

A MANUAL
of
USEFUL INFORMATION
AND
TABLES
APPERTAINING TO THE USE OF
AS MANUFACTURED BY
THE PASSAIC
ROLLING MILL CO.
PATERSON, N. J.
(New-York Oftice, Rooni 45, Astor House.)
FOR
ENGINEERS, ARCHITECTS, AND BUILDERS,
F. A. LEERS, C. E.

Electrotype Edition.

Copyright, 1884 , by
The Passaic Rolling Mill Company,
Paterson, N. J.

OFFICERS.

Watts Cooke, - - President.
W. O. Fayerweather, Secretary and Treasurer. John K. Cooke, - Superintendent. F. A. Leers, - - Engineer.

PREFACE.

THE present edition of the MANUAL is a new work throughout. It is intended to supply such special information and tables as, it was thought, would prove valuable to workers in wrought iron in general, and the patrons of the publishers, The Passaic Rolling Mill Co., in particular.

The tables, with a few exceptions, were computed expressly for this work, and some of them are original in both matter and form.

The author hopes that they will be found to possess the qualities of accuracy and reliability.

Such of the tables as were not calculated for this work were obtained from two or more works of presumably independent origin, which were compared for the detection of errors.

The table of weight of a cubic foot and of the ultimate strength of substances was derived mostly from Trautwine.

The list of shapes rolled by The Passaic Rolling Mills will be found increased in number, and some of the sections improved in form. All angle irons are now made with flanges of uniform thickness; the range between the minimum and maximum weight for a number of the shapes has been increased.

CONTENTS.

Plates PAGE
I- 5 Sections of I Beams 10-14
6, 7 Sections of Channel Bars I5, I6
8 Sections of Equal Tees 17
8 Sections of Flatted Round 17
8 Sections of Half Round 17
8 Sections of Rounded Flat 17
9 Sections of Unequal Tees 18
9 Sections of Bead Iron 18
io Sections of Unequal Angles 19
io Sections of Square-root Unequal Angles. 19
io Sections of Obtuse Angles 19
io Sections of Groove Iron 19
io Section of Sash Iron I9
io Section of Hand-rail Iron I9
io Section of Hexagon Iron 19
io Section of Picture Cornice 19
il Sections of Equal Angles 20
if Sections of Square-root Angles 20
i2, i3 Illústration of Beams used in Fire-proof Floors 21, 22
14 Fire-proof Construction with Iron and Hollow Brick 23
15 Sections of Plate and Box Girders 24
I6 Sections of Columns 25
i7, 18 Diagrams of Bridge and Roof Trusses 26, 27
ig, 20 Standard Wrought-Iron Turn-Tables 28, 29
STRENGTH OF BEAMSPAGE
Different Modes of Loading Beams 36-40
Table of Properties of I Beams 41, 42
Table of Properties of Channels 43, 44
Table of Properties of Tees 45
Table of Equal Angles 46
Table of Unequal Angles 47
Table of Safe Loads on I Beams 49-52
Table of Safe Loads on I Beams, unsupported SIDEWAYS 53
FLOORS 54,55
Beans used as Joists, Load 70 Lbs. per sq. ft 56
Beams used as Joists, Load yoo Lbs. per sq. ft 57
Beams used as Joists, Load I50 Lbs. PER sq. Ft 58
Beams used as Joists, Load 200 Lbs. per sq. ft 59
Strength of Wooden Beams 63
RIVETED GIRDERS 60-62
COLUMNS, POSTS, AND STRUTS 64,65
TAbles of Allowed Working Strains, per SQUARE INCH 66, 67
Table of Safe Loads for Rolled I Beams used as Columns or Struts 68
Table of Safe Loads for Hollow Cylindrical Cast and Wrought Iron Columns 69
Table of Safe Loads for Rectangular Timber Posts 70
ROOFS 71, 72
Table of Strains in King and Queen Roof Trusses 73
Table of Strains in Belgian or Fink Roof Trusses 74
STRAINS IN RECTANGULAR AND TRIANGU- LAR BRIDGE TRUSSEES 75-85
RIVETS AND PINS 86
Table for Shearing, Bearing, and Bending of Pins 87
Table for Shearing and Bearing of Rivets 88,89
Table of Weight of Rivets 90
SLEEVE NUTS AND UPSET SCREW ENDS ofRound and Square Rods91
TABLES OF WEIGHTS, ETC.PAGE
Areas and Weight of Square and Round Rolled Iron 92, 93
Areas of Circles 123
Areas of Flat Rolled Iron 94, 95
Bolts, with Square Heads and Nuts 106
Capacity of Cisterns 112
Circumference of Circles 122
Different Colors of Iron Caused by Heat. II8
Different Standard Wire Gauges 102
Diminution of Tenacity of Wrought Iron at High Temperatures 117
Flagging II2
Galvanized and Black Iron IO3
Lap-welded Iron Borler Tubes IO9
Linear Expansion of Metals II6
Melting Points of Metals II8
Nails and Spikes 108
Natural Sineś, Etc. I2I
Notes on Brickwork II_{3}
Roofing Slate. III
Skylight and Floor Glass II2
Specific Gravity of Various Substances II4, II5
Square and Hexagon Nuts 107
Standard Sizes of Washers I06
TAcks 108
Ultimate Strength of Materials II9, 120
Weight of Separators and Bolts 55
Weight per sq. foot of Sheets of Wrought Iron, Steel, Copper, and Brass.
Thickness by American Gauge IOI
Thickness by Birmingham Gauge 100
Weights and Measures (U. S and French) 124-127
Weights of Flat Rolled Iron 96, 97
Weights of Plate Iron 98, 99
Weights of Various Substances II4, II 5
Window Glass IIO
Wire IO4
Wrought-Iron Welded Tubes for Steam, Gas, or Water. 105
PASSAIC R. M. CO'S STANDARD TURN-TABLES 128

THE
 PASAAIC ROLLING MILL Co. MANUFACTURERS OF ROLLED IRON

BEAMS, CHANNELS, ANGLES, TEES MERCHANT BARS, RIVETS,NUTS \& c.

ROOM 45 ASTORHOUSE:

ALL PARTS OF
BRIDGES OR FIRE PROOF FLOORS AND ROOFS Made and Fitted to suit Designs of Engineers and Architects.

MANUFACTURERS OF
WROUGHT IRON ROOF TRUSSES,

\qquad -。
$151 / 8^{\circ}$ HEAVY BEAM. $200 \mathrm{lbs} . \mathrm{pr} . \mathrm{Yd}$.

153/16 LIGHT BEAM. 150 lbs.pr.Yd.

PLATE 2

$12 \frac{1}{4}$ HEAVY BEAM. 170 lbs. pr. Yd.

12 $1 / 4$ LIGHT BEAM 125 lbs. pr. Yd.

12 THE PASSAIC ROLLING MILL COMPANY.
PLATE 3

$10 \frac{1}{2}$ LIGHT BEAM.
105 lbs. pr.Yd.
1832°
$13 / 16^{\circ}$

PLATE 4

8' HEAVY BEAM. 80 los.pr.Yd.

8'LIGHT BEAM. 65 los. pr. Yd.

7 "BEAM.
60 lbs.pr.Yd.

14. TH்E PASSAIC ROLLING MILL COMPANY.

6"BEAM. 40 lbs.pr.Yd.

5. BEAM. 40 lbs.pr. Yd.

4*BEAM $30 \mathrm{lbs} . \mathrm{pr} . \mathrm{Yd}$ 18 lbs.pr. Yd. 37 lbs. pr. Yd.

THE PASSAIC ROLLING MILL COMPANY. 15

$3 / 18^{\circ}$ to $5 / 16^{\text {" }}$

$1 / 4 \operatorname{to}^{3} / 8^{\circ}$

6"CHANNEL 50 to 60 tbs. pr.Yd.

6" CHANNEL 30 to 45 lbs.pr.Yd.

6° CHANNEL $22^{1 / 2}$ to 28 lbs.pr.Yd.

PliATE 8
 EQUAL TEE.

$4 \times 4 \times 1 / 2$ to $7 / 1633$ to $39 \mathrm{lbs} . \mathrm{pr} . \mathrm{Yd}$.

18. THE PASSAIC ROLLING MILL COMPANY.

PLiATE 9
 UNEQUAL TEE.

$6^{\circ} \times 4^{\circ} \times 1 / 2^{\prime \prime} \cdot 48$ to 60 lbs pr. Yd.

$3^{\prime} \times 4^{\prime} \times 1 / 2{ }^{\prime} 33$ lbs.pr.Yd.

BEAD IRON.

THE PASSAIC ROLLING MILL COMPANY. 19

$4 \times 3 / 2 \times 3$ 38 to $3 / 4 \% 27$ to $54 \mathrm{lbs} . \mathrm{pr} . \mathrm{Yd}$.

$5 \times 3 \times 3 / 8^{\circ}$ to $34^{\circ} \quad 28$ to $56 \mathrm{lbs} . \mathrm{pr} . \mathrm{Yd}$.

SQ.ROOT ANGLE
$\sqrt{1^{1 / 16} 0^{3}} 1 / 16 \dot{x}^{2 / 8}$

$5 \times 5 \times 1 / 2^{1}$ to $3 / 4^{0} 42$ to $72 \mathrm{lbs} . \mathrm{pr} . \mathrm{Yd}$.
$6^{6} \times 6^{\circ} \times \frac{1}{2}$ to $3 / 4^{57 t 0} 87 \mathrm{lbs.pr}$ Yd. EQUAL ANGLES.

SQUARE ROOT ANGLES.

 FIG.I. PLATE 12

PLATE 13

FIG. 9

THE FIRE PROOF BUILDING COMPANY OF NEW YORK.

 Fire Proof Construction with Iron and Hollow Brick.

FLAT ARCH OF TEIL HOLLOW BLOKS.

FLAT ARCH OF HOLLOW BRICK.

FLAT ARCH OF TEIL HOLLOW BLOCKS.

FLAT ARCH OF HOLLOW BRICK ARCHED RIB.

FLAT ROOF EETWEEN IRON BEAMS.
POROUS LIGHT BRICK ARCHES AND BEAM PROTECTION.

DETAIL OF MANSARD ROOF.

PLATE 15


```
THE PASSAIC ROLLING MILL COMPANY. 25
```

SECTIONS OF COLUMNS PLATE 16

FIG. 8.

J) $\mathrm{L}_{\mathrm{L}}^{\mathrm{I}}$ FIG.4.

FIG. 7.

FIG.II.
FIG.I2.

FIG. 13.
FIG.14.
7/L

FIG.I8.

PLATE 17

TRIANGULAROR WARREN TRUSS.

FIG. 1.

WARREN TRUSS, WITH INTERMEDIATE POSTS.
FIG. 2.

WARREN TRUSS, WITH INTERMEDIATE SUSPENDERS.
FIG. 3.

RECTANGULAR TRUSS, SINGLE INTERSECTION.

KING AND QUEEN ROOF TRUSS.

THE PASSAIC ROLLING MILL COMPANY. PLATE 19

PLATE 20

$3 a$

STRENGTH OF BEAMS.

IF a beam, supported at its ends, is loaded with a weight, this weight will produce reactions on the two supports, the sum of which is equal to the weight. These are the external forces acting on the beam. Under the influence of these external forces a bending of the beam occurs, the fibers of the upper half of the cross-section are shortened, and those of the lower half are elongated. These changes are the result of a compressive strain in the upper half and of a tensile strain in the lower half of the cross-section of the beam. In the middle of the heights is a place where no shortening or lengthening of the fibers occurs, and this is called the neutral axis. In wrought iron, as in other homogeneous substances, this neutral axis is coincident with the center of gravity of the section, and in symmetrical sections, as in I beams, this is in the middle of the depth of the beam.

The moment of inertia of a cross-section is an expression which is used in the calculation of the strength of beams. The sum of the products of the infinitely small areas of each fiber, by the square of its distance (taken at right angles) from the neutral axis, is its value with respect to this axis.

The moment of resistance is the moment of inertia divided by the distance from the neutral axis (or center of gravity of the section) to the most extreme fiber. This is used to determine the maximum strain in the most extreme fiber.

The radius of gyration is found by extracting the square root of the moment of inertia divided by the area of the crosssection. If all material were concentrated at this distance from the neutral axis (or center of gravity), it would resist against bending the same as the material distributed over the cross-section.

Twice the radius of gyration may be called the effective depth of the beam.

TERMS USED IN FORMULAS:

W, Load.
l, Length of beam in inches.
A, Area of total cross-section of beam.
h, Depth of beam.
I, Moment of inertia of cross-section.
R, Moment of resistance of cross-section.
e, Distance of the most extreme fiber from the neutral axis (usually $e=\frac{h}{2}$).
d, Deflection in inches.
S, Strain per square inch.
M, Bending-moment produced by the load W in any crosssection.
x, The distance of this cross-section from the support or from the load.

The following tables give general formulas of bendingmoments M , maximum loads W , maximum fiber strains S , and deflections d, for beams loaded and supported in different ways. The bending-moments may be calculated with these formulas for any cross-section by substituting the particular value of x, and from the value thus obtained the strain in this cross-section is found by the general formula

$$
\mathrm{S}=\frac{\mathrm{M}}{\frac{\mathrm{I}}{e}} \quad \text { or } \quad \mathrm{S}=\frac{\mathrm{M}}{\mathrm{R}}
$$

The necessary section of the beam at any place is obtained by reversing this formula, thus:

$$
\frac{\mathrm{I}}{e} \quad \text { or } \quad \mathrm{R}=\frac{\mathrm{M}}{\mathrm{~S}}
$$

This gives the moment of resistance required, and the corresponding beam may be selected from the table giving the different properties of beams and channels.

36 THE PASSAIC ROLLING MILL COMPANY.

	$\begin{aligned} & \text { i/m } \\ & \text { jiw } \end{aligned}$	$\begin{aligned} & \text { N\|q } \\ & 3 \mid w \end{aligned}$		
$\begin{aligned} & \frac{z}{z} \\ & \stackrel{y}{x} \\ & \stackrel{y}{6} \text { 。 } \end{aligned}$	3 ${ }^{\text {Ho}}$	$\tilde{H}_{-14}^{n 0}$	$\begin{aligned} & \text { yin } \\ & \text { inin } \\ & \text { in } \end{aligned}$	
¢	Win		$\begin{aligned} & \text { Ẅlo } \\ & \text { ~10 } \end{aligned}$	- ${ }_{\text {H }}^{\substack{0}}$
	${ }_{3}^{4}$	$3^{*}{ }^{\sim}$		
$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & \text { L } \\ & \text { L } \\ & 0 \\ & \vdots \end{aligned}$		\int_{\square}^{π}		

THE PASSAIC ROLLING MILL COMPANX ${ }^{37}$

	$\begin{aligned} & \stackrel{m}{\sim} \mid \stackrel{N}{\Omega} \\ & 3 \mid \omega \end{aligned}$	$\begin{aligned} & c \mid n \\ & N / \infty \\ & 3 i m \\ & 3 / m \end{aligned}$	3) loq CAL $3 \mid \underset{w}{w}$	$\begin{aligned} & \text { FOPRy } \\ & \text { in } \\ & \text { 3/m } \\ & \text { 31m } \end{aligned}$
$\frac{\frac{z}{4}}{\frac{\pi}{6}} \backsim$	$\begin{aligned} & \left.3\right\|_{-10} \\ & -1 \infty \end{aligned}$	31 HO	$\underset{-\|N\| O}{\sum\|n\| c \mid c}$	$\sum_{-100}^{N \mid m b}$
$\stackrel{9}{4}>$	$\begin{array}{c\|c} m \\ m \\ \infty \end{array}$	\square 0 0 0	$\mapsto 0$ $0 \mid N$ N	$\begin{gathered} m \mid 0 \\ \omega \mid N \\ \infty \end{gathered}$
	$\begin{gathered} \left.\right\|_{3} ^{-1} \\ y^{2} \mid N \end{gathered}$		$\begin{aligned} & x \mid N \\ & x_{3} \mid N \end{aligned}$	$\begin{aligned} & \frac{1}{x \mid n} \\ & \left.\frac{1}{4} \right\rvert\, n \\ & 3 \mid n \end{aligned}$
0 2 0 0 0 0 1 0 0 1 0 0				

Properties of Passaic Rolling Mill's I Beams, Channel Bars, Angles, and Tee Iron.

The following tables give co-efficients, by the use of which the safe, uniformly distributed load for any Beam, Channel, Tee, or Angle Iron can be easily determined. It is only necessary to divide the co-efficient by the span between centers of supports (in feet). This will give the safe, uniformly distributed load in lbs. for a beam simply supported on both ends, as in case 8 (see table of formulas for different modes of loading). For any other way of loading, the result has to be multiplied with a factor which is for

Mode of Loading.

FACTOR.

1. One end fixed, other end loaded. 1/8
2. Both ends supported, concentrated load in center of span

$$
1 / 2
$$

3. Both ends supported, concentrated load on ny point of beam
4. One end fixed, other end supported, concentrated load in center of span
5. Both ends fixed, concentrated load in center of span I
6. Concentrated load at each end, two supports between ends of beam. 1/8
7. One end fixed, uniformly distributed load 1/4
8. Both ends supported, uniformly distributed load. I
9. One end fixed, other end supported, uniformly dis-tributed loadI
10. Both ends fixed, uniformly distributed load $\frac{3}{2}$
11. One end fixed, load distributed, but increasing toward the fixed end. $3 / 8$
12. Both ends supported, load distributed, but decreas-ing toward the middle of the span$\frac{3}{2}$
13. Both ends supported, load distributed, but increas-ing toward the middle of the span3/4

The co-efficients given in the tables for Beams and Channels have been calculated for maximum fiber strains of 12,000 lbs. per square inch and $10,000 \mathrm{lbs}$. per square inch, but those for Tees and Angle Iron only for $\mathbf{1 2 , 0 0 0}$ lbs. per square inch. If it be desired to find the carrying capacity for any other strain per square inch, this is simply done by increasing or decreasing the co-efficient given in the tables in proportion to the strains allowed. These tables have been calculated under the supposition that the beams are sufficiently secured against yielding sideways. Usually, it is assumed that this is the case if the free length of the beam does not exceed twenty times its width. If longer beams are required, it is necessary that they should be stayed at intermediate points, or the safe load has to be reduced as given in the table for beams not secured against yielding sideways.

Beams or Channels in short lengths have to be proportioned so that the section of the web is sufficient to resist the shearing strain. The shearing strain on the web should not be more than the half of the fiber strain allowed on the flanges; that is, 6000 and 5000 lbs . resp. per square inch. This gives for short beams a maximum safe load which such beam may support without buckling or crushing of the web.

The tables show the dimensions and different properties of I Beams, Channels, Tees, and Angle Iron. I Beams are usually rolled heavy, and light weight, as given in the table. Channels and Angle Iron frequently are made of varying weights, but Tee Iron can be rolled only to the weights shown in the lithographed plates.

∞	∞	$\overbrace{0}^{x}=1 \infty$		8 8 0. 0	8 8 0 0 0	$\begin{aligned} & 8 \pi \\ & 80 \end{aligned}$
\bigcirc	8	$\overbrace{0}^{\infty}$		$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \\ & 10 \\ & -1 \end{aligned}$	8 8 0 0	$\begin{aligned} & 18 \pi \\ & 10 \% \\ & m 0 \end{aligned}$
0	18	$\begin{aligned} & \dot{F} \\ & 0.60 \end{aligned}$		8 8 0 0 0	8 8 10 10 10	$\begin{aligned} & 4 \infty \\ & 0.0 \\ & 00 \end{aligned}$
${\underset{r-1}{-N}}_{-N}$	¢	$\stackrel{H}{\infty}$	$\dot{\theta}_{\dot{0}}^{0} \dot{\circ} \dot{\sim}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & \text { on } \end{aligned}$	8 8 8 0 6	$$
0_{-1}^{2-1}	${ }_{2}^{20}$	$\stackrel{-1}{\overbrace{0}^{\prime}}$	$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$	8 8 0 0	8 8 0 0	\mathfrak{R} 00
${\underset{r i c}{-10}}_{-10}$	$\stackrel{10}{10}$			$\begin{aligned} & 8 \\ & 8 \\ & \frac{15}{6} \end{aligned}$	8 8 8 0 0 0	$\begin{aligned} & \pi 8 \\ & 0 . \\ & 0 \\ & 0 \end{aligned}$
	$\stackrel{12}{2}$	$\stackrel{e}{0}_{\dot{0}}^{\dot{-}}$	$\frac{8}{6} \stackrel{\infty}{\infty}+\underset{4}{\infty}$	$\begin{aligned} & 8 \\ & 8_{n} \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { Ni } \\ & \text { مin } \end{aligned}$	
$\begin{gathered} \underset{N}{N} \\ \underset{\sim}{2} \end{gathered}$	六	0_{0}^{-12}	(10	$\begin{aligned} & 8 \\ & 8 \\ & \text { Si } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { i } \\ & 7 \end{aligned}$	$\begin{aligned} & 8.7 \\ & 8: ~ \end{aligned}$
$\stackrel{10}{10}$	안	$\dot{10}_{10}^{10}$		$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 10 \end{aligned}$	8 8 00 10 48	$\underset{\sim}{\operatorname{~+i}}{ }^{\infty}$
${ }_{-10}^{+10}$	$\mathrm{S}_{\mathrm{K}}^{2}$	$\begin{aligned} & \mathbf{S}^{n} x \\ & 0^{20} \end{aligned}$		8 8 6 1	8 8 0 0	$\begin{aligned} & \text { Nin } \\ & 02 \\ & 0 \end{aligned}$

H	$\stackrel{\infty}{\sim}$	$\begin{aligned} & 10 \\ & 7_{0}^{6} \\ & 0 \end{aligned}$			$\begin{aligned} & 8 \\ & 8 \\ & i=1 \end{aligned}$	$\begin{aligned} & 120 \\ & +18 \\ & 00 \end{aligned}$
H	\bigcirc		$\begin{aligned} & 089 \\ & 0 \\ & \text { No }-10 \end{aligned}$	$\begin{aligned} & 8 \\ & \underset{0}{2} \\ & 6 \end{aligned}$	8 R2 R	$\begin{aligned} & 58 \\ & i 0 \end{aligned}$
4	¢	${ }_{0}^{-1} 60$		$\begin{aligned} & 8 \\ & \infty \\ & \text { on } \\ & \text { en } \end{aligned}$		± 8 －io
10	\bigcirc		$\begin{aligned} & 08 \% \\ & \text { Qi } 20 \% \dot{4} \end{aligned}$	$\begin{aligned} & 8 \\ & \delta_{0} \\ & \text { 6 } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { กi } \\ & \text { ஸi } \end{aligned}$	
10	안	$\begin{aligned} & \text { Fix } \\ & 0^{-\infty} \end{aligned}$			$\begin{aligned} & \mathcal{R}^{2} \\ & \mathbf{N}_{1} \end{aligned}$	$\begin{aligned} & 128 \\ & 70 \\ & i 0 \end{aligned}$
\bigcirc	$\stackrel{+}{7}$			$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{51} \end{aligned}$	$\begin{aligned} & 818 \\ & i 0 \\ & \cdots i \end{aligned}$
\bigcirc	8	$\overbrace{0}^{\infty}$	$\mathbb{R}^{\circ} \dot{O}$	$\frac{8}{4}$	8	$$
\bigcirc	8	i_{0}^{20}		$$	8 8 g $=1$	$\begin{aligned} & 0 . \\ & 0-0 \\ & 0-1 \end{aligned}$
\checkmark	． 8	$\begin{aligned} & 0.1 \\ & 0^{-60} \end{aligned}$	$\begin{aligned} & 0 \text { Nis? } \\ & \text { ignoin } \end{aligned}$	103,000	$\begin{aligned} & 8 \\ & 8 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \stackrel{12}{1} \stackrel{1}{9} \\ & \infty 0 \end{aligned}$
∞	18	${ }_{0}^{-\infty}$	ox eio	$\begin{aligned} & 8 \\ & 8 \\ & \underset{y}{9} \end{aligned}$	8 8 0. 9	$\begin{aligned} & \infty \dot{0} 0 \\ & \delta_{0}^{0} \\ & 100 \end{aligned}$
						$\begin{aligned} & \text { Mom't of inertia, }\left\{\begin{array}{l} \text { axis coincid't } \\ \text { with center- } \\ \text { Rad. of gyration, } \\ \text { line of web, } \end{array}\right. \end{aligned}$

THE PASSAIC ROLLING MILL COMPANY. 43

Depth of Channel, in inches.	15, $\frac{3}{16}$	$15{ }^{\frac{3}{16}}$	12.	$12 \downarrow$	124	9	9
Weight per yard, in libs.	180	150	140	100	80	70	50
Width of flange, in inches Thickness of web, in inches Increase for 10 lbs. weight.	$\begin{aligned} & 4.17 \\ & \left.\begin{array}{l} 4.82 \\ 0.87 \end{array}\right) \end{aligned}$	$\begin{aligned} & 3.97 \\ & 0.62 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 3.60 \\ & 0.78 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 3.28 \\ & 0.46 \\ & 0.08 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 2.95 \\ 0.39 \\ 0.08 \end{array} \end{aligned}$	$\begin{aligned} & 2.44 \\ & 0.53 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 2.30 \\ & 0.33 \\ & 0.31 \end{aligned}$
	$\begin{array}{r} 524.0 \\ 18.7 \\ 70.0 \\ 2.5 \\ 5.40 \\ 59.2 \\ \hline \end{array}$	467.5 18.7 62.3 2.5 5.60 31.3	264.2 12.4 43.2 2.0 4.34 18.9	214.3 12.4 35.0 2.0 4.63 21.4	168.9 12.4 27.7 2.0 4.60 21.1	$\begin{gathered} 69.7 \\ \hline 6.75 \\ 15.49 \\ 1.50 \\ 3.16 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & 56.4 \\ & 6.75 \\ & 12.53 \\ & 1.50 \\ & 3.36 \\ & 11.3 \\ & \hline \end{aligned}$
Safe load $=\frac{\text { co-efficient }}{\text { length in ft. }}\left\{\begin{array}{c}\text { fiber strain } \\ 12,000 \text { olbs.p. } \mathrm{\prime}\end{array}\right\}$ Increase of co-efficient for 10 lbs . weight	$\begin{array}{r} 560,000 \\ 20,000 \\ \hline \end{array}$	$\begin{array}{r} 500,000 \\ 20,000 \end{array}$	$\begin{array}{r} 345,000 \\ 16,300 \end{array}$	$\begin{array}{r} 280,000 \\ 16,300 \\ \hline \end{array}$	$\begin{array}{r} 221,000 \\ 16,300 \end{array}$	$\begin{array}{r} 124,000 \\ 12,000 \end{array}$	$\begin{array}{r} 100,000 \\ 12,000 \end{array}$
Safe load $=\frac{\text { co.efficient }}{\text { length in ft. }}\left\{\begin{array}{c}\text { fiber strain } \\ 0,000\end{array}\right.$ Increase of co-efficient for 10 lbs . weight	$\begin{array}{r} 466,000 \\ 16,700 \end{array}$	$\begin{array}{r} 416,000 \\ 16,700 \end{array}$	$\begin{array}{r} 288,000 \\ 13,600 \end{array}$	$\begin{array}{r} 233,000 \\ 13,600 \end{array}$	$\begin{array}{r} 184,000 \\ 13,600 \end{array}$	$\begin{array}{r} 103,000 \\ 10,000 \end{array}$	$\begin{aligned} & 83,300 \\ & 10,000 \end{aligned}$
	$\begin{gathered} 21.6 \\ 1.06 \\ 1.10 \end{gathered}$	$\begin{gathered} 19.7 \\ 1.09 \\ 1.15 \end{gathered}$	$\begin{gathered} 12.0 \\ \substack{0.92 \\ 0.93} \end{gathered}$	$\begin{aligned} & 8.93 \\ & \begin{array}{l} 8.86 \\ 0.94 \end{array} \end{aligned}$	$\begin{aligned} & 5.44 \\ & 0.73 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 2.82 \\ & 0.61 \\ & 0.63 \end{aligned}$	1.94 0.57 0.62

