 19 |   | 34   | 48   |     | 5      | 1.      | 32  |
|                  | ŝ     | - |     | 2      | 9        | 10  | 14  |     | 14  | 0   | 52 | 27  | 1 0 | 10         | 36  | 40 |   | 44   | 48   |     | 0 1    | 57      | 61  |
| $\left  \right $ |       | + |     | 2      | 2        | 1   | 4   |     | 0   |     | ç  | 0   | _   | <b>4</b> ' | 69  | 4  |   | 80   | ~    |     | 2      | 22      | 22  |
|                  | 4     |   |     | 1      | ις<br>ις | 10  | 14  |     | 18  |     | 22 | 2.7 |     | 51 4       | 35  | 39 |   | 44 ( | 48   |     | 70     | 56      | 61  |
| -                |       | + | _   | _      | -        |     |     |     |     |     |    |     |     | -          | ~   | ~  |   |      |      |     | ~      | <u></u> |     |
|                  | 3     |   | -   | 16     | 6        | 46  | 2   | 5   | 1   |     | ñ  | 4   | •   | <u> </u>   | -   | 5  |   | 4    | i ir |     | -      | 5       | 4   |
| L                |       |   | -   | 1      | Ś        | 0   | -   | *   | 18  |     | 22 | 26  | 3   | m<br>      | 6   | 39 |   | 43   |      | Ŧ   | 25     | 56      | 99  |
|                  |       |   | =   | 51     | 90       | 20  | 1 0 | 00  | 50  |     | 04 | 10  | 1 1 | 33         | 48  | 03 |   | 17   |      | 20  | 46     | 01      | 16  |
| 1                | 2     |   | -   | 0      | ſ        | 0   |     | C 1 | 17  |     | 22 | 36  | 24  | 30         | 34  | 39 |   | 12   | 1 1  | 4 ( | 51     | 56      | 60  |
| F                |       | 1 | -   | 2.5    | 40       | - u |     | 60  | 24  |     | 39 |     | 0   | 08         | 23  | 37 |   | 5    | 20   | 90  | 21     | 36      | 50  |
|                  | 1     |   | -   | С      | 4        | 4 0 | 0   | 13  | 17  |     | 21 | 1 0 | 7   | 30         | 34  | 38 |   | 5    | 1 1  | 41  | 51     | 55      | 59  |
| T                |       | T | =   | 00     |          | 100 | 5.7 | 44  | 59  |     | 13 | 1 0 | 22  | 43         | 57  | 12 |   | č    | 97   | 41  | 56     | 10      | 25  |
|                  | 0     |   | -   | -      | ~        | ۲c  | 0   | 12  | 16  |     | 10 | 1 1 | 67  | 29         | 33  | 8  |   |      | 42   | 46  | 50     | 55      | 59  |
|                  | Links |   |     | 0      |          |     | 07  | 30  | 40  |     | 09 |     | 90  | 70         | 80  | 06 |   | 0    | 100  | 110 | 120    | 130     | 140 |

TABLE XV

Corrections in Links to Slope Measurements.

