

A MANUAL OF

USEFUL INFORMATION AND TABLES

APPERTAINING TO THE USE OF

WROUGHT IRON

AS MANUFACTURED BY

THE PASSAIC ROLLING MILL CO.

PATERSON, N. J.

(New-York Office, Room 45, Astor House.)

FOR

ENGINEERS, ARCHITECTS, AND BUILDERS,

Electrotype Edition.

Price, \$1.50.

Copyright, 1884, by THE PASSAIC ROLLING MILL COMPANY, Paterson, N. J.

TA 685 P2 1894

Press of THEO. L. DE VINNE & CO. New-York.

OFFICERS.

WATTS COOKE, - - President. W. O. FAYERWEATHER, Secretary and Treasurer. JOHN K. COOKE, - Superintendent. F. A. LEERS, - - Engineer.

PREFACE.

THE present edition of the MANUAL is a new work throughout. It is intended to supply such special information and tables as, it was thought, would prove valuable to workers in wrought iron in general, and the patrons of the publishers, THE PASSAIC ROLLING MILL CO., in particular.

The tables, with a few exceptions, were computed expressly for this work, and some of them are original in both matter and form.

The author hopes that they will be found to possess the qualities of accuracy and reliability.

Such of the tables as were not calculated for this work were obtained from two or more works of presumably independent origin, which were compared for the detection of errors.

The table of weight of a cubic foot and of the ultimate strength of substances was derived mostly from Trautwine.

The list of shapes rolled by THE PASSAIC ROLLING MILLS will be found increased in number, and some of the sections improved in form. All angle irons are now made with flanges of uniform thickness; the range between the minimum and maximum weight for a number of the shapes has been increased.

1

6

CONTENTS.

PLATES		PAG	GE
1-5	SECTIONS OF I BEAMS	10-	14
6, 7	SECTIONS OF CHANNEL BARS	15,	16
8	SECTIONS OF EQUAL TEES		17
8	SECTIONS OF FLATTED ROUND		17
8	SECTIONS OF HALF ROUND		17
8	SECTIONS OF ROUNDED FLAT		17
9	SECTIONS OF UNEQUAL TEES		18
9	SECTIONS OF BEAD IRON		18
10	SECTIONS OF UNEQUAL ANGLES		19
10	SECTIONS OF SQUARE-ROOT UNEQUAL ANGLES.		19
IO	SECTIONS OF OBTUSE ANGLES		19
10	SECTIONS OF GROOVE IRON		19
10	SECTION OF SASH IRON		19
ю	SECTION OF HAND-RAIL IRON		19
IO	SECTION OF HEXAGON IRON		19
IO	SECTION OF PICTURE CORNICE		19
II	SECTIONS OF EQUAL ANGLES		20
II	SECTIONS OF SQUARE-ROOT ANGLES		20
12, 13	ILLUSTRATION OF BEAMS USED IN FIRE-PROOF		
	FLOORS	21,	22
14	FIRE-PROOF CONSTRUCTION WITH IRON AND		
	Hollow Brick		23
15	SECTIONS OF PLATE AND BOX GIRDERS		24
16	SECTIONS OF COLUMNS		25
17, 18	DIAGRAMS OF BRIDGE AND ROOF TRUSSES	26,	27
10. 20	STANDARD WROUGHT-IRON TURN-TABLES	28,	29

	AGE
STRENGTH OF BEAMS	
DIFFERENT MODES OF LOADING BEAMS	
TABLE OF PROPERTIES OF I BEAMS4	
TABLE OF PROPERTIES OF CHANNELS4	3,44
TABLE OF PROPERTIES OF TEES	45
TABLE OF EQUAL ANGLES	46
TABLE OF UNEQUAL ANGLES	47
TABLE OF SAFE LOADS ON I BEAMS4	
TABLE OF SAFE LOADS ON I BEAMS, UNSUPPORTED	1 I I
SIDEWAYS	53
FLOORS	4.55
BEAMS USED AS JOISTS, LOAD 70 LBS. PER SO. FT	56
BEAMS USED AS JOISTS, LOAD 100 LBS. PER SQ. FT	57
BEAMS USED AS JOISTS, LOAD 150 LBS. PER SQ. FT	58
BEAMS USED AS JOISTS, LOAD 200 LBS. PER SQ. FT	59
STRENGTH OF WOODEN BEAMS	63
RIVETED GIRDERS	0-02
COLUMNS, POSTS, AND STRUTS	4,65
TABLES OF ALLOWED WORKING STRAINS, PER	
SQUARE INCH	6, 67
TABLE OF SAFE LOADS FOR ROLLED I BEAMS USED	
AS COLUMNS OR STRUTS	68
TABLE OF SAFE LOADS FOR HOLLOW CYLINDRICAL	
CAST AND WROUGHT IRON COLUMNS	69
TABLE OF SAFE LOADS FOR RECTANGULAR TIMBER	
Posts	70
ROOFS	1 70
TABLE OF STRAINS IN KING AND QUEEN ROOF	., /
TRUSSES	73
TABLE OF STRAINS IN BELGIAN OR FINK ROOF	15
TRUSSES	74
	/4
STRAINS IN RECTANGULAR AND TRIANGU-	
LAR BRIDGE TRUSSES	5-85
RIVETS AND PINS	86
TABLE FOR SHEARING, BEARING, AND BENDING OF	
Pins	87
TABLE FOR SHEARING AND BEARING OF RIVETS	
TABLE OF WEIGHT OF RIVETS	90
SLEEVE NUTS AND UPSET SCREW ENDS OF	SADE.
ROUND AND SQUARE RODS	91

TABLES OF WEIGHTS, ETC.	PAGE
AREAS AND WEIGHT OF SQUARE AND ROUND	
Rolled IRON	92, 93
AREAS OF CIRCLES	123
AREAS OF FLAT ROLLED IRON	94, 95
BOLTS, WITH SQUARE HEADS AND NUTS	106
CAPACITY OF CISTERNS	II2
CIRCUMFERENCE OF CIRCLES	122
DIFFERENT COLORS OF IRON CAUSED BY HEAT	118
DIFFERENT STANDARD WIRE GAUGES	102
DIMINUTION OF TENACITY OF WROUGHT IRON AT	
HIGH TEMPERATURES	117
FLAGGING	II2
GALVANIZED AND BLACK IRON	103
LAP-WELDED IRON BOILER TUBES	109
LINEAR EXPANSION OF METALS	116
Melting Points of Metals	118
NAILS AND SPIKES	108
NATURAL SINES, ETC	121
NOTES ON BRICKWORK	113
ROOFING SLATE	III
SKYLIGHT AND FLOOR GLASS	II2
SPECIFIC GRAVITY OF VARIOUS SUBSTANCESI	
SQUARE AND HEXAGON NUTS	107
STANDARD SIZES OF WASHERS	106
Таскя	108
ULTIMATE STRENGTH OF MATERIALS	-
WEIGHT OF SEPARATORS AND BOLTS	55
WEIGHT PER SQ. FOOT OF SHEETS OF WROUGHT	
IRON, STEEL, COPPER, AND BRASS. THICKNESS BY AMERICAN GAUGE	IOI
THICKNESS BY AMERICAN GAUGE	101
WEIGHTS AND MEASURES (U. S AND FRENCH)I	
WEIGHTS OF FLAT ROLLED IRON	
WEIGHTS OF PLATE IRON	98, 99
WEIGHTS OF VARIOUS SUBSTANCES	
WINDOW GLASS	14, 115 IIO
WIRE	104
WROUGHT-IRON WELDED TUBES FOR STEAM, GAS,	T
OR WATER.	105
PASSAIC R. M. CO'S STANDARD TURN-TABLES	S 128

THI	E PA	SSAIC ROLLI		fILL	CO	MPA	NY.	29
		Ditto for Special Turn-table Shallow Pit. in.	ATE 2	2 0	2 0	2 6	2 6	2 6
۲۲Ş		Depth From Top on Table on Table to Top of Rail of Circular frack.	3 4	3 4	3 4	3 10	3 10	3 10
TING MI		Depth From Top of Rail on Table to Top of Center Rt. in.	5 0	5 0	0 9.	5 6	5 6	5 6
AIC ROL		Diameter of Circular Track, c. to c. of Rail, ft. in.	.31 0	36 0	41 0	46 0	51 0	56 0
AND DIMENSIONS OF PASSAIC STANDARD TURN TABLES		Length of Girder, Out to Out.	34 4	39 4	44 4	49 6	54 6	59 6
ARD TU		Diametcr of Pit. ft. in.	35 0	40 0	45 0	50 0	55 0	0 09
CROSS SECTION AND DIMENSIONS OF PASSAIC ROLLING MILLS STANDARD TURN TABLES.			***	To be a second s			FIG. 2.	hitinihille 14 12 13 14 13 Jan

3 a

-50

STRENGTH OF BEAMS.

IF a beam, supported at its ends, is loaded with a weight, this weight will produce reactions on the two supports, the sum of which is equal to the weight. These are the external forces acting on the beam. Under the influence of these external forces a bending of the beam occurs, the fibers of the upper half of the cross-section are shortened, and those of the lower half are elongated. These changes are the result of a compressive strain in the upper half and of a tensile strain in the lower half of the cross-section of the beam. In the middle of the heights is a place where no shortening or lengthening of the fibers occurs, and this is called the *neutral axis*. In wrought iron, as in other homogeneous substances, this neutral axis is coincident with the center of gravity of the section, and in symmetrical sections, as in **I** beams, this is in the middle of the depth of the beam.

The moment of inertia of a cross-section is an expression which is used in the calculation of the strength of beams. The sum of the products of the infinitely small areas of each fiber, by the square of its distance (taken at right angles) from the neutral axis, is its value with respect to this axis.

The *moment of resistance* is the moment of inertia divided by the distance from the neutral axis (or center of gravity of the section) to the most extreme fiber. This is used to determine the maximum strain in the most extreme fiber.

The *radius of gyration* is found by extracting the square root of the moment of inertia divided by the area of the crosssection. If all material were concentrated at this distance from the neutral axis (or center of gravity), it would resist against bending the same as the material distributed over the cross-section.

Twice the radius of gyration may be called the effective depth of the beam.

TERMS USED IN FORMULAS:

W, Load.

- 1, Length of beam in inches.
- A, Area of total cross-section of beam.
- h, Depth of beam.
- I, Moment of inertia of cross-section.
- R, Moment of resistance of cross-section.
- e, Distance of the most extreme fiber from the neutral axis

(usually
$$e = \frac{h}{2}$$
).

- d, Deflection in inches.
- S, Strain per square inch.
- M, Bending-moment produced by the load W in any crosssection.
- x, The distance of this cross-section from the support or from the load.

The following tables give general formulas of bendingmoments M, maximum loads W, maximum fiber strains S, and deflections d, for beams loaded and supported in different ways. The bending-moments may be calculated with these formulas for any cross-section by substituting the particular value of x, and from the value thus obtained the strain in this cross-section is found by the general formula

$$S = \frac{M}{I}$$
 or $S = \frac{M}{R}$.

The necessary section of the beam at any place is obtained by reversing this formula, thus :

$$\frac{I}{e}$$
 or $R = \frac{M}{S}$.

This gives the moment of resistance required, and the corresponding beam may be selected from the table giving the different properties of beams and channels.

	0		Contraction of the local diversion of the local diversion of the local diversion of the local diversion of the		
	36	THE PASSAI	C ROLLING		PANY.
1	DEFLECTION	3	73 48	$\frac{W}{IE} \frac{l^3 c^2 c_r^2}{3 l^2 l^2}$	713 768
	DEFLI	ET[≪	> 出	IE 3	E∥≤
	STRAIN . S	$\frac{\partial}{\partial M}$	$\frac{1}{2} \frac{\sqrt{1}}{2}$	<u>c c, WI</u>	$\frac{\frac{3}{16}}{\frac{1}{\ell}} \frac{WL}{\ell}$
	LOAD	<u>s 1</u> 1 e	4 <mark>5 1</mark> 7 e	$\frac{1}{cc, e} \frac{SI}{e}$	16 S I 3 <i>T.e</i>
ALL IN THE REAL	BENDING MOMENT M	WX	$\frac{WX}{2}$	FOR THE LEFT SIDE $V = \frac{Wc}{L} X$ FOR THE KIGHT SIDE $\frac{Wc}{L} \cdot X$,	FOR THE LEFT SIDE $\frac{5}{16}$ W X FOR THE RIGHT SIDE FOR THE RIGHT SIDE $\frac{11}{32}$ W $\frac{1}{32}$ $\frac{1}{2}$
	MODE OF LOADING		m m		124 124 ×
		I ONE END FIRMLY FIXED OTHER END LOADED.	2 SUPPORTED AT BOTH ENDS LOADED IN CENTRE.	3 SUPPORTED AT BOTH ENDS LOADED ANY PLACE.	4 ONE END FIXED OTHER END SUPPORTED LOAD IN CENTRE.

39

FACTOR.

PROPERTIES OF PASSAIC ROLLING MILL'S **I** BEAMS, CHANNEL BARS, ANGLES, AND TEE IRON.

THE following tables give co-efficients, by the use of which the safe, uniformly distributed load for any Beam, Channel, Tee, or Angle Iron can be easily determined. It is only necessary to divide the co-efficient by the span between centers of supports (in feet). This will give the safe, uniformly distributed load in lbs. for a beam simply supported on both ends, as in case 8 (see table of formulas for different modes of loading). For any other way of loading, the result has to be multiplied with a factor which is for

MODE OF LOADING.

Ι.	One end fixed, other end loaded	1/8
2.	Both ends supported, concentrated load in center	
	of span	1/2
3.	Both ends supported, concentrated load on any	'
	point of beam	
4.	One end fixed, other end supported, concentrated	
	load in center of span	2/3
5.	Both ends fixed, concentrated load in center of	1.
	span	I
6.	Concentrated load at each end, two supports	
	between ends of beam	1/8
7.	One end fixed, uniformly distributed load	1/4
8.	Both ends supported, uniformly distributed load	I
9.	One end fixed, other end supported, uniformly dis-	
	tributed load	I
10.	Both ends fixed, uniformly distributed load	32
II.	One end fixed, load distributed, but increasing	
	toward the fixed end	3/8
12.	Both ends supported, load distributed, but decreas-	
	ing toward the middle of the span	32
13.	Both ends supported, load distributed, but increas-	aler.
	ing toward the middle of the span	3/4
	SCHEMENALS, AND REAL PROPERTY AND A REAL PROPE	1.1

The co-efficients given in the tables for Beams and Channels have been calculated for maximum fiber strains of 12,000 lbs. per square inch and 10,000 lbs. per square inch, but those for Tees and Angle Iron only for 12,000 lbs. per square inch. If it be desired to find the carrying capacity for any other strain per square inch, this is simply done by increasing or decreasing the co-efficient given in the tables in proportion to the strains allowed. These tables have been calculated under the supposition that the beams are sufficiently secured against yielding sideways. Usually, it is assumed that this is the case if the free length of the beam does not exceed twenty times its width. If longer beams are required, it is necessary that they should be stayed at intermediate points, or the safe load has to be reduced as given in the table for beams not secured against yielding sideways.

Beams or Channels in short lengths have to be proportioned so that the section of the web is sufficient to resist the shearing strain. The shearing strain on the web should not be more than the half of the fiber strain allowed on the flanges; that is, 6000 and 5000 lbs. resp. per square inch. This gives for short beams a maximum safe load which such beam may support without buckling or crushing of the web.

The tables show the dimensions and different properties of I Beams, Channels, Tees, and Angle Iron. I Beams are usually rolled heavy, and light weight, as given in the table. Channels and Angle Iron frequently are made of varying weights, but Tee Iron can be rolled only to the weights shown in the lithographed plates.

т	HE	PASS	SAIC	ROLLING	MILL C	OMPANY	. 41
	8	80	$0.37 \\ 4_8^1$	$ \begin{array}{c} 81.5 \\ 20.4 \\ 3.19 \\ 10.2 \\ 10.2 \end{array} $	163,000	136,000	7.00 0.94
	6	20	0.32 31	89.0 19.8 3.56 12.7	746,000 550,000 504,000 388,000 345,000 277,000 248,000 186,000 158,000 163,000	622, 000 458,000 419,000 323,000 287,000 230,000 206,000 155,000 132,000 136,000	3.55 0.71
	6	85	$\begin{array}{c} 0.41\\ 3\frac{7}{8} \end{array}$	104.5 23.3 3.50 12 3	186,000	155,000	6.34 0.87
	$10\frac{1}{2}$	90	$0.34 \\ 4_8^3$	$163. \\ 31.0 \\ 4.26 \\ 18.1$	248,000	206,000	$7.91 \\ 0.94$
	102	105	$\begin{array}{c} 0.41 \\ 4\frac{1}{2} \end{array}$	182. 34.6 4.16 17.4	277,000	230,000	$9.23 \\ 0.94$
	102	135	$0.53 \\ 4\frac{1}{16}$	227. 43.2 4.1 16.8	345,000	287,000	16.1 1.09
	124	125	$0.46 \\ 4\frac{3}{4}$	297. 48.6 4.87 23.7	388,000	323,000	$12.2 \\ 0.99$
	$12\frac{1}{4}$	170	$\begin{array}{c} 0.66 \\ 5_{4}^{1} \end{array}$	$ \begin{array}{c} 385. \\ 63.0 \\ 4.75 \\ 22.6 \end{array} $	504,000	419,000	20.9 1.11
	$15_{1^{3}_{6}}$	150	0.50	520. 68.8 5.89 34.7	550,000	458,000	27.2 14.4 1.17" 0.98
	158	200	0.64	708. 93.2 5.95 35.4	746,000	622,000	27.2 1.17"
	Depth of Beam, in inches	Weight, per yard, in Ibs	Thickness of web, in inches Width of flange, in inches	Moment of inertia, [neutral] "resistance, axis square Radius of gyration, Square of rad. "line of web,	Safe load = $\frac{\text{co-efficient}}{\text{length in feet}}$ for fiber strain of 12,000 lbs. p. $\pi^{\prime\prime}$	Safe load = $\frac{\text{co-efficient}}{\text{length in feet}}$ for fiber strain of 10,000 lbs. p. a "	Mom't of inertia, axis coincid't Rad. of gyration, inth center-

20

I BEAMS. ---

•

-

.

42 THE PASSAIC ROLLING MILL COMPANY.

						-	
	4	18	$0.15 \\ 2_{16}^{3}$	$ \begin{array}{c} 5.1\\ 2.55\\ 1.68\\ 2.82\\ 2.82\end{array} $	20,400	17,000	0.45
	4	30	$0.30 \\ 2\frac{5}{8}$	7.6 3.80 1.59 2.52	30,400	25,300	$1.07 \\ 0.60$
	4	37	0.31 3	$\begin{array}{c} 9.2 \\ 4.60 \\ 1.58 \\ 2.50 \end{array}$	36,800	30,600	$ \frac{1.74}{0.69} $
	Q	30	$\begin{array}{c} 0.23 \\ 2_{4}^{3} \end{array}$	$\frac{12.7}{5.06} \\ \frac{2.06}{4.23}$	40,600	33,800	$ \begin{array}{c} 1.15 \\ 0.62 \end{array} $
ied.	Q	40	$0.41 \\ 2_8^7$	$15.1 \\ 6.02 \\ 1.95 \\ 3.78 \\ 3.78$	48,300	40,200	$\begin{array}{c c} 1.69 \\ 0.65 \\ 0.60 \end{array} \cdot 1.45 \\ 0.60 \end{array}$
Continu	9	40	0.27 215	23.2 7.73 2.40 5.8	62,000	51,600	$ \frac{1.69}{0.65} $
I I	9	50	$\begin{array}{c} 0.39 \\ 3\frac{1}{2} \end{array}$	$29.0 \\ 9.66 \\ 2.41 \\ 5.8 $	77,400	64,500	2.74 0.74
I BEAMS-Continued.	8	90	0.57 4 ⁷ / ₈	51.2 17.1 2.38 5.7	142,000 103,000 137,000 77,400	118,000 85,600 114,000 64,500 51,600 40,200 33,800 30.600	$\begin{array}{c} 3.15 \\ 0.73 \\ 1.09 \end{array}$
BE	2	.09	$0.40 \\ 3\frac{1}{2}$	45.0 12.9 2.74 7.5	103,000	85,600	
H	00	65	0.31	71.0 17.7 3.30 10.9	142,000	118,000	5.03 0.88″
•	Depth of Beam, in inches	Weight, per yard, in Ibs	Thickness of web, in inches Width of flange, in inches	Moment of inertia, neutral " " resistance, axis square Radius of gyration, Square of rad, " line of web,	Safe load $= \frac{\text{co-efficient}}{\text{length in feet}}$ for fiber strain of 12,000 lbs. p. n''	Safe load = $\frac{\text{co-efficient}}{\text{length in feet}}$ for fiber strain of 10,000 lbs. p. \square "	Mom't of inertia, { axis coincid't } Rad. of gyration, { line of web, }

T	HE	PA	SSAIC	ROLL	ING M	ILL C	OMPAN	YY. 43
Y	0	50	2.30 0.33 0.11	56.4 6.75 12.53	1.50 3.36 11.3	100,000 12,000	83,300 10,000	$1.94 \\ 0.57 \\ 0.62 \\ 0.62$
	0	0.2	$2.44 \\ 0.53 \\ 0.11$	69.7 6.75 15.49	1.50 3.16 10.0	124,000 12,000	103,000 10,000	2.82 0.61 0.63
-	124	80	2.95 0.39 0.08	168.9 12.4 27.7	2.0 4.60 21.1	221,000 16,300	184,000 13,600	5.44 0.73 0.82
	124	100	3.28 0.46 0.08	214.3 12.4 35.0	$2.0 \\ 4.63 \\ 21.4$	280,000 16,300	233,000 13,600	8.93 0.86 0.94
	12_4^1	140	3.60 0.78 0.08	264.2 12.4 43.2	2.0 4.34 18.9	345,000 16,300	288,000 13,600	$12.0\\0.92\\0.93$
	$15\frac{3}{16}$	150	3.97 0.62 0.07	467.5 18.7 62.3	2.5 5.60 31.3	500,000 20,000	416,000 16,700	$19.7 \\ 1.09 \\ 1.15 $
	1518	.180	4.17 0.82 0.07	524.0 18.7 70.0	2.5 5.40 29.2	560,000 20,000	466,000 16,700	$21.6 \\ 1.06 \\ 1.10$
	Depth of Channel, in inches.	Weight per yard, in Ibs	Width of flange, in inches	Moment of inertia, Increase for 10 lbs. weight, Moment of resistance, axis	Increase for 10 lbs. weight, horizontal, Radius of gyration, r_{μ^2}	Safe load = $\frac{\text{co-efficient}}{\text{length in ft.}}$ fiber strain Increase of co-efficient for 10 lbs. weight.	$\begin{aligned} \text{Safe load} &= \frac{\text{co-efficient}}{\text{length in ft.}} & \text{fiber strain} \\ \text{length in ft.} & 10,000 \text{ lbs. } p. \square^{\prime\prime} \\ \text{Increase of co-efficient for 10 lbs. weight.} \end{aligned}$	Moment of inertia, Center of grav. from back of L, kadius of gyration,

82

C BARS. .--

44 T	HE	PA	SSAIC	ROLLING MILL COMPANY.	
	4	$13\frac{1}{2}$	$ \begin{array}{c} 1.44 \\ 0.17 \\ 0.25 \end{array} $	3.25 1.62 1.62 1.65 1.65 3.41 1.55 3.41 1.55 5,300 10,800 4,400 0.23 0.23 0.38	0.41
•	Q	17	$ \begin{array}{c} 1.44 \\ 0.19 \\ 0.20 \end{array} $	6.20 2.48 0.84 1.91 3.65 1.91 3.65 1.91 1.91 1.91 5,600 5,600 0.31 0.45	04.0
	9	24	$ \begin{array}{c} 1.85 \\ 0.21 \\ 0.17 \end{array} $	13.3 3.0 3.10 2.35 5.55 5.55 5.55 8,000 8,000 8,000 0.74 0.54	0e•0
<i>d.</i> •-	9	48	2.25 0.53 0.17	21.9 21.9 3.0 7.30 2.14 4.57 58,400 8,000 8,000 48,600 6,700 6,700	0.00
Continue	9	60	2.50 0.61 0.17	27.6 3.0 3.0 9.30 9.15 4.60 8,000 6,700 6,700 0.77	60.0
BARS-Continued.	8	30	$ \begin{array}{c} 1.94 \\ 0.21 \\ 0.12 \end{array} $	27.8 5.3 5.3 6.35 6.35 1.33 9.30 9.30 10,600 10,600 8,800 8,800 8,800	0.93
BA	8	50	2.25 0.38 0.12	43.4 5.3 10.85 10.85 8.70 86,800 10,600 10,600 72,200 8,800 8,800 8,800	0.64
	Depth of Channel, in inches	Weight per yard, in lbs	Width of flange, in inches	Moment of inertia, Increase for 10 lbs, weight, Increase for 10 lbs, weight, Increase for 10 lbs, weight, Radius of gyration, z a. z^2 Safe load = $co-efficient { fiber strain} { lincrease of co-efficient for 10 lbs, weight.Increase of co-efficient for 10 lbs, weight.Safe load = co-efficient for 10 lbs, weight.Moment of inertia,Increase of co-efficient for 10 lbs, weight.$	Kadius of gyration,

	THE	PA	SSAI	с	R) L	LI	N	G	м	IL	,L	С	01	M P	AI	YY		-	45
	ie fiber.	nge.	Radius of Gyration.	1.41	1.18	1.22	0.85	0.98	0.75	0,60	0.65	17.0	0.62	0.54	0.55	0.42	0.37	0.105	.084	120.
	ost extrem	luare to flau	Co-effic. of Strength.	24,080	16,800	16,640	10,800	8,080	8,320	6,160	6,160	4,560	3,640	3,200	1,712	1,360	1,000	792	400	176
	in the m	Neutral Axis square to flange.	Mom't of Resist'ce.	3.01	2.10	2.08	1.35	1.01	1.04	0.77	0.77	0.57	0.455	0.400	0.214	0.170	0.125	0.099	0.050	0.022
1	er sq. inch	Neu	Mom't of Inertia.	9.04	5.23	5.20	2.70	2.02	1.82	1.16	1.15	0.86	0.57	0.50	0.24	0.17	0.11	0.073	0.031	0.011
	ooo lbs. pe	nge.	Radius of Gyration.	1.15	0.83	0.66	. 0.72	0.54	1.06	1.24	0.90	0.56	0.34	0.75	0.105	0.61	0.54	0.45	0.365	0.31
-NON-	ain of 12,	rallel to fla	Mom't of Co-effic. of Resist'ce. Strength.	16,560	8,800	6,480	15,760	2,960	12,000	15,040	8,640	2,880	1,600	4,480	944	2,000	1,536	1,152	816	248
TT	cimum str	Neutral Axis parallel to flange.	Mom't of Resist'ce.	2.07	1.10	0.81	1.97	0.37	1.50	1.88	•1.08	0.36	0.20	0.56	160.0	0.25	0.192	0.144	0.102	0.031
-	l for a may	Neut	Mom't of Inertia.	6.25	2.58	1.53	5.51	0.58	3.63	5.01	2.22	0.53	0.22	76.0	0.09	0.35	0 235	• 0.138	0.064	0.022
•	calculated	Distance	of Gravity from top.	0.99	0.75	0.61	1.19	0.48	1.06	1.33	0.93	0.55	0.40	77.0	0.32	0.59	0.52	0.47	0.35	0.29
	ength are	Weight	per ft. Lbs.	16.	12.5	11.7	12.5	7.0	11.	11.	9.	5.7	5.	5.7	2.7	3.2	2.7	2.3	1.6	0.8
	ints of Str		Area In sq. inches.	4.75	3.75	3.50	3.75	2.09	3.25	3.25	2.75	1.70	1.51	1.72	0.81	0.95	0.82	0.68	0.48	0.23
	The Co-efficients of Strength are calculated for a maximum strain of 12,000 lbs. per sq. inch in the most extreme fiber.	Size of	F	X 4 X	× 3 ×		×	× % ×	X 3}X	×4×	3 × 3 × 1	× 2 ×	× 23×	× 2 } ×	$2\frac{1}{4} \times 1\frac{1}{4} \times \frac{1}{4}$	× 2 ×	× 13×	× 11 ×	XIIX	1 × 1 × 4

	Co-efficient of Strength,	lbs. per sq. inch.	31,000 - 48,000 17,400 - 33,500 10,100 - 21,700 7,700 - 16,300	$\begin{array}{c} 4,800-10,200\\ 3,400-5,500\\ 2,100-4,500\\ 1,700-3,400\end{array}$	$\begin{array}{rrr} 1,050 - & 2,650 \\ 730 - & 1,520 \end{array}$	
RON.	Radius	Lyrat.	$\begin{array}{c} 1.89\\ 1.56\\ 1.25\\ 1,10\\ 1,10 \end{array}$	0.94 0.77 0.70 0.62	$\begin{array}{c} 0.55 \\ 0.47 \\ 0.39 \\ 0.30 \end{array}$	
NGLE II	Distance of Cent. of Grav.	from outside of flange. Inches.	$\begin{array}{c} 1.68-1.83\\ 1.40-1.59\\ 1.14-1.35\\ 1.01-1.14\end{array}$	$\begin{array}{c} 0.86 - 1.04 \\ 0.71 - 0.85 \\ 0.66 - 0.79 \\ 0.59 - 0.73 \end{array}$	$\begin{array}{c} 0.51 - 0.64 \\ 0.44 - 0.55 \\ 0.35 - 0.46 \\ 0.30 - 0.33 \end{array}$	
WEIGHTS AND PROPERTIES OF ANGLE IRON ANGLES WITH EQUAL LEGS.	Moment of Inertia,	axis through Center of Gravity.	$\begin{array}{rrrrr} 20.0 & -32.0 \\ 9.4 & -18.4 \\ 4.35 & -9.50 \\ 2.87 & -6.38 \end{array}$	$\begin{array}{rrrr} 1.50 & - & 3.35 \\ 0.85 & - & 1.50 \\ 0.50 & - & 1.15 \\ 0.35 & - & 0.78 \end{array}$	$\begin{array}{rrrr} 0.18 & - & 0.48 \\ 0.11 & - & 0.25 \\ 0.044 & - & 0.123 \\ 0.022 & - & 0.035 \end{array}$	$\begin{array}{c} 0.014 - \ 0.021 \\ 0.009 - \ 0.014 \end{array}$
ERTII		11/1 3/1	80. 87. 2 66. 72. 2 53. 58.			
PROF ES WI	Weights per yard for different thicknesses.	8/1/	72. 60. 42.	31.535.		
D H	crent thi	<u>2</u> // <u>16</u> /	57.5 65. 48. 54. 39. 43. 33. 37.5	8. 31. 2.5 9.2		
AN	for diffe	$\frac{3}{8}$ ¹¹ $\frac{1}{16}$ ¹¹ $\frac{1}{2}$ ¹¹ $\frac{1}{16}$ ¹¹ $\frac{9}{16}$ ¹¹	282. 282. 282. 282. 282. 282. 282. 282.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.8	
HTS	ber yard		28. 24.	21. 18. .5 16.5	8.410.512.614.8 7.2 9.010.8 6.0 7.5 4.8	
EIG	/eights	$\frac{1}{4}^{1/1}$ $\frac{5}{16}^{1/1}$		18. 12. 15. 10.5 13.5 9.6 12.	8.4 10.5 12.6 1 7.2 9.0 10.8 6.0 7.5 4.8	•
M	M	3 //			6.3 3.6 3.6	3.2
	14.94	11/1	2.2		3.0	2.1
	Size.	Inches.	$\begin{array}{c} 6 \\ 5 \\ 4 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	22 22 22 22 22 23 23 23 23 23 23 23 23 2	$\begin{array}{c} 13 \times 13 \\ 1\frac{4}{5} \times 12 \\ 1\frac{4}{5} \times 12 \\ 1\frac{4}{5} \times 11 \\ 1 \times 1 \\ 1 \end{array}$	2-100 101-4 X X 2-100 001-4

12 14	195		1	-		1		2		2.11		
	•	Co-efficient of Strength,	max. strain 10,000 lbs. per sq. inch.	25,300 - 44,500 12.000 - 22.000	15,300 - 31,200 8,000 - 16,600	14,600 - 30,600 5,900 - 12,600	11,600 - 26,500 6,200 - 13,100	9,900 - 20,600 7,800 - 16,600	9,700 - 20,000 5,800 - 12,000	3,600 - 7,400 1,700 - 3,600		
RON.		Radius	Gyrat. In.	1.95 1.20	1.05	1.60 0.86	1.45 0.88	1.27 1.08	$1.28 \\ 0.90$	0.97		
NGLE I		Distance of Cent. of Grav.	from outside of flange. Inches.	$\frac{1.96-2.14}{0.96-1.14}$	1.61-1.82 0.86-1.07	1.70 - 1.90 0.70 - 0.90	1.44 - 1.68 0.74 - 0.94	1.20 - 1.40 0.96 - 1.16	1.28 - 1.49 0.78 - 0.99	0.99 - 1.13 0.49 - 0.63		
WEIGHTS AND PROPERTIES OF ANGLE IRON	ANGLES WITH UNEQUAL LEGS.	Moment of Inertia,	axis through Center of Gravity.	$\begin{array}{rrrr} 15.5 & -28.2 \\ 5.6 & -10.5 \end{array}$	7.78 - 16.7 3.18 - 7.09	7.37 - 15.9 2.04 - 4.66	5.10 - 12.2 1.98 - 4.52	4.18 - 9.14 2.99 - 6.65	3.96 - 8.70 1.92 - 4.38	1.09 - 2.36 0.39 - 0.89		-
RTI	UNE		3// Ce	~	~~~			522 {	~~	~	,	
E	H			72.	60.	56.		50	48.			-
IO	LIN	es.	11/1	66.	55.	51.	48.	48.	44.			
PR	ES	ckness	8/1 11/1 8/1 10/1	60.	50.		44.	44.	40.			
D	IGL	nt thi	11.91	54.	45.	42.	$39\frac{1}{2}$	392	36.			
AN	A	Weights per yard for different thicknesses.	2	48.	40.	372 42. 47.	35.	35.	32.	24.		
LS		rd for	11.01	42.	35.	33.	$30\frac{1}{2}$	$30\frac{1}{2}$	28.	21.	1.1.5	
HH		per ya	1/80		30.	28.	26.	26.	24.	18.		
EI		ights .	10 11 11		R. The					15.		
M		Wei	· 11/1 5/11						- 12	12.	8.7 11. 8.7 11. 5.6 7.	-
			3 // 1		1.72						6.5 6.5 4.2	-
					-461	1					-010/4-100	
		Size	Inches.	6 × 4	$5 \times 3_{2}^{1}$	× 3	$4\frac{1}{2} \times 3$	$4 \times 3_{2}^{1}$	× 3	×	24×1 24×1 28×1 13×1 13×1	
en!			In	9	10	5 ×	$4\frac{1}{2}$	4	4	~	13 2 4 H	1

I BEAMS.

