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PREFACE 

Tm:  aim  of  tin1  present  work  is  to  furnish  the  student  of 
science  with  a  self-contained   manual  of  the 

theory  and   manipulation    of   those   measurements    in  physics 

which   hear   m<»t    directly   up«>n   his  Mil>M'<pient  work  in  other 

•  •f  study  ami  upon  1.  ^uial  career. 

Only   those  experimental   methods  have  heen   included  that 

are  strictly  s<  and  that  can   he  depended  upon  to  give 

good  in  the  hands  of  the  average  student.      Although 

il  pieces  of  apparatus,  experimental   methods,  and  deriva- 

!ormul;e    that    possess  some   novelty  appeal',  our   fixed 

purpose  has  been  to  use  the  standard  forms  except    in  rases 

e  an  extended  trial  in  large  classes  has  demonstrated  the 

;oposed  imitation. 
It  has  been  assumed  that  the  experiment  is  rare  that   should 

1   before  the    .student    ui  iie    theory   in- 

1    and    the   d  -n    <»f    the    formula    required.      Conse- 

(pi.-mly   the  t  .f  each  experiment    is   -.riven    in   detail   and 

the  required  formula  developed  at  leiiLTlh.      'I'lie  moiv  important 
ror  are  pointed  out.  and  means  are  indicated  by 

which  these  :nay  he  miuimi/.ed  or  accounted  for. 

commenced  during  the  second 

'lie-  I-    presupposes  a  working  knowledge  of  trigo- 
1   college  algebra,  but  does   not  require  analytic 

geoi  dculus. 



vi  PREFACE 

Most  of  the  experiments  here  given  were  printed  privately 

some  years  ago  and  have  since  been  in  constant  use,  under  our 

direction,  by  classes  of  from  one  to  two  hundred  students  each 

semester.  They  have  all  been  carefully  revised  for  the  pur- 
poses of  this  volume. 

We  are  indebted  to  Mr.  G.  G.  Becknell,  Instructor  in  Physics 

in  Purdue  University,  for  the  method  we  have  adopted  for 

solving  the  equation  for  the  coefficient  of  expansion  of  a  gas. 

E.  S.  F. 
A.  T.  J. 
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PRACTICAL   'PHYSICS 

BENERAL  ffOnONfl    BBGARDING   IMIVSICAL  MF.AM'IIKMKNT 

1.   Introductory 

KXIM  -.1:  IM  F.XTAL  work  lias  one  of  two  objects;  either  to  find  out 
;lt  follows  under  given  conditions,  or  to  find  out 

itmerical  11  different  quantities.     The  lirst 

In  th«-  M  y  science  qualitati\e  experiments  are 

i  unifi-ous  ;  w;  s  more  ir  ie  majority  of  the 
:ments  are  quantitatue.      The   determination   of    various 

uair  t  of  physical  nicasun-nu-nt  . 

In  making  a   ph\-iral    nirasinvni.-nt.   thr   magnitude   uf  each 

oantity  oonoemed  has  to  be  exprened  in  terms  of  some  unit. 
nd  the  process  of  v.-nirnt   .  !v  in  tindiiiL,r 

ow  many  tin,  I   in    the   ̂ ivi-n  (juantity. 

'he  il  points,  for  e\  may  he  expressed us  of  the  number  of  foot  rules  which  omUl  be  laid  end  to 
lid    between    tlloS. 

Some  quant  ;  thus  be  measured  •/              others  can  he 

ii-ed   on]  ;          i  be    >>              -Modulus  of  a 
«  rass  wire  cannot  be  expt-:  mined  l»y  finding  how 

:ie   unit  of    Vnun^'s   niudiilus   is   c«»ntaincd    in    the 

"oiin'/s   modulus   of  the    \\ii                                      >    niodnliisof    the 
^   »TO   i  mined    l.y   measuring    a    force    and   three 

1   ugths,    ;:  :     the     Vuiiii^'s    modulus. 
^r»Mt    uiajo:  moasurements   are   indirect 

1 
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2.   Errors 

Every  measurement  is  subject  to  errors.  In  the  simple  case 
of  measuring  the  distance  between  two  points  by  means  of  a 
meter  stick,  a  number  of  measurements  usually  give  different 
results,  especially  if  the  distance  is  several  meters  and  the 
measurements  are  made  to  small  fractions  of  a  millimeter.  The 

errors  introduced  are  due  in  part  to  — 
(1)  Inaccuracy  of  setting  at  the  starting  point ; 
(2)  Inaccuracy  of  setting  at  intermediate  points  when  the 

distance  exceeds  one  meter  ; 

(3)  Inaccuracy  in  estimating  the  fraction  of  a  division  at  the 
end  point; 

(4)  Parallax  in  reading,  i.e.  the  line  from  the  eye  to  the  divi- 
sion read  not  being  perpendicular  to  the  scale; 

(5)  The  meter  stick  not  being  straight ; 
(6)  The  temperature  not  being  that  for  which  the  meter 

stick  was  graduated ; 
(7)  Irregular  spacing  of  divisions  ; 
(8)  Errors  in  the  standard  from  which  the  division  of  the 

meter  stick  was  copied. 
Besides  the  above  there  are  doubtless  other  sources  of  error. 

It  may  be  well  here  to  note  that  blunders,  such  as  mistakes 
due  to  mental  confusion  in  putting  down  a  wrong  reading,  or 
mistakes  in  making  an  addition,  are  not  usually  classed  as 
errors. 

Of  the  above  errors,  (1),  (2),  and  (3)  can  be  very  much 
decreased  by  having  fine  divisions  on  the  scale  and  reading  with 
microscopes  ;  (4)  can  be  made  small  by  bringing  the  scale  on  the 
meter  stick  close  to  the  object  to  be  measured  ;  (5)  can  be  made 
very  small  by  using  a  meter  stick  of  special  design,  or,  in  rough 
work,  by  holding  the  meter  stick  against  a  straight  edge  ;  (6)  can 
be  nearly  eliminated  by  using  the  meter  stick  only  at  the  proper 
temperature,  or,  if  its  temperature  and  coefficient  of  expansion 
are  known,  by  calculating  a  correction  to  be  applied  ;  (7)  can  be 
diminished  only  by  a  careful  comparison  of  the  lengths  of  the 
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different  divisions:  and  for  (8)  corrections  can  be  applied  only 
when  something  is  known  about   the  accuracy  of   the   standard 
from  which   the   meter   stick    was   copied.      llut   even  with  the 

refined  methods  and   the   most   careful   application  of  cor- 
ns, different   measurements  -.mie   distance  usually 

iitYereiit  ivsults. 

Er:                                           .              ^     :nay  he  d 
which  more  or  le>s  am;  -  ,-an  he  calcu 

lue  to  (  !  >init< 
\   fur    wliich   cor:  *  amiot    he  calculated. 

for  whir  ;  ap]>lied, 

>t-    dut-    to   ( 1 ).  , 
amount  and  will  : 

large  and  som. -tiim-s  t-»o  .hileotl.  those  due  to 

>t  applied,  will  he 
ccmtatit   and  will  tend   to   ma!  due   ..htaim-d   a 

h  rge  iall. 

Since  the  average  \  N  varialde  err«'i'>  \\lnch   tend 
t<    m.  ie    niiiin 

n  easn  -  he  al>.,ut  ti  ;is  the  average  value  of  tlmse 
\    ri.ti 

(»    a  large  in;1  from 
\    riai  1  \\ith 

t   tistant    errors,  the   >ame  .juantity  >houl'  i>y  M 
n  my 

e    t  n.  '.  ill    iiNiialh  .  all  a 

v  lue  can  be  e  .  alu<- 
. .  an  an;. 

i. -lined  as  the  amount  l»y 
iicl»  the  vain  1  h.it  !>>.  if  the 

lue  —  wliieh  i>  n-.t   usually  known  —  is  denoted  1»\    7T,  tin- 

;  by   O,  and  •  /.'. 

/:     <>     T.  (  i  - 

(»f    the    rnnvetioli    wliiell    oUUdlt    to    be   applied 

lied  a.^  'Unt   which  would  ha  added  to 



4  PRACTICAL   PHYSICS 

the  value  obtained  in  order  to  get  the  true  value.     That  is,  if 
Q  denotes  the  required  correction, 

0=  T-  0.  (2) 

From  (1)  and  (2)  it  will  be  seen  that  the  error  in  a  measure- 
ment and  the  correction  which  ought  to  be  applied  to  it  are 

equal  in  magnitude  and  opposite  in  sign.  This  does  not  mean 
that  the  error  is  exactly  equal  in  magnitude  to  a  correction 
which  actually  is  applied,  because  for  the  correction  itself  only 
an  approximate  value  is  usually  known. 
TRUSTWORTHY  FIGURES.  —  Since  all  measurements  are  sub- 

ject to  errors,  it  is  important  to  be  able  to  determine  how  many 
figures  of  a  result  can  be  trusted. 

In  direct  measurements  it  is  usually  possible  to  make  a  fairly 
accurate  estimate  of  the  extent  to  which  a  reading  can  be 
trusted.  Thus  in  reading  by  the  unaided  eye  the  position  of 
a  fine  line  which  crosses  a  meter  stick,  the  reading  will  not  be 
in  error  by  so  much  as  a  millimeter  but  pretty  surely  will  be  in 
error  by  more  than  a  thousandth  of  a  millimeter.  So  the  extent 
to  which  the  reading  can  be  trusted  will  lie  between  these 
limits.  A  person  who  is  accustomed  to  estimating  fractions  of 
a  small  division  will  be  rather  sure  of  not  making  an  error  so 
great  as  the  tenth  of  a  millimeter,  and  he  can  often  trust  his 
reading  to  a  twentieth  of  a  millimeter. 

It  is  convenient  always  to  put  down  all  the  figures  that  can 
be  trusted,  even  if  some  of  them  are  ciphers.  Thus  the  state- 

ment that  a  distance  is  50  cm.  implies  that  there  is  reason  for 
supposing  that  the  distance  really  lies  between  45  cm.  and 
55  cm.,  whereas  the  statement  that  the  distance  is  50.00  cm. 
implies  that  there  is  reason  for  supposing  that  the  distance 
really  lies  between  49.95  cm.  and  50.05  cm.  When  the  dis- 

tance is  said  to  be  50  cm.  the  second  figure  is  the  last  in  which 
any  confidence  can  be  placed ;  when  the  distance  is  said  to  be 
50.00  cm.,  the  fourth  figure  is  the  last  in  which  any  confidence 
can  be  placed.  If  a  distance  is  about  50,000  Km.  and  the 
third  figure  is  the  last  in  which  any  confidence  can  be  placed, 
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this    fart    may   IK*    indicated    by   saying    that    the    dUtam  -e    is 

50.0-  1'      km'. nent*   the    result    is  usually  calculated   by 

;ie  formula.      To  tind  out    how  many  figures   should   be  kept 

in  the  :  osider  the  following  t  \\  ••• 
1.     If  the  result  is  the  al-vbraic  sum  of  several  quantities,  sueh 

:l  1.  128,  82.6,  and  7.068,  it  is  seen  that   in  the  sum.  :',.">  t.n'.U. 
IK.  tiinire  heviid  that  in  the  first  decimal   place  ean  be  trusted, 

in  the  quantity  which  has  the  fewest  t  ru>t  \\ort  hv  deci- 

mal   places,  \i/.  :>-.('.  no  figure  b«-\ond  the  •',  can    be   trusted  — 
;ild  have  been  <-\  ^-  the  sum  will  not   he 

LI.     Ti  •  be  following  rule  :  — 
i;    I.    -In   sums  and   differences  HO  mon   decimal    places 

.iued   than  can  be  trusted  in  the  »piaiitity  haviiiLT 

frweM  trust  wnrtliy  decimal  pla> 

•1.     If    tlir    !  product    of  two    (jiiantitics.   su.'h    as 

314.  i_'^  and  B2.6,  then  the  product  <'ann.»t  l»c  tru>tc«i  t,.  m.»rc 
figures  than  apjM-ar  in  the  quantit;,  :nist  worthy 

,  irn-sp«-ctive  of   the    decimal    pla-  I    •  make   this  clear 

the   I'M  11 

:;i  L428  •  B2.  i      10187.4672 

814.428  •  82.6      i 

§14,  • 

I      is  seen    that   if    tin-  quantity   \v  Inch    : 

fignrefl  the  true \  due  «,f  tl..  ae  olitained. 

'1  h-  i  and  foiuth  «.f  the  ab..\e  prndiirts  sh«>w  that   if  more 
1    an    three    \\^\  :n.t    I.e    •  E  tWO  quantities 
M  iiich  «   multiplied,  it   is   not    wprih  while  to   use   n 

t    an    three     -Of    a:  th«-    other.       The>e 

>  suggest  the  following  rule  : 
:.i;    II.         hi  products  and  quotients  no  more  figures  should 

b  •  kept  th.i  isted  in  the  quantity  havi  tttrust- 
>\  orthv  ti-rures. 
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Until  the  final  result  is  reached,  it  is  often  worth  while  to 

keep  one  more  figure  than  the  above  rules  indicate. 

For  logarithms  a  safe  rule  is  the  following  :  — 
RULE  III.  —  When  any  of  the  quantities  which  are  to  be 

multiplied  or  divided  can  be  trusted  no  closer  than  0.01  %  use 
a  five-place  table,  when  any  of  them  can  be  trusted  no  closer 
than  0.1%  use  a  four-place  table,  and  when  any  of  them  can 
be  trusted  no  closer  than  1  %  use  a  slide  rule. 

REQUIRED  ACCURACY  OF  MEASUREMENT.  —  From  Rule  I. 
it  will  be  seen  that  if  a  small  quantity  is  to  be  added  to  a  large 
one,  the  percentage  accuracy  of  the  measurement  of  the  small 
quantity  need  not  be  so  great  as  that  of  the  large  one.  Thus 
if  ff=  a  +  b,  and  if  a  is  about  100  cm.  and  b  about  1  cm.,  a  1  % 
error  in  a  will  produce  in  If  no  greater  effect  than  a  100  %  error 
in  b.  When  quantities  are  to  be  added  or  subtracted,  they 
should  be  measured  to  the  same  number  of  decimal  places. 

From  Rule  II.  it  will  be  seen  that  if  a  small  quantity  and  a 

large  one  are  to  be  multiplied  the  percentage  accuracy  of  the  meas- 
urement of  the  small  quantity  should  be  at  least  as  great  as  that 

of  the  large  one.  Thus  if  ff=  ab,  a  1  %  error  in  a  will  produce 
in  H  the  same  effect  as  a  1  %  error  in  b.  So  that  if  a  is  about 
100  cm.  and  b  about  1  cm.,  arid  if  b  cannot  be  trusted  closer  than 
0.01  cm.,  there  is  no  gain  in  accuracy  by  measuring  a  much  closer 
than  to  within  1  cm.  When  quantities  are  to  be  multiplied  or 
divided,  they  should  be  measured  to  within  the  same  fraction  of 
themselves,  e.g.  all  of  them  within  1  %  and  none  of  them  much 
closer,  or  all  of  them  within  0.01  %  and  none  of  them  much  closer. 

The  last  statement  needs  modification  in  the  case  of  a  power. 
If  the  value  found  for  a  quantity  a  is  1  %  too  large,  i.e.  is  1.01  a, 

then  the  value  that  will  be  obtained  for  a2  is  1.0201  a,  which  is 
about  2  %  too  large,  and  the  value  obtained  for  a3  is  1.030301  a, 
which  is  about  3  %  too  large.  In  general,  if  the  value  found 

for  a  is  Jc%  too  large,  the  value  that  will  be  obtained  for  an  will 
be  nk  %  too  large.  So  that  a  quantity  which  is  to  be  squared, 
cubed,  or  raised  to  some  higher  power  should  be  measured  with 
more  care  than  if  it  entered  the  formula  to  the  first  power. 



[IONS    I;I:<;ARI>I.\<;    PHYSICAL    MKASCKF.MKNT  7 

INTRnlHVKl)    BY    m.MMnN    A1TR<  >XIM  A TI- 

Xl  M 

HER 
TECE  VALVE 

AiM'i:..x. 
VALIE 

WHEN- 

AP- 
PLICABLE 

II..  \v  OKTAINKI> 

•1,  KD 

i:Y    THE 

Ai-ri 

1 1  -f  a  4-  a3 1  4  ./ 
<1  SIlUlll 

ct  a2 

-a8 

(a     
error 

0.1  - 

0.01 

2 (l+a)(l  +  6) l+a+6 
««  ami  /. 
small 

s 

-aft 

3 
(1  +  a)- 

1  +  ma ,/  >mall 
.'1  by  binomial 

•••ni.    Neglect  SIM  ..ml 
and  higher  powers 

m(m-l)     9 

2 

4 
(1  +  a)« 1  +  2a a  small Apply  (3) -a* 

^       —  (\    1   n\~v 
5 1 

1  +  a 
1  -   .1 •  i  >niall 

l+«~
 

Apply
  

(3) 

6 vTTa 1  +  ia -/   Mil.  ill vTT^=(i  ̂  
Apply  (3) 

-1-  I 

7 
V56 *(«•«•») 

f.jil.il 
to  a 

Let  6  =  a  +  e.    Then 

Va6=Va*+a*       \ 
Apply  (6) 

+  (b_^a£ 

8a 

8 

«• 

'1   -Ml.lll ——!+!-• 
Neglect  third  and  1. 

powers 

+  .' 

9 OOti 1 »i  small 
--1-S+E- 

N.--II-.-T  leoond  ;m.i 

+  ia« • UBi 

a« 

«  small 
.-£+... 

tana  =  *HL2  =     [1    cosa     ̂ 1^.. 

Apply  (5) 
-ia* 

ii Una sin  »r •  t  Mliall Like  (8)  and  (10) 

-ja« 
EzprMMd,  of  coarse.  In  ndl*n». 



8  PRACTICAL   PHYSICS 

APPROXIMATE  FORMULAE.  —  Beside  the  errors  of  observa- 

tion, errors  may  be  introduced  into  indirectly  measured  quanti- 
ties by  the  use  of  formulae  which  are  only  approximate.  Thus, 

the  sine  and  tangent  of  small  angles  are  used  as  equal  to  the 

angles,  the  reciprocal  of  (1  +  a)  is  written  equal  to  (1  —  a) 
when  a  is  small,  3.14  is  used  for  TT,  a  number  of  figures  are 
dropped  from  the  end  of  a  product,  etc.  Whenever  such  an 
approximation  suggests  itself,  the  error  introduced  by  using  it 
should  be  investigated  and  the  approximation  not  made  unless 
the  error  thereby  introduced  is  so  small  as  not  to  affect  any 
figure  that  could  otherwise  be  trusted  in  the  result. 

The  preceding  table  of  a  few  common  approximations  may 
prove  useful. 

3.  Methods  of  expressing  Results 

The  object  of  a  quantitative  experiment  is  sometimes  the 
measurement  of  some  quantity,  and  sometimes  the  determina- 

tion of  the  relation  between  various  quantities.  When  the 
relation  between  several  quantities  is  sought,  the  usual  method 
is,  keeping  all  but  two  of  the  quantities  constant,  to  vary 
by  known  amounts  one  of  these  two  and  then  determine  the 
changes  produced  in  the  other.  Another  pair  of  the  quantities 
is  then  varied  while  the  rest  are  kept  constant,  and  so  on  until 
a  sufficient  number  of  pairs  of  quantities  have  been  investi- 

gated. The  various  relations  found  to  exist  between  the 
various  pairs  of  quantities  can  then  be  combined  to  give  the 
relation  sought. 
When  one  quantity  has  been  given  various  known  values 

and  the  corresponding  values  of  a  second  quantity  have  been 
determined,  the  relation  between  them  can  always  be  expressed 
graphically;  it  can  also  be  expressed  more  or  less  accurately 
by  means  of  an  empirical  formula;  and  when  this  formula  is 

sufficiently  simple,  the  relation  can  without  difficulty  be  ex- 
pressed in  words. 

To  illustrate  these  methods,  suppose  that  it  is  desired  to 
determine  the  relation  between  the  distance  a  body  has  fallen 



NOTIONS   REGARDING    PHYSICAL   MKAsri:i-:.MK.\T 9 

from   ivst    and   the   time   it    lias   heen    falling.      Suppose   that    a 
Dumber  of  determinations  are  made,  in  each  of  which  a  hull  is 

allowed   to   fall  a  known  distance,  ami  the  time  required  is  ol>- 

!ues  ohtaineil  heinur  those  in  the  following  table  :  — 

IKBD 

0064 
0.101 

0.1  I:', 

<>.•_'«>_' 

«»._ 

MM 
<U«»I 

PLOTTING  01  i;  KMLI    DIVIDED  COOBDI- 
PAPBB*-  -These  values  may  be  plotted  in  the  same  \\.t\ 
Orvefl  are  drawn  in  A  G  iould 

is  to  mal  :id  near!  t  In-  sheet 

ibothd,  .  unless  by  so  doing  a  unit  in  the  last  place  that 

in  1.  :epresei;'  i    than  one   of 

"ii  the  paper.     I f.  Pot  instance,  time 
etroc  >ec.,  then  t  be  scale  f'  <-n  in 

'ig.   1  times  \\hat  to  be.       If,  ho\ve\er. 
or  closer,  then   the 

ibl  not  always  I..-  drau  n    t  hroii^b 
,11    tbe    points,    but    should    I-  >tli    eur\e    \\hieli     tits    the 

Mints  as  ther  scah"  has  been  so  ol 

unit  in  the  List   plaee  that   can  he    tnist.-«l    i  . ntcd 

•   .smallest    d  '»u    the    paper,  a    deviation    of 

urve  usually  indicates  errors   ,,f  ob.s.-rvat  ion. 
i  !ice   that    the   distance    fallen 

i  i  creases  as  the   time   increases;   but    >inc«-   tl  not    a 

nut  proportional  to  the  time, 

ard  tin-  tiiii'  .     '    follows   that 

ie  dii  ases  at  a  oonUnoally  increasing  i  that 
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as  the  body  falls  it  goes  continually  faster  and  faster.  The 
curve  also  serves  to  find  the  distance  fallen  in  any  time  not 
much  exceeding  0.4  sec.,  or  to  find  the  time  required  to  fall 
any  distance  not  much  greater  than  80  cm. 

The  next  step  is  to  find  the  equation  which  represents  this 
curve.     Let  the  time  which  has  elapsed  be  represented  by  £, 

0.4 

and  the  distance  fallen  by  I.     If  I  decreased  when  t  increased, 
the  equation  might  be  of  a  form 

or 

or 

etc. 
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Iii  the  case  in  hand,  however,  since  /  increases  when  t  inert 

the  relation  cannot  be  one  of  the  above  forms;  it  may,  perhaps, 
be  of  a  form 

/  =  a  +  It.  (3) 

or  /  =  a  +  It  -f  (4) 

or  l  =  a  +  bt  +  ct*  +  tfr3,  (5) 

If  the  relation  were  of  the  form  in  (•''>),  two  points  would  sutliee 
to  determine  <i  and  I.  For  if  tin-  coordinates  of  the  two  points 
were  (tv  /j)  and  (/.,.  /._, ».  we  should  have 

/j  =  a  +  f,tl 

and  /a  =  a  -f  btv 

and  from  these  two  equations  we  eould  determine  the  fcwp 

quantities  <i  and  b.  Similarly,  if  the  ivlatinn  w.-re  of  the  form 

iii  (4).  three  points  would  sutVice  to  determine  a,  6,  and  <•. 

'1  bus,  if  only  two  points  are  determined,  there  can  always  be 
f  -Mild  a  n-lation  of  the  form  in  (:))  that  \\ill  he  satisfied  1>\ 
1  itli  tli-.se  puints:  if  thive  iK)int8  are  determinc«l,  a  relation 

c  .n  always  be  found  containing  three  constants  whieli  will  he 
b  tistitMl  by  all  three  points;  if  n  points  are  known,  a  relation 
(  n  a.  unin^  n  iiieh  will  be  satis- 

1  -d  by  all  n  p-ints.  Hut  an  equation  containing  many  con- 

s  , Hits  is  eiimbt-rsoim',  and  [1  uilly  po»ibh-  to  find  an 

e  nation  with  only  three  or  four  constants  whieli  i>  vrry  nearly 
K  tisli.d  by  nnber  of  points. 

A  r-  -d  of  finding  how  many  < -onMants  should 

I)  •  used  in  an  equation  like  (8),  (4),  or  (">)  will  he  illustrated 
b  '  considering  the  curve  plotted  in  Fig.  1.  The  maximum 
a  scissa  is  divided  into  some  half  dozen  or  more  convenient 

e  ual  parts,  the  ordinate  at  each  division  point  is  read,  and  the 

c«  nrespondin:  of  abscissas  and  ordinates  are  recordi  <1  in 
tl     Srst  two  columns  of  a  table :  — 
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t i V 

A,J 

0.00  sec. 0.0  cm. 1.3  cm. 
0.05 1.3 3.7 2.4  cm. 

0.10 5.0 6.0 
.      2.3 

0.15 11.0 
8.4 

2.4 
0.20 19.4 11.3   , 2.9 

0.25 30.7 13.4 2.1 
0.30 44.1 15.8 2.4 
0.35 59.9 18.4 

2.6 

0.40 78.3 

In  the  third  column  are  the  differences  of  the  first  order,  i.e. 
the  differences  between  the  successive  values  of  I ;  in  the  fourth 

column  are  the  differences  of  the  second  order,  i.e.  the  differ- 
ence between  the  successive  differences  of  the  first  order;  in 

a  fifth  column  would  be  the  differences  of  the  third  order,  etc. 
In  the  present  case  it  is  seen  that  in  going  down  the  columns 

the  differences  of  the  first  order  continually  increase,  whereas 

the  differences  of  the  second  order,  although  varying  somewhat, 
on  the  whole  neither  increase  nor  decrease  to  any  great  extent. 
By  a  simple  application  of  the  Differential  Calculus  it  can  be 
shown  that  if  the  differences  of  the  nth  order  neither  increase 

nor  decrease,  then  (n+1)  constants  are  enough  to  retain  in  a 
formula  of  the  general  form 

y  =  a  +  ox  -\-  cy?  +  dofi  •+• 
For  the  case  in  hand,  then,  three  constants  should  be  retained, 

and  the  formula  may  be  written 

I  =  a  +  It  +  ct2. 

The  three  constants  are  to  be  determined  by  choosing  three 
points  on  the  curve  as  far  apart  as  convenient,  and  so  obtaining 
three  equations  from  which  to  solve  for  a,  b,  and  c.  If  the 

points  selected  are  (0,  0),  (0.20, 19.5),  and  (0.40,  78.2),  the  values 

found  for  a,  I,  and  c  are  respectively  0,  —0.5,  and  490.  Con- 
sequently the  empirical  equation  is 

Z  «•  0-0.5* +490  A 
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From  theoretical  considerations  the  formula  for  a  hody  fall- 

St  should 

To  compare   the   two  equations   compute  by  each  of  them  the 

ice  fallen  in  a  Lriven  time.      Thus  if   </  is  '.K^Orm.  per  sec. 
in  a  B6C.,   the   distance   fallen   in   O.o  minted   from   the 

::•-- 
Hi   

  •': 

.; 

/ 

f 
/ 
/ 

/I 

/ / 

/ 
/ 

f 

f 

f 
f 

/ 
~- 

i f 
/ 

^ / 
s f 

: 

I \ 
i             9         4      6     9    T  8  9  10                     »           »       40     80   90  T080  HO  100 

,i..  wliile  according  to  thr  rmpiri- 

equation  t i  }:'..'.».">  cm. 
HMh'Ai.i.v     DIVIDED 

'K)RMV\i!      I'M-l.i:.  --In     the  ft]     ivpivs.-ntatioii     in 

'  j,  1.  <>.•_>  MO.  'f  t'rnni  the  origin  as  0.1  sec., 
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0.3  sec.  three  times  as  far  as  0.1  sec.,  etc.,  and  similarly  for  the 
distance  fallen.  Another  method  of  plotting  results  is  often 

adopted,  viz.  to  plot  along  each  axis  a  distance  which,  instead 
of  being  proportional  to  the  value  itself,  is  proportional  to  its 
logarithm.  In  order  to  save  looking  up  logarithms  coordinate 
paper  having  the  rulings  spaced  logarithmically  can  be  used. 

Fig.  2  represents  a  sheet  of  logarithmic  coordinate  paper  with 
the  values  for  times  and  distances  fallen  plotted  upon  it.  The 

curve  connecting  these  points  is  seen  to  be  a  straight  line. 

If  a  straight  line  had  been  obtained  when  plotting  on  uni- 
formly divided  coordinate  paper,  it  would  be  known  at  once  that 

the  equation  of  the  curve  was  I  =  a  +  bt,  where  a  would  denote 

the  intercept  on  the  Z-axis,  and  b  the  tangent  of  the  angle  between 
the  curve  and  the  £-axis.  Since,  instead  of  t  and  £,  the  quanti- 

ties which  have  been  plotted  in  Fig.  2  are  log  t  and  log  I,  the 

equation  of  the  straight  line  which  is  obtained  is 

log  I  =  a  +  b  log  t. 

Bat  a  is,  of  course,  the  logarithm  of  some  number,  and  so  the 

equation  may  be  written 

log  I  =  log  A  +  b  log  t. 

Whence  I  =  At\ 

Since  b  is  the  tangent  of  the  angle  made  by  the  curve  with  the 

£-axis,  its  value  can  be  found  by  dividing  <?,  in  Fig.  2,  by  d. 
On  measuring  these  and  dividing,  the  value  found  for  b  is 

2.002.  Since  A  is  the  number  whose  logarithm  is  the  inter- 
cept on  the  Z-axis,  the  value  of  A  may  be  read  off  directly. 

It  will  be  noticed  that  the  values  of  the  times  have  been 

multiplied  by  one  hundred  before  plotting.  This  does  not 
alter  either  the  shape  of  the  curve  or  its  slope,  but  merely 

throws  it  far  enough  to  the  right  to  get  it  on  the  paper.  If  it 
were  moved  to  the  left  to  its  proper  place,  it  is  seen  that  it 

would  cut  the  Z-axis  some  place  between  100  and  1000,  and 
since  the  triangle  efg  is  equal  to  the  triangle  that  would  be 

formed  by  the  Z-axis,  the  curve,  and  the  100  cm.  line,  it  follows 
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that  the  value  of  .-1  is  the  ^;de  from  decimal  point,  as  the 
interest  /</  on  the  lU-sec.  line.  The  point  where  the  curve 

crosso  the  LO-060.  line  >  M  I.1.'  am.  Moving  the  decimal  point 
so  as  to  make  the  value  lie  l>et  \\veii  1<>0  and  1000,  the  value 

obtained  by  this  method  is  about  4l»0.  The  empirical  equation 
i  l»y  this  method  is,  then. 

/  =  490  *i00a, 

while  the  theoretical  equation  is 

4.   Notation 

In  ;"iit   chapters    frequent  use  will  l>e  made  of    the 
The  attention  of  the  student   is  called  to  the 

following  symhnli.Mii   and  i.y  means 
of  it  :  — 

The  symbol  i1"*  is  an  abbreviated  way  of  writing fc=i— » 

,  and   is    read:    »  The 

m  of  tl.'  1  integral  values  fn.m  1   to  ft*'1 
Exp  \\l»i(  h  are  to  be  sumi  be  expanded  as 

own  1)\    tli  ing  example:  — 

2  (?--•••   i'  =  v^-iv,-4.w. »=|  ...  m        tf.i  ...  n 

By  some  one  of  the  algebraic  methods  of  summing  sei 
n  he  shown  that  :  — 



CHAPTER   II 

METHODS  AND    APPARATUS    FOR    THE    MEASUREMENT    OF 

FUNDAMENTAL   QUANTITIES 

1.    Measurement  of  Distance 

THE  vast  majority  of  the  measurements  made  in  a  physical 
laboratory  are  ultimately  measurements  of  distance.  Two 
temperatures,  for  instance,  may  be  compared  by  the  difference 
in  the  lengths  of  a  thread  of  mercury;  a  pressure  may  be 
determined  from  the  height  of  a  barometric  column,  or  from 

the  distance  that  the  pointer  of  a  pressure  gauge  moves ;  a  dif- 
ference in  time  may  be  measured  by  the  distance  that  the  hand 

of  a  clock  has  moved;  etc. 
The  Meter  Stick  is  the  instrument  most  often  used  in  the 

laboratory  for  the  measurement  of  moderate  distances.  Usu- 
ally the  smallest  divisions  marked  on  it  are  millimeters.  Since 

the  last  division  at  each  end  is  liable  in  time  to  become  worn 

a  trifle  short,  the  ends  are  seldom  employed.  In  use,  the 
meter  stick  is  turned  up  on  its  side  so  as  to  bring  its  scale  as 
close  as  possible  to  the  object  to  be  measured,  some  line  on  the 
meter  stick  is  brought  as  nearly  as  possible  into  coincidence 
with  one  end  of  the  distance  to  be  measured,  and  the  reading 
of  each  end  of  the  distance  is  noted,  the  tenths  of  a  millimeter 
being  estimated.  The  difference  between  the  two  readings 
gives  the  distance  sought.  Division  lines  which  are  as  close 
together  as  a  fifth  of  a  millimeter  are  usually  more  confusing 

than  helpful.  A  very  little  practice,  however,  will  make  possi- 
ble the  rather  accurate  estimation  of  a  tenth  of  a  division,  pro- 

vided the  division  is  not  much  smaller  than  a  millimeter. 

For  the  more  accurate  measurements  of  small  distances,  the 
principle  of  the  micrometer  screw  has  many  applications.  A 

16 
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earefullv  made  screw  with  a  divided  head  turns  in  an  accurately 

titting  nut.      An  index  mark  close  to  the  divisions  on  the  head 

shows    through   how    many    divisions    the    screw    has    turned. 

The  distance  between  the  threads  of  the  screw  divided  by  the 

number  of  divisions  on  the  head  gives  the  distance  the  end  of 

TCW  advances  when  the  head  is  turned  through  one  of  its 

OUS,      The  principle  of  the  micrometer  screw  is  employed 

in    the    micrometer    ealiper,    the    spherometer,    the    dividing 

engine,  the  tilar  micrometer  microscope. 

Thr   M  •      i       ,8)   consists  of   an   accurately 
made  screw  which  can   be   advanced    t'>\\ard   or  away  from    the 

.1.  whole 

number   of    millimeters    .  »•!*  p  •rn-J£Ji""^i»l»»gBg>p* 

b'    '  1    .1I1<1     ibflPteMMMMb^-.      -'  *":£&&£&& 

indicated    by    the 

millimeter  divisions  on 
11  covered 

l  y  the  sleeve  1>*  while 
t  ic  fi,.  i  a  milli- 

!i   by   the 

/-  pitch  of  the  screw  is  half  a  inilli- 
;  leter  and    if   the   head    i^   divided    into   lifts    e<|iial   spaces,   one 

..ink  will  be  uncovered  by  the  .slee\e  for  ever) 

*0  complete  turns  oi  8W,  and  .  toe  on  the  divided 
of    0.01    mm. 

hus   if   tenths  of  a   division   on    the   .sleeve   , 

j  iate  to  0.000'»  mm. 
iiNtrunicnt.  l.«,  the  reading  when 

•  just   touches  A  1  always  be  recorded.      In   making  a 

:  -ading,  the   sleeve  is  Qevei  turned  up  tight,   but   only  until  a 

ery  slight  |in->-  It. 

In   •         i        rometer  (Fig.  4)  a  inic;  101611   which   has 
a    »ery    large    divided    head    passes   vertically    through    a    nut 

i    oiinted.it    i  ,111    equilateral  tripod.      The    pitch  of 

tie  S'  .iieiitlv  .1    mm.  and    the    li«-ad  divided   into  500 
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equal  spaces,  so  that  by  estimating  tenths  of  a  division,  a  read- 
ing can  be  made  within  0.0001  mm.    However,  with  the  type  of 

spherometer  illustrated  in  the  figure 
several  successive  settings  usually 
show  that  they  cannot  be  trusted 
much  closer  than  0.001  mm.,  so  that 
it  is  useless  to  read  the  fractions  of  a 

division.  The  spherometer  is  espe- 
cially useful  in  measuring  the  radius 

of  curvature  of  spherical  surfaces  — 
whence  its  name. 

In  the  Dividing  Engine  (Fig.  5) 
a  long  micrometer  screw  with  a  large 
divided  head  A  is  mounted  horizon- 

tally in  a  massive  base  between  a  pair  of  tracks  in  such  a  way 
that  it  has  no  longitudinal  movement,  but  when  rotated  causes 
a  nut  to  advance  parallel  to  the  tracks.  Attached  to  the  nut  B 
is  a  carriage  C  which  slides  along  the  tracks  with  the  advance  of 
the  nut.  Fastened  to  the  base  are  one  or  two  microscopes  M, 
with  cross  hairs  in  the  eyepieces,  which  can  be  focused  upon 

FIG.  4. 

FIG.  5. 

an  object  resting  upon  the  sliding  carriage.  In  making  the 
measurement  of  the  distance  between  two  points,  the  carriage 

is  slid  along  until  one  point  is  under  the  cross  hairs  of  a  micro- 
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and   then    the    mi.  :vw    is    turned   until    the 

other    point  under    the    cross     hair.       The     difference 

en  the  reading  of  the  micrometer  screw  when  one  point 

.uder  the  cross  hair  and  the  reading  when  the  other  point 
•  rnler  the  cross  hair  gives   the   distance   between   the   two 

points.      If  the  pitch  of  the  -  1  mm.,  the  head  divided 
200  divisions,  and   t  i    to  one  tiftlt  of  a  division,  a 

leading  will  be  made  within  o.nol  mm.     The  microscope  should 

lit  magnifying  power  to  show  elearlv  a  move- 

ment of  n.ool  mm.         -  ,ird  paragraph  bdov 
The  dividing  engine  receives  its  name   from   the   fact   that    it 

is  most  Of!  i  to  rule  divided  BCal  itened  to  the  base 

18  a  s\  >v  which  a  tracing  point    .V  can   be  drawn 

B  the  sliding  in  a  direction  normal  to  the  motion  of 

'NT.       l'>\    t:  an  be  drawn   upon  an  object 
ted  to  the  I  .  d\  aneed   by  a 

•  l-fmi-  nt,  anoti.  ira\\  n  parallel  to  the   first,  and  so 
•  i  until  a  scale  is  Co:  1.      The  mechanism  earning  the 

t  -acing   point    is  often   arranged  with    notched  wheels  />  which 

i   -i-mit   li:  ;th,  so  that    in   ruling 
f    scale  e\                 :i   and   tenth   lint-   may   be   dra\\n  longer  than 
t  ie  o 

«-ope  is  a  microscope  that  has  in 
t  ie  fo  .-1  cross  hairs,  <i  and  /• 

(  Kig.    •) ),    \\hidi  caii    be    moved  across  t 

pe    by  means  of  a   mi- 
I 

/,   the  t«-, 
\   hid;  :  he  \\  hole 

i    imber  of   turns   made   by   the   n, 

s  rew.  oscope 

s  age   c<-  FI<; 

i    «Qroine:-  jied   by  focali/ing  the   micro- 

s  -  pe  rd    sea!  •mmoiily  us<-d  is  a 

s  ale  having  ten  divii  :nillim«-;  taken  to 
li  we  tlie  lines  of  tin-  standard  scale  parallel    to  the   movable 
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cross  hairs.  Readings  are  made  on,  say,  five  consecutive  lines 
of  the  standard  scale  near  the  left  side  of  the  field  of  view, 
and  then  on  the  same  number  near  the  right  side  of  the  field. 
From  the  difference  between  the  readings  for  the  left-most 
lines  of  the  two  sets  is  obtained  one  determination  of  the  dis- 

tance corresponding  to  one  turn  of  the  screw ;  from  the  differ- 
ence between  the  readings  for  the  second  lines  in  the  two  sets 

is  obtained  a  second  determination  ;  and  so  on. 

If  the  pitch  of  the  screw  is  such  that  one  turn  corresponds  to 
a  distance  of  0.1  mm.  on  the  microscope  stage,  and  if  the  head 
is  divided  into  50  parts,  one  division  on  the  head  corresponds 
to  0.002  mm.  With  the  best  microscope  it  is  impossible  to 
distinguish  lines  closer  together  than  about  0.001  mm.,  but  the 
mean  of  a  number  of  careful  settings  on  a  very  fine  line  can 
be  trusted  to  about  0.0005  mm.  In  making  a  setting,  the 
screw  should  always  be  turned  up  from  the  same  direction  in 
order  to  avoid  errors  due  to  backlash. 

In  the  Eyepiece  Micrometer  a  finely  divided  scale  ruled  on 
thin  glass  is  placed  in  the  focal  plane  of  a  microscope.  The 
eyepiece  micrometer  is  standardized  in  the  same  manner  as  the 
filar  micrometer. 

Vernier 's  Scale  is  a  device  employed  for  the  estimation  of 
fractions  of  the  smallest  divisions  of  a  scale.  It  consists  of  a 

short  auxiliary  scale  capable  of  sliding  along  the  edge  of  the 
principal  scale.  The  precision  attainable  with  the  vernier  is 
about  three  times  that  attainable  with  the  unaided  eye.  The 

theory  of  the  vernier  may  be  made  clear 

.  I  I,,  i  i  i  i  I  i  i  by  the  following  example :  Suppose i  i 
'  that  along  a  meter  stick  there  slides  a 

—  vernier   9  mm.  long  divided  into   ten 
equal  parts.  Each  division  on  the  ver- 

nier is  then  0.9  mm.  long,  and  if  the  0-mark  and  the  10-mark 
on  the  vernier  coincide  with  lines  on  the  meter  stick,  then  the 

1-line  on  the  vernier  lacks  0.1  mm.  of  coinciding  with  a  line  on 
the  meter  stick,  the  2-line  lacks  0.2  mm.  of  coinciding  with  a 
line,  the  3-line  lacks  0.3  mm.,  and  so  on.  If,  then,  the  vernier 
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to  be  iin i VIM!  aloii'_r  0.:]  mm.,  its  0-line  would  be  0.3  mm. 

beyond  some  mark  on  the  meter  stick,  and  the  3-line  would 

coincide  with  some  mark;  if  the  7-line  coincided  with  some 

mark,  the  0-line  would  be  0.7  mm.  beyond  some  mark,  etc. 

The  position  of  the  0-line  is  what  is  desired.  In  Ki*r.  7  the 
:n. 

In   rising  any   vernier,  we   first    lind   how  many  divisions  on 

the  vernier  correspond  with   how  many  on  the  main   scale,  and 

from   this  calculate   the  length  of  a  vernier  di\ision.      The  dif- 

•  •II    the   length  of  a  >cale   division   and  the  length 

of  a  vernier  division  is  called  tin-  ••  -unt  "  of  the  vernier. 
i  nit    multiplied   by  the  number  of  the  vernier  line 

which   coincides  with  a  line  on   the  scale  <jives  the  distance  he- 

i   the  0-.  the   vernier  and  the  preceding  line  on  the 

I  In   the  case  of  a   circular  scale   divided   into  thirds  
of  a 

.  the  v« •:  >ften    made    li  t'ty-nine    thirds  of 
ng  and  is  di\ided   ii  .      Its  least  count  is 
en  one  third  of  a  minu:  .  s  .shows  such  a  vernier,  and 

;t  -o   illust:  manner  in   which    verniers  are   often    num- 

i     :  I  can  be  made   directly  without    computa- 

t    »n.      In  this  particular  case,  since  each  vernier  di\isioii  corre- 
s   onds   to  one   third  of  a   min;  natural   to  number   the 

ti  teeiith  division  ~>,  [}n-  thirtieth  division  1  In 
•  l  -.  s  the  :  i  ;:,    lg<  - 

Tlf    /'  •''  a  finely  divided  steel 

'•   ('  \\\\  d  jaw  at  0110  end.  and  a  u \v  /!  j,r..\  i.led  \\  ith 

a    .  l>  '       '  i.-    aloii'_r  th,.  1,-n^th  of    the  scale, 

this   instrument    the  jaw  11  is  nearly  closed    upon   the 
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object  to  be  measured,  the  screw  E  is  tightened,  and  the  final 

adjustment  carefully  made  with  the  screw  F.  The  zero  read- 

ing should  always  be  noted,  and  care  should  be  taken  that  F 
is  turned  only  until  a  slight  pressure  is  felt. 
The  Cathetometer  is  an  instrument  for  measuring  vertical 

distances  in  cases  where  a  scale  cannot  be  placed  very  close  to 

the  points  whose  distance  apart  is  desired.  It  consists  essen- 

tially of  an  accurately  graduated  scale,  together  with  a  hori- 
zontal telescope  capable  of  being  moved  up  and  down  a  rigid 

vertical  column. 

In  one  pattern  of  the  instrument  (Fig.  10)  the  scale  is  en- 
graved on  the  supporting  column,  while  in  another  pattern  the 

scale  is  independently  supported  parallel  to  the  object  being 
measured  and  close  beside  it.  In  the  case  of  an  instrument  of 

the  first  type,  the  carriage  can  be  clamped  at  any  point  along 
the  length  of  the  vertical  column  and  its  position  read  lay 

means  of  the  scale  on  the  column  and  a  vernier  (  F",  Fig.  10), 
attached  to  the  carriage.  In  the  case  of  an  instrument  of  the 
second  type,  the  position  of  the  carriage  is  obtained  by  observing 
through  the  telescope  the  point  on  the  distant  scale  that  appears 
to  coincide  with  the  cross  hair  of  the  telescope. 

Before  taking  a  reading  with  a  cathetometer  three  adjust- 
ments are  necessary.  The  first  adjustment  is  to  make  the  axis 

AB  vertical.  To  effect  this,  the  telescope  is  set  approximately 
parallel  to  the  line  connecting  two  of  the  three  leveling  screws 
in  the  base,  and  one  or  both  of  these  two  screws  is  turned  until 
the  bubble  in  L  is  near  the  middle  of  the  vial.  The  telescope 
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then   rotated  about  Alt  until  it  points  in  the  opposite   direc- 
tion.     If  the   bubble   is   n.it   still   in    the   middle,   it    is   brought 

bark    to  tin*  middle    by  turning 
or  bntb  i >f  ti  :v\vs.  the 

number  of  turns  heiiiLj  counted. 
II  Jf  <>f  that  number  of  turns  is 

thru  made  in  tin-  opposite  direc- 
tion and  the  bubble  brought  back 

be  middle  of  the  vial  by  DO 

of  tin-  -  ^cope 
hen  tinned   so   as  to  be   90° 

from  its  original  position  and  the 
tlm  in  the    base   adj 
until  the  bubble  is  in  the  middle. 

iie   bubble    dors   not    n<»\v  re- 
n  ain   in   the   middle  of   the 

h  .\\ever    tl.  >pe     may    be 
timed  about  . l  /  ntire  ad- 

j  >tin. -nt  ie  .1. 
The    Se  ijllstinrlit     is    tO 

r  ake  the  a 

1  iriznntul.       In    lining    thi- 
t  lescop 

t  trneil  rnd  for  end.  aced. 

I     tin-   l»ul)i 
r   8t  at    the    middle  . 

i     bro  i,\   the 

>   I-  -A     />.   the    numbers   of    tin  H^^ 
I    (pliivd     b.-ili^    eoimtrd.         Half 

t    is  numb<T  of  turns  is  made  in                               l°- 

t    e  opposi1  !.ubl)le  tlien  brought   to  tin-  mid- 

d  e  by  m.-ans  of  the  se:  «,t    tl,t-  vial.      The   tele- 

|'">pe                          ..-r>ed  in  tin-  \\yes,  and  if  the   bubble  do, 

.iconic1                   tin-mid.       .  .ire  repeateil. 
Ijiistm.-:  lev,, pc.      The  front 

'iitainii:  it  until  the  • 
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hairs  appear  as  distinct  as  possible.  Then,  while  sighting  along 
the  outside  of  the  telescope,  the  latter  is  brought  to  about  the 
right  height  and  turned  so  as  to  point  approximately  at  the 
object  to  be  viewed.  The  eye  is  then  placed  at  the  eyepiece 
and  the  focalizing  screw  F  turned  until  the  image  of  the  object 
does  not  move  with  reference  to  the  cross  hairs  when  the 

observer's  head  is  moved  slightly  from  side  to  side. 
If  the  scale  is  engraved  on  the  column  which  carries  the  tele- 

scope, the  latter  is  focalized  first  on  one  of  the  points  and  then 
on  the  other,  the  final  setting  being  made  in  each  case  by  the 
screw  E.  After  each  setting  the  height  of  a  mark  on  the 

carriage  is  read  by  the  vernier  F".  The  difference  between 
the  two  readings  gives  the  desired  distance. 

If  the  scale  is  independently  supported,  it  is  placed  vertical, 
close  to  the  object  being  measured,  and  so  that  the  scale  and 
object  are  at  about  the  same  distance  from  the  telescope. 
The  telescope  may  be  focalized  on  one  of  the  points  and  then 
rotated  about  a  vertical  axis  until  the  scale  is  in  the  field  of 

view,  the  height  of  the  cross  hair  being  then  read  directly ;  or 
a  small  mirror  capable  of  rotation  about  a  vertical  axis  may  be 
attached  to  the  telescope  just  beyond  the  objective,  so  that  by 

rotating  this  mirror,  an  image  of  either  object  or 
scale  can  be  seen  without  rotating  the  telescope. 
The  height  of  the  second  point  is  then  observed 
in  the  same  manner. 

When  the  scale  is  independently  supported,  the 
error  introduced  by  lack  of  vertically  of  the  scale 
may  be  easily  found  as  follows:  Let  AB  (Fig.  11) 
be  a  vertical  line  drawn  through  the  point  B  of 
the  scale  CB.  Then  in  place  of  the  real  height 
AB,  we  read  CB,  and  the  error  is  CB  —  AB  = 
CB-  CB  cos  0  =  CB  (1  -  cos  0). 

For  a  given  inclination  of  the  scale,  this  error 
will  evidently  be  greatest  when  CB  is  greatest. 

If,  then,  the  scale  is  100  cm.  long  and  readings  are  to  be  trusted 
within  0.01  cm.,  the  scale  should  be  so  placed  that  its  departure 

FIG.  11. 
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from  vertieality  is  not  greater  than   that  given  by  0.01  =  100 

(1  —  eostf).      From  this  equation  6  is  found  to  be  somewhat 
than  0.01  radian,  whieh  means  that   for  the  given  degree 

•urary  the  seale  is  nearly  enough  vertical  when  a  plumb 
irupped  from  its  top  would  fall  within  1  em.  of  its  bottom. 

2.   Measurement  of  Mass 

One   of    the    m,.st    eommou    as    well    as   the    most    accurate 

methods  for  the  eomparisoii  uf  masses  is  atYonh-d  l.y  the  beam 

lance  (!•';•_:.  1-  >.    The  beam  BB'  e;m  rotate  ab«.ut  a  knife  edge 
K.    wbiei.  :j.oii  an  agate  j)!.!1--.      ̂ uspeuded   fr«.m   knife 

I\\  and    /\.,  aiv   the  >eale  pans  p{  and   /-,.       A    handle 

//  op.-rat.-s  an   a:  :iiiL,r   of  a    hoii/.ontal    n»d    and 

tb  *ee  '        '  i   ('.,,  by    means   uf   whieli   the   kn. 
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may  be  relieved  of  the  weight  of  the  beam  and  pans  when  the 
balance  is  not  in  use  and  when  the  masses  in  the  pans  are  being 
changed.  Fastened  to  the  beam  is  a  long  pointer  /  which 
swings  in  front  of  a  graduated  scale  S.  Whether  the  divisions 
on  this  scale  are  numbered  or  not,  it  is  convenient  to  assume 
that  the  middle  division  is  numbered  10,  and  that  the  divisions 
are  numbered  from  left  to  right.  Projecting  from  the  side  of 
the  case  is  a  rod  R  by  means  of  which  a.  bent  aluminium  wire 
called  a  rider  can  be  placed  at  any  point  along  the  beam.  This 
rider  is  used  in  place  of  standard  masses  smaller  than  10  mg. 
The  top  of  the  beam  is  often  divided  into  twenty  equal 

parts,  the  0-line  being  over  the  central  knife  edge,  and  the 
10-lines  over  the.  other  knife  edges.  If  the  mass  of  the  rider 
is  10  mg.,  and  it  is  placed  on  one  of  the  10-lines,  it  produces 
the  same  effect  as  if  a  10  mg.  mass  were  in  the  corresponding 
pan ;  but  if  it  is  placed  at  division  3,  it  has  a  turning  moment 
only  three  tenths  as  great,  and  so  produces  the  same  effect 
as  would  a  3  mg.  mass  placed  in  the  pan.  Occasionally  a 
rider  of  some  other  mass  is  used  and  the  beam  divided  accord- 
ingly. 

The  Method  of  Vibrations  is  usually  employed  in  making  ac- 
curate weighings.  When  using  this  method,  the  case  is  at  first 

left  closed  and  the  arrestment  released.  If  the  pointer  does  not 
begin  to  swing,  the  case  is  opened,  the  hand  waved  lightly 
over  one  pan,  and  the  case  again  closed.  With  the  pointer 
swinging  in  front  of  the  scale,  but  not  beyond  it,  the  zero  point 
of  the  balance  is  determined;  i.e.  the  point  at  which  the  pointer 
would  finally  come  to  rest,  either  with  no  load  on  the  pans,  or 
with  equal  loads  on  the  two  pans. 

This  is  done  by  observing  an  odd  number  of  successive  turn- 
ing points  of  the  pointer.  As  the  pointer  swings,  the  distance 

between  any  two  successive  turning  points  on  the  same  side  of 
the  scale  gradually  decreases,  but  in  a  few  swings  the  decrease 
is  slight.  The  zero  point  is  about  halfway  from  b  (Fig.  13) 
to  a  point  midway  between  a  and  <?.  It  is  also  about  halfway 
from  c  to  a  point  midway  between  b  and  c?,  about  halfway  from 
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«7  to  a   point  midway  bet ween   0  and  0,  etc.      Sim-e  the  distance 
from   <f  to  <'  is  about  tin-  same  as  that  from  c  to  t%  the   average 

,  and  t  is  nearly  tin-  The  x.ero  point,  then,  is 
:   tli.-   point  found   by  taking  the 

.  <•.  and  0,  ami  avera^im,'  with 
it  the  average  of  b  and  </.       Suppose,  for 
in>tanee,     that     five  turning 

point-  :  — 
-  11.8 

[Tien  1  of  the  turning   points  at  the  left  is  S. .">:',  and 
of  the  turning  points  at  the   ri'_rht  is  11.85.     Consequently  the 

in  tin-   neighborhood  of  [J(8.53+  11.8f>)  =  ]10.2. 
Five  ve  turning  points  are  usually  enough  to  observe, 

bet  any  odd   number  of  successive  turning  points  may  be  us,-d 
in  the  same  v.  by  averaging  the  left  turning  points  and 

a\  -ra^in-j'  '.t  turning  points  and  tln-n  finding  t  he  a\  - 
Of   thf  ;         Imiild    he    noted    that    this    method   of 

fii  lin  •  accurate  when  the  pointer  s\\in^s 
SJT  :h  a  small  amplitud  S  he  zero  p"int   \ariesfrnmday 
to  day,  and   •  .  it    should    he   determined 

fo    each  expei-ini*    •.      I  dmuhl    be 
d(  -ennined  b..th  at  the  he^inning  and  at  the  end  ..fa  weigh- 

in  ',  and  the  a \rraije  value  used. 

Vfter    thf   /.«•!•..   p.,int    has    1  ^rminrd    and     while    the 

ar  estm-':  1  so  as  to  lift  the  ln-am  utT  tin-  knife  edge, 

tli      obj«M-t    is   pi. i  pan   and  standard    masses  on    the 
Ot   er.      IIi'_'ht-handrd  I  find  it  most  coiiveni«Mit    to 

tin    obj'M't  nn  thr  h-ft   pan  so  that  the  mass  pan  is  in  front  of  the 

ha  id  t  ha"  th«-  adjustment    «•!'   tin-   .standards.       Karh  time 
th;  ta  nrw  mass  :  .m  tin-  pan  tin-   arn-M  nn-nt  is  lowt-rrd 

ju      •  iioii^ji  t,,  >(.r  j,,  \\hirh   dirrt-tion  the  pninti-r  would  swiiiL^ 
bu    no  masses  are  ever  put  <>n  or  taken  off  while  the  pointer  is 

fp   •  to  8Wing,       \VIn-n    tin-   masses  are  so  nearly  adjusted   that 
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when  the  arrestment  is  entirely  released  the  pointer  swings 
back  and  forth  near  the  zero  point,  the  position  at  which  the 
pointer  would  finally  come  to  rest  is  determined  from  several 
successive  turning  points  in  the  -same  way  that  the  zero  point 
had  been.  .  The  rider  is  then  moved  so  as  to  alter  the  effective 

mass  on  the  mass  pan  by  one  or  two  milligrams,  and  the  new 
position  of  rest  determined.  From  these  observations  the  mass 
which  would  be  required  to  make  the  point  of  rest  coincide  with 
the  zero  point  can  be  calculated  without  taking  the  time  to 
effect  the  balance  experimentally. 

Suppose,  for  example,  that  the  zero  point  of  the  balance  is 
10.2  scale  divisions,  and  that  with  the  object  on  the  left  pan 
and  a  mass  of  24.166  g.  on  the  right  pan,  the  point  of  rest  is 
found  to  be  11.6  scale  divisions.  Since  this  point  of  rest  is  to 
the  right  of  the  zero  point,  the  mass  on  the  right  pan  is  too 
small.  Suppose  that  by  means  of  the  rider  the  effective  mass 
on  the  right  pan  is  increased  by  2  mg.,  and  that  the  new  point 
of  rest,  determined  as  before,  is  found  to  be  7.4  scale  divisions. 
Then  the  addition  of  2  mg.  has  moved  the  point  of  rest  through 

[11.6  —  7.4  =]  4.2  scale  divisions,  and  1  mg.  would  have  moved 
it  2.1  scale  divisions.  It  follows  that  the  mass  which  would 

have  to  be  added  in  order  to  move  the  point  of  rest  through  the 

[11.6  —  10.2  =  ]  1.4  scale  divisions  to  the  zero  point  of  the 
balance  is  [1.4-f-2.1=]  0.7  mg.  Consequently  the  apparent* 
mass  of  the  object  is  [24.166  +  0.0007  =]  24.1667  g. 

The  sensibility  of  a  balance  is  denned  as  the  nilmber  of  scale 

divisions  through  which  the  point  of  rest  is  moved  by  the  ad- 
dition of  one  milligram  to  the  load  on  one  of  the  pans.  In  the 

above  example  the  sensibility  was  2.1  scale  divisions  per  milli- 
gram. The  sensibility,  however,  depends  upon  the  load  and 

should  therefore  be  determined  for  each  weighing.  The  fact 

that  it  depends  upon  the  load  may  be  shown  as  follows :  — 
Let  K^  _ZT2,  JT3  (Fig.  14),  denote  the  three  knife  edges 

of  the  balance,  and  M  the  center  of  mass  of  the  beam.  Let 

*  See  below,  Errors  in  Weighing. 
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y>j    and    /'.,    be    the    respective    masses    of    the    left    and    right 
pans,   and    M,  the   mass   of    the    beam.      Suppose    that    with    a 

.V1   <>n   the    left    pan  and    a    mass  J/,   mi    the    right   pan 
the    beam    enines 

in      the 

i  i  inn     indi- 

i.         Then, 

-m 

\{9ffl the   bal 

is  in  iMjuilibriiini, 
^\\\\\    of     the 

of 

'  }i  -  (M* 
-}-//._,)//,   and    M.y 

D      al'Min      I\ 

e.jnal 

P 

*3g 

/,  sin  (0,  -  ft)  -  (Afa  +  pi)g  x  l^  sin  (03  4-  /9) 
.—  37  =  n, 

;  .-08/8-n.s^^  BUI 

s  /^  -h  ens  ̂   sill  /3) 

-  ̂f,r  sin  0  --  (10) 

actual    OU6  'nail,  \v«-    may    n-place 

lift  ^/,  =  /,  if  ̂.2=  0j  =  ̂.  and 

Pi  ~  V\  —  I                '  ve 

(3/,  +  ;i)/(sin#-  ̂ rnstf  )        (  .V.,  -f  /')/(Ml.^-h/^«-(,S^) i/    ,; 
"In-: 

If.V,-     '        ,  then/9  i  if  J/i-3f2=  1  m-..  then  the 
1<  ft  member  of  (11)  d  -In-  movement  <»f  th.-  |»..ii;ter  for 
1   mg.  in   the   In.id.       Thai    i^.  rach   mrinlf.T  i.f  tiiis  e<|iia- 

t    '  )  IB  proportional  in  tin-  sensihility  of  the  balance. 

If  ̂   --I'M.  and   uhalrvrr   tin-    value  of   the    load, 

J  \  -f    •/  .1  iin-ml.  unaltered  :    that   is.  when 
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6  is  90°,  the  sensibility  is  independent  of  the  load.  If  0  is  less 
than  90°,  cos  0  is  positive,  and  as  the  load,  Ml  +  M%,  increases, 
the  right  member  of  (11)  decreases;  that  is,  when  6  is  less 

than  90°,  the  sensibility  decreases  as  the  load  increases.  If  6  is 
larger  than  90°,  cos  6  is  negative.  It  follows  that  as  Ml+  M2 
increases,  the  denominator  of  the  right  member  of  (11)  de- 

creases, and  the  sensibility  therefore  increases ;  that  is,  when  6 

is  larger  than  90°,  the  sensibility  increases  as  the  load  increases. 
Since  different  loads  necessarily  bend  the  beam  different  amounts, 
it  follows  that  the  sensibility  is  different  for  different  loads. 
The  maker  usually  arranges  to  have  the  three  knife  edges  in 
line  when  the  balance  has  about  half  its  maximum  load. 

Errors  in  Weighing. — The  errors  to  which  a  weighing  is  espe- 
cially liable  are  due  to  (1)  the  buoyant  effect  of  the  air,  (2)  errors 

in  the  standard  masses,  (3)  difference  in  the  lengths  of  the  bal- 
ance arms,  and  (4)  difference  in  the  masses  of  the  scale  pans. 

(1)  The  buoyant  effect  of  the  air  will  be  different  upon  the 
bodies  on  the  two  scale  pans  unless  their  volumes  are  equal. 

The  true  mass  may  be  found  as  follows :  Let  M,  D,  and  V  de- 
note respectively  the  mass,  density,  and  volume  of  the  body 

the  mass  of  which  is  desired,  and  m,  d,  and  v,  the  mass,  density, 
and  volume  of  the  standard  masses  which  just  balance  it  in  air 
of  density  p.  Then  the  difference  between  the  weight  of  the 
body  in  vacuum  and  its  weight  in  air  is  equal  to  the  weight 
of  the  air  displaced  pVg,  and  the  weight  of  the  body  in  air  is 

consequently  Mg—pVg.  In  the  same  manner,  the  standard 
masses  when  in  air  weigh  mg  —  pvg.  Since  the  weight  of  the 
body  in  air  equals  the  weight  of  the  standard  masses  in  air, 

or  Mg-pj^g^mg-p^g. 

tl-£
 

Whence  M=m 
(12) 
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For  ordinary  temperatures  and  pressures  p  is  about  0.0012  g. 

per  cc.,  so  that  if  any  solid  or  liquid  is  being  weighed,  p  is  very 

small  compared  with  />,  and  we  may  apply  approximation  (5), 
p.  7.  iibtaining  from  (12) 

or.  employing  approximation  < 

or,  since  for  the  brass  standards  ordinarily   used  in  weighing, 
about  8.4  g.  pei 

It  will  ;  rable  error  in   />  can  produce 

i  i  the  value  t'.-r  .!/  niily  a  small  error,  SO  that  a  fairly  rough 

\  Aim  '  /'  i  in  (14).  i  '!'  introdii«-e«l  by  the 

proxiinationft  employed  in  <.l)taining  (I;1.)   will  almost   al\\a\s 
1    •  :»!»•,    bill  nefl    of   p    and    </ 

^  lOuld  l»e  (h-t.-i  iniiird  and  not  assumed. 

in  the  stan  ssrs  may  be  corrected  as  ex- 

j  lained  nndt-i-  K\p.-rimi-nt    !•'>. 
illd    (  1  i     Brron  due    to    difference   in   the  lengths   of   the 

1  il.  us  and  to  difference  in  the  masses  of  the  scale  pans 

<   in  he  nt-arly  eliminat-  iurhin'_:  the  body  first   in  one  pan 

;  id  then  in  tin-  othri.  |.,  :  /(  and  /.,  denote  the  respecti\c 

1  ngths  of  the  h-ft  and  right  anus  nf  th«-  balance,  and  //,  and  />., 

t  ic  re*:  masses  of  the  left  and  ri-^ht  pans.  If  an  object 

«    '  ma>^  M  is  b  :.ind,ii'l  masses  ?//,  \\heli  the  object  is 
i     the  right  pan.  and  by  M.indard  masses  W2  when  the  object  is  in 

I   t   i   left  pan,  then  in  Pig.  14,  /9      <».  ltn.l  if  ̂ 2  =  ̂ , 
.    i/  (15) 

mm  c/'i-  ;/       ,-f 
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If  the  pointer  swings  near  the  middle  of  the  scale  with  no  load 
on  the  pans,  we  have  also  p\l\=p^  so  that  (15)  and  (16) 
become  7       1/r7 

m1l1  =  Ml2 

and  Ml^  —  m^. 

Whence  ^=VJ:  (17) 

In  case  of  a  balance  in  ordinary  adjustment  ra2  will  so  nearly 
equal  m^  that  we  may  use  approximation  (7),  p.  7,  and  in  place 
of  (17)  write  ,,.-. 

Precautions  in  the  use  of  a  balance. 

1.  Do  not  place  on  the  pans  anything  wet,  any  mercury,  nor 
anything  that  might  injure  the  pans. 

2.  Never  change  the  masses  on  the  pans  nor  move  the  rider 
when  the  beam  is  free  to  swing. 

3.  Never  touch  any  standard  masses  with  the  fingers  —  use 
forceps. 

4.  Keep  all  standard  masses  in  the  proper  compartments  in 
the  box  when  not  actually  in  use  upon  the  balance  pan. 

5.  Never  raise  nor  lower  the  arrestment  so  quickly  as  to 
cause  any  jerk. 

6.  When  not  actually  altering  masses  keep  the  case  closed. 
7.  Before  leaving  the  balance  bring  the  arrestment  into  play 

so  that  the  beam  is  not  free  to  swing,  set  the  rider  at  the  zero 

mark,  dust  off  the  pans  and  the  floor  of  the  case  with  a  camel's- 
hair  brush,  and  close  the  case. 

3.   Measurement  of  Time 

INSTRUMENTS.  —  In  nearly  all  apparatus  for  measuring  time 
use  is  made  of  the  principle  that  the  period  of  vibration  of  a 
body  oscillating  with  harmonic  motion  is  constant.  The  most 
commonly  used  vibrating  bodies  are  the  pendulum,  the  balance 
wheel,  and  the  tuning  fork.  Any  one  of  them  may  be  kept 
going  indefinitely  by  a  slight  impulse  given  it  each  time  it 
passes  through  its  position  of  equilibrium. 
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Iii  order  to  ̂ ive  this  impulse   to  a   pendulum  or  a  balance 

wheel,  and  also  to  count  its  vibrations,  there  is  usually  attached 

to  it  a  mechanism  called  dock  work.      A  pendulum  of  such  a 

h  as  to  make  in  cadi  second  one  beat,  /.<•.  half  a  complete 
.died   a  10001  H.      Such   a   pendulum   is 

'.n  standard  clocks.      Where  accuracy  must  he  sacrificed  to 
dlity,  the  balance  wheel  is  empl<  -  in  the  watch  and 

brODOmeter.      A  I    watch   provided   with  a 

ii^  and  stopping  device  M   th.it   the  interval    between  two 

11  be  easily  determin 

The  ini;  keep  the  tuning  fork  v,r»»inij   i*  usually   t^iven 

bv  an  elect  n  •-magnet  which  is  periodically  act uated  bv  a  cur- 

rent i:  1  hn»k«-n  by  the  motion  of  the  tuning  fork  itself. 

Alt, idled  tonne  pn  .ULT  <  »f  t  he  t  nn  ing  fork  is  a  sharp  point  which 

lightly  of  smoked  paper.  The  paper  is 

w  apped  riMind  a  metal  drum  which  rotates  and  at  the  same 

tine  n  >wly  in  tlie  d  .  so  that  the  trace 

m  ide  by  the  vibrating  Mini:,  belix,  Tin- 
ill  slants  at  which  tw"  occur  may  be  marked  by  minute 

h<  !es  made  in  the  blackened  surface  of  the  paper  by  electric 

sj  irks  which  are 

c.llscd      ' 

fl      111 

p<    nt  to  the  n 
d    urn.        If     the 

jx  -io<l  of  the  tun- 
in  \  fork  is  kn- 
tl    •    number    of 

W;  vesand  fraeti«»ii 

of   a  wave   in   the 

line 

be  ween  the  i  .  l,,,les  shows  the  interval  of  time  between 

lh-     *v  \    luniii'_r    fork    and    drum  '1    in    this 

ID;  .ill*  :  k  chronograph. 