|       |          |           |           |           |           |           |           |           | and the second second |
|-------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------------|
| Slope | l<br>ch. | 2<br>chs. | 3<br>chs. | 4<br>chs. | 5<br>chs. | 6<br>chs. | 7<br>chs. | 8<br>chs. | 9<br>chs.             |
| 0 1   |          |           |           |           |           |           |           |           |                       |
| 1 30  | 0.0      | 0.1       | 0.1       | 0.1       | 0.2       | 0.2       | 0.2       | 0.3       | 0.3                   |
| 2 34  | 0.1      | 0.2       | 0.3       | 0.4       | 0.5       | 0.6       | 0.7       | 0.8       | 0.9                   |
| 3 37  | 0.2      | 0.4       | 0.6       | 0.8       | 1.0       | 1.2       | 1.4       | 1.6       | 1.8                   |
| 4 26  | 0.3      | 0.6       | 0.9       | 1.2       | 1.5       | 1.8       | 2.1       | 2.4       | 2.7                   |
| 5 08  | 0.4      | 0.8       | 1.2       | 1.6       | 2.0       | 2.4       | 2.8       | 3.2       | 3.6                   |
| 44    | 0.5      | 1.0       | 1.5       | 2.0       | 2.5       | 3.0       | 3.5       | 4.0       | 4.5                   |
| 6 17  | 0.6      | 1.2       | 1.8       | 2.4       | 3.0       | 3.6       | 4.2       | 4.8       | 5.4                   |
| 47    | 0.7      | 1.4       | 2.1       | 2.8       | 3.5       | 4.2       | 4.9       | 5.6       | 6.3                   |
| 7 15  | 0.8      | 1.6       | 2.4       | 3.2       | 4.0       | 4.8       | 5.6       | 6.4       | 7.2                   |
| 42    | 0.9      | 1.8       | 2.7       | 3.6       | 4.5       | 5.4       | 6.3       | 7.2       | 8.1                   |
| 8 07  | 1.0      | 2.0       | 3.0       | 4.0       | 5.0       | 6.0       | 7.0       | 8.0       | 9.0                   |
| 30    | 1.1      | 2.2       | 3.3       | 4.4       | 5.5       | 6.6       | 7.7       | 8.8       | 9.9                   |
| 53    | 1.2      | 2.4       | 3.6       | 4.8       | 6.0       | 7.2       | 8.4       | 9.6       | 10.8                  |
| 9 15  | 1.3      | 2.6       | 3.9       | 5.2       | 6.5       | 7.8       | 9.1       | 10.4      | 11.7                  |
| 36    | 1.4      | 2.8       | 4.2       | 5.6       | 7.0       | 8.4       | 9.8       | 11.2      | 12.6                  |
| 56    | 1.5      | 3.0       | 4.5       | 6.0       | 7.5       | 9.0       | 10.5      | 12.0      | 13.5                  |
| 10 16 | 1.6      | 3.2       | 4.8       | 6.4       | 8.0       | 9.6       | 11.2      | 12.8      | 14.4                  |
| 35    | 1.7      | 3.4       | 5.1       | 6.8       | 8.5       | 10.2      | 11.9      | 13.6      | 15.3                  |
| 53    | 1.8      | 3.6       | 5.4       | 7.2       | 9.0       | 10.8      | 12.6      | 14.4      | 16.2                  |
| 11 11 | 1.9      | 3.8       | 5.7       | 7.6       | 9.5       | 11.4      | 13.3      | 15.2      | 17.1                  |
| 29    | 2.0      | 4.0       | 6.0       | 8.0       | 10.0      | 12.0      | 14.0      | 16.0      | 18.0                  |
| 46    | 2.1      | 4.2       | 6.3       | 8.4       | 10.5      | 12.6      | 14.7      | 16.8      | 18.9                  |
| 12 02 | 2.2      | 4.4       | 6.6       | 8.8       | 11.0      | 13.2      | 15.4      | 17.6      | 19.8                  |
| 19    | 2.3      | 4.6       | 6.9       | 9.2       | 11.5      | 13.8      | 16.1      | 18.4      | 20.7                  |
| 35    | 2.4      | 4.8       | 7.2       | 9.6       | 12.0      | 14.4      | 16.8      | 19.2      | 21.6                  |
| 50    | 2.5      | 5.0       | 7.5       | 10.0      | 12.5      | 15.0      | 17.5      | 20.0      | 22.5                  |
| 13 06 | 2.6      | 5.2       | 7.8       | 10.4      | 13.0      | 15.6      | 18.2      | 20.8      | 23.4                  |
| 21    | 2.7      | 5.4       | 8.1       | 10.8      | 13.5      | 16.2      | 18.9      | 21.6      | 24.3                  |
| 35    | 2.8      | 5.6       | 8.4       | 11.2      | 14.0      | 16.8      | 19.6      | 22.4      | 25.2                  |
| 50    | 2.9      | 5.8       | 8.7       | 11.6      | 14.5      | 17.4      | 20.3      | 23.2      | 26.1                  |
| 14 04 | 3.0      | 6.0       | 9.0       | 12.0      | 15.0      | 18.0      | 21.0      | 24.0      | 27.0                  |
| 18    | 3.1      | 6.2       | 9.3       | 12.4      | 15.5      | 18.6      | 21.7      | 24.8      | 27.9                  |
| 32    | 3.2      | 6.4       | 9.6       | 12.8      | 16.0      | 19.2      | 22.4      | 25.6      | 28.8                  |
| 46    | 3.3      | 6.6       | 9.9       | 13.2      | 16.5      | 19.8      | 23.1      | 26.4      | 29.7                  |
| 59    | 3.4      | 6.8       | 10.2      | 13.6      | 17.0      | 20.4      | 23.8      | 27.2      | 30.6                  |
| 15 12 | 3.5      | 7.0       | 10.5      | 14.0      | 17.5      | 21.0      | 24.5      | 28.0      | 31.5                  |
| 25    | 3.6      | 7.2       | 10.8      | 14.4      | 18.0      | 21.6      | 25.2      | 28.8      | 32.4                  |
| 38    | 3.7      | 7.4       | 11.1      | 14.8      | 18.5      | 22.2      | 25.9      | 29.6      | 33.3                  |
| 51    | 3.8      | 7.6       | 11.4      | 15.2      | 19.0      | 22.8      | 26.6      | 30.4      | 34.2                  |
| 16 03 | 3.9      | 7.8       | 11.7      | 15.6      | 19.5      | 23.4      | 27.3      | 31.2      | 35.1                  |