THE following tables are designed for practical use, to guide the selection of the most economical beam, by simple inspection, when the load and the span between centers of supports are given. The maximum fiber strain assumed is 12,000 lbs. per square inch, which is sufficient for all building purposes. Where beams have to carry moving loads, as in bridges, etc., this maximum fiber strain should be reduced; but for entirely permanent and dead loads, it may be increased with safety up to 16,000 lbs. per square inch, as the limit of elasticity is at least fifty per cent. larger than this. The corresponding bearing capacity of beams can be easily found by simply multiplying the safe loads given in the table by the proportion of maximum strain allowed. The deflections for each greater load are always in proportion to the loads.

Another table has been calculated for the safe loads which may be carried by beams not supported sideways. This table is calculated from Rankine's formula,

$$b = \frac{a}{1 + \frac{l^2}{5000 \ w^2}}$$

in which a = the strain allowed in beams braced sideways, l = length in inches, and w = width in inches.

D
T
A
A
E
A
H

Safe Loads, in tons of 2000 lbs. uniformly distributed, and corresponding DEFLECTIONS in inches for maximum fiber strains of 12,000 lbs. ner so. inch (beams being secured against vielding sideways)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E	PAS	SSA	IC	ROL	LI	NG	М	IL	L	С	01	MI	PA:	NY	ζ.		49	
I5' I5' I2 $\frac{1}{4}$ I0 $\frac{1}{2}$ I0 $\frac{1}{2}$ I0 $\frac{1}{4}$ I0 $\frac{1}{$		8//	30.	Defl.	In. 0.04	0.06	0 11	0.14	0.17	0.21	0.25	0.29	0.34	0.39	0.44	0.50	0 56	0.63	
I5' I5' I2 $\frac{1}{4}$ I0 $\frac{1}{2}$ I0 $\frac{1}{2}$ I0 $\frac{1}{4}$ I0 $\frac{1}{$		-	æ	Load	Tons 16.3	13.6													
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20		11	0	Defl.	In. 0.04	0.06	0.10	0.13	0.15	0.19	0	0	0	0.35	0.39	0.45	0.50	0.56	
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	eways	5	2		Tons 15.8	13.2	9.9	8.8	1				5.6	10	4.	4.	4.	4.	
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	inic S	11	5	Defl.	In. 0.04	0.06	0.10	0.13	0	0.	0	0.	0	0	0	0	0	0	
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	Innia	0	80		Tons 18.6	15.5	11.6	10.4	1					6.	10	5.	5	4.	
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	inst y	17/1	0	Defl.	In. 0.03	0.05	0.08	0.11	0.13	0.16	0.19	0.23	0.26	0.30	0.34	0.39	0.43	0.48	
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	u aga	10	6	Load	Tons 24.0	20.7	15.5	13.8	12.4	11.3	10.4	9.6	8.9	8.3	7.8	7.3	6.9	6.5	
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	arna	1 CI.)5		In. 0.03	0.05	0.08	0.11	0.13	0.16	6	2	9	0.	0.	0.	0.	0.	
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	e Suis	10	1(Load	Tons 27.7	23.1	17.3	15.5	13.9	12.6	11.6	10.7	9.9						1 - 1 - 1
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20		11/1	5	Deft.	$_{0.03}^{\mathrm{In}}$	0.05	0.08	0.11	0.13	0.16	0.19	0 22	0.26	0.30	0.34	0.39	0.43	0.48	1
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	I (DCa	10	15	Load	Tons 34.5	28.8	21.6	19.2	17.3	15.7	14.4	13.3	12.4	11.5	10.8	10.1	9.6	9.1	
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	• 11101	111	19	Defl.	In. 0.03	0.04	0.02	0.09	0.11	0.14	0.16	0 19	0.22	0.25	0.29	0.33	0.37	0.41	111 C
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	he loc	12	12	Load	Tons 38.8	32.3	24.3	21.6	19.4	17.7	16.2	15.0	3	12.9	12.1	11.4	10.8	3	
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	105.	111	0	Defl.	In. 0.03	0.04	0.02	0.09	0.11	0.14	0.16	0.19	0.22	0.25	0.29	0.33	0.37	0.41	1.20
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	2,000	12	17	Load	Tons 50.4	42.0	31.5	28.1	25.6	23.0	21.0	19.5	18.0	6.8	5.8	4.9	4.0	3.3	
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	1 10 5	211	0	Defl.	In. 0.02	.03	.06	20.	0.09	0.11	0.13	0.15	0.18	.21	.23	.26	.30	.33	
15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	SUTAII	16	15	Load	Tons 52.0	45.9	34.4	30.6	27.5	25.1	23.0	21.2	19.7	18.3	17.2	16.2	15.3	14.5	1000
1 Load 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nuer	211	0	Defl.	In. 0.02	0.03	0.06	0.07	0.0	11.0	0.1;	0.15	1.18	0.21	0.23	0.26	0.30	0.33	
Depth Weightper Weightper Span in feet. 10 11 12 13 14 13 15 16 16 16 16 18 18		15	8	Load	Tons 73.0	62.2	53.4	41.5	37.3	34.0	31.1	28.8	26.7	24.8	23.4	22.0	20.7	19.6	
	All and a	Depth	Weight per yd. in lbs.	Span in feet.				1						1	F		'	19	

THE PASSAIC ROLLING MILL COMPANY.

						0000	10122 C 101	
	um	11	8	Load Defl.	Tons In. 2.04 0.08 1.70 0.12 1.46 0.17	1.13 0.28	$\begin{array}{c} 1.84 & 0.35 & 1.52 & 0.35 & 1.02 & 0.35 \\ 1.68 & 0.42 & 1.39 & 0.42 & 0.93 & 0.42 \\ 1.54 & 0.50 & 1.27 & 0.50 & 0.85 & 0.50 \\ 1.42 & 0.59 & 1.17 & 0.59 & 0.78 & 0.59 \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	naxim	4.		Load	Tons 2.04 1.70	1.13	$ \begin{array}{c} 1.02\\ 0.93\\ 0.85\\ 0.78 \end{array} $	$\begin{array}{c} 0.74 \\ 0.68 \\ 0.60 \\ 0.57 \\ 0.57 \\ 0.54 \end{array}$
:	for m	11		Defl.	1n. 0.08 0.12 0.12 0.17 0.17	0.22	0.35 0.42 0.50 0.59	$\begin{array}{c} 0.68 & 0.74 \\ 0.78 & 0.68 \\ 0.89 & 0.64 \\ 1.00 & 0.60 \\ 1.13 & 0.57 \\ 1.25 & 0.54 \end{array}$
	ches vays)	4	30	Load Defl.	Tons 3.04 2.53	$\begin{array}{c} 2.30 & 0.22 \\ 2.05 & 0.28 \\ 1.70 & 0.28 \end{array}$	1.52 1.39 1.27 1.17	1.00
-	in in sidev	-			In. .08 .12	.22	.42	
	IONS ding	4	37	Load Deft.	.63 0 63 0 63 0	.05 0	$\frac{1.84}{1.68} \frac{0.35}{0.42}$ $\frac{1.54}{1.42} \frac{0.50}{0.59}$	$\begin{array}{c} 1.45 & 0.54 & 1.32 & 0.68 \\ 1.35 & 0.62 & 1.23 & 0.78 \\ 1.27 & 0.71 & 1.15 & 0.89 \\ 1.20 & 0.80 & 1.08 & 1.00 \\ 1.20 & 0.90 & 1.02 & 1.13 \\ 1.13 & 0.90 & 1.02 & 1.13 \\ 1.07 & 1.00 & 0.97 & 1.25 \end{array}$
	LECT t yiel				14 20 3 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 1 1	$0.18 2 \\ 0.22 2$	1 1 2 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ed.	DEF	2''	30	Load Defl.	0000. 0000.	55 0. 26 0.	0.000	7300.00
tinu	iding ed ag				704 Tol	0000	2033	4 8 1000
Con	secur	211	40	Load Defl.	0.0 0.1	0.1	0.3	0.0
70	corre		7	Load	Tons 4.83 3.45 3.45	3.02	2.2022.02	$\begin{array}{c} 1.73 \\ 1.52 \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.27 \\ 1.27 \\ \end{array}$
BEAMS-Continued.	s, in tons of 2000 lbs. uniformly distributed, and corresponding DEFLECTIONS in inches f fiber strains of 12,000 lbs. per sq. inch (beams being secured against yielding sideways).	11	40	Defl.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.15 & 3.02 & 0.18 & 2.55 \\ 0.19 & 2.69 & 0.22 & 2.26 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
EA	buted (bea	6''	4	Load Defl.	Tons 6.20 5.17	3.88	3.10 2.59 2.59	2.22 2.07 1.94 1.83 1.83 1.64
E	listril			and and the state of the state	In. 0.06 0.08	0.15	0.23	$\begin{array}{c} 0.45\\ 0.52\\ 0.52\\ 0.67\\ 0.84\\ 0.84 \end{array}$
B	mly der sq.	1.9	50	Load Defl.	ons 57.	4.8	3.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2	
H	nifori os. pe	-			In. Tons 0.06 7.74 0.08 6.5 0.11 5.5	0.15 4.8 0.19 4.3	0.2333	$\begin{array}{c ccccc} 0.45 & 2.8 \\ \hline 0.52 & 2.6 \\ 0.59 & 2.4 \\ 0.67 & 2.3 \\ 0.84 & 2 & 0 \\ 0.84 & 2 & 0 \\ \end{array}$
-	bs. u ooo Il	6''	90	Load Defl.	Tôns 1 13.7 0 11.4 0 9.8 0	8.5 0.7	morm	
•	000 l				05 13 07 11 09 99			
1	of 2 ins o	.112	09	Load Defl.	s In. 3 0.05] 4 0.09	7 0.16	1 0.20 7 0.24 3 0.29 0 34	7 0.39 2 0.51 0.57 0.57 0.57 0.72 0.72
	tons r stra				Tons 10.3 8.6 7.4		4.7	
	ls, in fiber	8"	65	Isoad Defl.	$1_{\rm In.}^{\rm In.}$ 0.04 0.06 0.09	0.11 0.14	$ \begin{array}{c} 0.17 \\ 0.21 \\ 0.25 \\ 0.29 \\ 0.29 \end{array} $	$\begin{array}{c} 0.34 \\ 0.39 \\ 0.44 \\ 0.50 \\ 0.56 \\ 0.63 \end{array}$
•	Safe Loads, in tons of 2000 lbs. uniformly distributed, and corresponding DEFLECTIONS in inches for maximum fiber strains of 12,000 lbs. per sq. inch (beams being secured against yielding sideways).	~		Isoad	Tons 14.2 11.8 10.2	8.9	7.1 5.5 5.5	5.1 4.7 4.8 4.2 3.9 3.7
	afe	Depth	Weight per yd. in lbs.	Span in feet.	100	000	110	14 115 117 119 119
	ŝ	De	Weig yd. 11	Spa	ri Billion	Ster 2		

			120					1	2		1		1		-			1	
	un	8"	80	Defi.	In. 0.69	22.0	0.84	0.92	00.1	1.09	1.1.1	1 36	1.46	1.56	1.67	1 78	1.89	2.00	
	axim	~	w	Load	Tons 4.1	3.9	2.7	0.0	+ 0		1.6	00		2.7	2.6	5.0		2.40	
:	for n	9''	0	Defl.	In. 0.62	0.68	0.75	20.0	0.0	0.96	1.19	10 1	1.30	2.6 1.39	1.49	1.50	1.69	1.79	
	nches ways)	6	70	Load	10	3.7	_	3.4	0.0	3.1	3.0	20	2.02	2.6	2.55	2.5	2.4	2.32	
1	s in i z side	11	10	Defl.	In. 0.62	0.68		22.0	20.0		1.04	1.01	1.30	1.39	1.49	1.50	1.69	1.79	
	CTION elding	9	85	Load	Tons 4.7	4.4		4.0	2.0	3.7	3.6	9.4	3.0		3.0	2.9	201	2.7	-
ť.	EFLEG nst yi	10211	0	Defl.	In. 0.53	0.59	0.65	11.0	11.0	0.83	06.0	1 04	1.12	1.19	1.27	1.36	1.44	1.53	
imue	ing D l agai	10	90	Load	Tons 6.2	5.8	5.6	5.4		5.0		4.0						3.6	
BEAMS-Continued.	ly distributed, and corresponding DEFLECTIONS in inches sq. inch (beams being secured against yielding sideways)	102/1	10	Defl.	In. 0.53	0.59	0.65	12.0	11.0	0.83	0.00	10.1	1.12	1.19	1.27	1.36	1.44	1.53	
D	corre: ing se	10	105	Load	Tons 6.9		3		0.0	5.5		1.0		4.6	4.5	4.3	4.2	4.1	
M	, and ms be	102/1	10	Defl.	In. 0.53	0.59		12.0	51	0.83	0.90	1.01	1.12	1.19	1.27	1.36	1.44	1.53	
4	buted.	10	135	Load	Tons 8.7	8.3	2.9	2.2	2.1				0.9	5.8	5.6		5.5	5.1	
SE	distri	$12\frac{1}{4}$	10	Defl.	In. 0.45	0.50	0.55	0.60	0.00	0.71	22.0	0.63	0.95	1.02	1.09	1.16	1.24	1.31	
	rmly er sq	12	125	Load	Tons 9.7	9.2	80.00			7.8	2.5	2.2	6.7			6.1	5.9	5.7	
H	unifo lbs. J	1211	0	Defl.	In. 0.45	0.50	0.55	0.60	0.00	17.0	77.0	0.83	0.95		1.09	1.16	1.24	1.31	
	s, in tons of 2000 lbs. uniform fiber strains of 12,000 lbs. per	12	170	Load	Tons 12.6	12.0	11.5		10.5	10.1	1.6	9.3	0.20	1	8.1			7.4	
	f 200 s of 1	15 ³ /16"	0	Defl.	In. 0.37	0.40	12.5 0.44	0.48	0.52	0.57	0.62	19.0	0.77	0.82	0.88	0.93	0.99	1.05	
	tons c strain	15	150	Load	Tons 13.8	13.1	12.5	12.0	11.5	11.0	10.6	10.2	0.0		8.9				
	s, in fiber	151/1	200	Defi.	In. 0.37	17.8 0.40	0.44	0.48	15.5 0.52	14.9 0.57	14.4 0.62	19.0	12.9 0.77	0.82	0.88	0.93	0.99	1.05	
•	Load	1,		Load	Tons 18.7	17.8	17.0	16.2	15.5	14.9	14.4	13.8	12.9	12.4 0.	12.0	11.7	11.3	11.0	
	Safe Loads in tons of 2000 lbs. uniformly distributed, and corresponding DEFLECTIONS in inches for maximum fiber strains of 12,000 lbs. per sq. inch (beams being secured against yielding sideways).	Depth	Weight per vd. in lbs.	Span in feet.	140	21			24	1			200	30	31	32	33	34	
<u></u>	-	H	13 >	100	1	-	-		-	1.	-		111	244	-	-	-	-	-

	7	1	,		. 0	000	7	0	12	0.00	0	0	0	2	00	-
	um	11	18	Defl.	In. 1.39	1.5	11	2.00	2.1	2.53	2.7	2.92	3.12	3.55	3.78	4.00
	Safe Loads, in tons of 2000 lbs. uniformly distributed, and corresponding DEFLECTIONS in inches for maximum fiber strains of 12,000 lbs. per sq. inch (beams being secured against yielding sideways).	4	-	Load Defl.	In. Tons 1.39 0.51	1.53 0.48 1.53	0.66 1.84 0.44 1.84	0.63 2.00 0.42	0.61 2.17 0.41	38	.36	0.35	0.34	39	.31	0.30
•	or ma		1		.39	53	84	00 00	17 (330	0.54 2.72 0	.92 (0.68 2.49 0.61 3.12 0.51 3.12 0	55	0.46 3.78	4.00 (
•	s fo s).	4"	30	D	6 1 6 1	100	1-1	\$	02	200	202	50	000	200	30	4
	nche way			Loa	Tons 0.76	0.7	0.6	0.6	0.6	0.50	0.5	0.5	0.5.	0.4	0.4	0.46
1	in in side			Load Defi. Load Defi.	1.39	1.53	3 8	2.00	17	2.53	20	32	12	2.83 0.57 3.55 0	28	8
	NS	4"	37	d p	1	11	10	2	02	200	6 2	35.	00	200	0.0	4
•	eldi		1	Loa	Tons In. Tons 1.00 1.11 0.92	0.96 1.22 0.87	1.47 0.80	1.60 0.77	2.0	0.75 2.02 0.68	0.73 2.17 0.66 2	0.6	0.6	0.5	0.5	20 0.54
	rLEC st yi	1		efl.	. 11	22.	47	.60	13	05	17	.33	40	280	10	
ď.	DEH	21	30	A	01	100	88 1	84 1		100	30	0	200	200	62 3.0	
nue	ng l		17	Load Defl.	Ton 1.0	0.96	8.0	0.8	0.8	0.70	0.7	0.70	0.6	0.6	0.6	0.60
nti	indi		1		1.11 1	1.22	1.47 0.	1.60	73	05	17	33	49	280	10	20
Co	secu	21	40	Ď	1. I.					-02	\$	ai	aid	ici	0	~
	orre ing :		-	Load Defl.	Tons 1.2	1.15	1.05	1.0	1.97	1.570.931.870	0.80	1.95 0.83 2.33	18.0	720	0.73	0.71
Ø	bei		1		93	1.19	1.23	1.34	45 (57 (69	85	95	60	34	52	20
Z	, ar	9/1	40	De	0.		-		1.			1.	000	200	2	si
I BEAMS-Continued.	s, in tons of 2000 lbs. uniformly distributed, and corresponding DEFLECTIONS in inches f fiber strains of 12,000 lbs. per sq. inch (beams being secured against yielding sideways).	•	4	Load Defl.	In. Tons In. Tons In. 0.93 1.56 0.93 1.2 1.11	1.47	23 1.35	1.3	1.55 1.45 1.25 1.45 0.97 1.73 0.81 1.73 0.74 2.17	1.69 1.15	1.82 1.1	1.95 1.07	2.09 1.03 2.09 0.81 2.49	26.0	.94	16 0
P	trib				93	1.02	33	1.34	45	60	85	95	60	32	52	20
H	dis q. in	9/1	50	Ď			-	-	-i -		i	i	aid	200	i ci	22
A	mly er so			Load Defl.	Tons 1.9	2 a	1.7	1.6	1.55	1.5	1.4	1.33	1.3	1.91	1.18	1.14
-	s. p				In. 0.93	1.02	33	1.34	1.45	1.69	85	95	2.09	373	25	89
П	un . dl c	9/1	90	De									aid	NO	2	ŝ
	lbs			Load Defl.	In. Tons 0.79 3.4	3.2	3.0	2.8	1.24 2.7	2.0	1.56 2.4	1.67 2.4	1.79 2.3	2.2	2.01	2.00
i	000 f 12				.6	0.96	1.05	1.14	54	1.45	90	29	62	33	16	2.30
	of 2 ns o	112	09	Det	0.79	00	1.	1.						- 6	ŝ	22
Sigu	ons train	L		Load Defl.	Tons 2.6	2.4	5.5	2.1	2.1	1.9	1.85	1.8	1.7	1.6 2.03 2.1	.57	.52
	n to		1		6	1-1	10	00	60	22	36 1	1 9	9	- 00	6	0
	s, i fibe	8/1	65	Def	0.69	12.0	0.92	1.00	1.09	1.17	1.36	1.46	1.56	1.78	1.0	2.6
	oad	w	0	Load Defl.		3.9	2	0.	001	2.6	10	.45	2.4	5.5	2.15 1.89 1	.10
	H		15		He	00 00	3	3	020	200	02	02	000	202	00	25
	afe	Depth	Weight per yd. in Ibs.	Span in feet.	0	21	200	4	20	520	00	8	30	- 02	0	4
	S	De	Veig vd. II	Spa	CS.	000	2 CZ	03	020	22 02	02	52	00	000	300	n
																8

Are liable to fail under a much lighter load than given in the previous tables, by yielding laterally. BEAMS UNSUPPORTED SIDEWAYS Safe Load, in tons, for Beams unsupported sideways.

	81 × "Þ	- · ·	.46				length. : width.
	₹\\\ × 30	01-1	1.1 .82 .62			ated by ala.	l = let w = wi
	28 × "Þ	and	1.35 1.05 .82			calcula s formu	100
	21, × 30	3.4	1.5 1.1 .82	.53		This table is calculated by Rankine's formula.	a 12 5000 w ²
	2,, × 40	3.8	1.1	.66	.53	This to Ra	+++
	0t × 1/9	4.7	1.8 3		.55	6.	<i>P</i> =
	09 × ,,9		3.2		1.0 .85 .70		
	06 × ,,9		6.1 4.9		2.3		all she
4	09 × //2		2.5 2.5 5.7		1.35 1.1	. 2.00	
	99 × ,,8		6.0 3.8		2.1 1.8 1.5		6.
	08 × ,,8		6.9 5.4 8.3		2.4		1.0
	04× //6	8.6	6.4 3.8 3.8		2.1	$1.15 \\ 1.0$	0.7.0
600000	98 × ,,6	10.2	7.9 5.0	4.00	2.3 1.9 2.3		1.0
	06×,,₹01	14.2	10.9 8.1 7.0	5.7	3.30 2.53		1.8 1.6 1.4
(man)	10 ² / ₁ ,×102	15.9	12.2		4.4 3.7 3.2		2.0
OTTO	10 ⁵ / ₁ ×132		15.6 12.4 10.2		6.0 5.1		2.2.2
	15 ⁴ ×152		17.2 13.8 113.8 111.1	9.1	6.4 5.5		2.3.0
	12 ¹ / ₄ ×170		23.3 18.3 14.9		8.9 7.6 6.6		4.3 3.4 3.4
	12,, × 120		24.8 19.9	40	9.4		4.5
	12,, × 500		100		11.8		
	Span in feet.	ထထ		1936	22 24 24		1

54

FLOORS.

ROLLED iron beams are extensively used in the construction of fire-proof floors. For the selection of the required beams, it is first necessary to ascertain the load to be carried per square foot of floor. This may vary considerable, according to the purposes for which the building is intended. The weight of a fire-proof floor one-half brick in thickness is from 60 to 70 lbs. per square foot. For halls, theaters, churches, etc., an additional load from 70 to 80 lbs. per square foot should be added. This is the weight of a closely packed crowd of people. Generally, the same load will be sufficient for factories. Floors of warehouses have frequently very large loads, from 200 lbs. per square foot up to even 400 lbs. per square foot, according to the nature of the merchandise stored.

The beams used in floors should not only be strong enough to carry the superimposed loads, but also sufficiently rigid to prevent vibration. The deflection should not exceed onethirtieth of an inch per foot of span. A good rule is to have no beam of less depth than one twenty-fourth of the clear span, or the beams should have a depth of one-half inch for each foot of span. If it is necessary to use shallower beams, the strains should be reduced so that the deflection is no larger than stated above. Generally, of two beams of the same carrying capacity, the deeper beam is the most economical and the stiffer one also.

The plates 12, 13, and 14 show several connections of beams and girders forming floors.

The beams used as joists are frequently laid on top of the girders and walls. If the lower sides of the joists and girders have to be flush, the joists are framed or coped into the girders, so that they rest on their bottom flange. In this case they are connected to the web of the girders by angle iron flanges or knees, which are riveted or bolted to both girder and joist. The same connections are used in the

construction of openings for stair-ware, hatch-ways, etc. The ends of joists or beams should rest on boring plated ther of iron or of stone, so as to distribute the pressure over the brick-work; also, anchors have to be connected to the ends in the wall. Tie-rods, three-fourths to one inch in diameter, are used to tie the joists together and take up the thrust of the arches. Concrete is frequently used instead of brick arches. Corrugated iron is placed between the joists, resting on the lower flanges, and concrete is laid top of it. Also, hollow bricks and blocks of different shapes have been used for fire-proof floors. These have the advantage of reducing the dead load considerably. They may be used for flat or segmental arches.

Girders consisting of two or more beams are used when single beams do not give the necessary strength. Usually, they are bolted together with cast-iron separators. For carrying walls, it is necessary to have girders consisting of at least two beams, so as to give sufficient width. The beams should have separators near the supports, and besides these, from five to seven feet apart. A table of the weight of Cast-Iron Separators is given here below.

Approximate Weights of Separators and Bolts.

Size of Beam.	Weight of Sep. and one Bolt, Flanges being ¼" apart.	Increase in Wt. for 1"increase in width of Sep.	Size of Beam.	Weight of Sep. and one Bolt, Flanges being ¼" apart.	Increase in Wt. for 1" increase in width of Sep.
$\begin{array}{c} 15 & {}'' \times 200 \\ 15 & {}'' \times 150 \\ 12_{4}^{1 \prime \prime} \times 170 \\ 12_{4}^{1 \prime \prime} \times 125 \end{array}$	$\begin{array}{c} 20\frac{1}{2} \text{lbs.} \\ 18\frac{1}{2} & `` \\ 14\frac{1}{2} & `` \\ 14\frac{1}{2} & `` \\ 14\frac{1}{2} & `` \end{array}$	$3\frac{3}{4}$ lbs. $3\frac{3}{4}$ " $2\frac{3}{4}$ " 3 "	$9^{\prime\prime} imes 85$ $9^{\prime\prime} imes 70$ $8^{\prime\prime} imes 80$ $8^{\prime\prime} imes 65$	$9\frac{1}{2}$ lbs. 9 " $9\frac{1}{4}$ " 10 "	$2\frac{3}{8}$ lbs. $2\frac{1}{2}$ " $2\frac{1}{8}$ " $2\frac{3}{8}$ "
$\begin{array}{c} 10\frac{1}{2}^{\prime\prime\prime}\times135\\ 10\frac{1}{2}^{\prime\prime\prime}\times105\\ 10\frac{1}{2}^{\prime\prime}\times90 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$25 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$7'' \times 60 \\ 6'' \times 90 \\ 6'' \times 50 \\ 6'' \times 40$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

■ BEAMS, USED AS FLOORING JOISTS. Load, 70 lbs. per □ ft.												
26.5	1.5.77	Load	d, 70 1	bs. per	· 🗆 ft.	· · · · ·						
Clear Span.	3' apart.	$3\frac{1}{2}$ ' apart.	4' apart.	41/ apart.	5' apart.	$5\frac{1}{2}$ apart.	6' apart.					
10 ft.	30 □ '	35 □ ′	40 □ '	45 □ '	50 □ '	55 □ '	60 □ '					
Load, 15	2,100	2,450	2,800	3,150	3,500	3,850	4,200					
I	5 × 30	5 × 30	5 × 30	5 × 30	5 × 30	5 × 30	6 × 40					
12 ft.	36□′	42 □ '	48□′	54□′	60 □ '	66□′	72 □ ′					
Load, th	2,520	2,940	3,360	3,780	4,200	4,620	5,040					
I	5 × 30	5 × 30	5 × 30	6×40	6 × 40	6×40	6 × 40					
14 ft.	42 □ '	49 □ ¹ *	56□′	63□′.	70 □ ′	77 □ '	84 □ '					
Load, to	2,940	3,430	3,920	4,410	4,900	5,390	5,880					
I	5 × 30	6 × 40	6×40	6 × 40	6 × 50	6 × 50	7 × 60					
16 ft.	48□'	56□′	64□′	72 □ ′	80 □ '	· 88□′	96□′					
Load, 15	3,360	3,920	4,480	5,040	5,600	6,160	6,720					
I	6×40	6×40	6×50	7 × 60	7 × 60	7×60	8×65					
18 ft.	54 □ ′	63 □ '	72□'	81 □ '	90 □ ′	99 □ '	108□′					
Load, to	3,780	4,410	5,040	5,670	6,300	6,930	7,560					
I	6 × 50	7 × 60	7 × 60	7 × 60	8 × 65	8 × 65	8×65					
20 ft.	60 □ '	70□′	80 □ '	90 □ '	100 □′	110 □ '	120 □′					
Load, 15	4,200	4,900	5,600	6,300	7,000	7,700	8,400					
I	7 × 60	7×60	8 × 65	8 × 65	8 × 65	9 × 70	9 × 85					
22 ft.	66 □ '	77 □ '	88□′	99□'	110 □ '	121 □ '	$\frac{132\square'}{\substack{9,240\\10\frac{1}{2}\times90}}$					
Load, to	4,620	5,390	6,160	6,930	7,700	8,470						
I	7 × 60	8 × 65	8×65	9×70	9 × 85	9 × 85						
24 ft.	72□′	84□′	96□′	108□'	120 □ '	$\begin{array}{c} 132\square'\\ 9,240\\ 10\frac{1}{2}\times90 \end{array}$	144 □ '					
Load, tb	5,040	5,880	6,720	7,560	8,400		10,080					
I	8×65	8×65	9×70	9×85	10½×90		10½ × 90					
26 ft	78□′	91 🗆 '	104 □ '	117 □ '	130 □ '	$\frac{143\square'}{\substack{10,010\\10\frac{1}{2}\times105}}$	156 □ '					
Load, tb	5,460	6,370	7,280	8,190	9,100		10,920					
I	8×65	9 × 85	9 × 85	10½×90	10½×90		124 × 125					
28 ft.	84 □ '	980'	112 □ '	126 □ '	140 □ ′	154 🗆 '	168□′					
Load, to	5,880	6,860	7,840	8,820	9,800	10,780	11,760					
I	9 × 85	10½×90	101 × 90	10½×90	10½×105	12¼ × 125	12¼×125					
30 ft.	90 □ '	105 🗆 '	120 □ '	135 □ '	150 □ '	165 □ ′	180 □ '					
Load, to	6,300	7,350	8,400	9,450	10,500	11,550	12.600					
I	10½×90	10½×90	10½×105	12‡×125	12‡×125	12‡ × 125	12½×125					

■ BEAMS, USED AS FLOORING JOISTS. Load, 100 lbs. per □ ft.													
Clear Span.	3' apart.	$3\frac{1}{2}'$ apart.	4' apart.	$4\frac{1}{2}'$ apart.	5' apart.	$5\frac{1}{2}'$ apart.	6' apart.						
10 ft.	30 □ '	35 □ '	40 □ '	45 □ '	50 □ '	55 □ '	60 □ '						
Load, to	3,000	3,500	4,000	4,500	5,000	5,500	6,000						
I	5 × 30	5 × 30	5 × 30	6 × 40	6 × 40	6 × 40	6 × 40						
12 ft.	36□′	42□′	48□'	54□'	60 □ '	66□'	72□′						
Load, 15	3,600	4,200	4,800	5,400	6,000	6,600	7,200						
I	6×40	6×40	6×40	6 × 50	6 × 50	7×60	7×60						
14 ft.	42 □ ′	49 □ ′	56□′	63□′	70 □ '	77 □ '	84□′						
Load, 15	4,200	4,900	5,600	6,300	7,000	7,700	8,400						
I	6 × 40	6 × 50	6×50	7×60	7 × 60	8 × 65	8×65						
16 ft.	48□′	56□′	64□′	72□′	80 □ ′	88 □′	96□′						
Load, th	4,800	5,600	6,400	7,200 ·	8,000	8,800	9,600						
I	6×50	7 × 60	7 × 60	8×65	8 × 65	8×65	9×70						
18 ft.	54□′	63 □ ′	72□′	81 □ '	90 □ ′	99 □ '	108□′						
Load, to	5,400	6,300	7,200	8,100	9,000	9,900	10,800						
I	7×60	8 × 65	8×65	9 × 70	9 × 85	9 × 85	10½ × 90						
20 ft. Load, 15 I	60 □ ′ 6,000 8 × 65	70 □ ¹ 7,000 8 × 65	80 □ ′ 8,000 9 × 70	90 □ ' 9,000 9 × 85	$\frac{100\Box'}{10,000}\\ 10\frac{1}{2}\times90$	110 □′ 11,000 10½ × 90	$\begin{array}{c} 120\square'\\ 12,000\\ 10\frac{1}{2}\times90 \end{array}$						
22 ft. Load, to I	66 □ ′ 6,600 9 × 70	77 □ ′ 7,700 9 × 85	88 □ ' 8,800 10 <u>3</u> × 90	99 □ ' 9,900 10½ × 90	$\frac{110\square'}{11,000}\\ \frac{10\frac{1}{2}\times90}{10\frac{1}{2}\times90}$	$\begin{array}{c} 121\square'\\ 12,100\\ 10\frac{1}{2}\times105 \end{array}$	$\begin{array}{c} 132\square'\\ 13,200\\ 12\frac{1}{4}\times125 \end{array}$						
24 ft.	72□′	84 □′	96□′	108 □ '	120 □ '	$\begin{array}{c} 132\square'\\ 13,200\\ 12\frac{1}{4}\times125 \end{array}$	144□′						
Load, 15	7,200	8,400	9,600	10,800	12,000		14,400						
I	9×85	101 × 90	103 × 90	10½×105	12¼×125		12¼×125						
26 ft.	78□′	91 □′	104 □ '	117 □'	130 □ '	$\begin{array}{c} 143\square'\\ 14,300\\ 12\frac{1}{4}\times125 \end{array}$	156 □ '						
Load, 10	7,800	9,100	10,400	11,700	13,000		15,600						
I	10½ × 90	103 × 90	10½×105	12¼×125	12¼×125		15 × 150						
28 ft.	84 🗆 '	98□′	112 □ '	126 □ ′	140 □ '	154 □ ′	168 □ '						
Load, 15	8,400	9,800	11,200	12,600	14,000	15,400	16,800						
I	10½×90	10½×105	12¼×125	124×125	15 × 150	15 × 150	15 × 150						
30 ft.	90 □ '	105 □ '	120 □ '	135 □ '	150 □, '	165 □ ′	180 □ '						
Load, tb	9,000	10,500	12,000	13,500	15,000	16,500	18,000						
I	10½×105	121×125	121×125	15 × 150	15 × 150	15 × 150	15 × 150						

