

В 3 314 686

LIBRARY
UNIVERSITY OF CALIFORNIA DAVIS

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

545

MANUAL

OF

Structural and Systematic.

WITH ILLUSTRATIONS OF THE SPECIES.

By GEORGE W. TRYON, Jr.

 Conservator of the Conchological Section of the Academy of Natrral Sclences of Philadelphia.Yoil. HII. TRITONID Æ, FUSID A, BUCCINID.

PHILADELPHIA: Published by the Author, Academy of Natural Sciences, Cor. IJth \& Race Ste. 1881.

LIBRARY
UNIVERSITY OF CALIFORNIA

In offering the Third Volume of the Manual of Conchology, I desire to express my sincere thanks for the very kind reception which the work has obtained from those interested in this and kindred pursuits, throughout the world. My constant endeavor is to perform my task in such a manner as will, in some measure, merit a continuance of their approbation.

The present volume includes monographies of the families Tritonidæ, Fusidæ and Buccinidæ, embracing a large number of familiar genera : a portion of them variable in specific characteristics and hence difficult of identitication. I trust that the conservative view which I have adopted in treating these will at least facilitate their recognition.

I am under especial obligation to a number of correspondents who have manifested their interest in the Manual in a very pleasing way, by sending me (unsolicited, for the most part) specimens, drawings and critical observations upon the species. I shall be glad to continue to receive similar aid, and as a hint to those who are willing to furnish it, I would mention that, in addition to the three families mentioned above, material relating to the genera Nassa, Turbinella, Volnta, Mitra, Columbella, Marginella, Oliva, Ancillaria, Harpa and their allies will be very acceptable.

[^0]Already Triton at his call appears Above the waves, a Tyrian robe he wears; And in his hand a crooked trumpet bears. The sovereign bids him peaceful sounds inspire, And give the waves the signal to retire ; His writhen shell he takes, whose narrow vent, Grows by degrees into a large extent.

I have seen
A curious child, who dwelt upon a tract Of inland ground, applying to his ear, The convolutions of a smooth-lipp'd shell ; To which, in silence hush'd, his very soul Listen'd intensely, and his countenance soon Brighten'd with joy : for murmurings from within Were heard,-sonorous cadences, whereby, To his belief, the monitor express'd Mysterious union with its native sea.

MANUAL OF CONCHOLOGY.

Family TRITONIDA.

Shell with varices, which are either few and irregularly disposed (Triton) or form a continuous row crossing the whorls on opposite sides (Ranella). The number of varices does not exceed two to each whorl, whilst in Murex the smallest number is three. Operculum annular, with sub-apical or central nucleus. Mantle enclosed, siphon straight, foot small. Lingual membrane with teeth in seven rows (3-1-3), like the Doliidæ, etc. (The Muricida have the teeth 1-1-1). The dentition is illustrated on plate 2.

I have already stated the reasons which induce me to place the Tritonidæ in close connection with the Muricidæ, yet forming a passage to the Cassididæ and Doliidæ, rather than arrange them with the latter groups. See Vol. II, p. 67.

The Tritonidæ first positively appeared in the eocene strata; the genus Spinigera d'Orb., from the cretaceous, being now referred, more correctly I think, to the family Strombidæ, and Trachytriton Meek, also cretaceous, does not belong certainly to the family.

Synopsis of Genera.

TRITON, Montfort. Shell oblong ; spire prominent, whorls with a few remote and non-continuous varices; columella rough or smooth ; canal recurved, short or long; outer lip internally crenated or denticulated. More than a hundred recent species have been characterized.

DISTORSIO, Bolten. Shell subturreted; whorls distorted; aperture irregular, contracted, ringent; canal recurved; inner lip dilated, lamellar, rugosely plicated; columella excavated, verrucosely plicate ; outer lip sinuous, internally plicate-dentate.

RANELLA, Lamarck. Shell ovate or oblong, compressed, with two rows of continuous varices, one on each side; aperture oval; columella arcuated and ridged, or crenulated; canal short, recurved; outer lip crenated.

There are over fifty recent species. In the lingual dentition (Pl. 2). Triton and Ranella are closely allied, but with a difference in the rachidian tooth ; Triton Cutaceum, however, approaches Ranella argus. Distorsio (Pl. 2, fig 9.) is not sensibly different from Triton. The dentition of the family is unmistakably allied to that of the Cassididæ, Doliidæ, etc.

Fossil Genera.

The distinctness of the following groups is very doubtful.
RANELLINA, Conrad. The genus was never characterized. The type differs from the figure in the varices being partially disconnected, thus showing more affinity to Triton than to Ranella.
Ranella Maclorii Comrad. Plate 3, fig. 14. Tertiary; Claiborne, Ala.
PERSONELLA, Conrad. Genus not characterized. Scarcely a Distorsio, but more like a Gutturnium.
Distorsio septemdentata, Gabb. Plate 3, fig. 15. Eocene, Texas.
TRITONOFSIS, Conrad. The type is a water-worn specimen, which Mr. Angelo Heilprin, who has examined the shell, deçlares to be too imperfect to assign to it any reliable characters. Has some resemblance to the section Cabestana, like T. doliarium L .
Triton subalveatus, Conrad. Plate 3, fig. 30. Eocene, Vicksburg.
TRACHYTRITON, Meek. The generic character appears to be confined to the occurrence of internal varices, marking the former positions of the lip, and which have not been absorbed when growth recommenced; otherwise very like Priene Oregonensis = cancellatus. The want of a callus on the upper part of the columella, which Meek makes a distinguishing character from Priene, also characterizes the P. Oregonensis, young, as described by Mr. Redfield.
T. vincolom, Hall and Meek. Pl. 3, fig. 13. Cretaceous, Dakotah.

Genus TRITON, Montfort.

Animal of T. Tritonis, Linn., figured upon Plate 1 (Frontispiece). Details of the anatomy of the genus will be found in the introductory portion of Vol. II of this Manual, together with figures upon the $3 \mathrm{~d}, 4$ th and 6 th plates thereof.

Shell oblong, with generally prominent spire, the whorls crossed by a few remote and non-continuous varices; the columella
smooth or nodulous; the canal long or short; the outer lip crenated or denticulated within.

Operculum ovate, its growth annular either from a sub-apical or submarginal nucleus.

Whilst the lingual armature of Triton allies it closely with Dolium, etc., among the so-called tænioglossate mollusks, the affinities of the animal are on the whole closer, and those of the shell decidedly so, to Muricidæ.* It may be considered a connecting link between the two groups, but certainly cannot be safely removed from the vicinity of the latter, to which it is not only allied by its operculum (which is entirely different from that of Dolium), but so closely by the shell in some instances, that the assignment of the generic position is quite arbitrary.

The Tritons are distinctly tropical in distribution, no species inhabiting the colder seas. The species are numerous and beantiful, presenting a great range of variation in size and color; one species being almost the largest of gasteropod mollusks, attaining a length of one and a half feet, whilst others, belonging to the Epidromoid section, do not exceed a half inch in length. The cancellated forms are chiefly East Indian, and are dredged in sand in deep water; the West Coast of A merica group, covered with a rough epidermis, is obtained in sandy inud at from six to thirty fathoms' depth. A number of species have a 'world-wide distribution, which is doubtless due to their free-swimming or pelagic larve. These, unlike the Murices, but like the Purpuræ, \dagger are very different at first from the adult both in animal and shell, undergoing a metamorphosis at a period subsequent to hatching.
I adopt the well-known name Triton in preference to the previously given Tritonium of Cuvier, believing that the interests of science are best conserved by keeping the nomenclature as stable as possible. Triton has been used in other departments of zoology, but so have many other generic names, which are nevertheless accepted without question. The fact is, that practical common sense has quietly shelved the British Association rule forbidding the use of a generic name in more than one branch of zoology. In these days only the very few enjoying

[^1]exceptional advantages can hope to acquire a competent knowledge of the names in use in a single department, and no one possesses the time or acquaintance with general zoology which would be necessary to avoid duplications. The alternative adoption of the name Tritonium has its difficulties: it is more generally known in connection with a Buccinoid group, and it is too close to Cuvier's genus Iritonia.

Reeve says*: The Tritons are shells of much more solid structure than the Murices or Ranellæ, and of much more simple growth. They are not furnished with any spines nor have they any ramified branches like the Murices; the rude manner in which the whorls are convoluted seem rather to indicate that their animal inhabitant, though possessing abundant power of calcification, is of somewhat sluggish growth. The epidermis of the Tritons is often remarkably thick, hairy and bristly, and is sometimes accompanied with small tufts of bristles. Another curious peculiarity in these shells is the structure of the apex; it appears in numerous instances to be formed of horny substance, thinly plated with shelly matter, and it is not an uncommon thing to find examples in which the calcareous plating is broken off so as to expose the horny cast underneath. The columella of the Tritons is generally covered with a bright coat of wrinkled enamel, and the outer lip becomes thickened in a manner exceedingly curious; upon arriving at maturity the lip curls under so as to form a deep, broad channel or gutter, and this is then filled up to form the thickened lip. The varices are all constructed in the same manner, each forming for a time the margin of the aperture; they are destined, it is conjectured, to protect the lip during a season of rest, and it would be extremely interesting if it could be discovered what length of time ordinarily elapses between the formation or deposit of the varix and the renewal of the operation of growth.

Mr. Arthur Adams \dagger mentions the adaptation of the Trumpetshell (T. tritonis) to the purposes of a tea-kettle by the inhabitants of the Typinsan archipelago, near the Loo-Choo Islands; the operculum forming the lid, the canal answering the purpose of a

[^2]spout, and the shell suspended by a wooden hook over the fire. Mr. Adams says that this rude vessel was adopted several times for the convenience of his party, and answered its purpose admirably.

The species of Triton being numerous, several attempts have been made to separate them into generic or subgeneric groups; the most successful being the arrangement of Messis. H. and A. Adams. Two of these groups, however, Simpulum and Cabestana, are so closely related that I think Kobelt has very judiciously united them. Priene is the connecting form approximating Iriton and Ranella; whilst in the latter genus species of the group Lampas recall Triton.

A very excellent catalogue of the genus has been published by Kobelt, the arrangement of which I mainly follow ; adding, how ever, some additional species, making about one hundred and fifty in all. Kobelt has monographed the genus in Kuister's Conchylien Cabinet and there are also monographies by Reeve and Kiener in their respective Iconographies.

Subgener..

Simpulum, Klein. Shell fusiform, whorls nodosely ribbed; outer lip thick, plicate-dentate internally. Operculum with apical nucleus.
Cymatium, Bolten. Whorls triangular ; aperture longer than the spire; outer lip dentated internally. Operculum with apical nucleus.
Guttornidm, Klein. Shell pyriform, subturreted, canal long, narrow. Operculum with submarginal initial point, near the middle of the inner margin.
Epidromus, Klein. Shell with long, generally curved spire ; aperture small and canal very short. Operculum triangular, with subnarginal nucleus.
Priene, H. and A. Ad. Shell ventricose, thin, cancellated or plicated; canal short. Operculum with apical initial point.

(Typical.)

Genus TRITON, Montf.
T. Tritonis, Linn. Pl. 1, fig. 1 ; pl. 3, fig. 16 ; pl. 4 , fig. 25.

Whitish or yellowish, variegated with semi-lunar markings of chestnut or chocolate color ; spire pink towards the apex ; orangered within the aperture; columella dark chocolate crossed by numerous white wrinkles or plaits; outer lip denticulated at the
margin, each denticle terminating a double revolving band of redbrown, or chocolate color. Length, 16 inches.

Isle of Bourbon, Plilippines, New Zealand, Polynesian Islands. Japan, Indian Ocean.
Var. nobilis, Comrad. Pl. 4, figs. 21, 26.
Uscally heavier and shorter than the typical form, the whorls with a distinct shoulder ; color within the aperture lighter.

Sicily, So. Coast of Spain, Portugal, Cape Verd Isles, West Indies.
Conrad considers this a distinct species, and Aradas and Benoit have also described it, from the Mediterranean under the name of T. Seguenzæ (pl. 4, fig. 26) ; but the numerous specimens before me enable me to satisfactorily connect the two forms. The hunip appears to become gradually more prominent with age, as in half grown specimens it is not apparent either in Mediterranean or West Indian specimens.
'T. nodiferus, Lam. Pl. 1, figs. 2, 3; pl. 3, fig, 17 ; pl. 4, fig, 23.
White, clouded and painted with reddish brown; aperture white within ; lip margin painted with brown ; columella with white plaits, of which the posterior one is very prominent.

Length, 5 to 10 inches.

> Mediterranean, Atlantic Coast of Europe, British Chamel, Canaries, Nutal, Mauritius, Japan, Australia, Neo Zealand.
T, Saulix, Reeve (pl. 3, fig, 17), and T. australis, Lam. (pl. 4, fig. 23), are generally considered at least varieties of this species, but I am unable to give them any permanent differential characters. The species varies in much the same manner as T. Tritonis in the smoothness or nodulation of surface, length of spire, etc. It is found fossil, commencing with the miocene, at several localities in southern Europe. The most northern European locality is the island of Guernsey, where three living specimens were trawled at different times between 1825 and 1832. Madame Power found this animal capable of reproducing amputated tentacles, etc. The Sicilians and Algerians eat the mollusk and esteem it a delicacy. At Nice, the fishermen and country people make a hole in the apex of the spire and use the shell as a trumpet which, Vérany remarks, produces a braying sound. It is an indispensable instrument in the old-fashioned charivari, which he describes as a deafening serenade to signalize the marriages of ill-assorted or unpopular couples.
T. subdistortus, Lam. Pl. 3, fig. 18.

Whitish, maculated and spotted with reddish brown; white within the aperture. Length 2 to 2.5 inches.

Australia.
T. Bassi, Angas. Pl. 3, fig. 20.

The revolving riblets and tuberculations appear to be proportionally smaller than in the preceding species, and the denticulations of the lip-margin are described and figured as "close." The color does not differ from that of T. subdistortus, and I think it will prove to be synonymous with that species.

Length 1.08 inch.
Bass' Straits, Australia.
T. fraterculus Dunker appears, from the description (not figured) to be a synonym.
T. fusiformis, Kiener. Pl. 4, fig. 22.

The whorls have two or three large knobs between the varices and the entire surface is covered with very fine, close, revolving strix, which are composed of minute, oblong granules. Yellowish brown, articulated with darker brown; aperture white within.

Length 1.5 to 2 inches.
Australiu.
Subgenus Simpulum, Klein.
T. olearium, Linn. Pl. 3, fig. 19; Pl. 4, fig. 24; Pl. 5, figs. 2i29 ; Pl. 6, fig. 37.
Light brown, the varices and lip usually tesselated with chocolate, the columella frequently chocolate between the whitish plications; within the aperture flesh color. Variable in its proportions, the spire being sometimes short, in others longer. Frequently, the revolving ribs are partially separated into approximate pairs by an incised line; sometimes they are partially broken up into revolving series of granules. When the shell is fresh it is covered by a thin epidermis which, at frequent intervals, develops longitudinal, reflexed ridges terminating, upon their entire length, in long, hair-like digitations. Operculuin with terminal initial point. Length, 2 to 6 inches.

> Mediterranean Sea; Atlantic Coast of Europe and Africa;
> Canary and Cape Verd Isles ; St. Helena; West Indies to Brazil;

Polynesia; Australia; New Zealand; Japan.

The animal is of a light straw-yellow, covered with black spots, which become distant and larger upon the head; tentacles long and black. The name olearium Linn, appears in the 12th edition to apply here partially, but it is not the olearium of the 10th edition nor of Born nor Gmelin. It is the Murex costatus of Born (not Gmelin), and parthenopus of von Salis. The current identification of the Linnean name is so well established that, however ill it may accord with fact, it seems preferable to retain it.
T. pllearis, Limn. Pl. 6, figs. 31-36; Pl. 7, figs. 38-39.

Yellowish brown, with occasionally darker (and sometimes white) revolving bands; aperture and columella orange-red to blood-red, with white plications; epidermis thin, hairy and bristly, light olive color. Length, 2 to 5 inches.
Red Sea, Seychelles, Natal, China, Japan, Australia, Philippines, Sandwich Isles, Florida, West Indies, Brazil.
Kobelt distinguishes T. Martinianus ($=$ Veliei Calkins, fig. 36). T. aquatilis Reeve, (fig. 34), and T. intermedius Pease, (fig. 35), as varieties ; but I cannot so regard them, as I find no characters by which to separate them. T. vestilus Hinds, (figs. 38, 39), from the west coast of Central America, has normally, a shorter spire and more intlated body-whorl, is smoother, darker in color, the lip and columella between the plications dark chocolate; yet the intermediate stages between this and the typical pilearis make a continuous series.
T. rubecula, Lim. Pl. 7, fig. 40.

Lemon to orange color, or orange-red, with a light lemon or white revolving band on the middle of the body whorl, and white blotches on the varices; lip and columella same color as outer surface, with the plications white. Length, 1 to 2 inches.

$$
\begin{aligned}
& \text { Red Sea; Nicobar Isles; Philippines; Central Pacific ; } \\
& \text { Sandwich Isles; St. Thornas, W. I. }
\end{aligned}
$$

The last locality is upon the authority of a dredged specimen in the Swift Collection, now in the museum of the Philada. Acad. For this specimen Mörch made a variety occidentale, but it has no distinctive characters.
T. gemmatus, Reeve. Pl. 7, figs. 41-44.

Whitish to orange-yellow. Revolving ribs fewer in number than in T. rubecula, with three revolving striæ between each ribof which the middle one is largest; frequently laticed by longitudinal ribs, and sometimes developing two or three nodules between the varices. Length, 1 to $1 \cdot 5$ inches.

Philippines to Sandwich Islands; Paumotus.
More graceful in form, with more rapidly accuminated spire and longer canal, and smaller than T. rubecula;-to which, nevertheless, it is closely allied. T. mundum Gould, (figs. 43, 44), appears to be the same species.
T. ficoides, Reeve. Pl. 7, fig. 46.

Fig-shaped; yellowish, the lip and columella orange color.
Length, 2 inches.
T. chlorostomus, Lam. Pl. 7, figs. 47, 48.

West Africa.
White, more or less tesselated with red or chocolate spots, the revolving, incised lines usually colored; aperture deep orange within. Length, $1 \cdot 5$ to 3 inches.

Red Sea; Isle of Bourbon; New Caledonia; Philippines; Central Pacific; Sundwich Islands; West Indies.
T. corrugatus, Lam. Pl. 8, fig. 49.

Whitish, more or less stained and marked with brown; epidermis brown, pilose. Length, $2 \cdot 5$ to 3.5 inches.

Mediterranean; Atlantic coasts of France, Portugal and Spain.
Var. Krebsit, Mörch. Pl. 8, fig. 50.
Spire shorter, nodules between the varices stronger.

> St. Themas, St. Croix, W. I.

Described as a distinct specics but the characters by which Mörch distinguishes it are common to the type form except the shorter spire and more rugose longitudinal ribs. Probably not perfectly acclimated, and depauperate in consequence.
T. Beccarii, Tapparone-Canefiri. Pl. 7, fig. 45.

Light yellowish; aperture orange color. Length, $1 \cdot 75$ inches. Massaua ; Red Sea.
A single specimen only obtained. Its very narrow form will distinguish it at once from the nearly related species.
T. lineatus, Brod. Pl. 8, fig. 51.

Yellowish brown, the raised revolving lines chestnut-brown; columella and aperture chocolate, the plications white.

Length, $\mathbf{2 \cdot 2 5}$ inches.
Galapagos Isles, in sand; 6 fathoms.
T. Granulatus, Dunker.

An unfigured species, 35 mill. in length, from Bass' Straits, Australia. Said to belong to the group Simpulum. I cannot indentify it.
T. contabulatus, Antoin.

Unfigured and not identified; placed by the author in his "pileare" group.
T. Lirostomus,
T. papillosus,
T. tringa,
T. nodiliratus,

Described by Mr. Arthur Adams in Ann. Mag. Nat. Hist. 1870. All from Japan. No figures, dimensions, nor comparative characters are given; so that I am unable to give an opinion as to their novelty.
$*^{*} *$ Group Linatella, Mörch.
The species of this group approach more nearly to the Doliidæ in form and sculpture than any other Tritons.
T. Tranquebaricus, Lam. Pl. 8, figs. 52, 53.

Light yellowish brown, the revolving ridges chocolate-brown; whitish within. Length, $1 \cdot 25$ to 2 inches.
W. Coast Africu; Wंest Indies.
T. Poulsenii, Mörch. Pl. 8, fig. 54.

Thin, inflated, orange-brown; white within the aperture; lipteeth orange color. Length, 2 inches.

West Indies.

Two specimens in the Swift Cabinet (Mus. Philad. Acad.). It is possibly a variety of T. cingulatus, although much more inflated and with shorter canal than the typical form of that species. Very much like the genus Dolium in its general appearance.
T. cingulatus, Lam. Pl. 8, figs. 55, 56.

Light yellowish brown, with the revolving ribs darker ; slightly shouldered and tuberculate on the angle; canal rather long and recurved. Length, 2 to 2.75 inches.

Philippines; Floating dock, St. Thomas, W. I. (Swift Coll.).
T. Voigtii, Anton (fig. 56) is a synonym, according to Philippi, who publishes the first and only illustration of that species.
T. Wiegmanni, Anton. Pl. 9, fig. 57.

Whorls decidedly shouldered, and nodulous on the angle of the shoulder. Yellowish brown, the revolving ribs darker in color. Length, $2 \cdot 5$ to 3.5 inches.

Mazatlan to Panama.

There is but little difference between this and the preceding species : it has a more decided shoulder and the canal is shorter; Should they prove identical, which is probable, the species must be called T. cingulatus, Lam.
T. clandestinus. Lam. Pl. 9, fig 58.

Very light yellowish brown; the regular cord-like revolving ribs chestnut-brown; aperture white within.

Length, 1.5 to 2.5 inches.
T. lignarius, Brod. Pl. 9, fig. 63.

Solid; yellowish brown, with dark chestnut revolving bands; columella with a double series of small tubercles which are white upon an orange ground; outer lip orange stained, with white tuberculations. Length, $1 \cdot 25$ inches.
W. Coast Central America; sandy mud, 7 to 12 fathoms

A very distinct species, readily recognizable by its sculpture and showy coloring.

$$
{ }^{*} * \text { Group Cabestana, Bolten. }
$$

'T. cutaceus, Linn. Pl. 9, fig. 59.
The revolving ribs are elegantly sculptured into close, beadlike nodules. Light yellowish brown, white within the aperture: Length, 2 to 3 inches.

The epidermis differs from that of most of the Tritons in being a thin, smooth skin. The species is found from low to deep water. Philippi describes the animal thus: Body on the upper part painted with irregular spots of dark purple, which are separated by narrow white lines; foot pale violet above, marbled on the sides, and speckled here and there with reddish spots which are edged with white.
'T. dolitarius, Linn. Pl. 9, fig. 60.
Pale yellowish to brown, sometimes spotted with brown on the ribs; white within the aperture. Epidermis short-tufted, light olive-brown or yellowish. Length, $1 \cdot 25$ to $1 \cdot 75$ inches.

Cape of Good Hope ; New South Wales, Australia.
Ranella tuberculata, Risso, is a synonym of T. cutaceus, but the shell figured for Risso's species by Küster in his monograph of Purpura is a T. doliarius, typical in every respect.
'T. Africanus, A. Ad. Pl. 10, fig. 73.
Red-brown, white within the aperture. Length, $2 \cdot 25$ inches. Ichaboe, S. Africa.
I separate this from T. doliarius with considerable hesitation. It may prove to be merely a lengthened, more solid form of that species I have before me an example of T. doliarius which is rather longer than usual, with the peculiar revolving sculpture almost obsolete.
T. fossatus, Gould.

Shell solid, subglobose, yellowish ; spire short; whorls six, the sutures profoundly canaliculate ; surface with two revolving ribs, crossed by nodulous longitudinal undulations; aperture narrow, rounded behind; lip varicose, denticulate, sulcate within; columella erectly sulcate, the posterior sulci larger.

Length 35, diam. 20 mill. Honkong, China.
Not figured ; said to approach T'. doliarius in form and sculpture, but has the sutural canal and a longer beak.
'T. Spengleri, Lam. Pl. 9, fig. 61.
Yellowish brown, the incised revolving lines chestnut-brown; . all the ribs crossed by longitudinal striæ, cutting their surface into bead-like nodules; white within the aperture.

Length, $3 \cdot 5$ to 5 inches. S. Australia; Chatham Islands.
The epidermis is thin, smooth, yellowish olive.
T. Waterhousei, Ad. and Ang. Pl. 9, fig. 62.

Yellowish brown, somewhat tinged with olive; white within the aperture. Length, $2 \cdot 25$ inches.
S. Australia.

The spire is proportionally shorter, the shoulder of the whorls not so well marked; whorls more rounded than in last species. Epidermis squamately pilose.
T. Boltenianus, A. Ad.

Allied to T. Spengleri, but smaller, more ponderous, and without varices. The young shells are peculiarly inflated, and banded inside with dark purple ridges. Length, 2 inches.

Not figured. I have not seen it.
T. Barthelemyi, Bernardi. Pl. 10, fig. 69.

Yellowish white, the transverse grooves darker; brownish within the aperture. Length, $5 \cdot 5$ inches.

> S. Australia, among rocks at low tide.

Evidently very closely allied to T. Spengleri, of which it will very probably prove to be an overgrown form, living amidst uncongenial surroundings.
T. labiosus, Wood. Pl. 9, figs. 64-68.

Shouldered; encircled by revolving ribs, each of which is bi-sulcate, so as to divide the rib into three; decussated by almost equally strong longitudinal coste; canal usually short. Yellowish to dark chestnut-brown, sometimes light-banded; aperture and columella white. Length, 1 inch.

Japan, Philippines, Mauritius, Australia, West Indies.
The numerous specimens before me, from various West Indian localities, are not distinguishable from Australian examples. T. Loroisii, Petit (fig. 66), has no distinctive characters. ${ }^{-} T$. Strangei, A. Ad. and Ang. (fig. 67), from Australia, has less shoulder and longer canal than the typical form, but I have before me a West Indian specimen which closely mimics the figure of that species. T. orientalis, Nevill (fig. 68), from the Indian Ocean, has a somewhat longer canal, but does not otherwise differ from the typical labiosus. These may be considered varieties by those who are fond of minute distinctions.
'T. dorsuosus, A. Ad.
A Japanese species, not yet figured. No dimensions given. Assigned by the author to this group. The Latin diagnosis, as usual, is worthless for the purpose of identification. It is simply the cabalistic ceremonial through which Mr. Adams becomes invested with the title to a specific name; it does not and cannot, and perhaps never was intended, to define his property with sufficient accuracy to prevent trespass on his rights by others; therefore it becomes a trap for the unwary and ambitious. On the other hand the indefiniteness of the usual diagnosis permits its author the greatest latitude in shifting its olject from species to species; or, if he is enterprising, in capturing some of the species diagnosed at a later date by his brother conchologists. As a rule, I will not attempt to identify unfigured species, and would like to exterminate all such descriptions and names for the benefit of science.

Subgenus Cymatium, (Bulten) Adams.
This group is well distinguished by the trigonal form of the shell of the typical species, large varices and nodules. Operculum with initial point at its apex.
T. femorale, Lim, Pl, 10. fig. 70.

Yellowish brown; the principal revolving ribs white where they cross the varices; aperture white, light purplish or roseate within. Length, 3 to 7 inches. West India Islands.

Reeve mentions that the varices of this species suggested the gadroon border used, by silversmiths for the decoration of plate. The epidermis is very thin, somewhat bristly. The initial point of the operculum is apical.
T. tigrinus, Brod. Pl. 10, fig. 71, 72.

Yellowish brown, tinged more or less with dark brown betmeen the revolving ribs. Length, 4.5 to 6.5 inches.
W. Co. Central America; 11 fathoms in sandy mud.

A wider, smoother species than the preceding, with simpler sculpture. When full-grown, the outer lip spreads out, making the body whorl very wide.
T. Ranzanii, Bianconi (fig. 71) from Mozambique, E. coast of Africa, appears to be the same species.
T. Lotortum, Linn. Pl. 11, figs. 78, 79 ; pl. 10, fig. 76.

Orange-brown; the principal revolving ribs yellowish white upon the varices, where the interstices become intensified to a dark chestnut color; aperture white or blush color, the teeth of the outer lip varying from orange to chocolate, with blotches of the same on the columella. Length, 3.5 to 4.5 inches.

Red Sea, Indian Ocean, Philippines, Central Polynesia.
T. grandimaculatus, Reeve (fig. 76) belongs here; the distinctive characters are individual only.
T. pyrum, Linn. Pl. 10, fig. 74.

Orange color; usually lighter within the aperture; the teeth of the lip and columella nearly white. Length, 3 to 4 inches.

Indian Ocean; Madagascar ; Isle of Ticao, Plilippines, under stones at low water.
T. Dunkert, Lischke. Pl. 11, fig. 82.

White or yellowish, more or less irregularly variegated with brown; aperture, columella and lip-seeth white. Length 3.75 in . Japan.
Very like T. pyrum in form, but thinner; the longitudinal nodules between the varices are much smaller, more continuous and more numerous, being seven or eight in number; whilst in pyrum they are five; the coloring also, is different.

T. Münsteri, Anton.

Described as a species of the lotorium group. It has never been figured nor identified.

Subgenus Guttarnium, Adams.

The shells of this group possess a peculiar polished, porcellaneous outer and inner lip, the latter reflected over the columella, together with a short, rounded pyriform body and lengthened, narrow, more or less twisted canal. Operculum with initial point submarginal, near the middle of the inner margin.
T. cynoceprialus, Lam. Pl. 11, fig3. 80, 81 ; pl. 15, fig. 152.

Light yellowish or orange, smetimes with deeper indefinate bands; aperture yellowish white; columella, especially the upper portion, with a brown patch. Le:gth 2.25 to 3 inches.

West Indies ; Philippines, 6 fathoms in coral sand.

Occasionally the longitudinal disposition of the tubercles prevails over the transverse, in which state the species has been re-described by Reeve as T. moritinctus (fig. 81). This, and intermediate forms are found in West Indian, as well as in Philippine Islands specimens.
T. sarcostoma, Reeve. Pl. 10, fig. 75.

Intervariceal ribs not so numerous, and more prominent than than in the preceding species. Yellowish brown. Lip tinged with orange ; columella without the brown markings of T. cynoceph.alus. Length 2.5 inches.

On the reefs, Isle of Ticao, Philippines.
I admit this as a distinct species with some hesitation, as the growth of one rib or nodule at the expense of two smaller ones is not unusual in this and allied genera.

T. trilineatus, Reeve. Pl. 10, fig. 77; pl. 11. fig. 87.

Longitudinal ribs distant, less prominent than the revolving series; shoulder of the whorls obtuse, defined by tubercles; body whorl a little attenuated below. Yellowish brown, whitish on the prominent nodes and revolving ribs; aperture white, columella brown stained. Length 3 inches.

Red Sea, Philippines, China.
Mr. Reeve distinguishes his T. xgrotus (fig. 87), from this species by the less developed tubercles on the shoulder, and by its having a varix on the back of the penultimate whorl : neither of which distinctions holds good. I consider it a synonym.
T. testudinarius, Ad. \& Reeve. Pl. 11, fig. 84.

The longitudinal ribs are more developed than the revolving ones, so that the shoulder of the whorls is less defined by tubercles; the canal is also longer than in trilineatus; which it greatly resembles.

Chinese Sea.
T. Sinensis, Reeve. Pl. 11, fig. 85.

White, more or less stained with pale yellow.
Length, $3 \cdot 5$ inches.
T. clavator, Lam. Pl. 11. fig. 86.

Whitish, varices more or less stained with brown; columella, and inner margin of lip orange. Epidermis bristly tufted on the ribs. Length, 2.5 inches.

Isle of Burias, Philippines; sandy mud, seven fathoms. Cuming. T. gallinago, Reeve. Pl. 11, fig. 89.

White, more or less stained with yellow on the varices.
Length, $2 \cdot 4$ inches.
Isle of Mindanao, Plilippines; sandy mud at 20 fathoms. Cuming.
More boldly sculptured, and with shorter canal than T. Sinensis;-of which it may prove to be a variety.
T. Exilis, Reeve. Pl. 11, fig. 88.

Differs from T. clavator in having no varix on the penultimate whorl, in the white aperture, the surface vividly stained with orange-brown, and especially in the well-developed nodulous ribs.

Length, 2.5 inches.
Isle of Zebu, Philippines; in sandy mud, 10 fathoms. Cuming.

T. pachycheilos, Tapparone-Canefri.

Differs from T. exilis, Reeve, in the columella being destitute of prominent rugose plications, in the less developed tubercles and canaliculate suture. White, variegated with orange, and obscurely doubly zoned with brown ; rarices two, maculated with dark brown; aperture white, lip with seven large teeth.

Length, 55 mill.
This species has not yet been figured.

Mauritius.

T. monilifer, Ad. \& Reeve. Pl. 11, fig. 90.

White, variegated with chestnut; lip and columella white.
Length, 2 inches.
Chiness Sea.
The figure indicates a canaliculate suture, but it is not mentioned. in the description. Possibly the preceding species is identical with this.
T. caudatus, Gmel. Pl. 12, fig. 92.

A white shell, identical in sculpture and general appearance with T. Sinensis, except that the spire is more depressed, the whorls arising from deeply grooved sutures. Length, 3 inches:
T. tripus, Lam. Pl. 12, fig. 93.

Pale yellowish brown, lighter colored on the revolving ribs; white or pale blush within the aperture. Length, 2 to 3 inches. Indian Ocean, China.
Like T. caudatus, this species has canaliculate sutures.
T. vespaceus, Lam. Pl. 12, figs. 94-100.

Very. finely granulated; dorsal tubercles large, giving the shell a somewhat hump-backed appearance. Yellowish white, marbled and banded with brown. Length, 1.5 inches.

- Australia, Viti Isles, Sandwich Isles. (Pease). West Indies. (Swift).

The above localities are all authentic. The typical full-grown shell is that described by Reeve as T. Thersites (figs. 99, 100), a form occurring both in the West Indian and Polynesian localities. T. vespaceus was described from a smaller, though perhaps fullgrown shell, probably a more stunted growth. T.elongatus (fig. 96), and T. gracilis (fig. 97), of Reeve, are of somewhat more graceful form and have a. longer canal ; the latter is represented in the collection of the Philada. Academy by specimens from St. Croix, W. I., and from the Viti Isles.
T. tenuiliratus, Lischke. Pl. 12 , fig. 105.

Shell varying from light to dark brown, white within the aperture. Varices four; whorls nine, of which the first four are embryonal and small. Length, 40 mill.

Japan; Sandwich Isles, (W. H. Pease).
I copy the figure of Dr. Lischke, which represents the unique and decidedly imperfect specimen from which he described his species.
T. amictus, Reeve. Pl. 40, fig. 188.

Whitish, with a soft, sparingly bristled epidermis.
Length, $1 \cdot 4$ inches.
Plilippines.
I do not know the species. The figure somewhat resembles Eupleura caudata.
T. exaratus, Reeve. Pl. 12, figs. 102, 104.

Shell with two varices ; the whorls flat shouldered ; revolving ridges duplicate. Whitish, variegated or banded with brown, or brown with a white median band. Length, 1.75 inches.

Australia.

Has fewer varices, and the shoulder angle is not so gibbously nodulose as in the next species; yet I suspect them to be identical.
T. albbosus, Brod. Pl. 12, figs. 101, 103.

Shell with four varices; gibbous; strongly tuberculated on the margin of the flat shoulders; spire scalariform; surface closely covered with chain-like minute tuberculations. Yellowish brown. Length, $2 \cdot 5$ inches.

Panama; Monte Christi, W. Columbia, 7 fathoms, coarse sand.
T. Löbвecker, Lischke. Pl. 12, fig. 106.

Very closely allied in general appearance, with T. exaratus Reeve, but the whorls are rounder, with shorter spire and canal; shoulder more rounded; spiral striæ finer; ribs between the varices obsolete. Length, 1.5 inches.

> Japan.
T. Pfeifferianus, Reeve. Pl. 13, fig. 107.

Yellowish white, with irregular darker bands; whitish within the aperture. Length, $2 \cdot 5-3$ inches.

Philippines.
T. retusus, Lam. Pl. 13, fig. 108.

Yellowish-brown, sometimes maculated or banded with darker brown ; aperture white within. Length, 2 to 2.5 inches.

Indian Ocean, Mauritius.
T. pyrulum, Ad. \& Reeve. Pl. 13, fig. 109.

Light yellowish brown. Length, 1.75 inches.
East Indies.
T. encausticus, Reeve. Pl. 13, fig. 110.

Light yellowish brown. When adult, the columella and lip are thickly enamelled, pale orange-brown. Length, 1.75 inches. I. Ticao, Philippines; on the reefs.
T. tuberosus, Lam. Pl. 13, figs. 111-113.

Light to dark brown, the ribs and tubercles lighter or whitish, with sometimes, a median white band. Lip and columella thickly enamelled, white or yellowish; interior of aperture orange red. Operculum with terminal nucleus. Length, 1.5 to 2.5 inches.

West Indies, Indo-Pacific O., Mauritius, Polynesia.

Several authors have separated the West Indian and exotic specimens of this most common of Tritons, upon differences which are purely assumptions-the variations in coloration, length of canal etc. pervading specimens from either of the localities.

T. Mauritianus, Tapparone-Canefri.

-Said to resemble T. tuberosus, but smaller, with differently shaped and ornamented mouth; shorter canal; smaller number of varices ; and light color. Length, 32 mill.

Mauritius.

Not figured. It is very doubtful whether the species is a valid one; very probably it is one of the numerous variations of T. tuberosus.
T. crispus, Reeve. Pl. 13, fig. 114.

Whitish or yellowish; lip and columella covered with white enamel ; aperture blush or yellowish within. Length, $\cdot 75$ inch. Hab. unknowon.
Has the appearance of a short, stont, miniature tuberosus.
T. Quoyi, Reeve. Pl. 13, fig. 116.

Varices four or five; whorls closely decussated, and nodulous at the crossings of the riblets. Orange-brown.

Length, $1 \cdot 25$ inches.

Australia.

This is the T. viperinum of Kiener, not Lamark-the latter being a distinct fossil form. T. eburneus, Reeve is closely allied, buit may be distinguished by its shorter and more obtuse spire.
T. eburneus, Reeve. Pl. 13, fig. 115.

Closely decussated ; varices four ; white. Length, $\cdot 75$ inch. Isle of Ticao, Philippines; under stones at low water.

T. verrucosus, Reeve. Pl. 13, fig. 117.

Varices four or five ; whorls decussated and roughly nodulous. Orange-brown ; lower portion of body whorl sometimes articulated with darker brown; aperture white within.

Length, 85 inch.
Australia ; Jamaica (one specimen, R. Swift).

$$
^{} * \text { Cumia }
$$

T. convolutus, Brod. Pl. 13, fig. 118.

White ; whorls encircled by sharp, close revolving ridges.
Length, $1 \cdot 25$ to 2 inches.
Marquesas (7 to 10 fathoms, sandy mud); New Guinea, (22 fathoms soft mud); Philippines.
T. scalariformis, Brod. Pl. 13, fig. 119.

White ; with sharp, close-set revolving ribs, crossed by slighter longitudinal ribs. Length, $\cdot 80$ to $1 \cdot 60$ inches.

Panama.

Although the specimen figured shows sufficient distinction, I have individuals of intermediate character before me which render the separation of this and the last species somewhat doubtful. Typically, the position of the varices is different, and the decussated striæ of T. Scalariformis are coarser.
T. speciosa, Angas. Pl. 13, fig. 120.

Shell with from 20 to 22 conspicuous, erect, rounded varices; yellowish white, with sometimes a pale chestnut, narrow band; with alternately larger and smaller concentric ridges, decussated by sharp, raised striæ into bead-like nodules; aperture white within.

> Port Jackson, Australia; at very low spring tides.

The number of varices suggests the genus Trophon. I have not seen the species.

Subgenus Epidromus, (Klein) Adams.

T. maculosus, Gmelin. Pl. 14, fig. 121.

White, shaded and spotted with chestnut-brown ; aperture and columella white. Length, 3 inches.

Mauritius, Philippines, Amboina, Red Sea.
T. tenerus, Gray.
"Shell ovate, turreted, thin, pale, fulvous, pellucid, cancellated, with equally fine longitudinal and spiral ridges ; spire attenuated, longer than the mouth ; whorls rounded; varices rounded ; can. cellated, with two brown spots. Mouth ovate, oblong; outer lip crenulated; throat smooth ; inner lip thickened ; smooth, elevated, canal short, perforated in front. Axis, 3.5 inches.

Hab. ?
"Allied to T. maculosus, but thinner and cancellated." The above is the original description, and the species has not been figured nor recognized. Very probably it is founded on a thin specimen of T. maculosus.
T. Sowerbyi, Reeve. Pl. 14, fig. 122.

Shell encircled by brown, excavated lines, in pairs. Orangebrown, variegated with brown and ornamented with two distant rows of square brown spots. Length, $2 \cdot 5$ to 3 inches.

Galapagos Isles, in sandy mud at six fathoms (Cuming); Red Sea, (MacAndrew, Tapparone-Canefri) ; Isle of France (Chemnitz).
Said to live in the Red Sea at a less depth than T. maculosus; from 10 to 11 metres.
T. clathratus, Sowb. Pl. 14, figs. 123, 124, 129.

Whorls well-rounded, rapidly increasing, so as to form a stout, heavy shell, with small mouth and broad lip-varix. Covered with strong, sharp-set longitudinal ribs which are fimbriated by the crossing of revolving lines. Yellowish white, mottled with orange-brown. Length, $1 \cdot 5$ inches.

Indian Ocean.

The coarse, prominent sculpture, rounded whorls, and stout form distinguish this species. T. Cumingii, Dohrn (fig. 129), is described from an unusually stout specimen.
T. distortus, Schubert \& Wagner. Pl. 14, figs. 125, 126.

Light yellowish brown, clouded with chestnut, with frequently, a median row of chestnut spots. Length, $1 \cdot 25$ to $2 \cdot 5$ inches.

Indo-Pacific Ocean: Polynesia.
This species is readily distinguished by its curved spire, which is caused by the single varices of each whorl occurring in a continuous oblique line. The animal is pale flesh-color with a fawncolored head, and tentacles annulated with fawn-color. 7. tortuosus, Reeve (fig. 126), cannot be considered even a variety.
T. obscurus, Reeve. Pl. 14, figs. 127, 128 ; Pl. 16,'fig. 157.

Light brown, clouded with chestnut, with one or two revolving series of chestnut spots. Length, 1.5 to $2 \cdot 25$ inches.

Indian Ocean ; Paumotus, West Indies, Cape Verd Is.

In sculpture this species resembles T. distortus, but it is distinguished by the straight spire, the varices far apart instead of in a continuous oblique series, and the revolving spots.
T. testaceous, Mörch (fig. 128), does not appear to differ in any appreciable degree from the type; it is the West Indian manifestation of the species. T. comptus, Sowb. (fig. 157), from China, is certainly the same species.
T. nitidulus, Sowb. Pl. 14, figs. 130-1'32.

Whorls smooth, polished, sometimes obsoletely granulated. Light brown, belted and spotted with darker brown, sometimes with longitudinal flame-like markings, sometimes with a white median band. Varices twelve or fourteen, usually maculated with brown. Length, 1 to 1.75 inches.

> Paumotus, Central Polynesia.

Var. Ceylonensis, Sowb. Pl. 14, fig. 131.
Decussating ribs more prominent, giving the surface a closely granulated ornamentation.

Polynesia, New South Wales, Ceylon.

In both forms the granules are equally prominent upon the upper whorls of the spire, but in the smoother T. nitidulus this nodulation is finally covered by or lost in a smooth enamelled surface. T. Brazieri, Angas (fig. 132), inhabiting the coast of New South Wales offers no important differential characters. The lip and columella of the specimen described are tinged with orange color.

$$
^{} *
$$

T. reticulatus, Blainv. Pl. 16, figs. 160, 161.

Light brown, variously stained or banded with darker brown, sometimes uniform dark brown. Length, 1 inch.

Mediterranean Sea.
T. pygmæus; Reeve (fig. 161), does not differ. The Galapagos Islands are given by Reeve as a locality for T. reticulatus, but there is no subsequent confirmatory information.
T. lanceolatus, Menke. Pl. 16, fig. 162.

Yellowish white or flesh-color, more or less clouded and spotted with brown ; varices eight or nine, bearing brown spots.

Length, 1 inch.
West Indies, under stones and pieces of coral, in one or two feet water.
T. siphonatus, Reeve. Pl. 15, fig. 133.
" Chiefly distinguished by its anterior extension." The figure shows evidences of juvenility, in the small development of the columellar lip. I think it will prove to be a young T. lanceolatus. Habitat unknown.
T. antiquatus, Hinds. Pl. 15, fig. 134.

Whitish, with occasional brown spots on the varices.
Length, $\cdot 75$ inch.
T. Coxi, Brazier. Pl. 15, fig. 151.

Whorls with three revolving rows of brown dots on a light brown surface; body-whorl blotched and finely dotted.

Length 1 inch.

> New South Wales, Australia.

Will probably prove to be a variety of T. antiquatus.
T. sculptilis, Reeve. Pl. 15, fig. 135.

White, with a median brown band; the interstices of the longitudinal ribs upon the shoulder of the whorls are sometimes colored brown. Length, 1 to $1 \cdot 15$ inches.

Viti Isles ; Mascarenes ; Isle of Capul, Philippines, under stones at low water.
T. eximius, Reeve. Pl. 15, fig. 136.

White, sometimes obscurely banded or mottled with light brown. Length, $\cdot 55$ inch.

Mascarenes, Philippines, Lord Hood's Isl., West Indies.
T. parvus, C. B. Ad., from the Caribbean region does not differ in any respect from Pacific specimens.
T. decollatus, Sowerby. Pl. 15, fig. 137.

Whorls transversely grooved, grooves dark brown; surface yellowish, clouded with brown. Length, 1 inch.

Isl. of Annaa ; found on the reefs.
T. truncatus, Hinds. Pl. 15, fig. 138.

Orange-yellow, with generally, two white bands, and large brown spots disposed in revolving rows. Length, $\cdot 75$ inch. Isl. Bohol, Philippines, under stones at low water; New Ireland ; Viti Isles ; Sandwich Isles.
A beautiful species, sharing with the following two a long cylindrical form and greatly truncated spire.
T. cylindricus, Pease. Pl. 15, fig. 139.

Yellowish white, ornamented with longitudinal blotches of dark reddish brown, regularly disposed, usually oblique on last whorl. Length, 10 mill.

Tahiti.

T. decapitatus, Reeve. Pl. 15, fig. 140.

Whorls slightly, longitudinally ribbed, and closely concentrically striate. Yellowish, longitudinally flamed with brown, with two narrow yellow bands on the last whorl and one on the spiral whorl. Length, 66 inch.

> Kingsmill and Viti Isles.
T. bracteatus, Hinds. Pl. 15, figs. 141, 148, 149.

Yellowish white, tubercles tipped with dark brown, frequently disposed as revolving rows of spots. Length, $\cdot 40$ to 60 inch. Philippines, Marquesas, Sandwich Isles, Red Sea.
The old shells are frequently devoid of color, and whilst the longitudinal ribs remain, the revolving striæ and tubercles disappear; in this state the species has been redescribed by Reeve as T. latevaricosus (fig. 148).
T. bacillum, Reeve (fig. 149), is apparently founded upon a white specimen of bracteatus in a somewhat worn condition; the prominent varices on either side of the body-whorl mentioned by him are equally characteristic of bracteatus, and the additional spire varices of the latter are obsolete in some specimens.
T. digitalis, Reeve. Pl. 15, figs. 142, 143.

White or light yellowish brown, with sometimes, faint brown revolving bands. Length, 15 mill.

Philippines, Mauritius, Viti Isles.
The spire is not so turriculate, the whorls without the shoulder; the sculpture finer than in T. bracteatus, Hinds.
T. concinnus, Reeve. Pl. 15, figs. 144, 145.

Shell decussately striated, the longitudinal striæ rib-like on the spire and sometimes on the body-whorl. White or yellowish, with flame-like brown markings and clouds, which are sometimes subsutural, sometimes covering the entire surface, and occasionally modified into large spots. Length, $\cdot 66$ inch.

Philippines, under stones at low water;

The sculpture is variable; in some specimens the longitudinal ribs are well developed, in others these are subordinated to the close revolving striæ. I unite with this species T. tessellatus, Reeve (fig. 145), the coloring and sculpture of which are not permanently distinctive.
T. angulatus, Reeve. Pl. 15, figs. 146, 147.

Yellowish white, sometimes with narrow brown bands. Length, $\cdot 5$ inch.

> Philippines, under stones at low water.

There is nothing but the slight shoulder on the whorls to distinguish this from T. concinnus.
T. fictilis, Hinds. Pl. 15, fig. 150.

Varices three, whorls longitudinally obliquely ribbed, and transversely finely striated. Brown. Smooth within the small aperture. Length, 75 inch.
L ' Agulhas bank, Cape of Good Hope, 50 to 60 fathoms.-Hinds.
I am not acquainted with this species.
T. pictus, Reeve. Pl. 15, fig. 154.

No varices. Longitudinally very closely ribbed, transversely elevately striated. Tessellated with reddish brown.

Length, $\cdot 7$ inch.
Galapagos I_{s}., under stones at low water.
I do not know this species, but the figure is singularly like a narrow form of Columbella varia, Sowerby.
T. crebristriatus, Carpenter.

Shell like T. pictus, Reeve, but closely spirally striate; white, densely maculated with reddish chestnut; aperture scarcely varicose, simple within. Length, 58 inch.

Bay of Panama.
Is destitute of the expressed spiral ribs of T. pictus. The only specimen seen has no teeth in the aperture. It may be only on the verge of maturity, or it may belong to a Buccinoid genus.

The above is a copy of the original description-which is worthless, as very probably is also the species. It may not really differ from T. pictus, or it may well be a young Columbella varia.
T. anomalus, Hinds. Pl. 16, fig. 163.

Yellowish brown, with narrow, darker bands.
Length, 15 mill.
Isl. of Quibo, Veragua; found on the sandy shore at low water.
More ventricose than T. pictus, and the ribs more distant.
T. reticosus, A. Adams. Pl. 16, fig. 155.

White, distantly maculate with brown ; whorls seven, covered with rounded longitudinal plications, crossed by revolving liræ; lip lirate within ; no varices except that of the lip.

Length, $\cdot 5$ inch.
Japan.
Something like a Phos, and therefore a doubtful Epidromus. The species has not been illustrated heretofore; I give a figure from a specimen forming part of Adams' original lot.
T. pusillus, Pease. Pl. 16, fig. 156.

Whorls six, non-varicose, plicately ribbed longitudinally and spirally striated; columella arcuate posteriorly, callous, smooth ; outer lip denticulate. White, with irregular brown spots or flammules, longitudinally disposed, interrupted in the centre of each whorl by a narrow transverse white line. Length, $\cdot 25$ inch. Sandwich Islands.
Figured from a typical example in Coll. Acad. Phila.
T. Swifti, Tryon. Pl. 16, fig. 158.

Whorls eight, convex, without varices ; covered with longitudinal rounded ribs, crossed by close revolving striæ. White, maculate with brown. Length 17, diam. 6 mill.
Isl. of Antigua, W. I. (R. Swift).

Differs from the related species by its narrow form, elongated sharp spire, small aperture, etc.

Unfigured and Doubtful Species.

I can only insert the descriptions of the following species, with which I am not otherwise acquainted.
T. lineolatus, Conrad. Pl. 16, fig. 159.

Elevated, with brown revolving lines ; spire scalariform; with numerous varices or coste on the body-whorl; they are generally
smaller, and crenulate the revolving lines; labrum with four teeth within. Length, $\cdot 9$ mill.

Tampa Bay, Florida.
I copy Conrad's figure, which is utterly unrecognizable; very probably the shell is an Engina or Columbella.

T. Bednalli, Brazier.

Shell elongately turreted, thickish, with six rather indistinct rounded elongated varices, spire straight, apex acute, whorls eight, convex, sculptured with regular close-set longitudinal ribs and transversely striated; ribs noduled at the suture, white, sometimes brown; aperture ovate-oblong, smooth within; columella arcuate, smooth, straight, outer lip thickened, white.

Length 11, breadth $3 \cdot 75$ lines.

Guichen Bay, S. Australia.

Approaches near to Epidromus Brazieri, Angas, and E. Coxi, Brazier.
T. limbatum, Phil.

Quoted in H. \& A. Adams' Genera. I am unable to find any description of 1 .

T. papillatus, Dunker.

Shell small, subulately turreted, white; whorls seven, rounded; suture profound, subcanaliculate ; closely longitudinally plicate, varicose, transversely striate, the last whorl a little smaller than the spire; aperture ovate, columellar lamina much expanded, canal short, recurved. Length 8 mill, lat. 3 mill.

Viti Islands.

T. Angasi, Brazier.

Fusiform, turreted, thin, with eight distinct rounded varices; spire slightly twisted in the centre, apex obtuse, whorls seven, slightly convex, sculptured with longitudinal fine ribs, transversely lined, interstices with very minute striæ, suture rather deep, crenulated at the edge ; whitish, besprinkled with chestnut-brown spots, a blotch of the same color somewhat square in front of the varices; the back of the last whorl showing more of the irregular, nearly obsolete brown spots; columella straight, thickened with a white, expanded callus, smooth, outer lip thin at its edge, thickened
behind, minutely denticulated within; aperture oblong-ovate, white within ; canal very short, recurved.

Length 10, breadth 3 lines.

Torres Straits, Australia.

It differs from Epidromus Coxi by having coarser sculpture, varices larger, more distorted at the third and fourth whorl from the aperture by one slightly bulging to the right, and the other to the left; the outer lip thin at the edge, very much thickened behind and more strongly crenulated at the suture.

T. gladiolus, Monterosato.

A small flattened species, with dichotomous varices like the, true Ranellæ, the canal short, recurved, the mouth rounded, the whole shell lance-shaped, without sculpture, white.

Length 12, diam. 5 mill.

Alexandria, Egypt.

This species has not yet been figured. The description would not be unlike a worn specimen of Ranella pusilla, Brod., which is recorded from the Red Sea.
T. vitreus, Foxil, cancellatus, all of Gray, Beechey's Voyage, 110, 1839.
These species have not been recognized by any atithor during the forty years which have elapsed since they were published. They have not been figured.
'T. obscurus, A. Adams, South Coast of Africa; T. pyriformis, A. Adams, China; T. comptus, A. Adams, China.

Not figured nor recognizable.

Subgenus Priene, H. \& A. Adams.

This small group contains shells of comparatively large size, thin, cancellate, white without any bands or spots of color, usually more or less covered by an epidermis; the operculum has a terminal initial point. The species inhabit a somewhat limited region, the West Coasts of South and North America, one of them recurring on the Japanese coast. The rarity of varices and general appearance of these shells indicate a passage into the Fusidæ, whilst they appear to connect more remotely with the argus group of Ranella and with Buccinum.
T. cancellatus, Lam. Pl. 16, figs. 164-167; pl. 17, figs. 170-172.

Varying from cancellated to coarsely decussated surface, in the latter the intersections of the longitudinal and revolving striæ frequently rounded nodulous. The epidermal fringe upon the nodules is sometimes half an inch in length.

Length, 3 to 4.5 inches.
Straits of Magellan, Chili, Oregon, Alaska, Japan.
I agree with P. P. Carpenter that T. Oregonensis; Redfield (fig. 167), is synonymous with this species; the want of the ridge upon the upper part of the columella by which Mr. Redfield distinguishes his species, being in consequence of the juvenility of his type specimen. The variation in the sculpture which, in his type, may have supported the view of specific distinction, includes every intermediate stage in specimens before me, and in some of them, a portion of the shell is rudely cancellated whilst another portion is smoother and more finely decussated. The northern distribution of T cancellatus is undoubted, but its occurrence upon the southern coast of South America is not so certain, although probable.

The male (figs. 171, 172), and female (fig. 170 !, of this species are, according to Gould, distinguished by their coloration; the shells also differ somewhat in form.
T. scaber, King. Pl. 16, fig. 168.

Varies like T. cancellatus in the closeness and prominence of its sculpture. The internally toothed lip and closely bristled, persistent epidermis are quite characteristic of the species.

Length, 1.5 to 2.25 inches.

> Valparaiso, (7 to 45 fathoms) northwards to the coast of Bolivia; Arctic America to California.
T. rudis, Brod. Pl. 16, fig. 169.

Whitish, with a yellowish brown, close, rather persistent epidermis. Length, $1 \cdot 5$ to 2 inches.

[^3]
Genus DISTORSIO, Bolten.

This genus, in its ringent aperture reminds one of the genus Malia in the Doliidæ.
D. anus, Linn. Pl. 17, figs. 173, 174 ; pl. 15, fig. 153.

White, with reddish brown bands; columellar plate and lip flesh white. Length, 2 to 3 inches.

> Red Sea, Indian Ocean, Philıppınes, Society islands, under stones at low water (Cuming).

The operculum (fig. 174) is curiously modified in form to suit the contracted aperture of the shell, with central nucleus.
D. cancellinus, Roissy. Pl. 17, figs. 175-178.

Yellowish brown, without bands; spire and canal proportionally longer than in D. anus; surface peculiarly divided into squares by the distant, decussating narrow ribs ; epidermis light brown, velvety ; columellar plate and lip varying from very light to dark salmon color. Length, $1 \cdot 75$ to 3 inches.

Ceylon; China; Philippines, in coral sand, 6 fathoms (Cuming);
St. Thomas and other West Indian Islands; Monte Christi and Xipixapi, W. Columbia, sandy mud, 7 to 10 fathoms (Cuming).
D. constrictus, Brod (fig. 176) from the West Coast of tropical America, as well as D. ridens (fig. 177) and D. decipiens Reeve (fig, 178), from the Philippine Islands have no claim to rank even as varieties.
D. pusilla, Pease.

Shell solid, oblong ovate, gibbous, somewhat distorted, four or five varices; whorls beautifully latticed, with rather coarse granular raised ridges and fine microscopic spiral strix; aperture small, narrow ; outer lip thick, strongly dentated on inner edge, sinuated above; columella deeply excavated and plicately toothed; canal short.

Only a single specimen has been found, too much faded to determine its color. It is pale yellow, with faint traces of brown.

The above is the original description in full; it does not give any characters not possessed by D. cancellinus.

Genus RANELLA, Lam.
In Ranella the tentacles are commonly somewhat closer together than in Triton, and the head is longer and narrower than in Murex and Fusus; the eyes in some species are nearly basal, but are generally placed about the middle of the tentacles on their outer sides; the siphon is short and directed upwards; the foot larger than in Triton, Murex, or Fusus, and considerably dilated both before and behind; the mantle does not appear to be furnished with fimbriated processes as seen in some Murices. In some species the trunk is enormously developed, whilst in others it is not protruded, in the usual condition of the animal. Operculum ovate, horny, with a lateral nucleus and semicircular elements.*

The species are inhabitants of warm seas, and principally tropical : those of the typical group, having winged varices live in deep water, whilst the nodose species forming the sub-genus Lampas, are found at less depth, and prefer coral reefs and rocks. The animal is active in its movements. Eupleura, formerly considered a subgeneric group of Ranella, is now classed with Muricinæ, on account of the lingual dentition of one of its species. \dagger

I have retained the generic name Ranella in preference to Bursa, Gyrinium, Bufo, Rana, etc., all of which have priority, but were obscurely published and have never attained general acceptance.

Mr. Macdonald \ddagger thus describes the larval state of Ranella:
"I next observed a stout little shell, much resembling a Macgillivrayia in form, but having the spire more minute and sharply marked, and the whorls beset with epidermic spines, disposed in close spiral lines. The microscopic examination of the animal gave unmistakable proof of its being a Ranella, the lingual dentition agreeing, at least generically, with my figures and specimens. On examining the operculum, which in Ranella, is so very remarkable, exhibiting three successive stages of growth, I found that it was quite of the same character, only that it had but yet attained the second stage, Finally, on comparing the whole operculum, and the little shell respectively, with the nucleus of the operculum and the apex of the shell of an adult

[^4]Ranella, I could detect no points of difference, even with magnifying powers; the conclusion, therefore, is irresistable, that the one is but the young state of the other."

Subgenera.

Lampas, Schum. Shell turreted; whorls nodose ; aperture with posterior channel ; canal very short and recurved.
Aspa, H. and A. Adams. Shell ovate, ventricose, smooth; spire very short ; whorls nodulous at the angles; aperture with posterior channel. Argobuccinum, Klein. Spire elevated; canal short; posterior channel wanting.

(Typical.)

Genus RANELLA, Lam.

R. spinosa, Lam. Pl. 18, fig. 1

Light brown, obsoletely banded or mottled with a darker shade. Length, 2 to 3 inches.

> Red Sea, Indian Ocean, Philippines, Mauritius.
R. foliata, Brod. Pl. 18, fig. 2.

Light yellowish brown, both margins of the aperture deep orange. Length, $2 \cdot 25$ to 3 inches.

Mauritius.
Very closely allied to R. crumena,-with which it has been confounded : the only differences are the color of the margins of the aperture, the greater extension of the superior sinus-foliation, and more distinct wrinkles of the inner lip. It may be only a varietal form of R. crumena.
R. crumena, Lam. Pl. 18, fig. 3.

Yellowish brown, with darker bands or spots; aperture white, lips more or less stained with orange, Length, 2 to 3.5 inches. Ceylon, Philippines.
R. margaritula, Deshayes, Pl. 18, fig. 4,

Light brown, with darker spots on the principal tubercles; white with a roseate blush within the aperture, with sometimes close, narrow brown bands, There is a singular depression upon the lower part of the columella. Length, $1 \cdot 25$ to 2 inches.

Very close to R, crumena, Lam, and perhaps only a variety of that species. It is usually smaller, more uniform in color, with the granules of the surface closer, and more distinct.

R, albivaricosa, Reeve. Pl. 18, figs, 5, 6,
White, stained with reddish brown; varices usually white; aperture roseate. Length, 3 inches,

> India; Java, N. E. Australia.

More inflated and thinner than the related species, R. subgranosa, Sowb, Pl. 19, fig. 8 ; pl. 18, fig. 7 .

Spire and canal more drawn out than in the preceding species, not so much inflated; tubercles less prominent. Marbled light brown and white; interior roseate, Length, 3 to 3.5 inches.

Chinese Coast, Manilla.
R. elegans, Beck (fig. 7), is a variety in which the two principal rows of tubercles are more spinosely developed.
R. nana, Sowb. Pl. 20, fig. 15 ; Pl. 19, fig. 9.

Purple or reddish brown, with a white band; lip and aperture white. Shoulder of the whorls encircled by a row of tubercles, rest of surface granulate or smooth. Length, $1 \cdot 5$ inches.

Panama; in coarse sand, 10 fathoms (Cuming).
The smooth form (fig. 15) is typical ; the granulate shell has been called by Sowerby, R. albifasciata (fig, 9), and may retain its name as a variety.
R. Crassa, Dillw. Pl. 19, fig. 10.

Yellowish brown, irregularly banded with white and chestnut; lip and columella usually tinged with yellow. Shell thick; surface obsoletely or distinctly granulate, with frequently one or two larger nodes on the middle of the front and back of the angle of the whorls; posterior canal long, bordered by the fimbriated lip. Length, $1 \cdot 25$ to $2 \cdot 5$ inches.

West Indies, Northern Coast of S. America.
Subgenus LAMPAS, Schum.
K. lampas, Linn. Pl. 19, fig. 12.

Whitish or cream-color, stained and variegated with orange-
brown; flesh-color within the aperture; in the young shells orange-red within the aperture and on the lip.

Length, 3 to 9 inches.

Red Sea, Indian Ocean, Philippines, Ins. Viti, Mauritius.

The most ponderous species of the genus. The half-grown shell, when 3 to 5 inches long, is quite thick and already possesses adult characters ; it is more highly colored than the larger specimens.
R. bufonia, Gmelin. Pl. 21, figs. 21-23, 28, 29, 68 ; Pl. 19, fig. 11 ; Pl. 20, figs. 13, 14 .
White, brown punctured and spotted; lip and interior white or yellowish. Length, $2 \cdot 5$ inches.

Red Sea, Philippines, Seychelles, I. Bourbon, Paumntus, etc.
R. tuberosissima, Reeve (fig. 14), is the young of this species, with the lip-margin and interior more deeply yellow stained. R.asperrima (fig. 29), and Grayana, Dunker (fig. 28), are synonymous.
Var. venustula, Reeve. Pl. 20, fig. 13.
Lip and columella stained with very dark purple ; aperture roseate within. R. siphonata, Reeve, (Pl. 19, fig. 11), is a synonym.
R. cruentata, Sowb. Pl. 21, figs. 24-27, 30, 31.

Light yellowish or brownish white, the principal tubercles frequently maculated with red; white or rosy within the aperture, columella sometimes with dark red spots.

Length, $\cdot 75$ to $1 \cdot 5$ inches.

Mauritius, Philippines, West Indies.

The spots on the columella are not always present in the Philippine specimens constituting the type form, and are not found in the variety. This species is very closely related to R. bufonia, but is uniformly much smaller and the siphon is not continued up the spire in the peculiar manner of that species.
R. verrucosa, Sowb. (fig. 27), is a rather remarkable looking shell, as represented in the monographs, but is nothing else than a worn specimen of R. cruentata, in which the nodules become smooth and darker in color. I have before me several
intermediate stages which prove their identity. A large cruentata, with the tubercles dark, and the shell in a fresh state has been called R. rugosa by Mr. Sowerby (fig. 31).

Var. rhodostoma, Beck. Pl. 21, fig. 25.
Shell smaller; aperture roseate within; columella white. This variety inhabits several West Indian localities, and these were named R. Thomæ by d'Orbigny (fig. 36), but they do not differ. at all from Philippine and Mauritian specimens.
R. Californica, Hinds. Pl. 22, fig. 42 ; Pl. 21, fig. 32.

White, variegated and interruptedly banded with chestnut; fine specimens are roseate within the aperture.

Length, 2.5 to 4 inches.

California, Lower California.

P. P. Carpenter considered this species identical with R. ventricosa, Brod., and they are certainly so similar as to indicate a common ancestry ; centricosa, however, is much thinner (very thin for a Ranella), more ventricose, spire shorter, surface smoother, nodules less developed and more numerous; R. Californica is found in the pliocene and post-pliocene formations, of California. R. Thersites, Redfield (fig. 32), is a synonym.
R. ventricosa, Brod. Pl. 20, figs. 16-18.

White, when fresh, mottled and banded with chestnut; aperture white within. Shell very thin for the genus.

Length, 2 to 3 inches.
Callao, Peru.
D'Orbigny dredged this species in 8 to 10 metres' depth, rocky situation with strong current. The eggs are deposited in crowded groups upon Macrocystis; they are yellowish or reddish in color.
R. scrobiculator, Linn. Pl. 20, figs. 19, 20.