| 1 | 2 | 0 |  |
|---|---|---|--|
| 4 | 2 | ۰ |  |

|             |     | 1   | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
|-------------|-----|-----|------|------|------|------|------|------|------|------|
| <b>S</b> 10 | ope | ch  | che  | che  | chs  | chs. | chs. | chs. | chs. | chs. |
|             |     | Cn. | cns. | cns. | c    | ene. |      |      |      |      |
| 0           | 1   |     |      |      |      |      |      |      |      |      |
| 16          | 16  | 4.0 | 8.0  | 12.0 | 16.0 | 20.0 | 24.0 | 28.0 | 32.0 | 36.0 |
|             | 28  | 4.1 | 8.2  | 12.3 | 16.4 | 20.5 | 24.6 | 28.7 | 32.8 | 36.9 |
|             | 40  | 4.2 | 8.4  | 12.6 | 16.8 | 21.0 | 25.2 | 29.4 | 33.6 | 37.8 |
|             | 52  | 4.3 | 8.6  | 12.9 | 17.2 | 21.5 | 25.8 | 30.1 | 34.4 | 38.7 |
| 17          | 04  | 4.4 | 8.8  | 13.2 | 17.6 | 22.0 | 26.4 | 30.8 | 35.2 | 39.6 |
|             |     |     |      |      |      |      |      |      |      |      |
|             | 15  | 4.5 | 9.0  | 13.5 | 18.0 | 22.5 | 27.0 | 31.5 | 36.0 | 40.5 |
|             | 27  | 4.6 | 9.2  | 13.8 | 18.4 | 23.0 | 27.6 | 32.2 | 36.8 | 41.4 |
|             | 38  | 4.7 | 9.4  | 14.1 | 18.8 | 23.5 | 28.2 | 32.9 | 37.6 | 42.3 |
|             | 49  | 4.8 | 9.6  | 14.4 | 19.2 | 24.0 | 28.8 | 33.6 | 38.4 | 43.2 |
| 18          | 01  | 4.9 | 9.8  | 14.7 | 19.6 | 24.5 | 29.4 | 34.3 | 39.2 | 44.1 |
|             |     |     |      |      |      | 25.0 | 20.0 | 25.0 | 40.0 | 45.0 |
|             | 12  | 5.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 | 40.0 | 45.0 |
|             | 23  | 5.1 | 10.2 | 15.3 | 20.4 | 25.5 | 30.6 | 35.1 | 40.8 | 45.9 |
|             | 34  | 5.2 | 10.4 | 15.6 | 20.8 | 26.0 | 31.2 | 36.4 | 41.0 | 40.0 |
|             | 44  | 5.3 | 10.6 | 15.9 | 21.2 | 26.5 | 31.8 | 37.1 | 42.4 | 41.1 |
|             | 55  | 5.4 | 10.8 | 16.2 | 21.6 | 27.0 | 32.4 | 31.8 | 43.4 | 40.0 |
| 10          | 0.5 | 5.5 | 11.0 | 16.5 | 22.0 | 27.5 | 33.0 | 38.5 | 44.0 | 49.5 |
| 17          | 14  | 5.6 | 11.0 | 16.8 | 22.4 | 28.0 | 33.6 | 39.2 | 44.8 | 50.4 |
|             | 26  | 5.7 | 11.2 | 17.1 | 22.8 | 28.5 | 34.2 | 39.9 | 45.6 | 51.3 |
|             | 27  | 5.8 | 11.4 | 17.4 | 23.2 | 29.0 | 34.8 | 40.6 | 46.4 | 52.2 |
|             | 47  | 5.0 | 11.0 | 17.7 | 23.6 | 29.5 | 35.4 | 413  | 47.2 | 53.1 |
|             | 41  | 5.9 | 11.0 | 17.7 | 23.0 | 27.5 | 55.1 | 11.5 | 1    |      |
|             | 57  | 6.0 | 12.0 | 18.0 | 24.0 | 30.0 | 36.0 | 42.0 | 48.0 | 54.0 |
| 20          | 07  | 6.1 | 12.2 | 18.3 | 24.4 | 30.5 | 36.6 | 42.7 | 48.8 | 54.9 |
|             | 17  | 6.2 | 12.4 | 18.6 | 24.8 | 31.0 | 37.2 | 43.4 | 49.6 | 55.8 |
|             | 27  | 6.3 | 12.6 | 18.9 | 25.2 | 31.5 | 37.8 | 44.1 | 50.4 | 56.7 |
|             | 37  | 6.4 | 12.8 | 19.2 | 25.6 | 32.0 | 38.4 | 44.8 | 51.2 | 57.6 |
|             |     |     |      |      |      |      |      |      |      | 50.5 |
|             | 46  | 6.5 | 13.0 | 19.5 | 26.0 | 32.5 | 39.0 | 45.5 | 52.0 | 58.5 |
|             | 56  | 6.6 | 13.2 | 19.8 | 26.4 | 33.0 | 39.6 | 46.2 | 52.8 | 59.4 |
| 21          | 06  | 6.7 | 13.4 | 20.1 | 26.8 | 33.5 | 40.2 | 46.9 | 53.6 | 60.3 |
|             | 15  | 6.8 | 13.6 | 20.4 | 27.2 | 34.0 | 40.8 | 47.6 | 54.4 | 61.2 |
|             | 25  | 6.9 | 13.8 | 20.7 | 27.6 | 34.5 | 41.4 | 48.3 | 55.2 | 62.1 |
|             | 24  | 7.0 | 14.0 | 21.0 | 28.0 | 35.0 | 42.0 | 49.0 | 56.0 | 63.0 |
|             | 34  | 7.0 | 14.0 | 21.0 | 20.0 | 25.5 | 42.6 | 40.7 | 56.8 | 63.9 |
|             | 43  | 7.1 | 14.4 | 21.5 | 20.4 | 35.5 | 42.0 | 50.4 | 57.6 | 64.8 |
|             | 52  | 7.2 | 14.4 | 21.0 | 20.0 | 36.0 | 42.0 | 51 1 | 58.4 | 65.7 |
| 22          | 02  | 7.3 | 14.0 | 21.9 | 29.2 | 30.5 | 43.0 | 51.8 | 50.1 | 66.6 |
|             | 11  | 1.4 | 14.8 | 66.6 | 29.0 | 57.0 | 11.1 | 51.0 | 57.2 | 00.0 |
|             | 20  | 7.5 | 15.0 | 22.5 | 30.0 | 37.5 | 45.0 | 52.5 | 60.0 | 67.5 |
|             | 29  | 7.6 | 15.2 | 22.8 | 30.4 | 38.0 | 45.6 | 53.2 | 60.8 | 68.4 |
|             | 38  | 7.7 | 15.4 | 23.1 | 30.8 | 38.5 | 46.2 | 53.9 | 61.6 | 69.3 |
|             | 47  | 7.8 | 15.6 | 23.4 | 31.2 | 39.0 | 46.8 | 54.6 | 62.4 | 70.2 |
|             | 56  | 7.9 | 15.8 | 23.7 | 31.6 | 39.5 | 47.4 | 55.3 | 63.2 | 71.1 |

TABLE XV - Continued Corrections in Links to Slope Measurements.