The  A*f  differs  from   tin- 

tin  in^-fork   chronograph    principally    in    that    the    drum    runs 

A  B 
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more  slowly,  the  paper  is  usually  not  smoked,  and  in  place  of 
a  tuning  fork  there  are  one  or  more  pens,  A  and  B,  which,  by 

means  of  electro-magnets,  can  be  slightly  displaced  parallel  to 
the  axis  of  the  drum.  One  electro-magnet  is  included  in  a 
circuit  which  is  so  connected  to  a  clock  pendulum  that  every 
second  a  notch  is  made  in  the  line  its  pen  is  drawing.  In  the 

circuit  containing  the  other  electro-magnet  a  telegraph  key  can 
be  so  placed  that  an  observer  can  produce  a  series  of  notches 
corresponding  to  a  series  of  observed  events,  or  the  circuit  may 

contain  some  device  whereby  the  successive  events  may  auto- 
matically close  the  circuit  for  an  instant. 

A  clock  is  seldom  read  closer  than  to  seconds  ;  a  stop  watch 

is  usually  graduated  in  fifths  of  a  second  ;  an  ordinary  watch, 
due  to  eccentricity  in  the  mounting  of  the  second  hand,  can 
usually  not  be  trusted  within  three  or  four  tenths  of  a  second  ; 

an  astronomical  chronograph  can  often  be  trusted  to  a  hun- 
dredth of  a  second ;  a  tuning-fork  chronograph  may  without 

difficulty  be  made  trustworthy  within  a  thousandth  of  a  second. 
METHODS  OF  MEASURING  TIME.  —  The  measurement  of  a 

short  interval  of  time  between  two  separate  events  is  usually 

made  with  a  stop  watch  or  chronograph.  But  for  determining 

the  period  of  a  regularly  recurring  event,  like  the  swing  of  a 
pendulum,  there  are  several  methods  of  procedure,  the  choice 

between  which  depends  upon  the  magnitude  of  the  period  and  the 

accuracy  required.  The  movement  of  a  vibrating  point  from  one 
end  of  its  path  to  the  other  is  called  an  oscillation.  The  complete 

to-aiid-fro  movement  from  the  instant  when  the  vibrating  point 
leaves  any  given  position  to  the  instant  when  it  next  passes  through 
the  same  position  in  the  same  direction  is  called  a  vibration.  The 

interval  of  time  between  two  successive  passages  of  the  vibrat- 
ing point  in  the  same  direction  through  a  given  position  is  called 

the  period  of  the  vibration.  The  period  of  an  oscillation  is  half  the 
period  of  a  vibration.  The  most  useful  methods  of  determining 

the  period  of  a  regularly  recurring  event  will  now  be  considered. 
1.  The  Direct  Method  consists  in  noting  by  means  of  a  clock 

or  stop  watch  the  interval  of  time  between  two  recurrences  of 
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vent  and  dividing  this  interval   by  the  number  of  recur- 

The  accuracy  of  this  method  depends  upon  the  accu- 

racy of  determining   the   times  of  beginning  and  ending  the 

count,  and  upon  the  time  that  is  allowed  to  elapse. 

"2.     7"     .!/•'•'    I  "f  Omitt  — The  preceding  method 
may  be  slightly  moditied  so  as  to  increase  somewhat  the  accu- 

racy without  materially  increasing  the  time  or  labor  required. 

Suppose,  for  example,  that  a  heavy  horizontal  disk  is  suspended 

by  a  vertical  wire,  about  the  axis  of  whieh  it  can  vibrate,  and 

that  the  instant  at  whieh  a  mark  on  the  edge  of  the  disk  \. 

through  the  middle  point  of  its  path  is  noted  for  sixty-one  con- 

secutive swings.  Then  the  ditYerence  between  the  tifty-tirst 

time  of  passing  and  the  first  time  of  passing  gives  the  time  of 

:i  the  lift  v-second  time  of  pass- 

ed the  seeond  time  of  passing  gives  an  independent  deter- 
mination of  the  time  of  :  :igs  ;  and  so  on.  Thus  after 

eo  luting  i  independent  determinations  of  the 

tine  of  til-  ^rs  are  obt  average  is  IIIMIV  trust  - 
w  -rthy  tlian  a  single  drtermination.  There  is  no  need  of  noting 
tl  •  times  of  tli.-  tenth  and  the  liftieth. 

rieneed  observer  can 

re  .dily  estimate  times  of  t:  to  a  tenth  of  a  second.      For  a 
cc  icrete  case  consider  again  the  vibrating  disk  that  was  used  as 

ai    example  fur  the  method  of  omitt.-d  transits. 

\fter  focalizing  a  telescope  on  the  mark  on  the  edge  of  the 
di  k,  the  latter  is  set  into  vibration  and  the  time  of  transit  of  the 

ni  rk  past  the  cross  hair  of  the  telescope  i>  obtained  as  follows: 
looking  at  the  elock,  the  time  in  hours,  minutes,  and  seconds 

ed  :  then  counting  seconds,  and  while  continuing  the 

CO  int,  the  hour  ami  minute  are  recorded.  Without  interrupt- 

in)  the  count,  the  eye  is  placed  at  the  telescope  and  the  time  of 
a  ran  time  ean,  with  practice,  if  the  mark 

pa  ses   rapidly,  be  estimated    to   within  a  tenth    of    a    second. 

W       out  interrupting  the  count  ti  >  recorded.      Cou- 
th, uing  the  count,  the  eye  is  again  placed  at  the  telescope  ready 

foi    the  next  transit,  and   the    tun  transit   observed  and 
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recorded  as  before.  After  a  little  practice  this  method  can  be 
used  with  ease  and  confidence  for  the  observation  of  the  times  of 

any  number  of  transits.  During  the  count  one  should  occasion- 
ally glance  at  the  clock  to  confirm  the  correctness  of  the  count. 

4.  The  Flash  and  Stop-watch  Method.  —  On  a  stand  directly 
in  front  of  the  disk  D  (Fig.  16)  is  placed  a  stop  watch  W, 
and  a  few  inches  above  the  watch  a  mirror  M  is  adjusted  to 
reflect  an  image  of  the  watch  into  a  telescope  T.  On  the  disk 

FIG.  16. 

a  small  bit  of  mirror,  m,  is  so  arranged  that  just  at  the/equi- 
librium position  of  the  disk  the  field  of  the  telescope  is  brightly 

illuminated  by  light  reflected  from  the  lamp  L.  On  placing  the 
eye  at  the  telescope,  there  is  seen  an  image  of  the  stop  watch 
which  is  illuminated  by  a  flash  of  light  every  time  the  disk 

passes  through  its  equilibrium  position.  With  the  disk  vibrat- 
ing, the  motion  of  the  second  hand  of  the  stop  watch  is  atten- 

tively followed  through  the  telescope,  and  when  the  flash  occurs 
the  watch  is  read  to  tenths  of  a  second. 

5.  In  the  Method  of  Passages  the  value  which  would  be 
found  for  the  period  if  a  large  number  of  vibrations  were 
counted  is  obtained  from  the  actual  observation  of  a  much 

smaller  number.  To  fix  the  ideas,  consider  the  case  of  the 
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vibrating  disk  referred   to  in   tin*   preceding  paragraph.      Sup- 
:hat  the  instant  at   which  a  mark  on  the  edge 

nf  the  disk  s\\in^s  through  its  position  of  rest,  once  at  the  be- 

l^innin^  and  <>n«-e  at  the  end  of  twenty  complete  vil>rations. 
From  th-  ,in  approximate  value  for  the  period 
ean   be  calcul.  ted.     8  that   after  a  time  the  ohser\  ations 

are   resumed  and  the  instant   iiuted  at  which   the  mark   is  a^ain 

•ion  of  rest  —  in  the   same  direction  as 

tw«>  pi-  BagM   were   noted.      Then  the  time 

tin-  lir.M    and  last  ol>ser\  at  ions  divided  by 
:>eriod  already   found  gives  appmxiniatelv  the 

numi  .i»rati..ns  that   neenrn-d   b«-t\\eni  tln.se   two   , 

vatic  nple,  th  number  of   vibra- 
1    if  this    \alue  can    be   trusted   within 

•.umber  of  vibrations  that 

really  oemm-d  \\as  a  \\li.-le  number,  the  actual  number  of 
\  bratii.ns  \vas  II.  >in.-e  the  lime  thai  n  the 

fi  "St  and    last    ol>-  r    than    that    between    the 
f\ -St  and   >•-, -.,nd.  the   time   il.;  ,M  be   tni.sted    farther, 

a  ;d   it    is,  therefore,   j  ier  approximation 

t     the  period.      Alter  tllll  \aiue   has  been  found. 
a    COli  d     be    alloued     1  and 

a  iotl,  time    of    passage    \\oiild    L(ive    a    si  ill 

ii  ore   act-lira;  the    p.  I'his    method    may    be 
D  ad.  ihe  followin-_r  cxami 

TIMK  or  PAMAOB t>TRRV«l. Arn 
VIM. 

1 

2 1       17 10  [rountiMl] 

Id 

3         1  1      18    50.6 

4         1  1 1  4 

'HI 

II', 

77  
 ' 

5 1 

'•;:r  « 
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In  using  this  method  it  is  essential  that  the  time  between 
observations  of  passages  be  so  chosen  that  the  approximate 
number  of  vibrations  can  be  trusted  within  three  or  four  tenths 

of  a  vibration.  It  will  be  seen  that  the  successive  values  ob- 
tained for  the  period  are  more  and  more  trustworthy,  so  that, 

instead  of  finding  the  mean  of  these  values,  the  last  one  of  them 
is  to  be  used. 

6.  The  Method  of  Middle  Elongations  is  another  method  by 
which  it  is  possible,  without  counting  the  number  of  swings 

that  occur,  to  obtain  for  a  period  of  vibration  a  value  of  con- 
siderable accuracy.  The  accuracy  attainable  is  somewhat 

greater  than  by  the  method  of  passages,  but  the  method  of 
middle  elongations  is  applicable  only  when  the  period  is  long 
enough  to  allow  of  recording  two  readings  during  each  vibration. 

The  point  of  its  path  where  a  vibrating  body  changes  the 
direction  of  its  motion  is  called  its  position  of  maximum 

elongation.  The  mean  of  the  times  at  which  any  two  succes- 
sive passages  through  the  position  of  equilibrium  take  place 

gives  the  time  at  which  the  elongation  between  them  occurred. 
If  ten  successive  passages  are  observed,  the  mean  of  the  times 
of  the  fifth  and  sixth  passages,  or  of  the  fourth  and  seventh, 
or  of  the  third  and  eighth,  or  of  the  second  and  ninth,  or  of 

the  first  and  tenth,  gives  the  time  at  which  the  middle  elonga- 
tion of  the  series  occurred. 

For  a  concrete  case  consider  a  disk  suspended  at  the  end  of  a 
wire  about  the  axis  of  which  it  rotates.  Suppose  that  a  mark 
on  the  edge  of  the  disk  is  observed  to  pass  through  its  position 

of  equilibrium  at  the  times  indicated  in  the  table  on  the  follow- 
ing page. 

Suppose  that  the  first  transits  in  the  two  series  occurred 
when  the  mark  on  the  disk  was  moving  in  the  same  direction. 
Then  the  elongations  considered  were  on  the  same  side  of  the 
position  of  equilibrium,  and  during  the  790.31  sec.  between 
these  elongations  a  whole  number  of  vibrations  occurred.  This O 

number  of  vibrations  is  not  counted,  but  by  subtracting  the 
time  of  the  first  transit  from  that  of  the  ninth  and  dividing  the 
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ence   l»y    four,   t:  found    to    In-    approximately 

Bee.,  and  th«-  iiumh«-r  «»f  \ihraiions  tliat  nri'imvil  IH-I 

tie  two  given  elongmtioos  is,  therefore,  abooi  [T'.'o.:1.!  4-  !«'>.  .")")  =  ] 
4". 75.      If  this  numlMT  can   l»c   trustc<l    \\itliin    <».:',    vihratimi, 

tl  e  number  oi  \\lii.-h  art  ually  ncctirn-d  must  Ix-  -is. 

'I  h<>  period  ia,  ]  I1'-.  MH  sec. 
If  a  still  in<-  .  i  iliini  series 

0  readin.  :.il>lc  tinn-  hail  fl.i 

a  id  fr<»ni  this  thi:  tfld  either  of  thfl  .'-iM-dinirlv 

c  08e  t«>    tin-    tru«-    {M-ri-.d    miild    he    nhtainrd. 

'1  he  «•  •  as  above  «-\,-«-].t  that   in 
t    idii.  MillidM-;  \\iuilil    he 

1  adr  ;•   tin-    |H-ri«»d    ti  ..l.iainctl    as    the 
r  suit  <>f  tin*  observations  in  tin-  lir>t  t\\o  sc: 

niiiot  IM-  tru  .T  than  <>.:; 

t  .e  time  which  elapses  bet \\ mi  tin-  middle  elongations  of  the 
t    fO  St  .iild   Mot    he  ;han    ahoiit    -\  7"-'.   \\heiv    7'«le- 

ii  >tes  the   aj»pro\ima;  i    of   the   motion:    if   the   times  of 

t   unsit  ran  IM-  trusted  to  0.2  sec.,  the  time  l.ctwecn   the    middle 

e    »ngat ions  may  be  allowed  to  be  about    \  7"-':    and   if   the  times 
10  0.1  SCO.,    the   tilll."    hct  \Vcell    the    Mlid- 

d  e  «  -us  may  IM-  allo\\i-.l  to  hrconn-  x  7"-  or  '.»  T2. 

~.    'I'}--    MMod    :'  accurate  method 
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for  the  comparison  of  two  nearly  equal  periods  of  vibration. 
Suppose  the  period  of  oscillation  of  a  simple  pendulum  is  to  be 
compared  with  that  of  a  clock  pendulum  beating  seconds.  If 
the  simple  pendulum  swings  slightly  faster  than  the  clock 
pendulum,  a  moment  will  occur  when  both  are  at  their  lowest 
points  at  the  same  time.  But  since  the  simple  pendulum  is  all 

the  time  gaining  on  the  clock  pendulum,  after  a  certain  inter- 
val it  will  have  gained  a  whole  oscillation,  and  then  both  pen- 

dulums will  again  be  at  their  lowest  points.  If  between  two 
such  coincidences  the  clock  pendulum  has  made  n  swings,  then 
the  simple  pendulum  has  made  n  +  \  swings,  and  its  time  of 

sec.      Similarly,    if   the   simple   pendulum oscillation   is 
n 

were  going  slower  than  the  clock  pendulum,  the  time  of  oscil- 

lation of  the  simple  pendulum  would  be  -    —  sec. 
n  —  1 

One  method  of  determining  the  instant  of  coincidence 
employs  an  electric  circuit  containing  the  two  pendulums, 

a  battery,  and  a  telegraph  sounder,  all  in 
series  as  shown  in  Fig.  17.  When  the  two 
pendulums  are  in  coincidence,  they  pass 
through  the  mercury  contacts  A  and  B  at 
the  same  instant,  and  at  this  instant  the 
sounder  clicks.  It  is  to  be  kept  in  mind 
that  the  n  in  the  above  expressions  denotes 
the  number  of  swings  made  by  the  clock 
pendulum  —  not  by  the  simple  pendulum. 

Since  one  pendulum  gains  only  slightly 
on  the  other,  and  since  the  passage  of  the 
pendulums  through  the  mercury  cups  at  A 
and  B  is  not  instantaneous,  there  are  often 
clicks  for  several  successive  swings.  The 
mean  time  of  the  first  and  last  of  these  suc- 

cessive clicks  is  used  as  the  instant  of  coincidence. 

The  actual  instant  of  coincidence,  i.e.  the  instant  when  each 

pendulum  is  distant  from  its  position  of  rest  by  the  same  frac- 

FIG.  17. 
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tion  of  a  vibration  that  the  other  is,  may  oeeur  when  l>oth  pen- 

dulums are  i:  -sit  ion  other  than  at    their  lowest  points, 
but  it  can   never   l>e   more   than   half  a   s\vin^   from   the  lowest 

point.      If  there  are  only  a  few  sueeessive  elieks.  it  will  be  safe 
-;ime  that  in  taking  the  mean  of  several  sueeessive  elieks, 

not  in  error  by  so  mueh  as  one  swin^. 

If  the  simple  pendulum  is  swin^i;  :    than  the   eloek  pen- 
dulum, the  error   introdueed    into   the  value    for   the    period   by 

getting  for  ft  One  Swing   ton    tV\v  is   the   dirt'erenee    between   the 

I  found,   ''  :id  the  true  period,          —  ,  viz. n  t-  1 
-  1 

n  rl  "    •    1  i 

•Mpaivd  with  unity.  t!i«-  ermr  is  almost  --  ̂ . 

Thus  if    //  =  7(l.  :•   inti-M.lu.-cd   into    the    period    by  an 
ei  ror  of  1    in   the   number  of   >.•«-,  ,n,U   b,-i  \\.-.-u    enineidence   is 

a   .nut    —  <U)MOli    see.        If    n    IS    Small,    the    aeeiiraev    ina\     lie    in- 

(    «-a>ed  by  .  ..iintin'_r  the  numl>er  od  Ifl  t<»  some   later  eoin- 

c  lei)'  '1  of  to  the  se.  ..lid.      In  this  case  one  pendulum 
v   11   1  the   other  more    than    one   s\\in^,   and    the 

a  -ove  formulas  must  be  m  idingly. 



CHAPTER   III 

LENGTH,   AREA,   ANGLE 

Exp.  1.    Determination   of   the  Thickness  of   a  Thin    Plate   by 
Means  of  a  Spherometer  and  an  Optical  Lever 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  The  object  of  this 
experiment  is  to  measure  the  thickness  of  a  microscope  cover 
glass  by  two  methods  and  to  compare  the  precision  of  measure- 

ment obtained  by  the  two  methods. 
The  spherometer  has  already  been  described.  The  theory 

of  the  optical  lever  will  now  be  developed.  The  optical  lever 
to  be  used  in  this  experiment  consists  of  a  piece  of  sheet  brass 
about  3  cm.  long  and  1  cm.  wide  mounted  upon  four  pointed 
legs,  one  at  each  end  and  the  other  two  midway  between  the  end 

legs  and  in  a  line  normal  to  the  line  joining  the  latter.  Fas- 
tened on  the  upper  side  of  the  optical  lever,  with  its  reflect- 

ing surface  in  the  plane  of  the  two  middle  legs,  is  a  small 
mirror.  The  length  of  the  four  legs  may  be  such  that  when 
the  optical  lever  rests  upon  a  piece  of  plate  glass  all  four  legs 
are  in  contact  with  the  glass,  or  the  end  legs  may  be  slightly 
shortened  so  that  the  optical  lever  can  be  tilted  forward  and 

backward  about  the  ends  of  the  middle  legs.  From  the  differ- 
ence in  the  angle  through  which  the  optical  lever  can  be  tilted 

when  the  middle  legs  rest  directly  upon  a  large  plane  surface, 
and  the  angle  through  which  it  can  be  tilted  when  a  thin  plate 
is  interposed  between  the  middle  legs  and  the  plane  surface, 
the  thickness  of  the  thin  plate  can  be  determined. 

Let  mna  (Fig.  18)  be  the  optical  lever  with  its  mirror 

approximately  normal  to  the  base  mn,  T 'a  telescope,  and  0'  0" 42 
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a  vertical  scale  about  a  meter  from  the  optical  lever.  First 

assume  that  the  ends  of  the  feet  of  the  lever  are  all  in  one 

plane,  Imagine  the  thin  plate  j-  placed  under  the  middle  feet 
of  the  optical  lever.  When 
the  lever  is  tilted  forward 

an  observer  at  the  telescope 

:ie  point  of  the 
'I  in  the  inir- 

.irror 

is  tilted  backward  the  re- ' 

t«»    the    crOSS 

hair    of    tin-    teleSC 
;ime  tin 

has  been  tilted  through  the 

argle  0.      Consequently  the  ft]  :i   the   normals  to  the 

in  rror  in  its  two  positions  is  also  6.     And  sim •»•  the  angle  of 

reflection  equals  ;  of  incidence,  the  angle  between  O'a 

(V  (y1 
a:  d  0"a'  equals  '1  0.     When  0  is  small,  -  0  radians,  and 

o 

Let 

' 

2mm' 

thickness  of   the  thin  plate  be  denoted  hy  //,  the  dis- 

ti   ice    /////    hetwccn    t:  •     Ity  '1  /.    the    distaii. 

b«  tween  •  ,ind   mirror   liy   L.  and  the  ditVcivncc  between 

tl  J  sc  :  1?  ami   O"  hy  X.      Since  /•  is   midway  be- 
t\  een  m  ami  is  twice   the   thickness  h  of 

tl    -plate.       (  )n  substitnti:  •  rs  in  the  above  eqnat  ion. 

h=^L (19) 

I  uis  i«>  for  the  case  of  an  optical  lever  having  the  lower  ends 

all  four  :  :ie  plain-.      Hut  if  the  end  feet  are  shortened 
that  ted  enough  to  produce 
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a  deflection  Sf  when  placed  upon  a  plane  surface,  the  thickness 
of  the  thin  plate  is  given  by 

h  =  OS-f  >*.  (20) 4  jL 

The  development  of  this  equation  is  left  as  an  exercise  for  the 
student. 

MANIPULATION  AND  COMPUTATION. — In  using  the  optical 
lever,  the  telescope  and  scale  must  first  be  adjusted  ;  that  is, 

the  telescope,  the  scale,  and  the  mirror  of  the  optical  lever  must 

be  placed  in  such  relative  positions  that  on  looking  through  the 
telescope  a  reflected  image  of  the  scale  is  seen.  To  make  this 

adjustment,  place  the  scale  vertical,  facing  the  mirror,  and 
about  a  meter  from  it;  standing  behind  the  scale  and  looking 

at  the  mirror,  move  the  eye  about  until  a  reflected  image  of  the 

scale  is  seen;  keeping  the  image  of  the  scale  in  view,  move 
the  scale  and  the  eye  toward  each  other  until  the  telescope, 

the  eye,  and  the  mirror  are  in  the  same  vertical  plane ;  and 

then,  still  keeping  the  image  of  the  scale  in  view,  move  the  eye 
and  telescope  up  or  down  toward  each  other  until  they  come 

to  the  same  level.  By  sighting  along  the  outside  of  the  tele- 
scope see  that  it  is  pointing  at  the  mirror  and  then  focalize  — 

first  on  the  cross  hairs  and  then  on  the  scale  —  as  is  described 

on  p.  23.  If  the  focalizing  screw  is  turned  so  that  the  mirror 
is  clearly  seen,  the  scale  will  not  be  visible.  In  order  to  bring 
the  scale  into  view  the  focalizing  screw  must  be  turned  so  as 
to  shorten  the  telescope  tube  somewhat. 

With  the  optical  lever  on  a  piece  of  plate  glass,  adjust  the 
telescope  and  scale  as  above  directed,  and  observe  the  scale 
reading  in  the  telescope  when  the  optical  lever  is  tilted  forward 
and  when  it  is  tilted  back.  The  difference  between  these  two 

readings  is  S' .  Now  place  under  the  middle  legs  of  the  optical 
lever  the  plate  the  thickness  of  which  is  to  be  measured  and 

take  two  similar  readings.  The  difference  between  these  read- 
ings is  S.  L  may  be  measured  with  a  meter  stick,  and  I  is  best 

obtained  from  the  measurement  of  the  distance  between  prick- 
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marks  made  by  pressing  the  feet  of  the  optical  lever  on  a  sheet 
of  {i;t 

mine   first    the   y.ero   point    bv 

phieing  tlie  instrument  on  a  piece  of  plate  14; hiss  and  noting  the 

readings  on  the  two  .hen  the  point  of  the  screw  just 
touci  M    the  screw,   place   under  it    the  thin 

to  be  measured,  lower   the  screw  until 

•   touche>  the  thin  plate,  and  note  the  readings  on  the  two 
&      Th.'  ditYeiviiee  between  the  readings  with  and  without 

the  plate  gives  the  thickness  of  the  latter. 

Make    live    determinations   by  each  method    and   compare  the 

Exp.  2.     Determination  of  the  Radius  of  Curvature  of  a 

Spherical  Surface 

OBJ  n>  THBOBI  01  EXPERIMENT.      There  are  three 
I  rincipal  determining  the  radius  of  curvature  of  a 
>  .hcrical  .       I          ire  by  means  of  (<i)  the  spherometer. 

(  >)   the   optical    Li  •  llection   ..f    light.       The    last 

i    .-thud    is  ap;  -ii«'d    lUlfaoeS,  and    its 

<    'iiMdcration  wiL  until  th--  t  of  light   is  tak.-n 
'    ..        i  iineiit    is  to  determine   the  radius 

(  '  curvature  t.f  a  spherical  surface  by  m.-ans  «,f  the  spheroiue- 
t  r  and  by  means  of  the  optical  le\er.  and  to  cnmpare  the  two 
i  cthods  as  t-  the  t\\o 

i   ethods  will 

'it9  of  tht   \  '.        'I'hc  ciir  . 
t  .re  «  i  the  dimcii- 

8  >ns  ;h rough 

\\   »ich  the  point  <,f  the  screw  must  be  moved  from       *  Plo  ,,, 
ti  6  p  li  of  the  three  legs  in   order 

tl    U    all    :  may    be    brought     into    contact    with    the 

8]  l  .Tit  al 

Let  A"  i  lions  of  the  three  fixed  feet, 

ai  d  /'  tl,  :i  of   the  point  «>!'  th-  .  when  all   four  are 



46 PRACTICAL  PHYSICS 

in  one  plane.  Let  the  distances  XY,  YZ,  and  ZX  be  denoted 
by  a,  6,  and  c.  A  proposition  in  Trigonometry  states  that  the 
radius  of  the  circle  circumscribing  the  triangle  XYZ  is 

abe 

r  =• -  a)  («  —  b)(s  —  c) (21) 

where 

FIG.  20. 

Now  consider  a  plane  passing  through  one 
of  the  feet  of  the  spherometer  Y  (Fig.  20), 
the  point  of  the  screw  E,  and  the  center  of 
curvature  0,  of  the  surface  whose  radius  is 

required.  Then  if  R  is  the  required  radius, 
and  A,  when  all  four  points  are  in  contact  with 
the  spherical  surface,  the  height  of  the  point 
of  the  screw  above  the  plane  of  the  ends  of 
the  three  feet,  we  have,  from  Fig.  20, 

Whence 

+  r2 

On  substituting  in  this  equation  the  value  for  r  obtained  from 

(21),  we  have 
Tt  sv27>2s>2 

(22) 

It  should  be  noticed  that  in  deriving  this  equation  it  has  been 
assumed  that  the  axis  of  the  screw  is  perpendicular  to  the  plane 
of  the  three  feet  of  the  spherometer,  and  also  that  when  the 
point  of  the  screw  and  the  three  feet  are  in  the  same  plane  the 
point  of  the  screw  is  at  the  center  of  the  circle  circumscribing 
the  triangle  formed  by  the  three  feet.  Errors  due  to  these 
causes  are,  however,  almost  always  so  small  as  to  be  negligible. 

If  the  distances  between  adjacent  feet  of  the  spherometer  are 
equal,  that  is,  if  we  set  I  =  a  =  b  =  c,  (22)  becomes 

7?        -u 

'"5+6A 

(23) 
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In  practice  a.  b,  and  <•  will  not  be  exactly  equal,  but  often 
they  will  be  so  nearly  so  that  instead  of  using  (±2)  it  will  be 
permissible  to  substitute  for  /  in  (23)  the  mean  of  a,  6,  and  c. 

(b)  E;i  -  Figs. 

l!l  and  'I'l*  which  arc  views  at  right  angles 
Me  another,  show  the  optical  lever  rest- 

ing on  the  curved  surface.  The  end  points 

of  the  lever  touch  the  spherical  surface  at  F 

and  />,  and  the  middle  points  at  H  and  //. 

Let  /,'  ivpn-seiit  the  required  radius  of  cur- 

vature of  the  spherieal  surface,  -J  /  the  dis- 

tance between  the  end  points,  and  '2 1  the 
•nee.   between   the  two  middle  points. 

-1. 

-=  i  if  -  A  n\*  a.  ( /^m» 

vhence   2 

ilarly  from   i 

_'  R(    I//         •  .I//,. 

)  f  (A  /  Mall  compared  with  (AD),  and  (AE )  small  com- 
i  ued  with  (  Kll  ),  then  (.!/>)  and  (A/i)\\  ill  he  approximately 

«  jual  respectively  to  /and   /-.  and  the  above  equations  maybe 

'  'rittt'n  AB  +  B(7)  =  P  (24) 
;     id  8  to     I/.'  -    '.'P.  (26) 

MI  the  t :  the  ..pt  ieal  lever  (p.  4-\ )  it  has  been  seen 

t  tat  x-      V^NI 
D/Tr^_  \  ̂  ~  •  /On^ 

~TT^ 
1  ut  AH  -1   equals  A/-:  ii  :.     On  setting  AB  in 

].  ace  •  :    .I/.'     ,     26)  and   then  eliminating  AHi\nd  BC  from 
(  24),  (25),  and  (20'),  we  obtain 

21 

,       ̂   (26) 

v  here  *9 and  *8"  denote  the  rwpectiYe  deflections  observed  on 
ti  ie  scale  of  a  telescope  distant  L  from  the  optical  lever  (1)  when 
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the  lever  is  rocked  back  and  forth  on  the  object  being  measured, 
and  (2)  when  it  is  rocked  on  a  plane. 

MANIPULATION  AND  COMPUTATION.  —  (a)  When  the  sphe- 
rometer  is  used,  run  the  center  point  up  out  of  the  plane  of  the 
other  three,  press  the  three  outer  points  on  a  piece  of  bristol 
board,  and  either  by  means  of  a  glass  scale  laid  face  down  on  the 

bristol  board,  or  by  means  of  a  pair  of  sharp-pointed  dividers 
and  a  millimeter  scale,  measure  the  three  sides  of  the  triangle. 
If  the  three  sides  are  nearly  equal,  use  the  average  for  /. 
Determine  the  zero  point  of  the  spherometer  by  placing  the 
instrument  on  a  sheet  of  plate  glass  and  noting  the  readings  on 
the  two  scales  when  the  point  of  the  screw  just  touches  the 
glass.  Place  the  spherometer  on  the  spherical  surface  whose 
curvature  is  to  be  determined,  and  turn  the  screw  down 

until  its  point  just  touches  the  surface.  Again  read  the  two 
scales  of  the  instrument.  The  difference  between  this  read- 

ing and  the  zero  reading  is  h.  Substitute  these  values  of  I 
and  h  in  (23)  and  solve  for  R.  Obtain  the  mean  of  five 

values  of  R  determined  in  this  way  from  five  sets  of  obser- 
vations. 

(7>)  When  the  optical  lever  is  used,  press  the  end  points  of  the 
lever  on  a  piece  of  bristol  board  and  measure  2  I  either  by  means 
of  a  glass  scale  laid  face  down  on  the  bristol  board,  or  by  means 
of  a  pair  of  sharp-pointed  dividers  and  a  millimeter  scale.  In  the 
same  way  measure  2  6.  Place  the  lever  on  the  curved  surface, 
and,  exactly  as  described  in  the  preceding  experiment,  adjust 

a  telescope  and  scale,  measure  L,  and  take  readings  to  deter- 

mine S  and  S' '.  Make  five  different  sets  of  observations, 
each  time  having  the  telescope  and  scale  a  few  centimeters 
farther  from  the  optical  lever.  In  each  case  find  R  by  (26). 
From  the  results  obtained,  compare  the  two  methods  as  to 
accuracy. 

The  spherometer  is  especially  useful  for  finding  the  radius  of 
curvature  of  a  surface  of  considerable  extent,  while  the  optical 
lever  is  available  for  surfaces  of  limited  extent  and  small 
curvature. 
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Exp.  3.    Radius  of  Curvature  and  Sensitiveness  of  a  Spirit  Level 

OB,JI:<  T  ANI>  THI:«>I;Y  <  >F  KXI-F.KIMKNT.  — In  many  measure- 

in. -nts  in  which  a  spirit  level  is  used  in  connection  with  other  phys- 
ical apparatus  it  [fl  try  that  the  sensitiveness  of  the  level 

heat                            that  of  the  other  apparatus.    An  example 

is   tli-                -i   t lie  telescope  ami  level  of  an  em_rineer's  transit. 
When   used    in   leveling   or   in    measuring   vertical    angles,   the 

:cal  motion  of  the  telescope  which  can  he  detected  hv 

means   of   the                        -hoiild  also  make   itself  evident    by  a 
displaeemelit    of    tiie    level    hnhhle.       A    text   of    the  silitahilitv  of 

particular   use   includes  the  determination  of   the 
I   the   run  of  the  hnhl.le  in  the  vial   and  the  sensi- 

•1.      Th.-  M  of  a  spirit  level 

may  he  detin-  •  the  hnhhle  moves  for  an  inclina- 

<>f  tl.  >t"  one  minute.      Since  the  sensitiveness  can  he 

]   -oven  to  be  directly  proportional  to  the  radius  of  curvature  of 
1  ie  vial,  it  :.-d  h\  the  radius  of  curvature.     The 

<   jj.  !o  mak<  A  level. 
In    the  lulu.:  ;t   level    is  usual:  hv  means  of 

Level     1  M-_r    of  a    hase    plate    upon    which 

lhaped    •  -upport«-il   l.\    two   proj«-etin^r  steel   poini-    /.' 
;    i  the  end  oi    the  ai  be    T  and   a    mi- 

.     Omet  'V    AT   at  I    of     the     T.       The    pitch    of    the 

i    ;  1  and  also  the  perpendicular 

the    line  coniieetin^  the 

'        /.'      :.  •;     /'.          I      B  ll  /..::•'{     oil    the 

j     .rid  the  jiMsitiun  i.uhhle  in  the   vial  is  noted  hy  means 

a  s<  1  upon  the  glass  or  hy    a  scale    S  attached  to 

t  ie  h-vel  trier.      In  ifl  i  neon  \  ci  li.-n  t  to  separate  the  level 
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G'
 

II 

from  a  piece  of  apparatus  of  which  it  forms  a  part,  the  entire 
apparatus,  e.g.  a  telescope  or  theodolite,  may  be  mounted  in 
the  grooves  ABC  or  DEF. 

After  the  level  tube  is  in  place,  the  micrometer  reading 
is  noted.  The  T  is  now  tilted  through  a  small  angle 
by  turning  the  micrometer  screw,  and  readings  are  again 
taken  of  the  micrometer  screw  and  the  position  of  the 
bubble. 

Suppose  that  by  means  of  the  micrometer  screw  the  T  of  the 
level  trier  is  moved  from  the  position  FJ  (Fig.  24)  to  the 

position  FJ'  ,  the  middle  of  the  bubble  moving  meantime  from 
G-  to  H.  If  a  vertical  line  „  J' 
G-KWQTQ  drawn  through  Cr 
before  the  micrometer  screw 
was  turned, 
and   if    this 
line  were  to 
move     with 

the  level,  it  would  after  the  movement 

be  in  a  position  6r'P,  such  that  the 
angle  through  which  it  moved  would 

equal  the  angle  JFJ'  through  which  the 
level  moved.  A  vertical  line  through 

the  middle  of  the  bubble's  position  of 
rest  has  the  direction  of  a  radius  of  the 

bubble  vial.  If,  then,.  HP  is  drawn 

vertically  through  H,  both  HP  and  Gr'P  are  radii  of  the  vial. 
But  since  HP  and  CrK  are  parallel,  the  angle  Gr'P  IT  equals 
the  angle  between  G-K  and  G-'P,  which  latter  has  just  been 
shown  to  equal  JFJ'.  It  follows  that 

pIG>  24. 

Let  GPP  be  denoted  by  R,  a' If  by  d,  FJ'  by  a?,  and  JJ1 
by  y.     Then -—=0  radians, 

R 
(27) 
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an-  1,  since  the  screw  is  always  perpendicular  to  the  T, 

y-  =  tan  0. 
x 

Since  6  is  always  very  small,  tan  0  =  0,  and  we  have  almost 

exactly  ±=y. 
M     ./• 

Whence  R=~^  (29) y 

Kliminating  R  from  ell)  anil  (29), 

<*.   *<* 

Sinc«'  one  minute  differs  from  the  :>438th  part  of  a  radian  by 

le,««  than  <>."!  D  be  reduced  to  minutes  by  multiplying  it 

bj    3438.     The  sennit  iveness   is,   therefore,   from  its  definition 

ir  'veil  by  , a T  3438 

MANIIM  I.AII..N  AM.  C/OMPl  i  \ri<>\.  —  Place  tin-  ̂ -shaped 

<•;  -ainij  upon  a  pi»-«-e  of  bristol  board,  and  by  m.-ans  of  slight 
p  088U  r>-  obtain  an  impivvM.in  ««f  the  three  supporting  points. 
^  ensure  the  perpendieular  <li>tan.-e  fr..m  the  impression  made 
b  the  «-nd  ..f  tin-  micmiueter  screw  to  the  line  eonneetiiiL;  the 
ii  pressions  <.f  the  other  two  supporting  points. 

The  pitch  of  the  micrometer  sen-u  may  be  obtained  in  the 

!•  ,lo\\inur  DUUwer:  After  plaeiu-^  the  spirit  level  on  the  trier, 

a-  just  the  mici-Min,-!.  until  on--  end  of  the  bubble  is 
d  ?ectly  under  a  scale  division  near  the  middle  of  the  vial; 

tl  -n  insert  under  the  mien.  meter  screw  a  small  piece  of  plate 

g  188  whose  thiel,  •  -  been  alivady  measured  with  a  sphe- 
re Tieter  or  micrometer  caliper.  and  a'_fain  adjust  the  micrometer 

8(  •«  w  until  the  bubble  rests  at  the  same  point  as  before.  The 
tl  ickness  of  the  glass  plate  divided  by  the  necessary  number 

oi  turns  nf  the  micrometer  ><  the  pitch  of  the  latter. 
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Again  adjust  the  micrometer  screw  until  one  end  of  the 
bubble  is  directly  under  a  scale  division  near  one  end  of  the 
vial.  Observe  the  micrometer  screw  reading  and  the  scale 
readings  at  both  ends  of  the  bubble;  rotate  the  micrometer 
screw  through  a  convenient  number  of  spaces  and  take  read- 

ings as  before.  Continue  this  operation  until  the  bubble  has 
been  removed  in  some  half  dozen  steps  to  the  other  end  of  its 
run,  and  then  return  step  by  step  in  the  same  manner.  Repeat 
this  series  of  readings  three  times.  A  series  of  such  readings 
may  be  conveniently  tabulated  in  the  following  form :  — 

NUMBER  OF 
OBSERVATION 

MICROMETER 
HEADING 

EEADINGS  OF  BUBBLE DISPLACEMENTS LENGTH  OF 

BUBBLE 
Left  End Eight  End 

Left  End Right  End 

1 3.700  mm. 1.3  mm. 10.2  mm. 8.9  mm. 

2 3.800 6.1 14.9 4.8  mm. 4.7  mm. 

8.8 

3 3.900 11.1 19.8 5.0 
4.9 8.7 

4 4.000 16.2 25.1 5.1 5.3 
8.9 

5 4,100 21.1 30.2 
4.9 

5.1 9.1 
6 4.000 16.1 25.1 5.0 5.1 

9.0 

7 3.900 11.1 19.9 5.0 5.2 8.8 
8 3.800 6.2 15.0 

4.9 4.9 
8.8 

9 3.700 1.3 10.2 4.9 4.8 
8.9 

Mean    4.95 5.00 
8.88 

The  values  in  columns  2,  3,  and  4  are  read,  and  those  in  5, 
6,  and  7  are  calculated  from  these  readings.  The  values  in 
columns  5  and  6  show  the  uniformity  of  the  run  of  the  bubble, 
or  the  variation  in  sensitiveness  when  the  bubble  is  at  different 

positions  in  the  vial.  The  average  radius  of  curvature  and  sen- 
sitiveness of  the  vial  are  obtained  by  substituting  for  d  in  (29) 

and  (30)  the  mean  displacement  obtained  from  columns  5  and  6. 

Care  must  be  taken  to  keep  the  entire  vial  at  the  same  tem- 
perature. It  must  not  be  touched  by  the  fingers  nor  breathed 

upon,  as  when  unequally  heated  the  bubble  tends  to  move 
toward  the  point  of  highest  temperature. 
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Exp.  4.   Verification  of  a  Barometer  Scale 

OBJK«T  AND  THI:<>KY  <»F  K.\I'I:I:IMKN  r.  —  In  the  ordinary 

form  of  Fortin's  barometer,  the  lower  end  of  the  tube  dips  into 
a  men-ill  >ir  which  can  be  raised  or  lowered  by  a  screw, 
liy   this    HUM  >re   taking  an   observation,   the    surface  of 

the  mercury  in  li.  is  always  brought   to  the  level  of 

•  •ini  of  an  ivory  pin  extending  (h»wnward  from   the   cover 

of  th-  dr.      The  barometric  height    is   the  length   of  the 

in.-rcury  column  from  the  hottmn   of  this  pin  to  the  top  of  the 
ni.-niscus  at   the  upper  end  of   the   col- 

umn.     A    brass    scale   attached   to   the 
metal  :    tllhe 

;.p«»>ed  t«»  he  adjii.stt-d  BO  that  its 
divisions  indicate  di>tance8  measured 

f -om  the  point  of  tli.  in.  The 
object  of  thi>  it  to  m, 
1  lebaromet  i  ic  height  by  acatl 

;  nd  to  compare  with  tin  i   the 
i  jading  by  the  I>ra88  scale. 

M  \M!  [>COMP1 

-  -Set    tl.  -tand 

;  bout    a    me:  tfll     from    the    ba- 

i  Hut-;  ictoraeter  has 

1  een  adjusted  as  described  on  ] 
i  use  '  '  il   the   1 
(  roes  hair  in  the  eyepiece  is  tangent  to 
;  ie  mmiscii-  upper  end  of  the 
1  arometer  column,  and  t  i  .ithe- 
:  .m.-1  -,  of  tin- 

.    i<l  vernier.      :  the  telescope  until 

i   M-  h  !  u  ith 

level   of   the  mer.  in  .  reser- 

ke  th.-  eathetom,  ing,     Tin-  dilTcreiice 
1  i3tween  '  _TS  is  the  barom.-ti-i.-  height. 

by  means  of  the  ion       '/'  ;  the  bottom  of 

nd 
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the  barometer,  bring  the  surface  of  the  mercury  in  the  reser- 
voir to  the  level  of  the  ivory  point  P,  and  read  the  barometric 

height  by  means  of  the  scale  and  vernier  F(Fig.  26)  attached  to 
the  case.  Attached  to  the  sliding  vernier  there  is  a  similar 
piece  of  metal  directly  back  of  the  barometer  tube.  These  two 
slides  move  together.  In  order  to  avoid  parallax,  the  vernier 
is  moved  up  and  down  until  the  position  is  found  where  the 
lower  edge  of  the  vernier,  the  upper  surface  of  the  meniscus, 
and  the  lower  edge  of  the  rear  slide  are  in  line. 

Find  the  error  of  adjustment  by  taking  the  difference  be- 
tween the  mean  of  five  determinations  of  the  barometric  height 

by  means  of  the  barometer  scale  and  the  mean  of  five  with  the 
cathetometer. 

B 

Exp.  5.  Determination  of  the  Correction  Factor  of  a  Planimeter 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  A  planimeter  is  a 
direct-reading  instrument  which  is  used  to  determine  the  areas 
of  irregular  figures  on  drawings.  The  correction  factor  of  a 

planimeter  is  that  number  —  usually  near  unity  —  by  which 
the  area  read  from  the  instru- 

ment must  be  multiplied  in 
order  to  get  the  true  area. 
The  object  of  this  experiment 
is  to  determine  the  correction 

factor  of  a  given  planimeter. 

Amsler's  polar  planimeter 
(Fig.  27)  consists  of  two 
arms,  a  tracer  arm  AC,  and  a 

pole  arm  EC,  jointed  at  C. 
The  point  E  is  fixed  and  the 
point  A  is  carried  around  the 
boundary  of  the  figure  in 
the  direction  of  the  hands  of 

a  watch.     Attached  to  the  tracer  arm  is  a  small  roller  D,  the 
axis  of  which  is  parallel  to  the  line  AC.     This  roller  and  the 
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points  .1  and  E  are  the  only  parts  of  the  planimeter  that  touch 
the  paper.  As  the  point  .1  passes  over  the  houndarv  of  the 

figure,  the  roller  rotates  unless  the  mot  id  ntirely  in  the 
direction  of  .1C, —  in  which  ease  the  roller  slides.  It  will  now 

he  proved  that  when  the  tracing  point  circumscribes  any  (dosed 
plane  figure  which  does  not  contain  the  pole  point,  the  cir- 

cumference of  the  roller  n  •  distance  proportional  to 
the  area  circumscribed  l»y  the  tracing  point.  This  proof  will 

IM-  in  four  p,: 
-'.consider  two  concentric  circular  arcs  AAn  and  .1  .1 

.  28)  cut  l»y  r.i.i  i    .1     /•'.      Let    the  pole  point  of 
planimetrr  he  i  the 

these  arcs,  and  let  the 

tracing  point  he  m«.\ed  alonir  the 

radi  >A'.  Then 
the  roller  will  mo\  t-  fn.m  D  to 

y  while  a  point  in  itx  ciivum- 

erence    \\'\\\     rotate     tlil-Mii^h     the 

DOC     />//.        A^ain,    let 
raei:  :     he     mo\ed     a! 

he  radio 

•  lie    roll,-]'  ti,  :  ,,m 

ireiimtViviH  «•      j 

he   d  /'   II  .     Bin  • 
the    figure 

.'/>  ///'  '•     i  nne  whetlier  th-  point  has  n 
i  /          'ongsoni*'  i    /'.it  follows 

hat    //'//'    e.piaU    />//.      T1  ntf    i"'int 
i  asses  «'ver  t:  iv   radii    interceptrd    J»ei  \\eni    the 

'    Ulle     •  M-^r    I  1,,.      j  /  .  :  ,,llin«r 

its  of  the  in.  6  eijual. 

Secoit'l.  let    i:<'.\   i  I  ,l    tin-    planimeter   in    one 

1  '.Nition,  and  I  be  planimeter  in  another  position,     l 
]B  and  .//>  normal  to  A(  :l  l>   \.  .  D  «lra\\ 

.:.!.  /•:/'.  and   /•;// .     POJ  brevity  let  t,  denote  the 
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through  which  a  point  in  the  circumference  of  the  roller  moves 
with  reference  to  AC  wlien  A  describes  any  line  x. 

Let  the  instrument  start  from  the 

position  ECA,  and,  keeping  the 

angle  EGA  constant,  rotate  about  E 
through  a  small  angle  A©  into  the 

new  position  EC'  A'  .  A  A  is,  then, 
the  arc  of  a  circle  described  about  E 

as  center.  The  roller,  meantime, 

F  29  moves  through  a  small  distance  DD1  ', 
sliding  through  a  distance  HD  ',  and 

rolling  through  a  distance  DR.     Whence 

BAA.  =  DH=  DD'  -  cos  HDD'  =  ED  A0  •  cos  HDD1.     (31) 
Since  HD  is  by  construction  normal  to  AC,  and  the  very  small 

arc  DD'  is  normal  to  the  radius  ED,  the  angle  HDD'  equals 
the  angle  BDE.  And  since  BE  is  by  construction  normal 
to  BD, 

cos  HDD'[  =  cos  BDE]  = 

Equation  (31)  becomes,  therefore, 

BAA.  =  ED  .  A®  •  —  =  A0  •  BD.  (32) ED 

Now  BD  =  BC-DC=EC-GQ$ACE-DC.  (33) 

And  since  in  the  triangle  ACE, 

(AE)2  =  (A  C)2  +  (J^)2  -  2  J.  C  -  EC  •  cos 

(33)  may  be  written 

Equation  (32)  becomes,  therefore, 

(34) 

For  this  particular  case,  then,  where  the  tracing  point  moves 

over  the  very  small  arc  of  a  circle  described  about   the  pole 
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point,  SAA>  is  r  I  in  terms  of  the  radius  of  this  circle,  the 
dimensions  of  the  instrument,   and   the   very   small   angle  sub- 

tended by  the  given  arc. 

lei    any   figure    A'A.V.V  i  Fig.   30),  not    inclosing  the 
cut  into  a  large  number  of 

narrow  strips  by  a  series  of  ,-: 

having  A'  for  center.  Let  these  strips  be 
cut  into  very  small  areas  by  radii  drawn 

from  A'.  Thus  the  entire  figure  is  divided 
into  a  great  number  of  areas,  each  as  small 

as  \\  If  the  tracing  point 
cum-  :i  the  clockwise  direction  one 

of    these    small   area...   <//-'.    \\  from - 
»-;

on 
 of 

I*. And 

lion 
B,lb  is  described  in  the  opposite 

ill    the    second    di\i  this 

the  cllt of 
ls  equal   to 

—  B 

'  ' 

«_  „,,-! 

Im-m. 
1 '  L 

i;m 
/      - 

*    ,,,n 

J 

' 

AH,  )  =  J  (o^)(- 

nid  this  last  exjiression  m-  be  circular  sector 

In   the  mne  way  .!A<->  -  the  area  of  the 

ular  sector-      /.'.      -     that 
area 

-  area(a'6';?)  =  area  (jab1 
AC  AC (35) 

the    angle     ///'/  drawn    Mute.        If    this 

:i   that   the  rolb-r  then  r«>- 

in  the  oj.j,o>;'  (           :otati«»n    in  this 
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site  direction  negative,  and  making  the  changes  in  sign  involved 
in  the  new  figure,  we  find  that  (35)  holds  whether  BDE  is 

acute  or  obtuse.  That  is,  when  the  elementary  area  ab'  is  cir- 
cumscribed by  the  tracing  point,  that  area  is  given  by  the  prod- 

uct of  the  length  of  the  tracer  arm  and  the  small  distance 
through  which  a  point  in  the  circumference  of  the  roller  has 
rotated. 

Fourth,  let  the  tracing  point  move  over  the  whole  figure 
KLMN  (Fig.  30)  in  such  a  way  as  to  traverse  the  boundary 
once  in  a  clockwise  direction,  and  each  of  the  radial  lines  and 
circular  arcs  twice,  once  in  each  direction.  By  taking  lines  in 
the  proper  order,  this  can  be  done  without  lifting  the  tracing 
point  from  the  paper.  Describing  these  lines  in  the  manner 
indicated  amounts  to  the  same  thing  as  going  once  in  the  clock- 

wise direction  around  the  whole  figure  ;  it  also  amounts  to  the 
same  thing  as  going  once  in  the  clockwise  direction  around 
each  of  the  small  areas  into  which  the  figure  is  divided.  The 
total  value  of  Sx  will  then  be 

(KLMN)  ,Q<»N 

This  equation  shows  that  when  an  area  which  does  not  contain 

the  pole  point  is  circumscribed  by  the  tracing  point,  the  area  is 
measured  ly  the  product  of  the  length  of  the  tracer  arm  and  the 

distance  through  which  a  point  in  the  circumference  of  the  roller 
has  rotated  with  reference  to  the  tracer  arm. 

The  dimensions  of  the  planimeter  are  usually  so  selected  that 

the  product  of  the  length  of  the  tracer  arm  by  the  circumfer- 
ence of  the  roller  is  equal  to  ten  square  inches  or  a  hundred 

square  centimeters.  That  is,  they  are  so  selected  that  if  the 
tracing  point  circumscribes  an  area  of  ten  square  inches  or  a 
hundred  square  centimeters,  as  the  case  may  be,  the  roller 
rotates  once.  The  circumference  of  the  roller  is  then  divided 

into  a  hundred  equal  parts,  and  these  by  means  of  a  vernier 

(F",  Fig.  27)  can  be  read  to  tenths.  The  counting  wheel  B indicates  the  whole  number  of  revolutions  of  the  roller. 
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In  the  practical  use  of  a  planimeter,  the  figure  the  area  uf 

which  is  desired  ma\  he  so  large  that  it  cannot  he  c  ire  u  in  scribed 

without  placing  the  pole  point  inside  it.  In  this  case  the  area 

may  he  determined  as  follows:  — 

If  the  angle  A  hi-!  (  F  I  B  a  right  angle,  then  BD  is 

zero,  and,  therefor,-,  from  (-\'2).  3, _,.  t-«|iials  /.cro.  That  is,  as  .1 

moves  ahont  A' in  the  circular  ar-  .1.1  .  the 
roller  slides,  without  rolling  at  all.  The 

generated  hy  the  tracing  point  A 

ahout  tin-  pole  point  A' as  center  when  the 
roller  LOl  rotate,  and  so  makes  no 

record,  is   called   the  uzero"  or  "datum" 

In   Fig.  -".I    1-  t    //Mlr  he   this  datum  CUT- 
11  if  the  tracing   point    \\eiv    to   circi:  the   area 

•hat 

*  _  area  (7 
OTUSRT—          ̂ n — ' I nid  if  now  th-  j  point  wer.  amioribe  the  r< 

•haded  area,  then 

.  shaded  area  (t/rp 
AC 

f  th.->e  two  patlis  were  to  be  dt-  rely,  then,  hy 
dding   (87)  Mil]  :id  that 

?,  haded  area 

Ii   tracing   this    whole    path,  the   lines    US  and    HT  i 
•  •a.-h  direet  K.n,  so  that    the   r. 

nt  motion  of  the  i-Mllei-  prodiice.l  l,y  tracing  t!  ro,  and. 

!  ilice    /,'Ml'  ̂     tlie   (hltU!  .    the    rollel'    did     imt     rotate     while 

WM  traced.       It   •  thai   if  the  tracing   point    liad    simply 

I 
 the     per

il  
:      \\ollhl     in     th

e     end 

:e  turned  l:  lion  just  as  much  as  it    did   while 

;ie  more   complicated    niitline    was    he  ed<      That    is,    if 

icing  point  were  to  the   entire   perimeter  of   the 
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figure,  the  area  indicated  by  the  roller  would  be  the  area  of 

that  part  of  the  figure  outside  of  the  datum  circle.  If  the  trac- 
ing point  were  ever  to  cross  the  boundary  of  the  datum  circle, 

the  roller  would  move  in  opposite  directions  before  and  after 

crossing.  From  this  it  may  be  shown,  if  proper  attention  be 

paid  to  the  sign  of  the  roller  reading,  that  whenever  the  pole 
point  is  inside  of  the  figure  circumscribed  by  the  tracing  point,  the 
area  actually  circumscribed  is  greater  than  that  indicated  by  the 

roller,  the  difference  being  the  area  of  the  datum  circle. 
To  sum  up,  if  the  tracing  point  circumscribe  in  the  clockwise 

direction  any  area,  the  difference  between  the  final  and  initial 

readings  of  the  roller  gives  the  area  when  the  pole  point  lies  out- 
side the  figure  ;  when  the  pole  point  lies  inside  the  figure,  the  area 

is  obtained  by  adding  to  this  difference  the  area  of  the  datum 
circle. 

Equation  (36)  suggests  at  once  a  method  of  determining 

the  correction  factor  of  a  planimeter.  If  d  denotes  the  diame- 
ter of  the  roller,  and  I  the  length  of  the  tracer  arm  A  C,  then 

the  area  which  can  just  be  circumscribed  by  the  tracing  point 

while  the  roller  rotates  once  is,  by  (36),  equal  to  Trdl.  If  the 
roller  is  so  graduated  that  the  area  indicated  for  one  rotation 

is  J,  the  correction  factor  K  is  given  by 

(39) 

MANIPULATION  AND  COMPUTATION.  —  With  a  steel  scale 

and  a  sharp  pencil  lay  off  a  rectangular  area  of  not  less  than  150 

sq.  cm.  '  Make  five  careful  readings  of  the  length  and  breadth 
of  the  rectangle.  If  the  tracer  arm  is  adjustable  in  length, 
note  the  reading  on  its  scale.  Place  the  pole  point  outside 

the  rectangle,  bring  the  tracing  point  to  one  corner,  and  read 
the  planimeter.  Using  the  steel  scale  as  a  straightedge  to 

guide  the  tracing  point,  circumscribe  the  rectangle  in  the 
clockwise  direction,  and  again  read  the  planimeter.  In  this 
manner  measure  the  area  at  least  ten  times.  The  product  of 

the  average  length  and  average  breadth  of  the  figure  divided 
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by  tl.  ge  difference  between  tin-  tinal  and  initial  readings 
of  the  planimetei  -rivet  ion  factor. 

With  a  micrometer  caliper    determine  the  diameter  of    the 

roller.      Witli  the   steel  scale  make  live  readings  of  the  length 
of  the  tracer  arm.      From  these-  calculate  the  correction   factor 

'    .      <     >mpaiv  the  i  >tained  hy  the  two  methods. 

Exp.  6.    Correction  for  Eccentricity  in  the  Mounting  of  a 
Divided  Circle 

<  >i.  D  THI-:«»I:Y   OJ   EXFERDOENT.  are  ut'tcn 
measured  l>y  means  of  a  di\ided  circle  and  an  indc  nier 

atla-'hrd   to  an  arm  cat  itimi    alx.ut    an  axis   passing 

tlirou^li   the  eenter  of   tin-  iethod    is   suhject   to 

a  source  of  error  due  to  the  mechanical  ditliculty  of  mount- 

ing the  ;irm  carrviiiLT  tin-  >••  that  ;ion 
8;i  .ill  the  noun  ,  ided  ci: 

:  inielit  If  i  .  iir\e 

i  >r  a  divided  circle  havi:  cutrically  niou:  ier. 

B    cent,: 

<  i\  M!  /{  the  y.ern  point- 
t  »c 

t  ion  ahoiit  t:  /'.      If  the 

//    pAM6i    through     l>.   and    It    coin,  ; 

:h     (^   tl  •  in    the 

i   ount  ngs ier. 

1  ut    in  the  neither   ,.f 

t    ese  conditions   is   fulfill,,  :i   be 

o  itained  only 
.      ;:,  :    /;. 

ILet  A°   and    />'     he   the  observed  read
ings.     Diau    .1  /; 

I-    .I//.      If   there   were  no  eccentricit  \    in 

i  /:  illy    npjii.xite.    the 

voiild   1..      i  1   Bf.      In   othci  and  Bf 



62  PRACTICAL   PHYSICS 

are  the  true  readings  corresponding  to  the  observed  readings 

A°  and  B°.     Through  0  draw  the  lines  BE  arid  AF. 
Since  A1B1  is  parallel  to  AB,  and  A 0  equals  BO, 

UCAl  =  Z  CBA  =^BAO=  ^AOAr 

Therefore        Z  XCAl  =  \  (Z  JTC^  +  Z  JTOA), 

or  ^1°  =  i(^fo  +  A0). 
If  the  division  lines  on  the  circle  are  numbered  as  shown 

in  the  figure,  E°  =  B°  -  180°.  Consequently  the  corrected 
reading  of  the  vernier  A  is 

Af  =  ±(A°+B°-  180°).  (40) 

This  is  the  corrected  reading  for  the  vernier  giving  the  smaller 
reading. 

In  precisely  the  same  manner,  since  B^  =  ̂   (5°  +  F°)  and 
since  F°  =  180°  +  A°,  the  corrected  reading  of  the  vernier 
B  is 

Bf  =  %  (A°  +  B°  +  180°) .  (41) 

This  is  the  corrected  reading  for  the  vernier  giving  the  larger 
reading. 

In  this  manner,  by  means  of  two  verniers,  is  obtained  the 

reading  of  either  vernier  corrected  for  eccentricity  of  mounting. 

MANIPULATION  AND  COMPUTATION.  —  Starting  with  one 
vernier  near  the  zero  point  of  the  circle,  read  both  verniers. 

Then  move  the  verniers  about  thirty  degrees  and  again  read 
them  both.  Repeat  at  intervals  of  about  thirty  degrees  until 
the  entire  circumference  is  traversed.  The  corrections  for  the 

observed  vernier  readings  are  found  by  subtracting  the  observed 
readings  from  the  corrected  readings. 

On  cross-section  paper  lay  off  the  observed  readings  of  one 
vernier  on  the  axis  of  abcissas  and  the  corresponding  correc- 

tions on  the  axis  of  ordinates.  The  curve  drawn  through  the 
points  thus  obtained  is  the  correction  curve  for  this  vernier. 
From  the  form  of  this  curve  decide  whether  C  and  D  are  coin- 

cident, and  whether  AB  passes  through  D. 



CHAPTER   IV 

VKLOCITV    AND    A(  (  KLKRATION 

Exp.  7.     Determination  of  the  Change  of  Speed  of  a  Flywheel 
during  a  Revolution 

<  >  i  •..!!•:«  T  AM.  THI:MI:Y  Ol  K\  I-I:I:IM  i:\  : .      For  many  purp 
§S  when  Used  to  drive  hi^h->pecd  machinery,  it  is  important  that 

throughout  a  ivvolutioii  the  angular  sj-.-i-.l  i.f  a  flywheel  shall 
.irly  constant.      The  ohject  of  this  experiment  is  to  deter- 

mine tin-  angular  speed  and   the  accch-rat i,.n  of  a  flywheel  at 
•rent  points  in  its  revolution. 

i   to  the  shaft  of  thr  llywlu'fl   is  a  brass  disk    in   th«- 

of  \\hich  thir  !ot8  of  equal  width  have  IMM-II  cut  and 

h«-n  lilh-d  to  the  edge  with  pieces  of  hard  rnhher.  If  one 

•  •nniiial  of  an  rlt-.-trie  circuit  including  a  »-hn»im^raph  he  piv»rd 

urain>t  tli»-  rd-_r«'  «'t  the  «lisk.  and  tin*  other  against  the  re\..l\  in^ 

haft,  then  during  each  revolution  of  the  tl\\\heel  tlie  «-ireuit 

hrou^h  the  .•liroiioLrr;lpil  will  be  made  an<l  l»rokeu  thin 

That    is.   at   e\ei-\     In     rotation    of  the   flywheel  a   hivak 

•ill  he  made  in   ti  1    line  <>u   the  chronograph  ilruin.      It 

tie  tl  i  hrmiu'li  «'<11:  I   '"  «'«|M:l'   l  i'urs'  th'1 
h.-twiM-n    iiMtehrs    in    the    ivconl    line    will    he    equal. 

vny  irregularity  "f  umtinn  will  thus  h«-  rendered  apparent. 

MAMIM  i..\  .  0  COMF1   FATXOK.  —  IMot  a  cin-ve  with  in- 

n  any  select«-d  notch  and   the  succeeding 

eg  as  abscissas,  and  the  oonesponding  angles  ..f  rotation  as 
(  rdinato.       If   the  angular    q  the   tlywheel    is  unitonn. 
t  i  >  curve   will   he  |  t    line. 

i    line  he  drawn   tangent  to  this  curve  at  a  point 

-ponding  to  any  particular  time,  the  speed  of  the  tlywheel 
63 
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at  that  instant  equals  the  tangent  of  the  angle  between  this 
tangent  line  and  the  axis  of  abscissas.  In  this  manner  compute 

the  speed  of  the  flywheel  at  points  20°  apart  throughout  an 
entire  revolution. 

Construct  a  second  curve  by  plotting  times  as  abscissas  and 
speeds  as  ordinates.  If  a  straight  line  be  drawn  tangent  to  this 

second  curve  at  a  point  corresponding  to  any  particular  time, 
the  acceleration  of  the  flywheel  at  that  instant  equals  the  tangent 
of  the  angle  between  this  tangent  line  and  the  axis  of  abscissas. 
Construct  a  third  curve  by  plotting  times  as  abscissas  and 

accelerations  as  ordinates.  Carefully  interpret  each  curve. 

Exp.  8.    Determination  of  the  Speed  of  a  Projectile  by  the 
Ballistic  Pendulum 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  The  object  of  this 
experiment  is  to  determine  the  speed  of  a  bullet  from  a  rifle. 

Newton  proved  that  if  two  bodies  are  moving  along  the  same 
straight  line,  the  speed  of  the  first  with  respect  to  the  second 
after  a  collision  between  the  two  is  directly  proportional  to  the 

speed  before  the  collision,  the  proportionality  factor  depending 

upon  the  elasticity  of  the  two  bodies  and  being  called  the  coef- 
ficient of  restitution  of  the  given  bodies.  He  also  proved  that 

if  no  external  forces  act  upon  a  system  of  bodies,  the  total 
momentum  of  the  system  is  constant. 

Imagine  that  a  projectile  of  mass  m  and  speed  u  strikes  a  body 
of  mass  M  and  speed  £7,  and  that  after  the  impact  the  speeds 

are  u'  and  U'  respectively.  Then  before  impact  the  speed  of 
the  projectile  with  respect  to  the  other  body  is  (u  —  £7),  and 

after  impact  it  is  (u'  —  Ur).  It  follows,  then,  from  the  state- 
ments in  the  preceding  paragraph,  that 

u'  -  U'  =  e  (u-  U)  (42) 

and  mu'  +  MU'  =  mu  +  MU,  (43) 
where  e  is  the  coefficient  of  restitution  of  the  bodies.     If  the 

bodies  are  perfectly  elastic,  e  =  1,  and  if  they  are  perfectly  in- 
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elastic,  <  =0.  If  the  experiment  is  so  arranged  that  the  initial 

speed  of  the  lar^e  mass  is  y.ero.  and  so  that  after  the  impaet  the 

two  ma>ses  move  together,  thus  aetin;_r  like  inelastie  bodies, 

then  L '=0  and  «'  =  0.  On  making  these  substitutions  in  (  l'_!) 

and  (^4:))  and  then  eliminating  tt'  between  them,  we  get 

m 

The   conditions    necessary    to    fulfill    the    requirements    of    this 

equation  are   met   by  the  use  of  the  ballistic  pendulum.      This 

t   block  of  wood  so  suspended  that    it  can 

s\vin_  it    ( '  as   an  axis.      When  a   bullet   strikes  the 

pendulum  boh.  the  whole   impulse  may  he  used  in  Lri\ 'iuir  t«»  the 
boh  a   motion   of   translation    in  the  direc- 

i    in    which   the   bullet    \\  as   moving,  or 

part    of  the   impulse    may    be   used    in    p: 

duciii'_T  torques  which  tend  to  set   up  \\oh- 
fchal    are    not    taken    into 

account    in    the  above  equations.     If  the 

bullet   strikes  at    a    point    called   the 

of  percuwion*  these  ;  pro- 
duced,      i  at   a 

D  the    axis    of    r<  equal 

to    tl  ii    of    tin-    equi\ 

pendulum,   and    when    the   masses  of   the   .supporting   OOTCJ 

small   compared    with    that    of   the    bob,   the  lower   end   of   this 

equivalent     si  111)  »le   pej)(  1  111  UIII     is    Vcl'V    Heal'    thecentcrof    1IIU88  of 
the   1 

lie  angle  through   which  the  pendulum  is  delieeted  by  the 

the   bullet    is  denotrd    1  »y    r1.   the   height    through   \\hicll 

mass  of  tbe  pendulum  ''-d    by   //.  and   the 

M-oiu  the  axis  of  D  t..  the  center  of  pi 

v  /.  then  // -         '        080),      l»y  the  ti    the  bullet   has  ceased 
10.  .-minium  bob  they  both  have  a  speed  {/', 

consequently  kinetic  energy  equal  to  £  (m  +  M  )  A''-.    When 
tched,  this  kiliet  \    has  all  been 



66  PRACTICAL  PHYSICS 

used  in  lifting  them  through  the  distance  h  ;  i.e.  in  doing  work 
equal  to  (m+M^gh. 

Consequently        J  (m  +  M  )  U'2  =  (m 

Whence  Z7'  =  V2#A  =  V2^(l-cos(9). 

On  substituting  in  (44)  this  value  for  Z7',  we  obtain 

cos0).  (45) 

MANIPULATION  AND  COMPUTATION.  —  In  setting  up  the 
apparatus  see  that  the  line  of  flight  of  the  bullet  is  horizontal, 

that  it  is  perpendicular  to  the  axis  of  rotation  of  the  pendulum, 
and  that  it  passes  through  the  center  of  percussion  of  the 

pendulum.  Weigh  the  wooden  plug  in  .the  center  of  the  pen- 
dulum bob  both  before  and  after  the  bullet  is  fired  into  it. 

Weigh  the  rest  of  the  bob,  measure  Z,  and  observe  6. 

Exp.  9.    The  Acceleration  Due  to  Gravity  by  Means  of  a 
Simple  Pendulum 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  The  object  of  this 
experiment  is,  from  measurements  of  the  length  and  time  of 

oscillation  of  a  simple  pendulum,  to  find  the  value  of  the  ac- 
celeration due  to  gravity. 

In  elementary  text-books  on  General  Physics  it  is  shown 
that  the  period  of  a  complete  to-and-fro  vibration  of  a  simple 
pendulum  of  length  I  vibrating  through  a  small  arc  at  a  place 

where  the  acceleration  due  to  gravity  is  <?,  is  very  nearly 

9 

Whence  ff  =  (^-  (46) 

If  the  length  of  the  pendulum  is  about  100  cm.  and  the 

amplitude  of  vibration  about  3  cm.,  the  value  that  (46)  gives 
for^is  about  0.01%  too  small.  This  error  is  so  slight  that  in 
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the  above  equations  the  approximation  si^n  is  omitted.  More- 
)  is  deduced  on  the  assumption  that  tlie  peiululuiii  lias 

its  mass  concent  rated  at  a  point  on  the  end  ot'  a  perfectly 
flexible  suspension.  An  increase  either  in  the  size  of  the  bob 

or  in  the  mass  of  the  suspending  wire  increases  the  error  intro- 
duced by  usiiiL,'  the  above  equation. 