Depth of Channel, in inches.	8	8	6	6	6	5	4
Weight per yard, in lbs ...	50	30	60	48	24	17	$13 \frac{1}{2}$
Width of flange, in inches	2.25	1.94	2.50	2.25	1.85	1.44	1.44
Thickness of web, in inches	0.38	0.21	0.61	0.53	0.21	0.19	0.17
Increase for 10 lbs . weight.	0.12	0.12	0.17	0.17	0.17	0.20	0.25
Moment of inertia,	43.4	27.8	27.6	21.9	13.3	6.20	3.25
Increase for 10 lbs . weight,	5.3	5.3	3.0	3.0	3.0	2.09	1.33
Moment of resistance, axis	10.85	6.95	9.30	7.30	4.43	2.48	1.62
Increase for 10 lbs. weight, horizontal,	1.33	1.33	1.00	1.00	1.00	0.84	0.67
Radius of gyration, \boldsymbol{r}	2.95	3.05	2.15	2.14	2.35	1.91	1.55
" " r^{2}	8.70	9.30	4.60	4.57	5.55	3.65	3.41
$\text { Safe load }=\frac{\text { co-efficient }}{\text { length in ft. }}\left\{\begin{array}{c} \text { fiber strain } \\ 12,000 \text { lbs.p. } \mathrm{a}^{\prime \prime} \end{array}\right\}$	86,800	55,600	73,600	58,400	35,400	19,900	13,000
Increase of co-efficient for 10 lbs . weight. .	10,600	10,600	8,000	8,000	8,000	6,700	5,300
$\text { Safe load }=\frac{\text { co-efficient }}{\text { length in } \mathrm{ft} .}\left\{\begin{array}{c} \text { fiber strain } \\ 10,000 \text { lbs. } . .^{\prime \prime} \end{array}\right\}$	72,200	46,300	61,300	48,600	29,500	16,600	10,800
Increase of co-efficient for 10 lbs . weight.	8,800	8,800	6,700	6,700	6,700	5,600	4,400
					0.74	0.31	
Center of grav. from back of $\left.[,\} \begin{array}{c}\text { axis } \\ \text { vertical },\end{array}\right\}$	$\begin{aligned} & 2.60 \\ & 0.61 \end{aligned}$	0.53	0.77	0.61	0.54	0.45	0.38
Radius of gyration, ${ }^{\text {a }}$ vertical,		0.58	0.69	0.60	0.55	0.43	0.41

The Co-efficients of Strength are calculated for a maximum strain of $12,000 \mathrm{lbs}$. per sq. inch in the most extreme fiber.

Size of T	Area in sq. inches.	Weight per ft. Lbs.	Distance of Center from top.	Neutral Axis parallel to flange.				Neutral Axis square to flange.			
				Mom't of Inertia.	Mom't of Resist'ce.	Co-effic. of Strength.	Radius of Gyration.	Mom't of Inertia.	Mom't of Resist'ce.	Co-effic. of Strength.	Radius of Gyration.
$6 \times 4 \times \frac{1}{2}$	4.75	16.	0.99	6.25	2.07	16,560	1.15	9.04	3.01	24,080	1.41
$5 \times 3 \times \frac{1}{2}$	3.75	12.5	0.75	2.58	1.10	8,800	0.83	5.23	2.10	16,800	1.18
$5 \times 2 \frac{1}{2} \times \frac{1}{2}$	3.50	11.7	0.61	1.53	0.81	6,480	0.66	5.20	2.08	16,640	1.22
$4 \times 4 \times \frac{1}{2}$	3.75	12.5	1.19	5.51	1.97	15,760	0.72	2.70	1.35	10,800	0.85
$4 \times 2 \times \frac{3}{8}$	2.09	7.0	0.48	0.58	0.37	2,960	0.54	2.02	1.01	8,080	0.98
$3 \frac{1}{\frac{1}{2} \times 3 \frac{1}{2} \times \frac{1}{2}}$	3.25	11.	1.06	3.63	1.50	12,000	1.06	1.82	1.04	8,320	0.75
$3 \times 4 \times \frac{1}{2}$	3.25	11.	1.33	5.01	1.88	15,040	1.24	1.16	0.77	6,160	0,60
$3 \times 3 \times \frac{1}{2}$	2.75	9.	0.93	2.22	-1.08	8,640	0.90	1.15	0.75	6,160	0.65
$3 \times 2 \times \frac{3}{8}$	1.70	5.7	0.55	0.53	0.36	2,880	0.56	0.86	0.57	4,5611	0.71
$3 \times 21 \times \frac{3}{8}$	1.51	5.	0.40	0.22	0.20	1,600	0.34	0.57	0.455	3,640	0.62
$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{3}{8}$	1.72	5.7	0.77	0.97	0.56	4,480	0.75	0.50	0.400	3,200	0.54
$2{ }_{4}^{1} \times 1 \frac{1}{4} \times \frac{1}{4}$	0.81	2.7	0.32	0.09	0.097	776	0.105	0.24	0.214	1,712	0.55
$2 \times 2 \times \frac{5}{16}$	0.95	3.2	0.59	0.35	0.25	2,000	0.61	0.17	0.170	1,360	0.42
$1{ }_{4}^{3} \times 1{ }^{3} \times \frac{1}{4}$	0.82	2.7	0.52	0235	0.192	1,536	0.54	0.11	0.125	1,000	0.37
$1{ }_{1}^{1} \times 1 \times 12 \times \frac{1}{4}$	0.68	2.3	0.47	- 0.138	0.144	1,152	0.45	0.073	0.099	792	0.105
$14 \times 1{ }_{4}^{1} \times \frac{3}{16}$	0.48	1.6	0.35	0.064	0.102	816	0.365	0.031	0.050	400	. 084
$1 \times 1 \times \frac{1}{8}$	0.23	0.8	0.29	0.022	0.031	248	0.31	0.011	0.022	176	. 071

WEIGHTS

	Weights per yard for different thicknesses.										Moment ofInertia,axis throughCenter of Gravity.	Distance of Cent. of Grav. from outside of flange. Inches	Radius of Gyrat.In.	Co-efficient of Strength, max. strain 10,000lbs. per sq. inch.
Inches.	${ }^{\frac{3}{16}} 1$	$\frac{1}{4}{ }^{\prime \prime}$	$\frac{5}{16}{ }^{\prime \prime}$	$\frac{3}{8}{ }^{\prime \prime}$	$\frac{7}{16}{ }^{\prime \prime}$	$\frac{1}{\frac{1}{2}}$	$\frac{9}{16}^{\prime \prime}$	$\frac{5}{8 \prime \prime}$	+191"	$\frac{3}{4}{ }^{\prime \prime}$				
6×4					42.	48.	54.	60.	66.	72.	$\left\{\begin{array}{rrr}15.5 & -28.2\end{array}\right.$	1.96-2.14	1.95	$25,300-44,500$
											$\left\{\begin{array}{l}5.6 \\ 7.78-16.7\end{array}\right.$	1.61-1.82	1.60	15,300-31,200
$5 \times 3 \frac{1}{2}$				30.	35.	40.	45.	50.	55.	60.	$\{3.18-7.09$	0.86-1.07	1.05	8,000-16,600
				28.	33.	$37 \frac{1}{2}$	42.	47.	51.	56.	$\left\{\begin{array}{l}7.37-15.9 \\ 2.04\end{array}\right.$	1.70-1.90	1.60	14,600-30,600
5×3				28.	33.	35	42.	41.	51.		$\left\{\begin{array}{l}2.04-4.66 \\ 5.10-12.2\end{array}\right.$	$0.70-0.90$ $1.44-1.68$	0.86 1.45	$5,90-12,600$ $11,600-26,500$
$4 \frac{1}{2} \times 3$				26.	$30 \frac{1}{2}$	35.	$39 \frac{1}{2}$	44.	48.	$52 \frac{1}{2}$	$\left\{\begin{array}{l}5.10-1.2 \\ 1.98-4.52\end{array}\right.$	$1.44-1.68$ $0.74-0.94$	1.45 0.88	$\begin{array}{r} 11,600-26,500 \\ 6,200-13,100 \\ \hline \end{array}$
						35.			48.		$\left\{\begin{array}{l}4.18-9.14 \\ 9.99-6.65\end{array}\right.$	1.20-1.40	1.27	9,900-20,600
4×3				26.		35.	$39 \frac{1}{2}$	44			$\left\{\begin{array}{l}2.99-6.65 \\ 3.96-8.70\end{array}\right.$	0.96-1.16	1.08	7,800-16,600
4×3				24.	28.	32.	36.	40.	44.		$\left\{\begin{array}{l}3.96-8.70 \\ 1.92-4.38\end{array}\right.$	$1.28-1.49$ $0.78-0.99$	1.28 0.90	$\begin{aligned} & 9,7110-20,000 \\ & 5,800-12,000 \end{aligned}$
3×2		12.	15.	18.	21.	24.					1.09-2.36	0.99-1.13	0.97	3,600-7,400
$2 \ddagger \times 1 \downarrow$	6.5	8.7	11.											
$2 \times 1 \frac{3}{7}$	6.5	8.7	11.											
$1{ }^{\frac{3}{8}} \times 1 \frac{1}{8}$	4.2	5.6	7.											

I BEAMS.

The following tables are designed for practical use, to guide the selection of the most economical beam, by simple inspection, when the load and the span between centers of supports are given. The maximum fiber strain assumed is 12,000 lbs. per square inch, which is sufficient for all building purposes. Where beams have to carry moving loads, as in bridges, etc., this maximum fiber strain should be reduced; but for entirely permanent and dead loads, it may be increased with safety up to $16,000 \mathrm{lbs}$. per square inch, as the limit of elasticity is at least fifty per cent. larger than this. The corresponding bearing capacity of beams can be easily found by simply multiplying the safe loads given in the table by the proportion of maximum strain allowed. The deflections for each greater load are always in proportion to the loads.

Another table has been calculated for the safe loads which may be carried by beams not supported sideways. This table is calculated from Rankine's formula,

$$
b=\frac{a}{1+\frac{l^{2}}{5000 w^{2}}}
$$

in which $a=$ the strain allowed in beams braced sideways, $l=$ length in inches, and $w=$ width in inches.
Safe Loads，in tons of 2000 lbs．uniformly distributed，and corresponding DEFLECTIONS in inches for maximum fiber strains of $\mathbf{1 2 , 0 0 0} \mathrm{lbs}$ ．per sq．inch（beams being secured against yielding sideways）．

$\stackrel{i}{i 0}$	20	¢゙			にたたたた $100^{\circ} 0^{\circ}$
		冗๊		10\％ONT	OROOCOL？ Dio 북
	8	⿷匚 犬i			にた \％\％ 00000°
$\stackrel{1}{4}$	\％				

Depth

THE PASSAIC ROLLING MILL COMPANY.

Depth		$8{ }^{\prime \prime}$		7 '		$6^{\prime \prime}$		6		$6{ }^{\prime \prime}$		$5{ }^{\prime \prime}$		$5{ }^{\prime \prime}$		$4^{\prime \prime}$		4		$4^{\prime \prime}$
(Weight per		65		60		90		50		40		40		30		37		30		18
$\begin{aligned} & \text { Span in } \\ & \text { feet. } \end{aligned}$	$\frac{L_{\text {Load }}}{\text { Ton }}$	Defl.	Load	Def.	$\left\|\frac{\text { Load }}{T i n c}\right\|$	Defl.	Load	Defl.	$-\frac{\text { Load }}{T}$	$\mathrm{d} \left\lvert\, \begin{aligned} & \text { Def. } \\ & \hline \end{aligned}\right.$	Load	Def.	$\left.\frac{\text { Load }}{T} \right\rvert\,$	$\mathrm{d} \left\lvert\, \frac{\text { Defl. }}{}\right.$	$\frac{\text { Load }}{r}$	Defl.	Load	Defl.	$\frac{\text { Load }}{\mathrm{m}}$	Defl.
5	$\begin{aligned} & \text { Tons } \\ & 14.2 \end{aligned}$	$\begin{aligned} & \text { In. } \\ & 0.04 \end{aligned}$	$\begin{aligned} & \text { Tons } \\ & 10.3 \end{aligned}$	$\begin{aligned} & \mathrm{In} \\ & 0.05 \end{aligned}$	$\begin{array}{r} \overline{\text { Tóns }} \\ 513.7 \end{array}$	$\begin{aligned} & \mathrm{In} \\ & 0.06 \end{aligned}$	$\begin{aligned} & \text { Tons } \\ & 7.74 \end{aligned}$	$\begin{array}{ll} 5 & \mathrm{In}^{\prime} \\ \hline 0.06 \end{array}$	$\begin{array}{\|c} \hline \text { Tons } \\ 6.20 \end{array}$	$\begin{aligned} & \text { In. } \\ & 0.06 \end{aligned}$	$\begin{aligned} & \text { Tons } \\ & 4.83 \end{aligned}$		$\begin{aligned} & \text { Tons } \\ & 4.06 \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \overline{\mathrm{In}} . \\ & 0.07 \end{aligned}$	$\begin{aligned} & \overline{\text { Tons }} \\ & 3.68 \end{aligned}$	$\begin{array}{l\|l} \mathrm{s} & \mathrm{In} . \\ 8 & 0.08 \end{array}$	$\begin{aligned} & \overline{\text { Tons }} \\ & 83.04 \end{aligned}$	$\begin{array}{l\|l} 1 \mathrm{In} & \mathrm{In} \\ 4 & 0.08 \\ \hline \end{array}$	$\begin{gathered} \text { Tons } \\ \mathbf{2 . 0 4} \end{gathered}$	$\begin{array}{l\|l} 5 & \text { In. } \\ 4 & 0.0 \end{array}$
6	11.8	0.06	8.6	0.07	11.4	0.08	6.5	0.08	5.17	0.08	4.02	2.10	3.88	80.10	3.06	60.12	2.53	30.12	1.70	0.12
7	10.2	0.09	7.4	0.09	9.8	0.11	5.5	0.11	4.4	0.11	3.45	550.14	2.90	00.14	2.63	30.17	72.18	80.17	1.46	0.17
8	8.9	0.11	6.4	0.13	8.5	0.15	4.8	0.15	3.88	0.15	3.02	20.18	2.55	0.18	2.30	0.22	1.90	00.22	1.28	0.22
	7.9		5.7	0.16	7.6	0.19	4.3	0.19	3.46	0.19	2.69	990.22	2.26	60.22	2.05	0.28	1.70	0.28	1.13	0.28
10	7.1	0.17	5.1	$\overline{0.20}$	6.8		3.9	0.23	$\overline{3.10}$	023	2.41	$11 \overline{0.28}$	$\overline{2.03}$	$\overline{0.28}$	1.84	$4 \overline{0.35}$	1.52	$\overline{0.35}$	1.02	0.35
11	6.5	0.21	4.7	0.24	6.2	0.28	3.5	0.28	2.83	0.28	2.20	00.33	1.85	0.33	1.68	0.42	1.39	0.42	0.93	0.42
12	5.9	0.25	4.3	0.29	5.7	0.33	$\begin{aligned} & 0.0 \\ & 3.2 \end{aligned}$	0.33	2.59	0.33	2.02	20.40	1.70	0.40	1.54	40.50	1.27	0.50	0.85	0.50
13	5.5	0.29	4.0	0.34	5.3	0.39	3.0	0.39	9.40	0.39	1.86	60.47	1.56	0.47	1.42	20.59	1.17	0.59	0.78	0.59
14	5.1	0.34	3.7	0.39	4.9	0.45	2.8	0.45	2.22	0.45	1.73	$\begin{array}{lll} & 0.54 \\ \hline \end{array}$	1.45	0.54	1.32	0.68	1.09	$\underline{0.68}$	0.74	40.68
15	4.7	$\overline{0.39}$	3.4	$\overline{0.45}$	4.6	0.52	2.6	0.52	2.07	$\overline{0.52}$	1.61	$1 \overline{0.62}$	1.35	$5 \overline{0.62}$	$\overline{1: 23}$	30.78	1.01	$1 \overline{0.78}$	0.68	0.78
16	4.4	0.44	3.2	0.51	4.3	0.59	2.4	0.59	1.94	0.59	1.52	0.71	1.27	0.71	1.15	0.89	0.95	0.89	0.64	0.89
17	4.2	0.50	3.0	0.57	4.0	0.67	2.3	0.67	1.83	0.67	1.42	120.80	1.20	0.80	1.08	1.00	0.89	1.00	0.60	1.00
18 19	3.9 3.7	0.56 0.63	2.9 2.7	$\begin{aligned} & 0.64 \\ & 0.72 \end{aligned}$	3.8 3.6	$\begin{aligned} & 0.75 \\ & 0.84 \end{aligned}$	2.15	0.75	1.73	0.75	1.34	40.90	1.13	0.90	1.02	1.13	0.84	41.13	0.57	1.13
19	3.7	0.63	2.7	0.72	3.6	0.84	20	0.84	1.64	0.84	1.27	71.00	1.07	1.00	0.97	1.25	0.80	1.25	0.54	

Safe Loads, in tons of 2000 lbs . uniformly distributed, and corresponding DEFLECTIONS in inches for maximum fiber strains of $12,000 \mathrm{lbs}$. per sq. inch (beams being secured against yielding sideways).

 Depth
 ㅇ్గㅈํํ NQNo N

THE P PASSAIC ROLLING MILL COMPANY.

Depth		$8^{\prime \prime}$		$7{ }^{\prime \prime}$		6 "		$6^{\prime \prime}$		$6{ }^{\prime \prime}$		$5{ }^{\prime \prime}$		$5{ }^{\prime \prime}$		$4{ }^{\prime \prime}$		$4{ }^{\prime \prime}$		$4^{\prime \prime}$
$\frac{\substack{\text { Weight per } \\ \text { yd. In lbs. }}}{}$		65		60		90		50		40		40		30		37		30		18
Span in feet.	Load	Defl.	Load	Defl.	Load	Defl.	ad	D	d	defl.	Load	Def.	Load	Def.	Load	d Defl.	Load	Defl.	Load	D
	Tons 3.6		$\begin{aligned} & \text { Tons } \\ & 2.6 \end{aligned}$	$\begin{gathered} \text { In. } \\ 0.79 \end{gathered}$	Tons 3.4	$\begin{aligned} & \text { In. } \\ & 0.93 \end{aligned}$	$\begin{aligned} & \text { Tons } \\ & 1.9 \end{aligned}$		Tons	In.	$\begin{aligned} & \text { Tons } \\ & 1.2 \\ & 1 \end{aligned}$	$\begin{array}{l\|l} \mathrm{In} . \\ 1.11 \\ \hline \end{array}$	Tons	10	Tons	s In.	Tons	s In .	Tons	
21	3.6 3.4	0.77	2.4	0.79 0.87	3.4	0.93 1.02	1.8	1.02	1.47	71.02	1.15	51.11	1.00	61.22	0.87	71.53	0.76 0.72	2 1.39	0.48	1.53
22	3.2	0.84	2.3	0.96	3.1	1.12	1.8	1.12	1.4	1.12	1.1	1.34	0.92	21.34	0.84	41.68	0.69	1.68	0.46	61.68
23	3.1	0.92	2.2	1.05	3.0	1.23	1.7	1.23	1.35	1.23	1.05	51.47	0.88	81.47	0.80	01.84	0.66	1.84	0.44	41.84
24	3.0	1.00	2.1	1.14	2.8	1.34	1.6	1.34	1.3	1.34	1.0	1.60	0.84	41.60	0.77	72.00	0.63	2.00	0.42	2.00
25	2.8	1.09	2.1	1.24	2.7	1.45	1.55	51.45	1.25	51.45	$\overline{0.97}$	71.73	0.81	$1 \overline{1.73}$	0.74	$4 \overline{2.17}$	0.61	$1 \overline{2.17}$	0.41	$1 \overline{2.17}$
26	2.7	1.17	2.0	1.34	2.6	1.57	1.5	1.57	1.2	1.57	0.93	31.87	0.78	81.87	0.71	12.35	0.58	2.35	0.39	2.35
27	2.6	1.27	1.9	1.45	2.5	1.69	1.4	1.69	1.15	569	0.90	2.02	0.75	52.02	0.68	82.53	0.56	6.53	0.38	2.53
28	2.5	1.36	1.85	1.56	2.4	1.82	1.4	1.82	1.1	1.82	0.86	2.17	0.73	32.17	0.66	6.72	0.54	42.72	0.36	2.72
29	2.45	1.46	1.8	1.67	2.4	1.95	1.33	31.95	1.07	1.95	0.83	3.33	0.70	0.33	0.63	3.92	0.52	2.92	0.35	2.92
30	2.4	$\overline{1.56}$	1.7	1.79	2.3	$\overline{2.09}$	1.3	2.09	1.03	2.09	0.81	1 2.49	0.68	8 2.49	0.61	1 3.12	$\overline{0.51}$	$\overline{3.12}$	$\overline{0.34}$	3.12
31	2.3	1.67	1.67	71.91	2.2	2.23	1.25	5.23	1.00	2.23	0.78	82.67	0.66	62.67	0.59	93.33	0.49	3.33	0.33	3.33
32	2.2	1.78	1.6	2.03	2.1	2.37	1.21	12.37	0.97	2.37	0.75	52.83	0.63	32.83	0.57	73.55	0.47	3.55	0.32	3.55
33	2.15	1 1.89	1.57	2.16	2.07	72.52	1.18	82.52	0.94	42.52	0.73	33.01	0.62	2 3.01	0.56	63.78	0.46	3.78	0.31	13.78
34	2.10	2.00	1.52	2.30	2.00	0.68	1.14	42.68	091	12.68	0.71	13.20	0.60	03.20	0.54	44.00	0.46	4.00	0.30	4.00

THE PASSAIC ROLLING MILL COMPANY. 53

FLOORS.

Rolled iron beams are extensively used in the construction of fire-proof floors. For the selection of the required beams, it is first necessary to ascertain the load to be carried per square foot of floor. This may vary considerable, according to the purposes for which the building is intended. The weight of a fire-proof floor one-half brick in thickness is from 60 to 70 lbs. per square foot. For halls, theaters, churches, etc., an additional load from 70 to 80 lbs . per square foot should be added. This is the weight of a closely packed crowd of people. Generally, the same load will be sufficient for factories. Floors of warehouses have frequently very large loads, from 200 lbs . per square foot up to even 400 lbs . per square foot, according to the nature of the merchandise stored.

The beams used in floors should not only be strong enough to carry the superimposed loads, but also sufficiently rigid to prevent vibration. The deflection should not exceed onethirtieth of an inch per foot of span. A good rule is to have no beam of less depth than one twenty-fourth of the clear span, or the beams should have a depth of one-half inch for each foot of span. If it is necessary to use shallower beams, the strains should be reduced so that the deflection is no larger than stated above. Generally, of two beams of the same carrying capacity, the deeper beam is the most economical and the stiffer one also.

The plates 12,13 , and 14 show several connections of beams and girders forming floors.

The beams used as joists are frequently laid on top of the girders and walls. If the lower sides of the joists and girders have to be flush, the joists are framed or coped into the girders, so that they rest on their bottom flange. In this case they are connected to the web of the girders by angle iron flanges or knees, which are riveted or bolted to both girder and joist. The same connections are used in the
construction of openings for stair-wa s, fatch-ways, et ends of joists or beams should rest onbearirgalifte? Niner of iron or of stone, so as to distribute the pressure over the brick-work; also, anchors have to be connected to the ends in the wall. Tie-rods, three-fourths to one inch in diameter, are used to tie the joists together and take up the thrust of the arches. Concrete is frequently used instead of brick arches. Corrugated iron is placed between the joists, resting on the lower flanges, and concrete is laid top of it. Also, hollow bricks and blocks of different shapes have been used for fire-proof floors. These have the advantage of reducing the dead load considerably. They may be used for flat or segmental arches.

Girders consisting of two or more beams are used when single beams do not give the necessary strength. Usually, they are bolted together with cast-iron separators. For carrying walls, it is necessary to have girders consisting of at least two beams, so as to give sufficient width. The beams should have separators near the supports, and besides these, from five to seven feet apart. A table of the weight of CastIron Separators is given here below.

Approximate Weights of Separators and Bolts.