I BEAMS, USED AS FLOORING JOISTS. Load, 150 lbs. per ft.											
Clear	3'	3 ¹ / ₂	4'	4½'	5'	5½'	6'				
Span.	apart.	apart.	apart.	apart.	apart.	apart.	apart.				
10 ft.	30 □ '	35 □ '	40 □ '	45 □ '	50 □ '	55 □ '	60 □ ′				
Load, 15	4,500	5,250	6,000	6,750	7,500	8,250	9,000				
I	6 × 40	6 × 40	6 × 40	6 × 50	6 × 50	7 × 60	7 × 60				
12 ft.	36□′	42 □ '	48□′	54□′	60 □ '	66 □ '	72 □ ′				
Load, to	5,400	6,300	7,200	8,100	9,000	9,900	10,800				
I	6×50	6 × 50	7×60	7×60	8 × 65	8 × 65	8 × 65				
14 ft.	42□′	49 □ ′	56 🗆 '	63 □ '	70 □ '	77 □ ′	84 □ '				
Load, to	6,300	7,350	8,400	9,450	10,500	11,550	12,600				
I	7×60	7 × 60	8 × 65	8 × 65	9 × 70	9 × 85	9 × 85				
16 ft.	48□′	56□′	64 □ ′	72 □ '	80 □ '	88 □ '	96□′				
Load, to	7,200	8,400	9,600	10,800	12,000	13,200	14,400				
I	8×65	8×65	9 × 70	9 × 85	10½×90	10½ × 90	10½×90				
18 ft.	54□′	63□′	72 🗆 '	81 □ '	90 □ '	99 □ '	108□′				
Load, tb	8,100	9,450	10,800	12,150	13,500	14,850	16,200				
I	9 × 70	9×85	10½×90	10½×90	10½×90	10½ × 105	12¼ × 120				
20 ft.	, 60 □ '	70 □ ′	80 🗆 '	90 □ '	100 🗆 ⁷	110 □′	120 □.'				
Load, th	9,000	10,500	12,000	13,500	15,000	16,500	18,000				
I	9 × 85	10½ × 90	10½×90	10½×105	12¼×125	12¼ × 125	12¼ × 12:				
22 ft.	$\begin{array}{c} 66 \Box' \\ 9,900 \\ 10\frac{1}{2} \times 90 \end{array}$	77 □ ′	88□′	99 🗆 '	110 □ '	121 □ ′	132 □ ′				
Load,tb		11,550	13,200	14,850	16,500	18,150	19,800				
I		10½×105	12¼×125	12¼×125	12¼×125	15 × 150	15 × 150				
24 ft.	72 □ '	84 🗆 '	96□′	108 □ '	120 □ ′	132 □ ′	144 □ ′				
Load, to	10,800	12,600	14,400	16,200	18,000	19,800	21,600				
I	10 ¹ / ₂ ×105	12¼×125	12¼×125	12¼×125	15×150	15 × 150	15 × 150				
26 ft. Load, #	78□′ 11,700 12≩×125	91 □ ′ 13,650 12¼×125	104 □ ' 15,600 15×150	117 □ ' 17,550 15×150	130 □ ′ 19,500 15×150	143 □ ' 21,450 15 × 150	156 □ ′ 23,400 15 × 200				
28 ft.	84 □ ′	98□′	112□′	126 □ '	140 □ '	154 □ ′	168 □ '				
Load, 15	12,600	14,700	16,800	18,900	21,000	23,100	25,200				
1	12¼×125	15×150	15×150	15×150	15×200	15 × 200	15 × 200				
30 ft.	90 □ ′	105 □ '	120 □ '	135 □ ⁷	150 □ '	165 □ ′	180 □ '				
Load, to	13,500	16,250	18,000	20,250	22,500	24,750	27,000				
I	15×150	15×150	15×150	15×200	15×200	15 × 200	2–15×150				

■ BEAMS, USED AS FLOORING JOISTS. Load, 200 lbs. per □ ft.												
1		Load	1, 200	Ibs. pe	er 🗆 II.							
Clear Span.	3 ' apart.	$3\frac{1}{2}'$ apart.	4' apart.	$4\frac{1}{2}'$ apart.	5' apart.	$5\frac{1}{2}$ apart.	6' apart.					
10 ft.	30 □ '	35 □ ′	40 □ '	45□′	50 □ '	55 □ '	60 □ '					
Load, tb	6,000	7,000	8,000	9,000	10,000	11,000	12,000					
I	6 × 40	6 × 50	7 × 60	7×60	7 × 60	8 × 65	8 × 65					
12 ft.	36□′	42□′	48□′	54□′	60 □ '	66 □ '	72 □ ⁺					
Load, 15	7,200	8,400	9,600	10,800	12,000	13,200	14,400					
I	7×60	7×60	8×65	8 × 65	9 × 70	9 × 70	9 × 85					
14 ft.	42□′	49□′	56 □ '	63□′	70 □ '	77 □ '	84 □ '					
Load, to	8,400	9,800	11,200	12,600	14,000'	15,400	16,800					
I	8×65	8×65	9 × 70	9 × 85	103×90	101 × 90	10½ × 90					
16 ft.	48□′	56□′	64 🗆 '	72 🗆 '	80 🗆 '	88□′	96 □ '					
Load, 15	9,600	11,200	12,800	14,400	16,000	17,600	19,200					
I	9×7J	9 × 85	10½×90	10½×96	10½×105	101 × 105	10½ × 135					
18 ft.	54 🗆 '	63 □ '	72 🗆 '	81 □ '	90 🗆 '	99 □ '	$\frac{108\square'}{^{21,600}}_{12\frac{1}{4}\times125}$					
Load, 15	10,800	12,600	14,400	16,200	18,000	19,800						
I	10½ × 90	10½×90	10½×105	12≵×125	12¼×125	12¼ × 125						
20 ft.	C0 □ '	70 □ '	80 🗆 ¹	90 □ '	100 □ '	110 □ '	120 □ '					
Load, to	12,000	14,000	16,000	18,000	20,000	22,000	24,000					
I	10½ × 90	12¼×125	121×125	12½×125	15×150	15 × 150	15 × 150					
22 ft.	66 [] '	77 🗆 '	88 🗆 '	99 🗆 '	110 🗆 '	$\frac{121\square'}{^{24,200}}_{15\times150}$	132 □ ′					
Load, 15	13,200	15,400	17,600	19,800	22,000		26,400					
I	124×125	12¼×125	121×125	15×150	15×150		15 × 200					
24 ft.	72□′	84□′	96□′	1080′	120 □ '	$\frac{132\Box'}{^{26,400}_{15\times200}}$	144□′					
Load, to	14,400	16,800	19,200	21,600	24,000		28,800					
I	124×125	15×150	15×150	15×150	15×200		15×200					
26 ft. Load, 11 I	78□′ 15,600 15×150	91 □ ′ 18,200 15×150	104 🗆 ' 20,800 15×150	117 □ ' 23,400 15×200	130 □ ′ 26,000 15×200	$\begin{array}{c} 143\square'\\ 28,600\\ 15\times200 \end{array}$	$\frac{156\square'}{^{31,200}}_{2-15\times150}$					
28 ft.	84□′	98□′	112 □ '	126 □ '	140 □ '	$154\square^{\prime} \\ {}^{30,800} \\ {}^{2-15\times150}$	168 □ '					
Load, 15	16,800	19,600	22,400	25,200	28,000		33,600					
I	15×150	15×150	15×200	15×200	2-15×150		2-15 × 150					
30 ft.	90 □ ′	105 □ '	120 □ '	135 □ '	150 □ '	165 □ '	180 □ '					
Load, 15	18,000	21,000	24,000	27,000	30,000	33,000	36,000					
I	15×150	15×200	15×200	2-15×150	2-15×150	2-15 × 150	2–15 × 150					

RIVETED GIRDERS.

RIVETED girders are used where rolled beams are not sufficiently strong for carrying the load. Sometimes it may be more economical to use a deeper built beam instead of a solid rolled beam, but generally the rolled beam is the cheaper one, if it can be had strong enough to carry the weight. Plate girders have either single or double webs. The latter ones, box girders, have more stiffness sideways; and plain plate girders, with single webs, are somewhat cheaper. The width of the top flange of the girders should be at least onetwentieth of the span, or the section of the top flange should be increased accordingly. For girders not protected against yielding sideways, box girders are preferable, as they have greater stiffness laterally. Shearing strains in the web should never be more than half of the strains allowed in the flanges; and if the depth is considerable, stiffeners should be used to prevent buckling of the web-plates. A good rule is to have stiffeners if the depth of the web-plate exceeds eighty times its thickness. Angle irons are better as stiffeners than Tee iron on account of having larger flanges, which allow more space for rivets. The stiffeners should always reach over the vertical sides of the angles forming the chords of the girder, and there should be filling pieces between the stiffening angles and the web-plate. In every case, whether there are webstiffeners used or not, there should be a reinforcing by angles or plates at the ends of the girders where they rest on columns or on the wall, so that the reaction of the support may be resisted by an increased section of the web. In larger girders, one, two, or more cover-plates are required to make up the necessary section of the chords or flanges. Frequently all these cover-plates are made the whole length of the girder, but this is only a waste of material, as the outer cover-plates are only required for a part of the length. Plate girders should never be made too shallow, on account of the deflection; they should have at least a depth of one twenty-fourth of the clear span; if built shallower, more material should be put in the flanges and webs, so as to reduce the strain per square inch, and the deflection in proportion.

CALCULATION OF A RIVETED GIRDER.

Box girder, to carry a wall 20 inches wide.	
Span, 30 feet between centers of supports = 360 inch	es.
Total weight to be carried, 100 tons = 200,000 lbs.	
Depth available, 36 ¹¹ .	
Load on each support, $\frac{1}{2} \times 200,000 = 100,000$ lbs.	
100,000 lbs.	
Web section required, $\frac{\overline{100,000} \text{ lbs.}}{5,000 \text{ lbs.}} = 20 \square''.$	
Two web-plates, $34'' \times \frac{3''}{8} = 25\frac{1}{2} \Box''$.	
Bending moment in middle of span,	
$\frac{1}{8} \times 200,000 \times 360 = 9,000,000$ inch lbs.	
Depth of girders bet. centers of chords or flanges, abou	t 34".
9,000,000	
Maximum chord strain, $\frac{9,000,000}{34} = 264,700$ lbs.	
Chord section required, $\frac{264,700}{10,000} = 26\frac{1}{2} \square$ ".	
is section) 1 of the web-plates 4	+ 0"
made up $2 \text{ L iron, } 6'' \times 4'' \times \frac{1}{2}$	3 0"
is section made up follows: $\begin{cases} \frac{1}{6} \text{ of the web-plates} \dots 4 \\ 2 \text{ L iron, } 6'' \times 4'' \times \frac{1}{2}' \dots 9 \\ 1 \text{ cover plate, } 20'' \times \frac{5}{8} \dots 12 \end{cases}$	20"
26	10"
	-

STIFFENERS.—Angle iron, $3'' \times 3'' \times \frac{3}{8}''$, placed about 4 to 5 feet apart.

T

By the use of the following table, it is easy to find the section required in the chords of riveted girders, if the load and span are given. This table is calculated for a maximum strain of 10,000 lbs. per square inch of gross section. If a higher strain per square inch is admissible,—as in case of strictly permanent loads for structures which are not exposed to vibrations and sudden applications of heavy weights,—it is only necessary to reduce the result obtained in proportion to the higher strain per square inch allowed.

Plate No. 15, fig. 1, shows an elevation of a plain plate girder, built of a web-plate, and four angle irons, stiffened with angle-iron stiffeners.

Fig. 2. Section of plain plate girder, without cover-plate.

Fig. 3. Section of plate girder, with top and bottom coverplates.

Fig. 4. Section of ordinary box girder, with two web-plates, two cover-plates, and four angle irons in chords.

Fig. 5. Same with extra angle irons riveted to the side of the web-plate. The floor joists, either iron or wood, are carried on these angles.

Fig. 6. Compound girder, consisting of two ordinary plain plate girders, connected together at intervals with wrought or cast iron separators.

Fig. 7. Box girder, composed of two vertical plates and two horizontal channel irons.

RIVETED GIRDERS.

Multiply by the load in tons of 2000 lbs., uniformly distributed, and divide by 1000. The result is the gross area in square inches required for each flange, allowing a maximum fiber strain of 10,000 lbs. per \Box inch.

Span in		DEI	PTH	OUT	тт	0 01	JT C	OF V	VEB	IN	INC	HES	
feet.	18	20	22	24	26	28	30	32	34	36	38	40	42
10	167	150	136	125	115	107	100	94	88	83	79	75	71
11	183	165	150	138	127	118	110	103	97	92	87	83	79
12 13	200 217	180 195	164	150	138	129	120	113	106		95	90	86
13	233	195	177 191	$163 \\ 175$	$150 \\ 162$	139 150	$130 \\ 140$	122 131	115	108 117	$102 \\ 110$	98 105	93 100
14		البينك				100	140	101	1.64		110	100	100
15	250	225	205	188	173	161	150	141	132	125	118	113	107
16	267	240	218	200	185	171	160			133			114
17	283	255	232	213	196	182	170		150	142			121
18	300	270	245	225	208	193	180			150		135	129
19	317	285	259	238	219	204	190	178	168	158	150	143	136
20	333	300	273	250	231	214	200	188	176	167	158	150	143
21	350	315	286	263	242	225	210	197	185				150
22	367	330	300	275	254	236	220	206	194		173		157
23	383	345	314	288	265	246	230	216	203	192	181	173	164
24	400	360	327	300	277	257	240	225	212	200	189	180	171
1100											-		
25	417	375	341	313	288	268	250	234		208		188	179
26	433	390	355	325	300	279	260	244					186
27	450	405	368	338	312	289	270	253	238				
28	467	420	382	350	323	300	280	263	247	233		210	200
29	483	435	395	363	335	311	290	272	256	242	229	218	207
30	500	450	409	375	346	321	300	281	265	250	236	225	214
31	517	465	423	388	358	332	310			258			221
32	533	480	436	400	369	343	320	300	282	267	252	240	228
33	550	495	450	413	381	354	330	309	291	275	260	248	236
34	567	510	464	425	392	364	340	319	300	283	268	255	243
35	583	525	477	438	404	375	350	328	309		276	263	250
36	600	540	491	450	415	386	360	338		300	284	270	257
37	617	555	505	463	427	396	370	347		308.		278	264
38	633	570	518	475	438	407	380	356	335		299	285	271
39	650	585	532	488	450	418	390			325		293	278
40	667	600	546	500	461	429	40 0	375	353	333	315	300	286
		-	1	1		1. 10		-	1.4	1			-

STRENGTH OF WOODEN BEAMS.

The following table is calculated for rectangular beams one inch thick, and for different spans and depth of beams.

Maximum fiber strain allowed, 1000 lbs. per square inch. Beams to be braced sideways. For a factor of safety of 5 multiply by—

1.0 for ash.
1.0 - 1.3 for spruce.
1.44 - 1.8 for white oak.
1.0 - 1.12 for white pine.
1.6 for long leaf yellow pine.

Span				D	EPTH	I IN	INCH	IES.			
in feet.	6	7	8	9	10	11	12	13	14	15	16
5 6	800 670			1800 1500		2690 2240	3200 2670	3980 3220	43 80 36 50		5690 4740
78	570 500	680	890	1130	1590 1390	192 0 1680	2290 2000	$2840 \\ 2490 \\ 2310 \\ 3210 \\ $	$3130 \\ 2740$	3130	3560
9	440	610 540	790	1000 900	$\frac{1230}{1110}$	1490	1780 -1600	2210 1990	243 0 219 0	$\frac{2780}{2500}$	$\frac{3160}{2840}$
11 12	360 330	495 450	650 590		1010 930	$1220 \\ 1120$	$1450 \\ 1330$	1810 1660	$1990 \\ 1820$	2270 2080	2590 2370
13 14	310 290	420 39 0	550 510	690 640	860 800	103 0 960	$1230 \\ 1150$	1530 1430		193 0 179 0	2200 2040
15 16	270 250	360 340	480 450	600 560	740 700	900 840	1070 1000		$1460 \\ 1370$	1670 1570	1900 1780
17 18	240 220	320 300	420 400		650 620	790 750		1110	1220	1470 1390	1590
19 20	210 200	290 272	380 360	480	590 560	71 0 67 0	840			$\frac{1320}{1250}$	
21 22	190 180	260 248	340 325	430 410	530 510	640 610	760 730	95 0 91 0	1040 1000	1190 1140	$\begin{array}{c} 1360\\ 1300 \end{array}$
23 24	175 167	237 228	310 297	390 380	480 460	590 560	700 670	870 830		1090 1040	
25 26	160 154	218 210	285 275		450 430	540 520	620	800 770	880 840	960	1140 11 00
27 28 29	$ \begin{array}{r} 149 \\ 143 \\ 138 \end{array} $			315	410 400 380	$.500 \\ 480 \\ 465$	590 570 550	740 710 690	810 780 750	890	1060 1020 980
30	134	182	237	297	370	405	530	660	730	830	950

COLUMNS, POSTS AND STRUTS.

THE following tables of strength of columns are calculated for safe working strains, and not for the ultimate strength, as it is of greater consequence to know what load a column will support with safety, than to know under what load it will fail.

The first table is copied from a paper read by Mr. Theodore Cooper, before the A. S. of C. E., and it is based on experiments made on full size columns at the Watertown Arsenal. The allowed working strains are calculated so that they are in proportion to the limit of elasticity (0.44 of it). For posts which are liable to be struck by passing bodies as f: i, the web-posts in through-bridges, smaller working strains are given.

The second table shows strains per square inch as allowed by the specifications of the New York, Lake Erie and Western Railroad, which have been adopted by a great many roads all through the United States, and on which base a great number of structures have been designed and executed. The values of ratio of length to diameter for different shapes of struts, are only approximate, but they are sufficient for ordinary use.

Both of these tables are calculated for moving loads; for steady loads, as in buildings, the safe working strains may be increased 25 per cent.

The table of safe loads on rolled I beams used as columns or struts is intended for steady loads only. Such columns are frequently used in buildings, and give very satisfactory results if the length is not too great. If two I beams, well braced together, are used, they will carry a larger load. The co-efficients, as given for box columns, may be used for such columns without great error.

65

Plate 16 shows sections of different types of columns.

Fig. 1. Box column, composed of two channels and two plates.

Fig. 2. Box column, composed of four angle irons and four plates.

Fig. 3. Open column, composed of two channels connected with lattice bars or lacing.

Fig. 4. Open column, built of two plates and four angle irons, connected with lattice bars.

Fig. 5. Open column, built of two I beams, connected with lattice bars.

Figs. 6 and 7. Columns built of two [and one I beam, or of three I beams.

Fig. 8. Columns of similar section; in place of solid rolled beams and channels, angles and plates are used.

Fig. 11. Column consisting of two plain bars riveted together with an I beam.

Fig. 12. Plain I beam used as column.

Fig. 9. Two I beams connected with cast-iron separators and bolts or rivets.

Fig. 10. Two channel bars connected in the same way.

Fig. 18. Two flat bars connected in the same way.

Fig. 13. Open column, built of four angle irons, latticed. Fig. 14. Four angles connected with solid web-plate, or latticed.

Figs. 15 and 17. Two T irons or four angle irons riveted together in star shape.

Fig. 16. Similar column. The angles are separated by cast-iron thimbles.

OU THE PASSAIC ROLLING MILL COMPANY.								
COLUMNS. Watertown Arsenal.	92/10 VMA.0	KEMAKKS.	The values given in Columns b should be used where the posts are subject to be struck transversely by passing bodies (Web-posts in' Through Bridges).					
-IRON le at the W	olumns.	<i>b.</i> 1.bs. per sq. inch.	8,482 6,670 5,818	5,126 4,024 3,352	7,122 6,238 5,145	4,050 3,109 2,367		
UGHT ments ma	Open Columns,	a. Lbs. per sq. inch.	9,452 8,337 8,000	7,690 6,540 5,867	8,012 7,798 7,074	6,075 5,052 4,143		
TABLE OF ALLOWED WORKING STRAINS ON WROUGHT-IRON COLUMNS. Calculated by Mr. TH. COOPER, C. E., M. A. S. C. E., based on Experiments made at the Watertown Arsenal.	Phenix Columns. American Co's Col. Box Columns.	<i>b.</i> Lbs. per sq. inch.	6,924 5,462 4,735	4,243 3,610 2,945	5,797 5,116 4,312	3,486 2,746 2,139		
		a. Lbs. per sq. inch.	7,790 6,828 6,510	6,364 5,866 5,153	6,520 6.395 5,929	5,229 4,463 3,743		
		<i>b.</i> Lbs. per sq. inch.	6,686 5,333 4,700	3,800 2,855 2,084	5,867 4,970 3, 840	2,816 2,031 1,471		
		a. Lbs. per sq. inch.	7,521 6,666 6,455	5,700 4,640 3,646	6,600 6,212 5,280	4,224 3,300 2,575		
		<i>b.</i> I bs. per sq. inch.	8,853 6,928 6,037	5,312 4,380 3,450	7,390 6,600 5,318	4,170 - 3,189 2,419		
		Lbs. per sq. inch.	9,96) 8,661 8,300	7,968 7,115 6,037	8,314 8,250 7,313	6,256 5,182 4,234		
LOWE	Ratio of I enoth	Diameter.	30 30 10	40 50 60	10 20 30	40 50 60		
ALI Calcu				Colure Square		PIN-E:		

TABLE OF

ALLOWED WORKING STRAINS ON WROUGHT-IRON COLUMNS.

Calculated from formulas of the N. Y., Lake Erie, and W. R. R.

For Square Ends.	Pin and Square Ends.	Pin Ends.
8,000	8,000	8,000
L ²	L^2	L ²
$1 + \frac{1}{40,000 \text{ R}^2}$	1 + 30,000 R ²	1 + 20,000 R ²

L=length in inches. R=radius of gyration in inches. For dead loads, as in buildings, allow 25% more.

	Ratio of Working Strains Length per sq. inch.		Ratio of L to Diameter.						
to	Rad. Gyr. L R	Square. Lbs. per sq. in.	Pin and Square. Lbs. per sq. in.	Pin. Lbs. per sq. in.	Phœnix Col.	Ameri- can Col.	• Box Col.	Open Col.	H Col.
	$30 \\ 35 \\ 40 \\ 45 \\ 50$	7,820 7,760 7,700 7,620 7,530	7,770 7,699 7,590 7,500 7,380	7,660 7,540 7,410 7,260 7,110	$10.9 \\12.8 \\14.6 \\16.4 \\18.2$	10. 11.7 13.3 15. 16.7.	$12.3 \\ 14.3 \\ 16.4 \\ 18.5 \\ 20.5$	$11.1 \\ 13. \\ 14.8 \\ 16.7 \\ 18.6$	$ \begin{array}{r} 6.1 \\ 7.2 \\ 8.2 \\ 9.2 \\ 10.2 \end{array} $
	$55 \\ 60 \\ 65 \\ 70 \\ 75$	7,440 7,340 7,230 7,130 7,020	7,260 7,140 7,010 6,880 6,740	6,950 6,780 6,610 6,420 6,250	$ \begin{array}{r} 20.0 \\ 21.9 \\ 23.7 \\ 25.5 \\ 27.3 \end{array} $	$ \begin{array}{r} 18.3 \\ 20. \\ 21.7 \\ 23.3 \\ 25. \end{array} $	$ \begin{array}{r} 22.6 \\ 24.6 \\ 26.7 \\ 28.7 \\ 30.8 \end{array} $	$ \begin{array}{r} 20.5 \\ 22.3 \\ 24.2 \\ 26. \\ 27.8 \end{array} $	$ \begin{array}{r} 11.2 \\ 12.2 \\ 13.3 \\ 14.3 \\ 15.3 \end{array} $
	80 85 90 95 100	6,900 6,780 6,660 6,530 6,400	6,590 6,450 6,300 6,150 6,000	6,060 5,880 5,700 5,510 5,330	$\begin{array}{r} 29.2 \\ 31.0 \\ 32.8 \\ 34.6 \\ 36.4 \end{array}$	$\begin{array}{r} 26.7 \\ 28.3 \\ 30.0 \\ 31.7 \\ 33.3 \end{array}$	32.8 34.9 36.9 39.0 41.0	29.7 31.5 33.4 35.2 37.1	$ \begin{array}{r} 16.4 \\ 17.4 \\ 18.4 \\ 19.4 \\ 20.5 \end{array} $
And the second second	105 110 115 120 125	6,270 6,140 6,010 5,880 5,750	5,860 5,700 5,550 5,410 5,260	5,160 4,980 4,820 4,650 4,490	$\begin{array}{r} 38.2 \\ 40.0 \\ 41.9 \\ 43.7 \\ 45.5 \end{array}$	$\begin{array}{r} 35.0\\ 36.7\\ 38.3\\ 40.0\\ 41.7\end{array}$	$\begin{array}{r} 43.1 \\ 45.1 \\ 47.2 \\ 49.2 \\ 51.3 \end{array}$	$ \begin{array}{r} 39. \\ 40.8 \\ 42.6 \\ 44.5 \\ 46.4 \end{array} $	$\begin{array}{r} 21.5 \\ 22.5 \\ 23.5 \\ 24.5 \\ 25.5 \end{array}$
in a second have	$\begin{array}{c} 130 \\ 135 \\ 140 \\ 145 \\ 150 \end{array}$	5,620 5,500 5,370 5,240 5,120	5,120 4,980 4,840 4,700 4,570	4,340 4,180 4,040 3,900 3,770	$\begin{array}{r} 47.3 \\ 49.2 \\ 51.0 \\ 52.8 \\ 54.6 \end{array}$	$\begin{array}{r} 43.3 \\ 45.0 \\ 46.7 \\ 48.3 \\ 50.0 \end{array}$	$\begin{array}{r} 53.3\\ 55.4\\ 57.4\\ 59.5\\ 61.5\end{array}$	48.2 50.1 52. 53.9 55.7	26.6 27.6 28.6 29.6 30.6
	$\begin{array}{c} 155\\ 160 \end{array}$	5,000 4,880	4,44 0 4,32 0	3,630 3,510	56.4 58.2	51.7 53.3	$\begin{array}{r} 63.6\\ 65.6\end{array}$	57.5 59.4	31.7 32.7

68 THE PA	ASSAIC	ROL	LING MI	LL COMP	ANY.
UTS.	4		7.3 5.8 5.8		
STR inch.	4 30		12.9 12.0 11.0 10.1	9.1 8.4 7.6 6.9	
NS OR per sq.	4 37		16.5 15.6 14.6 13.5	112.5 111.5 10.6 9.7	
pt	50 30		13.0 12.2 11.2 10.3	9.4	
COLUM 10,000 12 [°] 40,000 r [°]	5	4).	$17.2 \\ 16.0 \\ 14.7 \\ 13.4 \\ $	12.2 11.2 10.2 9.2	
AS (14	6 40	(factor safety,	17.5 16.5 15.3	12.9 11.9 10.9	Les Sa
JSED mula	6 50	or sa	23 20 19	17 16 15 14	11 11 09
T BEAMS USEI Calculated from formula	. 9 %	(fact	42 41 39	33 33	31 29 27
EAA ed fro	60	lbs.	22 26 25 25	21 19 18 16	15 14 112 112
Bl	8 8	Safe Load, in tons of 2000 lbs.	200000000000000000000000000000000000000	32322	19 17 15
C H	x 08		88 98 55 55 89 55 55 55 55 55 55 55 55 55 55 55 55 55	22 83 33	22 22 25
LEI	6 02	tons	56 23 32 26 33 32 26 33 32	24 22 21 21 19	17 16 14 12
OL.	9″, 85	l, in	08 88 98 2 8	33 33 29 29	5555
R R ds on	10 ¹ / ₂ 90	Load	42 39 38 38	32 32 36 32 32 36	****
FO.	$10\frac{1}{2}$ 105	afe	49 47 44 44	42 37 35	33 33
r dea	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ø	61 60 58 61	56 52 49	47 44 42 40
Ged.	12 4 125		59 55 53	51 49 43 43	33 34 34 34
E I d fix be us s ded	12 ¹ / ₄		81 77 74	72 69 63	60 57 51 51
AF lat an is to load	150		71 69 66 64	61 55 52 52	49 47 44 41
F S nds f. able by able	15 200		96 94 89	7388	63 669 73
TABLE OF SAFE LOADS FOR ROLLED T BEAMS USED AS COLUMNS OR STRUTS.Both ends flat and fixed.Calculated from formulaIn this Table is to be used for dead loads only.Calculated from formulaFor moving loads deduct 20%. $1 + \frac{1^2}{40,000}$	Depth of Beam. Wgt. per yd.	Length of Post. Feet.	4005	8 9 11 11	1128 1144 115

TABLE OF SAFE LOADS FOR HOLLOW CYLINDRICAL CAST AND

CAST-IRON COLUMNS, with factor of safety 6.

WROUGHT IRON COLUMNS.

Square Bearing.	Pin and Square.	Pin Bearing.
13333	13333	13333
$\mathbf{I} + \frac{\mathbf{L}^2}{800 d^2}$	$1 + \frac{L^2}{533 d^2}$	$\mathbf{I} + \frac{\mathbf{L}^z}{400 d^z}$

WROUGHT-IRON COLUMNS, with factor of safety 4.

Square Bearing.	Pin and Square.	Pin Bearing.
10000	10000	10000
$\overline{1 + \frac{L^2}{3000 d^2}}$	$\overline{\mathbf{I} + \frac{\mathbf{L}^2}{2000 d^2}}$	$\mathbf{I} + \frac{\mathbf{L}^2}{\mathbf{I}500 d^{2}}$

L, length of columns in inches. d, diameter of columns in inches.

This table is calculated only for dead loads. For moving loads, deduct 20% for wrought-iron columns and 25% for cast-iron columns.

Cast-Iron Columns. Safe Loads, in lbs. per □ in.				1.000		IRON COL , in lbs. pe	
L	Square.	Square and Pin.	Pin.	$\frac{\mathbf{L}}{d}$	Square.	Square and Pin.	Pin.
12	11,300	10,500	9,800	12	9,540	9,330	9,125
15	10,410	9,380	8,530	15	9,300	8,990	8,700
18	9,490	8,300	7,370	18	9,020	8,600	8,220
21	8,600	7,600	6,350	21	8,720	8,190	7.730
24	7,750	6,410	5,460	.24	8,390	7,770	7.220
27	6,890	5,630	4,730	27	8,050	7,320	6,730
30	6,270	4,960	4,100	30	7,690	6,900	6,250
33	5,650	4,380	3,580	33	7,320	6,480	5,800
36	5,090	3,890	3,140	36	6,980	6,070	5,360
39	3,760	3,460	2,780	39	6,640	5,680	4,970
		and the second		1		1	

TABLE OF

SAFE LOADS FOR RECTANGULAR TIMBER POSTS, SEASONED.

This table is calculated for a factor of safety of 5 from the following formulas:

Square Bearing.	Pin and Square Bearing.	Pin Bearing.
$\frac{1120}{1+\frac{L^2}{550 d^2}}$	$\frac{1120}{1 + \frac{L^2}{378 d^2}}$	$\frac{1120}{1+\frac{L^2}{275 \ d^2}}$

Deducted from Lemande's experiments with posts of French oak, and may be used for American white pine of best quality.

Ratio of Length to Least Side.	Safe Loads, in lbs. per \Box inch of Section.					
$\frac{L}{d}$	Square Ends.	Square and Pin Ends.	Pin Ends.			
• 12	890	804	736			
15	795	695	616			
18	704	594	514			
21	623	509	431			
24	548	436	362			
27	482	375	307			
30	424	324	262			
33	376	282	226			
36	334	246	196			
39	297	218	172			
42	266	192	152			
45	239	172	134			

L, length of post in inches.

d, width of smallest side in inches.

ROOFS.

THE most frequent types of Roof trusses are shown in plates 17 and 18. The strains in the different members of these trusses are easily found by the use of the following tables. They may be built of iron, or of wood and iron combined. If iron only is used in the construction, the rafters are made of two channel-bars, with an iron cover-plate, or properly latticed together. This is the best mode of constructing the rafter. For smaller spans or lighter roofs a single I beam makes a good rafter. If the purlins are supported only at the joints, a T iron or two angle-irons make a satisfactory rafter; but if the purlins have to be carried on points between the joints of the truss, the bending strains produced are usually too large to be carried on a rafter of this cross section. The bottom end of the rafters usually has . a shoe riveted on, or rests on a pin which is supported by a separate shoe. The top connection of the two main rafters is also either a riveted one (the two rafters being cut so as to bear one against the other), or the connection is made by having both rafters bearing against a pin. If the roof is pinconnected throughout, the latter connection at the peak (with the pin simply) is the better one, and the roof is more easily erected.