If  the  length  of  the  pendulum  is 
taken  as  the  distance  from  the 

Supporting  knife-ed-^e  to  the  cen- 
ter of  mass  of  the  bob.  and  if  this 

distant-  is  about  1MM  cm.,  ami  the 
diameter  of  the  bob  about  3  cm., 

the  value  found  for  //  is  about 
"."1  >o  small.  With  the  same 

•minium,  if  the  mas* 

of  the  supporting  \\iiv  is  about  0.8 
if.  and   the  mass  of  the  bob  about 

value  found  for//  is  about 

fo  too  large. 
M  AMI'I    I.  \  I  !"N     \\I»  Cn.MI'l 

.     -  In    tindi: 

.itjoll   of  t!ie  expel  illlelltal    p,-M- 

dulum   by  tl.  »d  of   coinci- 
dences, the  time  of  roinridelle, 

be  observed  by  the  electric  method 

described  on  p.   1«>.  ,,r  by  the  opti- 
eal  method  used  by  I 

In    the   apparat  B 

method  (  \-\-_r.  ;}{  ).  tJH.  cxi.erimen- 

tal  pendulum  is  suspend. -d  di: 
n  froiit  of  a  clock  pendulum. 

iidulums  is 

i  screen  C  containing  .      Attach- d   to  the  bob  of 

.3  clock  pendulum  is  a  small  mirror  which  produces  an   image 
"ii  of  the    lil.unent  of  an    incandescent   lamp   pla> 
of  the  two  pendulums.      This  ima^e  is  viewed  with  a 
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telescope  placed  a  meter  or  more  from  the  clock.  When  the 

axis  of  the  telescope,  the  points  of  support  of  the  two  pendu- 
lums, arid  the  slit  in  the  screen  C  are  all  in  a  plane  perpendicular 

to  that  in  which  the  clock  pendulum  swings,  a  flash  will  be 

seen  in  the  telescope  —  if  the  lamp  and  mirror  are  properly  ad- 
justed  —  every  time  the  clock  pendulum  passes  its  lowest  point 
except  when  the  two  pendulums  are  in  coincidence. 

To  make  this  adjustment,  set  the  experimental  pendulum 
swinging,  and  while  looking  through  the  slit  in  the  direction 
perpendicular  to  the  screen,  move  the  incandescent  lamp  until 
a  bright  line  of  light  fills  the  slit  every  time  the  clock  pendulum 
passes.  Then  place  the  telescope  a  meter  or  more  from  the 
slit  and  in  such  a  position  that  when  the  experimental  pendulum 
is  deflected  a  bright  flash  is  seen  every  time  the  clock  pendulum 
passes  the  slit,  but  when  the  experimental  pendulum  hangs  at 
rest  no  flash  is  seen. 

If  the  slit  in  the  screen  0  is  too  narrow  —  especially  when 
the  periods  of  the  two  pendulums  are  almost  the  same  —  the 
eclipse  will  last  for  several  seconds.  In  this  event,  the  time  of 
coincidence  is  the  mean  of  the  time  of  the  beginning  and  the 
time  of  the  end  of  the  eclipse.  If  the  slit  is  too  wide,  no 
eclipse  will  be  seen,  but  only  a  dimming  of  the  flash.  Unless 
the  alignment  of  the  two  pendulums  is  better  than  is  usually 
attained,  two  eclipses  will  be  observed  within  a  few  seconds  of 
each  other,  one  on  even-numbered  seconds  and  the  other  on  odd- 
numbered  seconds.  The  average  time  of  these  two  eclipses  is 
very  close  to  the  true  time  at  which  the  coincidence  occurred. 
Since  the  coincidences  which  occur  when  the  two  pendulums 
are  moving  in  opposite  directions  are  more  sharply  marked 
than  those  which  occur  when  the  two  pendulums  are  moving 
in  the  same  direction,  and  since  these  two  types  of  coincidence 
alternate  with  each  other,  it  is  usually  better  to  observe  only 
the  coincidences  when  the  pendulums  are  moving  in  opposite 
directions,  and  pay  no  attention  to  the  others. 
When  the  apparatus  is  in  adjustment,  note  the  times  at  which 

a  series  of  coincidences  occur.  When  the  pendulums  are  swing- 
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ing  in  opposite  directions,  and  it  is  seen  that  a  coincidence  will 

9OOO  OOCOT,  HI  >t,-  the  hour  and  minute  and  begin  counting 
is.  Keeping  both  eyes  open,  put  one  eye  at  the  teleseope 

and  hy  the  Hashes  of  light  that  are  seen  keep  on  counting 

86COI]  "rd  the  hour,  minute,  and  second  every  time  that 

;•.       liepeat  about  live  limes. 

The  calculation  of  the  period  is  explained  on  p.  4<>.  In  mak- 

ing this  ealeulatinn  it  is  necessary  to  know  whieh  pendulum 

goes  faster.  T  rmine  this,  watch  Itoth  peiuliilums  for  a 

fe\v     moments    imined.  _;•    a    COilieideliee.       It     will 

sun n  be  evident  that   one    of   them    reaches   the   end    of    its   path 
re  the  other,  and   is,  therefore,  the  one  \\  faster. 

To  determine  the  length  of  the  pendulum,  mount  a  eathe- 

tomrter  in  front  of  :  rimmta!  pendulum,  make  the  ad- 

justn.  'ii    p.    --.  vad  the   positions  of  the 
p  of  the  bob.  and  the  hotloin  of  the  bob.       For 

ii   of  the   pendulum   use   th«-  >iii    the    knife 
t    the    bob.       Make    at     least     two    determi- 

•is  — each    time   read  :neter  — and    take 
the  n, 

Exp.  10.    Determination  of  the  Acceleration  Due  to  Gravity 
with  a  Compound  Pendulum 

M»      Til!  .       The     method 

.Led    in    the  ,ng  experiment    for    determining    tin- 
acceleration   d  lires  a  clock  h   person 

ii  to  p.-rf-.nn  the  experiment.       If  >.  id.-nts  are  to 
••  Tiiiinatioii.x  at  the  same  time,  this    \\oiild    insnlve  CX- 

ve  cost  of  apparatus.      In   the   following  method  only  one 

clock    i-s    needed,  and,  in-t.-ad    of   tl.i»hes   of   light    aj.pearing  at 

;-t  when  the  pendulums  are  nearly   in  coinci- 

bab  ftppean  only  when  the  pendulums  are  nearly  in 

coincidence.     The  obj.-.-t  of  t :  inn-lit   U  t ..  determine  t  lie 

hie  to  gravi;  .-ompound  pendulum. 
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Let  A  be  an  axis  about  which  a  body  B  is  free  to  swing,  and 
0  be  the  center  of  mass  of  B.  If  B  is  swinging  back  and  forth 

about  A)  at  some  instant  the  line  AC  makes 
with  its  equilibrium  position  an  angle  0,  and 
if  p  denotes  the  distance  from  A  to  (7,  and  M 
denotes  the  mass  of  B,  then  the  torque  tend- 

ing to  restore  B  to  its  equilibrium  position  is 

L  =  —  Mgp  sin  0, 

the  negative  sign  being  used  because  the 
torque  and  the  displacement  are  in  opposite 
directions.  If  K  denotes  the  moment  of 

inertia  of  B  about  the  axis  A,  and  a  denotes 
the  angular  acceleration  with  which  B  swings 

through  the  indicated  position,  then  we  know  that 

It  follows  that 
Ka.  =  —  Mpg  sin  0, 

or,  if  0  is  small  (see  p.  7), 

Ka  =  -  Mpgd.  (47) 

Since  a  is  proportional  to  0,  the  motion  is  simple  harmonic. 
If  T  denotes  the  period  of  a  complete  to-and-fro  vibration  of  a 
body  which  is  vibrating  with  simple  harmonic  motion,  it  is 
shown  in  elementary  dynamics  that 

FIG.  35. 

From  (47)  it  follows,  then,  that 
(48) 

Now  the  moment  of  inertia  of  B  is  the  sum  of  the  moments 

of  inertia  K{  of  the  n  different  parts  of  B.     That  is, 

(49) 
And  if  the  masses  of  the  different  parts  are  Mj,  if  the  centers  of 
mass  of  these  various  parts  are  at  distances  PJ  from  the  axis  of 
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ion,  and  if  the  lines  PJ  are  all  parallel  to  p,  then  from  the 
definition  of  center  of  mass  we  know  that 

=  2-' 
(50) 

^L  ̂ 

I  t  =  !•->, 

*V<r 

>=i-» 

On  substituting  in  (4H)  the  values  of  A' and  Mp  from  ( 41M  and 
(50),  and  writing  in  place  of  T  its  value  '1 t,  where  t  denotes  the 
time  taken  by  a  single  oscillation,  we  get 

nee, 

pendulum  to  be  us.  sts  (Fig. 

of  a  stout  piece  of  steel  shaft         /'.   \hieh  car- 
it   its  upper  end  an  adjustable  collar  to 

which  are  fixed   th«-  knife  edges  on  which  the 

[M-ndidum  swings.     I1 
ill'_r    l»cl<)W    the    Ihittnin    nf    | 

rod  is  a  liglit  vertical 

plate  C',  in  the  middle  of 
which  is  a  vertical  slit.  This 

pendulum  swing-  it  of 
in  incandescent  lamp  I>, 

light  from  which  can  be  seen 

Dnly  through  ;<  -al  slit 
n  ;t  >n  jacket  abniu 

\\ith  the  clock  pcndiiliiii 

•  telegraph  sounder   which 
-  mounted    with    its  anna- 
tOTC  tl.       Connected 

with  the  armature  is  a  light  shutter  B,  in  which 
a  \ 
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slit.  When  the  sounder  is  actuated,  this  shutter  moves  just 
far  enough  to  bring  its  slit  in  line  with  another  slit  in  a  screen 
A,  mounted  close  to  it  on  the  base  of  the  sounder. 

When  the  pendulum  is  at  rest,  and  the  slits  arid  the  filament 
of  the  lamp  are  all  in  line,  a  person  looking  through  the  screen 
on  the  sounder  sees  a  flash  each  second.  When  the  pendulum 
is  swinging,  no  flash  is  seen  unless  the  pendulum  passes  through 
its  position  of  equilibrium  at  the  same  instant  that  the  current 
from  the  clock  passes  through  the  sounder. 

Since  a  seconds  pendulum  of  the  type  described  above  would 

be  about  a  meter  and  a  half  long  — that  is,  too  long  to  deter- 
mine its  length  conveniently  with  a  cathetoineter  —  the  pendu- 

lum used  is  a  half-seconds  pendulum.  During  the  interval 
between  coincidences,  then,  the  experimental  pendulum  makes 
one  swing  more  or  less  than  twice  the  number  made  by  the 
seconds  pendulum.  .That  is,  if  the  number  of  clicks  between 
coincidences  is  w,  the  number  of  oscillations  made  in  the  same 

time  by  the  experimental  pendulum  is  2  n  ±  1,  and  its  time  of 

oscillation  is,  therefore,  — •- —  sec.    In  general,  if  n  clicks  occur 

during  the  interval  from  any  coincidence  to  the  ,/th  following 
coincidence,  the  experimental  pendulum  makes  j  swings  more 

or  less  than  twice  the  number  made  by  the  seconds  pendu- 
lum, and  the  time  of  oscillation  of  the  experimental  pendulum  is 

n 
  :sec. 2n±> 

When  the  clicks  of  the  sounder  are  counted,  it  will  often  be 
observed  that  there  is  a  series  of  flashes  on  odd-numbered 

clicks,  and  then  very  soon  a  series  on  even-numbered  clicks, 
after  a  time  a  series  on  odd  clicks,  and  then  very  soon  a  series 

on  even  clicks,  and  so  on.  If  the  apparatus  were  more  accu- 
rately adjusted,  the  odd  arid  even  sets  of  clicks  would  come 

together  instead  of  one  after  the  other.  The  interval  between 
coincidences  is,  therefore,  the  interval  from  the  middle  of  one 
series  of  odd  clicks  to  the  middle  of  the  following  series  of  odd 
clicks,  or  from  the  middle  of  one  series  of  even  clicks  to  the 
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middle  of  the  following  series  of  even  clicks,  or  from  the  middle 

of  the  time  hetween  a  -  odd  and  a  -  even  clicks 

to  the  middle  of  the  time  hetween  the  following  two  series. 

MANIPULATION  AM>  COMPUTATION.  —  Take  the  diameter  of 

the  pendulum  rod  once  with  a  micrometer  caliper.  Then  see 

that  the  pendulum  is  at  rest  with  room  enough  to  swing  freelv, 

and  with  the  knife  •  rpendicular  to  the  wall  and  the  plate 

parallel  to  the  wall.  \Vith  a  calhettuneter  (p.  -o  )  determine 

the  heights  of  the  top  of  the  rod,  the  kn::  .  the  hottom 

of  the  rod.  and  the  bottom  of  the  plate.  Make  two  sets  of 
determinate 

Adjust  the  position  of  the  lamp  and  its  jaeket  until  the  glow- 

:    filament    in    the    lamp  through  the   pendulum  slit 

when  I  v  in  front  of  the  pendulum.      Place  the 

i.  or  :Jn  em.  in  front  of  the  pendulum,  and  in 

•inch  a  po>ition  that  when  the  armatuiv  is  held  in  its  po>iti«»u 

nearest  the  magnet,  tin-  filament  in  the  lamp  and  the  slits  in 

the  jacket,  pendulum,  and  sounder  diaphragms  are  all  in  line. 

Connect  the  sounder  with  the  clock,  and  with  the  eye  close  to 

:he  shutter  watch  to  see  if  a  flash  occurs  every  time  the  sounder 

jlicks.  Thru  >••!  the  pendulum  >  with  an  amplitude 
lot  much  e  1  »  in.,  and  with  the  eye  again  close  to  the 
;hutter  watch  fur  the  flashc-  dicate  coincidences. 

curs,  begin  OOUnting  the  click*  of  the  sounder 
ind  record  the  number  of  each  click  on  which  a  flash  is  seen; 

>r,  if  this  is  too  di!Vi<  .  ,ut  the  alternate  <  the 
vound-  : .  i    the   in;  cadi   counted   click  on  which   a 

lash  is  seen,  and  pay  no  ;r  which  occur  on 
;licks  that  are  not  counted.      In  one  of   these  wavs  make  at 

ea>  >ets  of  obsei  inning   through   the 

in  >ur  or  eight  series  of  flashes.       If   all   clicks  are 
jounted,  the  interval  hetween  c.iineidf!.  i   be  obtained  l»y 

t'ndini:  the  interval  from  the  middle  of  the  tirst  se
riefl  "f  Hashes 

the    middle   of    the    third    eerie*,    01    the    interval    from    the 

uiddle  of  the  second  series    to  the   middle  of  the  fourth,  or, 

interval*.       If   only  alternate 
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clicks  are  counted,  the  second  and  fourth  series  of  flashes  are 
not  recorded,  but  the  interval  from  the  middle  of  the  first 
series  to  the  middle  of  the  third  series  that  was  observed  gives 
twice  the  time  between  coincidences,  and  the  interval  from  the 
middle  of  the  second  observed  series  to  the  middle  of  the  fourth 

observed  series  also  gives  twice  the  time  between  coincidences. 
It  is  to  be  noted  that,  if  only  the  alternate  clicks  are  counted, 
the  value  for  the  interval  should  be  doubled  to  reduce  it  to 
seconds. 

Whether  the  pendulum  is  swinging  faster  or  slower  than  a 

half-seconds  pendulum  may  be  determined  by  watching  it  for 
a  few  moments  at  about  the  time  when  the  clicks  of  the  sounder 

occur  when  the  pendulum  is  at  one  end  of  its  path. 
The  apparatus  can  be  so  designed  that  the  moment  of  inertia 

and  mass  of  the  collar  may  be  neglected  in  comparison  with 
those  of  the  rod,  and,  further,  so  that  the  moment  of  inertia  of 
the  plate  about  an  axis  through  its  center  of  mass  is  neglible  in 
comparison  with  the  moment  of  inertia  of  the  rod ;  that  is,  so 
that  the  radius  of  gyration  of  the  plate  may  be  assumed  to  be 
the  distance  from  its  center  of  mass  to  the  axis  of  rotation. 
The  masses  and  moments  of  inertia  to  be  taken  into  account 

are,  then,  those  of  the  rod  and  the  plate.  The  masses  will  be 
given  by  an  instructor,  and  the  moments  of  inertia  are  to  be 
calculated  by  the  use  of  (6)  and  (2)  on  p.  111.  These  values 
will  complete  the  data  necessary  for  the  calculation  of  g  by 
means  of  (51). 



CHAPTER  V 

FRICTION 

IF  a  body  resting  on  a  plane  surface  is  acted  upon  by  a  force 

parallel  to  tin-  surface,  the  l»ody  dors  not  start  to  move  until 
force  has  reached  a  certain  definite  value.      Moreover,  the 

/'     which  is  necessarv  to  start  the  hotly  is  directly  propor- 
!  to  the  force  Fn  which  presses  the  two  surfaces  together. 

That  is,  Ft>  =  ft  /'t,  in  which  the  constant  /z  is  called  the  <WfrV/f  nt 
rf  std  -he  l>ody  d.»es  start  to  move,  the  force 
which  is  required  to  keep  it  moving  uniformly  is  somewhat  less 

the  fore.-  that  is  needed  to  start  it.     And  this  fur. 

vvhid.  ssary  to  keep  the  body  moving  uniformly  is  also 

lirectly  proportional  t<>  the  force  Fn  which  presses  the  two  sur- 

•  th«T.     That      .  /'          /'.    M  which  the  constant  b  is 

''///.      Since  /';,  is  greater  than 
Fpi  /x  i>  than  b. 

Exp.  11.    Determination  of  the  Coefficient  of  Friction  between 
Two    Plane  Surfaces 

AM.    Tm  .-  BXPBRIMI  I  :        t    of 
:iiiiic    the    cortliciriit     of     friction 

plane  surf.i 
appara;  of  u  hnri/untal  plate  having  a  small 

•ul  Icy  fastened  at  one  end,  and  a  hloek  that  ran  lie-  drawn  along 
plate  by  means  of  a  cord  passing  over  the 

Mine  the  pulley  possess  n,  the  weights  on  the  cord  do 

n-s.-nt    •  ••  re.juired   to   overcome  the 
and  the  l.loek.      On  this  account  the 

76 
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force  Fl  (Fig.  37)  is  greater  than  the  force  Fp.  The  differ- 
ence between  these  two  forces  (J^  —  Fp)  is  a  force  fp  which 

has  to  be  applied  along  the  circumference  of  the  pulley  in  order 

to  start  it.  But  this  fp  is  proportional  to  the  force /2, — the 
resultant  of  the  two  forces,  F-±  and  Fp,  — which  presses  the  pulley 
against  its  bearings.  That  is,  /p  =  At2/2,  where  ft2,  although  not 
the  coefficient  of  static  friction  between  the  pulley  and  its  bear- 

ings, is  a  quantity  proportional  to  that  coefficient. 
From  Fig.  37, 

Whence, 
(52) 

Since   Fp   is  less  than  F^  the  numerator  of  the  quantity  in 
square  brackets  is  less  than  the  denominator.     Since  /*2  cannot 

FIG.  37. 

be  negative,  this  means  that  the  negative  sign  before  the  radical 
is  to  be  chosen. 

P2  may  be  determined  by  passing  the  cord  over  the  pulley  as 
in  Fig.  38,  applying  to  one  end  a  weight  IF,  and  finding  what 
weight,  Jf,  is  required  at  the  other  end  to  start  the  pulley. 
Then 

where  A  is  written  for  X—  IF  and  B  for  X+  W. 
tuting  this  value  for  /x2  in  (52),  it  becomes .-4 On  substi- 

(53) 



FRICTION  77 

the  quantity  in  square  brackets  is  the  same  for  all  values 
of  Fp  and  Fr  it  can  he  denoted  by  the  single  letter  k  and  (53) 
written  in  the  abbreviated  form 

The  coefficient  of  static  friction  between  the  two  surfact 

then,  =      =     V 

Wlu-n  tin-  OOeffitient  of  kinetic  friction  is  to  be  determined, 

:nust  be  modified   by  usinir  in  place  of   /'.  /-'r  A.  and  7A 

.uantities    /';  .  /\'.  .-I',  and   li\  \\here   tlie   primed   symbols 
the    same    meanings   as    tin-    nnprimed,   except    that    the 

primed  arc  taken  when  the  bodies  are  moving  uniformly  instead 
I  hen  they  ar- 

M  \\IIM  LATIOB     AM.     COMPUTATION.—  After    cleaning  the 

block  and  the  surface  of  tin-  plate  and   making  the  plate  hori- 
i   with    the   aid    of   a   Spirit    level,  place  the   block    near   one 

•nd  and  add  K  to  tlje  j>an  until  the  block  on  beiiiLT  started 
keeps  in  uniform   motion.      Make  not  less  than  live  dctermina- 
:ions  with  dillereiit  weights  on  the   block.      Carefully  clean  the 

plate  and  block  before  ea<  -h  observation.     For  each  case  cah-u- 
be  coefficient  of  kinetic  friction.    Having  thus  determined 

;he  u<  Fp  necessary  to  keep  the  block  in  uniform 

:i  \\h.-n  it  is  pressed  against  the  plate  with  various  I 

f'4.  plot  a  curve  showing  the  relation  n   ih.-  t\\o.      This 
should  be  very  nearly  a  straight   line.  and.  if  the  normal 

/"  .  are  plotted  as  abscissas,  (54)  shows  that  the  tangent 
•  f  the  slope  gives  the  coeffi(  ;  ni.tion.     Determine  the 

i   the  slope  and  see  how  the  result  checks  with  the 
nean  of  the  previous  results. 

Exp.  12.    The*  Friction  of   a  Belt  on  a  Pulley 

Orui:<  T    UTD    THXOBI    01     I:\I-I:I:IMI  The   object  of 
.  ini'-nt  is  to  determine  th«-  c«.,-ilicicnts  of  static  and 

vin-  It  and  a  pulley. 
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Let  EG-HJ  represent  the  portion  of  the  belt  in  contact  with 
the  pulley  whose  center  is  O.     On  account  of  the  friction  be- 

tween the  two  surfaces,  the  tension 
of  the  belt  will  vary  all  along  the 
length  in  contact  with  the  pulley. 
When  the  belt  is  just  on  the  point 
of  slipping,  let  the  tensions  at  the 
ends  of  the  arc  CrH  subtending  the 

indefinitely  small  angle  A®  be  de- 

noted by  /  and  /'.  Let  F  and  I" 
represent  the  tensions  of  the  belt 

FIQ  39  where  it  leaves  the  pulley. 
By  compounding  the  forces/and 

fr  —  which  are  approximately  equal  because  A®  is  very  small 
—  it  is  found  that  the  normal  force  against  the  pulley  due  to 
the  element  of  the  belt  Grffis  equal  to 

'— 

Therefore  when  the  belt  and  pulley  are  in  equilibrium,  and  the 
belt  is  just  on  the  point  of  slipping,  the  coefficient  of  static 
friction  is  f  —  f 

u,=J  -  J-. 

'  /'A® 

Whence,  £-  =  1  -  AtA®, 

or  log,/-  log,/'  =  loge  (1  -  M@). 
Expanding  into  a  series  the  right  side  of  this  equation, 

loge/-  loge/  =  -  M®  -  J  (/.A®)2  -  1  OA®)3  -  etc. 
But  when  A®  is  chosen  very  small,  its  second  and  higher  pow- 

ers become  negligible  in  comparison  with  its  first  power,  and 
we  may  write  ,        ,,. 

If  we  write  expressions  like  the  above  ̂ or  all  the  elementary 
arcs  that  the  belt  touches,  and  then  write  the  sum  of  the  left 
members  equal  to  the  sum  of  the  right  members,  we  get 
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Whence,  M  -  lofr  *"  ~  lofr  *.  (55) 

in  which  the  angle  B  is  measured  in  radians. 
The  reason  for  not  using  the  approximation  sign  in  the  last 

•  •qnatiuns    is    this:    Approximations    have    been    made    in 
two  places,  and  in  each  one  the  approximate  value  approaches 
the  true    value    when   AB  approaches   zero.     That    is,   in    the 

limit,  when  AB  =  last  two  equations  hold  exactly. 
In  precisely  the  same  manner  is  obtained  the  coefficient  of 

kinetic  friction 

b=  °"f     ,  (56) 

6  -Fund  /'       :      -iic  tensions  of  the  belt  where  it  leaves  the 
pulley,  when  the  belt  is  slipping  at  a  uniform  rate. 

M  ANIIM  i.  \  D  COMPUTATION.  — Stretch  the  belt  over 

t  pulley  that  can  be  rotated  l»y  means  of  a  crank.  To  one  end 

»f  the  1).  It  apply  a  10  Ib.  weight  and  to  the  other  end  a  verti- 

•ally  hanging  balance  whose  lower  end  is  fastened  to 
the  floor.     Now  turn  the  <  rank  so  as  to  cany   the  belt  away 

the  spring  balance  until  the  belt  is  just  on  the  point  of 
The  sj.riiiLT  balance   reading   plus  the   uei^ht   of  the 

10  Ibs.  weight,  and  e  =  180°  =  7r  ra- 
Consequently  a  value  of  p  can  be  computed.     Repeat, 

Making    /  -sively   equal  to   20,  30,  etc.,  pounds  weight, 
mtil  the  lim;-  nee  is  reached.     The  mean  of 

-  of  ̂   thus  obtained  is  to  be  taken  as  the  coefficient 

:ri.-tion  between  the  belt  and  the  pulley.      Determine 
!    for  both  the  flesh  side  and    hair  side  of   the  belt. 

When  the  pulley  is  rotated  until  the  belt  slips  and  then  the 
!>t  constant,  the  spring  balance  reading  is 

",  as  before,  F  equals  the  Wright  acting  «>n  the  other 
>nd  of  the  belt,  and  H  equals  TT  radians.     From  these  \&\\n^  / 
computed. 
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Exp.  13.    Determination  of  the  Coefficient  of   Friction  between 
a  Lubricated  Journal  and  its  Bearings 

(GOLDEN'S  METHOD) 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  The  object  of  this 
experiment  is  to  determine  the  coefficient  of  kinetic  friction 

between  a  cylindrical  jour- 
nal and  its  bearings  for  dif- 

ferent loads,  speeds,  and 
temperatures.  The  Golden 
Bearing  and  Oil  Testing 
Dynamometer  consists  of  a 
spindle  passing  through  a 

bearing  B  (Fig.  40),  form- 
ing part  of  a  yoke  (7.  The 

spindle  can  be  rotated  at 
various  speeds  by  means  of 
a  motor,  and  the  yoke  can 
be  weighted  by  means  of 

adjustable  masses  M'  and 
M" .  As  the  spindle  is  ro- 

tated the  friction  between 

it  and  the  bearing  tends  to 
rotate  the  yoke  also.  This  tendency  to  turn  is  measured  by 
the  spring  dynamometer  D,  which  is  essentially  a  spring 
balance.  For  the  testing  of  oils  at  different  temperatures,  the 
collar  A  is  cored  in  such  a  way  that  a  stream  of  water  or  steam 
can  be  passed  through  it  and  the  temperature  of  the  bearing 
determined  by  means  of  a  thermometer  T. 

If  r  be  the  radius  of  the  shaft  and  F  the  total  force  of  fric- 
tion tangential  to  the  surface  of  the  shaft,  the  turning  moment 

resulting  from  the  friction  of  the  shaft  and  bearing  is  Fr.  If 
/  represents  the  force,  having  a  lever  arm  Z,  required  to  keep 
the  yoke  from  turning  (Fig.  41),  the  resisting  torque  is/7.  If 
the  center  of  mass  of  the  yoke  with  its  appendages  is  vertically 

FIG.  40. 
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below  the  axis  of  rotation  of  the  shaft,  then  when  the  shaft  is 

rotating  and  the  yoke  is  held  steady, 
/•>  -/I, 

If  the  total  weight  on  the  bearing  snrfaee  due  to   the  yoke 

and  :  with  the  masses  M'  and   M"   he 
denoted   by  /\  then   \.  iellt  of 
kinetie  friction 

If  the  surface  of  mntai-t  between 

the  journal  and  bearing  be  projr 
upon  a    hori/.ontal    ]>lane.   and    if    the 

ihis    projection    be    d< -noted 

then  the  pressure  on   tin-  hearing   is 

A 

\\I1TI.A  TI"\     AM>     (  'o.MlM     I    \  I  IM\.  \  '.  ,nd 

with  calipers  and  sea!--.       Kind  tin-  aiva  .1  of   the  projection, 

•  ii   a    hori/.oiit.il    j  ,\cni    the 

onrnal  and  hearing. 
journals  and   bearing  \\ith  beii/.ine,  Inbri- 

ate   with    the  assigned   oil   and    apply   small    and    nearly   ojiial 

ike.      l  be  dii'tVi-enee  be- 
\voloads  should  be  sutVn-i.-nt   t«>  develop  a   tnni- 

momenf    due   to  gravity  slight  1\  t  than    that    due 
o    friction.      Start    the    motor    and     :  EU    of    the    .spring 

lynanioineter  D  measure  the  \-  of    the    yoke   to  turn. 
Averse    t:  tion    o!  is    and     take    another    dvna- 

^>me-  iing.       By    this  operation    the   pull    developed     by 
irtion    between    the  n^   is.    first    added    to 

hf  pull  on  the  dyiiai:  i    on  one 
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end  of  the  yoke,  and  then  subtracted  from  it.  The  difference 
between  the  two  dynamometer  readings  is  2/.  The  data  are 
now  at  hand  for  computing  the  coefficient  of  kinetic  friction 
between  the  given  surfaces  lubricated  by  the  assigned  oil,  for 
the  particular  speed,  temperature,  and  pressure  per  unit  area 
of  bearing  surface,  used  in  this  determination. 

Proceeding  as  above  described  and  keeping  the  temperature 
constant,  determine,  for  a  fixed  speed  of  rotation  s,  the  values  of 
b  corresponding  to  a  series  of  values  of  p.  With  these  values 
plot  a  curve  coordinating  b  and  p  for  the  given  speed  and  tem- 

perature. Keeping  the  temperature  fixed,  now  change  the 
speed  of  rotation  and  determine  a  new  series  of  values  of  b  and 
p.  Plot  a  curve  coordinating  these  values  on  the  same  sheet 
with  the  other.  Proceeding  thus,  plot  on  the  same  sheet  about 
five  curves  for  the  same  temperature  but  different  speeds. 

In  the  same  manner  obtain  data  for  and  construct  on  an- 
other sheet  of  coordinate  paper  a  series  of  curves  showing  the 

relation  between  b  and  p  for  a  given  constant  speed  when  the 
temperature  t  is  changed. 

From  the  first  set  of  curves  construct  another  set  coordinat- 

ing b  and  s  for  different  fixed  values  of  p  when  the  temperature 
is  constant.  And  from  the  second  set  of  curves  construct 

another  set  coordinating  b  and  t  for  different  fixed  values  of  p 
when  the  speed  is  constant. 

Care  should  be  exercised  that  the  direction  of  rotation  of  the 

journal  is  frequently  reversed,  especially  when  the  bearing  is 
heavily  loaded,  so  as  to  avoid  error  due  to  inequality  of  the 
wearing  of  the  bearing. 

Exp.  14.  Determination  of  the  Coefficient  of  Friction  between 
a  Lubricated  Journal  and  its  Bearings 

(THURSTON'S  METHOD) 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  The  object  of  this 
experiment  is  to  compare  the  lubricating  properties  of  different 
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oils  from  their  relative  eft'ect  in  reducing  the  friction  between  a 
journal  ami  its  hearings.  The  Thurston  Oil  Testing  Machine 
to  be  used  in  this  experiment  consists  of  a  heavy  pendulum 
having  at  one  end  a  bearing  through  which  passes  a  horizontal 

shaft  capable  of  rotation.  The  bearings  can  be  caused  to  exert 

jiven  pressure  on  the  journal  by  means  of  a  heavy  coiled 
spring  and  adjust in_  .  forming  part  of  the  pendulum. 
When  the  shaft  is  rotated,  the  pendulum  is  deflected  through  an 
angle  determined  1>\  the  moment  of  the  tangential  effort  at  the 

imference  i.f  tin-  journal  and  the  moment  of  the  weight  of 
he  pendulum. 

•  •sent  the  weight  of  the  pendulum  ;    »9,  the  expan- 

t'orce  of  the  sprii      :   •/.   the   mean   normal  foive   bet 
ournal    and    bearings;    A',   th-  06    from    the   axis   of    the 

"imial  to  th-  miss  of  the  pendulum  :    /«',  the  tangen- 
:Tort    at    •  be  journal        numerically 

(jiial  t<>  the   ;  friction;    r.    the    radiu-  of  the  journal;    /, 

1  >  length  of  the  journal;   and  A.  the  coellicient  of  kinetic  fric- 

;on  1  -he  journal  and  its  bearings. 
If  the  pendulu;  jiiilibrium  when  dellected  through  an 
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angle  0,  the  couple  due  to  the  forces  FF  at  the  circumference 
of  the  journal  equals  the  moment  of  the  weight  W.  That  is, 

2  Fr  =  WR  sin  0. 

Since  the  upper  bearing  exerts  on  the  journal  a  force  equal 
to  the  sum  of  the  weight  of  the  pendulum  and  the  expansive 
force  of  the  spring,  while  the  lower  bearing  exerts  a  force  due 
only  to  the  spring,  the  mean  force  between  journal  and  bearing 
is 

j_(W+S)  +  S_2S+  W 

Consequently  the  coefficient  of  kinetic  friction  between  the 
journal  and  bearings  is 

WR   rjsin*.  (58) 

or  b  —  k  sin  0,  (59) 

where  k  represents  the  constant  coefficient  of  sin  0  in  (58). 
This  constant  can  be  determined  from  a  single  series  of  care- 

fully made  measurements  and  used  in  any  computation  of  5,  so 
long  as  the  force  exerted  by  the  spring  is  unchanged. 
MANIPULATION  AND  COMPUTATION.  —  Measure  the  diameter 

2  r  of  the  journal  with  a  pair  of  calipers.  Obtain  the  weight  TFof 
the  pendulum.  Observe  the  angle  6  on  the  divided  arc  attached 
to  the  apparatus. 

Place  the  coiled  spring  in  a  testing  machine  and  measure  the 
forces  required  to  produce  given  compressions.  Plot  a  curve 
coordinating  forces  and  resulting  compressions.  From  this 
curve  may  be  read  off  directly  the  force  S  corresponding  to  any 
compression  measured  by  a  scale  and  vernier  attached  to  the 
side  of  the  pendulum. 

The  distance  R  from  the  axis  of  the  journal  to  the  center  of 
mass  of  the  pendulum  can  be  determined  as  follows  :  While  the 
pendulum  is  still  suspended  from  the  shaft,  support  the  free  end 
on  a  knife  edge  resting  on  the  platform  of  a  balance.  (See 
Fig.  43.)  The  product  of  the  weight  observed  and  the  horizontal 
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•  listunce  L  between  the  supporting  knife  edge  and  the  center 

of  the   shaft   equals    II' A*. 
Compute  the  pressure  un  the  journal.  Since  the  projection 

«>f  the  journal  surface  equals  -(-/•)/.  the  pressure  is 
P-TTr 

After  Cleaning  the  journal  and  bearings  with  ben/.ine.  lubrieate 

with  one  of  the  oils  t«.  !>••  trstrd.  apply  a  ̂ i\rii  force  S  to  the 
spring,  set  the  shaft  into  motion,  and  observe  the  deflection  6 
of  the  pendulum. 

With  the  speed  of  rotation  kept  constant  observe  the  deflec- 
tions  produced  fur  several   values  of  the  force  S.      Repeat   the 
series  of  observations  when  the  other  oils  are  used.      Care- 

fully   clean     the    journal    and    bearings    after    each    sample    is 
examined. 

i  >pecimen  a  cur  linatin«_r  the  coefficient  of 
kind.  force  per  unit  a  rea  of  bearing  .surface  p. 

rou^ht  out   by   ;  aid  be  carefully 



CHAPTER  VI 

MASS,   DENSITY,  SPECIFIC   GRAVITY 

Exp.  15.   Calibration  of  a  Set  of  Standard  Masses 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  In  making  a  set  of 
standard  masses  it  is  impossible  to  get  the  mass  of  each  piece 

exactly  right.  Moreover,  the  handling  of  a  set  of  masses,  even 
when  carefully  done  with  forceps,  necessarily  wears  them  a  trifle. 
In  addition,  some  dust  settles  upon  them,  there  may  be  chemical 

action  with  vapors  in  the  air,  etc.  It  is  consequently  necessary 

in  accurate  work  to  compare  the  masses  with  each  other ;  and 

where  absolute  weighings  are  to  be  made,  the  masses  in  the  set 

must  be  more  or  less  indirectly  compared  with  the  ultimate  stand- 
ard. The  object  of  this  experiment  is  to  compare  the  masses 

of  the  various  members  of  a  set  and  to  construct  a  table  of 
corrections. 

The  method  employed  is  by  means  of  a  sensitive  balance  to 
find  the  differences  between  masses  or  groups  of  masses  supposed 

to  be  equal,  from  these  results  to  form  as  many  separate  equa- 
tions as  there  have  been  weighings  performed,  and  from  these 

equations  to  find  the  masses  of  the  different  pieces  in  terms  of 

some  convenient  unit.  In  this  experiment  the  unit  of  compari- 
son will  be  the  mass  of  one  of  the  standards  in  the  set  being 

calibrated. 

Consider  a  set  consisting  of  a  10-mg.  rider,  eight  aluminium 
or  platinum  masses  ranging  from  10  mg.  to  500  mg.,  and  nine 
brass  masses  ranging  from  1  g.  to  100  g.  Call  the  mass  of  the 
rider  r,  the  masses  of  the  fractional  gram  pieces  respectively 

lOj,  20X,  202,  50j,  lOOp  200X,  2002,  500X,  and  the  masses  of  the 
brass  pieces  respectively  lx,  2X,  22,  5r  lOj,  20V  202,  50V  ioor 

86 
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First  the  position  <>f  rest  is  determined  (a)  when  the  balance  is 

unloaded  and  (?>)  when  r  is  at  the  1-inark  on  the  beam.  These 
observations  give  with  sullieient  aceuraev  the  sensitiveness  of 

the  balance  for  the  first  few  small  loads.  1'^  is  nu\\  placed  on 
one  pan  and  r  either  on  the  other  pan  or  at  the  10.  mark  on 
the  other  side  of  the  beam.  From  the  position  of  rest  deter- 

mined under  these  eonditiuns,  the  position  of  rest  of  the  unloaded 

balanee.  and  the  I  of  the  balanee  the  value  of  \(\  in 
terms  of  r  can  be  calculated  :  — 

1  =     ,    =  ra  + 
where  the  al  is  a  small  number  which  may  be  either  positive  or 

."j  is  now  placed   on  one  pan.  Wl  on  the  other,  and  r  either 
on  tin-  pan  with  10j  or  at  the  10-mark  on  the  beam.     As  in  the 

ne  of  20j  can  be  determined  in  terms  of  r  : 

>r,  substituting  for  10j  its  value  from  the  preceding  equation, 

=  r(  '2  4-  rtj  4-  a,). 

In  the  same  way  is  obtained 

20,  =  10!  4- r  4-<V* 
=  ;  +  «s). 

Throughout  the  re*t  of  the  <-alil. ration  the  rider  is  kept  on 
he  brain,  and  the  sensit  i\  eness  is  determined  f.»r  each  load. 

A'ith  .md  :!<•,.  -Jo.,,  and  !<>j  in  the  other,  the  po- 

ition  .ind  the  seiisitiven.-ss  are  deti-rmint-d.     '1'liis  gives 
lie  value  of  50j :  — 

=  20j  4-  20,  4-  10j  4-  a4r, 

•r  substituting  for  10r  20j,  and  20,  their  values  from  the  above 
^nations, 

50j  =  r(5  4-  3  a!  4-  «a  4-  a8  + 

In  the  same  way 

)j  =  -iOj  4-  20j  4-  202  4-  10t  4-  abr 
4-  -  <t.2  4-  2a8  4-  «4  4-  06)» 
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50j  +  20X  +  202  +  10X  +  a6r 

=  r(20  -f-  terms  involving  ax  .   .   .  «6). 

2002  =  100X  4-  b01  4-  20X  4-  202  +  10X  4  a7r 
=  r  (20  4-  terms  involving  a^  .   .  .  #7). 

=  200X  +  2002  4  100X  4  a8r 
=  r(50  +  terms  involving  ax 

+  2002  +  lOOj  +  agr 

=  r(100  +  terms  involving  a^  .   . 

21  =  1  1  4-  500X  +  200X  +  2002  +  lOOj  + 
=  r(200  +  terms  involving  a^  .   .   .     1Q 

22  =5  it  4-  500X  4-  200j  +  2002  4  100X  4  anr 
=  r(200  H-  terms  involving  ax  .   .   .  «n). 

etc. 

In  the  above  equation  the  a's  are  all  experimentally  observed, 
so  that  if  the  mass  of  any  one  of  the  pieces  in  the  set  is  known 

in  terms  of  the  ultimate  standard,  then  from  the  equation  in- 
volving the  mass  of  that  piece  can  be  calculated  the  mass  of  the 

rider.     When  the  mass  of  the  rider  is  known,  the  masses  of  all  the 

pieces  in  the  set  can  be  calculated  from  the  respective  equations. 

MANIPULATION   AND   COMPUTATION.  —  Perform  the  opera- 
tions indicated  above.     Make  all  weighings  by  the  method  of 

vibrations,  and  with  the  brass  pieces  use  the  method  of  double 

eighing.     Assuming  that  the  100  g.  mass  is  correct,  determine 
he  masses  of  all   the   other   pieces  in   terms  of  it.       Record 

fie  results  in  a  three-column  table,  putting  in  the  first  column 
the  symbol  used  to  denote  the  particular  mass  considered,  in  the 
second  the  value  obtained  for  this  mass,  and  in  the  third  the 

correction  for  the  mass  as  obtained  from  (2). 

DENSITY   AND   SPECIFIC   GRAVITY 

If  a  body  of  mass  m  occupies  a  volume  v,  then  the  average 

density  of  the  body  is  given  by 

»-"  (61) 



MASS,    ni'.NSITY,  SPECIFIC  GRAVITY  89 

From  this  expression  it  is  seen  that  the  number  which  ex- 

presses a  density  depends  upon  the  units  in  terms  of  which  the 

and  volume  are  measured.  For  example,  at  4°C\  the 
density  of  lead  is  about  708  pounds  per  cubic  foot,  or  2868 

grains  per  cubic  inch,  or  11.  -'U  grains  per  cubic  centimeter. 
Sinee  deli  quantity,  the  units  in  terms  of  \vhieh 

the  mass  and  volume  of  the  body  are  measured  must  always 

be  sta:  .  Since  must  budies  change  their  volume  somewhat 

with  ehanges  of  temperature,  the  density  of  a  substance  depends 

upon  its  temperature  :  ami  so  in  accurate  work  the  tempera- 
ture at  which  a  determination  is  made  should  alwa\s  he  stated. 

'1  lie  specific  gravity  or  relative  density  of  a  substance  is  the 
ratio  of  its  density  to  the  d.-nMty  of  some  standard  substance. 

In  other  words,  the  specific  gravity  of  a  body  is  the  ra: 

ass  to  that  of  an  equal  volume  of  a  standard  substance. 

gravity  is   thus  a  nuiin-rie.il    ratio,  an   ah.Mraet    number 

which   is   indepeinh-nt    of   the   units  employed.       For  solids  and 
li<|ui<:  at     the    temperature    of    its    maximum    densitx 

i  I    C.  Of  ;''-r  F.  )  i>  arl.it  r  .en  as  the  standard  sul»>iam  ••. 

Sine.-  in  the  C.G.8.  system  of  units  the  unit  of  mass  is  the 
mass  of  a  unit  volume  of  water  at  the  temperature  of  its  maxi- 

mum .it  fulluws  that  t  he  density  of  a  b  rrams  per 

centimeter  is  n  dly  equal  to  its  speci: 

Exp   16.     Determination  of  the  Density  of  a  Solid  by  Measure- 
ment and  Weighing 

OBJECT  AND  THEORY  <>  81)  it  will 
be  seen  that  tin-  <h-n>ity  of  any  >"lid  c.,nld  readily  be  determined 

if  a  speci  it  cuiihl  be  obtained  in  a  shape  such  that  its 

Volume  could  easily  be  compi; 

M\NIITI.\  •       PUTATIO       -The  specimen  to  be 
•  •y  Under.    Measure  its  diameter  with  a  micrometer  cali- 

per  and  it>  length  with  a  \  •  ••••  pp.  1  T.  L'l  )  and  cal- 
culate the  vuliime.     I),  i.  rmine  the  mass  by  wei^hin^.  u>in^  the 

method   nf    vibrations    (pp.    ii»J  '2*).     In  order  to  gut  a   very 
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accurate  value  for  the  density  it  will  be  necessary  to  correct 
the  weighing  by  allowing  for  the  buoyancy  of  the  air.  First, 
without  making  this  correction,  divide  the  apparent  mass  by 
the  volume  and  so  get  an  approximate  value  for  the  density. 
Use  this  value  in  (14)  to  get  the  true  mass  of  the  cylinder. 
Calculate  the  density  by  (61). 

Exp.  17.   Determination  of  the  Density  and  Specific  Gravity  of 
a  Liquid  with  a  Pyknometer 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  The  pyknometer 
is  essentially  a  small  glass  vessel  of  definite  volume.     Various 

FIG.  44. FIG.  45. FIG.  46. 
FIG.  47. 

forms  suitable  for  determining  the  densities  of  liquid  are  given 
in  Figs.  44-48. 

The  pyknometers  in  Figs.  45  and  48  can  be  used  only  for 
liquids,  while  the  others  can  be  used  for  either  liquids  or  solids. 
The  most  common  form,  that  shown  in  Fig.  46,  consists  of  a 
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small  bottle  tilted  with  a  perforated  glass  stopper  that  always 
comes  accurately  to  a  seat  at  the  same  point,  so  that  the  volume 

of  the  bottle  is  definite  when  the  stopper  is  in  place.  This  form 
is  often  call-  ity  hot  tie. 

The  yolume  of  the  pyknometer  is  obtained 
i  two  weiijhin^s,  first  when  empty,  and 

second  when  filled  with  a  liquid  of  known 

density,  »-.//.  water.  If  the  mass  of  y\ 
contained  in  the  filled  pyknometer  is  denoted 

by  M,r  and  its  density  by  p...  then  the  vol- 

Fit;    4S 
let   the  water  be  replaced   by  the  sp- 

If  the  ::  bhli  second  liquid  tilling  the  pyknometer meii. 

l>e  d-  ]/     ;:d  its  density  by  p^  then 
XT.     M.p. 

'•  =  TS     .»/, 

.mum    density  of   water   by  £,  we  have  for 

ific  gravity  of  the  sp. 

(68) 

_r  equations  no  account  has  b.  on  of  the 
Jt  it  HP-sphere   on     the   liquids     heili'_r    Weighed 

nd  on  the  standard  masses  used    in   tl  In    pi 
-  this  .soiirc.  d.      The 

:  MIC  weight    of    an    object    eqt  .'-rbl    plus   the 

'eight  of  air  .      1    when   the   balance   is   in 
•   luilihrium,  th«-  aj»p.:  -ly  equals   theapj»ar- 

i.ird  masses.      So  that  when  the  .specimen 
;  in  air,  its  true  weight  minus  it.s  loss  of  wi-i-^lit  due  to 

buoyancy  of  the  air  equals  the  true  \\ei^ht  of  the  standard 
.a&8e>  :ht.     If  the  den>ity  of  air  is  de- 

i  Dted  by  pt  and   I  I    the  standard  masses  by  pb,   this 
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last  statement  says  that  when  the  pyknometer  was  filled  with 
the  first  liquid, 

and  when  the  pyknometer  was  filled  with  the  second  liquid, 

On  eliminating  v  from  these  equations,  we  obtain 

ft  =  -+,..  (64) JXL W 

MANIPULATION  AND  COMPUTATION.  —  Weighing  by  the 
method  of  vibrations,  determine  first  the  mass  Mp  of  the  empty 

pyknometer;  second,  the  mass  (MP  +  MW')  of  the  pyknometer 
filled  with  recently  distilled  water  ;  and,  third,  the  mass 
(Mp  +  Mi)  of  the  pyknometer  filled  with  the  liquid  in  question. 
Take  the  values  of  pw  and  pa  from  tables. 

Each  time  before  filling  the  pyknometer,  clean  it  by  rinsing 
successively  with  nitric  acid,  distilled  water,  and  alcohol,  and, 
then  dry  it  by  putting  into  it  the  end  of  a  tube  connected  to  an 
exhaust  pump.  Be  sure  that  there  are  no  air  bubbles  in  the 
pyknometer,  that  the  outside  is  dry,  that  the  stopper  is  in  place, 
and  that  the  liquid  fills  the  capillary  tube  in  the  stopper.  In 

order  to  avoid  changes  in  volume  due  to  changes  in  tempera- 
ture, avoid  touching  the  filled  bottle  with  the  bare  hand. 

Exp.  18.    Determination  of  the  Density  and  Specific  Gravity 
of  a  Solid  with  a  Pyknometer 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  The  object  of  this 
experiment  is  to  determine  the  density  and  the  specific  gravity 
of  a  solid  in  small  pieces. 

Three  suitable  forms  of  pyknometer  have  already  been  illus- 
trated (Figs.  44,  46,  47).  To  determine  the  volume  of  a  solid 

by  means  of  a  pyknometer,  four  weighings  are  made  :  first, 
when  the  pyknometer  is  empty  ;  second,  after  the  specimen 
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introduced:  third,  after  the  rest  of  the  space  in  the 
py  kilometer  has  been  tilled  with  water  or  other  liquid;  and, 
fourth,  after  the  pyknoineter  has  Keen  emptied  and  then  filled 
with  the  same  liquid  used  in  the  third  wei^hin^. 

the  mass  c.f  the  pyknnmeter  he  denoted  1>\  Mf>.  that  of  the 
specimen  liy  J/«.  that  of  the  water  which  tills  the  pyknometer 
1>\  M  ,  and  that  <>f  the  water  which  was  usrd  with  the  speci- 

men l»y  m,r.  Then  if  the  :  ind  in  the  /ah  weighing1 
is  denoted  1)\   M  . 

M{  -  .V  . 

MI  =  Vp  +  M* 

« 
MI  =  Mp  4-  Mw.  (  "  s  i 

e    ma.xs    ..f    tli.-    \\ater    which    displaces    the    specimen    is 
,.  and  from  .'MI  and  <• 

values  of  J/;,  and  <  .)/    •  M  » 

T     i     TUf  \          f  TUf     i     TLf  \ 

'a  i  ̂ «4>)  —  v-"*i  i  -"*g/« 
denotes  the  den-  u>ed.  the  \..lnmc  nf   the 

which   displaces   tlie  specimen,  and   therefore    the  volume 
if  t; 

the  density  of  t:  .men  is 

p>_JS_it_*i. 

*\  eliminating  r  fmm  tlie  last  two  equations,  we  get 

^  -     • ''    "  -ft^- 
(69) 
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If  8  denotes  the  maximum  density  of  water,  it  follows  that  the 
specific  gravity  of  the  specimen  is 

Sp.  Gr.  =  & B 

This  method  is  capable  of  very  accurate  results.  In  precise 
measurements  account  must  be  taken  of  the  buoyant  effect  of 
the  air  on  the  specimen  and  on  the  standard  masses  used  in 

the  weighing.  The  true  weight  of  an  object  equals  its  appar- 
ent weight  plus  the  weight  of  the  air  displaced  by  it.  When 

the  balance  is  in  equilibrium,  the  apparent  weight  of  the  body 

equals  the  apparent  weight  of  the  standard  masses.  Conse- 
quently, when  the  specimen  is  weighed  in  air,  its  true  weight 

diminished  by  its  loss  in  weight  due  to  the  buoyancy  of  the  air, 
equals  the  true  weight  of  the  standard  masses  diminished  by 
their  loss  in  weight.  If  the  density  of  air  is  denoted  by  pa  and 
the  density  of  the  standard  masses  by  /o6,  this  last  statement 
says  that 

In  the  same  way  considering  the  water  which  displaced  the 
specimen, 

vpw  -  vpa  =  (Mw  -  mj  -  (M™  ~  m^  . 

Pb On  eliminating  v  from  the  last  two  equations,  we  get 

|  0 

"""  P  at 

or,  substituting  for  Ms  and  (Mw  —  m^  their  values  in  terms  of 
the  masses  actually  observed, 

* 

This  gives  the  density  at  £°,  the  temperature  at  which  the 
experiment  was  performed.     If   7  denotes   the   coefficient   of 
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cubical  expansion  <>f    the  specimen,  then  its  density  at  0°    is 
given  by 

f-  - _         2  -  4     -  ,  3 

:  men!  of  <7J>  from  (71)  is  left   as  an  exercise  for 
student. 

MANIITL.  \TIMN  AND  COMPUTATION.  —  Make  all  weighings 
by  the  method  of  vibrations.  Observe  the  precautions  that 
are  suggested  in  the  last  paragraph  under  Experiment  17. 

Exp.  19.    Determination  of  the  Density  and  Specific  Gravity 
of  a  Solid  by  Immersion 

OBJBOT  AND  THBOBI  01  BXPXBIMXNT.-  The  object  of  this 
:iment    is  to  determine  the  density  and  speeilic  gravity  of 

a  solid  ,,f  irregular  form. 

Since  a  >olid  body  immersed  in  a  liquid  is  acted  npon  by  an  up- 

thrust  equal  '  the  li.jiiid  displaced  by  the  body, 

it  follows  that  it'  this  npthrnst  is  measured,  the  weight  of  the 
displaced  liquid  is  known,  and  if  the  weight  of  a  unit  volume 
of  the  liquid  is  also  known,  then  the  volume  of  the  liquid  dis- 

1  —  and.  then-fore,  the  volume  of  the  body  —  can  be  cal- 
eulat.  the  body  in  air  is  denoted  by  Ba, 
and  its  weight  when  immersed  in  the  liquid  by  /^,  then  the  up- 

:  of  the  liquid  —and.  consequently,  the  weight  of  the 

liquid  displaced  —  is  lia  —  Bt.  So  that,  if  //•  denotes  the  weight 
of  a  unit  volume  of  the  liquid  at  the  temperature  of  the  experi- 

ment, the  volume  of  the  liquid  displaced-  and,  consequently, 
the  volume  of  thebo<i 

v  =B*~B'.  (78) 

It  follows,  if  m  denotes  the  mass  of  the  specimen,  that  the  den- 
sity of  the  specimen 

i  nation  in  (  74)  being  true  because  m  =  /y,,///and  u*  =  p,<j. 
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Since  specific  gravity  is  defined  as  the  ratio  of  the  density  of 
the  substance  in  question  to  the  maximum  density,  S,  of  water, 

(75> 
When  the  body  is  lighter  than  the  liquid  in  which  it  is  to  be 

immersed,  a  sinker  is  attached.  Weighings  are  made  to  deter- 
mine :  first,  the  weight  of  the  body  in  air,  Ba  ;  second,  the 

weight  of  the  sinker  immersed  in  the  liquid,  Sl  ;  and  third, 

the  weight  of  the  two  together  when  immersed,  {B  -f  £),•  The 
weight  of  the  body  alone  when  immersed  in  the  liquid  is  nega- 

tive, but  its  value,  sign  included,  is 

B^as+sy.-s,, 
and  this  value  can  be  substituted  in  (74)  and  (75),  giving 

aad  Sp. 

MANIPULATION  AND  COMPUTATION.  —  The  liquid  in  which 
the  body  is  immersed  must  be  one  which  will  not  dissolve  the 
body,  act  upon  it  chemically,  nor  cause  it  to  change  its  volume. 
Whenever  possible,  use  is  made  of  water  which  has  been  freed 
of  dissolved  gases  by  boiling.  If  the  liquid  contains  dissolved 
gases,  bubbles  will  collect  on  the  immersed  body,  causing  an 

increased  upward"  thrust,  and  therefore  an  error  in  the  result. Water  should  be  boiled  for  about  half  an  hour  and  then  cooled 

to  the  temperature  at  which  the  experiment  is  performed.  As 
water  slowly  dissolves  air,  it  must  be  boiled  on  the  day  it  is 
used. 

The  motion  of  the  balance  beam  is  so  much  damped  by  the 
immersion  of  the  load  in  a  liquid  that  it  is  useless  to  weigh  by 
the  method  of  vibrations.  The  values  of  pl  and  S  are  to  be 
taken  from  tables. 
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Exp.  20.    Determination  of  the  Density  of  a  Solid  or  Liquid 

with  Jolly's  Spring  Balance 

<>I-,.IK<T  AND  Tm:"KY  <>F   K x  i'i:i:  i  M  KNT. —  The  Jolly  spring 
bahu.  ••cially  suited  to  tin-  determination  of  the  densities 
of  liquids  and  of  solid  bodies  of  small  ma>>.      The  essential  part 
of  the  instrumen:  :al  spring  which  lianas  vertically  and 

!es  ut  its  Lowei  did  a  weight  pan.  If  the 

limit  of  elasticity  is  not  passed,  any  increase  in 

the  length  of  this  spring  is  proportional  to  i 

Applied   to   it.      In   Line! 

form  of  tin-   instrument  (FL  .  .-•  sprin.: 
d    by    i  :n;_^   tubes. 

inner  tnl>.-  can  he  adjusted  up  or  down  by 
turning  the  milled  head  D.  To  tin-  li»\ver  end 
)f  tl.  i  an  ind- 

)f  a  doiiM-'  OTCMI  of  aluminium,  half  of  \\hic! 
•ainted 

ength  of  glass  tubing  whit  h  is  wliitnud  on  the 
•aek.  and   \\  bioh  -e  a 
lorizontal  hlaek  hair  line.      This  line  se; 

i  zero,  to  \vhieh  the  line  se| 
•  in-  index  may 

lebrou^}  .\ver  end  of  tin-  Li 

ached  a  thin  wire  siipportini;  t 
9.      !  iias  been  hroti^hi 

Ixxly  be  placed  on  one 
.•tl^ht     to    the 

6TO  marl.  tin-  inner 

npporting  tuln?  A.     On  this  tnhe  is  engraved 

mil!  ieli,  by  means  of  a  vernier 
t  V,  can  !•«•  read  millimeters.      The 

laerence  between  the  reading  at  I' when  one  of  the  scale  pans 
ii  not  In...  M  ion  of  the  spring 

to  the  \\,  ;  I,,-  |,ndy       NVlieii  the  h.idy  does  u«»t  | 

Itf 
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more  than  about  5  g.,  accurate  results  are  possible  with  this 
method. 

In  the  case  of  a  solid  that  will  sink  in  a  given  liquid  of 

known  density,  the  lower  pan  is  submerged,  and,  after  the  in- 
dex has  been  brought  to  the  zero  line  and  the  reading  at  V 

noted,  the  specimen  is  placed  in  the  upper  pan  and  the  elonga- 
tion of  the  spring,  6a,  necessary  to  bring  the  index  back  to  the 

zero  line,  is  determined.  The  specimen  is  then  placed  on  the 
submerged  pan  and  the  new  elongation,  bt,  is  found. 

Since  ba  is  proportional  to  the  weight  of  the  specimen  in  air, 

and  bt  is  proportional  to  the  weight  of  the  specimen  when  sub- 
merged in  the  liquid,  (74)  and  (75)  can  be  put  in  the  forms 

BgPl  .     t>api  ^7ox 

si^s,*  *^* 

••[-: 

and  Sp.Gr.==,  (79) 

where  Pt  is  the  density  of  the  given  liquid  and  8  is  the  maximum 
density  of  water. 

In  the  case  of  a  solid  that  floats  in  the  given  liquid, 
a  sinker  must  be  attached.  With  the  apparatus  arranged 

as  before,  let  the  elongation  of  the  spring  when  the  speci- 
men is  in  the  upper  pan  be  represented  by  6a,  the  elonga- 
tion when  the  sinker  alone  is  in  the  submerged  pan  be 

represented  by  s,,  and  the  elongation  when  the  specimen 
and  sinker  are  tied  together  and  are  in  the  submerged  pan  by 
(£  +  «);.  Since  these  elongations  are  proportional  to  the  forces 
which  produce  them,  (76)  and  (77)  can  be  put  in  the  forms 

~L  _  *£L  _  (80) &fl-(ft  +  0i+«i 

and  Sp.  Gr.      =  (81) 

[*•— 

In  determining  the  specific  gravity  of  a  liquid  by  this  method 
a  sinker  that  is  unaffected  by  water  and  by  the  given  liquid  is 
weighed  in  air,  in  water,  and  in  the  liquid  whose  specific  gravity 
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Miircd.      If  tli.'  elongations  of  the  spring  when  the  sinker 

is  in  the  air,  in  water  at  4°  ('..  and  in  the  given  liquid,  are  de- 
fectively by  *a,  8^  and  *,,  it  is  easily  shown  that  the 

specific  gravity  uf  the  liquid  is  given  by 

^p.  Gr.  =  ?fi=i.  (82) *a       *tr 

If  tlie  temperature  of   the  water  is  t~  instead  of  4°,  the  right 
member  of  (82)  is  to  be  multiplied  hy  the  specific  gravity  of 
water  a: 

MAMITLATION   AND  ('..MIT TATK.N.  —  In  determining  each 
make  a  reading   <»f  the   scale   at 

V  before   the   spring  :ided.  as  well   as  afterward.      The 

•nded  system  must  1.  without   touching  either  the 
glass  tnl»f  around  the  index  or  the  beaker  containing  the  liquid, 
and  the  submerged  part  uf  the  suspended  system  must  lie  kept 

From  air  bubbles  and  always  submerge* I  to  the  same  depth. 

The  upper  pan  and  its  contents  must    be   kept   dry.      After  im- 

•'ii  in  any  liquid,  the  .sinker,  specimen,  and  scale  pan  should 
1  9  carefully  dried  with  tilter  paper. 

Exp.  21.    Determination  of    the  Specific  Gravity  of  a  Liquid 
with  the  Mohr  Westphal  Balance 

ORH<  r   \\i>  Tm:«)i:y  MI    K\|'I:I:IMI:\T.    -  The  object  of  this 
perimeiit  is  to  determine  the  specific  gravity  of  an  aqueous 

.-  >lution  by  means  of  a  Mohr- \Vestphal  balance. 

:n    Archimedes'    principle  it    follows  that    if   a    body    of 
•  instant    volume    be    immersed    in    various    liquids,   the   conv- 

-  .unding  losses  of  weight  sustained  by  ih.-  ill  represent 
t  .e  weights  of  equal  volumes  of  the  various  liquids.     Whence, 
i     a  body                 ,ine  t%  when   immersed  in  succession   in  two 

1    juid>,  ..f  densities  ^  ,uid  py  sustain   the   iv>peetive  losses  of 

tt»,  and  WT  then 

i  £l.  (83) 

Pi 
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If  the  second  liquid  be  water  at  the  temperature  of  its  maximum 
density,  then  the  ratio  of  w^  to  w2  gives  the  specific  gravity  of 
the  first  liquid. 

If,  therefore,  a  means  be  devised  for  measuring  the  loss  of 
weight  of  a  given  body  when  immersed  in  any  liquid,  and  also 
for  determining  what  loss  the  same  body  would  suffer  if  it  Avere 

immersed  in  water  at  4°  C.,  the  specific  gravity  of  the  liquid 
could  be  computed  by  means  of  the  above  equation. 

A  convenient  instru- 
ment designed  for  the 

purpose  is  the  Mohr- 
Westphal  balance. 
This  device  (Fig.  50) 

consists  of  a  decimally 
divided  balance  beam 
at  one  end  of  which 

is  suspended  a  glass 
sinker  for  immersion. 
The  other  end  of  the 

beam  is  so  counterbal- 
anced that  the  beam  is 

held  in  equilibrium 
when  the  sinker  is 

surrounded  by  air. 
The  instrument  is  also 

provided  with  five 
riders  which  are  ordi- 

Fia  go.  narily  equal  in  mass  to 
1.0,  i.O,  0.1,  0.01,  and 

0.001  of  the  mass  of  water  displaced  by  the  sinker.  Thus, 
if  the  sinker  be  immersed  in  water,  one  unit  rider  placed 

at  the  end  of  the  beam  would  be  required  to  compen- 
sate for  the  loss  sustained  by  the  sinker  and  to  bring  the 

beam  back  to  a  horizontal  position.  Again,  if  with  the  sinker 

immersed  in  a  certain  liquid  the  beam  is  brought  into  a  hori- 
zontal position  when  a  unit  rider  is  hung  on  the  hook  J.,  the 
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tenths  rider  on 'the  second  notch  (7,  and  the  hundredth*  rider 
un  the  third  notch  B*  the  theory  of  moments  of  forces  show 

that  the  upthrust  on  the  sinker  is  l.UiM  times  as  givat  as  in  the 

preceding  case.  Consequently  the  specific  gravity  of  the  given 

liquid  is  1.02 

If,  as   the   temperat  .  .ker  were   to    expand    at 

-  tint-    rate  that  water  dors,  the   temperature   at   which  the 

Mohr-Westphal  balance  is  u>ed  \\'<>uld  make  no  difference,  for 
the    sinker  would  always  displace   the    same    mass    of    water. 

But,  M  ft  matter  of   fart,  at   ordinary  room   temperatures  water 

expands  more  rapidly  than  ijlass,  so  that  when  the  temperature 

is  a  little  above  20°  C.  the  Mohr-\Vestphal  balance  reads  0,  1    , 

lower  than  it  would  at    1-",  .      Moreover,  the   temperature   in   a 

laboratory  is   usually  not  BO  low  a-   I     <  '..  and  BO  the  riders  are 
usually  adjusted    to   read    specific   gravities   with    reference   to 

at     I")3  —  about    the     temperature    at    which     Kuropean 
laboratoi  :  usually    kept.      In    unh-r    t«>    use    the    balance 

in   a    laboratory  at    a!  and  to  get  B]  •  with 

•  to  water  at  4°  it  will  then   be  necosary  to  apply  a 
•orreetion. 

find  what   this  correction  is,  let  bl6  and  l>t  denote  the  re- 

spective r-  ;ice  when   the  sinker  is  immersed, 

1  )  in  water  of  dcnsil  \   f>i:>  at    1  "•  .and  cl)  in  the   lit  pi  id  whose 
:  v  pt  at  t     U                  .  and   let   r^  and    rt  denote    ihe    i-i- 

of   the  sinker.      Then  the   \\ei-hts  of  liquid   dis- 

placed by  the  sinker  in  the  two  cases  are  respectively  r. 

lll(l  Ptvt&'      Since    the  readings  of   the    balance  are    proportional 

o  these  weights. 

/\  "lsg  =  plbv$  (1  -h  7  '  15)  (84) 

k  .  1  +  7/ ,.  (85) 

s  here  v0  denotes  the  volume  of  the  sinker  at  0°  and  7  its  coeili- 
•nt  of  expansion.     On  dividing  (85)  by  (84),  we  obtain 
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Whence,  since  the  balance  is  so  .adjusted  that  b15  =  1, 
.  15 

or,  employing  approximation  (5),  p.  7, 

*=Pi*M1  +  7-15)  (1 
or,  employing  approximation  (2),  p.  7, 

(86) 

If  the  specific  gravity  of  the  liquid  is  desired,  we  have  at  once, 
if  &  denotes  the  maximum  density  of  water, 

Sp.  Gr.  [=  |]=  £i^[i_  y(t  -  15)]  .  (87) 

Since  7  is  small  and  pl5  differs  only  slightly  from  S,  it  will 
be  seen  that  if  only  fairly  accurate  values  are  desired,  (86)  and 
(87)  give  very  nearly 

Pt  =  Sbt  (88) 

and  Sp.  Gr.=bt.  (89) 

MANIPULATION  AND  COMPUTATION.  —  With  the  sinker  in 
air  and  no  rider  on  the  beam,  the  instrument  is  first  leveled 
until  the  pointer  attached  to  the  beam  indicates  zero.  The 
sinker  is  then  immersed  in  the  liquid  whose  specific  gravity  is 
to  be  determined,  and  riders  are  placed  in  the  notches  on  the 
beam  until  the  pointer  again  indicates  zero. 

Exp.  22.    Calibration  of  an  Hydrometer  of  Variable  Immersion 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  In  the  measure- 
ment of  the  specific  gravity  of  liquids  for  technical  purposes 

where  great  accuracy  is  unnecessary,  some  form  of  hydrometer 
of  variable  immersion  is  usually  employed.  The  hydrometer 
(Fig.  51)  consists  of  a  closed  graduated  glass  tube  of  uniform 
cross  section  with  a  weighted  bulb  on  the  lower  end.  The 
mass  and  volume  of  the  instrument  are  so  chosen  that  when 

it  is  placed  in  the  liquid  whose  specific  gravity  is  to  be  deter- 
mined it  will  float  upright.  The  specific  gravity  of  the  liquid 
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is  shown  by  the  depth  to  which  the  hydrometer  sinks.  If  the 

graduations  on  the  stem  are  so  spaced  and  numbered  as  to  give 

directly  the  density  of  the  liquid,  the  instrument 

is  called  a  densimeter.  Often,  however,  the  gradu- 

ations are  equidistant  and  are  referred  to  some 

arbitrary  scale.  Thus  we  have  the  scales  of 

Bauine.  I'-  :  tier,  and  Twuddell.  The  specific 
gravities  corresponding  to  readings  on  these  vari- 

ous s-  given  in  Table  6.  Not  infrequently 

the  stein  of  the  hydrometer  contains  two  or  more 

scales.  When  graduated  with  especial  reference 

to  use  with  some  particular  class  of  liquids,  the  hy- 
drometer is  called  the  alcohol  imeter,  sal  in  imeter,  etc. 

A  calibration  curve  for  any  instrument  isacurve 

in  which  the  actual  readings  of  the  in>tniment  are 

plotted  against  the  :  that  the  instrument 

ought  to  -/ive.      The  ol.  exercise  is  to 
Calibrate  an  hydrometer. 