Mottled yellowish brown and white, with faint darker bands. Surface thickly covered with papillary tubercles.

Length, 2 to 3.5 inches.
Mediterranean Sea.
Described as a Triton and still referred to that genus by several distinguished conchologists. Like R. lampas it has the varices of a Triton, but otherwise the facies of a Ranella, and I think
that the balance of characters will agree best with its position in the present genus. I cannot doubt that R. coriacea, Reeve (fig. 20), is a juvenile state of the same species.
R. pustulosa, Reeve. Pl. 22, fig. 33.

Shell ponderous, chestnut-colored, with two or three rows of chocolate-colored, distant, rounded tubercles; margins of aperture orange-brown. Length, $1 \cdot 5$ to $2 \cdot 25$ inches.

Ascension Isl., Atlantic O., 280 m. N. W. of St. Helena.
Larger and more ponderous than R. cælata, with larger and less numerous tubercles; the latter, however, are more numerous on the earlier whorls, and it would probably be difficult to distinguish a young specimen from R. cælata. The great difference in the habitat of the two species may readily account for their distinctive features, supposing, as is probable, that they were originally derived from a common stock.
R. cellata, Brod. Pl. 22, fig, 34.

Shell dark chestnut-color, with a number of dark chocolate colored tubercles, arranged in several rows.

Length, 1 to 1.75 inches.

Panama.

R. candisata, Lamarck. Pl. 22, fig. 43.

Yellowish white, maculate with brown. Length, 4 to 5 inches. Philippines, Isle of Annaa.
Distinguished from the following forms by its large size and elongated spire,
R. Granifera, Lam. Pl. 22, figs. 35-37.

Shell with high spire, rather thin. Light yellowish brown, stained and maculated with a darker tint, sometimes obscurely white banded, tubercles white; white within.

Length, 1.5 to 2.25 inches.
Red Sea, Natal, Paumotus, Philippines, N. E. coast of Australia.
R. semigranosa, Lam., (fig. 37), is a state of this species in which the granules are obsolete. I separate R. affinis, Brod. (with its synonyms), from this species only with great doubt, for although that species is normally more ventricose, with larger tubercles, replacing the granules in one to three rows, yet there are intermediate forms which it is difficult to place.
R. affinis, Brod. Pl. 22, figs. 38-41; pl. 23, fig. 55.

Light yellowish or fleshy white, frequently rose-tinted towards the apex; surface stained and spotted with brownish red; tubercles of the angle largest, sometimes bipartite.

Length, $1 \cdot 5$ to 2 inches.

> Philippines, New Caledonia, Ins. Annaa, Samoa Isles; also West Indies.
R. livida, Reeve (fig 39), is a less angulated form with the tubercles more nearly equal in size throughout. I cannot detect any difference in the West Indian shells, of which R. ponderosa, Reeve (fig. 55), may represent the typical affinis, whilst R. Cubaniana, d'Orb. (fig. 40), is equivalent to R. livida. So many intermediate stages of development of angle and tubercles occur that no separation of the species is possible; moreover, the identity of the whole with R, granifera, Lam., is probable.

Subgenus Aspa, H. \& A. Adams.
R. marginata, Gmelin. Pl. 23, fig. 52.

Porcellanous, polished; white with a light yellowish tinge.
Length, 20 to 35 mill .
E. Coast of Africa; fossil in Piedmont.

Subgenus Argobuccinum, Klein.
R. gigantea, Lam. Pl. 24, fig. 69.

Very light yellowish brown, more or less stained with darker brown. Length 5 to $7 \cdot 5$ inches.

Mediterranean ; Miocene and Pliocene of S. Europe.'
R. leucostoma, Lam. Pl. 23, figs, 53, 54.

Chestnut-brown, variegated with white upon the varices, under a short velvety brown or green epidermis ; aperture white within.

Length, 2.5 to 3.5 inches.

> Australia, Tasmania, New Zealand.

This is one of the species which (like gigantea, lampas, etc.) appears to partake almost equally of the characters of a Triton. The operculum like the Triton, has a terminal initial growth.
R. bitubercularis, Lam. Pl. 23, fig. 44.

Yellowish brown, white within the aperture.
Length, 20 to 28 mill.
Indian Ocean, Philippines, Australia.

The tubercles are numerous on the earlier whorls, but (in some instances) coallesce into two large ones between the varices on the last whorl of the adult. When the more numerous tubercles are persistent, the resemblance to the next species is striking, there being little to distinguish them except coloration.
R. tuberculata, Brod. Pl. 23, figs. 45-47.

Chestnut-brown, with infra-sutural and submedian lighter bands; the numerous small tubercles regularly disposed and dark chocolate color. Length, 20 to 40 mill.

> Red Sea, Indian O, China, Malacca, Manilla, Tahiti.

Very doubtfully distinct from both the preceding and succeeding species. R. fusco-costata, Dunker (fig. 45), is a half-grown shell of this species in which some of the tubercles have become confluent into longitudinal ribs.
R. pulchra, Gray. Pl. 23, fig. 51.

Light yellowish or nearly white, mottled or obscurely banded with light brown ; aperture white. Length, $1 \cdot 6$ to $2 \cdot 25$ inches. Philippines, Japan.
H. and A. Adams include this species in Eupleura, a section of the Ranellæ which, on account of the dentition and general resemblance of the shells to Urosalpinx, etc., has been placed in the Muricinæ: it shows no close relationship to the species of Eupleura, however.

R. gyrina, Linn. Pl. 23, fig. 48.

Shell white, with two dark chestnut bands on the body-whorl and one on those of the spire. Tubercles larger than in R. tuberculata, disposed to become confluent into ribs longitudinally.
Length, $\cdot 75$ to $1 \cdot 5$ inches.
Torres' Straits, Australia ; Viti Isles.
R. cuspidata, Reeve. Pl. 23, fig. 49.

Light orange-color; ponderous; the last whorl bituberculate between the varices. Length, $1 \cdot 5$ inches.

> Philippines.

Somewhat like R. bitubercularis but more pyramidal, and wants the long canal of that species; it is also heavier in its growth.
R. pusilla, Brod. Pl. 24, figs. 56-58, 66 ; pl. 23, fig. 50.

Color varying from white, more or less stained with rose (typical) to uniform roseate or rosy with yellow varices (var. R. rosea, Reeve, fig. 58), or light chestnut with a median white band (R, concinna, Dunker, fig. 50). Length, 10 to 20 mill.

Red Sea, Indian Ocean, Philippines, Australia, New Caledonia, Tahiti, Lord Hool's Isl., Sandwich Isles, Natal.
The intermediate stages of coloration and perfect similarity of appearance of the three species indicated above, justify their union under the oldest published name. R. polychloros, TapparoneCanefri, agrees well with a variety of R.pusilla from the Sandwich Islands in Coll. A. N. S. Philada., having a purple-tinted aperture, dirty white exterior surface and chestnut bands. I can scarcely doubt its identity with R. pusilla. It has not been figured.
R. ancers, Lam. Pl. 24, figs. 59, 67.

Pure white; obsoletely bi-triplicate between the varices, encircled by revolving lines. Length, 4 to 1 inch.

Torres' Straits, Australia; Japan; Viti and Sandwich Isles; Panama; West Indies.
The above localities have all been duly verified, and notwithstanding the very extensive distribution there does not appear to be any variation in the species. In general appearance it is much like some of the small Tritons of the subgenus Epidromus.
R. hastula, Reeve. Pl. 24, fig. 60.

Chestnut-brown, varices yellowish; transversely granulately striated. Length, 15 mill.

Hab. unknown.

R. argus, Gmelin. Pl. 24, flgs. 61-65.

Longitudinally plicately noduled, the nodules being either distant and large or crowded and small; in the latter case they are scarcely connected by longitudinal ridges, and being rubbed white, upon the brown, banded shell, have given rise to the name of the hundred-eyed monster. Fresh specimens are covered with a closely-wrinkled brown epidermis. Outer lip of shell thickened and coarsely dentate within, sometimes in the adult, developing
a tooth, like Monoceros; columella plicate in the young, much thickened and smooth in the adult shell. Length, 2.5 to 4 inches.

Cape of Good Hope; Ins. Chiloë and Conception, Chili;
Chatham Isles, New Zealand; Isle of St. Paul, Indian Ocean.
The type-form of this species (fig. 61) is from Cape of Good Hope, whilst the R. Ranelliformis, King ($=$ vexillum, Sowb. fig. 62), supposed to be distinguished by being lighter in structure, more fusiform, columella wrinkled, no tooth on outer lip, etc., is from W. Coast of S. America ; found in rocky places at from 3 to 10 fathoms by Mr. Cuming. There is every gradation between the two forms, however, even in Cape specimens, and I cannot separate them even as varieties.

Mr. Vélain* remarks that R. proditor (fig. $64=$ this species) is very plentiful at the Islands of Amsterdam and St. Paul, in the Indian Ocean, where the skeletons of seals, abandoned on the rocks at low-water by the fishermen, were literally covered with lobsters and Ranellæ at the succeeding tide. They are nocturnal in nabit and may be readily fished by suspending over-night, in 10 or 15 metres depth, the body of a bird or fish.

Undetermined Ranellæ.

The following species being unfigured, cannot be placed definitely:
R. producta, Pease; R. luteostoma, Pease; both from the Sandwich Islands.
R. Jucunda, A. Adams ; North Australia.
R. epitrema, Tenison-Woods. This is described as a widely ovate, whitish species, not quite an inch in length; it is nodose and lirate, with a conspicuously margined lip, dentate within. It has a deeply canaliculate suture, causing the varices to overlap in a singular hooked manner. Australia.

The description agrees very well with that of R. jucunda, A. Adams.
R. Paiulucciana, Tapparone-Canefri; Mauritius. Possibly one of the numerous varieties of R. cruentata, Sowb.

[^5]
Family FUSIDA.

Shell more or less spindle-shaped, without varices; the lip of the aperture not thickened.

Operculum ovate, acute, with apical nucleus.
The animal possesses the essential features of a Murex.
Dentition. That of the typical genus Fusus does not differ essentially from that of Fasciolaria; Stimpson states* that it has the saw-like lateral teeth of Fasciolaria, whilst Macdonald \dagger found another species to possess lateral teeth of the Muricoid type. Troschel finds a Fasciolarioid dentition in Fusus Syracusanus, and he has accordingly made for it a new genus, Aptyxis; but Schacko has recently found the same dentition in Fusus inconstans Lischke, a typical Fusus. I think that Macdonald must have mistaken some other genus for Fusus. The dentition of Sipho, which, according to Troschel, resembles that of Fasciolaria is shown by the more recent investigations of Sars to be Buccinoid, Ptychatractus, with evident resemblance to Fasciolaria has a peculiar dentition, approaching Murex, and on this character alone Stimpson, followed by Gill, assigns to it a distinct family.

Neptunea, Melongena, etc., long classed with Fusidæ are now brought into more intimate relationship with Buccinum, and Busycon, and Tudicla will go into the same group; on the other hand Peristernia, Latirus, etc., formerly included in Turbinellidæ have a Fasciolarioid dentition, which, with added conchological characters may suffice for their removal from that to the present family. Stimpson \ddagger describes and figures the dentition of an unknown species of Peristernia from the coast of Georgia, which has the essential features of Busycon, and he thereupon places the genus in Neptuniinæ; but it is evident that he was in error, as Troschel figures known species, which are Fasciolariform in dentition as they are in conchological characters,
Sub-family Fusinæ. Columella not plicate, not tortuous.
Sub-family Fasciolariinx. Columella tortuous with oblique plaits or plications.

[^6]Sub-family Ptychatractinæ, Differs from Faşciolariinæ in lingual dentition, and includes only three small boreal species.
Sub-family Peristerniinæ, Columella with transverse plications.

Synopsis of Genera.

Sub-Family FUSIN A.

FUSUS, Lam. Shell fusiform or spindle-shaped ; spire many-whorled, acuminate, longer than the last whorl ; aperture oval ; canal long, straight, narrow ; columella smooth, arcuated. Dentition, Pl. 25, fig. 1. Subgenus Sinistralia, H. and A. Ad. Shell reversed, fusiform; canal long; whorls rounded.
AFER, Conrad. Shell short fusiform, spire and canal moderate, body whorl rather large, shouldered and tuberculate, aperture channelled behind, outer lip dentate within. (Professor Meek* states that the fossil species described by Conrad, are not congeneric with the type, the recent Fusus afer, Lam., and he refers them to Conrad's genus Pyrifusus, one of the forms of $N \cdot p$ ptuniince.)

CLAVELLA, Swains. Shell solid, thick, subfusiform ; spire acuminate; last whorl suddenly contracted in front, thickened and rounded next the suture ; aperture narrow, canal long and straight ; columella excavated in the middle; outer lip simple. Operculum ovate; nucleus apical. Dentition, unknown.
Peistocheilus, Meek. Described as a subgenus of Fasciolaria, appears to be identical with Clavella, as Meek himself subsequently suspected. The columellar plaits are nearly obsolete, situated so far within the aperture as to be barely visible and in many specimens are not seen at all. Clavella itself occasionally shows these adventitious and inconspicuous plaits. The shell is so decidedly fusiform that I place it in the Fusinæ in preference to the Fasciolariinæ despite these folds. The dentition of Clavella distorta corresponds with that of Cantharus, Euthria, etc., with which the genus has heretofore been associated in the sub-family Pisaniinæ, and this species and its allies are also conchologically related to that sub-family, but the fossil types and the recent C. serotina are generically different, so that the genus as thus restricted must be placed here.
I figure the type of Meek's subgenus Peistochilus.
P. Scarboroughi, Meek and Hayden, Pl. 28, figs. 41, 42. Cretaceous; Butte au Grès, Missouri River.
BUCCINOFUSUS, Conrad. Shell ventricose, spirally sculptured; epidermis pilose; spire produced ; canal moderate in length ; columella

[^7]smooth. Dentition, pl. 25, fig. 4. The type of this genus is a miocene fossil. B. parilis Conr. (Pl. 28, fig. 40): the recent species is Boreofusus Berniciensis, the type of a genus described by Sars, which becomes a synonym.

Sub-Family FASCIOLARIINA.

FASCIOLARIA, Lam. Shell fusiform ; spire acuminated ; aperture oval, elongated ; canal open, moderate in length, nearly straight ; columella smooth, with a few oblique plaits at the forepart; outer lip internally crenate. Dentition, pl. 25, figs. 2, 3.

Sub-Family PTYCHATRACTIN..

P'TYCHATRACTUS, Stimpson. Shell fusiform, spirally striated; aperture with a moderate canal ; columeila plicated as in Fasciolaria. Dentition, pl. 25, fig. 5.

MEYERIA, Dunker and Metzger. Shell elongate fusiform, longitudinally obtusely plicate; spire produced; canal exserted; columella obscurely plicate. Operculum irregularly ovate; apex obtuse; nucleus inconspicuous. Dentition, pl. 25, figs. 6, 7.

Sub-Family PERISTERNIIN A.

PERISTERNIA, Mörch. Shell turreted, not umbilicated; whorls longitudinally ribbed; aperture oval ; canal moderate and recurved; outer lip thin and crenulated; columella with one or two slight plaits anteriorly, Dentition, pl. 25, fig. 8. The want of umbilicus, less distinct columella folds and recurved canal are the principal (and not sufficient) distinctions from Latirus.

LATIRUS, Montf. Shell turreted, fusiform, sometimes umbilicated; spire produced; whorls nodulous, aperture oval-oblong; outer lip thin, crenulated ; columella straight, with two or three small oblique plaits in front. Mr. H, Crosse remarks upon the insufficiency of the diagnosis of Latirus by Montfort and H. and A. Adams, and proposes to relegate the species to Turbinella; that genus, however, may be more advantageously restricted to the forms for which the genera Vasum and Mazza have been constituted.

LEUCOZONIA, Gray. Shell oval, subglobose, shouldered ; spire moderate ; aperture oblong ; canal short ; columella subflexuous, with small oblique, unequal plaits; outer lip sub-acute, with a more or less prominent tooth or tubercle at the forepart. Dentition, pl. 25, fig. 9. Subgenus Lagena, Schum. Whorls rounded above, not shouldered.

Fossil Genera and Subgenera.

Sub-Family FUSINÆ.

Subgenus Exilifusus, Gabb. Shell very long, slender, fusiform ; spire high ; aperture produced into a long, slender, twisted canal.

This group differs from the true genus Fusus, as restricted, by its twisted, slender canal. In this character it approaches some of the Neptuneæ, but its high spire and strongly costate whorls show that it is more nearly allied to the true Fusus.
E. Kerri, Gabb. Pl. 28, fig. 43. Cretaceous, N. Carolina.

Subgenus Exilia, Conrad. Shell very narrow, costate, spire subulate, canal long and narrow.
E. pergracilis, Conr. Pl. 28, fig. 44. Eocene, Alabama.

Scarcely distinct from the typical Fusw. Exilifusus, Conrad (non Gabb), is evidently a synonym.
E. thalloides, Conr. Pl. 28, fig. 45. Cluiborme, Alabama.

Genus TURRISPIRA, Conrad. Has not been characterized, and does not seem to differ from Fusus.
T. salebrosa, Conrad. Pl. 28, fig. 46. Eocene, Alabamu.

Genus PRISCOFUSUS, Conrad. Founded on Fusus geniculus, Conrad, a very poorly preserved or figured fossil ; the type has " been lost for twenty years. The species is wholly unrecognizable, and should be expunged from nomenclature. For this rubbish Mr. Conrad has proposed a genus Priscofusus, but with neither figure nor diagnosis."-Dall, Proc. Calif. Acad. 1877.
F. geniculus, Conrad. Plate 24, fig. 47. Eocene, Astoria, Oregon.

Subgenus serrifusus, Meek. Shell short-fusiform ; body volution large, and bi- or tricarinate, with carinæ more or less nodose; spire and canal moderate, the latter bent and more or less twisted ; outer lip broadly but slightly sinuous in outline, between the upper carina and the suture.
S. Dakotensis, Meek and Hayden. Pl. 28 figs. 48, 49. Cretaceous, Dakotah.

This form so much resembles the recent F'usus (Hemifusus) proboscidiferus, Lam., that it might well be considered a fossil form of the same group.

Scalaspira, Conrad. This uncharacterized Miocene genus is figured by me (Manual, Vol. 2, pl. 70, fig. 431) as a possible synonym with Urosalpinx. It may be a Fusus, however.

Sub-Family FASCIOLARIIN E.

Subgenus Terebrispira, Conrad. Shell of medium size, with spire much produced and canal short ; volutions convex, augular, and strongly spirally ridged; plaits of columella not exposed externally; outer lip internally sulcated.
T. elegans, Emmons. Pl. 29, fig. 50. Miocene, Alabama.

Subgenus Mesornytis, Meek. Shell agreeing nearly with Peistocheilus in form, but with plaits of columella stronger, comparatively little oblique, and exposed directly opposite the middle of the aperture ; surface with fine spiral striæ, and vertical costæ.
M. gracilenta, Meek. Pl. 29, fig. 51. Cretaceous, Yelloucstone River, 150 miles from its mouth.

Has the folds of a Mitra, rather than a Fasciolaria, and Meek refers it with considerable doubt to its present position.

Subgenus Cryptoriytis, Meek. Shell generally under medium size, with volutions convex, but constricted above, and provided with regular. vertical coste or small folds; plaits of the columella very oblique, not exposed in a direct view into the aperture, and occupying a higher position than in the typical group; outer lip smooth within.
C. Cheyennensis, Meek and Hayden. Pl. 29, fig. 52 (from a cast). Cretaceous, Dakotah.

Subgenus Lirosoma, Conrad. Subpyriform ; ribbed, beak narrow and produced, slightly recurved ; one long, very oblique plait at the angle of the columella.
L. sulcosa, Conrad. Pl. 29, fig. 53. Miocene, Maryland.

Its pertinence to this genus is very doutful.
Genus FASCIOLINA, Conrad. Fusiform ; columella nearly straight to the extremity of the beak; one prominent oblique fold on the columella, situated above the middle of the aperture.
F. Woodir, Gabb. Pl. 29, fig. 52. Miocene, New Jersey.

The only figure does not exhibit the aperture, but Conrad states that the fold is situated more remote from the beak than in any other genus except Cuma.

Cordieria, Rouault. This genus is synonymous with Borsonia, and is a member of the family Pleurotomidæ. Conrad, however, has referred fossil Fasciolariæ to it.

Whitneya, Gabb. Pal. Calif., I, 205.
This is said by its author to have some resemblance to Fasciolaria; I have referred it to Purpurinæ, as a distinct generic group related to Melapium. See Manual, Vol. II, p. 214, pl. 68, fig. 397.

Sub-Family FUSIN $\boldsymbol{\text { F }}$.
 Genus FUSUS, Lam.

Shell fusiform; spire long, acuminate, many whorled; aperture oval, usually striate within; outer lip simple; columella smooth; no umbilicus; canal long and straight. Yellowish brown or light horn-color, sometimes with red brown strigæ or spots; never banded. Operculum ovate, acute, with apical nucleus.

The genus as above defined, includes a considerable number of species very closely related in form, sculpture and color. The chief discriminative characters used are the proportions of diameter to length of shell, the longitudinal ribs and revolving strix, the presence or absence of a shoulder on the whorls and of tubercles. Having examined extensive suites of specimens from single localities I find so much variation in all these respects that I am somewhat at a loss how to treat the species. I much fear that the number of specific forms, which, for want of actual demonstration to the contrary, I must leave intact, will eventually have to be greatly reduced when more material shall render possible a more philosophic consideration of the specific characters. The genus, as restricted to the spindle-shaped forms, is sub-tropical in distribution-the northern species usually described as Fusus by the older conchologists being now more correctly referred to the family Buccinidæ.

1. Shell with periphery carinate and tuberculate.
 a. Tubercles produced, spinous.

F. pagoda, Lesson. Pl. 32, fig, 86.

Shell yellowish brown. Length, $2 \cdot 5$ inches.
Near Kiusu, Corea; in 14 fathoms.-Belcher, Adams.
The spinose shoulder and the additional lower angle, with the short-spined lateral riblets on the canal distinguish this species sufficiently from all others. Fusus Japonicus Gray, according to the description must be identical with it.
F. vaginatus, Jan. Pl. 32, figs. 87, 88.

Yellowish brown; the spines of the shoulder terminating in longitudinal laminæ. Length, 1 inch.

Coasts of Provence, Sicily, AEgean Isles.

A rare species, inhabiting deep waters. It is found fossil in the miocene and pliocene of the adjacent countries.

b. Tubercles compressed ; not ribbed.

F. proboscidiferus, Lam. Pl. 32, fig. 93.

Yellowish brown, covered by a light brown epidermis.
Length, 8 to 12 inches.

Austrulia.

This species is remarkable for its shelving shoulder, forming a conical spire with flat sides, for the ridge at the angle of the shoulder, which on the body whorl is only slightly or not at all tuberculate, for the absence of longitudinal ribs, and for the separation of the lip from the canal, forming a long, narrow, umbilical channel. It is an aberrant form which I have been tempted to place in Hemifusus, or to make it the type of a new genus. Dr. Binney identified this species with Murex Aruanus, Linn., which is exceedingly questionable, as that name is usually cited for a very different shell belonging to the genus Fulgur. It appears to me-to be more advisable to retain Lamarck's wellknown name.
F. ventricosus, 11. Adams. Pl. 32, fig. 94.

Yellowish white. Length. 130 mill. D' Agulhas Bank, Cape of Good Hope.
Evidently related to the preceding species and showing even more clearly than it does the separation of the inner lip from the columella. Kobelt has changed the name to Adamsii, because the original specific name is preoccupied by Beck and G̛ray, but as I do not adopt either of these in the genus, I retain Adams' designation.

c. Tubercles compressed, shell ribbed longitudinally.

F. colus, Linn. Pl. 32, figs. 89-92. 95.

White, the upper whorls of the spire and a part of the canal stained with brown ; periphery sometimes brown-banded between the nodules. Length. 6 to 7 inches ; diameter 1.5 inches.

Ceylon, Tonga Tabou.
Var. toredma, Martyn (fig. 95), is distinguished from the typical form only by being more highly colored. The shell is yellowish brown, with chestnut-brown between the tubercles on
the periphery and the rest of the surface irregularly longitudinally streaked and clouded with the same color.
F. Nicobaricus, Lam. Pl. 32, figs. $98,97,96$; pl. 33, fig. 99.

Shell very like F. colus, var. toreuma, but stouter and more coarsely sculptured, the ribs being rounded, and duplicating the nodules of the shoulder. Length, 5 to 6 inches.

Japan, Philippines.
F. oblitus, Reeve (fig. 97), appears to be the same.

Var. Beckit, Reeve. Pl. 33, fig. 99.
Only differs in being denuded of epidermis; white, without any fuscous markings.
Var. Brenchleyi, Baird. Pl. 32, fig 96.
A little shorter and proportionally wider than the type. the revolving ridges more irregular and consisting of two to four striæ combined, the coloring more closely disposed and deeper.

Length, $3 \cdot 5$ inches.
I suspect that this is founded on a single specimen and that the characters are individual only, and would gradually change into those of the type, if a series should be examined. I have not seen the specimen.
F. laticostatus, Desh. Pl. 33, fig. 101.

Profusely strigated with chestnut-brown; heavier and wider than F. Nicobaricus, the revolving ribs wide and flattened.

Length, 5 inches.
Perhaps only a variety of the preceding species.
Ceylon. F. Virga, Gray.
"Sihell fusiform, elongate, solid, white, apex yellowish; spire acute, two-thirds the length of the mouth; whorls rounded, convex, regularly and strongly longitudinally plaited, with alternate broad, sharp-edged and very fine spiral ribs ; suture distinct; mouth ovate; throat grooved; outer lip crenulated; canal elongated, tapering, transversely striated, smooth in front.

Length, 5 inches.
Hab. China; not uncommon.
Compare with F. laticostatus, Desh., but the ribs are not broad and depressed. The nucleus of this species, as in most of the
genus, is quite smooth, sub-cylindrical, blunt, of one whorl and a half; the periostracum thin, pale brown, hairy."

The above description is all that is known of the species; it does not seem to convey any really distinctive characters from several other well-known species. It has not been figured,
F. tuberculatus, Lam. Pl, 33, fig. $100 ;$ pl. 34, figs, $110,111$.

White, coarsely sculptured with revolving rounded ribs, the angle of the shoulder somewhat distantly tuberculated, and the interstices chestnut-brown. Length, $4 \cdot 5$ inches.

Red Sea, Indian Ocean.
This shell has a shorter spire and canal and is wider in proportion than F. Nicobaricus, of which, however, it may be only a variety. M. Tapparone-Canefri has given this species the name \dot{F}. maculiferus because of the prior use of the specific name by Chemnitz for another species, but as that author was not binomial, his descriptive phrase being "F. tuberculatus seu muricatus," Lamarck's designation can stand.
Var. nodosoplicatus, Dunker. Pl 34, figs. 110, 111.
Shell larger, more prominently nodose, unicolored.
Length, $5 \cdot 5$ inches.
Lischke figures a variety (fig. 111) of this form, which not only approaches the next species but, in its obsolete carinæ, connects it also with a different group of Fusi.
F. Loebbeckei, Kobelt. Pl. 34, fig. 112.

Greyish white, spire somewhat stained with yellow.
Length, 106 mill.

> Hab. unknowon.

Described from a single, somewhat worn specimen.

$$
\text { F. perplexus, A. Adams. Pl. }{ }^{33} \text {, figs. } 102-107 .
$$

Shell white or yellowish, with or without chestnut markings, rather thin. Typically the shoulder and nodules are well developed, but they gradually disappear in a series of individuals until in some forms they are entirely absent, and the body-whorl is rounded and simply sculptured with revolving striæ. This extensive range of variation, fully established by the admirable figures of Lischke's Fusus inconstans (as above), not only suffices
for the suppression of this species but, if a similar variability in the other forms be assumed, it would almost reduce the oriental Fusæ to a single species. I do not think that science will be advanced by a radical reduction of these species at present: on the other hand, whilst perplexus has no real claims to recognition as a species, yet to suppress it would be to refer its various forms to several different species, although they are very evidently mere modifications of growth of a single species. Under these circumstances I let it stand. F. perplexus has not been figured, but Mr. E. Smith, of the British Museum, finds no difference between specimens of it and the figures of Fusus inconstans, Lischke, a species published four years later.

Length, 3 to 5 inches.
Hab Jupan.
F. multicarinatus, Lam. Pl. 33, fig. 109.

Yellowish white. Length, $4 \cdot 5$ to 5 inches.
Red Sea.
The species figured by Reeve under this name is not angulate and much resembles F. turricula; it has been separated from multicarinatus by Philippi and Tapparone-Canefri and is called F. Reeveanus by the former ; it is a synonym of Fusus spectrum, Adams and Reeve.
F. Australis, Quoy. Pl. 34, figs. 113-119.

Brownish red, or yellowish with chestnut spots or narrow bands; periphery subcarinate but shoulder scarcely defined, rounded; upon the body-whorl the revolving striæ are frequently more prominent than the ribs, breaking up the latter into tubercles at their crossing. Spire and canal proportionally shorter than in the preceding species: Length, 3×75 inches.

> Red Sea, Japan, Australia.
M. Tapparone-Canefri gives to this species the name of F. tuberculatus, Chemn., which cannot stand, as the descriptive phrase is "F. tuberculatus seu muricatus." He also refers to F. verrucosus, Wood (as of Gmelin), but the identification is doubtful. . F. marmoratus (figs. 114, 115), Phil., F. aureus, Reeve (figs. 116, 117), and F. crebriliratus, Reeve (fig. 118), may be confidently placed in the synonymy of the species. F. caudatus, Quoy (fig. 119), is the young shell.
F. longissimus, frmel. Pl. 34, fig. 120.

Shell white, covered sometimes by a very light brown epidermis ; angle of each whorl bearing about ten rather large, compressed nodules. Length, $7 \cdot 5$ to 9 inches.

Ceylon.
F. candidus, Gmel., appears to be the same species and has a prior position in the "Systema," although published on the same page; I use longissimus preferably because it was adopted by Lamarck, and the species is, consequently, much better known under that name.

$$
\text { F. undatus, Gmel. Pl. } \stackrel{35}{25} \text { figs. } 121,126 \text {. }
$$

Shell heavy, white; nodules more prominent, not compressed, and fewer than in F. longissimus, being 7 or 8 to the whorl; revolving striæ not so prominent. Length, 6 to 7 inches.

Central Polynesia.
This species resembles the preceding, but the characters given above will serve to distinguish it. It is a very ponderous shell, and has an obsolete angle on the periphery below the shoulder line, making the body-whorl somewhat biangulate.
F. similis, Baird (fig. 126), from New Caledonia appears to be the same species, only differing in having "abont 10 or 11 " nodules in the specimen described.
F. polygonoides, Lam. Pl. 35, figs. 127, 128.

Light brown, spotted and strigate with chestnut-brown ; bodywhorl distinctly biangulate; both angles nodulous, those of the shoulder the most prominent. Length $2 \cdot 5$ to $3 \cdot 5$ inches.

East Indies.
I figure two examples of this species, the proportions varying considerably. It is possible that the succeeding species may be only a very slim variety, yet I am inclined to consider it distinct.
F. leptorhynchus, Tapparone-Canefri. Pl. 35, fig. 129.

Whitish, more or less strigated with reddish brown.
Length, 3 inches.
Red Sea.
See remarks under F. polygonoides, above.
F. strigatus, Phil. Pl. 35, fig. 122.

White, sharply angulate at the shoulder; longitudinal ribs prominent, chestnut-brown. Length, 2 inches.
M. Tapparone-Canefri thinks that this species approaches rather too closely to a variety of F. polygonoides, Lam.; he thinks F. pauperculus, Desh., may be the young of it.
F. gradatus, Reeve. Pl. 35, figs. 123-125.

Light yellowish or orange, the nodulous sculpture white. Shell distinctly shouldered, covered by coarse rounded longitudinal ribs, which are cut into compressed nodules by coarse revolving riblets. Length, 2 to $2 \cdot 5$ inches.

West Tndies.
The species was described without locality, but the figure corresponds exactly with specimens of F. Hartwigi, Shuttl. (fig. 124), which were collected at the island of St. Thomas, W. I. F. Paeteli, Dunker (fig. 125), also described without locality, appears to be the same. The latter species is compared by Dunker with F. strigatus, Phil., with which, notwithstanding the differences he has pointed out, it is entirely too closely allied.
F. Schrammi, Crosse. Pl. 35, fig. 130.

Subtranslucent, finely striated with revolving lire; longitudinaly, tuberculately costate; with a median sharp angle or carina, appearing on the spiral whorls also. Yellowish, with an interrupted, pallid brown band. Length, 69 mill.

Guadeloupe, W. I.
This may possibly be the young of an extreme variety of the following species.
F. distans, Lam. Pl. 36, fig. 131.

Whorls convex, carinate in the middle, and encircled by a row of compressed tubercles. Light yellowish brown, the raised revolving liræ darker, as are also the interstices of the tubercles. Shell stout but rather light in texture. Length, 5 to 6 inches.

Philippine Islands.

Murex ansatus and versicolor, Gmelin, are probably the same species, but I am unable to identify them positively. The following, however, can only be separated by locality, and by its usually more elate form-although some are exactly like distans. It may be advisable to treat it, for the present, as a variety.

Var. Closter, Philippi. Pl. 36, fig. 132.
Spire usually more drawn out; sometimes uncolored beneath the light olive epidermis. Length, 6 to $7 \cdot 5$ inches.

$$
\text { Isl. of Margarita, W. } 1 .
$$

I have a fine suite of this form connecting it very completely with F. distans.

Var. Dupetithouarsif, Kiener. Pl. 36, figs. 133, 134.
Unicolored beneath the light olive epidermis; spire more elate than the type; upper whorls more or less tuberculate, the tubercles usually vanishing before the last whorl, although sometimes continued and forming an angle upon it; body usually well rounded, showing no distinct shoulder, encircled throughout with revolving ribs, no tubercles.

Galapagos Isles ; W. Coast of Central America, N. to Acapulco.
Kiener's figure of this form (fig. 133) represents a shell quite similar to F. distans, and the collection of the Philad., Academy contains a similar specimen ; ordinarily, however, the non-carinate form obtains, and such is represented by the figures of Valenciennes and Reeve. Fusus Novr-Hollandir, Reeve, next described, is certainly very closely allied to this species.
F. spectrum, Ad. and Reeve. Pl. 36, fig. 135.

Shell slim, graceful, unicolored, white under a light brown epidermis; spire whorls crossed by rounded ribs, which are evanescent on the body, the latter having a sharp carina of compressed tubercles, defining a shoulder. Length, 3 inches.

Eastern Seas; Japan.
Var. Nover-Hollandie, Reeve. Pl. 37, fig. 137 ; pl. 33, fig. 108.
Ribs continued over the body-whorl, obliterating the carina and shoulder. Length, 4 to 6 inches.

Australia.
F. multicarinatus, (non Lam., fig. 108) $=F$. Reeveanus, Phil., appears to be the same species.

Notwithstanding its slimmer form it is very doubtful whether this should be considered specifically distinct from the last species. Fusus albus, Philippi is, according to the description, a synonym of the variety.
F. torulosus, Lam. Pl. 36, fig. 136.

Chestnut-brown, the nodules lighter and their interstices darker. Length, 6 inches.

Red Sea?

Perhaps more robust and more boldly sculptured as well as darker color than the average \boldsymbol{F}. distans, yet scarcely distinct enough to be separated from it.

F. Assimilis, A. Adams.

The description of this unfigured species will suit any species of the group, and it is said to resemble in form and sculpture the F. turricula except that the whorls are nodosely angulated.

China Seas.
F. ambustus, Gould. Pl. 37, fig. 138.

Shell yellowish, shaded with brown, so as to appear as if scorched; spire acute, whorls eight, angular, girdled with elevated threads, and having about eight varicose folds, which disappear on the lower part of the body. Aperture quite small, nearly semicircular; beak nearly straight, and with a very narrow channel. Length, 1.75 inches.

Mazatlan, Guaymas.
It is evident, from Gould's figure, that his species is a young shell, and I think that the adult is the Dupetithouarsi of Carpenter, which he considered equivalent to Novæ-Hollandiæ of Reeve. I have before me a pair of shells three inches long, from Cape St. Lucas, and identified by Carpenter as Dupetithouarsi, Kiener : they are narrower and more graceful than that species, however, and whilst sufficiently resembling an ambustus, also before me, except in much greater size, they cannot, on the other hand, be distınguished from F. spectrum, var. Novæ Hollandiæ. I have indicated the synonymy as it appears to me, but have not sufficient material to justify me in deciding the matter definitely.

Mr. W. H. Dall has examined a photograph from an original drawing of F. tumens, Carpenter, an unfigured species described from a very young individual, and identifies it with ambustus. The ambustus of Carpenter, Cooper and others = the following species.

F. cinereus, Reeve. Pl. 37, figs. 139-141.

Shell more or less shouldered; canal rather short; spire long. Ribs generally whitish; revolving liræ, alternately larger and smaller, cross the ribs, and the larger liræ are brownish; the interstices of the sculpture are brownish, sometimes variegated with white. Length, 20 mill.

Farallone Isles to San Diego, Cal. ; La Paz, L. Cal.-Gabb.
Fusus luteopictus, Dall (fig. 140), is the shell which many Californian collectors have erroneously referred to F. ambustus, Gld., and which others have identified as F. geniculus, Conrad : the latter is a miocene fossil, the figure of which is not sufficiently good for recognition, the type lost. I do not doubt the identity of luteopictus with cinereus, which was described without locality, and as a Turbinella. P. Taylorianus, Reeve, (fig. 141), appears to be a worn, immature state of the same species.
F. Dunkeri, Jonas. Pl. 37, fig. 142.

White, with a brownish interrupted zone. Length, 20 mill. Australia.
This is evidently a very much worn specimen and perhaps not adult; the locality, also, has not been confirmed by subsequent collectors. Dr. Philippi considered F. Taylorianus, Reeve, a synonym, but I do not think the condition of Dunkeri justifies a positive conclusion. If the two species be merged the adopted name will be Dunkeri, which has decided priority of publication.
F. craticulatus, Brocchi. Pl. 37, figs. 143, 144.

Reddish brown, resembling F. Syracusanus somewhat in form and sculpture. Length, 31 mill.

Mediterranean; rather rare.
F. scaber, Lam. (fig. 144), is a synonym.
F. Syracusanus, Linn. Pl. 37, figs. 145, 146.

Whitish, with usually the shoulders of the whorls chestnutbrown, as well as the canal, a median band of the same oa the body-whorl. Length, $1 \cdot 5$ to $2 \cdot 25$ inches.

Mediterranean.

The form and coloring are remarkably similar in a number of specimens from various localities, now before me; yet a variety figured by Reeve (fig. 146), is larger, whorls rounded, without
shoulder, and unicolored. The dentition of this species was ascertained by Troschel to be fasciolarioid, on which account he founded for it a new genus, Aptyxis; it has more recently appeared, however, that an undoubtedly genuine Fusus and the only one of which the dentition has been hitherto examined, possesses the same type of dentition (see F. inconstans, Lischke, Pl. 25, fig. 1), so that Aptyxis cannot hold.

F. rostrátus, Olivi. Pl. 37, figs. 147-150.

Yellowish to reddish brown, spirally corded with sharp, narrow ridges, which become prickly on the ribs, and form a sharp series of tubercles, defining a somewhat convex shoulder ; interstices of the main ridges each provided with a smaller ridge and scabrous.

Length, 1 to $1 \cdot 75$ inches.

> . Mediterranean ; Canary Islands.

Rather common in deep water, from 20 to 100 fathoms, upon corals and rocks. Fossil, miocene and pliocene, South of Europe. I have described the fully developed form, with carina, but this is often obsolete, so that the contour of the body-whorl is almost regularly rounded. To the latter belongs Reeve's F. fragosus, (fig. 148), to the former his F. coelatus (fig. 149), is certainly very nearly related.
F. celatus, Reeve. Pl. 37, fig. 149.

Whitish; sculpture sharp and delicate. Length, $2 \cdot 25$ inches. Hab. unknown.

Except in its larger size it is not essentially different from F. rostratus.

F. Bruijnir, Tapparone-Canefri.

Elongately fusiform, sub-umbilicate, reddish brown ; spire elate, apex somewhat acute; whorls nine, convex, with impressed sutures, closely encircled with squamous liræ crossing nine or ten longitudiual ribs; rounded, the last whorl obscurely subangulate; aperture ovately-subquadrate, crenulate at margin of lip, sulcate within; lip and columella margined with a vivid reddish tint, otherwise white within ; canal moderate, not equalling the spire. Length, 40 mill.

Not figured, but compared with. Fusus constrictus, Koch, a species which I have placed in the genus Coralliophila (Vol. II, p. 208). It is said to possess a narrower umbilicus and to differ in proportions and somewhat in color. Judging from the description I think it possible that F. Bruijnii belongs also in Coralliophila.
F. nigrirostratus, E. A. Smith. Pl. 37, fig. 151.

Brownish, streaked with darker color between the plications, the revolving liræ whitish, the rostrum purplish black; aperture bluish or purplish within. Leingth, 50 mill.

Japan.
I know nothing of this species beyond the description and figure.
F. Philippii, Jonas. Pl. 38, fig. 152.

Strigate with brown on a yellowish brown ground; white within.

Australia.

This species has not been recognized by local collectors, nor is it found in the Monographies : it is probably not a true Fusus.

2. Shell with rounded shoulder, no distinct carina.

This division is made to include a few species, which, so far as our information goes, do not become sharply angulate upon the shoulder; there is no marked demarkation, however, between it and the preceding group, because some of the latter, normally carinate, vary to rounded whorls without carina.
F. nobilis, Reeve. Pl. 38, fig. 153.

White; interstices of the ribs faint reddish brown.
Length, 10.5 inches.
Hab. unknown.
Too closely allied to the varieties of F. distans, Lam., having rounded whorls: the only differences being larger size, and perhaps a little more ventricose growth. The specimen figured is the only one known; a shell sent to me by a London dealer under this name, as from the island of Tortola, West Indies, proving to be identical in all respects with forms of F. distans, var. closter. F. nobilis much resembles F. longissimus, Gmel., also, in size and proportions.
F. turricula, Kiener. Pl. 38, fig. 154.

Uniform yellowish white. Lentgh, 3.5 to 4.5 inches.

This appears to be a pretty constant form, the ribs large and rounded and extending over the body-whorl; an inner lip is usually present in the larger specimens, presenting a well-defined edge, raised above the columella.
F. Preifferi, Phil. Pl. 38, fig. 155.

Brownish yellow. Length, 2 inches.

Hab. unknown.

I know nothing about the species, which is described, I presume, from a single specimen. Its validity is more than doubtful, as it has no characters to separate it from a half dozen other species.
F. Meyeri, Dunker. Pl. 38, fig, 156.

Uniform white. Length, 7 inches.
Hab. unknown.
Said to differ from F. longicauda by its larger size, larger and more rugose revolving ridges, slightly concave shoulder, etc. It seems to differ from F. distans, var. Novæ Hollandix only in the ribs not being continued over the body. It might well be considered a synonym of both !
F. longicauda, Bory. Pl. 38, fig. 157.

Yellowish white; epidermis brown, thin; apex and end of canal frequently brownish. Length, 5 to 6.5 inches.

Ceylon.
This is, perhaps, a F. colus without carina, or a F. turricula without ribs on the body-worl.
F. Couer, Petit. Pl. 38, fig. 158.

Yellowish-white. Length, 4 inches.
Hab. Gulf of Mexico.
The locality is as doubtful as the shell; if the former is incorrect, the species might well be merged in the preceding one.
F. gracillimus, Ads. and Reeve. Pl. 38, fig. 159.

Light chestnut-brown. Length, 3 inches.
Eastern Seas.
Very like F. turricula, Kiener, but more slender.
F. acus, Ads. and Reeve. Pl. 38, fig. 160.

Reddish brown ; spiral grooves fine, close-set, peculiarly flatly excavated. Length, $1 \cdot 65$ inches.

China Sea, off Borneo.
The most slender and graceful of all the species of Fusus.

F. lacusicaudatus, Hinds. Pl. 38, fig. 161.

Reddish brown; aperture contracted by an inward curvature of the lip. Length, $2 \cdot 25$ inches.

L'Agulhas Bank, Cape of Good Hope.

This is doubtless a monstrosity caused by some injury to the mantle of the animal. I have seen a number of similar instances of abnormal inflection in the lip in both marine and terrestrial mollusks.
F. Kobelti, Dall. Pl. 39, fig. 162.

Whorls 7 or 8 , with rounded ribs crossed by revolving ridges, alternately larger. The shell is white, under an ashy gray or greenish olivaceous epidermis, the alternate larger revolving ridges chocolate brown; spire moderately long, whorls well rounded; canal rather short, somewhat curved.

Length, 2 to 2.5 inches.
Catalina Island and Monterey, Cal.
As this species has not been figured hitherto, I give that of a beach-worn specimen (the best I have) from Catalina I. The shell has been confounded by some of the West Coast collectors with F. ambustus, Gld., but is a stouter species.
F. tenuiliratus, Dunker. Pl. 30, fig. 163.

Whitish, with light yellowish brown longitudinal strigations. Length, 3 inches.

Hab. unknown.
The gradual inferior contraction of the aperture, until it merges insensibly into the rather wide canal is the principal distinctive feature of this stout but probably immature shell.
F. Rudolphi, Dunker. Pl. 39, fig. 164.

Yellowish white, the revolving striæ light chestnut, crossed by longitudinal strigations or maculations of the same color.

Length, $3 \cdot 5$ inches.
Hab. unknowon.
In the features of this species as well as in those of the following one, may be recognized some of the characteristics of the genus Hemifusus.

7,7

TRITONINE

PLATE 11.

TRITONINE.
PLATE 13

TRITONIN A.
PLATE 17.

RANELLINA.

PLATE 18.

PLATE 19.

$$
\begin{aligned}
& . \\
& i
\end{aligned}
$$

,
F. ocklliferus, Bory. Pl. 39, fig. 165.

Whitish, with pale yellowish brown, longitudinal strigations; revolving ribs rather broad and flattened, disposed to break up into tuberculations, and striate on the top; the inter-channels each with a single narrow ridge; whorls peculiarly appressed below the sutures ; shell thin. Length, 4 inches.

East Indies?
F. minutisquamosus, Reeve. Pl. 39, fig. 166.

Longitudinally plicately ribbed, crossed by squamous fine ridges. Yellowish white. Length, $\cdot 75$ inch.

> Hab. unknown.

I am not acquainted with this species, of which Reeve has only given us a back view : it may be a Coralliophila, perhaps.
F. pulchellus, Phil. Pl. 39, fig. 167.

Light chestnut-color, the longitudinal ribs dark chocolate, except upon the periphery, where they are tipped with white, forming an nterrupted band. Length, 22 mill.

Mediterranean Sea.
F. Niponicus, E. A. Smith. Pl. 39, fig. 168.

Whitish or yellowish, brown stained on the spine, and with a narrow brown band on the body-whorl; white within.

Length, 22 mill.
Japan.
Evidently immature, and very probably not a true Fusus.
F. simplex, E. A. Smith. Pl. 39, fig. 169.

White, under a smooth, grayish-olive epidermis.
Length, 18 mill.
Japan.
Certainly a very young shell; very probably its adult form has an older name.
F. rubrolineatus, Sowb.

Shell rather short, light reddish, bifasciate with chestnut, distantly lineated with spiral red lines, thinly striated; spire rather short; whorls seven, marked with rather distant rounded ribs and spiral lines, with a wide chestnut band above; aperture sub-ovate, terminating in a sub-elongate canal.

Not figured, and no dimensions given. The coloration precludes its being a Fusus I suppose, but the description does not indicate its true generic position.
F. ustulatus, Reeve. Pl. 39, fig. 170.

Rusty brown ; whitish within. Length, 2.75 inches. Hab. unknown.

In the partial separation of an inner lip from the columellar margin of the canal, and in the canal being wide and open this species possesses characters which remove it from the typical Fusi and connect it with two shouldered species, F. proboscidiferus and F. ventricosus. It is possible that these may form a new generic group.
F. pyrulatus, Reeve. Pl. 39, figs. 171, 172.

Yellowish brown. Length, $2 \cdot 75$ inches.
Appears to be somewhat immature. I have not seen the species.

> Subgenus Sinistralia, H. \& A. Ad.
F. Maroccensis, Gmel. Pl. 40, figs. 173, 174.

Yellowish white to light brown. Length, $\cdot 75$ to 1 inch. Isl. of Guadeloupe, W. Indies?
The ribs are not continuous to the sutures, below which a smooth space intervenes; in the smaller specimens this space is very narrow and thus may escape observation, but in better grown individuals it becomes wider and more marked. In the latter state Mr. Reeve has called the species F. elegans (fig. 174): a name which cannot stand even as a variety. The locality given is exceedingly doubtful.

Doubtful and Spurious Fusidæ.

F. Lincolnensis, Crosse. Pl. 40, fig. 175.

Whitish, with a wide central brown band. Length, 19 mill. York Peninsula, Australia.
The coloration and very short canal remove this species from Fusus; yet I do not know where to locate it. Resembles a Muricidea.
F. hemifusus, Kobelt. Pl. 58, fig. 397.

Locality unknown.
This species, published in the Conchylien Cabinet in 1880, came to me too late to insert in its proper position in the genus Fusus. It is precisely like F. colus, var. Brenchlyi, and is therefore a synonym.
F. lineolatus, Costa. This is evidently not a Fusus. It is said to inhabit the Mediterranean Sea, but I do not find it in Weinkauff or Monterosato.
F. pusillus, Pfeiffer. Probably a very young shell, if a Fusus, as it only measures two lines in length. It has not been recognized.

West Indies.
F. apertus, Carpenter. "The six specimens found of this species were either young or fragmentary." The length of the shell is one-tenth of an inch! Why will naturalists cumber the nomenclature with species founded upon such insufficient material?
F. modestus, Gould. An unfigured shell, collected by the North Pacific Expl. Exped. in ten fathoms, shelly sand, at Hakodadi, Japan. The description is useless for recognition of the species, and the types were destroyed, I presume, in the great Chicago fire.
F. gilvus, Phil. This may be a Hemifusus, as there is a perforate umbilicus. The species is from China, and has not been figured.
F. obscurus, Phil. Pl. 40, fig. 176.

Nearly black, the upper part of the whorls, the keel, the tubercles and a central band on the last whorl are lighter.

Length, $1 \cdot 65$ inches.
Hab. unknown.
The color, the flexure of the columella, etc., are not typical of the genus, and would indicate some relationship to the Peristerniinx: there is no mention made of columellar plaits, however. Is this possibly a discolored fossil?

> F. nucleus, Brod. Pl. 40, fig. 187 .
> Whitish. Length $\cdot 5$, lat. $\cdot 33$ inch.

I do not know the species. It was described as a Murex, but neither belongs to that genus nor to Fusus-where it is placed by Sowerby, of whose figure I give a copy. Perhaps it is a very young Coralliophila.
F. unicarinatus, Phil. This unfigured and minute species from Magellan's Straits is certainly not a Fusus, but may be a Trophon. I have described it under that genus in Vol. II, p. 151.
F. spiralis, A. Ad. This is a genuine Fusus, shouldered and spirally striate, about tbree inches in length. Inhabits New Zealand. F. pensum, Hutton, is a synonym, according to the latter author. Unfigured.
F. nodicinctus, A. Ad.
F. dilectus, A. Ad.
F. albinus, A. Ad.
F. solidulus, A. Ad.
F. Spiceri, Tenison-Woods.
F. Legrandi, Tenison-Woods.
F. niveus, Gray.
F. grandis, Gray.
F. glacialis, Gray.
F. varius, Lam.
F. crebricostatus, Lam.
F. rubens, Lam.

> Australia.
> Venezuela.
> Ichaboe, W. Africa.
> Japan.

Tasmania. Tasmania.

Sierra Leone. Habitat unknown.

Arctic Ocean.
Australia.
Hab. unknown.
Isle of France.

These three species are not figured by Kiener in his delineations of the Lamarckian types, and the descriptions have not been identified by any other conchologists.
F. ventricosus and F. exilis, Menke. Australia.
F. choneticus, F. umbilicatus, F. Bernardianus, F. cygneus and F. nigrinus, Philippi.
F. umbilicatus is certainly not a Fusus, but the description does not indicate its generic position.
F. muricoides and F. nitens, C. B. Adams. Jamaica.

Both minute shells, and not true Fusi.
F. uneatus and F. Malsburgianus, Menke.

The above, described in Menke's catalogue, are not now in his collection.-Vide Mal. Blatt, xviii, 127.
F. Japonicus, Gray. I have not been able to find any reference for this name.

The following numerous species, described by Anton, in his " Verzeichniss," have never been identified ; they are mostly not true Fusi and will go into Neptunea, Hemifusus, or other related groups, judging from the diagnoses.
F. Roedingi and F. Gieserii, Anton. No locality. Appear to be true Fusus.
F. splendidus, Anton. Something like a Turbinella or Fasciolaria.
F. triskadekagonus, F. aurantius, F. hexagonus ("inclines to Turbinella, still more to Murex "), F. Granulosus (= Turbinella?), F. circulus, F. remotus, F. conicus, F. ventricosus, F. contabulatus, F. punctatus, F. Rossmassleri, F. Pleurotomoides, F. muricinus, F. varicosus, F. monachus, F. roseus ($=$ Purpura?), F. albidans ($=$ Turbinella?).

Genus AFER, Conrad.

Conrad never characterized his genus; but he made Fusus afer of Gmelin the type of it. The fossil forms assigned by him to the genus are stated by Prof, Meek to be different from F. afer, and he refers them to Conrad's Pyrifusus. Fusus afer does not seem to have been very well understood by conchologists, the figure in Kiener looking like an immature shell, whilst that given by Reeve belongs to the Turbinellidæ.

I retain the genus, with great doubt, and refer to it a second species, which seems to have some resemblance to the type, and for which I have no other convenient place.
A. afer, Gmelin. Pl. 40; fig. 177.

Light brown; aperture sillonated within and dentate at the margin, slightly channeled behind. Length, 1 inch.

Senegal.
A. Blosvillei, Desh. Pl. 40, figs. 178-180.

Livid brown or bluish or pale yellow ; sometimes the revolving ridges are brown; aperture orange or yellowish.

Length, 1.75 inches.
Red Sea; Ceylon; Bay of Manilla; rocky places at low water.

Fusus lividus, Phil. (fig. 180), is usually considered identical with this species.
Var. heptagonalis, Reeve. Pl. 40, fig. 181.
In this variety some of the longitudinal ribs coallesce, so that those remaining are not only fewer in number, but they are also wider.

Genus CLA VELLA, Swainson.

Only one recent species can be referred properly to this fossil genus, which is the C. serotina, the type of Hinds' genus Cyrtulus. The three other recent species referred to it by H. and A. Adams are members of other genera:
C. avellana, Reeve, is a Cronia. Vol. II, p. 180.
C. distorta, Reeve, belongs to the Pisaniinæ.
C. subrostrata, Gray, belongs to the Melongeniinæ.
C. serotina, Hinds. Pl. 40, fig. 182.

Pale yellowish or flesh-color; within light rosy or white.
Length, $3 \cdot 5$ inches.
Nukahiva, Marquesas, in 9 fathoms, among sand.
A thick and heavy shell which would probably be equally well placed in Melongeniinæ; or in Turbinellidæ, as some specimens show incipient folds on the columella.

Genus BUCCINOFUSUS, Conrad.
The single recent species referred by Conrad to his genus has since been made the type of Boreofusus, Sars-which, of course, becomes a synonym. The dentition, only, separates this from Sipho, several species of which might be regarded as either identical, or varieties at most. When the lingual armature of these allied forms shall become known their definite position can be ascertained; at present I prefer to leave them all in Sipho.

Jeffreys thus describes the animal:
Body white or cream-color, with a slight tinge of flesh-color; mantle sometimes edged with brown; pallial tube extensile, occasionally protruded beyond the canal, with an expanded or trumpet-shaped opening; proboscis exceedingly long, measuring nearly two inches even when contracted after the death of the animal; tentacles conical, rather short, and close together, with
bluntly pointed tips; eyes smàll and black, seated on long stalks, about half way up the tentacles; foot lanceolate, thick, rounded and double-edged in front ; tail either pointed or blunt and somewhat truncated.
B, Berniciensis, King. Pl. 40, figs. 183, 184.
Whorls encircled with alternately larger and smaller revolving ridges, decussated by fine growth-lines; lip margin slightly everted ; shell thin, white, under a very thin, light olive epidermis. Length, 3 inches.

North Sea; French Coast, occasionally; Circumpolar?
Dredged in fine sand 78 to 690 fathoms. Jeffreys cites varieties elegans, tener and inflata. He says that " the young, when fresh-caught and living, look like tiny rosebuds." The color of full-grown specimens (especially of the inside) is not less beautiful; these may vie with
. . . . "The dappled shells
That drink the wave with such a rosy mouth."
Middendorff, Adams and Kobelt think that F. Sabinii, Gray, is the young of this species; if so, that name would have priority; but the species is unfigured, and doubtful. Jeffreys refers it doubtfully to Sipho ventricosus.
B. terebralis, Gould. Pl. 39, fig. 189.

Yellowish brown, columella tinged pallid rosaceous. Labrum effused. Length, $2 \cdot 25$ inches.

Spitzbergen.
If not identical with the preceding species; it is very closely allied to it. Gould's type had a broken lip, but he refers besides to a perfect specimen in the Cumingian Collection; this afterwards became the type of Fusus Spitzbergensis, Reeve.

Sub-Family PTYCHATRACTIN A.

This group was distinguished as a family by Stimpson. The shell of Ptychatractus unites the form of a Sipho with the folds of a Fasciolaria; its small size, color, and northern habitat will distinguish it from the latter, even without taking into account the very diverse dentition; yet without the latter. difference it would scarcely have been advisable to have separated the single species upon which the genus was founded from Fasciolaria.

Mr. Stearns has added a second species, which may not be distinct; and I place here (because I must place it somewhere) the Fusus Coreanicus of Mr. E. A. Smith.

Genus PTYCHATRACTUS, Stimpson.
P. ligatus, Mighels and Adams. Pl. 40, fig. 185.

Shell light reddish brown. Length, 75 inch. Coasts of Maine, Nova Scotic ; Gulf of St. Lavorence; in deep water.
Operculum like that of Fusus.
P. occidentalis, Stearns.

Shell elongated, fusiform, rather slender, whitish, traversed by narrow, revolving, brownish threads and much wider intervening spaces; suture distinct, spire tapering; aperture oblong-oval, about half the length of the shell; within white, polished; canal short, nearly straight ; columella obliquely, not strongly plicated. Length, $\cdot 75$ inch.

Isle of Nagai, one of the Shumagin Islands. Forty fathoms.
More delicate than the Atlantic species, although the single specimen was not quite mature. This specimen having been mislaid, Mr. Stearns has not yet figured it. It must be considered a doubtful species for the present, as the description presents no features by which the shell can be positively distinguished.
P. Coreanious, E. A. Smith. Pl. 40, fig. 186.

Whorls slightly longitudinally costate and encircled by about twelve revolving ridges, which are alternately smaller. Dirty, diluted flesh-color, the ribs stained with dark brown; fuscous within the aperture. Columella smooth, arcuate above, very oblique inferiorly ; canal short, slightly retroverted.

Length, 22 mill.

Japan.

The evanescent ribs are sometimes indicated very obscurely on P. ligatus. Nothing is said about columellar folds, but these are sometimes not apparent on P. ligatus. The general form of the shell is so nearly that of Ptychatractus, that I do not know where else to place it with equal probability of giving it its correct position.

The dentition of the problematical mollusk which has rejoiced within the short period of our scientific knowledge of it under so many names, appears to relate it somewhat to Ptychatractus, and I prefer to place it in the same sub-family with that shell, rather than make a new family for.it. Norman shows that Meyeria is pre-occupied by McCoy for a genus of fossil crustaceans, and he therefore proposes the generic name Metzgeria; but I see no advantage (and much disadvantage) in changing names because they happen to have been previously used in some other department of zoology.
M. albe, Jeffreys. Pl. 39, figs. 190-193.

Fusiform, dirty white; whorls six or seven, moderately convex, suture distinct; longitudinally plicately costate, crossed by revolving striæ; lips smooth, columella twisted, very obsoletely biplicate; canal somewhat twisted, open.

Length, 18 mill.
Faroë Isles; North Sea ; Norway.
Prof. G. O. Sars makes this name a synonym of M. (Tritonium) pusilla, M. Sars (figs. 191, 192); but the latter name, given in 1858, was neither accompanied by diagnosis, distinctive characters, nor figure. I therefore cannot adopt it.

Sub-Family FASCIOLARIIN E.

Genus Fasciolaria, lam.

The animal of Fasciolaria does not differ essentially from that of Fusus, nor do we find very much difference in the shells; the usually shorter spire, more swollen body-whorl, wider and shorter and flexuous instead of straight canal, and the oblique plaits near the fore-end of the columella, are the chief distinguishing characters. Between Fasciolaria and Fulgur the resemblance is much closer, and, until the dentition of the two groups became known, they were placed close together by systematists; in Fulgur, however, the scarcely apparent folding of the columella is single, whilst in Fasciolaria it is double, sometimes triple. The Peristerniinæ have columellar folds, but these are usually more transverse, are situated higher on the columella, and the shells are much smaller; indeed one of the characteristics of the

Fasciolarias is the comparatively large size of the species. The distribution of the genus is tropical and sub-tropical, in shallow waters. But few living species are known, to which may be added some fossil forms, commencing with the cretaceous. The operculum is more claw-shaped than that of Fusus, and is rather large, filling the aperture.

I have figured the nidimental capsules of F. tulipa, Linn., in Vol. II, Pl. 7, figs. 77, 81.

* Shell not nodulous or shouldered.

F. tulipa, Linn. Pl. 59, figs. 1-5.

Color white or bluish-ash or orange, irregularly mottled with orange, chestnut or chocolate; encircled with chestnut-brown narrow lines, which are sometimes engraved. Aperture and columella blush or orange, with revolving lines of chestnut within. Length, 4 to 8 inches.

West Indies, Southern Atlantic Coust of United States, from N. Carolina, southroards.
Krebs found it in two to six feet of water, on sand and small stones, where Alyæ are growing, and where the sea is calm.

The color-varieties are very numerous, including, not frequently, one of a uniform dark mahogany, with black revolving lines, and the following, which has been usually accepted as a distinct species, and may be retained as a variety.

Var. distans, Lam. Fig. 5.
The revolving colored lines are less numerous than in the type, the more prominent ones, to the number of about a half-dozen, being retained on the body-whorl, whilst the intermediate ones are absent. The shell does not usually grow to such a large size as the typical form. Inhabits the same localities. In the numerous specimens before me, I have abundant evidence that the variety originates from the type, in the unbroken series of intermediate stages of coloration. I figure a rugose form which Dunkerintended at one time to describe as F. Scheepmakeri, but finally illustrated in his "Novitates" as a variety of F. tulipa (fig. 3).
F. canaliculata, Valenciennes, described as from Acapulco, Pacific Coast of Mexico, has never been figured nor positively
identified. Carpenter remarks upon the resemblance of the description to F.tulipa; I have but little doubt that it should be considered a synonym, and that the locality is erroneous.

* * Shell shouldered, but not tuberculate.
F. lugubris, Reeve. Pl. 59, figs. 6, 7.

Fleshy-brown, covered with a dark olive-brown epidermis.
Length, $2 \cdot 5-3$ inches.

> Cape of Good Hope.
F. badia, Krauss (fig. 7), described a year subsequent to F. lugubris, and from the same locality, is evidently synonymous.

* * * Shell shouldered and tuberculate.
F. Princeps, Sowb. Pl. 60, figs. 11, 17.

Nodulous on the shoulder, distantly spirally ridged, interstices concave, spirally striate. Light orange, covered with a persistent chestnut-brown epidermis; columella and interior of aperture orange, the latter with close, revolving, raised red lines, which sometimes tend to separate into groups resembling music staves. Length, 6-9 inches.

Panama to Mazatlan; Peru?

P. P. Carpenter describes the operculum as "pyriform, apex terminal; outside with about five longitudinal furrows on the middle and interior ; exterior with irregular diagonal ribs; inside with very large attachment, not corrugated." F. Reevei, Jonas (fig. 17), is a poor, faded F. princeps, although it is stated in Küster to be " himmelweit" in its characters.
F. gigantea, Kiener. Pl. 60, figs. 14-16.

Shell yellowish-white, covered with a chestnut-brown epidermis; flesh-color or yellowish within the aperture; tubercles distant, large. Length, 1 to 2 feet.

South Carolina; West Indies, Brazil.
This is the largest known species of univalve shells. F. papillosa, Sowb. (figs. 15,16), appears to be the young : it has priority, but Kiener's name is so well known that I let it stand.
F. filamentosa, Lam. Pl. 59, figs. 8-10; Pl. 60, figs. 12, 13.

Bluish-white, variegated and streaked with red, brown or orange, the spiral grooves dark chestnut or blackish. Aperture
blush or yellowish, with close, raised, red revolving lines, each pair of which terminates in a marginal denticle.

Length, 4-6 inches.
Red Sea; Oeylon ; Philippine Is.; Australia ; Central Polynesia.
F. ferruginea, Lam. (fig. 12), is only a slim form of this species, in which the nodules are scarcely apparent. Occasionally there are no nodules, the shell being scarcely shouldered: this state has been described by Jonas as F. inermis (fig. 13).
F. fusiformis, Valenciennes. Pl. 61, figs. 18, 19.

Upper whorls rudely, plicately ribbed, lower whorls with revolving striæ or ridges only. Epidermis brown, uṇder which the shell is light brown. Length, 3-4 inches.

So. Australia; in grass wrack, 2 to 5 fathoms.
I doubt whether this is more than an extreme form of the preceding species.
F. aurantiaca, Lam, Pl, 61, figs. 20, 21 ; Pl. 63, fig. 33.

Rugose, tuberculate on the shoulder, with occasional swollen tubercles elsewhere on the body-whorl; spirally grooved, the grooves generally in pairs. Mottled reddish-orange and white, under an olive or purple epidermis; white within.

Length, 3-5 inches.
Coast of Brazil? Cape of Good Hope?
Both localities are somewhat uncertain. The species is wider, but closely allied to F. filamentosa, a few specimens of which have a tendency to tuberculation below the shoulder, in the same manner as in F. aurantiaca. F. purpurea, Jonas (fig. 27), is founded apparently, on a specimen with epidermis. F. Persica, Reeve,$=$ clava, Jonas (fig. 33), is founded on the very ponderous, adult form.
F. crocata, Phil. Pl. 61, figs. 22, 23.

Shell yellowish, the revolving, elevated lines lighter in color. Length, 3-4 inches.

> Yucatan; Guiana.