The tension members are either flat bars with forged eyes, bored for iron pins, or round or square rods with loopwelded eyes.

The struts are made in very many different ways. A good construction is to use two light channel-bars connected together to form a strut, which has a pin-hole at its lower end to connect with the bottom chord and the tension braces.

Sometimes these trusses are built with wooden main-rafters and struts. In this case, the ends of these members are usually fitted to cast-iron pin-boxes, and the tension members constructed in the same way as in all iron trusses.

LOADS ON ROOFS-SPANS 75 FEET AND LESS.

Roof covered with corrugated iron, unboarded. 8 lbs. per [] ft. " " 66 66 66 on boards.11 " 66 " 66 slate unboarded or on laths. 13 " ٤. 66 on boards 14" thick...16 " 66 66 66 66 shingles on laths..... 10 " 66 66 66 66 If plastered below the rafters or tie-beam, add. 10 " 66 For the weight of iron construction, add..... 4 " 66 66

The velocity and pressure of wind against surfaces at right angles to the direction of the wind is, as given by Smeaton:

Vel. in miles per hour.	Vel. in feet. per sec.	Pressure per square foot.	
10	14.67	0.5	
121	18.33	0.78	Fresh breeze.
15 .	22.	1.12	
20	29.33	2.	
25	36.67	3.12	Brisk wind.
30	44.	4.5	Strong wind.
40	58.67	8.	High wind.
50	73.33	12.5	Storm.
60	88.	18.	Violent storm.
80	117.3	32.	Hurricane.
100	146.7	50.	Violent hurricane.

It seems sufficient to calculate for a wind pressure of 30 lbs. per square foot; but, as the roofs are built with a slope, only that component of the 30 lbs. which acts vertical to the surface of the roof comes into account. In most cases it will be sufficient to calculate simply for a load of 20 lbs. per square foot for wind and snow together.

MAXIMUM STRAINS IN KING AND QUEEN ROOF TRUSSES.

Plate 17, Fig. 5.

To find the maximum strains in any member of these trusses, multiply the co-efficients given here below.

66

66

66

I. For rafters, by the panel load

2. For bottom chord,

 $\times \frac{\text{length of rafter}}{\text{depth of truss}} \\ \times \frac{\frac{1}{2} \text{ span of truss}}{\text{depth of truss}}$

73

3. For inclined struts,

 $\times \frac{\text{length of strut}}{\text{length of rod}}$

4. For vertical rod,

Multiply by	Member.	14 Panel.	12 Panel.	10 Panel.	8 Panel.	6 Panel.	4 Panel.
Panel load \times $\frac{1}{\sqrt{2}}$ span depth of truss	$ \begin{array}{r} 0 & 2 \\ 2 & 3 \\ 3 & 4 \\ 4 & 5 \\ 5 & 6 \\ 6 & 7 \end{array} $	6.5 6.5 5.5 5.4.5 4.5 4.5	5.5 5. 4.5 4. 3.5	$4.5 \\ 4. \\ 3.5 \\ 3.$	3.5 3. 2.5	2.5 2.	1.5
Panel load \times length of rafter depth of truss	$\begin{array}{c} 0 & 1' \\ 1' & 2' \\ 2' & 3' \\ 3' & 4' \\ 4' & 5' \\ 5' & 6' \\ 6' & 7' \end{array}$	$\begin{array}{r} 6.5 \\ 6. \\ 5.5 \\ 5. \\ 4.5 \\ 4. \\ 3.5 \end{array}$	5.5 5.4.5 4.5 4.3.5 3.5 3.5	$ \begin{array}{r} 4.5 \\ 4. \\ 3.5 \\ 3. \\ 2.5 \end{array} $	3.5 3.• 2.5 2.	2.5 2. 1.5	1.5 1.
Panel load × length of strut length of rod	$ \begin{array}{r} 1' 2 \\ 2' 3 \\ 3' 4 \\ 4' 5 \\ 5' 6 \\ 6' 7 \end{array} $	$\begin{array}{r} 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \end{array}$	$0.5 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.5 $	$0.5 \\ 1.0 \\ 1.5 \\ 2.0$	$0.5 \\ 1.0 \\ 1.5$	0.5	0.5
Panel load × r	$ \begin{array}{c} 1 & 1' \\ 2 & 2' \\ 3 & 3' \\ 4 & 4' \\ 5 & 5' \\ 6 & 6' \\ 7 & 7' \end{array} $	$\begin{matrix} 0 \\ 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.5 \\ 6. \end{matrix}$	$0 \\ 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \\ 5.$	0 0.5 1.0 1.5 4.	$0 \\ 0.5 \\ 1.0 \\ 3.$	0 0.5 2.	0

74

MAXIMUM STRAINS IN BELGIAN OR FINK ROOF TRUSSES.

Plate 18, Figs. 1 and 2.

To find the maximum strain in any member of these trusses, multiply the co-efficients given in the table below with the panel load.

Ratio of depth to length of span.		0.333 $\frac{1}{3}$			0.200 ಕ	0.167	0.125 $\frac{1}{8}$	
Inc	linat'n of	f rafters.	41° 49′	300	26° 34'	21° 48′	18° 26′	14° 2′
2	Bottom chord.	$\begin{array}{c} 0 \ 1 \\ 1 \ 2 \\ 2 \ 2 \end{array}$	$5.25 \\ 4.50 \\ 3.00$	$ \begin{array}{r} 6.06 \\ 5.19 \\ 3.46 \end{array} $	$7.00 \\ 6.00 \\ 4.00$	$8.75 \\ 7.50 \\ 5.00$	$10.50 \\ 9.00 \\ 6.00$	$14.00 \\ 12.00 \\ 8.00$
8-panel truss.	Top chord.	01' 1'2' 2'3' 3'4'	$\begin{array}{r} 6.30 \\ 5.75 \\ 5.20 \\ 4.65 \end{array}$	$7.00 \\ 6.50 \\ 6.00 \\ 5.50$	7.837.386.93 6.48	9.42 9.05 8.68 8.31	$ \begin{array}{r} 11.08 \\ 10.76 \\ 10.45 \\ 10.13 \end{array} $	$14.44 \\ 14.20 \\ 13.95 \\ 13.71$
8-par	Tension braces.	$2 \ 3 \\ 3 \ 4' \\ 12' \& 32'$	$1.50 \\ 2.25 \\ 0.75$	$\begin{array}{c} 1.73 \\ 2.60 \\ 0.87 \end{array}$	$ \begin{array}{r} 2.00 \\ 3.00 \\ 1.00 \end{array} $	2.50 3.75 1.25	$3.00 \\ 4.50 \\ 1.50$	$4.00 \\ 6.00 \\ 2.00$
90	Struts.	${11'\&33'\over 22'}$	$ \begin{array}{r} 0.83 \\ 1.66 \end{array} $	0.87 1.73	0.89 1.78	$ \begin{array}{r} 0.93 \\ 1.86 \end{array} $	$ \begin{array}{r} 0.95 \\ 1.90 \end{array} $	$ \begin{array}{r} 0.97 \\ 1.94 \end{array} $
4-panel truss.	Bottom chord.	$\begin{array}{c} 0 \ 1 \\ 1 \ 2 \end{array}$	$2.25 \\ 1.50$	$2.60 \\ 1.73$	$3.00 \\ 2.00$	$3.75 \\ 2.50$	$4.50 \\ 3.00$	6.00 4.00
	Top chord.	01' 1'2'	2.70 2.15	$3.00 \\ 2.50$	$3.35 \\ 2.90$	4.04 3.67	4.75 4.44	$\begin{array}{c} 6.19 \\ 5.95 \end{array}$
4-p	Rod strut.	1 2' 1 1'	0.75 0.83	0.87 0.87	1.00 0.89	$\begin{array}{c} 1.25\\ 0.93\end{array}$	$\begin{array}{c} 1.50\\ 0.95\end{array}$	2.00 0.97

MAXIMUM STRAINS IN RECTANGU-LAR AND TRIANGULAR TRUSSES.

By using the following tables, it will be found easy to determine the maximum strains in different trusses or girders with parallel chords, if the dead and moving loads are given. In many cases it will be sufficient to consider only a uniform dead load and a uniform moving load. The third columns give the influence of a heavier load in front of a uniform load; f. i., a locomotive ahead of a train of cars.

The panel points are numbered, beginning with o at the abutment, those of the bottom chord with plain numbers, and those of the top chord with a prime ('), so as to indicate the position of the different members without its being necessary to refer to the diagram.

In the calculation of a double intersection rectangular truss, it is necessary to treat the truss as a combination of two single intersection trusses; and if the number of panels is an odd one, there exists some uncertainty in which way the full load is transmitted to the abutments. Sometimes it is assumed that the counter-rods are without strain under full load, and this gives somewhat smaller strains in the top chord and larger strains in the bottom chord than those given in the table.

But generally the counter-rods are made adjustable, and have always some initial strain, so that it is more consistent to assume that the trusses under full load, as well as under partial loads, act like two separate single intersection trusses. The difference in the results in either case is of no practical importance.

In calculating these tables, the loads were supposed to be concentrated at the bottom chord joints for through-bridges, and at the top-chord joints for deck-bridges. In throughbridges, the strains in the web-members under compression (web-posts) obtained this way should be increased by the weight of a panel of top-chord and top-lateral bracing.

EXAMPLE OF APPLICATION OF TABLE.

WARREN TRUSS, DECK BRIDGE WITH INTERMEDIATE POSTS.

Span, 150'; depth, 20'. Number of panels 10, of 15' each. Dead load, 1,200 lbs. per lin. ft. Live load, 2,400 " " " D = Dead load = 9,000 lbs. per panel and I truss. L = Live " = 18,000 " " " " I " E = Excess of locomotive weight = 10,000 lbs. for I truss.

$$l = \frac{18,000}{10} = 1,800$$
$$e = \frac{10,000}{10} = 1,000$$

Length of diagonal members, 25'

Sec.
$$=\frac{25}{20} = 1.25$$
 Tang. $=\frac{15}{20} = 0.75$

Strain in middle piece of bottom chord 4-6

$$12.5 (D + L) = 337,500$$

5 e = 5,000

342,500 × tang. == 256,875

Compressive strain in brace, 45'.

0.5	D	=	4,500
15.	Z	=	27,000
5.	e	=	5,000

36,500 × sec. = 45,625

Tensile strain in brace, 5' 6,

 $\begin{array}{rcl} -0.5 & \mathrm{D} = -4,500 \\ \mathrm{I0.} & l = 18,000 \\ 4. & e = 4,000 \\ & 17,500 \times \mathrm{sec.} = 21,875 \end{array}$

It will be observed that, by beginning with 0 at the lefthand abutment, the compression member 45' becomes the tension member 5' 6, and the maximum strains change from 45,625 compression to 21,875 tension. The strains in the other members are found in similar way.

77

0000 co co -IMUM STRAINS PRODUCED BY DEAD AND LIVE LOADS IN 4 Panel Truss. 22 E 22 1.5 Excess of engine load over general live 90 1 IJ -0.5 0.5 1.5 END-POSTS INCLINED, EQUAL PANELS, THROUGH AND DECK BRIDGES, 5 Panel Truss. 4001 403 SINGLE INTERSECTION RECTANGULAR TRUSSES. 5001 Harm 2107 2000 = Dead load per panel Live load per panel 40007-10400 oad on 1 pane 6 Panel 4.5 No. of panels. Truss. 900-Diagonals: multiply by Sec. Chords: multiply by Tang. 10 10 10 10 10 4.5 A ai mo Posts: multiply by 0134 0010400 e 7 Panel Truss. 10000000 Lono 00 02 m 0 000 0100400 10104 8 Panel Truss. 3.5 15 28 ~ 3 Length of panel Depth of truss 0.100 9 Panel Truss. 0000000 000000000 1015538 9 4200 400101 0 0001010400 001000 Tang. 10 Panel Truss. 4.5 8. 10.5 20 - 15 38 85 ~ 12. 12 4.5 10.5] 12.51 10 10 10 10 10 10 10 12. 40010 11 Panel Truss. 001000400 00 1000 55 15 10 9 10 Length of inclined member 540010 10 79 0 10 14 010000000 (Fig. 4, plate 17.) Depth of truss 12 Panel Truss. 5.5 13.5 17.517.5 61222885556~ 5.5 13.51 4.0.9.1.0.0.1.6 16. 10 20 00-1001+ ms Bott. 0,0400 0,004000000 0000410 Member. 1 Deck Post. 65432 65432 Top. 004000 Sec. HOO TO hro'gh Post. 004000 0200 4 10 10

78 THE PA
MAXIMUM STRAINS PRODUCED BY DEAD AND LIVE LOADS IN DOUBLE INTERSECTION RECTANGULAR TRUSSES. (Fig. 4, Plate 18.) WITH INCLINED END-POSTS, EQUAL PANELS, FOR THROUGH AND DECK BRIDGES.

MAXIMUM STRAINS PRODUCED BY DEAD AND LIVE LOADS IN	DOUBLE INTERSECTION RECTANGULAR TRUSSES-Continued.	
UCED BY DEA	N RECTANGUL	
M STRAINS PROD	LE INTERSECTION	and the part of the bar of the
IUMIXAM	DOUB	

PASS	AIC ROLLING MILL COMPA	NY. 79
ro Panels.	D+1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 11.5 0 12.5 0 12.5 0 12.5 0 12.5 0 12.5 0 12.5 0 11.5 0 0 0 0 0 0 0 0 0 0 0 0 0	NA IN
II Panels.	d+l e d+l e 75 10 79 9 1119 8 1145 7 167 5 163* 6 159 6	Tang. panel russ
13 Panels. 12 Panels.	$ \begin{array}{c} D+L & \epsilon \\ 5.5 & 101 \\ 5.6 & 9 \\ 115 & 8 \\ 128 & 9 \\ 117 & 6 \\ 6 & 6 \\ $	Chords: multiply by Tang. Tang. = <u>Length of panel</u>
	$\begin{array}{c c} d+1 & e \\ 7+1 & 7 \\ 78 & 112 \\ 113 & 110 \\ 173 & 110 \\ 253 & 8 \\ 253 & 8 \\ 253 & 8 \\ 257 & 6 \\ 251 & 8 \\ 253 & 8 \\ 251 & 7 \\ 25$	Chords: m Tang. =-
14 Panels.	$\begin{array}{c} D+L & \delta \\ 0.5 & 12 \\ 0.5 & 12 \\ 0.5 & 12 \\ 0.5 & 12 \\ 0.5 & 12 \\ 0.5 & 12 \\ 0.5 & 12 \\ 0.5 & 12 \\ 0.5 & 0 \\ 0$	10401 10401 10401
15 Panels.	$\begin{array}{c} \begin{array}{c} d+l\\ 10+l\\ 105\\ 133\\ 153\\ 1333\\ 333\\ 333\\ 11\\ 333\\ 12\\ 333\\ 12\\ 333\\ 12\\ 333\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$	
r6 Panels.	$\begin{array}{c c} D+L & \\ 17.5 & 15.5 \\ 117. & 117. \\ 117. & 113. \\ 226 & 112. \\ 226 & 112. \\ 226 & 123. $	*
17 Panels.	$\begin{array}{c c} d+l & \ell\\ 136 & 136 \\ 136 & 136 \\ 136 & 156 \\ 131 & 14 \\ 403 & 13 \\ 403 & 13 \\ 431 & 14 \\ 431 & 14 \\ 533 & 110 \\ 533 & 110 \\ 533 & 110 \\ 583 &$	Length of inclined member Depth of truss
18 Panels.	$\begin{array}{c} D+L & \\ D+L & \\ 18.5 & 17 \\ 13.5 & 16 \\ 25.5 & 14 \\ 23.5 & 14 \\ 33.5 & 13 \\ 33.5 & 11 \\ 33.5 & 11 \\ 33.5 & 11 \\ 33.5 & 11 \\ 33.5 & 11 \\ 33.5 & 10 \\ 33.5 & $	
Bottom Chord.	00%6470020 0%64700200	Sec. =
Top	なんかななて	の推

THE PASSAIC ROLLING MILL COMPANY. 79

80 THE		ASSAIC R	OLLIN	10 1	MILL COMPAN	· ·
LE INTER-	6 Panels. 4 Panels.	D / 6 D / 6 1 6 4 0.5 2 2 0 2 2	= Number of panels. = Dead load per double panel. = Live load per double panel.	= Excess of engine load over general live load.	D+L D+L 1 4 0.5 2 2 3 1.0 1 2 2 2 1 1 1	$\frac{1}{n} = e = \frac{E}{n}$
oads in Sing gh Trusses.	10 Panels. 8 Panels.	<i>l e</i> D <i>i e</i> 20 8 1.512 6 12 6 4 15 12 6 4 15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2012 2012 2012	E	+L e D+L e 2+L e 1.5 6 1.5 6 1.5 6 1.5 6 1.5 6 1.5 6 1.5 6 1.5 6 1.5 1.5 6 1.5 1.5 6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	
STRAINS PRODUCED BY DEAD AND LIVE LOADS IN SINGLE INTER- SECTION TRIANGULAR OR WARREN THROUGH TRUSSES. (Fig 1, Plate 17.)	12 Panels.	/ e D / e D 3010 1.520 8 1 20 8 0.512 6 0	540	Sec. = Length of braces Depth of truss	12 2.5 10 12 2.5 10 11 5. 9 10 6.5 8 8 8.5 6 7 9.5 6	an
CED BY DEAD AND AULAR OR WARREN (Fig 1, Plate 17.)	ls. 16 Panels. 14 Panels.	¢ D / ¢ D 16 3.55614 3 14 2.54212 2 12 1.53010 1	-0.512 6 -1 -0.512 6 -1 -1.5 6 4 -2	2	6 D+L 6 D+L 6 116 3.5 14 3 3 15 7 13 6 13 13 12 13 13 10 12 13.5 10 11 10 11 15 9 12 9 13	16.0
STRAINS PRODUCESECTION TRIANC	20 Panels. 18 Panels.	D / C D / C D / C D / C D / C D D / C D D D D	1079	200	D+L 88 114 116 116 116 116 116 116 116 116 116	111 20 10 20 10 20
MAXIMUM STI SEC	Members.	Comp. Tens. 0 1/ 1/ 2 2 3/ 3/ 4 5/ 5/ 6	9' 10 9' 10 11' 12 13' 14	15/ 16	oyağıtça orda oyağıtç	9, 20 9, 11 11, 9, 8
		vy Secans.	ultiply b	M	iply by Tang.	tlu M

8-

			q
тн	EI	PASSAIC ROLLING	MILL COMPANY. 81
CHERRY S	si.	°∞H	~ n a
13	4 Panels.	741	H . M
ER	4 P	A-o	
ET.N		~vooH	2040
· II	6 Panels.	~04H	North Contraction of the second
EE	Par	ດເດເດ	22.5
[G]	9	Aroq	H
IN SINGLE I. (Fig. 1, Plate 17.)	els.	16 7 16 7 19 5 1 1 1 1	02004
tion _	8 Panels.		+0.0044
EI	00	0°101	Acres of Erd
SO:	els.	1001400	0007000
AI	IO Panels.	144	6.5 6.5
LC	I OI	-1.5 -1.5 -1.5	Tatroo
RI		-100700H	01000r9
NI L	12 Panels.	14.00	Contraction and the second
KL	a Pa	Dwwnold	-www.anw-
E H			
AN	14 Panels.	1 1 3 5 7 9 1 1 3 5 7 9 4 1 1 3 5 7 9 5 1 1 3 6 1 1 1 3 6 1 1 3 6 1 1 1 3 6 1 1 1 3 6 1 1 1 1	788 111 101 112 113 113 113 113 113 113 113 113 11
D	Pan	5 16 16 16 16 16 16 16 16 16 16 16 16 16	0+L 0+L 11.5 12.5 12.5
EA	14	60-1-0-1-0-0-1-0-0-0-0-0-0-0-0-0-0-0-0-0	
D	IS.	133401320	~ 24531000
M	ane	255 257 16 25 25 10 10 10 25 25 25 25 25 25 25 25 25 25 25 25 25	1120-24 1120-24 116 116
R	r6 Panels.	U400004040	A AAAAAA
EI		027011327°	90112345515 0012345515 001
UCAR	18 Panels.	D 1/ 4.581 3.5641 2.5491 2.5491 1.5361 1.5361 0.525 -1.59 -2.54	
OD	8 P	<u></u>	D+L 4.5 8. 111.5 114. 116.5 116.5 119.5 20.5 20.5
R		62000000000000000000000000000000000000	and the second se
I SI	20 Panels.	019 019 019 019 0117 019 019 019 019 019 019 019 019 019 019	110 111 111 111 111 111 111 111 111 111
IRI	Pan	$\begin{array}{c}100\\100\\81\\81\\81\\82\\82\\9\\9\\9\\9\\9\end{array}$	222222116119021
IAJ	20	Dradous	A
IMUM STRAINS PRODUCED BY DEAD AND LIVE LOADS IN SINGLE INTER SECTION TRIANGULAR OR WARREN DECK TRUSSES. (Fig. 1, Plate 17.)		Jaimin o Jaimin	
ITU	Ś	Compr. 0 1/ 2 3/ 6 7/ 6 7/ 10 11/ 12 13/ 16 17/ 16 17/	inin time and
UM	Members.	0	ords. 33. 33. 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
UN1	Mer	1150 864 20 IS.	ogo yo wa wato Ch
IXI		Tens. 1, 2 3, 4 5, 6 5, 6 5, 6 9, 10 9, 10 11, 12 11, 12 11, 12 15, 16	「日日の日の日日」
M			
in the s	nin.	Multiply by Sec.	Multiply by Tang.
3	-		8

82 THE PAS	SAIC ROLLING MILL COMPANY.
Z E	H 50 70 4
S. I. Wr	0.5 1 1.5 6 0.5 1 1 1.5 6 0.5 1 1 1.5 6
ER ER,	
AOA RD	6 Panets. 0 251 1 ε 1.510 5 5 -0.5 6 3 2 -1.5 1 1 1 -1.5 1 1 1
GI GI 13, 1	
VE IN 2 and	112120 11216 1228 1228 1228 1228 1288 1288 128
LI LRE igs. :	8 Panels. 8 Panels. 3 5 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 1 5 5 1 5 1
AD AR s (F	12 Panels. 10 Panels. D / e 0 / f 0 1 / e 0 1 e 0 1 e 0 1 / e 0
AN W VOST	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
DR DR JR	10000101
EA R (IR (IAL]	12 13 <th13< th=""> 13 13 13<!--</td--></th13<>
PRODUCED BY DEAD A OTION TRIANGULAR OR V ITH INTERMEDIATE SUSPENDERS OR POS INCLINED END-POSTS AND EQUAL PANELS	1.00100000000000
BY HUT Susri	nels 1 10 1
D NO STS	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
CE RIA EDIA	mels. , , , , , , , , , , , , , , , , , , ,
T'I ERMI	Ic Panels. D D T
RO] NON INT	18 Panes. 16 Panes. D /
PI TTI NCLI	18 Panes. D / B.515317 7:513616 6.513015 6:513015 8.55100114 5:513616 6.55120115 6:512015 25.56611 1:55510 0.552216 6:512 25.56611 1:55510 0.552216 6:512 25.50216 6:512 25.502115 6:512 25.50216 6:512 25.50216 6:512 25.50216 6:512 25.50217 1:552 25.50216 6:552 25.50217 1:552 25.502 1:555 25.502 1:555 25.502 1:555 25.502 1:555 25.502 1:555 25.502 1:555 25.502 1:555 25.502 1:555 25.502 1:555 25.502 1:555 25.502 1:555 25.555 1:5555 25.555
NS NS	18 Panels. 18 Panels. 1 1 </td
AIN	anels. 18 Paulos 1 1 19 19 18 11 10 11 10 11 10 11 10 11 10 11 10 11 10 <t< td=""></t<>
TE	D A Panels D D A B
IN	« A0010014001004000
MAXIMUM STRAINS PRODUCED BY DEAD AND LIVE LOADS IN SINGLE INTERSECTION TRIANGULAR OR WARREN GIRDERS, Through or Deck Bridges, With Intermediate Suspenders or Posts (Figs. 2 and 3, Plate 17), With Inclined End-posts and Equal Panels.	Tens. 1'2 3'4 5'6 7'8 9'10 11'12 11'12 13'14 15'16
IM NG.	
AX SIJ ROUC	Memb Memb 0 1' 2 3' 6 7' 8 9' 10 11' 12 13' 12 13' 14 15' 16 17'
M. Th	Inclined Members, multiply by Sec.

ŝ

THI	E PAS	SAIC ROLLING MILE	COMPANY. 83
	ls.	Smax OF CAL	IFONNIA
	4 Panels.	D+1 2.1.5 2.	1 20 1997
NE	iels.	02343	DI
RRI	6 Panels.	D +5:3-5-1 +5:	Length of inclined member Depth of truss ang. = Length of panel Depth of truss
WA	nels.	02024	o of inclined men Depth of truss Length of pane Depth of truss
)R	8 Panels.	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	gth of inclined mem Depth of truss Length of panel Depth of truss
~	iels.	0001000	= Length
LAF d.	10 Panels.	D+L 4.5 8. 8. 12.5 12.5	Sec. =
GU	ds.	0 4 8 0 0 1 0 1 0 .	E. A
SINGLE INTERSECTION TRIANGULAR OR WARREN GIRDERS— Continued.	12 Panels.	D+L 5.5 110. 113.5 113.5 113.5 113.5	
EL ST	iels.	~ 222120 o o r	
ION	14 Panels.	D+L 6.5 12. 12. 20. 22.5 22.5 24.5 24.5	THE PARTY
CTO	els.	م 11123 11123 11123 11123 11123 11233	00
IRSE (16 Panels.	D+L 7.5 19.5 24. 23.5 33.5 33.5	ve load,
TTE	els	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\operatorname{heral li}_{n}$
A	18 Panels	$\begin{array}{c} D+L\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1$	over gei
HLIE	s.	° 110 111 111 110 110 110 110 110 110 110	panel. panel. ne load $i = \frac{L}{n}$
SIN	20 Panels.	D+L 9.5 325.5 325.5 37.5 37.5 57.5 57.5 57.5 57.5 57.5 5	o. of panels ead load per J ive load per po xeess of engin for 1 panel. /=
and The D	Memb's	Chords Chords 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$n = N_0. \text{ of panels}$ $D = D \text{ ead load per panel.}$ $L = \text{Live load per panel.}$ $E = \text{Excess of engune load over general live load for 1 panel.}$ $i = \frac{L}{n}, e = \frac{E}{n}$
Inclu		Chords, multiply by Tan	ZUTH

2-

.

RARY

11215

•

		Santo Mondanto Milda Comminiti
N.	4 P'ls.	D / 6 1 143 0.532 111 111 11563
ADS	Panels.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
GIRI	anels. 6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
LIVE	iels. 8 Pa	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
VARI VARI	ro Pan	D I 2.525.9 0 2.525.9 9 0 2.525.9 9 0 2.525.9 9 0 2.545.9 9 0 2.545.9 9 0 5.556.9 9 1 1.512.6 12.512.6 1 2.545.9 9 1 2.545.9 9 1 2.545.9 12.512.6 1 2.545.9 12.512.6 1 1.522.5 1.523.7 1 2.545.9 1.543.7 1 2.545.9 1.543.9 1 4.544.9 1.144.9
D A DR V	ta Panels.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
STRAINS PRODUCED BY DEAD AND LIVE LOADS IN INTERSECTION TRIANGULAR OR WARREN GIRDERS, Through or Deck Bridges. (Fig. 3, Plate 18.)	16 Panels. 14 Panels. 12 Panels. 10 Panels. 8 Panels. 6 Panels. 4 P'ls.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
BY IGUL DGES.	ls. I4 l	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
CED RIAN ck Bri	r6 Pane	D I I I 4 4 64
ODU N TI	18 Panels.	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $
CTIC CTIC		7 c D 90019 4.5 9118 4.5 9118 4.5 9118 4.5 9118 4.5 9118 4.5 9118 4.5 9118 4.5 9118 4.5 9118 6.7-1.5 9118 7.5 9118 7.5
AINS IRSE	20 Panels.	$\begin{array}{c c} D \\ C \\$
STR.	ugh.	Tens. D 1' 2 4 5 1 2' 2 4 5 1 2' 2 4 5 3 3' 4 5 3 5' 6 2 5 5 7' 7 2 5 10' 110 0.5 117 12-0.5 117 13-0.5 117 13-
	MEMBERS. • k. Through.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MAXIMUM DOUBLE	Deck.	
W	A	Compr. Compr. 2011, 00 2011, 00 2012, 0

THE PASSAIC ROLLING MILL COMPANY	THE P.	ASSAIC	ROLLING	MILL	COMPANY.
----------------------------------	--------	--------	---------	------	----------

	TH	E PASSAIC ROLLIN
01003	4 Panels.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
linned.	6 Panels.	D+L 1 1.5 3.5 4 4 4.5 3.5 4 4.5 3.5 5 4 4.5 3 4.5 1 4.5 5 4 4.5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3 — Con	8 Panels.	D+L 2.5 5.5 5.5 6.5 6.5 6.5 7 7.5 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
RDERS	20 Panels. 18 Panels. 16 Panels. 14 Panels. 12 Panels. 12 Panels. 8 Panels. 6 Panels. 4 Panels.	D+L 22 22 6 6 6 6 5 9 6 5 9 9 5 7 11 6 11 5 6 11 5 6 11 5 6 11 6 6 7 7 7 6 7 7 8 7 8 8 8 8 8 8 8 8 8 8
OUBLE INTERSECTION WARREN GIRDERS - Continued.	12 Panels.	D+L 2.5 10 3.5 10 3.5 10 8 11 13.5 10 11.5 10
	14 Panels.	$\begin{array}{c} D+L \\ 3 \\ 3.5 \\ 3.5 \\ 3.5 \\ 3.5 \\ 3.5 \\ 12 \\ 14 \\ 13 \\ 18 \\ 10 \\ 13 \\ 21 \\ 10 \\ 21 \\ 10 \\ 21 \\ 10 \\ 21 \\ 10 \\ 21 \\ 21$
	16 Panels,	$\begin{array}{c} D+1 \\ 3.5 \\ 4 \\ 15 \\ 10.5 \\ 11 \\ 11 \\ 16.5 \\ 13 \\ 17 \\ 13 \\ 17 \\ 13 \\ 22 \\ 23 \\ 23 \\ 25 \\ 12 \\ 25 \\ 12 \\ 25 \\ 12 \\ 13 \\ 25 \\ 12 \\ 13 \\ 13 \\ 13 \\ 14 \\ 15 \\ 14 \\ 15 \\ 14 \\ 15 \\ 15 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$
	18 Panels.	$\begin{array}{c c} D+L & 0 \\ 4 & 16 \\ 4.5 & 17 \\ 12 & 16 \\ 12.5 & 17 \\ 19 & 16 \\ 19.5 & 15 \\ 19.5 & 15 \\ 25.5 & 15 \\ 25.5 & 15 \\ 33 & 14 \\ 33 & 14 \\ \end{array}$
	20 Panels.	$\begin{array}{c c} D+L & c \\ 4.5 & 18 \\ 5.5 & 19 \\ 13.5 & 18 \\ 14.5 & 19 \\ 21.5 & 18 \\ 22.5 & 17 \\ 22.5 & 17 \\ 22.5 & 17 \\ 23.5 & 16 \\ 23 \\ 31.5 & 16 \\ \end{array}$
JBLE	hrough.	P. Bottom. 1/ 0 1 2/ 1 2 2/ 2 3 3/ 3 4 4/ 4 5
10	DS.	Toj 2, 1, 3, 2,

CHORI Bottom.

Deck.

Top.

2

à

85 3.5 7 2.5 5 1.5 3 vertical members by one. Tang. - Length of panel Depth of truss " chords by Tang. Multiply diagonals by Sec. 7 12.5 |5| 6 7 ... 6.5 13 5.5 11 4.5 9 Sec.= Length of inclined member Depth of truss 17.5 For Inclined End-posts: 5000 21.5 23 23.5 24.5 24.5 7.5 15 1919000 26 28.5 29.5 31.5 31 31.5 8.5 17 112323 010 30.5 34.5 37.0 37.5 39.5 39 9.5 19 15 1513 2 35 39.5 18.5 43.5 49.5 46.5 0 1 9 10 0 2 00 6 10 9 30 2 à 6 9 10 9'10' 10 in à ì. i 0 00 9 00 10 10 00 0 ès 6 9'10' i à 1G è 2 ès 10 20 i ò

RIVETS AND PINS.

In proportioning riveted work it is customary not to take into account the friction between the shapes or plates connected. The rivets have to resist the whole strain which has to be transmitted from one part to the other by their resistance against shearing. The bearing surfaces of the rivets and of the connected parts must be large enough to avoid damage by crushing. Therefore, it will be always necessary to calculate the rivet connections for shear as well as for bearing. The following tables give shearing and bearing values of rivets of different diameters for shearing strains of 6,000 lbs. and 7,500 lbs. per square inch section, and for bearing values of 12,000 lbs. and 15,000 lbs. per square inch. The smaller values should be used for moving loads, and the larger values may be used for steady loads.