| _  |     |          |           |           |           |           |           |           |           |           |
|----|-----|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| SI | ope | l<br>ch. | 2<br>chs. | 3<br>chs. | 4<br>chs. | 5<br>chs. | 6<br>chs. | 7<br>chs. | 8<br>chs. | 9<br>chs. |
| 0  |     |          |           |           |           |           |           |           |           |           |
| 23 | 04  | 8.0      | 16.0      | 24.0      | 32.0      | 40.0      | 48.0      | 56.0      | 64.0      | 72.0      |
|    | 13  | 8.1      | 16.2      | 24.3      | 32.4      | 40.5      | 48.6      | 56.7      | 64.8      | 72.9      |
|    | 22  | 8.2      | 16.4      | 24.6      | 32.8      | 41.0      | 49.2      | 57.4      | 65.6      | 73.8      |
|    | 31  | 8.3      | 16.6      | 24.9      | 33.2      | 41.5      | 49.8      | 58.1      | 66.4      | 74.7      |
|    | 39  | 8.4      | 16.8      | 25.2      | 33.6      | 42.0      | 50.4      | 58.8      | 67.2      | 75.6      |
|    | 48  | 8.5      | 17.0      | 25.5      | 34.0      | 42.5      | 51.0      | 59.5      | 68.0      | 76.5      |
|    | 56  | 8.6      | 17.2      | 25.8      | 34.4      | 43.0      | 51.6      | 60.2      | 68.8      | 77.4      |
| 24 | 05  | 8.7      | 17.4      | 26.1      | 34.8      | 43.5      | 52.2      | 60.9      | 69.6      | 78.3      |
|    | 13  | 8.8      | 17.6      | 26.4      | 35.2      | 44.0      | 52.8      | 61.6      | 70.4      | 79.2      |
|    | 21  | 8.9      | 17.8      | 26.7      | 35.6      | 44.5      | 53.4      | 62.3      | 71.2      | 80.1      |
|    | 30  | 9.0      | 18.0      | 27.0      | 36.0      | 45.0      | 54.0      | 63.0      | 72.0      | 81.0      |
|    | 38  | 9.1      | 18.2      | 27.3      | 36.4      | 45.5      | 54.6      | 63.7      | 72.8      | 81.9      |
|    | 46  | 9.2      | 18.4      | 27.6      | 36.8      | 46.0      | 55.2      | 64.4      | 73.6      | 82.8      |
|    | 54  | 9.3      | 18.6      | 27.9      | 37.2      | 46.5      | 55.8      | 65.1      | 74.4      | 83.7      |
| 25 | 03  | 9.4      | 18.8      | 28.2      | 37.6      | 47.0      | 56.4      | 65.8      | 75.2      | 84.6      |
|    | 11  | 9.5      | 19.0      | 28.5      | 38.0      | 47.5      | 57.0      | 66.5      | 76.0      | 85.5      |
|    | 19  | 9.6      | 19.2      | 28.8      | 38.4      | 48.0      | 57.6      | 67.2      | 76.8      | 86.4      |
|    | 27  | 9.7      | 19.4      | 29.1      | 38.8      | 48.5      | 58.2      | 67.9      | 77.6      | 87.3      |
|    | 35  | 9.8      | 19.6      | 29.4      | 39.2      | 49.0      | 58.8      | 68.6      | 78.4      | 88.2      |
|    | 43  | 9.9      | 19.8      | 29.7      | 39.6      | 49.5      | 59.4      | 69.3      | 79.2      | 89.1      |
|    | 51  | 10.0     | 20.0      | 30.0      | 40.0      | 50.0      | 60.0      | 70.0      | 80.0      | 90.0      |
|    | 58  | 10.1     | 20.2      | 30.3      | 40.4      | 50.5      | 60.6      | 70.7      | 80.8      | 90.9      |
| 26 | 06  | 10.2     | 20.4      | 30.6      | 40.8      | 51.0      | 61.2      | 71.4      | 81.6      | 91.8      |
|    | 14  | 10.3     | 20.6      | 30.9      | 41.2      | 51.5      | 61.8      | 72.1      | 82.4      | 92.7      |
|    | 22  | 10.4     | 20.8      | 31.2      | 41.6      | 52.0      | 62.4      | 72.8      | 83.2      | 93.6      |
|    | 29  | 10.5     | 21.0      | 31.5      | 42.0      | 52.5      | 63.0      | 73.5      | 84.0      | 94.5      |
|    | 37  | 10.6     | 21.2      | 31.8      | 42.4      | 53.0      | 63.6      | 74.2      | 84.8      | 95.4      |
|    | 45  | 10.7     | 21.4      | 32.1      | 42.8      | 53.5      | 64.2      | 74.9      | 85.6      | 96.3      |
|    | 52  | 10.8     | 21.6      | 32.4      | 43.2      | 54.0      | 64.8      | 75.6      | 86.4      | 97.2      |
| 27 | 00  | 10.9     | 21.8      | 32.7      | 43.6      | 54.5      | 65.4      | 76.3      | 87.2      | 98.1      |
|    | 08  | 11.0     | 22.0      | 33.0      | 44.0      | 55.0      | 66.0      | 77.0      | 88.0      | 99.0      |
|    | 15  | 11.1     | 22.2      | 33.3      | 44.4      | 55.5      | 66.6      | 77.7      | 88.8      | 99.9      |
|    | 23  | 11.2     | 22.4      | 33.6      | 44.8      | 56.0      | 67.2      | 78.4      | 89.6      | 100.8     |
|    | 30  | 11.3     | 22.6      | 33.9      | 45.2      | 56.5      | 67.8      | 79.1      | 90.4      | 101.7     |
|    | 38  | 11.4     | 22.8      | 34.2      | 45.6      | 57.0      | 68.4      | 79.8      | 91.2      | 102.6     |
|    | 45  | 11.5     | 23.0      | 34.5      | 46.0      | 57.5      | 69.0      | 80.5      | 92.0      | 103.5     |
|    | 52  | 11.6     | 23.2      | 34.8      | 46.4      | 58.0      | 69.6      | 81.2      | 92.8      | 104.4     |
| 28 | 00  | 11.7     | 23.4      | 35.1      | 46.8      | 58.5      | 70.2      | 81.9      | 93.6      | 105.3     |
|    | 07  | 11.8     | 23.6      | 35.4      | 47.2      | 59.0      | 70.8      | 82.6      | 94.4      | 106.2     |
|    | 14  | 11.9     | 23.8      | 35.7      | 47.6      | 59.5      | 71.4      | 83.3      | 95.2      | 107 1     |