The original figure and description (fig. 22) are from a young shell ; that of Küster (fig. 23) represents a more mature specimen. The nearest species appears to be F. filamentosa-which is from an entirely different habitat. This species does not
appear in the Swift West Indian Collection, and I have, therefore, some slight doubt of the correctness of the localities.

F. trapezium, Linn. Pl. 61, figs. 24-26; pl. 62, figs. 27, 28.

Thick, ponderous; whorls slanting on the shoulder, armed with a row of tubercles, which, in old specimens, become large and thick. Flesh-color, beneath a yellowish brown epidermis, encircled by brown, engraved lines, which are approximated in pairs; aperture flesh-color, with revolving brown, raised lines.

Length, 4-8 inches.
Philippines; Java; China; Red Sea; Auckland Is.?
Among the forms of this species several have received specific names; among these I figure F. Lischkeana, Dunker (fig. 27), a rather smooth form, the nodules not being developed; F. $A u$ douini, Jonas (figs. 24, 25), which is somewhat more slim than the type, and differs somewhat in color. F. ponderosa, Jonas (fig. 28), which, at first sight, appears sufficiently distinct, I am able to connect with the typical form by intermediate stages; it is very ponderous, the tubercles projecting outwards like spines from the angle of the shoulder.
F. Heynemanni, Dunker. Pl. 62, fig. 29.

Flesh-color, under a yellowish olive epidermis.
Length, $3 \cdot 5$ inches.

> Natal, So. Africa.

Evidently described from a worn specimen : it is very doubtful whether it has any good claim to recognition as a species.
F. coronata, Lam. Pl. 63, figs. 34,30 .

Light yellowish brown or flesh-color, under a thin, olive-brown epidermis. Length, 4-7 inches.

Philippines; Australia; Tasmania.
The spire is longer, the tuberculations closer, and consequently more numerous than in F. salmo, Wood ; and perhaps the shell is not quite so heavy : but these are differences of degree only, and sometimes a F. salmo is met with which very reasonably fulfils the above bill of particulars. There is a wide difference of locality between the two forms, and I therefore allow them both to remain for the present, but with considerable desire to merge them under the name of F. coronata.
F. salmo, Wood. Pl. 62, figs. 31, 32, 35.

Light flesh-color or yellowish, the very thin epidermis yellowish brown ; aperture flesh-color. Length, 4-5 inches.

Panama to W. Coast of Mexico.
The spire is short, giving the species very much the appearance of a Busycon or Fulgur.

Var. aranosa, Brod. Fig. 32.
Still larger, measuring 5-7 inches. Edge of aperture and columella tinged with orange. Epidermis darker colored, covered with black granulations.

Gray states that the animal of F. salmo is bright red. See remarks under preceding species.
F.Valenciennesi, Kiener (fig. 35), is a F. salmo with the nodules but slightly developed.
F. lignaria, Linn. Pl. 63, figs. 36, 37.

Whitish or yellowish, sometimes with brown bands; brown tinted within the aperture. Epidermis olive-brown.

Length, 2 inches.

Mediterranean Sea.

This species has a rude, solid growth, usually appearing as if water-worn ; the sculpture being somewhat rounded and indistinct.
F. Rufa, Reeve. Pl. 33, fig. 38.

Reddish brown, interior white ; revolving ridges indistinct or lost, except upon the ribs. Length, $2 \cdot 25$ inches.

Philippines.
Described as a Fusus, but the strong resemblance of Reeve's figure to the foregoing species induces me to place it here.

Unidentified and Doubtful Fasciolariæ.
P. sulcata, Lesson.

Acapulco.
F. rugosa, Val. Acapulco. A young shell; perhaps Latirus. F. sulcata, tuberculata and magna, Anton. Like most of

Anton's species, these have never been identified.

Sub-Family PERISTERNIIN A.

Kobelt, in Küster's Conchylien Cabinet, has divided the species among the several generic groups, and arranged them in accord-
ance with their relationships. I have mainly followed this arrangement, although it is certainly far from perfect. The difficulty is, that whilst the genera hold good in a general way as roughly indicating several great groups of species, there are species which unite these characters in such manner that to arrange them in either group does violence to some of their affinities.

Besides Kobelt, Kiener and Reeve have monographed these shells-the work of Kobelt being the most complete, and containing most of the species which I shall here describe and figure.

Genus PERISTERNIA, Mörch.

P. picta, Reeve. Pl. 64, fig. 39.

White, more or less completely covered with chestnut, or chestnut and orange narrow revolving lines; columella and interior of aperture blush color. Length, 1-1.25 inches.

Viti 1sles.
P. Belcheri, Reeve. Pl. 64, fig. 40.

White, with dark chocolate or blackish longitudinal flames or blotches, and revolving bands; epidermis light yellow ; aperture white within.

Cargados Garajos, Indian Ocean; on coral. Liukiu Is.
Very closely allied to the preceding species.
P. Australiensis, Reeve. Pl. 64, fig. 41.

White, ornamented between the ribs by dark chocolate square blotches ; aperture yellowish, with two interrupted bold brown bands. Length, $1 \cdot 25$ inches.

Port Essington, Australia.
P. Philberti, Recluz. Pl. 64, fig. 42.

Chocolate-brown, variegated and banded with white; aperture white or purplish within. Length, $1 \cdot 25$ inches.

Philippines.
P. Lobbeckei, Kobelt. Pl. 64, fig. 43.

White, base dark chocolate, with three more or less interrupted brown bands; aperture rosaceous, columella stained with black.
'Length; 1 inch.
Polynesia.

I suspect that this is merely a rather slim specimen of P. Philberti, which is itself, possibly a mere variety of P. nassatula, Lam.
P. nassatula, Lam. Pl. 64, figs. 44-47, 51, 52, 58.

Light yellowish-brown, deeper in the interstices of the ribs; aperture light purple. Length, $1-1 \cdot 75$ inches.

> Red Sea; Indian Ocean; Philippines; Nero Guinea;
> Nero Caledonia ; Paumotus.
P. sub-nassatula, Souverb. (fig. 52), is founded on a single specimen in which the ribs are undeveloped; it is from New Caledonia. P. Deshayesii, Kobelt (fig. 47), is a small form, without sufficient permanence to constitute a variety. P. Forskalii, Tapparone (fig. 51), is a long, slim form from the Red Sea, which may be separated as a variety. P. microstoma, Kobelt (fig. 58), from Mauritius, is the same.
P. Wagneri, Anton. Pl. 64, figs. 59-62.

White or yellowish, interruptedly marked with chestnut spots between the ribs, forming three revolving rows of maculations; aperture white within. Length, $1-1 \cdot 5$ inches.
Viti Islands.-Garrett.

This unfortunate shell, misunderstood by Reeve and others, is certainly quite distinct from the species with which it has been confounded. I figure Turbinella craticulata, Wagner (not Lam.), upon which Anton founded the name (fig. 62) ; also T. crenulata, Reeve, not Kiener (fig. 61), Purpura Bucciniformis, Kiener (fig. 59), and T. tigrina, Hombr. et Jacq. (fig. 60), the latter being a young shell.

P. spinosa, Martyn. Pl. 64, figs. 48-50.

Body-whorl biangulate, and spinose on the angles; white, banded, especially on the lower part, with chestnut or chocolate; aperture light purple. Length, $1-1.5$ inches.

Viti and Friendly 1slands.
P. iostoma, Nuttall (but never described by him), is figured in Küster's monograph, and referred to the coast of California. The figure (fig. 50) represents very fairly a P. spinosa, and the locality is, of course, erroneous.
P. spinosa, Gray.

Shell fusiform, white, covered with a smooth brown periostracum; whorls seven, upper ones with a series of conical tubercles, the last with distinct spiral ridges and a sub-posterior series of conical spines; canal sub-cylindrical, with the mouth about as long as the spire; throat ridged; pillar with three very slight plaits.

Sierra Leone.
This species, the type of which is said to be in the British Museum, was described over forty years ago, but not figured. It has not been recognized by subsequent authors. It appears to correspond in some degree with P. spinosa, Mart. The name being pre-occupied, I would give it another if I knew the species to be a good one.
P. pulchella, Reeve. Pl. 64, figs. 53-57.

Fulvous brown, sometimes white, with brown bands; aperture violet. Length, $1-1 \cdot 10$ inches.

Zanzibar; New Caledonia.
Var. mariei, Crosse (fig. 57). Brown or white, with brown bands and base; whorls with a more defined shoulder than in the type.

New Caledonia.

I think that P. Sutoris, Kobelt (fig. 56), described from a single specimen, locality unknown, is identical.
P. incarnata, Desh. Pl. 65, figs. 63-66, 69, 70.

Orange-brown, aperture rosy. Length, $\cdot 75-1 \cdot 30$ inches. Philippines; Indian Ocean; Red Sea.
Ricinula pulchra, Reeve (fig. 64), appears to be the same species; it has the teeth on the outer lip characteristic of Sistrum, but there are two folds on the columella.

Var. elegans, Dunker. Fig. 65.
Yellowish brown, with dark brown between the revolving ribs; whitish within. Length, 66 to 1 inch.

Viti Isles.
P. gemmata, Rousseau, non Reeve (fig. 66), is probably the same form.
P. lauta, Reeve (fig. 69), I am inclined to place here also ; it appears to be somewhat worn. I add a figure from Küster (fig. 70), which is somewhat like the next species.
P. Carolinet, Kiener. Pl. 65, figs. 67, 68, 83.

Flesh-color or reddish with two dark chocolate bands ; roseate within the aperture. Length, $\cdot 66$ to 1 inch.

Mauritius, Philippines.
Very close in sculpture and form to the preceding species; distinguished by its coloration. Ricinula bella, Reeve (fig. 83), is a synonym.
P. clathrata, Valenc. Pl. 65, fig. 92.

White, tinged with pink, aperture white.
Length, $1-1 \cdot 25$ inches.

Habitat unknown.

At first I was inclined to place this among the numerous forms of P. incarnata, Desh., but the discovery of three specimens in the Collection of the Philada. Academy, all corresponding closely with the figure of the type in Kiener, induces me to consider it provisionally distinct. It is rather larger and thinner than P. incarnata, the ribs are narrower and more numerous, the canal more produced, the outer lip is not thickened nor dentate on the margin, the color is entirely different.

P. lirata, Pease. Pl. 65, fig. 71.

Orange-yellow on the longitudinal ribs, chocolate in the interstices, the revolving ridges occasionally spotted with white; aperture and columella saffron-yellow; covered with a thin, membranous epidermis, roughened longitudinally.

Length, 30 mill.

Marquesas Isles.

P. gemmata, Reeve. Pl. 65, figs. 72, 74.

Light yellow, longitudinal ribs narrower and more numerous than in P. lirata; chocolate, occasionally spotted with white; revolving sculpture impressed, instead of being ridged, as in P. lirata. Length, 30 mill.

Taheiti; Western Polynesia.

P. lirata was figured by Reeve as a variety of gemmata; Pease subsequently distinguished it. Though at first sight very similar
in general appearance, my specimens show very constantly the differential characters of the diagnosis.
P. granata, Koch. Pl. 65, fig. 73.

Whitish, covered by brown tubercles formed at the intersection of the longitudinal and revolving sculpture; lip five-dentate within; columella with two obscure folds below.

Length, 4 inches.

Habitat unknown.

Evidently a young shell. It was described as a Fusus, but is either a Peristernia, in which case it may be a worn specimen of a young P. gemmata, Reeve, or else it is a Ricinula, and then, perhaps, = young of R. concatenata, Bl.
P. chlorostoma, Sowb. Pl. 65, figs. 75-82, 84, 91.

Shell whitish or yellowish, with an interrupted chestnut or chocolate central band, and the sutures and base of shell tinged with the same colors. Length, $\cdot 75-85$ inch.

Sandwich Islands; New Zealand; Philippines; Andaman Isles.
The earliest description, by Sowerby, gives no figure nor locality, but is sufficiently distinctive for certain identification. P. chlorostoma, Nuttall, and P. xanthostoma, Nuttall, are both unpublished names, but widely circulated. P. crocea, Gray, was likewise published without a figure, but fourteen years later. To these are to be added the subsequent names of P. Newcombi and P. stigmataria, A. Ad., P. scabrosa, Reeve, P. solida, Reeve. P. scabrosa, Reeve (fig. 78), said to come from Tonga Taboo (by Dunker), does not offer any distinctive characters except the absence of the spots, and these are present in a form (fig. 79) figured by Dunker as var. gracilior. The brown coloring is entirely absent in some Sandwich Island specimens before me.
P. crenulata, Kiener,* (fig. 80), is evidently the same species. Reeve has misconceived it, and figured for it an entirely different shell (P. Wagneri, Anton), as pointed out by Mr. TapparoneCanefri, who reports the species from the Aru Islands. P. Wagneri, Anton, var. Samoensis, as figured by Küster (fig. 82), is also identical, whilst the P. craticulata, Wagner (not Gmelin), for which Anton proposed his name Wagneri, is another species.

[^8]I add also to the synonymy P. decorata, A. Ad. (fig 91), which, according to Mr. E. A. Smith's careful description can be no other than this species: the necklace-like rows of tubercles beneath the sutures are developed in several specimens of chlorostoma before me.
P. ustulata, Reeve. Pl. 65, figs. 85-90.

Reddish brown, sometimes darker beneath the periphery and at the sutures, dark chocolate at base of shell.

Length, 1-1•4 inches.

Nero Caledonia, Viti Isles; Tonga Taboo, Mauritius, Indian Ocean.

The sculpture is not unlike the preceding species, but the color differs, and the shell is not only larger, but narrower, with longer spire and canal. The dark base is a character in common with P. chlorostoma; otherwise, the species varies greatly, particularly in sculpture, and has thus received several names. These synonyms are P. Caledonica, Petit (fig. 87), P. iricolor, Hombr. et Jacq. (fig. 88), P. infracincta, Kobelt (fig. 89), which is a light colored variety with a dark, interrupted, sub-sutural band, and P. Marquesana, A. Adams (fig. 90).
P. maculata, Reeve. Pl. 66, figs. 93, 94.

Yellowish white, irregularly stained and variegated with red blotches ; the nodules upon the ribs whitish. Length, 1 inch. Mauritius.-Robillard.
Is perhaps only a variety of the preceding species. P. maculuta, Hombr. et Jacq., described from a single specimen, is evidently the same species.
P. nana, Reeve. Pl. 66, fig. 95.

Yellowish brown; columella pink, Length, 1 inch.
Java.-Dunker.

Resembles P. maculata, Rve., so closely that I suspect it to be a light colored form of it.
P. bicolor, Kobelt. Pl. 66, fig. 96.

Whitish, purple-brown between the ribs, on the last whorl two rows of purple spots in the interstices ; mouth and apex yellowish.

Length, $1 \cdot 6$ inch.

Not unlike P. ustulata, Rve., and may be only a large variety of $i t$.
P. despecta, A. Ad. ' Pl. 66, figs. 97, 98.

Yellowish or reddish brown, ornamented with white spiral liræ, base of canal dark chocolate. Length, $8-1$ inch.

> China ; New Zealand.
P. Zealandica, A. Ad. (fig. 98), is somewhat more slim, the spire more produced than the type, but is otherwise indistinguishable.
P. squamosa, Pease. Pl. 66, fig. 99.

Orange-yellow, nearly white at the base of the shell and beneath the sutures-where the ribs become spinose ; light roseate within the aperture. Length, $1 \cdot 25$ inches.

Baker's Island.
P. Rollandi, Bernardi. Pl. 66, fig. 100.

Light orange-colored, yellowish within. Length, 41 mill . New Caledonia.
Kobelt compares this to P. Caledonica, Petit (\doteq ustulata, Rve.), and suggests that it may prove to be a large, old specimen of that species; it is very probable, although the figure and description do not indicate the dark base characteristic of P. ustulata. The figure reminds one of a Coralliophila.
P. Nassoides, Reeve. Pl. 66, fig. 101.

Yellowish brown, with a central white band; apex and aperture rosy. Length, $1 \cdot 5$ inches.

Isl. of Ticao, Philippines; upon coral reefs.-Cuming.
The plications of the columella are obsolete, so that it is very doubtful whether this is a true Peristernia. Reeve and Kobelt are both uncertain as to its generic position. I have seen no specimen, and therefore leave the shell where my predecessors, in the exercise of their best judgment, have placed it. Is it perchance a Hindsia ?
P. scabrá, Souv. Pl. 66, fig. 102.

Chocolate-brown, lighter on the ribs. Length, 15 mill.
New Caledonia.

Only a single specimen known, which is in the Bordeaux Museum.
P. Nouméensis, Crosse. Pl. 66, fig. 103.

Ashy, with three orange-colored bands; purplish within.
Length, 11.5 mill.
New Caledonia.
This shell is so close to the preceding, that I have very little doubt that they will prove to be identical.
P. fuscozonata, Angas Pl. 66, fig. 104.

White, with a more or less interrupted, broad, brown band on the periphery-appearing above the sutures on the spiral whorls.

Length, 14 mill.

> So. Australia.

Described as a Siphonalia because there are no distinct plaits on the columella, but I think that Kobelt is correct in referring it to the Peristerniinæ. It looks something like a young Triton chlorostoma, Lam.
P. gibba, Pease. Pl. 68, fig. 143.

Ribs white, interstices pale purple-violet, sometimes iridescent; aperture deep violet. Length, 13 mill.

Howland Isl.
An aberrant form, quite distinct.
P. granulosa, Pease. Pl, 66, fig. 105.

Shell elongately fusiform, longitudinally ribbed, ribs nine, rounded, corded with transverse ridges, with a small granose ridge encircling the interstices; whorls angulated and slightly excavated at the upper part, angulation encircled by close-set granulose ridges; outer lip lirate within; whorls convexly rounded; color reddish-brown, granules lighter, aperture violet.

Length, 22 mill.
Paumotus Is.
Undetermined Species.
P. Californica, A. Ad. In H. \& A. Adams' Genéra. I have not found the description of this species.
P. fenestrata, Gould. A young shell 13 mill. in length. Not figured.

St. Simon's Bay, Cape of Good Hope.

There is a Turbinella fenestrata, Anton-also undetermined.
P. nodulosa; A. Ad. Not figured.

Australia.
P. luculenta, H. \& A. Ad. White, with a broad flesh-colored band in the middle of the nodosely plicate whorls, and with a series of rufous-dotted spiral liræ at the fore-part of the last whorl. Dimensions not given; not figured. Gulf of Mexico.
P. vibex, Brod. Turrited, seven-varicose, varices subnodose, transversely sulcate; subluteus, aperture white, sulcate within; margin of labrum crenulate; canal very short; epidermis fus-. cous, rugose. Length, $1 \cdot 63$ inches, lat., 1 inch.

St. Elena and Panama; sandy mud, six to twelve fathoms.
"This shell appears to be intermediate between Murex and Turbinella. It has the varices of the former, and the plaits on the columella which distinguish the latter."

Described as a Murex, and referred by Sowerby to Pollia (=Cantharus). Not figured.

Genus LATIRUS, Montfort.

As already stated in my synopsis of the genera, the diagnosis of this genus is very unsatisfactory, its distinction from Peristernia being entirely arbitrary. One of its characters is that the shell is umbilicated, yet perhaps half of its species are utterly without perforation, whilst those which possess it, show only a narrow opening, except when abnormal in growth-like L. $M a$ derensis. Swainson's group Plicatella has been adopted by Messrs. Adams as a subgenus of Latirus, having "spire moderate, whorls angular, concavely depressed around the upper part," but- these are only comparative characters, and I prefer to suppress the group rather than place in it species having no relation thereto, as Messrs. Adams have done. The umbilicus shows more distinctly in most of the species of Latirus than in those of Peristernia, but in some of them it is not any better marked; Latirus, however, differs in form from Peristernia, the species having longer spire and canal, the columella generally straight, the plications more central, simply because the canal is more produced.

The animals of most of the species that have been observed, are of a dull red color.
L. polygonus, Gmel. Pl. 66, figs. 106-108; pl. 67, figs. 109-114. Orange-brown or whitish, with revolving bands and strigations of chestnut-brown ; fulvous white within the aperture.

Length, 2-2.5 inches.
Isle of Ticao, Philippines:-on the reefs. Cuming. Mascarene Isles ; Red Sea; Central Pacific.
Var. tessellata, Kobelt. Fig. 109.
Var. Barclayi, Reeve. Fig. 110.
Mauritius.
Var. candelabrum. Reeve. Fig. 114.
Revolving ridges much sharper; umbilicus usually more open. Isle of St. Elena, W. Columbia. In sandy mud, seven fathoms.-Cuming.
L. amplustris. Mart. Pl: 67, figs. 115, 116.

White under a yellowish epidermis, closely and regularly banded with chestnut brown ; aperture ivory white.

Length, 2-3 inches.
Isle of Annaa; on the reefs.-Cuming. Ascension Isl.-Pease.
Of the same general appearance as the preceding species, but much smoother, the ribs and revolving sculpture obsolete.
L. gibbulus, Gmel. Pl. 67, fig. 117 ; pl. 68, fig. 126.

Orange or brown, encircled by chestnut-brown bands; yellowish pink within the aperture; usually smooth and polished.

Length, $2 \cdot 5-3 \cdot 5$ inches.
Australia.
The columella is very indistinctly, sometimes not at all plaited.
L. cariniferus, Lam. Pl. 67, fig. 118, 119.

Yellowish brown, lighter on the ribs ; aperture white within. Length, 2-2.5 inches.

> Indian Ocean ; Viti 18.-Garrett.
L. ceratus, Gray. Pl. 67, fig. 120.

Yellowish brown, lighter on the ribs; epidermis chestnut or chocolate. Length, 2 to 3 inches.

Galapagos Is., under stones at low water-Cuming ; Panama; Mazatlan.

L. recurvirostris, Schubert and Wagner. Pl. 67, fig. 121.

Pale orange-brown, interstices of the ribs stained and spotted with chestnut-brown; aperture orange-yellow.

Length, $2 \cdot 5$ to 3.5 inches.

> Isl. of Luzon, Philippines ; in deep water.-Cuming.

Deshayes considered this a variety of L. cariniferus, which it may well be; it is, however, proportionally narrower, the intertubercular raised belt on the body whorl is not so wide, and the umbilicus is much wider.
L. Amalif, Kobelt. Pl. 68, fig. 131.

Dark brownish yellow, lighter on the revolving ridges, and chestnut-brown in their interstices upon the ribs ; yellowish brown within. Length, 2 inches.

> Hab. unknown.

Very like L. recurvirostris in form, but is smaller, and has not the wide open umbilicus of that species.

L Maderensis, Watson. Pl. 68, figs. 124, 125.
Yellowish to chestnut-brown, darker in the interstices of the ribs; white or light yellowish within the aperture.

Length, 1.5 to 2.5 inches.

Madeira; West Indies.

This species is certainly very closely allied to the preceding; having much the same form and the large, open umbilicus. Watson gave it a new generic name-Chascax, and states that the inner lip is quite smooth; this, however, may be due to the bad condition of his very insufficient material, the specimen figured by him showing dentations within the border of the lip, which he states to be caused by the borings of annelids. West Indian specimens before me, in much better condition are lighter in color, larger, and have three not prominent columellar plaits, Turbinella Stokesii, Gray, from Porto Praya, Cape Verd Isles, a species which has never been figured or identified, corresponds in description somewhat with this species.
L. infundibulum, Gmel. Pl. 67, fig. 122 ; Pl. 68, figs. 127, 144.

Orange-yellow or light brown, with darker narrow revolving ridges; epidermis dark brown, Length, 2 to 3 inches.

West Indies ; in deep water.
L. attenuatus, Reeve (figs. 122, 144), appears to be founded on a young shell of the above.

L, filosus, Schubert and Wagner. Pl, 68, fig. 128.
Whitish, the narrow revolving ridges chestnut-brown.
Length, $1 \cdot 5$ to $2 \cdot 25$ inches.
Prince's Isl. ; Senegal.
L. lyratus, Reeve. Pl. 67, fig. 123 ; Pl. 68, fig. 145.

Rufous-brown, lighter on the ribs. Length, $1 \cdot 75$ inches.
Philippine Isles.
Kobelt (in Küster, Conch. Cab.) considers this = Fusus constrictus Koch, which was published during the same year. The latter I have referred to Coralliophila, because the figure and description afford no evidence of columellar plaits, and the umbilical fasciole is fringed as in that genus.
L. modestus, Anton. Pl. 68, figs. 129, 130, 142.

Reddish yellow, revolving cords sometimes darker; suṭures frilled. Length, 1.85 inches.

Panama to Acapulco.
Described as a Fusus, without locality, and said to have no plaits on the columella; it has the facies of a Latirus, however, and appears to be nearly allied to the preceding species.
L. spadiceus, Reeve (fig. 130) can scarcely be distinguished as a different species. The latter is said by C.B. Adams to occur at Panama. I include also L. concentricus, Reeve (fig. 142), which occurs at St. Elena and Acapulco.
L. lanceolatus, Reeve. Pl. 68, fig. 132.

Light yellowish brown, darker beneath the periphery ; violet within the aperture. Length, $1 \cdot 75$ inches.

Philippine Is. on the sands.-Cuming.
L. lancea, Gmel. Pl, 68, figs. 133-135.

Yellowish brown, the interstices of the longitudinal ribs chestnut brown. Length, 2 inches.

> Isle of Ticao, Philippines; Indian Ocean.

Fusus acus, Ad. and Reeve (see p, 63, t. 38, f. 160) is almost certainly a synonym.
L. Paetelianus, Kobelt. Pl. 68, fig. 136.

Light yellowish brown, paler on the ribs; aperture white.
Length, 46 mill.
? China.
L. Thersites, Reeve, Pl. 68, fig. 137.

Ivory white, covered with a thin, yellowish epidermis,
Length, 50 mill.
China.
L. castaneus, Reeve. Pl. 68, fig. 138.

Reddish orange, covered by a shining, chestnut-colored epidermis; aperture white. Length, 2 to 2.5 inches.

Panama.
Gray has also described a Turbinella castanea, in the Zool. Beechey's Voy., but has not figured it, and gives the locality "Pacific Ocean." The indefinite description may suit this species as well as any other.
L, acuminatus, Kiener. Pl. 68, figs, 139, 140.
White, under a rather persistent dark brown epidermis.
Length, $1 \cdot 75$ inches,

> Philippines.-Cuming.
L. Gracilis, Reeve. Pl. 68, fig. 141.

Reddish brown; yellowish white in the aperture.
Length, 2 inches.
Locality unknowon; possibly W. coast of Central America.
Carpenter described L. tumens distinguishing it from gracilis
"In L. gracilis the spiral lines are few and raised; in this species numerous and impressed. Length, 2.78 inches. Hab. Panama." A single specimen in the Cumingian collection: not figured. The distinctive character is insufficient, especially as in the figured specimen of gracilis the spiral lines are not "few."
L. fastigium, Reeve. Pl. 69, fig, 164.

Reddish brown, sometimes lighter on the ribs.
Length, 1 to 1.25 inches.
Indian Ocean-E. A. Smith ; St. Thomas, W. I.-R. Swift.
L. aureocinctus, Sowb. Pl. 69, fig. 146.

Dark chocolate, encircled by golden yellow bands which are continuous over ribs and interstices. Length, 20 mill.

Mauritius-Robillard.
A very distinct species, both in form and coloration.
L. Cayohuesonicus, Sowb. Pl. 69, fig. 147.

Purplish brown, same color within the aperture; columella bicostate. Length, 16 mill.

Key West, Florida ; St. Thomas, W. I.-R. Swift.
There are four immature specimens of this very recently described species in the Swift Collection. In one of them there is a broad lighter band below the periphery.
L. nodatus, Martyn. Pl. 69, fig. 148.

Orange-brown (light yellow under the epidermis) ; the aperture roseate. Length, $2 \cdot 5-3 \cdot 5$ inches.

Sandwick and Viti Islands, etc.; Panama.-Cuming?
The last locality is doubtless erroneous, as it has not been confirmed by any collector subsequent to Cuming
L. varicosus, Reeve. Pl. 69, fig. 149.

Light orange-brown, the ribs dark chocolate-brown; aperture yellowish or blush. Length, $2 \cdot 5$ inches.

Galapagos Is.; in crevices of rocks.-Cuming.
L. rhodostoma, Dunker. Pl. 69, fig. 150.

Brown, with the revolving liræ whitish; aperture rosaceous. Length, 22 mill.
L. brevicaudatus, Reeve. Pl. 69, figs. 154, 151.

Reddish brown, the revolving cords dark chestnut-brown; aperture yellowish brown. Length, $1 \cdot 5-2$ inches.

West Indies.
Most of the specimens before me have a well-marked posterior channel in the aperture. L. filamentosus, Koch (fig. 151), is a synonym, perhaps, but the only figure is evidently a very poor one, and hardly to be identified with certainty.
L. contemptus, A. Ad. Pl. 69, fig. 152.

Reddish brown, with darker revolving lines; yellowish within the aperture. Length, $1 \cdot 25$ inches.

St. Oroix, West Indies.
I have not seen this species; there is nothing like it in the Swift Collection.
L. fallax, Küster. Plate 69, fig. 153.

- Reddish brown, darker in the interstices of the ribs; aperture reddish white. Length, 45 mill.

Habitat unknown.
Kobelt quotes three specimens in the German collections; I have not seen it.
L. Brazieri, Angas. Pl. 69, fig. 155.

Orange-brown, lighter on the ribs ; columellar plaits very slight or absent. Length, 1 inch.

New South Wales.-Brazier.
Adult specimens have a slight callous projection on the columella, near the posterior junction of the lip.
L. violaceus, Reeve. Pl. 69, fig. 156.

Violet-white, stained with dark chestnut at base; aperture pinkish violet. Length, $1 \cdot 5$ inches.

Habitat unknown.
I have not seen this species.
L. sanguifluus, Reeve. Pl. 69, figs. 157, 158.

Orange or reddish, the ribs and revolving ridges yellowish white. Length, 2 inches.

Habitat unknown.
This may be a short variety of the following species.
L. craticulatus, Linn. Pl. 69, fig. 159.

Whitish, with the ribs orange-red, or the deep color in the interstices and the ribs white.

Red Sea, Indian Ocean, Philippines, Central Polynesia, Isle of Bourbon.
L. turritus, Gmel. Pl. 69, figs: $160,161$.

Reddish orange, the revolving ridges chestnut or chocolate; aperture yellowish. Length, $1 \cdot 75-2 \cdot 25$ inches.

Red Sea, Philippines, Australia, Isle of Bourbon, Central Polynesia.
L. prismaticus, Martyn. Pl. 69, figs. 162, 163.

Yellowish white, the revolving ridges as they pass over the ribs blackish blue, chatoyant when wet; saffron-yellow within the aperture. Length, $1 \cdot 5-3$ inches.

Undetermined Species.

L. Zea, Mörch, Yoldi Catalogue. Not described.
L. neglectus, A. Ad.
L. armatus, A. Ad.
L. flavidus, A. Ad.
L. elegans, A. Ad.
L. distinctus, A. Ad.
L. Strangei, A. Ad.

China.
California:
Philippines.
Hab.?
Hab.?

None of the above are figured, nor are dimensions and distinctive characters given.

Genus LEUCOZONIA, Gray.

The most prominent character of this genus, when present, is the tooth which arises from the fore-part of the outer lip. It varies greatly in its development in the different species. In L. cingulata, in which it is always present, it is long, curved and tusk-like, so that the species has been erroneously arranged with Monoceros, from which it is instantly distinguished by its clawlike operculum and columellar plaits. In the other species it is sometimes entirely absent in some specimens, whilst well-developed in others. There is usually a posterior subchannel to the aperture. The sculpture does not vary essentially from that of the species of Latirus, but the color is usually a chestnut-brown, the only ornamentation being lighter or darker revolving bands. Usually the species are prominently shouldered; those which have whorls rounded above constitute the sub-genus Lagena which may be conveniently retained for them.
L. cingulifera, Lam. Pl. 70, figs. 165-173.

Chestnut-brown, encircled below the periphery by a white callous raised band, terminating in a tooth on the outer lip; apperture white, bluish or yellowish within.

Length, 1-2•5 inches.
Mouth of the Gambia, W. Africa; West Indies; Florida ; Brazil.
The specimens said to come from W. Africa are the largest, but I have never seen any which can be referred to that locality without doubt. The species is variable in its proportions and in the prominence of its sculpture and has therefore received several
names; the numerous specimens before me, representing locâlities from Florida, Central America, West Indies and Brazil, enable me to place these in the synonymy. Figs. 166-168 represent L. angularis, Reeve; Fig. 169 is L. Knorrii, Desh., from Honduras and Brazil; Fig. 170 is L. Braziliana, d'Orb., also from Brazil, and Fig. 171 represents the animal thereof; Fig. 173 is L. rudis, Reeve.
L. inculta, Gould, described without figure or locality is very probably a synonym. L. nassa, Gmel, is the oldest name for the species, but he included L. leucozonalis in his species, and as the subsequent name given by Lamarck has become universally current, it seems advisable to adopt it.
L. triserialis, Lam. Pl. 70, figs. 174-177.

Chestnut-brown, encircled with three rows of revolving, whitish nodules ; aperture and columella white. Length $1-1.5$ inches. İsle St. Vincent ; W. Africa.-Menke ; Bahia, Brazil.
The latter locality is for L. dubia, Petit (fig. 174), which appears to me to be a somewhat depauperate variety of triserialis. Another variety is Turbinella Hidalgoi, Crosse (fig. 177), which develops three instead of the two lower rows of tubercles. Its habitat is unknown.
L. multangula, Phil. Pl. 70, fig. 187.

Yellowish-white, with brown strigations between the longitudinal ribs. Length, $1 \cdot 12$ inches. Yucatan.
There is but little doubt that this species, described as a Fusus, really belongs to the Peristerniinæ, as the columella is said to be plicate at the base, and the form is not unlike specimens of L. triserialis. It may equal that species, possibly, with longitudinal ribs, developed at the expense of revolving ones. It is an immature individual.
L. ocellata, Gmelin. Pl. 70, figs. 178, 179.

Chestnut or chocolate, the raised portions white ; aperture white. Length, $1-1 \cdot 25$ inches.

West Indies.

There is considerable variation in the form of this well-known species, the spire being sometimes drawn out like the elate forms of L. cingulifera, Lam.
L. cingulata, Lam. Pl. 70, fig. 180.

Chestnut, with distant, flat, somewhat raised, revolving bands of dark chocolate ; aperture white. Length, 1.5-2 inches. Panama to Mazatlan; southern extremity of Florida, W. W. Calkins.

Mr. Calkins is the only authority for the occurrence of this common West Coast species in the Atlantic waters ; his locality, however, is not to be doubted:-besides, several other Pacific species have been discovered recently on the Florida coast.

Subgenus Lagena, Schum.

L. subrostrata, Gray. Pl. 70, figs. 181, 182.

Yellowish brown, white within the aperture.
Length, $1 \cdot 6$ inches.
Bay of Montija, W. Columbia (in sandy mud, 12 fathoms-Cuming).
L. agrestis, Anton (fig. 182), is founded on younger specimens of this species. Its generic position is very doubtful; Reeve considers it a Pyrula (= Melongena), and H. and A. Adams have put it in Clavella; it is also allied to Cantharus distortus. The columella plaits are sometimes obsolete.
L. leucozonalis, Lam. Pl. 70, figs. 183, 184.

Brown, with a white raised band below the periphery, terminating in a tooth on the lip; upper part of whorls subnodulous. Length, $1-1 \cdot 5$ inches.

West Indies ; Honduras.

Different as this species appears at first sight in its form and want of distinct shoulder and tubercles, there is almost sufficient evidence to justify its being made a synonym of L. cingulifera. L. smaragdula, Linn. Pl. 70, figs. 185, 186.

Chestnut-brown, closely encircled by numerous, narrow, equidistant white lines; aperture white. Length, 1-2 inches.

Philippines; Viti Isles.

Undetermined Species of Peristerniinæ.

None of the following species have been figured, nor have they been identified by the monographers of the Turbinellw.
T. (Fusus) sulcata, Gray.
T. (Fusus) elegans, Gray.

No locality.
Sierra Leone.
A. Adams and Dunker have both used the same specific name. T. plicatula, T. levigata, T. impressa, T. fenestrata, Anton. All without locality.
T. spinosa, Phil.

China.
T. (Fasciolaria) bistriata, Gould and Carpenter.

The small size (1.07 inches) and long canal render it improbable that this is a Fasciolaria, unless a very young specimen. Possibly a Latirus. Panama; a single specimen.
T. (Fusus) rosa-ponti, Lesson.
T. Taheitensis, Lesson.
T. Purpuroides, Lesson.

Gambier Is. Taheiti.
Gambier Is.

Family BUCCINIDA.

Shell ovate, oblong or pear-shaped; canal moderate or short, columella without folds or plications.

Operculum with terminal or lateral nucleus.
Dentition 1-1.1. The rhachidian tooth normally three (sometimes as many as seven) pronged, the laterals two- or threepronged.

The typical Buccinum is a rather thin ovate shell, uniform and dull in color, with the base of the aperture broadly notched instead of being prolonged (as in the Fusidæ) into a canal ; but with these have been more recently associated pyriform shells having some resemblance to the latter family. -Hemifusus, Melongena, Sipho, etc., pretty well bridge the chasm between the two families as far as the general form of the shell is concerned, but in those species of Buccinidæ approaching Fusus there is the general distinction that the canal, if long, is wide and open; whilst tortuous as in Fasciolaria, it has at most a single fold in lieu of the plaits on the columella of that genus. I have arranged the subfamilies and genera, commencing with those most closely allied to Fusus, and terminating with the buccinoid forms. Although the range of form is great, it will be seen that the transitions are not abrupt; and in this case the lingual dentition affords confirmation of the grouping adopted upon conchological grounds.

Sub-family Melongeninæ. Shell pear-shaped, heavy; spire and canal short.
Sub-family Neptuniinx. Shell rather thin, pear-shaped or ovate; canal moderate and twisted.
Sub-family Pisaniinæ. Shell small, heavy, costate; canal very short and wide, outer lip thickened, dentate within; columella callous or rugose.
Sub-family Buccinina. Shell rather thin, costate or smooth; ovate, covered with a horny epidermis; aperture very large, lip thin, smooth within, terminating below in a short oblique notch.
Sub-family Eburninæ. Shell thick, smooth, ovate-oblong; deeply umbilicated or umbilicus covered by a heavy callus; outer lip simple acute.
Sub-family Photinæ. Shell small, smooth, costate or cancellate, ovate or turreted, thick; outer lip striate within ; canal short and wide, columella twisted below.

Synopsis of Genera.

Sub-Family MELONGENIN E,

MELONGENA, Schum. Shell pyriform, solid, dark colored or banded; spire short, nodulose, spiny ; aperture oval-oblong ; canal short, open; columella smooth; outer lip simple. Operculum solid, claw-like, nucleus apical. Dentition, Pl. 25, figs. 10, 11; Pl. 26, figs. 12, 13.

HEMIFUSUS, Swainson. Shell sub-fusiform, uncolored or light yellowish; spire shorter than the aperture, ponderous; whorls armed with compressed spines upon the shoulder; aperture long ovate, with an ascending internal canal at the hind part, produced into a moderate wide canal anteriorly ; columella smooth ; outer lip simple. Operculum unknown. Dentition, Pl. 26, fig. 19.
[Thutcheria, Angas. Shell conic with scalariform spire, whorls attenuating to base; growth flexuous, causing a broad sinus on the flattened shoulder of the body-whorl. No doubt a monstrosity.]

Sub-Family NEPTUNIINA.

NEPTUNEA, Bolten. Shell fusiform, ventricose ; spire elevated, whorls rounded, covered with a horny epidermis, apex papillary; aperture oval ; canal short ; inner lip simple, smooth. Operculum ovate, nucleus apical. Dentition, Pl. 26, figs. 14-16.

VOLUTOPSIS, Mörch. Shell smooth, ovate, ventricose; spire short, apex bulbaceous; last whorl rather large ; aperture very large, the lip considerably expanded; canal scarcely produced, widely obliquely truncate. Operculum irregularly ovate, with apical nucleus. Dentition, Pl. 26, figs. 24, 25.

Subgenus Helfotropis, Dall. Shell thin, sinistral, apex mammillated; operculum relatively very small.

SIPHO, Klein. Shell thin, pyriform or fusiform, not tuberculate or spiny, usually smooth and rounded whorls; spire moderate; canal produced and recurved. Operculum ovate, nucleus apical. Dentition, Pl. 26, figs. 17, 18.

Subgenus Mornia, Friele. Operculum paucispiral.
SIPHONALIA, A. Adams. Shell ovately-fusiform, sometimes variegated in coloring, rather thin, epidermis very thin, fugaceous; last whorl ventricose, shouldered, usually nodosely plicate and spirally ribbed; aperture oval, outer lip thin, columella smooth; canal rather short, twisted. Operculum ovate, nucleus apical. Dentition unknown.

Subgenus Austrofusus, Kobelt. Whorls not shouldered.
FULGUR, Montf. Pear-shaped, thin ; spire short, the angle of the shoulder spinous ; body-whorl very large, attenuated below into a rather long twisted canal ; lip and columella smooth, the latter with a single, rather obsolete fold. Operculum ovate, nucleus apical. Dentition of typical form ; rhachidian tooth 5-6 dentate, laterals 5-6 dentate.

Subgenus Taphon, H. and A. Adams. Shell dextral, transversely striated, whorls rounded; aperture ovate, fore-part produced into a long, slightly-recurved canal.

Subgenus Sxcotypus, Browne (Gill). Shell with canaliculate suture, periostraca ciliated, nodulous instead of spinous. Dentition, Pl. 26, fig. 20.

STREPTOSIPHON, Gill. Shell subfusiform ; spire rather short, apex papillary; whorls angulated at the upper part and tuberculate on the angle ; columella concave, with a double very oblique fold on the lower part ; canal moderately long, twisted; aperture lirate within. Opercuculum and animal unknown. Seems to connect Busycon with Tudicla.

TUDICLA, Bolt. •Shell fusiform ; spire short, apex papillary ; aperturo oval ; canal very long, narrow, straight; columella smooth, flattened, with a single large, or three smaller transverse folds at the fore-part. Operculum fusoid. Dentition unknown.

Sub-Family PISANIIN E.

PISANIA, Bivona. Shell oblong; spire prominent, whorls smooth or spirally striated ; canal very short; outer lip thickened and crenated. Operculum ovate, nucleus apical.

EUTHRIA, Gray. Shell fusiform, smooth; aperture oval, produced anteriorly into a long recurved canal ; inner lip simple ; outer lip posteriorly sinuated, striate within. Operculum ovate, nucleus apical. Dentition, Pl. 27, figs. 27, 28.

METULA, H. and A. Adams. Shell elongately fusiform, finely cancellated; spire elevated, acute; aperture narrow; inner lip distinct, smooth; outer lip thickened externally, crenulated within, emarginate posteriorly. Operculum unknown. Dentition, Pl. 26, fig. 21.

CANTHARUS, Bolten. Shell bucciniform, more or less ventricose in the middle, narrowed anteriorly ; spire and aperture nearly equal ; columella generally with a few transverse ridges; outer lip internally crenated, and with a superior siphonal canal. Operculum ovate, nucleus apical. Dentition, Pl. 26, figs. 22, 23 ; Pl. 27, fig. 26.

Sub-Family BUCCININA.

BUCCINUM, Linn. Shell ovate or oblong, covered with a horny epidermis; spire elevated, apex acute; aperture large, oval, emarginate in front; canal wide, very short, or a mere oblique truncation of the base of the aperture; columella smooth; inner lip expanded; outer lip usually thin, smooth internally. Operculum ovate, nucleus small near the outer front edge. Dentition, Pl. 27, figs. 29, 30.
NEOBUCCINUM, E. A. Smith. Shell bucciniform, smooth, thin ; aperture obliquely, widely notched below. Operculum subspiral. Dentition resembling that of Neptunea.*

BUCCINOPSIS. Jeffreys. Shell bucciniform, smooth or spirally striulate, last whorl inflated; aperture obliquely truncate below. Operculum small, subtriangular, nucleus apical. Dentition, Pl. 27, fig. 32.

VOLUTHARPA, Fischer. Shell ventricose, thin ; spire short, body-whorl and aperture very large. Operculum usually wanting; when present, at first with apical nucleus, afterwards becoming annular. Dentition, Pl. 27, fig. 31.

[^9]CHLANIDOTA, Martens. Shell subglobose, thin, spirally costate. Operculum. with apical nucleus. Dentition: middle plate with five teeth, the outer ones much smaller, laterals with three teeth, the middle one smallest, the outer one somewhat smaller than the inner.
COMINELLA, Gray. Shell bucciniform, marked or spotted, covered with an epidermis; spire short, acute, last whorl large, ventricose, with a posterior depressed groove at the suture, producing a contraction at the hind part of the outer lip.* Operculum with apical nucleus. Dentition, Pl. 27, fig. 32.
CLEA, A. Adams. Shell turbinate, covered by an epidermis, aperture ovately acute, truncate at base and profoundly sinuate, dextral margin regularly árcuate, parietal callus none or thin. Operculum subtrigonal, with apical nucleus. Dentition, Pl. 27, fig. 38. Inhabits fresh wate
Subgenus Canidea, H. Adams. Shell small, fusiform or turbinate, covered with an epidermis; spire longer than the aperture, apex eroded; whorls slightly convex, plicate; aperture elongately ovate, emarginated in front; columella truncate; lip simple, sinuated in front. Operculum small, unguiculate; nucleus apical. Dentition, Pl. 27, fig. 37. Living in fresh water.

Sub-Family EBURNIN \nrightarrow.

EBURNA, Lam. Shell ovate-oblong, thick, porcellanous, under a thin epidermis; deeply umbilicated; spire acuminated, whorls more or less convex, suture more or less channeled ; aperture oval ; columella arcuated, posteriorly callous: inner lip spreading, often covering the umbilicus in the adult; outer lip simple, acute. Operculum with apical nucleus. Dentition, Pl. 27, fig. 33.
Subgenus Zemira, H. and A. Adams. Umbilicus moderate; outer lip . with a tooth near the fore-part.
MACRON, H. and A. Adams. Shell ovate, solid, with a thick epidermis; spire elevated; columella wrinkled, with a callosity at the upper part; outer lip thin, with a small tooth anteriorly. Operculum ovate, with apical nucleus. Dentition unknown.

Sub-Family PHOTIN A.

PHOS, Montfort. Shell cancellated, oblong, acuminated, usually longitudinally ribbed; outer lip striated internally, with a slight sinus near the fore-part; columella obliquely grooved, or with a single plait in front. Operculum claw-shaped, nucleus apical. Dentition, Pl. 27, fig. 35.

[^10]NASSARIA (Link), H. and A. Adams. Shell ovately fusiform ; spire accuminated, whorls longitudinally ribbed and cancellated; aperture ending anteriorly in a long recurved canal ; inner lip thin, circumscribed, transversely corrugately plicated ; outer lip grooved internally. Operculum ovate, nucleus apical. Dentition, Pl. 27, fig. 34.

CYLLENE, Gray. Shell ovate ; spire short, acute, suture canaliculated; columella concave, smooth or finely grooved; outer lip with a slight sinus at the fore-part, emarginate posteriorly, grooved internally. Operculum with terminal nucleus. Dentition unknown.

Fossil Genera and Subgenera.

Sub-Family MELONGENINA.

Genus BUIBIFUSUS, Conrad. Not characterized.
B. inauratus, Conr.* (=Fusus Fittonir, Lea), Pl. 29, fig. 55. Eocene, Claiborne, Ala.
Genus CORNULINA, Conr. Not charactized.
C. armigera, Conr. (= Fusus Taitir, Lea). Pl. 29, fig. 56. Eocene, Ala.

Genus LEIOSTOMA, Swains. Fusiform, ventricose in the middle, entirely smooth, almost polished ; inner lip thickened and vitreous; base of the pillar very straight.
L. bulbiformis, Lam. Pl. 29, fig. 5\%. Grignon.

A comparison of numerous specimens indicates the very close relationship of Bulbifusus, Conr., with this genus, which is itself entirely too close to the recent group Volema. Bayle has changed the name to Sycum, because Leiostoma is preoccupied by Lacépède in Fishes. I cannot concur in such changes, which would completely unsettle our nomenclature.

Sub-Family NEPTUNIIN x.

Genus FUSISPIRA, Hall. Shell fusiform, imperforate, spire more or less elevated, with rounded volutions ; aperture elongate, oval or elliptical, produced below, forming a sub-rimate canal ; columella slightly twisted, without folds, peristome sharp. Surface smooth.
F. ventricosa, Hall. Pl. 29, fig. 58. Trenton Limestone, near Green Bay.

So far as known, this palæozoic genus is confined to the Quebec, Trenton and Hudson River groups.

[^11]Genus CLOSTERISCUS, Meek. Shell thin, fusiform ; spire slender, longer than aperture and canal; surface smooth or minutely striate; aperture rhombic, outer lip broadly retreating above the middle, thin, excepting at irregular intervals, where it became thickened and denticulate within, so as to leave internal varices behind as the shell advanced in growth; inner lip very thin, or wanting ; columella smooth?
C. tenuilineatus, Meek. Pl. 29, fig. 59, Cretaceous, Cheyenne Riv., Dakota.

Genus PAL ÆATRACTUS, Gabb. Pyriform, thick; spire low ; columella slightly twisted; outer lip simple, inner lip incrusted. Surface heavily ribbed or cancellate.
P. crassus, Gabb. Pl. 29, fig. 60. Cretaceons, California.

Genus PYRIFUSUS, Conrad. Pyriform; columella broad, thick, flattened; body volution transversely oval, compressed dorso-ventrally.
P. subdensatus, Conr. Pl. 29, fig. 61. Cretaceous, Mississippi.

Subgenus Neptunella, Meek. Body volution rounded; columella not flattened; spire more elevated; outer lip broadly sinuous above the middle.
P. Newberryi, Meek and Hayden. Pl. 30, fig. 62. Cretaceous, Dakota.

Subgenus HERCORHYNCUS, Conrad. Shell fusiform ; spire prominent, scalariform, longitudinally ribbed and tuberculated, or with tubercles only; top depressed above the angle or shoulder of the last whorl, which depression becomes angular at the aperture, emarginating the upper part of the labrum ; last whorl broad and rather abruptly rounded at base ; beak abruptly recurved and produced.
H. Tippana, Conr. Pl. 30, fig. 63. Cretaceous, Mississippi.

Genus LIROFUSUS, Conr. Genus not characterized.
L. thoracicus, Conr. ($=$ decussatus, Lea). Pl. 30, fig. 64. Eocene, Alabama.

Subgenus Sycopsis, Conrad (Subgenus of Busycon = Fulgur). Shell tuberculate, not canaliculate. Eocene and Miocene. Differs from the genus in haviug tubercles instead of spines on the shoulder.

Genus STREPSIDURA, Swainson. Widely fusiform ; basal portion of the pillar turned outwardly, with a sharp fold at the base of the aperture; shell costate and sub-carinate, body-whorl ventricose.
S. costata, Swainson (=Fusus ficulneus, Lam.). Pl. 30, fig. 65.

Genus PAPILLINA, Conrad. Pyriform; shoulder angular and spinous; beak long, with an obtuse fold on the columella; three volutions from the apex forming a papillated summit. Very probably $=$ Tudicla, Bolt.
P. papillatus, Conrad. Pl. 30, fig. 66. Eocene, Claiborne, Ala.

Genus PERISSOLAX, Gabb. Spire depressed; body-whorl patulous; canal long ; columella without folds or plaits.

Distinguished from Papillina by the want of a columellar fold, and evidently intended to be ranged in the Fusinæ, but I think its general appearance decidedly that of Busycon or Tudicla. Cretaceous-Eocene.
P. brevirostris, Gabb. Pl. 30, fig. 67. Cretaceous, California.

Levifusus, Conrad, is generally considered synonymous with Perissolax. It is an uncharacterized Eocene form, of which I figure an example :
L. (Perissolax) trabeatus, Conr. Pl. 30, fig. 69. Eocene, Alabama.

Genus TORTIFUSUS, Courad. Differs from Busycon in being without a trace of tubercles or spines, and in having prominent regular ribs; the whorls are flattened on top, and slightly canaliculated.
T.curvirostra, Conr. Pl. 30, fig. 69. Miocene, N. Carolina.

Genus PYROPSIS, Conrad. Spire very short, apex not papillated; labrum without striæ within, thick; columella without a fold.
P. perlata, Conrad. Pl. 30, fig. 70. Cretaceous, Tippah Co. Miss.

Genus CLAVIFUSUS, Conrad. The genus has not been characterized.
C. Cooperi, Conrad. Pl. 30, fig. 71. Eocene, Alabama.
C. altilis, Conrad. Pl. 30, fig. 72. Eocene, Alabama.

Sub-Family PISANIIN Æ.

Subgenus Cantharulds, Meek. (S. G. of Cantharus). Shell with canal moderately produced, rather narrow and twisted; inner lip smooth throughout, and rather well developed; columella arcuate and twisted, so as to form an obtuse, undefined prominence below; outer lip slightly sinuous above.
C. Vadghani, Meek and Hayden. Pl. 31, fig. 73. Cretaceous, Upper Missouri River.

Genus METULELLA, Gabb. Shell fusiform, canal more or less produced; inner lip covered with a thickened plate, continuous posteriorly with the outer lip. Interior of both inner and outer lips strongly denticulated or transversely striated. Surface cancellate or costate. More distinctly fusiform than Metula, the columella with a row of denticles.
M. fusiformis, Gabb. Pl. 31, fig. 74. Miocene, San Domingo, W. I.

Genus LEVIBUCCINUM, Conrad. Not characterized.
L. prorsjm, Conr. Pl. 58, fig. 412. Eocene, Alabama.

Genus AGASOMA, Gabb. Subfusiform, spire low, body-whorl long; canal moderately produced and slightly deflected; aperture elongate, labrum simple; labium incrusted with a thin, smooth plate; suture bordered by an elevated portion of the succeeding whorl as in Clavella. It differs
from Clavella in the very short spire and in the short and slightly curved canal.
A. Gravida, Gabb. Pl. 31, fig. 75. Miocene, California.
A. sinuata, Gabb. Pl. 31, fig. 76. Miocene, California.

Sub-Family BUCCININÆ.

Genus ERIPACHYA, Gabb. Shell short, robust, subovate to subfusiform, spire moderately elevated. Aperture broad, terminating in advance in a very short canal or a mere notch; outer lip simple; inner lip more or less heavily incrusted. Surface marked by longitudinal ribs and revolving lines.
E. Perforata, Gabb. Pl. 31, fig. 79. Cretaceous, California.

Genus PSEUDOBUCCINUM, Meek and Hayden. Shell oval, thin, ventricose; spire very short; body volution large, not produced below; aperture large, terminating below in a rounded sinus; outer lip thin and simple ; inner lip very thin, smooth, and closely and very broadly folded upon the imperforate umbilical region and body volution above, so as to form, with a low revolving umbilical ridge, a kind of profoundly arcuate, strongly spiral, false columella; surface with more or less distinct revolving lines and furrows.

Meek is inclined to believe that Bullia ampullacea is a living example of his genus ; if so, Volutharpa, Fischer, will have priority over Pseudobuccinum.
P. Nebrascense, M. and H. Pl. 31, fig. 78. Cretaceous, Moreau R.

Genus ODONTOBASIS, Meek. Shell buccinoid-fusiform, spire more or less produced; body volution ventricose, and separated below from the short narrow beak, by a sharply defined, narrow, revolving sulcus, that terminates below at the connection of the outer lip with the canal, in a small tooth-like projection; outer lip thin, smooth within, and nearly straight in outline; inner lip not thickened, but well-defined; columella a little twisted, slightly flattened, and bearing two oblique plaits below, the lower one of which is formed by the raised lower edge of the obliquely truncated columella, and the other, which is very obscure, or perhaps sometimes obsolete, placed a little above the same; surface ornamented by vertical folds and revolving lines and furrows.

This genus referred doubtfully to the Buccinidæ by Meek, seems to unite characters of several different groups; the shell is Buccinoid in form and sculpture, but the fold and tooth remind one of Fasciolariæ, whilst the truncate columella recalls the Nassæ.
O. ventricosa, Meek. Pl.31, fig. 79. Cretaceous, Dakota.

Genus ECTRACHELIZA, Gabb. Shell accuminately oblong, spire elevated (always truncated in the only species known). Surface com-
pressed near the suture. Inner lip incrusted; columella sinuous, short; . outer lip produced in advance.

This genus seems to be allied in many of its characters to Cominella and Truncaria. Like them, it is compressed adjoining the suture. It shows no trace of umbilicus, as seen in most of the Buccinidæ, but its most distinctive character is in its obliquely subtruncated columella, which does not reach to the anterior end of the shell.

E. truncata, Gabb. Pl. 31. fig. 80. Miocene, San Domingo, .W. I.

Genus BRACHYSPHINGUS, Gabb. Shell bucciniform, short, robust, thick ; spire low ; aperture large, notched anteriorly; outer lip simple; inner lip incrusted with a smooth callus; surface longitudinally ribbed or striate. Allied probably to Cominella or Volutharpa.
B. liratus, Gabb. Pl. 31, fig. 81. Cretaceous, California.

Genus LACINIA, Conrad. Globose; pillar lip widely reflected, with a heavy posterior callus; basal emargination profound; base dilated; aperture with a posterior channel ; outer lip simple.
L. alveata, Conr. (= Prrula Smithif, Lea). Pl. 31, fig. 84. Eocene, Ala.

This does not differ very much from the recent Cominella maculata, Martyn.

Genus HAYDENIA, Gabb. Shell massive, allied, in general form, to Oliva, spire low. Outer lip simple, not thickened nor crenulate ; inner lip incrusted, callus marked posteriorly; without teeth or folds; canal slightly recurved; anterior extremity of the mouth notched, and a small sinus at the posterior extremity of the aperture, where the outer lip unites with the body-whorl. Surface ornamented as in some of the Buccinidæ. This curious form is probably a link between Buccinum and Volutharpa.
H. impressa, Gabb. Pl. 31, fig. 82. Cretaceous, California.

Sub-Family PHOTIN A.

Genus BUCCITRITON, Conrad. Genus not characterized. One of the typical specimens of B. Sagenum has a single varix on the back of the the body-whorl but the other specimens are without it, so that its nonabsorption may be regarded as accidental. B. altum is a different type of shell entirely, and looks something like a Truncaria.

Sagenella, Conrad, also uncharacterized, judging from the type, is identical with Buccitriton.
B. cancellatum, Lea (\sim sagendm, Conr.) Pl. 31, fig. 83. Alabama.
B. altum, Conr. Pl. 31, fig. 85. Eocene, Texas.

Sub-Family MELONGENIINA.

Genus MELONGENA, Schum.

Kobelt, in his recently published monograph of Pyrula (Conchylien Cabinet), adopts that genus, taking as subgenera Cassidulus (= Melongena), Myristica, Pugilina, Volema and Hemifusus These groups which are too closely related conchologically as well as by their lingual dentition, Troschel also places together, but without subordinating them to a higher group. Pyrula would, indeed, be an excellent name on account of its acceptance years ago for the major part of the species, but unfortunately the first and only species cited by Lamarck in his original description of the genus is the Bulla ficus, Linn., which is a member of the genus Ficula, Swainson, over which it has priority, and instead of which it should therefore be adopted. Cassidulus, Humphrey, has priority over Melongena, but I cannot adopt it as it is a mere catalogue name, not positively identified.
M. patula, Brod. and Sowb. Pl. 41, figs. 194-196.

Chestnut-brown, banded with pale yellow or white; aperture and columella orange or yellowish flesh-color.

Length, 4-10 inches.
The animal has a yellowish, brown-spotted foot, elongatequadrangular in shape; head long and narrow ; siphon chestnutcolor ; tentacula short, distant, straight, diverging.

Closely allied to the West Indian M. melongena, but may be distinguished by its greater size and darker color. This species develops no spines except at the shoulder of the whorl, where they are irregularly produced, few in number, sometimes entirely absent ; in M. melongena. although some specimens are equally smooth and devoid of spines, there are usually on adult specimens one to three rows of spines on the upper part of the body-whorl, and an additional row half-way to the base of the whorl.
M. melongena, Linn. Pl. 41, figs. 197, 198.

Light bluish or chocolate, with light yellowish, numerous bands; interior yellowish white. Length, 3-5 inches.

- See remarks upon preceding species.
M. tuberculata, Anton.

No figure or locality is given with the description of this species; which has not been recognized.
M. corona, Gmelin Pl. 41, figs. 199-203.

Bluish or chestnut-brown, with white bands; same color and bands within the aperture. Length, $2 \cdot 5-4 \cdot 5$ inches.

Florida and West Indies.
The ordinary type of this species has erect or incurved scaly spines on the edge of the square shoulder, usually crowded, with a more or less prominent sub-basal series of spines; sometimes the latter is suppressed and sometimes the upper series is replaced by two less prominent ones.
M. Belknapi, Petit (fig. 201), is synonymous. I figure also a small variety (fig. 200) illustrated recently by Mr. Sowerby in the Proc. Zool. Soc. London.
M. bispinosa, Phil. (fig. 203), is a variety of this species in which the shoulder is encircled by a double girdle of spinose tubercles, the upper one being most prominent. I have several examples of this variety before me from Yucatan.
M. Martiniana, Phil. (fig. 202), appears to be a specimen of this (or possibly of the next) species with the spines almost suppressed.

Fusus bicolor, Say, described from immature specimens, has not been identified properly heretofore: I am glad to be able, from the examination of types sent to the Philada. Academy by Mrs. Say, to identify it with M. corona.
M. galeodes, Lam. Pl. 42, figs. 204-208.

Pale brown, with the revolving ridges darker, or chestnutbrown with the ridges whitish; sometimes uniform cream-color; aperture usually white, brown-banded. The whorls are generally frilled or scaly spinose at the sutural line, nodulous or spinose on the shoulder, and sometimes with one or two lower lines of spines, about equidistant one from another.

Length, $1 \cdot 5-2 \cdot 5$ inches.
Red Sea, Indian Ocean, Singapore, China, Philippines.
Mr. Tapparone-Canefri, in his review of the Murices of the Red Sea, distinguishes, under the name of calcaratus, Dillwyn,
the shell which Lamarck called Pyrula angulata, and which Kiener figures (fig. 204). The very numerous suite of specimens before me conclusively shows that all the various forms which I have figured are conspecific.
M. bucephala, Lam. Pl. 42, fig. 209.

Light yellowish brown, covered usually with a thin, rather smooth, horn-colored epidermis. Length, $3-4 \cdot 5$ inches.

Indian Ocean.
Reeve's habitat " Mexico " is certainly an error.
M. pallida, Brod. and Sowb., Pl. 42, figs. 210-215.

Yellowish white. Length, $1 \cdot 25-1 \cdot 75$ inches.
Mazatlan, W. Coast of Central America.?
With this species I unite the following as synonyms:
M. anomala, Reeve (figs. 212, 213), which is the adult state of growth-the variability of the species is shown by fig. 213, which Reeve considers a variety of his anomala, M. lignaria, Reeve (fig. 214), a form which is not adult, and Fusus Turbinelloides, Reeve (fig. 215), is older, still not quite adult.
H. and A. Adams erroneously refer M. anomala, Reeve, to Neptunea, in which the name is preoccupied; they therefore changed it to Neptunea anceps.

The species might as well be referred to Siphonalia as here.
M. fusiformis, Blainv. Pl. 42. figs. 216-218.

White, more or less stained with rusty brown, under a fibrous brown epidermis. Length, 2-2.5 inches.

> St. Elena, W. Columbia, in crevices of rocks at low water.-Cuming. Peru.-d'Orbigny.

This shell is apparently very closely related to Cuma Kiosquiformis (Vol. II, p. 200), but the operculum, according to d'Orbigny, is not purpuroid. The resemblance, conchologically, is much nearer Cuma than either Melongena or Siphonalia, and I cannot help thinking that the great French naturalist was mistaken as to the operculum.
M. myristica, Reeve. Pl. 42, fig. 219.

Yellowish red, white within the aperture. Length, 28 mill.
Hab. unknown.

This, and the two following, are located in Melongena with much doubt.
M. Cancellarioldes, Reeve. Pl. 43, fig. 231.

Whitish, ridges reddish brown. Length, 47 mill.
? Ohina.
M. spadicea, Kobelt. Pl. 43, fig. 230.

Yellowish. Length, 2 inches.

> Hab. unknown.

Kohelt thinks it not improbable that this is an Austrofusus; I place it here on account of the coloration which corresponds with Melongena.
M. Bernardiana, Phil.

Not figured. Said to resemble Fusus turbinelloides, Reeve $=$ M. pallida, Brod. and Sowb.

Marquesas Isles.
M. pugilina, Born. Pl. 43, figs. 220-222.

Chestnut-brown; aperture orange-yellow; epidermis dark brown, pilose. Length, 3-4 inches.
M. paradisiaca, Reeve. Pl. 43, figs. 223-225. Indian Ocean.
Whitish or yellowish, either unbanded, or encircled with
numerous light brown bands, aperture flesh-yellow to orange;
shoulder smooth or defined by low tubercles. Length, 2-3 inches.
Red Sea; Ceylon; Mozambique; Natal.

The specific name is given by Reeve and others as of Martini, who was not a binomial writer. I cannot cite him as authority and in substituting Reeve I pass over several intervening, different names given by other authors: the species is so well known as paradisiaca that to change it would be inadvisable. A yellow form, without tubercles (fig. 224), was called by Lamarck Pyrula citrina; whilst the tubercuiate shells were named by him P. nodosa.
M. cochlidium, Linn. Pl. 43, figs. 226, 227.

Deep chestnut-brown : aperture yellowish or white.
Length, 3•5-6 inches.
Indian Ocean; Raines' Isl., Torres Sts.-Capt. Ince.
Somewhat resembling the dark-colored, tuberculate variety of M. pugilina, Born, but a larger shell, thinner, and with the tubercles or sfort spines larger and much less numerous.
M. morio, Linn. Pl. 43, figs. 228, 229.

Chocolate-brown under a rather porsistent olive-brown, pilose epidermis; usually encircled by one or more white bands, the principal one at the top of the aperture ; interior light brown or bluish with revolving brown ridges; shoulder with or without rather distant compressed tubercles. Length, 3-7 inches.

W. Coast of Africa; West Indies ; Brazil.

This and the preceding species were placed by the Messrs. Adams in the genus Hemifusus, but they are quite as closely related in form to Melongena whilst their coloration is decidedly that of the latter genus.
M. (Murex) squamosa, Brod. Pl. 58, fig. 399.

Yellowish brown; pink tinged, especially on the columella. Length, 40 mill.

Payta, Peru.
This species has been neglected by recent monographers. The only figure is in Sowerby's Conch. Illustrations. The want of real varices and thin outer lip removes it from Murex, and it cannot be a Fusus, as Sowerby conjectures, that genus being now restricted to the spindle-shaped shells, with long canal. I locate it here, not knowing how to dispose of it otherwise.
M. (Pyrula) plicata, Lam.
M. Deshayes has not been able to identify this species.

Genus HEMIFUSUS, Swainson.