(a)    Scale  n$  of  equal  length.       If    an    hydrom- 
of    mass  m   sinks    to  scale   di\i>ion  </t   when    placed    in 

i    liquid     of     density    pv    and     to     di\iM.»n     •  ?.,    when     placed 

n  a  liquid  of  <lcn>ity  p.,,  then    by   Archimedes'    principle  the 

volume  of  the  first  liquid  displaced  is  —  and  of  the   second  is 

— .      If  11  d.-notes  the  volume  of   that   :  the   stem  which  is 
J-j 

ncluded  between  two  consecutive  scale  divisions,  then 

Fio.  51. 

Pi     Pi 

vVhence (00) 

>r 

\om  (90),  if  pr  py  and  m  are  knoun,  the  value  of  u  can  be 

onnd,  and  from  (''1),  if  M,  pr  and  m  are  known,  p^  can  be 
ound. 
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If  the  maximum  density  of  water  is  denoted  by  8,  the  spe- 
cific gravity  of  the  second  liquid  is 

Sp.  Gr.  [=^1=   ^   . 
L      £J       [m,  —  /0iM(^i  —  ̂ 2)]^  \V^) 

(5)  Scale  in  which  the  successive  divisions  express  equal  dif- 
ferences in  density.  Consider  a  wooden  rod  of  mass  m,  of 

uniform  cross  section  <?,  and  so  loaded  at  one  end  that  it  will 
float  upright.  When  the  rod  floats,  the  weight  of  liquid  dis- 

placed is  by  Archimedes'  principle  equal  to  the  weight  of  the 
rod.     That  is,  if  the  rod  sinks  a  distance  Zj  in  a  liquid 
of  density  p^ 

--?-      Whence  ^  =  — .  (93) 

Similarly,  if  the  rod  sinks  a  distance  ?2  in  a  liquid 
of  density  pv 

I*=M'  (94) 
*      Dividing  (93)  by  (94), 

*  i  =  &.  (95) 
12        Pi 

—*—   That  is,  *  the   distances   to  which   this   hydrometer 
FIG.  52.          .         ...  ,.  .    .  .    J      ..       .  , or  uniform  cross  section   sinks   in  various   liquids 

are  inversely  proportional  to  the  densities  of  those  liquids. 
Consider  now  an  hydrometer  of  the  usual  form,  which  is  not 

of  uniform  cross  section  throughout,  but  which  is  of  uniform 

cross  section  above  some  point  IT  (Fig.  52).  For  this  hydrom- 
eter there  is  at  some  unknown  distance  x  below  K  a  point 

to  which  the  hydrometer  would  extend  if  it  had  still  the  same 
mass  and  volume  which  it  really  has,  but  if,  instead  of  the 

varying  cross  section  which  it  really  has,  it  continued  through- 
out with  the  same  cross  section  which  it  has  above  jfiT.  Sup- 

pose that  in  one  liquid  this  hydrometer  sinks  to  a  point  distant 
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hl  above  K,  and  in  another  liquid  to  a  point  distant  7/2  above 
K.     Then  from  (95), 

r~  i          ~i  7 

(96) 

(97) or 

If  the  subscript  2  is  dropped,  (96)  gives 

h  -fa: 
(98) 

If  the  maximum  density  of  water  is  denoted  by  &  the  specific 
gravity  of  the  liquid  is,  then. 

"    h£l  (99) 

Thus  if  we  determine  to  what  distance  above  A' the  hydrom- 
eter sinks  in  each  of  t\\o  liquids  of  known   densities,  we  can 

by  (97  i  determine  x.     And  if  we  know  to  what  distai 

A' the  hydnnne-te:  liquid  of  known  density,  and 
know  also  ./.  then  if  we  determine  to  what  « list  a  nee  above  K  the 

>meter  sinks  in  any  other  liquid,  we  can  by  (99)  determine 

the  specific  gravity  of  that  liquid. 
rniformity  of  cross  section  of  the  hydrometer  may  be  tested 

at  various  points  with  a  micrometer  cali- 

It'  the  cross  section   is  not   uniform  above   A',  the  abo\e 
method    of   calibration    U    n.,t     applicable.      In    this    case    BOHM 

having  'i 

varying  .somewhat    uniformly  \\  ithii. 

the  hydrometer  should  be  made 
up.  the  density  of  cadi   determined,  and 

the   readinur  hydrometer   in    each 
:i.  This  method  of  calibrat  i<>n  is,  of 

course,  ac< -unite,  but  is  more  tedious  than 
the  other. 

M  AMIM  I.ATK'N  A\D  <  '<  >M  IM  T  A  I  I < >N .  —  The  surface  <»f  the 
liquid  about  an  h\drometer  is  usualU  of  a  shape  similar  to  that 

in  Fig.  53.  AH  is  the  stem  of  the  hydrometer  and  <  '/>  is  a  tall 
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narrow  jar  in  which  the  liquid  is  placed.  First  be  sure  that 
the  hydrometer  is  floating  freely,  and  then  place  the  eye  below 
the  level  of  the  liquid  surface  and  raise  it  until  it  is  sighting 
the  hydrometer  along  the  dotted  line.  The  point  of  the  scale 
crossed  by  this  line  is  the  required  reading.  The  temperature 
of  the  liquid  should  be  noted  at  the  time  of  each  observation. 

When  changing  from  one  liquid  to  another,  the  jar,  hydrome- 
ter, and  thermometer  are  to  be  thoroughly  washed  and  dried. 

Determine  the  densities  of  two  liquids  either  with  a  pyknometer 

or  with  a  Mohr-Westphal  balance.  Observe  the  scale  readings 
on  the  hydrometer  when  it  is  floated  in  turn  in  the  two  liquids. 

(a)  If  the  hydrometer  has  a  scale  with  equal  divisions,  weigh 
the  instrument,  place  it  in  succession  in  two  liquids  of  known 
densities,  and  then  by  means  of  (90)  calculate  the  value  of  u.  By 
means  of  (92)  calculate  the  specific  gravity  corresponding  to 
each  of  the  numbered  scale  divisions  on  the  stem  of  the  hydrome- 

ter. Plot  a  curve  with  these  calculated  specific  gravities  as 
abscissas  and  the  corresponding  scale  readings  as  ordinates. 
This  is  the  calibration  curve  of  the  instrument.  The  calibra- 

tion curve  should  be  checked  by  comparing  two  or  three  values 
obtained  by  means  of  the  hydrometer  in  connection  with  the 
curve,  with  values  obtained  by  means  of  a  pyknometer  or  a 
Mohr-Westphal  balance. 

(5)  In  the  case  of  the  densimeter  or  direct-reading  hydrome- 
ter, lay  a  steel  scale  along  the  stem  of  the  hydrometer  and  read 

the  steel  scale  at  each  numbered  division  on  the  hydrometer. 
In  addition,  read  the  steel  scale  at  the  points  to  which  the 

hydrometer  sank  when  floated  in  the  two  liquids  whose  densi- 
ties were  previously  determined.  From  these  last  two  readings 

and  the  densities  already  determined,  and  taking  K  as  any  con- 
venient point,  calculate  x  by  (97).  Knowing  x  and  the  distances 

from  K  to  the  various  hydrometer  divisions,  use  (99)  to  deter- 
mine what  the  hydrometer  readings  ought  to  be  at  the  various 

points  along  its  scale. 
The  quantity  which  has  to  be  added  to  a  reading  in  order  to 

obtain  the  corrected  reading  is  called  the  correction  for  that 
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.:ILJ.     Plot  both  a  correction  curve,  coordinating  the  read- 
"f  the  hydrometer  and  the  corrections  to  be  applied,  and 

.(•ration  curve,  coordinating  the  actual  readings  with  the 
corrected  readii:. 

Th-  aions  and  results  should  be  arranged  in  a  table, 
somewhat  as  follows :  — 

11  ,  l-KoMBTKB 

RCA: -// 

STEEL  SCALB 

ABOVE  A' 

-A 

A  +  a 
e»Al<*l  +  «) 

mg-M 

*A  +  a.) 

tp.  23.    Determination  of  the  Relative  Densities  of  Gases 

with   Bunsen's  Effusiometer 

;  IKNT. —-The  object  of  this 
cxpei  :  mine  the  ratio  nf  the  dnisity  of  a  gas  to 

i.-nsity  of  air  or  hydrogen.     The  density  of  a  gas  mi^ht  !»«• 
iiint-il   l.y  wri^l,ii|._r  a  large  hull*  <>f  known  voliinu-,  lirst 

•  juite  empty,  and  thru  tilled  with  tlie  L,ras  nnd.-r  investiga- 
tinn.      Hut  on  account  of  the  ditheulty  in  ennij.lrt.-ly  «-\  aeuatin^ 

10  first  weigh  1  in  olitainin^  an  accurate 

value  of  t  !.-•  mass  of  gas  contained  in  the  l.ul'o  at  t  i;.-  time  of  the 
.  this  method  recpiirrs  nnnstuil  care  and  many 

r  a  gas  of  density  p{  inclosed  in  a  vessel  at  a  pressure 

of  p  dynes  persq.  cm.  abo\  rounding  at  mosphrri-. 
If  tin-re  l»e  ;i  >m;dl  opening  of  area  a  in  the  vessel,  then  the  g«s 
'vill  esca;  ..-re  at  some  speed  *,  om,  per  sec. 

:i  one  set-mid  there  will  issue  fmrn  the  openinLT  a  column 

of  gas  of  length  sl  cm.  and  cross  section  a  sq.  cm.  Conse- 
«|iiently  the  mass  of  gas  that  escapes  per  second  through  the 
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opening  is  plas1  grams,  and  the  kinetic  energy  of  this  mass  is 

Again,  since  the  gas  in  the  vessel  is  under  a  pressure  exceeding 
that  of  the  surrounding  atmosphere  by  p  dynes  per  sq.  cm.,  it 
follows  that  the  force  producing  the  flow  is  pa.  Consequently 
the  work  done  on  the  escaping  gas  in  one  second  is  pasv  This 
is  the  loss  of  potential  energy  of  the  gas  in  the  vessel.  Since 
the  loss  of  potential  energy  equals  the  gain  in  kinetic,  it  follows 
that 

(100) 

Therefore  the  speed  of  efflux  of  the  escaping  gas  is 

*i=\/-£. 

Pi 

Similarly,  if  a  second  gas  of  density  p2  is  allowed  to  escape 
through  the  same  opening  under  the  same  difference  of  pressure, 
its  speed  of  efflux  is 

(101) 

Dividing  (101)  by  (100), 

P2 
(102) 

FIG.  54. 

where  ̂   and  t2  are  the  times  required  for  equal 
volumes  of  the  two  gases  to  effuse  through  the 
same  opening. 

That  is,  when  under  the  same  conditions  as  to 
pressure,  the  densities  of  two  gases  are  inversely 

*  proportional  to  the  squares  of  their  speeds  of 
effusion,  and  are  directly  proportional  to  the 

squares  of  the  times  required  for  equal  volumes  to  effuse  through 
the  same  orifice. 

This  is  the  principle  of  Bunsen's  Eff  usiometer.  The  apparatus 
(Fig.  54)  consists  of  a  glass  tube  open  at  the  bottom  and  sur- 

mounted by  an  enlargement  containing  a  diaphragm  D  pierced 
with  a  small  opening  about  0.01  mm.  in  diameter.  This  tube 
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is  inserted   in   a  larger  vessel   containing  mercury.     The  gas 
under  investigation  is  inclosed  in  the  tube  and  the  time  noted 

that  is  required  fur  a  certain  volume  of  gas  to  effuse  through 

the  diaphragm.      C  is  a  three-way  cock  by  means  of  which  the 
.older    can    be    put    into   direct   communication   with  the 

atmosphere,  or  with  the  orifice  in    the   diaphragm,  or  can  be 

I  entirely.      F  is  a  float  for  indicating  the  change  in  vol- 
ume of  the  gas,  and  X  is  a  stopper. 

MAMIM  i.Aii"\    .\M»    ( '.  .MIM  TATIMN.  —  If   the  ratio  of  the 
•f  a  gas  to  the  density  of  air  is  to  IK-  determined,  put 

the  gas  holder  into  direct   connection  with  the  atmosphere   hv 

means  of  the  three- way  cock  (7,  and  then,  by  raising  the  gas 

•r,  till  it  with  air.     Close  the  stopcock,  depress  the  gas 

:-,  and  clamp  it   into  position.     Next  remove  the  stopper 
and  turn   the  three-way  cock  SO  as  to  connect    the  gas  holder 
.vith  the  diaphragm   D.      As  the  gas  effuses   through   the   dia- 
)hragm,  observe  the  interval  of  time  between  the  instant  when 

li.-  upper  point  /'  of  the  Huat  arrives  in  t:  ..f  the   upper 

:'  the  mercury  in   the   well,  and   the   instant    when    the nark  at  M on  the  float  reaches  the  same  level. 

v  empty  the  gas  holder  and  till  it  with  the  other  gas.      I  >•  •- 
•ress  the  gas  holder   as    far  as  possible  while    it    is  in  direct 
ommunicatioii  with  the  atmosphere.     This  will  expel  most  of 

with  the  gas  being  examined  and  elevate  the 

This    opera  '.1    till    the    gas    holder.        By 
v  refilling  and  emptying  tin-  gas  holder,  it  will  become 

of  air  and   tilled  with  a  specimen  of  the  gas 
/hose  dc:  sought. 

Proceeding  as  in  the  case  of  air,  find  the  interval  of  time 

en  the  infant   when  the  apex  of  tin-  tl-.at   appears  above 
;rface  ,,f  the  mercury  in  the  \\ell  and  the  instant  when  the 

i  lark          ;/  The  ti;  equal  volume  of 
t  ie   two  gases  under  the  >ame    DI6lfOT6    to   effuse    through    the. 

t    »ie  opening  have  now  l)een  obtained.      Their  relative  density 

c  in,  therefore,  be  calculated  by  (10> 



CHAPTER  VII 

MOMENT  OF  INERTIA 

THAT  property  of  matter  in  virtue  of  which  a  force  from  out- 
side must  act  upon  a  body  in  order  that  either  the  speed  of  the 

body  or  the  direction  in  which  it  is  moving  may  be  changed  is 
called  inertia.  Similarly,  that  property  of  matter  in  virtue  of 
which  a  torque  from  outside  must  act  upon  a  body  in  order 
that  either  the  angular  speed  of  the  body  or  the  axis  about 
which  it  is  rotating  may  be  changed  is  called  moment  of  inertia. 
The  inertia  of  a  body  is  numerically  equal  to  the  sum  of  the 
masses  of  its  component  particles.  The  moment  of  inertia  of  a 
body  can  be  shown  to  be  numerically  equal  to  the  sum  of  the 
products  of  the  masses  of  the  particles  composing  the  body  and 
the  squares  of  their  respective  distances  from  the  axis  of 
rotation,  i.e., 

K=^mi*.  (103) 

When  a  resultant  torque  is  applied  to  a  body  there  is  produced 
an  angular  acceleration  a  numerically  equal  to  the  ratio  of 
the  applied  torque  L  to  the  moment  of  inertia  K  of  the  body, 
i.e., 

a=J.  (104) 

The  moment  of  inertia  of  a  body  of  simple  geometric  form 
can  be  computed,  but  the  moment  of  inertia  of  an  irregularly 

shaped  body  may  often  be  determined  most  easily  by  experi- 
ment. The  experimental  determination  is  usually  made  by 

comparison  with  a  body  whose  moment  of  inertia  can  be  com- 
puted. The  computations  for  a  few  simple  cases  are  effected 

as  indicated  in  the  following  table : — 110 
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SHAPB 
A  \1S    ABolT    WI1K  It 

i:..i  \ INF.KTIA MEANING  OK  s  \\ti.oiv 

Kf.  Monifiit  of  iiu-rt  ia 
Plane  lamina Any  axis  normal tl'out    u\\\  linr  A  A  ' 
of  any  shape to  it 

A-X+  A; 

56)   in    tlu- ^lane  of    tlu-   lamina 
ami    ini«>r>rrting  the 

2 Any  shape Any  axis m«Mit  of  inrrtia 
il-oiit     anotlu-r     linr 

ii  the   plan.-  of 

3 Solid  circu- 

1  -1  ' 

tin-    lamina.    ]MM-ptMi- liciilar   to    A.V  .  ami 
linder 

4 Solid  circu- 
:iinl»T 

Any  axis  parallel 
to  geometric  axis 

M/ 

A   .  M.  'in.  'lit  of  in.Ttia 

al'ont  tin-  paral!' • 

DUM, 

5 •  ircu- !•  t»T  of  one 

end 
M  |  j£  +  £] 

/'.   Distance  bt't th.  two  axes. 

Solid Through  cmter, r^  n I/.   M,l-  of  thr  rylill- 

lar  cylinder mal  to  length 
M  116^  1L>J 

•  r    «if     tln» I'T. 

7 
HoQoi 

Geometric  axis 

'-He/,1) 

ill  of  th.-  ryliii- 
der, 

fCOiitenl 
'/,.  In 

expressions  in  tin-  f«»urih 
be  obtaiiu-'l   in  the   manner   imli- 

paragra] 

<  .t-le  of  mass 

at     P  (1  ::.    66  -      I  b  D   by 

the  ;il»uv«-  laltlc  ma 

- 
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2.    Let  the  diagram  (Fig.  56)  be  a  section   normal   to  the 
axis,  A  the  section  of  the  axis  about  which  rotation  occurs,  0 

the  section  of  a  parallel  axis,  and  KA  the 
moment  of  inertia  about  the  required  axis. 

Consider  a  particle  of  mass  m  at  P.     Then 

or,  since  p  is  independent  of  the  particle 
considered, 

By  a  proposition  in  elementary  dynamics,      ml  =  0  when  the  axis 

through  <7  passes  through  the  center  of  mass.     Therefore, 

KA  =  Kc  +  Mp\  (106) 

3.  Imagine  the  cylinder  to  be  made  up  of  n  thin  hollow  cylin- 
ders one  inside  of  another.  Denote  the  density  of  the  material 

by  /?,  the  length  of  the  cylinder  by  Z,  the  thickness  of  each  hollow 
cylinder  by  £,  and  the  respective  mass  and  moment  of  inertia  of 

the  ith  hollow  cylinder,  beginning  at  the  center,  by  mt  and  ̂   . 
Then 

mi  = 

i  -  1), 

where  A  is  used  in  place  of  Trftlp.  The  moment  of  inertia  of 

this  ith  hollow  cylinder  is  greater  than  the  product  of  its  mass 
by  the  square  of  its  inner  radius  and  is  less  than  the  product  of 
its  mass  by  the  square  of  its  outer  radius.  That  is, 

The  moment  of  inertia  of  the  whole  cylinder  K  is  the  sum  of  the 

moments  of  inertia  of  the  elementary  hollow  cylinders.     That  is, 

1'-  1)0'  -  !)¥>}  <  K< t=i or, 

2 «» -  5  *a  +  4  i  -  1)  <K<  4 
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On  summing  the  series  indicated  in  this  last  pair  of  inequalities 

and  substituting  for  ̂ 4  its  value  Trt-lp*  we  get 

or,  since  nt  =  r, 

TT/K  1  r*  -  §  &  +  i  rt»)  <  K<  TrlpQ  r*  +  }  r*t  -  J  rf  *)  . 
The  difference  between  tlif  tliird  and  first  members  in  this  last 

pair  of  inequalities  is  J?r/pr(4  r2  —  r2)^,  a  quantity  which,  by 
choosing  f  small  enough,  can  be  made  less  than  any  assigned 

quantity.  It  follows  that  the  value  of  I\  is  the  common  limit 

approached  by  th-  and  last  meml)crs  when  t  approaches 
zero.     That  is.  if  •/  denotes  the  diameter  of  the  cylinder. 

D=  \-rrlpr*  =  \Mi*  =  \Mffi.  (  107  » 
4.    Apply  (:{)  and  c2>  mi  p.  111. 

Imagine  the  cylinder  cut  into  n  thin  lamina-  l»y  planes 

normal  U)  -  of  the  cylind.-r.  If  m  is  the  mass  of  one  of 

lamina-,  then  by  <1<>7,  the  moment  of  inertia  <.f  that 

lamina  about  its  ̂ eimu-tric  axis  is  J  md*.  If  tl»e  thieknrss  t  of 

the  lamina  wnv  indelinit.-ly  .small,  tben,  from  the  symmetry  ..f 

the  figure,  tlie  iimin.  ,'iertia  of  the  lamina  about  any 
diameter  would  e«jual  its  moment  «f  inertia  ab«.iit  any  other 

diameter,  and  therefore,  by  (105),  Iti  momeiii  of  inert  ia  about 

any  diameter  \\<.uld  be  -j^-tnd*. 
Consider   n<.\v   the   moment    of   in.-r:        A      if   the    /th    lamina 

from    on--   end    of    |  inder    \\hen    I  tiOD    is   a 

diameter  of  that  end  of  the  cylinder.  One  side  of  this  lamina 

18  at  a  e(/—  \  )t  from  the  end  of  the  cylinder  and  the 
other  at  a  distain---  i  tin-  end.      The  moment   of  inertia  of 

:  ban  it  \\oul  -ll  the  material   in  the 

lamina  were  compressed  into  a  thinner  lamina  at  a  distance 

'/—  1  V  from  the  end.  and  i>  l«-ss  than  it  \\oidd  be  if  all  the 

i  -vterial  in  the  lamina  were  compressed  into  a  thinner  lamina 

it  a  distance  it  from  the  end.  From  <  L06)  .'  follow!  that 

m  -<Ki<h™<& 
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The  moment  of  inertia  of  the  whole  cylinder  K  is  the  sum 
of  the  moments  of  inertia  of  the  elementary  laminae.     That  is, 

i=l-n  1 16 

or 

Whence,  on  summing  the  series, 

m 

or  remembering  that  nm  =  M,  the  mass  of  the  cylinder,  and  that 
nt  =  Z,  the  length  of  the  cylinder, 

The  difference  between  the  third  and  first  members  of  this 

last  pair  of  inequalities  is  Mlt,  a  quantity  which,  by  choosing 
t  small  enough,  can  be  made  less  than  any  assigned  quantity. 
It  follows  that  the  value  of  Kis  the  common  limit  approached 
by  these  first  and  last  members  when  t  approaches  zero.  That 
is,  if  d  denotes  the  diameter  of  the  cylinder, 

6.  Imagine  the  given  cylinder  to  consist  of  two  equal  cylin- 
ders set  end  to  end.  Then  the  length,  diameter,  mass,  and  mo- 

ment of  inertia  of  the  given  cylinder  are  respectively  I'  =  2  I, 
d'  =  d,M'  =  2  M,  and  K  =  2  K.  Substituting  in  (108), 

7.  Let  p  denote  the  density  of  the  material  composing  the 
cylinder,  d0  and  d4  its  outer  and  inner  diameters,  I  its  length, 
M0  and  K0  the  mass  and  moment  of  inertia  which  the  cylinder 
would  have  if  it  were  solid,  Mi  and  Kt  the  mass  and  moment 
of  inertia  of  the  inner  part  of  the  solid  cylinder  that  has  been 
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removed  in  order  to  leave  the  hollow  cylinder  of  mass  J/  and 
moment  of  inertia  K.     Then,  by  (107), 

'         -<7.2> 

Exp.  24.     Determination  of  the  Moment  of  Inertia  of  a 
Rigid  Body 

()i;.n:<  T    \M)    TIII:<>I:Y   Ol    K\  i'i:i:i  MF.NT. —  The    object   of 
this  experiment  is  to  determine  a  moment  of  inertia. 

In  any  case  where  a  body  can  be  set  into  torsional  vibration 
about  the  axis  about  whieh  the  moment  of  inertia  is  required, 

Dimple   matter   to   determine 
:<>raent  of 

of  tlie  body.       I-'n.m   <  1  t  1  »   it    follows 
that    if  a   body    is  suspended   so    that 

:  vibrate  torsionally.  its  moment 

of  in-  :ial  to  tlu* square 
of  its  period  of  vibrat  .   <::.        I  :    t; 

the  proportional:'  ailed   k\ 

If  a   mass    of    known    moment   of 

>e   added   to    the    body 

above   01  ive  ^^^^ 

A          K^kTJ  (11 -J)  F,o.B7. 

wh.  the  new  pe:  ;brati«»n  of  the  system. 

Kliminatin^  k  between  (111)  and  (  1 1  _'  i. 

A"  '/' 

I-TJ^T?  (113) MAMIM  I.\UM\  .\M>  (  .-MI  ..      .\   convenient   form 
"f   a:  this   experiment    consists  (Fig.  57)  of  two 
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horizontal  disks  connected  by  three  thin  vertical  rods. 
From  the  center  of  the  upper  disk  rises  a  short  spindle  for 
attachment  to  the  supporting  torsion  wire.  The  body  whose 
moment  of  inertia  is  required  can  be  placed  on  the  lower  disk 
in  such  a  position  that  the  line  about  which  its  moment  of 

inertia  is  to  be  determined  coincides  with  the  axis  of  the  sup- 
porting wire.  The  positions  of  the  masses  MM  are  then  ad- 

justed until  the  axis  of  vibration  of  the  system  passes  through 
the  center  of  the  two  disks.  Below  the  vibrating  system  is  a 
device  by  means  of  which  the  apparatus  can  be  set  into  tor- 
sional  vibration  with  very  little  swinging  motion. 

Find  the  period  of  vibration,  Tv  of  the  apparatus  ;  then  add 
a  body  of  known  moment  of  inertia,  7f2,  and  find  the  new 
period  of  vibration,  T12.  From  (113)  the  moment  of  inertia  of 
the  apparatus  is 

Now  substitute  for  the  body  of  known  moment  of  inertia  the 
body  whose  moment  of  inertia  is  required,  and  find  the  period 
of  vibration  as  before.  If  this  period  be  denoted  by  ̂ 13,  then 
the  moment  of  inertia  Kz  of  the  body  under  investigation  is  by 
(113) 

or,  substituting  the  value  of  K^  from  (114), 

In  finding  the  various  periods  of  vibration,  first  with  the 
apparatus  at  rest  set  the  pointer  P  directly  in  front  of  one  of 
the  three  vertical  rods.  Then  set  the  apparatus  into  torsional 

vibration  with  an  amplitude  of  perhaps  90°.  At  some  instant 
when  the  vertical  rod  passes  the  pointer  start  a  stop  watch. 
Count  some  ten  or  fifteen  complete  vibrations  and  stop  the 
watch.  After  recording  the  time  that  has  elapsed,  again  at  the 
instant  of  a  passage  start  the  watch.  After  some  ten  minutes, 
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during  which  time  no  attention  has  been  paid  to  the  vibrating 
11,  stop  the  watch  at  an  instant  of  passage.      Calculate  the 

period  by  the  Method  of  Passages,  given  oil  pp.  30-38. 
Take  all  the  required  linear  dimensions  with  a  vernier  ealiper 

and  make  all  weighings  with  a  balance  of  moderate  sensibility. 

Calculate  A',  as  indicated  <>n  p.  111.  Determine  A',  both  bv 

(  11-",  ,  ;lud  a>  indicated  on  p.  Ill,  and  see  how  the  values  cheek. 



CHAPTER   VIII 

ELASTICITY 

WHEN  a  body  is  perfectly  elastic,  a  given  deforming  force 
keeps  it  distorted  to  the  same  extent  no  matter  for  how  long  a 
time  the  force  is  applied.  This  means  that  the  distortion  calls 
into  play  a  restoring  force  which,  so  long  as  the  body  is  at  rest, 
is  exactly  equal  and  opposite  to  the  deforming  force.  It  fol- 

lows that,  when  the  deforming  force  is  removed,  this  restoring 
force  causes  the  body  completely  to  recover  its  original  shape 
and  size.  When  a  body  is  imperfectly  elastic,  a  given  deform- 

ing force  produces  a  gradual  yielding  so  that  the  restoring 
force  which  the  distortion  calls  into  play  is  in  this  case  not 
quite  equal  to  the  deforming  force.  It  follows  that  when  the 
deforming  force  is  removed  from  a  body  which  is  imperfectly 
elastic,  the  body  does  not  completely  recover  its  original  shape 
and  size.  It  is  said  to  have  received  a  permanent  set,  or  to 
have  been  deformed  beyond  its  elastic  limit.  So  long  as  any 
body  is  not  deformed  beyond  its  elastic  limit  it  is  perfectly 
elastic. 

The  ratio  of  a  force  to  the  area  on  which  it  acts  is  called  a 

stress.  The  ratio  of  a  deformation  to  the  original  value  of  the 
length,  volume,  or  whatever  has  been  deformed,  is  called  a 
strain.  When  a  body  has  not  passed  its  elastic  limit,  the  ratio 
of  the  restoring  stress  to  the  strain  which  produced  it  is  constant 
and  is  called  a  coefficient  of  elasticity.  Since  forces  applied  to 
a  body  in  different  ways  produce  different  types  of  deformation, 
there  are  various  coefficients  of  elasticity. 

If  a  wire  is  stretched  or  a  pillar  shortened  by  a  load  applied 118 
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to  it,  the  strain  is  the  change  of  length  divided  by  the  original 
:i.      In  this  case   the  ratio  of  the  stress   to  the  strain  is 

ealled  the  tensile  coefficient  of  elazti'ltii  <>r  _)'«>///</',<<  modulu*. 
If  a  toy  balloon  were  fastened  under  water  and  then  pressure 

applied  to  the  water,  the  balloon  would  deerease  in  volume  with- 
out ehanging  its  shape.  In  this  ease  the  strain  is  the  ehange  in 

volume  divided  by  the  original  volume,  and  the  corresponding 

'•ient  of  elasticity  is  called  t: 

If  a  rectangular  parallelepiped  of  rubber  a<>  ( Fig.  5S)  has  two 
opposite  faces  glued  t"  two  boards,  and  if  one  of  these  hoards 
is  \n\-  \  s  in  its  n\vn  plane,  there  is  no  change  in  the 
volume  of  the  block  but   its  shape  is  changed  to  f<i<\L      In  this 

case  the  strain  is  tin'  nr        ^   
:id  is  called  a  shear  or  a  then 

be  force  applied,  and 
A   the  area  face  ab,  the 
livi« 

ided    1.       I     -   called   a   shear  — FYo~58~ 

I,     If  ili«-  l»'..M-k  of  rubber  is  very 
thin  in  a  .  to  the  paper,  and  if  it  is  bent  around 

intil  ii<l  0  with  /»•.  it  is  seen  that  .1  -   the  kind  of 

arain  involved   in   the   twisting  of  a  wire  about    its   geometric 

tioofa.v  ;  atnte  to  the  shearing  strain  which 
t  produces  is  called  the  simple  r  c  the  slide  modulus  of 
he  material  shea: 

Exp.  25.    Determination  of  the  Elastic  Limit,  Tenacity,  and 
Brittleness  of  a  Wire 

Or..n-:iT  AM»  THEORY  01  -The  elastic  limit 

if  a  material  is  the  stress  beyond  which  the  material  cannot  go 

vitlmnt  be. •(>:niiiur  permanently  set.      Since  it   is  found   that  the 
oirve  _r  the  relation  of  a  stress  to  the  strain   which  it. 

'•••(luces  .t    line   until    the  <  lied, 

heel.  it  is  the  stress  corresponding  to  the  point  on  the 

:  im  where   the   curve  departs  from  being  a 
The  tenacity  or  tei  h  of  a  material  is 
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the  greatest  longitudinal  stress  it  can  bear  without  rupture. 
The  brittleness  of  a  material  is  the  ratio  of  its  elastic  limit  to 

its  tenacity ;  in  other  words,  it  is  the  ratio  of  the  force  just 
sufficient  to  produce  permanent  set  to  the  force  just  sufficient 
to  produce  rupture.  The  object  of  this  experiment  is  to  plot  a 
curve  showing  the  relation  between  the  longitudinal  stress  and 
strain  of  a  wire,  to  determine  from  this  curve  the  elastic  limit 
of  the  material  composing  the  wire,  and  also  to  determine  its 
tenacity  and  brittleness. 

MANIPULATION  AND  COMPUTATION.  —  Arrange  a  wire  verti- 
cally so  that  it  cannot  twist,  with  one  end  fastened  to  a  rigid 

bracket  and  the  other  end  attached  to  a  scale  pan.  Place  on 
the  supporting  bracket,  directly  above  the  wire,  a  number  of 
iron  masses  whose  aggregate  weight  exceeds  the  breaking 
strength  of  the  wire.  Focus  the  cross  hairs  of  the  telescope  of 
a  cathetometer,  or  the  cross  hairs  of  a  microscope  containing  an 
eyepiece  micrometer,  on  a  well-defined  mark  on  the  lower  end 
of  the  wire,  and  take  the  reading.  Take  a  weight  off  the 
supporting  bracket,  place  it  on  the  scale  pan,  and  take  a  new 
reading  of  the  position  of  the  fiducial  mark.  Continue  chang- 

ing weights  from  the  supporting  bracket  to  the  scale  pan  and 
taking  the  corresponding  readings  until  the  wire  breaks.  On 
coordinate  paper  plot  the  stresses  applied  to  the  wire  as 
abscissas,  and  the  strains  produced  as  ordinates.  The  stress 
corresponding  to  the  point  where  the  curve  departs  from  being 
a  right  line  and  bends  toward  the  vertical  axis  is  the  elastic 
limit.  The  tenacity  is  the  breaking  weight  divided  by  the 
area  of  cross  section  of  the  wire,  and  the  brittleness  is  the 
elastic  limit  divided  by  the  tenacity. 

Exp.  26.  Determination  of  the  Tensile  Coefficient  of  Elasticity, 

or  Young's  Modulus 

(FIRST  METHOD,  BY  STRETCHING) 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  From  the  definition 

of  Young's  modulus  (p.  119),  it  follows  that  if  L  denotes  the 
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:i  of  a  \viiv.  7  its  diameter,  and  e  the  elongation  produced 

by  a  force  /T.  then  the  Young's  modulus  of  the  material  compos- 
ing the  \viiv 

If  the  force  is  measured  in  dynes  and  the 
r  quantities  in  centimeters,  the  value  of 

K  will  he  in  dynes  per  sq.  em.     The  ohject 
of  this  experiment  is  to  determine  the  value 

:iodulus  for  a  metal  in  the  form 

of  a  v 

the  quantities  which  have  to  he   meas- 
ured,  the  only  one  that  it  is   difficult  to  get 

with    mod, -rate  accura<  \    is  the  value  of  the 

Cation   ,•.      On. -means  of   finding  this  is 

The    Upper  end   of    the 

lamped   to  a  ri^id    support 

.d  to  the  lo\\.-r  end  of  the  wire 

r    piece   of    metal    S 

terniinalini;  in  a    h<»  <  hment 

weight     pan    //.       This     rectangular 

of     metal     is    kept    from     i  «,r 

swiiiLMiiLf    1»\    IM-HILT    let    through    a    loos- 

littii  : pillar  hole  in  a  second    ' 
;ied     to     the     wall.        One    leg    of     the 

optical  lever  is  si.  in  the  axis  of  the 
hy  the  rectangular  hook,  while  the  other  Fio.  59. 

iHirted   hy  the  hrack. 

In   I  li  the  optical  level-  with  its  mirmr  ••/•  vertical, 
ntal  teh  nd  oo'  is  a  vertical  scale  divided 

•  •ntimeters  and  millimeters.      If  the  wire  he  .stretched  hy 

ill  amount,  the  oj.tical  lever  will  assume  the  position  /////// 

making  an  an^h-  ̂   \\ith   its  j  ition.      When   li^ht   is 
reflected  fidn  a  mirror,  the  an^le  of  reflection  equals  the  alible 

of  in  .,  ..  ,,' <i' i  =  v<i' i  =  0.     Conse(|iicntly  tm'v=ml  6. 
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And  since  the  small  distance  aaf  is  negligible  in  comparison 
with  ao, 

tan  20  =  21. ao 

If  0  is  small,  approximation   (10),  p.  7,   may    be   employed, 
giving 

FIG.  60. 

The  elongation  is  the  vertical  distance  through  which  the  point 

m  moves  in  passing  to  the  position  m' .     So  that 

e  =  m'n  sin  0  =  mn  sin  0, 

or,  employing  approximation  (8), 

.__          Q  ._  mn  •  oof 

On  putting  this  value  of  e  in  (116)  it  becomes 

„  .       8  FL      ao_ 

mn   oo' 

(117) 

MANIPULATION  AND  COMPUTATION.  —  See  that  the  wire  is 

straight  and  carefully  suspended.  Place  three  or  four  kilo- 
grams on  the  supporting  bracket  directly  over  the  clamp  hold- 

ing the  upper  end  of  the  wire,  and  one  kilogram  on  the  pan 
below.  Put  the  optical  lever  in  place  and  the  telescope  and 
scale  a  meter  or  so  from  it,  clamp  the  scale  vertical,  and  adjust 
the  height  of  the  telescope  until  it  is  at  about  the  same  level  as 
the  optical  lever.  Move  the  head  to  such  a  position  that  the 
image  of  the  telescope  is  seen  in  the  middle  of  the  mirror  of  the 

optical  lever.  If  the  eyes  are  not  now  at  the  level  of  the  tele- 
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scope,  turn  the  thumb  screw  beneath  the  front  legs  of  the  optical 

until  the  image   is  seen   when   the  eyes   are  at   the  same 

level  as  \.  "pc.     This  makes  the  mirror  vertical.      1 

ize  the  telescope  as  directed  on  p.  23. 

I  the  telescope,  move  the   masses  from   the  supporting 

bracket  d<»\vn  t"   I  Jit    pan.  read  the  telescope,  move  the 

-•k  to  the  supporting  bracket,  and  read  the  telescope 
again.  If  the  elastic  limit  has  not  been  exceeded,  the  last 

reading  should  be  about  the  same  as  the  first.  Repeat  two  or 
three  tin.  \]  shout  live  determinations,  each  one  after 

moving  l:  'pc  and  scale  a  fe\v  centimeters  farther  from 

•ptiral  If. 

IfeMIlN   tin-  diameter  i.f   the   wire  in  some  half  do/.en  places 
with  a  micrometf  ;  •  :he  length  inn   of  tlie 
optical   lever  by  piv>-  three  feet    upon   a    piece  of  card- 

board, connecting  the  prick   points  made  by  the  two  front  feet 

!ine,  and  then  m  (  tin-  normal  diMance  hetucni 
.jiing  prick  point  and  this  line  by  means  of  a  milli- 

meter scale.  I). •:•  ;he  length  of  the  wire  with  a  meter 

.stick,  and  the  loads  added  to  the  weight  pan  \\ith  a  platform 

balance  weighing  to  grams. 

each  distance  <t>>  tind  the  average  deflect  ion  oo'  and 

culate  ""-      Find  the  average  of  all  the  values  for  ~ '    and    by 

oo1 
(117.    Of  the   result  in   dynes  per  sq.    cm.,   in 

wt.  p«-r  s<j.  mm.,  and  in  lit.  u  t .  p-T  ><j.  in. 

Exp.  27.   Study  of  the  Flexure  of  Rectangular  Rods* 

AM.   Tm:«'i:v    01  r.  —  Fven    before    a 

given  phenomenon  i>  >ullici«-ntly  understood  to  permit  thederi- 

vatinn   by  purely  ana'.  'hods  of  a  formula  that  will  slmw 
ors  entering  into  the  phe- 

non.  it  il  possible  to  construct   from  pun-ly  experi- 

ia  taken  with  slight  modification  from  Reed  and  ( . 

Physical  Measurement.** 
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mental  data  an  equation  that  will  give  the  law  connecting  the 
various  related  quantities.  An  equation  obtained  from  experi- 

mental data  is  called  an  empirical  equation.  One  of  the 
methods  used  in  the  construction  of  empirical  equations  is  illus- 

trated in  the  present  exercise. 
If  a  number  of  rods  of  any  material,  differing  in  length, 

breadth,  and  thickness  be  supported  on  a  pair  of  knife-edges 
and  loaded  in  the  middle,  it  would  be  expected  that  the  flexure 
produced,  that  is,  the  displacement  I  of  the  middle  point  of  any 
rod,  would  be  a  function  of  the  load  F,  the  distance  L  between 
the  supports,  the  breadth  of  the  rod  B,  and  its  depth  D.  The 
law  of  flexure  of  rectangular  rods  of  a  given  material  might, 
perhaps,  be  expressed  by  an  equation  of  the  form 

I  =  kF-L^D',  (118) 
where  k,  «,  j3,  %  and  e  are  constants  to  be  determined  by 
experiment.  The  object  of  this  experiment  is  to  ascertain 
whether  the  facts  warrant  the  acceptance  of  the  above  tenta- 

tively assumed  equation;  and,  if  they  do,  to  determine  the 
values  of  the  five  constants.  The  constants  a,  yS,  7,  e,  can  be 
most  easily  obtained  by  varying  the  independent  variables  one 
at  a  time  and  noting  the  change  of  the  dependent  variable  L 
When,  in  this  way,  these  four  constants  have  been  determined, 
the  value  of  k  is  obtained  by  solution. 

First,  let  the  load  F  be  varied  while  the  other  independent 
variables  remain  constant.  This  will  give  a  separate  equation 
for  each  value  of  F  used.  Thus 

F4t  =  . 
Dividing  the  first  of  the  above  equations  by  the  third  and  the 
second  by  the  fourth, 

If-,  JJ  I  ,      Ifn  Jin 
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Putting  these  equations  into  the  logarithmic  form, 

log  ln  -  log  /,.3  =  «13(log  F1  -  log  FB)  (lli» ) 

and  1.  g  /,-,  -  log  /,.4  =  «,4(log  Fz  -  log  JF4),  (120) 
in  which  «13  denotes  the  value  of  «  derived  from  the  equation 

expressing  the  ratio  of  /^  to  //-g.  If  the  values  of  «13  and  «.,4 

obtained  by  solving  (IT.*)  ami  (120)  are  nearly  the  same,  their 
be  taken  as  the  value  for  «.  in  (  1  1  ̂  i. 

Second,  the  other  independent  variables  remaining  constant, 
let    the   length  L  be  varied,    the  flexure  /  bring  observed  when 

-   applied.       Uy  the  pTO06M  deseribed  above  we  get 

logfA1-log/a  =  0Iar.      L    -logZ8)  (121) 
and  log  1L^  -  log  l^  =  /^(log  Z2  -  log  L  (1  22  ) 

values  of  /918  and  #24  obtained  by  solving  <  1-1  )  ;""' 

,    the   same,  their  averag-  l>e  taken  AS  the  value 
for  ft  in 

Third,  let  the  breadth  It  be  varied  and  the  other  independent 

1  ariables  remain  constant.      i  11  give 

log  1RI  -  log  lhz  =  7,/log  B,  -  log  Bz)  ( \  !>:'> ) 

nd  log  I,*  -  log  //(4  =  7a4(log  BI  -  log  />'  (124) 

'roni  the>e  e^uati.'iis  a  value  f«»r  7  \\ill  be  found. 
the  depth    I>  l»e  i 

log  //a  -  1. « /^  =  «i/ log  Dt  -  log  Ds)  ( 1 25) 

•  «d  log  //>, -  log  //I4  =  < M(log  Da -  log  J>  (\ 

\  rom  these  equations  a  value  for  <  will  be  found. 
If  the  valUM    found    for   «.  ate  nearly  the   same,   for  tf  nearly 

t  ie  same,  for  -/  the  same,  an<l  for  «.  net]  ime,  this 
M    the    form    assume. 1    f,,r    the    deMi.'d    ivlation.       If    the 

uentally  obtained  for  any  one  of  the  quantities  «, 

.  .  7.  €    ar«-    not    nearlv  the    .same,  this  .at    the    form  as- 
-  med  is  not  the  furni  of  the  relation  wliieh  actually  exi>ts,  and 

:"nn  must  lie  trie<l. 

equation    obtained    by    substituting    i',,r   „.   fo   y,   €  their 
\  ilues   th  ntally  determined   is  called   an   empirical 
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formula.  The  statement  of  the  facts  expressed  by  this  for- 
mula constitutes  the  law  of  bending.  The  values  obtained  for 

these  four  constants  should  be  very  nearly  a  =  1,  ft  =  3,  7  =  —  1, 
e  =  —  3.  If  exactly  these  values  are  obtained,  the  law  of  bend- 

ing will  be  expressed  analytically  by  the  equation 

i=*fg-  cm) 
Whatever  the  form  of  the  empirical  equation  that  is  actually 
found,  the  value  of  k  is  determined  by  substituting  in  this 
equation  a  set  of  corresponding  values  for  Z,  .F,  L,  B,  and  D. 
Several  such  sets  of  values  should  be  substituted  and  the 

average  value  for  k  used.  If  similar  series  of  measurements 
are  made  upon  rods  of  different  materials,  the  values  of  a,  /3, 
7,  e  are  found  to  be  very  nearly  the  same  for  the  different 
materials,  but  the  values  of  k  are  different.  This  means  that 

k  depends  upon  the  material  of  the  bar  and  not  upon  its  dimen- 
sions, whereas  the  other  constants  depend  only  upon  the 

dimensions  of  the  bar. 

MANIPULATION  AND  COMPUTATION. — The  rods  to  be  ex- 

perimented upon  should  be  70  or  80  cm.  long  and  their  trans- 
verse dimensions  so  selected  that  the  same  bars  can  be  formed 

into  two  series,  one  in  which  the  bars  have  constant  depth  and 
variable  width,  and  another  in  which  they  have  constant  width 

and  variable  depth.  The  variable  length  is  secured  by  adjust- 
ing the  distance  between  the  supporting  knife  edges.  After 

a  bar  is  placed  on  the  knife-edges  a  weight  pan  is  suspended 
from  the  bar  about  halfway  between  the  knife  edges  and 
sufficient  weight  applied  to  insure  good  contact  between  the 
bar  and  its  supports.  On  the  addition  of  a  known  load  the 
flexure  of  the  bar,  that  is,  the  depression  of  the  middle  point, 
is  measured.  This  measurement  may  conveniently  be  made  by 
means  of  a  microscope  furnished  with  a  micrometer  eyepiece, 

or  by  means  of  a  micrometer  screw  fastened  to  an  adjacent  sup- 
port directly  above  the  middle  of  the  bar.  In  the  latter  case 

the  instant  when  the  micrometer  screw  comes  into  contact  with 
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the  bar  can  be  determined  either  by  means  of  a  telephone 
receiver  in  a  battery  circuit  including  the  bar  and  micrometer 

r,  or  by  observing  the  image  of  some  fixed  object  in  a  small 
mirror,  one  end  of  which  rests  upon  the  rod  ami  the  other 

end  upon  some  adjacent  fixed  support.  In  order  to  be  certain 
not  to  load  the  i  <»ml  their  elastic  limits,  the  student 

should  ask  an  instructor  what  loads  may  safely  be  applied. 

'.owing  the  division  of  the  experiment  as  outlined  above, 
make  a  series  of  -ions  on  a  single  rod  by  noting  the 
flexures   produced   by  different  loads  on  the  pan.     Add,  say, 
500  g.  and  observe  the  flexure,  add  500  g.   more  and  obfi 
the    flexure,   and    so    on    until    six    equal    increments    of    load 

D  added.     Then  reverse  the  process,  removing  500  g. 
at   a   time    and    taking     an    observation    for    the    tlrxiire    after 

each  change  of  load.     Combine  the  six  values  of  load  and  cor- 

•nding  flexure  as  in  <  L19)  ind   <  !-<>)  so  as  to  get  three 
i/.,  «14,  a^,  and  o^. 

-     .  -ml.  by  moving  t  jlt.  knife  edges  a  few  centimeters,  obtain  MX 

bhsof  a  single  rod,  and  f«>r  ca«-h  Length  determine  the  H.-MII-C 
.roduced  by  the  same  load  of, say ,2  Kg.    Combine  the  values  of 

1 22)  so  as  to  obtain  three  values  t 

Third,  with  the  distance  between  the  knife  edges  constant. 

ind  the  flexure  pr.idue.-d  by  a  constant  h>ad  of.  say.  -2  Kg.  act- 
ng  on  each  of  four  or  six  bars  of  the  same  material  and  depth 

•  lit    d  i'i  -       Measure   the    l.readth    of   tlie  hars  \\ith 

iniei-nn.  .;j»er.      Proceed  88  din-rted   in    the   preceding 

paragraph.  •  (128)  and  (  1JI)  t<>  tind  7. 
rth,  \\ith  th-  .-e  between  the  knife  edges  constant. 

nd  the  ile\iii-e  produced  in  each  of  four  or  six  bars  of  the 
ime  material  and   breadth  but  different  depth.     Measure  the 

i  epth  of  the  :h  a  micrometer  Proceed  as  di- 

1     in    the    preceding    paragraphs,   using   equations    like 

(  12;"))  and  t  L26)  U)  find  «. 

'nsert  the  final  I  .^.  7,  €  in  (  IIS),  and  formulate  in 
A  ords  a  statement   of  the   facts  e\pre>sed   by  the  resulting  em 
I  irical  equal. 
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Exp.  28.  Determination  of  the  Tensile  Coefficient  of  Elas- 

ticity, or  Young's  Modulus 

(SECOND   METHOD,  BY  BENDING) 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  Consider  a  rec- 
tangular rod  of  length  L,  breadth  B,  and  depth  J>,  fixed  at  one 

   end    and    weighted    at    the 
other.  The  rod  will  become 

bent  as  in  the  figure.  The 

upper  portion  of  the  rod  is 
extended  and  the  lower  por- 

tion compressed.  Since  the 

rod  is  strained  by  a  longi- 
tudinal stress,  and  since 

Young's  modulus  is  defined 
as  the  ratio  of  the  longitudi- 

nal stress  to  the  longitudinal 

strain,  Young's  modulus  may  be  determined  from  an  observa- 
tion of  the  amount  of  bending  which  a  given  force  produces  in 

the  rod.  The  object  of  this  experiment  is,  by  the  method  of 

bending,  to  determine  the  Young's  modulus  of  the  material 
composing  a  rectangular  rod. 

Imagine  the  unstrained  rod  to  be  cut  up  into  m  laminae,  each 
of  width  w,  by  a  series  of  planes  normal  to  its  length.  Then 
let  the  rod  be  bent  slightly  by  the  force  F  applied  downward 
at  the  end  of  the  rod,  and  let  the  yth  lamina  from  the  free  end 
be  thereby  so  distorted  that  its  sides  ac  and  Id  make  with  each 
other  a  small  angle  0j.  The  restoring  stress  in  this  lamina 
produces  a  couple  which  tends  to  bring  the  rod  back  to  its 
undistorted  position,  and  is  prevented  from  doing  so  only  by 
the  distorting  force  F. 

The  first  step  in  the  development  of  the  formula  for  deter- 

mining the  Young's  modulus  of  the  rod  is  to  find  an  expression 
for  the  restoring  couple  due  to  the  stress  in  this  yth  lamina. 
Halfway  between  the  upper  and  the  lower  surfaces  of  the  rod 
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is  a  neutral  surface  gh  which  is  neither   extended    nor   com- 

pressed.    Through  the  point  e,  where  ac  cuts  gh,  draw  a'c' 
parallel  to  bJ.  Then  the  original  length  of  any  line  vz  in  the 

jtli  lamina  is  that  part  of  it  included  between  n'c'  and  b>?.  and 
the  increase  in  its  length  is  the  part  of  it  between  ac  and  a'c'. 

ine  the  upper  half  of  the  jth  lamina  to  l»e  made  up  of 
n  layers,  each  of  breadth  B  equal  to  that  of  the  rod  and  of 

depth  t.  Then,  (-minting  upward  from  </,  the  top  of  the  /ih 
layer  is  stretched  itO}  and  the  bottom  «,f  it  is  stretched 

(7—  l)*0y.  The  effective  elongation,  e&  of  this  Ah  layer  lies, 
therefor  M  limits.  That  is 

1  ̂ j<e,<it^.  (128) 

If  E  denotes  th«-  Young's  modulus  of  the  material  composing 

><l,an«l    /'    tin-    :  intion   developed   in   this  tth 

r,  then  from  the  definition  of  Young's  modulus  (j>.   11'.'), layer,  tin 

/."      w 

Vhence  /'       /;/'"'  ' w 

M)  that,  from  (I'JS), 

1C  W 

;ince  tin-  a  of  th«?  material  in  tin-  Ah  layer   from   the 
•  •utral  >uiface  is  less  than   if   and   greater  than    (/  —  1  )f,    it 

')llo\\^.       L  :>-storing  tonpic  dn<-   to   tin-   strain   of 
his  layer,  that 

W  W 

"he  restoring  torque  L  developed  by  the  straining  of  all  the 
icutral  surface  is  the  sum  of  the  torques  devel- 

•d  in  the  separate  layers.      Thai 

w 
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or,  on  summing  the  series  indicated  in  the  above  expressions, 

BtWj   2n*-3n*  +  n     L     E£t w  6  w 

Whence,  since  nt  =  |-  D, 

EBB,   JW-Zm  +  ZDt^T  ̂ EBOj   IP  +  Z D*t  +  1  DP 
    '   ^~j   <L<   *  •   —   w  24  w  24 

The  difference  between  the  third  and  first  members  of  (129)  is 

  i   t.     Since  —  is  the  radius  of  curvature  of  the  neutral 
4w  0j 

surface  in  the/th  lamina,  and  since  this  radius  is  never  very 

small,  it  follows  that,  by  choosing  t  sufficiently  small,  the  dif- 
ference between  the  third  and  first  members  of  (129)  can  be 

made  less  than  any  assigned  quantity.  It  follows  that  the 
value  of  L  is  the  common  limit  approached  by  the  first  and 
third  members  of  (129)  when  t  approaches  zero.  That  is, 

L  =  EB0;1P 
24  w 

Now  the  resultant  moment  of  the  restoring  forces  below  the 
neutral  surface  equals  the  moment  of  those  above.  It  follows 
that  the  whole  torque  due  to  the  strain  in  the  jih  lamina  is  2  L. 
Since  the  bar  is  in  equilibrium,  this  restoring  couple  equals  the 
distorting  moment  of  F  about  e.  If  the  rod  is  bent  only 
slightly,  the  moment  of  F  about  e  is  so  little  smaller  than  Fjw 
that  we  may  write 

EBusD  .      -j-f*  /'-t  OA\ 
'      =  Fjw.  (130) 12  w 

The  next  step  is  to  find  the  depression  of  the  end  of  the  rod. 
The  entire  depression  I  may  be  regarded  as  made  up  of  parts, 
Zj,  ?2,  .  ...  ,  Zn,  due  to  the  bending  in  the  different  laminae. 
At  e  and  /  draw  es  and  fk  tangent  to  the  neutral  surface  and 
equal  in  length  respectively  to  the  arcs  eh  and  fh.  Then  the 
angle  between  these  lines  equals  the  angle  03-  between  ac  and  bd, 
and  this  angle  is  so  small  that  sJc  is  practically  the  arc  of  a 
circle  two  of  whose  radii  extend  in  the  directions  es  and  fk. 
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It  follows,  since  fk,  if  prolonged,  would  cut  es  between  e  and/, 
that 

Moreover,  if  the  depression  of  the  end  of  the  rod  is  not  more 
than  one  hundredth  as  great  as  the  length  of  the  rod,  it  ean  be 

>hu\vn  that  *k  diiiers  fr«»ni  /,,  the  depression  due  to  the  bending 

in  thet/th  lamina,  by  not  more   than   some   »HH','    ,,r  <>.<>•'>%   of 
racy  so  great  as  this  is  seldom   required   in  a  de- 

termination  of   Young's  modulus.   and   the   bending   is    usually 
than  that  indieat.-d.      h  ;  >re.  j.ermissilile  to  use  sk 

ual    to    /,  .      Since    in    addition.    fk=fh  =  {j—\)W)    and 
,x  =  eh  =jw,  (  1-11  )  may  be  rowrii 

<  )n  snbstitntincr  in  tliese  inequalities  the  value  of  Oj  from 
he\ 

- 

EB& 

i.-pivssion   /  of   the   end  of  the  rod  .hie  to  the  straining  of 
.11  the  Ian.  m  depressions  due  to  the  separate 
uninae.      Th. 

</< 

>r,  on  summing  the  series  indicated, 

,  2m8-f " 

611,  i 
/'./•/'"  o 

mtc  =  L.  the  leii'_rtli  of  the  rod, 

"  A'/y//1 

I 

the    tliird  and   the    first    members    of 

*«*«*• quantity  whielj,  by  choosing  w  small  enough,  ran   be  made 

d   quantity.      \Vheii   the   rod   is  not   bent 
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too  much,  it  follows  that  the  value  of  I  is  the  common  limit 
approached  by  the  first  and  third  members  of  (132)  when  w 
approaches  zero.  That  is, 

If  the  rod,  instead  of  being  fastened  at  one  end  and  loaded 
at  the  other,  is  supported  on  two  knife  edges  and  loaded  in  the 
middle,  the  bending  is  practically  the  same  as  if  it  were  fastened 
at  its  middle  point  and  had  acting  upward  upon  it  at  each  end 
a  force  half  as  great  as  the  load  actually  applied.  Let  the  dis- 

tance between  the  knife  edges  be  U  =  2L,  and  the  force  ap- 

plied be  F1  =  21*.  Then  on  substituting  for  L  and  F  in  (133), 
we  get 

or,  dropping  the  primes, 

The  preceding  development  of  the  above  formula  may  be 
summarized  as  follows  : 

The  first  step,  after  supposing  the  rod  cut  into  laminae  by  a 
series  of  nearly  vertical  planes,  is  to  find  the  restoring  torque 
in  one  of  these  laminse.  The  upper  half  of  the  lamina  is 
imagined  to  be  cut  into  a  series  of  nearly  horizontal  layers. 

From  the  general  formula  for  Young's  modulus,  the  restoring 
torque  due  to  the  strain  in  this  layer  is  found.  These  torques 

are  then  summed,  and,  since  an  equal  torque  in  the  same  direc- 
tion is  exerted  by  the  lower  half  of  the  lamina,  the  result  is 

doubled,  the  total  restoring  torque  in  the  lamina  being  thus 
obtained. 

The  second  step  is  to  equate  this  restoring  torque  to  the 
distorting  torque  due  to  the  force  at  the  end  of  the  rod,  thus 
getting  an  equation  by  which  the  angle  0  between  the  two 
sides  of  the  strained  lamina  can  be  found. 

The  third  step  is  to  find  the  depression  of  the  end  of  the  rod. 
This  is  done  by  first  getting  an  equation  connecting  the  angle 
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0  with  the  depression  due  to  the  strain  in  one  lamina,  eliminat- 

ing the  aiujk'  0  from   this  equation   and  the   last   equation  ob- 
tained in  tin1  second  step,  and  then  summing  the  depressions  due 

to  the  strains  in  all   the  lamina-.      This  ̂ ives   the   formula    for 
a  rod  fixed  at  one  end  and  loaded  at  the  other. 

The  fourth  step  is  to  modify  this  formula  to  fit  the  case  of 
a  rod  supported  at  hoth  ends  and  loaded  in  the  middle.  This 
is  done  by  ima^inin^  the  rod  to  be  made  up  of  two  rods  placed 
end  to  end.  their  inner  ends  bein^r  fixed  ami  the  outer  ends 

pushed  upward. 
MAMITI.  \ri"\    AND    COMPUTATION.  —  Measure  B  and   /> 

Lumber  «>f  points  aloiiic  the  rod  by  means  of  a  micrometer 

ealiper.      M  •   M  IW  I.-  U106  between  the  two  ki, 

with  a  in-  ••  the  rod  on  the  knife  edges  and  sus- 
pend from  the  middle  point  a  pan  containing  sutlicient    load    to 

\  riiiLT    the   rod   into  good  contact    with    the    knife  ed^es.      The 

•  f   the  rod  produced    by  an   additional    load   /•'  may  he 
1  leasured    by  >f    a   microscope    lilted    \\ith    an    eyepiece 

i  lierometer,  or  by  mean-   of  a   mi  kbOY6 

:  "d  and    mo\  in;^  in  a  nut    fastened    to   a 

:     Ipport. 

A  mi<  roscope  is  focal  i/rd  by  tirM    brin^in.ur  it  too  near  to  the 

d   then,  \\  ith   '  at   the  e  1  he  whole 

e  slnwl;.  1'rom  the  object  until   the  latter  is  in 
M •«!>.      In  the  present  case  it  •  r  to  move  the   rod  than 

;icroscope.  ;   the   length  of  the  microscope  tulie 

fvinpr    power   of    the    instrument,   and    if    this 

.  -n^tli    i>  the   r\p«-riment    the  eye- 

]  iece  must  IKJ  re  see  p.  20). 

If   the   mir. .meter  >  '..  the  instant   \\ln-n    tlie  screw 

c  >mes  into  contact  with  the  nxl  can  be  detei-mined  either  by 
i  cans  of  a  telephone  in  a  battery  circuit  including  the  rod  and 

i  icrometer  screw,  or  by  observing  the  fixed 
C  ̂ octin  a  small  mirror  one  end  of  which  rots  upon  the  rod 

\  hile  the  other  end  iv>ts  upon  an  adjae.-nt  fixed  support. 

d    the    po.sition   <  •    mark    or   pointer    near    the 
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middle  of  the  rod,  add,  say  3  Kg.  and  read  again,  remove  the 
3  Kg.  and  read  again.  Repeat  several  times,  both  to  be  sure 
that  the  elastic  limit  has  not  been  exceeded  and  to  get  a  num- 

ber of  determinations  of  the  flexure.  Then  alter  by  a  few  centi- 
meters the  distance  between  the  knife  edges,  and  repeat.  Take 

about  five  different  lengths,  and  for  each  length,  using  the 

average  flexure  for  that  length,  calculate  the  ratio I 
Find 

the  average  of  the  five  values  of  — ,  and   by  (134)  calculate 
(/ 

the  Young's  modulus  of  the  rod.     Express  the  result  in  dynes 
per  sq.  cm.,  Kg.  wt.  per  sq.  mm.,  and  Ib.  wt.  per  sq.  in. 

Exp.  29.   Determination  of  Simple  Rigidity 

(VIBRATION   METHOD) 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  The  object  of 
this  experiment  is  to  determine  the  simple  rigidity 
of  a  thin  wire. 

Consider  a  cylindrical  rod  or  wire  of  length  I  and 
radius  r  with  one  end  fixed  and  the  other  end 

twisted  through  an  angle  <£.  This  will  cause  an  ele- 

ment of  the  surface  as  AB  to  be  displaced  to  AB' . 
From  the  diagram  the  shearing  strain  in  the  outside 

7?  7?' 

layer  of  the  cylinder  is  — —  •     And  since  BB'  =  $r, 

it  will  be  seen  that  at  every  point  of  the  wire  dis- 
tant T-J  from  the  axis  and  I  from  the  fixed  end,  there 

is  a  shearing  strain  equal  to  ?U.     If  S  denotes  the 

shearing  stress  developed  at  a  point  distant  r^  from 
the  axis  and  I  from  the  fixed  end,  and  JJL  the  simple 

rigidity  of  the  wire,  it  follows  from  the  definition  of  simple 
rigidity  that 

FIG.  62. 



ELASTICITY  135 

Whence  S=?lp.  (135) 

This  is  the  value  of  the  stress  at  any  distance  rx  from  the  axis 
of  the  wire. 

Tlu*  next  step  is  to  find  what  torque  would  he  needed   to 
the  wiiv  twi-  :  is  in  the  figure.     Imagine  any  cross 
n  divided  into  //  concentric  rinirs,  each  of  width  Ar.      The 

ii  of  the  outer  boundary  of  the  Ah  of  these  rin^s.  be^innin^ 

at  the  center,  ia  -  -  Ar.  and  the  length  of  its  inner  boundary  is 
—  1  )Ar.      If,  then,   t  .>f    the    /th    rin-  :iuted 

by    .1  . 

-(e-l)Ar-Ar<^<-J7r/A/-  Ar.  (1 

If  the  average  stress  on  this  ring  is  denoted  by   ,v,  then   <  1  •'.."•  ) shows  that 

Eft*-  l>Ar  <  ̂   <gjpr>  (137) 

On  multiplying  (186)  bj  .id  denoting  by  Ft  the  force 
.Inch  acts  on  the  ring, 

<F  <  2
 

Ft< 
t  follows  that  if  ili.-  toppie  which  acts  ou  tin-  ring  is  denoted 
J 

»  -  1  )8(Ar)«     . 

)n  .siiininini:  the  torques  which  act  on  all  the  rings  and  letting 
,  denote  the  resultant  torque,  we  obtain 

Ary  g     ._      8<L<2^(Ar)«  V t  *-l  |  ^4- 

r,  on  summing  the  series  indicated   by  the  summation  signs, 
see  p.  I 

_  
 ' \  Inch  may  be  rewritten 

-  2  n«  +  n«]  <  L  <  [»«  +  2  n»  +  ,/-  1 
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-  2(nAr)3Ar  +  (wAr)2(Ar)2]  <  L  < 

—  ' 

+  2(nAr)3Ar  +  (nAr)2(Ar)2]  . 
Since  %  is  the  number  of  rings  of  width  Ar  between  the  center 
and  the  circumference  of  the  wire  wAr  =  r,  and  the  above  ex- 

pression may  be  rewritten 

[r4  -  2  rSAr  +  r2(  Ar)2]  <  L  <          [r4  +  2  r3Ar  + ' 

The  difference  between  the  two  outer  expressions  in  the  above 

inequality  is        ̂   •  4  r3Ar,  a  quantity  which,  by   choosing   Ar —  / 
sufficiently  small,  may  be  made  less  than  any  assigned  quantity. 
It  follows  that  the  value  of  L  is  the  common  limit  which  both 

of  the  above  expressions  approach  when  Ar  approaches  zero. 
That  is,  if  d  denotes  the  diameter  of  the  wire, 

TT/  7T 

21  321 

This  is  the  torque  that  must  be  applied  at  the  end  of  the  wire 
to  keep  it  twisted. 

If  a  massive  body  B  is  suspended  from  the  lower  end  of  the 
wire  and  twisted  about  the  axis  of  the  wire  through  an  angle 

<£,  the  wire  and  B  react  upon  each  other  —  B  exerting  upon  the 
wire  this  torque  L  that  keeps  the  wire  twisted,  and  the  wire  exert- 

ing upon  B  an  equal  and  opposite  torque  L'  that  tends  to  swing 
B  back  to  a  position  such  that  the  wire  is  not  twisted.  That  is, 

(139) 

The  second  negative  sign  in  (139)  means  that  the  torque  I/  and 
displacement  <j>  are  in  opposite  directions.  If  B  is  twisted 

about  the  axis  of  the  wire  and  then  released,  the  torque  L'  will 
swing  it  back  towards  its  original  position  with  an  acceleration 
which  by  (104)  and  (139)  is 

where  K  denotes  the  moment  of  inertia  of  B. 
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Since  the  quantities  within  the  parenthesis  in  (140)  are  all 
nits,  it  is  seen  that  the  angular  acceleration  is  proportional 

to  the  angular  displacement,  and  that  the  acceleration  and  the 
displacement  are  in  opposite  directions.      From  this  it   follows 

that  the  motion  of  B  is  simple  harmonic.      Its  period  of  com- 
vihration  is,  therefore, 

(141) 
a 

Whence,  the    simple   rigidity  of   the    material    composing    the 
wire  is 

M  AMlTi.  ATION     AND     ('<  »M  IT  T  A  11  •  »\  ;.  —  Suspend    from    the 
«-nd  nf  the  wire  a  massive  body  of  such  a  shape  that   its 

mom,  -nt  nf  in-  :i  easily  be  computed,  a  solid  iron  cylinder, 
or   in  with    it-  ident    with  that  of   the   wire. 

•'ind  tin-  period  of  viliratinii  nf  tin-  suspended  system  hy  one  of 
he  methods  mitlined  in  Chaptrr  II. 

Tal.  witli   a   micrometer    ealiper. 

Mlier  tlie    dia:  eqUAtfoll    t«»  the   fnlirth    p..\\ 

mst  be  determined  with  con>.  care.     Measure  it   in  imt 

988  than  iistrilmted  about  equally  along  the  length 

f  the  wire  and  lake  tin-  DM  UL       x!  '  li  of  the  \\  ire 

•  ith  a  m-  >teel  tape,  and  take  the  necessary  dimen- 

'ided  body.  iss  of  the  snsprnded  hody 

honld  he  determined  within  0.1%.      Express  the  value  for  the 

imple  rigidity   in  dynes  per  N  -xj.  mm.,  and 
».  \\  '  .  .  in. 

Exp.  30.   Determination  of  Simple  Rigidity 

(STATK      Mi:  I  IK-  1) 

•  M:.II:«  r    A\I>     'rm:«»i:v     or     K\  i-i:i:i  \i  r.\r.  —  The    method 

:ven  in   tin-  ju-rerdiiig  »-.\  pe  ri  m*  •  1  1  1    is  a]'plicahle   only  to  wires 
mis  so  small   that  if  a  1  i>pnided   1»\    the 
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wire,  the  period  of  torsion al  vibration  will  be  large  enough  to 
admit  of  accurate  determination.  The  present  method  is  ap- 

plicable to  heavier  rods. 
In  the  method  here  employed  there  is  fastened  to  the  lower 

end  of  the  rod  a  massive  disk  which  has  its  upper  face  grad- 
uated in  degrees,  and  has  around  its 

edge  a  series  of  pins  placed  20°  apart. In  front  of  the  disk  and  in  back  of  it 

are  two  horizontal  scales.  The  twisting 

couple  is  applied  to  the  disk  by  hori- 
zontal forces  acting  tangentially  at  its 

circumference.  Masses  mL  and  w2  are 
suspended  by  cords  which  pass  in  front 
of  the  two  horizontal  scales.  Tied  to 

each  supporting  cord  at  about  the  level 
of  the  pins  in  the  disk  is  another  short 
cord  which  has  at  its  other  end  a  loop 
that  can  be  slipped  over  one  of  the 
pins,  thus  twisting  the  graduated  disk 
through  an  angle  which  can  be  read  by 
means  of  a  pair  of  pointers  fixed  above  it. 