Pins are subject to strains by shearing, bearing, and bending. The corresponding values for these three different strains are—

SHEARING.	BEARING.	BENDING.
For R. R. bridges and iron pins 7,500	12,000	15,000
" " " steel pins 11,250	18,000	22,500
For steady loads and highway bridges iron pins 9,000	14,400	18,000

NG	
BENDI	
MAXIMUM	
AND	PINS.
SHEARING AND BEARING VALUES AND MAXIMUM BENDING	MOMENTS OF PINS.
BEAR	MG
AND	
SHEARING	· · · · · · · · · · · · · · · · · · ·

ΤI	IE P	ASSAI	C ROLL	ING MIL	L COMPAN	VY. 87
	JES.	At 11,250 lbs. per Din.	18,200 25,200 33,200	42,300 52,500 63,800 76,300	89,800 104,400 120,150 137,000	$\begin{array}{c} 169,100\\ 209,900\\ 255,200\\ 305,000\\ \end{array}$
	SHEARING VALUES	At 7,500 At 9,000 lbs. per \square in. lbs. per \square in.	$\begin{array}{c} 14,600\\ 20,200\\ 26,550\end{array}$	33,800 42,000 51,000 61,000	71,800 83,500 96,100 109,600	$\begin{array}{c} 135,300\\ 167,900\\ 204,200\\ 244,000\end{array}$
	SHI	At 7,500 lbs. per 🗆 in.	$\begin{array}{c} 12,150\\ 16,800\\ 22,100\end{array}$	28,200 35,000 42,500 50,850	59,850 69,600 80,100 91,350	$\begin{array}{c} 112,700\\ 140,000\\ 170,150\\ 203,300\end{array}$
1.01 1.25 1.10	JES F. PLATE.	At 18,000 lbs. per ain.	25,900 30,400 34,900	39,400 43,900 48,400 52,900	57,400 61,900 66,400 70,900	78,750 87,750 96,750 105,750
PINS.	BEARING VALUES 1' THICKNESS OF PLATE.	At 14,400 lbs. per 🗆 in.	20,700 24,300 27,900	31,500 35,100 38,700 42,300	45,900 49,500 53,100 56,700	63,000 70,200 77,400 84,600
OF	FOR 1' T	At 12,000 lbs. per □in.	17,200 20,200 23,200	26,200 29,200 32,200 35,200	38,200 41,200 44,200 47,200	52,500 58,500 64,500 70,500
MOMENTS	IOMENTS.	$ \begin{array}{c c} S = 15, \infty & S = 18, \infty \\ bs. per \squarein$, lbs. per {[ls. ls. ls. ls. ls. ls. ls. ls. ls. ls. $	6,550 10,610 16,050	23,110 31,970 42,350 55,960	$\begin{array}{c} 71,500\\ 89,680\\ 110,710\\ 134,790\end{array}$	185,000 255,900 343,000 447,900
MC	MAXIMUM BENDING MOMENTS.	S = 18,000 lbs. per \Box in.	5,240 8,480 12,840	$\begin{array}{c} 18,480\\ 25,580\\ 34,280\\ 34,770\\ 44,770\end{array}$	57,200 71,750 88,570 107,830	$\begin{array}{c} 147,960\\ 204,700\\ 274,400\\ 358,300\\ \end{array}$
2.du	MAXIMUM	S = 15,000 lbs. per 🗆 in.	4,370 7,070 10,700	$\begin{array}{c} 15,400\\ 21,310\\ 28,570\\ 37,310\end{array}$	47,670 59,790 73,810 89,860	$\begin{array}{c} 123,300\\ 170,600\\ 228,700\\ 298,600\end{array}$
	Area	cn I	1.62 2.24 2.95	3.76 4.67 5.67 6.78	$\begin{array}{c} 7.98 \\ 9.28 \\ 10.68 \\ 12.18 \end{array}$	15.03 18.66 22.69 27.11
	Diameter of		$\frac{176}{116}$ $\frac{176}{116}$	$\begin{array}{c} 2_{15} \\ 2_{16} \\ 2_{16} \\ 2_{16} \\ 2_{16} \\ 2_{16} \end{array}$	$\begin{array}{c} 3_{16} \\ 3_{16} \\ 3_{16} \\ 3_{16} \\ 3_{16} \\ 3_{16} \\ 3_{16} \\ \end{array}$	48 58 58 54 8 8

00 TH.		LOOM.	IC RO	LLING	MILI	, com	PANY.	
		11 28						
	PLATE.	18 11						10360
ETS.	ESSES OF	3.11				•		9000 9560
RIVETS.	r Thickn	11 1 1.					7220 7730	8250 8770
OF	DIFFEREN	22 July 22				6090	6560 7030	7500 7970
LUE	U' FOR]	1 <u>6</u> //				5060 5480	5910 6330	6750 7170
G VA	AND BEARING VALUE OF RIVETS. Bearing Value at 12,000 LBS. per D" for Different Thicknesses of Plate.	2 11		New York	3720 4120	4500 4870	5250 5620	6000 6370
ARIN		16 "		2950	3250 3600	3940 4270	4590 4920	5250 5580
		3 11		2250 2530	2790 3090	3370 3660	3940 4220	4500 4780
AND	BEARING	16 //	1640	1880 2110	2320 2570	2810 3050	3280 3520	3750 3980
BNI		4 11	1120 1310	1500 1690	1860 2060	2250 2440	2630 2810	3000 3190
SHEARING	Single Shear at	6000 lbs. per "	006	1180 1490	$1840 \\ 2230$	2650 3110	3610 4140	4710 5320
20	Area		.110	.196	.307	.442	.601 .690	.785 .887
	1	Rivet.	3 8 76	2 79 76	8 16 16	644 103 113	4 16	1 1 ^{1/6}

THE PASSAIC ROLLING MILL COMPANY.

SHEARING AND BEARING VALUE OF RIVETS— Continued. Diameter Rock Area Single Baanno VALUE AT 15,000 LBS. FER D ¹ FOR DIFFERENT TINCKNESSES OF PLATE. Rock $\frac{1}{7500}$ Single Baanno VALUE AT 15,000 LBS. FER D ¹ FOR $\frac{1}{16}$	THE PASSAIC ROLLING MILL COMPANY. 89											
SHEARING AND BEARING VALUE OF RIVETS Contin $A_{\text{Res}}^{\text{A}}$ Single BEARING VAUE OF RIVETS Contin of Rivet Single $\frac{1}{4}$ $\frac{1}{16}$ $\frac{3}{8}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ <td< td=""><td></td><td></td><td>11 78</td><td></td><td></td><td></td><td></td><td></td><td>R I</td></td<>			11 78						R I			
SHEARING AND BEARING VALUE Area of Rivet Single Silvet BEARING VALUE YALUE 110 Silvet Silvet Jin Jin Jin Jin 110 Silvet Silvet Jin Jin Jin Jin Jin 110 Silvet Silvet Jin Jin Jin Jin Jin Jin 110 Silvet Jin Jin <td< td=""><td>inned.</td><td>PLATE.</td><td>13/10</td><td></td><td>10 4</td><td></td><td></td><td></td><td>12950</td></td<>	inned.	PLATE.	13/10		10 4				12950			
SHEARING AND BEARING VALUE Area of Rivet Single Silvet BEARING VALUE YALUE 110 Silvet Silvet Jin Jin Jin Jin 110 Silvet Silvet Jin Jin Jin Jin Jin 110 Silvet Silvet Jin Jin Jin Jin Jin Jin 110 Silvet Jin Jin <td< td=""><td>— Cont</td><td>ESSES OF</td><td>. 311</td><td></td><td></td><td></td><td></td><td></td><td>11250 11950</td></td<>	— Cont	ESSES OF	. 311						11250 11950			
SHEARING AND BEARING VALUE Area of Rivet Single Silvet BEARING VALUE YALUE 110 Silvet Silvet Jin Jin Jin Jin 110 Silvet Silvet Jin Jin Jin Jin Jin 110 Silvet Silvet Jin Jin Jin Jin Jin Jin 110 Silvet Jin Jin <td< td=""><td>ETS-</td><td>T THICKN</td><td>19 11</td><td></td><td></td><td></td><td></td><td>0496</td><td>10310</td></td<>	ETS-	T THICKN	19 11					0496	10310			
SHEARING AND BEARING VALUE Area of Rivet Single Silvet BEARING VALUE YALUE 110 Silvet Silvet Jin Jin Jin Jin 110 Silvet Silvet Jin Jin Jin Jin Jin 110 Silvet Silvet Jin Jin Jin Jin Jin Jin 110 Silvet Jin Jin <td< td=""><td>RIV</td><td>DIFFEREN</td><td>7 55</td><td></td><td></td><td></td><td>7620</td><td>8200 8790</td><td>9380 9960</td></td<>	RIV	DIFFEREN	7 55				7620	8200 8790	9380 9960			
SHEARING AND Area Area Single of Kivet 7500 lbs .110 830 1410 .150 1130 1640 .150 1130 2310 .371 2780 2340 .371 2780 2580 .519 3890 3050 .519 3890 3550 .518 5890 3750		" FOR	1 <u>6</u> 11				6330 6860	7380	8440 8960			
SHEARING AND Area Area Single of Kivet 7500 lbs .110 830 1410 .150 1130 1640 .150 1130 2310 .371 2780 2340 .371 2780 2580 .519 3890 3050 .519 3890 3550 .518 5890 3750	ALUE	LBS. PER	2 11			5160	5630 6090	6560 7030	7500			
SHEARING AND Area Area Single of Kivet 7500 lbs .110 830 1410 .150 1130 1640 .150 1130 2310 .371 2780 2340 .371 2780 2580 .519 3890 3050 .519 3890 3550 .518 5890 3750	G V.	AT 15,000	10 11		3690	4100 4510	4920 5330	5740 6150	0269 0920			
SHEARING AND Area Area Single of Kivet 7500 lbs .110 830 1410 .150 1130 1640 .150 1130 2310 .371 2780 2340 .371 2780 2580 .519 3890 3050 .519 3890 3550 .518 5890 3750	ARIN	VALUE	11 20		2810 3160	3520 3870	4220 4570	4920 5270	5620 5980			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$) BE	BEARING	16 11	2050	2340 2640	2930 3220	3520 3810	4100 4390	4690 4980			
SHEARING liameter Area Single ^{off} tivet. single single ^{shres} r/s of kivet. single ^{shres} r/s single single ^{shres} r/s of kivet. single ^{shres} r/s r/s single ^{shres} r/s r/s single ^{shres} r/s r/s single ^{shres} r/s single single ^{shres} r/s r/s single ^{shres} single single single	ANI	10.30	4 <i>u</i>	1410 1640	1880 2110	2340 2580	2810 3050	3280 3520	3750 3980			
SHEA liameter Rivet. ³ T ₆ ³ T ₇₆ ⁴ 110 ¹¹⁰ ² 110 ¹¹⁰ ² 110 ¹¹⁰ ² 110 ¹¹¹⁰ ² 110 ¹¹¹⁰ ² 110 ¹¹¹⁰ ² 1249 ² 1307 ² 196 ² 198 ² 1	RING	Single Shear at	7500 lbs. per "	830 1130	1470 1860	2300 2780	3310 3890	4510 5180	5890 6650			
Diameter Diameter العاد العاد	SHEA	Area	of Kivet.	.110	.196	.307	.442 .519	.601	.785 .887			
		Diameter	Rivet.		11.00			- 0 J	$1 1_{1_{1_{6}}}$			

90	THE	PASSAIC	ROLLING	MILL	COMPANY.

IRON RIVETS.

Weight per 100.

Length			DL	AMETER	LS.		
Under Head.	1 <u>4</u>	esjæ	1/2	5100	34	78	1
1 18 550 78 18 58 53 53 18 18 18 55 18 18 18 18 18 18 18 18 18 18 18 18 18	$\begin{array}{c} 1.895\\ 2.067\\ 2.238\\ 2.410\\ 2.582\\ 2.754\\ 2.926\\ 3.098\\ 3.239\\ 3.441\\ 3.613\\ 3.785\\ 3.957\\ 4.129\\ 4.301\\ 4.473\\ 4.644\\ 4.816\\ 5.160\\ 5.332\\ 5.504\\ 4.988\\ 5.160\\ 5.332\\ 5.504\\ 6.019\\ 6.191\\ 6.363\end{array}$	$\begin{array}{c} 4.848\\ 5.235\\ 5.616\\ 6.003\\ 6.789\\ 7.179\\ 7.566\\ 7.956\\ 8.343\\ 8.733\\ 9.120\\ 9.511\\ 9.898\\ 10.29\\ 10.67\\ 11.06\\ 11.44\\ 12.23\\ 12.62\\ 13.01\\ 13.39\\ 13.78\\ 14.17\\ 14.56\\ 14.95\end{array}$	$\begin{array}{c} 9.66\\ 10.34\\ 11.04\\ 11.73\\ 12.43\\ 13.12\\ 13.81\\ 14.50\\ 15.19\\ 15.88\\ 16.57\\ 17.26\\ 17.95\\ 18.64\\ 19.33\\ 20.02\\ 20.71\\ 21.40\\ 22.09\\ 22.78\\ 23.48\\ 24.17\\ 24.86\\ 25.55\\ 26.24\\ 24.87\\ 24.86\\ 25.55\\ 26.24\\ 26.93\\ 27.62\\ 27.62\\ \end{array}$	$\begin{array}{c} 16.79\\ 17.86\\ 20.03\\ 21.04\\ 22.11\\ 23.21\\ 24.28\\ 25.48\\ 26.56\\ 27.65\\ 28.73\\ 29.82\\ 30.90\\ 33.08\\ 34.18\\ 35.27\\ 36.35\\ 37.44\\ 38.52\\ 39.60\\ 41.78\\ 42.87\\ 43.94\\ 45.01\\ \end{array}$	$\begin{array}{c} 26.49\\ 27.99\\ 29.61\\ 31.13\\ 32.74\\ 34.25\\ 35.86\\ 37.37\\ 38.99\\ 40.40\\ 42.11\\ 43.67\\ 45.24\\ 46.80\\ 49.92\\ 51.49\\ 53.05\\ 54.61\\ 56.17\\ 57.74\\ 59.30\\ 60.86\\ 62.42\\ 63.99\\ 65.55\\ 67.11 \end{array}$	$\begin{array}{c} 39.3\\ 41.4\\ 43.5\\ 45.6\\ 47.8\\ 49.9\\ 52.0\\ 54.1\\ 56.3\\ 58.4\\ 60.5\\ 62.6\\ 64.8\\ 66.9\\ 63.0\\ 71.1\\ 73.3\\ 75.4\\ 86.0\\ 83.9\\ 88.1\\ 90.3\\ 92.4\\ 94.5\\ \end{array}$	$\begin{array}{c} 55.2\\ 57.9\\ 60.7\\ 63.4\\ 66.2\\ 68.9\\ 71.7\\ 74.4\\ 77.2\\ 79.9\\ 82.7\\ 85.4\\ 88.2\\ 90.9\\ 93.7\\ 96.4\\ 99.2\\ 101.9\\ 102.7\\ 107.4\\ 110.2\\ 112.9\\ 112.9\\ 112.2\\ 123.9\\ 123.6\\ 123.6\\ 126.6$
100 Heads.	.519	1.74	4.14	8.10	13.99	22.27	33.15

THE É	PAS	SAIC 1	ROLLING MILL COMPANY.	91
JPSET SCREW ENDS FOR ROUND AND SQUARE BARS. Standard dimensions of the passaic rolling mild company.				
W ENDS FOR ROUND AND SQ STANDARD DIMENSIONS OF THE PASSAIC ROLLING MILL COMPANY.	OF	1 ft long. Lbs.	332 25.5 8 332 25.5 8 355 25.5 8	
ND A ROLLING M	WEIGHTS OF	2 O Ends 1 ft. long. Lbs.	331.9 38.20 39 38.20 39 38.20 39 38.20 39 39 39 39 39 39 39 39 39 30 39 30 30 30 30 30 30 30 30 30 30 30 30 30	
ROU IE PASSAIC	1	1 Sleeve Nut. Lbs.	442 244 244 244 244 244 244 244 244 244	52
FOR IONS OF TH		of Threads per Inch.	00 と つ ひ ひ ひ み み み み み み み み み み み み み み み み	2
ENDS RD DIMENS	Smallest	Diam. of Hexagon Part.	<u>్ల ల ల ల ల ల ల ల ల ల ల ల ల ల ల ల ల ల</u>	24
REW standa		of Sleeve Nut. Inches.	00000000000000000000000000000000000000	6
T SCI	Diameter	of Upset Rod. Inches.		14
UPSE	Diameter	of Inches.	ಹ್ರಾಣ್ಣ ಗ್ರಾಗತ್ರಾಗತ ಪ್ರವಾಧ ಯ	
	Diameter	o Rods. Inches.	2014年190日日日日日の2020 1914年190日日日日の2020日 1914年191日日日日の2020日 1914年191日日日日の2020日 1914年191日日日日の2020日 1914年191日日日日の2020日 1914年191日日日日の2020日 1914年191日日日日の2020日 1914年191日日 1914年191日日 1914年191日日 1914年191日日 1914年191日日 1914年191日日 1914年191日 1917年1910 1917年1910 1917年1910 1917年1910 1917 1917 1917 1917 1917 1917 1917	

0-

28

91

AREAS AND WEIGHTS OF SQUARE AND ROUND WROUGHT-IRON BARS.

Thick-			(C	Thick-		2	0		
ness, Inches.	Area.	W'ght per ft.	Area.	W'ght per ft.	ness, Inches.	Area.	W'ght per ft.	Area.	W'ght per ft.	
$\begin{array}{c} 0\\ \frac{1}{16}\\ \frac{1}{8}\\ \frac{3}{16} \end{array}$	0.004 .016 .035	0.013 .052 .117	$0.003 \\ .012 \\ .028$	0.010 .041 .092	$2^{\frac{1}{16}}{\frac{1}{8}}{\frac{3}{16}}$	$4.25 \\ 4.52$	$13.33 \\ 14.18 \\ 15.05 \\ 15.95$	$3.34 \\ 3.55$	$10.47 \\ 11.14 \\ 11.82 \\ 12.53$	
$\begin{array}{c} \frac{1}{4} \\ \frac{5}{16} \\ \frac{3}{8} \\ \frac{7}{16} \end{array}$.062 .098 .141 .191	.208 .326 .469 .638	.049 .077 .110 .150	$.164 \\ .256 \\ .368 \\ .501$	$ \begin{array}{c} \frac{1}{4} \\ \frac{5}{16} \\ \frac{3}{8} \\ \frac{7}{16} \end{array} $	$5.35 \\ 5.64$	16.88 17.83 18.80 19.80	4.20 4.43	$13.25 \\ 14.00 \\ 14.77 \\ 15.55$	
$ \frac{\frac{1}{2}}{\frac{9}{16}} $ $ \frac{58}{16} $ $ \frac{11}{16} $.250 .316 .391 .473	$\begin{array}{r} .833 \\ 1.06 \\ 1.30 \\ 1.58 \end{array}$			$ \frac{\frac{1}{2}}{\frac{9}{16}} \\ \frac{5}{8} \\ \frac{11}{16} $	6.57 6.89	$20.83 \\ 21.89 \\ 22.97 \\ 24.08$	$5.16 \\ 5.41$	16.36 17.19 18.04 18.91	
$ \frac{\frac{3}{4}}{\frac{13}{10}}, \frac{\frac{13}{10}}{\frac{7}{8}}, \frac{15}{16} $.562 .660 .766 .879	$1.87 \\ 2.20 \\ 2.55 \\ 2.93$.518 .601	$ 1.47 \\ 1.73 \\ 2.00 \\ 2.30 $	$ \begin{array}{r} 3 \\ 4 \\ 4 \\ \frac{13}{16} \\ 7 \\ 8 \\ 15 \\ 16$	7.91 8.27	$\begin{array}{r} 25.21 \\ 26.37 \\ 27.55 \\ 28.76 \end{array}$	6.21 6.49	$19.80 \\ 20.71 \\ 21.64 \\ 22.59$	
$1 \\ \frac{1}{16} \\ \frac{1}{8} \\ \frac{3}{16} \\ \frac{3}{1$	$1.00 \\ 1.13 \\ 1.27 \\ 1.41$	$\begin{array}{c} 3.33 \\ 3.76 \\ 4.22 \\ 4.70 \end{array}$.887	$\begin{array}{c} 2.62 \\ 2.95 \\ 3.31 \\ 3.69 \end{array}$		9.38 9.77	30.00 31.26 32.55 33.87	7.37	$23.56 \\ 24.55 \\ 25.57 \\ 26.60$	
$\begin{array}{c}1\\4\\5\\6\\3\\8\\1\\6\end{array}$	$1.56 \\ 1.72 \\ 1.89 \\ 2.07$	5.21 5.74 6.30 6.89	$1.23 \\ 1.35 \\ 1.48 \\ 1.62$	$\begin{array}{r} 4.09 \\ 4.51 \\ 4.95 \\ 5.41 \end{array}$	$ \begin{array}{c} \frac{1}{4} & & \\ \frac{5}{16} & & \\ \frac{3}{8} & & \\ \frac{7}{16} & & \\ \end{array} $	$10.97 \\ 11.39$	35.21 36.58 37.97 39.39	8.62 8.95	27.6528.7329.8230.94	
12 58 16 16	$2.25 \\ 2.44 \\ 2.64 \\ 2.85$	7.50 8.14 8.80 9.49	$1.77 \\ 1.92 \\ 2.07 \\ 2.24$	$5.89 \\ 6.39 \\ 6.91 \\ 7.45$	$ \frac{\frac{1}{2}}{\frac{9}{16}} \frac{9}{16} \frac{11}{16} $	$12.69 \\ 13.14$				
34 4 78 15 16	3.06 3.28 3.52 3.75	$10.21 \\ 10.95 \\ 11.72 \\ 12.51$	$\begin{array}{c} 2.40 \\ 2.58 \\ 2.76 \\ 2.95 \end{array}$	8.02 8.60 9.20 9.83	34 4 136 78 150	$14.53 \\ 15.01$	$ 48.45 \\ 50.05 $	$11.04 \\ 11.42 \\ 11.79 \\ 12.18$	$38.05 \\ 39.31$	

AREAS AND WEIGHTS OF SQUARE AND -ROUND WROUGHT-IRON BARS.

(Continued.)

Thick-	[C	2	Thick-			C)
ness, Inches	Area.	W'ght per ft.	Area.	W'ght per ft.	ness, Inches	Area.	W'ght per ft.	Area.	W'ght per ft.
4 16 18 3 16	16.00 16.50 17.01 17.53	56.72	12.96	$43.21 \\ 44.55$	6 18 14 38	36.00 37.52 39.06 40.64	$\substack{125.1\\130.2}$	$\begin{array}{r} 28.27 \\ 29.46 \\ 30.68 \\ 31.92 \end{array}$	102.3
$\frac{1}{4}$ $\frac{5}{16}$ $\frac{3}{8}$ 7 16	$18.06 \\ 18.60 \\ 19.14 \\ 19.69$	$60.21 \\ 61.99 \\ 63.80 \\ 65.64$	$14.61 \\ 15.03$	50.11	1 5 1 2 5 1 8 7 8 7 8	$\begin{array}{r} 42.25 \\ 43.89 \\ 45.56 \\ 47.27 \end{array}$	$\begin{array}{c} 146.3\\ 151.9 \end{array}$	33.18 34.47 35.78 37.12	114.9 119.3
$\frac{1}{2}$ $\frac{9}{16}$ $\frac{5}{8}$ $\frac{11}{16}$	20.25 20.82 21.39 21.97	71.30	16.35	$54.50 \\ 56.00$	7 14 12 34	$\begin{array}{r} 49.00 \\ 52.56 \\ 56.25 \\ 60.06 \end{array}$	$175.2 \\ 187.5$	$38.48 \\ 41.28 \\ 44.18 \\ 47.17$	$137.6 \\ 147.3$
34 13 78 15 10 15 10	$\begin{array}{r} 22.56 \\ 23.16 \\ 23.77 \\ 24.38 \end{array}$	$77.20 \\ 79.22$	$18.19 \\ 18.66$	59.0760.6362.2263.82	8 14 12 34	$\begin{array}{c} 64.00 \\ 68.06 \\ 72.25 \\ 76.56 \end{array}$	$226.9 \\ 240.8$	50.26 53.46 56.74 60.13	$178.2 \\ 189.2$
5 16 18 3 16	$\begin{array}{r} 25.00 \\ 25.63 \\ 26.27 \\ 26.91 \end{array}$	85.43 87.55	$20.13 \\ 20.63$	$ \begin{array}{r} 65.45 \\ 67.10 \\ 68.76 \\ 70.45 \end{array} $	1 1 2	81.00 85.56 90.25 95.06	$285.2 \\ 300.8$	70.88	$212.1 \\ 224.0 \\ 236.3 \\ 248.9$
14 5 16 38 7 15	27.56 28.22 28.89 29.57	94.08 96.30	22.17 22.69	72.1673.8975.6477.40	$\frac{1}{4}$ $\frac{1}{2}$	$100.00 \\ 105.06 \\ 110.25 \\ 115.56$	$350.2 \\ 367.5$	82.52	288.6
12 9 16 58 116	$30.94 \\ 31.64$	$100.8 \\ 103.1 \\ 105.5 \\ 107.8$	24.30 24.85	79.19 81.00 82.83 84.69	1 4 1 2	132.25	$421.9 \\ 440.8$	$95.03 \\ 99.40 \\ 103.87 \\ 108.43$	346.2
34136 7816	$33.78 \\ 34.52$	$110.2 \\ 112.6 \\ 115.1 \\ 117.5$	26.53 27.11	86.56 88.45 90.36 92.29		144.0	480.0	113.1	377.0

AREAS OF FLAT ROLLED IRON.

		1		1		1			
Thickness in Inches.	1″	11/1	11/2"	1 <u>3</u> "	2"	21/1	2 ¹ / ₂ "	23/1	3″
$\frac{1}{16}$ $\frac{1}{8}$ 1^{3} $\frac{1}{4}$.063 .125 .188 .250	.078 .156 .234 .313	.094 .188 .281 .375	.109 .219 .328 .438	.125 .250 .375 .500	$.141 \\ .281 \\ .422 \\ .563$.156 .313 .469 .625	.172 .344 .516 .688	.188 .375 .563 .750
$ \frac{7}{16} $ $ \frac{3}{2} $ $ \frac{7}{16} $ $ \frac{1}{2} $.313 .375 .438 .500	.391 .469 .547 .625	.469 .563 .656 .750	.547 .656 .766 .875	.625 .750 .875 1.00	$.703 \\ .844 \\ .984 \\ 1.13$	$.781 \\ .938 \\ 1.09 \\ 1.25$	$.859 \\ 1.03 \\ 1.20 \\ 1.38$	$.938 \\ 1.13 \\ 1.31 \\ 1.50$
$ \begin{array}{r} 9 \\ \overline{16} \\ \overline{58} \\ 11 \\ \overline{16} \\ \overline{34} \\ 4 \end{array} $.563 .625 .688 .750	.703 .781 .859 .938	$.844 \\ .938 \\ 1.03 \\ 1.13$	$.984 \\ 1.09 \\ 1.20 \\ 1.31$	$1.13 \\ 1.25 \\ 1.38 \\ 1.50$	$1.27 \\ 1.41 \\ 1.55 \\ 1.69$	$1.41 \\ 1.56 \\ 1.72 \\ 1.88$	$1.55 \\ 1.72 \\ 1.89 \\ 2.06$	$1.69 \\ 1.88 \\ 2.06 \\ 2.25$
1 78 15 1	.813 .875 .938 1.00	$1.02 \\ 1.09 \\ 1.17 \\ 1.25$	$1.22 \\ 1.31 \\ 1.41 \\ 1.50$	$1.42 \\ 1.53 \\ 1.64 \\ 1.75$	$1.63 \\ 1.75 \\ 1.88 \\ 2.00$	$1.83 \\ 1.97 \\ 2.11 \\ 2.25$	2.03 2.19 2.34 2.50	$2.23 \\ 2.41 \\ 2.58 \\ 2.75$	$2.44 \\ 2.63 \\ 2.81 \\ 3.00$
$\begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \end{array}$	$1.06. \\ 1.13 \\ 1.19 \\ 1.25$	$1.33 \\ 1.41 \\ 1.48 \\ 1.56$	$1.59 \\ 1.69 \\ 1.78 \\ 1.88$	$ \begin{array}{r} 1.86 \\ 1.97 \\ 2.08 \\ 2.19 \end{array} $	$2.13 \\ 2.25 \\ 2.38 \\ 2.50$	2.39 2.53 2.67 2.81	2.66 2.81 2.97 3.13	2.92 3.09 3.27 3.44	3.19 3.38 3.56 3.75
$\begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array}$	$1.31 \\ 1.38 \\ 1.44 \\ 1.50$	$1.64 \\ 1.72 \\ 1.80 \\ 1.88$	$ \begin{array}{r} 1.97 \\ 2.06 \\ 2.16 \\ 2.25 \\ \end{array} $	$\begin{array}{r} 2.30 \\ 2.41 \\ 2.52 \\ 2.63 \end{array}$	2.63 2.75 2.88 3.00	$2.95 \\ 3.09 \\ 3.25 \\ 3.38 $	3.28 3.44 3.59 3.75	$3.61 \\ 3.78 \\ 3.95 \\ 4.13$	3.94 4.13 4.31 4.50
1 1 5 1 1 1 1 4	$1.56 \\ 1.63 \\ 1.69 \\ 1.75$	1.95 2.03 2.11 2.19	$2.34 \\ 2.44 \\ 2.53 \\ 2.63$	$2.73 \\ 2.84 \\ 2.95 \\ 3.06$	3.13 3.25 3.38 3.50	3.52 3.66 3.80 3.94	3.914.064.224.38	$\begin{array}{r} 4.30 \\ 4.47 \\ 4.64 \\ 4.81 \end{array}$	4.69 4.88 5.06 5.25
$2^{1\frac{1}{16}}$	$1.81 \\ 1.88 \\ 1.94 \\ 2.00$	$2.27 \\ 2.34 \\ 2.42 \\ 2.50$	$2.72 \\ 2.81 \\ 2.91 \\ 3.00$	3.17 3.28 3.39 3.50	3.63 3.75 3.88 4.00	$\begin{array}{r} 4.08 \\ 4.22 \\ 4.36 \\ 4.50 \end{array}$	$\begin{array}{r} 4.53 \\ 4.69 \\ 4.84 \\ 5.00 \end{array}$	$\begin{array}{r} 4.98 \\ 5.16 \\ 5.33 \\ 5.50 \end{array}$	5.44 5.63 5.81 6.00
Sales and	- ESSA					-			

20

.

AREAS OF FLAT ROLLED IRON.

(Continued.)

Thickness in Inches.	3 ¹ / ₂ "	4"	4 ¹ /′	5″	6′′	7"	8″	9″	10''			
$ \frac{1}{16} \frac{1}{8} \frac{1}{16} \frac{1}{4} \frac{1}{16} $	$\begin{array}{r} .219 \\ .438 \\ .656 \\ .875 \end{array}$	$\begin{array}{r} .250 \\ .500 \\ .750 \\ 1.00 \end{array}$.281 .563 .844 1.13	.313 .625 .938 1.25	.375 .750 1.13 1.50	.438 .875 1.31 1.75	.500 1.00 1.50 2.00	$.563 \\ 1.13 \\ 1.69 \\ 2.25$.625 1.25 1.88 2.50			
38 7 16 12	$1.09 \\ 1.31 \\ 1.53 \\ 1.75$	$1.25 \\ 1.50 \\ 1.75 \\ 2.00$	$1.41 \\ 1.69 \\ 1.97 \\ 2.25$	$1.56 \\ 1.88 \\ 2.19 \\ 2.50$	$1.88 \\ 2.25 \\ 2.63 \\ 3.00$	$2.19 \\ 2.63 \\ 3.06 \\ 3.50$	2.50 3.00 3.50 4.00	$2.81 \\ 3.38 \\ 3.94 \\ 4.50$	3.13 3.75 4.38 5.00			
58 76 76 31 16 34	$1.97 \\ 2.19 \\ 2.41 \\ 2.63$	$2.25 \\ 2.50 \\ 2.75 \\ 3.00$	$2.53 \\ 2.81 \\ 3.09 \\ 3.38 $	$2.81 \\ 3.13 \\ 3.44 \\ 3.75$	3.38 3.75 4.13 4.50	$3.94 \\ 4.38 \\ 4.81 \\ 5.25$	$\begin{array}{r} 4.50 \\ 5.00 \\ 5.50 \\ 6.00 \end{array}$	5.06 5.63 6.19 6.75	5.63 6.25 6.88 7.50			
78 78 15 1	$\begin{array}{c} 2.84 \\ 3.06 \\ 3.28 \\ 3.50 \end{array}$	$3.25 \\ 3.50 \\ 3.75 \\ 4.00$	3.66 3.94 4.22 4.50	$\begin{array}{r} 4.06 \\ 4.38 \\ 4.69 \\ 5.00 \end{array}$	$\begin{array}{r} 4.88 \\ 5.25 \\ 5.63 \\ 6.00 \end{array}$	$5.69 \\ 6.13 \\ 6.56 \\ 7.00$	6.50 7.00 7.50 8.00	7.31 7.88 8.44 9.00	$8.13 \\ 8.75 \\ 9.38 \\ 10.00$			
$1\frac{1}{16}$ $1\frac{1}{8}$ $1\frac{3}{16}$ $1\frac{1}{4}$	3.72 3.94 4.16 4.38	$\begin{array}{r} 4.25 \\ 4.50 \\ 4.75 \\ 5.00 \end{array}$	$\begin{array}{r} 4.78 \\ 5.06 \\ 5.34 \\ 5.63 \end{array}$	$5.31 \\ 5.63 \\ 5.94 \\ 6.25$	$\begin{array}{r} 6.38 \\ 6.75 \\ 7.13 \\ 7.50 \end{array}$	7.44 7.88 8.31 8.75	9.50	9.56 10.13 10.69 11.25	11.88			
$1\frac{5}{16}\\1\frac{3}{8}\\1\frac{7}{16}\\1\frac{1}{2}$	$\begin{array}{r} 4.59 \\ 4.81 \\ 5.03 \\ 5.25 \end{array}$	5.25 5.50 5.75 6.00	$5.91 \\ 6.19 \\ 6.47 \\ 6.75$	$6.56 \\ 6.88 \\ 7.19 \\ 7.50$	7.88 8.25 8.63 9.00	$9.63 \\ 10.06$	$11.00 \\ 11.50$	$11.81 \\ 12.38 \\ 12.94 \\ 13.50$	$13.75 \\ 14.38$			
$\begin{array}{c} 1_{1^{-6}_{-6}} \\ 1_{58}^{-5} \\ 1_{16}^{-1} \\ 1_{4}^{-1} \end{array}$	5.47 5.69 5.91 6.13	$\begin{array}{c} 6.25 \\ 6.50 \\ 6.75 \\ 7.00 \end{array}$	7.03 7.31 7.59 7.88		$9.75 \\ 10.13$	$\frac{11.38}{11.81}$	$13.00 \\ 13.50$	$14.06 \\ 14.63 \\ 15.19 \\ 15.75 \\$	$16.25 \\ 16.88$			
$2^{1\frac{1}{16}}$ $1\frac{1}{8}$ $1\frac{15}{16}$ 2^{1}	$\begin{array}{c} 6.34 \\ 6.56 \\ 6.78 \\ 7.00 \end{array}$	$7.25 \\ 7.50 \\ 7.75 \\ 8.00$	8.16 8.44 8.72 9.00	9.38 9.69	$\frac{11.25}{11.63}$	$13.13 \\ 13.56$	$15.00 \\ 15.50$	$16.31 \\ 16.88 \\ 17.44 \\ 18.00$	$ \begin{array}{r} 18.75 \\ 19.38 \end{array} $			
	100	14				19/20	S	1	-			

WEIGHTS OF FLAT ROLLED IRON, PER LINEAL FOOT.