Besides being thinner, the shells of this genus are distinguished from Melongena, by being white (without bands or other color markings) under a light yellowish brown epidermis. They differ from Fusus in the flexuous, wider, open canal, which is widened gradually into the lower portion of the aperture. H. colosseus, Lam. Pl. 44, fig. 232.

Pale fawn-yellow ; light roseate within the aperture.
Length, 10-14 inches.
Varies in the development of the tubercles upon the shoulder; occasionally they are obsolete, and are never very prominent.
H. ternatanus, Gmel. Pl. 44, fig. 233.

Fawn-yellow to yellowish red; interior yellowish flesh-color. Length, 3-5 inches. Indian Ocean; Philippines.

A smaller, wider shell than the preceding species, with more prominent tubercles.
H. pastinaca, Reeve. Pl. 44, fig. 234.

Thin; whitish, under a thin, yellowish epidermis.
Length, $3 \cdot 5$ inches.
Australia.
I do not know this species.
H. Lacteus, Reeve. Pl. 44, fig. 235.

Yellowish cream-color, or light chestnut-yellow.
Length, 2.5 inches.
Philippines.
I think it very probable that this and the preceding species will prove to be identical.
H. elongatus, Lam. Pl. 44, fig. 236.

Whitish to yellowish orange. Length, 3-4.5 inches.
Indian Ocean.
H. tuba, Gmelin. Pl. 44, fig. 237.

Yellowish flesh-color, under a brownish yellow, thin epidermis; light flesh-color within the aperture. Length, 4.5 inches. China; Japan.
The broad shoulder and prominent spines or tubercles well distinguish this well-known species from its congeners.

Genus THATCHERIA, Angas.

Shell angularly pyriform, solid; spire prominent, shorter than the aperture, many whorled, whorls flattened above, strongly keeled at the periphery and contracted below; aperture with a broad incurved sinus between the extremity of the last keel and the junction of the body-whorl; basal canal wide and open; columella smooth; outer lip simple below the sinus.
T. mirabilis, Angas. Pl. 44, figs. 238, 239.

Yellowish white ; aperture white. Length, 3.5 inch.
That this shell is a scalariform monstrosity cannot be doubted, but what may be its normal form is not so readily ascertained.

I saw the single specimen from which the above generic description was made, when in London, in 1877, and was immediately convinced that the conical form, flattened shoulders and sinus were all due to distorted growth. In the Annals of the Malacol. Soc. of Belgium is figured a monstrosity of Strombus Luhuanus, which I have copied for comparison (figs. 240, 241). I may here also include a notice of Pyrula Bengalina, Grat., evidently also a monstrosity.

Pyrula Bengalina, Grat. Pl. 44, fig. 242.
Thin, fragile, transversely striate; white, maculated with yellowish red ; initial whorls cancellated ; aperture subviolaceous; lip thin, very acute at edge. Length, 50 mill.

Bay of Bengal.

Genus NEPTUNEA, Bolten.

The shells of this genus are boreal in distribution, and like the other circumpolar genera, are nearly destitute of color, being white or yellowish, under a light brown or yellowish, rather smooth epidermis. The sculpture, when there is any, consists of revolving striæ, ridges or ribs, and the lip of the aperture is smooth within or merely modified by the external sculpture when the shell is thin. In the genus Siphonalia, the species of which are mainly Japanese and Australian, the general form is similar, but the shell is nodose, frequently developing longitudinal ṛibs, and the outer lip is more disposed to be crenulate; the surface is more usually ornamented with color, disposed in bands, etc. There are some species which can be only arbitrarily placed, having characters partaking of either genus ; and in fact geographical considerations must sometimes be allowed considerable weight in assigning such species to their respective genera.

Some of the species are apparently very variable, and it is difficult to decide whether the conservative views of Gwyn Jeffreys and Kobelt, or the more extreme views of Mörch, etc.. are most in accordance with truth.
N. antiqua, Linn. Pl. 45, figs. 243-246.

Whorls rounded, the apical ones obscurely carinated, closely marked with revolving striæ. White, interior yellowish.

Length, $3 \cdot 5-7$ inches.

The animal has a white or yellowish white body, sometimes partially speckled with black; the sole of the foot often straw color or light orange.

> Cornowall (coralline zone) to Shetland (there found in the laminarian, and deep water also) ; North Sea; Atlantic Coast of France.

Kobelt has varieties carinata and despecta, but Jeffreys considers them distinct from this species, of more Arctic distribution, and not found living (although fossil) in the British Isles. I agree with Jeffreys' views. On the other hand, Jeffreys has the following varieties, viz.: alba, ventricosa, striata, gracilis; they are merely arbitrary distinctions among forms very variable. Jeffireys also enumerates montrosities, as follows:
N. contraria, Linn. Spire reversed. (This has usually been considered a distinct species, and I prefer to so regard it.) Monstr. 2. acuminatum ; Monstr. 3. scalariforme, whorls more or less detached; Monstr. 4. cinctum, with a sharp ridge at the top or in the middle of the lower whorls, now and then bicarinated; 5. sulcatum, lower whorls furrowed in the middle, and outer lip notched like a Pleurotoma; 6. Babylonicum, spire turreted; 7. compressum, squeezed in at the sides, mouth narrow; 8. Volutæforme, shaped like a Voluta; 9. varicosum, the former outer lip (sometimes two or three of them) persistent; 10. contortum, spire twisted on one side or inwards ; 11. suffultum, basal ridge continued to the periphery ; 12. bioperculatum, having two opercula.

The following information concerning this common British shell I obtain from Jeffreys.*
"This is good bait for codfish, and a favorite delicacy of the lower working-classes in London. At Billingsgate it is sold under the name of 'almond 'or 'red whelk;' according to Rutly's History of Dublin the Irish call it 'barnagh,' the tail (liver) being said to be more fat and tender than a lobster. The eggcases or capsules (Vol. II, t. 7, f. 11) overlap one another in an imbricated fashion, each being firmly attached by its base to the underlying capsule; they are deposited in clusters of from a dozen to a hundred, the capsules in each cluster being equal in size. Those which compose one cluster, however, are not half as

[^12]large as those forming another cluster, although in both cases the fry are in the same state of maturity. When they are dry, the upper or convex side shrivels, and is wrinkled or pitted; the under or flat side (which by contraction becomes concave) is of a silky texture, and divided across by a few lines; the opening is a wide slit, lying just under the top which makes a narrow flap.
"Before leaving the capsule the fry are perfectly formed, with conspicuous tentacles, eyes, and operculum ; their shell has two whorls, the first being smooth, and the other showing a few slight incipient striæ. Each capsule produces only from two to four fry. The latter end of winter appears to be the spawningseason; on the 26th of January, 1861, I examined fresh capsules which contained merely eggs immersed in a glairy liquid; and seven days afterwards I found in the other capsules full-sized and living young whelks.
"The sculpture of the adult shell differs according to the locality and nature of the ground; sometimes it is coarse, and at other times scarcely perceptible. Specimens from Kiel Bay are stunted and depauperated, owing probably to the admixture of fresh water from the Baltic. In Shetland and at Berwick the fishermen make an elegant lamp of the shell, suspending it horizontally, mouth upwards, by a string round the middle, from a nail in the wall; the cavity contains oil, and the canal a wick (See Vol. II, Pl. 2, fig. 13). Now and then giants are seen, 7 or 8 inches long. The body-whorl of the female is larger than that of the male. Chemnitz knew the reversed form as a Crag fossil of Harwich; and he deplored in moving terms the indolence and apathy of naturalists in not procuring live specimens of this ' most delicate monster.' It is still very rare. Not only the spire of the shell, but also the curve of the operculum is reversed. I am not aware of any explanation of the phenomenon having been offered on physiological grounds."

Mr. Crosse considers N. contraria, Linn. (t. 50, f. 291, 292), a good species, and not a reversed antiqua, because it is so abundantly found at Vigo, a locality more southern than any for the normal antiqua, and Weinkauff also, remarking upon the abun. dance of contraria in the Mediterranean and the absence of antiqua, comes to the same conclusion.
N. lurida, A. Ad.

Shell ovate-ventricose, cretaceous or dirty white, epidermis thin, brownish, spire shorter than the aperture ; whorls four-and-a-half convex, the last obtusely subangulate behind; aperture large, ovate, livid within ; inner lip smooth, convex, canal very short, open, scarcely reflexed; lip lirate within, towards the margin smooth, behind widely subsinuated.

Japan.
"This is the common edible Whelk of the Ainos." Not figured, nor have I seen it.
N. despecta, Linn. Pl. 45, figs. 247-254; Pl. 46, figs. 255-261; Pl. 47, figs. 262-268.
Shell with a flat shoulder and keel, which is nodulous; surface covered with irregular revolving striæ and riblets; sometimes longitudinally lamellose. Fawn-brown, lighter or whitish within the aperture. Length, 3-5 inches.

Norway ; Spitzbergen ; Siberia; Japan; Alaska; Greenland; Iceland; Newfoundland.
A circumpolar species, very variable in form and sculpture, and bearing numerous hames. It has been confounded with N. antiqua, but appears to me to be distinct. It inhabits colder seas, is not found in any portion of the British ocean, but occurs in boreal Asia and America where the antiqua is not found.

In the var. striata the revolving sculpture is pretty regular, consisting of alternate larger and smaller striæ or riblets, and the shoulder is destitute of tuberculation. The variety fornicata (fig. 251) usually has the angle of the shoulder with a stout rib, upon which are compressed tubercles, but the striæ upon the rest of the shell are more or less obsolete ; sometimes the angle itself is obsolete and the tubercles form the only ornamentation of the surface. This latter variety is still regarded by some good conchologists as a distinct species; my specimens, however, clearly indicate to me its derivation from despecta. Among the synonyms of var. fornicata may be placed Fusus borealis, Phil. (fig. 554), Chrysodomus heros, Gray (figs. 252, 253, 255, 256), an extremely lengthened, non-carinated form, which approaches Siphonalia Kellettii, Forbes, Tritonium antiquum, Midd., not Linn. (figs. 257-260), some forms of which are suggestive of
lirata, Martyn, from the same localities, N. arthritica, Val. (figs. $262,264), N$. bulbacea or bulbosa, Val. (figs. 265, 266), which is evidently the same as arthritica, Fusus saturus, Martyn (fig. 267). To these I must add N. Cumingii, Crosse (fig. 268), from N. China.

Fusus tornatus, Gould (fig. 261), from codfish at the Bank Fisheries is equivalent to the typical despecta.
So variable is this species that I doubt the distinctness of even such diverse forms as N. lirata, Martyn, and Siphonalia Kellettii, Forbes, as well as of Volutopsis Behringii, Midd.
N. lirata, Martyn. Pl. 48, figs. 269-272.

Shell light brown, encircled on the body-whorl by nine to fifteen revolving ribs, which are not flattened on the top, usually three of these ribs are visible on the spire whorls.

Length, 3-6 inches.

N. W. Coast of America.

Animal whitish, black-spotted ; end of siphon and proboscis black.

Varies by the partial or entire suppression of the ribs as shown by figures 270-272, and then approaches smooth varieties of N. despecta. The question of identity of this and the following species has been carefully discussed by Mr. W. H. Dall,* who gives a table of differences in ornamentation and dimensions founded upon the examination of numerous specimens. Mr. Dall remarks that "it should be remembered that lirata does not occur on the Arctic shores of North America, and the two species are separated by a vast expanse of water. Some of the characters in the comparative table graduate towards each other in exceptional cases, but the sum of the characters is always sufficient to discriminate between the two, and this is all that can be expected between any two nearly allied forms. I regard the two as perfectly distinct." My material is not so abundant as that on which Mr. Dall bases his conclusions, and the differences are not so great. If it be true that neither species exists on the Arctic Coast, it would have to be proven that they did not exist there at some previous period of the world's history in order to

[^13]indicate distinct origin ; we find the same species on both sides of Central America in numerous instances. Perhaps I usually regard species from a somewhat more comprehensive point of view than does Mr. Dall, because in the present case he is quite willing (indeed does not expect otherwise) to distinguish allied species except by the "sum of the characters" of a number of individuals of each, whilst I regard principally those "exceptional cases" where the "characters graduate towards each other" as extremely damaging to their specific distinctuess; consequently, whilst Mr. Dall "regards the two as perfectly distinct," I expect future researches to establish their identity. In case they shall be united, Martyn's name having priority, must be adopted.
N. decemcostata, Say. Pl. 48, fig. 273.

Shell light brown, aperture usually white, sometimes brownish ; encircled on the body-whorl by six to eleven ribs, which, in adults are usually flattened on the top; generally only two of these ribs are visible on the spire-whorls.

Length, 2•5-4 inches.
Massachusetts Bay ; Maine ; Nova Scotia, etc.
Animal frequently pure white, sometimes flecked with blackish.
See distinctive characters under preceding species.
N. crebricostata, Dall. Pl. 48, fig. 274.

Revolving ridges flat-topped and overhanging the interspaces slightly, tops of ridges impressed with one or more lines; embryonic whorls cylindrical, free from strong ridges; canal scarcely produced ; siphonal fasciole none or very faint. White, under a yellowish brown epidermis. Length, 3.5 inches.

Unalashka; 100 fathoms.-W. H. Dall.
Mr. Dall remarks that this species recalls Purpura trochlea; it is, perhaps, still more like P. succincta.

Snbgenus Volutopsis, Mörch.

The shells of this division are characterized by their large mouths, expanded lips, want of distinctly produced canal, etc. The small operculum is (in V. Norvegica) more ovate than in the true Neptunce; the dentition also, varies from the typical form. Volutopsis appears to stand between Neptunea and Buccinum.
N. norveaica, Chemn. Pl. 48, figs. 276, 277 ; Pl. 49, figs. 278, . 279 ; Pl. 50, fig. 288.
Whorls smooth, polished, sometimes very faintly striate ; pinkish cream color or white. Length, $3-4 \cdot 25$ inches.

North Sea Coast of England ; Shetland Is.; Greenland; Iceland; Newfoundland; Norway (100 fathoms) ; Sea of Okhotsk; Alaska.
The animal has a pale orange or yellowish white body, irregularly streaked with purple. "The egg-cases are solitary. Each forms a compressed hemisphere about one inch in diameter, dirty lemon color, semi-transparent, and attached by the whole of its base to the inside of old bivalve shells and other flat substances, and edged by a rim or strip of membrane. The upper surface is covered with a thin whitish crust, which breaks up into crystalline particles and is finely corrugated; the under side is satiny. Ova pink or bright flesh-color. There are in each capsule from two to four perfect fry, which make their escape through a slit in the rim. The shell has the expressive name of 'wide mouth' among the North-country fishermen."*

Occurs fossil in the glacial shell mounds at Udevalla; and in England in the Norwich Crag. At the former locality the spire is somewhat longer, approaching the next species.
N. Largillierti, Petit, from Newfoundland (fig. 278), is considered by its author a synonym of this species; nevertheless Kobelt has figured and described a specimen (fig. 279) which differs still more than Petit's type from the normal Norvegica, and which he thinks is distinct; it approaches the next species in form.

I can scarcely doubt the identity with this species of N. regularis, Dall (fig. 271), which, by a curious error, was described as a var. of N. Beringii, Midd., supposed by him to be equivalent, or nearly so, to N. Norvegica. It comes from Unalashka, etc., and appears to be a stunted form.
N. Turtoni, Bean. Pl. 48, fig. 275 ; Pl. 49, figs. 281-283.

Shell whitish, spirally striated. Length, $3 \cdot 5-4 \cdot 75$ inches. North Sea, English and Norwegian Coasts, coralline zone to 100 fathoms.
Animal white with purple markings.

[^14]The much produced spire and very short canal serve to distinguish this from the preceding species. The egg-capsules, according to Jeffreys, " are pale orange, either solitary, or two together, and attached side by side, not to each other, but to a rather broad membraneous substratum; they are triangularly oval, the base being the narrowest part, and consist of an outer filmy sheath and an inner and thick fibrous case; the latter resembles in structure a cocoanut husk; the opening is a wide slit at the top. Mr. Howse found six young in one capsule. The fry are almost cylindrical, and of a dark reddish brown hue. The shell goes by the name of 'long neck' among the Straithes fishermen."

Sars has separated this shell from Neptunea, appropriating to it the generic name Chrysodomus, Swainson, a name usually considered synonymous with Neptunea. The distinctive points are, of the shell as stated above, a somewhat different dentition (Pl. 26 , fig. 16), and operculum (fig. 283). I suppose that these characters might be sufficient for the separation of a group, but the opercula and dentition of so many species of Neptuniinæ being unknown, it is perhaps most advisable to make no separation at present.
N. callorhina, Dall. Pl. 49, fig, 287.

Shell white, solid, smooth, with faint traces of revolving striæ; spire acute; embryonal whorls very minute, not mammillate; suture distinct, not channelled; canal very short, wide, straight; aperture rounded, outer lip thickened, strongly waved behind; posterior angle not acute; whorls, seven evenly tapering, not inflated. Length, 2 inches; width, $\cdot 9$ inch.

St. Paul Island, Behring Sea.
Found two specimens dead, on Fur Seal Rookery. The apex alone would distinguish it from any described species.

The above is Mr. Dall's description. I have not seen it.
N. Hallif, Dall. Pl. 49, fig. 285.

Suture subcanaliculate, not deep, but very distinct; canal rather long (says Dall, but his figure does not show it so). White, covered with a yellow-brown epidermis, with very faint revolving striæ crossing the slightly evident, waved lines of growth.

Length $1 \cdot 7$ inch., lat. $\cdot 8$ inch.
N. attenuata, Dall. Pl. 50, fig. 296.

Shell solid, pinkish white, much attenuated before and behind; spire one-quarter shorter than the aperture. Whorls six, apex mammillated. Posterior surface of the valves flattened towards the suture, where they are somewhat wrinkled and appressed. Surface of the whorls completely covered with fine, even, spiral lines. Aperture long and narrow, a thickened callus on the inner lip, and the outer lip slightly reflected. Canal long, nearly straight, rather narrow. Length $2 \cdot 33$ inches, lat. 1 inch.

Behring's Strait.
I do not know this species. The long canal is a feature not consistent with Volutopsis ; nevertheless, Mr. Dall places it here. Is it not equivalent to the next species?
N. pericochlion, Schrenck. Pl. 49, figs. 284, 286.

Shell canaliculate, spirally striate, white under a yellowish or reddish brown epidermis. Length, 4 inches.

> Japan.
N. tabulata, Baird (fig. 286), of which a single dead specimen was dredged in Esquimault Harbor, Vancouver's Island, may be synonymous with N. pericochlion. It has six whorls, flattened above and canaliculate next the sutures, covered with revolving striæ, which are asperate; the canal is of considerable length, bent to one side. Length 3 inches, lat. $1 \cdot 33$ inches.

Carpenter mentions a second dead specimen, dredged at 120 fathoms, Catalina Isl., Cal.
N. Behringit, Middendorff. Pl. 49, fig. 280; Pl. 50, figs. 289, 290.

Shell ovate-fusiform, rather solid when adult, whorls obtusely shouldered, irregularly plicate longitudinally, with minute revolving striæ, which are lost on the middle of the body-whorl but become more conspicuous at its lower part. Yellowish white; epidermis deciduous, membranaceous, brown.

Length, 4-5 inches.
Behring's Sea.
The rudely folded whorls are the distinguishing characteristic of this species : of which there is a short-spired variety, N. castanea, Mörch, which equals N. Kennicottii, Dall (fig. 290).

The essential character of this group is the reversed direction of the spire, placing the aperture on the left instead of the right side of the shell. The principal species have been considered by good conchologists as mere monstrosities of dextral species ; thus Mr. J. Gwyn Jeffreys regards N. contraria as equivalent to N. antiqua. But of this species it has been shown that it has an extensive distribution in Southern Europe, where the normal N. antiqua is unknown, and that the so-called reversed antiqua is very rare where the normal form is abundant. The last two species, in form and want of defined canal appear like reversed Volutopsæ, and possibly they are.
N. contraria, Linn. Pl. 50, figs. 291, 292.

Pale yellowish to fulvous brown ; whitish within.
Length, 3-4 inches.
Atlantic Coast of Spain, Portugal, South France; Mediterranean?
Fossil in the English Crag, in Belgium, and in the newer Tertiary at Palermo.

See remarks under Heliotropis, above; yet the so-called English specimens may be veritable reversed monstrosities of N. antiqua.
N. deformis, Reeve. Pl. 50, fig. 293.

Rather thin, with fine revolving striæ, and tubercularly swollen beneath the sutures. Yellowish chestnut. the columella and part of lip-margin white. Length, 3 inches.

Spitzbergen.
N. harpa, Mörch. Pl. 50, figs. 294, 295.

Yellowish white, salmon within the aperture.
Length, $3 \cdot 75$ to 6 inches.
Sitka.
Closely allied to the preceding species. Mr. Dall remarks that the "operculum is very small when compared with the size of the animal. Ovicapsules solitary, of hemispherical form, attached by the entire base, smooth above, and maturing only two or three individuals to each sac, although of much greater size than the ovicapsule of any other species of mollusk in the region."

Undetermined Neptunex.
N. Dominove and N. lamnigera, Valenc. The first said to belong to the group of Fusus bulbaceus, the last to that of F. despectus.

Gulf of Tartary, Mantchuria.

N. argyrostoma, Lam. H. and A. Adams' Genera.

I do not find any species of this or similar name in the Hist. An. sans Vert.
N. angulata, Gray.

Shell ovate, acute, smooth, rather solid, brownish white; the spire elongated, rather longer than the mouth and canal; apex blunt; whorls convex, rounded, with five or six subequal narrow elevated spiral ribs. The mouth small, roundish ovate ; the canal short, rather twisted, open. Length, $2 \cdot 14$ inches.

North Sea.
Genus SIPHO, Klein.
This is one of the most perplexing groups that I have studied; the distinctive characters of the so-called species are comparative only, having mainly reference to the proportions of the shells, color and sculpture being nearly identical throughout. Experience with boreal shells teaches that they are much more liable to variation in form than those of more temperate latitudes : hence the conclusion is irresistable that nearly all the species of Sipho must be relegated to the synonymy eventually. The want of sufficient and authentic material has prevented me from doing this in several instances. The species are confined to the boreal seas of the northern hemisphere.

> * Shell smooth, with revolving strice.
S. Islandicus (Chemn.), Auct. Pl. 51, fig. 297.

White, under a thin fawn-color or yellowish brown epidermis. Length, 4-5 inches.

North Sea; N. Atlantic Ocean to Iceland and Greenland; 30 to 100 fathoms.
It is much larger than the next species, S. gracilis; is more spindle-shaped, being produced and attenuated towards the base; the canal is much longer, and in some specimens quite straight:
the whorls are more rounded; the apex is stiliform and prominent; and the ridges are less crowded, and are sharper and more raised, especially on the upper whorls. The odontophores of the two species also differ. The true Islandicus is a northern species, very rare upon the northern confines of Great Britain. The English species usually known under this name is the S. gracilis, whilst the American species commonly known as S. Islandicus is S. Stimpsoni, Mörch. The name of S. cornea, Linn., is excluded because it is believed to have covered more than one species.
S. gracilis, Da Costa. Pl. 51, figs. 298, 299, 311.

White (rarely with a tinge of flesh color) beneath a membranous, yellowish brown or lemon-colored epidermis. Length, 3 inches. Great Britain, 20 to 145 fathoms, rare in the South, and on the Coast of France ; Sweden ; Norway ;

Iceland; Massachusetts ; Behring's Straits?
Jeffreys describes a var. convoluta, which is smaller, narrower, and somewhat cylindrical, more solid, with a longer spire, having sharper ridges and a deeper suture; mouth proportionally smaller. He thus describes the egg-capsules.
"The capsules are solitary, small, membranous, pouch-shaped, and attached by a broad base to stones and corallines; their surface is microscopically and closely reticulated; orifice extremely large and sometimes having the edge partly stained with pink. Each capsule contains only a single embryonic shell, which is transparent, and through it may be seen the orange liver and two unequal-sized plumes of pale yellow gills."
"Monstrosities now and then occur, viz., some of the ridges being prominent and keel-like ; spire twisted on one side or downwards ; penultimate whorl swollen ; apex broken off and replaced by a shelly plug; or the operculum aborted and concave. This whelk is occasionally brought to Billingsgate (London) market, mixed with the common eatable kinds; but it is not saleable. The fishermen call it 'borer.'"
Kobelt considers the Fusus Islandicus of the American coast the equivalent of this species, and calls it var. ventricosior ; but two species appear to be confounded in our "Islandicus:" a form which can be readily referred to S. gracilis, and a much larger, more ventricose form which has been separated as a distinct species under the name of Stimpsoni, Mörch.
S. propinquus, Alder. Pl. 51, figs. 300, 301.

Resembling S. gracilis in shape, but narrower, thinner, less opaque, and somewhat more glossy, the whorls not so convex, the outer lip not projecting so much and more contracted or incurved above. Length, $1 \cdot 75$ inches.

Great Britain, muddy and sandy ground in the coralline and deep-water zones; Norway; Sweden; Nova Scotia?

Jeffreys says, "The shell of the female is more tumid than that of the male. Capsules solitary, and attached to the inside of old bivalves; they are hemispherical, and resemble those of F. gracilis, but have a smaller and oval orifice; the base is margined by a narrow membrane. Embryo the color of a pomegranate. The smaller size and more delicate texture, finer and closer sculpture, longer, turreted, and regularly tapering spire, deeper suture, hispid epidermis, less abrupt curvature of the canal and especially the symetrical apex will readily serve to discriminate this from the last species."

Mr, Verrill has obtained from the waters of Nova Scotia two shells which are referred by Mr. Dall to this species after direct comparison with authentic specimens thereof.
N. Ebur, Kobelt, non Mörch (fig, 301), described as a white, polished variety, with moré acute spire and less incurved canal, was probably, as suggested by Mörch, polished in the stomach of a fish.
S. tortuosus, Reeve. Pl. 51, figs. 302, 303.

White, under a thick, olive epidermis. Length, 42 mill. Arctic America ; Norway.
Var. turrita, Sars. Pl, 21, fig. 304.
Smaller and thinner, more slender and almost cylindrical, with a larger spire.

Shetland; Norway.
Jeffreys considers this a variety of S. propinquus, Alder; which it may well be, but it is certainly more closely allied to S. tortuosus if the shape of canal is a specific character: I think all these differences of extremely doubtful persistence, and would prefer to consider most of the so-called species mere modifications of S. Islandicus.

Var. attenuata, Jeffreys. Pl. 51, fig. 305.
"Differs from the type in being narrower, canal not so tortuous," etc. Length, 43 mill.

> Norway ; W. Coast of Ireland $1180-1215$ fms. (Porcupine Exped., 1869) ; Bay of Biscay, $1207 \mathrm{fms}$.
S. glabra, Verkrïzen. Pl. 51, figs. 306, 307.

I cannot find any characters by which to distinguish this satisfactorily from S. Stimpsoni, Mörch-the American representative of S. Islandicus. Length, 65 mill.

Coast of Norway.
S. Jeffreysianus, Fischer. Pl. 51, fig. 308.

Shell differing from that of S. propinquus in being much larger, more ventricose and solid, and in having a conical and shorter spire ; the whorls are more convex, and the last occupies eightelevenths of the shell; the ridges of the back of the canal are stronger; the surface is covered with microscopic spiral strix, which intersect the equally fine lines of growth, so as to produce a slight and partial decussation; The epidermis is membranous and deciduous, fibrous near the outer lip, never hispid, and of a brownish yellow color ; the alternation of size in the spiral ridges gives a lineated appearance to that part of the epidermis on the body-whorl which is of a paler color and situated below the periphery; the canal is proportionally shorter, much wider, and more open; the outer lip is sinuated in the middle; operculum amber-color. Length $2 \cdot 25$ inches, breadth $1 \cdot 15$ inches.

English Coast to Bay of Biscay; coralline zone.
The description above is copied from Jeffreys, who first described the species under the name of Fusus Buccinatus, Lam., which is, however, an Euthria.
S. Stimpsoni, Mörch. Pl. 51, figs. 309, 310, 313 ; Pl. 52, fig. 317.

This is the North American representative of S. Islandicus, and it has generally been confounded with that species; it is, however, more ventricose, with a shorter, wider and more curved canal. It is a robust shell, with a dark, rough epidermis.

Long Island to Massachusetts, northwards to Labrador ; deep water.
The animal is white, with small, irregular black specks; eyes black; foot rectangular, angles rounded.

Var. striatus, Reeve. Fig. 317.
Approaching S. Sarsii and S. ventricosus. Reeve's figure is different enough to be a distinct species from Stimpsonii, but I possess a good series of intermediate forms.
S. turgidulus, Jeffreys. Pl. 52. figs. 314, 315.

Shell very thin, white, under a thin yellowish olive epidermis.
Length, 47-56 mill.

$$
\text { N. Atlantic Ocean, } 290 \text { to } 400 \text { fathoms (Porcupine Exped.). }
$$

S. Schantaricus, Middendorff. Pl. 52, fig. 316.

Shell opaque, thick, spirally lirate, canal very short.
Length, 72 mill.
Sea of Ochotsk.
S. togatus, Mörch. Pl. 52, figs. 318, 319.

Thin, epidermis coriaceous, at the intersection of the revolving and incremental striæ sometimes ciliated. Length, 48 mill. Arctic Seas; circumpolar.
Several authors identify with this species the unfigured Fusus Sabinii, Gray, described in the Conchology of Parry's Voyage ; others have identified it with Buccinofusus Berniciensis, King. I very much doubt the distinctness of S.turgidulus from togatus. S. Pfaffil, Mörch. Pl. 52, fig. 320.

Thin, fragile, rosy white ; epidermis brown, membranaceous, ciliated ; spirally striated, decussated by growth striæ.

Length, 57 mill.

> Jacobshaon, Greenland.

Mr. Gwyn Jeffreys refers this, together with tortuosus, Spitzbergensis and Ebur to S. Sabinii, Gray, with which he also identifies togatus, Mörch. He says, "The epidermis is usually smooth; but in one of my specimens it is finely and closely ciliated. The comparative length and curvature of the canal are variable characters."
S. hividus, Mörch. Pl. 52, fig. 321.

Whitish, encircled by narrow, flat liræ and narrower interstices; epidermis olivaceous ; lip slightly expanded. Length, 50 mill.

Newfoundland.

Mörch mentions the resemblance of this species to Spitzbergensis, Reeve ($=$ Buccinofusus terebralis, Gld.), the type of
which he has not seen. It is possible that the two are identical, and that lividus should be expunged from the genus Sipho. It must be considered a very doubtful species; I am not aware of anything like the figure in the American Seas, and cannot help thinking that the illustration is a bad one.
S. SarsiI, Jeffreys. Pl. 52, figs. 322, 323.

Spirally costulate, clathrate by narrow, undulated growth-lines. White, epidermis pallid olivaceous. Length, 54 mill.

Southern Norwegian Coast; 106 fathoms.
Outline somewhat like that of the next species, but the spire is more elevated and the whorls rounder; sutures, consequently, deeper.
S. ventricosus, Gray. Pl. 52, fig. 324.

Shell rather thin, inflated, spire short ; epidermis light olive. Length, $1 \cdot 5-2$ inches. ${ }^{\text {. }}$

Banks of Nevofoundland.
Fusus striatus, Reeve, is supposed by Kobelt to $=$ this species, but I think it more closely allied to F. Stimpsoni, Mörch.
S. lachesis, Mörch. Pl, 51, fig. 312.

Pinkish white under a coriaccous epidermis. Length, 41 mill. Greenland; Finmark.
S. Verkrüzeni, Kobelt. Pl. 52, fig. 325.

Shell solid, nearly smooth; canal very short; columella strongly callous below. Epidermis smooth, greenish yellow.

Length, 2 inches.

Northern Norway.

Totally different from all the other species in its Bullia-like aspect, want of strix and short canal. The radula and operculum are those of Sipho, otherwise its generic position would be very doubtful. Kobelt suspects that Chemnitz had this shell before him when he assigned Norway as a habitat for Bullia polita.
S. roseus, Dall. Pl. 52, fig. 329.

Shell small, of a rosy color when fresh, smooth to the touch, elegantly proportioned. Whorls six, well-rounded but not inflated; suture distinct; apex not mammillate, but evenly and elegantly rounded off. Sculpture consisting of delicate, evenly-

43.

33.

39.

RANELLINA.

PROSOBRANCHIATA.

(0000000

4.

6.

\uparrow
5.

10.

11.

PROSOBRANCHIATA.
PLATE 26.

14.

17.

约

26.

28.

39.

A a man

30.

隹

36.

NEPTUNIN $\not \subset$.

76.
buccinine.
75.

77.

78.

$7!$.

82.

80.

81.

5
85.

FUSINA.
HLATE

FUSINA.

FUSINA.

FUSIN.E.
PLATE 37.

FUSINE.

PLATE 39.

63

192

distributed revolving grooves, with wide interspaces, of which there are thirty or forty on the last whorl; these are crossed by faint lines of growth. Aperture rounded ovate, outer lip thin, columella arcuated, polished, not thickened; canal very short and wide. Fasciole none. Length, $\cdot 9$ inch.

Arctic Ocean.

The sculpture reminds one of the true Fusus Islandicus, which, however, has a long canal. The epidermis is not perceptible, and - all the specimens were imbedded in lumps of dense spongy growth.

The above is Mr. Dall's description.
S. productus, Beck. Pl. 52, fig. 326.

Yellowish white under a brownish epidermis, ponderous, aperture small and narrow. Length, 41 mill.

Cape North, Siberia.
S. Benzoni, Mörch. Pl. 52, figs. 327, 328.

Thick, ponderous, white, covered with obsolete spiral lire; epidermis thin, reddish brown. Length, 32-39 mill.

> Bahia, Brazil.

I figure, besides the original in the Jour. de Conchyl., a shell (fig. 328) which Kobelt refers to the same species. The locality is probably an error.
S. pyameus, Gould. Pl. 52, fig. 330.

White, under a yellowish epidermis ; animal white.
Length, 15-20 mill.

> Connecticut, northward to Newfoundland.

Mr. Verrill has made for this species a subgenus Neptunella, founded on the peculiarly velvety epidermis and the dentition. The epidermis is, however, no more velvety thin in some other species, and the description of the dentition given by Verrill applies very well to that of Sipho Islandicus.
This species is very like S. gracilis, except that it is much smaller.

* Shell longitudinally plicate, decussated by revolving lira.
S. Kroyeri, Möller. Pl. 53, figs. 333-336, 349-351.

Greyish white under a smooth, thin, brownish epidermis.
Length, 91 mill.
Circumpolar; Greenland; Behring's Sea; Spitzbergen; Labrador; Banks of Newfoundland.
In addition to the typical form I figure, from Kobelt, a stout variety collected by Dall at Unalaschka. Among the synonyms are S. (Bucc.) tortuosus, Reeve (fig. 349), S. arcticus, Phil. (fig. 336), and S. cretaceus, Reeve (fig. 350), and, possibly, S. scalariformis, Beck. S. plicatus, A. Ad. (fig. 351), from Japan, is apparently the same species.
S. fenestratus, Turton. Pl. 53, figs. 337-339.

Shell rather thin, semi-transparent; epidermis rather thin, brownish yellow, rising into numerous fine prickles on the spiral striæ. Length, $1 \cdot 7$ inches.

Norway ; Ireland; Newfoundland; 40 to 160 fathoms.
S. latericeus, Möller. Pl. 53, figs. 340-342.

Light reddish brown. Length, 25 mill.
Greenland; Norway.
S. brunneus, Dall. Pl. 53, fig. 343.

Nearly allied to the preceding, but with smaller and higher plications more plainly developed on the last whorl.

Length, 18 mill.
Behring's Sea; 10 fathoms.
S. pelducidus, Hancock. Pl. 53, fig. 344.

Yellowish horn-color, pellucid. Length, $\cdot 37$ inch. West Coast of Davis' Strait.
Only one specimen dredged, thirty-five years ago; has not since been recognized. May be a Bela or even a Trophon, but is compared by Hancock with Fusus Islandicus.
S. virens, Dall. Pl. 53, fig. 347.

Shell small, similar to S. brunneus in general characters, but covered with a grass-green epidermis, tinged with light brown in some specimens. The canal is more clearly defined; aperture much shorter and rounder, ridges and grooves less prominent
and clearly defined. The costæ are more arcuated posteriorly, and the embryonic whorl larger, with revolving threads instead of being smooth. Whorls five and a-half. Costæ nine to eleven on the last whorl; ridges more numerous than in S. brunneus, but almost too faint to count. Length, $\cdot 65$ inch.

Kyska Harbor, Alaska; 10 fathoms.
None of the specimens fully adult, but clearly different from any other described species of the region.-Dall.
S. Jessoensis, Schrenck. Pl. 53, figs. 345, 346.

Light roseate or reddish, under a light olive-green epidermis. Length, 27 mill.

Japanese Seas; 48 fathoms, sand and mud.
My figure is from the original; afterwards the same species, apparently; was described by Mr. E. A. Smith under the name of Sipho Manchuricus, A. Adams' MS.; and in this description the specimen is larger, attaining the above length. Some of the preceding species may be identical with it.
S. angustus, E. A. Smith.

Fusiform; whorls about ten, slightly convex, longitudinally plicated, finely spirally striated; plicæ somewhat oblique and arcuate, not particularly raised, broader than the interstices, about eighteen on the penultimate whorl ; last whorl contracted and produced below into a slender, recurved beak; aperture rather less than half the entire length of the shell. Whitish, with a broad obscure brownish band round the middle of the whorls, clothed with a greenish yellow epidermis; aperture light brown within. Length 25 mill., diam. 6.5 mill.

Vancouver's Island.

Remarkable for its slender form. It is not figured, and I know nothing concerning it.

Undetermined Species of Sipho.

S. rectirostris, Carpenter. Pl. 53, fig. 348.

Puget Sound, etc.
No diagnosis of this species has been published; it is merely mentioned in Carpenter's 2d Report, and figured in Küster from a drawing furnished by W. H. Dall.
S. brevicauda, Desh.

Kamtschatka.
Not figured. Said to resemble S. lividus, Mörch.

In Sowerly's monograph of Fusus, just published in the Thesaurus Conchyliorum, occur the following species, referable to Sipho:
S. rectiplicatus, Nowb. Pl. 87, fig. 612. Northern Seas.

This is a form of the very variable S. Kroyeri, Möller.
S. obesus, Sowb. Pl. 87, fig. 624. Northern Seas.

Nearly allied to S. glabra, Verkrizen, but more bulbous below. Probably not distinct from that species.
S. solidulus, Sowb. Pl. 87, fig. 622. Northern Seas.

Through the courtesy of Prof. Friele, who has forwarded to me proof plates of his fortheoming work on the Mollusca of the Norwegian Polar Expedition, I am enabled to illustrate the following additional species :
S. Danielseni, Friele. Pl. 87, fig. 610.

Shell whitish. Length, 39 mill.
Dredged between Norway and Greenland, at 1000 fathoms.
Very closely related to S. lividus, Mörch (t. 53, f. 321), and S. Sarsii, Jeffreys (t. 52, f. 322, 323). I have not seen specimens of this or the succeeding species.
S. Hanseni, Friele. Pl. 87, fig. 628.

Yellowish brown. Length, 61 mill.
Spitzbergen.
Only one example found. Resembles the variety of S. Stimpsoni, which I have illustrated, Pl. 51, f. 313.
S. virgatus, Friele. Pl. 87, fig. 613.

Reddish yellow. Length; 30 mill.
Near Lofoten, Spitzbergen.
In form and extraordinarily short canal, like S. Verkrüzeni, but sculpture and apex different.
S. Dalli, Friele. Pl. 87, fig. 625.
S. undulatus, Friele. Pl. 87, fig. 626.

Not published; figured from advance plate of the Norwegian North Sca Expedition. S. Dalli appears to be a S. tortuosus with well-developed spiral sculpture (see t. 51 , f. 302-305) ; S. undulatus is not adult.

Neptunea Ossiani, Fricle. Pl. 87, fig. 621.
Form similar to N. Turtoni, with yellowish brown, somewhat scabrous epidermis. Length, 88 mill.

Near Lofoten, Spitzbergen.
The sculpture and epidermis, mouth and canal, are considered different from N. Turtoni, and the shell is less solid. Certainly very closely related.

- Subgenus Mohnia, Friele.
M. MohniI, Friele. Pl. 52, figs. 331, 332.

White, subpellucid, epidermis thin, smooth or slightly hispid.
Length, 22 mill.
North Atlantic Ocean.
The paucispiral operculum is the distinguishing feature of this species and subgenus; and I can scarcely believe that some error has not occurred in assigning such an operculum to one of the Buccinidæ, because we are accustomed to consider this form as evidence that the shell to which it belongs is holostomate.

Genus SIPHONALIA, A. Adams.

This genus is principally of tropical and subtropical distribution, and more highly colored than Neptunea: which, nevertheless, it approaches very nearly in the form and color of S. Kellettii, for instance. The metropolis of the genus is Japan, a few forms being found, however, on the opposite shores of the West Coast of North America; some species occur also in Australian waters. The shells are usually thin and ventricose, variegated in color, and destitute of epidermis. The operculum is fusoid.

A number of the species have been recently described by Mr. Arthur Adams and others, the diagnoses being unaccompanied
by comparative characters or figures. The variation of coloration and sculpture is known to be great in this genus, consequently it is very probable that a portion of these species will prove to be synonymous with others previously described. I shall merely enumerate these as unidentified species.

The animal and dentition of Siphonalia are unknown.
S. Kellettu, Forbes. Pl. 54, fig. 359.

Thick, ponderous, white. Length, 4-6 inches.
Lover California; California ; Japan.
Kobelt justly remarks that this species occupies an intermediate position between Siphonalia and Neptunea, so that it is difficult to decide in which genus it ought to be placed.
S. fuscotincta, Cpr.

A unique, unfigured shell from Sta. Barbara, Cal. It is probably very immature, being only 17 inch long. It is said to look like a minute edition of S. Kellettii, but does not accord with the young of that species. Science is not benefited by the description of such material as this.
S. fuscozonata, Angas. Pl. 55, fig. 361.

White, with an interrupted, broad brown band on the periphery; lip acutely lirate within, columella with a superior callus.

Length, 54 inch.
S. Australia.

Said to resemble Peristernia, but without the columellar plications of that genus. It is too small to be an adult shell, if a Siphonalia.
S. modificata, Reeve. Pl. 55, fig. 362.

Light yellowish brown. Length, 44 mill.
La Pas, L. California, Carpenter ; Japan, A. Adams.
Resembles somewhat Melongena pallida, B. and S., and may not be properly classed as a Siphonalia:
S. spadicea, Reeve. Pl. 55, fig. 363.

Light brown, with here and there longitudinal reddish flames and reddish brown spiral ridges. Length, 42 mill.

Japan.
I do not know this species; it resembles some of the Melongenæ quite as much as this group-where it is placed by Kobelt.
S. tuberosa, Reeve. Pl. 54, fig. 354.

Chestnut-brown, white on the principal spiral ribs and nodules; aperture bluish white. Length, 3 inches.

Japan.

S. maxima, Tryon. Pl. 54, fig. 355.

White, sprinkled and blotched with light chestnut-brown on the spiral ribs; a broad, brown band between the tubercles on the shoulder of the whorls ; aperture white. Length, $7 \cdot 5$ inch.

Tasmania.
This shell was sent to the Philadelphia Academy by Mr. G. B. Sowerby, under the name of Siphonalia Tasmaniensis, Angas, and he has since figured a somewhat similar form in his "Thesaurus" as that species; Tasmaniensis is, however, a very different species, as will be seen by my copy of the original figure. The present species may possibly be the subject of one of the unillustrated diagnoses which I have considered it useless to attempt to identify.
S. dilatata, Quoy. Pl. 54, figs. 356-359.

Pale yellowish brown, the revolving ridges deep chestnut; interior white, Length, $2 \cdot 5-5$ inches:

New Zealand; Japan, A. Adams.
F. adustus, Phil. (fig. 359) is a synonym.

Reeve and Hutton both suspect this to run into the nonshouldered F. Mandarinus, Duclos (=Zelandicus, Quoy); if this be so, all the species of Siphonalia might as well be given up at once. Mandarinus I have referred to the group Austrofusus.
S. Cassidarieformis, Reeve. Pl. 55, figs, 364-369.

Reddish orange variously banded and tinged with chocolate and white; aperture white or orange. Length, 30-55 mill.

Japan.
Quite characteristic in its general appearance, although very variable in coloring. Probably several of Mr. Arthur Adams' unfigured species are synonymous with this; Lischke thus identifies two of them, S. ornata and S. conspersa.
S. Tasmaniensis, Ad. and Angas. Pl. 54, fig. 360.

Yellowish orange more or less fasciated with red (three bands on the last whorl), yellowish white within. Length, 60 mill .
S. Australia and Tasmania.
S. signum, Reeve. Pl. 55, fig. 370.

Yellowish, marbled with gray or light brown, with five or six uarrow brown revolving bands. Length, 2 inches.

S. Japan.

Very like S. Cassidarixformis in shape, but smooth, and more produced and contorted inferiorly.
S. concinna, A. Adams, may be synonymous, as suggested by Kobelt.
S. fusoides, Reeve. Pl. 55, figs. 371, 372.

Light brown, ridges profusely stained with small spots of deeper color, Length, 46 mill.

Japan.
Very like S. Cassidarixformis, but with longer spire, and somewhat narrower ; the canal also, is a little more produced.
S. fuscolineata, Pease. Pl. 87, fig. 618.

Whitish fawn, sparingly streaked longitudinally with brown, and ornamented with sub-equidistant revolving dark brown lines.

Length, $1 \cdot 6$ inches.
Corea, 70 fathoms.
I have not seen this species; the figure of it appears very closely related to the preceding, and it is probably synonymous with it.
S. trochulus, Reeve. Pl. 55, fig. 373.

Yellowish bay-color, encircled by white raised lines; light chocolate within the aperture. Length, 40 mill.

Japan.
S. hinnulus, Ad. and Reeve. Plate 55, fig. 374.

Whitish, strigated and maculated sparsely with orange-brown.
Length, 41 mill.

$$
\text { Sooloo Sea ; Japan, } 35 \text { fathoms. }
$$

The very short canal and smooth surface as well as the peculiar color-markings almost suggest Eburna rather than Siphonalia.
S. nodosa, Martyn. Pl. 56, figs. 376,377 ; Pl. 58, fig. 398.

Yellowish white, more or less stained with rust-red.
Length, 2-2.5 inches.

New Zealand.

Purpura baccata, Hombr. et Jacq. (fig. 398), is the young of this species.
S. varicosa, Kiener. Pl. 54, fig. 353.

Light brown, the revolving striæ darker. Length, 2 inches. Hab. unknown.
This species was first figured by Chemnitz, but his figures as well as Kiener's are from worn specimens. My illustration is from Reeve, and represents a very peculiar shell, the generic position of which is doubtful.

Unidentified Species of Siphonalia.
S. ligata, commoda, nodulosa, munda, filosa, corrugata, grisea, colus, acuminata, pyramis, A. Adams, all from Japan. None of them figured.
S. arata, Gould.
S. estosa, Gould.
S. Traversi, Hutton.

Hab. unknown.
S. calcarius, Dunker. Pl. 55, fig. 375.

White, cretaceous. Length, 21 mill.
Japan.
Described as a Murex: generic position doubtful.
S. ayrata, Hinds (Vol. II, 151, t. 33, f. 362).

This shell may be a young Siphonalia, although described as a Trophon, and included by me in the monograph of that genus.
S. Clarkei, turrita, castanea, pulchra, Woods. Tasmania.

Mr. W. F. Petterd* makes Trophon Brazieri, Woods $=S$. castanea, and considers Siph. pulchra, Woods, a young Pleurotoma philomenx, with undeveloped lip.

Subgenụs Austrofusus, Kobelt.
Shell ovate fusiform, whorls rounded, not angulated at the upper part.
S. Alternata, Phil. Pl. 56, figs. 378, 379.

Yellowish white, the ridges deep chocolate.
Length, 2-3.25 inches,

> W. Coust of Central America; Peru.
S. Fontainei, d'Orb., is from the Peruvian Coast, and appears to be a synonym (fig. 3.79).

[^15]S. sulcata, Lam. Pl. 56, fig. 380.

Yellowish brown, with chestnut-colored revolving ridges; aperture white. Length, $4 \cdot 5$ inches.
S. Australia.
S. cinfamomea, Reeve. Pl. 56, fig. 382.

Light reddish brown, with darker revolving ridges.
Length, $2 \cdot 25$ inches.
Habitat unknown.
The want of longitudinal folds appears to distinguish this species from its congeners, except S. Mandarina, Duclos. To this it is very closely allied and may be identical, although the revolving ridges in cinnamomea appear to be fewer and more distant.
S. buxea, Reeve. Pl. 56, fig. 381 ; Pl. 57, fig. 386.

Light reddish brown, obscurely light-banded, white within the aperture. Length 2.25 inches.

Cape Verd Isles.

S. Fisheriana, Petit (fig. 386), was described as a Fasciolaria but the want of distinct columellar folds and the sculpture seem to indicate that it would be more properly placed here ; it is almost certainly equivalent to S. buxea, described at an earlier date, without locality.
S. Reeveana, Petit. Pl. 56, tig. 383.

Described from a worn specimen, deprived of epidermis, supposed to come from Newfoundland. The figure appears to be badly drawn. Kobelt suspects that this will prove to be identical with S. sulcata, Lam. Fusus Reeveanus, Sowb., not Petit (t. 86, f. 600), is possibly also a Siphonalia.
S. Mandarina, Duclos. Pl. 56, fig. 384; Pl. 57, tig. 385.

White or pale rust-color, ridges dark, chocolate.
Length, $2 \cdot 5-3 \cdot 25$ inches.
New Zealand.
Fusus Zealandicus, Quoy (fig. 384), is evidently the same species; and F. caudatus, Quoy, is supposed to be the young shell, by Hutton, but I think it quite certain, from comparison of Quoy's figures, that caudatus is the young of F, australis. Hutton comnects S. Mandarina with S. dilatata, Quoy.

S. Harfordi, Stearns.

Solid, elongate, regularly fusiform ; spire elevated, whorls six or seven, moderately convex, slightly flattened (in outline) above, with a groove or channel following the suture; color chocolatebrown; surface marked by numerous narrow revolving costæ, which alternate in prominence on the body-whorl, and longitudinally by fine incremental striæ, and the upper whorls by obtusely rounded ribs of more or less prominence ; aperture ovate, about half the length of the shell, polished. white and finely ribbed within ; canal short, nearly straight.

Length $2 \cdot 1$, lat. 94 in .

> Mendocino Co. and Farallone Is., California.

Mr. Dall compares this species to S. cinnamomea, Reeve. It has not been figured and I have not seen it. Very rare.

Genus FULGUR, Montfort.

Shell with a simple, very thin periostracum, with little raised revolving lines ; pyriform, with the whorls wound tightly round the axis, leaving no umbilicus, angular behind, with the upper surface shelving towards the angle; and the whorls below the angle ventricose, and thence gradually contracted and terminating in a moderately elongated canal, generally little or no longer than the aperture, concurrent with and proximal to the siphonal fasciole, and correspondingly tortuous. Siphonal fasciole coincident with the columellar plait; spire variable in evolution, with a papillary nucleus; sutures plane; aperture rhombo-ovate; outer lip in youth striated within; columella covered with a thin, callous coat, decidedly and regularly concave, and with a wide oblique marginal fold. Operculum with the nucleus apical.

Animal rather small, retractile with its operculum within the shell for about a third of a volution from the aperture.
I quote above Prof. Theodore Gill's somewhat lengthy description, forming part of his admirable synopsis of the genus; which I have adopted as a basis for this work. The distribution of the genus is restricted to the temperate and subtropical waters of the Atlantic Coast of the United States, and its manifest conchological position connects Fasciolaria with Neptunea. It is not infrequent in our miocene deposits, from which several species have been described by Mr. Conrad.

The name Fulgur, meaning lightning, is in allusion to the somewhat tortuous longitudinal brown streaks upon the shell, indicating rest-periods in its growth. The animal is used for bait by fishermen, and the trade in the shells for garden ornaments and for use as hanging flower-pots is so extensive as to have nearly caused the extermination of the species upon portions of the New Jersey coast.

Mörch and Adams have used the name Busycon, of Bolten,.for this genus, but Bolten did not characterize it; whilst the later name given by Montfort accompanies a full generic description ; I therefore prefer Fulgur. It was included by Lamarck in the heterogenous assemblage of species which he called Pyrula.

The late Dr. Jeffreys Wyman, in his valuable memoir on the "Fresh Water Shell Mounds of the St. John's River, Florida,"* mentions two kinds of chisel-shaped tools cut from the shells of -Fulgur carica and F. perversa. These implements were probably used by the aborigines for fleshing skins and for the manufacture of articles of wood. F. perversa was also used by the Florida Indians as a drinking vessel, the interior whorls being removed to increase its capacity. This same species was extensively used and must have been an important article of trade among the natives, as it is frequently found in Indian graves and mounds throughout the Southern and Western States and Canada. It is probable that, among other uses it was cut up into beads and various small ornaments. The white kind of wampum or shell money of the Indians was partially made of the axis of the shells of Fulgur, and partially from Buccinum undatum.
F. carica, Gmelin. Pl. 57, figs. 397-390; Pl. 58, fig. 400.

Whitish, the younger specimens often marked by ash or chocolate-colored longitudinal stripes at the principal rest-periods in their growth; mouth and columella in adult specimens deep orange color. Length, $6-10$ inches.

Cape Cod, Mass. to Florida. Also Miocene and Post Pliocene.
Animal large, dirty white to almost black; mantle thick, white, edge plain; proboscis long, cylindrical, slightly bi-lobed and black, or nearly so, at the end, lighter next the body ; tentacles short, triangular ; eyes on the outer side near the base. Opercu-

[^16]lum ovate, thick, with a broad callus around the inner edge, which is heaviest on the left side; outer surface coarse and rough, greenish yellow. Mr. Conrad adopts Linnæus' name, Aruanum, for this species, and says that the figures in Rumphius and Gnaltieri referred to by him represent this species: the latter does, but the former is Fusus proboscidiferus, Lam. I am compelled on account of this uncertainty to reject the prior name given by Linnæus in favor of carica-under which the species is more generally known.

Var. eliceans, Montfort. Pl. 57, figs. 388-390.

On the coasts of Georgia and Florida occurs a variety which, commencing like a normal carica, eventually becomes more thickened, the spines fewer in number and more prominent, the columella white The appearance of fine specimens is perhaps sufficiently distinct to justify its separation as a different species. The ordinary manifestation of carica occurs in the same regions, and various transition states as well. The coloration of the restperiods is more vivid and is retained to a much larger size in the Southern than in the Northern specimens. An exaggerated specimen of the var. eliceans is the shell called by Lamarck Pyrula candelabrum (fig. 389) in which the animal has completed the growth of the body-whorl in three growths, and consequently, has only three spines upon this whorl. The type (and only specimen known) formed part of the Lamarckian collection. F. Kieneri, Phil. (fig. 390), is founded on a reversed and distorted shell of var. eliceans. Specimens of this distorted form, uniformly from the Southern Coast; are not uncommon, and are either dextral or sinistral. Conrad has named sinistral specimens of this variety Busycon gibbosum. Sowerby, in his recently published monograph of Fusus (Thesaurus Conchyliorum) describes and figures a F. lamellosus, Kay (meaning De Kay, or of Gould, in his plate-explanations), said to come from the Northwest Coast of Africa. Neither of the authors cited described such a species, and the figure represents a young, but beach-worn, F. carica.
F. perversus, Linn. Pl. 57, figs. 391-393.

The spire is very low and the tubercles numerous and small. The shell is usually reversed, but sometimes dextral, and is
readily distinguished by the above characters and by its narrower, more elongated form, long canal, etc. The coloring is usually quite vivid in young specimens, and is frequently interrupted by the interposition of a median, broad, white, revolving band.

Length, 6-12 inches.
Florida.
Has been united with F. carica by several authors, and I am not nearly so certain as I once was that it is distinct; it is possibly only a variety, yet it does not seem to merge into the carica form. Pyrula coarctatus, Sowerby (fig. 393), said to occur in Florida, is this species, almost certainly.

Subgenus Sycotypus (Browne) Gill.
I do not consider Browne's description sufficiently characteristic to meet the requirements of a diagnosis; moreover, thiese shells are not even now known to inhabit Jamaica. Gill's diagnosis is, of course, accurate and exhaustive; but it mainly repeats the characters of Fulgur ; the real difference is in the canaliculated sutures and ciliated periostracum. The distinction of "spinous" for Busycon or Fulgur, and "tuberculated" for Sycotypus is of little importance generically, as the Fulgurs a• frequently only tuberculate when young and become spinous with advancing age; moreover, the miocene series serve to connect the two groups in this respect. Under these circumstances I judge it better to make Sycotypus a subgenus only, under Fulgur.

Mr. T. A. Conrad* attempts to distinguish the embryos of Sycotypus from those of Fulgur by the latter having a long fissure parallel with the columella, whilst the columellar region of the former is entire. Mr. Conrad's specimens, which are before me, and which I saw him extract from the pouches, certainly show this difference, but I have since had occasion to examine the embryos of Fulgur several times, and from different strings of pouches, none of which show the slit columella : the character was probably pathological.

[^17]F. canaliculatus, Linn. Pl. 57, figs. 394, 395; Pl. 58, fig. 401.

Fulvous ash-color, covered, when fresh, by a light yellowish brown pilose epidermis. Length, $5-7$ inches.

Cape Cod, Mass. to Florida. Fossil, miocene to postpliocene.
The tubercles become obsolete on the body-whorl of the adult shell. Animal with white mantle, edged with a narrow, bright yellow granulous cord; proboscis long, black-tipped, reddish near the body. A string of the ovicapsules from Atlantic City, N. J., contains ninety-eight embryos in each capsule, making about five thousand for the entire string.
F. Pyrum, Dillw. Pl. 58, figs. 402, 403.

Whitish, conspicuously longitudinally flamed with light chestnut or orange ; aperture whitish or yellowish within.

Length, 4-5 inches.
F'lorida.
Whorls carinated, but scarcely tuberculated at the angle of the shoulder. 'Mr. Conrad maintained that his F. plagosus is a distinct species, but I am not able to separate it.

Subgenus Taphon, H. and A. Adams.

Dr. Gill eliminates this from Fulgur, with which he says it evidently.has no affinity. I have not seen the shell, but judging from description and figure I would suppose it to be either related to Ficus or to Fulgur, and probably much closer to Ficus.
F. striatus, Gray. Pl. 58, tig. 404.

Whitish, streaked longitudinally with orange-brown ; interior of aperture white. Length, $1 \cdot 6$ inches.

China.
Genus STREPTOSIPHON, Gill.
S. porphyrostoma, Adams and Reeve. Pl. 58, figs. 405, 406.

Whitish, with a yellow-brown epidermis, marked obsoletely with spiral brown lines ; aperture white or light purple.

Length, 38 mill.

Eastern Seas, Senegal.

S. recurva, A. Adams (fig. 406) is evidently the same species.

Genus TUDICLA, Bolten. .
Besides the typical form three additional spinose species have been described, viz., T. armigera and spinosa of Adams, and T. inermis, Sowb. For these H. and A. Adams have proposed a subgeneric name, Tudicula. Sowerby remarks that their possession of three prominent transverse plaits on the columella brings them to the family Turbinillidæ, but T. spirillus itself, when closely examined, shows slight traces of additional plaits besides the single prominent one, and the shells are otherwise closely related to T. spirillus_particularly in the long, narrow canal, and the well-defined inner lip.
T. spirillus, Limn. Pl. 58, fig. 409.

Flesh-brown, spotted and clouded with light chestnut. Length, 70 mill.

Indian Ocean.
T. Cumingir, Jonas. Pl. 58, figs. 407, 408.

Whitish, maculated with chestnut. Length, 65 mill.
China.
T. Couderti, Petit (fig. 408), appears to me to be identical, as does also T. fusoides, A. Ad., an unfigured species, also from China.
T. armigera, A. Adams. Pl. 58, fig. 411.

Light yellowish brown, whitish within the aperture.
Length, $2 \cdot 75$ inches.
Australia.
This species has not been figured by its author, bat I am able to give an illustration from specimens sent to me by Mr. John Brazier, of Sylney, N. S. Wales. In possessing spines upon the canal as well as shoulder these specimens agree with the description of T. armigera, whilst in that of T. spinosa no second series of spines is mentioned : yet I suspect that the latter is not distinct, and that Mr. Sowerby's T'. inermis is simply a depauperated specimen of the same species.
T. spinosa, H. and A. Adams.

An unfigured species from Australia, probably identical with T' armigera: See remarks under that species.
T. inermis, Sowb. Pl. 58, fig. 410.

White, with a broad chestnut band, and longitudinal flames of the same color; white within. Length, $1 \cdot 6$ inches.

Singapore?
The two specimens were obtained from a dealer at Singapore, so that the locality it inhabits is very doubtful. See remarks under T. armigera.

Genus PISANIA, Bivona.
Between typical specimens of this genus and of Euthria"there is a distinction with a difference," and therefore it may be profitable to retain both groups; but there are species in which the characters become so merged that their generic classification is merely arbitrary.
P. pusio, Linn. Pl. 71, figs. 188, 189.

Chocolate or purplish, with revolving series of red-brown arrow-headed markings, bluish within, columella and edge of lip fawn-color; usually a white central band on body.

Length, $1 \cdot 5-2$ inches.

West Indies; Central America.

Reeve's locality, California, is' an error.
P. ignea, Gmel. Pl. 71, figs. 190-194.

Yellowish, spotted and flamed with reddish chestnut, and occasionally with white. Length, $1 \cdot 25-1 \cdot 75$ inches.

Red Sea; Singapore ; Philippines; Viti Islands.
The spots in this species are square instead of arrow-like as in P. pusio: they are frequently confluent into longitudinal flames and being interrupted on the periphery, cause it to appear as though light banded.
Var. Tritonoides, Reeve, Pl. 71, fig. 193.
Shell more ventricose, heavier, mottled with white on the periphery and below the sutures.

Philippines; Cape of Good Hope (Gould).
I think Gould's Euthria lacertina (fig. 194) is a synonym.
Var. flammulata, Hombr. et Jacq. (not Quoy). Pl. 71, fig. 192.
Shell smaller, uniform yellowish brown with a lighter central band.

The typical form is well represented by its synonyms, P. picta, Reeve (fig. 190), P. flammulata, Quoy (fig. 191), and P. buccinulum, Martini.
P. moestum, Phil.

A small, unfigured species, the locality of which is unknown. It has revolving sulci, the intermediate spaces being articulated with white upon a dark brown ground. The description is not sufficient for positive identificátion with P. pusio or ignea.
P. Kossmanni, Pagenstecher. • Pl. 71, fig. 196.

Described from a distorted specimen which is said to resemble P. pusio, but shows within the aperture eight brown revolving bands. Length, 30 mill.

Red Sea.
A doubtful species.
P. fasciculata, Reeve. Pl. 71, figs. 195, 197.

Orange-yellow, the narrow revolving riblets chestnut-color dotted with white. Length, $1 \cdot 25-1 \cdot 5$ inches.

Philippines.
P. crenilalrum, A. Adams, described in error as from the West Indies, is apparently a mere color variation of this species; it is found at New Caledonia, and probably equals P. Montrouzieri, Crosse, the latter name having priority. If my surmise prove correct, the latter may be distinguished as

Var. Montrouziert, Crosse. Pl. 71, fig. 197.
Color purple-brown, with darker revolving riblets, sometimes obsolete; an obscure white, irregular band on the periphery, riblets sometimes white spotted.

New Caledonia.
P. strigata, Pease. Pl. 71, fig. 198.

Orange or light brown, mottled and spotted with white, incised revolving lines darker; upper whorls gramular ; aperture white.

Length, 37 mill.
Insl. Ponape.
P. Hermannseni, A. Adams. Pl. 71, fig. 199.

Smontl, fulvous, obscurely punctate with white ; body-whorl sulcated below. Length, $1 \cdot 5$ inches.
P. Gracilis, Koch. Pl. 71, fig. 200 :

Light yellowish brown ; whorls cingulately sulcate, the upper portions lightly crossed by longitudinal folds or ribs.

Length ${ }^{\circ} 7$ inch.
Hab. unknown.
Probably a young shell ; generic characters doubtful.
P. reticulata, A. Adams. Pl. 71, fig. 201.

Light yellowish brown, sometimes marbled with reddish brown; surface closely reticulated by longitudinal and revolving fine lines.

Length, $\mathbf{1 . 2 5}$ inches.
New Caledonïa; Tasmania.
Var. Tasmanica, Tenison-Woods.
Smaller; white, with irregular varices.
Mr. Woods says that the type is common in Tasmania. I give an illustration from a specimen received from that locality. Mr. Adams has not published a figure of his species.
P. marmorata, Reeve. Pl. 71, figs. 202, 203.

Granulated by the intersection of obsolete longitudinal and revolving ribs; polished; white with spots and clouds of light chestnut. Length, $1-1 \cdot 5$ inches.

Philippines; Sandwich Isles ; Japan (Schrenck).
Var. Billeheusti, Petit. Fig. 203.
This is narrower than the type but does not seem to differ. Petit naïvely says of it: "Si quelqu'un nous disait que notre espèce est le Bucc. marmoratum décrit par M. Reeve, nous n'oserions, en vérité affirmer le contraire."

The variety is found at New Caledonia, and Viti Isles. The form of this species is that of Pisania, but its sculpture is more like Cantharus, and it might be placed in the latter genus with perfect propriety.
P. cinis, Reeve. Pl. 71,fig. 204:

Reddish white, the granules chocolate-color. Length, 1 inch. Galapagos Is., (under stones).
Reeve says, "The granules of this shell impart a rough touch to it, resembling that of a coal cinder." I think it very probably identical with P. marmorata.

P. Pazi, Crosse. Pl. 71, fig. 205.

Brownish black; livid within the aperture; lip margin and columella tinted with yellowish brown. Length, 40 mill.

> Hab. unknowon.

This species also, as well as P. cinis, Reeve, may be a form of P. marmorata, Reeve.
P. maculosa, Lam. Pl. 71, figs. 206-209.

Olive-brown, yellowish white or light purple, profusely streaked and spotted with chestnut-brown, with frequently a light central band; interior brownish or chocolate, showing the white band. Sometimes dark chocolate, with numerous white spots and band.

Lengtl, $\cdot 75$ to $1 \cdot 25$ inches.
Mediterranean (littoral), Azores; St. Croix, W. I.?
Fossil in several parts of Southern Europe.
This species is known to many European naturalists under the name of P. pusio, Linn., but the type of pusio is a very different shell, being the West Indian P. plumata, Gmel. = articulata, Lam. Gmelin has called it striata, and his name has priority over maculosa, but the latter is so well known that I will not displace it. Specimens in the collection of the Philadelphia Academy are labelled "St. Croix, W. I., R. E. Griffith," but the species has not been otherwise reported from the West Indies. Buc. Ethiops, Phil. (fig. 209), is evidently a very dark, immature maculosa.