Let  the  forces  in  the  horizontal  cords 

be  denoted  by  F1  and  F2.  Then  from 
the  diagram  (Fig.  64) 

=  -,  (143) 

and  since  F1  and  m^g  are  perpendicular 
to   each   other,   and   Fv   m^g,  and   the 

FIG.  63.  tension  in  the   supporting    cord   are   a 
system  of  concurrent  forces  in  equilibrium, 

nt-,0  s-\  4  ,IN 
-32  =  tan  w.  (144) 
~E1  >«  s 

F\ 

From  (143)  and  (144)  it  follows  that 
,,  _ 

l~ 



ELASTICITY 
139 

This  is  the  force  with  which  the  horizontal  cord  pulls  on  the 

point  where  the  three  cords  join.  The  pull  JFy  which  the  cord 
exerts  on  the  disk  is  equal  tu  this,  but  in  the 

direction.  Thai 

(it.-,, 
The  second  negative  sign  in  (14-~>  >  denotes 
that  /','  and  jr  have  opposite  dii  If 

:idwi2are  equal  ami  their 
supporting  tlireads  looped  ever  diametrically 

opposite  pins,  and  if  the  points  from  which 

the  upright  cords  han«j  '*"'*-'  equidistant  from 
the  plane  of  the  wire  and  support in.i: 

t\  -  /'..      I:    w.«  «lrop  the  subscripts  and 
by  It  the  diameter  of  the  disk  i IK  leased 

>y  txvi.-c  th«-  MC  hui-i/Miital  cords, 

lie    nioiii.-nt     of     the    couple    that     tend- 

the  disl.  :n  its  equilibrium  po.sition  is 

(146) 

pp.  l:;i-1:',»;  it  has  been  shown  that  it  a  «  y Under  of  length 
I  made  of  a  material  of  simple  rigidity  ̂   is 

d  tliroiiLrh  an  angle  of  <f>  radians,  the  tor.pit-   which   this 
wist  exerts  on  the  b<  twisted 

L'=- 
(117, 

inber  of  (  1  !''•  »  is  the  tonpie  that  tends  to 
i-om  its  position  of  equilibrium,  and  the  ri^ht 

IT  >  is  the  tor<pie  which  t.'iids  to  restniv  it  to  that 
on.      When  the  one  of  these  is  equal  and 

,  p<>-  .       That  is, 

irD  _        7r "~ 
CU8) 
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The  negative  sign  in  this  equation  occurs  because  x  and  </>  are 
measured  in  opposite  directions.     Using  simply  the  numerical 

values,  and  writing  in  place  of  <£  radians  its  value  -£—.  2  TT 
360 

radians,  where  y8  is  the  number  of  degrees  in  </>  radians,  (148) 

gives mx  (149) 

MANIPULATION  AND  COMPUTATION.  —  Carefully  measure 
the  diameter  of  the  rod  or  wire  in  at  least  ten  places  with  a 
micrometer  caliper.  Take  the  diameter  of  the  disk  with  a 

vernier  caliper.  Measure  h  and  I  with  a  meter  stick  or  steel 

tape.  Use  such  loads  and  loop  the  cords  over  such  pins  as  to 

get  a  series  of  some  half  dozen  values  for  /8,  each  somewhat 
larger  than  the  one  before  it,  but  the  largest  not  much  more 

than  90°.  The  loads  in  the  two  pans  must  be  equal,  and  the 
cords  should  be  looped  over  pins  far  enough  around  to  give 

fairly  large  values  for  x.  In  getting  each  end  of  the  distance 
#,  record  the  reading  on  each  side  of  the  cord  and  use  the 

mean  as  being  the  position  of  the  middle  of  the  cord.  Find 

the  average  value  of  ̂ ,  and  by   (149)  find  p.     Express  the 

result  in  dynes  per  sq.  cm.,  Kg.  wt.  per  sq.  mm.,  and  Ib.  wt. 

per  sq.  in. 

Exp.  31.    Determination  of  the  Modulus  of  Elastic  Resilience 

of  a  Rod 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  Resilience  of  a 

body  is  the  energy  it  possesses  du.e  to  a  strain  developed  in  it. 
The  ultimate  resilience  or  modulus  of  resilience  is  the  strain 

energy  of  the  body  when  strained  up  to  the. elastic  limit.  Cor- 
responding to  the  different  types  of  strain  are  different  types 

of  resilience  :  tensile  resilience,  flexural  resilience,  torsional 

resilience,  etc.  The  resilience  of  a  material  is  usually  given 

either  in  terms  of  work  per  unit  mass  or  work  per  unit  volume. 
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'1  In-  object  of    this    experiment    is  to    determine    the    flexural iei ice  of  a  rod. 

~is  mi  two  knife  filers  and  is  distorted   by  a  force 

applied  at  the   middle   point.      Let   the   length   nl'   rod   between 
;.,  the  area  of  cross  section  be  A  sq. 

cm.,  the  density  he  p  grains  per  cu.  em.,  the  mass   of   that    part 
nf  the  md  between  the  kn  ///  grains,  the  load  li- 

sa ry  tn  strain   the   n-d   to   its  clastic  limit   he  /'dynes,  and  the 
displacement  •  >int  nf  the  rod   by  ti.  /-'he 

.  until  the  elasti-  limit  is  reached,  the  distortion 

is  proportional  to  the  force  applied,  the  averai:«'  force  acting 

while  the  di>i  i  increasing  from  zero  to  /  is  \  /•'.  There- 
fore the   .strain   energy  stored  up   in   the  specimen,  that  is,  the 
ulns  of  tlexural  :  6  of  the  rod. 

//        |  /V  •  rgs. 

The  modiilu  >•  per  unit  of  volume  is 
R       Fl 

ergs  per  cc., 

us  o!  uce  per  unit  of  mass  is 

i?         '•' 
Jtm  =  ergs  per  gnim, 

« •  .  if  f«r  d  in  Arams'  weight,  /•".  instead  of  dynes, 

/•'  ntimeters  per  gram. 

MAMI  \     LOT   COMPUTATIO         --The   aj.|.aratns   con- 

Bi  ts  of  the  rod  to  be  examined  \\  ith  i:  ng  upon  knife 
e«  gee,  and  a  microscope  fitted  with  an  e;  micromel 
n  iasii  All  of   the   apparatus  must 

IH    placed  upon  astij.p«»rt  n  \ibratioii.       NVei^h  the  b,u. 
111  ;asure  its  le:  :<>ss  section,  and  calculate  the  mass  of 

ti    t  :  ,-n  the  knife  edges.  <    the  mi«i<>- 
upon  a  tine  cross  engraved  upon  the  center  of  one  of  the 

v<  rtical  faces  of  the  bar,  or  upon  the  point  of  a  needle  fastened 

ri  -i<lly  to  the  middle  ,,f  t:  (  ly  add  weights  to  the 
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pan  suspended  from  the  middle  of  the  bar,  taking  a  reading  of 
the  deflection  after  each  addition.  During  the  progress  of  the 

experiment  carefully  plot  weights  and  deflections  on  cross-sec- 
tion paper  —  the  weights  as  abscissas  and  deflections  as  ordi- 

nates.  As  would  be  expected  from  Hooke's  law,  the  line 
connecting  these  points  is  straight  from  the  point  of  zero  load 
up  to  the  point  representing  the  elastic  limit,  and  from  there 
it  bends  toward  the  axis  of  ordinates.  Thus,  from  the  curve 
can  be  obtained  both  the  value  of  the  load  necessary  to  strain 
the  bar  to  its  elastic  limit,  and  the  deflection  produced  by  this 
load.  All  the  data  are  now  at  hand  for  determining  the  value 
of  the  modulus  of  flexural  resilience  per  unit  volume,  or  per 
unit  mass. 



CIIAl'TKK    IX 

VIM  -usiTY 

IN  an    elastic   solid   a    shearing   stress  produces  a  shearing 
strain,  and  this  strain,  in  turn,  produces  a  restoring  stress.      If 

tin-  body   is  subject   to  a  given  stress  that   is  not  beyond   its 
limit,  the  strain  does  not  change  with  the  lapse  of  time, 

;he   ratio  of   tin-   >  tress  to  the   strain    is  a  coeilicient    «»f 

In  a  liquid   a  shearing  stress  produces  a  shearing  strain,  and 

with  >ped  a  stress  that  opposes  tin  dis- 

tortion but  does  not  tend  to  restore  tin-  liquid  to  any  former 
shape.  In  fact,  any  shearing  stress,  however  slight,  pic  <  luces  a 

<•  'iitinuously  increasing  strain,  and  the  ratio  of  the  shearing 
s  ress  to  the  shearing  Miain  thereby  developed  in  one  second  is 

<  lied  the  <-.,.  t°  viscority  of  the  liquid. 
lid  layers  of  the  liquid  //  em.  apart,  the 

1  \V.T  layer  at  rest,  and  the  upper  moving  x  em.  J-.T  see.  It  .1 

i  thean-aof  the  upper  layer  and  /-'tlie  f..r<-e  \\liieh  is  in F 
\    forward,  then  the  shearing  stress  applied  is  -,  and  the  strain •  I 9 

per  second  is  -.     Consequently  the  coefficient  <>; 
-sity  of  the  liqu! 

"  =    -    = 

Eip.  32.    Determination  of  the  Absolute  Coefficient  of 

Viscosity  of  a  Liquid 

POBBDILUra  MKI  HMD 

OB.FI:<  r  \M»  Tn  -Consider  a  column 

liquid  ilnwini^  through  a  tuhe  of  length  /,  and  witli  a  radius, 
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r,  so  small  that  there  will  be  no  eddies  in  the  liquid  column. 
Imagine  this  column  to  be  made  up  of  a  large  number  n  of 

concentric  hollow  cylinders  of  very  small  thickness  Ar.  Sup- 
pose that  all  of  these  hollow  cylinders  but  one  could  be  made 

solid,  so  that  there  would  be  a  solid  rod  surrounded  by  a  thin 
layer  of  the  fluid,  and  this  again  surrounded  by  a  solid  tube. 

While  the  rod  was  moving,  two  forces  would  be  acting  on  it 
—  one  due  to  the  viscous  resistance  in  the  tube  that  was  still 

liquid,  tending  to  retard  the  motion  of  the  rod,  and  the  other 
due  to  the  difference  between  the  pressures  at  the  two  ends 
of  the  rod,  tending  to  accelerate  it.  If  the  radius  of  the  rod 

were  #Ar,  the  viscous  resistance  in  the  liquid  tube  surround- 
ing it  would,  by  (150),  be 

Ar 

and  \ip  denotes  the  difference  between  the  pressures  at  the  two 
ends  of  the  rod,  the  force  to  which  this  difference  in  pressure 
would  give  rise  would  be 

If  the  rod  were  moving  uniformly,  Fv  would  equal  Fp^  i.e. 

77  •  2  TTX&rl  -  S —  -  --  =  p  • 

Whence  .  =  .  (151) 

"2  rjl 

This  equation  shows  that  the  difference  in  speed  between  the 
outside  of  an  axial  cylinder  of  the  liquid  of  any  radius  and  the 

outside  of  the  adjacent  layer  is  small  near  the  axis  where  x&r 
is  small,  and  increases  in  direct  proportion  with  the  radius  of 
the  cylinder. 

If  it  is  imagined  that  these  concentric  layers  of  liquid  are 
congealed  without  interfering  with  their  ability  to  slip  past  one 
another,  then  on  account  of  their  difference  in  speed,  at  any 

instant  after  the  flow  has  begun,  the  end  of  the  inmost  cylinder 
will  protrude  beyond  the  end  of  the  adjacent  layer,  this  second 
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\vill  protrude  beyond  the  end  of  tlu'thinl  layer,  and  so  on. 
in   the  speed  of  the  inmost   cylinder  relative  to 

;    x.r  the   speed   of   the   seeond    layer   relative  to 

the  third.  BtO.      Also  1,-t  r{  represent    the  volume  of  the  portion 
of  the   inmost    cylinder  that   protrudes  heyond   the  end  of  the 

the  volume   of  the   seeond  solid  eylinder  that 

•  ides  he\  «»nd  the  third  layer,  ete.     Then  the  entire  volume 
_;vd  hv  the  capillary  in  time  /  is 

r-r1  +  r,-hr;J-f-    ...    +Vm. 
Row 

9tm  .  ,  rri  -JA/-I-V.      r3  =  7r(3Ar> 
I'uttinir  these  \alues  in  (  1  .VJ  ».  \\ 

and   o  i  tilting   for  *p  9V  8V  etc.,  their  values  from  (  1.">1  ), v/e  obtain 
v 

|.2»+*+...  +  i 

i 
Ar)  + 

r.     Therefore  in  the  limit,  when  A/- 

F 

pre0fore  is  dm;  to  a  column  of  li<iui<l  of  heiglit  //  and 
=  p<jh.      On    putting   this    value    in   (1.V1),  and 

I-    /;.    \\r    i 

i 

|    ( 

i  that  in  dn  ;  ;  has  IMM-II  tacitly 

umed  («)  that  the  viscous  resistance  to  th,-  tl..\v  of  the  liquid 
uniform    t  hmu^lmiit    tin-  «-ntin-  length  <>f  the  tnln-,  (  I  )  that 

i  ie  lines  of  tl"\\  ..f  li<piid  in  the  tube  are  parallel  to  the  axis 

'  ihe  tul.e  throughout  its  length,  f^)  that  no  part  of  the  energy 
•  plied  to  the  liquid  in  the  tul»e  appears  as  energy  of  motion, 

(  d)  that  then-  i>  no  .-rt'ret  at  the  nutlet   due  to  surface  tension. 
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The  conditions  demanded  by  (V),  (6),  and  (<?)  can  be  realized 
to  a  sufficient  degree  of  approximation  by  using  a  tube  that  is 
both  long  and  of  narrow  bore  and  having  the  liquid  flow  through 
at  a  uniform  rate.  Condition  (d)  is  met  by  immersing  the  dis- 

charge orifice  in  a  portion  of  the  liquid  having  a 
considerable  free  surface. 

MANIPULATION  AND  COMPUTATION.  —  A  vis- 
cometer  that  fulfills  the  above  conditions  is  illus- 

trated in  Fig.  65.  The  vertical  tubes  AB  and  CD 
are  of  uniform  bore  and  are  graduated  in  millimeters 
throughout  their  length.  The  capillary  tube  BE 
is  straight  and  of  uniform  circular  bore.  In  order 
that  the  temperature  of  the  liquid  being  investigated 
shall  be  constant  and  definite,  the  viscometer  is 

supported  in  a  suitable  water  jacket  supplied  with 
a  thermometer. 

The  length  I  of  the  capillary  tube  is  measured 
with  a  meter  stick.     The  mean  radius  of  the  bore  is 

determined  by  measuring  the  length  of  a  known  mass 
of  mercury  at  different  positions  along  the  length  of 
the  tube.    An  amount  of  mercury  sufficient  to  make  a 
thread  about  four  centimeters  long  is  drawn  into 
the  tube  by  suction  applied  at  the  opposite  end,  and 
this   thread   is   measured    in    length    at    different 

FIG.  65.      equally  spaced  positions  along  the  length  of  the 
tube   by  means   of   a   dividing   engine.     Knowing 

the   mass   of    the   mercury   thread    and    the   average    length, 
the  average   radius  of  the   bore   of   the    tube   is  determined. 
A   tube  with  a   bore   departing  very  much   from   uniformity 
must  be  rejected  in   determining   the   absolute    coefficient  of 
viscosity. 

In  order  to  determine  the  V  in  (154)  it  is  necessary  to  cali- 
brate the  lower  part  of  the  tube  CD.  This  may  be  done  by 

putting  a  solid  stopper  at  E,  removing  the  one  just  above  (7, 
and  dropping  into  CD  known  volumes  of  water  from  a  burette. 
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After  each  small  volume  of  water  is  dropped  in,  a  reading  is 

made  of  the  t<»p  of  eaeh  water  column  —  the  one  in  CD  and  the 
one  in  the  burette.  From  these  readings  a  curve  is  to  be 

plotted  coordinating  the  volume  of  water  in  CD  with  the  read- 

ing of  its  surface  on  the  (.'/>  scale. 
After  thoroughly  cleaning  and  drying  the  parts  of  the  vis- 

nbled,  a  quantity  of  the  liquid  under  investiga- 
tion is  introduced,  and  this  liquid  column  run  back  and  forth 

until  it  is  free  of  air  bubbles  and  the  tubes  are  coated  with 

a  thin  film  of  the  liquid.  The  quantity  of  liquid  introduced 
should  be  such  that  it  will  form  a  column  extending  from  a 

point  n. -ar  the  upper  end  of  the  tui  a  point  near  the 
end  of  CD. 

With  all  the  rubber  stoppers  tight,  and  the  stopcock  S  open, 
run  the  liquid  into  the  position  mentioned  above, close  the  stop- 

,uid  place  the  viscometer   in  the  water  bath.      After  the 

temperature  has  become  constant  and  of  the  desired  value,  with 
\\atch  in  hand  open  the  cock  S,  and  when  the  meniscus  in 

.  1  //          lies  some  previously  selected  scale  divi>i"ii  X.  start  the 
the  meniseus  reaches  some  second  selected  scale 

diviv  topthewatol  be  valuator  tin  (154). 

When  the  upper  meniscus  was  at  X  the  lower  nit-nix  -us  wmfl 
at  some    point    //.   and    when    the    upper   meniscus    had    fallen 

riaen  to  some  point  y'.     The  p«»si- 

i  //'  can  be  obtained   by  opening  .s1  and  again   run- 
ning the   liquid   into  A />  to  the   points  jr  and  ./•'.      The  mean  of 

the  v.-rtical  distances  bet\\  -the  value 

for  h  in  (l.r>4).      I  •  es  can  be  obtained  by  the  scales 
.!//  and  CD.     p  can  be  obtained  by  means  of  a 

balaner  and  a  5oC«  pi|>ette.       Vis  obtained    by  finding  from  the 
i   the  volume  of  water  that  would  be  held 

:he  marks  ij  and 
At  ve  sets  of  observations  should  be  taken  and  tin; 

i 

tvera.  .  in  (  1-~>1)  to  get  rj  at  the  temperature 

>f  the  experiment. 



148  PRACTICAL  PHYSICS 

Exp.  33.    Determination  of  the  Specific  Viscosities  of  Liquids 

(COULOMB'S  METHOD) 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  On  account  of 

such  experimental  difficulties  as  that  of  obtaining  a  capillary 
tube  of  uniform  bore  and  circular  cross  section,  of  accurately 

measuring  its  diameter,  and  of  keeping  the  capillary  free  from 
minute  air  bubbles  and  particles  of  foreign  substances,  the 

determination  of  a  coefficient  of  viscosity  by  the  method  given 

in  the  preceding  experiment  is  very  troublesome.  Coulomb's 
Method  is  especially  suited  to  the  determination  of  the  relative 
viscosities  of  those  liquids  used  in  engineering  and  the  arts 
which  are  liable  to  contain  particles  of  solid  substances  in 

suspension,  e.g.  lubricating  oils.  By  specific  or  relative  vis- 
cosity is  meant  the  ratio  of  the  viscosity  of  the  liquid  to  the 

viscosity  of  water.  The  object  of  this  experiment  is  to  deter- 
mine the  specific  viscosities  of  a  series  of  liquids. 

If  a  massive  disk  suspended  axially  by  a  thin  vertical  wire 
be  immersed  in  a  liquid  and  set  into  torsional  vibration,  it  will 

be  shown  in  the  chapter  on  Damped  Angular  Vibration,  Vol. 

II,  that  the  ratio  of  the  lengths  of  any  two  successive  swings 
from  one  end  of  the  path  to  the  other  is  a  known  function  of 

the  "  damping  constant,"  a,  which  is  proportional  to  the  viscos- 
ity of  the  liquid  surrounding  the  moving  body. 

Let  o-j  represent  the  ratio  of  the  lengths  of  any  two  successive 
oscillations  of  the  disk  when  immersed  in  the  first  liquid  ;  T^ 
the  period  of  vibration  of  the  disk  when  immersed  in  the  first 

liquid  ;  and  av  the  damping  constant  for  the  first  liquid.  Let 

<r2,  7y,  and  a2  represent  the  corresponding  quantities  for  the 
second  liquid.  Then,  from  (31),  Vol.  II, 

and  ^  =  e  ̂   (156) 
where  e  is  the  base  of  the  natural  logarithms  and  K  is  the 
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moment   of  inertia  of  the  suspended  system.      Dividing  (155) 

bv  (  l-~'h)  and  putting  the  resulting  equation 
into  the  logarithmic  form,  we  obtain 

Whence    the    relati\  -ity   of    the    two 

liquids,  f, 

a,  =  TV  log  <r, 

a,      7,'  log  «r,' 

(167) 

If  the  second  liquid  is  water.  z  is  the  specific 

;  he  first  liquid. 

MANIIM  LATION  AND  <  \TioN.-In 

.ipparatus  here  emj  .  one 

of    a   thin    piano   \\  .-d    to  a 
r.gid  support  while  the  othe;  ittached 

t)  a  '.    ro<l    carr\  :  •!    eii-eh- 
;i  -id  the  mas>i\c  di>k  wlii<-li  is  to  l.c  imm. 

i  i  the  vari.ms  liquid*.      Ti..-  di.sk   has  a  thin 

j-  em  by  whi<-h  it  tad  to  the  rod  car  Fl<;  ̂  
i  ig  the  divid-  :  --ssel  containing 

i  ie  liquid  l)'-iir_r  .studied   is  surrounded   by  an  oil  hath  heated 
1  v  in. 

\sthe  :uaii\  liquids  U  very  different  at  ditlr  rent 

i  mpcr.ituivs.  it  !•  always  oeoeMft]  Jte  the  determination 

;      the  temperature  at  which   the  liquid   is  t..  he  used.      For  in- 

s  an.  ..f  cylinder  oil  should  be  made  at  about   1"»(>    to 
1  *5°  ('..  whil-  Jieoils  should  he  tested  at  ahoiit  .",M    (   . 

^  iH-e   the    n-lative   viscusities  of    many    pairs   .,f   ipeoimei 

(<  1  art-  even  reversed  with  a  change  of  temperature  ,,f  less  than 

1  >0°  <  !e  to  jud_L,'e  tlie  relative  lubricating  values 
o    oils  from  t:  :.-s   determined  at   a  tempera- 

t    ?*e  much  ditTerent   from  the  temperature  at   \\hich  they  are  to 

At';  ;n^   and    as^.-ml»lin^    the    appai.ilus    and    allowing 
tl  e  temperature  of  the  s[-  to  attain  the  re«piired  value, 
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twist  the  disk  through  about  180°  by  rotating  the  rod  above 
the  divided  circle.  With  a  stop  watch  observe  the  time  of  ten 
complete  vibrations.  One  tenth  of  this  time  in  seconds  is  the 

period  T±  .  By  means  of  the  pointers  P  and  P'  make  a  series 
of  readings  of  the  turning  points  of  successive  swings  to  the 
right  and  to  the  left.  The  number  of  scale  divisions  through 
which  the  disk  turns  in  rotating  from  one  end  of  its  path  to 
the  other  is  the  magnitude  of  that  oscillation.  Calling  the 
magnitudes  of  these  successive  oscillations  fj,  f2,  f3,  etc.,  we 
have 

Whence 

=        0" 4!' and,  in  general,          fn  =  f^™-71. 
If,  say,  twenty  oscillations  were  observed,  we  have  then 

etc., 

and  by  finding  the  average  of  ̂-,  |*-,  !*-»•••  f^i  and  taking 
Sll      ?12      ?13  ?20 

the  tenth  root  of  this  average,  o~l  is  found. 
In  the  same  manner  find  T%  and  <r2.  These  values  of  T^ 

T^,  (TV  and  o-2  substituted  in  (157)  will  give  the  relative  vis- 
cosity of  the  two  liquids.  With  liquids  having  viscosities  not 

very  different,  the  value  of  T±  will  be  so  nearly  equal  to  T2f 
that  their  ratio  may  approximate  unity  ;  but  it  is  never  allow- 

able to  assume  their  ratio  to  be  unity  without  experimental 
verification. 

Instead  of  reckoning  viscosity  in  absolute  units  or  with  ref- 
erence to  water  at  some  standard  temperature,  the  viscosity  of 
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a  liquid  is  sometimes  rated  in  comparison  with  the  viscosity 

of  an  aqueous  solution  of  sugar  having  a  definite  concentration 

and  temperature.  For  example,  the  viscosity  of  a  certain  oil 

at  •~>(>:  ('.  may  In-  specified  as  being  equal  to  the  viscosity 
of  an  18%  aqueous  solution  of  pure  sugar  at  _(l  C,  Values 

for  tl  Mtifs  of  aqueous  sugar  solutions  of  various  con- 
centrations, referred  to  water,  are  given  in  Table  10. 
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CIIAl'TKl!  X 

TEMPERATURE 

THE  comparison  of  temperatures  involves  several  arbitrary 

conventi*  Miperatuivs    cannot    he   directly    measured, — 

•  •an  be  compared  only  in  terms  of  some  other  phenomenon 
which  depends  upon  temperature.     Of  the  various  phenomena 

which  are  used  for  the  comparison  of  temperatures,  the  follow- 

;ie  most  important  8  («)  change  of  the  volume  of  a  gas 
or  liquid  kept  at  constant  piv>sure,  (£)  change  of  the  pressure 

<>f  a  gas  kept  -ant  volume.  ( ,- )  change  of  the  electric  re- 
ice  of  a  metal   wire,   (</)   production  of  an  electromotive 

at  the  junction  of  two  dissimilar  metals,   (.•)  quantity  of 
nergy  radiated  hy  the  hot  body,  (/)  luminous  intensity  of  the 

liated  by  the  hot  body.      In 
ases  (<i),  (6),  (c?),  and  (-/  fcessary  to  select  a  particular 

•  substance.     In  all  opaei  .-cessary  to  adopt 
AO   ;  ires  as  standard  or  lixed  points  of  a 

scale,  and  to  divide  the  interval   Let  ween  these 

oints  int..  a  d.  tinite  number  of  spaces  or  degrees. 
The  scale  of  temperatures  that  has  been  adopted  as  standard 

i  .  based  on  the  change  of  pressure  \\hi.-h  a  change  of  tempera- 
•  ire  :  iii  a  fixed  mass  of  hxdm^,.,,  kept  at  constant  vol- 
T  me.  By  means  of  a  gas  thermnmcter  temperatures  as  hi^-h  as 

1  700°  C.  can  be  compared.  However,  as  the  standard  ^as  ther- 
i  <ime  .th  hulky  and  fragile,  it  is  seldom  used  except  in 

8  ijititic  work  and  fur  the  purpose  of  standard i/in^  other  ther- 

n  ometei-s.  All  other  th.  .  -T8  are  calihrated  in  terms  of 

t  ie  gas  tl. 
HI 
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On  account  of  the  comparatively  simple  technique  necessary 

in  its  use,  the  mercury-in-glass  thermometer  is  employed  when- 
ever the  conditions  of  the  measurement  permit.  By  using  a 

very  hard  glass,  and  filling  the  space  above  the  mercury  with 
an  inert  gas  at  a  pressure  sufficient  to  prevent  boiling  of  the 

mercury,  a  mercury-in-glass  thermometer  can  be  used  up  to 

about  550°  C.  (1000°  F.).  Mercury -in-quartz  thermometers 
having  the  space  above  the  mercury  filled  with  gas  at  60  atmos- 

pheres pressure  can  be  used  up  to  700°  C. 
Thermometers  available  for  temperatures  above  500°  C.  are 

often  called  pyrometers.  The  electric  resistance  and  the  ther- 
moelectric instruments  are  available  for  temperatures  up  to 

about  1500°  C.  For  temperatures  above  this,  radiation  pyrome- 
ters are  available. 

Measurements  of  temperature,  even  by  means  of  the  mercury- 
in-glass  thermometer,  are  subject  to  so  many  sources  of  error 
that  an  accurate  determination  of  temperature  is  a  task  of  some 

difficulty.  Nevertheless,  the  thermometric  methods  have  be- 
come so  highly  developed  that  if  proper  precautions  are  taken 

and  proper  corrections  made,  a  measurement  of  temperature 

made  with  a  mercury-in-glass  thermometer  between  0°  C.  and 
100°  C.  can  be  trusted  to  0°.005.  The  methods  described  in 

the  following  pages  correspond  to  an  accuracy  of  about  0°.05. 
The  principal  sources  of  error  in  the  use  of  a  mercury-in- 

glass  thermometer  are :  — 
1.  Errors  in  reading  the  thermometer  due  to  parallax.  Usu- 

ally the  scale  of  a  thermometer  is  at  some  distance  in  front  of 
the  capillary,  so  that,  iinless  the  line  of  sight  is  normal  to  the 
length  of  the  tube,  the  reading  is  too  high  or  too  low.  The 
two  principal  methods  employed  for  keeping  the  line  of  sight 
normal  to  the  length  of  the  thermometer  tube  are,  (#)  to  hold 
a  small  mirror  against  the  back  of  the  thermometer,  and  to  place 
the  eye  in  such  a  position  that  the  top  of  the  mercury  thread  is 
in  line  with  the  image  of  the  eye  seen  in  the  mirror;  and  (b)  to 
observe  the  thermometer  at  a  distance  by  means  of  a  telescope 

containing  a  cross  hair  in  the  eyepiece,  the  telescope  being  fas- 
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iciied  normal  t«>  a  rod  placed  parallel  to  the  tliermometer  tuhe. 

Tin-  i  iiiu.Ni  he  arranged  ><>  that  when  it  is  moved  alon^ 

!pportin<_r  rod  t->  thf  end  of  the  moving  column  at 

different  heights,  it  will  always  remain  normal  to  the  support- 

ing rod.  A  cathometer  is  usually  most  convenient  for  this  pur- 

pose, l>ut  a  short  open  tube  without  lenses,  having  crosshairs  at 

WO  ends,  and  sliding  cither  on  the  thermometer  itself  or  on 

a  parallel  rod,  serves  the  purpose  very  well. 

Krrors  due  to  the  changes  in  the  volume  of  the  hull)  la^iiiL;' 
liehind  tl.  .  temperature.      A  ri>in^  thermometer  in- 

0  low.  and  a  falling  thermometer  too  hi^h,  a  tempcra- 

Tliis  hiLT  is  du-  of  the  ijhiss  of  which  the 

t  hcrniom.  !  be  kept  for  some  davs 

iniform temperature  of.  sa\.  L!"   <'.,  and  then  plunged  int»> 
,i  hath  of   melting  1  the  temperature  observed  ;   and  if  it 

•rat  lire  of  100°  (\,  and  a^ain  plunged 
lito  the  hath  of  melt;:  ;  re  n«»\v  obeeTVed  will 

be  lower  than  tlie  one  piwioii>ly  ol.tain«-«l.  The  increase  in  the 
volume  of  the  hull)  du  .iture  docs  n,,t  at  once 

pear,  and  the  zero  point  may  he  depressed  as  much  as  half 

i  degree  for  some  kit.  tss.  This  dcpiv«vxi«.n  of  th. 

hen  t  lie  tempera'  which    the   thermoine- 
ar  has  beeni  ,  and  when  the  time  u  rthai 

at   the  higher  temperature.      The  dr- 

don  {Hjrsists  t  I  and  even  months  hefore  the  normal 

i-.-^ained.       It  follov.  hih-  the  ther- 

is  hein^  )tts  temperatures  the  zero  point  is 
This  i.  !].erature  determinate 

the    /ero    point    at    this   particular   time   is 

;im\vn.       ,  uc  of  the  /.ero  point   can  he  ol, t;iincd  hy  cool- 
ng  the   i  ,i)   to  the   temperature  of  nicltin 

miii-  !•    the    d.-Mivd    temp.  r.-adin^    has   been 

'iade.     Then,  if  no  other  errors  aflfed  th-  :tion.  the  true 
:  iajM  iirtwccn  the  nhserved  temperature 

nd  the    \  the   d.-pi.->.-d    /ern.       T:  '.led    the    '•<!«•- 
temperature,   and    is   the 
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only  method  capable   of   yielding   the    most   accurate    results 
attainable. 

3.    Errors  due  to  the  exposed  column  of  the  thermometer 
being  at  a  temperature  different  from  that  of  the  bulb. 

Let  T  denote  the  true  temperature  of  the  bulb  ; 
£,  the  temperature  indicated  by  the  thermometer  ; 
s,  the  temperature  of  the  exposed  part  of  the  stem  ;  and 
e,  the  reading  where  the  stem  emerges  from  the  bath. 

Then  the  length  of  the  exposed  column  is  (t  —  e)  degrees,  and 
the  difference  between  its  temperature  and  that  of  the  bulb  is 

(T  —  s).    Since  the  coefficient  of  apparent  expansion  of  mercury 
in  glass  is  about  0.000156  per  degree  C.,  this  exposed  part  of 

the  column,  if  it  were  to  be  raised  in  temperature   (2T—  s) 
degrees,  would  increase  in  length  0.000156   (t  —  e)  (T  —  s) 
degrees.     That  is, 

T=  t  +  0.000156  (t  -  e)(T-  «). 

m      t  —  0.000156  8  (t  —  e) Whence          T=  ______J. 

or,  employing  approximation  (5),  p.  7, 

T=[t-  0.000156  s  (t  -  *)]  •  [1  +  0.000156  (t  -  *)], 

or,  neglecting  the  term  which  involves  the  square  of  0.000156, 

T  =  t  +  0.000156  (t  -  «)(«  -  e).  (158) 

4.  Errors  due  to  inequalities  in  the  bore  of  the  tube.     These 
errors  are  corrected  by  calibrating  the  tube  as  described  in 
Experiment  34. 

5.  Error  in  the  graduation  of  the  stem  ;  that  is,  although 
the  divisions  are  of  equal  length,  their  length  is  not  such  as  to 
make  just  a  hundred  divisions  between  the  boiling  point  and  the 
freezing  point  of  water.     Let  Tv  denote  the  true  temperature 
of  the  vapor  above  boiling  water  as  determined  by  reading  the 

barometer  (see  pp.  176—178,  and  Table  12),  tv  the  temperature 
indicated  by  the  thermometer  when  it  is  immersed  in  the  vapor 
above  boiling  water,  and  t0  the  depressed  zero  reading  taken 
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immediately  after  t,.  was  observed.      Then  the  number  of  de- 
-  that  oujrht  to  be  between  the  point  where  the  thermome- 

ter  r-  ud  that   where  it   iva«ls  /     ifl    '/'..  and    the  number 
..I  decrees  that  really  are  between  those  points  is  (ti—t0).  It 

follows*  that  any  temperature  difference  read  from  the  ther- 
mometer is  to  be  multiplied  by  a  faetor 

*--•  (159) 

6.  Errors  due  t  a  tin-  pressure  to  which  the  bulb 
is  subjected.       \          liaise  of  pressure  will  cause  a  change  ot 

;  of  the   mercury   column   independent   of  any  change 

Miperatii!''.        I   -ually    the    experimental    nietliod    can    be 
•  eliminate  this  source  of  err- 

7.  Error  due  to  capillarity.     IM  a  thermometer  of  very  small 
-  not  move  smoothly  but  m 

in  little  jumps.      Tiii-  Lfl  much  greater  when  the 
temp.  :iin^  than  when   rising.      In   fact,  the 

capillary  action  D  impossible  to  measure  necur- 
:!liu^  temperature  by  means  of  a  mercury  -in- 

glass  thermometer. 
Tn  i:.  —  A  thermometer 

penitures  to  thousandth- 
i  a  long  space  for  each  degree  of 

.    that.    ;  '1    on   the   ordinary    plan,   the 

668.      This  would  require  the  use  of  a  numb 
f  ordinary  laboratory 

\Vhen  it  mine  definite 

trm:  nail  temperature  differences, 
bermometei  I         .Miami  can  be  used  at 

temperature   for   which   n  mercury-in-^Iass    tlier- 
mom<  idiarity   of   this  ther- 

7  )   at    the    Upper    end       >'" 
of  the  tube,  by  in.  vhid,  the  .|iiantitv  of  mercury  in  the 
bulb  can  he  inereas.ed  or  dimini.shed.       i  usually  about 
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five  centigrade  degrees  in  length  and  is  divided  into  hundredths 
of  a  degree. 

In  setting  the  instrument,  a  sufficient  amount  of  mercury 
must  be  left  in  the  bulb  and  stern  to  give  readings  between  the 
required  temperatures.  First  invert  the  thermometer  and  tap 
the  tube  so  that  the  mercury  in  the  reservoir  will  lodge  in  the 
bend  B  at  the  end  of  the  stem.  Now  heat  the  bulb  until  the 

mercury  in  the  stem  joins  the  mercury  in  the  reservoir.  (See 
Fig.  67.)  Place  in  a  bath  one  or  two  degrees  above  the  upper 
limit  of  temperatures  to  be  measured.  If  now  the  upper  end 
of  the  tube  be  flipped  with  the  finger,  the  mercury  suspended 
in  the  upper  part  of  the  reservoir  will  be  jarred  down,  thus 
separating  it  from  the  thread  at  the  bend  B.  The  thermometer 
is  now  set  for  readings  between  the  required  temperatures. 

Exp.  34.   Calibration  of  a  Mercury-in-Glass  Thermometer 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  If  the  bore  of  a 
thermometer  is  not  uniform  in  cross  section,  the  length  of  the 
tube  corresponding  to  a  degree  difference  in  temperature  will 
not  be  the  same  at  different  parts  of  the  tube.  And  as  it  is 
impossible  to  get  a  perfectly  uniform  capillary,  it  is  necessary  to 
determine  the  correction  to  be  applied  to  any  particular  reading 
to  take  account  of  the  irregularity  in  the  bore  of  a  thermometer. 
Again,  if  the  fixed  points  are  incorrectly  placed  on  the  stem, 
this  will  introduce  an  error  throughout  the  scale.  The  object 
of  this  experiment  is  to  construct  for  a  given  thermometer  a 
curve  by  which  to  correct  errors  due  either  to  the  irregularity 
of  the  bore  or  to  the  location  of  the  fixed  points. 

The  experiment  consists  of  two  parts.  First,  the  length  of  a 
short  thread  of  mercury  is  measured  at  different  parts  of  the 
tube,  and  from  these  lengths  points  are  found  throughout  the 
whole  length  of  the  tube  that  separate  equal  volumes.  Second, 

the  position  of  the  fixed  points  is  determined  by  placing  the  ther- 
mometer in  the  vapor  of  boiling  water  and  also  in  melting  ice. 
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MAN  i  IT  LATH  >\    AND    COMPUTATION. — The   length   of   tin* 
I  t.»  be  broken  off  depends  upon  the  thermometer.     If  the 

thread  is  too  long,  local  irregularities  of  bore  are  not  evident; 
if  the  thread  is  too  short,  its  changes  in  length  are  minute.      If 

a  dividing  engine  is  available,  a  thread  not   more  than  a  centi- 

:•  long  is  advisahle.      If  no  magnification  is  to  be  used  and 
.ermometer  is  an  ordinary  Centigrade  thermometer  grad- 

1  from  0°  to  100°  in  degrees,  a  thread  some  lifteen  degrees 
long  is  perha:  <ry. 

.tration  i,f  the  calibrating  thread  requires  some  dex- 
terity.     In  blowing  the  bull)  on  a  thermometer  tube,  a  slight 

notion  is  usually  left  where  the  bulb  and  tube  join.      If 

such  a  thermome;  >-d  and  then   given  a  sudden  jar, 
1   i>  likely  to  separate  at  this  point.      If  there  be  no 

s  idi  constriction,   tin-  thread   may  be  separated   by   laying  the 
•le  and  striking  the  upper  end  of  the  tube 

v  itli  a  small  block  of  wood.  If  this  is  not  carefully  done,  how- 

be  produced  in-  stem  near  the  bulb. 

1  '  the  bore  has  an  enlargement  at  the  upper  end,  the  column  of 
i  ercury  that  has  been  broken  ntV  is  allowed  to  run  into  this 
t  ilar-  .uid  to  remain  there  while  the  tube  is  b.-in-jr  eali- 

1  -ated.  The  be  ightly  warmed  until  a  thread  of 
i  ercu  ito  the  tube,  and  this,  in 

1  irn.  is  separated  from  ti.  :  ry  in  the  bulb.  This  is  the 
t  iread  that  is  used  in  the  fcioiL  If  the  capillary  has  no 

t •  ihir.  .e  upper  end  in  which  to  store,  part  of  the 
ii  ercury,  it  may  be  necessary  to  use  two  mercury  threads  to 
c  librate  the  t  \\  o  ;lir  tube.  When  this  is  the  case,  the 

I  lib  is  <•"  '  !i  a  mixture  of  ice  and  salt  if  necessary,  until 

;i  '  the  mercury  lias  run  into  the  bull)  except  the  length  that  is 
t(    be   br<  ,          thread  is    separated    and    run    to    the 
f  rth-  f  the  tube.     In  order  to  make  measurements  in 

ft!  \lowerend  of  the  tube,  this  part  of  the  thermometer  must  be 
fi  cd  of  n ie r.  in y  and  another  thread  separated  as  before. 

When  a  tli;  off.  it  is  to  be  brought  nearly 

t     on,-  end  of  the  t u be  and  the   position  of  both  ends  carefully 
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read,  then  moved  along  through  a  quarter  or  a  third  of  its 
length  and  the  positions  of  both  ends  again  read,  this  process 
being  repeated  until  the  thread  has  been  moved  to  the  other 
end  of  the  tube.  Suppose  that  when  this  is  done  —  a  mirror 
being  used  as  suggested  on  p.  156,  and  readings  being  made  to 
twentieths  of  a  degree  —  the  readings  are  those  in  the  first, 
second,  fourth,  and  fifth  columns  of  the  following  table  :  — 

LOWER  END  OF 
THREAD  AT 

UPPER  END  OF 
THREAD  AT 

THREAD 

LENGTH  IN 
DEGREES 

LOWER  END  OF 
THREAD  AT 

UPPER  END  OF 
THREAD  AT 

THREAD 

LENGTH  IN 
DEGREES 

-  12°.30 
+    3°.60 

15°.90 39°.95 55°.65 15°.70 

-    7  .25 8  .65 15  .90 45  .30 60  .95 15  .65 
-    2  .05 13  .85 15  .90 50  .00 65  .65 15  .65 

+    3  .00 18  .85 15  .85 55  .20 70  .80 15  .60 

8  .15 24  .00 15  .85 60  .15 75  .75 15  .60 
14  .30 30  .15 15  .85 64  .90 80  .45 15  .55 
20  .00 35  .80 15  .80 70  .10 85  .60 15  .50 
24  .55 40  .35 15  .80 74  .85 90  .35 15  .50 
30  .05 45  .80 15  .75 80  .05 95  .50 15  .45 
34  .90 50  .65 15  .75 83  .30 98  .75 15  .45 

The  quantities  in  the  third  and.  sixth  columns  are  calculated 
from  the  observed  quantities.  The  quantities  in  the  first  and 
third  columns  give  the  following  curve,  which  shows  the  length 
of  the  thread  when  at  different  points  of  the  capillary.  From 
this  curve  the  lengths  of  equal  volume  portions  of  the  tube  can 
be  determined  as  follows  :  — 

— 10 

90         100 

The  curve  shows  that  if  the   bottom  of  the  mercury  thread 

were  at  0°  its  length  would  be  15°. 87,  so  that  the  top  of  the 
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•1  would  be  at  1")°.8T;  it  also  shows  that  if  the  bottom  of 
the  thivad  wen-  at  15°. 87  its  length  would  be  lo.°81,  so  that  the 

top  uf  it  would  be  at  31°.»'»S:  if  the  bottom  of  the  thivad  were 
at  31°. 08  its  length  would  be  15°.73;  etc.  These  values  are 
recorded  in  the  f<>llo\vin_  :  — 

VLE    BE- 
TWEEN   Wli! 

I'MES  OF  BORB  ARE 

Ey< 

LKKOTHS  or  THREAD 

BETWEEN   Kyi'AL  VoL- 
t  ME  POINTS 

POSITIONS   or    K  y  i  \  i 
K   POINTS   ir 

BORE    HAD    BEEN 

Rnvoa 

CORRECTIONS  roR 
r..iM-  is  FIK-I 

0.00 
±0.00 1.-..M 

15.69 

-0.18 

fJ8 

o.:;i 

17.41 15.66 17M 

-  o.:;-j yaw 1&48 
7-.ll 0.90 

ua 
±0.00 

v  . 

1 

t 

t 

The  quantities  in  tin*  third  column  arc  fmiud  by  inultipl\  iu^ 

1,  'In-   average  length  of    thread    U-t  \\vrn   iMjual 
Ininr  ]  i  tin-  fourth  rolumn  arc  found 

-  subtracting  the  quantites  in  the  first  column  from  those  in 
c  third.  The  quantities  in  the  first  and  fourth  columns  ^ive 

e  upper  cnr\«i  in  Fi^.  •'>'.).  This  curve  gives  the  corrections 

tl  at  must  be  up]  Mings  at  different  puints  along  the 
B<  lie  '  unt  uf  irregularities  in  the  bore. 

i'V  displacement  <>f  the  fixed  points  will 
n<  w  b  B      l.-tinitiun,  the  lower  fixed  point  (0°  C. 
01  3l;  i  iie  temp  (rf  melting  ice.     The  upper  fixed 
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point  (100°  C.  or  212°  F.)  is  defined  as  the  temperature  of  the 
steam  produced  by  water  boiling  at  sea  level  and  latitude  45° 
under  a  barometric  pressure  of  76  cm.  of  mercury  when  the 

barometer  is  at  the  temperature  0°  C. 
Observe  the  barometric  height,  noting  the  temperature  of  the 

barometer  by  means  of  the  thermometer  attached  to  the  instru- 
ment. Ascertain  from  the  laboratory  instructor  the  latitude 

and  altitude  of  the  laboratory.  From  these  data  compute, 

in  the  manner  explained  on  pp.  176-178,  the  corrected  baromet- 
ric pressure  H  reduced  to  standard  conditions.  From  a  con- 

sideration of  the  number  of  figures  that  can  be 
trusted  in  the  uncorrected  readings  determine 
which  of  the  corrections  on  pp.  177,  178  it  is 
worth  while  to  make. 

Suspend  the  thermometer  in  the  vapor  of 
boiling  water.  It  must  not  be  immersed  in  the 
water  itself  nor  be  so  near  the  surface  that  the 

bulb  will  be  spattered  by  drops  of  water,  because 
the  temperature  of  boiling  water  is  influenced  by 
the  nature  of  the  surface  composing  the  vessel 

and  by  the  presence  of  slight  quantities  of  dis- 
solved impurities.  But  the  temperature  of  the 

vapor  depends  only  upon  the  pressure.  Re- 

gnault's  hypsometer  consists  of  a  reservoir  R 
(Fig.  70)  in  which  the  water  is  boiled,  sur- 

mounted by  a  tube  in  which  the  thermometer  is 
suspended.  After  passing  through  this  tube  the  steam  passes 
through  the  jacket  J  and  escapes  into  the  air  at  E.  M  is  a 
water  manometer  which  serves  to  measure  any  difference  of 
pressure  between  the  steam  inside  and  the  air  outside.  If  the 

manometer  indicates  a  pressure  of  d  mm.  of  water,  i.e.  TTT~^  nim. lo.b 

of  mercury,  then  the  total  pressure  on  the  surface  of  the  boiling 

water  is  H  -f-  75-^-  mm.      Call  the  observed  boiling   point    T0. lo.b 

Draw  the  thermometer  up  until  the  upper  twenty  degrees  or  so 

FIG.  70. 
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of  the  stem  is  exposed.  After  about  live  minutes  note  the  read- 
ing and  also  the  reading  at  the  top  of  the  stopper,  draw  the 

thermometer  up  some  twenty  degrees  farther,  and,  after  about 
live  minutes  more,  ivad  again  at  both  points.  Repeat  until  the 

zero  point  is  at  the  stopper.  The  ditVereiiee  between  the  read- 

ing at  the  top  of  the  mereiiry  when  the  thermometer  was  wholly 
immersed  and  the  reading  in  any  of  the  other  eases  is  the 

in  exposure  eorreetion  for  that  partieular  ease.  Note  ap- 
proximately the  temperature  of  the  air  in  the  neighborhood  of 

the  hyp.soineter.  From  (1">S)  and  (-)  calculate  the  stem  ex- 
posure correction  for  each  OM6.  Plot  on  the  same  sheet  two 

en;  rdinating  the  thermometer  reading  at  the  stopper 

and  the  observed  stem  exposure  eorreetion,  and  the  other  coor- 

dinating the  thermometer  :  a  the  stopper  and  the  ealeu- 

d  >t«  -in  exposure  cornet  i  MM. 
ttOVe   the   thermometer   from    the  hypsometer,  allow   it    to 

1  in  the  air  ;  :  40°  C.,  and  then   immerse  it  in  a  vessel 
illed  with  snow  or  shaved  ice  which  contains  enough  water  to 

ill  the  i:  -.  Tliis  gives  the  depressed  /.TO  point. 

•>   Table    12,    obtain     the    temperature    of    the 

-apor  of  water  boiling  at  a  pressure  of  -^+7o~j»'      Call    tnis 

rue  temperatui-e  T..  Then  (T0—  Tt)  is  the  error  «,f  the  upper 

ixed  point,  and  (  7*,  —  T  )  is  the  correction  to  be  applied  to  the 

eadr  -  !i  the  above  example  the  error  of  the 

•niling  point  is  found  to  be  +0°.»J,  and  the  error  of  the  free/ing 
•oint  -f  n°.,S.  Then  the  oorreotion  for  the  boiling  point  is 

—  0°.8.     If  now  on  the  game 
:dinate    ;  n    which  the   corivtion    curve  for 

iTeg!.  of  bore  was  plotted,  the  free/ing  point  correction 

•  •iitered  alung  the  axis  of  ordinates  opposite  the,  zero  of  ab- 
issas,   and    tlie   boiling   point    correction    be   entered   opposite 

|;e  observed  boiling;  ;d  these  points  be  connected  by  a 

aiight   line,  as  sho\\n    by  the  dotted   line  in   Fig.  «'»!',  this  line 
;he  con  odiftte  points  of  the  scale  due 

•  the  displac«-meii- 

ives 
.  th« 
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By  adding  the  ordinates  of  the  correction  curve  for  the  irreg- 
ularities of  bore  —  the  upper  curve  —  to  the  corresponding 

ordinates  of  this  correction  curve  for  displacement  of  the 

fixed  points  —  the  dotted  line  —  the  lower  curve  in  Fig.  69 
is  obtained.  This  is  called  the  Calibration  Curve  of  the 
thermometer. 

If  this  calibration  is  done  with  two  mercury  threads  instead 
of  one,  the  calibration  should  extend  from  each  end  to  a  dis- 

tance past  the  middle  of  the  tube.  The  curve  analogous  to 
that  in  Fig.  68  will  be  a  continuous  line,  but  along  the  region 
where  data  were  taken  with  both  mercury  threads,  one  branch 
of  the  curve  will  be  above  the  other.  In  this  region  find  the 

ratio  of  the  ordinates  of  the  two  curves  for  three  or  four  posi- 
tions on  the  thermometer  scale.  This  ratio  must  be  really  the 

same  for  all  points  on  the  thermometer  scale.  By  multiplying 
any  ordinate  of  one  curve  by  the  averages  of  the  values  found 
for  the  ratio,  the  corresponding  ordinate  of  the  other  curve  will 
be  obtained.  Proceeding  in  this  manner,  a  continuous  curve  is 

obtained,  just  as  though  all  of  the  calibration  had  been  per- 
formed with  a  single  mercury  thread. 

Exp.  35.   Calibration  of  a  Resistance  Thermometer 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  The  mercury-in- 

glass  thermometer  is  unavailable  for  the  measurement  of  ~tem- 
peratures  much  below  —  30°  C.,  or  above  +  300°  C.  Although 
the  gas  thermometer  can  be  used  for  any  temperature  for  which 
a  suitable  material  to  construct  the  bulb  can  be  found,  it  is  such 

a  large  awkward  instrument,  and  the  difficulties  of  the  manipu- 
lation are  so  considerable,  that  it  is  suitable  only  for  stand- 

ardizing more  convenient  types  of  thermometer.  Since  the 

electrical  resistance  of  metals  varies  continuously  with  the  tem- 
perature according  to  definite  laws,  and  since  the  accurate 

measurement  of  resistance  is  attended  with  no  considerable 

difficulty,  thermometers  depending  upon  this  change  of  resist- 
ance are  in  common  use  for  measuring  high  and  low  tempera- 
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tures.     Platinum  is  the  material  usually  employed,  both  because 

its  resistance  at  any  given   temperature  does  not  change  with 

time,   and    because   the   law  connecting    the   temperature   and 

nice  of  a  wire  made  of  it  is  expressible  by  a  simple  for- 
mula throughout  a  very  wide  range  of  temperatures.      It   has 

been  shown  by  experiment  that   if  /»'.,  represents  the  resistance 
of  a  piece  of  metal  a          <   ..  then  throughout  a  more  or  less 

definite    range    of    temperatures    the    resistan<  B    /«'.   at   t°    C.   is 
Me  by  the  equal; 

/;.       //    [1  +  at  +  W],  (160) 

where  R&  a,  and  b  are  constants.      In  order  that  a  resistance 

thermometer    may    be    u>  N    three    constants    must   be 
known.     The  object  of   this  experiment  is  to  determine  the 

I   of   these  OOOOtantfl  for  a  given  106   thermometer. 

If  the  :  .-(»f  the  wire   at   three  different   temperatures 
ie  known,  three  equations  of  the  form  oi  are  obtained, 
ind  1:  ons   tlie  values  of  the  three  constant- 

>e  calculated.      '1  .t  and   boiling   point  of  water 
il  temperature!  for  the  e\j.i-riment.  The  re- 

naming temp.-rat  .•_;  point  of  any  convenient 
ubst.  /.  sulphur,  which  boils  at  -lit  Hut  from 

at  very  low  tempera- 

\arand    I  ;  have  shown  that  at   t  he  absolute  zero 

re  it  is  highly  probable  that  the  resistance  < 
TO.      Assuming  t  ktion,  the  resistance  of 

B  need  be  m  i  at  but  two  tempcra- 

-implitied  process  gives  the  values  of  the  constants 

ii  <l'i(>)  with  iracy  for  most  purposes.     L' 
•ntii.  of  the  thermometer  wire  at    the  tempera- 

; d  the  absolute  zero  by  the  symbols  Rt^  Rtj  and 
•' 

(161) 
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From  these  three  equations  the  values  of  the  three  constants  a,  5, 
and  RQ  can  be  obtained.  These  constants  once  being  known, 
the  resistance  of  the  wire  at  any  unknown  temperature  can  be 
determined  experimentally  and  the  temperature  calculated 
from  (160).  A  convenient  way  of  finding  the  values  of  the 

three   constants   is   to   set   R^=  — ,   and  then  solve  (161)  by 
determinants.  ° 

The  Wheatstone  bridge  is  to  be  used  to  determine  the  re- 
sistances. In  texts  on  General 

Physics  it  is  shown  that,  if  the 

symbols  have  the  meanings  indi- 
cated in  the  figure, 

i  =  _3.  (162) 

Battery 

Gal Bl 

FIG.  71.  R        l' 

If  the  resistance  R^  and  the  lengths  13  and  Z4  are  known,  the 
other  resistance  R±  can  at  once  be  calculated. 
MANIPULATION  AND  COMPUTATION.  —  The  resistance  ther- 

mometer consists  of  fine  platinum  wire  wound  on  a  mica  frame 

enclosed  in  a  wrought-iron  capsule.  In  order  to  diminish 
errors  due  to  a  change  in  the  temperature  of  the  leads  which 
run  down  into  the  capsule,  a  second  pair  of  leads  precisely  like 
the  first  is  placed  side  by  side  with  them  but  short  circuited  at 

FIG.  72. 

the  bottom.  By  measuring  at  each  temperature  the  resistance 
between  the  terminals  of  the  coil  and  also  the  resistance  between 

the  terminals  of  the  dummy  leads  the  change  in  the  resistance 
of  the  coil  alone  can  be  obtained,  so  that  any  change  in  the 
resistance  of  the  leads  does  not  need  to  be  taken  into  account. 

The  particular  form  of  Wheatstone  bridge  called  the  "  slide 
wire  "  or  "  meter  "  bridge  will  be  used  in  this  experiment.  This 
apparatus  is  illustrated  in  Fig.  71.  A  uniform  wire  AC  is 
stretched  over  a  divided  scale.  The  ends  of  this  wire  are  con- 
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I  to  a  parallel  copper  rod  in  which  are  two  gaps.  In  one 
of  these  gaps  is  inserted  the  resistance  to  be  measured  7?p  and 
in  the  other  gap  a  resistance  box  /{.,.  The  current  enters  at 
one  end  of  the  bridge  and  leaves  at  the  other.  One  side  of  the 

galvanometer  is  connected  to  the  binding  post  B  and  the  other 

to  a  key  A',  which  can  slide  back  and  forth  and  make  contact 
at  any  point  on  the  wire  AC. 

WL  :he  keys  are  oioaed,  /\\  is  closed  first  and  then   A',. 
Until  the  bridge  is  nearly  balanced  /v,  is  dosed  for  as  short  a 
time  as  possible,  and  as  soon  as  AT,  is  open  h\  is  opened.  If  a 

mirror  galvanometer  with  its  telescope  and  scale  are  used,  the 
to  be  adjusted  as  described  on  p.    \  I. 

With  the  resistance  thermometer  packed  in  a  bat h  of  melting 
the  connections  indicated   in    Fig.  71.      With   no  re- 

toe  in  the   r.  -•  box  and    A'._,  about   halfway   from   A 
co  C,  close  the  circuits  just  long  enough  to  see  in  which  direction 
:he  pointer  of  the  galvanometer  swings.  Put  a  la:  malice 
n  the  box,  and  again  see  in  \\hich  direction  the  pointer  >\\  ings. 

If  tin  direction  of  swing  is  the  same  as  before,  something  us 

•vrong  with  the  connections  or  else  a  larger  resistance  is  needed 
n  the  box.  If  the  pointer  swings  out  in  the  opposite  direction, 

•led  in  the  box  lies  betw  0  and  the  re- 
HOW  in  the  b  v  half  the  resistance   now   in   the 

the  din  '    -ceeding  iii  this  way,  a 
/able  of  the  resistance  can  soon  be  found  for  which  there  is  not 

niich  moveii.  the  pointer.  The  remaining  adjustment 

l»e  made  by  ;  A',,  finding  two  positions  of  l\'.,  such 
hat  the  d.  lie,  t ions  for  the  two  are  iii  opposite  directions, 

ind  then  closing  down  upon  a  point  where  there  is  no  deflec- 
tion. When  no  drtleeti..n  is  obtained,  note  the  resistance  in 

he  box  and  the  reading  on  the  bridge  scale.  Note  also  how 

'ar  the  key  can  he  moved  in  each  direction  without  producing 
ny  o  ••  deflection.  Then,  from  (  1»JJ),  the  value  of  the 
>  Distance  being  measured  is 

//,-/d8.  M';:IO 

~'l 
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In  the  same  manner  find  the  resistance  of  the  dummy  leads. 
If  the  temperature  of  the  resistance  thermometer  when  in 
the  bath  of  melting  ice  is  represented  by  £1?  then  the  difference 
between  the  two  resistances  just  found  is  the  value  of  Rti  in 

(161). 
Proceeding  in  the  same  manner,  find  the  resistance  of  the 

platinum  coil  when  immersed  in  a  steam  bath.  If  this  tem- 
perature be  denoted  by  t%,  the  resistance  will  be  the  value  of 

R(2  in  (161). 
The  values  of  the  three  constants  can  now  be  determined 

from  (161).  On  substituting  their  values  in  (160),  an  equa- 
tion is  obtained  which  gives  the  relation  between  the  tempera- 
ture of  the  coil  and  its  resistance.  Such  an  equation,  containing 

experimentally  determined  constants,  is  called  an  empirical 
formula. 

Substitute  for  t  in  this  empirical  formula  the  values  —  200°, 
- 100°,.  0°,  100°,  200°,  and  compute  the  corresponding  values 
of  Ht.  With  these  values  plot  a  curve  coordinating  R  and  t. 

The  accuracy  of  the  preceding  work  should  be  tested  by  meas- 
uring the  resistance  of  the  thermometer  coil  at  two  or  three 

known  temperatures  and  comparing  these  observed  values  with 
the  corresponding  values  given  by  the  curve. 

Exp.  36.  The  Flash  Test,  Fire  Test,  and  Cold  Test  of  an  Oil 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  If  an  inflam- 

mable gas  is  mixed  with  air  in  proper  proportion,  the  mixture 

will  explode  on  ignition.  The  air  above  a  volatile  oil  is  satu- 
rated with  the  oil  vapor.  If  the  temperature  of  the  oil  is 

slowly  raised,  the  proportion  of  oil  vapor  in  the  air  will  in- 
crease until,  at  a  certain  temperature,  the  saturated  air  will 

become  an  explosive  mixture.  This  temperature  is  called  the 
flashpoint  of  the  oil,  If  the  temperature  of  the  oil  is  still 
farther  increased,  a  point  will  be  reached  at  which  the  oil  will 

evolve  vapor  so  rapidly  that,  when  ignited,  it  will  burn  con- 
tinuously. This  is  called  the  fire  test  of  the  oil.  The  cold 
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f  an  oil  is  the  lowest  temperature  at  which  the  oil  will 

tl.»\v.  The  object  of  this  experiment  is  to  make  a  flash  test, 
tire  test,  ami  cold  test  of  a  sample  of  oil. 

The  general  method  of  determining  the  llash  point  is  to  heat 

•eeimen  gradually  in  a  covered  cup  and  at  frequent  inter- 
nail  flame  near  the  surface  of  the  oil.      In  making 

a  fire  teet,  the  specimen  is  heated  in  an   open  cup  and   the  tem- 
ire  is  noted  at  which  the  vapor  will  hum  continuously 

when  ignited.  The  llash  point  depends  upon  ( </)  the  rate  of 

h.-at in-.  (  /. )  the  depth  and  diameter  of  the  cup,  ( f)  whether 

the  cup  [fl  (.r  open,  (•/)  the  quantity  of  oil  used.  ( »•)  the 
size   <  ._C    flame    and    its   distance    from    the    surface 

of  the  oil.  Consequently,  the  size  and  design  of  the  testing 
apparatus  and  the  method  of  carr\in^  out  a  determination  are 

expli  "d  in  the  legislative  enact- 
ments nf  tin-  various  star 

M  AMI'I    I.  \T!"\        .\M>       (  lOMPI  •    

a  of  apparatus  most  commonly  used 

in  this  country  for  the  tla.sli  point  is  the  *4New 

VMI;  1  of  Health  Tester.' 

by  a  glass  plate  perforated  with  two 
holes    ni    of    the    ther- 

mometer and   another   for  the   testing  llame. 
in  a  water  or  air  bath  // 

by  n  .in  alcohol  lamp  or  small   I'.n 
l)iin]'  :.       The    whole    apparatus   should    1>. 
plared    in   a  >heet-iron    pan    Tilled  with   sand. 

In  u>iii^  this  apparatus  to  test  illuminating 
v   Vm-k   State  Board  .,f   Health 

publish*  the  following  regulations:  — 
••  I;  '  he    oil    cup    and    till    the    water 

•iath  with  col.l  \\at.-r  U{.  to  the  mark  on  the  inside.  Replace 

tae  oil  cup  and  pour  in  enough  oil  to  fill  it  to  within  one  eighth 

•  Report  of  N.  Y.  State  Board  of  Health,  1882. 
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of  an  inch  of  the  flange  joining  the  cup  and  the  vapor  chamber 
above.  Care  must  be  taken  that  the  oil  does  riot  flow  over  the 

flange.  Remove  all  air  bubbles  with  a  piece  of  dry  paper. 
Place  the  glass  cover  on  the  oil  cup,  and  so  adjust  the  ther- 

mometer that  its  bulb  shall  be  just  covered  with  oil. 

"  If  an  alcohol  lamp  be  employed  for  heating  the  water  bath, 
the  wick  should  be  carefully  trimmed  and  adjusted  to  a  small 
flame.  A  small  Bunsen  burner  may  be  used  in  place  of  the 
lamp.  The  rate  of  heating  should  be  about  two  degrees  per 

minute,  and  in  no  case  exceed  three  degrees.* 
"As  a  flash  torch,  a  small  gas  jet  one  quarter  of  an  inch  in 

length  should  be  employed.  When  gas  is  not  at  hand,  employ 
a  piece  of  waxed  linen  twine.  The  flame  in  this  case,  however, 
should  be  small. 

"  When  the  temperature  of  the  oil  has  reached  85°  F.,  the 
testing  should  commence.  To  this  end  insert  the  torch  into 
the  opening  in  the  cover,  passing  it  in  at  such  an  angle  as  to 
well  clear  the  cover,  and  to  a  distance  about  halfway  between 

the  oil  and  the  cover.  The  motion  should  be  steady  and  uni- 
form, rapid  and  without  a  pause.  This  should  be  repeated  at 

every  two  degrees'  rise  of  the  thermometer  until  the  thermom- 
eter has  reached  95°,  when  the  lamp  should  be  removed  and  the 

testings  should  be  made  for  each  degree  of  temperature  until 

100°  is  reached.  After  this  the  lamp  may  be  replaced  if  neces- 
sary and  the  testings  continued  for  each  two  degrees. 

"The  appearance  of  a  slight  bluish  flame  shows  that  the 
flashing  point  has  been  reached. 

"  In  every  case  note  the  temperature  of  the  oil  before  intro- 
ducing the  torch.  The  flame  of  the  torch  must  not  come  in 

contact  with  the  oil. 

"The  water-bath  should  be  filled  with  cold  water  for  each 
separate  test,  and  the  oil  from  a  previous  test  carefully  wiped 

from  the  oil  cup." 
Make  five  determinations  of  the  flash  point  and  take  the  mean. 

*  This  refers  to  degrees  Fahrenheit. 
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After  each  determination,  remove  the  cover  from  the  oil  cup  and 
blow  the  burnt  ibises  out  of  the  cup. 

After  the  flash  [mint  has  been  determined,  remove  the  cover 

from  the  oil  cup  and  continue  to  heat  the  oil  at  the  rate  of  t\\o 

degrees  per  minute.  About  every  half  minute  test  the  oil  with 
nail  tlame  as  above  deseribed.  The  lowest  temperature  at 

which  the  vapor  of  oil  will  burn  continuously  is  the  lire  test. 

Remove  tin*  thermometer  and  smother  the  tlame  by  plaeing  on 
top  of  the  oil  eup  a  piece  of  asbestos  board.  Sueh  a  damper 
should  always  be  at  hand  for  eine: 

In  the  ease  of  lubricating  oils  the  method  of  lindin^  the  Hash 

point  and  the  iiiv  •  ly  as  ah  ribed  except   that 

•f  heating  should  he  1  •"•     I'.  per  minute  and  the  testing 
should  be  applied  first   \\hdi  the  oil  is  about  lMi)°  F. 

In  making  tin-  cold  test,  a  glass  vial  or  boiling  tube  of  about 

100  c  :ty  is  one  fourth  tilled  with  the  oil  under  in. 

i,  and  then  placed   in  a   :  mixture  of  ice  and 

When  all  «•!'  the  oil  has  00  i.  it  is  removed  from  the  I 
iir_r  mixture  and  i  •  -d  \\  ith  a  t  hcrmometer  until  it 

iici.-ntly  1  to  tlo\v  from  one  end  of  the  tube  to  the 
other.      The  temperature  at  \\hieh  this  occurs  i>  the  cold  t- 

'il. 

Exp.  37.    Relation  between  Boiling  Point  and  Concentration 
of  a  Solution. 

Mi     Till  -The    object     of 

:  i  m.  -nt  is  to  Hi  id  the  relation  bet  \sc.-n  t  he  boil  ing  point 

and  the  emu  -ent  rat  ion  of  a  solution  of  common   salt. 

The  boiling  point  of  a  solution  of  a  non-  volatile  siilotaiic.-   i> 

T  than  the  boiling  point  of  the  pure  solvent.      If  a  current 

bfl   passed   into  an  aqueous  solution   below   its  boiling 

•oint.  steam   will   be  condensed  in   the  solution   until   the   h«-at 

.itjreby   liberated  :ie   temj.er.it  uiv  Q  "lution  to   its 

point.      Consequently  >team  that  passrs  through  a  solu- 
ion  will  :  .ni  of  the  solution  and  not    at 
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that  of  pure  water.  However,  as  the  steam  escapes  into  the 
space  above  the  solution  it  cools  somewhat  by  expansion,  and 
wherever  it  comes  into  contact  with  the  walls  of  the  vessel, 
with  the  thermometer,  or  with  any  body  that  can  gradually 
conduct  away  the  heat  given  up  by  the  condensation  of  the 
steam,  this  cooling  continues  until  the  steam  becomes  saturated, 
that  is,  until  its  temperature  falls  to  the  boiling  point  of  pure 
water.  Consequently,  in  determining  the  boiling  point  of  the 
pure  solvent  the  thermometer  is  suspended  in  the  space  above 
the  liquid,  while  in  determining  the  boiling  point  of  a  solution 
the  thermometer  bulb  must  be  immersed  in  the  solution. 