|   | 1  | 0 |
|---|----|---|
| 1 | b. | υ |
| - |    |   |

45 15.9

31.8 47.7

63.6

79.5

95.4

143.1

3 5 7 4 6 8 9 Slope ch. chs. chs. chs. chs. chs. chs. chs. chs. i 28 12.0 24.0 36.0 48.0 60.0 72.0 84.0 96.0 108.0 29 12.1 24.2 36.3 48.4 60.5 72.6 84.7 96.8 108.9 36 12.2 24.4 36.6 48.8 61.0 73.2 85.4 97.6 109.8 43 12.3 24.6 36.9 49.2 61.5 73.8 86.1 98.4 110.7 50 12.4 24.8 37.2 49.6 62.0 74.4 86.8 99.2 111.6 12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.0 112.5 29 04 12.6 25.2 75.6 37.8 50.4 63.0 88.2 100.8 113.4 11 12.7 25.4 38.1 50.8 63.5 76.2 88.9 101.6 114.3 18 12.8 25.6 38.4 51.2 64.0 76.8 89.6 102.4 12.9 103.2 25.8 38.7 51.6 64.5 77.4 90.3 116.1 32 13.0 26.0 39.0 52.0 65.0 78.0 91.0 104.0 117.0 39 13.1 26.2 39.3 52.4 65.5 78.6 91.7 104.8 117.9 46 13.2 26.4 39.6 52.8 66.0 79.2 92.4 105.6 118.8 53 13.3 26.6 39.9 53.2 66.5 79.8 93.1 106.4 119.7 30 00 13.4 26.8 40.2 53.6 67.0 80.4 93.8 107.2 120.6 07 13.5 27.0 40.5 54.0 67.5 81.0 94.5 108.0 121.5 14 13.6 27.2 40.8 54.4 68.0 81.6 95.2 108.8 122.4 21 13.7 27.4 41.1 54.8 68.5 82.2 95.9 109.6 123.3 27.6 13.8 41.4 55.2 69.0 82.8 96.6 110.4 124.2 34 13.9 27.8 41.7 55.6 69.5 83.4 97.3 111.2 41 14.0 28.0 42.0 56.0 70.0 84.0 98.0 112.0 126.0 48 14.1 28.2 42.3 56.4 70.5 84.6 98.7 112.8 126.9 54 14.2 28.4 113.6 127.8 42.6 56.8 71.0 85.2 99.4 31 01 14.3 28.6 42.9 71.5 85.8 100.1 114.4 128.7 08 14.4 28.8 43.2 57.6 72.0 86.4 100.8 115.2 129.6 14 14.5 58.0 116.0 130.5 29.0 43.5 72.5 87.0 101.5 29.2 43.8 58.4 73.0 87.6 102.2 116.8 131.4 14.6 28 14.7 29.4 44.1 58.8 73.5 88.2 102.9 117.6 132.3 59.2 74.0 88.8 103.6 118.4 133.2 34 14.8 29.6 44.4 41 14.9 29.8 44.7 59.6 74.5 89.4 104.3 119.2 134.1 47 15.0 30.0 45.0 60.0 75.0 90.0 105.0 120.0 54 30.2 75.5 105.7 45.3 60.4 90.6 120.8 135.9 32 00 15.2 30.4 45.6 60.8 76.0 91.2 106.4 121.6 136.8 15.3 30.6 45.9 61.2 76.5 91.8 107.1 122.4 137.7 15.4 30.8 77.0 92.4 107.8 123.2 138.6 46.2 61.6 20 15.5 31.0 46.5 62.0 77.5 93.0 108.5 124.0 139.5 31.2 26 15.6 46.8 62.4 78.0 93.6 109.2 124.8 140.4 33 15.7 31.4 47.1 62.8 78.5 94.2 109.9 125.6 141.3 39 15.8 31.6 47.4 63.2 79.0 94.8 110.6 126.4 142.2

TABLE XV- Continued. Corrections in Links to Slope Measurements.

TABLE XV - Concluded. Corrections in Links to Slope Measurements.