P. Janeirense, Phil. Pl. 71, fig. 210.

Fusiform, solid, transversely obsoletely lirate ; dark brown, longitudinally flecked with white, with a brown articulated white revolving band. Length, 1.5 inch.

Rio Janciro, Brazil.

The greater size and solidity are the chief distinctive features; it is very likely only a finely grown P. maculosa, Lam.
P. cingulata, Reeve. Pl. 71, figs. 211, 212.

Yellowish brown, with narrow chèstnut revolving threads, which are frequently interrupted, causing the coloring to appear as revolving rows of spots; light chocolate within the aperture, ridged. Length, 1 to $1 \cdot 25$ inches,

Loo Choo Is.
Reeve described this peculiar, thick shell without locality, and at first I was disposed to regard it as a variety of Euthria lineata,

Martyn, but the heavy appearance and great general similitude to P. maculosa, ascertained by the examination of specimens collected by Dr. Wm. Stimpson, of the U. S. N. Pacific Expl. Exped., show that its proper place is next after the common European species. Buccinum guttatum, Phil., an unfigured species from Java (?), appears from the description to be very similar to P. cingulata.
P. cingilla, Reeve. Pl. 71, fig. 213.

Covered with fine revolving grooves; reddish chestnut, with a central white band. Length, 22 mill.

Hab. unknown.
P. guttata, Busch. Pl. 71, fig. 214.

Reddish brown, with white or yellowish blotches and angular markings. Length, $1: 1$ inch.

Looks very much like a Columbella.
P. Solomonensis, E. A. Smith. Pl. 71, fig. 217.

Granular ; whitish, with two, more or less interrupted brown bands. Length, 8 mill.

Solomon's Is.
P. Glirina, Blainv. Pl. 71, figs. 215, 216.

Violet-grey, maculated longitudinally with reddish brown; columella yellowish, aperture grey. Length, $\cdot 75$ inch.

Australia? Istand of Tonga-Tabou?
Kiener, Küster and Reeve figure this as discolor, Quoy, but the latter is a very different shell and belongs to the Purpurinæ.

Indeterminate Pisaniæ.
P. mollis, Gould.
P. filaris, A. Adams.
P. luctuosa, Tapparone-Cancfri.

Simoda, Japan.
China.
Mauritius.

Neither of the above have been figured.
Genus EUTHRIA, Gray.
E. cornea, Linn. Pl. 72, figs. 218, 219.

Yellowish white, reddish or purplish, variously painted with brown; interior of aperture purple-brown.

Length 1.75 to 2.5 inches.
Mediterranean, 5 to 15 fathoms
Fossil ; miocene and pliocene of Southern Europe.
E. Aracanensis, Angas. ’Pl. 72, fig. 220.

Pale olivaceous brown, with longitudinal irregular, chestnut markings ; aperture pale flesh-color. Length, 2 inches.

Aracan.
Appears very like a Siphonalia, and is the most ponderous species of the genus.
E. plumbea, Phil. Pl. 72, figs. 221-226.

Smooth, or upper whorls slightly costate in fresh specimens; ashy brown, sometimes light chठcolate.

Length, $1 \cdot 25$ to $1 \cdot 5$ inches.
Cape Horn to Chili; Japan.
Var. ferrea, Reeve. Pl. 72, fig. 223.
Spirally lineated with brown.
Jupan.
E. ferrea, Reeve, and E. viridula, Dunker (fig. 225), from' Japan, are doubtless the same as E. plumbea, notwithstanding the great difference of locality : that of plumbea being undoubtedly as quoted. As to the identity of ferrea and plumbea, P. P. Carpenter and A. Adams, admit it, whilst E. A. Smith makes viridula $=$ ferrea. To these synonyms I add Fusus rufus, Hombr. et Jacq. (fig. 222) Buccinum Magellanicum, Phil. (fig. 224), and B. Patagonicum, Phil. (fig. 226), from Cape Horn.
E. Simoniana, Petit. Pl. 72, fig. 227

Whitish (stained greenish) with reddish brown flames, spirally lirate, liræ plano-convex ; brownish within the aperture.

Length, 48 mill.
Cape of Good Hope.
The color is difficult to ascertain, says M. Petit, on account of a stain resulting from the waters where it lives.
E. Antarctica, Reeve. Pl. 72, fig. 228.

Whorls strongly plicately ribbed towards the apex, ribs of the last whorl fading away; epidermis thick, olive ; interior purplebrown, columella and inner edge of lip white. Length, $1 \cdot 3$ inch. Falkland Islands.
Its pertinence to this genus, where it is placed by H. and A. Adams, is doubtful.
E. lineata, Martyn. Pl. 72, figs. 229-231.

Yellowish white regularly lineated with chestnut revolving bands, which are sometimes raised into low ridges; pink or purplish within the aperture. Length, $1 \cdot 25$ to 2 inches.

New Zealand.
A broader species than E. plumbea, Var. ferrea, but the young shells of this species are very like the latter.
V.ar. pertinax, Martens. Shell more ventricose, longitudinal costæ of the spire extending over the antepenultimate whorl; color bands less numerous. Length, 68 mill.

Auckland Islands.
This variety has not been figured.
Var. Littorinoides, Reeve. Pl. 72, fig. 231.
Smaller, more ponderous, canal shorter. The type figured by Reeve (fig. 229), is a very different-looking shell, but I have a specimen before me which seems to connect it with lineata.

Newo Zealand.
E. Martensiana, Hutton.

Smaller than Littorinoides, much thinner, spiral whorls more distinetly costulate. Length, $\cdot 7$ inch.

New Zealand.
Not figured. Will very probably prove to be a synonym of the above species.
E. dira, Reeve. Pl. 72, figs. 232, 233.

Upper whorls longitudinally plicate, plicæ becoming evanescent on the body-whorl; whole surface deeply engraved with narrow revolving channels, making the interstices appear as though covered with revolving, flat-top ribs; sometimes these ribs are divided by an impressed line into pairs. Grayish brown, revolving ribs darker; aperture yellowish brown, ribbed within and stained darker in the interstices at the lip.

Length, $1 \cdot 25-1 \cdot 75$ inches.

> Monterey, Cal., to Sitka.
F. Sitchensis, Midd., and F. incisus, Gld. (fig. 233), are synonyms; the figure of the latter is, however, not very characteristic of the species, being too much inflated and with the canal not sufficiently produced.
E. bicincta, Hutton. Pl. 72, fig. 234.

Smooth, white, porcellanous, with two chestnut bands on the body-whorl and one on the spiral whorls. Length, $1 \cdot 1$ inches. Chatham and Auckland Isles.
E. vittata, Quoy. Pl. 72, figs. 235, 236.

Yellowish, with two brown bands on the body, and one on the spire; bands made up of three approximate lines.

Length, $\cdot 75$ inch.
New Zealand.
A smaller, heavier species than the preceding; lip thickened and dentate within, canal more produced. E. trilineata, Reeve (fig. 236), appears to be the same.

Undetermined Species.

E. chlorotica, Martens.
E. fuscolabiata, E. A. Smith.

Kerguelen's Isl.
Japan.
E. badia and libata, A. Adams.

Japan.
E. fuscata, Brug. Pl. 72, fig. 237.

Reddish brown, brown within the aperture. Length, 31 mill. Coast of Peru, abundant.
I am not able to assign this species to any genus with certainty; it was described as a Buccinum, which of course it is not.

Genus METULA, H. and A. Adams.

Only four species have been described: they are deep-water shells, conchologically closely related to Pisania, etc., but with finely cancellated surface. The dentition resembles somewhat that of the Turbinellidæ.
M. clathrata, Adams and Reeve. Pl. 72, fig. 238.

Brownish white, obscurely two or three fasciate.
Length, 27 mill.
Cape of Good Hope; 136 fathoms.
M. mitrella, Adams and Reeve. Pl. 72, fig. 239.

White, obscurely marked with four subquadrate dark maculations. Length, 23 mill.

China Seas; from ten fathoms.
M. Cumingii, A. Adams. Pl. 72, fig. 241.

Yellowish brown, tinged with chestnut. The cancellation in the specimen described, which appears to be an old one, is confined to the upper part of the spire. Length, 37 mill.

West Coast of Africa.
M. Hindsir, H. and A. Adams. Pl. 72, fig. 240.

White, with four revolving series of brownish maculations. Length, 17 mill.

West Coast of Veragua; in mud, at a few fathoms' depth.

Doublful Species.

M. bella, C. B. Ad.

White, with reddish brown spots in spiral series, mostly in three series, one above and two next below the middle of the whorls; with ten rather narrow prominent ribs, and spiral raised lines, nodulous at their intersection. Rather elongate, with seven very convex whorls, a long ovate aperture, and a wide, moderately lengthened canal. Length $\cdot 44$ inch, diameter $\cdot 21$ inch.

A single specimen only obtained. This was subsequently examined by P. P. Carpenter and said by him to resemble a young Metula: I am inclined to think it more likely a Columbella. In his Mazatlan Catalogue, Carpenter enumerates four doubtful Metulæ, to which he does not give specific names. It is not at all probable that they belong to the genus.

Genus CANTHARUS, Bolten.

Swainson described a group Tritonidea which Messrs. H. and A. Adams make a subgenus under Cantharus, distinguishing it from the typical form by "Shell turreted; canal lengthened." The distinction is altogether arbitrary, as the spire in the different species varies considerably from the typical speties of Cantharus to much higher, but with no considerable break in the series, whilst.the canal can scarcely be called "lengthened" in any of them. I have suppressed the subgenus as superfluous and confusing.
C. spiralis, Gray. Pl. 73, figs. 242, 243.

White, more or less marbled with reddish brown ; covered by a dark brown, sparsely pilose epidermis. Length, 1.5 inches.

Mauritius.
Buccinum Prevostii, Val. (fig. 243), is evidently a synonym.
C. Tranquebaricus, Gmel. Pl. 73, fig. 244.

White, or with the revolving ridges sometimes reddish, under a thin, light brown epidermis; margin of aperture sometimes tinged with orange. Length, $1 \cdot 5$ inches.

Tranquebar.

The shoulder of the whorls is more convex, the longitadinal ribs are more numerous and narrower and extend over the spiral whorls, where they are obsolete in C. spiralis: the revolving lines which take the place of the more sharply defined and less numerous revolving ribs and sulci of spiralis will also serve to distinguish the two species.
C. melanostoma, Sowb. Pl. 73, tig. 245.

Orange-brown, usually interruptedly stained with darker color on the longitudinal ribs. Aperture white, with an orange-brown lip and chocolate columella. Length, $1 \cdot 5-2 \cdot 25$ inches.

> Ceylon.

This species was confounded by Kiener and others with C. Tranquebaricus, from which it differs not only in its greater size and solidity, and in coloration, but in its wider, cord-like revolving ribs and more apparent shoulder.
C. iostoma, Gray.

Shell ovate, solid, dark brown, closely spirally striated, slightly longitudinally plaited, covered with a thin, hairy periostracum; spire short conical ; last whorl subangular and nodulose behind. Mouth ovate, large, black; throat purple, grooved; outer lip crenulated; inner lip rather expanded, and strongly veined.

Length, 1.5 inches.

> Pacific Ocean.

The above is the original description : the species has not been figured nor recognized by subsequent authorities. It has some affinity with melanostoma, and may possibly be a form of that species.
C. erythrostoma, Reeve. Pl. 73, fig. 246.

Yellowish brown, the ribs stained with chestnut or chocolate ; margin of aperture and columella orange or red.

Length, 1.25 to 1.5 inches.

> Ceylon; Japan.

The more rounded whorls, deeper sutures and slighter substance, as well as the coloration, distinguish this from the following species. C. fumosus sometimes has a yellowish lip also, but generally, on good specimens, there is a light revolving band, which is barely indicated upon erythrostoma.
C. fumosus, Dillw. Pl. 73, figs. 247-255.

Yellowish orange or light brown, the longitudinal ribs chestnut or chocolate, usually a revolving white band below the periphery ; lip and columella sometimes stained with yellow.

Length, 1 to 1.25 inches.

> Red Sea; Ceylon; Singapore; Philippines; Japan; Australia; Polynesia.

Buccinum strigosum, Gmelin has priority, but the name is not adopted because he included two species in his description. The principal recent synonyms are C. Proteus, Reeve (figs. 247-249) and C. undosus, Kiener and Quoy (not Linn., fig. 250).
Var. rubiginosus, Reeve. Pl. 73, fig. 251.
This is a narrower form, with more elate spire ; orange brown, white banded, usually not darker on the ribs. Its metropolis is the Red Sea; whence it extends throughout the Indian Ocean into Polynesia, merging into the typical fumosus. One of these slight variations has been called C. subrubiginosus, by Mr. E. A. Smith (fig. 252), and comes from Japan. The specimen figured is not fully adult. Other species, founded on the narrow variety are C. biliratus, Reeve (fig. 253), from Galapagos and Viti Islands, and C. nigricostatus, Reeve (fig. 254), said to come from Panama, which I doubt. Pisania Desmoulinsi, Montrouzier (fig. 255), from New Caledonia, is synonymous also.
C. cariniferus, Küster. Pl. 73, fig. 256.

Described by Krauss as C. rubiginosus, from which it differs in the ribs being obsolete and the spiral striæ well developed on the body-whorl. Martens and Kobelt have placed it in Comi-
nella, the former as synonymous with C. porcata, the latter as a distinct species; but the want of a superior depression on the whorls and the possession of tubercles near the base of the columella show that Krauss was right in comparing it with C. rubiginosus, although it may not be identical with that species. It is chestnut-brown, with a white band.

> South Africa.
C. Limbatus, Phil. Pl. 73, fig. 257.

White, marbled with orange. Longitudinal ribs fourteen, revolving striæ eight ; lip with an external varix.' Length, 10 mill. West Indies.
I know nothing of this minute species ; it is a very doubtful one.
C. extensus, Dunker. Pl. 73, fig. 258.

Yellowish brown, generally with two white revolving bands on the body-whorl. Length, 15 mill.

> Java.

Looks very much like a minute edition of fumosus var. rubiginosus.
C. Bolívianus, Souleyet. Pl. 73, fig. 259.

Yellowish brown, not banded. Length, 7 mill.
Cobija ; Bolivia.
Evidently allied to the above.
C. Capensis, Dunker. Pl. 73, fig. 260.

Dirty yellow, variegated with brown. Length, 22 mill. Cape of Good Hope.
Among eight specimens, two had white bands. The specimen figured is evidently not adult. I camot, for want of material, decide upon its position, but think it will prove to be synonymous with C. fumosus. Kobelt's figure of this species is ineorrect, and represents Pisania lacertina, Gould
C. rubens, Küster. Pl. 73, fig. 261.

Dull orange-brown, white within. Surface cancellated by close longitudinal and revolving ribs. Length, 22 mill.

- Red Sea.

The smaller size, and more numerous ribs are relied upon as distinguishing features from C. fumosus var. rubiginosus, but I think it may prove to be a stunted variety of that species. Prof.

Mörch has labelled specimens.in our collection "C. rubiginosus." The longitudinal ribs are sixteen to eighteen in number.
C. Menkeanus, Dunker. Pl. 73, fig. 264.

Ribs yellowish brown on a white surface, eleven to fifteen in number; a white band on the middle of the body-whorl.

Length, $\cdot 5$ to $\cdot 6$ inch.
Japan.
A. Adams (Ann. Mag. V, 1870), identifies with this Engina concinna, Reeve, but Lischke (Moll. Jap. Suppl. 50), points out the great difference between the two shells. The illustration which I copy, is either a very poor one, or it is taken from a worn specimen. I conjecture that it will be found to differ not much from C. fumosus var. rubiginosus.
C. Ceciliit, Phil. Pl. 73, figs. 262, 263.

Longitudinal ribs six in number, which become true varices on the body-whorl; yellowish to chestnut brown, the revolving striæ darker, frequently a white band below the periphery.

Length, 28 to 38 mill.

> China ; Japan ; Torres Straits.

Turbinella Cecillii has not been figured, but the description is unmistakable and has priority over Buccinum ligneum, Reeve (fig. 262), B. balteatum, Reeve (fig. 263), and B. Cumingianum, Dunker. Philippi described the species as a doubtful T'urbinella on account of the tubercles at the base of the columella, which are transverse and oblique, somewhat resembling the plaits in that genus. Frequently, the ribs become true varices on the body-whorl, which, with their smaller number and greater size will distinguish them from C. erythrostoma.
C. fusulus, Brocchi. Pl. 73, fig. 265.

This mollusk, described seventy years ago as a fossil species, has recently been found living in the Mediterranean Sea. I have not seen it and have not access to the paper by Libassi, in which, under the name of Spadx, it is redescribed and figured. My illustration is from Brocchi, and apparently resembles a Murex rather than a Cantharus.
C. d'Orbignyi, Payr. Pl, 73, figs. 266, 267.

Yellowish to chocolate, with a median white band ; aperture usually white, sometimes light violet. Length, 15-20 mill. Mediterranean ; littoral, upon rocks.
Var. assimilis, Reeve. Pl. 73, fig. 267.
Senegal; Algiers, etc.
C. scabra, Monts.

This name is proposed by Monterosato, without description or figure for a shell which he previously designated as C. d'Orbignyi, var. subspinosa-likewise without diagnosis. I do not know the species.
C. leucozona, Phil. Pl. 74, fig. 270 ; Pl. 73, fig. 268.

Purple or chestnut-brown, with a white band on the angle of the shoulder. Length, 20 mill.

Mediterranean.
Fusus violaceus, Desh. (fig. 268), is doubtfully referred to this species by Weinkauff.
C. PIctus, Scacchi. Pl. 74, fig. 271,

Yellowish white, interruptedly marbled with chestnut-brown.
Length, 8-10 mill.

> Mediterranean, from Sicily to Greece.
C. homoleuca, Küster. Pl. 74, fig. 272.

Dirty white. Length, 12 mill.
Mediterranean.
Described from a single specimen, which is probably beachworn, and so has lost its color. The locality is not certain. It may be the same as C. pictus, or perhaps C. d'Orbignyi, var. assimilis.
C. perlatus, Küster. Pl. 74, fig. 273.

Yellowish white, the nodules purple-brown ; with a white band.
Length, 8 mill.
Natal Coast, S. Africa.
Compared by Küster with C. pictus. It looks as much like a Columbella as a Cantharus.

C. lugubris, C. B. Ad.

Long ovate-fusiform ; very dark brown, with a cinereous tinge; with small ribs, from nine to thirteen on each whorl, traversed
by rather coarse, unequal, spiral strix, with the intersections of the larger striæ rather acutely nodulous ; apex acute ; spire conic ; whorls eight, very convex, with a moderately impressed suture; aperture ovate; labrum rather sharp, thickened behind; with a short, recurved canal. Length, $\cdot 67$ inch.

Panama and Taboga; under stones at low water.
I am not acquainted with this species.
C. elata, P. P, Carpenter.

Shell elate, white, strigate or maculate with reddish brown; whorls more than six, convex, with impressed sutures; longitudinal ribs six to eight, crossed by alternately larger and smaller revolving lirulæ ; canal narrow, subrecurved; aperture subovate, dentate within. Length, $\cdot 68$ inch.

Cape St. Lucas, L. California.
The description indicates imperfect specimens. I have before me a shell received from the Smithsonian Institution as from Cape St. Lucas, and identified. by Carpenter as C.lugubris, C. B. Ad. This shell corresponds so well with the above description that I suppose it to be the same ; but it is in too imperfect condition to figure advantageously.
C. puncticulatus, Dunker.

Shell small, ovately acute, more or less graceful, subfusiform, transversely lirate, liræ crowded, longitudinally costate, coste granose. Whitish or yellowish, the nodules obscurely fuscous.

Length, 10-15 mill.
Red Sea.
I am not acquainted with this species Mr. Tapparone-Canefri suspects that Buccinum seriale, Deshayes, will prove to be identical with it, in which case the latter name will have priority. It is said to resemble Buc. Scacchianum ($=$ pictus, Scacchi).

C. Papuanus, Tapparone-Canefri.

Small, ovate-fusiform, attenuate above and below, graceful. Color white and light brown, with darker spots upon the spiral lines. Spire subturretted, apex smooth. Whorls eight, more or less angulate above, the three upper ones smooth, the rest spirally lirate and obscurely longitudinally costate ; liræ in last whorl unequal, with granular, oblong, varicolored costæ. Aperture
oblong-ovate, lip thickened within, obsoletely plicate at margin, columella smooth, canal rather long, reflected.

Length, 9-10 mill.
Papuan 1 s.
Not figured. Said to be distinguished from C. puncticulatus by the smaller size, the smaller number and greater size of the spiral liræ and costre and by the angular whorls of the spire. C. lanceolatus, Koch. Pl 74, fig. 274.

Yellowish, white banded. Length, 13 mill.
Hab. unknown.
A shell of doubtful generic position, described as a Fusus, but which Philippi remarks, might as well be referred to Murex; Purpura or Pyrula, the animal and operculum being unknown. C. filaris, Garrett.

Shell solid, elongate, slenderly fusiform, light brownish, with whitish mottlings and spirally lineated with deeper brown; whorls seven, convex, longitudinally and spirally ridged; ridges smalf, granulated at their points of intersection ; the transverse ones alternately largeir and smaller; base contracted and produced into a short, slightly-twisted canal ; aperture oblong, ovate, tawny yellow and lirate within ; columella with several small nodules.

Length, 16 mill.
Samoa and. Viti Isles; very rare, under stones on reefs.
Unfigured.
C. Gracilis, Reeve. Pl. 74, fig. 275.

Whorls a little granulated in the middle, crossed by longitudinal and transverse obtuse, granose ridges. Whitish, longitudinal rows of granules orange-brown. Length, $1 \cdot 25$ inches.

Isl. of Masbate, Philippines; under stones at low water.
I suspect that this and the following species are really identical. Their generic position is somewhat doubtful ; they might as well, I think, be ranged with P. marmorata, Reeve, in the genus Pisania. I have before me some shells collected by Mr. Garrett at the Viti Islands which may possibly belong to this species. C. crocatus, Reeve. Pl. 74, fig. 276.

Longitudinally very closely plicated, transversely granosely ridged. Saffron-orange, speckled here and there with white; striæ between the ridges of a darker orange-brown.

Length, 27 mill.
C. obliquecostatus, Reeve. Pl. 74, figs. 277, 278.

Longitudinally obliquely and very closely ribbed, ribs crossed with small ridges. Brown-red, transverse ridges whitish.

Isle of Ticao, Philippines.
C. Crosseanus, Souverbie.

Fusiform, rough, longitudinally costate, cut into transverse oblong granules by transverse sulci ; whorls eight to ten, subcarinated, convex, suture well marked. White, tinged with light chestnut; body-whorl with a fulvous, median band ; bluish white within the aperture. Length, 13-20 mill.

New Caledonia.
Described originally as Var. Artensis of Pisania Billeheustii, Petit ($=$ marmorata, Reeve), this species occupies an anomalous generic position : it has not been figured.

C. aspera, Dunker.

Oblong fusiform, with six or seven slightly convex whorls, longitudinally densely plicate, crossed by roughly granose revolving ridges ; white variegated with brown. Length, 12 mill. Upolu.
This species is compared with Pisania marmorata, Reeve, but differs in its much smaller size, rougher sculpture, thicker longitudinal ribs, suture not incised, canal much shorter, varicose labrum, etc. It has not been figured.
C. Samoensis, Dunker.

Ovate, subturreted, cancellated by thick longitudinal plicæ and revolving small ribs. White, unicolored or with interrupted fuscous revolving lines, under a pallid corneous epidermis. Whorls convex, with distinct suture, the last but little longer than the spire ; canal deep, widely open. Length 14 , lat. 7 mill. Samoan Isles.
Not figured.

C. Australis, Pease. Pl. 73, fig. 269.

Dark purplish or reddish brown, encircled by an irregular broad whitish band, or irregularly spotted, grooves reddish.

Length, 14, diam., 6 mill.
If C. unicolor, Angas, prove to be the same species, it will have priority over Pease's name.
C. unicolor, Angas. Pl. 74, fig. 279.

Pale brown or whitish throughout. Length, 12, diam., 4 mill. Port Jackson, Australia ; under stones at very low spring tides. C. Petterdi, Brazier.

Shell fusiform, thick, longitudinally flatly ribbed and transversely ridged, the interstices filled with rows of muricated scales (only seen under the dens), whitish, ornamented with a pure white band in the centre of the whorls, and a faint brown one below; - spire moderately elevated, apex blunt; whorls six, almost flat, suture impressed; aperture ovate; canal short, slightly recurved; columella arched; outer lip crenulated, thickened externally, strongly denticulated within. Length, 12, diam., 4 mill.

North-East Coast of Tasmiania.
Mr. Brazier has only seen one specimen of this species, which is in the cabinet of Mr. W. F. Petterd.
C. undosus, Linn. Pl. 74, figs. 280-282.

Yellowish white, the revolving ridges chestnut- or chocolatebrown ; aperture white, the columella and margin of lip tinted with yellow. Length, 1.25 to 1.5 inches.

Malacca; Australia; Plilippines; Viti and Paumotus Is.
Epidermis olive, short pilose. Occasionally the shell has a few large, rounded, longitudinal ŕibs.
C. gemmatus, Reeve. Pl. 74, fig. 283.

Rusty brown, blotched with white, under an olive epidermis. Revolving ridges broken up into chocolate-colored tubercles upon the longitudinal ribs. Aperture white.

Length, $1 \cdot 25$ to $1 \cdot 5$ inches.
Monte Christi, W. Columbia (in clefts of the rocks) ; Mazatlan.
The interrupted revolving lines, more numerous ribs, higher spire and less distinctly marked shoulder will serve to distinguish this species from C. undosus.
C. cancellaria, Conrad. Pl. 74, fig. 284, 285.

Fusiform, with longitudinal plicæ, and more elevated, distant, undulated, revolving costre, and intermediate fine lines; whorls longitudinally rugose; aperture half as long as the shell; labrum with distant, acute, prominent lines within; columella distinctly plaited at base ; beak recurved; color cinereous.

Length, 20 to 30 mill.
Ship Island, Gulf of Mexico; Cedar Key, Flla. (Calkins).

Fusus Floridanus, Petit (fig. 285), is undoubtedly a synonym of this species. Neither of the figures nor the specimens before me are adult, and the shell is so close to C. gemmatus, as to suggest identity; the sole distinctive characters being a more elevated spire, and more convex whorls.
C. tincta, Conrad. Pl. 74, fig. 286.

Irregularly variegated with chocolate- and chestnut-brown and white ; margin of lip frequently tinted with orange-brown. Longitudinal ribs rather small, close, irregular or evanescent; revolving ridges sometimes broken up into tubercles where they cross the ribs; spire conical, its whorls flattened.

Length, 1 to $1 \cdot 5$ inches.
Florida; West Indies.
The ribs are more numerous, but not so large nor so markedly tuberculate as in C. Coromandelianus, the latter possessing much ruder sculpture and a decided shoulder on the body-whorl.
C. Coromandelianus, Lam. Pl. 74, figs. 287-290.

Chestnut-brown and white, variegated, under a thin, rather smooth, dark olive epidermis. Length, $\cdot 75$ to $1 \cdot 25$ inches.

Panama to Mazatlan, on rocks at low water ; West Indies; Brazil; Coromandel?
A very robust, wide species, rudely, prominently sculptured, with very decided shoulder and produced posterior sinus. I cannot detect any difference between the typical W. Indian (and Coromandel?) form and C. ringens (fig. 288), from the West coast of North America. C. pastinaca, Reeve (fig. 289), from the Bay of Montija, W. Columbia, is probably a variety only.

Var. lautus, Reeve. Pl. 74, fig. 290.
Differs from the type in coloration, the prevailing arrangement being chestnut variegated with white on the nodules, with a white band on the periphery; sometimes the shoulder and base of the shell are both white, when it appears to have two irregular brown bands upon a white ground.

> West Indies.
C. Haneti, Petit. Pl. 74, fig. 302.

Brown, with reddish brown revolving lines; strongly longitudinally ribbed. Length, 37 mill.

I am not acquainted with this species. It was described as a Murex, but the want of varices and of an internally thickened lip-margin determines me to place it here.
C. Tissoti, Petit. Pl. 74, figs. 291, 292.

A very doubtful species, described as a Purpura, from Bombay ; I find no record of its identification by Indian conchologists, however. The two figures at first sight appear to represent different species, one of them resembling a young Ricinula; but I have before me West Indian specimens referred to the species by Robert Swift, which are intermediate in character between the two. Is it a variety of C. Coromandelianus?
C. sanguinolentus, Duclos. Pl. 74, figs. 293-295.

Variegated with clouds of chocolate, chestnut and yellowish, under a thin olive epidermis; aperture white within; margin of lip and columella blood-red, the latter covered with white tubercles. Length, 1 inch.

Panama (under stones at low water) to Mazatlan.
C. hæmastoma, Gray (fig. 294), and C. Janelii, Val. (fig. 295), are synonyms.
C. elegans, Gray. Pl. 74, figs. 296, 297.

Chestnut-brown, variegated with white, especially on the nodules. Epidermis short, fibrous, olive-brown.

Length, $1 \cdot 75$ to 2 inches.
St. Elena, W. Columbia (in clefts of rocks at low water) ;
Panama; Mazatlan.
This species is more generally known as C. insignis, Reeve (fig. 297), but Gray's name and figure were published twelve y ears earlier.
C. Inca, d'Orb. Pl. 74, fig. 301.

Greenish brown; reddish brown within the aperture.
Length, 20 mill.
Callao, Peru; at 8 or 10 metres.
The figure is a copy of that given by d'Orbigny and is nearly one-half larger than the dimensions given in his text (and above): it is probably inaccurately drawn as it represents an internally thickened and dentate lip margin, whilst the description only mentions a sulcated lip. Is it possibly identical with the last species?

C. equiliratus, Carpenter.

Like C.insignis (=elegans) but much smaller, with tumid whorls, the ribs continuous to the base, crossed by equal-sized liræ, of which five are shown in the spiral whorls; basal plication of the columella angular. Length, $\cdot 98$ inch.

Mazatlan ; one dead specimen.
Carpenter adds to his above description "(?pagodus, Var.)" sandwiched between the generic and specific names, and as syno-* nymy "Comp. Buccinum pagodus, Reeve," etc. It is a pity to add to our already overburthened synonymy by describing shells from single dead specimens, and which moreover, so greatly resemble other species as to suggest identity even to those who describe them as distinct. Carpenter was a great sinner in this respect.
C. variegatus, Gray. Pl. 74, figs. 298, 299.

Variegated with chocolate-brown clouds upon an ashy gray surface, with narrow, crowded, purple-black revolving lines.

Length, $1 \cdot 25-1 \cdot 5$ inches.
Senegal; Cape de Verd Isles; Rio Janeiro.
Two prior names have been used : Buc. lineatum, Gmel., which is really Littorina angulifera, and Murex sulcatus, Gmel., founded on Le Tafon, of Adanson, whose figure is too poor for positive identification with this species.

Purpura viverratoides, Orb. (Vol. II, 168, t. 50, f. 103). placed by me erroneously in the synonymy of P. hæmastoma, is a synonym; as is also Buc. viverratum, Kiener (fig. 299), erroneously reported from the Mediterranean by that author.
C. distortus, Gray. Pl. 74, figs. 300, 305.

White, variegated and longitudinally striped with chestnutbrown; epidermis brown-olive, short, scabrous, rather persistent; aperture white. Length, $1 \cdot 25-1 \cdot 75$ inches.

W. Columbia ; Panama.

The thickened, ear-like extension of the posterior margin of the aperture of the adult shell gives it a unique and distorted appearance. The spiral whorls are cancellated by longitudinal ribs and revolving ridges: the former become obsolete on the body-whorl and the latter are only present upon its basal portion,
so that the body is mainly smooth. This and the next species have been erroneously referred by H . and A . Adams and others to the genus Clavella ($=$ Cyrtulus), the type of which, C. serotina, is a fusiform shell, with long canal.

Doubtful Species.

- C. porcatus, H. and A. Ad. New Hebrides.

An unfigured species, said to be a true Cantharus.
C. strigosus, Jonas.

Hab. Unknown.
The name of Gmelin is quoted in parenthesis and with a query as authority for this species: the Bucc. strigosum of that author is, however, a Cassidaria.
C. amenum, Phil.
$H a b$?
C. buxeus, Brod.

Subfusiform, numerously undulately varicose, transversely striated; brown, transversely lineated with white ; aperture white, lip denticulated within. Length 30 , lat. 17 mill,

Peru.
Is a Cantharus, according to Dr. J. E. Gray, but was described as a Murex. I give a copy of a figure in Sowerby's Conch. Illustrations (Pl. 74, fig. 303) which, if it truly represents the shell, shows it to be a Murex, closely allied to, if not identical with M. (Ocinebra) contractus, Reeve.
C. cruentata, Gmelin.

In the Index to Vol. II, I have referred a portion of the figures in Küster representing Purpura cruentata to Pisaniinæ. Upon re-examining them I prefer to consider them as Küster has done.
C. mprobus, Gould.

In the Index to Vol. II, I have referred this species to Pollia (=Cantharus). It is said to resemble buxeus, Brod., but is shorter. Upon studying the description I believe the balance of characters is decidedly in favor of considering it a Murex (Ocinebra), as originally described by Dr. Gould. It is unfigured,
and the type, I think, has been destroyed by fire ; if this is so, it will probably never be identified with certainty.
C. Gualtierianus, Kiener. Pl. 74, fig. 304.

This is said to be a well-grown specimen of Purpura Nassoides, Quoy and Gaimard, but, unless Kiener's description and figure are both at fault, he is very wrong in referring it to a species which differs so materially from his own in having the outer lip thickened and dentate within. P. Nassoides is a Ricinula and $=R$. chaidea (See Vol. II, p. 187), whilst Gualtierianus is probably a Cantharus and certainly very closely allied in form and sculpture to C.fumosus, Dillw.

Genus BUCCINUM, Linnæus.

The group of shells to which the generic name Buccinum was originally applied, a century ago, by Linné, has been found by subsequent investigation to contain many heterogeneous forms, and has cónsequently been greatly subdivided. The name has been retained for the genus typified by Buccinum undatum, by common consent, and, I believe, in accordance with the best rules of nomenclature. It is true that Linné's first species-that which is to be selected, as in cases where no type is distinctly specified-is a Dolium. But in the case of Linnés genera, he must be considered to have indirectly specified the type, as he has expressly stated that, in his view, where it becomes necessary to divide a group, formerly supposed to be one genus, the original name must be retained for the subdivision containing the most common species; in other words, that the most common species must be considered as the type of its genus. And he must therefore have regarded the undatum, the most common of all his Buccinums, as the type of the genus.

The Scandinavian naturalists have generally retained the name Tritonium of Müller for this genus, but Limé's name has priority by many years. Tritonium, as proposed, and as frequently used since, would include both the Murex and the Buccinum of Linné.

The genus is too well known to require particular description here, and few points require special remark. Among the spiral grooves and striæ or ridges with which the shell is always more
or less deeply sculptured, two kinds may usually be distinguished, a large and a small kind, those of the latter being by far the more numerous, and distributed upon the surface of the others. These kinds we shall call, for convenience, the primary and secondary grooves, or ridges, as the case may be. The difference between them is very conspicuous in B. glaciale. The columella has normally three folds, an upper, middle, and lower one; the lower one constituting the oblique inferior margin of the columella. These folds are not always distinct, but all of them may be made out in B. tenue. The middle fold is obsolete in most of the species, but is very prominent and tooth-like in B. ciliatum. The layers of the shell are very distinct in this genus, the outer coat being most frequently of a brownish color. The periostracum is generally ciliated with minute processes along the lines of growth, corresponding to their intersections with the secondary ridges.

The operculum is oval or subcircular, and may have the nucleus near the centre, or more or less approximated to the posterior (outer) margin, according to the species. On the lingual ribbon, as in all the Buccinidæ, we find three teeth in each row, the central one of which is lamelliform, with denticles on its posterior edge; while each lateral tooth has two strong hook-shaped denticles, with smaller ones between them. The denticles of the central tooth are more numerous than in Neptunea.

With one or two doubtful exceptions, the genus Buccinum is restricted geographically to the temperate and frigid seas of the northern hemisphere. More careful examination, both of the shell and soft parts of the Antarctic species referred to the genus, is required, before deciding upon their actual pertinence to it.*

Geologically, the history of the genus commences in the Pliocene formation. They are found in the European tertiary deposits of that age, even as far south as the shores of the Mediterranean. They become very numerous in the Pleistocene deposits, both of Europe and North America, but reach their maximum development in the existing seas.

The shells of the genus Buccinum are peculiarly liable to

[^18]variation both in form and sculpture, and to obsolescence or erosion of the surface-markings. The identification of imperfect or worn specimens is extremely difficult in this genus.* The late Dr. William Stimpson studied with great care the species of Buccinum, having before him fine suites of specimens and possessing a special experience in this genus which few of his successors can claim to have enjoyed. I think it inadvisable, however, to use his published researches as the skeleton of the present monograph, subscribing to the doubt expressed by Dr. Jeffreys that "Whether all those which he reckoned distinct will stand the test of a more extensive examination of this extremely variable group is questionable." During the fifteen years that have elapsed since the publication of Stimpson's researches, the number of nominal species has been largely increased, mainly through the labors of W.H. Dall in Arctic Western America, of Verkrïzen in the waters of Newfoundland, and of Sars and Friele in Norway; still, no monography of the genus subsequent to that of Stimpson, has appeared. The earlier monographs by Reeve, Küster and Kiener contain, of course, heterogeneous assemblages of species belonging to numerous genera and are therefore almost utterly valueless for the purpose of comparison and classification of the species.

I annex the synoptical table of species given in connection with Stimpson's monograph.

Very few of the later species being known to me autoptically, I fear that this portion of my work may be considered autoschediastical by some of my brother conchologists.

The great variability of the species, a common characteristic of Aretic mollusca, has caused almost every student of the Buccinæ, to estimate differently the range of variation permissable within specific limits, so that what is referred to by one author as B. undatum, for instance, may include less or more than the specific form as herein limited, or as understood by all others; may include portions of related species, which thus become dismembered and themselves distributed among their allies or may refer exclusively to forms herein characterized as distinct.

[^19]
Synoptic Table of the Species of Buccinum.

According to Dr. Wm. Stimpson.
A. Body-whorl angulated or carinated.
a. Primary transverse ridges flat; secondary ridges inconspicuous.

1. Shell thin ; aperture not patulous; outer lip not sinuated.

* Whorls shouldered; aperture broadest above. B. polare.
* * Whorls scarcely shouldered ; aperture broadest below.
B. Grenlandicum.

2. Shell thick and strong; aperture patulous; outer lip sinuated.

* Shell elongated.
B. Donovani,
* * Shell ovate.
B. glaciale.
b. Primary transverse ridges convex ; secondary grooves very distinct.
B. angulosum.
B. Body-whorl not angulated.
a. Aperture narrow.

1. Primary ridges flat. B. striatum.
2. Primary ridges convex; a strong tooth-like plait on the columella.
B. ciliatum.
b. Aperture broad.
3. Longitudinal folds numerous, often interrupted or interposed.
. * Primary ridges flat.
B. plectrum.

* * Primary ridges obsolete; secondaries conspicuous, crowded.
B. tende.

2. Longitudinal folds not interrupted or interposed.

* Shell thick and coarsely striated.
\dagger Sinus of onter lip near the suture, columella short.
B. undolatum.
$\dagger \dagger$ Sinus of outer lip near the middle, columella projecting.
B. undatum.
* * Shell finely striated, usually thin.
\dagger Secondary ridges easily distinguished from the primaries, which are often obsolete.
|| Columella distinctly folded. B. simplex. || || Columella smooth, not distinctly folded.
B. cyaneum:
$\dagger \dagger$ Secondary ridges confounded for the most part with the primaries || Longitudinal folds conspicuous. B. Totteni. $\|\|$ Longitudinal folds obsolete.
B. Humphreysianum.

Since the preparation of my manuscript on Buccinum, Dr. J. Gwyn Jeffreys has published a paper upon their synonymy, which, in view of his discriminative ability and experience with

Northern marine shells, is entitled to the careful consideration of those specially interested in the correct elimination of specific forms. I have not thought it advisable to change the synonomy in accordance with Dr. Jeffreys' views, because my conclusions, carefully worked out from the (inadequate) material accessible to me, ought therefore to have a certain value, but I deem it advisable to insert here Dr. Jeffreys' paper in full for the purpose of comparison with my own results-results which would doubtless have been much modified if this paper had been published before I commenced my study of the genus. It will be seen that a good number of species included in my monograph are omitted from Dr. Jeffrey's paper.

On the Northern Species of Buccinum. By J. Gwyn Jeffreys.*
"The late Prof. Stimpson published, in the 'Canadian Naturalist ' for October, 1865, a 'Review of the Northern Buccinums.' and gave sixteen species with fifteen synonyms. Having had the privilege of examining his types, as well as those of Linné, Fabricius, Turton, Bennett, Broderip, Forbes, Möller, Hancock, Mörch, Reeve, G. O. Sars, Friele, Verkrüzen, and others, I thought a revised list of the species might be useful, and I now submit it. I recognize eight species only, with forty-six synonyms; and I believe even that number of species may be reduced when more intermediate forms are observed. Their fecundity and extensive distribution in the northern hemisphere, added to the difference in the conditions of habitat and temperature, would account for the great variability of the species. Buccinopsis connects Buccinum with Fusus. The generic name Tritonium is undoubtedly subsequent to Buccinum, and included Fusus, and what I consider its subgenera, viz., Sipho, Neptunea, Chrysodomus, Volutopsis, and Boreofusus.

1. Buccinum glaciale. Linn.
B. carinatum, Phipps. B. polaris, Gray.

Vars. B. angulosım, Gray. B. Donovani, Gray.
" B. Grœnlandicum, Hancock (not Chemnitz).
" B. tubulosum, Rve. B. undatum, Dawson (not L.).
" B. Hancocki, Mörch. B. turritum, Verkrüzen.

[^20]
2. Buccindm dndatum, Linn.

B. vulgare, Da Costa.

Vars. B. striatum, Pennant. B. zetlandicum, Forbes (a deep-water form).
" B. Labradorense, Reeve. B. Belcheri, Reeve.
" B. fragile, Verkrüzen. B. conoideum, G. O. Sars.
Monstr. B. carinatum, Turton. B. acuminatum, Brod.
" B. imperiale, Reeve.
3. Buccinum Greenlandicum, Chemn.
B. cyaneum, Brug. B. undatum, Fab. (not L.). B. tenebrosum, Hanc.

Vars. B. Donovani, Gould (not Gray). B. ciliatum, Gld. (not Fabr.).
" B. boreale (Leach), Gray. B. undulatum, Möller and Dawson.
" B. Humphreysianum, Möll. (not Bennett), B. sericatum, Hanc.
" Tritonium ovum, Midd (not Turt.). B. fusiforme, Kien. (not Brod.).
" B. Perdix (Beck), Mörch. B. Finmarkianum, Verk. (a deepwater form).
" B. pulchellum, G. O. Sars. B. parvulum, Verk. B. sulcatum, Friele.
This species is closely allied to R. undatum; and both may be one and the same species. Herr Friele has shown that the cuspidation of the odontophore is not a reliable character for distinguishing the species of this genus.
4. Buccindm Hydrophandm, Hanc.

Vars. B. tumidulum, G. O. Sars. B. Mörchi, Friele. B. nivale, Friele.

5. Buccinum Humphreysianum, Benn.

B. anglicanum, Fleming (not Lamarck). B. Puxleianum, Leach.

Vars. B. ventricosum, Kiener. B. striatum, Philippi (not Pemn.).
" B. Kieneri, Monterosato. B. inflatum, Benoit (not Deshayes).
Not B. Humphreysianum, of Möller, Lovén, Middendorff, M. Sars, Danielssen, or Malm.
6. Buccinum Totteni, Stimpson.
B. Terrex-nova (Beck), Mörch. B. undulatum, Hanc. (not Möll.).

Vars. B. plectrum, St. B. Packardi, St. Tr. simplex, Midd.
" B. Amaliæ, Verkr. B. elegans, Verkr.
7. Buccinum tenue, Gray.
B. scalariforme (Beck), Möll. Tr. Ochotense, Midd. B. tortuosum, Rve.
8. Buccinum ciliatum, Fabr.
B. cyaneum, Hanc. (not Brug.). B. Molleri, Reeve.

Tr. tenebrosum (as of Hancock), var borealis, Midd."
B. undatum, Linn. Pl. 75, figs. 306-321 ; Pl. 76, figs. 322-325; Pl. 78, figs. 361-366.
"Shell conical above the periphery or centre of the body-whorl, and somewhat truncated at the base, more or less solid (according to the habitat), opaque, and usually lustreless; sculpture, numerous fine thread-like spiral ridges, some of which are much stronger than others and are arranged in bands (from three to seven small ridges between every large one); the whole surface is covered with extremely delicate and close-set longitudinal striæ, which seldom, however, cross the spiral ridges so as to cause any decussation; the upper portion of the body-whorl and of the four or five preceding whorls is often strengthened by curved ribs or folds (like buttresses), of which there are from twelve to fifteen on the penultimate whorl; top whorl smooth; the base is girded by a very large, strong, and obliquely-twisted keel. Color mostly yellowish white, tinged with reddish brown, sometimes white banded with the latter color, or reddish brown with a pink tinge and beautifully mottled with white; inside yellow, white, pale reddish brown or chocolate. Epidermis pale brownish yellow, rather thin, usually rising into close-set laminar folds, corresponding with the longitudinal strix, which form short, spinous processes on the outer ridges. Spire regularly tapering, apex blunt and irregular or mammiform; whorls seven to eight, rounded, the last occupying about two-thirds of the shell ; suture deep ; mouth oval and somewhat expanded ; length about one-half that of the spire; canal open and deep, exhibiting outside a similar and oblique notch ; outer lip semicircular, flexuous, and having a large sinus or bay in the middle; it slopes outwards from the periphery; edge reflected and thickened in full-grown specimens; inside slightly and indistinctly grooved; inner lip broad, consisting of a rather thick glaze on the pillar and adjacent part of the body-whorl; pillar smooth and highly polished, microscopically freckled or pustulated by the lower fold of the mantle. Operculum pale brownish yellow, rather solid, more or less concave towards the nucleus; the layers of growth are laminar and numerous, resembling the epidermis in texture. Length, $3 \cdot 25$ inches ; diameter, 2 inches.
"Var. 1. flexuosa. More slender, with a produced spire;
whorls apparently twisted, in consequence of the ribs being obliquely curved.
"Var. 2. littoralis (King). (Fig. 316.) Ventricose; spire shorter, and body-whorl disproportionately large; longitudinal plaits strong; throat often coffee-colored.
"Var. 3. paupercula. Dwarf and depauperated.
"Var. 4. striata (Fig. 319). Thinner than usual, with the longitudinal ribs nearly obliterated.
"Var. 5. pelagica (King). Twice the usual size, and also thinner, with a longer spire.
"Var. 6. Zetlandica (Forbes). (Fig. 364.) Smaller, and of a thin and delicate texture, destitute of longitudinal ribs; epidermis smooth and membranous.
"Monstrosities. 1, sinistrorsum (fig. 321). Spire reversed. 2, carinatum. Upper part of each whorl encircled by a keel or more prominent spiral ridge. (B. carinatum, Turton). 3 , imperiale. Body-whorl compressed and elongated, so as to give it the shape of a Voluta, (B. imperiale, Reeve, Pl. 78, fig. 365). 4, acuminatum (fig. 320). Spire extending to a considerable length; whorls flattened, and the periphery consequently angulated (B. acuminatum, Brod.). 5, conico-operculatum. Operculum patelliform or conical. 6, bi-operculatum and tri-operculatum. Having two or three opercula.

Animal. "Body varying in color from dirty white to yellowish, speckled or streaked with black; mantle rather thick, folded over the pillar of the shell; pallial tube extensile, protruded an inch or more beyond the canal, recurved, and obliquely truncated at the extremity; head small, narrowish; proboscis very long and powerful, enclosing a muscular sheath, within which lies the tongue ; tentacles flattened, long and pointed, abruptly thickened at the base; eyes very small, placed nearly one-third of the way . up the tentacles; foot oblong, with shelving sides, capable of considerable expansion and distension, rounded in front, with small ear-shaped corners, and bluntly-pointed behind; very large and fleshy, with a short point at the extremity. Odontophore (Pl. 27, fig. 29) : central tooth armed with seven cusps or points
in a comb-like manner; shaft of the side tooth having three notches, the lowest being the largest." *

> Arctic Ocean; Siberia; Sea of Ochotsk; North Cape;
> Norway ; Baltic Sea; England ; France, (Atlantic Coast) ; Iceland; Labrador; Nerofoundland, southwards to New Jersey ; Mediterranean Coast of France (exceptional).
B. undatum being the typical species of the genus, I have deemed it advisable to copy the somewhat extended diagnosis of the British specimens given by Jeffireys. I add his further remarks in order to complete the portraiture of the species: the diverse conditions under which the varieties are found perhaps sufficiently account for their existence.
"Habitat: Every kind of ground, in all parts of the British seas, from the shore to the greatest known depths. The first variety is peculiar to hard ground in the coralline zone, throughout the Hebrides, Orkneys and Shetland; it is not common. Second, among stones and on mud, in the higher part of the laminarian zone, north of England, as well as Ireland, Scotland, and Shetland. Third, brackish water at Southampton and Ipswich. Fourth, coralline zone of England, Wales and Ireland; not common. Fifth, Dogger bank; Mr. Leckenby has a specimen six and one-half inches long. Sixth, soft ground in the deepwater zone, west of Ireland, outer Hebrides, Orkneys and Shetland; I have a specimen of a pure white color. Besides these, which I regard as the principal varieties, others have been described by Professor King and Mr. A. Hancock.
' In horticultural language, the species is very much given to sporting. Every abnormal growth of the shell can be distinguished from those of a specific or varietal sort by examining the apex or nucleus; this will be seen to be regular, the malformation having subsequently taken place, and being in most instances caused by some injury to the outer edge of the mantle.
"The typical form and variety striatum have been recorded from every recent geological formation in the northern latitudes of both hemispheres, and as far back as the Coralline Crag; Palermo (Philippi). Mr. James Smith found the monstrosity carinatum fossil at Bute, and Mr. Grainger at Belfast.

[^21]"American specimens of the common sort are smaller than European ; and Stimpson endeavors to show that they belong to a distinct species, because of 'a facies difficult to describe.'* If the supposed difference cannot be defined by any words or delineation, and the only substitute offered is the nearly exploded idea of representation of species, it is a pity that naturalists should be so unnecessarily perplexed.
"In Scotland and Shetland this common shell-fish is called ' Buckie,' in the Isle of Man (according to Forbes) 'mutlag,' in Holland 'wulk' (Born), in France 'bouche-aurore' (Lamarck), at Brest 'grosse bigorne' and at Rochelle 'burgau morchon' (De Montfort), and in La Manche 'ran' (De Gerville). \dagger The animal emits a thin and copious slime. From its size and toughness it makes a good subject for anatomical demonstrationalthough Cuvier has left very little to be known about that part of its history. \ddagger It burrows in the sand like Natica catena; and its foot is similarly traversed by numerous canals, which admit of its being distendel by water; this enters by an orifice at the upper corner of the mouth of the shell, and finds its way, through the abdominal cavity, into the vascular system of the foot. When it burrows, the end of the pallial tube or siphon is either exposed or but slightly covered by the sand, so as to supply the gills with water or air as the case may require. Beudant's experiments show that it cannot live in fresh water. The formation of two opercula by the same individual appears to be congenital, and not owing to an injury of the opercular lobe, which would cause an aborted or defective growth; for in some of these monstrous specimens the twin opercula are so large that they are doubled or folded inwards, side by side, in order to fit the mouth of the shell. This mollusk is very voracious, and is often caught

[^22]on the fishermen's hooks. Örsted tells us, in his interesting treatise 'De regionibus marinis,' that great numbers of B. undatum and Fusus antiquus are collected in the Cattegat for fishbait, by putting a dead cod into a wicker basket and letting it down on a muddy bottom; it is soon taken up half-filled with whelks. The same method is adopted for their capture on the English and Irish coasts. The whelk affords an illustration of the lex talionis; fishes in their turn devour it with equal greediness. I have seen between thirty and forty shells of B. undatum extracted from the stomach of a single cod. After the shell has been cleared out and ejected by the fish, it makes a convenient habitation for the hermit-crab. Other hations have not quite so great a fancy as ours for eating the whelk; perhaps it is an indigenous taste; for when the Romans were in this country, they seem to have acquired it-being one which they could not gratify in Italy. Shells of B. undatum, mixed with those of the oyster, have been noticed among the ruins of a Roman station at Richborough. At the enthronization feast of William Warham, Archbishop of Canterbury, on the 9 th of March, 1504, there were provided ' 8000 whelks at 5 s . per 1000.' In the shell-fish market at Billingsgate the present species goes by the name of the 'white' or 'common' whelk, in contradistinction to Fusus antiquus, which is there called the 'red' or 'almond' whelk. My obliging informant, Mr. Baxter, says, 'Wilks must be sold the same day we receive them at market in the summer, being the day after they are caught; if the supply is greater than the demand, we boil them, and they keep good for several days.' Evidence was given before a select committee of the House of Commons in the Session of 1866, on the 'Whitstable oysterfishery extension Bill,' that the whelk-fishery on a sandy flat in that bay yielded $£ 12,000$ a year,-part of the produce being disposed of in the London market for food, and the rest sent to the cod-fishing banks for bait. They are seldom eaten in the northern part of our Isles. At Dieppe and Nantes they may occasionally be seen exposed for sale in the fish-markets. The embryology of B. undatum has been investigated by Baster and many other writers. Its curious spawn-cells are figured in Ellis' Corallines as 'Alcyonium seu Vesicularia marina of Bauhin;' they are
also called 'Sea wash-balls,' because of their being used instead of soap by sailors to wash their hands (fig. 312). Dr. Johnston compares this vesicular mass to the nest of the humble-bee. It is composed of numerous cartilaginous pouches, of the shape and size of a large split pea, piled irregularly one upon another, and attached by their edges at the base. Cailliaud counted 544 of these cells in one of the spawn-masses. Each cell contains at first several hundred eggs, which are afterwards so greatly reduced in number that only from fifteen to thirty fry come to maturity. The process by which this reduction takes place has been disputed by Scandinavian and English physiologists, not less as to Buccinum than with respect to Purpura. Koren and Danielssen state that the eggs are first spherical, that they afterwards separate into distinct portions, and then amalgamate or agglomerate and assume a different shape. Sir John Lubbock, on the contrary, ascertained that the more advanced embryos swallow the other yelks whole, and in such quantities as to become greatly distended; his paper in the 'Report of the British Association' for 1860 contains a representation of 'a young embryo in the act of swallowing an egg' (figs. 306, 30t). Dr. McIntosh observed two specimens of the variety littoralis, on the 19 th of October, 1863 , in the act of depositing spawn under a stone, about mid-tide, in a rock-pool at St. Andrews. An eggcase, extruded from one of these whelks which he held in his hand, was quite soft, and fell into the water like a ball of jelly. Before the fry leaves its cell, it is furnished with two rounded and ciliated lobes in front, a proboscis, eyes, foot, gills, heart, otolites or ear-stones, and other organs, besides a perfectly formed shell of two whorls and an operculum. The spawning season takes place according to the latitude and climate, between October and May; about two months are required for the development of the fry. The shells vary exceedingly in thickness; some are solid and coarsely ribbed; others are thin, and their sculpture is very delicate. Sometimes the top of the shell is broken off, and the opening is closed by a plug. In young specimens the nucleus of the operculum is more central than in the adult, the lateral extension of growth being inwards or towards the pillar. Mr. Dennis and Mr. Norman believe that the scalariform distortion of the whorls, which is not unfrequent, is occa-
sioned by an annelid occupying the suture; but the epidermis in such cases may be traced covering that part, and the distinction between post hoc and propter hoc may apply to the opinion of the above naturalists, as well as to the arguments of lawyers. The shell is the 'roaring buckie' of Scotch bairns. Wordsworth has amplified this idea in the following pretty lines :-
\quad 'I have seen
A curious child, who dwelt upon a tract
Of inland ground, applying to his ear
The convolutions of a smooth-lipped shell ;
To which, in silence hush'd, his very soul
Listen'd intensely, and his countenance soon
Brighten'd with joy; for murmurings from within
Were heard, -sonorous cadences, whereby,
To his belief, the monitor express'd
Mysterious union with its native sea.' ",
"Whelks are taken in great numbers in wicker baskets baited with offal. Billingsgate Market is chiefly supplied from Harwich and Hull; and some of the steamers from the north bring six or seven tons at a time. They are sold at $1 s .6 d$. to $2 s$. a measure; are in season from August to September, though they are really good to eat at any time. Whelks are very troublesome to the lobster-fishers, for they often devour the bait, and I have seen, at St. Margaret's-at-Cliffe, on the Kentish coast, the lobster pots drawn up, one after the other, baitless, and full of these greedy mollusks; most trying to the poor fishermen, especially when bait was scarce, and they had been obliged to walk some miles in the morning to purchase it. On some parts of the coast the fishermen use the Buccinum for bait for the long-line fishing, and they know it by the following names, viz., the conch, buckie, whelk-tingle, or sting-winkle; and at Youghal they call whelks 'googawns,' and 'cuckoo shells.' "-LLovell's Edible Mollusks, 125.

Mr. Lovell gives the following recipes for preparing whelks for table-use: I copy them because, notwithstanding its abundance on our northern coast the whelk is rarely eaten in the United States.

Dublin Method of Cooking Whelks.-Cleanse them well, boil
them till they can easily be taken from the shell, and then fry them with plenty of fat or butter, till they are brown.

Whelk Soup.-TTake two onions and cut them into small dice, fry them in a stewpan with some butter; shake the pan well for a few minutes, add five heads of celery, two handfuls of spinach, two cabbage lettuces cut small, and some parsley. Shake the pan again, put in two quarts of water, some crusts of bread, a teaspoonful of pepper, and a blade or two of mace. Let this boil gently for an hour. Boil the whelks, take them out of their shells and fry them a good brown, then add them to the soup and let the whole boil a few minutes, then serve.

Another Way of making Whelk Soup.-Wash the whelks well, boil them and pick them out of the shells. Put an ounce of butter or dripping, with some finely chopped parsley, an onion, a little pepper and salt, into a saucepan, and fry it until it becomes brown, adding a little flour. Then to this add a pint of water or a pint and a half of milk, and when it boils place in the whelks, and a teaspoonful of anchovy. Let it boil again for half an hour, then serve.

To Dress Whelks.-Boil them till quite tender, then eat them with vinegar and pepper.

On a diminutive form of Buccinum undatum σ^{\top} : Case of Natural Selection. By Edw. S. Morse. (Figures 308-311.)

The object in making this communication is to point out some curious results of natural selection on Buccinum undatum within limited areas, in which the male scarcely equalled half the length of the female.

On a ledge in the harbor of Eastport (Maine), just east of the town, a small variety of Buccinum undatum occurs in great profusion. At the time of collecting them the sexes were pairing, and in every case (and hundreds were observed) the male was much smaller, sometimes not exceeding half the length of the female. It seemed impossible that the males could be mature. and yet they were not only found in actual connection, but an examination of the shell revealed the full number of whorls, and from other well-known characters indicated the fact that they were full-grown, though of diminutive size,

A glance at the condition of things at once revealed the mystery of these dwarfed males. The ledge on which these specimens were found is partly exposed at low tide, and is at all times washed by impetuous currents, so that it is quite difficult to land.

A study of the surface features of the ledge indicated the force of the tidal currents. There were no loose fragments of rock upon it, save those which were so tightly wedged in the crevices of the ledge that they could not be worked out with the hands. The specimens of Buccinum in every case were found hid away in nooks, and concealed in the cracks and crevices marking the ledge. It was clearly obvious that only the smallest males could work their way into such constricted quarters for the purpose of uniting with the females, and that the smaller males had the advantage over the larger males in this respect, there could be no question. The true state of the case was so instantly seen, that though hundreds of specimens were collected with the object of determining whether in any case a large male occurred, not a single exception was met with in which the female was not being fertilized by a diminutive male.

The constrained position in which these were found precluded the possibility of a large male with his cumbrous shell getting close enough to the female in her narrow quarters to perform the sexual'act. The smaller males having this advantage, have from generation to generation perpetuated their dwarf characters. It would seem from these facts that natural selection has worked in an unusual way in producing secondary sexual characters, rarely, if ever, seen in gasteropods.

Both males and females presented a wide range of variation in the characters of the shell, some of them showing very distinctly the oblique folds so characteristic of the species, while in others these folds were scarcely visible. The shell of the male is smoother than that of the female, and is also more slender and more delicate. The figures represent normal males and females from this peculiar colony.*

Gould supposed that Buc. undatum did not occur south of Cape Cod, Massachiusetts, a point believed in his day to separate

[^23]very distinctly two molluscan faunal provinces, but it has since been found throughout the waters of the New England States, and, according to Captain Gedney, off New Jersey, N. lat. 40°, W. long. 73°, in 32 fathoms, sandy bottom. It occurs generally in deep water, and not so numerously, however, south of Cape Cod. It has been dredged at 100 fathoms in the Bay of Fundy, but off the European coast has been found as deep as 650 fathoms.

Mr. Verrill remarks that "the ordinary American specimens from shallow water differ considerably in form from the typical European specimens, but the species is quite variable on both coasts, and I have examined large specimens from St. George's Bank and La Have Bank, dredged by Mr. S. I. Smith, which differ very little from the common European form, and it is easy to form series connecting these with our common shore specimens. I am, therefore, unable to agree with Dr. Stimpson, who considered our species distinct from the European, and adopted the name undulatum for it."*

In addition to the varieties enumerated in Dr. Jeffrey's description of the species, I have figured others from Sars, Middendorff and Reeve; they are possibly none of them really entitled to varietal names. These are Var. coerulea (fig. 314), Var. Schantarica (fig. 317), from the Sea of Ochotsk, B. pyramidale, Reeve (fig. 366), B. Labradorenise, Reeve (fig. 322) $=$ the American form of B. undatum, called B. undulatum, and a representation of the latter form (fig. 318) from Gould's Invertebrata of Massachusetts. To these synonyms I add B. parvulum, Verk. (fig. 323), B. fragile, Verk. (fig. 324), and B. conoideum, Sars (fig. 325); species which can have no place in the genus unless we agree to a minute discrimination of its variable characters. It is true that a slight difference exists in the dentition between one of these forms and the normal dentition of B. undatum (Pl .27 , fig. 29), namely, a variation in the number of tooth-like points developed on the plates, the furmula of B. undatum, B. conoideum and B. parvulum being $4 \cdot 6 \cdot 4$, that of B. fragile $3 \cdot 4 \cdot 3$, according to Sars, but Meyer and Möbius \dagger have shown that the central

[^24]teeth vary from 4 to 6 , and those on the sides from 2 to 4 in specimens from a single locality, and that the number on opposite side-plates of the same individual is sometimes different, so that but little dependence can be placed upon the secondary characters of dentition in distinguishing species, at least in this instance.

Dr. J. Gwyn Jeffreys considers B. Belcheri, Reeve, a variety; it appears to me to be distinct.
B. Zealandicum, Reeve. Pl. 79, fig. 384.

Yellowish, the revolving lines between the ribs brown tinted.
Length, $1 \cdot 25$ inch.
? New Zealand.
This species never came from the locality assigned to it: it is a true Buccinum and may be a form of undatum, having accidentally deepened color upon the superior revolving lines, or, if the color is normal, then it is probably a variety of B. cyaneum, Brug.
B. effusum, Reeve. Pl. 79, fig. 376.

Shell ovately conical, thin, inflated, spire rather short but elevated, whorls obscurely flatly ridged and minutely striated; lip simple, effused; chestnut-brown. Length, 1.5 inches.

Hab. unknown.
The ridges of this species are of quite a superficial character. The above is a copy of Reeve's description, which does not mention longitudinal ribs, although they appear to be slightly indicated in the figure. I do not know whether this may be a depauperated Buc. undatum or a Cominella.
B. Tottenit, Stimpson. Pl. 76, fig, 326.

White; of a light and thin structure; spire acute; suture impressed, whorls seven, regularly convex; longitudinal folds about twenty-two in number, not large, very regular, straight, not at all oblique, and about equaling their interspaces in width; these folds are prominent on the spire, but usually obsolete on the body-whorl, except occasionally at the suture; the revolving striæ are somewhat as in B. undatum, but sharper and more regular, and the grooves are narrower and more deeply cut.

Length, $1 \cdot 75$ to 2.25 inches.

It might be taken for a thin and delicate form of B. undatum, but is easily distinguished by the number and straightness of the longitudinal plications of the spire-whorls, the more numerous and sharply cut transverse ridges and the wider mouth. Occurs in the pleistocene beds of Montreal.
B. tenue, Gray. Pl. 76, fig. 327.

Whorls convex ; with twenty-five to thirty longitudinal ribs, sometimes interpolated about the middle of the body-whorl; no prominent revolving sculpture, but merely crowded minute strix, sometimes obsolete. Length, 1.75 to 2.5 inches.

Greenland, southwords to Gulf of St. Lawrence ; Nova Zembla;
Lapland ; Behring's Straits.
This is a circumpolar species, possessing the well-known facies of such shells; its occurrence southwards in the Gulf of St. Lawrence is rare and in deep water. It is a pleistocene fossil in various localities from Canada northwards. The well-expressed, very numerous, curved and partially duplicating ribs and the almost total absence of transverse sculpture are its distinguishing characters. B, scalariforme, Beck, is possibly a synonym, although it is also referred to Sipho Kroyeri, Moller. Besides the typical form, Middendorff mentions a forma elatior, in which the ribs tend towards evanescence. B. tortuosum, Reeve, is considered a monstrosity of this species by Stimpson, but I think it more probable that it has that relation to Fusus (Sipho) Kroyeri, Moller.
B. plectrum, Stimpson.

Shell rather large, thin, elongated, whorls less convex than in B. tenue, with about nineteen curved longitudinal folds, and deep eut primary revolving grooves, with depressed intervenihg ridges.

Length $2 \cdot 23$ to 2.5 inches, diam. $1 \cdot 2$ inches.
Arctic Ocean, north of Behring's Straits ;
20 to 30 fathoms.
It may be described in brief language by saying that it has nearly the form and plaits of B. tenue, with a striation of the glaciale type. It evidently approaches nearest to tenue, but besides the difference in the striation, the much greater regularity of the longitudinal plaits will serve to distinguish it. I have among a number of fossil Buccinums kindly loaned by Dr.