Iron Weighing 480 Lbs. per Cubic Foot.

Thickness in Inches.	1″	11/1	1 ¹ / ₂ "	1 <u>3</u> //	2″	2 ¹ / ₄ "	$2\frac{1}{2}''$	$2^{3''}_4$	3″
$ \begin{array}{r} 1 \\ 1 \\ \frac{1}{8} \\ \frac{3}{16} \\ \frac{1}{4} \end{array} $.208 .417 .625 .833	$ \begin{array}{r} .260 \\ .521 \\ .781 \\ 1.04 \end{array} $.31 .62 .94 1.25	.36 .73 1.09 1.46	.83	.94	.52 1.04 1.56 2.08	.57 1.15 1.72 2.29	$0.62 \\ 1.25 \\ 1.88 \\ 2.50$
5 3 3 1 6 1 2	$ 1.04 \\ 1.25 \\ 1.46 \\ 1.67 $	$ \begin{array}{r} 1.30 \\ 1.56 \\ 1.82 \\ 2.08 \end{array} $	$1.56 \\ 1.88 \\ 2.19 \\ 2.50$	2.19	2.08 2.50 2.92 3.33	$2.81 \\ 3.28$	2.60 3.13 3.65 4.17	2.86 3.44 4.01 4.58	3.13 3.75 4.38 5.00
$ \frac{9}{16} \frac{5}{8} \frac{11}{16} \frac{3}{4} $	$ \begin{array}{r} 1.88 \\ 2.08 \\ 2.29 \\ 2.50 \\ \end{array} $	$2.34 \\ 2.60 \\ 2.86 \\ 3.13 $	2.81 3.13 3.44 3.75	3.28 3.65 4.01 4.38	$3.75 \\ 4.17 \\ 4.58 \\ 5.00$		$\begin{array}{r} 4.69 \\ 5.21 \\ 5.73 \\ 6.25 \end{array}$	5.16 5.73 6.30 6.88	
¹³ ⁷ / ₈ ¹⁵ / ₁₆ 1	$2.71 \\ 2.92 \\ 3.13 \\ 3.33 \\$	3.393.653.914.17	$\begin{array}{r} 4.06 \\ 4.38 \\ 4.69 \\ 5.00 \end{array}$	5.47 5.83	5.42 5.83 6.25 6.67	7.03 7.50	7.81 8.33	8.59 9.17	8.75 9.38 10.00
$\begin{array}{c} 1_{16}^{\perp} \\ 1_{8}^{\perp} \\ 1_{16}^{-3} \\ 1_{14}^{-3} \\ 1_{4}^{\perp} \end{array}$	3.54 3.75 3.96 4.17	$\begin{array}{r} 4.43 \\ 4.69 \\ 4.95 \\ 5.21 \\ \end{array}$	5.31 5.63 5.94 6.25	6.20 6.56 6.93 7.29	7.08 7.50 7.92 8.33	8.44 8.91 9.38	9.38 9.90 10.42	$10.31 \\ 10.89 \\ 11.46 \\$	$ \begin{array}{r} 10.63 \\ 11.25 \\ 11.88 \\ 12.50 \\ \hline \end{array} $
$\begin{array}{c c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array}$	4.37 4.58 4.79 5.00	5.47 5.73 5.99 6.25	$ \begin{array}{r} 6.56 \\ 6.88 \\ 7.19 \\ 7.50 \\ \hline \end{array} $	8.02 8.39 8.75	9.17 9.58 10.00	$10.31 \\ 10.78 \\ 11.25$	$ \begin{array}{r} 11.46 \\ 11.98 \\ 12.50 \\ \end{array} $	12.60 13.18 13.75	$13.13 \\ 13.75 \\ 14.38 \\ 15.00 \\$
$\begin{array}{c c} 1\frac{9}{16} \\ 1\frac{1}{8} \\ 1\frac{1}{16} \\ 1\frac{3}{4} \\ \end{array}$	5.21 5.42 5.63 5.83	6.51 6.77 7.03 7.29		9.48 9.84 10.21	10.83 11.25 11.67	$12.19 \\ 12.66 \\ 13.13 \\$	$13.54 \\ 14.06 \\ 14.58 \\$	14.90 15.47 16.04	$15.63 \\ 16.25 \\ 16.88 \\ 17.50 $
$\begin{array}{c c} 1\frac{1}{16} \\ 1\frac{7}{5} \\ 1\frac{15}{16} \\ 2 \\ \end{array}$	$ \begin{array}{r} 6.04 \\ 6.25 \\ 6.46 \\ 6.67 \end{array} $	7.55 7.81 8.07 8.33	9.38 9.69	10.94 11.30	$12.50 \\ 12.92$	$14.06 \\ 14.53$	$15.63 \\ 16.15$	$17.19 \\ 17.76$	$18.13 \\ 18.75 \\ 19.38 \\ 20.00 \\ \cdot \cdot$

WEIGHTS OF FLAT ROLLED IRON, PER LINEAL FOOT.

Iron Weighing 480 Lbs. per Cubic Foot.

Thickness in Inches.	3 ¹ / ₂ "	4"	4 ¹ / ₂ "	5″	6''	7"	8″	9″	10''
$ \begin{array}{r} \frac{1}{16} \\ \frac{1}{8} \\ \frac{3}{16} \\ \frac{1}{4} \end{array} $	$0.73 \\ 1.46 \\ 2.19 \\ 2.92$	$1.67 \\ 2.50$	$0.94 \\ 1.88 \\ 2.81 \\ 3.75$	$ \begin{array}{r} 1.04 \\ 2.08 \\ 3.13 \\ 4.17 \end{array} $	2.50	$2.92 \\ 4.38$	3.33	$ 1.88 \\ 3.75 \\ 5.63 \\ 7.50 $	$2.08 \\ 4.17 \\ 6.25 \\ 8.33$
$ \begin{array}{r} \frac{5}{16}\\ \frac{3}{8}\\ \frac{7}{16}\\ \frac{1}{2} \end{array} $	$3.65 \\ 4.38 \\ 5.10 \\ 5.83$	5.00	$\begin{array}{r} 4.69 \\ 5.63 \\ 6.56 \\ 7.50 \end{array}$	$6.25 \\ 7.29$	7.50	$7.29 \\ 8.75 \\ 10.21 \\ 11.67$	10.00 11.67	$\begin{array}{c} 11.25\\ 13.13 \end{array}$	$\begin{array}{c} 12.50\\ 14.58 \end{array}$
$ \begin{array}{r} \frac{9}{16} \\ \frac{58}{8} \\ \frac{11}{16} \\ \frac{3}{4} \end{array} $	6.56 7.29 8.02 8.75	8.33 9.17	$\begin{array}{c}9.38\\10.31\end{array}$	$10.42 \\ 11.46$	$12.50 \\ 13.75$	$13.13 \\ 14.58 \\ 16.04 \\ 17.50$	$16.67 \\ 18.33$	$18.75 \\ 20.63$	20.83 22.92
3 15 1	$\begin{array}{c} 10.21 \\ 10.94 \end{array}$	$11.67 \\ 12.50$	$\begin{array}{c} 13.13\\ 14.06 \end{array}$	$14.58 \\ 15.63$	$17.50 \\ 18.75$	$18.96 \\ 20.42 \\ 21.88 \\ 23.33 \\ -$	$23.33 \\ 25.00$	$26.25 \\ 28.13$	29.17 31.25
$1\frac{1}{16}\\1\frac{1}{8}\\1\frac{3}{16}\\1\frac{3}{14}$	$13.13 \\ 13.85$	$15.00 \\ 15.83$	$16.88 \\ 17.81$	$18.75 \\ 19.79$	$22.50 \\ 23.75$	24.79 26.25 27.71 29.17	$30.00 \\ 31.67$	$33.75 \\ 35.63$	$37.50 \\ 39.58$
$\begin{array}{c} 1\frac{5}{16}\\ 1\frac{3}{8}\\ 1\frac{7}{16}\\ 1\frac{1}{2}\\ \end{array}$	$16.04 \\ 16.77$	$18.33 \\ 19.17$	$20.63 \\ 21.56$	$22.92 \\ 23.96$	$27.50 \\ 28.75$	30.62 32.08 33.54 35.00	$36.67 \\ 38.33$	$41.25 \\ 43.13$	45.83 47.92
$\begin{array}{c} 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \\ 1\frac{3}{4} \end{array}$	$18.96 \\ 19.69$	$21.67 \\ 22.50$	24.38 25.31	27.08 28.13	$32.50 \\ 33.75$	36.46 37.92 39.38 40.83	$43.33 \\ 45.00$	$ 48.75 \\ 50.63 $	$54.17 \\ 56.25$
$ \begin{array}{c c} 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{15}{16} \\ 2 \end{array} $	21.88 22.60	$25.00 \\ 25.83$	28.13 29.06	$31.25 \\ 32.29$	$37.50 \\ 38.75$	42.29 43.75 45.21 46.67	$50.00 \\ 51.67$	$56.25 \\ 58.13$	$62.50 \\ 64.58$

		SSAIC KOI	LING MI.	LL COMPA	INY.
	28''	5.83 11.67 17.50 23.33	29.17 35.00 40.83 46.67	52.50 58.33 64.17 70.00	75.84 81.66 87.50 93.33
ЮТ.	27"	$\begin{array}{c} 5.63 \\ 11.25 \\ 16.88 \\ 22.50 \end{array}$	$\frac{28.13}{33.75}$ 39.38 45.00	50.63 56.25 61.88 67.50	73.13 78 75 84.38 90.00
	26''	$\begin{array}{c} 5.42 \\ 5.42 \\ 10.83 \\ 16.25 \\ 21 \ 67 \end{array}$	27.08 32.50 37.92 43.33	48.75 54.17 59.58 65.00	70.42 75.83 81.25 86.67
WEIGHTS OF PLATE IRON, PER LINEAL FOOT.	25"	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26.04 31 25 36.46 41.66	$\begin{array}{c} .5024.3826(.25292.1330.0031.8833.7535.6737.5039.3841.2543.1345.0046.87\\ .0027.082901731.253333.4237.5039.5841.6743.7545.8347.9250.0052.0855.67856.6763200652.08550.00527.095250.00527.5039.7545.8347.9250.00577.2950.0057.2950.0057.5060.0057.5060.0052.50057.5060.0052.5065.0057.5065.0057.5065.50057.5065.50057.5065.50057.5065.50057.5055.50055.50057.5055.50055.50055.50055.50055.50055.50055.50055.50055.50055.50055.50055.50055.50055.50055.50055.5055.5055.50055.50055.50055.5055.5055.5055.50055.50055.50055.5055.50055.50055.50055.50055.50055.50055.5055.5055.5055.5055.50055.50055.50055.5055.5055.5055.5055.5055.50055.50555.5055.50555.50555.50555.50555.50555.50555.50555.50555.50555.50555.505555.505555.50555.50555.505555.505555.505555.505555.5055555.50555555$	$\begin{array}{c} 32.50 \\ 35.00 \\ 37.00 \\ 37.00 \\ 37.00 \\ 37.00 \\ 37.00 \\ 43.33 \\ 46.67 \\ 50.00 \\ 53.33 \\ 50.00 \\ 53.33 \\ 50.00 \\ 53.33 \\$
NEA.	24"	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 12.50 \\ 15.00 $	$\begin{array}{c} \textbf{222} \cdot 50 & \textbf{24} \cdot \textbf{38} \\ \textbf{25} \cdot 00 & \textbf{27} \cdot \textbf{38} \\ \textbf{25} \cdot 00 & \textbf{27} \cdot \textbf{31} \\ \textbf{25} \cdot \textbf{25} \cdot \textbf{28} \\ \textbf{27} \cdot \textbf{50} & \textbf{29} \cdot \textbf{28} \\ \textbf{27} \cdot \textbf{50} & \textbf{29} \cdot \textbf{28} \\ \textbf{27} \cdot \textbf{50} & \textbf{29} \cdot \textbf{29} \\ \textbf{27} \cdot \textbf{50} & \textbf{20} & \textbf{27} \cdot \textbf{20} \\ \textbf{27} \cdot \textbf{50} & \textbf{20} & \textbf{27} \cdot \textbf{20} \\ \textbf{27} \cdot \textbf{50} & \textbf{20} & \textbf{27} \cdot \textbf{20} \\ \textbf{27} \cdot \textbf{50} & \textbf{20} & \textbf{27} \cdot \textbf{20} \\ \textbf{27} \cdot \textbf{50} & \textbf{20} & \textbf{27} \cdot \textbf{50} \\ \textbf{27} \cdot \textbf{50} & \textbf{20} & \textbf{27} \cdot \textbf{50} \\ \textbf{27} \cdot \textbf{50} & \textbf{20} & \textbf{27} \cdot \textbf{50} \\ \textbf{20} \cdot \textbf{20} \end{matrix}$	$\begin{array}{c} 50 & 35 & 21 & 37 & 92 & 40 & 63 & 48 & 75 & 51 & 45 & 54 & 17 & 56 & 88 & 59 & 58 & 62 & 30 & 65 & 00 \\ 00 & 37 & 92 & 40 & 83 & 43 & 75 & 46 & 67 & 49 & 60 & 52 & 50 & 55 & 41 & 58 & 33 & 61 & 25 & 64 & 17 & 67 & 09 & 77 & 00 \\ 50 & 40 & 63 & 43 & 75 & 46 & 67 & 50 & 00 & 53 & 13 & 56 & 55 & 59 & 37 & 62 & 50 & 65 & 63 & 68 & 75 & 71 & 88 & 75 & 00 \\ 00 & 43 & 33 & 46 & 67 & 50 & 00 & 53 & 33 & 56 & 67 & 60 & 00 & 63 & 33 & 66 & 67 & 70 & 00 & 73 & 33 & 76 & 67 & 80 & 00 \\ \end{array}$
TID	1 2311	8 4.79 5 14 35 3 19.17	223.9(028.75 833.54 7 38.34	5 43.15 3 47.92 2 52.71 0 57.50	862.30 7 67.05 571.85 376.67
ER	22	9.1 13.7 18.3	22.9 27.5 32.0 36.6	41.2 45.8 50.4 55.0	59.5 64.1 68.7 73.3
ц, Р	21″	$\begin{array}{c} 4.38\\ 8.75\\ 8.75\\ 13.13\\ 17.50\end{array}$	21.88 26.25 30.63 35.00	39.38 43.75 48.13 52.50	56.88 61.25 65.63 70.00
RON	20''	$\begin{array}{c} 4.17\\ 8.33\\ 8.33\\ 12.50\\ 16.67\end{array}$	20.83 25.00 29.17 33.33	37.50 41.67 45.83 50.00	54.17 58.33 62.50 66.67
EI	19''	$\begin{array}{c} 3.96\\ 7.92\\ 11.87\\ 15.83\\ 15.83\end{array}$	$\begin{array}{c} 19.79\\ 23.75\\ 27.71\\ 31.66\\ 31.66\end{array}$	35.67 39.58 43.54 47.50	51.45 55.41 59.37 63.33
LAT	17 ¹¹ 18 ¹¹ 19 ¹¹ 20 ¹¹ 21 ¹¹ 22 ¹¹	1 3.75 3 7.50 311.25 311.25	18.75 22.50 26.25 30.00	833.75 837.50 841.25 145.00	52.50 52.50 56.25 60.00
P	17"	3.54 7.7.08 010.65 314.17	21.25 21.25 24.75 28.34	31.86 35.45 38.96 38.96 142.50	46.05 49.60 53.13 56.67
IO \$	13'' 14'' 15'' 16''	8 10.00 13.35	316.67 520.0(520.0(323.35 26.67	330.00	850.00 53.32 53.32 53.32
HTS	15	2 3.1: 3 6.2: 12.5(8 15.6 18.7 21.8 3 25.00	7 31.28 334.38 334.38 37.50	2 40.65 2 43.75 5 46.88 7 50.00
EIG	14'	2.9 5.8 11.6	$\begin{array}{c} 14.56\\ 17.56\\ 20.49\\ 23.3\\ 23.3\\ \end{array}$	38 26.2 08 29.1 79 32.0 50 35.0	37.96 40.8 46.67
[M		$\begin{array}{c} 2.50 \\ 5.00 \\ 5.42 \\ 7.50 \\ 8.13 \\ 10.00 \\ 10.831 \end{array}$	13.54 16.25 18.96 21.67	24.38 27.08 29.79 32.50	35.21 37.95 40.63 43.33
	12''	2.50 5.00 7.50 10.00	12.50 15.00 17.50 20.00	22.50 25.00 27.50 30.00	32.50 35.00 37.50 40.00
	Thickness in Inches.	1 8 3 4 1 6	$\frac{5}{8}$ $\frac{16}{16}$ $\frac{1}{2}$ 1^{7} $\frac{1}{6}$	22 10 88 16 43 16	7 8 16 16 16

k.,

98 THE PASSAIC ROLLING MILL COMPANY.

-Continued.
00T-
H
IRON, PER LINEAL FOOT-Co
PER
IRON,
PLATE
OF
VEIGHTS

	60''	$\begin{array}{c} 12.50\\ 25.00\\ 37.50\\ 50.00\end{array}$	$\begin{array}{c} 56.2558.3360.4262.50\\ 67.5070.0072.5075.00\\ 78.7581.6684.5887.50\\ 90.0093.3396.66100.0 \end{array}$	112.5 125.0 137.5 150.0	162.5 175.0 187.5 200.0
man,	58"	$\begin{array}{c} 11.25 \\ 22.50 \\ 23.35 \\ 33.75 \\ 35.00 \\ 36.25 \\ 45.00 \\ 46.66 \\ 48.33 \\ \end{array}$	$\begin{array}{c} 56.2558.3360.4262.\\ 67.5070.0072.5075.\\ 78.7581.6684.5887.\\ 90.0093.3396.66100. \end{array}$	$\frac{108.7}{120.8}$ $\frac{120.8}{132.9}$ $\frac{132.9}{145.0}$	$\begin{array}{c} 157.1 \\ 169.2 \\ 181.2 \\ 193.3 \end{array}$
anno	56''	$\begin{array}{c} 11.25 \\ 22.50 \\ 23.33 \\ 24.17 \\ 33.75 \\ 35.00 \\ 36.25 \\ 45.00 \\ 46.66 \\ 48.33 \\ \end{array}$	58.33 70.00 81.66 93.33	$\frac{105.0}{116.7}$ 128.3 128.3 140.0	$\begin{array}{c} 151.7\\ 163.3\\ 175.0\\ 186.7\\ \end{array}$
	54"	$\begin{array}{c} 11.25\\ 22.50\\ 33.75\\ 45.00\end{array}$	56.25 67.50 78.75 90.00	01.25 [12.50 [23.75 [35.00	146.25 157.50 168.75 180.00
	50'' 52''	10.83 21.67 32.50 43.33	$\begin{array}{c} 41.67 \\ 50.00 \\ 52.08 \\ 54.17 \\ 50.00 \\ 52.50 \\ 55.02 \\ 57.50 \\ 60.00 \\ 52.50 \\ 55.02 \\ 57.50 \\ 60.00 \\ 73.34 \\ 76.66 \\ 80.00 \\ 83.33 \\ 86.66 \\ 86.66 \\ 86.66 \\ 86.66 \\ 86.66 \\ 88.33 \\ 86.66 \\ 88.53 \\ 86.66 \\ 88.53 \\ 86.66 \\ 88.53 \\ 86.66 \\ 88.53 \\ 86.66 \\ 88.53 \\ 86.66 \\ 88.53 \\ 86.66 \\ 88.53 \\ 86.66 \\ 88.53 \\ 86.66 \\ 88.53 \\ 86.66 \\ 88.53 \\ 86.66 \\ 88.53 \\ 88.56 \\$	$ \begin{array}{c} 67.50\ 71.25\ 75.00\ 78.75\ 82.50\ 86.25\ 90.00\ 93.74\ 97.50\ 101.25\ 105.0\ 108.7\ 112.5\ 75.00\ 75.00\ 75.00\ 75.00\ 76.00\ $	$ \begin{array}{c} 113.7 \\ 113.7 \\ 119.2 \\ 128.5 \\ 128.3 \\ 134.2 \\ 140.0 \\ 146.7 \\ 153.3 \\ 160.0 \\ 166.7 \\ 173.3 \\ 150.0 \\ 166.7 \\ 173.3 \\ 180.0 \\ 186.7 \\ 193.3 \\ 200.0 \\ 186.7 \\ 193.3 \\ 100.0 \\ 186.7 \\ 100.0 $
	50''	$ \begin{array}{c} 8.33\\ 8.75\\ 16.67\\ 17.56\\ 19.33\\ 19.17\\ 20.00\\ 25.$	$\begin{array}{c} 41.67 \\ 50.00 \\ 52.55 \\ 52.50 \\ 55.02 \\ 57.50 \\ 60.00 \\ 52.50 \\ 55.02 \\ 57.50 \\ 60.00 \\ 52.50 \\ 56.00 \\ 57.50 \\ 65.00 \\ 57.50 \\ 57.50 \\ 65.00 \\ 57.50 \\$	$93.74 \\ 104.2 \\ 114.6 \\ 125.0 $	$\frac{135.4}{145.8}$ $\frac{145.8}{156.2}$ $\frac{156.2}{166.7}$
	48″	$ \begin{array}{c} 10.00\\ 20.00\\ 30.00\\ 40.00 \end{array} $	50.00 60.00 70.00 80.00	$\begin{array}{c} 90.00\\ 100.0\\ 110.0\\ 120.0\end{array}$	$\frac{130.0}{140.0}$ $\frac{150.0}{160.0}$
	40'' 42'' 44'' 46' 48'	$\begin{array}{c} 9.58\\ 19.17\\ 28.75\\ 38.33\\ 38.33\end{array}$	47.92 57.50 67.08 76.66	86.25 95.83 105.4 115.0	$\frac{124.6}{134.2}$ 143.7
	44"	9.17 18.33 27.50 36.67	45.84 55.02 64.17 73.34	82.50 91.67 100.8 110.0	$\begin{array}{c} 119.2 \\ 128.3 \\ 137.5 \\ 146.7 \end{array}$
6171	.42''	$\begin{array}{c} 8.75\\ 17.50\\ 26.25\\ 35.00\end{array}$	$\begin{array}{c} 43.75 \\ 52.50 \\ 61.25 \\ 70.00 \end{array}$	78.75 87.50 96.25 105.0	$ \begin{array}{c} 113.7 \\ 122.5 \\ 131.2 \\ 131.2 \\ 140.0 \\ \end{array} $
ITA		1- 06 0.0	41.67 50.00 58.33 66.66	75.00 83.33 91.66 100.00	108.3 116.7 125.0 133.3
	38''	$\begin{array}{c} 7.50 \\ 15.00 \\ 15.00 \\ 15.83 \\ 22.50 \\ 23.75 \\ 30.00 \\ 31.67 \end{array}$	$\begin{array}{c} 37.50 \\ 45.00 \\ 47.50 \\ 52.50 \\ 55.42 \\ 60.00 \\ 63.34 \end{array}$		102.9 110.8 118.8 118.8
WEIGHT OF I DETT TROPI' I TH TITTT I OOI - Commen	36''	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37 .50 39.59 45.00 47.50 52.50 55.42 60.00 63.34	$\begin{array}{c} 67.50\ 71.25\\ 75.00\ 79.17\\ 82.50\ 87.09\\ 90.00\ 95.00 \end{array}$	$\begin{array}{c} 78.55 \\ 81.55 \\ 84.59 \\ 87.50 \\ 93.33 \\ 93.51 \\ 100.0 \\ 106.7 \\ 113.3 \\ 120.00 \\ 126.57 \\ 113.3 \\ 120.00 \\ 126.5 \\ 113.3 \\ 120.0 \\ 126.5 \\ 113.3 \\ 120.0 \\ 126.5 \\ 123.3 \\ 140.0 \\ 146.7 \\ 153.3 \\ 140.0 \\ 146.7 \\ 153.3 \\ 140.0 \\ 166.7 \\ 153.3 \\ 140.0 \\ 166.7 \\ 153.3 \\ 180.0 \\ 186.7 \\ 193.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 180.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 100.0 \\ 186.7 \\ 103.3 \\ 200.0 \\ 100.$
5	30'' 32'' 34''	$\begin{array}{c} \textbf{6.04} \textbf{ 6.25} & \textbf{ 6. 67} & \textbf{ 7.08} \\ \textbf{12.08} \textbf{12.08} \textbf{12.50} \textbf{ 13.33} \textbf{ 14.17} \\ \textbf{18.13} \textbf{ 18.75} \textbf{ 20.00} \textbf{ 21.25} \\ \textbf{18.17} \textbf{ 25.00} \textbf{ 26.67} \textbf{ 28.33} \end{array}$	35.42 42.50 49.58 56.66	63.75 70.83 77.91 85.00	92.08 99.16 106.2 113.3
2	32''	$\begin{array}{c} 6.04 \\ 6.25 \\ 12.08 \\ 12.08 \\ 12.08 \\ 12.50 \\ 13.33 \\ 14.17 \\ 18.13 \\ 18.75 \\ 20.00 \\ 26.67 \\ 28.33 \\ 24.17 \\ 25.00 \\ 26.67 \\ 28.33 \\ 2$	$\begin{array}{c} 30,21 \\ 36,25 \\ 35,59 \\ 36,25 \\ 37,50 \\ 40,00 \\ 42,50 \\ 42,29 \\ 43,37 \\ 56,00 \\ 53,33 \\ 56,66 \\ 49,58 \\ 49,58 \\ 48,34 \\ 50,00 \\ 53,33 \\ 56,66 \\ 49,58 \\ 56,66 \\ 49,58 \\ 58,58 \\$	$\begin{array}{c} 54.38\\ 56.25\\ 60.42\\ 60.42\\ 65.57\\ 66.67\\ 70.83\\ 66.46\\ 68.75\\ 73.33\\ 77.91\\ 72.50\\ 75.00\\ 80.00\\ 85.00\\ 85.00\\ \end{array}$	86.67 93.33 100.0 106.7
	30''	$\begin{array}{c} 6.25 \\ 6.25 \\ 12.50 \\ 18.75 \\ 25.00 \end{array}$	31.25 37.50 43.75 50.00	38 56.25 42 62.50 46 68.75 50 75.00	81.25 87.50 93.75 100.0
	29''	$\begin{array}{c} 6.04 \\ 12.08 \\ 18.13 \\ 24.17 \end{array}$	30.21 36.25 42.29 48.34	54.38 60.42 66.46 72.50	78.55 84.59 90.63 96.67
	Thickness in Inches.	41 °0 0	22 16 16	44 44 41 6 16 4 16	4 16 1 15 1 15
	E.H	Colore line			•

WEIGHT PER SQUARE FOOT OF SHEETS OF WROUGHT IRON, STEEL, COPPER, AND BRASS.

THICKNESS BY BIRMINGHAM GAUGE.

No. of Gauge.	Thickness in Inches.	Iron.	· Steel.	Copper.	Brass.
0000	.454	18.22	18.46	20.57	19.43
000	.425	17.05	17.28	19.25	18.19
00	.38	15.25	15.45	17.21	16.26
0	.34	13.64	13.82	15.40	14.55
1	.3	12.04	12.20	13.59	12.84
2	.284	11.40	11.55	12.87	12.16
3	.259	10.39	10.53	11.73	11.09
4	.238	9.55	9.68	10.78	10.19
5	.22	8.83	8.95	9.97	9.42
6	.203	8.15	8.25	9.20	8.69
7	.18	7.22	7.32	8.15	7.70
8	.165	6.62	6.71	7.47	7.06
9	.148	5.94	6.02	6.70	6.33
10	.134	5.38	5.45	6.07	5.74
11	.12	4.82	4.88	5.44	5.14
12	.109	4.37	4.43	4.94	4.67
13	.095	3.81	3.86	4.30	4.07
14	.083	3.33	3.37	3.76	3.55
15	.072	2.89	2.93	3.26	3.08
16	.065	2.61	2.64	2.94	2.78
17	.058	2.33	2.36	2.63	2.48
18	.049	1.97	1.99	2.22	2.10
19	.042	1.69	1.71	1.90	1.80
$\begin{array}{c} 20\\ 21 \end{array}$.035	1.40	1.42	1.59	1.50
	.032	1.28	1.30	1.45	1.37
22 - 23	.028	1.12	1.14	$1.27 \\ 1.13$	1.20
23 24	.025 .022	$1.00 \\ .883$	1.02 .895	1.13	1.07 .942
25	.022	.803	.813	.906	.942
26	.02	.722	.732	.815	.770
27	.016	.642	.651	.725	.685
28	.014	.562	.569	.634	.599
29	.013	.522	.529	.589	.556
30	.012	.482	.488	.544	.514
31	.01	.401	.407	.453	.428
32	.009	.361	.366	.408	.385
33	.008	.321	.325	.362	.342
34	.007	.281	.285	.317	.300
35	.005	.201	.203	.227	.214
Specific Gravity		7.704	7.806	8.698	8.218
Weigh	t Cubic ft.	481.25	487.75	543.6	513.6
Weight Cubic in.		.2787	.2823	.3146	.2972
8	All and a second		and the second	and the second	

WEIGHT PER SQUARE FOOT OF SHEETS OF WROUGHT IRON, STEEL, COPPER, AND BRASS.

THICKNESS BY AMERICAN GAUGE.

No. of Gauge.	Thickness in Inches.	Iron.	Steel.	Copper.	Brass.
0000	.46	18.46	18.70	20.84	19.69
000	.4096	16.44	16.66	18.56	17.53
00	.3648	14.64	14.83	16.53	15.61
0	.3249	13.04	13.21	14.72	13.90
1	.2893	11.61	11.76	13.11	12.38
2	.2576	10.34	10.48	11.67	11.03
3	.2294	9.21	9.33	10.39	9.82
4	.2043	8.20	8.31	9.26	8.74
5	.1819	7.30	7.40	8.24	7.79
6	.1620	6.50	6.59	7.34	6.93
7	.1443	5.79	5.87	6.54	6.18
8	.1285	5.16	5.22	5.82	5.50
9	.1144	4.59	4.65	5.18	4.90
10	.1019	4.09	4.14	4.62	4.36
11	.0907	3.64	3.69	4.11	3.88
12	.0808	3.24	3.29	3.66	3.46
13	.0720	2.89	2.93	3.26	3.08
14	.0641	2.57	2.61	2.90	2.74
15	.0571	2.29	2.32	2.59	2.44
16	.0508	2.04	2.07	2.30	2.18
17	.0453	1.82	1.84	2.05	1.94
18	.0403	1.62	1.64	1.83	1.73
19	.0359	1.44	1.46	1.63	1.54
20	.0320	1.28	1.30	1.45	1.37
21	.0285	1.14	1.16	1.29	1.22
22	.0253	1.02	1.03	1.15	1.08
23	.0226	.906	.918	1.02	.966
24	.0201	.807	.817	.911	.860
25	.0179	.718	.728	.811	.766
26	.0159	.640	.648	.722	.682
27 .	.0142	.570	.577	.643	.608
28	.0126	.507	.514	.573	.541
29	.0113	.452	.458	.510	.482
30	.0100	.402	.408	.454	.429
31	.0089	.358	.363	.404	.382
32	.0080	.319	. 323	.360	.340
33	.0071	.284	.288	.321	.303
34	.0063	.253	.256	.286	.270
35	.0056	.225	.228	.254	.240
The second se					

As there are many gauges in use differing from each other, and even the thicknesses of a certain specified gauge, as the Birmingham, are not assumed the same by all manufacturers, orders for sheets and wire should always state the weight per \Box foot or the thickness in thousandths of an inch.

DIFFERENT STANDARDS FOR WIRE GAUGE IN USE IN THE U.S.

DIMENSIONS IN DECIMAL PARTS OF AN INCH.