Buchanan  has  recently  utilized  the  principle  stated  in  the 
preceding  paragraph  for  finding  the  boiling  point  of  a  saturated 
solution.  A  quantity  of  the  pure  solute  is  placed  in  the  bottom 
of  a  tall  test  tube  containing  a  thermometer.  A  current  of 
steam  is  sent  through  a  glass  tube  extending  to  the  bottom  of 
the  test  tube  until  a  saturated  aqueous  solution  of  the  given 

solute  is  obtained.  As  long  as  any  of  the  solute  remains  un- 
dissolved  and  the  current  of  steam  is  uninterrupted,  the  tem- 

perature of  this  saturated  solution  remains  at 
its  boiling  point. 
MANIPULATION  AND  COMPUTATION.  —  The 

apparatus  used  in  determining  the  boiling  point 
of  a  dilute  solution  consists  of  a  flask  provided 
with  a  cork  fitted  with  a  thermometer  and  con- 

denser. Without  the  condenser  the  solution 

would  gradually  increase  in  concentration 

through  the  loss  of  steam.  To  prevent  "bump- 
ing," a  handful  of  clean  dry  pebbles  or  pieces 

of  broken  glass  is  placed  in  the  flask.  With 
the  flask  about  one  third  filled  with  a  solution 

of  some  50  g.  of  sodium  chlorid  to  each  liter 
of  water,  insert  the  thermometer  until  its  bulb 
is  5  cm.  or  more  above  the  surface  of  the  liquid. 

With  the  condenser  in  place,  heat  the  solution  until  it  boils 
fairly  rapidly.  Read  the  thermometer  and  also  the  laboratory 

FIG.  74. 



TKMPERATfKi:  175 

barometer.  Push  the  thermometer  down  until  its  bulb  is  in 

the  boiling  solution  and  when  it  has  become  steady  read  it 

tin.  From  the  corrected  barometer  reading  (see  pp.  17»'>- 
17s  and  Table  1-)  the  true  temperature  of  the  vapor  of  boiling 
water  can  be  found.  This  value  minus  the  reading  of  the  ther- 

mometer \vheii  in  the  vapor  is  the  eorreetion  to  lie  applied  to 

the  given  thermometer  in  the  neighborhood  of  100°.  This  cor- 
rection added  to  the  reading  of  the  thermometer  when  in  the 

boiling  SolutlOl  ;•_:  point  of  this  solution.  In  the 
ue  manner  find  the  boiling  points  of  solutions  which  contain 

•ively  three  and  live  times  as  large  a  proportion  of  salt. 

To  find  the  boiling  point   of  a   saturated  solution,   I'aMen   a 
large  boiling  tube  ;i.-al   position  in  a  retort   stand,  and 
fill  the  tube  to  a  depth  of  one  or  two  centimeters  \\itli  salt. 
Suspend  in  the  tube  the  same  thermometer  used  before  so  that 

the  bull)  just  touches  the  1  salt  and  then  push  half\\;iv 

through  tli.  .f  salt  tlie  end  of  a  glass  tube  in  \\hieh  ll 
acunvnt'  When  the  bulb  of  the  thenuo:  -.ub- 

mer^ed  in  •  by  the  salt  and  eon densed  steam, 
observe  the  temperature.       When  the  ,  :i  determined   in 

the  tirst    p  \perimeiit    is  applied   to  this  reading,  it 
6  required  boiling  point. 

1'lot  a  curve  showing  the  relation  between  concentration  and 

COi:  •  ••iling  p. .int.      The  e.  .neent  rat  ions  may  lie  expressed 

in  grams  nf  salt    p.-r   liter  .and   th-  itrationofa 

sat  dium  . -hlorid  may  be  taken  as  396.5 g. 
p.-r   liter.      The    temperature    of    the    \  ov«    the    boiling 
solutions  i>  iin-^  point  of  a  solute  »noeotration« 

on    pp.  1«»     1-J  ftnd  .111  empineal  e.pia- 
tion  e«,iuieetinur  th-  ng  point  of  a  sodium 
chlorid  §olll1 



CHAPTER   XI 

EXPANSION 

IF  a  body  has  at  0°  a  length  Z0  and  at  t°  a  length  lt  it  is  found 
that  the  relation  between  length  and  temperature  is  usually  ex- 

pressed very  nearly  by  the  equation 

lt  =  1Q  (1  +  at),  (164) 

where  a  is  a  constant  for  any  one  substance  and  is  called  the 

coefficient  of  linear  expansion  of  that  substance. 

Similarly,  if  a  body  has  at  0°  a  volume  VQ  and  at  t°  a  volume 
vt,  it  is  found  that  the  relation  between  volume  and  tempera- 

ture is  usually  expressed  very  nearly  by  the  equation 

vt  =  v0  (1  +  7*),  (165) 

where  7  is  a  constant  for  any  one  substance  and  is  called  the 

coefficient  of  cubical  expansion  of  that  substance. 
In  the  case  of  gases  it  is  shown  in  texts  on  General  Physics 

that  if  jt?,  v,  w,  and  T  denote  respectively  the  pressure,  volume, 
mass,  and  absolute  temperature  of  the  gas, 

pv  =  RmT,  (166) 

where  R  is  a  constant  which  depends  only  upon  the  units 

chosen  and  not  at  all  upon  the  nature  of  the  gas  nor  any 

other  condition.  (166)  is  obtained  by  combining  Boyle's  and 
Charles's  laws  and  is  known  as  the  Fundamental  Law  of  Gases. 

REDUCTION   OF   BAROMETRIC    READINGS 

If  the  Torricellian  vacuum  above  a  barometric  column  were 

devoid  of  matter  and  if  there  were  no  capillary  force  between 

the  mercury  and  the  tube,  the  weight  per  unit  cross  section  of 
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a  barometric  column  would  equal  the  pressure  of  the  atmos- 

phere at  the  place  where  the  barometer  is  situated.  The  space 

above  the  mercury  eolumn  is,  however,  filled  with  mercurv 

vapor  which  exerts  a  small  pressure  depressing  the  mercury, 

and  the  capillary  action  between  the  mercury  and  the  glass  tube 

iiminishes  the  height  to  which  the  mercury  i 

Again,  even  if  tin-  prosure  of  the  atmosphere  does  not  change, 
the  actual  height  <>f  tlie  mercury  column  may  be  altered  in  two 

:  first,  by  a  change  of  temperature  which  not  only  alters 

the  density  <>f  the  mercury  in  the  barometer  and  conse.jiientlv 

•ight,  but  which  also  alters  the  length  of  the  Male   used  to 
IN  the  height:  second,  by  a  change  in  the  force  of  irravitv 

acting  on  the  mercury  as  it  is  moved  t<>  different  parts  of  the 

earth's  surface.  ('oiisequently,  in  order  that  barometric  read- 
ik.-M  .it  diiTeivnt  temperatures  and  at  ditTerent  parts  of  the 

earth's  surface  mav  be  compared  with  one  another,  thev  must 
luced  to  the  heights  that  would  have  been  oh>er\ed  if  the 

barometer  had  been  at  some  standard  temperature  and  at  some 

stan. lard  position  mi  :  .'s  surface.  The  standard  comli- 
arbitrarily  •  \n  the  temperai  lire  of  melting  iee  and 

the  altitmle  of  the  sea  level  at   latitud  •    I 

In  pre<  ;  iroinetrie  reading  must  be  adjusted  in  the 

four  particulars,  of    \\lii.-h    |  doiW  and    two 

are  red  lie-  i  conditions.      The  method  of  making 
i    ivdiic;  lard    cMiiditiuns   \\  ill 

now  be  oonsidered, 

1.     '/'  1  p  represent  the  observecl  height 
and  the  density  of  themercm  and  l.-i   r  represent  th.- 
volume  of  mass   in  of  mercury  at  this  temperature.       i 

and   r,,  represent  the  .  :iding  «jiiantities  at  0°  C.      Then 

p*/h  =  p0f/h9  and  m  =  rp  =  r^f.  «  1 

If  £  denotes  the  coetVicient  of  cubical  expansion  of  meron 
t;  =  r0(l  -h  &). 

NVhttnce  -- 
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And  since,  from  (167),  £  =       and  £  =  ̂ , 
/>o      ̂   Po       v 

it  follows  that  ^  =  —  L—  .  (169) 

On  using  approximation  (5),  p.  7,  the  above  equation  reduces  to 

But  the  brass  scale  used  to  measure  the  height  h  is  ruled  so 

as  to  be  correct  at  0°  C.  That  is,  a  space  on  the  scale  having 
at  0°  unit  length  has  at  t°  a  length  (1  -f  ctf),  where  a  is  the  co- 

efficient of  linear  expansion  of  the  brass  scale.  Whence,  a  dis- 

tance which  at  t°  is  presumably  h  units  long  is  really  h  (1  +  af) 
units  long.  Consequently,  the  barometric  height  that  would  be 

observed  if  the  barometer  were  cooled  to  0°  C.  is 

h,  =  h  (1  +  O  (1  -  #), 

or,  employing  approximation  (2),  p.  7, 

A0  =  h  [!  +  (<*-  £)*].  (171) 

Since    £=0.000182  and  a  =  0.000018  per  degree  centigrade, 
(171)  becomes 

h0=  h(l-Q.  00016Q 

if  the  temperatures  are  taken  in  centigrade  degrees.      If,  how- 
ever, the  temperatures  are  taken  in  Fahrenheit  degrees 

hS2  =  h[l-  0.00009  (t  -  32)].  (173) 

2.  Depression  due  to   Capillarity.     This  depends  upon  the 

diameter  of  the  bore  of  the  glass  tube.     Its  magnitude  may  be 

taken  from  the  following  table  :  — 

Bore  of  tube  in  mm.  2  4  6  8  10 

Depression  in  mm.  2.18         0.70         0.25         0.10         0.04 

3.  Reduction  to  Sea  Level  at  Latitude  45°.     This  is  most  easily 
effected  by  means  of  Table  11. 

4.  Depression  due  to  Pressure  of  Mercury  Vapor.     This  may 
be  neglected  except  in  the  most  refined  work.     The  values  of 
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apor  pressure  of  mercury  at   different    temperatures  are 
:i  in  Table  1  t. 

Exp.  38.    Determination  of  the   Coefficient  of  Linear  Expansion 
of   a  Solid 

:>  THI:<U:Y  <>F  KXI-KKIMENT. — The  object  of  this 

•i  nit-lit   is  to  determine  the  coefficient  of  linear  expansion 
of  a   m.-tal.      If  /t   d«Miot,-s  the  length  of   the  body  at    tempera- 

'i  and  1.2  its  length  at  temperature  £2,  wo  have,  from  (bit  », 

/^/oO-f,  (171, 

and  /2  =  /0(  1  +  «t%).  C175) 

On  dividing  (175)  by  (  171  »  uv  obtain 

•  /,  1+*, is  very  small,  we  m.i\  «  mploy  approximation  (5)  on 
p.  7.  obtaining  , 

or,  employing  approximation 

i- 

*' 

nee  «=  JjLZ_[l_.  (17(11 '•i  ~  fi> 

[f  the  specimen  being  studied  u  in  tin-  f.-nn  ,,f  along  \\n-<- 
!,  it  may  be  suspended  vertically,  surrounded  by  a  st.-am 

uige  of  length  obtained  by  means  of  th.-  t<>rm 
of  optiral  h-verdescribeil  in  K \periment  26.      If  the 
is  in  rod  or  tube,  either  of   tin 

•<ls  may  be  used. 

In  the  first  method  OQfl  end  of   th,-  sj.rcimni    is  supported  by 
i       Fig.  75),   while  the    other  end   /?  is   sup- 

1   by  a  form    of    ..ptiral    h-ver   devised  by   Dr.    Miiller. 
This  uptiral   h  \ci    is  composed  of   a   stirrup-shaped    piece  of 
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steel  CEFD(¥ig.  76)  on  which  are  ground  three  parallel  knife 
edges,  (7,  EF,  and  D      The  stirrup  is  supported  on  the  edges 

FIG.  75. 

C  and  D,  and  the  specimen  rests  on  the  edge  EF.     Attached 
to  the  stirrup  are  a  mirror  M  and  a  pair  of   counterpoising 

        masses  HH'.     When  the  specimen  changes 
its  length  the  optical  lever  is  tilted  through 
a  small  angle. 

The  length  ?x  of  the  rod  at  f1°  is  obtained 
directly  by  measuring  the  distance  between 
the  knife  edges  A  and  B.  The  change  of 
length  is  obtained  by  measuring  the  angle 
of  rotation  of  the  optical  lever  and  the 
distance  from  the  line  of  the  knife  edges 
C  and  D  to  the  knife  edge  EF.  The  angle 

of  rotation  is  obtained  by  means  of  a  tele- 
scope and  vertical  scale.  If  the  telescope  is 

at  the  level  of  the  miror  and  the  latter  is  vertical,  the  angle  of 

incidence  of  the  light  ray  that  comes  to  the  telescope  is  0°. 
When  the  temperature  of  the  specimen  rises,  the  optical  lever 

is  tilted  through  an  angle  6.  Thus  the  angle  of  incidence  be- 
comes 0  (Fig.  77),  and,  since  the  angle  of  reflection  equals  the 

angle  of  incidence,  the  angle  OpO'  =  20.  Denoting  the  dis- 
tance of  the  scale  from  the  mirror  by  L  and  the  deflection  00' 

by  «,  we  have 
tan  20=  4. 

FIG.  76. 
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It'  tin-  distance  from  the  line  of  the  knife  ed^vs  C  and  D  to 

the  knife  edge  A'/'  <  Fig.  7''.  >  he  dt-noted  by  ///.  \\  e  have 

•  •fore  A,  —  /j  =  in  sin  f  ̂  taiT^y-J. 

And,  from  (170)  and  (  17 

wi  sin  [  -^  tan  •— i 

(177) 

(178) 
,  -  <j 

Another  method  of  d.-l.-nninin^   (  /._,  -  /,  )    is   to   086  a  small 

roller   to  indicate  the  fliaiiLje  ••!'   h-n^th  uf   tlie  rod  and  at    the 

>;iiiif  tim-  'v   it    l»y  ;i   known   amount.      Tin-  speciim-n   is 

iiori/ontally   in   two  wyrs,   mic  of   which,  M  ,"S),  is 
.   while  tin-  othrr.  A',  is    fastmrd  to  a  horizontal   pl;r 

On  t\\o  rollers  made  of  harden. -d  stcrl  rods.      Tins 

i  ovahl «•  support  with  its  t\\.»  n»ll,  :I<T  on  a  glass  hctlplate 

-   a   rarriai;«'    whi«-!i     mo\«-s    when    the    length   of    the 

specimen  chaii'_Tcv.        \       jht    pointer  li\«-d    \»  one  of  the  rollers 
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moves  over  the  face  of  a  divided  circle.  If  the  roller  carrying 
the  pointer  is  situated  directly  below  the  wye  supporting  the 
movable  end  of  the  specimen,  the  indication  of  the  pointer  will 
be  unaffected  by  any  change  in  the  temperature  of  the  carriage. 
When  the  rod  is  heated,  the  carriage  is  pushed  forward  a 

distance  (Z2  —  ̂ )  and  the  pointer  is  turned  through  an  angle  0. 
During  this  motion  the  carriage  has  advanced  a  certain  distance 
with  respect  to  the  roller,  and  the  bedplate  has  moved  backward 
an  equal  distance  with  respect  to  the  roller.  That  is,  with 
respect  to  the  bedplate  the  roller  has  moved  forward  half  as 
far  as  has  the  carriage,  i.e.  the  roller  has  moved  a  distance 

FIG.  78. 

If  the  diameter  of  the  roller  is  called  d,  then  the 
distance   that  the  roller  has  moved  on  the  bedplate  is  also 
0 
--  ird.     Whence 
360 

and,  therefore,  from  (176), 

«  =  __  07rd  (119) • 

MANIPULATION  AND  COMPUTATION.  —  In  the  case  of  Miil- 

ler's  form  of  optical  lever,  find  the  distance  from  the  line  of  the 
knife  edges  C  and  D  to  the  knife  edge  EF  with  a  dividing 
engine.  After  assembling  the  apparatus  set  up  the  telescope 
and  scale  about  a  meter  from  the  optical  lever  and  see  that  the 
telescope  is  about  at  the  level  of  the  mirror.  After  adjusting 
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the  t<  Ifl  as  directed  on  p.  44  set  the  optical  lever 

in  such  a   position    that   when   the  eye   is  at    the   level  of  the 
telescope  and  close   to   it,  the  image  of  the  telescope  in  the 
mirror  can   be  seen.     This  makes   the  optical   lever   vertical, 

ire  /r  the  distance  between  the  wyes  on  which  the  specimen 
.  and  L.  the  distance  from  the  mirror  to  the  vertical  scale. 

the  readings  of  both  thermometers,  take  the  scale  reading 

in   the  telescope,  send  a  current    of  steam   for  some  minutes 
;_rh  the  jacket  surrounding  the  specimen,  ami  then  take  the 

new  s  ling  and  agftin  read  both  thermometers.      I'»\ 
correct  the  thermometer  readings  for  steam  exposure.     Calcn- 

•  bj  <  178). 
In  the  case  of  the  roller  method,  measure  the  diameter  of  the 

roller  with  a  micrometer  caliper.  Assemble  the  apparatus, 

being  careful  that  the  roll  the  pointer  is  normal  to 

the  length    of   the  bedplat  '.so   thai    it    is  at    the  center  Of 
Lmded   Circle.      It    U  well   to  .start  with   the  pointer  about 

as  far  to  one  side  of  t  u  it  \\ill  DOOM  i«>  be  on  the 

other  side  of  the  m  be  set    in   this   way  after  a 

preliminary  experiment   in   \\hich   the  angle  through  which  it 

will   turn    IN  determined   muchly.       I  iag6   >hoiild   be  so 

ie  wye  i>  y  above  the  roller  that  carries  the 

pointer.    Measure  /,.  I  :  the  edges  of  th< 

wyes  on  which  the  .spi-eim.-n  rests,  and  note  the  readings  of  b.>th 
IOmeter.^  .ter.     Send  a  current  of  steam  for 

some  minutes  through  the  jacket  surrounding  the  speeimeii  ami 

observe  the  new  position  of  the  pnint.-r  and  a^ain  read  both 

uometers.     By  (158)  correct  the  tin-nun  meter  readings  for 

steam  exposure.     Calculate  .-  T'J). 

Exp   39.   Determination  of  the  Absolute  Coefficient  of  Expan- 
sion of  a  Liquid  by  the  Method  of  Balancing  Columns 

Hi.  |,  Tin;,  ,  .    The  object   of  this 

experiment  is  to  determine  t  he  coefficient  of  expansion  of  mci- 
a   method    which    is    independent   of   the   change  in 
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volume  of  the  containing  vessel.  The  method  employed  in 
this  experiment  is  to  determine  the  coefficient  of  expansion  of 
the  liquid  from  the  ratio  of  its  densities  at  different  tempera- 
tures. 

The  apparatus  used  by  Regnault  is  illustrated  in  Figs.  79 

and  80.  Consider  a  W-shaped  tube  ABCDEF  containing 
mercury,  having  the  branch  A  kept  at  a  high  temperature  by 
means  of  a  steam  jacket,  and  the  remainder  of  the  apparatus 

FIG.  79. 

at  the  temperature  of  the  room  by  means  of  water  jackets. 
The  mercury  columns  A  and  F  are  connected  at  the  top  by  the 
tube  6r,  so  that  the  pressures  of  the  mercury  in  both  columns 
are  the  same  at  this  level.  At  the  bottom  the  two  columns  A 

and  F  are  kept  separated  by  means  of  compressed  air  in  the 
tube  CD.  Let  ffv  Hv  hv  and  A2  represent  the  differences  in 
level  indicated  in  the  figure.  Let  the  temperature  and  density 
of  the  mercury  in  the  hot  part  of  the  apparatus  be  denoted  by 
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f.,  and  />.,  rely,  and  ih*.1  temperature  and  density  of  the 

remainder  of  tin-  mercury  by  tl  and  pr  Let  /'  denote  the 

atmospheric  pressure  and  P'  the  pressure  of  the  air  in  If. 
Then  the  pressure  at  tin-  bottom  of  the  /^-eolumn  is  (  P  +  Pi'jl^  ). 

and  the  j  :  it  the  bottom  of  the  7>-eolumn  is  (/*'  4-  p^/J^  ). 
Nu\v  these  are  pressures  at  the  same  level  in  u  thud  at  rest  and 

are  therefore  e<|Ual.  That  is, 

(180) 
In  the  same  way  for  the  ̂ -column  and  the  C-column, 

I'  +  PjIL-r'+wlr  (181) 

On  subtracting  (181)  from  (180)  and  >nlving  for  ̂ » 

b  =         **         •  (182). 

From  the  figure       //j  4-  /•  =  //.,  -f  >t 

//j  -  //2  =  <i  —  b. 

611
  )  -  //

j  -  (<!-&)  = 
 #, -a. comes 

»  f 

ft      «§  —  • 
the    dfiisity   of  a  given    mass  iry   is   inversely 

proportional  i  denotes  the  eoe Hit -ient 
of  expan> 

fi>  =  ri  =  l  +^/  (184) 

Pi 

ind  fin  =  'a=i  +  tf.  (1 

On  diviiling  (185)  by  M  -  I  ,  a  value  is  obtained  fur^i.     If  this ft 

value  1^  i-.jual.-d   to   that    in    .  d   the   r-  .•.ju;itinii 
Q  obtain 

/S-T    -4r  a*6) 
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MANIPULATION  AND  COMPUTATION.  —  An  instructor  will 

pump  air  into  the  reservoir  R  so  that  the  mercury  rises  in  the 
tubes  A  and  F  until  its  surface  stands  about  at  the  axis  of  the 

tube  (r.  Water  should  flow  through  the  water  jacket  only 
slowly  and  its  temperature,  t^  should  be  near  that  of  the  room. 

This  temperature  is  to  be  taken  by  a  thermometer,  and  the  tem- 
perature of  the  hot  jacket  calculated  from  a  reading  of  the 

barometer.  (See  pp.  176-178,  and  Table  12.) 
Measure  ff2  with  a  meter  stick  and  a  with  a  cathetometer. 

Make  at  least  five  independent  determinations  of  a,  readjusting 
the  cathetometer  before  each  one,  and  use  the  mean. 

Exp.  40.   Determination  of  the  Coefficient  of  Cubical  Expansion 
of  Glass 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  When  a  vessel 

filled  with  liquid  is  raised  in  temperature,  the  apparent  expan- 
sion of  the  liquid  depends  upon  the  coefficients  of  cubical  ex- 

pansion of  the  liquid  and  the  containing  vessel.  If  the  apparent 
expansion  is  observed  and  the  coefficient  of  expansion  of  either 
the  liquid  or  the  containing  vessel  is  known,  then  the  coefficient 

of  expansion  of  the  other  can  be  determined.  The  object  of 

this  experiment  is  to  determine  the  coefficient  of  cubical  expan- 
sion of  a  glass  bulb  from  an  observation  of  the  apparent  expan- 
sion of  mercury  contained  in  it.  The  absolute  coefficient  of 

expansion  of  mercury  is  supposed  to  be  known  from  the  pre- 
ceding experiment. 

Let  the  bulb  be  filled  with  mercury  at  the  temperature  t^  and 

then  be  heated  to  £2°.  This  will  cause  some  of  the  mercury  to 
be  expelled.  A  bulb  used  in  this  manner  is  called  a  weight 
dilatometer. 

Let  Ml  and  pl  represent  the  mass  and  the  density  of  the 

mercury  contained  in  the  bulb  at  ̂ °; 
M2  and  />2,  the  mass  and  the  density  of  the  mercury 

contained  in  the  bulb  at  .t2° ; 
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'•j  and  >•.,.  the  respective  volumes  of  the  mercury  in  the 
bulb  at  t^  and 

v^,  the  volume  at  £2°  of  the  mercury  which  at  t^  tilled the  bulb; 

7.  the  mean  coefficient  of  cubical  expansion  of  L,rlass  be- 

ns < £,  tlie  mean  coetlicient  of  cubical  expansion  of  mercury 

between  t^  ami  £2°. 
AC  have 

M  M,         ,     M*  .   - 
'  !  =  — 1,        f.£  =  — 3,       V      =  —1.  (187) 

Pi  ^2  ^-2 

Since  A3  and  7  an-  Imth  small,  it  ma\    In-  shown  from   <  1  !'.."•  >   in 
A;IS  d«-\«-lop.-d  from  (  H'»{  ),  that 

3n  subs 

an     7 
'     • 

sub>titutini;  in  (  1S8)  the  values  of  vr  r...  and  r.2r  from  (187), 

iminatiiig  £2  fr«»m  the  resultin-.:  equations,  we  get 

•  r,   writing rwa  for  the  ma.ss  <.f  the  mercury  expelled  \\hen  the 

mlb  is  heated  from  tf  to  *,°, 

M\\n  i.   COMF1   IATION.  — A    convenient    fnrm 

•_'ht  dilaton.  this  experiment  is  a  specific  gravit\ 

;.ited  glass  stopper.     Aft  liinur  the 
M.ttle,  nearly  till   it   with   mercury,   and,   without   in>ertiii<j  the 

V    Carefully    Until    all    observable    air    bubbles 

;\ve  b  .1.      An   iron   wire   will  greatly  facilitate  the 
i.ixving  out  of  these  bubbles.      Have  under  the  bottle  a  vessel 

•••h   the  mercury  in  case  the   heating  should   be  done  too 

i  apidly  and  t:  b.-  biol 
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After  the  bottle  has  cooled  enough  to  be  held  comfortably  in 
the  bare  hand,  place  it  on  a  cork  stool  in  a  beaker  and  pack  it  to 

a  little  below  the  opening  with  shaved  ice.  After  five  or  ten 

minutes  insert  the  stopper,  being  sure  that  there  is  enough  mer- 
cury in  the  bottle  to  fill  the  capillary  and  leave  a  tiny  globule 

above  it.  If  this  globule  does  not  decrease  in  size  in  a  few 

moments,  brush  it  off,  and  then  begin  slowly  heating  the  beaker. 
As  fast  as  mercury  comes  out  of  the  capillary,  brush  it  off  into  a 

piece  of  paper  bent  into  a  cup  without  any  hole  in  the  bottom. 

When  the  mercury  has  stopped  coming  out,  remove  the  flame 
and  allow  the  beaker  to  cool. 

Meantime  read  the  barometer  in  order  to  determine  the  tem- 

perature of  the  hot  mercury  (cf .  pp.  176-178,  and  Table  12),  and 
then  fold  the  paper  containing  the  extruded  mercury  so  that 
the  latter  will  not  run  out  and  by  the  method  of  vibrations 

weigh  paper  and  mercury.  Then  weigh  the  paper  alone,  and 
after  the  specific  gravity  bottle  has  cooled  to  the  temperature  of 

the  room,  weigh  the  bottle  and  the  mercury  which  it  still  con- 
tains. The  difference  between  the  weight  of  the  paper  with 

the  mercury  in  it  and  the  weight  of  the  paper  alone  is  m2 ;  the 
difference  between  the  weight  of  the  bottle  with  the  mercury 

left  in  it  and  the  weight  of  the  bottle  alone  is  M2  ;  ̂   is  zero,  and 
£2  is  the  temperature  of  boiling  water.  The  value  of  y8  may  be 

taken  as  0.000182  per  degree  C. 

Exp.  41.    Determination  of  the  Coefficient  of  Expansion  of  a 

Gas  by  Means  of  an  Air  Thermometer 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  If  a  given  mass 

of  any  substance  is  heated  from  0°  to  1°,  and  the  pressure  upon 
it  kept  constant,  the  ratio  of  the  increase  of  volume  to  the  initial 

volume  is  called  the  coefficient  of  expansion  of  the  substance.  If 

it  is  heated  from  0°  to  1°,  and  its  volume  kept  constant,  the 
ratio  of  the  increase  of  pressure  to  the  initial  pressure  is  called 

the  temperature  coefficient  of  pressure  of  the  substance.  In  the 
succeeding  paragraph  it  will  be  shown  that  for  a  perfect  gas 
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two  coellieients  are  equal.  Sinee  it  is  MUUer  to  measure 

IUT6  of  a  Li'as  under  eonstant  volume  than  to  measure 

the  volume  umler  eonstant  pressure,  the  eoetlicient  of  expansion 

will  be  determined  iu  the  present  experiment  from  observations 

of  the  ehaiiures  produeed  in  the  pressure  of  a  ijas  when  its  mass 

and  volume  remain  nearly  eonstant  and  its  temperature  elian^es. 

Mder   a    ̂ i\cn    mass   of    <jas    at    temperature   0°  C.  or   TQ 
absolute.   piv>sure   /',,,  and    volume    r,,.       When   it    is    heated    to 

.    (7^-f  t  )°    absolute,    let    the    pressure    be    represented 
and  the  volume  by  vt.  From  the  fundamental  law  of 

_  .-•  -.  •  1-  ••'.  >. 
-.  (190) 

If  the  \.»lume  lie  k.-pt  constant,  which  is  denoted  below  by  the 

i  ipt    r  outside  of  the   parenthesis,  the   t»,  in   (190  )  beeoim  •> 

•  jual  t<>  the  r,r  and  (190)  solved  for  •—-  gives 

r,  if  the  pressure  be  kept  constant, 

(192) 

'.in  the  coefficient  of  expansion  of  a  gas,  A  is,  from  it>  definition, 

t  follows  that 

'hat  oeilieient   ot  -.in  of  a  gas  is  equal  to  the 
'cipr>  absolute  tempera  tun-  and  is  also  i-ipial  to  ii> 
icssure  coeflieient. 

An  appai  atus  well  .siiit.-d  for  determining  the  pressure  coeffi- 

is  some  form  of  J.»ll\'s  Air  'I'liermometer.     This  consists 
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(Fig.  81)  of  a  glass  bulb  B  filled  with  air  or  other  gas,  connected 
to  an  open  manometer  tube  M  filled  with  mer- 

cury. Immediately  below  the  bulb  is  a  tube 
containing  an  index  finger  F  made  of  colored 
enamel.  The  volume  of  the  gas  is  made  defi- 

nite by  adjusting  the  plunger  P  until  the  mer- 
cury surface  is  brought  to  the  point  F.  The 

pressure  of  the  gas  in  the  bulb  is  measured  by 
the  difference  between  the  levels  of  the  mer- 

cury surface  at  F  and  the  mercury  surface  in 
the  manometer  tube.  The  bulb  is  inclosed  by 
a  vessel  in  which  can  be  placed  water  or  ice. 
D  is  a  drying  tube  used  in  filling  the  bulb. 

On  account  of  the  temperature  of  the  small 
amount  of  gas  in  the  exposed  part  of  the  bulb 
being  different  from  that  in  the  jacketed  part 
of  the  bulb,  and  also  on  account  of  the  change 
in  the  volume  of  the  bulb  when  its  temperature 
is  changed,  (193)  cannot  be  used  in  its  present 

FIG.  si.  simple  form.  The  corresponding  equation  in 
which  these  facts  are  taken  into  account  will  now  be  derived. 

Let  PQ  denote  pressure  in  bulb  when  at  0°  C.  (T0°  absolute) ; 
pt,  pressure  in  bulb  when  at  t°  C. ; 
v0,  volume  of  jacketed  part  of  bulb  at  0°  C.; 
vti  volume  of  jacketed  part  of  bulb  at  t°  C. ; 
77i0,  mass  of  gas  in  jacketed  part  of  bulb  when  at  0°  C.; 
mt,  mass  of  gas  in  jacketed  part  of  bulb  when  at  t°  C.; 
vj,  volume  of  exposed  part  of  bulb  when  jacketed  part 

is  at  0°  C.; 
v/,  volume  of  exposed  part  of  bulb  when  jacketed  part 

is  at  t°  C.; 

w0',  mass  of  gas  in  exposed  part  of  bulb  when  jacketed 
part  is  at  0°  C. ; 

in/,  mass  of  gas  in  exposed  part  of  bulb  when  jacketed 

part  is  at  t°  C. 
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Without  great  error,  the  temperature  of  the  exposed  part  of 
the  bulb  may  be  assumed  to  be  constant  and  equal  to  that 

of  the  room:  Let  this  temperature  be  denoted  by  t'°C.  It 

follows  that  vt'  =  VQ. 

Applying  (  I'1.'1.)  to  («)  the  jaeketed  part  of  tin-  bulb  when  at 
0°,  (&  /  the  jarketed  part  of  the  bulb  when  at  r  ,  (  •  •  )  the  exposed 
part  of  the  bulb  when  the  jaeketed  part  is  at  0°,  and  (»/)  the 

exposed  part  of  the  bulb  when  the  jacketed  part  is  at  £°,  the 
following  four  equations  are  obtained  :  — 

the  mass  of  ga  constant,  we 
also '  =  m  + 

•  i :. 

'eliminating   from    these   five    equations    the   four    unknown 
lasses,  we  get 

7  tin-  corlVicicnt  of  t-ubic.'  Ljlass 

tin-  tnnprnit  uivs  O°  an«i  ,.  have 

utiiiij  this  value  in  (  l!M),  reinei:  that,  from  (  1 

ing  the  constant  i  obtain 
P  vo 

(195) 

Wl  i  is  solved  for  0  the  resulting  t..nnnla    is  \«  i\ 

1  ag.      1  re,  seldom  adopted.     One  of 

t  ie  in  \\hidi   may    .                 !•<•  niiployt-d    to  tind  ft  is  th«i 

.  It  \\  ill  lx-  seen  that  as  long  as  th«-  P-MMI   t.-mpt  -ratnn; 



192  PRACTICAL  PHYSICS 

remains  the  same  the  left  member  of  (195)  does  not  change. 
It  follows  that  the  right  member  is  also  constant.  That  is,  if  t 
had  some  value  t^  this  right  member  would  have  the  same 
value  as  if  t  had  some  other  value  £2.  That  is, 

(196) 
If  t2  is  chosen  as  the  room  temperature  t\  if  the  subscript  1  is 

dropped,  and  if  p'  is  used  to  denote  the  pressure  in  the  bulb 

when  all  the  gas  in  it  is  at  the  temperature  t1  ',  (196)  becomes 

,10~ 

(197) 

Whence         ft-    p'(l  +  7**  +  *)  -ftO  +  7*  +  *)  rl98N ^-'  '  ' 

It  will  be  seen  that  if  k  and  7  were  both  zero  and  if  the  tem- 

perature t  were  0°,  (198)  would  reduce  to  (193),  as  it  should. 
MANIPULATION  AND  COMPUTATION.  —  The  air  in  the  bulb 

has  been  dried  once  for  all  and  the  upper  opening  of  the  bulb 

permanently  sealed.  Hang  a  thermometer  in  the  air  just  out- 
side of  the  bulb  and  adjust  the  plunger  until  the  mercury 

touches  the  index  F.  After  a  few  minutes,  when  the  tempera- 
ture seems  steady  and  the  top  of  the  mercury  stays  at  F,  set 

the  slider  S  at  the  top  of  the  column  in  M  and  read  both  the 
position  of  the  slider  and  the  temperature  in  the  jacket.  Then 
fill  the  jacket  with  shaved  ice.  Notice  the  index  frequently  for 
several  minutes,  readjusting  whenever  the  mercury  is  not  just 
touching  it.  When  no  more  adjustment  seems  necessary,  set  the 
slider  S  at  the  top  of  the  mercury  in  M  and  read  its  position. 
Read  also  the  laboratory  barometer. 

For  the  ice  substitute  water  at  a  temperature  of  about  40°  C., 
and  after  allowing  a  few  moments  for  the  bulb  to  aquire  the  tem- 

perature of  the  water,  begin  slowly  heating  the  water  by  pass- 
ing steam  into  it.  While  the  water  is  heating,  read  on  the 

manometer  scale  the  height  of  F.  This  can  be  done  best  with 



EXPANSION 

193 

a  cathetoineter.  but  may  be  effected  by  a  straightedge  held 

horizontal  with  the  aid  of  a  level.  As  the  water  warms  adjust 

the  plunger  occasionally,  and  when  the  steam  is  bubbling  rapidly 

through  tin-  water  in  tin-  jacket  and  no  further  adjustment 

seem-  iry,  set  tlie  slider  and  read  it  again.  Read  also 

a  thermometer  which  is  pretty  well  immersed  in  the  jacket. 

When  through  witli  the  apparatus,  draw  oil'  the  water  in  the 
jacket  and  leave  the  mercury  at  about  the  same  height  in  both 
tubes. 

The  barometric  height  plus  or  minus  the  difference  bet 

the  heights  of  &  and  /'when  the  bulb  was  at  the  room  tempera- 
ture gives//.      The   cMi-responding   quantity   when   ice    \\ 

the  ja«-k«-t    Lrives  one  value  for  ;>,,  the   t  in  this  case   being  0°. 
k  will  be  given  by  an  instructor,  and  7  may  be  taken  as  (».nniniJ7 

per  degree  C.      Use  (198)  to  get"  one  value  for  $.      Find  a 
second  value  t  ^'  />,  tin-  pn-xsure  found  when  the 
>ulb  was  surrounded  by  the  hot  water  and  for  t  the  tempera- 
ure  of  that  water. 



CHAPTER  XII 

VAPORS 

Exp.  42.   Determination  of  the  Maximum  Vapor  Pressure  of 

a  Liquid  at  Temperatures  below  ioo°C. 

(STATIC   METHOD) 

OBJECT  AND  THEORY  OF  EXPERIMENT. — When  a  liquid 
evaporates  in  a  closed  space,  the  vapor  formed  produces  on  the 
surface  of  the  liquid  and  on  the  inclosing  walls  a  pressure 

which  increases  with  the  mass  of  vapor  and  with  the  tempera- 

ture. For  a  given  temperature  the  vapor  pressure"*  reaches  a 
maximum  value  when  the  space  is  saturated.  The  object  of 
this  experiment  is  to  determine  the  pressure  of  saturated 

aqueous  vapor  at  temperatures  from  about  50°  C.  to  100°  C. 
In  the  method  to  be  used  in  this  experiment,  the  vapor  pres- 

sure is  determined  from  the  decrease  in  the  height  of  a  barome- 
ter column  produced  by  a  small  quantity  of  the  specimen  which 

is  introduced  into  the  vacuous  space  above  the  mercury.  The 
apparatus  (Fig.  82)  consists  of  a  barometer  tube,  the  upper 
end  of  which  is  enlarged  into  a  narrow  bulb  and  its  lower  end 

joined  to  an  open  manometer  tube,  M.  Opening  into  the  hori- 
zontal tube  joining  the  barometer  and  manometer  is  an  iron 

cylinder  filled  with  mercury.  The  height  of  mercury  in  the 

two  tubes  can  be  varied  by  means  of  a  plunger,  P,  in  this  cylin- 
der. A  small  enamel  finger,  F,  in  the  bulb  of  the  barometer 

tube  serves  as  a  convenient  fixed  point  from  which  heights  can 

*  The  expression  vapor  tension  is  sometimes  used  instead  of  vapor  pressure 
to  denote  elastic  stress  exerted  by  a  vapor.  .Careful  writers,  however,  use  the 
word  pressure  to  denote  a  push,  and  tension  to  denote  a  pull.  Since  vapors  and 
gases  cannot  exert  a  pull,  the  term  vapor  tension  is  a  misnomer. 

194 
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be  measured.     The  vapor  being  studied  can  be  brought  to  the. 

-.1    temperature  by  means    of  a    water    bath    surrounding 
the  bulb. 

The  pressure  in  the  tube  J/  at  the  level  of 

the  mercury  surface  at  S  is  the  atmospheric 

<>f    the    vapor   in   the 

bull  -  than   this   by   the   pressure   due   to 

the   column   of  liquid    1-  the   lev- 

and   /". 
MAMITLA  i  !<>\  AM.  COMPUTATION,  — The 

bulb  has  hem  fived  from  air,  a  specimen  of  air- 

free  mtrodu-  ;  the  upper  end  of 

the  bulb  permanently  sea 
Obs.  from   tlie 

•ry  .standard  barometer.  Fill  the  water 

jacket  witli  water  and  pass  steam  int..  it  until 

t  reaches  .!  .tturo  of  about  -1.V  ( '.  (  )M 
vccount   of   danger  of  cracking   the  glass,  the 

•ill-rent  of  >•  uld  not  be  <  against 

he    bulb   nor  against    its    jacket.       1 1.  .Id 

emp.-rature   as    :  y  as  possible   for 

ew   minutes,   and   by   means  of   the   plunger 

:;<•  mercury  in  the  barometer  tube  until  it 

s  brought  just  into  contact  with  the  .tip   of  the  iiid> 

>tir  the  water  in  the  juket,  observe  its  temperature,  readjust 
.s1  until   it>   index  lino 

;he  menixMis  in  the  man  •  ube,  and  read  the 
>n  of  this  index  line.     Determine  to  the  nearest  millime- 

er  t!  :  of  the  water  column  above  the  mereur\.       l)i- 

I  gravity  of  mercury,  and 
dd  ;  the  ditleivnce  between  the  levels  of  the  mer- 

017  in  the  two  tubes.  ^ult  bom  the  barometric 

ure  as  given  by  the  standard barnm.-i.-r.      'I'he  result    i>  the 
>SUre  of  wat<  temperature  of  the  experiment. 

ngs  every  ten  degrees  up  to  about  '. 

n  through  theexperin  •:'!'  the  water  in  the  jacket, 
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and  adjust  the  mercury  to  about  the  same  level  in  both  arms. 
Plot  a  curve  with  vapor  pressures  as  ordinates  and  corre- 

sponding temperatures  as  abscissas.  On  the  same  coordinate 
axes  plot  another  curve  from  the  values  given  in  Table  13. 

This  method  is  liable  to  several  errors.  The  surface  tension 

of  the  dry  mercury  in  the  manometer  tube  is  different  from  that 
of  the  wet  mercury  in  the  barometer  tube.  This  will  cause  a 
rise  of  the  column  having  the  wet  surface  of  0.10  to  0.15  mm. 
The  fact  that  the  lower  part  of  the  barometer  tube  is  at  a 
lower  temperature  than  the  upper  causes  the  final  result  to 
be  too  low.  This  error  will  be  of  the  order  of  0.15  mm.  If 

the  position  of  the  end  of  the  index  finger  is  read  through  the 

water  jacket,  the  refraction  of  the  glass  and  water  will  intro- 
duce an  uncertainty  that  may  amount  to  0.5  mm.  This  error 

is  obviated  by  carefully  measuring  the  distance  from  the  end  of 
the  index  to  a  fine  scratch  on  the  tube  below  the  water  jacket 
before  the  apparatus  is  assembled.  In  order  to  use  this  scratch 

as  the  fiducial  line  from  which  heights  are  measured,  the  posi- 
tion of  the  line  is  read  on  the  meter  stick  by  means  of  a  cathe- 

tometer  (see  p.  23).  The  greatest  limitation  to  the  use  of 
this  method,  however,  is  due  to  the  large  error  introduced  in 
the  depression  of  the  barometer  column  by  an  impurity  of  the 
specimen. 

Exp.  43.  Determination  of  the  Maximum  Vapor  Pressure  of 
a  Liquid  at  Various  Temperatures 

(DYNAMIC   METHOD) 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  The  object  of 
this  experiment  is  to  determine  the  maximum  vapor  pressure 

of  water  at  various  temperatures  from  about  50°  C.  to  about 
120°  C.  The  dynamic  method  to  be  employed  in  this  experi- 

ment is  based  upon  the  following  two  laws  of  vapors:  first,  a 
liquid  boils  when  the  pressure  of  its  vapor  equals  the  external 

pressure  ;  second,  if  the  pressure  does  not  change,  the  tempera- 
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tu re  of  the  boiling  liquid  remains  constant  as  long  as  there 
is  any  liquid  to  vaporize. 

In  Reguault's  apparatus  (Fig.  83)  the  water  is  inclosed  in 
a  boiler  B,  from  the  top  of  which  runs  a  lube  through  the 
condenser  C  to  a  large  metal  reservoir 

inclosed  in  a  water  bath  kept  at  con- 
stant temperature.  The  reservoir  is 

tilled  with  air  the  pressure  of  which  is 
i  by  means  of  a  pump  connected 

to  P.  The  air  in  the  reservoir  » 

to  equalize  any  sudden  changes  of  pivs- 

sure  due  !•  .ariiies  in  boiling.  It' 
ire  not  for  tin-  condenser,  most  of 

the  steam  formed  in  the  boiler  would 
not  be  condensed,  hut  instead  \\ould 
increase  tin  j  in  the  boiler  and 

.tnd  tlius  prevent  much  1>» 

'.'hat   is,  when   the   burner  was  lighted 
•«.th    temp.-rat  urc   and   pi-  .\ould 
TadualK  ••    of    tin- 

apor  is  iii«-;ixur,.«l  i.v  nn-ans  of  the  open 

ia!in]i].-t«-r  at  tin-  ri^ht.      'I'hr  trmpera- 
iif  <.f    tin-  vapor  in  tin-  l»niler  is  ob- 

1   from   th«-   four   tin-nun1 

1    iu    tubuluivs   \\liirli  ju-ojiTt  into 
i  ic  b<«.    :      l\vo  of  thcsr  tuliulurea  are 

•ML:,  projecting  into  tba-ntor,  and  two 
;  ne abort, prqjeoti  -vapor only. 

h<-  bottoms  of  all  of  tin-in  an-  lilh-d  with  inrrcury,  so  that  tin- 

1  dbs  of  the  th.Tinoiii.-tcrs  qiiirkly  acquire  the  tenipt-rat  ures  of 

t  ie  water  and  vapor  in  the  boiler. 

MAMITI.A  D  CoMPUTATIOir.  —  The  boiler  aln-ady 

c  ntJii  ,im  of  cold  \\ater  flowing 

t  lOUgh  the  QOnd  M<1  then  light  the  burner  under  the 

b  >iler.  rump  air  out  of  th-  .ir  until  tlie  pressure  is 

I''  dlleed    to   about    1<I   em.    of    ll..  /.,  .    11  lit  \\  l  ,  •  1 1  ( -i  •   I  M  •- 
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tween  the  heights  of  the  mercury  in  the  two  arms  of  the  manom- 
eter is  about  65  cm.  Then  close  the  stopcock  in  the  tube  con- 

necting the  pump  and  the  reservoir.  When  the  thermometers 
have  become  steady,  record  the  reading  of  each  thermometer 
and  of  each  of  the  manometer  tubes.  Note  also  the  temperature 
of  the  manometer  and  the  barometric  height.  The  corrected 
barometric  height  diminished  by  the  corrected  difference  of  level 
between  the  manometer  columns  gives  the  pressure  of  the  vapor 
at  the  temperature  indicated  by  the  thermometers  in  the  boiler. 

Assuming  that  the  manometer  scale  is  correct  at  20°  C.,  reduce 
the  pressure  to  0°  C.,  i.e.  so  correct  it  as  to  make  it  the  pres- 

sure that  would  have  been  observed  if  barometer  and  manom- 

eter had  been  at  0°  C.  This  can  be  effected  for  the  barometer 
by  (172)  and  for  the  manometer  by  (170). 

Allow  air  to  enter  the  reservoir  until  the  difference  in  the 

heights  of  the  mercury  columns  is  about  20  cm.  less  than  before. 
This  increase  of  pressure  requires  that  a  higher  temperature  be 
attained  before  the  water  will  boil.  When  the  temperature  has 
reached  the  new  boiling  point,  a  second  set  of  observations  is  to 

be  made.  In  the  same  manner,  the  boiling  points  correspond- 
ing to  about  eight  different  pressures  are  to  be  determined,  the 

difference  in  pressure  in  passing  from  each  case  to  the  next 
being  about  20  cm.  of  mercury. 

Plot  a  curve  with  pressures  as  ordinates,  and  temperatures  as 
abscissas.  On  the  same  coordinate  axes  plot  for  the  same  range 
another  curve  with  values  from  Table  13.  This  curve,  showing 
the  way  in  which  the  pressure  of  saturated  water  vapor  changes 
with  temperature,  is  called  the  steam  line. 

Exp.  44.    Determination  of  the  Density  of  an  Unsaturated 

Vapor  by  Victor  Meyer >s  Method. 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  Probably  the 
most  accurate  method  for  determining  the  density  of  an  unsat- 
urated  vapor  is  to  allow  a  known  mass  of  the  liquid  whose  vapor 
density  is  to  be  determined  to  vaporize  in  the  Torricellian  vacuum 
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of  a  barometer,  and  then  to  observe  the  volume  occupied  by  the 

vapor.  The  ratio  of  the  mass  of  the  liquid  vaporized  to  the 
volume  occupied  by  the  vapor  is  the  density  of  the  vapor  at  the 

temperature  and  pressure  of  the  experiment.  But  if  the  ivsult 
need  not  be  trusted  more  closely 
than  to  within  some  three  to 

five  per  cent,  a  method  due  to 
Victor  Meyer  will  be  found 
much  more  conveni 

apparatus    used    in  this 
method  is  shown  in  Ki<*.  S4.      It 

uprises  a  gas  mea>urin^  tube 

/.'.  and    a    vapor   chamber    con- 
:IILT  (>f  *  l(>ng  glass  tube  ter- 

minating in  a  bulb  //.surrou: 

by  a  bath  containing  a  liqu; 

\  i'_rher    boiling    point    than 
s  distance     under     examination. 

'   he  sp-  in  a 
g  nail  bull)  \\-hich  can  be  sup- 
I  >rted  in  tin-  upper  cooler  part 

«  '  the  vapor  ehamher  by  means 
«  a  n»d  If  capable  of  a  back 
ft  id  forth  motion  in  a  side  tube. 

^  rhen  the  bath  has  attained 

a  const, int  temperature,  lii^h 

•      |OU«_rll       to      \a|M>ri/r       the      s; 

ilrawn    : 

as  to   allow   tlie    little  bulb 

C    ntainini:  the  Q   to   fall 
t<     the    bottom    ..f    the    ehaml.er. 

I    eW    it    either    breaks    l»y    . 
Ci  -Hion     with     the     bottom,    or 

b    ;>ts   due   to   the  ,n   of  the  contained   Irquid.      \Vlien 

tl  e    contained    liquid  :     pushes    out    of    the    vapor 
cl  amber  a  vulume  .ual  to  it>  o\\n  volume,  and  the  vol- 
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unie  of  this  expelled  air  is  determined  by  means  of  the  measur- 
ing tube  E. 

In  bubbling  up  through  the  water  in  the  measuring  tube  the 

air  expelled  from  the  vapor  chamber  becomes  cooled  and  so  con- 
tracts. Since  all  gases  have  nearly  the  same  coefficient  of.  ex- 
pansion, the  vapor,  if  it  could  be  cooled  to  the  temperature  of 

the  air  in  the  measuring  tube  without  becoming  saturated, 
would  after  this  cooling  occupy  the  same  volume  that  the  air 
does.  Therefore  the  density  of  the  vapor  at  the  temperature 
and  pressure  of  the  air  in  the  measuring  tube  equals  the  mass  of 
substance  vaporized  divided  by  the  volume  of  air  thereby  forced 
into  the  measuring  tube.  The  temperature  of  the  bath  sur- 

rounding the  vapor  chamber  must  remain  constant  during  the 
vaporization  of  the  specimen,  but  its  value  need  not  be  known. 

Since  the  densities  of  gases  and  vapors  vary  greatly  with 
changes  of  pressure  and  temperature,  it  is  customary  to  reduce 
the  values  to  what  they  would  be  at  some  standard  pressure  and 
temperature.  The  pressure  usually  adopted  as  standard  is  the 
pressure  of  760  mm.  of  mercury,  and  the  temperature  adopted  as 
standard  is  0°  C. 

Let  m  be  the  mass  of  substance  vaporized,  and  vt  and  v0  the 

volumes  of  the  vapor  when  at  the  respective  pressures,  tempera- 
tures, and  densities  pt,  p&  t,  0,  />„  and  /o0.  From  the  funda- 
mental law  of  gases,  (166), 

pQvQ  =  EmTQ  (199) 

and  ptvt  =  Rm  (  To  +  0  .  (200) 

Dividing  (199)  by  (200), 

Po         «+t 

Whence  >0  =  *=  76°™  [™  +  *\   .  (201) 

MANIPULATION  AND  COMPUTATION.  —  The  substance  to  be 

selected  for  the  bath  will  depend  upon  the  temperature  of  vapori- 
zation of  the  specimen  being  examined.  The  following  sub- 
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stances  will  be  found  convenient  to  use:  water,  whose  boiling 

point  is  100°  C.  ;  analin,  Is2°.5  ('.  ;  bromonaphthalin,  280°  C. 
The  specimen  is  inclosed  in  a  thin  <jluss  bull)  C,  which  must 
tirst  be  weighed  and  may  then  be  tilled  as  is  illustrated  in  the 

figure.  A  hot  metal  rod  held  below  C  will  cause  some  of  the 

contained  air  to  bubble  out,  and  when  the  bulb  cools  it  will  be- 

come partly  filled  with  tlie  specimen.  l>y  repeating  this  opera- 

i  ion  the  bulb  can  be  entirely  tilled.  If  the  liquid  is  volatile,  the 

>tem  of  the  bulb  must  be  sealed  in  a  tlame  or  plumed  in  some 

manner.  The  mass  of  the  specimen  is  determined  by  wei^hiiiLT- 

The  bulb  is  then  supported  in  the  cool  part  of  the  vapor  cham- 

ber by  the  rod  /,'.  When  the  temperature  of  the  bath  becomes 
constant,  no  more  air  bubbles  up  through  the  water  in  the 

trough  r.  When  this  state  is  attained,  the  measuring  tube  K. 

tille(l  with  water,  is  placed  over  the  outlet  of  the  discharge  tube 

and  the  n>d  It  is  withdrawn,  allowing  the  bulb  to  fall  and 

break.  The  volume  of  air  entering  the  measuring  tube  and  its 

temperature  are  «»b>.-rv«-d.  The  lur.>metic  height  is  al><>  noted. 
The  pre»mv  of  the  moist  air  in  the  measuring  tube  is  equal 

to  the  barometric  pressure  diminished  by  the  sum  of  the  pres- 

•  he  column  of  water  within  E  above  the  surface  of 

I',  and  the  pressure  of  aqueous  vapor  at  the  temperature  E. 
This  latter  may  be  taken  11. 



CHAPTER  XIII 

HYGROMETRY 

HYGROMETRY  or  Psychrometry  is  the  theory  and  art  of  meas- 
uring the  amount  of  moisture  in  the  atmosphere.  The  mass  of 

water  contained  in  unit  volume  of  air  is  called  the  absolute 

humidity.  Absolute  humidity,  then,  is  simply  another  name  for 
the  density  of  the  vapor  which  is  present.  The  ratio  of  the 
mass  of  moisture  contained  in  unit  volume  to  the  mass  which 

would  saturate  the  same  space  at  the  same  temperature  is  called 

the  hygrometric  state  or  relative  humidity  of  the  atmosphere. 

Let  p  be  the  pressure  and  v  the  volume  of  a  mass  m  of 

aqueous  vapor  at  the  absolute  temperature  T.  Let  m'  be  the 

mass  of  vapor  at  the  pressure  p'  necessary  to  saturate  the  same 
volume  at  the  same  temperature.  Then  since  for  ordinary 
atmospheric  temperatures  and  up  to  the  point  of  saturation 

aqueous  vapor  obeys  approximately  the  fundamental  law  of 
gases,  we  have  from  (166) 

pv  '—.  RmT ', 
and  p'v=Rm'T. 

That  is  ™  ~  4 m'    '  p  (202) 

Consequently  relative  humidity  equals  the  ratio  of  the  actual 

pressure  of  the  aqueous  vapor  in  the  air  to  the  maximum 
pressure  possible  at  the  same  temperature. 

It  thus  appears  that  there  are  two  general  methods  of  deter- 
mining the  relative  humidity  of  the  atmosphere.  The  first 

requires  the  measurement  of  the  actual  mass  of  aqueous  vapor 
contained  in  a  given  volume  of  air.  This  can  be  done  by 

drawing  a  given  volume  of  the  air  through  a  drying  tube  and 
202 
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.iiiLj  tlu'  drviiiLT  tube.      The  mass  of  aqueous  vapor  required 
:  unite    the    same    space    at    the   same   temperature   eau   be 

obtained  from  tables.      The  more  common  method,  however,  is 

to  determine   the  actual  pressure  of  the  vapor  in  the  air,  and 
from  tables  lind  what  the  pivssmv  would  be  if  at  the  same 

temperature  the  vapor  were  saturated. 

Exp.  45.   Determination  of  Relative  Humidity  with  Daniell's 
Dew  Point  Hygrometer 

OB.II:«  r  AM>  THF.OI:V  o»  KXPKKIMKNT. — The  temperature 

to  which  the  atmosphere  must  be  cooled  in  order  that  the  water 

vapor  present  may  he  saturated  is  called  the  ilfic  j»n'nf.  The 
object  of  this  experiment  is  to  determine  the  relative  humidity 

of  the  atmosphere  from  an  observation  of  the  dew  point. 

Mder  a  mixture  of  air  and  water  vapor  which  has  volume 

ma>s   //  .    and    absolute    temperature    '/'.       Lrt 
ber  vapor  in  this  mixture  have  mass  m  and  exert  pre»ure/'. 
to  the  temperature  of  .saturation,  both  \\ater  vapor  and 

ir  obey  approximately  the  fundamental  law  of  gases.      T; 
ore,  fron; 

fi       T  (203) 

R     /  (204) 

vs  long  as  p"  does  not  change,  (203)  shows  that  -~  does  not 
hange,  and,  theref..re.   from  •  does  not  change.      That 
-,  whatever  change  there  may  be  in  the  i  ure  of  a  part 

f  the  atn.  .  if  the  piv»ure  «.f  \\  -phere  as  a  whole 

i  .  not  altered,  then  the  pressure  of  .  apor  in  it  is  not 
1.     Consequently,  the  pressure  of  the  water  vapor  in  any 

[   'rtioii  of  air  can  mined  by  cooling  the  air  down  to  the 

«    -w  point   and   looking  up  in  the  proper  table  the  pi-e^ure  of 
-  -turaled  water  \  a  p.  T  corresptmdiii^  to  this  temperature.       From 

(  !^2)   and   the   dclinitioii   of    ;  humidity  it   follows  that 
t  ;e  relative  humidity  of  any  portion  of  air  is  ̂ iveii  by 
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where  p  and  p'  represent  respectively  the  pressures  that  satu- 
rated water  vapor  would  exert  at  the  dew  point  arid  at  the  actual 

temperature  of  the  air. 

MANIPULATION  AND  COMPUTATION.  —  Daniell's  hygrometer 
consists  of  two  glass  bulbs  connected  by  a  bent  tube  as  shown 
in  Fig.  85.  The  lower  bulb  contains  ether  and  a  thermometer. 
The  upper  bulb  is  wrapped  with  a  piece  of  muslin. 

In  determining  the  dew  point  with  this  apparatus  all  of 
the  contained  ether  is  passed  into  the  lower  bulb  and  then 
the  upper  bulb  is  moistened  with  ether.  The  evaporation  of  the 

ether  poured  on  the  upper  bulb  causes  the 
bulb  to  cool  and  a  part  of  the  vapor  in  the 
apparatus  to  condense.  This  condensation  in 
the  upper  bulb  decreases  the  pressure  which 
the  ether  vapor  exerts  on  the  surface  of  the 

liquid  ether  in  the  lower  bulb.  Under  the  de- 
creased pressure  some  of  the  ether  in  the 

lower  bulb  evaporates  and  so  cools  the  lower 
bulb.  Thus  the  temperature  of  the  lower 
bulb  gradually  falls  until  dew  is  deposited  on 
its  surface.  The  beginning  of  a  dew  deposit 
is  usually  detected  by  watching  to  see  if  any 

effect  is  produced  on  drawing  a  fine  brush  lightly  across  a 
gilded  surface  on  the  bulb.  The  temperature  of  the  lower  bulb 
is  then  read.  After  this  the  apparatus  is  allowed  to  remain 
until  equilibrium  is  restored  and  the  temperature  begins  to 
rise.  The  temperature  at  which  the  deposit  of  dew  disappears 
is  noted.  The  mean  of  the  temperatures  when  the  deposit 
appears  and  when  it  disappears  is  taken  as  the  dew  point. 
The  temperature  of  the  surrounding  air  is  noted  by  the 
thermometer  attached  to  the  wooden  stand  supporting  the 

hygrometer. 
From  Table  13  find  the  pressure  of  saturated  aqueous  vapor 

at  the  dew  point  and  at  the  temperature  of  the  room.  Make 
at  least  five  determinations  and  take  the  average. 
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Exp.  46.   Determination  of  Relative  Humidity  with  the  Wet 
and  Dry  Bulb  Hygrometer 

OBJK«T   AND   Tm-:ni:v   «>F   KXI-KIMMKNT. —  If  two  exactly 
similar  thermometers,  the  bulb  of  one   naked   and   the  bulb  of 

ther  OOYered  with  a  wet  \\ick,  are  placed  near  each  other 
:invnt  of  air,  the  thermometer  with  the  naked   bulb  will 

indieate  the  temperat ure  of  the  air  while  the  other  will  indieate 
a  lower  temperature.      The   difference   between    the    indications 

of  the  two  thermometers  is  due  to  evaporation  at  the  surface  of 

•  ulb  and  depends  upon  the  derive  of  saturation  of  the 
air.      The  relation  between  the  relative  humidity  of  the  air  and 

the  thermometers  has  never  been  obtained  in 

an    entir.  ,ry   manner   from    purely   theoretical   con- 
siderations,     lint  liy  comparing  \\  it  ions  of  this  liy^nnn- 

'.  ith  the  indications  of  hy^i  of  other  t  \  pcs.  tables 
I  by  means  of  which  the  relative  humidity 

•  f  tlie  air  can  rea< lily  be  determined   from   a   single    pair   of  si- 
)  uili  .iiid  dry  l>ull>  thermometers. 

se\eral  years  simultan  the    I>,iniell  and 

•  f  tin  .d  dry   inilli  hy^n •  meters  Wei  :.  and    from   a 

•  mipari.NMii    of   these    :  |    the    niimh.  i    kUe     1  •"•    \\i-re 
•  itained.      A-  .  Q  instruments  nc,u- 

i  ic  another,  the  ;  multaneoofl  readings  \M  re  made  : 

iperature  of  th«-  air,  ill     • 

(rf  the  wet  bulb,   I1.'     ' 
Dew  p"int.  Is 

I   i  Tal.l-     !  pressure  of  saturated    aijueoiis    vapor   at    18°   18 

U  ven  as  15.33  mm.  It  follows  that  corresponding  to  an  atnms- 

p  icric  temperature  of  L'!  and  a  \\et  bull)  temperature  -1  lower, 
t.  6  pressure  \\hich  the  aqneoiU  mpoi  in  the  almosph.-n-  would 
e  ert  at  the  dew  point  and.  eon>e(pientl\,  does  exert  at  the 

Lr  •  n  trmprratmv  i>  1 ."».:;:',  mm.  of  meiviirv.  In  Table  \.~> 
tl  is  number  in  placed  in  the  line  numbered  '21°  C.  and  in  the 
f'  luiiin  numbered  ~1  . 
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MANIPULATION  AND  COMPUTATION.  —  The  wet  and  dry 

bulb  hygrometer,  sometimes  called  August's  psychrometer,  con- 
sists of  two  similar  thermometers,  one  with  a  naked  bulb  and 

one  with  the  bulb  covered  by  an  envelope  of  wet  muslin.  A 
current  of  air  is  caused  to  blow  over  the  two  bulbs  with  a  fan 

or  some  other  means.  In  one  convenient  arrangement  for  this 
purpose  (Fig.  86)  the  two  thermometers  are  supported  by  a 
frame  that  can  be  rotated  by  hand. 

With  the  muslin  envelope  dry 
take  simultaneous  readings  of 
both  thermometers  for  several 
minutes.  Then  see  that  the 

muslin  envelope  about  the  bulb 
of  the  wet  thermometer  is  kept FIG.  86. 
thoroughly  moist,  and  with  a  fan 

or  the  rotating  device  shown  in  the  figure  change  rapidly  the 
air  about  the  instrument.  When  the  wet  bulb  has  reached  a 

stationary  temperature,  read  each  thermometer  again.  From 
the  corrected  difference  in  the  readings  of  the  two  thermometers 
find  in  Table  15  the  pressure  p  of  the  aqueous  vapor  present 

in  the  atmosphere.  In  the  0°  difference  column  find  the  pressure 
p  which  the  aqueous  vapor  would  exert  if  there  were  enough 
of  it  present  to  be  a  saturated  vapor.  Calculate  the  relative 
humidity  by  (205). 

Make  not  fewer  than  five  determinations  and  take  the  average. 
Before  each  determination  be  certain  that  the  muslin  envelope 
is  thoroughly  moist. 
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CALORIMETRY 

C  U.OKIMF.TKY   is  tin-  theory  and  art  of  measuring  quantities 

of  heat,     rnfortunately  th»-r.  ogle  quantity  of  heat  that 
is  universally  adopted  as  the  unit.     A  emnmon  unit  in  scientific 

work  iMiMiiut   <>f  heat    required   to  raise   the   temperature 

of  MM*-  L^ram  of  water  (  '.  t..  1-  This  unit  is  called 
dorie  or  simply  ;  or  the  ̂ raiu-de^ree-eenti- 

grade  thermal  unit.      In  the  liriti  m  the  unit  adopted   is 

tie  amount  of  heat  required   to  raise  the  temperature  of  one 

I  <>und  «•!  1'.      Thii  i-  i-alled  the  British 
t  lermal    unit    or   the    poi,  !  ahrenheit    thermal    unit. 

will  he  i:  nsively. 

numher  of  thermal  units  required  to  raise  the  teni] 

•  i  iv  of  unit  mass  of  a  subs  tan  <•   from  .  all«-d  its 

>  >ecit  The  >j  is  slightly  diiTer- 

t  it  at  different  temperatures,  hut  the  difference  is  HM  minute 
t  iat  e\<  rpt  in  the  most  :  neuts  it  need  not  be 

considered.     The  average  spe-  n  any 

t  fO  t-  lie  numlM-r  i.f  heat  units  rr.jiiii-rd  to 
a  unit  mass  of  it  :  -e  temixjratures  to  the  other, 

(i  vided    l»y  tin-   d  a  p.-rat  ures.      That  is, 

t  e  quant  //  :,-d  to  raise  from  tf  t«»  A/  the  trm- 
j    rat ure  of  m  grams  of  a  substance  of  average  spe<  iti<   heat  «  is 

//  =  »,HV-O- 
1  i^oii^lmut   the  ahovr   paragraph  it  is  as>umed  that   hei 

tl    •   temp-  :iot    melt,  solidii'y, 
V!  p<  idrlise. 

When  a  hody  <loes  melt,  solidif \ .  vapori/e,  or  condense,  with- 
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out  changing  at  all  in  temperature,  the  amount  of  heat  required 
or  given  out  is  proportional  to  the  mass  of  the  substance  that 

changes  state  and  depends  upon  what  that  substance  is.  That  is, 

H=mf,  (207) 

where  /  is  a  constant  called  the  heat  equivalent*  of  fusion, 
solidification,  vaporization,  or  condensation,  as  the  case  may  be. 

The  mass  of  water  which  requires  the  same  amount  of  heat 

as  a  given  body  in  order  to  change  its  temperature  by  the  same 
amount  is  called  the  water  equivalent  of  the  body.  Thus,  if 
e  represents  the  water  equivalent  of  a  body,  and  c  the  mean 

specific  heat  of  water  between  t£  and  £2°,  the  quantity  of  heat 
required  to  raise  from  t±  to  £2°  the  temperature  either  of  the 
body  or  of  e  grams  of  water  is 

H=ec(tf-tf).  (208) 

Dividing  (208)  by  (206), 

e  =  — -  (209) c 

Ordinarily,  the  specific  heat  of  water  may  be  taken  as  constant 
and  equal  to  unity.  In  this  case 

e  =  ms.  (210) 

That  is,  the  water  equivalent  of  a  body  equals  the  product  of 
its  mass  and  its  specific  heat. 

In  determining  the  water  equivalent  of  a  thermometer,  only 

that  part  of  it  which  changes  in  temperature  is  to  be  consid- 

*  From  the  fact  that  the  heat  absorbed  by  a  body  during  fusion  or  vaporiza- 
tion does  not  change  the  temperature  of  the  body,  it  used  to  be  supposed,  when 

heat  was  considered  to  be  a  form  of  matter,  that  the  heat  absorbed  during  fusion 

and  vaporization  existed  in  the  melted  or  vaporized  body  in  a  latent,  i.e.  a 

hidden,  form.  This  heat  was  then  called  the  latent  heat  of  fusion  or  vapori- 
zation. Now  that  it  is  known  that  heat  is  a  form  of  energy,  viz.  that  form 

which  changes  the  temperature  of  bodies,  we  prefer  to  say  that  the  heat  absorbed 
by  a  body  during  fusion  or  vaporization  does  not  exist  in  the  melted  body  as 
heat  but  as  some  other  form  of  energy.  Consequently,  the  expression 
latent  heat  is  now  obsolescent  and  is  giving  place  to  the  term  heat 

equivalent. 
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This  may   be   taken   as   somewhat    more    than    the    part 

immersed.      Fortunately,  the  product  of  the  density  of  mercury 

by  its  speeitic  heat   is  nearly  the   same   as   the   corresponding 

product   for  glass.      That    is,   the   water  equivalent   of  a   given 

volume  «»f  mercury  is  about  the  same  as  that   of  the  same  vol- 

Since  the  value  of  this  product   is  about   0.5  g. 

.  i  he  water  equivalent  of  a  thermometer  in  grams  may 
;en  as  somewhat   more   than  half  the   volume  of  the   im- 

d  part  in  cubic  centimeters. 