Packard, two imperfect specimens, probably of this species, from the pleistocene beds of Portland, Me. The shell is broader and thicker, with fewer (thirteen) longitudinal folds, none of which are interrupted, the primary ridges are more convex, and are alternately wider and narrower. The secondary grooves are rather less numerous. These differences may proove to be specific, ẅhen perfect specimens of both forms can be obtained in sufficient numbers. If so, I would suggest the name B. Packardi for the Portland form. It is easily distinguished from B. undulatum (= undatum) by the flattening and finer striation of the primary ridges, which are also much broader than the corresponding grooves. I have also a fragment of the form Packardi from the pleistocene of New Brunswick.

The above is copied and condensed from Stimpson's description. I am unacquainted with the species. Dr. Gwyn Jeffreys considers it a variety of B. Totteni, Stimpson.
B. striatum, Sowb. Pl. 76, figs. 328, 329.

Shell of moderate size, thick, rather elongated and appressed; whorls seven, not convex, not angulated, longitudinal ribs eleven in number, not at all oblique, rather distant and prominent, especially at the suture; spiral ridges flat ; aperture narrow, a little less than half the length of the shell, columella projecting beyond the extremity of the outer lip. Length, 2 inches.

Sea of Ochotsk.
Occurs as a pleistocene fossil in Scotland, whence it was first described. Dr. Stimpson unites with this B. Ochotense, Middendorff (fig. 329), and Dr. Jeffreys makes it a synonym of B. tenue, Gray.
B. Glaclale, Linu. Pl. 76, fig. 345 ; Pl. 78, figs. 367-373.

Whorls flattened, spire conic-elevated; ribs few, obliquely curved, prominent ; body-whorl with one, two or three prominent revolving keels, one of which is sometimes visible on the spire; revolving ridges coarse, well marked. Length, $2-3$ inches. Behring's Straits ; Sea of Ochotsk ; Spitzbergen ; Greenland.
The typical form, according to Stimpson, has not as yet been found fossil, but the var. (B. Groenlandicum, Hancock = polare, Gray) is quite abundant in the pleistocene beds of Montreal. The living shell reaches a notably larger size in the North Pacific
than in the North Atlantic, and the vicinity of Behring's Straits may be considered the metropolis of the species. It has been erroneously reported as from the Orkney Islands, but is not British. Mr. W. H. Dall, to whose enlightened explorations in Alaska conchology is so greatly indebted, was the first to point out the protean characters of this species and to assign to it a numerous synonymy. I have figured the typical glaciale (fig. 345) and a two-carinated form (fig. 367), B. angulosum, Gray, evidently not adult (fig. 368), and regarded by Stimpson as a distinct species, B. carinatum (fig. 372), B. rutilum (fig. 369), B. Rombergi (fig. 370), and B. Mörchianum (fig. 371), of Dunker's Novitates. Besides these, B. Stimpsoni and B. Rogersi of Gould, two unfigured species from the vicinity of Behring's Straits, are referred to this species by Mr. Dall.
Var. polare, Gray.
This form has been described but not figured; nevertheless, Stimpson recognizes it as a distinct species differing from B. glaciale in its thin structure, shouldered whorls and narrower aperture. B. Grenlandicum of Hancock (fig. 373), which I consider equivalent to polare, is also treated as distinct by Stimpson, who says that it is narrower and smaller, without shouldered whorls. This latter difference depends upon whether one or two carina are developed on the body-whorl. I think the only reason for considering polare (including Groenlandicum) as a variety is the thinness of the shell.
B. mirandum, E. A. Smith.

Shell ovate, thick, pallid, brownish red, irregularly maculated upon the spiral ribs, invested with a fugacions, thin, light olive epidermis; whorls seven, concave and angulated above, concave below the angle, longitudinally plicate, encircled by two nodose ribs, and shallow sulcations, minutely granosely striate, beneath the suture somewhat rugose ; aperture light brown, scarcely more than half the total length, labrum sinuated by the spiral carinæ, canal short, slightly recurved. Length 53 , diam. 25 mill. East Yesso, Japan; 11 fathoms.
The plications which produce nodules on the spiral elevations become almost obsolete on the last half of the body-whorl. The nodules number about ten on the penultimate whorl. The entire
surface is spirally rather distantly striated, which is plainly visible to the naked eye, and also very minutely granosely striated, only apparent with the aid of a lens. I do not know the species, but it appears to be related to B. glaciale, Linn., some specimens of which certainly exhibit, though in a less marked degree, perhaps, the principal characteristics noted above.

B. Donovani, Gray. Pl. 76, fig. 330 ; Pl. 78, fig. 374.

More elongated, with much more convex whorls than B. glaciale. Sometimes slighty carinated on the middle of the bodywhorl. Ribs most prominent at the sutures, which they undulate, soon becoming evanescent upon the body.

Length, $2 \cdot 25$ to 3 inches.

> Banks of Neufoundland; Greenland.

The B. Donovani of Reeve is another species $=B$. TerræNovæ, Beck. B. tubulosum, Reeve (fig. 374), is, however, a synonym. Dr. J. Gwyn Jeffreys makes Donovani a variety of B, glaciale.
B. Castaneum, Dall.

Shell large, clear chestnut-brown,' with whorls seven in number, inflated and smooth, except for microseopic, closely crowded, revolving striæ. Suture distinct, not channeled. Apex rather acute, pointed. Columella straight, with a faint fasciole. Aperture wide, rounded, more than semicircular. A slight glaze on the columella. Outer lip heavily thickened, expanded and smooth, not projecting before the column nor waved ; within livid whitish or purple.

Length $2 \cdot 5 \mathrm{in}$., diam. $1 \cdot 1 \mathrm{in}$.; length of aperture 1 in ., width 75 in . Shumagin Islands (Alaska), 20 fathoms.
A very remarkably distinct form in a genus where distinctness is the exception and not the rule. I know of no species at all resembling it. There are rarely faint costæ on the junior whorls.

Var. tricarinatum, Dall.
This form, which I now consider to be probably an extreme race of the foregoing, has a similar color and fine microscopic sculpture, but grows larger and is furnished with one strong carina on the junior whorls and three on the last whorl. When the lip is not formed they are remarkably similar to young Chrysodomus
liratus, and were passed over as such by me, in the field. Afterwards, when the carinæ and lip are fully formed, they look like brown B. glaciale of the carinated form. On examination, the sculpture was found to be essentially different, and by that alone its connection with B. castaneum is surmised. It is found in the Western Aleutians only, and was caught with bait in five fathoms. No intermediate specimens have been observed. Length 3.08 inches, width 1.5 inches; aperture long, 1.25 inches; wide, $\cdot 9$ inch. The lip is less thickened than the typical B. castaneum.

The above is a copy of Dall's description. I am unacquainted with the species.
B. cyaneum, Brug. Pl. 76, figs. 331-342; Pl. 78, fig. 375. Pl. 79, figs. 377-380.

Shell thin, whorls six to eight, not very convex, flattened near the suture, and generally smoother than in any other species; longitudinal folds, when they exist, ten to fifteen, straight, extending very little below the suture ; primary spiral ridges rounded, not flattened, very narrow and distant, about fourteen on the lower whorl, often obsolete, but sometimes sufficiently prominent to form angles rather than ridges; secondary ridges, when present about five to each primary ridge and groove taken together. Colors bright but variable, usually bluish with chestnut-brown revolving lines or series of spots or patches: sometimes brown with white spots. Periostraca smooth or short-ciliated.

Length, 1-2.3 inches.

Greenland, Norway, Lapland, Behring's Straits.

An arctic species ; occurs fossil in the pleistocene of Rivière-du-Loup, Canada. A number of authors apply to this shell the name Groenlandicum, Chemn., which I do not adopt because Chemnitz was not a binomial writer, and Gronlandicum is only a portion of his compound designation of the species.

I figure a variety patula, Sars. (fig. 332), which appears to correspond with the dwarf variety of Stimpson; also Neptunea Baerii, Midd. (fig. 377), which is a marked, short, convex variety. The following species described by Hancock, are all synonymous with cyaneum, viz.: B. hydrophanum, Hanc. (figs.

333, 334, 375), B. sericatum, Hanc. (fig. 335),* B. tenebrosum, Hanc. (figs. $336-338,378$). Mr. W. H. Dall adds to the synonymy Volutharpa Mörchiana, Fischer, a short-spired variety (fig. 379), and B. perdix, Beck, to which I agree, the latter being rery probably the same as B. Finmarkianum, Verkruzen (figs. $340-342$), which is at most a variety. B. Terræ-Novæ, Beck, is a large, thin variety, showing traces of plicæ, and revolving angulations. B. leucostoma, Lischke, an unfigured species from Japan, is very probably another variety of this protean species: it is a large shell, 81 mill. in length, like Terræ-Novæ, but thicker, with white lip, etc. B. simplex, Midd., from the Sea of Ochotsk, is also a large shell, the description of which presents no distinctive peculiarities. B. pulchellum, Sars (fig. 339), does not appear to be very different from his figure of Greenlandicum (= cyaneum, fig. 331). I add a figure of a remarkable shell (Pl. 87, fig. 617), which Friele calls var. acuta.

B. Japonicum, A. Ad.

Ovate, fusiform, thin, spire produced, epidermis horny brown, longitudinally plicate and laminate, with acute, revolving lines (about six in the last whorl), base spirally lirate, lip margin thickened and reflected. Length, 1 inch.

Oleosiri, Sea of Japan; 35 fathoms.
Unfigured. Probably nearly related to the preceding species. B. Jeffreysii, E. A. Smith, is another unfigured Japanese species, 30 mill. in length; it is described from a single specimen, with the following remarks appended. "This species may eventually prove but a large and fine variety of B. Japonicum, A. Ad.; but at present I distinguish it with a separate name, since there are several differences which may be regarded as specific. The whorls are only slightly angulated in the middle by the keel which encircles them at that part; and this keel is undulated, a

[^25]character not assigned to B. Japonicum: the red spotting on the keels is also absent in that species; and the color of the epidermis is different. At the base of the canda in the present species there is a largish excavation ; but I am inclined to attribute it to a repaired injury."

B. Fischerianum, Dall.

Shell with four whorls, of which the upper three form less than one-sixth of the entire length, though acuminated. Epidermis smooth, thin, yellowish, marked with very fine, wavy, revolving lines, not ciliated. Surface of the whorls smooth, but marked with rather evident lines of growth, which are raised into plicate rugosities near the suture, which is appressed. Whorls inflated, amply rounded, solid, porcellanous and strong. Aperture elongate-ovate; outer lip thickened, broadly, effusely arched. Peristome white. Throat of a muddy pink. Inner lip with a thin callus, thicker on the columella, where it is colored with a dash of deep pink. Columella twisted, broad, arched. Canal wide and shallow, very short. Color externally yellowish pink, upper whorls a little livid, last whorl with a few indistinct revolving brown lines, frequently interrupted. Traces of obscure revolving ridges appear in a few places on the last whorl.

Length 1•3 in., lat. • 9 in .
St. George's Isl., Behring's Sea.
Described from one perfect specimen and fragments obtained in 1868. Its nearest ally is that form of B. cyaneum described by Fischer as Volutharpa Mirchiana. From this it is very doubtfully distinct.

B. Picturatum, Dall.

Shell of moderate size, rather slender, with acute apex, sculptured with fine wavy strise, the interspaces between which are usually flat, but occasionally rise above the general surface as flattened threads; junior whorls with seven to nine faint, very oblique transverse coste, the prominence of which varies in different specimens; epidermis very thin, smooth, dehiscent; color whitish, painted with oblique, reddish brown flammules, irregularly distributed in patches transverse to the whorls; columella twisted with a strong fasciole, lightly glazed; outer
lip smooth, entire, slightly thickened, white on the edge, orangeyellow within, extending a little in advance of the columella; apex rather acute, suture appressed ; whorls seven, regularly tapering, not inflated; lip not waved posteriorly, and meeting the whorl at a rather sharp angle.

Length $2 \cdot 18 \mathrm{in}$., width 1 in . ; length of aperture, 1.05 in . Aleutian Islands.
A very doubtful, unfigured species. The original description is given above. Probably $=$ B. cyaneum, var.

B. ciliatum, Fabricius. Pl. 79, figs. 381, 382.

Shell small, ovate, strongly ribbed and with fine revolving striæ; solid, becoming very thick with age ; aperture elliptical, elongated and narrow, a little more than half the length of the shell; outer lip scarcely at all sinuated ; columella with a distinct tooth or projection near its lower extremity, corresponding to the second fold of the columella seen in several other species, such as B. tenue and B. undatum, but more tooth-like and constituting an important and easily recognized specific character; periostraca ciliated. Length, $1 \cdot 54 \mathrm{in}$.

Greenland, Nova Scotia, Nexfoundland, Behring Straits, and the Arctic Sea north of it.
" Although B. ciliatum is the most distinct and well-marked form in the genus, it is by no means a common species, and has been frequently referred to other quite different species, for want of attention to its peculiar characters." So says Dr. Stimpson, but I must confess my inability to separate it satisfactorily from B. cyaneum. If I rightly understand the specimens before me, I think that it will prove to be a dwarf, slow-growing race of the last-naméd species. B. ciliatum of Gould and American authors generally, is a very different shell and is equivalent to B. Humphreysianum, Bennett. It is the B. Molleri of Reeve's Index, and B. tenebrosum of Middendorff (fig. 382).

B: fringillum, Dall.

Shell white, resembling B. sericatum, Hancock ($=$ cyaneum), on the one hand, and B. ciliatum, Fabr., on the other. It has the dense fringed epidermis of ciliatum (when the shell is perfect), with the sculpture of the same, but wanting the tooth on the columella, and having a number of sharp carine not found in
any specimens of ciliatum which I have seen. The form is much like that of sericatum, Hanc., except that the whorls are inflated and shouldered, and the suture canaliculate. Whorls seven.

Length 1.36 in ., width $\cdot 8 \mathrm{in}$.; length of aperture $\cdot 66 \mathrm{in}$. Arctic Ocean, near Icy Cape.
The above is Mr. Dall's description, who, moreover, appends n. s.? to the name. It is a very doubtful species, the canaliculate suture being its only peculiar feature, and that would indicate its pertinence to the genus Volutharpa.
B. Humphreysianum, Bennett. Pl. 76, figs. 343, 344 ; Pl. 77, figs. $346-352$; Pl. 79, figs. $383,385$.
Shell thin, subtranslucent or nearly opaque, pale brownish or yellowish, sometimes mottled with fawn or reddish brown, or irregularly banded with rows of spots or chain-like markings, frequently without spots or mottlings ; sculpture numerous fine close-set revolving lines; no longitudinal ribs, or at most but faint indications of them upon the spire-whorls; periostraca very thin, ciliated. Length, $1 \cdot 75-3 \cdot 5$ inches.

Shetland Is. ; Ireland ; Norway ; American Arctic Ocean ; Banks of Newfoundland ; Lapland; Coast of Provence, France ; Sicily.
Dr. Gwyn Jeffireys says that "Dr. Stimpson must have mistaken some other species (perhaps B. ciliatum) for. B. Humphreysianum when he described the latter as having a ciliated epidermis ; and I therefore cannot recognize the North American localities indicated by him. B. ventricosum of Kiener (from the coast of Provence), is closely allied to our shell ; but the whorls are more tumid and gibbous, and the operculum is not so disproportionately small. They bear the same relation to each other as Aporrhais Serresiana does to A. Macandreæ. The operculum bears the same proportion to the size of the mouth as that of Aporrhais; it seems to be more ornamental than useful, like the coquettish hats worn by the girls of Tuscany on the crown of their heads. The opercular lobe covers only the centre of the operculum, the upper and under sides of which are sometimes encrusted with sessile Foraminifera. The egg-cases are separate and hemispherical. Some of the above characters are so peculiar as perhaps to warrant the generic separation of B. Humphreysianum, under the name of Mada, its surface being glabrous."

NEPTUNIN.E.

Dr. Jeffreys has narrowed his conception of the species in this instance to suit the British specimens which are, as he says, glabrous, without epidermis or any traces of ribs; the species, however, appears to attain its maximum development in the $\dot{\text { waters of }}$ of Atlantic coast of British America, and it is from these that our description is made. The ventricosum of Kiener does not appear to differ. Colored markings are rare upon A merican specimens-which are almost invariably invested more or less with a very thin epidermis. Our Banks specimens (fig. 348) were wrongly identified by Gould and others with B. ciliatum, Fabr., and still are to be found in most of our collections under that name. Stimpson was the first to refer them to B. Humphreysianum. Of course, there is hardly sufficient character left in the egg-cases alone to justify the adoption of Jeffreys' suggested generic name Mada.

The zebra-like striped variety (B. ventricosum, Kiener) is rarely so highly colored as the original figure-which I have copied (fig. 385). B. fusiforme, Kiener (fig. 347), is the typical European form ($=$ glabra, Jeffreys), and comes from Provence. B. striatum, Phil. (fig. 349), a Sicilian fossil, is certainly a very good representation of the typical American form. Among the synonyms are also to be included B. tumidulum, Sars (figs. 350, 351), from Norway, and Tritonium ovum, Midd., not Turton (fig. 352); and probably B. Mörchii, Friele, an unfigured species, notwithstanding the more central nucleus of the operculum, the different number of teeth on the middle and side plates of the lingual, etc.
B. Belcheri, Reeve. Pl. 77, fig. 353.

Oblong-ovate, base truncate, thin, whorls convex, linearly spirally sulcate, aperture orate, columella arcuate, sub-excavated in front, contorted; livid chestnut within, pellucid; epidermis thin, deciduous.

Port Refuge and Dobbin Bay, Arctic Am. (30 fathoms); Finmark.
Like the rest of the genus, this species is subject to great variation. The type specimen is comparatively smooth and without plications beneath the suture; others are strongly plicated, and have the spiral ridging much raised. Dr. J. Gwyn Jeffreys considers it a variety of B, undatum.

Spurious, Doubtful and Undetermined Species.
B. Escale, Philippi. Pl. 77, fig. 354.

A minute shell, about $5 \cdot 5$ mill. long; white, maculated with rufous. Has the aspect of a Ricinula (Sistrum).

Coast of Chili.
B. clavula, Menke.
B. Schrederi, Beck.
B. Boysir, Nuttall.
B. Poulsoni, Nuttall.
B. plicatulum, Nuttall.

St. Thomas.
India.
California.
California. Sandwich Isles.

MSS. names in Jay's Catalogue, 3d edit. They are not to be found in the 4 th edition.

The following species are described by Lesson in the Revue Zoologique :-
B. Genetta (Coast of Oran, Algiers) ; B. affinis, " related to and of same form as B. ov:ım, Turt., and B. fusiforme, Kiener," Pacific Ocean; B. Phalena, Lesson (=Engina?), Acapulco; B. floridanum (= Nassa?), Acapulco; B. tulipa, Acapulco; B. pulicaris, Sandwich Isles and Taheiti.
B. acuminatum, Menke $(?=$ Columbella $)$ Australia.
B. fasciculare, Menke. Australia. B. pulchellum, C. B. Ad. Jamaica, St. Thomas, W. I. B. luteolum, Val. (Named but not described.) Kurile Isles. B. leiocheilos, Val, Acapulco.
B. succinctum, Powis; B. catenatum, Powis (? = Columbella). Mauritius.
B. melo, Lesson (? = Melo). New Zealand.
B. Triton, Lesson.

New Zealand; Callao, Peru.
Dr. J. E. Gray and Mr. Hutton identify this species with the young of Siphonalia nodosa, Mart. The original description assigns New Zealand as habitat, whence it was brought by a vessel stationed in the South Seas; a year afterwards the habitat is corrected to Callao, Peru, where it is said to be very common and eaten by the inhabitants.
B. vinosum, Lam. Australia; B. zebra and B. tenuiplicatum, Lam. Hab. unknown. These are not figured and M. Deshayes has failed to recognize them. B. zebra may belong to the Cerithiadæ.
B. Sechellarum, Dufo.
B. Chloènse, Phil.
B. Casani, Maravigna. -
B. antarcticum, Phil. (? = Columbella).
B. Actonis, Phil.

Seychelles Isles.
Chili.
Hab. ?
Magellan's Straits. Magellan's Straits.
B. sulcatum, Friele. Pl. 87 , fig. 627.

I have a proof figure received in advance of its publication, but no description of this species. Locality probably Spitzbergen.
B. nivale, Friele. Pl. 87, figs. 619, 620.

Unpublished: by the author's kindness I am enabled to give copies of the shell and peculiar operculum, taken from a proof copy of a plate. It probably comes from the vicinity of Spitzbergen.

Genus BUCCINOPSIS, Jeffreys.

Mr. Jeffreys, who places his genus in the family Muricidæ, remarks that "the principal difference between this genus and Buccinum consists in the operculum, the nucleus of which, is in Buccinopsis terminal, at the inner base of the mouth, the increase taking place by semielliptical layers; while in the other genus it is placed within the edge, at the outer side of the mouth, the increase taking place by concentric layers. The egg-cases of Buccinopsis are separate,* and shaped like a well-filled leather purse, the opening for the egress of the fry being at the top and very wide. According to Mr. Alder, 'its tongue (Pl. 27, fig. 32) differs from that of Buccinum undatum, as well as from those of the allied species of the genus Fusus, and makes a slight approach to that of Mangelia. It has a single plain and slightly curved tooth on each side, and a very thin, non-denticulated plate in the centre.'"

[^26]B. Dalei, Sowb. Pl. 79, figs. 387, 388 ; Pl. 77, figs. 355, 356.

Shell egg-shaped, with a truncated base, moderately solid, semitransparent, somewhat glossy; sculpture numerous very slight and delicate spiral striæ, and still more close-set lines ot growth; these marks are only discernible with a magnifying power, the surface appearing smooth to the naked eye; color ivory-white; epidermis extremely thin, pale yellowish white, with a faint tinge of brown. Length $1 \cdot 15 \mathrm{in}$, diam. 1 in .

Animal, body pale yellowish-white, with a faint tinge of flesh color. Egg-cases sometimes deposited on the under side of the maternal shell.

Ireland and Scotland, Norway, Behring's Straits, Sea of Ochotsk.
Dredged 40 to 160 fathoms. Fossil in the Red and Coralline Crag, and Antwerp Crag. A specimen from the latter deposit, in the Brussels Museum, measures 3.75 ins. long by 1.75 ins. in diam. Among the synonyms may be mentioned B.ovoides, Middendorff (fig. 355), and B. ovum, Turton (fig. 388).

Var. eburnea, Sars. Fig. 356.
Shell smaller and thinner, with the spire more produced.

B. nux, Dall.

Short, very solid, smooth, except for microscopic revolving striæ, with an ivory-like surface, which in young living specimens is covered with a beautifully reticulated, short, velvety epidermis, of a brownish color. The adult shell is white or with a band of livid purple. Suture distinct; spire very short; whorls five, last very much the largest, very rotund. Outer lip thickened, smooth, projecting beyond the columella, whose anterior edge is smoothly and widely twisted, so that a glimpse can be had of the interior axis. Column thickened, short, somewhat arcuated, with no fasciole.

Length $1 \cdot 28$ inches, width $\cdot 8$ inch.
Aleutian Islands; 10 fathoms, rocky bottom.
Differs from B. Dalei in the epidermis, which, in the latter, is smooth and polished, and in the solidity of the shell. I do not know the species.

B. canaliculata, Dall.

Shell solid, livid white, covered with a strong, dark brown pilose epidermis; whorls moderately rounded; suture deeply channelled; surface of the whorls covered with fine, spiral, thread-like ridges, with still finer ones intervening between them, lightly decussated by the fine but distinct lines of growth, to which the epidermis especially adheres; the coarser ridges are about seven in number, between the posterior end of the aperture and the edge of the suture behind it. Whorls five and a half, aperture half as long as the shell; internally polished; outer edge somewhat thickened; inner lip callous; columella strongly twisted; canal short, rather wide.

Length $1 \cdot 33$ inches, diam. 75 inch.
Cape Espenbery, Alaska. (One specimen, on the beach.)
Much less inflated and proportionally longer than B. Dalei, which is nearly smooth and has not the channelled suture. I am not acquainted with this species.

Genus NEOBUCCINUM, E. A. Snith.
N. Eatonı, E. A. Smith. Pl. 77, figs. 357, 358.

Pallid brown; shell thin and smooth. Length, 56 mill. Kerguelen Island, 3-7 fathoms.
Animal (in spirit) uniform buff color; foot broad in front and somewhat truncated, narrowed posteriorly; head of moderate size, furnished with two rather short tentacles not adjacent at their base; eyes situated on prominences on the outer side of the tentacles towards their bases; proboscis very long; siphonal expansion of the mantle thick, of medium length.

Lingual ribbon very long; rachidian tooth tricuspidate, uncini tricuspidate also, prongs hooked, outer one the largest, the inner rather smaller, the median very much smaller still and close to the latter.

The preceding genera, Buccinum and Buccinopsis, are inhabitants of the Arctic sea; this, of the Antarctic waters.

Genus VOLUTHARPA, Fischer.

This little group of mollusks is confined in distribution to the North Pacific Ocean, its metropolis being Japan. Three of the species were originally described as Bullia, from which genus it
differs in its simple foot and in possessing eyes as well as in dentition. The form and porcellanous texture of the shell are like Bullia, and serve to separate it from Buccinum. Mr. Arthur Adams says that the animal is like Buccinum, of a white color sparsely sprinkled with black on the head, foot and siphon; the tentacles are broad, close together at the base, and rather short, with the eyes on the outer side, near the middle; the siphon is thick and short, and the foot is fleshy and simple behind.

With regard to the Volutharpa ampullacea, a very remarkable fact may be mentioned. The majority of the individuals are without opercula, even without a trace of the pad-like gland or area from which the operculum is secreted. About ten per cent. of the individuals of the var. acuminata which I have examined had traces of this gland or area, marked by its smooth and rather whitish surface on the granulous dark slate-colored foot. About fifteen per cent. had well developed opercula in the proper position. I have ascertained the same to be the case with regard to the typical form, from alcoholic specimens, collected by Dr. William Stimpson in Behring's Strait. There is no mistake about this, strange as it may and must appear, that different individuals of the same species are indifferently operculate or inoperculate.

A careful examination of this appendage reveals some singularities in it worthy of note. At first the operculum is of an ovoid form, with the nucleus near the edge at the larger end, and increases by additions around the edge, but principally upon the smaller or upper end. However, at some late period of its growth it takes a new start, and, seemingly, a new operculum is commenced underneath the old one, with a central nucleus which increases by annular additions, and finally has its edges very much thickened and turned upward, giving it a saucer-like appearance, while the old operculum seems as if laying upon the sancer, with its nucleus and some of the adjacent portion projecting over the edge anteriorly. It has in all a diameter of $\cdot 1$ inch. That its form is not due to an individual abnormality is evident from the fact that all the specimens examined were similar.*

[^27]Mr. Gwyn Jeffreys, in his excellent "British Conchology," records the occurrence, upon the Kentish and Sussex Coasts, of Buccinum undatum, having two or three opercula. "In a bioperculate specimen, procured by Mr. Rich, one of the opercula is conical and borne on a cylindrical, stalk-like lobe, the other being of the usual shape; in a second specimen, one operculum is longitudinally oval, with the nucleus nearly terminal (as in Fusus), the fellow operculum being placed at a right angle to it."
"The above facts," says Dr. Paul Fischer,* "modify considerably our confidence in specific and generic characters furnished by the operculum. They at least demonstrate that the absence of an operculum will not suffice for the exclusion of mollusks from families the other genera of which are provided with them."

I have inserted in a former volume of the Manual an account of abnormal opercula observed in Fusus and Pleurotoma, \dagger and it is well known that some species of the latter genus as well as of the nearly related genus Conus are provided with opercula, whilst others have them not. The duplication of opercula in Buccinum undatum appears to meet a parallel in the case of the Cephalopod genus Loligo, in the duplication of the internal cartilaginous pens or shells. \dagger

After all, the operculum furnishes generic characters of considerable value in classification; we can by no means afford to dismiss its evidence as unreliable because it sometimes, abnormally, unsettles our long cherished (and perhaps erroneous) convictions of the stability of generic and specific characters.
"The ovicapsules of Volutharpa are not at all like those 'of Buccinum, but rather like those of Busycon ($=$ Fulgur), though smaller, consisting of disk-like capsules, united by one edge to a ribbon or stalk. They contain from eight to twelve embryos, which attain the length of a half inch, and a shell of two whorls, which, except in the absence of epidermis, essentially resembles the adult: The first whorl, however, is whitish and amorphous,

[^28]and very fragile; it is large for the size of the embryo, and is invariably lost in shells which have attained maturity. The remainder of the embryonic shell is translucent purplish red, or wine-color, with revolving lines. I found the embryos on the point of escaping from the ovicapsules in September. The disks of the capsules are three-quarters of an inch in diameter and twotenths of an inch thick, with the edges perpendicular to the top and bottom, and the angles serrate or furnished with slight coriaceous projecting points.*

V. Perryi, Jay. Pl. 79, fig. 389.

Shell ovately globulose, rather thin, inflated towards the base, spire short, acute, sutures impressed, whorls smooth, color yellowish ash, interior of aperture rusty brown.

Bay of Yedo, Japan.
V. ampullacea, Midd. Pl. 77, figs. 359, 360 ; Pl. 79, fig. 390.

Reddish brown under a rufous or yellowish epidermis.
Length, 22 mill.

> Japan, Sitka ; Sea of Ochotsk, etc.
V. Deshayesiana, Fischer (fig. 390), is generally considered specifically identical.

Mr. Dall has described a var. acuminata, from Sitka; it has a narrower, less rounded form, with a thicker and stronger, almost pilose epidermis.

In perfect, fresh specimens of the typical form the thin "epidermis is covered with minute, very short cilia, caused by the elevation of minute threads of the epidermis at the intersection of the crowded fine revolving strix which cover the whorl, with the lines of growth. In some apparently perfect specimens, however. the epidermis appears perfectly smooth and even polished. ${ }^{\dagger} \dagger$

It is very doubtful whether V. Perryi, Jay, is distinct from this species; no dimensions are given, but the figure is considerably larger. I do not detect any other difference between them than that of size.

[^29]
V. Fischeriana; A. Ad.

An unfigured species said to be "intermediate in form between V. ampullacea, Midd., and V. Perryi, Jay. It is a thinner and smaller shell, with a hispid epidermis, the short hairs being arranged in close-set cross rows, giving the surface a reticulated appearance." Length, 1 inch, diam., 11 lin.

> Korea Strait, South Japan.

Unfigured. Probably not distinct from Ampullacea.

V. Limnfana, A. Adams.

This name is in the list of species of Bullia in the Genera of Recent Mollusca, and is mentioned subsequently as a Volutharpa in Ann. Mag. N. Hist., 1860. I do not find any description of it.
V. Mörchiana, Fischer.

This is believed to be synonymous with Buccinum cyaneum, Brug.

Genus CHLANIDOTA, Martens.

C. vestita; Martens. Pl. 79, fig. 391.

Epidermis yellowish brown; shell white. Length, 23 mill.
Kerguelen Island.

Genus COMINELLA, Gray.

Kobelt has recently published a systematic catalogue of the species of this genus, in which they are carefully arranged in accordance with their inter-relationships. I have followed it; merely reducing the number of species which he admits, and adding a few which appear to have escaped his notice. The genus is confined in its distribution to the Southern hemisphere, the metropolis of the typical species being New Zealand; although a few are found at the Cape of Good Hope, etc. Martens' subgenus Chlanidota does not appear to me to be very closely related to Cominella, and I have preferred to treat that shell as a genus. Kobelt includes the species of Amphissa, but the thickening and dentition of the outer lip, the absence of the posterior constriction and general facies, as well as lingual ribbon, indicate a closer relationship with Columbella. I have
included as a subgenus Tenison-Woods' new genus Josepha, although its principal character, the plait on the columella, appears to ally it to Phos. also.
C. porcata, Gmelin. Pl. 80, figs. 392, 396, 399, 404.

Yellowish brown ; aperture white, tinged with brown.
Length, 2 inches.

New Zealand ; Cape of Good Hope.

C. ligata, Lam. (fig. 393), is a synonym.
C. Anglicana, Lam. (fig. 394), is called a variety by Kobelt, but is scarcely entitled to be so considered.

Var. tigrina, Kiener. Fig. 396.
Sutural and shoulder ridges usually broken up into granules; surface usually spotted or flamed with darker brown.

Length, $1 \cdot 25-1 \cdot 5$ inches.
C. pubescens, Küster (fig. 395), is the same; as are also C. robusta (fig. 399) and C. biserialis, Küster (fig. 404).
C. limbosa, Lam. Pl. 80, figs. 397, 398, 400, 403.

Spire shorter, shell consequently more globose than C. porcata. Yellowish to chestnut-brown, the revolving ribs whitish, maculated with chestnut-brown ; sometimes unicolored with revolving ribs or simply fine striæ. Length, $1 \cdot 25-1 \cdot 75$ inches.

Cape of Good Hope.
I fear that this will prove to be a well-marked variety only of C. porcata. Typically the color is uniform dark brown; without ribs (fig. 400).

Var. lagenaria, Lam. Figs. 400, 403.
Shell with revolving ribs, which are usually white, spotted with chestnut. It is related to C. limbosa in much the same manner that tigrina is to porcata.

Kiener's C. lagenaria (fig. $94 a$), which Kobelt refers to dubia, Krauss, as a species of Cominella following lagenaria, represents a species of Purpura (P. scobina, Quoy., Vol. II, 170, t. 52, f. 127).
C. papyracea, Brug. Pl. 80, figs. 401, 402.

Thin, with close revolving striæ; suture somewhat channelled, concave shoulder of whorls obsolete or barely perceptible. Light
reddish brown or white under a very thin yellowish brown epidermis. Length, $1 \cdot 5-1 \cdot 75$ inches.

Cape of Good Hope ; Natal.
C. intincta, Reeve (fig. 402), is a synonym. C. robusta, Küster, which Kobelt makes a variety = the Anglicana form of C. porcata.
C. Zeyheri, Krauss. Pl. 80, figs. 406, 406.

This is considered a distinct species by Kobelt, but the specimens figured are evidently immature shells, the first, of C. limbosa, perhaps; the second, of C. porcata. The first figure is certainly a bad.drawing, because it does not show any subsutural depression of the whorls although the description mentions it.

Length, $\cdot 6$ inch.

> Cape of Good Hope.
C. Dunkeri, Küster. Pl. 80, figs. 408, 409, 407.

Whitish with chestnut revolving lire, or flames and strigations.
Length, •5-6 inches.

Cape of Good Hope.

Another immature shell, described as a Fusus, and by Küster placed in Buccinum ; where, the specific name being pre-occupied by Lamarck, he calls it B. Dunkeri (figs. 408, 409). It is a doubtful species; even its pertinence to the genus is problematical, as well as the identity of Küster's shell with that of Dunker. Schrenck reports it from the Bay of Hakodadi, but certainly has mistaken the species.
C. violacea, Quoy. Pl. 80, figs. 410, 412.

Brown, with violet revolving lines. Length, $1 \cdot 5$ inch. Cape of Good Hope.
C. Delalandi, Kiener. Pl. 80, fig. 413.

Ash-color, with waved longitudinal brown markings Fine revolving striæ. Epidermis greenish. Aperture light chocolate.

Length, 1.5 inch. Cape of Good Hope.
In form it is very close to C. lineolata, Quoy.
C. testudinea, Martyn. Pl. 80, figs. 414, 415.

Ash-color, tessellated or flamed with chocolate-brown; lip margin and columella yellowish brown, becoming bluish or choc-
olate within the aperture. With obsolete revolving ribs; surface frequently irregularly pitted. Length, $1 \cdot 25$ to $1 \cdot 5$ inches.

New Zealand.
C. cataracta, Chemn. (fig. 415), is a mere color-variety of this species. Kobelt quotes as a variety C. lineolata, Lam., (not of Quoy nor Reeve,) but I think Lamarck's species is the same as that which those authors have figured for it.
C. maculata, Martyn. Pl. 81, figs. 421-424.

Yellowish grey with revolving lines of chocolate-brown spots; aperture yellowish; epidermis chocolate color.

Length, 1.75 to 2.25 inches.

New Zealand.

A heavy, widely oval shell, with a strong callous deposit on the upper part of the columella. C. testudinea, Lam. (fig. 422), is a synonym ; C. maculosa, Mart. (fig. 423), is probably a young individual, and I am inclined to believe that C. Woldemarii, Kiener (fig. 424), is also a immature specimen, as the rude growth often causes irregular nodules on the shoulder, at the rest-periods.
C. Quoyi, Kiener. Pl. 80, fig. 418.

Spire plicate, surface covered by numerous revolving striæ; reddish brown, yellowish brown within the aperture.

Length, $1 \cdot 5$ inch.

New Zealand.

I am unacquainted with this species, of which, I believe, only one specimen is recorded, in the Museum at Paris.
C. inelalata, Lam. Pl. 80, figs. 416, 417, 419, 420 ; Pl. 81, figs. 425-429.
Shell with turrited, long pointed spire, the whorls of which are more or less coronated on the shoulder by the commencement there of longitudinal ribs : ribs sometimes obsolete. Body whorl not ribbed, with a concave shoulder. Yellowish or reddish brown or grey, with interrupted brown bands; aperture yellowish or purple, with numerous deep purple revolving lines, or sometimes white raised revolving lines. Length, 1 to 1.5 inches.

New Zealand.
Kobelt considers lineolata, Lam., a variety of testudinea, Mart., and therefore separates from it lineolata of Quoy and of Kiener
(in part), whilst lineolata of Reeve he considers a distinct species. I unite the three, finding the surface painting inconstant, and consider them very distinct from C. testudinea: the latter being much wider, with less exserted spire and without ribs. C. alveolata, Kiener (fig. 420), has sometimes incised revolving lines, between which the revolving dark spots take the form of oblong tesselations; but these lines are frequently absent, and the markings. vary all the way to uninterrupted bands.

Var. virgata, H. and A. Adams. Figs. 417, 425-429.
Revolving lines continuous; surface occasionally with longitudinal brown flammules.

Name proposed for C. lineolata, Quoy (fig. 425), supposed to be a different species from that of Lamarck. Reeve proposed the name C. Quoyi (fig. 419), at an earlier date for the same form in the event of its proving distinct. I do not use Reeve's name for the variety, because it had already been used by Kiener. C. obscura, Reeve (fig. 426), is a slow-growing, thicker form, in which the revolving bands occasionally become slightly elevated above the surface. C. pluriannulata, Reeve (fig. 427), said to come from Swan River, is also a virgata; as well as C. lineare (fig. 428), and C. lactea, Reeve (fig. 429).
C. costata, Quoy, Pl. 81, figs. 430-434, 438.

Ýellowish brown or ash color, tessellated with revolving series of reddish brown oblong spots sometimes confluent into lines. Ribbed on the shoulder of all the whorls, with incised revolving lines. Lip and columella fawn color, aperture with revolving raised lines. Length, 1 to $1 \cdot 25$ inclies.

So. Australia.
A very variable species, differing from forms of C. lineolata only in the ribs being developed on the body-whorl: more extensive collections may prove that this is not only synonymous with that species, but that the two following species (C. acutinodosa and filicea) should be referred to it also. The list of synonyms is already sufficiently extensive: C. Angasi, Crosse (fig. 432), C. Adelaidensis, Crosse (fig. 433), C. eburnea, Reeve (fig. 434), which is a whitish variety, and C. funerea, Gld. (fig. 438), which partially \cdot connects this species with acitinodosa.
C. Quoyana, A. Ad., an unfigured species, has no distinctive characteristics in its diagnosis: Kobelt changes the name to Huttoni, on account of C. Quoyi, Kiener.
C. acutinodosa, Reeve. Pl. 81, figs. 435-437, 439.

Shell with close revolving grooves, whitish or ash-color, with interrupted chocolate bands or series of spots ; aperture closely chocolate banded within. Lengtl, 1 inch.

So. Australia ; New Zealaid.
Perhaps only a short variety of C. costata. Apparently C. Glandiforme, Reeve (fig. 436), C. Zealandica, Jacq. (fig. 437), and C. lurida, Phil. (fig. 439), are synonyms.
C. filicea, Crosse. Pl. 81, fig. 440.

Has a proportionally longer spire and less numerous nodules than C. costata. Light brown or flesh color, tessellated with chestnut-brown. Length, 16 mill.

Cape York, Australia.
C. citrina, Reeve. Pl. 81, fig. 441.

Smooth. pale yellowish orange. Length, $1 \cdot 4$ inches. Habitat unknown.

This shell looks nearly as much like a Bullia, S. G. Buccinanops, as a Cominella.
C. Nassoides, Reeve. Pl. 81, fig. 442.

Orange-brown, ridges and nodules lighter. Length, $1 \cdot 5$ inches. Habitat unknown.
Compare with next species.
C. nodicincta; Martens. Pl. 81, tig. 443.

Light yellowish brown. Length 45, diam. 26 mill. Auckland Islands.
Martens says that its Antarctic habitat is undoubtedly correct. I fear that it is not distinct from C. Nassoides, above.

Unfigured and Doubtful Species.
C. Tasmanica, Tenison-Woods.

Tasmania.
Distinguished from C. costata, Quoy, by being double the size, having distinct raised revolving liræ, no costæ on the last whorl, and being white or greenish, obscurely fasciate. Length, 30 mill.

C. maura, A. Adams.

Darnley's Islaind.

"This is a blackish brown shell, in some specimens lineated with white; the whorls are constricted just below the sutures, and the upper ones are longitudinally plicate and somewhat eroded."

No dimensions given. Probably a form of lineolata.
C. elongata, Dunker.
C. fucata, A. Ad.
C. crocea, A. Ad.

Hab. unknown.
Japan.
Philippines.

Both these localities are on the authority of labels in the Cu mingian Collection, and being distant from the usual range of the genus they may be considered rather doubtful.
C. albolirata, C. tenulcostata, Tenison-Woods. Tasmania.

Subgenus Josepha, Tenison-Woods.
Founded upon the following species, which differs from Cominella in possessing a plait upon the columella. If it is really distinct from Cominella, why is it not a Phos?
C. Tasmanica, Tenison-Woods.

Ovately fusiform, small, solid, opaque, flesh color and white; whorls, including the nucleus 7 , convex, angular, regularly and neatly striate, striæ distant and passing over the ribs, which are raised, rounded, and interrupted above by a conspicuous groove; nucleus of two whorls, smooth, inflated; aperture ovate, attenuate posteriorly; labrum thin, acute, columella conspicuously uniplicate, canaliculate behind; base concave, spirally lirate.
.Length, 10, diam. 4.5 mill.

Tasmania.

Unfigured. I have not seen it.

Genus CLEA, A. Adams.

First proposed as a genus of the family Melanidx, which the shell resembles in its form, epidermis and habitat in fresh waters, especially reminding one of the genus Hemisinus. The operculum with its apical nucleus, no less than the lingual dentition, whereof the formula is $1 \cdot 1 \cdot 1$ in Clea, instead of $3 \cdot 1 \cdot 3$ as in Melania, induced Brot to remove the species to Buccinidæ; and really
the form and sculpture of the shell do not contravene such a disposition of Clea, its fluviatile distribution being actually the strongest argument for considering it a Melania. As to the genus Canidea, the differential characters are slight and of specific value only, except that the margin of the aperture is sinuated in front in all the species, and this may serve as a convenient means of dividing the genus Clea into two groups, one of which may bear the name of Canidea as a subgenus. The differences in operculum and dentition pointed out by Brot are unimportant. The geographical distribution of the genus comprises the Malaysian Peninsula and Archipelago. It would be interesting to ascertain whether the waters inhabited are really fresh, or perhaps brackish.

For the species, I follow the monograph by Dr. A. Brot, published in the "Journal de Conchyliologie," 1876.
C. nigricans, A. Adams. Pl. 81, figs. 445, 446.

Epidermis dark olive, aperture light chocolate. Length, 28 mill. Sarawak, Borneo.
C. funesta, A. Adams, an unfigured species from Malacca, does not appear to differ specifically, judging from the description.

Subgenus Canidia, A. Ad.
C. Helena, Meder. Pl. 81, figs. 447, 448.

Yellowish olive, with two chestnut bands. Length, 20 mill.
Juva.
I do not find any good characters by which to separate C. Theminckiana, Petit (fig. 448), an immature shell.
C. tenuicostata, Brot. Pl. 81, fig. 449.

Brown, without bands. Length, 21 mill.
Pexabury, Siam.
Perhaps a variety of C. Helena.
C. Baudoniana, Mabille and Le Mesle. Pl. 81, fig. 450.

Yellowish olive, the bands chestnut-brown. Length, 30 mill. Houdong, Cambodia.
With a longer spire than C. Helena, and three bands, this may still be only a variety of it.
C. Fusiformis, Deshayes. Pl. 81, figs. 457, 458.

Straw color, with three orange bands.
Cambodia.
Another possible variety of C. Helena.
C. Bocourti, Brot. Pl. 81, fig. 459.

Light corneous, with from one to five brown bands.
Length, 22 mill.
Pexabury, Siam.
The ribs are more distant than in the preceding species. There is a slight shoulder, the further development of which might run the species into C. scalarina.
C. Cambojiensis, Reeve. Pl. 81, figs. 451, 452.

Straw.colored or greenish olive. Length, $\cdot 75-1$ inch.
Cambodia.
C. scalarina, Deshayes. Pl. 81, fig. 453.

Orange-brown. Length, 12 mill.
Cambodia.
C. Julleni, Deshayes. Pl. 81, figs. 454-456.

Yellowish white, with three usually broad chocolate bands.
Length, 16-24 mill.
Cambodia.
C. bizonata, Desh. (fig. 455), does not differ, and C. Broti, Desh. (fig. 456), is a variety in which the spire is more depressed, making the form more globose, with the longitudinal ribs merely rudimentary.
$\begin{array}{lr}\text { C. Annesleyir, Benson. Quilon, Malabar. } \\ \text { C. fusca, H. Adams. } & \text { Cambodia. }\end{array}$
I cannot attempt the identification of these two unfigured species.

Sub-Family EBURNINA.
Genus EBURNA, Lam.

The Eburnæ comprise a small, very well defined group of about a dozen species, the generic character being unmistakable in all of them. The whorls have more or less shoulder; those of E. Zeylandica showing the least, being a mere slight flattening of the contour next below the sutures, whilst in E. spirata there is
a regular channel out of which arises the preceding whorl: The species are all largely umbilicate, but in some of them the umbilicus is covered or filled, more or less completely by the callous inner lip: the umbilical region is defined by a strong rib. A thin, dark brown epidermis, sometimes translucent, covers the living shell, but cabinet specimens are usually denuded of this, exhibiting upon an ivory-white surface, spots and maculations of orange-red. The aperture is usually white, sometimes tinged with violet upon the columella. This pattern of coloring is most uniform throughout the genus; but the species are distinguished by modifications of the arrangement of these color spots, as well as by the differences of shoulder and umbilicus. None of the species are strictly banded, although in some the coloring coallesces into irregular revolving masses. The coloring reminds one strongly of Phasianella,* whilst the shell, except for the want of its characteristic groove and tooth recalls the genus Pseudo-liva-one of the species of which was formerly erroneously referred to this group. The surface of the shell is invariably smooth, devoid of the sculpture of ribs, strix, tuberculations, etc. The operculum is ample, filling the aperture. The Eburnæ are natives of the tropical seas of the Eastern hemisphere.

If we observe the rule of taking the first species as the type of a genus, Eburna, Lamarck must become a synonym of Ancillaria, his first species being A. giabrata: Lamarck's assemblage of species, however, clearly indicate his intention. Naturalists have done much to render science and themselves contemptible by expending their time upon the nomenclature, instead of the structure and habits of animals. Eburna, Lamarck is well understood and will answer my purpose.

I commence with those species showing the least shoulder, ending with those in which it is most strongly defined. My illustrations are mainly derived from Sowerby's Thesaurus Conchyliorum: Reeve has also monographed the genus is his Conchologia Iconica.

[^30]E. Papillaris, Sowerby. Pl. 82, fig. 460.

Surface covered with small spots ; shoulder scarcely angulated; umbilical region narrow, covered. Length, 1.75 inches.

Cape of Good Hope.
A rare species.
E. Zeylanida, Brug. Pl. 82, figs. 461, 462.

Painted with oblique blotches below the sutures, and in a revolving series near the base; other spots smaller; shoulder rounded, scarcely apparent; umbilicus open, its margin sometimes tuberculated and tinged with violet.

Length, ${ }^{2-2 \cdot 75}$ inches.

Ceylon.

E. Japonica, Sowb. Pl. 82, fig. 463.

Shorter than E. Zeylanica, with narrower umbilicus; the painting of the same pattern, but the spots much smaller and more numerous. Length, 2-2.5 inches.

Japan.

Mr. Arthur Adams has described the animal of this species.* He says: The tentacles are ringed with red brown, and speckled with light yellow ; and the siphon is spotted with yellowish white, and irregularly banded with red brown lines. The foot (long, large, thick, and fleshy, like that of Buccinum), is transversely banded with irregular red brown lines and minutely spotted with pale yellow. The sole is also edged with pale yellow. At the caudal extremity of the foot there is a single conspicuous cylindrical terminal filament. He obtained living specimens from 35 fathoms, off Tsu-saki, in Japan.
E. Formose, Sowb. Pl. 82, fig. 475.

Coloring, large brown blotches, more or less confluent into longitudinal zigzag markings; no spots. Length, $1 \cdot 5$ inches.

Island of Formosa.
E. lutosa, Lam. Pl. 82, fig. 465.

Blotches of color pale and irregular, rarely in spots, usually arranged in an upper broad, and two inferior and narrower revolving series, separated by narrow white spaces. The epidermis, usually orange-brown, is more persistent upon this than on any other species except E. spirata. Length, $2-2.5$ inches.

China.

* Ann. Mag. N. Hist., 3. ser., xiii, 1864.
E. areolata, Lam. Pl. 82, fig. 476 ; Pl. 83, fig. 525.

Shell thinner than E. lutosa, with shoulder more marked and slightly channelled; umbilicus wider, open; same pattern of markings as E. lutosa, but color much darker, blotches more regular, quadrangular, the three revolving series more widely separated by intervening white spaces.

Length, $2 \cdot 25-3 \cdot 5$ inches.

$$
\text { Ceylon; China Sea, } 14 \text { fathoms. }
$$

E. spirata, Linn., included this species, as well as the one which now bears that name. Lamarck separated and defined the two forms.
E. spirata, Lam. Pl. 82, figs. 466-468; Pl. 84, fig. 526.

Shoulder sharp-edged, deeply channelled; umbilicus narrow, perforated or closed; epidermis frequently adhering, dark brown; coloring a well-defined series of blotches superiorly, below which are numerous, rather large transverse or oblique oval spots; some of the latter frequently become confluent into an inferior revolving series of irregular or cuneiform markings.

Length, 2-3 inches.
Ceylon ; Philippines.
E. Chrysostoma, Sowb, Pl. 82, fig. 469.

The blotches and spots are both smaller and more numerous than in E. spirata, the form is more oval, the coloring brighter, including a carneous aperture and columella.

Ceylon.
I separate this from E. spirata with some hesitation. Sowerby considers his Fig. 3 of E. spirata to represent this species ; it has the coloration, but the form and markings are of the charcteristic spirata pattern. Perhaps it would be better regarded as a variety of spirata.
E. Borneensis, Sowb. Pl. 82, fig. 464.

Spots large, dark chestnut, distributed over the surface with no arrangement into revolving series. Length, 2 inches.

Borneo.

Peculiar in the coloring and leopard-like arrangement of the spots.
E. semipicta, Sowb. Pl. 82, fig. 470.

Epidermis yellowish. The two-banded arrangement of the spots and absence of superior row of blotches will serve to distinguish this species. Length, $1 \cdot 7$ inches.

Habitat unknown.
E. perforata, Sowb. Pl. 82, fig. 471.

The deep, wide channel, short rounded whorls, turbinate spire, very wide umbilicus, with tuberculate margin and central callus deposit, and above all the peculiar zebra-like coloring, will serve to distinguish this species. Length, 2 inches.

Habitat unknown.
E. ambulacrum, Sowb. Pl. 82, fig. 472.

Very deeply channelled, with short whorls, somewhat flattened upon the upper half; color darker than in the other species in consequence of the color blotches and spots nearly covering the entire surface. Length, 1.5 inch.

Island of Mindanao, Philippines.
E. Valentiniana, Swains. Pl. 82, fig. 473.

Shell ovate-globose, heavy, shoulder channelled; spire very short ; umbilicus narrow, covered with callus. Color like that of E. spirata. Length, $1 \cdot 75$ to $2 \cdot 25$ inches. Persian Gulf; Red Sea.
Von Martens considers this merely a short form of E. spirata, and it is quite possible that such is the case, although the three figures which he gives I would refer without doubt to Valentiniana. I cannot adopt the Chemnitzian name Molliana, because he was not a binomial author.

Subgenus ZEMIRA, H. and A. Adams.

The revolving channel near the base of the shell, ending in a tooth-like projection on the outer lip, has induced Sowerby to class this species in the genus Pseudoliva: it seems nearly related to Eburna, however.
E. Australis, Sowb. Pl. 82, fig. 474.

Shell covered by revolving incised lines; epidermis very thin, yellowish; irregularly brown spotted, spots usually more prominent on the shoulder border, Length, $\cdot 66$ inch. Port Jackson, Australia; 10 fathoms.

Genus MACRON, H. and A. Adams.
This was originally described as a subgenus of Pseudoliva, which it resembles in having an inferior revolving groove terminating in a small tooth-like projection of the outer lip; the operculum, however, is unguiculate like that of the Eburnæ, whilst that of Pseudoliva is purpuroid. The more decided canal and absence of sutural channel, and the rather persistent blackish brown epidermis, will distinguish it from the subgenus Zemira of Eburna. Its locality, West Coast of North America, is also a distinctive character ; Eburna being East Indian, and Pseudoliva African in distribution. The species are partly included in Sowerby's monograph of Pseudoliva in Thesaurus Conch., Vol. III.
M. Kellettif, A. Adams. Pl. 82, fig. 477.

Epidermis blackish or dark brown, under which the shell is white. Whorls partially or entirely encircled with low, broad, rounded ribs, sometimes only apparent on the lower part of the body whorl, sometimes obsolete. Length, $1 \cdot 75$ to 3 inches.

San Diego, Cal.; Gulf of California.
Buccinum Athiops, Reeve, has been confounded with this species, but is a very different shell, entirely distinct in its overhanging ribs, broad flat shoulder, want of tooth on the lip, etc.; in fact is a synonym of Purpura cingulata, Linn. M. Kellettii, Hinds, belongs to the genus Siphonalia.
M. hivida, A. Adams. Pl. 82, fig. 478.

Epidermis dark brown, whitish or livid beneath; surface smooth except several incised strie near the base.

Length, 20 mill.

> San Diego, Cal.; Todas Santos Bay, L. Cal.

Mr. Stearns thinks this will prove to be a small form of M. Kellettic, dwarfed by reason of its northern habitat. Its perfect growth, narrower form, much smaller size, and thick lip indicate to me adult specimens of a distinct species.
M. Wrightif, H. Ad.

Coast of Patagonia.
M. commoda, H. and A. Ad.

Hab. unknown.
Neither of these species has been figured.

Sub-Family PHOTIN Æ.

Genus PHOS, Montfurt.
The animal of Phos has a small head, with the tentacles approximating or connate at their base, and eyes near their tips; foot dilated, forming an auriculate, shield-like lobe in front, and terminating behind in a long, tapering filament.
The species of Phos bear some resemblance to Nassa, and were originally placed in the family Nassidæ; from which, however, they are distinguished by certain good conchological and -malacological characters. The turreted form, cancellated surface and grooved interior of aperture are common to Nassa also, but the oblique basal fold of the columella is characteristic of this genus. The animal differs from Buccinum in the foot, ending in a filament behind: Nassa has a bifid posterior termination. The genus is widely diffused, the species however, as far as known, being rather local in distribution. Phos has been monographed by Sowerby in Thesaurus Conchyliorum, Vol. III. An inspection of his plates suggests the probable identity of many of the species there figured as distinct. No allowance is made by most describers for individual variation in form, sculpture and coloring; yet, where a number of specimens of a species from a single locality are compared, there will usually be found to exist much difference in the number and prominence of ribs and striæ, coloring, etc. Even the angulated (or shouldered) body whorl appears to be a variable character; some specimens of a single lot of P. Guadaloupensis being broadly shouldered as described; others entirely without shoulder or angulation. I am convinced that Mörch's subgenus Strongylocera, comprising the species with angulated whorls has no title to distinction, and I have suppressed it accordingly. I have allowed some species to stand provisionally which, judging from the ascertained range of variation in other forms, will probably eventually be considered synonyms.

> *** Oriental Species.

Рe. senticosus, Lim. Pl. 83, figs. 479-490, 492, 493, 506, 575.
White to chocolate brown, with or without yellowish or reddish brown bands. Length, $1-2$ inches.

I am compelled to refer to this form a considerable number of species which do not appear to me to have distinctive characters : I have figured them all, however, and those who suppose that I am too conservative, will be able thereby to form their own conclusions. P. muricatulus, Gould (fig. 484), from Japan ; P. angulatus, Sowb. (fig. 485), Philippine Isles ; P. scalaroides, A. Ad. (fig. 486), habitat unknown ; P. filosus, A. Ad. (fig. 487), habitat unknown; Ph. ligatus, A. Ad. (fig. 488), habitat unknown; P. plicatus, A. Ad. (fig. 489), from Eastern Seas; P. rufofasciatus, A. Ad. (fig. 490), Philippines ; P. fasciatus, A. Ad. (fig. 575), Philippines; P. textilis, A. Ad. (figs. 492, 493), Philippines; P. nodicostatus, A. Ad. (fig. 506), Philippines.

Ph. Adamsi, Petit. Pl. 83, fig. 491.

Whitish, obscurely fasciated with brown ; regularly cancellated, and prickly nodose. Length, 1 inch.

Habitat unknown.
This appears to be less pyramidal in form, and differs also from senticosus in its equally prominent longitudinal and revolving sculpture; still, it may be only a variety. It was described by A. Adams as P. cancellatus, which name being preoccupied, Petit changed it to Ph. Adamsi.
P. plicosus, Dunker. Pl. 83, figs. 523, 522, 524.

Ribs rather distant, tubercled at the shoulder of the whorls, encircled by close, sharp revolving striæ; white, middle of outer lip and base of shell chestnut-brown. Length, $1 \cdot 2$ inches. Cape of Good Hope.
The type is barlly figured (fig. 523), yet the description identifies it with the subsequently published P. speciosus, A. Ad. (fig. 524) and P. Morrissii, Dunker (fig. 522). The ribs are somewhat closer and the shoulder angle not so marked as in P. pallidus, the revolving striæ are much finer, and the chestnut coloringappears to be a constant distinctive character.

Ph. Cyllenoides, A. Ad. Pl. 83, fig. 497.
Light yellowish brown, with ash-colored revolving bands crossing the ribs. Length, $\cdot 5$ inch.

Philippines.
Distinguished by its short, angulated form, few and prominent ribs, wide shoulder, etc.

Ph. virgatus, Hinds. Pl. 83, fig. 502.
Light yellowish, the ribs crossed by impressed brown lines. Length, $1 \cdot 5$ inches.

Ceylon.
Spire longer than in its allies.
Рh. levigatus, A. Ad. Pl. 83, fig. 499.
Whitish, tinged with orange or brown. Length, 1.5 inches. Cape of Good Hope.
The only species devoid of spiral sculpture.
Рh, textum, Gmel. Pl. 83, figs. 498, 500, 501, 503-505, 507.
Shell whitish, the aperture and columella deep orange or brown. Length, 1 inch.

Philippines; Indian Ocean; Andaman Isles.

The richly colored interior is the best character by which to distinguish this species. It has several synonyms : P. pyrostoma, Reeve (fig. 501); P. cancellatus, Quoy (fig. 498) ; P. varians, Sowb. (figs. 503, 504) ; P. spinicostatus, A. Ad. (fig. 505) ; P. Blainvillei,. Desh. (fig. 500). The last name is adopted by Sowerby for this species, although Deshayes himself considers it a synonym of P. textum in his edition of Lamarck, published 36 years ago. P. cyanostoma, A. Ad. (fig. 507), as illustrated by Sowerby in his "Thesaurus," is also a synonym ; but Mr. E. A. Smith says that this is a mistake in identification, the true cyanostoma being different. Adams never published a figure.

Ph. roseatus, Hinds. Pl. 83, figs. 508-511.
Whorls rounded or scarcely shouldered, the longitudinal ribs small, narrow, rounded. Yellowish, roseate or brown, sometimes three-banded with darker color. Length, 1-1•25 inches.

Philippines; Moluccas; Borneo.
P. Borneensis, Sowb. (fig. 510), of which a single specimen furnished the diagnosis and figure, and P. varicosus, Gld. (fig. 511), are synonyms.

Rh. Terebra, Sowb. Pl. 83. fig. 513.
Narrow, with long spire; yellowish brown, with brown bands; whorls occasionally crossed by rounded varices.

Length, $\cdot 75$ inch.

Ph. retecosus, Hinds. Pl. 83, fig. 514.
Orange-brown to yellowish white; revolving lines beaded where they cross the low longitudinal rounded ribs; lip of aperture varicosely thickened externally. Length, $1 \cdot 25$ inches. Ceylon.
Ph. gracilis, Sowb. Pl. 83, fig. 515.
A small, graceful, brown species; narrow and elongated.
Length, 20 mill.
Sydney, Australia.
Very like Ph. Terebra, Sowb., but without the varices of that species.

$$
^{} * \text { American Species. }
$$

Ph. pallidus, Powis. * Pl. 83, figs. 494-496.
Whitish, yellowish or fuscous, usually darker between the longitudinal ribs, color sometimes broken up into revolving series of spots (Ph. notatus, Sowb., fig. 496). Length, 1 inch. Panama; Philippines?
A stout, ovate, rugose species, with prominent nodulated shoulder and Nassa-like form. Ph. pallidus is known to come from Panama, yet it is recorded "Philippines" in Sowerby's Thesaurus. Ph. notatus is also "Philippines" in the same work, and I do not think the locality can be correct in either case.
Ph. crassus, Hinds. Pl. 83, fig. 521.
Thick, broad, light brown, more or less banded.
Length, 1.5 inches.
Panama.
Ph. articulatus, Hinds. Pl. 83, figs. 516, 517.
Shell long and slender, with small rounded ribs and slight shoulder; yellowish or reddish brown, sometimes with revolving, interrupted, darker bands. Length, $1-1 \cdot 38$ inches.

Panama; coral sand, 6 to 10 fathoms.-Cuming. West Columbia.
With this species I unite Ph. turritus, A. Ad. (fig. 517).
Ph. Gaudens, Hinds. Pl. 83, figs. 518, 519 ; Pl. 84, figs. 527, 528.
Shell without, or with a slight shoulder; ribs small, few and distant, tuberculated at the crossing of the revolving lines; light yellowish brown, generally with two revolving bands of chocolate interrupted by the ribs. Length, $1-1 \cdot 25$ inches. Gulf of Tehuantepec, W. Coast of Mexico ; W. Columbia.

Hinds described this species from a young shell (fig. 527), which, however, agrees well enough with Ph. Cumingii, Reeve (fig. 519). The figures given in Sowerby's Thesaurus (fig. 518, gaudens, fig. 528, Cumingii), differ somewhat, but evidently belong to the same species. I am very doubtful of the propriety of separating this from Ph, articulatus, Hinds ; from which typically it differs in the smaller number of ribs.

Рh, Veraguensis, Hinds. Pl. 84, figs. 529-532, 534.
Shell without shoulder, closely covered with narrow, elevated, longitudinal ribs, crossed by narrow, raised revolving lines, forming prickly tubercles at the intersections. Yellowish or brownish, sometimes faintly banded. Length, $1-1 \cdot 25$ inches.

Veragua, W. Coast of Central America; West Indies; Senegal.
I cannot detect any difference between the West Coast and West Indian specimens, and accordingly place in the synonymy the following species from the latter area: Ph. Antillarum, Petit (fig. 531) and Ph'. Candei, d’Orb. (fig. 534). Ph. Grateloupiana, Petit (fig. 532), said to come from Senegal, may also be placed here.

Ph. Beauil, Fischer. Pl. 84, fig. 533.
Elongate-conical, with numerous slight longitudinal ribs, and occasional revolving lines; yellowish brown, obsoletely $4-5$ banded; whorls occasionally crossed by rounded varices.

Length, 39 mill.

> Isle of Marie Galante, W. Indies.

Shell less solid and with much less developed sculpture than the preceding species ; the absence of prickly tubercles being the most important differential character.

Ph. Guadeloupensis, Petit. Pl. 83, figs. 520, 512.
Shell broad-ovate, spire conical-turreted; longitudinal ribs terminating in nodules upon the margin of the sloping, usually broad shoulder. White, more or less maculated with brown ; aperture stained with brown within. Length, 1 inch.

West Indies ; Northern Coast of South America.
A very common species of the Caribbæan province, having much the form of Ph. pallidus, Powis, and Ph. textum, Gmel. In sculpture and degree of development of shoulder there is
great individual variation. I unite with this species P. textilinus, Mörch. Nassa unicincta, Say (fig. 512), is an unidentified species which may possibly equal Guadeloupensis ; if so, it will have priority.

Doubtful and Undetermined Species.

Ph. sculptilis, Ph. varicosus, A. Ad. Mentioned in H. and A. Adams' Genera, but not described.
Рh. cancellare, Menke, Рh. dumale, Phil. Marquesas Is. Ph. fusoides, C. B. Ad.

Panama.
A single specimen described as a Triton, having varices upon the whorls. P. P. Carpenter, who has examined it, says that it is not a Triton however, that the aperture has an anterior sinus of the lip, and that it may be an Euthria. The lip sinus and other characters, however, agree well enough with Phos.

Ph. biplicatus, Carpenter.
Panama.
Not figured; described from a single specimen. The diagnosis fairly applies to Ph. Veraguensis, Hinds.

Genus ENGINA, Gray.
A group of Columbelloid shells, nodulously, longitudinally ribbed. The dentition of one species, E. mendicaria, has been published (Pl. 27, fig.36), and exhibits the characteristic features of the Photinæ. There must always be some doubt as to identification of species in a case where, like the present one, a single character antagonizes all the others; and, on consideration, I prefer to continue to include Engina among the Columbellidæ until the weight of evidence shall be more decisively against it, than it is at present. Even if no mistake has been made, and the lingual examined was that of E. mendicaria, it by no means follows that the other species possess similar armature. So decidedly is the shell Columbelloid that to separate the genus on account of the dentition of a single species would be, I think, umphilosophical and undesirable.

Genus NASSARIA (Link), H. \& A. Adams.
Animal with the tentacles connate at the base; with the eyes near their distal ends; foot anteriorly produced, ending behind in a simple tail without filament.

This genus partakes of the characters of several recognized forms. Its animal, however, differs from that of Triton in the approximated tentacles, with the eyes near their ends, and the anteriorly produced foot; from that of Nassa in the tail not being bifurcated. In its shell it may be known from Phos by its recurved canal ; from Nassa by its circumscribed inner lip and elongated canal; and from Triton by its want of irregular varices.