	1 -	1	MT-LL			1
Number	American, or	Birm-	Washburn & Moen	Trenton	G. W.	Old
of	Brown	ingham,	Mnfg. Co.,	Iron Co.,	Prentiss,	English,
Wire	&	or Stubs'.	Worcester,	Trenton,	Holyoke,	from Brass
Gauge.	Sharpe.	Stubs .	Mass.	N. J.	Mass.	Mfrs. List.
000000	1	14.97 m		1	A LOTE AND A	
000000	1.2.5.1.1.1.1	12.52	.46		- 10.5105	
00000	-12 7 4 9 11	1000	.43	.45	- 18 ·	
0000	.46	.454	.393	.4	Contraction in the	
000	.40964	.425	.362	.36	.3586	1
00	.3648	.38	.331	.33	.3282	
0	.32495	.34	.307	.305	.2994	137.1
1	.2893	.3	.283	.285	.2777	
$\overline{2}$.25763	.284	.263	.265	.2591	
3	.22942	.259	.244	.245	.2401	1
4	.20431	.238	.225	.225	.223	
4 5	.18194	.230	.223	.225	.2047	
6	.16202	.203	.192	.19	.1885	2010
7	.14428	.18	.177	.175	.1758	1 F. 1
8	.12849	.165	.162	.16	.1605	
9	.11443	.148	.148	145	.1471	
10	.10189	.134	.135	.13	.1351	
11	.090742	.12	.12	.1175	.1205	
12	.080808	.109	.105	.105	.1065	
13	.071961	.095	.092	.0925	.0928	
14	.064084	.083	.08	.08	.0816	.083
15	.057068	.072	.072	.07	.0726	.072
16	.05082	.065	.063	.061	.0627	.065
17	.045257	.058	.054	.0525	.0546	.058
18	.040303	.049	.047	.045	.0478	.049
18		.049		.045		.049
	.03539		.041		.0411	
20	.031961	.035	.035	.034	.0351	.035
21	.028462	.032	.032	.03	.0321	.0315
22	.025347	.028	.028	.027	.029	.0295
23	.022571	.025	.025	.024	.0261	.027
24	.0201	.022	.023	.0215	.0231	.025
25	.0179	.02	.02	.019	.0212	.023
-26	.01594	.018	.018	.018	.0194	.0205
27	.014195	.016	.017	.017	.0182	.01875
. 28	.012641	.014	.016	.016	.017	.0165
-29	.011257	.013	.015	.015	.0163	.0155
30	.010025	.012	.014	.014	.0156	.01375
31	.008928	.01	.0135	.013	.0146	.01225
32	.00795	.009	.013	.013	.0136	.01125
33	.00708	.003	.013	.012	.0130	.01025
33 34		.008	.011	.011	.013	.01025
	.006304				.0118	.0095
35	.005614	.005	.0095	.009	.0109	.009
			In the second			

GALVANIZED AND BLACK IRON.

Weight in Pounds per Square Foot of Galvanized Sheet Iron, both Flat and Corrugated.

The numbers and thicknesses are those of the iron before it is galvanized. When a flat sheet (the ordinary size of which is from 2 to 21/2 feet in width, by 6 to 8 feet in length) is converted into a corrugated one, with corrugations 5 inches wide from center to center, and about an inch deep (the common sizes), its width is thereby reduced about 10th part, or from 30 to 27 inches; and consequently the weight per square foot of area covered is increased about 1th part. When the corrugated sheets are laid upon a roof, the overlapping of about 21/2 inches along their sides, and of four inches along their ends, diminishes the covered area about +th part more; making their weight per square foot of roof about 1/6th part greater than before. Or the weight of corrugated iron per square foot, in place on a roof, is about 1/2 greater than that of the flat sheets of above sizes of which it is made.

Number	BLAC	:к.	GALVANIZED.			
by Birmingham Wire Gauge.	Thickness in inches.	Flat. Lbs.	Flat. Lbs.	Corrugated. Lbs.	Cor. on Roof. Lbs.	
30	.012	.485	.806	.896 .952	1.08	
29 28	.013 .014	.526	.857	.997	1.14 1.20	
27 26	.016 .018	$.646 \\ .722$.978 1.06	$1.09 \\ 1.18$	1.30 1.41	
25 24	$.020 \\ .022$.808 .889	$\begin{array}{c} 1.14 \\ 1.22 \end{array}$	$ \begin{array}{r} 1.27 \\ 1.36 \end{array} $	$1.52 \\ 1.62$	
23 22	$.025 \\ .028$	$\begin{array}{c} 1.01 \\ 1.13 \end{array}$	$\begin{array}{c} 1.34 \\ 1.46 \end{array}$	$1.49 \\ 1.62$	1.79 1.95	
21 20	.032 .035	$1.29 \\ 1.41$	$1.63 \\ 1.75$	1.81	$2.17 \\ 2.33$	
19 18	.042	$1.69 \\ 1.98$	$2 03 \\ 2.32$	2.26 2.58	$2.71 \\ 3.09$	
17 16	.058	$2.34 \\ 2.63$	$2.68 \\ 2.96$	$2.98 \\ 3.29$	3.57 3.95	
15 14	.072	$2.91 \\ 3.36$	$3.25 \\ 3.69$	$3.61 \\ 4.10$	4.33	
13	.095	3.84	4.18	4.64	5.57	

NOTE. — The galvanizing of sheet iron adds about one-third of a pound to its weight per square foot.

Weight of 100 Feet in Pounds. BERMINGHAM WIRE GAUGE. No. of Gauge. PER LINEAL FOOT. Iron. Steel. Copper. Brass.	WIRE-												
No. of Gauge. PER LINEAL FOOT. Iron. Steel. Copper. Brass.													
No. of Gauge. Iron. Steel. Copper. Brass.	BIRMINGHAM WIRE GAUGE.												
Iron. Steel. Copper. Brass.													
	Gauge. In												
0000 54.62 55.13 62.39 58.93	0000 54												
000 47.86 48.32 54.67 51.64													
00 38.27 38.63 43.71 41.28	00 38												
0 30.63 30.92 34.99 33.05													
1 23.85 24.07 27.24 25.73													
2 21.37 21.57 24.41 23.06													
3 17.78 17.94 20.3 19.18													
4 15.01 15.15 17.15 16.19													

00	38.27	38.63	43.71	41.28
0	30.63	30.92	34.99	33.05
1	23.85	24.07	27.24	25.73
2	21.37	21.57	24.41	23.06
3	17.78	17.94	20.3	19.18
4	15.01	15.15	17.15	16.19
5	12.82	12.95	14.65	13.84
6	10.92	11.02	12.47	11.78
7	8.586	8.667	9.807	9.263
8	7.214	7.283	8.241	7.783
9	5.805	5.859	6.63	6.262
10	4.758	4.803	5.435	5.133
11	3.816	3.852	4.359	4.117
12	3.148	3.178	3.596	3.397
13	2.392	2.414	2.732	2.58
14	1.826	1.843	2.085	1.969
15	1.374	1.387	1.569	1.482
16	1.119	1.13	1.279	1.208
17	.8915	.9	1.018	.9618
18	.6363	.6423	.7268	.6864
19	.4675	.472	.534	.5043
20	.3246	.3277	.3709	.3502
21 .	.2714	.274	.31	.2929
22	.2079	.2098	.2373	.2241
23	.1656	.1672	.1892	.1788
24	.1283	.1295	.1465	.1384
25	.106	.107	.1211	.1144
26	.0859	.0867	.0981	.0926
27	.0678	.0685	.0775	.0732
28	.0519	.0524	.0593	.056
29	.0448	.0452	.0511	.0483
30	.0382	.0385	.0436	.0412
31	.0265	.0267	.0303	.0286
32	.0215	.0217	.0245	.0231
33	.017	.0171	.0194	.0183
34	.013	.0131	.0148	.014
35	.0066	.0067	.0076	.0071
36	.0042	.0043	.0048	.0046
14 C C C C C C C C C C C C C C C C C C C	in an internet	CALL THE STATE OF ST	A CONTRACTOR OF	

•
~~
- :
-
-
K
-
-
-
~
here a
-
\cap
\smile
-
(1)
1
-
75
9
-
5
1
-
Y
[-]
-
- ·
TO
1
1
71-20-
2
_
-
\bigcirc
-
TT.
-
70
1
T
~
the second se
5
-
-
-
L 1
-
0
T
0
-
-
-
T
produces of
K
-
>
-
WROUGHT-IRON WELDED TUBES, FOR STEAM, GAS, OR WATER.
7
4
-
0
~
62
L
C 1
-
1
75
9
-
5
-
-
0
~
60
10
N
~

2

0

1% inch and below, Butt Welded; proved to 300 lbs. per square inch, Hydraulic Pressure. 1% inch and above, Lap Welded; proved to 500 lbs. per square inch, Hydraulic Pressure.

PA	SSAIC	ROLLING MILL COMPANY. 105	
	No. of Threads per inch of Screw	22 111 111 111 111 111 111 111 111 111	and
	Weight per foot of Length.	Lbs. 243 425 425 661 11,126 765 11,126 25,773 5,773 5,773 5,773 7,547 9,054 11,240 9,055 5,773 9,054 11,240 28,348 28,348 28,348 28,348 11,240 28,348 28,348 28,348 28,348 11,240 28,348 28,348 11,240 28,348 11,240 28,348 11,240 28,348 11,240 28,348 11,240 28,348 11,240 28,348 11,240 28,348 11,240 28,348 11,140 28,348 11,140 28,348 11,140 28,348 11,140 28,348 11,140 28,348 11,140 28,348 11,140 28,348 11,140 28,348 28,468 11,140 28,348 20,468 11,140 28,548 11,140 28,548 28,648 11,140 28,548 28,648 28,748 29,748 20,749	
	l Length of Pipe containing 1 cubic ft. o	$\begin{array}{c} F_{cet},\\ 2380,\\ 2380,\\ 751,5\\ 771,5\\ 2772,4\\ 2770,65\\ 72,26\\ 11,31\\ 11,31\\ 11,31\\ 11,31\\ 11,31\\ 11,31\\ 11,31\\ 11,31\\ 11,31\\ 11,31\\ 11,31\\ 11,31\\ 11,31\\ 12,26\\ 11,32\\ 22,88\\ 22,28\\ 22,$	
	External Area.	Inches. 129. 129. 129. 358. 358. 358. 1.357 3.16. 4.20 6.401 15.904 15.9	
KER & CO.	Internal Area.	Inches. 0572 1916 1916 1916 1916 1918 1918 1918 1918	
- MORRIS, TASKER	Length of Pipe per ft. outside Surface.	Feet. 7.075 7.075 7.075 7.075 8.657 8.502 8.502 8.502 8.302 8.302 8.302 8.411 1.0311 1.0311 1.0311 1.0311 1.0311 1.0311 1.0311 1.0311 1.0311 1.0	AL AND ALL AND
SIZES M	Length of Pipe per foot inside Surface.	Feet. 14.15 14.15 14.15 6.23 6.23 8.65 8.67 1.07 8.48 1.848 1.0245 1.024	
STANDARD SIZES.	External Circum- ference.	Inches. 1.272 1.272 1.272 1.272 2.121 2.121 2.255 4.134 4.134 4.134 4.134 1.137 1.136 1.137 1.13	
TABLE OF	Internal Circum- ference.	Inches. 	
1. 1. S. 1.	Thickness.	Inches. 0688 0918 091 1134 1134 1146 1146 1146 1146 1146 114	
N. T. N.	Actual Outside Diameter.	Inches. 405 405 6475 6475 6475 11.05 11.05 11.05 2.375 3.5 4.4 5.5 6.5 5.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	and the second se
Sector Sector	Actual Inside Diameter.	Inches. 270 270 270 270 270 200 223 200 200 200 200 200 200 200 20	A STATE OF
	Inside Diam- eter.	Inches. 2022 222 222 222 222 222 222 222 222 22	1

THE ROLING MPANV 105 PΔ CCATC MITT 00

BOLTS WITH SQUARE HEADS AND NUTS.

Weight of 100 Bolts.

			3						
Length. Inches.	1/1/ 4	32/1 32/1/	1/1/ 2	<u>5</u> // 8	3//	7/1/	1″	$1\frac{1}{8}^{\prime\prime}$	$1\frac{1}{4}''$
11	5.0	14.6	28	53	88	145	172	221	371
$\hat{2}^{2}$	5.7	16.1	31	57	94	153	183	235	388
21	6.4	17.6	34	61	100	162	194	249	405
3	7.1	19.2	36	65	106	170	205	263	422
31	7.8	21.7	39	70	112	178	216	276	439
4	8.5	22.2	42	74	118	187	227	290	456
41	9.2	23.7	44	78	125	195	238	304	473
5	9.8	25.3	47	83	131	203	249	318	490
$5\frac{1}{2}$	10.5	26.8	50	87	137	212	260	332	507
6	11.2	28.3	53	91	143	220	271	345	524
$6\frac{1}{2}$	11.9	29.9	55	95	149	228	282	360	542
7	12.5	31.4	58	100	155	237	293	372	558
71	13.2	33.0	61	104	161	245	304	397	576
8	13.9	34.5	64	108	167	253	315	401	593
9	15.3	37.5	69	116	179	270	337	428	628
10	16.6	41.6	74	125	192	287	359	456	660
11	18.0	43.7	80	134	204	303	381	483	694
12	19.4	46.8	85.4	142	216	320	402	511	729
Sincle		Add fo	r each	foot i	increas	se in l	ength.		
1.1.1.1	16.4	36.8	65.4	102	146	200	262	331	409
1 million and a	1	A STATISTICS	11.00	1	Sec. Com		1000		

STANDARD SIZES OF WASHERS.

Number in 100 Lbs.

Diameter.	Size of	Thickness	Size of	Number in
	Hole.	Wire Gauge.	Bolt.	100 lbs.
Inch. 1 1 1 1 1 1 2 2 2 2 2 3 3 3	Inch. 56 Spr 1 20 Jege 1 Control 1 Latrage 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No. 16 16 14 11 11 11 11 10 8 8 7 6	Inch. -14 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$\begin{array}{r} 29,300\\ 18,000\\ 7,600\\ 3,300\\ 2,180\\ 2,350\\ 1,680\\ 1,140\\ 580\\ 470\\ 360\\ 360\\ 360\\ \end{array}$

FRANKLIN INSTITUTE STANDARD SIZES

SQUARE AND HEXAGON NUTS.

Number of Each Size in 100 Lbs.

THESE NUTS ARE CHAMFERED AND TRIMMED.

Width.	Thickness	Hole.	Size of Bolt.	Number of Square.	Number of Hexagon.
		16-14 16-14 16-13 19913 1994 1094 1094 1095 1095 1095 1095 1095 1095 1095 1095	-14-5-100 7-16-120-016 ct ct 47-100 -160-140000-120	$\begin{array}{c} 8140\\ 3000\\ 2320\\ 1940\\ 1180\\ 920\\ 738\\ 420\\ 280\\ 180\\ 130\\ 96\\ 70\\ 60\\ \end{array}$	$\begin{array}{c} 9300\\6200\\3120\\2200\\1350\\1000\\830\\488\\309\\216\\148\\111\\85\\70\end{array}$

HEXAGON NUTS.

SQUARE NUTS.

REGULAR SIZES.

REGULAR SIZES.

Width.	Thick- ness.	Hole.	Size of Bolt.	Number in 100 lbs.	Width.	Thick- ness.	Hole.	Size of Bolt.	Number in 100 lbs.
12160004004 11110000-12034 2222	14 60 00 7 00 10 00 10 10 10 10 10 10 10 10 10 10	7.31.400463871-30.30044233-4-1-1-3.66.6	1445 - Case 7 - 10- 12 - 96 - 69 - 64 - 76 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1	$\begin{array}{c} 8600\\ 4260\\ 2500\\ 2180\\ 900\\ 880\\ 535\\ 295\\ 224\\ 150\\ 100\\ 96\\ 72\\ 43\\ \end{array}$	$\frac{1}{12} \frac{1}{12} \frac$		73740260387110 732122 77256 100 10 10 10 10 10 10 10 10 10 10 10 10	14500 76 016 11 10 14 00 10 11 10 14 000 10 11 10 14 000 10 11 10 11 10 14 000 10 11 10 10	$\begin{array}{c} 6680\\ 3540\\ 2050\\ 1380\\ 840\\ 650\\ 410\\ 270\\ 215\\ 140\\ 95\\ 72\\ 45\\ 32\\ \end{array}$

NALLS AND SDUZES											
NAILS AND SPIKES. Size, Length, and Number to the Pound. CUMBERLAND NAIL AND IRON CO.											
ORDINARY. CLINCH. FINISHING.											
Size.	Length.	No. to Lb.	Length.	No. to Lb.	Size.	Length.	No. to Lb.				
2d 3 fine 3 4 5 6 7	$\begin{array}{c} & & & \\$	716 588 448 336 216 166 118	$\begin{array}{c} 2\\ 2\\ 2^{14}\\ 2^{12}\\ 2^{34}\\ 3\\ 3^{14}\\ 3^{14}\\ \end{array}$	$ \begin{array}{r} 152 \\ 133 \\ 92 \\ 72 \\ 60 \\ 43 \end{array} $	4^{d} 5 6 8 10 12 20	$\begin{array}{c} & & & \\ & 1^{\prime}_{38834} \\ & 1^{3}_{2} \\ & 2^{1}_{2} \\ & 2^{1}_{2} \\ & 3 \\ & 3^{5}_{5874} \\ & 3^{7}_{3} \\ & 3^{7}_{3} \end{array}$	384 256 204 102 80 65 46				
$\begin{array}{c} 8\\ 10\\ 12 \end{array}$	2 2 2 3 4 1 1 1 2 3 4 1 3 3 4 3 3 4	94 72 50	FEN			CORE.	40				
20 30 40 50 60	$\begin{array}{c} 3^{3}4 \\ 4^{4}3^{4} \\ 5 \\ 5^{1}2 \\ \end{array}$	$ 32 \\ 20 \\ 17 \\ 14 \\ 10 $	$2' \\ 2^{\frac{1}{4}} \\ 2^{\frac{1}{2}} \\ 2^{\frac{3}{4}} \\ 3$	96 66 56 50 40	6^{d} 8 10 12	$\begin{array}{c} & & \\$	143 68 60 42				
LI	GHT.		SPIKES.		20 30 40	$\begin{array}{c c} 3^{3}_{4} \\ 4^{3}_{4} \\ 4^{3}_{4} \end{array}$	25 18 14				
4 ^d 5 6		373 272 196	$ \begin{array}{c} 3\frac{1}{2} \\ 4 \\ 4\frac{1}{2} \\ 5 \end{array} $	19 15 13	W H W H L	$2rac{1}{2}\ 2rac{1}{4}$	69 72				
BF	RADS.		$5 \\ 5\frac{1}{2} \\ 6$	10 9 7	S	LATE.					
$\begin{array}{c} 6^{\mathrm{d}} \\ 8 \\ 10 \\ 12 \end{array}$	"2 2 ¹ / ₂ 2 ³ / ₂ 3 ⁴ / ₈	163 96 74 50	BO.	AT. 206	3 ^d 4 5 6	$\begin{matrix} 1_{16}'' \\ 1_{16}'' \\ 1_{16}'' \\ 1_{34}'' \\ 2 \end{matrix}$	288 244 187 146				
			TAC	KS.							
Size. Leng	gth. No I		ze. Leng	gth. No l		Length.	No. to Lb.				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 160 106 80 5 64 53	66 6 00 8 00 10	OZ. 716	z 260	56 16 00 18 00 20	$\begin{array}{c} \frac{13}{16} \\ \frac{78}{15} \\ \frac{15}{16} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 6 \end{array}$	1143 1000 888 800 727				

LAP-WELDED AMERICAN CHARCOAL IRON BOILER TUBES. TABLES OF STANDARD SIZES.

External Diameter.	Internal Diameter.	Thickness.	External Circum- ference.	Internal Cir- cumference.	Length of Pipe per foot inside surface.	Length of Pipe per foot outside surface.	Internal Area.	External Area.	Weight per foot.
Inch.	Inch.	Inch.	Inch.	Inch.	Feet.	Feet.	Inch.	Inch.	Lbs.
1	0.856	0.072	3.142	2.689	4.460	3.819	0.575	0.785	0.708
11/4	1.106	0.072	3.927	3.474	3.455	3.056	0.960	1.227	0.9
11/2	1.334	0.083	4.712	4.191	2.863	2.547	1.396	1.767	1.250
134	1.560	0.095	5.498	4.901	2.448	2.183	1.911	2.405	1.665
2	1.804	0.098	6.283	5 667	2.118	1.909	2.556	3.142	1.981
21/	2.054	0.098	7 069	6.484	1.850	1.698	3.314	3.976	2.238
21/2 23/4	2.283	0.109	7.854		1.673	1.528	4.094	4.909	2.755
23/4	2.533	0.109	8.639	7.957	1.508	1.390	5.039	5.940	3.045
3	2.783	0.109	9.425	8.743	1.373	1.273	6.083	7.069	3.333
31/4	3.012	0.119	10.210		1.268	1.175	7 125	8.296	3.958
3½ 3¾	3.262	0.119	10.995		1.171	1.091	8.357	9.621	4.272
33/4	3.512	0.119		11.033	1 088	1.018		11.045	4.590
4	3.741	0.130	12.566		1.023	0.955		12.566	5.320
41/2	4.241		14.137		0.901	0.849		15.904	6.010
5	4.72	0.140	15.708		0.809	0.764		19.635	7.226
6	5.699	0.151	18.849		0.670	0.637	25.509	28.274	9.346
7	6.657	0.172		20.914	0.574	0.545	34.805	38.484	12.435
8	7.636	0.182	25.132	23 989	0.500	0.478	45.795	50.265	15.109
9 10	8.615	0.193	28.274		0.444	0.424	58.291	63.617	18.002
10	9.573	0.214	31.416	30.074	0.399	0.382	71.975	78.540	22.19
1.00	1		1 1 1 1 1 1 1				1		

MORRIS, TASKER & CO.

WROUGHT-IRON WELDED TUBES.

EXTRA STRONG.

Nominal Diamcter.	Actual Outside Diameter.	Thickness. Extra Strong.	Thickness. Double Extra Strong.	Actual Inside Diameter. Extra Strong	Actual In- side Diam. Double Extra Strong
1/8 1/4 1/4 1/4 1/4 2/2 3 3/2 4	.405	.100		.205	
1/4	.54	.123		.294	STATISTICS.
2/8 1/	.675 .84	.127 .149	.298	$.421 \\ .542$	044
12	1.05	.149	.314	.736	.244 .422
1 14	1.315	.182	.364	.951	.587
14	1.66	.194	.388	1.272	.884
11/2	1.9	.203	.406	1.494	1.088
2	2.375	.221	.442	1.933	1.491
21/2	2.875	.280	.560	2.315	1.755
3	3.5	.304	.608	2.892	2.284
31/2	4.	.321	.642	3.358	2.716
4	4.5	.341	.682	3.819	3.136

WINDOW GLASS. Number of Lights per Box of 50 Feet.

ROOFING SLATE.

General Rule for the Computation of Slate.

From the length of the Slate take three inches, or as many as the third covers the first; divide the remainder by 2, and multiply the quotient by the width of the slate, and the product will be the number of square inches in a single slate. Divide the number of square inches thus procured by 144, the number of square inches in square foot, and the quotient will be the number of feet and inches required. A square of slate is what will cover 100 feet square, when laid upon the roof.

Weight per Cubic Foot, - 174 Pounds.

Weight per Square Foot.

Thickness	18	16	14	3,80	1/2	58	34	1 inch.
Weight								

TABLE OF SIZES AND NUMBER OF SLATE IN ONE SQUARE.

Size in Inches.	No. of Slate in Square.	Size in Inches.	No. of Slate in Square.	Size in Inches.	No. of Slate in Square.
$\begin{array}{c} 6 \times 12 \\ 7 & 12 \\ 8 & 12 \\ 9 & 12 \\ 10 & 12 \\ 12 & 12 \\ 7 & 14 \\ 8 & 14 \\ 9 & 14 \\ 10 & 14 \\ 12 & 14 \end{array}$	$530 \\ 457 \\ 400 \\ 355 \\ 320 \\ 266 \\ 374 \\ 327 \\ 291 \\ 261 \\ 218 \\$	$\begin{array}{c} 8 \times 16 \\ 9 & 16 \\ 10 & 16 \\ 12 & 16 \\ 9 & 18 \\ 10 & 18 \\ 11 & 18 \\ 12 & 18 \\ 14 & 18 \\ 10 & 20 \\ 11 & 20 \end{array}$	$\begin{array}{c} 277\\ 246\\ 221\\ 184\\ 213\\ 192\\ 174\\ 160\\ 137\\ 169\\ 154\\ \end{array}$	$\begin{array}{c} 12 \times 20 \\ 14 & 20 \\ 11 & 22 \\ 12 & 22 \\ 14 & 22 \\ 12 & 24 \\ 14 & 24 \\ 16 & 24 \\ 14 & 26 \\ 16 & 26 \end{array}$	141 121 137 126 108 114 98 86 89 78

CAPACITY OF CISTERNS,

In Gallons, for Each Foot in Depth.

Diameter in Feet.	Gallons.	Diameter in Feet.	Gallons.
2.	23.5	9.	475.87
2.5	36.7	9.5	553.67
3.	52.9	10.	587.5
3.5	71.96	11.	710.9
4.	94.02	12.	846.4
4.5	119.	13.	992.9
5.	146.8	14.	1,151.5
5.5	177.7	15.	1,321.9
6.	211.6	20.	2,350.0
6.5	248.22	25.	3,570.7
7.	287.84	30.	5,287.7
7.5	330.48	35.	7,189.
8.	376.	40.	9,367.2
8.5	424.44	45.	11,893.2

The American standard gallon contains 231 cubic inches, or 8½ pounds of pure water. A cubic foot contains 62.3 pounds of water, or 7.48 gallons. Pressure per square inch is equal to the depth or head in feet multiplied by .433. Each 27.72 inches of depth gives a pressure of one pound to the square inch.

SKYLIGHT AND FLOOR GLASS. Weight per Cubic Foot, - 156 Pounds.

Weight per Square Foot.

Thickness	1 1	$\frac{3}{16}$ $\frac{1}{4}$	3 12	58	4.5	1 inch.
Weight						

FLAGGING.

Weight per Cubic Foot, - 168 Pounds.

Weight per Square Foot.								
Thickness	1	2	3	4	5	6	7	8 inch.
Weight	14	28	42	56	70	84	98	112 lbs.

NOTES ON BRICKWORK.

IN ordinary brickwork, one cubic foot of wall will require 21 bricks of 8 in. $\times 2\frac{1}{2}$ in. $\times 3\frac{1}{2}$ in.

For 1000 ordinary bricks is required 1 barrel of good lime, 2 cartloads of ordinary sharp sand.

One brick as above weighs 4 lbs., dry; if perfectly soaked in water, 5 lbs. It will absorb I lb. or I pint of water.

Edgewise arches will require about 7 bricks per square foot of floor, and endwise arches will require about 14 bricks of the size given above.

For I cubic yard of concrete is required I barrel of cement, 2 barrels of good sharp sand, I cubic yard of broken stone. 2

SPECIFIC GRAVITY AND WEIGHTS OF VARIOUS SUBSTANCES.

29

	'Average V	Veights.	
NAMES OF SUBSTANCES.	* Per Cubic Foot.	Per Foot, 1 in. thick.	Specific Gravity.
Anthracite, solid, of Pa	93	1.1	1.50
" broken, loose	54	19.5	
" " shaken	58		
" heaped bushel, loose	(80 per 38	bushel,	/
Ash, white, dry Asphaltum	87	$\frac{3_{6}^{1}}{7.25}$	$0.61 \\ 1.40$
Brass, cast	504	42.	8.09
" rolled	524 .	43.7	8.4
Brick, best pressed	150		2.4
" common hard	125		2.0
" soft	100	1200	1.6
Brickwork, pressed brick	140		2.25
" ordinary Cement, Rosendale (loose)	$ 112 \\ 56 $		1.8
" Louisville "	50	1. A. A. A.	1
" Portland "	90		1.1
Cherry, dry	42	3.50	0.67
Chestnut, dry	41	3.41	0.66
Coal, bituminous, solid	84		1.35
" " broken, loose	49		
" " " " " Coke, loose	(74 per 27	bushel,	heaped).
" heaped bushel, 38 lbs	21		
Copper, cast	542	45.2	8.7
" rolled	548	45.7	8.8
Earth, common dry, loose	76	1	
" " rammed	95		211
" soft mud	108	2.00	
Ebony, dry	76 35	$\begin{array}{c} 6.33 \\ 2.9 \end{array}$	1.22
Elm, dry Glass	30 157	2.9 13	$0.56 \\ 2.53$
Gneiss	168	10	2.7
Gold, cast, 24 carat	1204		19.3
" hammered, 24 carat	1217		19.6
Granite	170		2.73
Hemlock, dry	25	$2\frac{1}{12}$	0.40
Hickory, dry	53	4.62	0.85
Ice	58.7	37.5	$0.95 \\ 7.24$
Iron, cast	$450 \\ 485$	40.6	7.8
" " (rolled)	400	40.0	7.7
Lead	711	59.25	11.4
		-	•

VFBSITY

TINT

SPECIFIC GRAVITY AND WEIGHTS OF VARIOUS SUBSTANCES.—Cont'd.

	Average V	Veights.	
NAMES OF SUBSTANCES.	Per Cubic Foot.	Per D Foot, 1 in. thick.	Specific Gravity.
Lime, loose quicklime	53	laster -	
" per bushel, 66 lbs	100		0.7
Limestone and marble	168 49	412	2.7 0.79
Masonry, granite or limestone	165	*12	0.10
" rubble	154		3848 F
" dry	138		Ser 15-1
" sandstone	144 849		13.6
Mortar, hardened	103	8.6	1.66
Mud, dry	80-110	0.0	1.00
Oak, live, dry	59	$4\frac{11}{12}$	0.95
" white	52	$4\frac{1}{3}$	0.83
Petroleum Pine, white, dry .	55 25	21	0.88
" yellow, Northern	34	25	0.55
" " Southern	45	33	0.72
Quartz	165		2.65
Salt, Syracuse, coarse	45		1.00
" fine Liverpool	49 90-106 -		120172-1
<i>v</i> shaken	99-117 -	1221	19. St 2
// perfectly wet			
Sandstone	151	1000	2.43
Shales, red or black	162		2.6
Silver	$\begin{array}{c} 655 \\ 175 \end{array}$	14.6	$ \begin{array}{c} 10.5 \\ 2.8 \end{array} $
Slate	5-12	14.0	2.0
// slush	15- 20		S Can ha
Spruce, dry	25	212	0.40
Steel	490	405	7.9
Sulphur	125		2.0
Sycamore, dry	37 62		$0.60 \\ 1.0$
Tin	459	1	7.4
Turf or Peat, dry	20- 30		Really 1
Walnut, dry	38	$3\frac{1}{6}$	0.61
Water, pure, at 60° F	$62\frac{1}{3}$		1.00
" sea Zinc or Spelter, cast	64 446	37.1	$1.028 \\ 7.15$
" " rolled	448	37.3	7.19
Green timbers $\frac{1}{5}$ to $\frac{1}{2}$ more than dry			

LINEAR EXPANSION OF METALS.

Between o ^o an	d 100° C. For 1º	C. For 1º Fahr.
Zinc 0.00)294	
Lead	284	
Tin 0.00)222	· · · · · · · ·
Copper, yellow 0.00		
" red 0.00		
* Forged iron 0.00		.00000677
† Steel 0.00	.0000114	.00000633
* Cast iron 0.00		.00000616
Cast 11011 0.00		.0000010

For a change of 100° Fahr. a bar of iron 1475' long will extend 1 foot. Similarly, a bar 100 feet long will extend .0678 foot, or .8136 inch.

According to the experiments of Du Long & Petit, we have the mean expansion of iron, copper, and platinum, between 0° and 100° C., and 0° and 300° C., as below:

From 0° to 100° C.	0° to 300° C.
Iron 0.00180	0.00146
Copper 0.00171	0.00188
Copper0.00171 Platinum0.00884	0.00918

The law for the expansion of iron, steel, and cast iron, at very high temperatures, according to Rinman, is as follows:

tor) mga tomporture		, , , , , , , , , , , , , , , , , , , ,			
F.	rom 25° to 55° C. d heat = 500° C.	For 1° C. 1° Fahr.			
re	d heat = 500° C.				
Iron	00714	.0000143 = .0000080			
Steel	01071	.0000214 = .0000119			
Cast iron	01250	.0000250 = .0000139			
F					
nasce	ent white = 1275°				
Iron	01250	.00000981 = .00000545			
Steel		.00001400 = .00000777			
Cast iron		.00001680 = .00000933			
· F.	om 500,º to 15000				
dull her lith	white heat $= 100$	20°C			
	difference				
Iron	00535	.00000535 = .0000030			
C(1		.00000714 = .0000040			
Steel	00/14	.00000714=.0000.040			
Cast iron	00893	.00000893 = .0000050			
Ratio of Expansi	ion in Hund	red parts, assuming			
Forge Iron to en	rpand betwe	en 0° and 100° C. =			
.00122.	CALL STREET				
	ALC: NOT THE REAL OF				
 From 0° to 100 	° 25° to 525°	25° to 1300° 500° to 1500°			
Iron 100 per ct	. 117 per ct.	80 per ct. 44 per ct.			
Steel 93 "	175 "	114 " 58 "			
Cast iron. 91 "	205 "	137 " 73 "			
Cast non. 31	200	101 10			
* Laplace and Lavoisier. † Ramsden.					

The contraction of a wrought-iron rod in cooling is about equivalent to $\frac{1}{10000}$ of its length from a decrease of 15° Fahr., and the strain thus induced is about *one ton* for every square inch of sectional area in the bar.

For a rod of the lengths given below, the contraction will be as follows:

Contraction and expansion being equal, the pressure per square inch induced by heating or cooling is as follows:

For temperatures varying by 15° Fahr.:

Variation	15	30	45	60.	75	105	120	150	degrees.
Pressure	1	2	3	4	5	7	8	10	tons.

Stoney gives 8° C. = 14.4 Fahr. as equivalent to a pressure of one ton per square inch for wrought iron, and 15° C. = 27 Fahr. for cast iron.