| _   |     |          |           |           |           |           |           |           |           |           |
|-----|-----|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Slo | pe  | l<br>ch. | 2<br>chs. | 3<br>chs. | 4<br>chs. | 5<br>chs. | 6<br>chs. | 7<br>chs. | 8<br>chs. | 9<br>chs. |
|     |     |          |           |           |           |           |           | +         |           |           |
| 32  | 52  | 16.0     | 32.0      | 48.0      | 64.0      | 80.0      | 96.0      | 112.0     | 128.0     | 144.0     |
| 50  | 58  | 16.1     | 32.2      | 48.3      | 64.4      | 80.5      | 96.6      | 112.7     | 128.8     | 144.9     |
| 33  | 0.4 | 16.2     | 32.4      | 48.6      | 64.8      | 81.0      | 97.2      | 113.4     | 129.6     | 145.8     |
| 55  | 11  | 16.3     | 32.6      | 48.9      | 65.2      | 81.5      | 97.8      | 114.1     | 130.4     | 146.7     |
|     | 17  | 16.4     | 32.8      | 49.2      | 65.6      | 82.0      | 98.4      | 114.8     | 131.2     | 147.6     |
|     | 23  | 16.5     | 33.0      | 49.5      | 66.0      | 82.5      | 99.0      | 115.5     | 132.0     | 148.5     |
|     | 29  | 16.6     | 33.2      | 49.8      | 66.4      | 83.0      | 99.6      | 116.2     | 132.8     | 149.4     |
|     | 36  | 16.7     | 33.4      | 50.1      | 66.8      | 83.5      | 100.2     | 116.9     | 133.6     | 150.3     |
|     | 42  | 16.8     | 33.6      | 50.4      | 67.2      | 84.0      | 100.8     | 117.6     | 134.4     | 151.2     |
|     | 48  | 16.9     | 33.8      | 50.7      | 67.6      | 84.5      | 101.4     | 118.3     | 135.2     | 152.1     |
|     | 54  | 17.0     | 34.0      | 51.0      | 68.0      | 85.0      | 102.0     | 119.0     | 136.0     | 153.0     |
| 34  | 00  | 17.1     | 34.2      | 51.3      | 68.4      | 85.5      | 102.6     | 119.7     | 136.8     | 153.9     |
|     | 06  | 17.2     | 34.4      | 51.6      | 68.8      | 86.0      | 103.2     | 120.4     | 137.6     | 154.8     |
|     | 12  | 17.3     | 34.6      | 51.9      | 69.2      | 86.5      | 103.8     | 121.1     | 138.4     | 155.7     |
|     | 19  | 17.4     | 34.8      | 52.2      | 69.6      | 87.0      | 104.4     | 121.8     | 139.2     | 156.6     |
|     | 25  | 17.5     | 35.0      | 52.5      | 70.0      | 87.5      | 105.0     | 122.5     | 140.0     | 157.5     |
|     | 31  | 17.6     | 35.2      | 52.8      | 70.4      | 88.0      | 105.6     | 123.2     | 140.8     | 158.4     |
|     | 37  | 17.7     | 35.4      | 53.1      | 70.8      | 88.5      | 106.2     | 123.9     | 141.6     | 159.3     |
|     | 43  | 17.8     | 35.6      | 53.4      | 71.2      | 89.0      | 106.8     | 124.6     | 142.4     | 160.2     |
|     | 49  | 17.9     | 35.8      | 53.7      | 71.6      | 89.5      | 107.4     | 125.3     | 143.2     | 161.1     |
|     | 55  | 18.0     | 36.0      | 54.0      | 72.0      | 90.0      | 108.0     | 126.0     | 144.0     | 162.0     |
| 35  | 01  | 18.1     | 36.2      | 54.3      | 72.4      | 90.5      | 108.6     | 126.7     | 144.8     | 162.9     |
|     | 07  | 18.2     | 36.4      | 54.6      | 72.8      | 91.0      | 109.2     | 127.4     | 145.6     | 163.8     |
|     | 13  | 18.3     | 36.6      | 54.9      | 73.2      | 91.5      | 109.8     | 128.1     | 146.4     | 164.7     |
|     | 19  | 18.4     | 36.8      | 55.2      | 73.6      | 92.0      | 110.4     | 128.8     | 147.2     | 165.6     |
|     | 25  | 18.5     | 37.0      | 55.5      | 74.0      | 92.5      | 111.0     | 129.5     | 148.0     | 166.5     |
|     | 31  | 18.6     | 37.2      | 55.8      | 74.4      | 93.0      | 111.6     | 130.2     | 148.8     | 167.4     |
|     | 37  | 18.7     | 37.4      | 56.1      | 74.8      | 93.5      | 112.2     | 130.9     | 149.6     | 168.3     |
|     | 42  | 18.8     | 37.6      | 56.4      | 75.2      | 94.0      | 112.8     | 131.6     | 150.4     | 169.2     |
|     | 48  | 18.9     | 37.8      | 56.7      | 75.6      | 94.5      | 113.4     | 132.3     | 151.2     | 170.1     |
|     | 54  | 19.0     | 38.0      | 57.0      | 76.0      | 95.0      | 114.0     | 133.0     | 152.0     | 171.0     |
| 36  | 00  | 19.1     | 38.2      | 57.3      | 76.4      | 95.5      | 114.6     | 133.7     | 152.8     | 171.9     |
|     | 06  | 19.2     | 38.4      | 57.6      | 76.8      | 96.0      | 115.2     | 134.4     | 153.6     | 172.8     |
|     | 12  | 19.3     | 38.6      | 57.9      | 77.2      | 96.5      | 115.8     | 135.1     | 154.4     | 173.7     |
|     | 18  | 19.4     | 38.8      | 58.2      | 77.6      | 97.0      | 116.4     | 135.8     | 155.2     | 174.6     |
|     | 23  | 19.5     | 39.0      | 58.5      | 78.0      | 97.5      | 117.0     | 136.5     | 156.0     | 175.5     |
|     | 29  | 19.6     | 39.2      | 58.8      | 78.4      | 98.0      | 117.6     | 137.2     | 156.8     | 176.4     |
|     | 35  | 19.7     | 39.4      | 59.1      | 78.8      | 98.5      | 118.2     | 137.9     | 157.6     | 177.3     |
|     | 41  | 19.8     | 39.6      | 59.4      | 79.2      | 99.0      | 118.8     | 138.6     | 158.4     | 178.2     |
|     | 46  | 19.9     | 39.8      | 59.7      | 79.6      | 99.5      | 119.4     | 139.3     | 159.2     | 179.1     |
|     | 52  | 20.0     | 40.0      | 60.0      | 80.0      | 100.0     | 120.0     | 140.0     | 160.0     | 180.0     |