The first attempt at a monograph of this interesting little genus was made by Mr. Arthur Adams, in the Zool. Proc. for 1853, in connection with the publication of the generic diagnosis. Subsequently, illustrated monographs have been published by Sowerby in his Thesaurus Conchyliorum and by Kobelt in the Conchylien Cabinet of Küster. The few species are all inhabitants of the tropical Asiatic coasts and contiguous seas.
N. nivea, Gmel. Pl. 84, figs. 535-538.

Whitish, sometimes with a rosy tinge. Length, 22 mill.
Tranquebar; Singapore; Malacca.
I consider Triton carduus, Reeve (fig. 537), a synonym of this species; Kobelt being very much mistaken in referring it to the genus Trophon. In N. multiplicata, Sowb. (fig. 538), I am also unable to find distinctive characters.
N. Sophie, Benoit. Manual II, t. 66, f. 381.

Yellowish brown. Length, 34 mill.
Mediterranean, Coralline zone.
A single specimen in the collection of Benoit. I have described and figured this species under Coralliophila in Vol. II, p. 211 ; its generic position being somewhat doubtful. An European conchologist has referred it to Nassaria nivea, and there is, of course, a possibility that it is a specimen of that species introduced accidentally into the Mediterranean Sea.
N. acuminata, Reeve. Pl. 84, figs. 539-546, 548.

Whitish, indistinctly fasciate with reddish brown.
Length, 39 mill.
China Sea; Indian Ocean.
With this species I unite N. bitubercularis, A. Ad. (fig. 541), from the Philippine Islands; N. suturalis, A. Ad. (fig. 542), from Malacca; N. recurva, Sowb. (fig. 543), from Ceylon; N. vari-
cifera, A. Ad. (fig. 544), China Sea, distinguished only by having an occasional varix ; N. nodicostata, A. Ad. (fig. 545), habitat unknown ; N. Sinensis. Sowb. (fig. 546), China Sea; N. turrita, Sowb. (fig. 548).
N. fusiformis, Sowb. Pl. 84, fig. 547.

Light reddish, slightly fasciated. Length, 19-26 mill.
China Sea; Malacca.
Kobelt remarks upon the resemblance of N. turrita, Sowb. (fig. 548), to N. fusiformis, and that the more slender form and higher spire alone distinguish them from N. nivea: I think, however, that the resemblance to N. acuminata is still more striking.
N. Nassoides, Gray. Pl. 84, figs. 549, 550.

Yellowish white, ribs faintly tinged with brown.
Length, 23 mill.
Philippines.
Distinguished from its congeners by the peculiar expansion of the outer lip.
N. magnifica, Lischke. Pl. 84, figs. 551, 552.

Reddish brown, with one or two white bands. Length, 2 in. Southern Japan.
I figure, from Kobelt (fig. 552), a non-tuberculate variety of this fine species.
N. egregia, Reeve. Pl. 84, fig. 553.

Yellowish white, ribs crossed by narrow, close, brown bands. Length, $1 \cdot 4 \mathrm{in}$.

Isle of Masbate, Philippines; under stones at low water.
Described as a Triton and excluded by Kobelt from Nassaria and referred to T. eximius, Reeve. It is certainly not that species, although possibly a Triton. The want of varices and form of the shell certainly indicate close relationship with N. nivea.
N. clathrata, Reeve. Pl. 84, fig. 554.

Whitish, apex pale pink. Length, $1 \cdot 25$ in.
Habitat unknown.

I know nothing of this shell. It may be a distorted Nassaria, and is equally likely to be a Coralliophila. It was described as a Murex-which it certainly is not.
N. curta, Gould (unfigured). Port Jackson (W. Stimpson).
N. pagoda, Reeve described as a Triton, and referred by Kobelt to this genus, is a true Nassa from Panama.
N. angicostata, Pease (= Buccinum farinosum Gould), is an Engina.
N. Amboynensis, Watson. Amboyna.

Not figured. It is said to resemble " N. acuminata, Rve., but is shorter, squatter, coarser, with more ribs, is deeper in suture; the canal is shorter, more recurved, and more twisted."

(ienus CYLLENE, (iray.

The species of Cyllene inhabit the intertropical coasts of Africa, the Malaysian Archipelago, etc. They live with the Nassas along shore lines and do not appear to inhabit great depths. The animal which is unknown, is supposed, from the, sutural slit which characterizes the shell, to possess a mantle provided with a prolongation or fold occupying this slit, somewhat analogous perhaps, with that of Oliva. The operculum of C. lyrata is elongated, rhomboidal, with terminal nucleus, externally concave, internally convex.

The genus has been monographed by Sowerby, in his "Thesaurus." Specimens are rare in collections, and the want of material prevents me from proving or disproving the suspicion which I strongly entertain that all the forms described are mere variations of a single protean species. It is certain that neither coloring nor sculpture present reliable characters, and even Sowerby places together ribbed and plain specimens in his C. plumbea.
C. lyrata, Lam. Pl. 84, figs. 555-560.

Whitish, sometimes with interrupted bands, or a single band.
Length, $\cdot 75$ in.
C. sulcata, A. Ad. (fig. 559), is certainly identical, and C. unimaculata, A. Ad. (fig. 560), is merely lesis sculptured, with a brown spot on the shoulder.
C. lugubris, Ad. and Reeve. Pl. 84, figs. 561-563.

Yellowish, light brown or chocolate, with sometimes two or three revolving series of reddish brown spots.

Length, $\cdot 50-75 \mathrm{in}$.
Sooloo Isles; Singapore, 6 fathoms, mud; Malacca, 6 fathoms, sand.-Cuming. W. Africa? Japan.
C. fuscata, A. Ad. (fig. 562), from Malacca and Singapore, and C. pallida, A. Ad. (fig. 563), from W. Africa? are certainly the same. The variation of this type from C. lyrata, consists in the smaller, more numerous ribs, and is probably not a good distinctive character.
C. Oweni, Gray. Pl. 84, figs. 564-566.

Yellowish brown, maculated or blotched with red-brown. Japan; Senegal.
The rather close ribs are not prominent, and are crossed by pretty strong revolving lines, giving a closely cancellated appearance. C. Senegalensis, Petit (fig. 566), and C. Orientalis, A. Ad. (fig. 565), appear to be synonymous with this form.
C. Pulchella, Ad. and Reeve. Pl. 84, figs. 567-571.

Flesh- or ash-color, sometimes banded or spotted in revolving series, or blotched with reddish brown.

Borneo; Japan.
Ribs and revolving striæ both obsolete, except a few impressed revolving lines at base; almost positively a smooth state of C. lyrata. I unite with this C. Grayi,Reeve (fig. 568), C. glabrata, A. Ad. (fig. 569), C. striata, A. Ad. (fig. 570), and C. Guillaini, Petit (fig. 571).
C. concinna, Soland. Pl. 84, fig. 572.

Fusiform, pale, blotched with brown, smooth. Length, $\cdot 5$ inch. Hab. unknown.
Probably only a depauperate form of the last.
C. plumbea, Sowb. Pl, 84, figs. 573, 574.

Chocolate-brown, ribbed or smooth.
Hab. unknown.

Unidentified Species.

C. chrysostoma, Meuschen. Mörch, Yoldi Cat.
C. aibba, A. Ad.

Japan.
C. lactea, Ad. and Angas. New South Wales, Australia.
C. rubrolineata, Sowb.

Loc. unknown.
None of the above are figured.

Epidromus Bednalli, Brazier. P. 32, t. 85, fig. 576.
Through the kindness of Mr. Brazier I am enabled to figure a specimen of this species.
Triton philomele, Watson. Nightingale I. T'ristao da Cunha. Ranella Fijiensis, Watson. Fiji Islands.

The first dredged at 100-150 fathoms, the last at 315 fathoms. No figures have been published.

FUSIDA.

PERISTERNIINE.

Genus MAZZALINA, Conrad. Not characterized. The type appears to be very similar to Lagena, Schum., if not identical with that genus. I figure it from the original specimen.
M. pyrula, Conrad. Pl. 85, fig. 577. Eocene, Alabama.

Latirus Nagasakiensis, E. A. Smith. Pl. 85, fig. 578. Japan.
The large chocolate plicæ are twice the width of the pale intermediate spaces.

Latirus (Fusus) canaliculatus, Gray. Ghina.
Described as a Fusus, but has oblique columellar plaits. It has never been figured, nor mentioned by the monographers, and I suppose that, like many of Gray's species, the type is lost.

- Leucozonia cingulatia, Lam.

On page 96 I have given Florida as a locality, on the anthority of Mr. W. W. Calkins, who informs me that the name is a misprint in his Catalogue; L. cingulifera being the species which he intended to mention, as collected there.

Turbinella intervedia, Koch.
Habitat unknown.
'The figure given in Küster is that of' a very much water-worn shell, so that its characters cannot be certainly made out; it appears to me to be very like T. filamentosa, Koch (t. 69, f. 151). a synonym of Latiru: brevicaudatus, Reeve.

FUSINE.

Luigi Bellardi, in his "Molluschi dei Terreni Terziarii del Piemonte e della Liguria," makes the following fossil genera:-

Genus JANIA, Bellardi. Shell subfusiform; spire elongate; mouth scarcely canaliculate behind; lip marginate, nodose or plicate within ; columella uniplicate anteriorly and posteriorly; canal short, recurved.
I. angulosa, Brocchi. Pl. 85, fig. 579.

Genus MAYERIA, Bellardi. Ovate fusiform, spire short, but slightly acute; whorls very sharply carinate in the middle; columella smooth, rather straight in front, canal moderate.
M. acutissima, Bellardi. Pl. 85, fig. 583.

Genus ANURA, Bellardi. Shell turrreted, ovate ventricose; whorls convex; mouth orbicular or suborbicular ; lip somewhat arcuate, exteriorly subvaricose in the adult, interiorly margined and smooth; canal scarcely produced; columella slightly contorted, smooth.
A. inflata, Brocchi. Pl. 85, fig. 581.

Genus MITR EFUSUS, Bellardi. Elongated, mitreform; spire very long and acute; whorls numerous, the last scarcely depressed in front; mouth narrow, long; lip simple ; canal long, produced in the axis of the shell.
M. orditus, Bell. et Mich. Pl. 85, fig. 580.

Genus GENEA, Bellardi. Shell subfusiform, long, narrow; spire long, very acute; mouth lọng, narrow ; lip simple; columella smooth, but slightly arcuate; canal very short, wide, straight.
G. Boneliti, Gené. Pl. 85, fig. 582.

FUSUS.

A monograph of this genus has been published by Mr. G. B. Sowerby in the "Thesaurus Conchyliorum," since the appearance of the pages comprising the Fusidæ in the present volume. The "Fusus" of Mr. Sowerby is an assemblage of shells belonging to a number of genera, omitting many species and misinterpreting others, and (inevitable under such circumstances) describing as new, a number of forms which scarcely present sufficient claims to novelty. The figures are superb in their lifelike delineation of the shells; indeed, in this respect Mr. Sowerby is without a rival, for to great technical skill he unites a scientific knowledge of the subjects he delineates. I give below the names, localities and copies of the figures of the supposed new species, together with opinions and suggestions concerning them.
F. Percyanus, Sowb. Pl. 85, fig. 586. Habitat unknown.

Appears to be a fine F. polygonnides, Lam., a very variable species.
F. sandvichensis, Sowb. Pl. 85, fig. 591. Sandwich Is.
$=F$, spectrum, Ads. and Reeve, var. Novæ-Hollandiæ, Reeve.
F. spiralis, A. Adams. Pl, 85, fig. $593 . \quad$ New Zealand.
$=F$. spectrum, Ads. and Reeve.
F. dilectus, A. Ad. Pl. 85, fig. 590 . Habitat unknown.
$=F$. distans, Lam. (versicolor, Gmel. ?), young.
F. levigatus, Sowb. Pl. 85, fig. 588. Australia.
$=F$. Australis, Quoy (F. marmoratus, Phil.).
F. rudicostatus, Sowb. Pl. 86, fig. 594.

Australia.
$=F$. Australis, Quoy-(F. marmoratus, Phil.).
F. nodicinctus, A. Ad. Pl. 86, fig. 595. Australia.
$=F$. Australis, Quoy (F. marmoratus, Phil.).
F. biangulatus, Desh. Pl. 86, fig. 596. Habitat unknown.
$=F \cdot p o l y g o n o i d e s$, Lam.
F. subquadratus, Sowb. Pl. 86, fig. 597. Habitat unknown.

Very close to F. leptorhynchus, Tapparone-Canefri.
F. acuticostatus, Sowb. Pl. 85, fig. 584. Habitat unknown. Appears to $=F$. cælatus, Reeve.
F. articulatus, Sowb. Pl. 86, fig. 602. Habitat unknown. $=F$. australis, Quoy (F. marmoratus, Phil.).
F. assimilis, A. Adams. Pl. 86, fig. 601. Habitat unknown. Perhaps a variety of F. turricula, Kieṇer.
F. vulpicolor, Sowb. Pl. 85. fig. 585.
F. Graciliformis, Sowb. Pl. 85, fig. $592 . \quad J a p a n$.
F. rubrolineatus, Sowb. Pl. 86, fig. 604.

Agulhas Bank, So. Africa.
Evidently an immature shell.
F. Reeveanus, Petit. Pl. 86, fig. $600 . \quad$ New Zealand.

This is not Petit's species, which I have figured under Siphonalia. Pl. 56, fig. 383. If the locality of the specimen is correct, it is possibly one of the southern Trophons, allied to T. Stangeri, Gray.
F. robustior, Sowb. Pl. 86, fig. 603. Cape of Good Hope.

Is allied to F. ocelliferus, but has a more distinct shoulder and tubercles. This is one of those species which combines the characters of more than one genus: it may be considered either a Fusus, Hemifusus or Siphonalia.
F. crenulatus, Sowb. Pl. 87, fig. 623. Cape of Good Hope.

This perhaps, is also a Siphonalia.
F. depictus, Sowb. Pl. 85, fig. 589. Habitat unknown.
S. G. Sinistralia. A quite young shell : I do not recognize it.
F. albinus, A. Adams. Pl. 86, fig. 599.
W. Africa.

Very closely allied to, if not identical with, F. ustulatus. Reeve.
F. FILosus, Schubert and Wagner.

Sowerby remarks that F. flosus, Lam., is a Latirus; but this is the same species, the plicæ frequently becoming obsolete on the columella of the adult. I have figured it as Latirus.
F. excavatus, Sowb. Pl. 86, fig. 598. Habitat unknown.
F. tenuistriatus, Sowb. Pl. 86, fig. 608. Habitat unknown.

This is not a Fusus : it may be a Trophon or Siphonalia.
F. fusconodosus, Sowb. Pl. 86, fig. 605. Habitat unknown.
F. letus, Sowb. Pl. 86, fig. $606 . \quad$ Habitat unknown.
F. tessellatus, Sowb. Pl. 86, fig. 607. Habitat unknown.

Closely allied species, or three forms of one species.
F. caudatus, Quoy. Pl. 85, fig. 587. Habitat unknown.

This does not correspond with Quoy's species (t. 34, f. 119). It is probably immature, and not readily determinable.

MELONGENA.

M. angulata, Sowb. (Fusus).

Australia.
= Melongena pallida, Brod. and Sowb., p. 109.
Substituted for Fusus lignarius, Reeve, preoccupied in that genus. The shell is a Melongena, however, and is a synonym, besides.
M. anceps, A. Ad. (Fusus). Pl. 87, fig. $609 . \quad$ Australia.

Probably a var. of M. pallida, Brod. and Sowb., p. 109.
M. pyruloides, DeKay (Fusus). N. America.

Sowerby's figure, which he says is copied from that in the Nat. Hist., of New York, varies in several important particulars : he has evidently tried to improve it from the description. It was found adhering to the bottom of a vessel, and is supposed to have come from the South. Very probably a depauperate M. corona, Gmelin, with the spines suppressed.

NEPTUNEA.

N. tornata, Gould (Fusus). Pl. 87, fig. 616. Massachusetts.

This is not Gould's species; the latter I have figured (t. 46, f. 261). Is it possibly an extreme form of N. decemcostata, Say? N. Incisa, Gould (Fusus). Pl. 87, fig. 611. Northern Seas.

This also is an erroneous determination. No such shell inhabits our coast. The true F. incisus, Gould $=$ Euthria dira, Reeve (Pl. 72, fig. 233), and is from New Zealand.
N. teniata, Sowb. (Fusus). Pl. 87, fig, $614 . \quad J a p a n$. This is probably a var. of Neptunea despecta, var. arthritica.
N. borealis, Sowb. Pl. 87, fig. $615 . \quad$ British Coasts. $=$ N. despecta, var. saturnus, Mart.

I N D E X

To Genera and Species, including Synonymy.

PAGE.
Abnormis (Fusus), Smith. Zool. Proc. 811, t. 50, f. 10, 1878. $=$ Coralliophila. Accincta (Purpura), d'Orb. Moll. Cuba, ii, 146. = Pisania pusio, Linn. Acclivis (Triton), Hutton. Cat. Mar. Moll N. Zeal, 1873. - T. olearium, Linn.
Aciculatum (Buccinum), Lam. Edit. Desh., x, 175. = Terebra.
Aciculatus (Fusus), Delle Chiaje, iii, t. 148, f. 13. = F. rostratus, Olivi.
Actonis (Buccinum), Phil. Mal. Blatt, xv, 223, 1868 195
Aculeiformis (Fusus), Lam. = Pusionella.
Aculeiformis (Fusus), Sowb. Genera, f. $2=$ Turbinella lancea, Gmel. Acuminata (Nassaria), Reeve. Zool. Proc., 116, 1844. 221
Acuminata (Siphonalia), A. Ad. Ann. Mag. N. H., xi, 206, 1863. 137
Acuminata (Turbinella), Wood (not Kiener). Ind. Test. Suppl., t. 5, f. 12.$=$ Latirus castaneus, Reeve.
Acuminatum (Buccinum), Brod. Zool. Jour., v, 44, t. 3, f. 1, 2.= B. undatum, L., Monstr.
Acuminatum (Buccinum), Menke. Moll. Nov. Holl., 2م, 1843. ? = Columbella 194
Acuminatus (Latirus), Kiener. 28, t. 15, f. 2. 91
Acus (Fusus), Ads. \& Reeve. Moll. Voy. Samarang. 41, t. 7, f. 3, 1848 63
Acuticostatus (Fusus) Sowb. Thes. Conch., sp. 35, f. 30, 1880. = F. cælatus, Reeve 228
Acutimargo (Buccinum), Phil. Zeit. Mal., 55, 1851 ? = Nassa.
Acutinodosa (Cominella), Reeve. Buccinum, f. 21, 1846. 206
Adamsi (Phos.), Petit. Jour. Conch., iv, 239, 1853 216
Adamsia, Dunker. Zool. Pro., 357, 1856 101
Adamsii (Fusus), Kobelt. Conch. Cab., 152. $=$ F. ventricosus, Adams.Adansonii (Triton), Dunker. Moll. Guin., 26, 1858.- T. Tranquibaricus, Linn.
Adelaidæ (Adamsia), Ad. \& Ang. Zool. Proc., 421, 1863 101
Adelaidensis (Cominella), Crosse. Jour. Conch., xii, 276, t. 11, f. 6, 1864.
= C. costata, Quoy.
Adspersum (Buccinum), Brug. Encyc. Meth. i, 265.= Cominella maculata, Martyn.
Adustus (Fusus), Philippi. Abbild., ii, 21, Fusus, t. 2, f. 7.
= Siphonalia dilatata, Quoy.
Egrotus (Triton), Reeve. Icon., f. 42, 1844. = T. trilineatus, Reeve.
Aquiliratus (Cantharus), Carpenter. Mazat. Cat., 515, 1857. 165
Astuosa (Siphonalia), Gould. Otia, 123, 1860 137
Ethiops (Buccinum), Phil. Zeit. Mal., 134, 1848.
= Pisania maculosa, Lam.
Ethiops (Pseudoliva), Reeve. Conch. Icon. Buccinum, f. 108 ; Stearns,Proc. A.N.B., Philada., 397, 1878. \Rightarrow Purpura cingulata, L. vol. ii, 169.
Afer, Conrad. Jour. Acad. Nat. Sc., N. S., iii, 332, 1858.$=$ S. G. of Fusus, Lam47, 69
Afer (Fusus), Gmelin, Syst. Nat., 3558 69
Affine (Buccinum) Lesson. Rev. Cuv., 237, 1842 194Affine (Buccinum), Gmel. Syst. Nat., $3490 .=$ Cantharus undosus, Linn.Affine (Busycon), Sowb. H. \& A. Ad., Gen. i, 151 (not published).Affinis (Ranella), Brod. Zool. Proc., 179, 1832.42, 41
Africanus (Triton), A. Ad. Zool. Proc., 312, 1854. 16
Afrum (Buccinum) Phil. Zeit. Mal., 5f, 1851. = Nassa.Agasoma, Gabb., Pal. Calif, ii, 46, 1869104
Agrestis (Leucozonia), Anton. Verzeichn, 71, 1839.
$=$ L. subrostrata, Gray.
Alatum (Triton), Menke. Synops., No. 978. = Eupleura caudata.
Alba (Meyeria), Jeffreys 73
Alba (Nassa), Martini. Conch. Cab., iv, t. 122, f. 1122, 1123.
$=$ Nassaria nivea, Gmel.
Albellus (Lathyrus). Dunker and Metzger. Jahrb. Deutches Mal. Ge- sell., i, 150. t. 7, f. 4, 1874 ; Deutches Meer Comn., 257 , t. 6, f. 4, andCat., $1875 .=$ Meyeria alba, Jeffreys.
Albescens (Bucc.), Dunker. Zeit. Mal., 170, 1846. = NassaAlbicans (Fusus), Anton. Verzeichn, 78, 183969
Albidus (Fusus), Philippi. Abbild., ii, 119, t. 3, f. 5 = Trophon Geversianum, Pallas, vol. ii 144
Albifasciata (Ranella), Sowb. Zool. Proc., 52, 1841. = R. nana, Sowb. Albinus (Fusus), A. Ad. Kool. Proc., 222, 1855. 228
Albinus (Fusus), A. Ad. Sowb. Thes. Conch., sp. 63, f. 72, 1880.$?=\mathrm{F}$. ustulatus, Reeve.
Albivaricosa (Ranella), Reeve. Zool. Proc., 136, 1844 38
Albocingulatus (Triton), Desh. Moll. Reunion, 113.
$=$ T. tuberosis, Lam.
Albolirata (Cominella), Tenison-Woods. Roy. Soc. Tasmania, 33, 1878, 207
Albus (Fusus), Phil. Zeit. Mal., 75, 18.51.
$=$ F. Spectrum, Ad. \& Reeve, var.
Albus (Latirus), Jeffreys. Thompson's Depths of the Sea, 474, figure, 1873. = Meyeria alba.
Alternata (Siphonalia), Phil. Abbild:, Fusus, t. 4, f. 6. 137
Alveolata (Cominella), Kiener. Monog., t. 10,'f. 34.
Alveolata (Cominella), Kiener. Monog., t. 10,'f. 34.
$=$ C. lineolata, Lam.
Amaliæe (Turbinella), Küster. Conch. Cab., 81, t. 19, f. 4, 5. 89
Ambiguus (Fusus), Phil. Icon. Fusus, i, 107, t. 1, f. $2 .=$ Trophon,vol. ii, 147.
Amboynensis (Nassaria), Watson. Jour. Linn. Soc., xv. 273, 1880 223
Ambulacrum (Eburna), Sowb. Tank. Cat. App., 22, 1825. 213
Ambustus (Fusus), Cpr. Cooper and most California writers (not of Gould). $=$ F. Taylorianus, Reeve.
Ambustus (Fusus), Gould. Bost. Proc., vi, 385, t. 14, f. 18, 1853 ; Dall. Cal. Proc., 1877. 59
Americanum (Triton), Orb. Moll. Cuba, ii, 163, t. 23, f. 22, 1853. $=$ T. olearium, Linn.
Amictus (Triton), Reeve. Icon., f. 62, 1844 22
Amœnum (Buccinum). Phil. Zeit. Mal., 140, 1848. = Cantharus. 166
Amphissa, H. \& A. Adams. Genera, i, 111. = Columbellidæ. 201
Amplustris (Latirus), Martyn. Univ. Conch., 1, t. 3. 88
Ampullacea (Bullia), Middendorff. Reise, ii, 237, t. 8, f. 3, 4; t. 17, f. 1-3, 1851 ; Beitr, Mal. Rossica, 179, 1849. = Volutharpa.............198, 200Ampullacea (Ranella), Val. Comptes Rendus, xlvi, 761, 1858.$?=R$. argus, Gmel.
Anceps (Fusus), A. Adams. Sowb. Thes. Conch., sp. 95, f. 131, 1880. $=$ Melongena pallida, Brod. \& Sowb., var. 229

Anceps (Neptunea), H. \& A. Adams. Genera, i, 80.
$=$ Melongena pallida, B. and S .
Anceps (Ranella), Lam. Anim. sans Vert., edit. Desh., ix, 550............ 44
Angasi (Cominella), Crosse. Jour. de Conch., xii, 275, t. 11, f. 5, 1864.
-C. costata, Quoy.
Angasi (Triton), Brazier. Proc. Linn. Soc. N. S. Wales, i, 174, 1877..... 32
Angicostata (Nassaria), Pease. Zool. Proc., 142, 1860; Am. Jour. Conch.,
iv, 109, 1868.
Anglicana (Cominella), Mart. Conch. Cab., iv, t. 126, f. 1212. = C. porcata, Gmel., var.
Anglicanum (Bụcinum), Fleming. Brit. Anim. = B. undatum, Linn. 243
Anglicum (Buccinum), Lam. Edit. Desh., x, 156.

- C. porcata, Gmel., var.

Angularis (Leucozonia), Reeve. Icon., f. 49, 1847.
Angularis (Leucozonia), var. Rüseana, Dunker, Kobelt, 83.
$=$ L. cingulifera, Lam.
Angulata (Pyrula), Lam., vii, edit., 145; Desh., ix, 517.

- Melongena galeodes, Lam.

Angulatus (Fusus), Gray. Zool. Beechey's Voy., 117, 1839.................. 123,
Angulatus (Fusus), Sowb. Thes. Conch., sp. 94, f. 130, 1880.

- Melongena pallida, Brod. and Sowb.

Angulatus (Phos.), Sowb. Thes. iii, 89, t. 221, f. 7.
$=P$. senticosus, Linn.
Angulatus (Triton), Reeve. Icon., f. 88, 1844..................................... 30
Angulosum (Buccinum), Gray. Zool. Beechey's Voy., 127, t. 36, f. 6, 1839. = B. glaciale, Linn.

Angulosum (Tritonium), Mörch, Dunker. Novit., t. 2, f. 3, 4.

- B. glaciale, Linn.

Angustus (Murex), Gmel. Syst. Nat., 3556. ? = Turbinella lancea, Gmel.
Angustus (Sipho), E. A. Smith. Ann. Mag. N. Hist., 5 ser., vi., 287, 1880. 131
Annesleyii (Canidia), Benson. Ann. Mag. N. Hist., 3 ser., vi, 258, 1860. 209
Anomala (Buccinum), Reeve. Conch. Icon., f. 54, 82, 1846. = Melongena.
Anomala (Pyrula), Keeve. Pyrula, f. 9, 12, 1847. $=$ Neptunea anceps, H. anđ A. Adams.
Anomalus (Triton), Hinds. Zool. Proc., 22, 1844, Voy. Sulphur, 12, t. 4, f. 13, 14.

Ansatus (Murex), Gmel. Syst. Nat., 3554, 1788, ? = F. distans, Lam.
Antarctica (Euthria), Reeve. Biccinum, f. 30.
Antarcticum (Buccinum), Phil. Mal. Blatt., xv, 222, 1868. ? = Columbella.
Antillarum (Buccinum), Dunker. = Cantharus tincta, Conrad.
Antillarum (Buccinum), Phil. Zeit. Mal., 139, 1848. = Nassa.
Antillarum (Phos.), Petit. Jour. Conch., iv, 242, t. 8, f. 9, 1853.
$=P$. Veraguensis, Hinds.
Antillarum (Triton), d'Orb. Moll. Cuba, 161, t. 23, f. 20, 1853. - T. tuberosus, Lam.

Antiqua (Neptunea), Linn. Syst. Nat., edit. xii, 222............................ 118
Antiquatus (Triton), Hinds. Voy. Sulphur. t. 4, f. 7, 8......................... 28
Antiquum (Tritonium), Middendorff (not Linn.). Mal. Ross., 130, t. 2,
f. 1, 2.; t. 5, f. 1-6. = Neptunea despecta, Linn., var. fornicata, Gray.

Antonii (Fasciolaria), Recluz. Mag. Zool., t. 92, 1844.
= Fasciolaria coronata, Lam.
Anura, Bellardi. Mem. Acad. Turin, xxvii, 281, 1873.... 226
Anus (Distorsio), Linn. Syst. Nat., edit. xii, 1218............................... 35
Apertus (Fusus), Carpenter. Mazat. Cat.; 504, 1857........................... 67
Apiotropis, Meek. Hayden's Survey, ix, 369, 1876. = Pyropsis, Conr.

Apollon, Montfort. Conch. Syst., ii, 570, 1810. = Argobuccinum, Klein,
Aptyxis, Troschel. Gebiss der Schnecken, ii, 61, 1868. = Fusus, Lam.
Aquatile (Triton), Reeve. Icon., f. 24, 1844. = T. pilearis, Linn.
Aquillus, Montf. Conch. Syst., ii, 578. 1810. = Simpulum, Klein.
Aracanensis (Euthria), Angas. Zool, Proc., 182, t. 20 f. 1, 1873.
Arata (Siphonalia), Gould. Otia, 123, 1860.. 187
Arcticus (Fusus), Phil. Abbild., iii, Fusus; 119, t. 5, f. 5, 1850.
= Sipho Kroyeri, Möller.
Areolata (Eburna), Lam. Anim, sans vert., x, 235. Reeve, f. 6, Voy.
Samarang, 32, t. 8, f. 5... 212
Areolatum (Buccinum), Tiberi. =B. Lefebrui, Marav.
Argobuccinum, Klein. Cstrac., 44, 1753. S. G. of Ranella, Lam........ 37, 42
Argus (Ranella), Gmelin, 3547... 44
Argyrostoma (Neptunea), Lam., H. and A. Ad. Genera, i, 80.................. 123
Armatus (Latirus), A. Ad. Zool. Proc., 314, 1854................................ 94
Armigera (Tudicula), A. Ad. Zool. Proc., 221, 1855............................ 144
Arthritica (Neptunea), Valenc. Compt. Rend., xlvi, 761. $=\mathbf{N}$. despecta, L., var. fornicata.
Articulare (Triton), Menke. Synops., No. 987.
= Cantharus variegatus, Gray.
Articulatus (Fusus), Lam., vii, 33. = Pisania pusio, Linn.
Articulatus (Fusus), Sowb. Thes. Conch., sp. 37, f. 66, 1880. $=F$. Australis, Quoy.228

Articulatus (Phos.), Hinds. Voy. Sulph., 38, t. 10, f. 7, 8, 1844............. 218
Aruanus (Murex), Linn. Mus. Ulric., 641. Partly = Fulgur carica.
Aruanus (Murex), Linn., Binney. Bost. Jour , 1, 67.
$=$ Fusus proboscidiferus, Lam.
Aspa, H. and A. Adams. Gen. Recent. Moll., i, 106. $=$ S. G. of Ranella, Lam.42

Asper (Melongena), Mart. Conch. Cab., ii, 78, t. 40, f. 398, 399. =M. galeodes, Lam.
Aspera (Cantharus), Dunker. Mal. Blatt., xviii, 155, 1871................... 161
Asperrima (Ranella), Dunker. Zool. Proc., 238, 1862. = R. bufonia, Gmel.
Assimilis (Buccinum), Reeve. Buccinum, f. 90, 1846. $=$ Cantharus, d'Orbignyi, Payr.
Assimilis (Fusus). A. Ad. Thes. Conch., Sp. 39, f 78, 1880. $?=\mathrm{F}$. turricula, Kien., var. 59,228
Assimilis (Tritonidea), Angas (not Reeve). Zool. Proc., 187, 1867. = Cantharus Australis, Reeve.
Atractus, Agassiz, Sowb. Min. Conch., ed., Germ., 44, 63, 1840. = Sipho, Klein.
Atteruata (Volutopsis), Dall. Calif. r'roc., v. 253, 1874........................ 121
Attenuatus (Fusus), Jeffreys. Proc. Roy. Soc., xviii, 434, 1870. Ann. Mag., 4 ser., xix, $326,1877 .=$ Sipho tortuosus, Reeve, var.
Audouini (Fasciolaria), Jonas. Zeit. Mal. iii, 63, 1846. $=\mathrm{F}$. trapezium, L., var.
Attenuatus (Latirus), Reeve. Reeve. Icon. f. 69, 1847. $=$ L. infundibulum, Gmel.
Aurantiaca (Fasciolaria), Lam. Edit. 2, ix, 484.................................. 76
Aurantiaca (Fasciolaria), Sowb. (not Lamarck). Gen. Shells, No. ©0. $=\mathrm{F}$. princeps, Sowb.
Aurantium (Buccinum), Lam. Edit. Deshayes, x, 177. ? = Columbella.
Aurantius (Fusus), Anton. Verzeichn. 76, 1839,................................. 69
Aureocinctus (Latirus), Sowb. Zool. Proc. 129, t. 24, f. 2, 1875............. 91
Aureus (Fusus), Reeve. Icon, f. 17, 1847. = F. Australis. Quoy.

Auritula (Buccinum), Link. Mörch, Yoldi Cat, 93.

- Cantharus Coromandelinus, Lam.

Australasiæ (Monoplex), Perry. Conch. t. 3, f. 3. = T. olearium, Linn.
Australe (Buccinum), Chemn. Conch. Cab. x t. 158, f. 1463-4.
= Cassis abbreviata, Lam.
Australiensis, (Peristernia), Reeve. Icon. f. 56. 1847......................... 7!
Australis (Cantharus), Pease. Am. Jour. Conch., vii, 21. 1872............. 161
Australis (Eburna), Sowb. Conch. Ill. f. 5.................................... 213
Australis (Fusus), Quoy. Voy. Astrol. ii. 495, t. 24, f. 9-14. 1832.. 55
Australis (Triton), Lam. Edit. Desh. ix, 625. = T. nodiferus, Lam.
Austrofusus, Kobelt. Küster's Conch. Cab. Neptunea. p. 127...........99, 137
Avellana (Clavella), Reeve. H. and A. Adams. Genera. i, 86.

- Cronia. Vol. ii, 180.

Avena (Buccinum), Phil. Zeit. Mal. 52. 1846. = Columbella.
Babylonia (Schlüt), Syst. Verzeichn. 18, 1838. = Eburna. Lam.
Babylonicus (Fusus), Brown. Illust. Brit. Conch., 227, t. 57, f. 17.
$=$ Neptunea antiqua, L. monstr.
Baccata (Purpura), Hombr. et Jacq. Moll. Voy. Astrol. et Zelée, 87, t. 22, f. 9, 10. - Siphonalia nodosa. Mart.
Bacillum (Triton), Reeve. Icon. f. $94,1844 .=$ T. bracteatus. Hinds.
Badia (Euthria), A. Adams. Proc. Linn. Soc. vii, 108. 1864.
Badia (Fasciolaria), Krauss. Sud. Af. Moll. 110. t. 6, f. 12, 1848. - F. Lugubris, Reeve.

Badia (Neptunea), Dunker, Novit. Conch. t. 1, f. 12. = N. castanea, Mörch.
Baerii (Neptunea), Midd. Mal. Ross. ii, 148. t. 6. f. 7, 8, 1851. = Var. of Buccinum cyaneum, Brug.
Balteatus (Cantharus), Reeve. Buccinum. f. 59. 1846. = C. Cecillii, Phil.
Balteatus (Triton), Beck. Reeve. Icon. = T. Tranquebaricus. Lam.
Bamffius (Fusus), Pennant. Donovan, t. 169, f. 1.
$=$ Trophon clathratus, Línn., vol. ii, 140.
Barclayi (Latirus), Reeve. Icon. f. 20, 1847.
$=$ L. polygonus, Gmel. var.
Barthelemyi (Triton), Angas. Zool. Proc., 45, t: :2, f. 2. 1879............ 11
Bassi (Triton), Angas. Zool. Proc., 45, t. 21, f. 2, 1869......................... 11
Baudoniana (Canidia), Mabille, et Le Mesle. Jour. de Conch. 132, t. 7, f. 1. 1866.

Beaui (Phos), Fischer, Jour. de Conchyl. 2 ser. i, 358 , t. 12, f. 8, $9,1856 . .219$
Beccarii (Triton), Tapparone-Canefri. Mur. Mar. Rosso., 23 t. 19, f. 7. 1875.

Beckii (Fusus), Reeve. Icon. t. 17, f. $34 b 1848$. = Var. of F. Nicobaricus, Lam.
Beckii (Ranella), Kiener. Monog. 5. t. 4, f. 1.- R. subgranosa. Beck.
Bednalli (Triton), Brazier. Proe Linn. Soc. N. S. Wales, i, 6. 1876...32, 225
Behringii (Neptunea), Midd. Mal. Ross. ii, 147, t. 3, f. 5, 6.
Behringii (Volutopsis), var. regularis. Dall. Proc. Cal. Acad. 1873. $=$ Neptunea regularis, Dall.
Belcheri (Buccinum), Reeve. Belcher's Voy., 394, t. 32, f. 7. 1855. Ann. Mag. N. Hist. 4, ser., xx, 133, figs. 1877.
Belcheri (Hemifusus), Hinds. H. and A. Adams. Genera i, 83. = Chorus Belcheri, Hinds. vol. ii, 198.
Belcheri (Peristernia), Reeve. Icon. f. 22. 1847.............................. 79
Belknapi (Melongena), Petit. Jour. Conch., iii, 165, t. 2, f. 5, 1852; Ibid., 2 ser., $\mathrm{i}, 38 .=$ Melongena corona, Gmelin.
Bella (Peristernia), Reeve. Ricinula. f. 15. 1846. =P. Carolinee, Kiener.
Bellus (Fusus), C. B. Ad. Panama Cat. No. 147. ? = Metula. 153
Bengalina (Pyrula), Grateloup. Mémoires, 61, t. 4, f. 5, 1840. 113
Benzoni (Sipho), Mörch. Jour. de Conch, xx, 130, t. 5, f. 3, 1872. 129
Bernardianus (Fusus), Phil. Zeit. Mal. 76, 1851 110
Berniciensis (Fusus), King. Ann. Mag., 246, 1846. 71
Bezoar (Buccinum), Born. Mus. 259. = Melongena galeodes, Lam.
Biangulatus (Fusus', Desh. Voy. Laborde, 66, t. 65, f. 13, 14. Sowb. Thes. Conch., sp., 32, f. 159, 1880. = F. polygonoides, Lam. 228
Bicanalifera (Cyllene), Sowb. = Columbella.
Bicincta (Euthria), Hutton. Jour. de Conch., 15, 1878 155
Bicolor (Buccinum), Phil. Zeit. Mal., 56, 1851. = Nassa.Bicolor (Fusus), Say. Jour. A. N. S. v., 215, 1826.$=$ Melongena, corona, Gmel. Young.
Bicolor (Murex), Cantraine. = Cantharus leucozona, Phil.Bicolor (Peristernia), Kobelt. Küster, 75, f. 18, f. 8,'9.84
Biliratus (Cantharus), Reeve. Buccinum, f. 71, 1846.
$=$ C. fumosus, Dillw., var.
Billeheusti (Pisania), Petit. _Jour. Conch., iv, 244, t. 8, f. $\overline{\text { j }}$; Ibid, vi, 42.
$=$ P. marmorata, Reeve, var.
Billeheustii (Pisania), var. Artensis, Montr. Jour. de Conch., 3 ser., iv,265, 1865. Cantharus Crosseanus, Sowb.
Biplex Perry. Conch., 1811. = Ranella. Lam.
Biplicatus (Phos.), Carpenter. Kool. Proc., 166, 1856. 220
Birmanicum (Buccinum), Phil. Zeit. Mal., 57, 1851. ?= Nassa.
Biserialis (Cominella), Küster. Buccinum, 80, t. 14, f. 12,$=$ C. porcata, Gmel.
Bispinosa (Melongena), Phil. Abbild., Pyrula, i, t. 1, f. 7, 8.= M. corona, Gmel.
Bistriata (Fasciolaria), Gould \& Carp. Zool. Proc., 207, 1855 97
Bitubercularis (Hindsia), A. Ad. Zool. Proc., 183. 1853.= Nassaria acuminata, Reeve.
Bitubercularis (Ranella), Lam. Edit. Desh., ix, 548 42
Bizonata (Canidia), Deshayes. Nouv. Archiv. Mus. Bull., x, t. 8, f. 25,26 . = C. Jullieni, Desh.
Blainvillei (Phos.), Deshayes. Voy. Bellanger, 428. $=$ P. textum, Gmel.
Blosvillei (Fusus), Deshayes. Encyc. Meth. ii, 155 $6!$
Bocourti (Canidia), Brot. Jour. de Conch., ser., xviii, 352, t. 12, f. 6, 1876, 209
Bolivianum (Buccinum), Souleyet. Voy. Bonite, 610, t. 41, f. 22-24, 1852, = Cantharus 156
Boltenianus (Triton), A. Ad. Zool. Proc., 311, 1854 17
Bonnanii (Triton), Scacchi. Cat., 12. = T. reticulatus, Blainv.Boreale (Buccinum), Leach. Jour. de Phys., Vol. 88, 464, 1819.- B. cyaneum, Brug.
Boreale (Buccinum), Brod. \& Sowb. Zool. Jour., iv, 375, 1829.? = B. cyaneum, Brug.
Borealis (Fusus), Sowb. Thes. Conch., sp. 139, f. 110, 1880.
= Neptunea despecta, var. saturnus.
borealis (Neptunea), Phil. Abbild. Fusus, iii, 118, t. 5. f. 2, 1850. $=$ N. despecta, Linn., var. fornicata 230
Boreofusus, Sars. Moll. Norv., 278, 1878. = Buccinofusus, Conr.
Borneensis (Eburna), Sowb. Thes. Conch., iii, t. 291, f. 14.Borneensis (Phos.), Sowb. Thes. Conch., iii, 91, t. 222, f. 22.$=$ P. roseatus, Hinds.
Boysii (Buccinum), Nuttall. Jay's Cat., 3d edit. 87 194
Brachysphingus, Gabb. Pal. Cal., ii, 155, 1869. 106

Bracteatus (Triton), Hinds. Zool. Proc., 21, 1844, Voy. Sulphur ii, t. 4, f. 5, $6 .$.

Branscombi (Fusus), Clark. Ann. Mag. Nat. Hist., 2, ser., iv, 445, 1849. - Defrancia gracilis, Mont.

Brasilianum (Buccinum), Lam. Edit. Deshayes, x, 171. = Planaxiч.
Brasilianum (Triton), Gould. Bost. Proc., iii, 142, 1849. Moll. Wilkes' Exped., 504, f. =T. olearium, Linn
Brazieri (Fusus), E. A. Smith. Jour. Linn. Soc., xii, 539, t. 30, f. 16, 1876. = Coralliophila, Vol. ii. 208

Brazieri (Peristernia), Angas. Zool. Proc., 171, t. 26, f. 4, 1877.
Brazieri (Triton), Angas. Zool. Proc., 46, t. 2, f. 3, 1869. - T. nitidulus, Sowb., var. Ceylonensis.

Brazieri (Trophon), Woods. Vol. ii, 148, 156, 223. ? - Siphonalia castenea, Woods.
Braziliana (Turbinella), d'Orb. Voy. Amer. Merid., 449, t, 77, f. 17. - Leucozonia cingulifera, Lam.

Brenchleyi (Fusus), Baird. Brenchley's Voy. Curaģoa, 434, t. 37, f. 1, 2, 1873. - F. Nicobarius, Lam, var.

Breve (Buccinnm), Adams. ${ }^{\text {Linn. Trans., iii, 64, t. 18, f. 3, } 4 .}$ - Purpura lapillus, Linn., Young.

Brevicaudus (Sipho), Desh. Encyc. Meth., ii, 159, 1830.132

Brevicaudatus (Latirus), Reeve. Icon., f, 50, 1847, 92......................... 92
Breviculus (Fusus), Desh. Mörch, J. C., 3 ser., xvii, 270, 1877. - Sipho brevicaudus, Desh.

Brocchii (Murex), Monterosato, Jour. de Conch., xxii, 393, 1874. $=$ Fusus craticulatus, Brochii.
Bronni (Ranella), Michellotti. Mioc. It. Sept. $257 .=$ R. Gigantea, Lam.
Broti (Canidia), Deshayes. Nouv. Archiv. Mus. Bull., x, t. 8, f. 27, 28. - C. Jullieni, Desh, var.

Bruijnii (Fusus), Tapparone-Canefri. Ann. Mus. Civ., Genoa, viii, 323, 1876
Brunneus (Sipho) Dall. Calif. Proc., Kobelt, Conch. Cab., 121, t. 40, f. 9, 1877 130
Bucephala (Melongena), Lam. Edit. Desh, ix, 508. 109
Buccinatorium, Petiver. = Triton, Montf.Buccinatus (Fusus), Jeffreys (non Lam.) Brit. Conch., iv, 340, t. 86, f. 4,$=$ Sipho Jeffreysianus, Fischer.

Buccinatus (Fusus), Lam. - Pusionella.
Buccinea (Eburna), Menke. Cat. =Cominella maculata, Mart., (polished.)
Bucciniformis (Purpura), Kiener. 40, t. 8, f. 19. $=$ Peristernia Wagneri, Anton.
Buccinofusus, Conrad. Am. Jour. Conch., iii, 264, 186747, 70
Buccinopsis, Jeffreys, Brit. Conch., iv, 297.....................................100, 195
Buccinulum (Pisania), Martini. Conch. Cab., iv, 72, t. 127, f. 1217. $=P$. ignea, Gmel.
Buccinum, Linn. Edit. xii, 1196, 17197..100, 167
Buccitriton, Conrad. Am. Jour. Conch., i, 20, 1865............................. 106
Bufo, Montf. Conch. Syst., ii, 574, 1810. = Ranella, Lam.
Bufonaria, Schum. Essai, 251, 1817. = Ranella, Lam.
Bufonia (Bursa), Bolten. Mörch, Yoldi Cat., 107.
= Ranella spinosa, Lam.
Bufonia (Ranella), Gmelin. 3534........... 39
Bulbaceus (Fusus), Valenc. Comptes Rend., xlvi, 761 - Neptunea despecta, Linn., var. fornicata.

Bulbifusus, Conr. Am. Jour. Conch., i, 17, 1865102

Bulbosus (Fusus), Val. Voy. Venus, t. 5, f. 2.

- Neptunea despecta, L. var. fornicata.
Bulliopsis, Conr. Am. Jour. Conch., ii, 65, t. 3, f. 1, 1866.$?=$ Melanopsis.
Bursa, Bolten. Mus. 1798. = Ranellla, Lam.Busycon. Bolt. Mus. Mörch, Yoldi Cat. i, 104, $1852=$ Fulgur, Montfort.Buxea (Siphonalià, Reeve. Fusus, f. 18, 1847138
Buxeus (Murex), Brod. Zool. Proc., 194, 1832 ? = Cantharus 166
Cabestana Bolt. Mus., 1798. = Simpulum, Klein 9,15
Celata (Ranella), Brod., Zool. Proc., 179, 1832. 41
Cælatus (Fusus), Reeve. Icon., f. 35, 1847 61Calcar (Murex), Scacchi. Notizie 41, t. 1, f. 16. $=$ Fusus vaginatus, Jan.Calcaratus (Murex), Dillv. Desc. Cat. ii, 710.
$=$ Melongena galeodes, Lam.
Calcarius (Murex), Dunker. Mal. Blatt, vi, 230, 1860. Moll. Japan, $5 \mathrm{t}, 1 \mathrm{f} .2$. $=$ Siphonalia. 137
Caledonica (Peristernia) Petit. Jour. de Conch., ii, 367, t. 10, f. 6,1851. = P. ustulata, Reeve.
Californica (Lencozonia), A. Ad. H. and A. Adams' Generas, i, 153. 86
Californica (Ranella), Hinds. Voy. Sulphur, 12, t. 2, f. 4, 5. 1844. 40
Callomphala, Ad. and Ang. Z. P. 35, 1864. = Trochidæ.
Callorhinus (Volutopsis) Dall. Calif. Proc.. 1877. 120
Callosa (Turbinella), Lesson. Rev. Zool., 211, 1842= Cuma tectum, Wood, vol. ii, p. 201.
Cambojiensis (Canidia) Reeve, Icon. Melania, f. 461, 1861. 209
Canaliculata (Buccinopsia), Dall. Cal. Prod., v, 252, 1874. 197
Canaliculata (Eburna), Schum. Essai, 224. Sowb. Thes. iii, 69, t. 215,f. $2,3 .=$ E. spirata, Lam.Canaliculata (Fasciolaria), Val. Recueil d'Observations, 286.
=F. tulipa, Linn.
Canaliculatus (Fulgur), Linn., Syst. Nat. edit. xii, 1222. 142
Canaliculatus (Fusus), Gray. Zool. Beechey's Voy., 116 225
Canaliferus (Triton), Lam. Edit. Desh. ix, $634 .=$ T. caudatus, Gmel.Canariense (Bucc.), Orb. Moll. Canaries, 90, t. 6, f. 35-37. = Columbella.Cancellare (Phos), Menke. Phil. Zeit. Mal. 59, 1851220
Cancellaria (Cantharus), Conrad. Proc. Phil. Acad., 25, t. 1, f. 12, 1846.. 162
Cancellaroides (Melongena), Reeve. Conch. Icon. Fusus, t. 15, f. 59, 1848.. 110
Cancellata (Priene), Lam. Anim. s. Vert. ix, 638 34Cancellatus (Fusus), Reeve. Icon. f. 62. = Triton cancellatum, Lam.Cancellatus (Phos), A. Ad. Zool. Proc. 153, 1850.
$=$ Phos Adamsi, Petit.Cancellatus (Phos), Quoy. Voy. Astrol. ii, 449, t. 32, f. 30, 31.$=$ P. textum, Gmel.
Cancellatus (Triton), Gray. Beechey's Voy. 110, 1839. 33
Cancellatus (Triton), Lam. Hist. edit. Desh. ix, 638 34
Cancellinus (Distorsio), Roissy. Buff. Moll. 56. 35Cancellinus (Fusus), Phil. Archiv fïr Naturg., i, 67, 1845.$=$ Ocinebra lurida, var. aspera, vol. ii, p. 131.
Cancellinus (Fusus), Phil. Archiv Nat. 67, 1845. Abbild. ii, 117, t. 3, f. $2 .=$ Urosalpinx. vol. ii, p. 154.
Candei (Cancellaria), d'Orbigny. Moll. Cuba, ii, 129, t, 21, f. 23, 24. $=$ Phos Guadeloupensis, Petit.
Candelabrum (Latirus), Reeve. Icon. f. 9, 1847.
$=\mathrm{L}$. polygonus, Gmel. var.
Candelabrum (Pyrula), Lam. An. sans Vert., viii, 1822.
= Fulgur carica, Gmel., var.
Candidus (Fusus), Gmel. Syst. Nat., 3556. = F. longissimus, Gmelin.

Candidus (Fusus), Phil. Abbild. iii, 117; t. 5, f. 7. = Netrum (Pusionella).

Candidissimum (Buccinum), C. B. Adams. Bos. Proc. ii, 2, 1845. Nassa.

Candisata (Ranella), Lamarck: An. sans Vert., edit. Desh. ix, 542........ 41

Canidia, H. Adams. Zool. Proc. 383, 1861.......................................101, 208

Capense (Buccinum), Dunker. Zeit. Mal. 110, 1846. Nassa.

Capensis (Fusus), Dunker. Phil. Abbild. i, 110, t. 1, f. 7. = Cantharus.. 156

Cantharulus, Meek. Haydèn's survey, ix, 378, t. 32, f. 5, 1876.

- S. G. of Cantharus. 104

Cantharus. Bolten, Mus. 1798...100, 153
Cantrainei (Triton), Petit. Jour. de Conch. 256, t. 8, f. 10, 1853.

- Murex alveatus, Kiener.

Carduus (Triton), Reeve. Zool. Proc. 121, 1844. = Nassaria nivea, Gmel.
Caribbæum (Triton), d'Orb. Moll. Cuba ii, 162.
= Cantharus Coromandelianus, Lam.
Carica (kulgur), Gmel. Syst. Nat. 3545... 140
Carinatum (Buccinum), Gmel. Syst. Nat. 3493. = B. glaciale, L.
Carinatum (Buccinum), Turton. Conch. Dict. 13. = B. undatum, Linn., Monst.
Carinatum (Haustellum), Schum. Nouv. Syst. 213. = Tudicla spirillus, L.
Carinatum (Tritonium), Dunker. Novit. Conch. 1, t. 2, f. 3, 4.
= Bucc. glaciale, L.
Carinatus (Fusus), Pennant. Brit. Zool. iv, t. 77, f. 96. = Neptunea despecta, Linn., var.
Carinatus (Murex), Bivona. Nuov. gen. 27, t. 2, f. 12. - Fusus vaginatus, Jan.

Cariniferus (Cantharus), Küster, 63, t. 12, f. $9,10 \ldots \ldots .155$
Cariniferus (Latirus), Lam. Hist. vii, 108... 88
Carnaria (Pyrula), Encyc. Meth. = Melogena pugilina, Born.
Carolinæ (Turbinella), Kiener. Monog. 47, t. 18, f. 1........................... 82
Casani (Buccinum), Maravigna. Rev. Cuv. 325, 1840.............................. 195
Cassidariæformis (Siphonalia), Reeve. Buccinum, f. 11, 1846............... 135
Cassidulus, H. and A. Adams. Genera i, 81. = Melongena, Schum.
Cassidulus, Humpb. Mus. Calonn, 1797. = Pyrula partim.
Castanea (Neptunea), Mörch. Diag Nouv. Moll. Amer. Vidensk, Meddel 341, 1857: - Volutopsis Behringii, Midd.
Castanea (Siphonalia), Woods. Proc. Roy. Soc. Tasmania, 139, 1876..... 137
Castaneum (Buccinum), Dall. Calif. Proc., 1877................................... 187
Castaneus (Latirus), Reeve Icon., f. 26, 1847...................................... 91
Cataracta (Cominella), Chemn. Conch. Cab. x, 188, t. 152, f. 1455. $=$ C. testudinea, Mart.
Catenatum (Buccinum), Powis. Zool. Proc. 94, 1835. ? = Columbella... 194
Catilini (Fusus), Petit. =Pusionella.
Caudata (Ranella), Say. = Eupleura caudata, Say. Vol. ii, p. 157.
Caudatum (Buce.), Wood. Index Test., t. 22, f. 8.

- Triton cingulatus, Lam.

Caudatum, (Triton), Kiener. Monog., t. 9, fig. 2. $=$ I. ficoides, Reeve.
Caudatus (Triton), Gmel. Syst. Nat. 3535
Caudatus (Fusus), Quoy. Voy. Astrol. ii, 508, t. 34, f. 20, 21. $=$ F. Australis, Quoy.
Caudatus (Fusus), Sowb. Thes. Conch., sp, 135, f. 167, 1880229

Cavitensis (Ranella), Beck. =R. crumena, Lam.
Cayohuesonicus (Latirus), Sowb. Zool. Proc. 796, 1878........................ 92
Cecillii (Buccinum). Phil. Zeit. Mal. 27, 1848. = Nassa.
Cecillii (Turbinella), Phil. Zeit. Mal. 166, 1844. = Cantharus............. 157
Ceratus (Latirus), Gray. Zool. Beechey's Voy. 114 88
Ceylonensis (Triton), Sowb. Zool. Proc. 71, 1833.
$=$ T. nitidulas, Sowb. văr.
Charonia, Gistel. Naturg. 170, 1848. $=$ Triton, Montf. Chascax, Watson. Zool. Proc. 362, 1873. = Fasciolaria Lam.
Chemnitzii (Ranella), Küster. Conch. Cab. 148, t. 39, f. 3, 4. = R. bitubercularis, Lam.
Chemnitzii (Triton), Reeve. Icon. f. 37. =T. Wiegmanni, Anton.
Chemnitzii (Triton), Gray. Zool. Beechey's Voy. 110, 1839. = T. Tranquebaricus, Lam.
Cheyennensis (Cryptorhytis), Meek... 50
Chiloense (Buccinum), Phil. Zeitsch. für die Ges. Naturwiss. 124, 1858.. 195
Chinense (Buccinum), Phil. Zeit. Mal., 57, 1851. = Nassa.
Chlanidota, Martens. Sitzb. Berl., 23, 1878. 101, 201
Chlorostoma (Peristernia), Sowb. Tank., Cat. App., 15, 1825................ 83
Chlorostomus (Triton), Lam. Edit. Desh., ix, 636.................................. 13
Chlorotica (Euthria), Martens. Sitzb. Berlin, 22, 1878.......................... 152
Chonoticus (Fusus). Phil. Abhandl. Nat. Gesell. Halle, 21, 1857............ 68
Chrysostoma (Cyllene), Meuschen, Mörch. Yoldi Cat., 80.................... 225
Chrysostoma (Eburna). Sowb. Thes. Suppl., t. 291, f. 15, 16................ 212
Chrysodomus, Swainson. Malacol., 90, 308, 1840. $=$ Neptunea, Bolten.
Ciliatum (Buccinum), Fab. Faun. Grænl., 401, 1780.............................. 191
Ciliatum (Bucc.), Part. Gould. Invert. Mass., 307, 1841. Dawson, Canad. Nat., ii, 415, t. 7, f. 5, 1857. = B. Tottenii, Stimpson.
Ciliatum (Bucc.), Part. Gould. Invert. Mass., 307, f. 209, 1841.
$=$ B. Humphreysianum, Bennett.
Cinctum (Buccinum), Quoy. Astrol., ii, 413, t. 30, f. 5-7. $=$ Cantharus undosus, Linn.
Cinerea (Turbinella), Reeve. Icon., f. 68, 1847. = Fusus cinereus; Rve.
Cinereum (Buccinum), Born. Test. Mus. Cæs. = Terebra.
Cinereus (Fusus), Reeve. Conch. Icon.60
Cinereus (Fusus), Say. = Urosalpinx cinereus, Vol. ii, p. 152.
Cingilla (Pisania), Reeve. Buccinum, f. 101, 1847.149
Cingulata (Pisania); Reeve. Buccinum, f. 75, 1846 148
Cingulata (Leucozonia), Lam. Edit. Desh., x, 118. 225
Cingulatus (Triton), Lam. Edit. Desh., ix, 643. 15
Cingulifera (Turbinella), Lam. Hist. vii, 108. 94
Cinis (Pisania), Reeve. Buccinum, f. 84, 1846. 147
Cinnamomea (Siphonalia), Reeve. Icon., f. 16, 1847. 138
Circulus (Fusus), Anton. Verzeichn., 77, 1839 69
Citrina (Cominella), Reeve. Icon. Bucc., f. 70. 1846 206
Citrina (Pyrula), Lam. Edit. Desh., ix, 518.

- Melongena paradisiaca, Reeve.
Clandestinus (Triton), Lam. Edit. Desh., ix, 639. 15
Clarkei (Siphonalia), Woods. Proc. Roy. Soc. Tasmania, 138, 1875. 137
Clathrata (Metula), Adams and Reeve. Voy. Samarang, 32, t. 11, f. 12, 1848. 152
Clathrata (Peristernia), Kiister. Monog. Turbin., 41, t. 9, f. 5.$?=\mathrm{P}$. chlorostoma, Sowb.
Clathrata (Ranella), Gray. Beechey's Vny. Blossom, 109, 1839.$=$ Eupleura, vol. ii, p. 158.
Clathrata (Turbinella), Valenc. Kleiner, 46. t. 18, f. 4
Clathratum (Triton), Lam. Edit. Desh., ix, $637=$ T. cancellinus, Roissy. Clathratus, (Murex), Reeve. Conch. Icon., sp. 185. = Nassaria 222
Clathratus (Triton), Sowb. (not Lam.) Zool. Proc., 71, 1833. 26
Clausicaudatus (Fusus), Hinds. Voy. Sulphur, 13, t. i, f. 10, 11, $1844 . .$. 64
Clavator (Triton), Sowb. Genera. =T. exilis, Reeve.
Clavella, Swainson. Elem., 1835. 47, 70
Clavella (Pyrula), Reeve. Icon., f. 10. =Fulgur striatus, Gray. Clavellithes, Swains. Mal. 77, 304, 1840. = Clavella, Swains.
Clavifusus, Conrad. Eocene Check List, Nos. 615; 612 104
Clavula (Buccinum), Mencke. Jay, Cat., 3d edit., 87. 194
Clea, A. Adams. Zool. Proc., 119, 1855 101, 207
Closter (Fusus), Phil. Abbild., iii, 115, t. 5, f. 1, 1850.
= F. distans, Lam., var.
Closteriscus, Meek. Hayden's Survey, ix, Pal. 306, t. 19, f. 10, 1876 103
Coarctata (Pyrula), Sowb. Tank. Cat., App., 17. Petit, Jour. Conch., iii,155, t. 753. = Fulgur perversus. Linn.
Cochlidium, Gray. Fig. Moll. An., iv, 68, 1850. Hemifusus, Swains.
Cochlidium (Melongena), Linn. Syst. Nat., edit. 11, 1221 110Columbarium (Murex), Chemn. Conch, Cab., x, 284, t. 169, f. 1637, 1638.- Peristernia spinosa, Martyn.
Colosseus (Hemifusus). Lam. Edit. Desh., ix, 442 111
Colubraria, Schum. Nov. Gen., 251, 1817. = Epidromus, Klein.Colubrinum (Triton), Grateloup. Atlas, t. 29, f. $21 .=$ T. nodiferus, Lam.
Colus, Bolton. Mus. 1798. Fasciolaria, Lam.
Colus, Humphreys. Mus. Colon., 1797. = Fusus, Lam.
Colus (Fusus). Encyc. Méth.,'t. 424, f. 4. = F. tuberculatus, Lam.Colus (Fusus), Linn. Syst. Nat., edit. xii, 3543, 1767.52
Colus (Fusus), Renieri. Taf. Alf. = Fusus rostratus, Olivi.
Colus (Murex), Wood. Index Test. = Fusus Nicobaricus, Lam.
Colus (Siphonalia), A. Ad. Ann. Mag. Nat. Hist., xi, 205, 1863. 137
Cominella, Gray. Guide Brit. Mus., 15, 1857. 201
Commoda (Macron), H. and A. Ad. Zool. Proc., 430, 1863 214
Commoda (Siphonalia), A. Ad. Ann. Mag. Nat. Hist., xi, 203, 1863 137
Commatatum (Triton), Dunker. Küster, 224.
=T. Tritonis, Linn., var. nobile.Comptus (Triton), A. Ad. Zool. Proc., 312. 1854.33
Comptus (Triton), Sowb. Zool. Proc., 598, t. 72, f. 2, 1874.= T. obscurns, Reeve.
Concentricus (Latirus), Reeve. Icon., f. 2, 1847. $=$ L. modestus, Anton.
Concentricus (Tritonidia), Reeve. Bucc. f. 72, 1846.$=$ Ocinebra contracta, Reeve, vol. ii, p. $1 \sharp 1$.Concinnna (Cyllene), Soland, Adams. Zool. Proc., 204, 1850224
Concinna (Ranella), Dunker. Zool. Proc., 239, 1862. Novit. Conch, 55,t. 18, f. 3, 3. = R. pusilla, Brod., var.

Concinna (Siphonalia), A. Ad. Ann. Mag. Nat. Hist., xi, 204, 1863. $?=$ S. signum, Reeve.
Concinnum (Buccinum), C. B. Adams. Bost. Proc., ii, 2, 1845. = Columbella.
Concinnus (Triton), Reeve. Icon., f. 87, 1844, 29
Conditus (Murex), Gmelin. = Ranella candisata. Lam.
Conicus (Fusus), Anton. Verzeichn., 77, 183969Conoidalis (Buccinum), Deshayes. Voy. Belanger, 433, t. 3, f. 6, 7.$=$ Nassa.

Conoideum (Buccinum), Sars. Moll. Norv., 258, t. 24, f. 7, 1878. $=$ B. undatum, L.
Conspersa (Siphonalia), A. Ad. Ann. Mag. N. Hist., ii, 204, 1863. - S. Cassidariæformis, Reeve.

Conspersum (Buccinum), Phil. Zeit. Mal., 138, 1848. = Nassa:
${ }^{2}$ Constricta (Distorsio), Brod. Zool. Proc., 5, 1833.
= D. cancellinus, Roissy.
Constrictus (Fusus), Koch. Phil. Abbild, ii, 21, t. 2, f. 5.