Size of Beam.	Weight of Sep. and one Bolt, Flanges being $1 / 4^{\prime \prime}$ apart.	Increase in Wt. for $1^{\prime \prime}$ increase in width of Sep.	Size of Beam.	Weight of Sep. and one Bolt, Flanges being $1 /{ }^{\prime \prime}$ apart.	Increase in Wt. for $1^{\prime \prime}$ increase in width of Sep.
$15^{\prime \prime} \times 200$	$20 \frac{1}{2} \mathrm{lbs}$.	$3{ }_{4}^{3} \mathrm{lbs}$.	$9^{\prime \prime} \times 8{ }^{5}$	$9 \frac{1}{2} \mathrm{lbs}$.	23 lbs .
$15{ }^{\prime \prime} \times 150$	$18 \frac{1}{2}$ "	3_{4}^{33} "	$9^{\prime \prime} \times 70$	9 "	$2 \frac{1}{2}$ "
$12^{1 / \prime \prime} \times 170$	$14 \frac{1}{2}$ "	$2 \frac{3}{4}$ "	$8^{\prime \prime} \times 80$	$9{ }_{\frac{1}{4}}$ "	$2 \frac{1}{8}$ "
$12_{4}^{\frac{11}{\prime \prime}} \times 125$	142 ${ }^{\frac{1}{2}}$		$8^{\prime \prime} \times 65$		$2 \frac{3}{8} \quad 1$
$10{ }^{\frac{1}{\prime \prime}} \times 135$	13^{1} - ${ }^{\text {c }}$		$7^{\prime \prime} \times 60$		
$10_{2}^{\prime \prime} \times 105$	$122^{\frac{1}{4}}$ "	$2 \frac{5}{8}$ "	$6^{\prime \prime} \times 90$	$8{ }^{\frac{3}{4}}$ "	$1 \frac{3}{4}$ "
$10 \underline{2}^{\prime \prime} \times 90$	12^{3} "	23 "	$6^{\prime \prime} \times 50$	$7 \frac{1}{4}$ "	$2{ }^{\prime}$
			$6^{\prime \prime} \times 40$	$6 \frac{1}{4}$ "	$17 \frac{7}{8} \quad 6$

I BEAMS，used as Flooring Joists．

Load， 70 lbs ．per $\square \mathrm{ft}$ ．

$\begin{aligned} & \text { Clear } \\ & \text { Span. } \end{aligned}$	$\stackrel{3^{\prime}}{\text { apart. }}$	$\underset{\text { apart. }}{\mathbf{3}_{1^{\prime}}}$	$\stackrel{4^{\prime}}{\text { apart. }}$	$\begin{gathered} 4 \frac{1}{2} \\ \text { apart. } \end{gathered}$	$\begin{gathered} 5^{\prime} \\ \text { apart. } \end{gathered}$	$\begin{aligned} & 5_{\frac{1_{2}^{\prime}}{2}}^{\text {apart }} \end{aligned}$	
ft ．	\square	$35 \square^{\prime}$	口	45	$50 \square^{\prime}$		
$\underset{\mathrm{I}}{\text { Load, it }}$	$\begin{gathered} 2,100 \\ 5 \times 30 \end{gathered}$	$\begin{gathered} 2,450 \\ 5 \times 30 \end{gathered}$	$\begin{gathered} 2,800 \\ 5 \times 30 \end{gathered}$	$\begin{gathered} 3,150 \\ 5 \times 30 \end{gathered}$	$\begin{gathered} 3,500 \\ 5 \times 30 \end{gathered}$	$\begin{aligned} & 3,850 \\ & \times 30 \end{aligned}$	$\begin{aligned} & 4,200 \\ & 6 \times 40 \end{aligned}$
12 ft ．	36口＇	42口＇	48ロ＇	$54 \square^{\prime}$	－	66口 ${ }^{\prime}$	
$\underset{\mathrm{I}}{\text { Load, ti }}$	$\begin{aligned} & 2,520 \\ & 5 \times 30 \end{aligned}$	$\begin{gathered} 2,940 \\ 5 \times 30 \end{gathered}$	$\begin{gathered} 3,360 \\ 5 \times 30 \end{gathered}$	$\begin{gathered} 3,780 \\ 6 \times 40 \end{gathered}$	$\begin{gathered} 4,200 \\ 6 \times 40 \end{gathered}$	$\begin{gathered} 4,620 \\ 6 \times 40 \end{gathered}$	$\begin{gathered} 5,040 \\ 6 \times 40 \end{gathered}$
14 ft ．	－	49口 ${ }^{\prime \prime}$	$56 \square^{\prime}$	63口＇	70口＇	$7 \square$	
$\underset{\mathrm{I}}{\text { Load, to }}$	$\begin{aligned} & 2,940 \\ & 5 \times 30 \end{aligned}$	$\begin{gathered} 3,430 \\ 6 \times 40 \end{gathered}$	$\begin{gathered} 3,920 \\ 6 \times 40 \end{gathered}$	$\begin{gathered} 4,410 \\ 6 \times 40 \end{gathered}$	$\begin{gathered} 4,900 \\ 6 \times 50 \end{gathered}$	$\begin{gathered} 5,390 \\ 6 \times 50 \end{gathered}$	$\times 60$
16 ft ．	48口＇	56口＇	64ロ＇	72口＇	80ロ＇	88口	
$\begin{gathered} \text { Load, tt } \\ \text { I } \end{gathered}$	$\begin{aligned} & 3,360 \\ & 6 \times 40 \end{aligned}$	$\begin{gathered} 3,920 \\ 6 \times 40 \end{gathered}$	$\begin{gathered} 4,480 \\ 6 \times 50 \end{gathered}$	$\begin{gathered} 5,040 \\ 7 \times 60 \end{gathered}$	$\begin{gathered} 5,600 \\ 7 \times 60 \end{gathered}$	$\begin{gathered} 6,160 \\ 7 \times 60 \end{gathered}$	$\begin{aligned} & 6,720 \\ & 8 \times 65 \end{aligned}$
18 ft ．	5		$72 \square$	81 ．	－	99口＇	
$\underset{\text { I }}{\text { Load, to }}$	$\begin{array}{r} 3,780 \\ 6 \times 50 \end{array}$	$\begin{gathered} 4,410 \\ 7 \times 60 \end{gathered}$	$\begin{gathered} 5,040 \\ 7 \times 60 \end{gathered}$	$\begin{gathered} 5,670 \\ 7 \times 60 \end{gathered}$	$\begin{gathered} 6,300 \\ 8 \times 65 \end{gathered}$	$\begin{gathered} 6,930 \\ 8 \times 65 \end{gathered}$	$\begin{gathered} 7,560 \\ 8 \times 65 \end{gathered}$
2			$80 \square^{\prime}$	90口＇	100	110	
$\underset{\mathrm{I}}{\text { Load, It }}$	$\begin{aligned} & 4,200 \\ & 7 \times 60 \end{aligned}$	$\begin{aligned} & 4,900 \\ & 7 \times 60 \end{aligned}$	$\begin{gathered} 5,600 \\ 8 \times 65 \end{gathered}$	$\begin{gathered} 6,300 \\ 8 \times 65 \end{gathered}$	$\begin{gathered} 7,000 \\ 8 \times 65 \end{gathered}$	$\begin{gathered} 7,700 \\ 9 \times 70 \end{gathered}$	$\begin{gathered} 8,400 \\ 9 \times 85 \end{gathered}$
22 ft			88口＇	99口＇	0 －	121口＇	
$\underset{\mathrm{I}}{\text { Load, tio }}$	$\begin{aligned} & 4,620 \\ & 7 \times 60 \end{aligned}$	$\begin{gathered} 5,390 \\ 8 \times 65 \end{gathered}$	$\begin{gathered} 6,160 \\ 8 \times 65 \end{gathered}$	$\begin{gathered} 6,930 \\ 9 \times 70 \end{gathered}$	$\begin{gathered} 7,700 \\ 9 \times 85 \end{gathered}$	$\begin{gathered} 8,470 \\ 9 \times 85 \end{gathered}$	10
24 ft ．			\square^{\prime}	108口	120	132	
$\underset{\mathrm{I}}{\text { Load, ti }}$	$\begin{aligned} & 5,040 \\ & 8 \times 65 \end{aligned}$	$\begin{gathered} 5,880 \\ 8 \times 65 \end{gathered}$	$\begin{gathered} 6,720 \\ 9 \times 70 \end{gathered}$	$\begin{gathered} 7,560 \\ 9 \times 85 \end{gathered}$	$\begin{gathered} 8.400 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\stackrel{9,240}{10 \frac{1}{2} \times 90}$	$\begin{array}{r} 10, \\ 10 \frac{1}{2} \end{array}$
		91口＇	104口	117口＇	$130 \square$	143口	
$\underset{\mathrm{I}}{\text { Load, tit }}$	$\begin{gathered} 5,460 \\ 8 \times 65 \end{gathered}$	$\begin{aligned} & 6,370 \\ & 9 \times 85 \end{aligned}$	$\begin{aligned} & 7,280 \\ & 9 \times 85 \end{aligned}$	$\begin{gathered} 8,190 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 9,100 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 10,010 \\ 10 \frac{1}{2} \times 105 \\ \hline \end{gathered}$	$12{ }_{4} \times$
	84ロ＇	98ロ＇	112口＇	126口＇	140	154口＇	
Load，th	$\begin{gathered} 5,880 \\ 9 \times 85 \end{gathered}$	$\begin{gathered} 6,860 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 7,840 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 8,820 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 9,800 \\ 10 \frac{1}{2} \times 105 \end{gathered}$	$\begin{gathered} 10,780 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\stackrel{11,760}{12 \stackrel{3}{4} \times 125}$
3	90	105ロ	0	5	150	165	180
Load，tb I	$\begin{gathered} 6,300 \\ 10 \frac{2}{2} \times 90 \end{gathered}$	$\begin{gathered} 7,350 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 8,400 \\ 10 \frac{1}{2} \times 105 \end{gathered}$	$\begin{gathered} 9,450 \\ 124 \times 125 \end{gathered}$	$\begin{aligned} & 10,500 \\ & 12 \frac{1}{6} \times 125 \end{aligned}$	$\begin{gathered} 11,550 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\begin{gathered} 12.600 \\ 124 \times 125 \end{gathered}$

I BEAMS，used as Flooring Joists．

Load， 100 lbs．per $\square \mathrm{ft}$ ．

	$\underset{\text { apart. }}{3^{\prime}}$	$\underset{\substack{3 \frac{1}{2} \\ \text { apart. }}}{ }$	4^{\prime} apart.	$\begin{aligned} & 4 \frac{1^{\prime}}{2} \\ & \text { apart. } \end{aligned}$	$\underset{\text { apart. }}{\mathbf{5}^{\prime}}$	$\begin{gathered} 5 \frac{1}{1^{\prime}} \\ \text { apart. } \end{gathered}$	$\begin{gathered} 6^{\prime} \\ \text { apart. } \end{gathered}$
10 ft	30	$35 \square^{\prime}$	40ロ＇	$45 \square$	$50 \square$	55	00＇
$\underset{\text { Load }}{\text { Lod }}$	$\begin{aligned} & 3,000 \\ & 5 \times 30 \end{aligned}$	$\begin{gathered} 3,500 \\ 5 \times 30 \end{gathered}$	$\frac{4,00}{5 \times \times}$	$\begin{aligned} & 4,500 \\ & 6 \times 40 \end{aligned}$	$\begin{array}{r} 5,000 \\ 6 \times 40 \end{array}$	$\begin{gathered} 5,500 \\ 6 \times 40 \end{gathered}$	$\begin{aligned} & 6,000 \\ & 3 \times 40 \end{aligned}$
12 ft	$36 \square$	42 口	48口	$54 \square^{\prime}$	$60 \square^{\prime}$		
Load, it	$\begin{aligned} & 3,600 \\ & 6 \times 40 \end{aligned}$	$\begin{gathered} 4,200 \\ 6 \times 40 \end{gathered}$	$\begin{gathered} 4,800 \\ 6 \times 4 \end{gathered}$	$\begin{gathered} 5,400 \\ 6 \times 50 \end{gathered}$	$\begin{gathered} 6,000 \\ 6 \times 50 \end{gathered}$	$\begin{gathered} 6,600 \\ 7 \times 60 \end{gathered}$	60
	$42 \square^{\prime}$	口	$56 \square^{\prime}$	$63 \square^{\prime}$	70	7	
	$\begin{aligned} & 4,200 \\ & 6 \times 40 \end{aligned}$	$\begin{gathered} 4,900 \\ 6 \times 50 \end{gathered}$	$5,$	$\begin{gathered} 6,300 \\ 7 \times 60 \end{gathered}$	$\begin{aligned} & 7,000 \\ & 7 \times 60 \end{aligned}$	7,70	$8,400$
	48ロ＇	56口＇					
	$\begin{gathered} 4,800 \\ 6 \times 5 \end{gathered}$	$\begin{aligned} & 5,600 \\ & 7 \times 60 \end{aligned}$	$\begin{aligned} & 6,4 \\ & 7 \end{aligned}$	$\begin{aligned} & 7,200 \\ & 8 \times 65 \end{aligned}$	$\begin{gathered} 8,000 \\ 8 \times 65 \end{gathered}$	$\begin{aligned} & 8,80 \\ & 8 \times \end{aligned}$	$\begin{aligned} & 9,600 \\ & 9 \times 70 \end{aligned}$
	5		$72 \square^{\prime}$				
0	$\begin{aligned} & 5,400 \\ & 7 \times 60 \end{aligned}$	$\begin{gathered} 6,300 \\ 8 \times 65 \end{gathered}$	$\begin{gathered} 7,200 \\ 8 \times 65 \end{gathered}$	$\begin{aligned} & 8,100 \\ & 9 \times 70 \end{aligned}$	$\begin{aligned} & 9,00 \\ & 9 \times \\ & 9 \times \end{aligned}$	$\begin{gathered} 9,900 \\ 9 \times 85 \end{gathered}$	$\begin{gathered} 10,800 \\ 10 \frac{1}{2} \times 90 \end{gathered}$
	$\begin{array}{r} 6,000 \\ 8 \times 65 \end{array}$	$\begin{gathered} 7,000 \\ 8 \times 65 \end{gathered}$	$\begin{gathered} 8,000 \\ 9 \times 70 \end{gathered}$	$\begin{aligned} & 9,000 \\ & 9 \times 85 \end{aligned}$	$\begin{gathered} 10,000 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 11,000 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	
		$77 \square$	88口				
Lo	$\begin{gathered} 6,600 \\ 9 \times 70 \end{gathered}$	$\begin{gathered} 7,700 \\ 9 \times 85 \end{gathered}$	$\begin{gathered} 8,800 \\ 10 \frac{1}{2} \times 901 \end{gathered}$	$\begin{gathered} 9,900 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 11,000 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 12,100 \\ 10 \frac{1}{2} \times 105 \end{gathered}$	$\stackrel{13,200}{12 \frac{1}{4} \times 125}$
				108口			
$\begin{gathered} \text { Load, } \\ \text { I } \end{gathered}$	$\begin{aligned} & 7,200 \\ & 9 \times 85 \end{aligned}$	$\begin{gathered} 8,400 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 9,600 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 10,800 \\ 10 \frac{1}{2} \times 105 \end{gathered}$	$12 \frac{12,000}{12} \times 125$	$\begin{gathered} 13,200 \\ 12 \frac{3}{4} \times 125 \end{gathered}$	$\begin{gathered} 14,400 \\ 12 \frac{1}{4} \times 125 \end{gathered}$
Load, is	$\begin{gathered} 7,800 \\ 10 \frac{2}{2} \times 90 \end{gathered}$	$\begin{array}{r} 9,100 \\ 10 \frac{1}{2} \times 9 \end{array}$	$\begin{gathered} 10,400 \\ 10 \frac{1}{2} \times 105 \end{gathered}$	$\begin{gathered} 11,700 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\begin{gathered} 13,000 \\ \hline 124 \times 125 \end{gathered}$	$\begin{gathered} 14,300 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\begin{gathered} 15,600 \\ 15 \times 150 \end{gathered}$
						$154{ }^{\prime}$	
Load，it	$\begin{gathered} 8,400 \\ 102 \times 90 \end{gathered}$	$\begin{gathered} 9,800 \\ 10 \frac{8}{6} \times 105 \end{gathered}$	$\begin{gathered} 11,200 \\ 121 \times 125 \end{gathered}$	$\begin{gathered} 12,600 \\ 124 \times 125 \end{gathered}$	$14,000$	$\begin{gathered} 15,400 \\ 15 \times 150 \end{gathered}$	$16,800$
30		105口＇	120	135口＇	150	165	180■＇
ad，	，000	10，5	12，0	13，500	15，00		
	$10 \frac{1}{2} \times 105$	12＋1	12×125	15×150	15×150	15×150	15×150

I BEaMS，used as Flooring Joists． Load， 150 lbs．per $\square \mathrm{ft}$ ．

Clear Span．	$\begin{gathered} 3^{\prime} \\ \text { apart. } \end{gathered}$	$\begin{gathered} 3 k_{2}^{\prime} \\ \text { apart. } \end{gathered}$	$\underset{\text { apart. }}{4^{\prime}}$	$\begin{aligned} & 4 \frac{1_{2}^{\prime}}{\prime} \\ & \text { apart. } \end{aligned}$	$\underset{\text { apart. }}{5^{\prime}}$	$5 \frac{1_{2}^{\prime}}{2}$ apart.	6^{\prime} apart.
10 ft ．	$30 \square^{\prime}$	35 口＇	40口＇	45ロ＇	$50 \square^{\prime}$	55	\square
$\underset{\text { I }}{\text { Load, tit }}$	$\begin{gathered} 4,500 \\ 6 \times 40 \end{gathered}$	$\begin{gathered} 5,250 \\ 6 \times 40 \end{gathered}$	$\begin{array}{r} 6,000 \\ 6 \times 40 \end{array}$	$\begin{gathered} 6,750 \\ 6 \times 50 \end{gathered}$	$\begin{gathered} 7,500 \\ 6 \times 50 \end{gathered}$	$\begin{gathered} 8,250 \\ 7 \times 60 \end{gathered}$	$\begin{gathered} 9,000 \\ 7 \times 60 \end{gathered}$
12 ft ．	36口	42口＇	${ }^{\prime}$	$54 \square^{\prime}$	$60 \square^{\prime}$	66口＇	
$\underset{\mathrm{I}}{\mathrm{Load}, \text { ti }}$	$\begin{array}{r} 5,400 \\ 6 \times 50 \end{array}$	$\begin{array}{r} 6,300 \\ 6 \times 50 \end{array}$	$\begin{gathered} 7,200 \\ 7 \times 60 \end{gathered}$	$\begin{gathered} 8,100 \\ V \times 60 \end{gathered}$	$\begin{gathered} 9,000 \\ 8 \times 65 \end{gathered}$	$\begin{gathered} 9,900 \\ 8 \times 65 \end{gathered}$	$\begin{aligned} & 10,800 \\ & 8 \times 65 \end{aligned}$
14 ft ．	口	49口＇	56	口	$70 \square^{\prime}$	77口＇	
$\underset{\text { I }}{\substack{\text { Load, tb }}}$	$\begin{gathered} 6,300 \\ 7 \times 60 \end{gathered}$	$\begin{gathered} 7,350 \\ 7 \times 60 \end{gathered}$	$\begin{gathered} 8,400 \\ 8 \times 65 \end{gathered}$	$\begin{gathered} 9,450 \\ 8 \times 65 \end{gathered}$	$\begin{aligned} & 10,500 \\ & 9 \times 70 \end{aligned}$	$\begin{aligned} & 11,550 \\ & 9 \times 85 \end{aligned}$	$\begin{aligned} & 12,600 \\ & 9 \times 85 \end{aligned}$
16 ft ．	\square	\square	640＇	72	80口 ${ }^{\prime}$	88ロ＇	
$\underset{\text { I }}{\substack{\text { Load, tb }}}$	$\begin{gathered} 7,200 \\ 8 \times 65 \end{gathered}$	$\begin{aligned} & 8,400 \\ & 8 \times 65 \end{aligned}$	$\begin{aligned} & 9,600 \\ & 9 \times 70 \end{aligned}$	$\begin{aligned} & 10,800 \\ & 9 \times 85 \end{aligned}$	$\begin{array}{r} 12,000 \\ 10 \frac{1}{2} \times 90 \end{array}$	$\begin{gathered} 13,200 \\ 10 \frac{2}{2} \times 90 \end{gathered}$	$\stackrel{14,400}{10 \frac{2}{2} \times 90}$
18	54ロ＇	$63 \square^{\prime}$	$72{ }^{\prime}$	81口＇	90口＇	99 ${ }^{\prime}$	
$\underset{\text { I }}{\text { Load }}$	$\begin{aligned} & 8,100 \\ & 9 \quad 70 \end{aligned}$	$\begin{aligned} & 9,450 \\ & 9 \times 85 \end{aligned}$	$\begin{gathered} 10,800 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{array}{r} 12,150 \\ 10 \frac{1}{2} \times 90 \\ \hline \end{array}$	$\begin{gathered} 13,500 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 14,850 \\ 10 \frac{3}{2} \times 105 \end{gathered}$	$\begin{array}{r} 16,200 \\ 12 \frac{1}{4} \times 12 \end{array}$
20 ft	60■	$70 \square^{\prime}$	80口＇	口＇	10	110口＇	
$\underset{\mathrm{I}}{\text { Load, it }}$	$\begin{aligned} & 9,000 \\ & 9 \times 85 \end{aligned}$	$\begin{gathered} 10,500 \\ 10 \frac{2}{2} \times 90 \end{gathered}$	$\begin{array}{r} 12,000 \\ 10 \frac{1}{2} \times 90 \end{array}$	$\begin{array}{r} 13,500 \\ 10 \frac{1}{2} \times 105 \end{array}$	$\begin{gathered} 15,000 \\ 12 \frac{3}{4} \times 125 \end{gathered}$	$\begin{gathered} 16,500 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\begin{array}{r} 18,000 \\ 12 \frac{1}{4} \times 12 \end{array}$
22 ft ．	口	ロ	88口＇	99 ${ }^{\prime}$	110	121	
$\underset{\mathbf{I}}{\text { Load, tib }}$	$\begin{gathered} 9,900 \\ 10 \frac{2}{2} \times 90 \end{gathered}$	$\underset{10 \frac{1}{2} \times 105}{11,550}$	$\begin{gathered} 13,200 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\begin{gathered} 14,850 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\begin{gathered} 16,500 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\stackrel{18,150}{15 \times 150}$	
24 ft ．	$72 \square$	84口＇	96口＇	108口 ${ }^{\prime}$	120口＇	132口＇	144
$\underset{\mathrm{I}}{\mathrm{Load}, \text { it }}$	$\begin{gathered} 10,800 \\ 10 \frac{1}{2} \times 105 \end{gathered}$	$\begin{gathered} 12,600 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\begin{gathered} 14,400 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\begin{gathered} 16,200 \\ 12 \frac{1}{2} \times 125 \end{gathered}$	$\begin{array}{r} 18,000 \\ 15 \times 150 \end{array}$	$\begin{gathered} 19,800 \\ 15 \times 150 \end{gathered}$	$\begin{gathered} 21,600 \\ 15 \times 150 \end{gathered}$
26 ft	$78 \square$	91口＇	104口	${ }^{\prime}$	13	143口	
Load，th	$\begin{gathered} 11,700 \\ 12 \frac{2}{4} \times 125 \end{gathered}$	$1 \begin{gathered} 13,650 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\begin{array}{r} 15,600 \\ 15 \times 150 \end{array}$	$\begin{gathered} 17,550 \\ 15 \times 150 \end{gathered}$	$\begin{array}{r} 19,500 \\ 15 \times 150 \end{array}$	$\begin{gathered} 21,450 \\ 15 \times 150 \end{gathered}$	$\begin{array}{r} 23,400 \\ 15 \times 200 \end{array}$
28 ft ．	84 \square^{\prime}	98口	$112 \square$	126口＇	140口＇	154	，
$\underset{1}{\text { Load, } 1 \text { tb }}$	$\begin{gathered} 12,600 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\begin{gathered} 14,700 \\ 15 \times 150 \end{gathered}$	$\begin{gathered} 16,800 \\ 15 \times 150 \end{gathered}$	$\begin{array}{r} 18,900 \\ 15 \times 150 \end{array}$	$\begin{array}{r} 21,000 \\ 15 \times 200 \end{array}$	$\begin{gathered} 23,100 \\ 15 \times 200 \end{gathered}$	15×200
3	$90 \square^{\prime}$	10	120口＇	135■＇	150口＇	165口	180
$\underset{\mathrm{I}}{\text { Load, to }}$	$\left\|\begin{array}{c} 13,500 \\ 15 \times 150 \end{array}\right\|$	$\begin{gathered} 16,250 \\ 15 \times 150 \end{gathered}$	$\begin{array}{r} 18,000 \\ 15 \times 150 \end{array}$	$\begin{array}{r} 20,250 \\ 15 \times 200 \end{array}$	$\begin{aligned} & 22,500 \\ & 15 \times 200 \end{aligned}$	$\begin{gathered} 24,750 \\ 15 \times 200 \end{gathered}$	$\begin{array}{r} 27,000 \\ 2-15 \times 1 \end{array}$