# TABLE XVI

|     |             | -    |     |       |       |             |                |     |       | - |     |            |                |    |       |
|-----|-------------|------|-----|-------|-------|-------------|----------------|-----|-------|---|-----|------------|----------------|----|-------|
| Di  | ffer<br>Bea | ence | of  | Links | r     | Diffe<br>Be | rence<br>aring | of  | Links |   | D   | iffe<br>Be | rence<br>aring | of | Links |
| •   | 1           | •    | 1   |       | 0     | 1           | 0              | 1   |       | - |     |            |                |    |       |
| 360 | 00          | 0 0  | 00  | 100   | 27    | 5 35        | 84             | 25  | 135   |   | 252 | 04         | 107            | 56 | 170   |
| 343 | 52          | 16   | 08  | 101   | 274   | 4 40        | 85             | 20  | 136   |   | 251 | 35         | 108            | 25 | 171   |
| 337 | 16          | 22   | 44  | 102   | 273   | 3 46        | 86             | 14  | 137   |   | 251 | 06         | 108            | 54 | 172   |
| 332 | 16          | 27   | 44  | 103   | 272   | 53          | 87             | 07  | 138   |   | 250 | 38         | 109            | 22 | 173   |
| 328 | 07          | 31   | 53  | 104   | 272   | 2 01        | 87             | 59  | 139   |   | 250 | 10         | 109            | 50 | 174   |
|     |             |      |     |       |       |             |                |     | 1     |   |     |            |                |    |       |
| 324 | 30          | 35   | 30  | 105   | 271   | 10          | 88             | 50  | 140   |   | 249 | 42         | 110            | 18 | 175   |
| 321 | 16          | 38   | 44  | 106   | 270   | 21          | 89             | 39  | 141   |   | 249 | 15         | 110            | 45 | 176   |
| 318 | 19          | 41   | 41  | 107   | 269   | 32          | 90             | 28  | 142   |   | 248 | 48         | 111            | 12 | 177   |
| 315 | 37          | 44   | 23  | 108   | 268   | 44          | 91             | 16  | 143   |   | 248 | 22         | 111            | 38 | 178   |
| 313 | 06          | 46   | 54  | 109   | 267   | 58          | 92             | 02  | 144   |   | 247 | 56         | 112            | 04 | 179   |
| 210 |             | 1 10 |     |       |       |             |                |     |       |   |     |            | 1              |    |       |
| 310 | 40          | 49   | 14  | 110   | 267   | 12          | 92             | 48  | 145   |   | 247 | 30         | 112            | 30 | 180   |
| 308 | 33          | 51   | 21  | 111   | 266   | 28          | 93             | 32  | 146   |   | 247 | 05         | 112            | 55 | 181   |
| 306 | 28          | 53   | 32  | 112   | 265   | 44          | 94             | 16  | 147   |   | 246 | 40         | 113            | 20 | 182   |
| 304 | 30          | 55   | 30  | 113   | 265   | 01          | 94             | 59  | 148   |   | 246 | 15         | 113            | 45 | 183   |
| 302 | 51          | 101  | 23  | 114   | 264   | 19          | 95             | 41  | 149   |   | 245 | 50         | 114            | 10 | 184   |
| 200 | 40          | 60   |     | 116   | 1 2/2 |             |                | ~ ~ |       |   |     |            |                |    |       |
| 200 | 17          | 1 59 | 5.4 | 115   | 263   | 31          | 96             | 23  | 150   |   | 245 | 26         | 114            | 34 | 185   |
| 207 | 27          | 60   | 24  | 110   | 262   | 57          | 97             | 03  | 151   |   | 245 | 03         | 114            | 57 | 186   |
| 205 | 52          | 64   | 22  | 1110  | 262   | 1/          | 97             | 43  | 152   |   | 244 | 39         | 115            | 21 | 187   |
| 204 | 21          | 46   | 20  | 110   | 201   | 38          | 98             | 22  | 153   |   | 244 | 16         | 115            | 44 | 188   |
| 674 | 21          | 05   | 39  | 119   | 260   | 59          | 99             | 01  | 154   |   | 243 | 53         | 116            | 07 | 189   |
| 292 | 53          | 67   | 07  | 120   | 260   | 21          | 90             | 30  | 155   |   | 243 | 21         | 114            | 20 | 100   |
| 291 | 28          | 68   | 32  | 121   | 259   | 44          | 100            | 16  | 156   |   | 243 | 7          | 116            | 51 | 190   |
| 290 | 06          | 69   | 54  | 122   | 259   | 08          | 100            | 52  | 157   |   | 242 | 47         | 117            | 13 | 102   |
| 288 | 47          | 71   | 13  | 123   | 258   | 32          | 101            | 28  | 158   |   | 242 | 25         | 117            | 36 | 102   |
| 287 | 30          | 72   | 30  | 124   | 257   | 57          | 102            | 03  | 159   |   | 242 | 03         | 117            | 57 | 104   |
|     |             |      |     |       |       |             |                |     | /     |   |     | 0.5        | •••            | 51 | 1/1   |
| 286 | 16          | 73   | 44  | 125   | 257   | 22          | 102            | 38  | 160   |   | 241 | 42         | 118            | 18 | 195   |
| 285 | 03          | 74   | 57  | 126   | 256   | 48          | 103            | 12  | 161   |   | 241 | 21         | 118            | 39 | 196   |
| 283 | 53          | 76   | 07  | 127   | 256   | 14          | 103            | 46  | 162   |   | 241 | 01         | 118            | 59 | 197   |
| 282 | 45          | 77   | 15  | 128   | 255   | 41          | 104            | 19  | 163   |   | 240 | 40         | 119            | 20 | 198   |
| 281 | 39          | 78   | 21  | 129   | 255   | 09          | 104            | 51  | 164   |   | 240 | 20         | 119            | 40 | 199   |
|     |             |      |     |       |       |             |                |     |       |   |     |            |                |    |       |
| 280 | 34          | 79   | 26  | 130   | 254   | 37          | 105            | 23  | 165   | 1 | 240 | 00         | 120            | 00 | 200   |
| 279 | 31          | 80   | 29  | 131   | 254   | 05          | 105            | 55  | 166   |   |     |            |                |    |       |
| 278 | 30          | 81   | 30  | 132   | 253   | 34          | 106            | 26  | 167   |   |     |            |                |    |       |
| 277 | 30          | 82   | 30  | 133   | 253   | 04          | 106            | 56  | 168   |   |     |            |                |    |       |
| 276 | 32          | 83   | 28  | 134   | 252   | 34          | 107            | 26  | 169   |   |     |            |                |    |       |

Table for Laying Out Roads One Chain Wide.

#### TABLE XVII

#### To Convert Time Into Arc

| Time | Arc | Time | Arc  | Time | Arc | Time | Arc | Time | Arc | Time | Arc |
|------|-----|------|------|------|-----|------|-----|------|-----|------|-----|
| hrs. | ٥   | hrs. | 0    | hrs. | ۰   | hrs. | ۰   | hrs. | ۰   | hrs. | ۰   |
| 1    | 15  | 5    | 75   | 9    | 135 | 13   | 195 | 17   | 255 | 21   | 315 |
| 2    | 30  | 6    | . 90 | 10   | 150 | 14   | 210 | 18   | 270 | 22   | 330 |
| 3    | 45  | 7    | 105  | 11   | 165 | 15   | 225 | 19   | 285 | 23   | 345 |
| 4    | 60  | 8    | 120  | 12   | 180 | 16   | 240 | 20   | 300 | 24   | 360 |
|      |     |      |      |      |     |      |     |      |     |      |     |