Although  simple  in  theory,  calorimetric  experiments  require 

gr«-at  care  and  many  precautions.  One  of  the  most  important 
sources  of  error  is  radiation,  i.e.  there  is  a  gain  or  loss  of  heat 

beOftUl  .boring  bodies  are  at  temperatures  different  from 

Of  the  body  being  studied.  The  principal  methods  of 

diminishing  this  error  are  (a)  to  compute  the  amount  of  heat 

a-tually  gained  or  lost  by  radiation;  ( /,  >  to  determine  the 

t  -mperature  \vhidi  tin  would  have  attained  if  there  had 

I  sen  no  radiation;  (V )  to  employ  a  method  in  which  the  tern- 
I  jrature  is  kept  the  same  as  that  of  the  surroundings. 

Tin:  (  ORRB  rmv  FOR  RADIATION 

1.  kegnault's  method  is  based  on  Newton's  Law  of  Cooling. 

'i  his  law  may  be  stated  as  follows:  The  rate  at  which  a  body 
C   Ols  is  proportional   to    the    d.  betUcell    its    temperature 

a  -d  the  temperature  of  its  surroundings.  If.  then,  Af  denotes 
t  e  fall  <>f  temperature  due  to  the  radiation  which  occurs  in  the 

8  ort  tiiii.-  A  7'.  ;  iperatures  of  the  body  and  its sur- 
i    undings  are  denoted  respect  ml  t»  Newton*s  law  of 
c  oling  may  also  be  stated  by  the  equation 

is  the  pi-'  ,,dity  factor.      If  both  members  of  this 

e<  nation  are  multiplied  by  the  water  i-quivaleiit.  >•' *  «»f  tin-  cool- 

in  j  body,  then  since  e'&t  is,  from  (210)  and  (-<»)),  th<-  heat,  A  //, 
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lost  while  the   temperature   falls  A£°,  the   equation   becomes 

AJ2WA2%-O,  (211) 

where  r  is  written  in  place  of  the  product  e'k'.  This  r  is  a  con- 
stant which  depends  only  on  the  nature  and  area  of  the  radiating 

surface,  and  is  called  the  radiation  constant  of  the  body.  New- 

ton's law  is  now  known  to  be  only  a  rough  approximation  to  the 
true  law  of  cooling;  but  it  is  simple,  and,  if  the  difference  in 
temperature  between  the  body  and  the  surroundings  is  not 

greater  than  15°  or  20°,  it  holds  fairly  well. 
Let  CD  and  EF  in  Fig.  87  represent  the  respective  changes 

in  temperature  of  the  body  and  its  surroundings  while  the  body 

cools  by  radiation.  Since  (tb—ts)  is  at  any  instant  the  vertical 
distance  from  EF  to  CD  and  AT7  is  the  horizontal  distance  be- 

tween two  of  these  vertical  lines  which  are  near  together,  it  fol- 

lows that  the  product  A  I7 

(tb  —  t*)  is  represented 
very  nearly  by  the  shaded 
area  A  A.  That  is,  from 
(211), 

FIG.  87. 

where  k  is  a  constant 

which  depends  upon  the 
scales  chosen  in  plotting. 

If  the  temperature  of  the 
body,  instead  of  falling 
the  small  amount  A  f,  falls 

from  £2  to  ̂ ,  the  entire  fall  being  due  to  radiation,  the  total 
heat  lost  H  involves  the  sum  of  the  elementary  areas  A  4,  that 
is,  the  area  CF.  If  this  area  is  denoted  by  ACF,  we  have 

H=rkACF.  (212) 

Now  suppose  that  the  body  has  heat  given  to  it  in  such  a 
way  that  its  rise  of  temperature  can  be  represented  by  the 
curve  ABC  in  Fig.  88.  The  maximum  temperature  is  reached 
when  the  body  ceases  to  receive  heat  from  the  source  faster 
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than  it  nuliatrs  h<  at  t«>  the  cooler  BUrroundingS.  After  this 
point  is  ivarhrd.  the  hotly  falls  in  temperature  in  a  manner 
that  can  he  represented  hy  the  line  CD.  While  the  body  is  be 
lo\v  the  temperature  of  its  surroundings  it  ahsorhs  heat  from 
thrni,  and  while  it  is  above  thr  temperature  of  its  surroundings 

>  iu-at  to  them.  The  r<nli«tion  correction,  now  tu  he  found, 
Is  Ul6  difference  brt  \\vrn  thr  amount  of  heat  lost  by  the  hodv 
through  radiation  and  thr  amount  ^aiiied  hy  ahsorption  while 

thr  body  \vas  rising  from  ual  to  its  maximum  teinprra- 
ture. 

100         1          2         3         4         5         6  6         9         10        II        12 

Curve  showing  rate  of  change  of  temperature  of  heated  body. 

I.  •   //  t<   thr  heat  lost  by  radiation  during  thr  tim-     7" 
t  iat  thr  body  is  above  thr  trmp.-rat  mv  of  iN  sun-oiindin^s,  and 

!  by  ahsoi-ption  during  tin-  tim.-    T"   that   thr 
1   >dy  is  h.'lou-  thr  t.-mp  of  its  .siirrniiinlin^s.      Tlirii  from 

(   Ml.')  and  Rg.  88, 

//        ,-     .1  .      :    i    //          r 

v  1.         ;     lenoteat  B    /        1  .1"  the  area  A-1l».     Since, 
uldition.  thr  radiati«»n  ron-.-rtiou  R   is,  from    its  drlinition, 

ive 
,        .1"). 

(218) 
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If  the  radiation  constant  r  were  known,  (213)  could  be  used  to 

determine  the  radiation  correction  R.  The  purpose  of  allow- 
ing the  body  to  cool  for  a  time  by  radiation  after  the  other 

heat  changes  have  taken  place  is  to  make  possible  the  determi- 
nation of  this  r.  From  the  part  CD  of  the  curve  we  have  from 

(212),  if  H denotes  the  heat  lost  by  radiation  while  the  body  falls 

in  temperature  from  tf  to  £", 
H=  rkA, 

and  from  (206)  and  (210)  we  have  also 

H=e'(t'-t"), 

where  e1  denotes  the  water  equivalent  of  the  body.     It  follows 

that  e'(t'-t")  =  rkA.  (214) 

On  substituting  in  (213)  the  value  of  r  from  (214),  we  have 

R  =  e'(t'  -  t")  -  A'~A".  (215) A 

2.  Instead  of  finding  the  number  of  heat  units  lost  by  the 
body  due  to  radiation  while  the  temperature  of  the  body  is 
rising  to  its  maximum  value,  the  effect  of  radiation  can  be 
accounted  for  if  the  temperature  is  determined  which  the  body 
would  have  attained  if  there  had  been  no  radiation.  In  the 

following  modification  of  a  method  due  to  Rowland  this  tem- 
perature can  be  obtained  to  a  close  approximation  by  a  simple 

graphical  construction. 
Suppose  that  a  body  at  a  temperature  below  that  of  its  sur- 

roundings is  given  a  quantity  of  heat  H  such  that  its  tempera- 
ture rises  to  a  value  above  that  of  the  surroundings.  While 

the  temperature  of  the  body  is  lower  than  that  of  the  surround- 
ings the  body  absorbs  heat,  and  while  the  temperature  of  the 

body  is  above  that  of  the  surroundings,  the  body  loses  heat. 
The  way  in  which  the  temperature  changes  before  the  heat  H 
is  added  is  represented  by  the  line  AB  in  Fig.  89.  The  line 
ED  shows  how  the  temperature  changes  while  the  body  is 
absorbing  the  heat  H.  From  B  to  C  the  body  is,  in  addition, 
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Fi.;.  v.i. 

receiving   heat    from   the   surround  ings,  and  from   0  to  D  is 
:  heat  to  the  surroundings.      The  line  It  I]  shows  how  the 

temperature  of  the  hotly  changes  due  to  radiation  alone. 

Through     li    and     C 

draw    vertical    li  i 

Prolong    DK    hack  ward 
until  it  cuts  the  vertical 

line     through     (.'     i: 

Through /'draw  a  li; 
parallel   to   AH   until    it 

•Ttical     line 

through    li    in    //. 

tempt-ratiin-  indicated  by 

:  cmpera- 

To  see  tliat  the  above 

method   of    finding 

clesin  n    is  reasonable,  en:  following.      If 
t  1C  heat    //  had  n    '  •    w«»uld   hav«- 

t  nued  to  rise  in  temjKirature  in  the  same  way  that  it  was  n>ing 

f  om  A         /.'.        '  uned  tlie  tempera- 
t  ire   indicated    by    f  it    would    have   reached    the    temperature 

i    dicated  l>y  h.      Tliat   is,  while  the  h..dy  \  M  in  tempera- 

t  ire  f:  in  temperature  from  //  t..  //  vrafl  due 

t    heat  from   tin-  surroundings  and   tlie  rise  from   h  to    C  was 
«    ie  t«.  a  ;  //.      Again,  if  the  hody  had  not    been 

p  ven  the  :      •   //.  hut  if  it  had  been  at  first  at  such  a  trmprni- 
t   re  tliat  as  it  coo.  iched  the  temperature  indicated  l.y  I> 

a      the   same    in>tant    that     it     r«-ally    readied    that    temperature 

-  -and  then-after  cooled  as  sh  /'/.'—  it   would  have  been 
a     a  temperature  /  at   the  instant    when   it  really   was  at   the 

t.  inperature  (.'.      Th.it  is,  while  the  hody  really  ro.se  in  tempera- 
••  fall  in  tein  dm-  to  radiation  was 

tl      fall  fi  •  D,  so  that  if  there  had  been  no  loss  of  heat 
b     radiation,   the  ;ure   during   this  time   would 

h;  ve  been  from  C  to  f.      If,  then,  there   had   been    no  gain   nor 
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loss  of  heat  by  radiation,  the  body  would  have  risen  in  tem- 
perature the  amount  indicated  by  the  distance  from  h  to  /. 

But  the  temperature  when  it  began  to  receive  the  heat  H  was 
that  indicated  by  B.  So  that  the  temperature  which  would 

have  been  reached  if  there  had  been  110  radiation  is  a  tempera- 
ture as  far  above  B  as  f  is  above  h  —  that  is,  the  temperature 

indicated  by  g. 
While  the  temperature  of  the  body  rose  from  C  to  D  it  was 

really  at  a  lower  temperature  than  if  it  had  been  cooling  from 
/  to  D,  and  so  did  not  really  lose  as  much  heat  by  radiation  as 
has  above  been  supposed.  That  is,  the  point  /  is  higher  than 
it  ought  to  be.  For  a  similar  reason  h  is  also  somewhat  higher 
than  it  ought  to  be.  If  the  time  from  B  to  C  is  about  the 
same  as  that  from  0  to  D,  these  two  errors  will  nearly  balance 
each  other. 

3.  Another  method  should  be  referred  to,  although  it  is  con- 
siderably less  accurate  than  the  two  already  discussed.  In  this 

method,  first  suggested  by  Rumford,  the  initial  and  final  tem- 
peratures of  the  body  are  so  arranged  that  the  difference  be- 

tween the  temperature  of  the  surroundings  and  the  initial 

temperature  of  the  body  equals  the  difference  between  the  tem- 
perature of  the  surroundings  and  the  final  temperature  of  the 

body.  The  idea  is  that,  by  this  arrangement,  the  heat  absorbed 
from  the  room  while  the  body  is  colder  than  the  surroundings 
equals  the  heat  lost  to  the  room  while  the  temperature  of  the 

body  is  higher  than  that  of  the  surroundings.  That  this,  how- 
ever, may  be  only  a  rough  approximation  can  be  shown  as 

follows  :  — 
When  a  body  is  heated  and  then  immersed  in  cold  water,  the 

temperature  of  the  water  rises  in  a  manner  very  like  that  repre- 
sented by  the  curve  HA  in  Fig.  90.  During  the  first  part  of 

the  time,  the  temperature  rises  rapidly  because  the  body  is  at 
a  temperature  considerably  higher  than  that  of  the  water, 
whereas  when  the  temperatures  become  more  nearly  the  same, 
the  temperature  of  the  water  rises  more  slowly.  This  means 
that  the  first  half  of  the  temperature  rise  is  accomplished  in 
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i  me  than  the  second.     And  this,  in  turn,  if  the  tempera- 
ture of   the    surroundings   is    half  \\  ay   from  the  lowest  to  the 

highest  temperature  of  the  water,  means  that  less  heat  is  gained 

•  lion  during  the  first  half  of  the  temperature  rise  than 
is  lost  bv  radiation  during  the  seeond  half.    oruuu;,ui...u....ii..i,i.. 

—  I""-
 

In  fact,   from    cM:.')    it  follows   that    in          L 
the  case  represented  in   Fig.   l»o  the  ratio 
of  the  heat    h»st    by    radiation   to  the   heat 

gained   by    absorption   equals   the    ratio    of 

:•••  tf    /'.I  '/  ftnd   //AT.      The  radiation 

in   would  compensate  the  radiation  out  if   20j 
the  temperature  of  the  surroundings  were 

i  to  BD,&0  that  the  ftroM  ''.!/>  and 
HBC  were  equal.  That  is,  in  the  given 

case,  tli-  temperature  bet  h-  Fl°  "' 
ing  the  temperature  of  the  surroundings  should  be  about  two 
;  nd  a  half  times  that  after  passing  the  temperature  of  the 
:  tirroundings. 

Exp.  47.    Determination  of  the  Emissivities  and  Absorbing 
Powers  of  Different  Surfaces 

.  —  The  miJarivA 

',  idiating  power  of  a  surface  is  defined  as  the  number  of  heat 
io>t  by  :  i   at  atmospheric  pivssinv,  per  srrond,  per 

nit  area,  per  deg:  Me  of  temper*  ton  cooling  body 
B  the  temperature  of  the  surrounding  air.  Similarly,  the 

(  b%orbing  poicer  of  a  surface  is  denned  as  the  number  of  hrat 

i  nits  absorbi-d  at  atmo>ph«-i-i«-  j.-  p»-r  M-mnd,  p«-r  unit 
{  rea,  per  degree  excess  of  temperature  of  the  surroumling  air 

f  ix>ve  tin-  t«  mp.  rature  of  the  absorbing  body.  The  object  of 

i  iis  experiment  is  to  detern.  emiariTitlef  and  the  ab- 

*•  "bing  powers  of  ditTerent  surfaces  for  various  temperature 

(  U'erences  betw.-rn  the  surfarrs  and  the  surrounding  air,  and 
Jisotocompa:  -ivity  and  ab>.)i-liing  power  of  a  given 
h  irface  under  similar  condition*. 
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Consider  a  mass  M  of  water  filling  a  closed  vessel,  the  water 
equivalent  of  which  is  e  and  its  external  surface  area  A.  If 

during  a  short  time  AT  the  vessel  and  its  contents  cool  A£°, 
their  mean  temperature  during  the  time  being  tb  and  the  tem- 

perature of  the  surrounding  air  being  t#  then  from  the  above 
definition  the  emissivity  of  the  surface  is 

(216) 

Similarly,  if  the  vessel  and  its  contents  rise  in  temperature 

A£°,  due  to  absorption  of  heat  from  the  surrounding  air,  the 
absorbing  power  of  the  surface  is 

a  — 

(M+ 
ATA(ts-tb) 

(217) 

MANIPULATION  AND  COMPUTATION.  —  For  this  experiment 
there  are  provided  two  or  more  metallic  cylinders  C  (Fig.  91), 
exactly  alike  except  for  the  nature  of  their  external  surfaces. 
One  cylinder,  for  example,  may  be  highly  polished,  one  may 

have  a  tarnished  surface,  and  one  may  be 

coated  with  lampblack.  In  finding  the  emis- 
sivities  of  these  different  surfaces,  the  cylin- 

ders are  in  succession  filled  with  warm  water 

and  suspended  inside  of  an  inclosure  formed 

by  two  concentric  cans  </,  K,  the  space  out- 
side ^Tand  inside  J  being  filled  with  water 

at  the  temperature  of  the  room.  The  temper- 
atures of  the  water  in  the  central  vessel  and 

of  the  water  in  the  jacket  are  observed  every 
two  minutes  for  at  least  half  an  hour.  The 

water  in  the  central  vessel  and  in  the  jacket 
is  kept  thoroughly  stirred  throughout  the 
whole  experiment.  From  these  observations 

are  plotted  two  curves  coordinating  temper- 
ature and  time  —  one  for  the  radiating  body  and  one  for  the 

water  jacket. 

FIG.  91. 
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Suppose  that  in  a  particular  experiment  the  curve  shown  in 

'_  was  obtained  and  the  following  data  found:  — 

35  t 

20 

FIG.  '.'_'. 
Carve  showing  the  rate  of  change  of  temperature  of  the  hot  body 

and  of  the  water  jacket. 

of  copper  radiating-  vessel  a  ml  stinvr,  78.1  g. 

Mass  of  ••'•MtaiiM-d  in  vessel,  126.3  g. 

Area  of  external  surface,  1.~>:J.  1  sq.  cm. 
Si  ice  the   sp>  at  of   cuppor   is  known  to  be  0.093,  it 

..      *i,t. 
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follows  from  (210)  that  the  water  equivalent  of  the  radiating 
vessel  and  stirrer  is 

e  =  78.1  -0.093  =  7.3  g. 

In  computing  the  emissivity  by  means  of  (216),  ffe,  t#  and  A£ 
may  be  taken  from  the  curve.  For  a  curve  of  this  sort  a  con- 

venient value  for  T  is  five  minutes.  For  example,  to  find  the 

emissivity  of  the  surface  of  the  radiating  body  when  at  34°  C., 
while  the  inclosure  was  at  20°.  23  C.,  proceed  as  follows:  To 
the  right  and  left  of  the  point  where  the  34°  line  crosses  the 
cooling  curve,  lay  off  distances  corresponding  to  2.5  minutes. 
At  A  and  B,  the  ends  of  this  line,  erect  perpendiculars  until 

they  intersect  the  cooling  curve,  and  at  the  points  of  intersec- 
tion draw  two  lines  parallel  to  the  time  axis.  The  distance  be- 

tween the  last  two  lines  represents  the  Atf°  through  which  the 
radiating  body  cooled  during  an  interval  of  five  minutes.  In 

this  particular  case  A£=l°.34.  Substituting  in  (216)  the 
values  thus  obtained,  we  have 

_      (126.3  +  7.3)1.34     _ 
300x153.1(34.0-20.23) 

In  the  same  way  are  found  the  emissivities  at  other  temperatures. 
Proceeding  as  described  above,  with  each  of  the  surfaces  being 

studied,  plot  on  a  sheet  of  cross  section  paper  an  emissivity 
curve  for  each  surface. 

Now  fill  with  cold  water  the  vessels  heretofore  used  as  radi- 
ating bodies  and  by  means  of  (217)  and  an  experimental  method 

similar  to  that  used  to  find  emissivity,  determine  the  absorbing 

powers  of  the  different  surfaces  for  various  temperature  differ- 
ences between  the  absorbing  surface  and  the  inclosure. 

State  in  words  the  conclusion  reached  from  a  comparison  of 
the  emissivity  and  the  absorbing  power  of  the  same  surface. 

At  the  beginning  of  the  radiation  experiment  the  tempera- 

ture of  the  water  in  the  radiating  body  should  be  about  15°  C. 
above  that  in  the  water  jacket,  and  in  the  absorption  experiment 
the  temperature  of  the  water  in  the  absorbing  body  may  be 

about  15°  C.  lower  than  that  in  the  water  jacket.  But  in  no 
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should  the  temperature  of  the  absorbing  body  be  so  low 
that  dew  will  be  deposited  on  its  surface. 

Exp.  48.   Determination  of  the  Specific  Heat  of  a  Liquid 

:  .  nini)    <>F    CM..LING) 

OBJK<  r   AND  Tm:<>i:y   <>F    KXI-F.KIMKNT.  —  Suppose  that  a 
mt  of  a  liquid  of  a  specific  heat  st  is  contained  in  a  \ 

which  lias  a  \vaterequivalent  *•  and  a  radiation  constant  r.     If 
the    temperature   of    the    liquid    is    somewhat    above    that   of 

irn>undin<rs.  and  if  the  temperatures  of  both  liquid  and 
surround;  d  for  some  little   time,  ami   then   the 

tempi-ran.  plotl.-d  against    times,  two  curves    like   those 

_r.  sT  will   be  obtained.      While   the  liquid  and   vessel  fall 

in  tmiperatuiv  through  a  range  of  A^°,  the  heat  which  they 
is,  from 

S  nee  this  heat  is  lost  by  niiliati..n.  (  _  1  _'  i  ihowi  that   it  is  also 
g  ven  by 

ff,  =  r/  .-'19) 

\N  iere  r,  /  ••  the  same  meanings  as  the  r,  k,  and    1 
ii   (iMiii.     I  J  18)  and  (219)  we  have  at  M: 

(m^-f-OA^/  =  r  J-'O) 

I:    the  same  way,  if  the  liquid  in  question  by  warm 
\v  ter,  and  if  t.s  w  mean  that  the  symbols  to  which  they 

ai  >  appt-ndrd  r.-h-r  to  tliis  w.i 

It'  the  scales  chosen  in  plotting  an-  the  same  for  both  pai 
CU  WCS,  the  k  in  <  '-!"  >  ami  (  L'-Jl  )  is  the  same;   ami  if  the  nature 
of  the  sin  essel  remains  the  same,  tin-  /• 

is    '>e  same.      On  dividii,.  b\   <^_1)  and  idlTing  for  s^ 
wt  get 

e        e 
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FIG.  93. 

MANIPULATION  AND  COMPUTATION.  —  The  apparatus  used 
in  this  experiment  consists  of  a  closed  metal  radiating  vessel 
suspended  in  an  inclosure  surrounded  by  an  ice  jacket.  The 

radiating  vessel  is  provided  with  a  stirrer 
for  agitating  its  contents  and  a  thermometer 
for  reading  temperatures. 

Weigh  the  radiating  vessel  and  stirrer 

and,  by  multiplying  their  mass  by  the  spe- 
cific heat*  of  the  material  of  which  they 

are  composed,  determine  their  water  equiv- 
alent. Fill  the  radiating  vessel  just  to  the 

bottom  of  the  neck  with  the  liquid  whose 
specific  heat  is  to  be  determined  and  set  it 
in  water  in  a  saucepan  over  a  burner  until 

its  temperature  is  about  40°  C.  Then  wipe 
the  outside  of  the  radiating  vessel  dry,  sus- 

pend it  in  the  inclosure  inside  the  ice  jac- 
ket, and  while  continually  stirring,  observe 

the  temperature  every  minute  for  quarter  of  an  hour  or  longer. 
Throughout  this  time  keep  the  jacket  full  of  ice.  Then  remove 
the  radiating  vessel  from  the  jacket  and  weigh  it,  thus  finding 
the  mass  of  the  liquid. 

Clean  the  vessel,  rinse  it  out  with  water,  and  fill  to  the 
bottom  of  the  neck  with  water.  Then  heat,  dry,  and  suspend 
in  the  ice  jacket  as  before,  and  again  observe  the  temperature 
every  minute  for  a  quarter  of  an  hour.  Remove  from  the  jacket 
and  weigh,  thus  finding  the  mass  of  the  water. 

Plot  the  cooling  curves  for  both  substances  on  the  same  sheet. 
Since  the  jacket  is  packed  with  shaved  ice,  the  temperature  of 
the  surroundings  in  each  case  is  zero.  If,  then,  times  are 
plotted  as  abscissas,  Aw  is  the  area  bounded  on  the  top  by  the 
water  curve,  on  the  bottom  by  the  temperature  axis,  and  on  the 

sides  by  any  two  convenient  ordinates,  —  one  near  the  beginning 
and  one  near  the  end  of  the  time  employed,  —  and  Al  is  the 

*  If  the  radiating  vessel  or  stirrer  is  of  unknown  composition,  the  water 
equivalent  can  be  obtained  experimentally  by  the  method  of  mixtures,  p.  224. 
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same  -.- -ept   that   its  upper  boundary  is  the  other  curve. 
These  IT6H  may  be  obtained  with  a  planimeter,  determined  by 
counting  the  millimeter  squares,  or,  perhaps  most  easily,  found 
by  the  method  of  average  ordinates.  A  is  the  difference 
between  the  temperatures  at  the  points  where  the  water  curve 
crosses  the  ordinates  whieh  hound  the  area  Air.  and  Af,  is  the 

eoiTespondin.  nee  for  the  other  CUl 
All  of  the  data  are  now  at  hand  for  calculating  the  specific 

heat  <>f  the  specimen  by  means  of  (  Ji'i'  ).  Two  or  three  cooling 
curves  for  each  sub>:  taken,  and  two  or  three 

values  for  the  specific  heat  thus  obtained. 

Exp.  49.    Determination  of  the  Specific  Heat  of  a  Solid 

I  1I«>I)  MK    MIX  11    H 

OBJBOT  \\i>  TIIK-'KY  Of  i:\ri:i:iMi:\  r.  -The  Method  of 

>  ixtures  dep.-nds  upon  the  principle  that  when  a  number  of 
I.  .dies  of  dirtcreiit  temperatures  are  brought  toother,  the 
a  noiint  of  heat  lost  by  the  bodies  that  fall  in  temperature 

f  [Uals  the  amount  of  heat  gained  by  tl.  s  that  l  ; 

t    mperatuie. 

Consider  a  body  of  mass  7/1,  specific  heat  «,  and  temperature  /, 

t  be  plac.-d  in  a  mass  m}  of  liquid  of  sp*  .1  *:  and  t.-m- 
I  ;raturc  /  OOnteined  in  a  fenel  «-f  mass  m  made  of  a  material 

v  hos«-  il  temperature  of  the  mix- 

t  re  be  if.  Tht-n.  if  /  is  higher  than  t .,  the  heat  lost  by  the 
•.  \.-n  body  equals  th«-  su:  n.-d  by  the  vessel  and 
ii  *  contents  and  that  gained  by  the  surrounding  air.     That  is, 
I  »m  i  -"  .ation  correction, 

1 1  ™K'-'/)=^/+'M,X</--'/)+  R 

'I  he  correction  for  radiation  may  be  applied  either  by  Re^nault's 
II  thod  o:  :        //.      .    v:  ;:<liically   by  the  im.dilicat  ion   «,f 

R  >. viand  OB    pp.   -l'J--ll.      \Vhenthespi-eimen 

i-  in  small  pieces  of  temperature  is  rapid  and  Rowland's 
n    -thod  i>  pcrhap->  to  !)•• 
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If  water  is  the   liquid   used,    8,=  !.     For   purposes   of   ab- 
breviation the  water  equivalent  of  the   vessel,  wcsc,   will   be 

denoted  by  the  single  letter  e.     Then  if  tj  denotes  the  tempera- 
ture that  the  mixture  would  have  reached  if  there  had  been  no 

gain  nor  loss  by  radiation,  (223)  gives 

(224) 

It  should  be  noted  that  e  represents  the  water  equivalent  of 

the  vessel  in  which  the  mixing  occurs,  together  with  any  ac- 
cessories it  may  contain,  such  as  a  stirrer  or  thermometer. 

MANIPULATION  AND  COMPUTATION.  —  The  special  apparatus 
used  in  this  experiment  consists  of  a  calorimeter  and  a  heater. 

FIG.  94. 
FIG.  95. 

A  calorimeter  is  any  apparatus  used  to  measure  quantities  of 

heat.  The  ordinary  "water  calorimeter"  used  in  this  experi- 
ment (Fig.  94)  consists  of  a  thin  polished  copper  vessel  held 

centrally  within  a  jacket  by  means  of  non-conducting  supports. 
The  inner  vessel  contains  a  thermometer  T'  and  stirrer  $,  while 
a  second  thermometer  T  is  suspended  in  the  air  space  between 
the  two  concentric  vessels.  A  convenient  form  of  heater,  shown 
in  Fig.  95,  consists  of  a  closed  copper  can  in  which  water  can  be 
boiled.  Extending  through  one  side  and  projecting  nearly 

through  the  boiler  at  an  angle  of  45°  with  the  bottom,  is  a  tube 
sealed  at  the  lower  end  and  having  the  upper  end  closed  with  a 
cork  through  which  extends  a  thermometer.  The  specimen  to 
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be  heated  is  placed  in  this  tube,  and  when  the  temperature 

indicated  by  the  thermometer  T  has  become  steady,  the  specimen 

is  dropped  into  the  calorimeter.  If  the  specimen  is  in  small 

.  '.  lead  shot,  it  ran  be  poured  into  the  calorimeter  by 
simply  tilting  the  heater,  if  the  specimen  is  in  a  single  piece,  it 

i>  drawn  out  of  the  heater  with  a  thread  and  quickly  lowered 
into  the  calorimeter. 

A  ray  Compact  form  of  apparatus  designed   by    Ke^nanlt  is 
In   this  apparatus  the  calorimeter  is  on  a 

little  carriage  that  can  easily  b  ',  up  to  the  heater  and  with- 

drawn.     The    tube    />'/.'      \  •  nds  entirely   through   the   heater. At  i:  Quitter 

.1   b\  vhich  the 

(pi ickly  be  opened 
or  closed.  A  thermom- 

eter extending  through  the 

s  opp.  /;  permits  the 
<  bservatioii    «.f    the    tern- 

he  specimen. 
specimen  d   in 

t  ie     mid-:  :  he     tube 

1  Y  a  -  : 

t  irough   /•'.  ci- 
i  en  i  ontained   in  a  small   wire  basket. 

1  /'hen  '1  t-.  drop  the  .specimen  into  the  calorimeter. 
t  ie  l;r  /  1  ''lied,  and   the 
s  riiiL:  leased  so  as  to  allow  the  i 

•  •n  to  I'all  (luiekly  into  ;  :  imeter. 
\\ater  «Mjui\  |  the  inner  vessel  of  the  calorimeter 

t    be   determined.      If  the  mass  and   specific  heat  be 

low:.  .  part  oft  that  chan^o  intempera- 

1   easily    and  m<>M    accurately 

o  fained  liy  '  the   sum  of   the   prnduets   of   th.-se   masses 

a     n   the  <  _f  Specific    he;it^.        \\'hell    this    method    WUI- 
•t  be  applied,  the  ID  |    mixtures  can   l>c  emploved.       In 

•lie  inner  \esseland  >tinvr,  half  iill 
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the  inner  vessel  with  water  at  a  temperature  some  10°  or  15° 
below  that  of  the  room,  and  weigh  again  to  determine  the  mass 
mc  of  cold  water.  With  one  thermometer  in  the  water  in  the 

calorimeter  and  another  in  water  at  a  temperature  some  15°  or 
20°  above  the  temperature  of  the  room,  watch  both  thermome- 

ters for  a  few  moments,  and  immediately  after  reading  both  te 
and  £A,  the  temperatures  respectively  of  the  cold  water  and  of 
the  hot  water,  pour  rapidly  into  the  inner  vessel  enough  of  the 
hot  water  nearly  to  fill  it.  Meantime  stir  briskly  and  watch 

the  thermometer  in  the  calorimeter.  After  noting  the  tempera- 
ture of  the  mixture  tm,  weigh  again  to  determine  the  mass  mh 

of  hot  water  added.  Since  the  heat  lost  by  the  hot  water 
equals  that  gained  by  the  calorimeter  and  contents  plus  that 
lost  to  the  surroundings, 

m&*  ~  O  =  C^c  +  0  Om  -  *c)  +  R'I  (225) 
where  e  represents  the  water  equivalent  of  the  calorimeter 

and  R'  the  radiation  correction.  From  the  discussion  on  pp. 
214-215,  it  follows  that  R'  can  be  made  very  small  by  selecting 
proper  values  for  the  temperatures.  Since  e  is  iisually  small 
compared  with  m^  and  since  in  the  only  place  where  e  is  used 
in  (224)  it  is  added  to  ra,,  a  smaU  error  introduced  into  e  by 

failure  entirely  to  eliminate  Rf  would  cause  in  *,  a  very  small 
error.  If  this  very  small  error  is  neglected,  (225)  gives 

tm}-mc.  (226) 

The  satisfactory  determination  of  a  water  equivalent  by  this 

method  requires  deft  and  rapid  manipulation  and  careful  deter- 
mination of  temperature. 

Be  sure  that  the  specimen  is  dry,  and  place  it  in  the  tube  in 
the  heater  until  its  temperature  assumes  a  constant  value  t. 
While  the  specimen  is  heating  weigh  the  inner  vessel  of  the 
calorimeter,  if  this  has  not  already  been  done.  Then  pour  into 
this  inner  vessel  water  at  a  temperature  three  or  four  degrees 
below  that  of  the  room  until  the  vessel  is  somewhat  more  than 
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half  full  and  determine  the  mass  of  the  water.     Assemble  the 

I  of  the  calorimeter,  placing  one  thermometer  in  the  water 

contained  in  the  inn.  nid  another  thermometer  against 
the  inner  surface  of  the  jacket.  The  thermometer  in  the  water 
should  have  its  bulb  entirely  covered  by  ihe  water,  but  should 

not  be  low  enough  to  be  touched  by  the  specimen.  The  tein- 

•  ure  of  the  water  should  now  be  observed  at  quarter  or 
half  minute  intervals,  and  the  temperature  of  the  jacket  every 
minute  or  two.      For  each  reading  the  hour,  minute,  and  second 

at  which  the  reading  is  made  should  be  recorded.      The  readings 

;ken  continuously  but  belong  to  three  successive  periods. 
ore  beginning  the  first  period  be  sure  that  the  thermometer 

in  the  heater  is  steady  in  the  neighborhood  of  100°  and  record 
its  reading. 

<t  period.      While  stirring  the  water  read  times  and  eorre- 
iing  temperatures  for  some  three   to  live  minutes  before 

ran-  .men  to  the  ,  .-tor. 

l>eriod.  \  en  instant  transfer  the  specimen  rap- 
dly  to  the  calorimete  ;inue  to  .stir  the  water  and  to  take 

emperature  reading*  lart.-r  <>r  half  minute.      While  the 
ieated  specimen  isghing  up  its  heat,  the  \\ater  rises  rajiidly  to 
maximum    temperature   t,.  :>eriod   is   frequently    over 

n    fifteen   nr  twenty  see,-  maximum  temperature   is 

ttained  when  the  rate  at  which   i  -.idiated  by  the  water 
i)  the  air  equals  the  rate  at  which  tin;  water  receives  heat  from 

he  BJ  .      The  temperature  may  remain  stationary  at  this 

•  for  an  app:  length   of  time.      Then-after,   if   the 
:  has  risen  to  a  temperature  above  that  of  the  jacket,  the 

yss  by  radi.it  ion   exceeds  the  gain  of  heat  from  the  specimen. 
f  the  water  does  not   rise  above  the  temperature  nf  the  jacket 

of  a  minute  after  the  .specimen   is  dropped   into  thecalo- 
i  imeter,  the  sprcimen  is  tobe  :<1  the  experiment   begun 
i  l/4n.      If  the  temperature  rises  rapidly  and  then  almost  at  once 

!  ills  again  somewhat,  the  speeimm  has  come  too  close  to  the 

t  lernioineter  and  th-  M-nt  should  be  begun  again. 
/>eriod.      Without    interruption   e..ntinue    to  stir   the, 
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water  and  to  take  readings  of  temperature  and  time  for  at  least 
five  minutes  during  the  cooling  of  the  water  in  the  calorimeter. 

After  the  third  period  weigh  the  inner  vessel  and  contents, 
and  so  determine  the  mass  of  the  specimen. 

With  these  readings,  plot  on  the  same  sheet  two  curves — one 
coordinating  temperature  and  time  for  the  water  in  the  calo- 

rimeter, and  another  coordinating  temperature  and  time  for  the 
surroundings.  A  pair  of  such  curves  is  shown  in  Fig.  89. 
From  these  curves  the  temperature  which  would  have  been 
reached  if  there  had  been  no  radiation  can  be  determined  by 

Rowland's  method.  The  data  are  now  at  hand  which  when 
substituted  in  (224)  give  a  value  for  the  specific  heat  of  the 
specimen. 

One  or  two  preliminary  experiments  may  be  necessary  in 
order  to  determine  just  how  much  water  to  use  and  at  what 
initial  temperature  to  have  it.  After  a  satisfactory  set  of  read- 

ings is  obtained,  another  set  should  be  taken  and  two  values 
found  for  the  specific  heat. 

Exp.  50.    Determination  of  the  Specific  Heat  of  a  Solid 

(METHOD   OF   STATIONARY   TEMPERATURE) 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  The  object  of 
this  experiment  is  to  determine  the  specific  heat  of  a  solid  by  a 
modified  form  of  the  Method  of  Mixtures  in  which  the  water 

equivalent  of  the  calorimeter  is  avoided  and  the  radiation  cor- 
rection is  eliminated.  This  is  accomplished  by  maintaining 

the  temperature  of  the  calorimeter  throughout  the  experiment 
the  same  as  that  of  the  surroundings. 

Consider  a  body  of  mass  m,  specific  heat  «,  and  temperature  £, 
dropped  into  a  calorimeter  containing  m1  grams  of  water  at  the 
temperature  of  the  surroundings  tr  Let  cold  water  be  added 
to  the  calorimeter  at  such  a  rate  that  the  temperature  of  the 
calorimeter  remains  constant.  If  the  mass  and  temperature  of 
this  cold  water,  be  represented  by  mc  and  tc  respectively,  then 

the  heat  emitted  by  the  specimen  is,  by  (206),  ms(t  —  t^,  and  the 
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.rained  by  the  cold  water  added  to  the  calorimeter  equals 
Since  the  water  originally  in  the  calorimeter  has 

not  changed    in    temperature,    the   heat   lost   by  the    specimen 
.rained  by  the  cold  water.      That  is. 

<m9(t-tl)  =  ///,.(<!- 

Whence (227) 

MANIIMI.A  i  i«\    \M»  COMPUTATION.       The  apparatus  use*! 
iu  this  experiment   includes  a  calurimeter  of  special   design  C 

KI.J.  '.w. 

(  <Hg.  ;etl,er  with  a  heater  If  and  a  water  dropper  />, 
1-  th  .  1 1  axes.     The  water  d  r«»  |>- 

I>-  r  consists  of  a  reservoir  li  (  Fig.  98),  having  a  valve  I",  by 
in  »ns  <»f  which  the  t!  through   tlu-<M\  ui  In- 

n  mla  ^iirruun.:.  reservoir  is  an  ice  jacket  J.      P.y 
HI   Ulis  nf   the   thrnni-:  temperature   <»f   the  water  at 

tl   •  iiimiH-iit    Li  from  the  water  dropper  can  be  obser\c<l. 
T  ie  calorimeter  i  >  is  essentially  the  metallic  bulb  <>!   an 
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air  thermometer  into  which  projects  a  copper  tube  X  for  the 

reception  of  the  water  and  specimen.  Any  change  in  the  tem- 
perature of  the  calorimeter  is  indicated  by  an  open  manometer 

tube  M.  To  prevent  any  effect  due  to  changes  in  the  tempera- 
ture of  the  surrounding  air,  the  calorimeter  is  placed  in  a 

water  bath  !Fat  the  temperature  of  the  room. 
After  the  apparatus  has  been  assembled  ready  for  use,  the 

specimen  is  weighed  and  placed  in  the  heater.  The  mixing 
tube  of  the  calorimeter  is  unscrewed  arid  weighed,  first 
when  empty,  and  then  when  filled  with  enough  water  at 
the  temperature  of  the  room  to  cover  the  specimen.  The 
mixing  tube  is  now  replaced  and  the  stopcock  attached  to 
the  manometer  is  opened  for  an  instant.  By  this  means 

any  difference  of  pressure  between  the  inside  of  the  air  ther- 
mometer bulb  and  the  outside  air  is  equalized.  When  the 

thermometer  in  the  heater  indicates  a  steady  temperature  near 

100°,  the  water  dropper  is  made  ready  for  use  by  allowing  cold 
water  to  escape  until  the  thermometer  in  the 

escaping  steam  indicates  a  stationary  tempera- 
ture. The  temperatures  of  the  specimen  in 

the  heater,  the  water  in  the  mixing  tube  of  the 
calorimeter,  and  the  cold  water  in  the  water 
dropper  are  now  noted.  The  heater  is  rotated 

f%  into  position  over  the  calorimeter  and  the 
specimen  quickly  lowered  into  the  mixing 
tube.  The  heater  is  immediately  rotated  out 

of  position  and  the  water  dropper  rotated  into  place.  By 

operating  the  valve  F",  cold  water  is  now  allowed  to  fall  into 
the  mixing  tube  at  such  a  rate  that  the  index  in  the  manometer 
tube  of  the  air  thermometer  remains  stationary.  The  proper 
rate  can  be  ascertained  only  by  previous  trials  ;  it  depends 
largely  upon  the  conductivity  and  fineness  of  division  of  the 
specimen.  When  no  more  cold  water  is  needed,  the  mixing 
tube  with  its  contents  is  again  weighed.  All  of  the  data 

necessary  for  the  computation  of  the  specific  heat  of  the  speci- 
men by  means  of  (227)  are  now  at  hand. 

FIG.  99. 
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Exp.  51.    Determination  of  the  Specific  Heat  of  a  Solid 

(JOLY'S    MKTHOD) 

OBJECT  AND  THI:MI;Y  OF  KXPHUIMKNT.  —  Acold  body  placed 

in  an  atmosphere  of  steam  absorbs  heat  until  its  temperature 
i>  the  same  as  that  of  the  steam.  A  certain  amount  of  steam 

is  thereby  condensed.  It'  the  steam  is  at  the  boiling  point  of 
water.  the  amount  of  1  equals  the  product  of  the  mass 

I    and   thf  jiiivalent   of  condensation  of  steam. 

\'>      "heat    equivalent  of  condensation"  of  steam   is  meant   the 
number  of  heat  units  L^iven  up 

by    the    condensation    of    unit 

mass    "f    sleam.      '1'his    is    nu- 

merically  equal    to    the    ul 
equivalent  of   vapori/ation 

vater,  /.,•.  the  number  of  heat 

units  required  to  \apori/e  unit 

188  «>f  water.      The  nhje. 

t    is  experiment  is  to  determine 

t   e    specific    ht-.it    of   a    solid 
f  om    a   nieaxn  «>f    tin- 

tss   of    s:  ndfn>f<l    on 

t  e  body  as  it  rises  in  tempera- 
•iling   point  of 

July's   apparatus  (  Fig,    1""  . 
'*  of   a    steam    chan 

i  dosing  one  pan  of  a  delicate  balan          I    •    ; 
:   >m  thf  l.al.uife   b.-am   by  a  tine  \\ir<-   passing  tbroujrh  a  small 

h(  le  in  t).  :    the  steam  chandler.     Steam  is  first    passed 

in  O  the  steam  chamber  ami  the  mass  of  steam  which  condenses 

Oi  . he  scale  pan  is  weighed.  The  apparatus  is  n»\\  allo\\ed  to 

en  .  to  the  temperature  of  the  room.  The  scale  pan  is  dried 

an  1  upon  it  is  placed  t :  ;i.- n  whose  specific  heat  is  required. 

St  -an;  ii    passed   into  the  steam  chamber  and   the  mass  of 
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steam  which  condenses  on  the  specimen  and  on  the  scale  pan 
is  weighed. 

Let  s  denote  the  specific  heat  of  the  specimen  ;  e,  the  water 
equivalent  of  the  scale  pan  and  suspending  wire  ;  t1  and  £2,  the 
respective  temperatures  of  the  room  and  of  the  steam  ;  A,  the 
heat  equivalent  of  condensation  of  steam  ;  and  mv  mv  w3,  and 
m^  the  respective  masses  required  to  balance  (1)  the  empty 
scale  pan,  (2)  the  pan  with  the  steam  which  condenses  on  it, 
(3)  the  pan  and  the  specimen,  and  (4)  the  pan  and  specimen 
with  the  steam  which  condenses  on  them  both. 

The  amount  of  heat  absorbed  by  the  scale  pan  and  suspending 

wire  as  they  rise  in  temperature  from  tl  to  t2  is  0(£2  —  ̂ i)- 
This  heat  is  supplied  by  the  heat  liberated  in  the  condensation 

of  the  mass  (w2  —  wij)  of  steam.  Therefore, 

e  02  -  *i  )  =  <>2  -m^h.  (228) 

Similarly,  the  amount  of  heat  absorbed  by  the  specimen,  the 

mass  of  which  is  (w3  —  w^),  together  with  the  balance  pan  and 
suspending  wire  is  (ra3  —  m^  s  (£2  —  ̂ )  4-  e  (t2  —  ̂ ).  This  heat 
is  due  to  the  condensation  of  the  mass  of  steam  (w4  —  w3). 
Consequently 

O3-  m^s(t2  -  ̂ )+  e(t2  -  ̂ )  =  <>4  -  ™3)^' 

Subtracting  (228)  from  (229), 

Whence  .--  (230) 

It  will  be  noticed  that  (rw4  —  w3  —  -w2+  T^)  is  the  mass  of 
steam  condensed  on  the  specimen,  and  that  (w3  —  m^)  is  the 
mass  of  the  specimen. 

MANIPULATION  AND  COMPUTATION.  —  A  common  source  of 

error  in  this  method  is  an  uncertainty  in  weighing  produced 
by  steam  condensing  on  the  suspending  wire  where  it  emerges 
from  the  steam  chamber.  In  the  apparatus  illustrated  in  the 
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figure,  this  trouble  is  diminished  by  having  the  suspending  wire 
Through  a  small  tube  surrounded  by 

•am  jar!.  £,  101).      l»y  passing 
the  steam  through  tliis  jacket   before  it 

elite:  -learn  chamber,  the  neighbor- 
hood of  the  aper;  itViciently  heated 

to  prevent  a  large  amount  of  condensation 

on  the   suspending    wire    outside   of   the  ,    1()1- 
chamber. 

Take   care    to    have    tin-   >u>peiiding    win-   hang    free.      Then 

with   standard   masses  nil  balance  tlie  lower  scale  pan.      When 

:    in  a  detached    b  •;-«»usly,  note  the  teni- 

p'-ratuiv  tl  of  the  iii>ide  of  the  steam  chamber  and  then  eounect 

•  iler  t<»  tin-  steam  chamber  with  a  go.  rubber  tube. 

D  will  immediately  be  condensed  on  the  object  pan.      After 

one  or    two  minutes  diminish    the  flow  of   strain    to   sueh  an 

i  that  t:  :it  will  not  dist nib  the  object  pan.      With 

s  andard   masses  HI,  aga i n    bring   tin-   balance    into  equilibrium. 
'in   tin-  steam  chamber  and  allow  the 

<  lamber  to  cool  to  the  temperature  of  the  room  f,.  Dry  the 

(  >ject  pan,  place  up..n  it  the  specimen  irhoae  ̂ ecific  heat  is 
,  and  dct'  nass  m^  imw  required  to  bring  the 
into  equilibri-iin.  Again  connect  the  boiler  to  the 

s  earn  chamber,  and  after  four  or  ti\e  minuto.  when  the  speci- 

1  en  and  [.an  have  aeipiin-d  the  tempera:  of  the 
s  eam,  diminish    the   flow  of   |1  :id    with   standard    masses 

;-  4  again  l»ring  the  balance  into  equilibrium.      Since  //.  th- 
e   nivalent  of  vaporization  of  water,  is  known,  all  of  the  data 

,:  e  now  at  hand  for  computing  the  specific  heat  of  t  lie  .specimen 

b  •  means  of  (230). 

Exp.  52.   Determination  of  the  Heat  Equivalent  of  Fusion 

of  Ice. 

I:IMENT. — The  Heat  Equiva- 

le  it  of   I-'MMMM  of  a  substance  is  the  number  of  heat   units  re- 
qi.iivd  to  melt  unit  mass  of  it  without  changing  its  temperature. 
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Suppose  that  when  m^  grams  of  ice  at  0°  C.  are  dropped  into 
mw  grams  of  water  at  tw°,  the  ice  melts  and  the  temperature  of 
the  mixture  of  the  two  becomes  £2°.  During  this  operation,  the 
ice  has  absorbed  the  heat  required  to  melt  it  and  also  after 

melting  to  raise  its  temperature  from  0°  to  £2°,  while  the  calo- 
rimeter and  its  contents  have  lost  heat.  If  there  were  no  gain 

of  heat  from  the  surroundings  nor  loss  to  them,  the  heat  gained 

by  the  ice  in  melting  and  then  rising  to  the  temperature  t2  would 
equal  the  heat  lost  by  the  calorimeter  and  contained  water. 
That  is,  if  e  denotes  the  water  equivalent  of  the  calorimeter, 
and  /  the  number  of  heat  units  required  to  melt  unit  mass  of 

ice,  we  should  have,  from  (206)  and  (207), 

™,/+  mt(tz  -  0)  =  (mw  +  e)  (tw  -  *a) . 

That  is,  the  heat  equivalent  of  fusion  would  be 

/=0"»+0ft.-«,)_fr  (231) 
In  most  cases,  however,  the  error  due  to  radiation  is  too  great 

to  be  neglected.  This  error  may  either  be  computed  by  Re- 

gnault's  method  or  determined  graphically  by  the  modification 
of  Rowland's  method  given  on  pp.  212-214.  If  the  latter 
method  be  selected,  it  is  necessary  to  determine  the  tempera- 

ture that  the  mixture  would  have  attained  if  there  had  been  no 

radiation  nor  absorption.  Denoting  this  corrected  value  by  £2', 
we  obtain  the  corrected  equation 

(^  +  e)fe-V)_ 

rrii 

The  simple  theory  given  in  this  experiment  applies  only  to 
a  solid  whose  temperature  is  at  its  melting  point  at  the  moment 
it  is  introduced  into  the  calorimeter.  In  the  general  case  not 

only  will  the  temperature  of  the  specimen  be  below  its  melting 
point  at  the  moment  of  its  introduction  to  the  hot  water  of  the 
calorimeter,  but  in  addition  its  specific  heat  will  be  different 
in  the  solid  and  the  liquid  states.  Even  though  neither  of 

these  specific  heats  is  known,  by  means  of  three  experiments, 



CALORIMKTKV  233 

similar  to  the  above,  in  which  the  masses  of  the  specimen  and 
the  water,  as  well  as  the  original  temperature  of  the  water,  are 
different,  the  heat  equivalent  of  fusion  of  a  substance  can  be 

found.  We  have  thus  three  simultaneous  equations  containing 
but  three  unknown  qantities.  vi/.  the  required  heat  equivalent 
of  fusion  and  the  specific  heats  of  the  specimen  in  the  solid  and 

in  the  liquid  states.  l>y  eliminating  the  specitic  heats,  the 

heat  equivalent  of  fusion  can  !•«•  determined. 

MANMM   LATK'N      ANI»      (  '<  'M  I'l   T  A  TION.     Wei^'h     the     inner 
!  of  the  calorimeter  and  the  stinvr.      Tlie  product  of  their 

and  the  spe.-ilic  heat  of  the  material  of  wliirh  the  vessel  and 

:iiposed   gives   the  water  cqnival.-:        .        Fill   their 

Teasel  somewhat  over  half  full  of  water  at  about  60°  ('.,  weigh, 
and  then  a^cinMe  I 

Cut  a  piece  of  ice  having  a  ma>s  somewhat  over  a  fourth 
that  in  the  calorimeter.  Keeping  the  water  in  the  calorimeter 

veil  i  the  temperature  of  the  water  about  • 
li  ilf  minute  ami  of  the  surroundings  every  minute  or  kwt>« 

1  ecord  the  hour,  minute,  and  >••<•,  ,nd  at  which  each  reading 
i  made.  At  a  given  inMaii:.  temperatures  for 

f  ur  or  five  minutes,  dn>p  the  carefully  dried  ice  into  the 
c  lorimeter  and  continue  reading  temperatures  and  stirring 

f  r  seven  or  eight  minutes  longer.  The  ice  must  be  Kept 
s  Emerged,  jind  under  n»  -tances  must  the  temperature 
<>     the   inner   vessel    fall  so   low   t  :  ins   on    it.      Now 

v  -igh  the  inner  vessel  witli  its  contents.  The  data  for  deter- 
n  ining  ww  and  ///,  are  now  at  hand. 

The  ted  temperature  of  the  mixture  can  hr  detern 

i:  aphieally.  as   follows.      On  a   sin^l.  t'  em. rdinate   axes 
p  >t  two  curves  —  one  coordinating  temperatui-e  and  time 
i  th.  \\at« -r  in  the  calorimeter,  and  the  other  for  the  air 
b<  twee n  tlie  two  ves-  9  ;eli  a  pair  0  shown  in 

F  r.  I"-'-  Through  the  puint  of  intersection  of  the  two  curves 
di  ,v  a  line  parallel  to  tlie  temperature  a\  duce  the 

•lini,'    OOrre    -I//    -intil    it    intersects  this   line   PS  at    soiii,- 
.MI    j\      Pi  1>I  rard    until  it  intersects  the  line 
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PS  at  some  point  R.  Then  in  the  manner  given  on  p.  213 
it  may  be  shown  that  the  point  corresponding  to  the  tempera- 

ture t2'  is  as  far  above  R  as  w  is  above  x.  That  is,  to  find  t2r 
add  to  the  temperature  indicated  by  R  the  temperature  differ- 

ence represented  by  wx.  It  may  be  necessary  to  make  one  or 
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FIG.  102. 

Curve  showing  rate  of  change  of  temperature  of  calorimeter. 

two  preliminary  experiments  to  determine  just  how  warm  to 

have  the  water  and  just  how  much  ice  to  use.  After  the  ex- 
periment has  been  performed  successfully  it  should  be  repeated 

once  or  twice,  two  or  three  values  for  the  heat  equivalent  of 
fusion  being  thus  obtained. 
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Exp.  53.   Determination  of  the  Heat  Equivalent  of  Vaporization 
of  Water 

OB.HJ  r   \\i>  TIIKOUY  Off  Kxi'Kiii.MKN  r.  -  -  If  heat  be  applied 
to  S  liquid,  the  liquid  rises  in  temperature  until  its  niaximiiiu  vapor 

-  a  tritle  j  :!i;in  tin.'  external   pressure  on 
\ap.>r  pre>xiuv  is  then  great  enough  to  make 

in  the  liquid  expand  in  spite  of  the  pressure  of  the 

liquid  olit>ioV    of  them.       As   the  bubbles  gro\v  they  rise  to  the 

surface  and  burst  and  the  liquid  is  said  to  lx.il.       Further  addi- 
tion  of   1;  mperature.  but  simply  makes 

•  n   into    '  Q   on    faster.  i.>  .  produces 
•   rapid   boiling.        The   number   of   heat    units   required    to 

v  tpori/.e   unit   mass  of  a  liquid  is  called  the   / 

vaporization  of  the  liquid.      The  object   "f  this  experiment  is  to 
determine  t.  ;  vapori/  water. 

i  ins  of  steam  be  condensed  in  m    Drains  ,,f  water 

e  )!itained  in  a  ••alorini.-t.-r  »»f  w.it.-r  .-quivah-n:  tt  dem.te 
t  ie  temperature  of  the  st«  niperature  of  the  ealoriiu- 

e  ,-r  and  OOUt  the  moment    the  steam   began  to  enter;    (.,. 
t   e  tern  j  -era  ture  <»f  the  two  aft.-r  t  he  v  are  mixed  ;  and  r,  th< 
e    nival.  -nt   of  itioii   ot  Th.-n  the  h.-at    uri\en  up 

1      the  steam  in  0  i'_T  and  then  cooling  to  th,-  t.-mpei'at  ure 
t.  equals  the  heat  taken  up  by  the  calorimeter  and  content  s  plus 

t  e  1  md  (^»- 

=  (wi.+  OOi-O- 

\\  ier-    //  t'liation  ,n. 

\   hence, 

.  -  (,      ̂   (233) 

M  \\IITI.  \  i  i"\     \\i»    COMPUTE  'I'lie  apparatus  used 
in    thi  nt    e..mpri>.->  a   b..il.-r   in    which   the   li(piid   is 

v.  pori/.-d  and  .1  calorimetei'  containing  a  copper  worm  in  which 
tli  3  vapor  is  coml.-ns.;d.      Tin-  liquid  in  the  boiler  A  (  Fig.  103) 
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FIG.  103. 

is  heated  by  means  of  an  electric  current  passing  through  a  coil 
of  wire.  The  arm  holding  the  boiler  is  attached  to  a  vertical 

rod  supported  by  the  tubular  column  B.  Below 
the  clamp  D  there  is  a  horizontal  slit  extending 

through  an  arc  of  about  90°,  and  from  one  end 
of  this  horizontal  slit  there  is  a  vertical  slit  ex- 

tending about  halfway  down  the  tubular  column. 
A  pin  in  the  vertical  rod  supporting  the  boiler 
extends  through  this  slit.  By  means  of  this 
arrangement,  the  boiler  can  be  rotated  quickly 
into  a  definite  plane  and  dropped  in  a  vertical 
line  so  as  to  cause  the  outlet  0  of  the  boiler  to 

register  with  the  end  W  of  the  copper  worm 
contained  in  the  calorimeter  0. 

Weigh  separately  the  condensing  worm  and 
the  inner  vessel  of  the  calorimeter  with  the 

stirrer,  and  determine  their  total  water  equiva- 
lent e.  Pour  water  into  the  inner  vessel  of  the 

calorimeter  until  all  the  convolutions  of  the  condensing  worm 
are  covered.  The  temperature  of  this  water  should  be  below 
that  of  the  room,  but  not  so  low  as  to  cause  dew  to  be  deposited 
on  the  calorimeter.  Determine  the  mass  mw  of  this  water. 

Assemble  the  apparatus  and  adjust  the  position  of  the  calorim- 
eter until  the  outlet  of  the  boiler  will  register  accurately  with 

the  opening  in  the  rubber  stopper  oh  the  end  of  the  condensing 

worm.  Raise  the  boiler,  thus  disconnecting  it  from  the  calorim- 
eter, rotate  it  to  one  side,  and  pour  into  it  enough  distilled 

water  to  cover  all  the  turns  of  the  wire.  Connect  a  110-volt 

circuit  to  the  terminals  of  the  wire  spiral  and  adjust  the  rheo- 
stat until  the  water  boils  rapidly  but  does  not  spatter  over  into 

the  outlet  tube. 

Now  commence  stirring  the  water  in  the  calorimeter,  every 
half  minute  recording  its  temperature,  and  every  minute  or 
two  recording  the  temperature  of  the  air  in  the  jacket.     Record 
the  hour,  minute,  and  second  at  which  each  reading  is  made. 

After  reading  for  two  or  three  minutes  rotate  the  boiler  into 
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position,  drop  it  into  place,  and,  without  interrupting  the  stir- 
ring and  reading  of  temperatures,  allow  steam  to  tlow  into  the 

condensing  worm  until  the  temperature  of  the  water  in  the 

calorimeter  rises  to  45°  or  50°.  Disconnect  the  boiler  from 
alorimeter,  rotate  it  to  one  side,  throw  oiV  tlie  current,  and 

continue  stirring  and  taking  temperature  readings  at  one  min- 

ute intervals  for  about  ten  minute^.  K.-move  the  condensing 

worm  from  the  calorimeter,  carefully  dry  the  outside,  and  weigh. 

The  diiYeren<  .-n  this  mass  and  the  mass  of  the  worm, 

iy    determine(l.    is    the   m    M          of   the   condensed   steam. 

the  barometer, Correct  it  as  indicated  on  pp.    IT'I-ITS.  and 

by  Table  ]-2  find  the  temperature  of  the  steam. 

Compute  tli.  •  tlie  radiation  correction  /{  by  lleguault's 
method  in  the  manner  ^i\cn  nn  pp.  -Jn'.i-iMl?.      In   determining 

.1  notice  that  t  he  ,  '  ;  M  (  _'  I .",  »  j>  t  he  water  equivalent 

of  everything  that  cooled  along  the  curve    ('/>  (  l-'ig.   ss).      In 
tl  e  pr.->.-nt  case  *•'   is   the  ••piivalent   of   the  inner   vessel 
of  calorimeter,  contained  water,  >tirrer,  thermometer,  worm,  and 

c<   -id-  .im. 

«xp.  54. Determination  of  the  Heat  Value  of  a  Solid  with 
the   Combustion   Bomb    Calorimeter 

)r..i  i-:<  r  AM*   TiiKniiV    Off    K\i'i-:i:iMKsr.  —  The    object    of 

ifc  s  experiment  !i  ••  amount  of  h.-.n   developed 
b\  the  complete  eombostioi]  of  a  unit  mass  of  coal.     The  heat 
Vn  uc  ;   liquid  .<T  in  liritish   thermal 

Uii  ts  per  pound  •  r  ̂ ram. 

'he   method    to  be   .  1    in    tliis  experiment    is    to  burn 

a      nown    mass   oi'  -tam •••  in    a  strong   steel  bomb 
filial  with  oxygen  under  lii-^li  pressure.  During  the  combns- 
tio  i  the  bomb  remains  immersed  in  a  water  calorimeter  and 

tb.  hi-  :in.-'l  by  the  ordinary  method  «,f  mix- 

Thn-  •   that    by  the  combustion   of  m  grams  of 
th-   sub>tan'-e,  ih»-  bumb  t-  -.  ith  t  he  calorimeter,  its  acces- 

;  \\ater  ri>e   in  temperature  from  tf  to 
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£2°  C.  If  the  mass  of  water  in  the  calorimeter  is  mw  grams,  the 
total  water  equivalent  of  calorimeter,  bomb,  thermometer,  and 
stirrer  is  e  grams,  and  the  radiation  correction  is  R  calories, 
then  the  heat  value  of  the  substance  is 

TT 

H= m calories  per  gram.          (234) 

K 

The  superiority  of  this  method  is  that  since  in  it  complete 
combustion  is  attained  and  all  the  products  of  the  combustion 
remain  in  the  apparatus,  the  quantity  of  heat  developed  is 
readily  computed. 
MANIPULATION  AND  COMPUTATION.  —  The  apparatus  used 

in  this  experiment  consists  of  a  water  calorimeter,  a  combustion 
bomb,  a  press  for  molding  the  specimen  into  a  small  coherent 

pellet,    and  a  retort   for   generating 

oxygen. 
Hempel's  combustion  bomb  consists 

of  a  soft  steel  or  cast-iron  capsule 
D  (Fig.  104),  closed  by  a  massive 
plug  (7.  The  inside  surface  of  the 
bomb  is  coated  with  enamel.  The 

plug  is  pierced  by  two  passages  — 
one  JH  for  filling  the  bomb  with 

oxygen,  and  the  other  for  the  in- 
troduction of  an  insulated  conductor 

KF.  The  gas  passage  is  controlled 
by  the  compression  valve  A.  The  rod 
KF  is  insulated  from  the  metal  plug 

by  the  rubber  packing  M  and  asbes- 
tos packing  N.  G-  is  a  metal  rod 

screwed  into  the  plug.  A  little  basket 
E,  made  of  incombustible  material, 

is  suspended  by  means  of  heavy  plati- 
num wires  from  the  ends  of  the  rods 

G-  and  F.  The  ends  of  the  rods  Gr  and  F  are  connected  by  a 
thin  platinum  wire. 

FIG.  104. 
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In  preparin_  imen  of  coal  for  a  determination,  the  coal 

It   pulverized  in  a  mortar  and    then  molded  into  a  compact 

coherent  pellet  by  means  of  a  screw  press  (  Fi^.  1 '.»">).      The  mold 

of  the  pn  f  a  block  of  steel  s  (  Vig.   1  <>*'.)  bored  out 
to    the    required    si/c.      The 

upper    portion    of    this   hole 
vlindrical    and    is    titled 

with   a   cylindrical   p!u_:   .1. 

Lower    portion    of    the 
:iued      nut      to     a 

al     form    and    is    lilted     ̂ _  ^^ 
with  a  conical  plu^  It.      (  hi 

of    the 

plu<_:  narrow  channels  \\hi.-h  extend   from  on 
in  oil 

Loop  a  /   s  /       .ei-  thr   conical   phiLf  and   lav 
it;  ends  in  tl  L.26  ̂ .  of  pulverized  coal 

about    thi-  .  pin  thr   •  -slimier  .1   in  place   and  the 

p  unger  P  on    t<  n    tin-   screw   down    until  the 

8]  ecin  .mpressed    into  a  compact    pellet.       I 

tl  6  s»  p  thr  mold    ml  •  the  upprr    :  .1  guides,  and 

a    ain  depress  the  s.-r.-w   until   tli-  t  mil    through 

t:    •   b  t'  the    iimid.       \\'i;h    a  «.harp    knitr    parr    down  thr 
p'  llet  until  it  wri^hs  about  one  gram.     Cut  off  one  end  of  the 

tl  read  cl  nenu     li.-:m>ve  any. loose  partii 
C«   ll  by   DO  a    .small    brush,   place    the  pellet    mi    a    « 

g  MB.  .     hoiiMt  touch  the  pellet  with  the  fingers,  but 
h;  tldlr  by  11:  ;  hr  thivad. 

Dome*    the   plug'       :  th«    b..mb.    mount    it   in  a 
rt  ort  stand,  con IM-.I    ihe  t«-r.v.  trie   circuit  to  the 

bi  id  ing  posts  A' and  L.  and  can-full  \   d.-en-asr  the  resistance  in 
th)  circuit   until   the  current  will   just  brin^  the  platinum  wire 

ctin^  (1  ami    /'to  a    r.-d  glow.      \Vithmit    disturbing  the 
re  ..->tancr    in  I  .  open    the    switch    and    disconnect    the 

te  mi:  MI  the  binding  posts  A' a  ml  A.      Place  the  specimen 
Of  coal   in   the  basl     I     /-'  i    of  the  thread  to 
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the  wire  connecting  Gr  and  F.  Without  disturbing  the  speci- 
men, remove  the  plug  from  its  support  and  screw  it  tightly 

into  the  bomb.  The  bomb  is  now  ready  to  be  filled  with 
oxygen.  Into  the  gas  generating  retort  R  (Fig.  107)  put  a 
mixture  of  about  two  hundred  grams  of  potassium  chlorate  and 
some  fifty  grams  of  manganese  dioxid.  Put  a  tightly  wound 
roll  of  copper  or  brass  wire  gauze  into  the  tube  leading  from 
the  retort,  and  connect  the  retort  and  a  pressure  gage  Gr  to  the 
combustion  bomb  in  the  manner  shown  in  the  figure.  Before 
beginning  to  heat,  shake  the  retort  so  as  to  spread  the  mixed 
potassium  chlorate  and  manganese  dioxid  along  its  whole 

FIG.  107. 

length.  The  pressure  gage  and  combustion  bomb  are  immersed 
in  a  vessel  of  water  for  the  purpose  of  detecting  any  leak  in  the 
bomb  and  also  for  the  purpose  of  cooling  the  oxygen  coming 
from  the  hot  retort. 

Open  the  gas  valve  in  the  combustion  bomb  and  apply  a 
Bunsen  flame  near  the  farther  end  of  the  gas  generating  retort 
until  the  gage  indicates  a  pressure  of  about  1  Kg.  per  sq.  cm, 
(14  Ib.  per  sq.  in.).  If  the  flame  be  now  removed,  the  heat 
already  given  to  the  retort  will  generate  enough  oxygen  to 
raise  the  pressure  to  about  5  Kg.  per  sq.  cm.  (70  Ib.  per  sq.  in.). 
Now  loosen  the  flange  coupling  P  so  as  to  allow  the  mixture 
of  oxygen  and  air  contained  in  the  apparatus  to  escape.  By 
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tightening  the  coupling  P  and  repeating  this  operation  the 

entire  apparatus  can  be  freed  of  air.  Now  tighten  the  couplings 

and  slowly  heat  the  retort  until  the  gas  pressure  rises  to  about 

1-  Kj.  pel  Bq.  em.  (170  Ib.  per  sip  in.).  Close  the  gas  valve 

on  the  combustion  bomb  ami  immediately  afterwards  discon- 
:he  boml)  at  the  coupling  //  from  the  remainder  of  the 

apparatus.  Cool  the  boml)  to  about  the  temperature  of  the 

room  and  carefully  dry  it  with  a  towel. 

Place  the  bomb  in  a  water  calorimeter  ('  (  Fig.  1<>7 )  containing 
m*  gram-  r   at    abmit    the   room    temperature.      Connect 
the    terminals  of  the  pre\iou>ly  arrau  trie  circuit  to  the 

binding    pOfttfl   A'    ••'.-.  i    A.  and    see    to    it    that    A'  and  I,   are    not 
-circuited  by  the  cover  of  the  calorimeter.      liclWe  closing 
\itcli  in  the  electric  circuit    take   temperature  ivadii: 

the  continuously    stirred  water  at    half   minute    intervals    l'..r   at 
least  live  minutes.      At  a  given  instant  olotM  the  switch  so  that 

t  ie  electric  current  will  ignite  the  specimen.      The  switch  .should 

1.  3  closed  for  a  moment  only  or  the  heating  r  fleet  of  the  current 
v  ill  need  to  be  taken  into  ;iccou  nt .      Continue  the  water 

a  id  taking  half    minute    tenij  |    for    ;it    least    ten 

i    inutes  ;i  |  bomb  OUt  of  the  water,  open 
t  ie  va  -crew  the  head,  wash  out   the    inside,   and   oil    the 

8  rew  ti 

From   a    en:  r    temperature    and    time    lind    by 

t    6  graphical  method  described  <>n  pp.  _'  \-    -1  \  the  highest  t,-m- 

p  nature   tliat    would    have   been   .;'  by    the  calorimeter  it 
tl  ere  had  been  no  Ion  nation.     Let  /..  i,p 
tl  ia oorreeted temperature,     rbenin  \vrite 

& — -i'  calories  per  gram. 

in   this   equation   tl.  t    equivalent    •'    is   still    unknown. 