I BEAMS，used as Flooring Joists．

Load， 200 lbs ．per $\square \mathrm{ft}$ ．

Clear Span．	$\begin{gathered} \mathbf{3}^{\prime} \\ \text { apart. } \end{gathered}$	$\begin{array}{r} 3 \frac{1}{1^{\prime}} \\ \text { apart. } \end{array}$	$\underset{\text { apart. }}{\mathbf{4}^{\prime}}$	$\begin{array}{r} 4 \frac{1}{2} \\ \text { apart. } \end{array}$	$\begin{gathered} 5^{\prime} \\ \text { apart. } \end{gathered}$	$\begin{gathered} 5 \frac{1}{\prime} \frac{1}{\prime}^{\prime} \\ \text { apart. } \end{gathered}$	$\begin{gathered} \mathbf{6}^{\prime} \\ \text { apart. } \end{gathered}$
10 ft ．	$30 \square^{\prime}$	35－${ }^{\prime}$	40口＇	45ロ＇	$50 \square^{\prime}$	$55 \square^{\prime}$	60口 ${ }^{\prime}$
$\left\lvert\, \begin{gathered} \text { Load, tit } \\ \text { Len } \\ \hline \end{gathered}\right.$	$\begin{gathered} 6,090 \\ 6 \times 40 \end{gathered}$	$\begin{aligned} & 7,000 \\ & 6 \times 50 \end{aligned}$	$\begin{aligned} & 8,000 \\ & 7 \times 60 \end{aligned}$	$\begin{gathered} 9,000 \\ 7 \times 60 \end{gathered}$	$\begin{aligned} & 10,000 \\ & 7 \times 60 \end{aligned}$	$\begin{aligned} & 11,000 \\ & 8 \times 65 \end{aligned}$	$\begin{gathered} 12,000 \\ 8 \times 65 \end{gathered}$
ft ．	$36 \square^{\prime}$	42口＇	48 ${ }^{\prime}$	$54 \square^{\prime}$	$60 \square^{\prime}$	66ロ＇	$72{ }^{\text {a }}$
$\left\lvert\, \begin{gathered} \text { Load, } 16 \\ \mathrm{I}, \end{gathered}\right.$	$\begin{gathered} 7,200 \\ 7 \times 60 \end{gathered}$	$\begin{aligned} & 8,400 \\ & 7 \times 60 \end{aligned}$	$\begin{aligned} & 9,600 \\ & 8 \times 65 \end{aligned}$	$\begin{aligned} & 10,800 \\ & 8 \times 65 \end{aligned}$	$\begin{aligned} & 12,000 \\ & 9 \times 70 \end{aligned}$	$\begin{array}{r} 13,200 \\ 9 \times 70 \end{array}$	$\begin{aligned} & 14,400 \\ & 9 \times 85 \end{aligned}$
ft ．	$42 \square^{\prime}$	49口＇	56口 ${ }^{\prime}$	63口＇	70口 ${ }^{\prime}$	77口＇	84口＇
$\underset{\mathrm{I}}{\text { Load, it }}$	$\begin{array}{r} 8,400 \\ 8 \times 65 \end{array}$	$\begin{aligned} & 9,800 \\ & 8 \times 65 \end{aligned}$	$\begin{aligned} & 11,200 \\ & 9 \times 70 \end{aligned}$	$\begin{aligned} & 12,60 C \\ & 9 \times 85 \end{aligned}$	$\begin{array}{r} 14,000^{6} \\ 10 \frac{2}{2} \times 90 \end{array}$	$\begin{gathered} 15,400 \\ 10 \frac{1}{9} \times 90 \end{gathered}$	$\begin{gathered} 16,800 \\ 10 \frac{1}{2} \times 90 \end{gathered}$
16 ft ．	48口1	$56 \square^{\prime}$	64口＇	72口＇	$80{ }^{\prime}$	88ロ＇	96口＇
$\begin{gathered} \text { Load, it } \\ 1 \end{gathered}$	$\begin{aligned} & 9,600 \\ & 9 \times 7 v \end{aligned}$	$\begin{aligned} & 11,200 \\ & 9 \times 85 \end{aligned}$	$\begin{gathered} 12,800 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 14,400 \\ 10 \frac{1}{2} \times 9 \mathrm{C} \end{gathered}$	$\left\lvert\, \begin{gathered} 16,000 \\ 10 \frac{1}{2} \times 105 \end{gathered}\right.$	$\begin{gathered} 17,600 \\ 10 \frac{7}{3} \times 105 \end{gathered}$	$\begin{gathered} 19,200 \\ 10 \frac{1}{2} \times 135 \end{gathered}$
18 ft ．	54ロ＇	$63 \square^{\prime}$	72口＇	81ロ＇	90口＇	99口＇	108 ${ }^{\prime}$
$\underset{\mathrm{I}}{\text { Load, it }}$	$\begin{gathered} 10,800 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 12,600 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 14,400 \\ 102 \times 105 \end{gathered}$	$\begin{gathered} 16,200 \\ 12 \times 125 \end{gathered}$	$\begin{gathered} 18,000 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\begin{gathered} 19,800 \\ 12 \frac{4}{4} \times 125 \end{gathered}$	$\begin{gathered} 21,600 \\ 12^{\frac{1}{4}} \times 125 \end{gathered}$
20 ft ．	C0ロ＇	$70 \square^{\prime}$	80＇${ }^{\prime}$	$90 \square^{\prime}$	100口 ${ }^{\prime}$	$110 \square^{\prime}$	$120 \square^{\prime}$
Load， I （tb	$\begin{gathered} 12,000 \\ 10 \frac{1}{2} \times 90 \end{gathered}$	$\begin{gathered} 14,000 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\begin{gathered} 16,000 \\ 12 \div 125 \end{gathered}$	$\begin{gathered} 18,008 \\ 12 \frac{4}{4} \times 125 \end{gathered}$	$\begin{gathered} 20,000 \\ 15 \times 150 \end{gathered}$	$\begin{gathered} 22,000 \\ 15 \times 150 \end{gathered}$	$\begin{gathered} 24,000 \\ 15 \times 150 \end{gathered}$
22 ft ．	66口＇	77口＇	88ロ＇	99 \square^{\prime}	110 \square^{\prime}	121ロ＇	132 ${ }^{\prime}$
$\left\|\begin{array}{c} \text { Load, 15 } \\ \mathrm{I} \end{array}\right\|$	$\begin{gathered} 13,200 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\begin{gathered} 15,400 \\ 12 \frac{1}{4} \times 125 \end{gathered}$	$\begin{gathered} 17,600 \\ 12 \times 125 \end{gathered}$	$\begin{gathered} 19,800 \\ 15 \times 150 \end{gathered}$	$\begin{gathered} 22,000 \\ 15 \times 150 \end{gathered}$	$\begin{gathered} 24,200 \\ 15 \times 150 \end{gathered}$	$\begin{gathered} 26,400 \\ 15 \times 200 \end{gathered}$
24 ft ．	72口＇	84ロ＇	96口＇	108 ${ }^{\prime}$	120口	132口＇	\square^{\prime}
$\underset{\mathrm{I}}{\mathrm{~L} \text { Load, tit }}$	$14,400$	$\begin{aligned} & 16,800 \\ & 15 \times 150 \end{aligned}$	$\begin{array}{r} 19,200 \\ 15 \times 150 \end{array}$	$\begin{aligned} & 21,600 \\ & 15 \times 150 \end{aligned}$	$\begin{array}{r} 24,000 \\ 15 \times 200 \end{array}$	$\begin{gathered} 26,400 \\ 15 \times 200 \end{gathered}$	$\begin{gathered} 28,800 \\ 15 \times 200 \end{gathered}$
26 ft ．	78ロ＇	91口＇	104口	117口＇	130口 ${ }^{\prime}$	143口＇	156口＇
$\mid \underset{\text { I }}{\text { Load, tit }}$	$\begin{array}{r} 15,600 \\ 15 \times 150 \end{array}$	$\begin{gathered} 18,200 \\ 15 \times 150 \end{gathered}$	$\begin{array}{r} 20,800 \\ 15 \times 150 \end{array}$	$\begin{gathered} 23,400 \\ 15 \times 200 \end{gathered}$	$\begin{gathered} 26,000 \\ 15 \times 200 \end{gathered}$	$\begin{gathered} 28,600 \\ 15 \times 200 \end{gathered}$	$\begin{gathered} 31,200 \\ 2-15 \times 150 \end{gathered}$
28 ft ．	84ロ＇	98口＇	112口＇	126口	140口	154ロ＇	168 ${ }^{\prime}$
Load，tb	$\begin{array}{r} 16,800 \\ 15 \times 150 \end{array}$	$19,600$	$\begin{gathered} 22,400 \\ 15 \times 200 \end{gathered}$	$\begin{array}{r} 25,200 \\ 15 \times 200 \end{array}$	$\begin{gathered} 28,000 \\ 2-15 \times 150 \end{gathered}$	$\begin{gathered} 30,800 \\ -15 \times 150 \end{gathered}$	$\left\lvert\, \begin{gathered} 33,600 \\ 2-15 \times 150 \end{gathered}\right.$
30 ft ．	$90 \square^{\prime}$	105口＇	120ロ＇	135 ${ }^{\prime}$	150 \square^{\prime}	165■＇	180口＇
$\underset{\text { I }}{\text { Load, th }}$	$\begin{gathered} 18,000 \\ 15 \times 150 \end{gathered}$	$\begin{array}{r} 21,000 \\ 15 \times 200 \end{array}$	$\begin{gathered} 24,000 \\ 15 \times 200 \end{gathered}$	$\begin{gathered} 27,000 \\ 2-15 \times 150 \end{gathered}$	$\underset{2-15 \times 150}{30,000}$	$\begin{gathered} 33,000 \\ 2-15 \times 150 \end{gathered}$	$\begin{gathered} 36,000 \\ 2-15 \times 150 \end{gathered}$

RIVETED GIRDERS.

Riveted girders are used where rolled beams are not sufficiently strong for carrying the load. Sometimes it may be more economical to use a deeper built beam instead of a solid rolled beam, but generally the rolled beam is the cheaper one, if it can be had strong enough to carry the weight. Plate girders have either single or double webs. The latter ones, box girders, have more stiffness sideways; and plain plate girders, with single webs, are somewhat cheaper. The width of the top flange of the girders should be at least onetwentieth of the span, or the section of the top flange should be increased accordingly. For girders not protected against yielding sideways, box girders are preferable, as they have greater stiffness laterally. Shearing strains in the web should never be more than half of the strains allowed in the flanges ; and if the depth is considerable, stiffeners should be used to prevent buckling of the web-plates. A good rule is to have stiffeners if the depth of the web-plate exceeds eighty times its thickness. Angle irons are better as stiffeners than Tee iron on account of having larger flanges, which allow more space for rivets. The stiffeners should always reach over the vertical sides of the angles forming the chords of the girder, and there should be filling pieces between the stiffening angles and the web-plate. In every case, whether there are webstiffeners used or not, there should be a reinforcing by angles or plates at the ends of the girders where they rest on columns or on the wall, so that the reaction of the support may be resisted by an increased section of the web. In larger girders, one, two, or more cover-plates are required to make up the necessary section of the chords or flanges. Frequently all these cover-plates are made the whole length of the girder, but this is only a waste of material, as the outer cover-plates are only required for a part of the length. Plate girders should never be made too shallow, on account of the deflection; they should have at least a depth of one twenty-fourth of the clear span; if built shallower, more material should be put in the flanges and webs, so as to reduce the strain per square inch, and the deflection in proportion.

CALCULATION OF A RIVETED GIRDER.

Box girder, to carry a wall 20 inches wide.
Span, 30 feet between centers of supports $=360$ inches.
Total weight to be carried, 100 tons $=200,000 \mathrm{lbs}$.
Depth available, $36^{\prime \prime}$.
Load on each support, $\frac{1}{2} \times 200,000=100,000 \mathrm{lbs}$.
Web section required, $\frac{100,000 \mathrm{lbs} .}{5,000 \mathrm{lbs}}=20 \square^{\prime \prime}$.
Two web-plates, $34^{\prime \prime} \times \times^{\frac{3}{8}}{ }^{\prime \prime}=25^{\frac{1}{2}} \square^{\prime \prime}$.
Bending moment in middle of span,
$\frac{1}{8} \times 200,000 \times 360=9,000,000$ inch lbs.
Depth of girders bet. centers of chords or flanges, about $34^{\prime \prime}$.
Maximum chord strain, $\frac{9,000,000}{34}=264,700 \mathrm{lbs}$.
Chord section required, $\frac{264,700}{10,000}=26 \frac{1}{2} \square^{\prime \prime}$.

Stiffeners.-Angle iron, $3^{\prime \prime} \times 3^{\prime \prime} \times \frac{3}{8}^{\prime \prime}$, placed about 4 to 5 feet apart.

By the use of the following table, it is easy to find the section required in the chords of riveted girders, if the load and span are given. This table is calculated for a maximum strain of $10,000 \mathrm{lbs}$. per square inch of gross section. If a higher strain per square inch is admissible,- as in case of strictly permanent loads for structures which are not exposed to vibrations and sudden applications of heavy weights, - it is only necessary to reduce the result obtained in proportion to the higher strain per square inch allowed.

Plate No. 15, fig. 1, shows an elevation of a plain plate girder, built of a web-plate, and four angle irons, stiffened with angle-iron stiffeners.

Fig. 2. Section of plain plate girder, without cover-plate.
Fig. 3. Section of plate girder, with top and bottom coverplates.

Fig. 4. Section of ordinary box girder, with two web-plates, two cover-plates, and four angle irons in chords.

Fig. 5. Same with extra angle irons riveted to the side of the web-plate. The floor joists, either iron or wood, are carried on these angles.

Fig. 6. Compound girder, consisting of two ordinary plain plate girders, connected together at intervals with wrought or cast iron separators.

Fig. 7. Box girder, composed of two vertical plates and two horizontal channel irons.

RIVETED GIRDERS.

Multiply by the load in tons of 2000 lbs ., uniformly distributed, and divide by 1000 . The result is the gross area in square inches required for each flange, allowing a maximum fiber strain of $10,000 \mathrm{lbs}$. per \square inch.

STRENGTH OF WOODEN BEAMS.

The following table is calculated for rectangular beams one inch thick, and for different spans and depth of beams.

Maximum fiber strain allowed, 1000 lbs . per square inch. Beams to be braced sideways. For a factor of safety of 5 multiply by-
I.O for ash.
I.o - I. 3 for spruce.
$1.44-1.8$ for white oak.
1.o - 1.12 for white pine.
I. 6 for long leaf yellow pine.

$\begin{gathered} \text { Span } \\ \text { in } \\ \text { feet. } \end{gathered}$	DEPTH IN INCHES.										
	6	7	8	9	10	11	12	13	14	15	16
5	800	1090	1420	1800	2220	2690	3200	3980	4380	5000	5690
6	670	910	1190	1500	1850	2240	2670	3220	3650	4170	4740
7	570	780	1020	1290	1590	1920	2290	2840	3130	3570	4060
8	500	680	890	1130	1390	1680	2000	2490	2740	3130	3560
9	440	610	790	1000	1230	1490	1780	2210	2430	2780	3160
10	400	540	710	900	1110	1340	-1600	1990	2190	2500	2840
11	360	495	650	820	1010	12:2	1450	1810	1990	2270	2590
12	330	450	590	750	930	1120	1330	1660	1820	2080	2370
13	310	420	550	690	860	1030	1230	1530	1690	1930	2200
14	290	390	510	640	800	960	1150	1430	1570	1790	2040
15	270	360	480	600	740	900	1070	1330	1460	1670	1900
16	250	340	450	560	700	840	1000	1250	1370	1570	1780
17	240	320	420	530	650	790	940	1170	1290	1470	1680
18	220	300	400	500	620	750	890	1110	1220	1390	1590
19	210	290	380	480	590	710	840	1050	1150	1320	1500
20	200	272	360	450	560	670	800	99 ก	1090	1250	1420
21	190	260	340	430	530	640	760	950	1040	1190	1360
22	130	248	325	410	510	610	730	910	1000	1140	1300
23	175	237	310	390	480	590	700	870	950	1090	1240
24	167	228	297	380	460	560	670	830	910	1040	1190
25	160	218	285	360	450	540	640	800	880	1000	1140
26	154	210	275	350	430	520	620	770	840	960	1100
27	149	202	265	330	410	500	590	740	810	930	1060
28	143	195	255	315	400	480	570	710	780	890	1021
29	138	188	246	317	380	465	550	690	750	860	980
30	134	182	237	297	370	450	530	660	730	830	950

COLUMNS, POSTS AND STRUTS.

The following tables of strength of columns are calculated for safe working strains, and not for the ultimate strength, as it is of greater consequence to know what load a column will support with safety, than to know under what load it will fail.

The first table is copied from a paper read by Mr. Theodore Cooper, before the A. S. of C. E., and it is based on experiments made on full size columns at the Watertown Arsenal. The allowed working strains are calculated so that they are in proportion to the limit of elasticity (0.44 of it). For posts which are liable to be struck by passing bodies as $\mathrm{f}: \mathrm{i}$, the web-posts in through-bridges, smaller working strains are given.

The second table shows strains per square inch as allowed by the specifications of the New York, Lake Erie and Western Railroad, which have been adopted by a great many roads all through the United States, and on which base a great number of structures have been designed and executed. The values of ratio of length to diameter for different shapes of struts, are only approximate, but they are sufficient for ordinary use.

Both of these tables are calculated for moving loads; for steady loads, as in buildings, the safe working strains may be increased 25 per cent.

The table of safe loads on rolled I beams used as columns or struts is intended for steady loads only. Such columns are frequently used in buildings, and give very satisfactory results if the length is not too great. If two I beams, well braced together, are used, they will carry a larger load. The co-efficients, as given for box columns, may be used for such columns without great error.

Plate 16 shows sections of different types of columns.
Fig. 1. Box column, composed of two channels and two plates.

Fig. 2. Box column, composed of four angle irons and four plates.

Fig. 3. Open column, composed of two channels connected with lattice bars or lacing.

Fig. 4. Open column, built of two plates and four angle irons, connected with lattice bars.

Fig. 5. Open column, built of two I beams, connected with lattice bars.

Figs. 6 and 7. Columns built of two [and one I beam, or of three I beams.

Fig. 8. Columns of similar section; in place of solid rolled beams and channels, angles and plates are used.

Fig. II. Column consisting of two plain bars riveted together with an I beam.

Fig. 12. Plain I beam used as column.
Fig. 9. Two I beams connected with cast-iron separators and bolts or rivets.

Fig. 10. Two channel bars connected in the same way.
Fig. 18. Two flat bars connected in the same way.
Fig. 13. Open column, built of four angle irons, latticed.
Fig. 14. Four angles connected with solid web-plate, or latticed.

Figs. 15 and 17 . Two T irons or four angle irons riveted together in star shape.

Fig. 16. Similar column. The angles are separated by cast-iron thimbles.

	$\begin{gathered} \text { Ratio } \\ \text { Rent } \\ \text { Length } \\ \text { Diametr. } \\ \text { Dianetr } \end{gathered}$	Phenix Columns				$\square_{\square}^{\text {Box Columns. }}$				RKS.
			$\begin{gathered} \text { Ibs. per } \\ \text { squ: inch. } \end{gathered}$		$\begin{gathered} \substack{\text { Lbs. per } \\ \text { sq. inch }} \\ \text { sq. } \end{gathered}$			$\begin{gathered} \text { Laber } \\ \text { sater } \\ \text { sq. iner. } \end{gathered}$		
	$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & \hline 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 9,96 \\ 8,861 \\ 8,300 \\ \hline \end{array}$	$\begin{aligned} & 8,853 \\ & 6,928 \\ & 6,, 137 \end{aligned}$	$\begin{aligned} & 7,521 \\ & \hline 6,666 \\ & 6,455 \end{aligned}$	$\begin{aligned} & 6,686 \\ & 5,333 \\ & 4,7700 \end{aligned}$	$\begin{aligned} & 7,90 \\ & 6,888 \\ & 6,510 \end{aligned}$	$\begin{aligned} & 6,924 \\ & 5,942 \\ & 4,735 \end{aligned}$	$\begin{aligned} & 9,452 \\ & 8,937 \\ & 8,000 \end{aligned}$	$\begin{aligned} & \substack{8,482 \\ 6,680 \\ 5,818} \end{aligned}$	The values given in Columns b should be used where the posts are subject to be struck transversely by passing bodies (Web-posts in Through Bridges).
	$\begin{aligned} & \hline 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{array}{\|l\|l} \hline,, 968 \\ 7,115 \\ 6,037 \end{array}$	$\begin{aligned} & 5,312 \\ & \substack{4,380 \\ 3,450} \end{aligned}$	$\begin{aligned} & \substack{5,700 \\ 4,640 \\ 3,640} \end{aligned}$	$\begin{aligned} & 3,800 \\ & \hline 2,855 \\ & 2,084 \end{aligned}$	$\begin{aligned} & \substack{6,364 \\ 5.866 \\ 5,86} \\ & 5,15 \end{aligned}$	$\begin{aligned} & 4,243 \\ & 3,610 \\ & 2,945 \end{aligned}$	$\begin{aligned} & \substack{7,690 \\ 6,540 \\ 5,867} \end{aligned}$	$\begin{aligned} & 5,126 \\ & 4,024 \\ & 3,352 \\ & 3,35 \end{aligned}$	
	$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 8,314 \\ & 8,250 \\ & 7,313 \end{aligned}$	$\begin{gathered} 7,390 \\ \hline, .600 \\ 5,318 \end{gathered}$	$\begin{gathered} \substack{6,600 \\ 6,212 \\ 5,280} \end{gathered}$	$\begin{aligned} & 5,867 \\ & \hline 4.970 \\ & 3,840 \end{aligned}$	$\begin{gathered} 6,520 \\ 6,395 \\ \hline, .929 \end{gathered}$	$\begin{aligned} & 5,797 \\ & 5,116 \\ & 4,312 \end{aligned}$	$\begin{gathered} \substack{8,012 \\ 7,712 \\ 7,074} \end{gathered}$	$\begin{aligned} & 7,122 \\ & \begin{array}{l} 6,238 \\ 5,145 \end{array} \end{aligned}$	
	$\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{gathered} \substack{9,256 \\ 5,182 \\ 4,234} \end{gathered}$	$\begin{aligned} & 4,170 \\ & 3,189 \\ & 2,419 \end{aligned}$	$\begin{aligned} & 4,264 \\ & 3,300 \\ & 2,575 \end{aligned}$	$\begin{aligned} & 2,816 \\ & \substack{2,031 \\ 1,471} \end{aligned}$	$\begin{aligned} & 5,2,29 \\ & 4,463 \\ & 3,743 \end{aligned}$	$\begin{aligned} & 3,486 \\ & \hline 2,746 \\ & 2,1,139 \end{aligned}$	$\begin{gathered} \substack{6,075 \\ 5,052 \\ 4,143} \end{gathered}$	$\begin{aligned} & 4,509 \\ & 3,1,59 \\ & 2,367 \end{aligned}$	

TABLE OF
 ALLOWED WORKING STRAINS ON WROUGHT-IRON COLUMNS.

Calculated from formulas of the N. Y., Lake Erie, and W. R. R.

For Square Ends. 8,000	Pin and Square Ends. 8,000	Pin Ends. $8,000$
$+\frac{\mathrm{L}^{2}}{40,000 \mathrm{R}^{2}}$	$+\frac{L^{2}}{30,000}$	$1+\frac{\mathrm{L}^{2}}{20,000 \mathrm{R}^{2}}$

$\mathrm{L}=$ length in inches. $\mathrm{R}=$ radius of gyration in inches. For dead loads, as in buildings, allow 25% more.

	Working Strains per sq. inch.			Ratio of L to Diameter.				
to Rad. of Gyr. $\frac{L}{R}$	Square. Lbs. per sq. in.	$\left\|\begin{array}{l}\text { Pin and } \\ \text { Square. } \\ \text { Lbs. per } \\ \text { sq. in. }\end{array}\right\|$	Pin. Lbs. per sq. in.	Phœenix Col.	Americol Col	Box Col.	Open Col.	$\begin{aligned} & \text { IL } \\ & \text { Col } \\ & \text { Col } \end{aligned}$
30	7,820	7,770	7,	10.9	10.	12.3	11.1	
35	7,760	7,690	7,540	12.8	11.7	14.3	13	7.2
40	7,700	7,590	7,410	14.6	13.3	16.4	14.8	8.2
45	7,620	7,500	7,260	16.4	15.	18.5	16.7	9.2
50	7,530	7,380	7,110	18.2	16.7	20.5	18.6	10.2
55	7,440	7,260	6,950	20.0	18.3	22.6	20.5	11.2
60	7,340	7,140	6,780	21.9	20.	24.6	22.3	12.2
65	7,230	7,010	6,610	23.7	21.7	26.7	24.2	13.3
70	7,130	6,880	6,420	25.5	23.3	28.7	26.	14.3
75	7,020	6,740	6,250	27.3	25.	30.8	27.8	15.3
80	6,900	6,590	6,060	29.2	26.7	32.8	29.7	16.4
85	6,780	6,450	5,880	31.0	28.3	34.9	31.5	17.
90	6,660	6,300	5,700	32.8	30.0	36.9	33.4	18.
95	6,530	6,150	5,510	34.6	31.7	39.0	35.2	19.
100	6,400	6,000	5,330	36.4	33.3	41.0	37.1	20.5
105	6,270	5,860	5,160	38.2	35.0	43.1	39.	21.5
110	6,140	5,700	4,980	40.0	36.7	45.1	40.8	22.5
115	6,010	5,550	4,820	41.9	38.3	47.2	42.6	23.5
120	5,880	5,410	4,650	43.7	40.0	49.2	44.5	24.5
125	5,750	5,260	4,490	45.5	41.7	51.3	46.4	25.5
130	5,620	5,120	4,340	47.3	43.3	53.3	48.2	26.6
135	5,500	4,980	4,180	49.2	45.0	55.4	50.1	27.6
140	5,370	4,840	4,040	51.0	46.7	57.4	52.	28.6
145	5,240	4,700	3,900	52.8	48.3	59.5	53.9	29.6
150	5,120	4,570	3,770	54.6	50.0	61.5	55.7	30.6
155	5,000	4,440	3,631	56.4	51.7	63.6	57.5	31.7
160	4,880	4,320	3,510	58.2	53.	65.	59	32.

TABLE OF SAFE LOADS FOR

 HOLLOW CYLINDRICAL CAST AND

 HOLLOW CYLINDRICAL CAST AND WROUGHT IRON COLUMNS.

 WROUGHT IRON COLUMNS.}

Cast-Iron Columns, with factor of safety 6.

Square Bearing.

$$
\frac{13,333}{1+\frac{L^{2}}{800 d^{2}}}
$$

Pin and Square.

$$
\frac{13333}{1+\frac{L^{2}}{533 d^{2}}}
$$

Pin Bearing.

$$
\frac{13333}{I+\frac{L^{2}}{400 d^{2}}}
$$

Wrought-Iron Columns, with factor of safety 4.

Square Bearing.
$\frac{10000}{1+\frac{L^{2}}{3000 d^{2}}}$

Pin and Square.
$\frac{10000}{1+\frac{L^{2}}{2000 d^{2}}}$

Pin Bearing.

$$
\frac{10000}{1+\frac{L^{2}}{1500 d^{2}}}
$$

L, length of columns in inches.
d, diameter of columns in inches.
This table is calculated only for dead loads. For moving loads, deduct 20% for wrought-iron columns and 25% for cast-iron columns.

Cast-Iron Columns.
Safe Loads, in lbs. per \square in.

Wrought-Iron Columns.
Safe Loads, in lbs. per $\square \mathrm{in}$.

$\frac{\mathrm{L}}{\text { d }}$	Square.	Square and Pin.	Pin.	$\frac{\mathrm{L}}{\text { d }}$	Square.	Square and Pin.	Pin.
12	11,300	10,500	9,800	12	9,540	9,330	9,125
15	10,410	9,380	8,530	15	9,300	8,990	8,700
18	9,490	8,300	7,370	18	9,020	8,600	8,220
21	8,600	7,600	6,350	21	8,720	8,190	7,730
24	7,750	6,410	5,460	. 24	8,390	7,770	7,220
27	6,890	5,630	4,730	27	8,050	7,320	6,730
30	6,270	4,960	4,100	30	7,690	6,900	6,250
33	5,650	4,380	3,580	33	7,320	6,480	5,800
36	5,090	3,890	3,140	36	6,980	6,070	5,360
39	3,760	3,460	2,780	39	6,640	5,680	4,970

TABLE OF

SAFE LOADS FOR RECTANGULAR TIMBER POSTS, SEASONED.