DIMINUTION OF TENACITY OF WROUGHT IRON AT HIGH TEMPERATURES.

EXPERIMENTS FRANKLIN INSTITUTE, 1839. WALTER JOHNSON AND BENJ. REEVES, COM.

C.	Fahr.	Diminution p. ct. of max. tenacity.	C.	Fahr.	Diminution p. ct. of max. tenacity.
271° 299 313 316 332 350 378 389 390 408 410 440	520° 630 732	$\begin{array}{c} 0.0738\\ 0.0869\\ 0.0899\\ 0.0964\\ 0.1047\\ 0.1155\\ 0.1436\\ 0.1491\\ 0.1535\\ 0.1589\\ 0.1627\\ 0.2010\\ \end{array}$	500° 508 554 599 624 626 642 669 674 708	932° 1154 1245 1306	$\begin{array}{c} 0.3324\\ 0.3593\\ 0.4478\\ 0.5514\\ 0.6000\\ 0.6011\\ 0.6352\\ 0.6622\\ 0.6715\\ 0.7001\\ \end{array}$

118 THE PASSAIC ROLLING MILL COMPANY.
DIFFERENT COLORS OF IRON CAUSED BY HEAT.
POUILLET.
C. FAHR. COLOR.
210° 410° Pale Yellow.
221 430 Dull Yellow.
256 493Crimson.
261 502 370 680 Violet, Purple, and Dull Blue; be- tween 261°C. to 370°C. it passes to Bright Blue, to Sea Green, and then disappears.
500 932Commences to be covered with a light coating of oxide; loses a good deal of its hardness; becomes a good deal more impressible to the hammer and can be twisted with ease.
525 977 Becomes Nascent Red.
7001292 Somber Red.
8001472 Nascent Cherry.
9001657 Cherry.
1000 1832 Bright Cherry.
1100 2012 Dull Orange.
1200
1300
1400 2552 Brilliant White — welding heat.
$1500 \dots 2732 \\ 1600 \dots 2912 $ Dazzling White.
MELTING POINT OF METALS.
NAME. FAHR. FAHR. AUTHORITY.
Platina
Antimony
Bismuth 487
Tin (average) 475
Lead " 622620 " .
Zinc
(19222012 White,) Powillet

 Cast iron
 2786
 { 1922...2012 White, 2012...2192 Gray, 2012....2192 Gray, 2012...2192 Gray, 2012

ULTIMATE RESISTANCE OF MATERIALS.

IN POUNDS PER SQUARE INCH.

and the second	Tension	Compression	Shearing
	Average.	Average.	Average.
Brass, cast	18,000	10,300	1227 13
// wire	49,000	10,000	X C LL
Bronze, gun metal	39.000	175,000	
Copper, cast	19,000	117,000	は、いたり
// sheet	30,000	103,000	1.000
// bolts	36,000	100,000	3.0.122
// wire	60,000	Service Service	2012
Iron. cast	13,400-29,000	80,000-145,000	27,000
	13,400-29,000	00,000-140,000	
Iron wrought:	F0 000 FF 000		45,000
Rods of 1 to 2" diam		COLORED SE	5.860
Specimens of rerolled		00000 40000	
Rerolled, large bars		36000-40000	
Plates, L and shapes			STREE TO BE
" over 30" wide]	Sil Lines
Iron wire	70,000-100,000		
// // ropes	90,000		111133
Lead, sheet	3,300	7,700	
Steel, 0.25°_{0} c. for eye bars.	70,000	DEATHER R	1111 30
" $0.42\frac{0}{0}$ c. compres-			
sion members	80,000	a state of the state	12.2.2
" tool steel	110,000	A LINE A	10.01
// wire	200,000		STEPPEN
Tin, cast	4,600	15,500	170-170
Zinc, //	7,500		
" sheet rolled	16,000		- Section -
Ash, seasoned	16,500	6,000	29.00
Beech. //	15,000	7,000	
Box, "	20,000	10,000	THE VEL
Cedar, "	10,300	6,500	1270
Chestnut, "	13,000	0,000	
T31	- 6,000 %	10,000 %	1- 20
Fir or spruce, seasoned.	10,000-13,600	6,800	5-800
TT: 1 -	12,800-18,000	0,000	0-000
T		Ber Trube	
	18,000		
Maple, "	10,000	× 000 0 100	0.000
Oak, white, "	18,000	7,200-9,100	2,000
" European "	10,000-19,800	10,000	2,300
Pine, white, red and pitch.	10,000	5,000-5,600	5-800
" long leaf yellow		8,000	6-1,000
Poplar, seasoned	7,000	5,100	10.00
Silk fiber	52,000		
Walnut, seasoned	16,000	7,200	
		a harry of - S	

120 THE PASSAIC ROLLING MILL COMPANY. ULTIMATE RESISTANCE OF MATERIALS. IN POUNDS, PER SQUARE INCH.						
	Tension Average.	Compression Average.				
Brick, weak	150 300 700-1,600 100- 200 2,500-4,000 70 100- 450 200 3,000-9,000 150 20 12,000 15,000	$\begin{array}{c} 550-800\\ 1,100\\ 1,700\\ 300\\ 450\\ 1,000\\ 4,500-18,000\\ 10,500\\ 3,750-15,000\\ 1,500-3,750\\ 3,750-8,000\\ 3,000\\ 6,000-12,000\\ 300-450\\ 600\\ -450-750\\ 1,200-2,400\\ 750\\ 20,000-35,000\\ 180-270\\ \end{array}$				

NATURAL SINES, ETC.

Deg.	Sine.	Cover.	Cosecnt.	Tangt.	Cotang.	Secant.	Versin.	Cosine.	Deg.
16.				1.000				* 00000	00
0	.00	1.00000	Infinite,	.0	Infinite.	1.00000	.0	1.00000	90
1	.01745	.98254	57.2986	.01745	57.2899	1.00015	.0001	.99984	89
2	03489	.96510	28.6537	.03492	28.6362	1.00060	.0006	.99939	88
3	.05233	.94766	19.1073	.05240	19.0811	1.00137	.0013	.99862	87
4	.06975	.93024	14.3355	.06992	14.3006	1.00244	.0024	.99756	86
5	.08715	.91284	11.4737	.08748	11.4300	1.00381	.0038	.99619	85
6	.10452	.89547	9.5667	.10510	9.5143	1.00550	.0054	.99452	84
7	.12186	.87813	8.2055	.12278	8.1443	1.00750	.0074	.99254	83
8	.13917	.86082	7.1852	.14054	7.1153	1.00982	.0097	.99026	82
9	.15643	.84356	6.3924	.15838	6.3137	1.01246	0123	.98768	81
10	.17364	.82635	5.7587	.17632	5.6712	1.01542	.0151	.98480	80
11	.19080	.80919	5.2408	.19438	5.1445	1.01871	.0183	.98162	79
12	.20791	.79208	4.8097	.21255	4.7046	1.02234	.0218	.97814	78
13		.77504		.23086	4.3314	1.02630	.0256	.97437	77
	.22495		4.4454	.24932		1.03061	.0290	.97029	76
14	.24192	.75807	4.1335		4.0107			.96592	75
15	.25881	.74118	3.8637	.26794	3.7320	1.03527	.0340	.90092	10
16	.27563	.72436	3.6279	.28674	3.4874	1.04029	.0387	.96126	74
17	.29237	.70762	3.4203	.30573	8.2708	1.04569	.0436	.95630	73
18	.30901	.69098	3.2360	.32491	3.0776	1.05146	.0489	.95105	72
19	.32556	.67443	3.0715	.34432	2.9042	1.05762	.0544	.94551	71
20	.34202	.65797	2.9238	.36397	2.7474	1.06417	.0603	.93969	70
20	.04404	.00101	4.9400	.00001	4. ITIT	1.00111	.0000		10
21	.35836	.64163	2.7904	.38386	2.6050	1.07114	.0664	.93358	69
22	.37460	.62539	2.6694	.40402	2.4750	1.07853	.0728	.92718	68
23	.39073	.60926	2.5593	.42447	2.3558	1.08636	.0794	.92050	67
24	.40673	.59326	2.4585	.44522	2.2460	1.09463	.0864	.91354	66
25	.42261	.57738	2.3662	.46630	2.1445	1.10337	.0936	.90630	65
26	.43837	.56162	2.2811	.48773	2.0503	1.11260	.1012	.89879	64
27	.45399	.54600	2.2026	.50952	1.9626	1.12232	.1089	.89100	63
28	.46947	.53052	2.1300	.53170	1.8807	1,13257	.1170	.88294	62
29		.51519	2.0626	.55430	1.8040	1.14335	.1253	.87461	61
	.48480			.57735	1.7320	1.15470	.1233	.86602	60
30	.50000	. 50000	2.0000	.01100	1.1020	1.10±10	.1000	.00002	00
31	.51503	.48496	1.9416	.60086	1.6642	1.16663	.1428	.85716	59
32	.52991	.47008	1.8870	.62486	1.6003	1.17917	.1519	.84804	58
33	.54463	.45536	1.8360	.64940	1.5398	1.19236	.1613	.83867	57
34	.55919	.44080	1.7882	.67450	1.4825	1.20621	.1709	. 82903	56
35	.57357	.42642	1.7434	.70020	1.4281	1.22077	.1808	.81915	55
36	.58778	.41221	1.7013	.72654	1.3763	1.23606	.1909	.80901	54
37	.60181	.39818	1.6616	.75355	1.3270	1.25213	.2013	.79863	53
38	.61566	.38433	1.6242	.78128	1.2799	1.26901	.2119	.78801	52
39	.62932	.37067	1.5890	.80978	1.2348	1.28675	.2228	.77714	51
40	.62932	.35721	1.5557	.83909	1.1917	1.30540	.2339	.76604	50
10	.04218	.00121	1.0001	.00009	1.1011	to an ere.	. 2000	.10004	
41	.65605	.34394	1.5242	.86928	1.1503	1.32501	.2452	.75470	49
42	.66913	.33086	1.4944	.90040	1.1106	1.34563	.2568	.74314	48
43	.68199	.31800	1.4662	.93251	1.0723	1.36732	.2686	.73135	47
44	.69465	.30534	1.4395	.96568	1.0355	1.39016	.2806	.71933	46
45	.70710	.29289	1.4142	1.00000	1.0000	1.41421	.2928	.70710	45
-				123.14	-			· · ·	
	Cosine.	Versin.	Secant	Cotang.	Tangt.	Cosecant.	Cover.	Sine.	130
	cosine.	versill.	Becant.	cotang.	Langt.	Cosccant.	Cover.	Sinc.	
00		1							

CIRCUMFERENCES OF CIRCLES, Advancing by Eighths.

CIRCUMFERENCES.

CIRCOMFERENCES.										
Diam.	.0	. <mark>1</mark> ⁄8	· ¼	· 3⁄8	. 1/2	. 5/8	.3⁄4	. 7/8		
0 1 2 3 4 5	$\begin{array}{r} .0\\ 3.142\\ 6.283\\ 9.425\\ 12.56\\ 15.71\end{array}$	$\begin{array}{r} .3927\\ 3.534\\ 6.676\\ 9.817\\ 12.96\\ 16.10\end{array}$	$\begin{array}{r} .7854\\ 3.927\\ 7.069\\ 10.21\\ 13.35\\ 16.49\end{array}$	$\begin{array}{r} 1.178 \\ 4.320 \\ 7.461 \\ 10.60 \\ 13.74 \\ 16.88 \end{array}$	$\begin{array}{r} 1.571 \\ 4.712 \\ 7.854 \\ 10.99 \\ 14.13 \\ 17.28 \end{array}$	$\begin{array}{r} 1.963 \\ 5.105 \\ 8.246 \\ 11.39 \\ 14.53 \\ 17.67 \end{array}$	$\begin{array}{r} 2.356 \\ 5.498 \\ 8.639 \\ 11.78 \\ 14.92 \\ 18.06 \end{array}$	$\begin{array}{r} 2.749\\ 5.890\\ 9.032\\ 12.17\\ 15.31\\ 18.45\end{array}$		
6 7 8 9 10	$18.85 \\ 21.99 \\ 25.13 \\ 28.27 \\ 31.41$	$19,24 \\ 22.38 \\ 25.52 \\ 28.66 \\ 31.81$	$19.63 \\ 22.77 \\ 25.92 \\ 29.06 \\ 32.20$	$\begin{array}{c} 20.02\\ 23.17\\ 26.31\\ 29.45\\ 32.59 \end{array}$	$\begin{array}{c} 20.42 \\ 23.56 \\ 26.70 \\ 29.84 \\ 32.98 \end{array}$	20.81 23.95 27.09 30.23 33.38	$\begin{array}{r} 21.20\\ 24.34\\ 27.49\\ 30.63\\ 33.77\end{array}$	$\begin{array}{c} 21.60\\ 24.74\\ 27.88\\ 31.02\\ 34.16\end{array}$		
11 12 13 14 15	34.55 37.70 40.84 43.98 47.12	$\begin{array}{r} 34.95\\ 38.09\\ 41.23\\ 44.37\\ 47.51 \end{array}$	35.34 38.48 41.62 44.76 47.91	$\begin{array}{r} 35 & 73 \\ 38.87 \\ 42.02 \\ 45.16 \\ 48.30 \end{array}$	$\begin{array}{r} 36.13\\ 39.27\\ 42.41\\ 45.55\\ 48.69\end{array}$	36.52 39.66 42.80 45.94 49.08	36.91 40.05 43.19 46.34 49.48	37.30 40.45 43.59 46.73 49.87		
16 17 18 19 20	$50.26 \\ 53.40 \\ 56.55 \\ 59.69 \\ 62.83$	$50.66 \\ 53.80 \\ 56.94 \\ 60.08 \\ 63.22$	$51.05 \\ 54.19 \\ 57.33 \\ 60.47 \\ 63.61$	$51.44 \\ 54.58 \\ 57.72 \\ 60.87 \\ 64.01$	$51.83 \\ 54.97 \\ 58.12 \\ 61.26 \\ 64.40$	$52.23 \\ 55.37 \\ 58.51 \\ 61.65 \\ 64.79$	$52.62 \\ 55.76 \\ 58.90 \\ 62.04 \\ 65.19$	$\begin{array}{r} 53.01 \\ 56.15 \\ 59.29 \\ 62.43 \\ 65.58 \end{array}$		
21 22 23 24 25	$\begin{array}{r} 65.97 \\ 69.11 \\ 72.25 \\ 75 40 \\ 78.54 \end{array}$	66.36 69.50 72.65 75.79 78.93	$\begin{array}{r} 66.76 \\ 69.90 \\ 73.04 \\ 76.18 \\ 79.32 \end{array}$	67.15 70.29 73.43 76.57 79.71	67.54 70.68 73 82 76.97 80.11	$\begin{array}{r} 67.93 \\ 71.08 \\ 74 \\ 22 \\ 77.36 \\ 80.50 \end{array}$	68.33 71.47 74.61 77.75 80.89	$\begin{array}{r} 68.72 \\ 71.86 \\ 75.00 \\ 78.14 \\ 81.29 \end{array}$		
26 27 28 29 30	81.68 84.82 87.96 91.10 94.24	82.07 85.21 88.35 91.50 94.64	82.46 85.60 88.75 91.89 95.03	82.86 86.00 89.14 92.28 95.42	83.25 86.39 89.53 92.67 95.82	83.64 86.78 89.93 93.07 96.21	84.03 87.18 90.32 93.46 96.60	84.43 87.57 90.71 93.85 96.99		
31 32 33 34 35	97.39 100.53 103.67 106.81 109.96	97.78 100.92 104.07 107.21 110.35	$\begin{array}{r} 98.17\\ 101.32\\ 104.46\\ 107.60\\ 110.74\end{array}$	98.57 101.71 104.85 107.99 111.13	98.96 102.10 105.24 108.39 111.53	99.35 102.49 105.64 108.78 111.92	99.75 102.89 106.03 109.17 112.31	$100.14 \\ 103.28 \\ 106.42 \\ 109.56 \\ 112.71$		
36 37 38 39 40	$113.10 \\ 116.24 \\ 119.38 \\ 122.52 \\ 125.66$	$113.49 \\ 116.63 \\ 119.77 \\ 122.92 \\ 126.06$	$\begin{array}{c} 113.88\\ 117.02\\ 120.17\\ 123.31\\ 126.45 \end{array}$	$114.28 \\117.42 \\120.56 \\123.70 \\126.84$	$114.67 \\117.81 \\120.95 \\124.09 \\127.24$	$115.06 \\ 118.20 \\ 121.34 \\ 124.49 \\ 127.63$	$115.45 \\ 118.60 \\ 121.74 \\ 124.88 \\ 128.02$	115.85 118.99 122.13 125.27 128.41		
41 42 43 44 45	$\begin{array}{c} 128.81 \\ 131.95 \\ 135.09 \\ 138.23 \\ 141.37 \end{array}$	$\begin{array}{r} 129.20\\ 132.34\\ 135.48\\ 138.62\\ 141.76\end{array}$	$\begin{array}{c} 129.59\\ 132.73\\ 135.87\\ 139.02\\ 142.16\end{array}$	$129.98 \\ 133.13 \\ 136.27 \\ 139.41 \\ 142.55 \\ .$	130.38 133.52 136.66 139.80 142.94	$\begin{array}{c} 130.77\\ 133.91\\ 137.05\\ 140.19\\ 143.34 \end{array}$	$131.16 \\ 134.30 \\ 137.45 \\ 140.59 \\ 143.73$	131.55 134.70 137.84 140.98 144.12		

-80

AREAS OF CIRCLES,										
Advancing by Eighths.										
AREAS.										
Diam.	.0	. <mark>1</mark> /8	• 1/4	. 3/8	· ½	. 5/8	. 3⁄4	. 7/8		
0 1 2 3 4 5	$\begin{array}{r} .0\\ .7854\\ 3.1416\\ 7.068\\ 12.56\\ 19.63\end{array}$	$\begin{array}{r} .0122\\ .9940\\ 3.546\\ 7.670\\ 13.36\\ 20.63\end{array}$	$\begin{array}{r} .0491 \\ 1.227 \\ 3.976 \\ 8.296 \\ 14.18 \\ 21.65 \end{array}$	$\begin{array}{r} .1104\\ 1.485\\ 4.430\\ 8.946\\ 15.03\\ 22.69\end{array}$	$\begin{array}{r} .1963\\ 1.767\\ 4.908\\ 9.621\\ 15.90\\ 23.76\end{array}$	$\begin{array}{r} .3068\\ 2.074\\ 5.411\\ 10.32\\ 16.80\\ 24.85\end{array}$	$\begin{array}{r} .4418\\ 2.405\\ 5.939\\ 11.04\\ 17.72\\ 25.96\end{array}$	$\begin{array}{r} .6013\\ 2.761\\ 6.492\\ 11.79\\ 18.66\\ 27.10\end{array}$		
6 7 8 9 10	$\begin{array}{r} 28.27 \\ 38 \ 48 \\ 50.26 \\ 63.61 \\ 78.54 \end{array}$	29.46 39.87 51.85 65.39 80.51	30.68 41.28 53.45 67.20 82.51	$\begin{array}{c} 31.92 \\ 42.72 \\ 55.09 \\ 69.03 \\ 84.54 \end{array}$	$\begin{array}{r} 33.18\\ 44.18\\ 56.74\\ 70.88\\ 86.59\end{array}$	$\begin{array}{r} 34.47\\ 45.66\\ 58.42\\ 72.76\\ 88.66\end{array}$	35.78 47.17 60.13 74.66 90.76	$\begin{array}{c} 37.12 \\ 48.70 \\ 61.86 \\ 76.59 \\ 92.88 \end{array}$		
11 12 13 14 15	95.03 113.1 132.7 153.9 176.7	$\begin{array}{r} 97.20 \\ 115.5 \\ 135.3 \\ 156.7 \\ 179.7 \end{array}$	$\begin{array}{r} 99.40 \\ 117.9 \\ 137.9 \\ 159.5 \\ 182.7 \end{array}$	$101.6 \\ 120.3 \\ 140.5 \\ 162.3 \\ 185.7$	$103.9 \\122.7 \\143.1 \\165.1 \\188.7$	106.1 125.2 145.8 168.0 191.7	108.4 127.7 148.5 170.9 194.8	110.7 130.2 151.2 173.8 197.9		
16 17 18 19 20	$\begin{array}{r} 201.1 \\ 227.0 \\ 254.5 \\ 283.5 \\ 314.2 \end{array}$	$\begin{array}{r} 204.2\\ 230.3\\ 258.0\\ 287.3\\ 318.1 \end{array}$	$\begin{array}{c} 207.4 \\ 233.7 \\ 261.6 \\ 291.0 \\ 322.1 \end{array}$	$\begin{array}{c} 210.6\\ 237.1\\ 265.2\\ 294.8\\ 326.0\end{array}$	$\begin{array}{c} 213.8 \\ 240.5 \\ 268.8 \\ 298.6 \\ 330.1 \end{array}$	$\begin{array}{c} 217.1 \\ 244.0 \\ 272.4 \\ 302.5 \\ 334.1 \end{array}$	$\begin{array}{r} 220.3 \\ 247.4 \\ 276.1 \\ 306.3 \\ 338.2 \end{array}$	223.6 250.9 279.8 310.2 342.2		
 21 22 23 24 25	$\begin{array}{r} 346.4\\ 380.1\\ 415.5\\ 452.4\\ 490.9 \end{array}$	$\begin{array}{r} 350.5\\ 384.5\\ 420.0\\ 457.1\\ 495.8 \end{array}$	$\begin{array}{r} 354.7\\ 388.8\\ 424.6\\ 461.9\\ 500.7\end{array}$	358.8 393.2 429.1 466.6 505.7	363.0 397.6 433.7 471.4 510.7	367.3 402.0 438.4 476.3 515.7	371.5 406.5 443:0 481.1 520.8	375.8 411.0 447.7 486.0 525.8		
26 27 28 29 30	530.9 572.6 615.7 660.5 706.9	536.0 577.9 621.3 666.2 712.8	541.2 583.2 626.8 672.0 718.7	$546.3 \\ 588.6 \\ 632.4 \\ 677.7 \\ 724.6$	551.6 594.0 637.9 683.5 730.6	556.8 599.4 643.5 689.3 736.6	$562.0 \\ 604.8 \\ 649.2 \\ 695.1 \\ 742.6$	567.3 610.3 654.8 701.0 748.7		
31 32 33 34 35	754.8 804.3 855.3 907.9 962,1	760.9 810.5 861.8 914.6 969.0	767.0 816.9 868.3 921.3 975.9	773.1 823.2 874.9 928.1 982.8	779.3 829.6 881.4 934.8 989.8	785.5 836.0 888.0 941.6 996.8	791.7 842.4 894.6 948.4 1003.8	798.0 848:8 901.3 955.2 1010.8		
36 37 38 39 40	1017.9 1075.2 1134.1 1194.6 1256.6	$\begin{array}{c} 1025.0\\ 1082.5\\ 1141.6\\ 1202.3\\ 1264.5 \end{array}$	1032.1 1089.8 1149.1 1210.0 1272.4	$\begin{array}{c} 1039.2 \\ 1097.1 \\ 1156.6 \\ 1217.7 \\ 1280.3 \end{array}$	1046.3 1104.5 1164.2 1225.4 1288.2	1053.5 1111.8 1171.7 1233.2 1296.2	1060.7 1119.2 1179.3 1241.0 1304.2	1068.0 1126.7 1186.9 1248.8 1312.2		
 41 42 43 44 45	$1320.3 \\ 1385.4 \\ 1452.2 \\ 1520.5 \\ 1590.4$	1328.3 1393.7 1460.7 1529.2 1599.3	1336.4 1402.0 1469.1 1537.9 1608.2	1344.5 1410.3 1477.6 1546.6 1617.0	$\begin{array}{c} 1352.7\\ 1418.6\\ 1486.2\\ 1555.3\\ 1626.0 \end{array}$	1360.8 1427.0 1494.7 1564.0 1634.9	1369.0 1435.4 1503.3 1572.8 1643.9	1377.2 1443.8 1511.9 1581.6 1652.9		

SURVEYING MEASURE (LINEAL).

Inches.	Link	s. Fee	et. Yards	. Chains.	Mile.	Fr. Meters.
1.	= .126	= .083	33 = .0278	= .00126 =	.0000158 =	= .0254
7.92	1.	.66	22	.01	.000125	.2012
12.	1.515	1.	. 333	.01515	.000189	.3048
36.	4.545	3.	1.	.04545	.000568	.9144
792.	100.	66.	22.	1.	.0125	20.116
63360.	8000.	5280.	1760.	80.	1.	1609.315

One knot or geographical mile = 6086.07 feet = 1855.11 metres = 1.1526 statute mile.

One admiralty knot = 1.1515 statute miles = 6080 feet.

LONG MEASURE.

Inches	. Feet.	Yards	s. Fath.	Poles.	Furl.	Mile.	Fr. Meters.
1.	= .083	= .02778	8 =.0139	=.005 =	=.000126	=.0000158	.0254
12.	1.	.333	.1667	.0606	.00151	.0001894	.3048
36.	3.	1.	.5	.182	.00454	.000568	.9144
72.	6,	2.	1.	.364	.0091	.001136	1.8287
198.	161/2.	51/2.	23/4.	1.	.025	.003125	5.0291
7920.	660.	220.	110.	40.	1.	.125	201.16
63360.	5280.	1760.	880. 3	20.	8.	1.	1609.315

- A palm = 3 inches.
- A span = 9 inches.
- A hand = 4 inches.
- A cable's length = 120 fathoms.

FRENCH LONG MEASURE.

	Inches.	Feet.	Yards.	Miles
Millimetre	.039368	.00328	Martin Har	
Centimetre	. 39368	.03280	ala lu Sint	
Decimetre	3.9368	.32807	.109357	
Metre	39.368	3.2807	1.09357	121 34 77
Decametre	393.68	32.807	10.9357	
Hectometre .		328.07	109.357	.0621346
Kilometre	1.	3280.7	1093.57	.6213466
Myriametre :		32807.	10935.7	6.213466
	120012	and a part of		

SQUARE MEASURE.

Inches.	Fee	et. Yard	is. Perch	es. Roods.	Acre.	Sq. Metres.
1.	= .000	394 = . 000 ⁴	772=.00002	55=.0000006	4=.0000001	59=.000645
144.	1.	.111	.00367	.0000918	.000023	.0929
1296.	9.	1.	.0331	.000826	.0002066	.8361
39204.	2721/4.	301/4.	1.	.025	.00625	25.292
1568160.	10890.	1210.	40.	1.	.25	1011.7
6272640.	43560.	4840.	160.	4.	1.	4046.7

100 square feet = I square. 10 square chains = 1 acre. I chain wide == 8 acres per mile. I hectare = 2.471143 acres. c = 27878400 square feet. = 3097600 square yards. I square mile (=640 acres.Acres \times .0015625 = square miles. Square yard \times .000000323 = square miles. Acres \times 4840 = square yards. Square vards \times .0002066 = acres. A section of land is I mile square, and contains 640 acres. A square acre is 208.71 ft. at each side; or 220 × 198 ft. A square 1/2-acre is 147.58 ft. at each side; or 110 × 198 ft. A square 4-acre is 104.355 ft: at each side; or 55 × 198 ft. A circular acre is 235.504 feet in diameter. A circular 1/2-acre is 166.527 feet in diameter. A circular ¼-acre is 117.752 feet in diameter.

FRENCH SQUARE MEASURE.

Square.	Square Inches.	Square Feet.	Square Yards.	Acres.
- Square.	Square menes.			
Millimetre	.00154	.0000107	.000001	
Centimetre	.15498	.0010763	.000119	Lastrada
Decimetre	15.498	.1076305	.011958	The state of the
Metre or Cen	1549.8	10.76305	1.19589	.000247
Decametre	154988.	1076.305	119.589	.024709
Hectare		107630.58	11958.95	2.47086
Kilometre	.38607 🗆 mls.	10763058.	1195895.	247.086
Myriametre	38.607 "	A STREET CONTRACTOR	EX 18 CELEVI	24708 6
•	A State Mary		12155 C 2	

CUBIC MEASURE.

Inches.	Feet.		Yard.		Cubic Metres.
1.	.0005788	=	.000002144	=	.000016386
1728.	1.		.03704		.028315
46656.	27.		1.		.764513

A cord of wood = 128 cubic feet, being four feet high, four feet wide, and eight feet long.

Forty-two cubic feet = a ton of shipping. A perch of masonry contains $24\frac{3}{4}$ cubic feet.

A CUBIC FOOT IS EQUAL TO

1728 cubic inches.	25.71405 U. S. dry quarts.
.037037 cubic yard.	59.84416 U.S. liquid pints.
.803564 U.S. struck bushel	51.42809 U. S. dry pints.
of 2150.42 cubic inches.	239.37662 U. S. gills.
3.21426 U. S. pecks.	.26667 flour barrel of 3 struck
7.48052 U.S. liquid galls.	bushels.
of 231 cubic inches.	.23748 U. S. liquid barrel of
6.42851 U.S. dry galls.	31 1/2 galls.
29.92208 U. S. liquid quarts.	and the state of the second

FRENCH CUBIC OR SOLID MEASURE.

	Gill.	Pint.	Quart.	Gallon.	Peck.	Bush.	Cubic Inches.	Cubic Feet.
Centilitre, Dry Liquid	.0845	.0181					}.61016	
DecilitreDry Liquid		.1816	.0908	.0264	.0113		\$6.1016	
Litre Dry Liquid		1.816 2.113	.908	.2641	.1135		\$61.016	.0353
Decalitre Dry Liquid			9.08	2.641	1.135	.2837	610.16	.3531
Hectolitre . Dry Liquid		211.3	90.8 105.6	26.41	11.35	2.837	}6101.6	3.531
Kilolitre or Cu- bic Metre, Dry Liquid			1056.5	264.1	113.5	28.37	}61016 .	35.31
Myrialitre . Dry Liquid			10565.	2641.4	113 5.	283.7	}	353.1

AVOIRDUPOIS WEIGHT.

The standard avoirdupois pound is the weight of 27.7015 cubic inches of distilled water, weighed in the air, at 39.83 degrees Fahr., barometer at thirty inches.

27.343 grains = I drachm.

Drachr	ns. Ou	nces. Lbs.	Qrs.	Cwts.	Ton.	French Grammes.
1.	= .0	625=.0039	= .000139	9=.000035	=.0000017	4=1.771846
16.	1.	.0625	00223	000558	.000028	28.34954
256.	16.	1.	.0357	.00893	.000447	453.59
7168.	448.	28.	1.	.25	.0125	12700.
28672.	1792.	112.	4.	1.	.05	50802.
573440.	35840	2240.	. 80.	20.	1. 10	16048.

A stone = 14 pounds.

A quintal == 100 pounds.

7000 grains = one avoirdupois pound = 1.21528 troy pounds.

5760 grains = one troy pound = .82285 avoirdupois pounds.

FRENCH WEIGHTS.

EQUIVALENT TO AVOIRDUPOIS.

· · · · · · · · · · · · · · · · · · ·							
	Grains.	Ounces.	Lbs.	Tons. 2240 lbs.			
Milligramme .	.015433		2 Alternation				
Centigramme.	.154331	.000352	.000022	Colora Carlo			
Decigramme .	1.54331	.003527	.000220				
Gramme	15.4331	.035275	.002204				
Decagramme .	154.331	.352758	.022047				
Hectogramme	1543.31	3.52758	.220473	.000098			
Kilogramme .		35.2758	2.20473	.000984			
Myriagramme		352.758	22.0473	.009842			
Quintal		3527.58	220.473	.098425			
Millier or Tonne	1		2204.73	.984258			

DIMENSIONS OF PASSAIC R. M. STANDARD TURN-TABLES.

Plates 19 and 20.

Diameter of pit	ft. in. 35.0	ft. in. 40.0	ft. in. 45.0	ft. in. 50.0	ft. in. 55.0	ft. in. 60.0
Length of girder, out to out	34.4	39.4	44.4	49.6	54.6	59.6
Diameter of circular tracks, cen- ter to center of rail	31.0	36.0	41.0	46.0	51.0	56.0
Depth from top of rail on table to top of center stone	5.0	5.0	5.0	5.6	5.6	5.6
Depth from top of rail on table to top of rail of circular track.	3.4	3.4	3.4	3.10	3.10	3.10
Ditto for special turn-table, shallow pit.	2.0	2.0	2.0	2.6	2.6	2.6

POINTS OF MERIT IN PASSAIC R. M. CO'S STANDARD TURN-TABLES.

The table is entirely center-bearing, and rests on steel discs, A, six inches in diameter, which offer very little resistance to turning around, and at the same time give ample bearing surface to maintain the parts in good working order. As the friction acts on a lever 2 inches long, and the power on one whose length is equal to the radius of the turn-table, it is apparent that very little power will be required to turn it. The table is hung to the center-pin by two bolts, B B, made of re-rolled iron; this arrangement prevents any uneven distribution of the load, produced by tightening of the bolts, such as is liable to be produced when more than two are used. The shape of the girder is such as to approach, in the nearest practicable manner, the theoretical form, which requires a constant flange section, when due regard is taken to the influence of the varying sign of the strains at any point of either flange, according to the position of the engine. The flanges are made of 4x6 in. angle iron, extending all the way through at the top without a splice, and spliced in the center at the bottom. The flange of this iron, being 6 inches wide, gives ample room for good fastenings for the lateral bracing, which runs all the way through the top and bottom, and makes the table very stiff sideways, the chords being 123 in. wide. By making the top and bottom bracing of angle iron, no twist can be brought on the table by unskillful adjustment.

Where shipment can be made by rail, the tables are loaded complete, ready to be set in pit. Full dimensions for building of pit, etc., accompany each contract. We take pleasure in referring to any of the roads to whom we have sent our tables, and will give further information promptly on application.

IVERSITY

PASSAIC ROLLING MILL CO.