:  mined  in  any  of  three  -  iking 

im  of  the  products-  of  the  masses  ami  the  assumed  specific 
hilts  the   apparatus.      In   an   apparatus 

liletl  many  different   materials  of  uncertain 
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composition,  this  method  is  unreliable.  (£>)  Experimentally, 
by  the  method  of  mixtures.  The  large  amount  of  water  re- 

quired in  this  experiment  and  the  difficulty  of  obtaining 
temperatures  accurately  make  this  method  unsatisfactory  for 
inexperienced  observers,  (e)  By  means  of  a  supplementary 
experiment  in  which  a  definite  amount  of  heat  is  developed  in 

the  apparatus  by  the  combustion  of  a  known  mass  of  a  sub- 
stance having  a  known  heat  value.  There  are  a  number  of 

substances  the  heat  values  of  which  are  accurately  known  and 
which  can  easily  be  obtained  pure.  The  last  method  is  the 
one  that  will  be  employed  in  this  experiment. 

Suppose  that  when  using  the  same  apparatus  as  before,  the 

burning  of  m'  grains  of  a  substance  of  heat  value  H'  raises  the 
temperature  of  the  apparatus  and  of  m'w  grams  of  water  from 
fj°  to  t%°G.  Let  £3  be  the  temperature  that  the  calorimeter 
would  have  attained  if  there  had  been  no  loss  of  heat  by  radia- 

tion. Then 

H,  =  (X/+gXV-*i')  calories  per  gram.  (236) 

Whence,  on  solving  for  e, 

Wl'    H  I  Xf)OTX 

e  =  -  —  -,-wiJ.  (237) 

Naphthalin  is  a  suitable  substance  to  use  in  this  supplemen- 
tary experiment.  Make  a  pellet  of  somewhat  smaller  mass 

than  that  of  the  coal  already  used  and  proceed  exactly  as  in 
the  experiment  with  the  coal.  Use  (237)  to  find  e,  and  then 

(235)  to  find  H. 
Before  putting  away  the  apparatus  dig  the  remaining  solid 

substance  out  of  the  gas  retort,  rinse  out  the  combustion  bomb 
with  water,  and  carefully  oil  the  threads  of  the  bomb  and  all 
parts  of  the  press.  Be  certain  that  no  water  or  oil  is  left  inside 

of  either  the  retort  or  the  bomb.  If  'oil  or  any  other  organic 
substance  is  heated  in  the  retort  with  the  oxygen  producing 
mixture  an  explosion  is  liable  to  occur. 
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Exp.  55.    Determination  of  the  Heat  Value  of  a  Gas  with 

Junker's  Calorimeter 

OB.II.'  r   AND   THI:<>I:Y   o*   KXI-KKIMKNT.  -  -  The   object  of 
this  experiment  is  to  determine  the  numher  of  lieat  units  devel- 

liy  tin-  eoinbustion  of  unit   volume  of  a  Driven  sample  of 

In  Junker's  metho<l  the  heat  developed  hy  a  steady  llame 

•cniiiin-d    l>y    mt-asurinLT    the    heat    ahsnrhed    by    a    steady 
:n  <>f  water  incli»in_f  the  Itame. 

lus. 

a ratus  consists  of  an  accurate  gas  met. •;•  V  <  1  i_^.  108), 

a  eras   piv^un-    iv_Mila;  '.»rimeter   (7,  of 
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design.     The  calorimeter  consists  of  a  combustion  chamber  A 
(Fig.  109),  inclosed  by  a  water  jacket  B,  traversed  by  a  large 

number  of  tubes  for  the  pas- 

sage of  the  products  of  com- 
bustion. The  water  jacket  is 

surrounded  by  a  closed  space 
L  filled  with  air.  After  trav- 

ersing the  meter  and  pressure 
regulator  the  gas  is  burned  in 
the  burner  Q.  The  products 
of  combustion  after  passing 
through  the  tubes  traversing 
the  water  jacket  escape 
through  the  vent  Y.  The 
temperature  of  the  gas  as  it 
enters  the  burner  and  the  tem- 

perature of  the  products  of 
combustion  as  they  leave  the 
calorimeter  are  given  by  the 

thermometers  T"  and  T1".  A 
stream  of  water  flows  from  the 

supply  pipe  D  into  a  small 
reservoir  kept  at  constant 
level  by  means  of  the  overflow 
pipe  0.  From  this  regulator 
the  water  passes  down  the 
tube  E  through  the  control 
valve  V,  thence  through  the 
water  jacket  jB,  thence  through 
Gr  and  the  discharge  nozzle 
H  into  the  measuring  vessel 
U.  The  temperatures  of  the 
water  as  it  enters  and  as  it 
leaves  the  calorimeter  are 

given  by  the  thermometers  T' 
and  T.  Water  vapor  formed  by  the  combustion  of  the  gas 

FIG.  101). 
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condenses  on  the  inside  of  the  combustion  chamber  and  escapes 

through  the  outlet  •/  into  the  measuring  vessel  W. 

The  tlow  of  water  ami  <  -o  adjusted  that  the  tempera- 
ture of  the  products  of  combustion  escaping  at  Y  is  approxi- 

mately the  same  as  the  temperature  of  the  gas  entering  the 

burner  at  /'. 

Let  r  represent  the  volume  (reduced  to  standard  conditions") 
of  the  gas  burned   during   a   certain   time.      Let   the   ma--   of 

which  passes  through  the  calorimeter  during  this  time  be 

denoted   by    IK,,   and   let   its  temperatures   on   entering  and   on 

leaving  be  represented  by  £  and?  respectively.     Let  the  mass 
am  condensed   during  the  combustion  be  represented  by 

.d  let  the  temperature  at  which  it  condenses  and  the  tem- 
perature of  the  condensed  steam  as  it  leaves  the  calorimeter  he 

d-'iiotrd  b\    ?.  and  t  .  respectively. 
u  the  heat  value  of  the  gas   //  is  given  by  the  equation 

*«  ~  (  L,.;S  ( 

is  the  heat  equivalent  of  vapoi  i/ati<>n  of  water.  If  m,r 
a  d  in,  are  measured  in  grams,  v  in  liters,  and  temperature-  in 

d  grees  centigrade,  th.-n  //  m  in  gram  calories  per  liter 
o    kilogram  calor 

MAMITI.A  ri<>\  AND  COMPUTATION.  —  After  assembling  the 

a    paratu-.  :  />  to  the  water  supply  so  that  any  leak  in  the 
c;    or:  .dent.      The  tlo\v  of  water  into  t  he 

8]  parat  us  inn  s  be  sufficiently  great  to  overflow  through 

tl  )  pipe  0.  With  gas  valve  at  the  burner  Pclosed,  conneet  the 
gj  }  regulator  to  the  gas  supply  and  notice  whether  the  index  of 
,th  i  meter  moves.  If  it  does,  seek  out  th-  .d  remedy  it. 

With  the  water  still  flowing  through  the  apparatus,  take  the 

burner  out  of  tlie  i-alorimeter,  light  the  gas.  and  replace  the 
bu  ner.  If  the  gas  is  lighted  while  the  burner  is  inside  the  com- 

bo lion  chain'  danger  of  an  explosion-  Haveti 
of  ,he  bu  m  u  t.,  1")  cm.  above  the  lower  opening  to  the 
en:  iliustion  chamber.       The  dani]  mid  t"-  from  one  half 
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to  completely  open,  depending  upon  the  draught  required  for 
the  flame. 

Arrange  the  flow  of  water  by  means  of  the  valve  V  and  the 
flow  of  gas  by  means  of  the  valve  P  so  that  the  thermometers 

T"  and  T'"  indicate  practically  the  same  temperature.  For 
ordinary  illuminating  gas  the  proper  rate  of  flow  of  water  is 
from  1.0  to  1.5  liters  per  minute. 

After  all  of  the  thermometers  indicate  nearly  stationary  tem- 
peratures, note  simultaneously  the  gas  meter  reading  and  the 

temperatures  indicated  by  the  thermometers  T  and  T' .  Then 
immediately  place  suitable  vessels  U  and  W  so  as  to  catch  the 

warmed  water  escaping  from  ̂ Tand  the  condensed  steam  escap- 
ing from  J.  Note  the  temperatures  of  the  ingoing  and  the  out- 

going water  every  15  seconds  until  two  or  more  liters  of  water 
have  flowed  into  the  vessel  U.  Then  remove  the  vessels  27  and 

TFand  at  the  same  time  take  the  gas  meter  reading.  Note  the 
temperature  tc  of  the  condensed  steam  in  W.  Determine  mw 
and  ms  by  weighing. 

From  the  difference  between  the  two  gas  meter  readings  to- 
gether with  the  temperature  and  pressure  of  the  gas  passing  to 

the  burner,  the  value  of  v  is  found  by  means  of  the  fundamental 
law  of  gases.  The  temperature  is  given  by  the  thermometer 

T" .  The  pressure  is  the  sum  of  the  barometric  reading  and 
the  height  of  mercury  corresponding  to  the  difference  in  the 
levels  of  water  in  the  manometer  V. 

All  of  the  data  are  now  at  hand  for  substitution  in  (238.) 
By  substituting  a  properly  designed  lamp  for  the  gas  burner, 

Junker's  calorimeter  can  be  used  for  finding  the  heat  value 
of  a  liquid. 
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THERMODYNAMICS 

IT  is  found  that  whenever  Tr  units  of  mechanical  energy  are 

entirely  used  in  producing  heat,  the  amount  of  heat  produced  is 

always  the  same,  being  independent  »>f  tin-  particular  wa\  in 
which  th-  1  to  produce  the  heat  :  that  whenever 

//  units  of    i  entirely    used    in    producing    mechanical 

v  the  amount  of  mechanical  energy  prodm-ed  is  always  the 
s  uiie.    l»eing  independent    of   tlie   particular   way  in  which  heat 

i?  used  to  produce  the  energy;  and  that  if  FT  unite  of  meohan- 
i«  al   e:  /  .    //  mills   of  h.-at   produce 

\7  units   of    :  :  -e  facts  may  all  he 
i    dicated   l»y  the  one  equation 

• 
 TT=  JH. <7repre>  ^  of  mechanical  energy 

t  at  a  I               _riven 

t   e  name  mechanical  equivalent  of  heat.  Its  value  depends  only 

u  >on  the  uiiii-                     i  which  •  .  an  ical  energy  and  the 
li  at                      •  d. 

I  cp.  56.   Determination  of  the  Mechanical  Equivalent  of  Heat 

by  Rowland's  Method 

OBJECT  A \i»  Tiir.i>-  ,    --<  >ne  m<-tho<l  of  de- 

[ning  the  me.-hanical  equivalent  <»f  h,-at  i->  to  measure  the 
ar  OUlit  of  heat  developed  when  a  ̂ ivm  amount  of  meehanieal 

en  ;rgy  is  used  to  stir  wate  In  the  apparatus  used 

by  Joule  and  improved  l»y  Etowlan  is  done  in  the 
847 
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inner  vessel   0  (Fig.  110)  of  a  calorimeter.     From  the  inner 
walls  of  this  vessel  pro- 

ject vanes  W  between 
which  the  paddles  PP 
have  just  room  to  turn. 

These  paddles  are  fas- 
tened to  a  piece  of  brass 

tubing  that  carries  at  its 

upper  end  a  disk  which 
is  driven  by  the  belt 
from  the  small  motor 

seen  at  the  right.  The 
vessel  0  is  supported 
below  on  a  point  with 

very  little  friction  and 
on  top  carries  a  disk 
D.  Around  this  disk 

is  lapped  a  cord  which 
passes  over  a  pulley  P 
and  carries  at  its  end  a 
mass  M.  If  there  were 

nothing  to  prevent  it, 
the  weight  of  M  would 

cause  O  to  turn  until  a  projection  on  D  came  against  one  of  two 
stops  between  which  it  plays.  But  the  motion  of  the  paddles 

PP  throws  water  against  the  vanes  FT' so  rapidly  that  when 
the  adjustments  have  been  properly  made  0  remains  nearly  at 
rest,  the  projection  on  D  playing  between  the  two  stops. 

Let  M  denote  the  mass  of  M  and  d  the  diameter  of  D.  Then 

Mg  X  J  d  is  the  torque  that  M  exerts  in  keeping  0  from  turning 
with  the  paddles.  When  the  paddles  have  turned  n  times  they 

have  turned  through  an  angle  of  2  trn  radians.  From  the  propo- 
sition in  elementary  dynamics  which  states  that  the  work  done 

by  a  rotating  body  is  measured  by  the  product  of  its  rota- 
tion in  radians  and  the  torque  which  opposes  that  rotation, 

we  have  then 

FIG.  110. 
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(240) 

where  W  denotes  the  meehanieal  energy  used  in  stirring  the 
water. 

m  denote  the  mass  of  water  in  the  calorimeter;  e,  the 
water  equivalent  of  the  vessel  (7,  the  paddles,  and  the  immersed 

part  of  the  thermometer  ;  tr  the  initial  temperature  of  tlie  water 
in  tlie  calorimeter:  t.,,  its  temperature  after  the  paddles  have 

//  turns,  and  //  the  net  amount  of  heat  lost  from  C  by 
radiation.  Then  from  (206), 

where  //  denotes  the  amount  of  heat  developed  by  the  churning 
of  the  water. 

From  (  L  10),  and  <  -J  U  >  w  h..\e  then 
' 

(in  4 

(242) 

i»    CnMi-i  TATIOK.  —  In    order    to    deter- 

:     /.'  0  know   how 

ie  readings  of  the  two  thermometers  compare.      Adjust   tin- 
inn   tin -rmometer  as  directed  on  p.    160,   and  Mi>p,  nd 

>th  tii'Tiiioinrt'T^  in  a  hath   <•'  nrar  tin-   tt-mprrat  nre  of 
e  room.      Stir  the  water  o.-rasioiialh ,  and  after  a  time  record 

,e  reading  of  each  UHTII;'  Meantime  take  the  diameter 

(i    D  with  a  caliper  and  met»-r  stick,  &  lie  pulley   /'runs 
c  sily,  and  he  sure  that    the   vessel  C  and    the    paddles  are  dry 

a    d  wei^h  them  together.      Then   fill  C  to  within  a  few  niilli- 

i:    -ters  of  the  top  \\  ith  water  at  a  temp.-iMt  ni-e  -  i>elow 

tie  temperature  of  t ':  :i.      Assemhle  the 
a    paratus.  >et  the  motor  running,  and  hy  means  of  the  screw  A 
n  >ve  the  motor  until  the  ten>ion  of  the  belt  is  such  as  to  keep 

tl   •  p:  i  on  It  playing  about  halfway  between  it>  itopt. 
nit    read   the   therm.. meter    T  and    imme- 

.  tte!  the  speed   eoll!lt«T   X.        |-'or  some  tell   or   fifteen 

111  nutes  after  that  iiotant  read   7'and    7\  every  minute — always 



250 PRACTICAL  PHYSICS 

reading  one  of  them  half  a  minute  after  the  other.  At  the  end 
of  this  time  open  the  switch  that  supplies  power  to  the  motor, 
note  the  reading  of  the  speed  counter,  and  continue  reading  the 
thermometers  for  five  or  ten  minutes.  During  this  time  the 
water  in  the  calorimeter  ought  to  be  kept  stirred.  This  can  be 
done  by  turning  the  paddles  steadily  and  very  slowly  by  hand. 
The  paddles  must  not  be  turned  faster  than  about  one  revolu- 

tion in  two  minutes. 

On  the  same  sheet  plot  two  curves  coordinating  temperature 

and  time' — one  for  the  thermomter  ^and  the  other  for  Tl — and 
by  Regnault's  method  determine  R.  In  finding  n  note  that 
the  speed  counter  reads  1  for  every  four  turns  of  the  paddles. 
Determine  M  by  weighing  and  e  by  (210). 

Without  throwing  out  the  water  or  repeating  the  weighings 
make  three  determinations  and  find  the  mean. 

Exp.  57.   Determination  of  the  Mechanical  Equivalent  of  Heat 

with  Barnes's  Constant  Flow  Current  Calorimeter 

OBJECT  AND  THEORY  OF  EXPERIMENT.  —  In  text-books  on 
General  Physics  it  is 
shown  that  when  a 

steady  electric  current 
of  /amperes  flows  from 
one  to  the  other  of  two 

points  between  which 
there  is  a  potential  dif- 

ference of  V  volts,  in  t 

seconds  there  is  trans- 
formed between  those 

two  points  from  elec- 
tric energy  into  heat 

the  amount  of  energy 

FIG.  ill. 
W—IVt  joules  = 

IVt  •  10?  ergs.       (943) 
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If  the  current,  the  potential  difference,  the  time,  and  the  heat 

produced  can  be  accurately  measured,  (-43)  suggests  a  method 

of  determining  tlie  meehanical  equivalent  of  heat. 

hi  this  experiment  the  electric  current  flows  through  a  wire 

I  inside  of  a  glass  tube  B-^B^  (Fig.  111).     Through  this 

same  tul  a«ly  flow  of  water.     The  heat  developed  by 

irrent  warms  the  water  during  its  passage  through 

the  tube  so  that  the  thermometer  7^  indieates  a  higher  tempera- 

ture than  T.2.  If  ///  Drains  of  v .  in  t  seconds,  and 

during  the  passage  through  the  tube  are  raised  from  tempera- 
.iperature  Tr  the  amount  of  heat  developed  in  the 

wire  during  the  same  t  seconds  is,  b\ 

//  .  IK  7\  -  7^)  caloii  (244) 

ibstituti  values  of   W  and   11  from   < 

iind  (  -  H  )  \\e  obtain 

L0> 

ergs  per  cal C246) 

'\  ~ Sine.-  the  triii{»  T{  and  7^  are  practically  steady  dur- 
i  ig  tl  '-listTvations  are  l>eing  taken  there  are  no  conv.-- 
t  ons  for  t  iiennometers, 
i  or  anything  else.  With  a  good  flow  of  water  and  the  mean 

«  :"  the  tnuperatures  of  the  inflowing  and  outflowing  water 
^  ithi:  •  room  t.-mj.erat mv  •  losses  by  condne- 
t  on  and  :i  are  negligible. 
M\\M  M>  COMPUTATIO        -The  rate  at    which 

^  ater  tl  ept  #,  ir  B- 
C  instant  by  a  small 
r  servoir  inside  a 

1;  rg-  >\\  11 

a     th«-    top 

1  1.   Ti.  -up- 

p  is  so  arranged 

tl  it  u  i ys 

Overflowing  gently  from  the  small  reservoir,  and  the  head  of 
W  iter  is  th«-i-  .nstant. 

1  HJ    ll'J. 



252  PRACTICAL  PHYSICS 

After  the  apparatus  is  set  up  as  shown  in  Fig.  Ill  and  the 
water  is  started,  the  electric  connections  are  to  be  made  as  in- 

dicated in  Fig.  112.  Bl  arid  B^  are  the  binding  posts  shown  in 

Fig.  Ill,  and  W  is  the  wire  inside  the  glass  tube.  V  is  a  volt- 
meter, A  an  ammeter,  R  a  rheostat,  and  EE'  the  terminals  of 

an  electric  circuit.  In  connecting  the  ammeter  and  voltmeter 
care  must  be  taken  that  the  positive  wire  is  connected  to  the 
side  marked  + .  If  it  is  not  known  which  terminal  is  positive, 
one  wire  may  be  connected  and  then  the  other  flicked  quickly 
across  the  other  terminal. 

After  making  the  electric  connections  and  adjusting  the  flow  of 
water  and  the  electric  current  to  suitable  values,  open  the  switch 
in  the  electric  circuit.  After  a  few  minutes,  when  the  readings 
of  the  thermometers  have  become  steady,  record  their  readings 
every  minute  for  four  or  five  minutes.  Make  all  thermometer 
readings  to  hundredths  of  a  degree.  Close  the  switch,  and  when 
the  thermometers  have  again  become  steady,  put  under  the  out- 

let a  weighed  vessel  and  at  the  same  instant  start  a  stop  watch. 
After  fifteen  seconds  read  the  voltmeter,  afcer  fifteen  more  the 
ammeter,  after  fifteen  more  one  thermometer,  and  after  fifteen 
more  the  other  thermometer.  Continue  taking  readings  in  the 
same  order  every  fifteen  seconds  for  five  or  ten  minutes.  At 
the  end  of  this  time  remove  the  vessel  from  under  the  outlet  and 

at  the  same  instant  stop  the  watch.  Find  the  mass  of  the  water 

that  flowed  through.  To  get  (2\  —  ̂ 2),  subtract  the  difference 
between  the  averages  of  the  temperatures  indicated  by  the  two 
thermometers  before  the  electric  current  was  turned  on  from 

the  difference  between  their  average  readings  while  the  current 
was  flowing. 

Take  five  sets  of  observations  for  different  rates  of  flow  of 
water  and  different  values  of  electric  current. 
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TABLE  1.  —  Conversion  Factors 

LENGTH 

1  centimeter 

1  meter 
1  kilometer 

1  micron 

=  0.39371  inch 
=  3.2809  feet 

=  0.62138  mile 

=  0.001  mm. 

=  0.0000394  inch 

1  inch 
1  foot 

1  mile 
Imil 

=  2.53995  cm. 

=  0.30479  m. 
=  1.60931  Km. 

=  0.001  inch 

=  0.00254  cm. 

AREA 

1  sq.  cm. 
1  sq.  m. 

=  0.15501  sq.  in. 

=  10.764  sq.  ft. 
1  sq.  in. 

1  sq.  ft. 

=  6.4514      sq.  cm. 

=  0.092900  sq.  m. 

VOLUME 

1  cu.  cm. 

1  cu.  m. 
1  liter 

=  0.061027  cu.  in. 

=  35.317  cu.  ft. 

=  1.76077  pints 

1  cu.  in. 
1  cu.  ft. 

1  quart 

=  16.386  cu.  cm. 

=  0.028315  cu.  m. 
=  1.13586  liters 

1  gram  =  15.43235  grains 

1  kilogram     =  2.20462  Ib. 

"  MASS 

1  grain    =  0.064799  gram 

1  Ib.  (7000  grs.)  =  0.45359  Kg. 

ANGLE 

1  radian          =  57.296  degrees  |       1  degree  =  0.017453  radian 

DENSITY 

1  g.  per  c.  c. 
=  62.425  Ib.  percu.  ft. 

1  Ib.  per  cu.  ft. 
=  0.016019  g.  per  c.c. 

FORCE 

1  dyne   =  0.000072331  poundal 

1  g.  wt.  =  0.0022046  Ib.  wt. 

1  poundal  =  13825  dynes 

1  Ib.  wt.     =  453.59  g.  wt. 

1  cm.  g.  unit 

MOMENT  OF  INERTIA 

1  ft.  Ib.  unit 

=  2.3731  x  10~6ft.lb.  units =  421390  cm.  g.  units 
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STRESS 

1  dyne  per  sq.  cm. 

=  i).n.;7i!i7  j.oundal  per  sq.  ft. 

1  g.  \\  in. 

= -J.ols-j  n,.  wt.  per  sq.ft. 
1  <-in.  of  mercur 

=  1  r  sq.  cm. 

=  0.19338  Ib.  wt.  per  sq.  in. 

1  poundal  per  sq.  ft. 
=  14.^1  r,  .lynes  per  sq.  cm. 

1  Ih.  wt.  ]>.T  >-i.  t't. 
\vt.  | KM-  sq.  cm. 

1  in.  of  iwMvury  at  0°  C. 
=  34.f>o3  £.  wt.  per  sq.  cm. 

=    0.49117  Ib.  wt  per  sq.  in. 

\V..i:K    01    Ba 

1  erg      =  L>.:J7:U  x  10-«  ft.  poundals 
1  joule  =       107  ergs 

=  L'  lals 

, ;  x  10-*  ft.  11.. 

1  ft.  poumlal  =   1  _'!:;: MI  ,.rgs 
1  ft.  Ib. 

5486  joult-s 1   II.  T.  hour  i.ml.'s 

I'nWI  K 

10T n.-j  ;  P. 
force  de  cheval 

=  0.9863  horse  power 

j.-r  miu. 

il  per  sec. 
li»1390  ergs  per  sec. 

1  ft.  Ib.  IHM-  miu. 
in.  [«T  miu. 

1  horee  power  •  741 
=  1.0139  force  de  cheval 

1 

Tm  it  MOM  ETR  ic  SCALES 

F  = 
iv  «'i    HEAT 

calorie     =  0.0039683  B.  T.  U.      |       11.11          -j.vj.00  g.  calories 

Mi  .  it  \M.   M    l'...i  i\  \n  N  r  ..i     II 

1    .calorie 
i  les 

=  1HMMJ 

1  B.  T.  1T. 

iav>  joules 

778.1  ft.  Ib. 

Loo  vi:i  HIM- 

|      log.  JV=  2.3026  log,0 

mpute<l  with  the  value  of  g  at  Greenwich. 
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TABLE  2. — Densities  of  Solids  and  Liquids 
Since  density  varies  with  the  temperature  and  with  the  specimen,  these  numbers 

are  to  be  regarded  as  approximations  only. 

SUBSTANCE 
GRAMS 
PER  C.C. 

LBS.  PER 
CU.  FT. SUBSTANCE 

GRAMS 
PER   O.C. 

LBS.  PER 
CU.  FT. 

Aluminium  .... 2.7 170 

Lime    

52.3
 

140 

NH4C1      
1  52 95 )  3  2 

200 

Antimony 671 419 

125 

150 

Asbestos 

52.0 
$2.8 

125 
175 

Limestone  .... 

Marble 

)8.0 

(2.6 

190 
160 

Asphalt    
U.O 62 

]2.8 

175 

J1.8 

110 
Mica    

<2.6 160 
Beeswax    

0.96 

60 
)  2  9 180 

Benzene 
070 

44 

Mercury  at  0°  C 

13  596 8487 

Bismuth     ... 980 
612 Nickel 

8  90 

556 

Brass    .  .      .  . (7.7 
480 

Oil,  Linseed  .  .  . 0.94 59 

Brick 

18.7 

(1.6 

540 

100 
Oil,  Olive    .... 

Paraffin    

0.91 

J0.87 

57 

54 

Bronze 

|2.1 

86 
130 540 

Phosph  orus 

")  0.93 

1  83 
58 114 

CaCl2          .         .  . 2.2 
140 Platinum 

21  5 
1340 

CS2  at  20°  C.  .  .  . 
Chalk 

1.264 
(1.8 

78.9 
110 

Porcelain     .... 

K2Cr04    

2.4 

2.72 
150 
170 

1  2.8 1.2 175 

75 
K2Cr2O7      
Quartz    

2.70 

265 
169 
165 

Coal          
1  1.8 

110 
Resin    

1.07 
67 

Copper    . 
892 557 

(99 

140 
CuSO4  .... 

2.27 142 Sandstone  .... 

}  25 

150 

Cork    0.24 15 

(  1.1 

70 

Shellac 
Diamond.   . 

3  52 220 

1  1  2 

75 Ether  at  0°  C.    .  . 
German  Silver  .  . 

0.736 
8.62 

$25 

45.9 
538 
150 

sHEEf:: 
Slate 

10.53 
10.38 27 

657 

648 170 
Glass      

Glycerin    
}  3.9 

1.26 
250 

79 
Soapstone  .... 
Solder  (soft)    .  . 

2.7 

8.9 
170 
555 

Gold  pure 1932 1206 NaCl 
2  15 

134 
Granite    

J2.5 

1    Q  A 
150 
1QO 

Sulphur,  rhombic 
Tin 

2.07 
7  9Q 

129 

4KK 

Graphite 

23 140 
Turpentine 

0  87 

54 

Ice  at  0°  C    09167 5722 Vulcanite    .  .  . 

1  22 

76 cast     .... 

pure    .... Iron< 
steel    .... 

wrought  .  . 

Ivory      

(7.0 

J7.7 

7.86 
(7.6 

J7.8 

<  7.79 
17.85 

5  1.83 

440 
480 
491 

470 
490 

486 
490 

114 

Water  at  4°  C.    . 
ash  .  .  . 
cherry    . 

YeH^  •  •  • soned    pine  .  .  . 

poplar    . 
walnut  . 

1.000013 
0.75 
0.67 

(0.7 

jl.O 

0.5 
0.4 0.7 

62.4252 47 

42 45 
62 

31 

25 

45 

I  1.92 

120 
Zinc      7.15 

446 

Lead  Ccast) 11  34 
708 

ZnSO 2  0 125 
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TABLE  3.  — Specific  Gravity  of  Water  at  Different  Temperatures 

Referred  to  Water  at  4°  C. 
•a 

SP.  GR.    I 

°c. 

SP.  GR. 

"C. 

SP.  OR. 

°c. 

SP.  GR. 

°<\ 

Or   • 

-4 
0.99945 17 090688 

38 0.99303 

59 

0.98382 

80 
0.97191 -3 

58 18 39 
60 

:i:il 

81 
129 

-2 
70 

19 40 61 
280 82 

066 -1 20 41 
195 62 

83 

004 
0 21 

42 157 63 

17:. 84 

I'll 

1 22 788 43 117 
64 

12] 

85 
2 

23 

44 
(•77 

65 067 
86 

812 
3 M 24 45 

66 012 
87 

717 4 l.oOOOO 
25 710 

46 
046998 67 

7<)57 

88 
682 

5 26 

;M 
47 68 

89 

616 
6 07 

27 

i.>7 48 

905 69 90 7 N 28 
!L'!» 

49 
BOO 

70 

91 
188 8 <ss 29 

100 
50 

813 
71 

92 

416 
9 30 

."•71 

51 767 72 
93 10 71 31 MO 

52 

7*1 
73 

Olfi 94 
11 M 32 509 

53 74 
666 

95 212 12 64 
33 177 

54 75 

96 L48 13 34 III 55 

57flT 

76 
97 

<>7I 

14 
35 

410 
56 77 98 

15 n 36 57 481 
78 

:;ll 

99 

:<:;! 

16 049896 37 887 58 

}::•_' 

79 
100 

'ABLE  4.  —  Specific  Gravities  of  Aqueous  Solutions  of  Alcohol 

% 8r><                    •>  AT % gpKcirtn  GRAVITY  AT 

\1,  .,!,.., 

»T*
 

1" •*> 

80° 

•T 

UH..M1 

100 

200 

800 

0 0.99975 049681 OJ9679 
55 

0.91074 0.90275 0.89456 
5 J6946 60 .89944 

<!•_'!• 

10 46400 46196 65 48790 ,87126 
15 .97 .97142 

70 
.87613 

20 .97 

.9<; 
75 .86427 

.8.v 

.84719 
25 46072 46166 46628 80 

.86210 

.81 

.83488 
30 46406 .94751 

85 
,!i:> 

35 .9.r)171 90 41801 
t> .!»i2.v, 46611 42787 95 ,8129] 40488 .79668 
45 42498 .91710 

100 
,76946 

50 41400 40977 
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TABLE  5.  — Specific  Gravities  of  Aqueous  Solutions  at  15°  C. 
Referred  to  Water  at  4°  C. 

% HC1 
HNOg H2S04 NaOH NaCl 

CuS04 ZnS04 

SUGAR 

AT  17°.  5 

% 

0 0.9991 0.999 0.9991 0.999 0.999 0.999 0.999 0.9987 0 
5 1.0242 1.029 1.0334 1.056 1.035 1.050 1.052 1.0184 5 

10 1.0490 1.058 1.0687 1.111 1.072 1.103 1.108 1.0388 
10 

15 1.0744 1.089 1.1048 1.166 1.110 1.161 1.168 1.0600 

15 20 1.1001 1.121 1.1430 1.222 1.150 1.225 1.236 1.0819 
20 

25 1.1262 1.154 1.1816 1.277 1.191 1.307 1.1047 

25 30 1.1524 1.187 1.223 1.133 1.382 1.1282 30 
35 1.1775 1.220 1.264 1.387 1.1526 

35 
40 1.2007 1.253 1.307 1.442 1.1780 

40 

45 1.287 1.352 1.496 1.2041 45 
50 1.320 1.399 1.548 1.2313 

50 

55 1.350 1.449 1.2593 
55 

60 1.377 1.503 1.2883 

60 65 1.402 1.559 1.3183 

65 

70 1.424 1.616 1.3494 

70 

75 1.443 1.675 1.3813 
75 

80 1.461 1.733 80 
85 1.479 1.785 

85 

90 1.497 1.819 
90 

95 1.514 1.839 

95 100 1.530 1.838 100 

TABLE  6.  —  Reduction  of  Arbitrary  Hydrometer  Scales 

LIGHT  LIQUIDS 
SCALE 

READING 

HEAVY  LIQUIDS 

Hiiiune Beck Cartier 
Baum6  * 

Baumet Beck Twaddell 

Sp.  Gr. Sp.  Gr. Sp.  Gr. Sp.  Gr. Sp.  Gr. Sp.  Gr. Sp.  Gr. 1.000 0 1.000 1.000 1.000 1.000 

0.971 5 1.035 1.036 
1.030 1.025 

1.000 0.944 
10 

1.073 1.074 1.062 1.050 
0.967 0.919 0.970 15 1.114 1.116 1.097 1.075 
0.936 0.895 0.936 

20 
1.158 1.161 1.133 1.100 

0.907 0.872 0.905 
25 

1.205 1.210 1.172 1.125 

0.880 0.850 0.876 30 1.257 1.262 1.214 1.150 

0.854 0.829 0.849 35 1.313 1.320 1.259 1.175 

0830 0.810 0.824 40 1.375 1.384 1.308 1.200 
0.807 0.791 45 1.442 1.453 1.360 1.225 
0.785 0.773 50 1.517 1.530 1.417 1.250 
0.764 0.756 55 1.599 1.616 1.478 1.275 
0.745 0.739 60 1.691 1.712 1.545 1.300 

0.723 
65 

1.795 1.820 1.619 1.325 
0.708 

70 
1.912 1.920 1.700 1.350 

*  Original  scale  for  liquids  denser  than  water.       t  Newer  or  so-called  "  rational  "  scale. 
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TABLE  7.  —  Specific  Gravities  of  Gases  and  Vapors 

Referred  to  Water  at  4    C. ;  also  to  Air  and  Hydrogen  at  0°  C.  and  760 
mm.  of  mercury  pressure. 

All  results  art-  given  for  ft  pressure  of  7t»  mm.  <>f  mercury. 

FOKV TBMPKRATURB  *C 

IV    KEKEKKRD     !•• 

Air HxilrnL'cii 

Air     o 0.001! 
1  .ii     i 

14.446 
Ammonia     .... Ml    .... 0 

:.;!,; 
0.6890 

!••   . 
0 0.001966 21.966 

t'hlui:                          .      Cl,    
0 11074 

2.4*    
f\  __I      __                                                    J     I 0 0.000421 0.8266 1.718 .    < 

0 0.6168 7.468 
I  I 0 

1.000 
1 o 1  l.()l:5 

. 
0 

'in 

L6.964 

!«;.•_' 

i    ii    i  > 
-    - 

UAxn 

.>.  |o 

l.r.7 
0.001  U 

8.18 
(6.0 

MO 
,1.. Vmmonium Ml.ri    .  . 800 0.00188 0.986 

!!.-_':; 

rhl..ri.l.-«   .   . 800 
1139 

0.944 18.68 

IIS 

190 18.46 
.  .  1  I,   .  . 

IIS 

880 0.01064 
118.8 868 
IK;:. 

1006 7.01 1014 
84.0 • 

1HW 
6.06 

78.0 'itrogen 

l.-J 

2.27 
82.77 

'!•> 

L.99 27.72 

90.0 

J_"_> i  .:•_' 

100.1 0.00917 1.66 

•j  i  .-.'.-. 

154.0 0.00204 L.68 22.81 

Ammooiiun  ehlorida  rspor  ftv«c  ftbnormal  vapor  densities  only  *  hen  lu  presence  of  moisture. 
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TABLE  8.  —  Coefficients  of  Friction 

SUBSTANCE STATIC  COEFFICIENT  ft. KINETIC  COEFFICIENT  b 

Metals  on  metals  (dry)    from  0.2    to  0.4 from  0.18  to  0.35 
Metals  on  metals  (wet) from  0.15  to  0.3 from  0.14  to  0  28 
Metals  on  metals  (oiled)      from  0.15  to  0.2 from  0.14  to  0.18 

Wood  on  wood  (dry)  *    from  0.5    to  0.7 from  0.2    to  0.3 
AVood  on  wood  fdry)  t               .          . from  0.4    to  0.6 from  0.18  to  0  3 
Leather  belt  on  wood  pulley    .... 
Leather  belt  on  iron  pulley 

from  0.45  to  0.6 
from  0.25  to  0.35 

from  0.3    to  0.5 
from  0.2    to  0.3 

*  Motion  in  direction  of  fiber.        t  Motion  normal  to  fiber  of  sliding  block. 

TABLE  9.  — Elastic  Constants  of  Solids 

.  B. —  Flexural  Resilience  per  unit  volume  equals  one  ninth  the  Tensile  Resilience  per  unit  volume. 

SUBSTANCE 
YOUNG'S MODULUS 

ELASTIC 
LIMIT 

BREAKING 
STRESS 

SIMPLE 

RIGIDITY 
TENSILE 

RESILIENCE 

dynes 
sq.cm. 

Ibs. 
dynes 

Ibs. 

dynes 
Ibs. 

dynes 
sq.cm. 

Ibs. 
erps 

ft.  Ibs. 
cu.ft. 

sq.in. sq.cui. sq.in. sq.cm. sq.in. sq.in. 

cu.cm. 

Multiply  by  • 

1011 
106 

108 103 

108 

103 1011 

10« 

104 

1 

BRASS: 
cast     .  .  . 6.5 9 4.5 6 20 30 2.4 

3.5 
16 

330 

wire    .  .  . 10 
14 

11 
16 

60 80 
3.7 

5.4 

60 
1300 

COPPER  : 
annealed  . 10 

14 3 4 31 

43 

5 100 
cast.  .  .  . 12 

17 4.5 6.3 
18 

25 
4.0 

6.0 8 
170 

wire    .   .  . 12 17 7 
10 

40 
55 

4.5 
6.5 

20 
420 

GLASS  .... 6.5 9 2.3 3.2 2-9 

3-12 

2.4 
3.5 4 80 

IRON  : 
annealed  . 21 30 

5 7 50 
70 

6 130 
cast    .  .  . 12 

17 
7 

10 
15 20 5.3 

7.6 

20 
420 

wire    .   .   . 19 26 20 
30 

60 
85 8.0 12.0 100 2000 

wrought   . 
20 

28 20 30 
40 

55 
7.7 

11.0 100 2000 
STEEL  : 

Bessemer  . 22 31 
33 

46 

70 
100 250 

5200 

cast    .  .  . 20 28 
40 60 

8.0 12.0 

{5600 
{120000 

hearth    .   . 21 30 70 100 

wire    .   .   . 19 26 

*40 
*60 

110 150 

*420 
*8800 

WOODS  : 
oak  .... 1.0 1.4 2.3 

3.2 W 

f7 

27 
560 

pine    .   .   . 1.1 1.6 2.4 3.3 H 

t5 

'  26 

540 

poplar   .   . 0.5 0.7 1.5 2.2 

t3 

H 23 480 

*  Unannealed.        t  Parallel  to  grain.        %  Hardened. 
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TABLE  10.  —  Viscosities  of  Liquids 
i)  denotes    the    coefficient   of   viscosity  in  «.«..>.   units, 

viscosity  relative  to  water  at  0°  t 

::._,,,.  otc..   the 

i>ou>ity, 

(a)  Water  at  Different  Temperatures 

TBMI-. n 

*0 

Tor. T 

<r 1.000 

30° 

0.00812 0.449 
5 OuOl 

o.> 

40 

o.ooi  ;•;  i 10 n.n: 5O 
O.oo:.7o 815 15 L160 

60 

'1-7 

•  !.•_>•;!» 20 

o.i*' 

70 

•llM 

0886 
25 

;i»9 

(b)  Aqueous  Solutions  of  Sugar  of  Various  Concentrations  at  20  C. 

%8C«A« 

•» 

%  SIT.AB 

*» 

%s. 

*» 

2 
•21 

12 
1.4110 

22 

2.05.r)2 
4 1.1104 14 24 

•J.LM.M 

6 1.1H40 16 l.'J196 
26 

2.4540 
8 18 

1.7ISI 

28 

•J.7' 

10 20 

-95 

30 

8.0<J7  1 

(c)  Various  Commercial  Lubricating  Oils 

hi  th<*  following  tal  are  taken  at  20°  C.,  and  viscosities 

TKADK  NAMK Sr.  GK. 
.-   « :-.    . 

"t°C. 

100°  C. 
125°  C. 150°  C. 

."   UIIIIMT  LuliriiM- •  > O.W8 

1  1-; 

0.148 
(Mis 

0.066 0.045 0.024 0.023 

007 009 
ii":. 

106 ,000 

.<  >L'.-' 

.024 
006 080 Ills 

026 

ii"| 

J06 
Mi ,10 

.06 .<>! .026 .021 
.021 

}  irius  ( 
^  ix  c 
li  nov«-    

P  l;ir  !<•«•  M 

400 
£06 

.887 
.11 
.186 .!'!• 078 

.115 

.Hi*; ,081 

.nl 

.048 
,026 

.021 «;<  )  En' .885 .1  1 .042 
B86 

.H» 

.n(i7 
,047 

1)  tmond  Paraffin  .  . 
'in.l.T  .   . 

' 

.889 

.880 

.876 

.07.: 

1  1" 

.11 

.086 
.012 
.148 

.(•7 
.042 
.046 

.ii-M 

.0:17 

.042 

.022 
N    .  1  Dvn  i 
G<  Idfn M6 

.10 

II-'" 

ill!) 

.ni'l .018 
.022 .017 
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TABLE  11. — Corrections  for  the  Influence  of  Gravity  on  the 
Height  of  the  Barometer 

(a)  Reduction  to  Latitude  45° 

From  0°  to  45°  the  corrections  are  sub  tractive ;  from  45°  to  90°  the  correc- 
tions are  additive. 

LAT. 

BAROMETRIC  HEIGHT  IN  MM.  REDUCED  TO  0°  C. 
LAT. 

670 680 690 700 710 
720 

730 
740 750 760 770 780 

mm. mm. mm. mm. mm. mm. mm. mm. 
mm. mm. 

mm. mm. 

0° 

1.74 1.76 1.79 1.81 1.84 1.86 1.89 1.92 1.94 1.97 1.99 
2.02 

90° 

5° 

.71 .73 .76 .79 .81 .84 .86 .89 .91 .94 .96 1.99 

85° 

10° 

.63 .65 .68 .70 .73 
.75 .78 

.80 .83 .85 
.87 .90 

80° 

15° 

.50 .53 .55 
.57 .59 .61 .64 .66 .68 .70 .73 

.75 

75° 

20° 

.33 .35 .37 .39 .41 .43 .45 
.47 .49 .51 

.53 
.55 

70° 

25° 

.12 .13 .15 .17 .18 .20 
.22 

.23 
.25 

.27 .28 
.30 

65° 

30° 

0.87 0.88 0.89 0.91 0.92 0.93 (K95 0.96 0.97 
0.98 

.00 
.01 

60° 

35° 

.59 .60 .61 .62 .63 .64 .65 .66 .66 
.67 0.68 0.69 

55° 

40° 

.30 .31 .31 .31 .32 .32 .33 .33 .34 .34 
.35 .35 

50° 

45° 

.00 .00 .00 .00 .00 .00 
.00 .00 .00 

.00 .00 .00 

45° 

(b)  Reduction  to  Sea  Level 

Corrections  are  subtractive. 

BAROMETRIC  HEIGHT  IN  MM.  REDUCED  TO  0°  C. 

ELEVATION 660 680 700 720 
740 760 

770 

m. mm. mm. mm. 
mm. mm. mm. mm. 

100 0.01 0.01 0.01 0.01 
0.02 

200 0.03 .03 .03 .03 .03 
0.03 

300 .04 .04 .04 .04 .04 
400 0.05 .05 .05 .06 .06 .06 
500 .06 .07 .07 .07 .07 .07 

600 .08 .08 
.08 .08 .09 

700 .09 .09 .10 .10 .10 
800 .10 .11 .11 .11 .12 
900 .12 .12 .12 .13 

1000 .13 .13 .14 .14 
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TABLE  12.— Boiling  Point  of  Water  under  Different 
Barometric  Pressures 

(a)  Temperatures  in  Degrees  Centigrade  and  Pressures  in  Millimeters  of Mercury 

°c. 
.0 J. 

.2 .3 .4 
.5 

.6 

.7 

.8 .9 

90 .YJ1U 531.4 r>33.4 537.5 53f).l> 541.6 548.7 
91 547.8 540.9 554.0 

556  1 
562.4 564.6 

92 660.7 668.8 578.1 

."'77  .  1 

581.8 
584.0 686J 

93 588J 601.6 806.1 608.4 
94 815.2 617.6 610.8 822.1 624.4 881.4 

95 840.7 
96 857.4 667.1 060.6 674.6 877.0 870.4 
97 881.8 r.M.i 686.0 680.4 601.0 807.0 600.6 702.1 704.8 98 7074 7o!i.7 714.0 

717.:. 

7-J...1 

722.7 727.8 780.5 
99 741.8 740.2 751.0 754.6 
LOO 760.0 

770.2 
7*2.0 784.8 

b     Temperatures  in  Degrees  Fahrenheit  and  Pressures  in  Inches  of  Mercury 

F. .0 J. .2 

.3 
4          3 

.6 

.7 .8 

.9 

:  94 90.68 90.89 20.00 
21.04 21.08 

:  95 21.18 91.17 
L'l  •_"_' 

•jl/j'i 21.44 21.48 
21.58 

:  96 21.58 91.71 91.76 21.80 21.88 21.04 
21.90 

:  97 92.17 22.40 
22.46 :  98 22.92 

:  99 28.40 
:  X) 98.60 

•J3.S!> 

:  U 28.80 24.00 94.  14 94.18 24.24 24.84 24.88 
2  )2 2-1.41 24.50 

•Jl.f.l 
94.60 94.74 

•Jl>0 

24.85 
24.80 

2  )3 94.06 25.21 
25,  1  1 2  )4 95.67 25.94 

2  )5 95.00 26.(M 96.20 26.42 26.47 
2  « 96.68 96.68 26.06 27.01 
2  »7 L'7.07 •J7  1  - 27.40 27.45 27.51 
2   8 27.81 28.01 28.07 28.12 
2  >9 98.18 98JO 98J6 28.41 98.46 28.64 

L'.S.IJ!) 

2  0 2H.7^ 98.81 98.87 98.09 98  J8 20.10 29.21 

29.27 

2  1 90  J8 90.51 20.74 29.80 
2   I  ;  29.92 90.08 30.01 80.10 60.16 80.40 80.46 



264 PRACTICAL  PHYSICS 

TABLE  13.  — Pressure  of  Saturated  Aqueous  Vapor 

In  millimeters  of  mercury 
°c. 

PRESSURE 

°c. 

PRESSURE 

°c. 

PRESSURE 

°c. 

PRESSURE 

°c. 

PRESSURE 

1 4.91 31 33.37 
61 

155.95 91 545.77 121 1539.25 
2 5.27 32 35.32 

62 
163.29 92 566.71 

122 1588.47 
3 5.66 33 37.37 

63 
170.92 

93 

588.33 123 
1638.96 

4 6.07 34 39.52 
64 178.86 94 610.64 124 

1690.76 
5 6.51 35 41.78 

65 
187.10 

95 

633.66 
125 

1743.88 
6 6.97 36 44.16 66 195.67 

96 
657.40 

126 

1798.35 
7 7.47 37 46.65 

67 
204.56 

97 
681.88 

127 

1854.20 

8 7.99 38 49.26 68 213.79 98 707.13 

128 

1911.47 

9 8.55 39 52.00 
69 

223.37 
99 

733.16 

129 

1970.15 
10 9.14 

40 54.87 
70 

233.31 100 
760.00 

130 

2030.28 
11 9.77 

41 
57.87 

71 
243.62 101 

787.59 

131 
2091.94 

12 10.43 42 61.02 72 
254.30 

102 
816.01 

132 
2155.03 

13 11.14 43 64.31 
73 265.38 

103 
845.28 

133 
2219.69 

14 11.88 44 67.76 
74 

276.87 104 
875.41 

134 2285.92 

15 12.67 45 71.36 
75 

288.76 105 
906.41 135 2353.73 

16 13.51 46 75.13 

76 

301.09 
106 

938.31 

136 
2423.16 

17 14.40 
47 

79.07 77 313.85 
107 

971.14 

137 
2494.23 

18 15.33 48 83.19 78 327.05 
108 

1004.91 
138 

2567.00 
19 16.32 49 87.49 79 340.73 109 1039.65 

139 
2641.44 

20 
17..36 50 91.98 80 354.87 

110 
1075.37 

140 
2717.63 

21 18.47 51 96.66 
81 

369.51 111 1112.09 141 2795.57 
22 19.63 52 101.55 

82 
384.64 112 1149.83 

142 
2S75.30 

23 20.86 53 106.65 
83 400.29 113 1188.61 

143 
2956.86 

24 22.15 54 111.97 
84 

416.47 114 
1228.47 

144 
3040.26 

25 23.52 55 117.52 
85 433.19 115 1269.41 145 3125.511 

26 24.96 56 123.29 86 450.47 
116 

1311.47 
146 3212.71 

27 26.47 57 129.31 
87 468.32 

117 
1354.60 

147 3:501.87 

28 28.07 58 
135.58 88 486.76 118 

1399.02 

148 
3392.98 

29 29.74 59 142.10 89 505.81 119 1444.55 
149 3486.09 

30 31.51 60 148.88 
90 

525.47 120 1491.28 
150 

3581.23 

TABLE  14,  —  Pressure  of  Saturated  Mercury  Vapor 

In  millimeters  of  mercury 

PC. 
PRESSURE 

°c. 

PRESSURE 

°c. 

PRESSURE 

°c. 

PRESSURE 

°c. 

PRESSURE 

0 0.00047 
10 

0.00080 20 0.00133 
70 

0.050 120 0.779 
2 .00052 12 .00089 

30 
.0029 80 .093 130 

1.24 4 .00058 14 .00099 40 .0063 90 .165 
140 

1.93 
6 .00064 16 .00109 

50 
.013 100 .285 150 2.93 

8 .00072 18 .00121 60 .026 110 .478 160 4.38 
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TABLE  15.  — The  Wet  and  Dry  Bulb  Hygrometer 
:n  Smithsonian  Tables 

•rnperature  of  the  atmosphere  ijiven  l»y  a  dry  l>ull>  thermometer 

be  den  (.'.,  and  let  th"  wet  bulb  thermometer  be  de- 
noted  by  (/-A/).      In  the   following  taMe.  oorreoponding   to   tlie   various 

-l          ••!!  in  the  t»p  lii!.-.    \ve    i.  i    ill.-   pressure  (in  nun.  of 

•  aqueous  vajH>r  in  the  atmosphere  at  the  temperature  t°  C., 
•  pressure  that  would  be  exerted  l>y  tin-  aqueous  vapor  in  the  atmos- 
if  the  t«-in|>erature  wei-  to  the  de\\  point. 

Ki:\«  K    HKTWREX   TUB    DRY    AM>    Wr.T     I'.     1  1-     111    \ 
i  ii 

m 

0 4.6 U.7 
2.9 2.1 

1.3 1 1.1 8.4 
2 \A 1.1 
3 \A l.i 
4 1.8 
5 17 

2J 

l.-J 

6 

i.-j 

•j.i 

ir, 
7 

1.:. 

1.1 
8 1.1 

1.4 9 :,.:, 
{A 10 

4.0 
•_••_' 

i.:; 
11 1.7 
12 7.1 

5.0 

I.o 

2.1 

l.-j 

o.:; 

13 11  J 
.;.:. 

•J..-. 
l..; 

0.7 
14 2.0 1.1 

15   i  1-J.7 
11.1 lo.l 

6.6 

1.6 
l', 

rj.-j 

I.o 

1.9 17 11.  1 11.7 KM 

!'.! 

8.0 

l.:. 

2.4 
18 1.-..I ll.J 8.6 

!.'> 

19 
11.!. 

lo.7 L6 
20 

1  1  A 8.8 

•;  l 

:,.-_' 

J.I 
21 r_M 11.0 

-.\ 

7.1 1.7 
22 

ll.> ll.:» 

L0.fi 

!'.! 

ft.4 
23 

11.:: 
L£8 LO.O 

8.6 
8.1 

24 

!•_'.:; 

104) 

!'.! 

8.1 
8.8 

25 

11.- 

HJ 
lo.:; 

9.0 

7.6 26 21.1 L9.4 

17.  •; 1!.:; 
12.8 11.  3 9.8 B.4 

27 1&8 17.1 l.vi L0.8 
28 

!!.:• 
L1.8 

10.2 
* 

•J7..; 
21.fi 

17.- 

16.1 11.1 L2.8 
\\:2 

•       31.5 2141 19.1 
i:-:- 

L84) 

!•_'.:; 
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TABLE  16.  —  Coefficients  of  Linear  Expansion  of  Solids 

SUBSTANCE TEMP.  °C. a SUBSTANCE TEMP.  °  C. a 

Aluminium  .  . 
Brass    

40 0  to  100 
0.000023 
0.000019 

Iron  (softj  . 
Iron  (cast)  . 40 40 

0.000012 
0.000011 

CopD6F  .  .  . 
40 0  000017 Lead 

40 
0  000099 

German  silver 
Glass  (crown). 
Glass  (flint)  . 

0  to  100 
0  to  100 
0  to  100 

0.000018 
0.000008 
0  000009 

Nickel  .  .  . 
Silver  .... 
Zinc    

40 

40   • 

40 
0.000013 
0.000019 
0  000029 

TABLE  17.  — Coefficients  of  Cubical  Expansion  of  Liquids 

SUBSTANCE TEMPERATURE £ 

0, 
03 

Alcohol*  . 

Analin  .  .  . 

Glycerin.  . 
Mercury  .  . 
Water  .  .  . 

-39  to  27°  C. 
27  to  46 
7  to  154 

24  to  299 
0  to  25 

25  to  50 
50  to  75 
75  to  100 

0.001033 
0.001012 
0.000817 
0.000485 
0.0001818 

-0.00006106 
-0.00006542 
-0.00005916 
-0.00008645 

0.00000145 
0.00000220 
0.00000092 
0.00000049 
0.00000000018 
0.000007718 
0.000007759 
0.000003185 
0.000003189 

0.000000000628 

0.00000000035 
-0.00000003734 
-0.00000003541 
0.00000000728 
0.00000000245 

*  93.3%  (by  volume)  pure. 

TABLE  18.  — Heat  Values  of  Various  Fuels 
h  indicates  the  number  of  gram  calories  of  heat  developed  by  the  complete 

oxidation  of  one  gram  of  substance,  k'  indicates  the  number  of  gram  calo- 
ries developed  by  the  burning  of  one  liter  of  gas  measured  at  0°  C.  and  760 

mm.  pressure.  If  water  is  one  of  the  products  of  combustion,  the  heat  value 
is  given  when  the  water  is  in  the  liquid  form. 

SUBSTANCE h SUBSTANCE 

*' 

Cane  Sugar  .             .  . 3866 Acetylene 14460 
Carbon  (charcoal)  .   . 
Cellulose 

8080 
4140 

Benzene  vapor  .... 
Coal  gas 

33496 
1000  1400 

Coal    .... 5500-9000 Daw  son  g«is 5500  7000 
Naphthalin    9692 Hvdrofiren  . 3090 
Petroleum 10200-  11500 Natural  jras  (Ind  ) 9500 
Peat 4000-4500 Waiter  gas 2000  3500 
Wood*       4000-5000 (carbureted) 3500-7000 

*  Containing  10-12  %  of  moisture. 
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TABLE  19.  — Specific  Heats  of  Solids  and  Liquids 

Unless  otherwise  stated,  the  following  values  express  the  mean  specific 

heats  from  0°  to  100°  C. 

- SP.  HEAT Bvwi SP.  HEAT 

\luininiuin 0219 Lead 

0  03° 

:i.jl.  i-thvl      

0.' 

M'  ivurv       0.088 

Anti' 
0.(K bfe      0.218 

Bismuth     0.080 0.113 

.uii  Milphate    .    .   . 

0.0 
Paratlin  (-..,i.l  "     [• 

(liquid  50°-100°) Platinum 

100 

0.710 ii  11:5:5 

Copi*                          .   . 
'in  silv»*r 

110 

0  c 

Rock  salt    

Sand-t  iiii'- 

0418 

ii  •>•>! i 

Glass  (cr<i\\  :i  ) 
o.. 

0.161   

Sugar    

0.060 
<i:;nl 

0.117 it  : i-fiitiu*'       
Tin 

0.4(57 

0.056 
.... 

In.i 0.1 0.117 
Xilir 

<>.:;:;! 

0.094 

TABLE  20.  —  Melting  Points  and  Heat  Equivalents  of  Fusion 

8CMTAXCB MELT- 
ma 

HEAT 

SCBOTAJtOE 
MELT- 

HEAT 

PoIXT 
or 

Pom 
or 

Cd. 
P Cal. 

perf. 
i 

perg. leeswax    
»)1    > 

.!'V       80 
2.8 '•enzol  . 5.4 so •iial.n       

70.9 Ism  nth M18 1  '  '   '  i 
L450 4.6 

•rominf Palladium    . 
:5i;  :{ 

*  adininin                      .    . Paraffin       

B8.  l 
35.1 

(  lycerin                        .    . I'h.-nol     
25.4 

24.9 

•e  .  .  . 
80 

Platinum    

177!» 

-7:2 

•din*-    .                          .    . 116 11.7 !»!>!> 21.1 
on,  cast  i 

ra^t  (  \\  hit*?)   . 
1  1  <  M  1 

Sulphur      
Tin  .                L16 

233 

9.4 

14.3 
•SU)   *f*     3V    ̂   Tf  »    »»*=/        « :{-ji; 28.1 .   .    . 
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TABLE  21.  — Boiling  Points  and  Heat  Equivalents  of 
Vaporization 

SUBSTANCE 
BOILING 
POINT 

HKAT 

EQUIV. 
OF  VAP. 

SUBSTANCE 
BOII-ING 

POINT 

HEAT 

EQUIV. OF  VAP. 

Acstic  acid 

C. 

188 

Cal. 

perg. 
84.9 Benzol 

C. 

79.6 

Cal. 

perg. 93.5 
Acetone       ... 56.6 125.3 Chloroform        .... 61 

58.5 Analin    182.5 93.3 Ether,  ethyl    35 90.5 
Alcohol  ethyl 78 

205 IVIercury 350 
62 

Alcohol,  methyl  .... 64.5 267.5 Water            
100 

536 

TABLE  22. —  Thermal  Emissivities  of  Different  Surfaces 

The  following  results  were  obtained  by  Bottomley  for  a  cooling  copper 
globe  surrounded  by  air  at  atmospheric  pressure  in  an  inclosure  kept  at  a 

constant  temperature  of  14°.5  C.  The  emissivities  are  expressed  in  gram 
calories  of  heat  lost  per  second  per  square  centimeter  of  surface  per  degree 
centigrade  excess  of  temperature  of  the  body  above  the  temperature  of  the 
surroundings. 

TEMPERATUBE  OF 

GLOBE  IN  °C. 

SURFACE  POLISHED 
BRIGHT 

SURFACE  POLISHED 
BRIGHT  AND 

THINLY  LACQUERED 

SURFACE  THINLY 

COATED WITH  LAMPBLACK 

21 

165  x  lO-6 246  x  10-6 278  x  10-« 
22 

170 250 281 

23 
174 254 284 

24 
178 257 287 

25 181 260 290 
26 184 263 293 
27 187 

265 296 
28 190 268 

299 
29 192 271 301.5 30 194 273 304.5 31 196 

276 307 
32 198 278 

310 33 199.5 280 
313 34 201 282.5 316 35 202 285 
320 36 203.5 287 
323 37 205 290 326 

38 206.5 292 329 39 207 
294 

332 40 208 
297 

335 41 299 338 
42 301.5 341 
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TABLE  23.  — The  Greek  Alphabet 

LETTER NAMK I.K.TrBR NAME Lnm NAME 

A,  a Alpha 
I     t Iota 

P,  p 

Rho 
Beta 
Gamma 

K.   K 

A.  X 

Kappa 

Lambda T,T 
Tau 

A   d Delta 
M./x Mu 

Y.  u 

Upsilon E,e 
Bprilon 

Xu 

4>.  <^> 

Phi 

Zeta 

—  ̂  

Xi 

X,  v 

Chi 

H,  rt Eta 0,o Oinicron 

^,  ̂  

Psi 
0.0 Th.<ta Pi                                          0,0, 

Omega 
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Mng  power.  _M">. 

Aeeuracy  re.jiiired.  f>. 
Air  ti.. 

HJft, 

r_'. Approximations.  • 
\r.-:i.  ."4. 

August's  peychromeu-r,  206. 

.lolly-l.in. 

M.-hr-Westphal.  '.•'.i. 

Balancing  column-,  method  of.  ' 
Ballistic  iH'iiiluluiu.  >>\ 

Barnes's  current  calori: 

Bearings  and  journal,  friction  1 

Beekin:iiin  t)i.Tiii..n.. 
;!nl  pulley,  frich 

|H.Jnt  tab!- 
incidences. 

Break 

MM,  I'.1". 119. 

itiun  of  an  r,  102 

a  :  1,.- MIL. in. -i. -i- 
standard  mass. 

WT*i  liViln.iiM.t.T  s.-alf,  258. 

<    '.-Ilt.T     'if      ; 

riin.ii' 

ticity,  11^. 

Coertit-ii-nt  of  expansion--  Continued. 
of  air,  188. 

of  a  rod.  17'.'. 
of  glass.  l.s<i. 

of  lllf!CU!-\ of  f  rid  ion.  7:.. 
of  restitution,  dl. 

of  viscosity.  11.".. 
Coinci.l.'iK-.-s,  method  of.  :'.«.»,  (\8,  72. 
Cold  test  of  an  nil,  170. 

( 'oinliiistion  bomb.  -'.'>'. 
ConilH.und  pendulum,  r>! i. 

<  'onccntration  ami  boiling  point .  relation 
brtwrcn.  17.;. Coiixtant  em 

Dt*i   numl.cr  to  kcop  in   empirical 
formula.  11. 

M..II  factors.  •_'.'.». 
C..oli||.4.    l;i\V   of.   'Jll'.l. 

•; km,  i. 

forr.M-tion  factor  of  a  planimctcr.  M. 

Coulomb's  m.'tliod  for  viscosity,  148. 
Cubi.-al  .-xpaiisiou.  17«J.  -jr.U. 
Cui-r.-nt  calorimeter.  •_'."><). 

Damping  con.stant.   1  1- 
.'s  li\.;r..|li.-|,T. 

Datum  circle  of  plaiiiim-ter.  .".'.». hfiisim.-t.-r.  1":;. 
Densi: 

b\   imm.-rsion,  i>5. 

l)\   measurement  ainl  weiu'liin^,  S!». 

of  an  unsat  united  vapor.  T.'S. 
with  .Jolly  l.alance.  !»7. 

with  Mohr-NVrstplial  balance,  (.i(.t. 

with  ]iyknometer,  '.«>,  '.L'. 
-.•.I  E6TO,  1">7. 

Determinate  emu 

potet,  •_'«>:;. 

I  UtTer.'iH'i-s  of  various  order-,  12. 
Dilatometer,  18(i. 

Direct  measurements.  1. 

Distance  measurements,  If..  }•_'. 
Divided  circle,  eccentricity  in  mounting. HI. 
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Dividing  engine,  18. 
Dynamometer,  oil  testing,  80,  82. 

Eccentricity  in  mounting  of  circle,  61. 
Effusiometer,  107. 
Elasticity,  118,  260. 
Elongations,  method  of  middle,  38. 
Emissivity,  215,  268. 
Empirical  equations,  10, 124. 
Errors,  2. 
Expansion,  176,  266.     See  also  Coefficien 

of  expansion. 
Exposed  stem  correction,  158. 
Eye  and  ear  method,  35. 
Eyepiece  micrometer,  20. 

Filar  micrometer  microscope,  19. 
Fire  test  of  an  oil,  170. 
Flash  and  stop  watch  method,  36. 
Flash  point  of  an  oil,  170. 
Fly  wheel,  change  of  speed,  63. 
Friction,  75,  260. 

Gases,  fundamental  law- of,  176. 
Golden's  oil-testing  dynamometer,  80. 
Gravity,  acceleration  due  to,  66,  69. 

specific.     See  Specific  gravity. 
Greek  alphabet,  269. 

Heat  equivalent,  208. 
of  fusion,  231,  267. 
of  vaporization,  235,  268. 

Heat  value  of  coal,  237,  266. 
of  gas,  243,  266. 

Hempel's  combustion  bomb,  238. 
Humidity,  202. 
Hydrometer,  102,  258. 
Hygrometry,  202. 
Hypsometer,  164. 

Immersion,  specific  gravity  by,  95. 
Indeterminate  errors,  3. 
Indirect  measurements,  1. 
Inertia,  moment  of,  110. 

Jolly's  air  thermometer,  188. 
spring  balance,  97. 

Joly's  steam  calorimeter,  229. 
Joule's  method  for  mechanical  equivalent of  heat,  247. 
Journal  and  bearing,  friction  between, 

80,  82. 

Junker's  calorimeter,  243. 

Latent  heat,  208. 
Law  of  cooling,  209. 
Least  count  of  a  vernier,  21. 
Length,  16,  42. 
Level  trier,  49. 
Lever,  optical,  42,47. 
Limit  of  elasticity,  118. 
Linear  expansion,  176,  179,  266. 
Linebarger's  spring  balance,  97. 
Logarithms,  accuracy,  6. 
Lubricated  journal,  friction  at,  80,  82. 

Mass,  25,  86. 
Maximum  elongation,  38. 
Mechanical  equivalent  of  heat,  247. 
Melting  point  table,  267. 
Mercury  vapor  pressure,  264. 
Meter  bridge,  168. 
Meter  stick,  16. 

Meyer's  method  for  vapor  density,  198. 
Micrometer,  16-20. 
Middle  elongations,  method  of,  38. 
Mixture,  method  of,  221. 
Modulus  of  elasticity,  119,  260. 

of  resilience,  140,  260. 
Mohr-Westphal  balance,  99. 
Moment  of  inertia,  110. 

Muller's  optical  lever,  179. 

Newton's  law  of  cooling,  209. 
New  York  Board  of  Health  tester,  171. 
Notation,  15. 

Oil,  test  of,  148,  170. 
Oil  testing  machine,  80,  82. 
Omitted  transits,  method  of,  35. 
Optical  lever,  42,  47. 
Oscillation,  34. 

Parallax,  2,  156. 
Passages,  method  of,  36. 
Pendulum,  ballistic,  64. 

compound,  69. 
seconds,  33. 
simple,  66. 

3ercussion,  center  of,  65. 
Period  of  oscillation  and  vibration,  34. ~'ermanent  set,  118. 
'lanimeter,  54. 
'lotting,  9,  13. 

'oiseuille's  method  for  viscosity,  143. 
ressure,  temperature  coefficient  of,  188. 
rojectile,  speed  of,  64. 
sychrometry,  202. 
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Pulley,  correction  for  friction  .•: 

1'ulley  and  belt,  friction  between,  77. 
Pyknometer.  '.«>. 

,  156. 

Mtive  experiment^.  1. 

Quantita'  DttltB,  1. 

.  •_'!.".. 
-lant.  '-'ID. 

correction  for.  ] 

~j>irit  level. 

Regnault'->  MI.  -tlio«l  of  eon  :  radi- atio!  . 

Regnaul'  .    for   \apor   pressure, 

Restitute 
methods  ol  £,  8. 

r.  of  :i  !.;«' 7,  260. 
Rov  :    r:uli- 

itlM 

•ii.nl  f.n-  m.-.-liaiiiral  rijiiiva- l.-nt  Oi 

ra.li- 

8al 
SecM.n.ls  IH-II.II. 

i.irit  level, 

Series,  suiiiinii  . 
Set. 

Shear.  11'.'. J(W. 

Solution,  KoiliiiL:  point  of 

wiii 

ui- \\ith  pykr 

1 

with  8t:t? 

with  »t«-:i 

Sj   .1.  •;:'..  hi. 
Sphoroiueter.  17,  4.'>. 
Spirit  level,  sensitiveness.  l'.>. 
Staiular.l  masses,  calibration  of,  86. 
Stem  exposure  correct  ion,  158. 

Stop  watch.  :;::. Strain,  118. 

us. 
Summation  notation,  15. 

..IjnstnuMit.  41. 

Temperature,  1  .".">. 
Tmacity.  '.  : Tensile  \-,,enicieiil    of   elasticity,    ll'.».   ll'O, l-js.  -Ji«>. 

Thermodynamics.  -J17. 
lliermometi'r,  air,  188. 

calibration,  KK).  HMJ. 

errors,  l.^i. 

Miice.  li;»',. Thickness  of  a  thin  plate.  »•_'. 
Tlinrston's  oil  testing  machine,  83. 

Transits.  metho.I  ,.f  oinitte.l. 

Trust  \v..rtli\ 

Twa.i.l.'ll'.s  hy.lrometer  scale,  258. 

ritimate  resilience .  L40, 

Yaria!'1' at  i..n  of  a  baroineier  scale,  53. 

nietlio,!  of.  •_'<;. 
.  L'.il. 

r.,uivalent.L>Os. 
01  pn-ssiirr.  I'.H.  UN;,  '2(\\. 

•  \  <h >  imlb  h\  u'rometer,  205,  265. 

Voun-'smo.lulu,.  11"  J«». 

eh-  of  plaiiimeter.  .V.i. 
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