This table is calculated for a factor of safety of 5 from the following formulas:

Square Bearing.

$$
\frac{1120}{1+\frac{L^{2}}{550 d^{2}}}
$$

Pin and Square
Bearing.
$\frac{1120}{1+\frac{L^{2}}{378 d^{2}}}$

Pin Bearing.

$$
\frac{1120}{1+\frac{L^{2}}{275 d^{2}}}
$$

Deducted from Lemande's experiments with posts of French oak, and may be used for American white pine of best quality.

Ratio of Length to Least Side.$\frac{\mathrm{L}}{d}$	Safe Loads, in lbs. per \square inch of Section.		
	Square Ends.	Square and Pin Ends.	Pin Ends.
- 12	890	804	736
15	795	695	616
18	704	594	514
21	623	509	431
24	548	436	362
27	482	375	307
30	424	324	262
33	376	282	226
36	334	246	196
39	297	218	172
42	266	192	152
45	239	172	134

L, length of post in inches.
d, width of smallest side in inches.

ROOFS.

The most frequent types of Roof trusses are shown in plates 17 and 18 . The strains in the different members of these trusses are easily found by the use of the following tables. They may be built of iron, or of wood and iron combined. If iron only is used in the construction, the rafters are made of two channel-bars, with an iron cover-plate, or properly latticed together. This is the best mode of constructing the rafter. For smaller spans or lighter roofs a single I beam makes a good rafter. If the purlins are supported only at the joints, a T iron or two angle-irons make a satisfactory rafter; but if the purlins have to be carried on points between the joints of the truss, the bending strains produced are usually too large to be carried on a rafter of this cross section. The bottom end of the rafters usually has a shoe riveted on, or rests on a pin which is supported by a separate shoe. The top connection of the two main rafters is also either a riveted one (the two rafters being cut so as to bear one against the other), or the connection is made by having both rafters bearing against a pin. If the roof is pinconnected throughout, the latter connection at the peak (with the pin simply) is the better one, and the roof is more easily erected.

The tension members are either flat bars with forged eyes, bored for iron pins, or round or square rods with loopwelded eyes.

The struts are made in very many different ways. A good construction is to use two light channel-bars connected together to form a strut, which has a pin-hole at its lower end to connect with the bottom chord and the tension braces.

Sometimes these trusses are built with wooden main-rafters and struts. In this case, the ends of these members are usually fitted to cast-iron pin-boxes, and the tension members constructed in the same way as in all iron trusses.

LOADS ON ROOFS -SPANS 75 FEET AND LESS.

Roof covered with corrugated iron, unboarded. 8 lbs . per $\square \mathrm{ft}$.
 If plastered below the rafters or tie-beam, add.10" " For the weight of iron construction, add..... 4 " " For snow and wind, add....................... 20 " "

The velocity and pressure of wind against surfaces at right angles to the direction of the wind is, as given by Smeaton:

Vel. in miles per hour.	Vel. in feet. per sec.	Pressure per square foot.	
10	14.67	0.5	
$12 \frac{1}{2}$	18.33	0.78	Fresh breeze.
15	22.	1.12	
20	29.33	2.	
25	36.67	3.12	Brisk wind.
30	44.	4.5	Strong wind.
40	58.67	8.	High wind.
50	73.33	12.5	Storm.
60	88.	18.	Violent storm.
80	117.3	32.	Hurricane.
100	146.7	50.	Violent hurricane.

It seems sufficient to calculate for a wind pressure of 30 lbs. per square foot ; but, as the roofs are built with a slope, only that component of the 30 lbs . which acts vertical to the surface of the roof comes into account. In most cases it will be sufficient to calculate simply for a load of 20 lbs . per square foot for wind and snow together.

MAXIMUM STRAINS IN KING AND QUEEN ROOF TRUSSES.

Plate 17 , Fig. 5.
To find the maximum strains in any member of these trusses, multiply the co-efficients given here below.

1. For rafters, by the panel load $\times \frac{\text { length of rafter }}{\text { depth of truss }}$
2. For bottom chord,
3. For inclined struts, " $\quad \ldots \ldots \ldots \times \frac{1 / 2 \text { span of truss }}{\text { depth of truss }}$ 4. For vertical rod,

$\underset{\text { by }}{\text { Multiply }}$

$\mathbf{1}^{\prime}$	2	0.5
2^{\prime}	3	1.0
3^{\prime}	4	1.5
4^{\prime}	5	2.0
5^{\prime}	6	2.5
6^{\prime}	7	3.0
1	1^{\prime}	0
2	2^{\prime}	0.5
3	3^{\prime}	1.0
4	4^{\prime}	1.5
5	5^{\prime}	2.0
6	6^{\prime}	2.5
7	7^{\prime}	6.

0.5
1.0
1.5
2.0
2.5
0
0.5
1.0
1.5
2.0
5.

10
Panel.

8 Panel.	6 Panel.	4 Panel.
3.5	2.5	1.5
3.	2.	
2.5		
3.5	2.5	1.5
$3 .$.	2.	1.
2.5	1.5	
2.		
0.5	0.5	0.5
1.0	1.0	
1.5		
0	0	0
0.5	0.5	1.
1.0	2.	
3.		

MAXIMUM STRAINS IN BELGIAN OR FINK ROOF TRUSSES.

Plate 18, Figs. I and 2.
To find the maximum strain in any member of these trusses, multiply the co-efficients given in the table below with the panel load.

Ratio of depth to length of span.			0.333	$\frac{0.289}{\frac{1}{464}}$	$\underset{\frac{1}{4}}{0.250}$	0.200	0.167	0.125
Inclinat'n of rafters.			$41^{\circ} 49^{\prime}$	30°	$26^{\circ} 34^{\prime}$	$21^{\circ} 48^{\prime}$	$18^{\circ} 26^{\prime}$	$14^{\circ} 2$
	$\begin{aligned} & \text { E } \\ & \text { 은 } \\ & \text { of } \end{aligned}$	01	5.25	6.06	7.00	8.75	10.50	14.00
		12	4.50	5.19	6.00	7.50	9.00	12.00
		22	3.00	3.46	4.00	5.00	6.00	8.00
	号它	01^{\prime}	6.30	7.00	7.83	9.42	11.08	14.4
		$1^{\prime} 2^{\prime}$	5.75	6.50	7.38	9.05	10.76	14.20
		$2^{\prime} 3^{\prime}$	5.20	6.00	6.93	8.68	10.45	13.95
		$3^{\prime} 4^{\prime}$	4.65	5.50	6.48	8.31	10.13	13.71
		23	1.50	1.73	2.00	2.50	3.00	4.00
		34^{\prime}	2.25	2.60	3.00	3.75	4.50	6.00
		$12^{\prime} \& 32^{\prime}$	0.75	0.87	1.00	1.25	1.50	2.00
	\sum_{5}^{5}	11^{\prime} \& 33^{\prime}	0.83	0.87	0.89	0.93	0.95	0.97
		22	1.66	1.73	1.78	1.86	1.90	1.94
	Bottom chord.	01	2.25	2.60	3.00	3.75	4.50	6.00
		12	1.50	1.73	2.00	2.50	3.00	4.00
	Top chord.	01^{\prime}	2.70	3.00	3.35	4.04	4.75	6.19
		$1^{\prime} 2^{\prime}$	2.15	2.50	2.90	3.67	4.44	5.95
	Rod strut.	12^{\prime}	0.75	0.87	1.00	1.25	1.50	2.00
		11^{\prime}	0.83	0.87	0.89	0.93	0.95	0.97

MAXIMUM STRAINS in RECTANGULAR and TRIANGULAR TRUSSES.

By using the following tables, it will be found easy to determine the maximum strains in different trusses or girders with parallel chords, if the dead and moving loads are given. In many cases it will be sufficient to consider only a uniform dead load and a uniform moving load. The third columns give the influence of a heavier load in front of a uniform load; f. i., a locomotive ahead of a train of cars.

The panel points are numbered, beginning with o at the abutment, those of the bottom chord with plain numbers, and those of the top chord with a prime (${ }^{\prime}$), so as to indicate the position of the different members without its being necessary to refer to the diagram.

In the calculation of a double intersection rectangular truss, it is necessary to treat the truss as a combination of two single intersection trusses; and if the number of panels is an odd one, there exists some uncertainty in which way the full load is transmitted to the abutments. Sometimes it is assumed that the counter-rods are without strain under full load, and this gives somewhat smaller strains in the top chord and larger strains in the bottom chord than those given in the table.

But generally the counter-rods are made adjustable, and have always some initial strain, so that it is more consistent to assume that the trusses under full load, as well as under partial loads, act like two separate single intersection trusses. The difference in the results in either case is of no practical importance.

In calculating these tables, the loads were supposed to be concentrated at the bottom chord joints for through-bridges, and at the top-chord joints for deck-bridges. In throughbridges, the strains in the web-members under compression (web-posts) obtained this way should be increased by the weight of a panel of top-chord and top-lateral bracing.

EXAMPLE OF APPLICATION OF TABLE.

Warren Trutss, Deck Bridge with Intermediate Posts.

Span, 150^{\prime}; depth, $\mathbf{2 0}^{\prime}$.
Number of panels io, of 15^{\prime} each.
Dead load, $\mathbf{1}, 200 \mathrm{lbs}$. per lin. ft.
Live load, 2,400 " " "
$\mathrm{D}=$ Dead load $=9,000$ lbs. per panel and I truss.
$\mathrm{L}=$ Live " = $\mathbf{1 8}, 000$ " " " " 1 "
$\mathrm{E}=$ Excess of locomotive weight $=10,000$ lbs. for 1 truss.

$$
\begin{aligned}
& l=\frac{18,000}{10}=1,800 \\
& e \doteq \frac{10,000}{10}=1,000
\end{aligned}
$$

Length of diagonal members, 25^{\prime}

$$
\text { Sec. }=\frac{25}{20}=1.25 \quad \text { Tang. }=\frac{15}{20}=0.75
$$

Strain in middle piece of bottom chord 4-6

$$
\begin{aligned}
12.5(\mathrm{D}+\mathrm{L}) & =337,500 \\
& =\frac{5,000}{5 \mathrm{e}}
\end{aligned}
$$

Compressive strain in brace, 45^{\prime}.

$$
\begin{aligned}
0.5 \mathrm{D} & =4,500 \\
15 . l & =27,000 \\
5 . e & =\frac{5,000}{36,500} \times \mathrm{sec} .=45,625
\end{aligned}
$$

Tensile strain in brace, $5^{\prime} 6$,

$$
\begin{array}{rl}
-0.5 & D=-4,500 \\
10 . l & =18,000 \\
4 . e & =\frac{4,000}{17,500} \times \text { sec. }=21,875
\end{array}
$$

It will be observed that, by beginning with 0 at the lefthand abutment, the compression member 45^{\prime} becomes the tension member $5^{\prime} 6$, and the maximum strains change from 45,625 compression to 21,875 tension. The strains in the other members are found in similar way.
(Fig. 4, plate 17.) End-posts Inclined, Equal Panels, Through and Deck Bridges.

in
(

Chords: multiply by Tang.
Tang. $=\frac{\text { Length of panel }}{\text { Depth of truss }}$

Length of inclined member
Maximum Strains
INTER-
Single
Live Loáds in
Through Trusses.
Produced By Dead and

\％		＋omer
z	－1000－	－nom
	$\xrightarrow{-240}$	
	A－i	
$\frac{1}{2}=$	－－－omo	－1．00
当送	a^{2+107}	＋amer
\％	－atmom－	0000now
S	－	
思	－ 0 －	－＝0， 0 ¢n＊
	－－\％oneorat	＋romionoss
星昌	－¢m＝0№m－	
	－	Ho
A	－	－
出		
畣	－ －$_{\text {－maneram }}$	
or er er	\％A－mation	
${ }_{0}$	－	
\％	\％$\frac{1}{}$	
릴		
顑		
b^{2}		Soraminutions
	w ¢ ¢	

IN GIRDERS，
3，Plate I7），With
6 Panels．
4 4 Panels．

	－くつ に－1
シ	入ーヶッ
\sim	12029 20

$\stackrel{n}{\mathbb{E}}$	$\sim 120062 \mathrm{~m}$
\％	10，19，19，19，

\％	
	\checkmark
	OTQ

	－\＃ocmincumman
	入

苗 A

SINGLE INTERSECTION TRIANGULAR OR WARREN
GIRDERS-Continued.

panels.
panel.
ine load over gen-
for 1 panel.

$$
e=\frac{E}{n}
$$

\square

\square

$$
n \mid \approx
$$

(Fig.

$$
.56611 \quad 4.5459 \quad 3.5287
$$

N स स M M NOR M H $\begin{array}{lll}12 \\ 0 \\ 0 & 1 ? & 10 \\ 10 & 10\end{array}$ 20 GES.
 1
10

${ }_{12}$ Panels.

6

RIVETS AND PINS.

In proportioning riveted work it is customary not to take into account the friction between the shapes or plates connected. The rivets have to resist the whole strain which has to be transmitted from one part to the other by their resistance against shearing. The bearing surfaces of the rivets and of the connected parts must be large enough to avoid damage by crushing. Therefore, it will be always necessary to calculate the rivet connections for shear as well as for bearing. The following tables give shearing and bearing values of rivets of different diameters for shearing strains of $6,000 \mathrm{lbs}$. and $7,500 \mathrm{lbs}$. per square inch section, and for bearing values of $\mathbf{1 2 , 0 0 0} \mathrm{lbs}$. and $15,000 \mathrm{lbs}$. per square inch. The smaller values should be used for moving loads, and the larger values may be used for steady loads.

Pins are subject to strains by shearing, bearing, and bending. The corresponding values for these three different strains are-
shearing. bearing. bending.

For R. R. bridges and iron pins $\quad 7,500 \quad 12,000 \quad 15,000$
" ". " " steel pins $\mathbf{1 1 , 2 5 0}$ 18,000 22,500
$\left.\begin{array}{c}\text { For steady loads and } \\ \text { highway bridges }\end{array}\right\}$ iron pins $9,000 \quad 14,400 \quad 18,000$

Diameter of Rivet.	Area of Rivet.	Single Shear at 7500 lbs . per \square /I
$\frac{3}{8} \quad \frac{7}{16}$	$\begin{aligned} & .110 \\ & .150 \end{aligned}$	$\begin{array}{r} 830 \\ 1130 \end{array}$
$\frac{1}{2} \quad \frac{9}{16}$	$\begin{aligned} & .196 \\ & .249 \end{aligned}$	$\begin{aligned} & 1470 \\ & 1860 \end{aligned}$
$\frac{5}{8} \quad \frac{1}{16}$	$\begin{aligned} & .307 \\ & .371 \end{aligned}$	$\begin{aligned} & 2300 \\ & 2780 \end{aligned}$
$\frac{3}{4} \quad \frac{13}{16}$	$\begin{array}{r} .442 \\ .519 \end{array}$	$\begin{aligned} & 3310 \\ & 3890 \end{aligned}$
$\frac{\frac{7}{8}}{\frac{15}{16}}$	$\begin{aligned} & .601 \\ & .690 \end{aligned}$	$\begin{aligned} & 4510 \\ & 5180 \end{aligned}$
$1 \frac{1}{16}$	$\begin{array}{r} .785 \\ .887 \end{array}$	$\begin{aligned} & 5890 \\ & 6650 \end{aligned}$

IRON RIVETS.

Weight per 100.

Length Under Head.	DIAMETERS.						
	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$	1
1	1.895	4.848	9.66	16.79	26.49	39.3	55.2
$\frac{1}{8}$	2.067	5.235	10.34	17.86	27.99	41.4	57.9
$\frac{1}{4}$	2.238	5.616	11.04	18.96	29.61	43.5	60.7
$\frac{3}{8}$	2.410	6.003	11.73	20.03	31.13	45.6	63.4
$\frac{1}{2}$	2.582	6.402	12.43	21.04	32.74	47.8	66.2
5	2.754	6.789	13.12	22.11	34.25	49.9	68.9
$\frac{3}{4}$	2.926	7.179	13.81	23.21	35.86	52.0	71.7
${ }_{8}^{7}$	3.093	7.566	14.50	24.28	37.37	54.1	74.4
2	3.259	7.956	15.19	25.48	38.99	56.3	77.2
$\frac{1}{8}$	3.441	8.343	15.88	26.56	40.40	58.4	79.9
$\frac{1}{4}$	3.613	8.733	16.57	27.65	42.11	60.5	82.7
$\frac{3}{8}$	3.785	9.120	17.26	28.73	43.67	62.6	85.4
$\frac{1}{2}$	3.957	9.511	17.95	29.82	45.24	64.8	88.2
$\frac{5}{8}$	4.129	9.898	18.64	30.90	46.80	66.9	90.9
$\frac{3}{4}$	4.301	10.29	19.33	31.99	48.36	69.0	93.7
$\frac{7}{8}$	4.473	10.67	20.02	33.08	49.92	71.1	96.4
3	4.644	11.06	20.71	34.18	51.49	73.3	99.2
$\frac{1}{8}$	4.816	11.44	21.40	35.27	53.05	75.4	101.9
$\frac{1}{4}$	4.988	11.84	22.09	36.35	54.61	77.5	104.7
$\frac{3}{8}$	5.160	12.23	22.78	37.44	56.17	79.6	107.4
$\frac{1}{2}$	5.332	12.62	23.48	38.52	57.74	81.8	110.2
$\frac{5}{8}$	5.504	13.01	24.17	39.60	59.30	83.9	112.9
$\frac{3}{4}$	5.676	13.39	24.86	40.69	60.86	86.0	116.7
${ }_{8}^{7}$	5.848	13.78	25.55	41.78	62.42	88.1	119.4
	6.019	14.17	26.24	42.87	63.99	90.3	121.2
	6.191	14.56	26.93	43.94	65.55	92.4	123.9
$\frac{1}{4}$	6.363	14.95	27.62	45.01	67.11	94.5	126.6
$\left\lvert\, \begin{gathered} 100 \\ \text { Heads. } \end{gathered}\right.$. 519	1.74	4.14	8.10	13.99	22.27	33.15

		20
		\cdots
		W
		c
		$\stackrel{+1}{4}$

AREAS and WEIGHTS of SQUARE and ROUND WROUGHT-IRON BARS.

Thickness, Inches.	\square		O		Thickness, Inches.	\square		O	
	Area.	W'ght	Area.	$\begin{aligned} & \text { W'ght } \\ & \text { perft. } \end{aligned}$		Area.	W'ght perft.	Area.	w'
0					2	. 001	13.33	3.1	
$\frac{1}{16}$	0.004	0.013	0.003	0.010	16	4.25	14.18	3.34	11.1
$\frac{1}{8}$. 016	. 052	. 012	. 041		4.52	15.05	3.55	11.
$\frac{3}{16}$. 035	. 117	. 028	. 092	$\frac{3}{16}$	4.78	15.95	3.76	1
$\frac{1}{4}$. 062	. 208	. 049	. 164	4	5.06			
	. 098	. 326	. 077	. 256	$\frac{5}{16}$	5.35	17.83	4.2	14.00
$\frac{3}{8}$. 141	. 469	. 110	. 368		5.64	18.80	4.4	. 77
16	. 191	. 638	. 150	. 501	$\frac{7}{16}$	5.9	19.	4.67	15.55
$\frac{1}{2}$. 250	. 833	. 196	. 654	$\frac{1}{2}$	6.25		.	
	. 316	1.06	. 248	. 828	$\frac{9}{16}$	6.57	21.89	5.1	17.19
	. 391	1.30	. 307	1.02		6.89	22.97	5.41	0
16	. 473	1.58	. 371	1.24	$\frac{1}{16}$	7.22	24.08	5.67	91
$\frac{3}{4}$. 56	1.87		, 4		7.56			
${ }^{13}$. 660	2.20	. 518	1.73	13	7.91	. 37	6.	
${ }^{7}$. 766	2.55	. 601	2.00		8.27	27.55	6.4	21.6
	. 879	2.93	. 690	2.30	15	8.63	28.76	6.7	
1	1.	3.33		2.62	3		. 00		
${ }^{\frac{1}{16}}$	1.13	3.76		. 95	$\frac{1}{16}$	9.38	. 26	7.	
$\frac{1}{8}$	1.27	4.22	. 994	3.31		9.77	32.55	7.67	
$\frac{3}{16}$	1.41	4.70	1.110	3.69	${ }_{1}{ }^{3} 6$	10.16	33.87	7.98	
$\frac{3}{4}$	1.56	5.21	1.23	4.09	$\frac{1}{4}$	10.5	. 21		
${ }_{3} \frac{5}{16}$	1.72	5.74	1.35	4.51	$\frac{5}{16}$	10.9	36.58		
$\frac{3}{8}$	1.89	6.30	1.48	4.95		11.39	37.97		
${ }^{7} 6$	2.07	6.89	1.62	5.41	${ }_{1}^{7}$	11.82	39.39	9.	
$\frac{1}{2}$	2.25	7.50	1.77	5.89		12.25	40.83		
$\frac{9}{16}$	2.44	8.14	1.92	6.39	$\frac{9}{16}$	12.69	2.30	9.9	23
$\frac{5}{8}$	2.64	8.80	2.07	6.91		13.14		10.	
$\frac{11}{16}$	2.85	9.49	2.24	7.45	116	13.60	45		
$\frac{3}{4}$	3.06	10.21	2.40	8.02	${ }_{4}^{3}$	14.0		11.	
$\frac{13}{16}$	3.28	10.95	2.58	8.60	136	14.53	48.4	11.4	. 05
${ }_{8}^{7}$	3.52	11.72	2.76	9.20		15.01	50.0	11.79	. 3
16	3.75	12.51	2.95	9.83	15	15.50	51.68	12.18	4

AREAS and WEIGHTS of SQUARE and -ROUND WROUGHT-IRON BARS.

(Continued.)

	\square		0		Thick ness, Inches	ㅁ		O	
	Area.	W'ght per ft.	Area.	W'ght perft.		Area.	W'ght per ft.	Area.	$\begin{aligned} & \text { W'ght } \\ & \text { per ft. } \end{aligned}$
	16.00	53.33	12.57	41.89	6	36.00	120.0	28.27	94.25
	16.50	55.0	12.96	43.21	$\frac{1}{8}$	37.52	125.1	29.46	98.22
	17.01	56.72	13.36	44.55	${ }^{\frac{1}{4}}$	39.06	130.2	30.68	102.3
	17.53	58.45	13.77	45.91	$\frac{3}{8}$	40.64	135.5	31.92	106.4
	18.06	60.21	14.19	47.29	$\frac{1}{2}$	42.25	140.8	33.18	110.6
	18.60	61.99	14.61	48.69	$\frac{5}{\frac{5}{8}}$	43.89	146.3	34.47	114.9
	19.14	63.80	15.03	50.11	$\frac{3}{4}$	45.56	151.9	35.78	119.3
	19.69	65.64	15.47	51.55	${ }_{8}^{7}$	47.27	157.6	37.12	123.7
	20.25	67		53.01	7	49.00	163	38.48	
	20.82	69.39	16.35	54.50	- $\frac{1}{4}$	52.56	175.2	41.	7.6
	21.39	71.30	16.80	56.00	$\frac{1}{2}$	56.25	187.5	44.	147.3
$\frac{11}{16}$	21.97	73.24		57.52	${ }_{4}^{3}$	60.06	200.2	47.17	157.2
	22.5	75.21			8	. 00	213.3		
	23.16	77.2	18.19	60.63	$\frac{1}{4}$	68.06	226.9	53.	178.2
	23.77	79.22	18.66	62.22	$\frac{1}{2}$	72.25	240.8	56.7	189.2
	24.38	81.2	19.15	63.82	$\frac{3}{4}$	76.56	255.2	60.	
	25.0				9	. 00	270.0		212.1
16	25.63	85	20.13	67.10	$\frac{1}{4}$	85.56	285.2	67.2	224.0
	26.27	87.5	20.63	68.76	$\frac{1}{2}$	90.25	300.8	70.88	236.3
$\frac{3}{16}$	26.91	89.7			$\frac{3}{4}$	95.06	316.9	74.66	248.9
	27.5	91.8		72.16	10	100.	333.3	78.54	1.8
	28.22	94.0	22.17	73.89		105.06	350.2	82.52	275.1
	28.89	96.30	22.69	75.64	$\frac{1}{2}{ }^{\frac{1}{4}}$	110.25	367.5	86.59	288.6
7	29.57	98,55	23.22	77.40	${ }^{3}$	115.56	385.2	90.76	302.5
	30.2	100.8	23.7	79.19	11	121.00	403.3	5.	8
	30.94	103.1	24.30	81.00		126.56	421.9	99.	331.3
	31.64	105.5	24.85	82.83	$\frac{1}{2}$	132.25	440.8	103.	346.2
18	32.35	107.8	25.41	84.69	${ }^{3}$	138.06	460.2	108.	361.4
	33.0	110.2	25.97	86.56	12	144.0	480.0	113.1	377.0
	33.7	112.6	26.53	88.45					
	34.52	115.1	27.11	90.36					
	35.25	117.5	27.69	92.29					

94 The passaic rolling mill company.

AREAS OF FLAT ROLLED IRON.