Hours of Time into Arc

Minutes of Time into Arc

Seconds of Time into Arc

| m. | 0 |    | m. | ۰  | t  | m. | ۰  | ,  | s. | , | "  | s. | ·  | "  | s. |     |    |
|----|---|----|----|----|----|----|----|----|----|---|----|----|----|----|----|-----|----|
| 1  | 0 | 15 | 21 | 5  | 15 | 41 | 10 | 15 | 1  | 0 | 15 | 21 | 5  | 15 | 41 | 10  | 15 |
| 2  | 0 | 30 | 22 | 5  | 30 | 42 | 10 | 30 | 2  | 0 | 30 | 22 | 5  | 30 | 42 | 10  | 30 |
| 3  | 0 | 45 | 23 | 5  | 45 | 43 | 10 | 45 | 3  | 0 | 45 | 23 | 5  | 45 | 43 | 10  | 45 |
| 4  | 1 | 0  | 24 | 6  | 0  | 44 | 11 | 0  | 4  | 1 | 0  | 24 | 6  | 0  | 44 | 11  | 0  |
| 5  | 1 | 15 | 25 | 6  | 15 | 45 | 11 | 15 | 5  | 1 | 15 | 25 | 6  | 15 | 45 | 11  | 15 |
| 6  | 1 | 30 | 26 | 6  | 30 | 46 | 11 | 30 | 6  | 1 | 30 | 26 | 6  | 30 | 46 | 11  | 30 |
| 7  | 1 | 45 | 27 | 6  | 45 | 47 | 11 | 45 | 7  | 1 | 45 | 27 | 6  | 45 | 47 | 11  | 45 |
| 8  | 2 | 0  | 28 | 7  | 0  | 48 | 12 | 0  | 8  | 2 | 0  | 28 | 7  | 0  | 48 | 12  | 0  |
| 9  | 2 | 15 | 29 | 7  | 15 | 49 | 12 | 15 | 9  | 2 | 15 | 29 | 7  | 15 | 49 | 12. | 15 |
| 10 | 2 | 30 | 30 | 7  | 30 | 50 | 12 | 30 | 10 | 2 | 30 | 30 | 7  | 30 | 50 | 12  | 30 |
| 11 | 2 | 45 | 31 | 7  | 45 | 51 | 12 | 45 | 11 | 2 | 45 | 31 | 7  | 45 | 51 | 12  | 45 |
| 12 | 3 | 0  | 32 | 8  | 0  | 52 | 13 | 0  | 12 | 3 | 0  | 32 | 8  | 0  | 52 | 13  | 0  |
| 13 | 3 | 15 | 33 | 8  | 15 | 53 | 13 | 15 | 13 | 3 | 15 | 33 | 8  | 15 | 53 | 13  | 15 |
| 14 | 3 | 30 | 34 | 8  | 30 | 54 | 13 | 30 | 14 | 3 | 30 | 34 | 8  | 30 | 54 | 13  | 30 |
| 15 | 3 | 45 | 35 | 8  | 45 | 55 | 13 | 45 | 15 | 3 | 45 | 35 | 8  | 45 | 55 | 13  | 45 |
| 16 | 4 | 0  | 36 | 9  | 0  | 56 | 14 | 0  | 16 | 4 | 0  | 36 | 9  | 0  | 56 | 14  | 0  |
| 17 | 4 | 15 | 37 | 9  | 15 | 57 | 14 | 15 | 17 | 4 | 15 | 37 | 9  | 15 | 57 | 14  | 15 |
| 18 | 4 | 30 | 38 | 9  | 30 | 58 | 14 | 30 | 18 | 4 | 30 | 38 | 9  | 30 | 58 | 14  | 30 |
| 19 | 4 | 45 | 39 | 9  | 45 | 59 | 14 | 45 | 19 | 4 | 45 | 39 | 9  | 45 | 59 | 14  | 45 |
| 20 | 5 | 0  | 40 | 10 | 0  | 60 | 15 | 0  | 20 | 5 | 0  | 40 | 10 | 0  | 60 | 15  | 0  |

#### TABLE XVIII

# Conversion of Mean Time Interval To The Equivalent Siderial Time Interval

| Days | Add |      | Hours | Add |      | Minutes | Add |
|------|-----|------|-------|-----|------|---------|-----|
|      | m.  | s.   |       | m.  | s.   |         | s.  |
|      |     |      |       |     |      |         |     |
| 1    | 3   | 56.6 | 1     |     | 9.9  | 1       | 0.2 |
| 2    | 7   | 53.1 | 2     |     | 19.7 | 2       | 0.3 |
| 3    | 11  | 49.7 | 3     |     | 29.6 | 3       | 0.5 |
| 4    | 15  | 46.2 | 4     |     | 39.4 | 4       | 0.7 |
| 5    | 19  | 42.8 | 5     |     | 49.3 | 5       | 0.8 |
| 6    | 23  | 39.4 | 6     |     | 59.1 | 6       | 1.0 |
| 7    | 27  | 35.9 | 7     | 1   | 09.0 | 7       | 1.2 |
| 8    | 31  | 32.5 | 8     | 1   | 18.8 | 8       | 1.3 |
| 9    | 35  | 29.0 | 9     | 1   | 28.7 | 9       | 1.5 |
|      |     |      | 10    | 1   | 38.6 | 10      | 1.6 |
|      |     |      | 20    | 3   | 17.1 | 20      | 3.3 |
|      |     |      |       |     |      | 30      | 4.9 |
|      |     |      |       |     |      | 40      | 6.6 |
|      |     |      |       |     |      | 50      | 8.2 |

#### (Add listed correction to Mean Time Interval)


.

## LIBRARY FACULTY OF FORESTRY UNIVERSITY OF TORONTO

TA Canada. Topographical Survey 622 Manual of instructions for C353 the survey of dominion lands 1913 8th ed. Suppl.

Forestry

## PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

## UNIVERSITY OF TORONTO LIBRARY



LIBRAR FACULTY OF FORESTRY UNIVERSITY OF FORONTO