Thickness in Inches.	$1^{\prime \prime}$	$1 \frac{1}{4}{ }^{\prime \prime}$	$1{ }_{2}{ }^{\prime \prime}$	$1 \frac{13}{}{ }^{\prime \prime}$	$2^{\prime \prime}$	2^{111}	$2 \frac{1}{2}^{\prime \prime}$	$23^{3 \prime}$	3
$\frac{1}{16}$. 063	. 078	. 094	. 109	. 125	. 141	. 156	. 172	. 188
	. 125	. 156	. 188	. 219	. 250	. 281	. 313	. 344	375
	. 188	. 234	. 281	. 328	. 375	. 422	. 469	. 516	. 563
1	. 250	. 313	. 375	. 438	. 500	. 563	. 625	. 688	.750
	. 313	. 391	. 469	. 547	. 625	. 703	. 781	. 859	. 938
	. 375	. 469	. 563	. 656	. 750	. 844	. 938	1.03	1.13
, $\frac{7}{16}$. 438	. 547	. 656	. 766	. 875	. 984	1.09	1.20	1.31
	. 500	. 625	. 750	. 875	1.00	1.13	1.25	1.38	1.50
	. 563	. 703	. 844	. 984	1.13	1.27	1.41	1.55	1.69
	. 625	. 781	. 938	1.09	1.25	1.41	1.56	1.72	1.88
	. 688	. 859	1.03	1.20	1.38	1.55	1.72	1.89	2.06
$\frac{3}{4}$. 750	. 938	1.13	1.31	1.50	1.69	1.88	2.06	2.25
	. 813	1.02	1.22	1.42	1.63	1.83	2.03	2.23	2.44
	. 875	1.09	1.31	1.53	1.75	1.97	2.19	2.41	2.63
	. 938	1.17	1.41	1.64	1.88	2.11	2.34	2.58	2.81
1	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00
$1_{1}^{1} \frac{1}{6}$	1.06	1.33	1.59	1.86	2.13	2.39	2.66	2.92	3.19
	1.13	1.41	1.69	1.97	2.25	2.53	2.81	3.09	3.38
$1_{1} \frac{3}{6}$	1.19	1.48	1.78	2.08	2.38	2.67	2.97	3.27	3.56
	1.25	1.56	1.88	2.19	2.50	2.81	3.13	3.44	3.75
1 ${ }_{16}{ }^{5}$	1.31	1.64	1.97	2.30	2.63	2.95	3.28	3.61	3.94
	1.33	1.72	2.06	2.41	2.75	3.09	3.44	3.78	4.13
$1 \frac{7}{16}$	1.44	1.80	2.16	2.52	2.88	3.25	3.59	3.95	4.31
1 $\frac{1}{2}$	1.50	1.88	2.25	2.63	3.00	3.38	3.75	4.13	4.50
	1.56	1.95	2.34	2.73	3.13	3.52	3.91	4.30	4.69
15	1.63	2.03	2.44	2.84	3.25	3.66	4.06	4.47	4.88
$1 \frac{1}{1} \frac{1}{6}$	1.69	2.11	2.53	2.95	3.38	3.80	4.22	4.64	5.06
$1 \frac{3}{4}$	1.75	2.19	2.63	3.06	3.50	3.94	4.38	4.81	5.25
$1+\frac{3}{6}$	1.81	2.27	2.72	3.17	3.63	4.08	4.53	4.98	5.44
	1.88	2.34	2.81	3.28	3.75	4.22	4.69	5.16	5.63
$1 \frac{15}{16}$	1.94	2.42	2.91	3.39	3.88	4.36	4.84	5.33	5.81
2	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00

AREAS OF FLAT ROLLED IRON.

(Continued.)

Thickness in Inches.	$3 \frac{1}{2}{ }^{\prime \prime}$	4 "	$4 \frac{1}{2}{ }^{\prime \prime}$	$5^{\prime \prime}$	$6^{\prime \prime}$	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$
	. 21	. 250	. 281	. 31	. 375	. 4	. 500	. 563	. 625
	. 438	. 500	. 563	. 625	. 750	. 875	1.00	1.13	1.25
	.656	. 750	. 844	. 938	1.13	1.31	1.50	1.69	1.88
	. 875	1.00	1.13	1.25	1.50	1.75	2.00	2.25	2.50
	1.		1.	1.56	1.88	2.19	2.50	2.81	13
	1.3	1.50	1.69	1.8	2.	2.63	3.00	3.38	3.75
	1.53	1.75	1.97	2.19	2.63	3.06	3.50	3.94	4.38
$\frac{1}{2}$ -	1.75	2.00	2.25	2.50	3.00	3.50	4.00	4.50	5.00
			2.53	2.81		4	4.50	. 06	. 63
	2.19	2.50	2.81	3.13	75	4.38	5.00	5.63	6.25
	2.41	2.75	3.09	3.44	4.13	4.81	5.50	6.19	6.88
	2.63	3.00	3.38	3.75	4.50	5.25	6.00	6.75	7.50
	2.84	3.25	3.66	4.0	4.88	5.69	6.50	7.31	8. 13
	3.06	3.50	3.94	4.38	5.25	6.13	7.00	7.83	8.75
	3.28	3.75	4.22	4.69	5.63	6.56	7.50	8.44	9.38
1	3.50	4.00	4.50	5.00	6.00	7.00	8.00	9.00	10.00
	3.72	4.25	4.78	.31	6.38	. 4	. 50		. 63
	3.94	50	. 06	5.63	675	8	9.00	0.	. 25
	4.16	4	. 34	5.94	7.13	8.31	9.		88
	4.38	5.00	63	6.25	7.50	8.7			0
	4.59	5.25	5.91	. 56	7.88				13
	4.81	5.50	6.19	6.88	8.25	9.6	11		. 75
	5.03	5.75	6.47	7.19	8.63	0.	.		4.38
	5.25	6.00	6.75	7.50	9.0	10.50	. 0		. 00
	5.47	6.25	7.03	7.81	9.38	. 3			. 63
	5.69	6.50	7.31	8.13	9.75	11.3	. 0	.	6.25
	5.91	6.75	7.59	8.44	10.13	11.81	. 50	15.19	6.88
$1{ }^{\frac{3}{4}}$	6.13	7.00	7.88	8.75	10.50	12.25	. 00	15.7	17.50
	6.34	7.25	8.16	9.	10.8	12.69			. 13
	6.56	7.50	8.44	9.3	11.2	13.13	. 00	16.88	8.75
$1 \frac{5}{6}$	6.78	7.75	8.72	9.6	11.63				. 38
2	7.00	8.00	9.00	10.00	12.				

WEIGHTS OF FLAT ROLLED IRON, PER LINEAL FOOT.

Iron Weighing 480 Lbs. per Cubic Foot.

Thickness in Inches.	1 '	$1{ }^{\frac{1}{4}}{ }^{\prime \prime}$	$1 \frac{1}{2}{ }^{\prime \prime}$	$1{ }^{\frac{3}{4}}{ }^{\prime \prime}$	$2^{\prime \prime}$	$2{ }_{4}^{11}$	$2 \frac{1}{2}{ }^{\prime \prime}$	$2{ }^{3 / 1}$	3
	. 208	. 260	. 31	. 36	. 42	47	. 52	57	
	. 417	. 521	. 62	. 73	. 83	. 94	1.04	1.15	1.25
	. 625	. 781	. 94	1.09	1.25	1.41	1.56	1.72	1.88
$\frac{1}{4}$. 833	1.04	1.25	1.46	1.67	1.88	2.08	2.29	2.50
	1.04	1.30	1.5	1.82	2.08	2.34	2.60	2.8	3.13
	1.25	1.56	1.88	2.19	2.50	2.81	3.13	3.44	3.75
	1.46	1.82	2.19	2.55	2.92	3.28	3.65	4.01	4.38
	1.67	2.08	2.50	2.92	3.33	3.75	4.17	4.58	5.00
	1.88	2.34	2.	3.28	3.		4.69	5.16	. 63
	2.08	2.60	3.13	3.6	4.17	4.69	5.21	5.73	6.25
	2.29	2.86	3.44	4.01	4.58	5.16	5.73	6.30	6.88
$\frac{3}{4}$	2.50	3.13	3.75	4.38	5.00	5.63	6.25	6.88	7.50
${ }^{\frac{1}{1}}$	2.71	3.39	4.06	4.74	5.42	6.09	6.77	7.45	. 13
	2.92	3.65	4.38	5.10	5.83	6.56	7.29	8.02	8.75
	3.13 3.33	3.91 4.17	4.69 5.00	5.47 5.83	6.25 6.67	7.03 7.50	7.81 8.33	8.59 9.17	9.38
	3.33	4.17	5.00	5.83	6.67	7.50	8.33	9.17	
1	3.54	4.43	5.31	6.20	7.08	7.97	8.85	9.	10.63
	3.75	4.69	5.63	6.56 6.93	7.50 7.92	8.44 8.91	9.	10.	
$1 \frac{1}{4}$	3.96 4.17	4.95 5.21	5.94 6.25	6.93 7.29	7.92 8.33	8.91 9.38	9. 0.		
	4.37	5.47	6.56	7.66	8.75	9.8			3.13
	4.58	5.73	6.88	8.02	9.17	10.3	11.4	12.6	13.75
	4.79	5.99	7.19	8.39	9.58	10.7	11.9	13.	14.38
$1 \frac{1}{2}$	5.00	6.25	7.50	8.75	10.00	11.2	12.5	13.7	
$1{ }_{1}^{19}$	5.21	6.51	7.81	9.1	10.4	11.7	13	. 3	. 63
	5.42	6.77	8.13	9.4	10.8	12.19	13.54	14.	6.25
$1 \frac{1}{6}$	5.63	7.03	8.44	9.84	11.25	12.	14.	16	16.8
$1 \frac{3}{4}$	5.83	7.29	8.75	10.21	11.67	13.	14.		17.5
118	6.04	7.55	9.0	.		13.		. 61	13
	6.25	7.81	9.3	.	12.5	14.	5.	17.	. 75
$1 \frac{15}{16}$	6.46	8.07	9.6	11.31	2.	14.	16.	17.76	9.38
2	6.67	8.33	10.00	11.67	13.33	15.	16.	18.33	20.00

WEIGHTS OF FLAT ROLLED IRON, PER LINEAL FOOT.

Iron Weighing 480 Lbs. per Cubic Foot.

Thickness	$3{ }^{\frac{1}{2}}{ }^{\prime \prime}$	$4^{\prime \prime}$	$4 \frac{1}{2}{ }^{\prime \prime}$	$5^{\prime \prime}$	$6^{\prime \prime}$	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$
	0.73	0.83	0.94	1.04	1.25	1.46	1.6	1.88	2.08
	1.46	1.67	1.88	2.08	2.50	2.92	3.33	3.75	4.17
	2.19	2.50	2.81	3.13	3.75	4.38	5.00	5.63	6.25
$\frac{1}{4}$	2.92	3.33	3.75	4.17	5.00	5.83	6.67	7.50	8.33
	3.65	4.17	4.69	5.21	6.25	7.29	8.33		
	4.38	5.00	5.63	6.25	7.50	8.75	10.0	11.	50
	5.10	5.83	6.56	7.29	8.75	10.21	11.6	13.1	. 58
$\frac{1}{2}$	5.83	6.67	7.50	8.33	10.00	11.67	13.33	15	16.67
	6.56	7.50	8.44						5
	7.29	8.33	9.38	10.	12.5			1	83
	8.02	9.17	10.3	11	13.7	16.04	18.33	20.	22.92
$\frac{3}{4}$	8.75		11	12	15.0	17	20.00	22.5	25.00
$\frac{13}{16}$. 08
	10.2	11.67							17
	10.9	12.50					25.00		31.25
1	11.6		15.						33.33
	12	. 17							. 42
	13.1	. 0		18.7	22.				. 50
1_{166}	13.8				,	2.71	31.67		39.58
$1 \frac{1}{4}$	14.58	16.67	18		25.	29.17	33.3		41.67
								39.3	43.75
	16.0	18.33					36.67	41.	5.83
	16.7	19.17	21.5	23.96	28.	33.5	38.33	43.13	47.92
	17.50	20.00	22.5				40.00	45.0	50.00
	18.2						67		2.08
$\frac{8}{8}$	18.9	1.67	24.3	.	,	37.9	,	48.7	4.17
1	19.69	22.50	,	. 1	33.7	39.3	45.00	50.63	56.25
$1{ }^{\frac{3}{4}}$	20.42	23.33	26.	29.17	35.00	40.83	46.67	52.50	58.33
${ }^{1+\frac{3}{6}}$	21.			. 21			8.33		. 42
	21.	25.00	28.1	31.25	37.50		50.0		. 50
$1 \frac{1}{16}$	22.					. 21	51.67	58.13	. 58
2									

Thickness in Inches.	12'	13/	14"	15'	$16^{\prime \prime}$	17 ${ }^{\prime \prime}$	18 ${ }^{\prime \prime}$	$19^{\prime \prime}$	$20^{\prime \prime}$	$21^{\prime \prime}$	$22^{\prime \prime}$	$23^{\prime \prime}$	$24^{\prime \prime}$	$25^{\prime \prime}$	$26^{\prime \prime}$	$27^{\prime \prime}$	$28^{\prime \prime}$
	2.50	2.71	2.92	3.13	3.33	3.54	3.75	3.96	4.17	4.38	4.58	4.79	5.00	5.21	5.42	5.63	5.83
	5.00	5.42	5.83	6.25	6.67	7.08	7.50	7.92	8.33	8.75	9.17	9.58	10.00	10.42	10.83	11.25	11.67
$\frac{3}{16}$	7.50	8.13	8.75	9.38	10.00	10.63	11.25	11.87	12.50	13.13	13.75	1438	15.10	15.62	16.25	16.88	17.50
$\frac{1}{4}$	10.00	10.83	11.67	12.50	13.33	14.17	15.00	15.83	16.67	17.50	18.33	19.17	20.00	2083	2167	22.50	23.33
	12.50	13.54	14.58	15.63	16.67	17.71	18.75	19.79	20.83	21.88	22.92	23.96	25.00	26.04	27.08	28.13	29.17
$\frac{3}{8}$	15.00	16.25	17.50	18.75	20.00	21.25	22.50	23.75	25.00	26.25	27.50	28.75	30.00	3125	32.50	33.75	35.00
${ }^{7} 6$	17.50	18.96	20.42	21.88	23.33	24.79	26.25	27.71	29.17	30.63	32.08	33.54	35.00	36.46	37.92	39.38	40.83
$\frac{1}{2}$	20.00	21.67	23.33	25.00	26.67	28.34	30.00	31.66	33.33	35.00	36.67	38.34	40.00	41.66	43.33	45.00	46.67
	22.50	24.3	,	28.1	,	31.8	33.75	35.67	37.50	39.38	41.25	43.13	45.00	46.87			
	25.00	27.08	29.17	31.25	33.33	35.42	37.50	39.58	41.67	43.75	45.83	47.92	50.00	52.08	54.17	56.25	58.33
${ }^{8} \quad \frac{1}{16}$	27.50	29.79	32.08	34.38	36.67	38.96	41.25	43.54	45.83	48.13	50.42	52.71	55.00	57.29	59.58	61.88	64.17
	30.00	32.50	35.00	37.50	40.00	42.50	45.00	47.50	50.00	52.50	55.00	57.50	60.00	62.50	65.00	67.50	70.00
	32.50	35.21	37.92	40.63	43.33	46.05	48.75		54.17	56.88			65.00	67.70	70.42	73.13	75.84
$\frac{7}{8}$	35.00	37.92	40.83	43.75	46.67	49.60	52.50	55.41	58.33	61.25	64.17	67.09	70.00	72.91	75.83	7875	81.66
$]^{\frac{15}{6}}$	37.50	40.63	43.75	46.88	50.00	53.13	56.25	59.37	62.50	65.63	68.75	71.88	75.00	78.12	81.25	84.38	87.50
1	40.00	43.33	46.67	50.00	53.33	56.67	60.00	63.33	66.67	70.00	73.33	76.67	80.00	83.33	86.67	90.00	93.33

FOOT－Continued．

$54^{\prime \prime}$	$56^{\prime \prime}$	$58^{\prime \prime}$	$60^{\prime \prime}$
11.25		11.67	12.08
22.50	12.50		
33.75	23.33	24.17	25.00
45.00	46.66	38.25	37.53

8880 ชำ	
\％	10000
రi¢ 0°	
¢8\％${ }^{\circ}$	0心m0．
$000-\infty$	
210108	
¢008	－i玉

in	
in	
$\overline{0}$	
10	

$\stackrel{\infty}{+}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$
¢0\％	\＄0

か0
T

－	$\stackrel{10}{0}$		
¢	¢		888
:---			
0.8			
8	ir		

－	
¢0	

¢	
	\％¢\％8
¢	－\＄\％
－	
¢	$0 \sim 0$
	すososic
8	$\dot{\sim} \dot{\sim} \dot{\sim}$

Weight per Square Foot of Sheets of Wrought Iron, Steel, Copper, and Brass.
THICKNESS BY BIRMINGHAM GAUGE.

No. of Gauge.	Thickness in Inches.	Iron.	Steel.	Copper.	Brass.
0000	. 454	18.22	18.46	20.57	19.43
000	. 425	17.05	17.28	19.25	18.19
00	. 38	15.25	15.45	17.21	16.26
0	. 34	13.64	13.82	15.40	14.55
1	. 3	12.04	12.20	13.59	12.84
2	. 284	11.40	11.55	12.87	12.16
3	. 259	10.39	10.53	11.73	11.09
4	. 238	9.55	9.68	10.78	10.19
5	. 22	8.83	8.95	9.97	9.42
6	. 203	8.15	8.25	9.20	8.69
7	. 18	7.22	7.32	8.15	7.70
8	. 165	6.62	6.71	7.47	7.06
9	. 148	5.94	6.02	6.70	6.33
10	. 134	5.38	5.45	6.07	5.74
11	. 12	4.82	4.88	5.44	5.14
12	. 109	4.37	4.43	4.94	4.67
13	. 095	3.81	3.86	4.30	4.07
14	. 083	3.33	3.37	3.76	3.55
15	. 072	2.89	2.93	3.26	3.08
16	. 065	2.61	2.64	2.94	2.78
17	. 058	2.33	2.36	2.63	2.48
18	. 049	1.97	1.99	2.22	2.10
19	.042	1.69	1.71	1.90	1.80
20	. 035	1.40	1.42	1.59	1.50
21	. 032	1.28	1.30	1.45	1.37
22	. 028	1.12	1.14	1.27	1.20
23	. 025	1.60	1.02	1.13	1.07
24	. 022	. 883	. 895	1.00	. 942
25	. 02	. 803	. 813	. 906	. 856
26	. 018	.722	. 732	. 815	. 770
27	. 016	. 642	. 651	. 725	. 685
28	. 014	. 562	. 569	. 634	. 599
29	. 013	. 522	. 529	. 589	. 556
30	. 012	. 482	. 488	. 544	. 514
31	. 01	. 401	. 407	. 453	. 428
32	. 009	. 361	. 366	. 408	. 385
33	. 008	. 321	. 325	. 362	. 342
34	. 007	. 281	. 285	. 317	. 300
35	. 005	.201	. 203	. 227	. 214
Specific Gravity Weight Cubic ft . Weight Cubic in		7.704	7.806	8.698	8.218
		481.25	487.75	543.6	513.6
		. 2787	$.2823$. 3146	. 2972

Weight per Square Foot of Sheets of

 Wrought Iron, Steel, Copper, and Brass.THICKNESS BY AMERICAN GAUGE.

No. of Gauge.	Thickness in Inches.	Iron.	Steel.	Copper.	Brass.
0000	. 46	18.46	18.70	20.84	19.69
000	. 4096	16.44	16.66	18.56	17.53
00	. 3648	14.64	14.83	16.53	15.61
0	. 3249	13.04	13.21	14.72	13.90
1	. 2893	11.61	11.76	13.11	12.38
2	. 2576	10.34	10.48	11.67	11.03
3	. 2294	9.21	9.33	10.39	9.82
4	. 2043	8.20	8.31	9.26	8.74
5	. 1819	7.30	7.40	8.24	7.79
6	.1620	6.50	6.59	7.34	6.93
7	. 1443	5.79	5.87	6.54	6.18
8	. 1285	5.16	5.22	5.82	5.50
9	. 1144	4.59	4.65	5.18	4.90
10	. 1019	4.09	4.14	4.62	4.36
11	. 0907	3.64	3.69	4.11	3.88
12	. 0808	3.24	3.29	3.66	3.46
13	. 0720	2.89	2.93	3.26	3.08
14	. 0641	2.57	2.61	2.90	2.74
15	. 0571	2.29	2.32	2.59	2.44
16	. 0508	2.04	2.07	2.30	2.18
17	. 0453	1.82	1.84	2.05	1.94
18	. 0403	1.62	1.64	1.83	1.73
19	. 0359	1.44	1.46	1.63	1.54
20	. 0320	1.28	1.30	1.45	1.37
21	. 0285	1.14	1.16	1.29	1.22
22	. 0253	1.02	1.03	1.15	1.08
23	. 0226	. 906	. 918	1.02	. 966
24	. 0201	. 807	. 817	. 911	. 860
25	. 0179	. 718	. 728	. 811	. 766
26	. 0159	. 640	. 648	. 722	. 682
27.	. 0142	. 570	. 577	. 643	. 608
28	. 0126	. 507	. 514	. 573	. 541
99	. 0113	. 452	. 458	. 510	. 482
30	. 0100	. 402	. 408	. 454	. 429
31	. 0089	. 358	.363	. 404	. 382
32	. 0080	. 319	. 323	. 360	. 340
33	. 0071	. 284	. 288	. 321	. 303
34	. 0063	. 253	. 256	. 286	. 270
35	. 0056	. 225	. 228	. 254	. 240

As there are many gauges in use differing from each other, and even the thicknesses of a certain specified gauge, as the Birmingham, are not assumed the same by all manufacturers, orders for sheets and wire should always state the weight per \square foot or the thickness in thousandths of an inch.

DIFFERENT STANDARDS FOR WIRE GAUGE IN USE IN THE U. S.

DIMENSIONS IN DECIMAI, PARTS OF AN INCH.

	American, or Brown \& Sharpe.	Birm- $\begin{gathered}\text { ingham, } \\ \text { or }\end{gathered}$ Stubs'.	Washburn \& Moen Mnfg. Co., Worcester, Mass.	Trenton Iron Co., N. J.	G. W. Prentiss, Holyoke, Mass. Mass.	
000000			. 46			
06000			. 43	. 45		
0000	. 46	. 454	. 393	. 4		
000	. 40964	. 425	. 362	. 36	. 3586	
00	. 3648	. 38	. 331	. 33	. 3282	
0	. 32495	. 34	. 307	. 305	. 2994	
1	. 2893	. 3	. 283	. 285	. 2777	
2	. 25763	. 284	. 263	. 265	. 2591	
3	. 22942	. 259	. 244	. 245	. 2401	
4	. 20431	. 238	. 225	. 225	. 223	
5	. 18194	. 22	. 207	. 205	. 2047	
6	.16202	. 203	. 192	. 19	. 1885	
7	. 14428	. 18	. 177	. 175	. 1758	
8	. 12849	. 165	. 162	. 16	. 1605	
9	. 11443	. 148	. 148	. 145	. 1471	
10	. 10189	. 134	. 135	. 13	. 1351	
11	. 090742	. 12	. 12	. 1175	. 1205	
12	. 080808	. 109	. 105	. 105	. 1065	
13	. 071961	. 095	. 092	. 0925	. 0928	
14	. 064084	. 083	. 08	. 08	. 0816	. 083
15	. 057068	. 072	. 072	. 07	. 0726	. 072
16	. 05082	. 065	. 063	. 061	. 0627	. 065
17	. 045957	. 058	. 054	. 0525	. 0546	. 058
18	. 040303	. 049	. 047	. 045	. 0478	. 049
19	. 03539	. 042	. 041	. 039	. 0411	. 04
20	. 031961	. 035	. 035	. 034	. 0351	. 035
21	. 028462	. 032	. 032	. 03	. 0321	. 0315
22	. 025347	. 028	. 028	. 027	. 029	. 0295
23	. 022571	. 025	. 025	. 024	. 0261	. 027
24	. 0201	. 022	. 023	. 0215	. 0231	. 025
25	. 0179	. 02	. 02	. 019	. 0212	. 023
26	. 01594	. 018	. 018	. 018	. 0194	. 0205
27	. 014195	. 016	. 017	. 017	. 018	. 01875
28	. 012641	. 014	. 016	. 016	. 017	. 0165
29	. 011257	. 013	. 015	. 015	. 0163	. 0155
30	. 010025	. 012	. 014	. 014	. 0156	. 01375
31	. 008928	. 01	. 0135	. 013	. 0146	. 01225
32	. 00795	. 009	. 013	. 012	. 0136	. 01125
33	. 00708	. 008	. 011	. 011	. 013	. 01025
34	. 006304	. 007	. 01	. 01	. 0118	. 0095
35	. 005614	. 005	. 0095	. 009	. 0109	. 009

GALVANIZED AND BLACK IRON.

 Weight in Pounds per Square Foot of Galvanized Sheet Iron, both Flat and Corrugated.The numbers and thicknesses are those of the iron before it is galvanized. When a flat sheet (the ordinary size of which is from 2 to $21 / 2$ feet in width, by 6 to 8 feet in length) is converted into a corrugated one, with corrugations 5 inches wide from center to center, and about an inch deep (the common sizes), its width is thereby reduced about $\frac{1}{10}$ th part, or from 30 to 27 inches; and consequently the weight per square, foot of area covered is increased about $\frac{1}{9}$ th part. When the corrugated sheets are laid upon a roof, the overlapping of about $21 / 2$ inches along their sides, and of four inches along their ends, diminishes the covered area about $\frac{1}{7}$ th part more; making their weight per square foot of roof about $1 / 6$ th part greater than before. Or the weight of corrugated iron per square foot, in place on a roof, is about $1 / 3$ greater than that of the flat sheets of above sizes of which it is made.

Number by Birmingham Wire Gauge.	BLACK.		GALVANIZED.		
	Thickness in inches.	Flat. Lbs.	Flat. Lbs.	Corrugated. Lbs.	Cor. on Roof. Lbs.
30	. 012	. 485	. 806	. 896	1.08
29	. 013	. 526	. 857	. 952	1.14
28	. 014	. 565	. 897	. 997	1.20
27	. 016	. 646	. 978	1.09	1.30
26	. 018	. 722	1.06	1.18	1.41
25	. 020	. 808	1.14	1.27	1.52
24	. 022	. 889	1.22	1.36	1.62
23	. 025	1.01	1.34	1.49	1.79
22	. 028	1.13	1.46	1.62	1.95
21	. 032	1.29	1.63	1.81	2.17
20	. 035	1.41	1.75	1.94	2.33
19	. 042	1.69	203	2.26	2.71
18	. 049	1.98	2.32	2.58	3.09
17	. 058	2.34	2.68	2.98	3.57
16	. 065	2.63	2.96	3.29	3.95
15	. 072	2.91	3.25	3.61	4.33
14	. 033	3.36	3.69	4.10	4.92
13	. 095	3.84	4.18	4.64	5.57

Note.-The galvanizing of sheet iron adds about one-third of a pound to its weight per square foot.

104 THE PASSAIC ROLLING MILL COMPANY.

WIRE-Iron, Steel, Copper, Brass.
Weight of 100 Feet in Pounds.
birmingham wire gauge.

No. of Gauge.	PER LINEAL FOOT.			
	Iron.	Steel.	Copper.	Brass.
0000	54.62	55.13	62.39	58.93
000	47.86	48.32	54.67	51.64
00	38.27	38.63	43.71	41.28
0	30.63	30.92	34.99	33.05
1	23.85	24.07	27.24	25.73
2	21.37	21.57	24.41	23.06
3	17.78	17.94	20.3	19.18
4	15.01	15.15	17.15	16.19
5	12.82	12.95	14.65	13.84
6	10.92	11.02	12.47	11.78
7	8.586	8.667	9.807	9.263
8	7.214	7.283	8.241	7.783
9	5.805	5.859	6.63	6.262
10	4.758	4.803	5.435	5.133
11	3.816	3.852	4.359	4.117
12	3.148	3.178	3.596	3.397
13	2.392	2.414	2.732	2.58
14	1.826	1.843	2.085	1.969
15	1.374	1.387	1.569	1.482
16	1.119	1.13	1.279	1.208
17	. 8915	. 9	1.018	. 9618
18	. 6363	. 6423	. 7268	. 6864
19	. 4675	. 472	. 534	. 5043
20	. 3246	. 3277	. 3709	. 3502
21	. 2714	. 274	. 31	.2929
22	. 2079	. 2098	. 2373	. 2241
23	. 1656	. 1672	. 1892	. 1788
24	. 1283	.1295	. 1465	. 1384
25	. 106	. 107	. 1211	. 1144
26	. 0859	. 0867	. 0981	. 0926
27	. 0678	. 0685	. 0775	. 0732
28	. 0519	. 0524	. 0593	. 056
29	. 0448	. 0452	. 0511	. 0483
30	. 0382	. 0385	. 0436	. 0412
31	. 0265	. 0267	. 0303	. 0286
32	. 0215	. 0217	. 0245	. 0231
33	. 017	. 0171	. 0194	. 0183
34	. 013	. 0131	. 0148	. 014
35	. 0066	. 0067	. 0076	. 0071
36	. 0042	. 0043	. 0048	. 0046

THE PASSAIC ROLLING MILL COMPANY. 105

106 THE PASSAIC ROLLING MILL COMPANY.

BOLTS WITH SQUARE HEADS AND NUTS.

Weight of 100 Bolts.

Length. Inches.	${ }^{\frac{1}{4}}$	${ }^{3}$	$\frac{1}{2}$	$\frac{8}{8}^{\prime \prime}$	${ }_{4}^{3}$	$\frac{7}{8 \prime \prime}$	$1{ }^{\prime \prime}$	$1 \frac{1}{8}{ }^{\prime \prime}$	$1^{\frac{1}{4}}$
112	5.0	14.6	28	53	88	145	172	221	371
${ }^{12}$	5.7	16.1	31	57	94	153	183	235	388
$2 \frac{1}{2}$	6.4	17.6	34	61	100	162	194	249	405
3	7.1	19.2	36	65	106	170	205	263	422
$3 \frac{1}{2}$	7.8	21.7	39	70	112	178	216	276	439
4	8.5	22.2	42	74	118	187	227	290	456
$4{ }^{\frac{1}{2}}$	9.2	23.7	44	78	125	195	238	304	73
5	9.8	25.3	47	83	131	203	249	318	507
$5 \frac{1}{2}$	10.5	26.8	50	87	137	212	260	332	507
6	11.2	28.3	53	91	143	220	271	345	24
$6 \frac{1}{2}$	11.9	29.9	55	95	149	228	282	360	542
7	12.5	31.4	58	100	155	237	293	372	58
$7 \frac{1}{2}$	13.2	33.0	61	104	161	245	304	397	76
8	13.9	34.5	64	108	167	253	315	401	593
9	15.3	37.5	69	116	179	270	337	428	628
10	16.6	41.6	74	125	192	287	359	456	6
11	18.0	43.7	80	134	204	303	381	483	69
12	19.4	46.8	85.4	142	216	320	402	511	729
Add for each foot increase in length.									
	16.4	36.8	65.4	102	146	200	262	331	40

STANDARD SIZES OF WASHERS.

Number in 100 Lbs.

Diameter.	Size of Hole.	Thickness Wire Gauge.	Size of Bolt.	Number in 100 lbs .
Inch.	Inch.	No.	Inch.	29,300
	${ }_{3}^{6}$	16	4	18,000
1	${ }^{\frac{7}{6}}$	14		7,600
$1{ }_{1}{ }^{1}$	$\frac{9}{16}$	11		3,300
$1{ }^{\frac{1}{2}}$		11	$\frac{9}{16}$	2,180
$1{ }^{1} \frac{1}{2}$		11		2,350
$1{ }^{3}$		11		1,680
2		10	${ }^{8}$	1,140
$2 \frac{1}{2}$	$1{ }^{\frac{1}{8}}$	8	1	580
2^{3}	$1{ }^{\frac{1}{4}}$	8	$1 \frac{1}{8}$	470
3	$1 \frac{3}{8}$	7	$1{ }^{1}$	360
3	$1{ }^{\frac{1}{2}}$	6	$1 \frac{3}{8}$	360

FRANKLIN INSTITUTE

 STANDARD SIZESSQUARE AND HEXAGON NUTS.
Number of Each Size in 100 Lbs.
THESE NUTS ARE CHAMFERED AND TRIMMED.

Width.	Thickness	Hole.	Size of Bolt.	Number of Square.	Number of Hexagon.
	$\begin{aligned} & \frac{1}{4} \\ & \frac{1}{5} \\ & \frac{1}{6} 6 \\ & \frac{7}{8} \\ & \frac{7}{16} \\ & \frac{1}{2} 9 \\ & \frac{9}{5} 6 \\ & \frac{5}{8} \\ & \frac{3}{4} \\ & \frac{7}{8} \\ & 1 \\ & 1 \frac{1}{8} \\ & 1 \frac{1}{4} \\ & 1 \frac{3}{4} \\ & 1 \frac{1}{2} \end{aligned}$			$\begin{array}{r} 8140 \\ 3000 \\ 2320 \\ 1940 \\ 1180 \\ 920 \\ 738 \\ 420 \\ 280 \\ 180 \\ 130 \\ 96 \\ 70 \\ 60 \end{array}$	9300 6200 3120 2200 1350 1000 830 488 309 216 148 111 85 70

HEXAGON NUTS.

regular sizes.

Width.	$\begin{array}{c}\text { Thick- } \\ \text { ness. }\end{array}$	Hole.	$\begin{array}{c}\text { Size of } \\ \text { Bolt. }\end{array}$

SQUARE NUTS.

REGULAR SIZES.

Width.	Thick	Hole.	Size of Bolt.	
$\frac{1}{2}$		${ }^{7}$		6680
-	$\frac{5}{16}$	64	$1{ }^{16}$	3540
$\frac{8}{7}$		${ }_{3}$		2050
$8^{\frac{7}{8}}$	8	7	$\frac{7}{16}$	1380 840
11	$\frac{1}{2}$	$\frac{7}{16}$		840
${ }_{1}^{1}$	5		${ }_{\frac{9}{56}}$	650 410
$1{ }^{1}$	\%	$\frac{1}{1}$		270
$1{ }^{1}$	${ }_{7}^{7}$		$\frac{7}{8}$	215
$1{ }^{3}$	1	${ }^{27}$	1	140
2	$1 \frac{1}{8}$	${ }^{15}$	11 $\frac{1}{8}$	95
$2{ }^{\frac{1}{4}}$	$1{ }^{1}$	$1 \frac{1}{16}$	$1^{\frac{1}{4}}$	7
$2 \frac{1}{2}$	$1 \frac{1}{2}$	1.3	$1{ }^{3}$	
3	11 ${ }^{\frac{1}{2}}$	1 $\frac{5}{16}$	$1 \frac{1}{2}$	32

NAILS AND SPIKES．

 Size，Length，and Number to the Pound．cumberland nail and iron co．

ORDINARY．

Size．

2 d 3 fine

3

3
4
5
6

LIGHT．
4^{d}
5
6

Length．	to No ．
${ }^{17} 8$	716
$1 \frac{1}{16}$	588
$1{ }_{16}^{1}$	448
$1{ }^{3} 8$	336
$1{ }^{3}$	216
2	166
$2{ }^{1}$	118
21	94
$2{ }^{3}$	72
31	50
$3{ }_{4}^{3}$	32
$4 \frac{1}{4}$	20
$4{ }_{4}^{3}$	17
5	14
$5 \frac{1}{2}$	10

LIGHT．
$\left|\begin{array}{l}1 / 3 \\ 13\end{array}\right|$

ボ○の边	$\begin{aligned} & \underset{\sim}{06} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Ocra
consionk		
¢ヵ®99		ทベu

FINISHING．

Size．	Length．	No． to Lb．
		${ }^{\prime \prime}$
4^{d}	$1^{\prime} \frac{3}{8}$	384
5	$1 \frac{3}{4}$	256
6	2	204
8	$2 \frac{1}{2}$	102
10	3	80
12	$3 \frac{5}{8}$	65
20	$3 \frac{7}{8}$	46

6^{d}	$2^{\prime \prime}$	143
8	$2 \frac{1}{2}$	68
10	$2 \frac{1}{3}$	60
12	$3 \frac{1}{8}$	42
20	$3 \frac{3}{4}$	25
30	$4 \frac{1}{4}$	18
40	$4 \frac{3}{4}$	14
W H	$2 \frac{1}{2}$	69
W H L	$2 \frac{1}{4}$	72

SLATE．

3^{d}	$1^{\prime \prime} \frac{5}{1} 6$	288
4	$1_{1}^{\frac{7}{1}} 6$	244
5	$1^{\frac{3}{4}}$	187
6	2	146

TACKS．

Size．	Length．	to No Lb ．	Size．	Length．	to No L．	Size．	Length．	to No Lb ．
1 oz ．	$\frac{1}{8}$	16000	4 oz ．	$\frac{7}{16}$	4000	14 oz ．	$\frac{1}{1} \frac{3}{6}$	1143
$1 \frac{1}{2}$	${ }^{3} 6$	10666	6	$1{ }^{1} 6$	2666	16		1000
2	d	8000	8		2000	18	$\frac{15}{15}$	888
$2 \frac{1}{2}$	16	6400	10	$\frac{1}{6}$	1600	20	1	800
3	3	5333	12	$\frac{3}{4}$	1333	22	$1_{1 \frac{1}{6}}$	797

THE PASSAIC ROLLING MILL COMPANY. 109

LAP-WELDED AMERICAN CHARCOAL IRON BOILER TUBES.

TABLES OF STANDARD SIZES.
MORRIS, TASKER \& CO.

Inch.	Inch.	Inch.	Inch.	Inch			Inc	Inch.	
1	0.856	0.072	3.142	2.689	4.460	3.819	0.575	0.785	0.708
$11 / 4$	1.106	0.072	3.927	3.474	3.455	3.056	0.960	1.227	0.9
$11 / 2$	1.334	0.083	4.712	4.191	2.863	2.547	1.396	1.767	1.250
13/4	1.560	0.095	5.498	4.901	2.448	2.183	1.911	2.405	1.665
2	1.804	0.098	6.283	5.667	2.118	1.909	2.556	3.142	1.981
$2 \mathrm{~T} / 4$	2.054	0.098	7069	6.484	1.850	1.698	3.314	3.976	2.238
$21 / 2$	2.283	0.109	7.854	7.172	1.673	1.528	4.094	4.909	2.755
$23 / 4$	2.533	0.109	8.639	7.957	1.508	1.390	5.039	5.940	3.045
3	2.783	0.109	9.425	8.743	1.373	1.273	6.083	7.069	3.333
$31 / 4$	3.012	0.119	10.210	9.462	1.268	1.175	7125	8.296	3.958
$31 / 2$	3.262	0.119	10.995	10.248	1.171	1.091	8.357	9.621	4.272
$33 / 4$	3.512	0.119	11.781	11.033	1088	1.018	9.687	11.045	4.590
4	3.741	0.130	12.566	11.753	1.023	0.955	10.992	12.566	5.320
$41 / 2$	4.241	0.130	14.137	13.323	0.901	0.849	14.126	15.904	6.010
5	4.72	0.140	15.708	14.818	0.809	0.764	17.497	19.635	7.226
6	5.699	0.151	18.849	17.904	0.670	0.637	25.509	28.274	9.346
7	6.657	0.172	21.991	20.914	0.574	0.545	34.805	38.484	12.435
8	7.636	0.182	25.132	23989	0.500	0.478	45.795	50.265	15.109
9	8.615	0.193	28.274	27.055	0.444	0.424	58.291	63.617	18.002
10	9.573	0.214	31.416	30.074	0.399	0.382	71.975	78.540	22.19

WROUGHT-IRON WELDED TUBES.
EXTRA STRONG.

1/8	. 405	100		205	
1/4	. 54	. 123		. 294	
3/8	. 675	. 127		. 421	
1/2	. 84	. 149	. 298	. 542	. 244
$3 / 4$	1.05	157	. 314	.736	. 422
1	1.315	. 182	. 364	. 951	. 587
11/4	1.66	. 194	. 388	1.272	. 884
$11 / 2$	1.9	. 203	.406	1.494	1.088
2	2.375	. 221	. 442	1.933	1.491
$21 / 2$	2.875	280	. 560	2.315	1.755
3	3.5	. 304	. 608	2.892	2.284
$31 / 2$	4.	. 321	. 642	3.358	2.716
4	4.5	.341	. 682	3.818	3.136

110 THE PASSAIC ROLLING MILL COMPANY.

WINDOW GLASS.

Number of Lights per Box of 50 Feet.

Inches.	No.	Inches.	No.	Inches.	No.	Inches.	No.
6×8	150	12×18	33	16×44	10	26×32	9
79	115	1220	30	1820	20	2634	8
810	90	1222	27	1822	18	2636	8
811	82	1224	25	1824	17	$26 \leq 0$	7
812	75	$12 \quad 26$	23	$18 \quad 26$	15	$26 \quad 42$	7
813	70	$12 \quad 28$	21	1828	14	2644	6
814	64	1230	20	1830	13	2648	6
815	60	1232	18	$18 \quad 32$	13	$26 \quad 50$	6
816	55	1234	17	$18 \quad 34$	12	$26 \quad 54$	5
911	72	1314	40	$18 \quad 36$	11	2658	5
$9 \quad 12$	67	1316	35	1838	11	2830	9
$9 \quad 13$	62	1318	31	$18 \quad 40$	10	2832	8
914	57	$13 \quad 20$	28	$18 \quad 44$	9	2834	8
$9 \quad 15$	53	$13 \quad 22$	25	$20 \quad 22$	16	$28 \quad 36$	7
$\begin{array}{ll}9 & 16\end{array}$	50	$13 \quad 24$	23	$20 \quad 24$	15	2838	7
9	47	$13 \quad 26$	21	$20 \quad 26$	14	2840	6
918	44	$13 \quad 28$	19	$20 \quad 28$	13	2844	6
920	40	1330	18	$20 \quad 30$	12	2846	6
1012	60	1416	32	$20 \quad 32$	11	2850	5
$10 \quad 13$	55	14	29	$\begin{array}{ll}20 & 34\end{array}$	11	2852	5
$10 \quad 14$	52	$14 \quad 20$	26	$20 \quad 36$	10	2856	4
1015	48	$14 \quad 22$	23	$20 \quad 38$	9	$30 \quad 36$	7
1016	45	$14 \quad 24$	22	$20 \quad 40$	9	$30 \quad 40$	6
1017	42	$14 \quad 26$	20	$20 \quad 44$	8	$30 \quad 42$	6
1018	40	$14 \quad 28$	18	2046	8	$30 \quad 44$	5
$10 \quad 20$	36	1430	17	$20 \quad 48$	8	3046	5
$10 \quad 22$	33	$14 \quad 32$	16	$20 \quad 50$	7	3048	5
1024	30	$14 \quad 34$	15	2060	6	$30 \quad 50$	5
1026	28	1436	14	$22 \quad 24$	14	3054	4
10. 28	26	$14 \quad 40$	13	22.26	13	$30 \quad 56$	4
$10 \quad 30$	24	1444	11	$22 \quad 28$	12	$30 \quad 60$	4
$10 \quad 32$	22	1518	27	$22 \quad 30$	11	$32 \quad 42$	5
1034	21	$15 \quad 20$	24	2232	10	3244	5
1113	50	$15 \quad 22$	22	2234	10	3246	5
11	47	$15 \quad 24$	20	2236	9	3248	5
1115	44	$15 \quad 26$	18	2238	9	3250	4
1116	41	$15 \quad 28$	17	2240	8	$32 \quad 54$	4
1117	39	1530	16	2244	8	3256	4
1118	36	1532	15	$22 \quad 46$	7	3260	4
1120	33	1618	25	$22 \quad 50$	7	$34 \quad 40$	5
1122	30	1620	23	$24 \quad 28$	11	3444	5
1124	27	1622	20	$24 \quad 30$	10	$34 \quad 46$	5
1126	25	$16 \quad 24$	19	2432	9	$34 \quad 50$	4
$11 \quad 28$	23	1626	17	2 ± 36	8	$34 \quad 52$	4
1130	21	$16 \quad 28$	16	2140	8	$34 \quad 56$	4
1132	20	1630	15	$24 \quad 44$	7	$36 \quad 44$	5
1134	19	$16 \quad 32$	14	$24 \quad 46$	7	$36 \quad 50$	4
1214	43	$16 \quad 34$	13	2148	6	$36 \quad 56$	
1215	40	$16 \quad 36$	12	2450	6	3660	3
1216	38	$16 \quad 38$	12	2154	5	$36 \quad 64$	3
$12 \quad 17$	35	1640	11	2456	5	4060	3

ROOFING SLATE.

General Rule for the Computation of Slate.

From the length of the Slate take three inches, or as many as the third covers the first; divide the remainder by 2 , and multiply the quotient by the width of the slate, and the product will be the number of square inches in a single slate. Divide the number of square inches thus procured by 144, the number of square inches in square foot, and the quotient will be the number of feet and inches required. A square of slate is what will cover 100 feet square, when laid upon the roof.

Weight per Cubic Foot, - 174 Pounds.

Weight per Square Foot.

Table of Sizes and Number of Slate in One Square.

Size in Inches.	No. of Slate in Square.	Size in Inches.	No. of Slate in Square.	Size in Inches.	No. of Slate in Square.
6×12	530	8×16	277	12×20	141
712	457	$9 \quad 16$	246	$14 \quad 20$	121
$8 \quad 12$	400	1016	221	1122	137
$\begin{array}{ll}9 & 12\end{array}$	355	1216	184	1222	126
$10 \quad 12$	320	$9 \quad 18$	213	14 2\%	108
$12 \quad 12$	266	1018	192	$12 \quad 24$	114
714	374	11.18	174	$14 \quad 24$	98
$8 \quad 14$	327	1218	160	$16 \quad 24$	86
$9 \quad 14$	291	1418	137	1426	89
$10 \quad 14$	261	$10 \quad 20$	169	1626	78
$12 \quad 14$	218	1120	154		

CAPACITY OF CISTERNS,

In Gallons, for Each Foot in Depth.

The American standard gallon contains 23 I cubic inches, or $81 / 3$ pounds of pure water. A cubic foot contains 62.3 pounds of water, or 7.48 gallons. Pressure per square inch is equal to the depth or head in feet multiplied by .433. Each 27.7^{2} inches of depth gives a pressure of one pound to the square inch.

SKYLIGHT AND FLOOR GLASS.

Weight per Cubic Foot, - 156 Pounds.

Weight per Square Foot.

Thickness.	$\frac{1}{8}$	$\frac{3}{16}$.$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	1 inch.
Weight $\ldots . . .$.	1.622 .43	3.25	4.88	6.50	8.139 .75	13 lbs.		

FLAGGING.

Weight per Cubic Foot, - 168 Pounds.
Weight per Square Foot.

Thickness.......	1	2	3	4	5	6	7	8 inch.
Weight $\ldots \ldots \ldots$	14	28	42	56	70	84	98	112 lbs.

NOTES ON BRICKWORK.

In ordinary brickwork, one cubic foot of wall will require 21 bricks of $8 \mathrm{in} . \times 21 / 2 \mathrm{in} . \times 31 / 2 \mathrm{in}$.

For 1000 ordinary bricks is required I barrel of good lime, 2 cartloads of ordinary sharp sand.

One brick as above weighs 4 lbs., dry; if perfectly soaked in water, 5 lbs . It will absorb I lb . or I pint of water.

Edgewise arches will require about 7 bricks per square foot of floor, and endwise arches will require about 14 bricks of the size given above.
For I cubic yard of concrete is required I barrel of cement, 2 barrels of good sharp sand, I cubic yard of broken stone. ?

114 THE PASSAIC ROLLING MILL COMPANY.

SPECIFIC GRAVITY AND WEIGHTS OF VARIOUS SUBSTANCES.
NAMES OF SUBSTANCES.

Anthracite, solid, of Pa
" broken, loose
" shaken
" heaped bushel, loose.
Ash, white, dry Asphaltum
Brass, cast.
" rolled
Brick, best pressed.
" common hard.

Brickwork, pressed brick

'Average Weights.		Specific Gravity
- Per Cubic Foot.	Per ingot, in. thick.	
93		1.50
54		
58		
(80 per	bushel,	heaped)
38	$3{ }_{6}^{1}$	0.61
87	7.25	1.40
504	42.	8.09
524	43.7	8.4
150		2.4
125		2.0
100		1.6
140		2.25
112		1.8
56		
50		
90		
42	3.50	0.67
41	3.41	0.66
84		1.35
49		
(74 per	bushel,	heaped).

Coke, loose
" heaped bushel, 38 lbs .
Copper, cast.
542
" rolled
548
Earth, common dry, loose
76
95
Ebony, dry...............................
Elm, dr
Gneiss
Gold, cast, 24 carat.
108
Cherry, dry
Chestnut, dry
$\begin{array}{ll}\text { Coal, bituminous, } & \text { solid. } \\ \text { " }\end{array}$
" hammered, 24 carat 1217

Granite
170
Hemlock, dry 25
Hickory, dry..... 53
Ice
58.7

Iron, cast. 450

" 1 wrought (hammered).......
" (rolled)...........
485

Lead.................................. . . 711

THE PASSAIC ROLLING MILL, OOMPANY\% 115
 or rate
 UNIVERSTTY
 SPECIFIC GRAVITY A NO WEIGHTS of various substances.-Contd.

NAMES OF SUBSTANCES.	Average Weights.		Specific Gravity.
	Per Cubic Foot.	$\left\lvert\, \begin{gathered} \text { Per } \\ \text { Foot, } \mathrm{I} \\ \text { in. thick. } \end{gathered}\right.$	
Lime, loose quicklime " per bushel, 66 lbs.	53		
Limestone and marble	168		2.7
Maple	49	$4 \frac{1}{12}$	0.79
Masonry, granite or limestone... " rubble	165		
" dry...	138		
" sandstone	144		
Mercury, at $32^{\circ} \mathrm{F}$.	849		13.6
Mortar, hardened	103	8.6	1.66
Mud, dry.	80-110		
Oak, live, dry.	59	$4_{4}^{1 \frac{1}{2}}$	
" ${ }^{\prime \prime}$ white.	52		0.83 0.88
l'ine, white, dry..	25	$2 \frac{1}{2}$	0.40
" yellow, Northern.	34	${ }^{2} 8$	0.55
" " Southern	45	$3{ }_{4}$	0.72
Quartz .	165		2.65
Salt, Syracuse, coarse " fine Liverpool.	45		
Sand, pure, dry, loose.......... . .	90-106-		
" shaken	99-117 -		
" perfectly wet............. .	120-140-		
Sandstone	151		2.43
Shales, red or black	162		2.6
Silver.	655		10.5
Slate.	175	14.6	2.8
Snow, fresh. " slush.....	$\begin{array}{r} 5-12 \\ 15-20 \end{array}$		
Spruce, dry	25	$2 \frac{1}{12}$	0.40
Steel.	490	$40 \frac{5}{6}$	7.9
Sulphur..	125		2.0
Sycamore, dry	37		0.60
Tar.	62		1.0
Tin.	459		7.4
Turf or Peat, dry	20-30		
Walnut, dry... ${ }^{\text {a }}$.	38	$3 \frac{1}{6}$	0.61
Water, pure, at $60^{\circ} \mathrm{F}$	$62^{\frac{1}{3}}$		1.00
Zinc or Spelter, cast..	64 446	37.1	1.028
${ }^{\prime \prime}{ }^{\prime \prime}$ " rolled.	448	37.3	7.19

LINEAR EXPANSION OF METALS.

Zi	Between \circ° and 100° 0.00294	C. For	For $\mathrm{I}^{\circ} \mathrm{Fahr}$.
Lead.	0.00284		
Tin	. 0.00222		
Copper, yellow	0.00188		
" red..	0.00171		
* Forged iron	0.00122	. 0000122	.00000677
\dagger Steel	0.00114	. 0000114	.00000633
* Cast iron	0.00111	. 0000111	. 00000616

For a change of 100° Fahr. a bar of iron 1475^{\prime} lorg will extend I foot. Similarly, a bar 100 feet long will extend .0678 foot, or . 8136 inch.
According to the experiments of Du Long \& Petit, we have the mean expansion of iron, copper, and platinum, between 0° and $100^{\circ} \mathrm{C}$., and 0° and $300^{\circ} \mathrm{C}$., as below :

n	From 0° to $100^{\circ} \mathrm{C}$	0° to 3000 C
Copper	0.00171	0.00188
Platinum	0.00884	0.00918

The law for the expansion of iron, steel, and cast iron, at very high temperatures, according to Rinman, is as follows:

	From 25° to $55^{\circ} \mathrm{C}$. red heat $=500^{\circ} \mathrm{C}$.	For $\mathrm{I}^{\circ} \mathrm{C}$. I^{0} Fahr.
Iron 00714	$.0000143=.00000180$
Steel	. 01071	$.0001214=.0000119$
Cast iron	. 01250	$.0000250=.0000139$

From 25° to 1300° nascent white $=1275^{\circ} \mathrm{C}$.

Iron01250
Steel021747
Cast iron	$.00000981=.00000545$
	$.00001400=.00000777$

From 500° to 1500° dull red to white heat $=1000^{\circ} \mathrm{C}$. difference.

Ir	. 10535	$.00000535=.0000030$
Steel	. 00714	$.00000714=.0001 .040$
Cast iron	. 00893	$.00000893=.0000050$

Ratio of Expansion in Hundred parts, assuming Forge Iron to expand between 0° and $100^{\circ} \mathrm{C}$. $=$. 00122.

	From 0° to 100°	25° to 525°	25° to 13000	500° to $1500{ }^{\circ}$
Iron	100 per ct.	117 per ct.	80 per ct.	44 per ct.
Steel	93 "	175 "	114 "	58
Cast i	n. 91	205	137	73

[^0]The contraction of a wrought-iron rod in cooling is about equivalent to $\frac{10}{1000}$ of its length from a decrease of 15° Fahr., and the strain thus induced is about one ton for every square inch of sectional area in the bar.

For a rod of the lengths given below, the contraction will be as follows:

Length of rod in feet. . $\begin{array}{lllllllll}10 & 20 & 30 & 40 & 50 & 75 & 100 & 150\end{array}$
Contrac'nin inches for $15^{\circ} .012$. 024 . 036 . 048 . 060 . 090 . 120 . 180
" " $150^{\circ} .120 .240 .360 .480 .600 .9001 .2001 .800$
" " $100^{\circ} .080 .160$. 240 . 320 . 400 . 600 . 8001.200

Contraction and expansion being equal, the pressure per square inch induced by heating or cooling is as follows :

For temperatures varying by $15^{\circ} \mathrm{Fahr}$.:

Stoney gives $8^{\circ} \mathrm{C} .=14.4$ Fahr. as equivalent to a pressure of one ton per square inch for wrought iron, and $15^{\circ} \mathrm{C} .=27$ Fahr. for cast iron.

Diminution of Tenacity of Wrought Iron at High Temperatures.

EXPERIMENTS FRANKLIN INSTITUTE, 1839 . WALTER JOHNSON AND BENJ. REEVES, COM.

C.	Fahr.	Diminution p. ct. of max. tenacity.	C.	Fahr.	Diminution p. ct. of max. tenacity.
271°	520°	0.0738	500°	932°	0.3324
299		0.0869	508		0.3593
313		0.0899	554		0.4478
316		0.0964	599		0.5514
332	630	0.1047	624	1154	0.6000
350		0.1155	626		0.6011
378		0.1436	642		0.6352
389	732	0.1491	669		0.6622
390		0.1535	674	1245	0.6715
408		0.1589	708	1306	0.7001
410		0.1627			
440		0.2010			

DIFFERENT COLORS OF IRON CAUSED BY HEAT.

Poulleet.

c.	Fahr.	Color.
210°	410°.	Pale Yellow.
221	430	Dull Yellow.
256	493	Crimson.

ULTIMATE RESISTANCE OF MATERIALS.

In Pounds per Square Inch.

	Tension Average.	Compression Average.	Shearing Average
Brass, cast	18,000	10,300	
" wire	49,000		
Bronze, gun metal	39,000	175,000	
Copper, cast....	19,000	117,000	
" sheet	30,000	103,000	
" bolts	36,000		
${ }^{\prime \prime}$ wire	60,000		
Iron, cast.....	13,400-29,000	80,000-145,000	27,000
Iron wrought: Rods of 1 to $2^{\prime \prime}$ diam. .			45,000
Rods of 1 to $2^{\prime \prime}$ diam.	50,000-55,000		
Rerolled, large bars. .	46,000-47,000	36000-40000	
Plates, Lin and shapes. $30^{\prime \prime}$ wide.	$47,000-50,000$		
Iron wire..	70,000-100,000		
" " ropes	90,000		
Lead, sheet.	3,300	7,700	
Steel, $0.25{ }_{0}^{\circ} \mathrm{c}$. for eye bars. " 0.420 c. compres-	70,000		
sion members...	80,000		
tool steel	110,000		
" wir	200,000		
Tin, cast.	4,600	15,500	
Zinc, "	7,500		
". sheet rolled	16,000		
Ash, seasoned	16,500	6,000	
Beech, "	15,000	7,000	
Box, "I	20,000	10,000	
Cedar, "	10,300	6,500	
Chestnut," ...	13,000		
Elm, "" ${ }_{\text {Fir or spruce, seasoned }}$	10,000-13,600	10,000	
Hickory,	12,800-18,000		800
Locust,	18,000		
Maple,	10,000		
Oak, white,	18,000	7,200-9,100	2,000
". European "	10,000-19,800	10,000	2,300
Pine, white, red and pitch.	10,000	5,000-5,600	5-800
" long leaf yellow.	12,600-19,200	5,000	6-1,000
Poplar, seasoned.	7,000	5,100	
Silk fiber.......	52,000		
Walnut, seasoned	16,000	7,200	

ULTIMATE RESISTANCE OF MATERIALS.

In Pounds, per Square Inch.

THE PASSAIC ROLLING MILL COMPANY. 121

NATURAL SINES, ETC.

$\begin{aligned} & \dot{80} \\ & \stackrel{0}{\circ} \end{aligned}$	Sine.	Cover.	Cosecnt.	Tangt.	Cotang.	Secant.	Versin.	Cosine.	守
0	. 00	1.00000	Infinite.	. 0	Infinite.	1.00000	0	1.00000	90
1	. 01745	. 98254	57.2986	. 01745	57.2899	1.00015	. 0001	. 99984	89
2	. 03489	. 96510	28.6537	. 03492	28.6362	1.00060	. 0006	. 99939	88
3	. 05233	. 94766	19.1073	. 05240	19.0811	1.00137	. 0013	. 99862	87
4	. 06975	. 93024	14.3355	. 06992	14.3006	1.00244	. 0024	. 99756	86
5	. 08715	. 91284	11.4737	. 08748	11.4300	1.00381	. 0038	. 99619	85
6	. 10452	. 89547	9.5667	.10510	9.5143	1.00550	. 0054	. 99452	84
7	. 12186	. 87813	8.2055	. 12278	8.1443	1.00750	. 0074	. 99254	83
8	. 13917	. 86082	7.1852	. 14054	7.1153	1.00982	. 0097	. 99026	82
9	. 15643	. 84356	6.3924	. 15838	6.3137	1.01246	. .0123	. 98768	81
10	. 17364	. 82635	5.7587	. 17632	5.6712	1.01542	. 0151	. 98480	80
11	.19080	. 80919	5.2408	. 19438	5.1445	1.01871	. 0183	. 98162	79
12	. 20791	. 79208	4.8097	. 21255	4.7046	1.02234	. 0218	. 97814	78
13	. 22495	. 77504	4.4454	. 23086	4.3314	1.02630	. 0256	. 97437	77
14	. 24192	. 75807	4.1335	. 24932	4.0107	1.03061	. 0207	. 97029	76
15	. 25881	. 74118	3.8637	. 26794	3.7320	1.03527	. 0340	. 96592	75
16	. 27563	. 72436	3.6279	. 28674	3.4874	1.04029	. 0387	. 96126	74
17	. 29237	. 70762	3.4203	. 30573	8.2708	1.04569	. 0436	. 95630	73
18	. 30901	. 69098	3.2360	. 32491	3.0776	1.05146	. 0489	. 95105	72
19	. 32556	. 67443	3.0715	. 34432	2.9042	1.05762	. 0544	. 94551	71
20	. 34202	. 65797	2.9238	. 36397	2.7474	1.06417	. 0603	. 93969	70
21	. 35836	. 64163	2. 7904	.38386	2.6050	1.07114	. 0664	. 93358	69
22	. 37460	. 62539	2.6694	.40402	2.4750	1.07853	. 0728	. 92718	68
23	. 39073	. 60926	2.5593	. 42447	2.3558	1.08636	. 0794	. 92050	67
24	. 40673	. 59326	2.4585	. 44522	2.2460	1.09463	. 0864	. 91354	66
25	. 42261	. 57738	2.3662	.46630	2.1445	1.10337	. 0936	. 90630	65
26	. 43837	. 56162	2.2811	. 48773	2.0503	1.11260	. 1012	. 89879	64
27	.45399	. 54600	2.2026	. 50952	1.9626	1.12232	. 1089	. 89100	63
28	. 46947	. 53052	2.1300	. 53170	1.8807	1.13257	. 1170	. 88294	62
29	. 48480	. 51519	2.0626	.55430	1.8040	1.14335	. 1253	. 87461	61
30	. 50000	. 50000	2.0000	. 57735	1.7320	1.15470	. 1339	. 86602	60
31	. 51503	. 48496	1.9416	.60086	1.6642	1.16663	. 1428	.85716	59
32	. 52991	. 47008	1.8870	. 62486	1.6003	1.17917	. 1519	. 84804	58
33	. 54463	.45536	1.8360	. 64940	1.5398	1.19236	. 1613	. 83867	57
34	. 55919	. 44080	1.7882	.67450	1.4825	1.20621	. 1709	. 82903	56
35	. 57357	. 42642	1.7434	.70020	1.4281	1.22077	. 1808	. 81915	55
36	. 58778	. 41221	1.7013	. 72654	1.3763	1.23606	. 1909	. 80901	54
37	. 60181	. 39818	1.6616	. 75355	1.3270	1.25213	. 2013	. 79863	53
38	. 61566	. 38433	1.6242	78128	1.2799	1.26901	. 2119	. 78801	52
39	. 62932	. 37067	1.5890	.80978	1.2348	1.28675	. 2228	. 77714	51
40	. 64278	.35721	1.5557	. 83909	1.1917	1.30540	. 2339	.76604	50
41	.65605	. 34394	1.5242	. 86928	1.1503	1.32501	. 2452	. 75470	49
42	. 66913	. 33086	1.4944	. 90040	1.1106	1.34563	. 2568	. 74314	48
43	. 68199	.31800	1.4662	. 93251	1.0723	1.36732	. 2686	. 73135	47
44	. 69465	. 30534	1.4395	. 96568	1.0355	1.39016	. 2806	. 71933	46
45	. 70710	. 29289	1.4142	1.00000	1.0000	1.41421	. 2928	.70710	45
	Cosine.	Versin.	Secant.	Cotang.	Tangt.	Cosecant.	Cover.	Sine.	

122 THE PASSAIC ROLLING MILL COMPANY.

CIRCUMFERENCES OF CIRCLES,

 Advancing by Eighths.CIRCUMFERENCES.

遍	. 0	. $1 / 8$.1/4	.3/8	1/2	. 5/8	.3/4	.7/8
0	0	3927	7854	1.178	1.571	1.963	2.356	2.740
1	3.142	3.534	3.927	4.320	4.712	5.105	5.498	5.890
2	6.283	6.676	7.069	7.461	7.854	8.246	8.639	9.032
3	9.425	9.817	10.21	10.60	10.99	11.39	11.78	12.17
4	12.56	12.96	13.35	13.74	14.13	14.53	14.92	15.31
5	15.71	16.10	16.49	16.88	17.28	17.67	18.06	18.45
6	18.85	19.24	19.63	20.02	20.42	20.81	21.20	21.60
7	21.99	22.38	22.77	23.17	23.56	23.95	24.34	24.74
8	25.13	25.52	25.92	26.31	26.70	27.09	27.49	27.88
9	28.27	28.66	29.06	29.45	29.84	30.23	30.63	31.02
10	31.41	31.81	32.20	32.59	32.98	33.38	33.77	34.16
11	34.55	34.95	35.34	3573	36.13	36.52	36.91	37.30
12	37.70	38.09	38.48	38.87	39.27	39.66	40.05	40.45
13	40.84	41.23	41.62	42.02	42.41	42.80	43.19	43.59
14	43.98	44.37	44.76	45.16	45.55	45.94	46.34	46.73
15	47.12	47.51	47.91	48.30	48.69	49.08	49.48	49.87
16	50.26	50.66	51.05	51.44	51.83	52.23	52.62	3.01
17	53.40	53.80	54.19	54.58	54.97	55.37	55.76	56.15
18	56.55	56.94	57.33	57.72	58.12	58.51	58.90	59.29
19	59.69	60.08	60.47	60.87	61.26	61.65	62.04	62.43
20	62.83	63.22	63.61	64.01	64.40	64.79	65.19	65.58
21	65.97	66.36	66.76	67.15	67.54	67.93	68.33	68.72
22	69.11	69.50	69.90	70.29	70.68	71.08	71.47	71.86
23	72.25	72.65	73.04	73.43	7382	7422	74.61	75.00
24	7540	75.79	76.18	76.57	76.97	77.36	77.75	78.14
25	78.54	78.93	79.32	79.71	80.11	80.50	80.89	81.29
26	81.68	82.07	82.46	82.86	83.25	83.64	84.03	84.43
27	84.82	85.21	85.60	86.00	86.39	86.78	87.18	87.57
28	87.96	88.35	88.75	89.14	89.53	89.93	90.32	90.71
29	91.10	91.50	91.89	92.28	92.67.	93.07	93.46	93.85
30	94.24	94.64	95.03	95.42	95.82	96.21	96.60	96.99
	97.39	97.78						
32	100.53	100.92	101.32	101.71	102.10	102.49	102.89	103.28
33	103.67	104.07	104.46	104.85	105.24	105.64	106.03	106.42
34	106.81	107.21	107.60	107.99	108.39	108.78	109.17	109.56
35	109.96	110.35	110.74	111.13	111.53	111.92	112:31	112.71
36	113.10	113.49	113.88	114.28	114.67	115.06	115.45	115.85
37	116.24	116.63	117.02	117.42	117.81	118.20	118.60	118.99
38	119.38	119.77	120.17	120.56	120.95	121.34	121.74	122.13
39	122.52	122.92	123.31	123.70	124.09	124.49	124.88	125.27
40	125.66	126.06	126.45	126.84	127.24	127.63	128.02	128.41
41	128.81	129.20	129.59	129.98	130.38	130.77	131.16	131.55
42	131.95	132.34	132.73	133.13	133.52	133.91	134.30	134.70
43	135.09	135.48	135.87	136.27	136.66	137.05	137.45	137.84
44	138.23	138.62	139.02	139.41	139.80	140.19	140.59	140.98
45	141.37	141.76	142.16	142.55	142.94	143.34	143.73	144.12

THE PASSAIC ROLLING MILL COMPANY. 123

AREAS OF CIRCLES,

Advancing by Eighths.

AREAS.								
㡶	. 0	.1/8	1/4	3/8	1/2	.5/8	.3/4	7/8
0	. 0	. 0122	0491	1104	1963	. 3068	4418	6013
1	. 7854	. 9940	1.227	1.485	1. 767	2.074	2.405	2.761
2	3.1416	3.546	3.976	4.430	4.908	5.411	5.939	6.492
3	7.068	7.670	8.296	8.946	9.621	10.32	11.04	11.79
4	12.56	13.36	14.18	15.03	15.90	16.80	17.72	18.66
5	19.63	20.63	21.65	22.69	23.76	24.85	25.96	27.10
6	28.27	29.46	30.68	31.92	33.18	34.47	35.78	37.12
7	3848	39.87	41.28	42.72	44.18	45.66	47.17	48.70
8	50.26	51.85	53.45	55.09	56.74	58.42	60.13	61.86
9	63.61	65.39	67.20	69.03	70.88	72.76	74.66	76.59
10	78.54	80.51	82.51	84.54	86.59	88.66	90.76	92.88
11	95.03	97.20	99.40	101.6	103.9	106.1	108.4	110.7
12	113.1	115.5	117.9	120.3	122.7	125.2	127.7	130.2
13	132.7	135.3	137.9	140.5	143.1	145.8	148.5	151.2
14	153.9	156.7	159.5	162.3	165.1	168.0	170.9	173.8
15	176.7	179.7	182.7	185.7	188.7	191.7	194.8	197.9
16	201.1	204.2	207.4	210.6	213.8	217.1	220.3	223.6
17	227.0	230.3	233.7	237.1	240.5	244.0	247.4	250.9
18	254.5	258.0	261.6	265.2	268.8	272.4	276.1	279.8
19	283.5	287.3	291.0	294.8	298.6	302.5	306.3	310.2
20	314.2	318.1	322.1	326.0	330.1	334.1	338.2	342.2
21	346.4	350.5	354.7	358.8	363.0	367.3	371.5	375.8
22	380.1	384.5	388.8	393.2	397.6	402.0	406.5	411.0
23	415.5	420.0	424.6	429.1	433.7	438.4	443:0	447.7
24	452.4	457.1	461.9	466.6	471.4	476.3	481.1	486.0
25	490.9	495.8	500.7	505.7	510.7	515.7	520.8	525.8
26	530.9	536.0	541.2	546.3	551.6	556.8	562.0	567.3
27	572.6	577.9	583.2	588.6	594.0	599.4	604.8	610.3
28	615.7	621.3	626.8	632.4	637.9	643.5	649.2	654.8
29	660.5	666.2	672.0	677.7	683.5	689.3	695.1	701.0
30	706.9	712.8	718.7	724.6	730.6	736.6	742.6	748.7
31	754.8	760.9	767.0	773.1	779.3	785.5	791.7	798.0
32	804.3	810.5	816.9	823.2	829.6	836.0	842.4	848:8
33	855.3	861.8	868.3	874.9	881.4	888.0	894.6	901.3
34	907.9	914.6	921.3	928.1	934.8	941.6	948.4	955.2
35	962.1	969.0	975.9	982.8	989.8	996.8	1003.8	1010.8
36	1017.9	1025.0	1032.1	1039.2	1046.3	1053.5	1060.7	1068.0
37	1075.2	1082.5	1089.8	1097.1	1104.5	1111.8	1119.2	1126.7
38	1134.1	1141.6	1149.1	1156.6	1164.2	1171.7	1179.3	1186.9
39	1194.6	1202.3	1210.0	1217.7	1225.4	1233.2	1241.0	1248.8
40	1256.6	1264.5	1272.4	1280.3	1288.2	1296.2	1304.2	1312.2
41	1320.3	1328.3	1336.4	1344.5	1352.7	1360.8	1369.0	1377.2
42	1385.4	1393.7	1402.0	1410.3	1418.6	1427.0	1435.4	1443.8
43	1452.2	1460.7	1469.1	1477.6	1486.2	1494.7	1503.3	1511.9
44	1520.5	1529.2	1537.9	1546.6	1555.3	1564.0	1572.8	1581.6
45	1590.4	1599.3	1608.2	1617.0	1626.0	1634.9	1643.9	1652.9

124 THE PASSAIC ROLLING MILL COMPANY.

SURVEYING MEASURE (LINEAL).

| Inches. | Links. | Feet. Yards. | Chains. | Mile. | Fr. Meters. | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| 1. | $.126=$ | $.0833=.0278$ | $=.00126$ | $=.000158$ | $=$ | .0254 |
| 7.92 | 1. | .66 | .22 | .01 | .000125 | .2012 |
| 12. | 1.515 | 1. | .333 | .01515 | .000189 | .3048 |
| 36. | 4.545 | 3. | 1. | .04545 | .000568 | .9144 |
| 792. | 100. | 66. | 22. | 1. | .0125 | 20.116 |
| 63360. | 8000. | 5280. | 1760. | 80. | 1. | 1609.315 |

One knot or geographical mile $=6086.07$ feet $=1855.11$ metres $=1.1526$ statute mile.

One admiralty knot $=1.1515$ statute miles $=6080$ feet.

LONG MEASURE.

Inches. Feet. Yards. Fath. Poles. Furl. Mile. Fr. Meters.

| 1. | $=.083=.02778=.0139=.005=.000126=.0000158=$ | .0254 | | | | | |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12. | 1. | .333 | .1667 | .0606 | .00151 | .0001894 | .3048 |
| 36. | 3. | 1. | .5 | .182 | .00454 | .000568 | .9144 |
| 72. | 6. | 2. | 1. | .364 | .0091 | .001136 | 1.8287 |
| 198. | $161 / 2$. | $51 / 2$. | $23 / 4$. | 1. | .025 | .003125 | 5.0291 |
| 7920. | 660. | 220. | 110. | 40. | 1. | .125 | 201.16 |
| 3360. | 5280. | 1760. | 880. | 320. | 8. | 1. | 1609.315 |

A palm $=3$ inches.
A span $=9$ inches.
A hand $=4$ inches.
A cable's length $=120$ fathoms.

FRENCH LONG MEASURE.

	Inches.	Feet. ${ }^{\text {- }}$	Yards.	Miles
Millimetre	. 039368	. 00328		
Centimetre . .	. 39368	. 03280		
Decimetre...	3.9368	. 32807	109357	
Metre	39.368	3.2807	1.09357	
Decametre . .	393.68	32.807°	10.9357	
Hectometre		328.07	109.357	. 0621346
Kilometre...		3280.7	1093.57	. 6213466
Myriametre :		32807.	10935.7	6.213466

SQUARE MEASURE.

100 square feet $=\mathbf{I}$ square.
Io square chains $=1$ acre.
I chain wide $=8$ acres per mile.
1 hectare $=2.471143$ acres.
I square mile $\left\{\begin{array}{l}=27878400 \text { square feet. } \\ =3097600 \text { square yards. } \\ =640 \text { acres. }\end{array}\right.$
Acres $\times .0015625=$ square miles.
Square yard $\times .000000323=$ square miles.
Acres $\times 4840=$ square yards.
Square yards $\times .0002066=$ acres.
A section of land is i mile square, and contains 640 acres.
A square acre is 208.7 Ift . at each side; or $220 \times 198 \mathrm{ft}$. A square $1 / 2$-acre is 147.58 ft . at each side; or $110 \times 198 \mathrm{ft}$. A square $1 / 4$-acre is 104.355 ft : at each side; or $55 \times 198 \mathrm{ft}$. A circular acre is 235.504 feet in diameter.
A circular $1 / 2$-acre is 166.527 feet in diameter.
A circular $1 / 4$-acre is 117.752 feet in diameter.

FRENCE SQUARE MEASURE.

Square.	Square Inches.	Square Feet.	Square Yards.	Acres.
Millimetre . .	. 00154	.0000107	000001	
Centimetre...	. 15498	. 0010763	000119	
Decimetre ...	15.498	. 1076305	011958	
Metre or Cen	1549.8	10.76305	1.19589	. 000247
Decametre...	154988.	1076.305	119.589	. 0247709
Hectare......		107630.58	11958.95	2.47086
Kilometre....	. 38607 口 mls.	10763058.	1195895.	247.086
Myriametre..	38.607			247086

CUBIC MEASURE.

Inches.	Feet.	Yard.
1.	.0005788	$=$
1.000002144	$=$	Cubic Metres.
1728.	1.	.000016386
46656.	27.	1.

A cord of wood $=\mathbf{I} 28$ cubic feet, being four feet high, four feet wide, and eight feet long.

Forty-two cubic feet $=$ a ton of shipping.
A perch of masonry contains $243 / 4$ cubic feet.

A Cubic Foot is Equal to

1728 cubic inches. . 037037 cubic yard. . 803564 U. S. struck bushel of 2150.42 cubic inches. 3.21426 U. S. pecks. 7.4805^{2} U. S. liquid galls. of 231 cubic inches. 6.42851 U. S. dry galls. 29.92208 U. S. liquid quarts.
25.71405 U. S. dry quarts. 59.84416 U. S. liquid pints. 51.42809 U. S. dry pints. 239.37662 U. S. gills. . 26667 flour barrel of 3 struck bushels.
.23748 U. S. liquid barrel of $311 / 2$ galls.

FRENCH CUBIC OR SOLID MEASURE.

	Gill.	Pint.	Quart.	Gallon.	Peck.	Bush.	Cubic Inches.	Cubic Feet.
Centilitre, Dry		. 0181					\}. 610	
Liquid	. 0845	. 0211					\}. 610	
Decilitre...Dry		. 1816	. 0908		. 0113		\} 6.1016	
Litre Diquid	8452	1.8116	. 1056	. 0264	. 1135			
Litre...... Liquid	8.452	2.113	1.056	. 2641	. 1135		61.016	. 0353
Decalitre. Dry			9.08 10.56		1.135	. 2837	0.16	. 3531
Liquid Hectolitre. Dry	84.52	21.13	10.56 90.8	2.641	11.35	2.837		
Liquid	211.3	105.6	26.41			\} 6101.6	3.531
bic Metre, Dry					113.5	28.37		35.31
Myrialitre. Dry		\ldots	1056.5	264.1	1135.	283.7		35. 31
Liquid			10565.	2641.4			¢	353.1

AVOIRDUPOIS WEIGHT.

The standard avoirdupois pound is the weight of 27.7015 cubic inches of distilled water, weighed in the air, at 39.83 degrees Fahr., barometer at thirty inches.
27.343 grains $=1$ drachm.

A stone $=14$ pounds.
A quintal $=100$ pounds.
7000 grains $=$ one avoirdupois pound $=1.21528$ troy pounds.

5760 grains $=$ one troy pound $=.82285$ avoirdupois pounds.

FRENCH WEIGHTS.

Equivalent to Avoirdupois.

	Grains.	Ounces.	Lbs.	Tons. 2240 lbs .
Milligramme	. 015433			
Centigramme.	. 154331	. 000352	. 000022	
Decigramme	1.54331	. 003527	. 000220	
Gramme . . .	15.4331	. 035275	. 002204	
Decagramme	154.331	. 352758	. 022047	
Hectogramme	1543.31	3.52758	. 220473	. 000098
Kilogramme .	15433.1	35.2758	2.20473	. 000984
Myriagramme		352.758	22.0473	. 009842
Quintal.....		3527.58 35275.8	$\underset{2204.73}{220.473}$	$\begin{aligned} & .098425 \\ & .984258 \end{aligned}$
相 or Momo			2204.73	. 984258

DLMENSIONS OF PASSAIC R. M. STANDARD TURN-TABLES.

Plates 19 and 20.

	$\begin{aligned} & \text { ft. in. } \\ & 35.0 \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{ft}, \mathrm{in} . \mid \\ & 40.0 \end{aligned}\right.$				
Length of	34	39.4	44	49.6		59.6
	31	36		46.0		
Depth from top of rail on table to top of center stone.	5.	5.	5.0	5.	5.6	5.
Depth from top of rail on table to top of rail of circular track.	3.	3.4	3.4	3.10	3.	
	2.0	2.0	2.0			

POINTS OF MERIT IN PASSAIC R. M. CO'S STANDARD TURN-TABLES.

The table is entirely center-bearing, and rests on steel discs, A, six inches in diameter, which offer very little resistance to turning around, and at the same time give ample bearing surface to maintain the parts in good working order. As the friction acts on a lever 2 inches long, and the power on one whose length is equal to the radius of the turn-table, it is apparent that very little power will be required to turn it. The table is hung to the center-pin by two bolts, B B, made of re-rolled iron; this arrangement prevents any uneven distribution of the load, produced by tightening of the bolts, such as is liable to be produced when more than two are used. The shape of the girder is such as to approach, in the nearest practicable manner, the theoretical form, which requires a constant flange section, when due regard is taken to the influence of the varying sign of the strains at any point of either flange, according to the position of the engine. The flanges are made of $4 \times 6 \mathrm{in}$. angle iron, extending all the way through at the top without a splice, and spliced in the center at the bottom. The flange of this iron, being 6 inches wide, gives ample room for good fastenings for the lateral bracing, which runs all the way through the top and bottom, and makes the table very stiff sideways, the chords being $12 \frac{3}{8} \mathrm{in}$. wide. By making the top and bottom bracing of angle iron, no twist can be brought on the table by unskillful adjustment.

Where shipment can be made by rail, the tables are loaded complete, ready to be set in pit. Full dimensions for building of pit, etc., accompany each contract. We take pleasure in referring to any of the roads to whom we have sent our tables, and will give further informption Rromply on application.

0

YA 06581

THE UNIVERSITY OF CALIFORNIA LIBRARY

[^0]: * Laplace and Lavoisier. † Ramsden.