- Coralliophila, vol., ii, p. 208.
Contabulatum ('Triton), Anton. Verzeichn., 82, 1839 14
Contabulatus (Fusus), Anton. Verzeichn., 77, 1839 69
Contemptus (Latirus), A. Ad. Zool. Proc.,315, 1854. 92
Contractum (Buccinum), Reeve. Icon. f. 53, 1346. $=$ Ocinebra, vol., ii, p. 131.
Contraria (Neptuna), Linn. Mant. No. 554 122
Convolutus (Triton), Brod. Zool. Proc., 7, 1833 25
Cordieria Rouault, = Borsonia, in Pleurotomidæ 50
Coreanicus (Fusus), E. A. Smith. Zool. Proc., 204, t. 20, f. 36, 1879. $=$ Ptychatractus 72
Coriacea (Ranella), Reeve. Zool., 137. = T. scrobiculator, Linn.Cornea (Euthria), Linn. Syst. Nat. Edit., xii, 1224149
Corneus (Fusus), Linn. Syst. Nat. $=$ Sipho Islandicus and S. gracilis. Corneus (Fusus), Say. Am. Conch., t. 29. = Sipho gracilis, Da Costa.
Cornulina Conrad. Am. Jour. Conch. i, 21, 1865 102
Coromandelianus (Cantharus), Lam. Edit. Desh., x, 169. 163
Coronata (Fasciolaria), Lam. Edit., 2, ix, 435. 77
Corona (Melongena), Gmel. Syst. Nat. 3552 108Coronatus (Fusus), Lam. Edit. Desh., ix., 452. = Melongena morio, Linn.Corrugata (Ranella), Perry. Conch., t. 5, f. I, 1811, Mörch. Mal. Blatt.xxiv, 24. = R. affinis, Brod.
Corrugata (Siphonalia), A. Ad. Ann. Mag. N. Hist., xi., 204. 1863.. 137Corrugatum (Buccinum), Reeve. Icon., f. 110, 1847. = Amphissa.Corrugatus (Fusus), Reeve. Icon., f. 84, $5848 .=$ Trophon, vol. ii, p 145.Corruscans (Buccinum), Phil. Zeit. Mal. 58, 1851. ? = Nassa.Corticatus (Fusus), Hutton. Cat. Moll. N. Zeal., 9, 1873.$=$ Urosalpinx Paivæ, Crosse, vol., ii, p. 155.Corrugatus (Triton), Lam. Edit. Desh.. ix., 62815
Costata (Cominella), Quoy. Voy. Astrol., ii, 417, t. 30, f. 17, 20 203
Costatum (Buccinum), Meusch. Mus. Gevers., 605, 1787.$=$ Triton Poulsenii, Mörch.
Costatus (Triton) Born. Mus. 297. = T. olearium, Linn.
Costulatum (Buccinum), Anton. Verzeichn., 92, 1839. = Nassa.
Couderti (Streptosiphon), Petit. Jour. de Conch., 76, t. 2, f. 8, 18503.$=\mathrm{S}$. Cumingii, Reeve.
Couei (Fusus), Petit. Jour. de Conchyl., iv., 249, t. 8, f. 1, 1853. 68
Coxi (Triton), Brazier. Zool. Proc., 22 t. 4, f. 9, 1872. 28
Crassa (Cominella), Adams. Morch, Yoldi Cat., 94. = C. porcata, Gmel.
Crassa (Lagena), Schum. Nouv. Syst. = Leucozonia smaragdula, Linn.
Crassa (Ranella), Dillwyn. Cat. ii, 692.38
Crassicauda (Pyrula), Phil. Zeit. Mal., 98, 1848.
$=$ Hemifusus tuba, G mel.
Crassum (Buccinum), Nyst. (fossil). ? = Buccinopsis Dalei, Sowb.
Crassum (Triton), Grateloup. Atlas., t. 29, f. 20. $=$ L. nodiferus, Lam.218
Crassus (Phos), Hinds. Voy. Sulphur, 37, t. 10, f, 1, 2, 1844
Craticulata (Turbinella), Costa. Cat. Syst. (excl. syn.) 91.
$=$ Cantharus d'Orbignyi, Payr.
Craticulata (Turbinella), Schubert. Kiener. Iconog., t. 9. f. 2.
$=\mathrm{T}$. crenulata, Kiener.
Craticulata (Turbinella), var. Wagner. Conch., 103, t. 227, f. 4023,4024. = Peristernia Wagneri, Anton.
Craticulatus (Fusus), Brocchi. Conch. Foss. Subapp., 406, t. 7, f. 14.... 60
Craticulatus (Latirus), Linn. Syst. Nat Edit. xii, 1224. 93
Crebricostata (Neptunea), Dall. Proc. Cal. Acad., Kobelt. Conch. Cab., 116, t. 39, f. 1, 1377 118
Crebricostatus (Fusus), Lam. Anim. sans Vert., 2d edit., ix, 458. 68

Crebriliratus (Fusus), Reeve. Icon., f. 20, 1847. = F. Australis, Quoy.
Crebristriatus (Triton), Carpenter. Zool. Proc. 175, 1856....................
Crenilabrum (Pisania), A. Adams. Zool. Proc., 138, 1854. E. A. Smith, Jour. Linn. Soc. xii, 541, 1876. = P. fasciculata, Reeve, var. Montrouzieri, Crosse.
Crenulata (Peristernia), Kiener. (non Reeve). Icon. 43, t. 9, f. 2. $=$ P. Chlorostoma, Sowb.
Crenulata (Turbinella), Reeve (not Kiener). Icon. f. 24, 1847. - Peristernia Wagneri, Anton.

Crenulatus (Fusus), Sowb. Thes. Conch., sp., 87, f. 17, 1880.
Cretaceum (Buccinum), Reeve. Icon., f. 112, 1847; Canad. Nat. viii, 417, Packard, Bost. Memoirs, i, 288. = Sipho Kroyeri, Möller.
Cretaceus (Fusus), Reeve. Icon., f. 48, 1847. = Trophon, vol. ii, p. 149.
Cribrarium (Buccinum), Lam. Anim. sans Vert. vii, 274. = Columbella.
Crispus (Fusus), Forbes. Fg. Invert, 139. ? = F. pulchellus, Phil.
Crispus (Triton), Reeve. Icon., f. 68, 1844.24
Crocata (Fasciolaria), Phil. Zeit. Mal., v, 25, 1848 76
Crocatus (Cantharus), Reeve. Buccinum, f. 97, 1846. 160
Crocea (Cominella), A. Adams. Zool. Proc., 97, 1853 207
Crosseanus (Cantharus), Sowerby. Jour. de Conchyl., 3 ser., v, 160, 1865. 161, 166
Cruentata (Ranella), Sowerby. Zool. Proc., 51, 1841; Conch. Ill.,f.5, 5*. 39Crumena (Ranella), Kiener, (not Lam.). Monog. 3, t. 2, f. 1,$=$ R. foliata, Brod.
Crumena (Ranella), Lamarck. An. sans Vert., edit. Desh., ix, 545. 37
Crumenoides (Ranella), Blainv. $=$ R. crumena, Lam.Cryptorhytis, Meek. Hayden's Survey, ix, 356, 1876.=S. G. of Fasciolaria, Lam.50
Cubaniana (Ranella), d'Orb. Moll. Cuba, 105, 368, t. 23, f. 24, 1853.
Mörch, Mal. Blatt, xxiv, 24, 1877. = R. affinis, Brod.Cucurbitula (Purpura), Duclos. Ann. Sc. Nat, t. 2, f. 12, 1832.= Cominella lagenaria, Lam.
Cumia, Bivona. Nov. Gen., 1838. 25Cumingiana (Ranella), Dunker. Zool. Proc., 238, 1862; Novit. Conch.59, t. 19, f. 78. $=$ R. affinis, Brod.
Cumingianum (Buccinum), Dunker. Zeit. Mal., iii, 1846.- Cantharus Cecillei, Philippi.
Cumingii (Metula), A. Adams. Zool. Proc., 173, t. 20, f. 1, 2, 1853....... 153.
Cumingii (Neptunea) Crosse. Jour. de Conch., x, 51, t. 5, f. 12, 1862.$=\mathbf{N}$. despecta, Linn., var. fornicata.
Cumingii (Phos), Reeve. Elem. Conch., t. 3, f. 16, 1860.$=$ P. gaudens, Hinds.
Cumingii (Streptosiphon), Jonas. Reeve, Icon. Fusus, f. 67, 1818. 144
Cumingii (Triton), Dohrn. Zool. Proc., 205, t. 26, f. 5, 1861.= T. clathratus, Sowb.
Curta (Nassaria), Gould. Otia, 125, 1860 523
Curta (Neptunea), Jeffreys. Brit. Conch., iv, 336, 1867.- Sipho Stimpsoni, Mörch.
Cuspidata (Ranella), Reeve. Zool. Proc., 139, 1844. 43
Cutaceum (Triton), Linn. Syst. Nat., edit. 12, 1217 15
Cyaneum (Buccinum), Brug. Encyc. Meth., i, 266, 1792. 188
Cyaneum (Buccinum), Hancock. Ann. Mag. N. Hist., xviii, 328, 1846$=$ B. ciliatum, Fabr.

Cyanostoma (Phos), A. Adams. Zool. Proc., 155, 1850. Smith, Zool. Proc., 811, 1875. $=$ P. textum, Gmel.
Cygneus (Fusus), Phil. Zeit. Mal., viii, 77, 1851.68
Cylindricus (Triton), Pease. Am. Jour. Conch., iv, 94, t. 11, f. 9, $1868 .$. 29
Cyllene, Gray. Griffith's Cuvier, t. 41, 1833 223 223
Cyllenoides (Phos), A. Adams. Zool. Proc., 155, 1850 216
Cymatium, Bolt. Mus., 1798. $=$ S. G. of Triton, Montf. , 18
Cymatium, Link, Ros. Samml., iii, 119. = Plicatella, Swains.
Cynocephalus (Triton), Lam. Edit. Desh., ix, 633 19
Cyrtulus, Hinds. Ann. Nat. Hist., xi, 256, 1843. = Clavella, Swains.
Dakotensis (Serrifusus), M. \& H. 49
Dalei (Buccinopsis), Sowb. Min. Conch., 139, t. 486, f. 1, 2 195
Dalli (Sipho) Friele. Norw. North Sea Exped., t. 2, f. 18, 19 132
Danielseni (Sipho), Friele. Jahrb. Mal. Gesell., vi, 282, 1879 132
Decapitatus (Triton), Reeve. Icon., f. 85, 1844 29
Decemcostata (Neptunea), Say. Jour. Phila. Acad., v, 214, 1826 118
Decemcostatum (Tritonium), Midd. (non Say). Mal. Ross., ii, 138.$=$ Neptunea lirata, Mart.
Decipiens (Distorsio), Reere. Icon., f. 102, 1844.
= D. cancellinus, Roissy.
Decollatus (Murex), Pennant (non Linn.), Brit. Zool., iv, 124, t. 79.- fry of Neptunea antiqua, Linn.
Decollatus (Triton), Sowb. Zool. Proc., 72, 1833 28
Decolor (Fusus), Phil. Archiv für Naturg. i, 63, 1845.$=$ Trophon Geversianus, Pallas, vol, ii, 144
Decoratus (Peristernia), A. Ad. Zool. Proc., 316., 1854. E. A. Smith,Zool. Proc., 812, 1878. = P. chlorostoma, Sowb.
Decussata (Cumia), Calcara, 1838, Phila. = Triton reticulatus, Blainv. Deformis (Neptunea), Reeve. Fusus, f. 45, 1847 122
Delalandi (Cominella), Kiener. Monog., t. 5, f. 14 203
Depictus (Fusus), Sowb. Thes. Conch., sp. 82, f. 86, 1880 228
Deshayesiana (Volutharpa). Fischer. Jour. de Conch., v, 86, t. 3, f. 89185, 6, J. C., 112, 1875. = V. ampullacea, Midd.
Deshayesii (Peristermia), Kobelt. Küster's Conch. Cab., 109, t. 24, f. 4, 5.$=$ = . nassatula, Lam.
Desmoulinsi (Pisania), Montrouzier. Jour. de. Conch., 3 ser., iv̀, 268,t. 10, f. 3, 1864. = Cantharus fumosus, Dillw., var.
Despectus (Murex), Montagu, Pennant, etc. = Neptunea antiqua, Linn.
Despecta (Neptunea), Linn. Syst. Nat., edit. xii, 1222. 116
Despecta (Peristernia), A. Adams. Zool. Proc., 315, 1854 85
Digitalis (Triton), Reeve. Icon., f. 86, 1844. 24
Dilatata (Siphonalia), Quoy. Voy. Astrol., ii, 498, t. 34, f. 15-17 135
Dilectus (Fusus), A. Ad. Zool. Proc., 221, 1855. 68, 227
Dira (Euthria), Reeve. Buccinum, f. 92, 184f. Dall., Calif. Fusus, Proc. Cal. Acad., 1877 151
Discolor (Pisania), Kiener. Buccinum, t. 11, f. 39. =P. glirina, Bl.
Distans (Fasciolaria), Lam. An sans Vert. Edit. Desh., ix 433.$=$ F. tulipa, L.
Distans (Fusus), Lam. Edit. Desh., ix, 445 57
Distinctus (Latirus), A. Ad. Zool. Proc., 315, 1856. 94
Distorsio, Bolt. . Mus., 1798 5, 35
Distorta, Perry. Conch., 1311. = Distorsio Bolt.
Distortrix Link, Besch. Rostock, iii, 122, 1807. = Distorsio, Bolten.Distortum (Triton), Encycl., t. 415, f. 3. $=$ T. lotorium, Linn.
Distortus (Cantharus), Gray. Wood's Index Suppl., t. 45, f. 7... 165
Distortus (Triton), Schubert. Wagn. Conch., Cab. 138, t. 231, f. 4074, 4075 26
Doliarius (Triton), Linn. Edit. xii, 1223 16
Dominovæ (Neptunea), Valenc. Comptes Rendus i, 761, 1858. Kobelt, Conch. Cab. 95 123
Donovani (Buccinum), Gray. Zool. Beechey's Voy., 128, 1839. 187
Donovani (Buccinum), Reeve (non Gray). Icon. f. 2
= T. Terræ-Novæ, Beck.
D'Orbignyi (Cantharus), Payr. Cat. Moll. Corse, 150, t. 8, f. 4-6 158
Dorsuosus (Triton), A. Ad. Ann. Mag. Nat. Hist., 4 ser. v, 420 18
Dubia (Cominella), Krauss. Kobelt Cat. No. 3. = Purpura scobina, Quoy.
Duhia (Leucozonia), Petit. Jour. de Conch. iv, 75, t. 2, f. 9, 10, 1853.
Dumale (Phos.), Phil. Zeit. Mal. 60, 1851 220
Dunkeri (Cominella), Küster. 86, t. 15, f. 9-11 203
Dunkeri (Fusus), Jonas.. Malak. Beitr. 129, 1844. Phil. Abbild. ii, 191, t. 4, f. 4. 60
Dunkeri (Triton), Lischke. Mal. Blatt, xv, 219, 1868. Jap. Moll. i, 49, t. 3, f. 1, 2 19Duodecimus (Fusus), Gray Dieffenbach's N. Zeal. ii, 230.- Trophon, vol. ii, p. 147.Dupetit-Thouarsi (Fusus) Kiener. Monog. 15, t. 11.= F. distans, Lam., var.Duplicatus (Murex), Donovan. Brit. Shells, iv, t. 119.- Neptunea despecta, Linn., var. fornicata.

Eatoni (Buccinopsis), Smith. Ann. Mag. Nat. Hist. xvi, 68, 1875.
(Neobuccinum), Smith. Trans. Roy. Soc., vol. 168, p, 169, t.9, f. 1. 197
Ebur (Fusus), var. togatus, Petit. Cat. Moll. Eur. 275.

- Sipho togatus, Mörch.

Ebur (Neptunea:), Kobelt (non Mörch). Jahrb. Mal. Ges. iii, 74, t. 3, f. 1,2 1877. = Sipho propinquas, Alder, var.

Ebur (Neptunea), Morch. Jour. Conch. xvii, 398, 1869. Kobelt, 113, t. 38, f. 6. - Sipho Sarsii, Jeffreys.

Eburna, Lam. Syst. An. 78, 1801..101, 209
Eburnea (Buccinopsis), Sars. Reise i Lofoten og Finm. 73, 1849. $=$ var. of Buccinopsis Dalei, Sowb.
Eburnea (Cominella), Reeve. Buccinum, f. 93, 1846. = C. costata, Quoy.
Eburneus (Triton), Reeve. Icon. f. 69, 1844.
Echinata (Gyrineum), Link. Mus. Rost. iii, 123.

- Ranella spinosa, Lam.

Echinatus (Fusus), Phil. Moll. Sicil. ii, 179.
$=$ Trophon muricatus, Mont., vol. ii, p. 140.
Echinatus (Fusus), Kiener. Monog. 19, t. 2, f. 2. = F. vaginatus, Jan.
Ectracheliza. Nov. Gen. Buccinidæ, Gabb. Proc. Philad. Acad. N. S. ii, 271, t. 9, f, 2, 1872.105
Effusum (Buccinum), Reeve. Icon. f. 65, 1846 188
Egregia (Nassaria), Reeve. Conch. Icon. Triton, t. 18, f. 78, 1844. 222
Elata (Pisania), P. P. Carpenter. Ann. Mag. N. Hist,. 3d Ser., xiv, 49, 1864. = Cantharus. $15!1$
Elegans (Cantharus), Gray. Griffith's Cuvier, t. 25, f. 2, 1834 164
Elegans (Fusus), Gray. Ann. Nat. Hist., i, 27, 1838. $=$ Turbinella. 97Elegans (Fusus), Reeve. Icon. f. 87, 1848. =F. Maroccensis, Gmel.Elegans (Latirus), A. Ad. Zocl. Proc., 315, 185494
Llegans (Ranella), Beck, Sowb. Conch. Ill., f. 17.= R. subgranosa, Sowb., var.

Elegans (Ranella), Kiener (not Beck). Monog. 4, t. 3, f. 1. - R. crumena, Lam.

Elegans (Sycotypus), Conrad. Am. Jour. Conch. iii, 185. Proc. Philad. Acad. 583, 1862. = Fulgur pyrum, Dillw.
Elegans (Terebrispira), Conrad. 50
Elegans (Triton), Thompson. Ann. Mag. Nat. Hist. xv, 317, t. 19, f. 1.- Engina farinosa, Gld.
Eliceans (Fulgur), Montf. Conch. Syst. 303. - F. carica, Gmel., var.
Flongata (Cominella), Dunker. Zool. Proc., 356, 1856. 207
Elongatulum (Buccinum), Anton. Verzeichn. 91, 1839. = Bullia.
Elongatus (Hemifusus), Lam. Edit. Desh. ix, 513. 112
Elongatus (Triton), Reeve. Icon. f. 59, 1844. =T. vespaceus, Lam.
Encausticus (Triton), Reeve. Icon. f. 43, 1844 23
Engina, Gray. 220
Epidromus, Klein. Ostrac. 52, 1753. Adams' Gen. i, 103.
$=$ S. G. of Triton, Montf.9, 25
Epitremia (Ranella), Tenison-Woods. Proc. Roy. Soc., Tasmania, 133, 1876. ? = R. jucunda, A. Ad 45
Eripachya, Gabb. Pal. Calif. ii, 148, 1869 105
Erythrostoma (Cantharus), Reeve. Buccinum, f. 14, 1846. 155
Escale (Buccinum), Phil. Atacama, 188, t. 7, f. 18, 1860 194
Eupleura, H. and A. Ad. Genera i, 107. See Muricidæ, vol. ii, p. 157.
Euthria, Gray. Fig. Moll. An. iv, 67, 1850. 149
Evarne, H. and A. Adams. Genera of Recent Moll. i, 79, 1858.
$=$ Euthria, Gray.
Exaratus (Triton), Reeve. Icon., f. 50, 1844 22
Excavatus (Fusus), Sowb. Thes. Conch. sp., 136, f. 168, 1880. 229
Exilia, Conrad. Jour. Philad. Acad. iv, 291, t. 47, f. 34, 1860. 49
Exilifusus Conr. Am. Jour. Conch. i, 18, 1865. = Exilia, Conrad.
Exilifusus, Gabb. Proc. Philad. Acad., 278, 1876 49
Exilis (Fusus), Menke. Moll. Nov. Holl., 26, 1843. 68
Exilis (Triton), Reeve. Icon. f, 11, 1844 21
Eximius (Triton), Reeve. Icon., f. 77, 1844 28
Extensium (Bucc.), Dunker. Philippi, Abbild., iii, 70, t. 2. f. 11. $=$ Cantharus 156
Fallax (Latirus), Kobelt. Küster, Conch. Cab., 80, t. 19, f. 3. 93Farinosum (Buccinum), Gould. Otia, Conch., 64, 245. = Engina.Fasciata (Melongena), Schum. Essai, Nouv. Syst. = M. melongena,Linn.
Fasciata (Turbinella), Sowb. Reeve, Icon.= Peristernia spinosa, Martyn.
Fasciatus (Phos), A. Adams. Zool. Proc., 175, 1853.$=P$. senticosus, Linn.
Fasciculare (Buccinum), Menke. Moll. Nov. Holl., 21, 1843 194
Fasciculata (Pisania), Reeve. Buccinum, f. 76, 1848 146
Fasciculatus (Fusus), Hombr. et Jacq. Voy. Astrol. et Zel., v. 110, t. 25, f. 15, 16, 1854. = Trophon, vol. ii, 143.
73
73
Fasciolaria Lam. Syst. An., 83, 1801
Fasciolaria Lam. Syst. An., 83, 1801
Fasciolarioides (Fusus), Forbes. Egean. Invert., 190.$=$ Cantharus leucozona, Phil.
Fasciolaris (Purpura) Lam., vii, 249. = Pisania maculosa, Lam.Fasciolina (Conrad). Am. Jour. Conch., iii, 186, 186750
Fastigiella Reeve. = Cerithidæ.
Fastigium (Latirus), Reeve. Icon., f. 72, 1847, Zool. Proc. 812, 1878. 91
Femorale (Triton), Linn. Syst. Nat. edit., xii., 1217 18
Fenestrata (Peristernia), Gld. Bost. Proc., vii, 327, 1860 86
Fenestrata (Turbinella), Anton. Verzeichn., 71, 1839 97
Fenestratus (Sipho), Turton. Mag. N. Hist., vii, 351 130
Ferrea (Euthria), Reeve. Buccinım, f. 102, 1847.
$=$ E. plumbea, Phil., var.
Ferruginea (Fasciolaria), Lam.
Ficoides (Triton), Reeve. Icon., f. 51, 1844 13
Fictilis (Triton), Hinds. Voy. Sulphur, 12, t. 4, f. 11, 12 30
Ficula (Fusus), Reeve. Icon., f. 73, 1848. = Urosalpinx, vol. ii, 154.
Ficus (Murex), Gmel. . Syst. Nat., 35̄5. = Melongena paradisiaca, Rve.
Fidicula (Fusus), Gould. Moll. Wilkes' Exped., 233, f. $284 .=$ Bela.
Fijiensis (Ranella), Watson. Jour. Linn. Soc., xv., 270, 1880. 225
Filamentosa (Fasciolaria), Lam. Edit. Desh., ix, 434 75
Filamentosus (Latirus), Koch. Küster, Conch. Cab., 69, t. 9, f. 8. $?=$ L. brevicaudatus. Reeve.
Filaris (Cantharus), Garrett. Calif. Proc., iv., 202, 1874 160
Filaris (Pisania), A. Adams, Zool. Proc. 313, 1854. 149
Filicea (Cominella), Crosse et Fischer. Jour. Conch., xii., 349, xiii, 49, t. $15,16$. 206
Filosa (Siphonalia), A. Ad. Ann. Mag. Nat. Hist., xi, 205, 1863. 137
Filosus (Fusus), Lam., vii, 129. = Latirus gibbulus, Gmel.
Filosus (Latirus), Schubert• Wagner. Conch., xii, 100, t. 227, f. 4019, 4020. 229
Filosus (Phos), A. Adams. Zool. Proc., 175, 1853. = P. senticosus, L.
Fimbriatus (Fusus), Gay. Hist. Nat. Chile., viii, 195, t. 4, f. 7, 1854.$=$ Trophon crispus, Gld., vol. ii, 143.
Finmarkianum (Buccinum), Verkriizen. Jahrb. Mal. Gesell., ii, 237, t.8, Friele, Prelim. Rept., 4, f. 8, 1877, Sars. Moll. Norv., 262, t. 13, f.10, t. 25, f. 3, 4 . = B. cyaneum, Brug., var.
Fischeriana (Volutharpa), A. Adams. Ann. Mag. Nat. Hist., 4 ser., v. 422, 1870 202
Fischerianum (Buccinum), Dall. Am. Jour. Conch., vii, 106, 1872 190
Flammulata (Pisania), Hombr. \& Jacq. Astrol. et Zelée., v. 75, t. 21, f. 1,2. $=$ P. ignea, Gmel., var.Flammulata (Pisania), Quoy. Moll. Astrolabe, ii, 426, t. 30, f. 29, 31.$=P$. ignea, Gmelin.
Flavidus (Latirus), A. Ad. Zool. Proc., 314, 1854. 94
Flavulum (Tritonium), Beck. Mörch, Ann. Soc. Mal., Belg., iv. 17, 1869,- B. tenue, Gray.
Flemingiana (Halia), Macgillivray. Moll. Aberd., 68.

- Buccinopsis Dalei, Sowb. Jur.
Floridanum (Buccinum), Lesson. Rev. Zool., 237, 1842, ? = Nassa. 194
Floridanum (Buccinum), Petit. Jour. de Conch., 2, ser. i, 91, t. 2, f. 5,6, 1856. = Cantharus cancellaria. Conr.
Foliata (Ranella), Brod. Zool. Jour., ii, 199, t. 11, f. 1. 37
Fontainei (Fusus), d'Orb. Voy. Amer. Mérid., 447, t. 63, f. 2.$=$ Siphonalia alternata, Phil.
Forceps (Fusus), Perry. Conch. t. 2, f. 4. = F. turricula, Kiener.Formosæ (Eburna), Sowb. Thes., iii, t. 291, f. 17, 18.211
Fornicatus (Fusus), Gray. Beechey's Voy.
- var. of Neptunea despecta, Linn.
Forskalii (Peristernia), Tapparone. 26, f. 6, 7, Küster, Conch. Cab., 110,Mer. Mar. Rosso., t. 52 , t. 19, f. 4, 4, a.1875. = P. nassatula. Lam., var.
Fossatus (Triton), Gould. Bost. Proc., vii, 329, 1860. 16
Foveolatum (Bucc), Dunker. Zeit. Mal. 63, 1847. = Nassa.33
Fragile (Buccinum), Verkr. MSS. Sars. Moll. Novr., 257, t. 24, f. 6.= B. undatum, \mathbf{L}.Fragosus (Fusus), Reeve. Icon.,.f. 71, 1848 = F. rostratus, Olivi.
Fragrans (Fusus), Reeve. H. \& A. Adams, Genera. = F. fragosus, Reeve.Fraterculus (Triton), Dunker. Mal. Blatt., xviii, 166, 1871.= T. Bassi, Angas.
Fringillum (Buccinum), Dall. Calif. Proc., 1877 191
Fucata (Cominella), A. Ad. Jour. Linn. Soc., vii, 107, 1864. 207
Fulgur, Montfort, Conch. Syst., ii, 502, 1810. 99139
Fulva (Pyrula), Desh. Voy. Bellanger, 422, t. 2, f. 5.$=$ Melongena pugilina, Born.
Eumosus (Cantharus), Dillw. Cat. 269, 1819 155
Funerea (Cominella), Gould. Bost. Proc., iii, 152, 1850, Wilkes' Exp., Moll. 253, f. 320. = C. costata, Quoy.Funesta (Clea), H. Adams. Zool. Proc., 383, 1861.? $=$ C. nigricans, A. Ad.
Funiculatum (Buccinum), Reeve. Icon., f. 61, 1846.$=$ Ocinebra contracta, Reeve, vol. ii, p. 131.
Funiculatus (Fusus), Lesson. Rev. Cuv., 104, 184°.$=$ F. Dupetit-Thouarsii, Kiener.
Fusca (Canidia), H. Adams. Zool. Proc., 384, 1861. 209
Fuscata (Cyllene), A. Ad. Zool. Proc., 205, 1850. $=$ C. lugubris, Ad. and Reeve.
Fuscatum (Buccinum), Brug. Dict. Hist. Nat., No. 44. ? = Euthria 152
Fusco-costata (Ranella), Dunker. Zool. Proc., 239, 1862. Novit. Conch.,57, t. 19, f. 1, 2. $=$ R. tuberculata, Brod.
Fuscolabiata (Euthria), E. A. Smith. Ann. Mag. N. Hist., 4 ser., xv, 421, 1875. 152
Fuscolineata (Siphonalia), Pease. Zool. Proc., 189, 1860. 136
Fusconodosus (Fusus), Sowb. Thes. Conch., sp. 132 x, f. 169, 1880. 229
Fuscotincta (Siphonalia), Carpenter. Ann. Mag. N. Hist., 3 ser, xv, 399, 1865. 134
Fuscozonata (Siphonalia), Angas. Zool. Proc., 56, t. 2, f. 7, 8, 1865...86, 134
Fusiforme (Buccinum), Brol. Kool. Jour., v, 45, t. 3, f. 3.$=$ Sipho fenestratus, Turt.
Fusiforme (Buccinum), Kiener (not Brod.). г̌, t. 5, f. 12, 1841.$=$ B. Humphreysianum, Bennett.
Fusiformis (Canidia), Deshayes. Nouv. Archiv. Mus. Bull., x, 151, t. 8,f. 21,22 ; t. 7, f. $30-32$.209
Fusiformis (Fasciolaria), Valenc. Kiener, 13, t. 4, f. 2. 76
Fusiformis (Fusus), Potiez et Muh. Galerie i, 436, t. 34, f. 3-6, 1838. $=$ Trophon xanthostoma, Brod., vol. ii, p. 146 .
Fusiformis (Melongena), Blainv. Nouv. Ann. Mus., i, t. 11, f. 7. 109
Fusiformis (Nassaria), Sowb. Thes. Conch., iii, 87, t. 220, f. 11, 12 222
Fusiformis (Polygona), Schum. Nouv. Syst. - Latirus infundibulum, Gmel.
Fusiformis (Triton), Kiener. Monog., 36, t. 5, f. 2. 11
Fusinus Ratinesque. Anal. Nat. 145, 1815. =Fusus, Lain.
Fusispira, Hall. 24th Report N. Y., 229, 1872. Hall and Whitfield. Pal. King's Survey, 236 102
Fusoides (Buccinum), Reeve. Icon., f. 64 (not f. 9).= Siphonalia spadicea, Reeve.
Fusoides (Siphonalia), Reeve. Buccinum, f. 9, 1846 136
Fusoides (Triton), C. B. Ad. Vanama Cat., 128. Carpenter, 2d Report, 182. = Phos. 220
Fusoides (Tudicla), A. Ad. Zool. Proc., 137, 1854.
$=$ Streptosiphon Cumingii, Jonas.
Fusulus (Murex), Brocchi. Conch. Foss. Subapp., 409, t. 8, f. 9.= Cantharus.157
Fusus, Lam. Syst. An., 82, 1801. 47, 51, 227
Galeodes, Bolten. Mus., 1798. = Cassidulus, Humph.
Galeodes (Melongena), Lam. Edit. Desh., ix, 517 108
Gallinago (Triton), Reeve. Icon., t. 2. f. 5, 1844. 21
Gaudens (Phos), Hinds. Voy. Sulphur, 38, t. 10, f. 5, 6, 1844 218
Gemmata (Peristernia, var.), Reeve. Icon., f. 61, a, b. $=$ Peristernia lirata, Pease.
Gemmata (Peristernia), Reeve. Icon., f. 5, 1847 82
Gemmatus (Triton), Reeve. Icon., f. 60, 1844 13
Gemmata (Turbinella), Rouss. (non Reeve). Voy. Pol. Sud., 112, t. 25, f. 23, 24. Peristernia incarnata, Desh., var. elegans.
Gemmatus (Cantharus), Reeve. Buccinum, f. 49, 1846 162
Gemmulatum (Buccinum), Menke. Zeit. Mal., 1847. - Cantharus gemmatus, Reeve.
Genea, Bellardi. Mem. Acad. Turin, xxvii, 235, 1873 226
Genetta (Buccinum), Lesson. Rev. Cav., 237, 1842. 194
Geniculus (Fusus), Gabb. Pal. Cal., ii, 71 (pars. syn. excl.).
= F. Taylorianus, Reeve.
Geniculus (Priscofusus), Conrad. Wilkes' Exped., 728, t. 20, f. 3. A. J. C., 150, 1865. 49
Gervillii (Buccinum), Kiener. Coq. Viv., t. 13, f. 43, 44. Columbella.
Gibba (Cyllene), A. Ad. Ann. Mag. N. H., 4 ser., v. 427, 1870. 225
Gibba (Peristernia), Pease. Zool. Proc., 54, 1865. Am. Jour. Conch., iii, 279,.t. 23, f. 17, 1868 86
Gibbosum (Busycon), Conrad. Philad. Proc., 286, 1862. $=$ Fulgur carica, Gmel., var. eliceans, Montf.
Gibbosus (Triton), Brod. Reeve, s. 11, f. 38 (not t. 14, f. 38). - T. labiosus, Wood, var. orientalis, Nevill 23
Gibbulus (Latirus), Gmel. Syst. Nat., 3557 88
Gieseckii (Fusus), Anton. Verzeichn., 76, 1839. 69
Gigantea (Fasciolaria), Kiener. Icon., 5, t. 10, 11. 75
Gigantea (Ranella), Lam. An. sans vert., vii, 150. 42
Gilvum (Buccinum), Menke. Zeit. Mal., 180, 1847. = Anachis.
Gilvus (Fusus), Phil. Zeit. Mal., 148, 1848. 67
Glabra (Bucc.), Jeffreys. Sars, Moll. Nov. 2 fi3.? $=$ B. Humphreysianum, Benn., var.
Glabra (Sipho), Verkrïzen. Kobelt, Jarhb. Mal. Ges., iii, 174, t. 3, f. 3, 1876. 126
Glabrata (Cyllene), A: Adams. Zool. Proc., 206, 1850.- C. Pulchella, Ad. and Reeve.
Glabrata (Eburna), Schrōter. Einl., i, 341. - E. Zeylanica, Brug.
Giaciale (Buccinum), Donovan. Brit. Shells, v, t. 154, 1779.- B. Donovani, Gray.
Glaciale (Buccinum), Linn. Syst. Nat., edit. xii, 1204. 185
Glacialis (Fusus), Gray. Kool. Beechey's Voy., 117. 68
Gladiolus (Epidromus), Monterosato. Bull. Soc. Mal. Ital., v. 226, 1879. 33
Glandiforme (Buccinum), Reeve. Icon., f. 109, 1847.
- Cominella acutinodosa, Reeve.
Glaucum (Buccinum), Dunker. Zeit. Mal., 125, 1852. = Nassa.
Glirina (Purpura), Blainv. Nouv. Ann. Mus., i, 254, t. 12, f. 9.$=$ Pisania.149
Gracilenta (Mesorhytis), Meek: 50
Graciliformis (Fusus), Sowb. Thes. Conch., sp. 60, f. 62, 1880 228
Gracilis (Cantharus), Reeve. Buccinum, f. 96, 1846 160
Gracilis (Latirus), Reeve. Icon., f. 53, 1847 91
Gracilis (Phos), Sowb. Thes. Conch, iii.. 91, t. 221, f. 33. 218
Gracilis (Pisania), Koch, Philippi. Abbild., ii, 20, t. 2, f. 3. 147
Gracilis (Sipho), Da Gosta. Br. Conch., 124, t. 6, f. 5. 124
Gracilis ('Triton), Reeve. Icon., f. 58, 1844. = T. vespaceus, Lam.
Gracillimus (Fusus), Adams and Reeve. Moll. Voy. Samarang, 41, t. 7, f. 1 63
Gradatus (Fusus), Reeve. Icon., f. 65, 1848. 57
Grana (Cyllene), Lam. A. Ad. and Pettit. = Nassa.
Granatus (Fusus), Koch, Philippi. Abbild., ii, 19, t. 2, f. 1, 6. $=$ Peristernia 83
Grandimaculatus (Triton), Reeve. Icon., f. 20, 1844.
$=\mathrm{T}$. lotorium, Linn.
Grandis (Fusus), Gray. Zool. Beechey's Voy., 116, 186? 68
Granifera (Ranella), Kiener (not Lam). 17, t. 11, f. 1. = R. affinis, Brod.
Granifera (Ranella), Lam. An. sans Vert., edit. Desh. ix, 548. 41
Graniferum (Buccinum) Kiener. Monog., t. 27, f. 111. = Nassa.Granosa (Fasciolaria. Brod. Zool. Proc. 32, 1832. = F. salmo, Wood.Granularis (Apollon), Bolten, Mörch. Cat. Yoldi, 106.$=$ Ranella granifera, Lam.
Granulata (Ranella), Blainv., Malacol., t. 18, f. 2. = R. crumena, Lam.
Graulata (Ranella), Lamarck. Edit. Desh. ix, 547.=R. crassa, Dillwyn.
Granulatus (Triton), Dunker. Mal. Blatt, xviii, 166, 1871 14
Granulosa (Peristernia), Pease. Am. Jour. Conch., iii, 279, t. 23, f. 18, 1868. 86
Granulosus (Anton), Verzeichn., 76, 1839. = Turbinella? 69Grateloupiana (Phos), Petit. Jour. de Conch., iv, 243, t. 8, f. 4, 1853.$=$ P. Veraguensis, Hinds.
Gratum.(Buccinum), Potiez et Michaud. Galerie, i, 377, t. 32, f. 9, 10,1838. $=$? Columbella.Grayana (Ranella), Dunker. Zool. Proc. 238, 1864. =R. bufonia, Gmel.Grayi (Cyllene), Reeve. Elem. Conch. t. 7, f. 4, 1850C. pulchella, Ad. and Reeve.
Grisea (Siphonalia), A. Ad. An. Mag. N. Hist., xi, 205, 1863. 137
Greenlandicum (Buccinum), Jeffreys. Ann. Mag., 4, xix, 323, 1877, etc.;Chemn. Conch. Cab., x, 177,182 , t. 152 , f. 1448, 1788.B. cyaneum, Brug.
Græenlandicum (Tritonium) Mörch. Rink's Grœenland, 84, 1857.$=$ Bucc. cyaneum, Brug.
Gruneri (Bucc.), Dunker. Zeit. Mal. 171, 1846. = Nassa.
Guadaloupensis (Phos), Petit. Jour. de Conch., 56, t. 2, f. 3, 4, $1852 .$. 219
Gualtierianum (Buccinum), Kiener. Monog., 69, t. 19, f. 70. Cantharus 167
Gualtierii (Purpura), Scacchi Cat., 11. = Pisania maculosa, Lam.Guillaini (Cyllene), Petit. Jour. de Conch., i, 170, t. 7, f. 4, 1850.C.pulchella, Ad. and Reeve.
Guttatus (Pisania), Busch. Philippi, Abbild, i, 106, t. 1, f. 6. 149
Guttatum (Buccinum), Phil. Archiv für Naturg., i, 266, 184.? = Pisania cingulata, Reeve.Gutturnium, Klein. Ostrac., 51, 1753 ; Adams' Gen., i, 103.$=$ S. G. of Tiriton, Montf.9, 19
Gyratus ('Trophon), Hinds. Voy. Sulphur, 14, t. 1, f. 14, 15. Vol. 2, p. 151.? =Siphonalia. 137
Gyrina, Schum. Essai, 253, 1817. = Argobuccinum, Klein.
Gyrina (Apollon), Montf. = Ranella gigantea, Linn.
Gyrina (Ranella), Linn. Sp. edit. 12, 1216 43Gyrineum.Link. Mus. Rostock, iii, 123, 1807. =Ranella, Lam.Gyrinoides (Murex) Brocchi. Conch. Foss., 401, t. 9, f. 9,$=$ Triton nodiferus, Lam.

```
Hæmastoma (Pollia), Gray. Zool. Beechey's Voy., 112, 1839. \(=\) Cantharus sanguinolentus, Duclos.
Hæmastoma (Triton), Valenc. Obs. 302, 1833. = T. pilearis, Linn............ 3
Haldemanii (Bucc.), Dunker. Zeit. Mal., 62, 1847. Phil. Abbild., iii, Bucc., t. 2, f. 4. = Columbella.
Halia, Macgill. Moll. Aberd., 98, \(1843 .=\) Buccinum, Linn. Young.
Halia, Risso. Hist. Nat., iv, 52, 1826. \(=\) Plcurotomidæ.
Hallii (Neptunea), Dall. Proc. Cal. Acad., v, 59, 1873......................... 120
Hancocki (Tritonium), Mörch. Rink's Greenland, 84, 1857. \(=\) Buccinum glaciale, L., var. polare.
```

Haneti (Murex), Petit. Jour. Conch., v, 90, t. 2, f. 718, 1856. = Cantharus.
Hanleyanum (Bucc.), Dunker. Zeit Mal. 63, 1847. = Nassa?
Hanseni (Sipho), Friele. Jahrb. Mal. Gesell., vi, 281, 1879................... 132
Harfordi (Siphonalia), Stearns. Proc. Calif. Acad., v, 79, 1873. Dall. Calif. Proc., 1877.139
Harpa (Neptunea), Mörch. .Diag. Moll. Nouv. Vidensk-Meddel. 342, 1857. 122
Hartvigii (Fusus), Shuttlw. Jour. de Conch., 2 ser., i, 171, 1856. $=\mathrm{F}$.gradatus, Reeve.

Hastula (Ranella), Reeve... Zool. Proc., 139, 1844............................... 44

Haydenia, Gabb. Pal. Calif., i, 98, t. 18, f. 51, 1864 106
Helena (Canidia), Meder (MSS.). Phil. Abbild., (Melania), t. 4, f. 8, 1847. 208
Heliotropis, Dall. Cal. Proc , 61, 1873. S. G. of Neptunea, Bolien....99, 122
Helleri (Fusus), Brusina, Verh. Zool. Bot. Gesell. Wien., xv, 8, 1865. $=$ Murex aciculatus, Lam., Vol. ii, pp. 119, 148.
Hemifusus, Swains. Malacol., 91, 308.
Hemifusus (Fusus), Kobelt. Conchyl. Cabinet, 186, f. 159, f. 4, 5, 1880. = F. colus, L., var. Brenchlyi67

Hepaticum (Buccinum), Montagu. Test. Brit., 243, t. 8, f. 1. = Nassa.
Heptagonalis (Afer), Reeve. Fusus, f. 26, 1847. $=$ A. Blossvillei, Desh.; var.
Heptagonum (Triton), S. Wood. $=$ T. cutaceum, Linn.
Hercorhyncus, Conrad. Am. Jour. Conch., iv, 247, 1868...................... 103
Herrmannseni (Buccinum), Dunkerr Zeit. Mal. 63, 1847. ? = Nassa.
Hermannseni (Pisania), A. Ad. Zool. Proc. 138, t. 28, f. 7. 1854............ 146
Heros (Chrysodomus), Gray. Proc. Zool. Soc. 14, t. 7, 1850. = Neptunea despecta, Linn, var. fornicata, Gray.
Hexagonus (Fusus), Anton. Verzeichn., 76, 1839............................... 69
Heynemanni (Fasciolaria), Dunker. Nachtrag, Novit. Conch. 138. t. 32, f. 1,2 .

Hians (Ranella), Schum. Nouv. Syst. 252, 1817. = Ranella, lampas, Linn.
Hidalgoi (Turbinella), Crosse. Jour. Conch., xiii, 316, 414, t. 14, f. 1. ? = T. triserialis, Lam., var.
Hindsia, H. \& A. Adams. Genera, i, 123. = Nassaria, H. \& A. Ad.
Hindsii (Metula), H. \& A. Adams' Genera, i, 84. =Buc. metula, Hinds.... 153
Hinnulus (Siphonalia), Ads. \& Rve. Voy. Samarang., 32, t. 7, f. 10, 1848. 136
Hippocastanum (Melongena), Born. Mus. 30, 4, (not of Linn), 1870. = M. galeodes, Lam.
Holböllii. (Fusus), Mäller. Moll. Grænl., 15, 1842. $=$ S. propinquus, Alder.
Homoleuca (Cantharus), Kiister. . Buccinum, 87, t. 15, f. 14, 15............ 158
Horridum (Bucc.) Dunker. Zeit. Mal. 59, 1847. =Nassa.
Humphreysianum (Buccinum), Bennett. . Zool. Jour., i, 398.................. 192
Humphreysianum(Buccinum), Möller. Kroyer's Tidsskrift, iv, 85, 1842. =B. cyaneum, Brug.

Huttoni (Cominella), Kobelt. Cat. 233. ?= C. costata, Quoy.
Hyperboreum (Tritonium), Beck. Amtl. Bericht. No. 15.
$=$ Neptunea despecta, Linn.
Hydropanum (Buccinum), Hancock. Ann. Mag. N. Hist. 1. xviii, 325, $1846 .=$ B. cyaneum, Brug.
Idoleum (Pyrula), Jonas. Zool. Proc. 120, 1846, Latiaxis, vol. ii, p. 203. Ignea (Pisania), Gmel. Syst. Nat. 145.
Imbricata (Pyrula), De Kay. Nat. Hist. N. Y., 149, Sowb. Thes. Conch. iv. 104, f. $4 .=$ Urosalpinx cinerea, Say. Young and worn.

Imbricatus (Fusus), E. A. Smith. Jour. Linn. Soc., xii, 540, t. 30, f. 3, 1876. = Coralliophila, vol. ii, p. 209 -

Imperforata (Pyrula), Menke. Cat. Syn. No. 1077.
$=$ Strepsidura ficulnea, Lam. (fossil).
Imperiale (Bucc). Reeve. Buccinum, Sp. 8, 1846.
$=\mathrm{B}$. undatum, L monst.
Impressa (Turbinella), Anton. Verzeichn, 71, 1839............................. 97
Improbus (Murex), Gould. Bost. Proc., vii, 1860; Otia. 125................ 166
Inca (Cantharus), d'Orb. Voy. Am. Mérid. 455, t. 78. f. 3..................... 164
Incarnata (Peristerni $)$), Deshayes. Voy. Laborde, t. 65, f. 20, 22.......... 81
Incarnatum (Tritonium), M. Sars. Moll. Norv. 276.
$=$ Sipho latericeus, Möll.
Incerta (Ranella), Michelotti. Misc. It. Sept. 256, t. 10, f. 4. $=\mathrm{R}$. gigantea, Lam.
Incisa (Fusus), Gould. Wilkes' Exped. Moll. 232, f. 283. $=$ Euthria dira, Reeve.
Incisus (Fusus), Sowb. Thes. Conch. sp. 102, f. 112, $1880 .=$ Neptuuea. 230
Inconstans (Fusus), Lischke. Mal. Blatt., xv. 218, 1868. Jahrb. Mal. Gesell., i, 115, t. 6, f. 1. = F. perplexus, A. Ad.
Incrasssatus (Fusus), Lam. Anim. s. Vert., vii., 122, 1822. $=\mathrm{F}$. undatus, Gmel.
Incrassatum (Tritonium), Müller. Zool. Dan. 2946. = Nassa.
Inculta (Peristernia), Gould. Bost. Proc. vii, 324, 1866. $?=$ Leucozonia cingulifera, Lam.
Inermis (Fasciolaria), Jonas. Zeit. Mal., iii, 63, 1846. $=$ F. filamentosa, Lam. var.
Inermis (Tudicula), Sowb. Zool. Proc. 610, 1878.
Inferus (Fusus), Hutton. Cat. Mar. Moll. N. Zeal. 9, 1873. $=$ Trophon plebeius, Hutton, vol. ii, p. 145, 156.
Inflatum (Buccinum), Aradas \& Benoit. Moll. Sicil, 287. = B. Humphreysianum, Bennett.
Inflatus (Fusus), Hombr. et Jacq. Voy, Astrol. et Kel. v. 109, t. 25, f. 11, 12. = Trophon Geversianus, Pallas, vol. ii, p. 144
Inflatus (Fusus), Dunker. Phil. Abbild, ii, 19, 3, t. 4, f. 2. $=$ Corallophila, vol. ii, p. 209.
Infracincta (Peristernia), Küster. Conch. Cab. 92, t. 22. f. 16, 17. $=$ P. ustulata, Rve.
Infundibulum (Latirus), Gmel. Syst. Nat. 3554
Insignis (Cantharus), Reeve. Bucc. f. 58, 1846. = C. elegans, Gray:
Intermedia (Turbinella), Koch. Kobelt in Küster, 155, t. 9, f. 6. ? $=$ Latirus brevicaudatus, Rve.
Intermedius (Fusus), Gay. Hist. Nat. Chile. viii, 166, t. 4, f, 6, 1854. $=$ Trophon Geversianus, Pallus, vol., ii, p. 144.
Intermedius (Triton), Pse. A. J. Conch. v. 84, 1869. = T. pilearis, L.
Intertextum (Tritonium), Pfr. $=$ T. reticulatus, Blainv.
Intincta (Cominella), Reeve. Buccinum, f. 32, 1846.
= C. papyracea, Brug.
Ioeranea, Rafinesque. Anal. Nat. 145, 1815. = Fasciolaria, Lam.
Iostoma (Cantharus), Gray. Voy. Blossom, 112, 1839154
Iostoma (Turbinella), Nuttall. Kuster, 36, t. 9, f. 1, 2.

- Peristernia spinosa, Mart.
Iricolor (Turbinella), Hombr. et Jacq. Astrol. et Zel. v. 112, t. 25, f. 25,27, 1854. = Peristernia ustulata, Rve.
Islandicus (Fusus), Gould. (Binney's Edit.) Invert. Mass. 372, f. 628.- Sipho Stimpsoni, Mörch.
Islandicus (Fusus), var. Kiener. Monog, t. 10, f. 2.- var. of Sipho Stimpsonii, Mörch.
Islandicus (Sipho), Chemn. Conch. Cab. iv., 154, t. 141, f. 1312, 13. 123
Janelii (Buccinum), Val. Voy. Venus, t. 6, f. 1, 184 ö. $=$ Cantharus sanguinolentus, Duclos.
Janeirense (Buccinum), Phil. Zeit. Mal. 133, 1848. = Pisania. 148
Jania, Bellardi. Mem. Acad. Turin, xxvii, 177, 1873 226
Japonica (Eburna), Reeve. Zool. Proc., 200, 1842 211
Japonica (Buccinum), A. Adams. Ann. Mag. Nat. Hist., 3d ser., viii, 135, 1861 189
Japonicus (Fusus), Gray. Zool. Beechey's Voy., 115, 1839 69
Jeffreysianus (Sipho), Fischer. Jour. de Conch., xvi, 37, 1862 126
Jeffreysii (Buccinum), E. A. Smith. Ann. Mag. Nat. Hist., 4 ser., sv.,424, 1875. ? = B. Japonicum, A. Ad.
Jeranea, Rafinesque. Anal. Nat., 1815. =Fasciolaria, Lam.
Jessoënsis (Sipho), Schrenck. Bull. St. Petersb., v, 514, 1863. Moll. Amur., L., 426, t. 17, f. 8-10 131
Jonasii (Bucc.), Dunker. Zeit. Mal., 171, 1846. = Nassa.
Josepha, Tenison-Woods. Roy. Soc. Tasmania, 1878, p, 32. .202, 207
Jucunda (Ranella), A. Adams. Zool. Proc., 70, 1853 45
Jullieni (Canidia), Deshayes. Nouv. Archiv. Mus. Bull., x, 155, t. 8, f. 23,24 209
Karamensis (Fusus), Forbes. Egean Invert., 190= Cantharus leucozona, Phil.
Kellettii (Macron), A. Adams. Zool. Proc.; 185, 1853 214
Kellettii (Siphonalia), Forbes. Zool. Proc., 274, t. 9, f. 10, 1850 134
Kennicotti (Buccinum), Dall. Am. Jour. Conct., vii, 108, t. 15, f. 1,1872. Calif. Proc., iv, 271. = Volutopsis Behringii, Midd.Kerri (Exilifusus), Gabb49Kieneri (Buccinum), Anton. Verzeichn., 92, 1839. ?= Nassa.
Kieneri (Bucc.), Monterosato. =B. Humphreysianum, Bennett.
Kieneri (Fulgur), Phil. Zeit. Mal., 98, 1849.$=$ F. carica, Gmel., var. eliceans.
Kingi (Ranella), d'Orb. Voy. Am. Mérid., 451. =R. Argus, Gmelin.Knorrii (Turbinella), Desh. Anim. sans Vert., ix, 391.
= Leucozonia cingulifera, Lam.
Kobelti (Fusus), Dall. Calif. Proc., 1877 64
Kochianum (Buccinum), Dunker. Zeit. Mal., iii, 1846. Nassa..Kossmanni (Pisania), Pagenstecher. Kossmann's Reise, ii, Moll., 53146
Kraussianum (Buccinum), Dunker. Zeit. Mal. iii. 1846. = Nassa.Krebsii (Triton), Mörch. Mal. Blatt., xxiv, 30, 1877.$=\mathbf{T}$. corrugatus, Lam., var.
Kroyerii (Sipho), Möller. Ird. Moll. Grönl., 15, 1842. 130
Labiosus (Triton), Wood. Ind. Test. Suppl., t. 5, f. 18 17Labradorense (Buccinum), Reeve. Icon., f. 5, 1846.$=\mathrm{B}$. undatum, L., var. undulatum, Möller.

Labradorensis (Neptunea), Packard. Mem. Bost. Soc., i, 233, t.7, f. 8, (fossil).
Lacertina (Euthria), Gould. Bost. Proc., vii, 327, 1860. Kobelt, Jahrb. Mal. Gesell., i, 133, t. 6, f. 2. = Pisania ignea, var. Tritonoides, Rve.
Lachesis (Sipho), Mörch. Jour. Conch., xvii, 397, 1869. 128
Lacinia, Conrad. Proc. A. N. S., vi, 448, 1853.. 106
Laciniatum (Triton), Mighels. Pease, Am. Jour. Conch., iv, 107. $=$ Ranella pusilla, Brod.
Lactea (Cyllene), Ad. and Angas. Kool. Proc., 422, 1863..................... 225
Lactea (Bucc.), Reeve. Icon., f. 117, 1847. = Cominella lineolata, Lam.
Lacteus (Hemifusus), Reeve. Pyrula, f. 8, 1847 112
Lacunatum (Triton), Mighels. Bost. Proc., ii, 24, 1845. $=$ Ranella pusilla, Brod.
Lætum (Buccinum), Phil. Zeit. Mal., 140, $1848 .=$ Nassa.
Lætus (Fusus), Sowb. Thes. Conch., sp. 133, f. 166, 1880.
229
Lævibuccinum, Conr. Am. Jour. Conch., i, 21, t. 20, f. 17, 1865.
Lævigata (Cominella), Hutton. Cat. Moll. N. Zeal. = C. lineolata, Lam., var. virgata, H. and A. Ad.
Lævigata (Ranella), Lamarck. Edit. Desh., ix, 550. - R. marginata, Gmel.

Lævigata (Turbinella), Anton. Verzeichn., 71, 1839............................. 97
Lævigatus (Fusus), Sowb. Thes. Conch., sp. 30, f. 157, 1880. F. Australis, Quoy.227

Laevigatus (Phos), A. Adams. Zool. Proc., 155, 1850.
217

Lagena, Bolt. Mus. 1798, Adams' Gen. i, 104.
S. G. of Triton, Montf.

Lagena, Schum. Nouv. Syst., 240, 1817. = Leucozonia, Gray............. . 96
Lagenaria (Cominella), Lam. Edit. Desh., x, 81.
C. limbosa, Lam., var.

Lamarckii (Buccinum), Kiener. Monog. 5, t. 3, f. 6. = Bullia.
Lamellosa (Ranella), Dunker. Zool. Proc., 240, 1862.
R. anceps, Lam.

Lamellosus (Fusus), De Kay. Sowb., Thes. Conch., sp. 24, 1880. Fulgur carica, Gmel.
Lamnigera (Neptunea), Valenc. Comptes Rendus, i, 761, 1858.............. 123
Lampas, Schum. Essai, 252, 1817 . $=$ S. G. of Ranella, Lam............37, 38
Lampas (Murex), Linn. Edit. x, 748. . Ranella lampas..................... 28°
Lampusia, Schum. Ess. Nov. Gen., 250, $1817=$ Simpulum, Klein.
Lancea (Latirus), Gmelin. Syst. Nat., 3556... 90
Lanceola (Fusus), Reeve. Icon., f. 52. = Latirus lancea, Gmel.
Lanceolata (Ranella), Philippi. Enum. Moll. Sicil. i, 211, t. 11, f. 28.
Triton reticulatus, Blainv.
Lanceolatus (Cantharus), Koch. Phil. Abbild, ii, Fusus, 121, t. 3, f. 9.. 160
Lanceolatus (Latirus), Reeve. Icon., f. 12, 1847. Ads. and Reeve, Voy. Samarang, 42, t. 7, f. 8, 1848.
Lanceolatus (Triton), Menke. Syn., 87, 1828....................................... : 27
Lapillus (Fusus), Brod. and Sowb. Zool. Jour. iv, 378,
Leucozonia subrostrata, Gray.
Largillierti (Neptunea), Petit. Jour. Conch., ii, 254, t. 7, f. 6, 1851.
N. Norvegica, Chemn.

Latericeus (Sipho), Möller, Ind. Moll. Groenl., 15, 1842
Latevaricosus (Triton), Reeve. Icon., f. 90, 1844. =T. bracteatus, Hinds.
Laticostatus (Fusus), Desh. Guerin's Mag., t. 21, 180053

Latirus (Montf.). Conch. Syst., ii, 531, 1810..................................48, 87
Latrunculus, Gray. Zool. Proc., 139, 1847. 三 Eburna, Lam.
Lauta (Turbinella), Reeve. Icon., f. 73, 1847.

- Peristernia incarnata, var. elegans, Dkr.
Lautus (Cantharus), Reeve. Buccinum, f. 63, 1846. $=$ var. of C. Coromandelianus, Lam.
Lefebvrii (Buccinum), Maravigna. Rev. Cuv., 325, 1840. ? = Nassa.
Legrandi (Fusus), Woods. Proc. Roy. Soc. Tasmania, 137, 1875. 68
Leiocheilos (Buccinum), Val. Humb. et Bonpl., 328, 1833. 194
Leiostoma, Swains. Malacol., 308, 1840 102
Leptorhynchus (Fusus), Tapparone-Canefri. Mur. Mar. Rosso., 63, t. 19, f. 5,1875 56
Leucostoma (Bucciṇum), Lischke. Mal. Blatt., xix, 101, 1872, (undeter- mined).
Leucostoma (Ranella), Lam. An. sans Vert., edit. Desh., ix, 542 42
Leucozona (Cantharus), Philippi. Zeit. Mal., iii, 1843 158
Leucozonia, Gray. Zool. Proc., 136, 1847. 48, 94
Leucozonalis (Leucozonia), Lam. Hist. vii, 107 96
Levibuccinum, Conrad 104
Levifusus, Conr. Am. Jour. Conch., i, 17, 1865. = Perissolax, Gabb.
Ligata (Purpura), Lam. Edit. Desh., x, 78. Kiener, Bucc., t. 5, f. 15.$=$ Cominella porcata, Gmel.
Ligata (Siphonalia), A. Ad. Ann. Mag. N. Hist.. 3d ser., xi, 205, 1863. 137
Ligatus (Phos), A. Adams. Zool. Proc. 175, 1853.
$=\mathrm{Ph}$. senticosus, Linn.
Ligatus (Ptychatractus), Mighels and Adams. Bost. Jour. Nat. Hist., iv, 51, t. 4, f. 17, 1842. 72
Lignaria (Fasciolaria), Linn. Edit. xii, 1224 78
Lignaria (Melongena), Reeve. Pyrula, f. 12, t. 9.$=$ M. pallida, Br. and Sowb.
Lignarius (Fusus), Lam. Edit. Desh., ix, 455. = Euthria cornea, Linn.
Ligneum (Buccinum), Reeve. Icon. f. 57, 1846.15$=$ Cantharus Cecillii, Phil.
Ligula (Fusus), Kiener. Monog., t. 9, f. 2. $=$ Latirus lancea, Gmel.
Limbatus (Cantharus), Philippi. Abbild., i, III, t. 1, f. 9 156
Limbatus (Triton), Phil. Ads.' Genera, i, 103 32
Limbosa (Cominella), Lam. Edit. Desh., x; 78. 202
Limicola (Buccinum), Phil. Zeit. Mal., 59, 1851. $=$ Nassa.
Limnǽeana (Volutharpa), A. Adams. (Bullia). Ann. Mag. Nat. Hist., vi, 109, 1860 201
Limnæforme (Bucc.), Dunker. Zeit. Mal., 64, 1847. =? Nassa.
Linatella, Gray. H. and A. Adams. Genera, ii, 654.$=$ Priene, H. and A. Ad.
Linatella, Mörch 14
Lincolnensis. (Fusus), Crosse. Jour. de Conch., xiii, 53, t. 2, f. 4, 1865. 66
Lineare (Cominella), Reeve. Bucc., f. 116, 1847. = C. lineolata, Lam.Lineata (Euthria), Martyn. var. pertinax, Martens, Sitzb., Berlin,23, 1878.151
Lineata (Euthria), Martyn. Univ. Conch., t. 48. 157
Lineata (Neptunea), Kiener. H. and A. Ad., Genera, i, 80.$?=$ Euthria lineata, Martyn.Lineata (Pyrula). Encyc. Meth., t. 432, f. 5. =- Melongena galeodes,Lam.
Lineata (Turbinella), Lam. Hist., vii, 109.=Latirus turritus, Gmel.
Lineatum (Buccinum), Gmel. 3494. = Littorina, angulifera, Lam.Lineatus (Cantharus), Menke (not Gmelin). Zeit. Mal., 72, 1853.$=$ Cantharus variegatus, Gray.
Lineatus (Fusus), Menke. Syn., No. 1110 68
Lineatus (Fusus), Quoy. . Voy. Astrol., 501, t. 34, f. 6-8.$=$ Euthria lineata, Martyn.
Lineatus (Triton), Brod. Zool. Proc. 6, 1833 14Lineatus (Triton), Sowb. Zool. Proc., 72, 1831. = T. Sowerbyi, Reeve.Lineolata (Cominella). Dunker (not Lam.) Phil. Abbild., 110, Fusus,t. 1, f. 10. = C. Dunker, Küster.
Lineolata (Cominella), Lam. Edit. Desh. x, 164, 186 204
Lineolata (Cominella), Quoy. Astrol. ii, 419, t. 30, f. 14-16.
C. lineolata, var. virgata. H. \& A. Ad.
Lineolatus (Fusus), Costa. Rev. Cuv., 249, 1841 67
Lineolatus (Triton), Conrad. Proc. Acad., Philad., 26, t. 1, f. 18, 1846. 31
Liomesus, Stimpson. Canad. Nat., N. S. ii, 364, 1865.Buccinopsis, Jeffreys.
Lirata (Euthria), A. Adams. Linn. Proc., vii, 105, 1864 152
Lirata (Neptunea), Mart. Conch. t. 43 116
Lirata (Peristernia), Pease. Am. Jour. Conch., iv, 152, 1868 82
Liratus (Fusus), Gould, Moll. Wilkes' Exped., f. 282. =Trophon, vol. ii, 143
Liratus (Fusus), Reeve, (non Martyn.) Icon. f. 40.Neptunea decemcostata, Say.
Lirostomus (Triton), A. Ad. Ann. Mag. Nat. Hist., 4 ser., v, 419, $18 \% 0$. 14
Lirofusus, Conrad. Am. Jour. Conch , i, 17, 1865 103
Lirosoma Conrad. Proc. Philad. Acad., 286, 1862. S. G. of Fasciolaria, Lam 50
Lischkeana (Fasciolaria), Dunker. Novit. 44, t. 14.-F. trapezium, Linn., var.
Listeri (Fusus), Jonas. Mal. Beitr., 106,.t. 10, f. 13.$=$ Sipho gracilis, Da Costa.
Littorinoides (Euthria), Reeve. Buccinum, f. 94, 1846.$=$ E. lineata, Martyn, var.
Livescens (Buccinum), Phil. Zeit. Mal., 135, 1848. = Nassa.Livida (Macron), A. Adams. Zool. Proc., 136, 1854.214Livida (Ranella), Reeve. Zool. Proc., 138, 1844. = R. affinis, Brod.Lividus (Fusus), Phil. Abbild., ii, 21, t. 2, f. 8. =F. Blossvillei, Desh.
Lividus (Sipho), Mörch. Jour. de Conch., x, 36, t. 1, f. 1. 1862.127
Loebbeckei (Fusus), Kobelt. Conchyl. Cab., 154, t. 48, f. 1, 1880 54
Loebbeckei (Peristernia), Kobelt: Kiister's Conch. Cab., 104, t. 25, f. 4, 5 79
Loebbeckei (Triton), Lischke. Mal. Blatt, xvii, 23, 1870 23
Longicauda (Fusus), Borg. Encyc. Meth., t. 423, f. 2 63
Longicaudus (Murex), Wood. Index Test. = Fusus colus, Linn.
Longirostris (Fusus), Schum. Nouv. Syst., 216, 1817. = F. colus, Linn.Longirostris (Ranularia), Schum. Nouv. Syst., 254.$=$ Triton clavator, Lam.
Longissimus (Fusus), Gmel. Syst. Nat., 355656
Longurio (Fusus), Weinkauff. Jour. de Conch., 3 ser. vi, 247, t. 5, f. 4,1866. $=$ Trophon muricatum, Mont., vol. ii, p. 140
Loroisi (Triton), Petit. Jour. de Conch., 53, t. 2, f. 8, 1852.
$=$ T. labiosus, Wood.
Lotor (Lotorium), Montf. Conch., ii, 583. = T. femorale, Linn.
Lotorium, Montf. Conch. Syst. ii, 583, 1810. = Cymatium, Bolt.Lotorium (Triton), Linn. Syst. Nat. edit. xii, 121719
Lotorium (Triton), Mörch. Yoldi Cat., 109. $=$ T. pyrum, Linn.
Luctuosa (Pisania), Tapparone-Canefri. Bull. Soc. Mal. Ital., ii, 242, 1876 149
Luculenta (Peristernia), H. \& A. Ad. Zool. Proc. 429, 1863. 87
Lugubris (Cantharus), C. B. Adams. Panama, Cat. No 60. 158
Lugubris (Cyllene), Ads. \& Rve. Voy. Samarang, 33, t. 10, f. 10 224
Lugubris (Fasciolaria), Reeve. Icon. f. 2, 1847. 75

Lupinus (Fusus), Phil. Abbild. iii, 118. $=$ Netrum. (Pusionella.)
Lurida. (Neptunea), A. Ad. Jour. Linn. Soc. vii, 107, 1864.
Luridum (Buccinum), Hutton. Cat. Moll. N. Zeal. 14, 1873.

- Cominella lurida, Phil.

Luridum (Buccinum), Phil. Zeit. Mal. 137, 1848. Icon. iị, 46, t. 1, f. 10. - Cominella acutinodosa, Reeve.

Luridum (Tritonium), Midd. Bull. St. Petersb. vii, 244, 1849.
= Ocinebra lurida, var. aspera, Baird. vol. ii, p. 131.
Luteolum (Buccinum), Val. Comptes. Rendus. lvi, $762 \ldots . ~ 194$
Luteopictus (Fusus), Dall. Calif. Proc. 1877. =F. cinereus, Reeve. 1872.
Luteostoma Buccinum), Kiener. Monog. 110, t. 30, f. 1. $=$ Nassa.
Luteostoma (Ranella), Pease. Zool. Proc. 307, 1860............................ 45
Lutosa (Eburna), Lam. Encycl. t. 401, f. 4, a. b.. 211
Lyrata (Cyllene), Lam. Anim. s. Vert. x. 170.. 223
Lyrata (Nassaria), Link. (Mörch). Nassaria nivea, Gmel.
Lyratus (Fusus), Desh. Anim. s. Vert. ix, 478.
= Neptunea lirata, Martyn.
Lyratus (Latirus), Reeve. Icon. f. 13, 1847.. 90
Maclurii (Ranellina), Conrad... 6
Macron, H. \& A. Adams. Genera. i, 132, H. Adams, Zool. Proc. 753,
1865.. $101, ~$
214
Macula (Buccinum), Montagu. Test. Brit. 241, t. 8, f. 4. $4=$ Nassa.
Maculata (Gyrina), Schum. Nouv. Syst. 253. = R. gigantea, Lam.
Maculata (Cominella), Martyn. Univ. Conch. ii, t. 49.......................... 204
Maculata (Peristernia), Reeve. Icon. f. 70, 1847.. 84
Maculata (Turbinella), Hombr. et Jacq. Voy. Pol. Sud. v. 113, t. 25, f. 32, 83, 1854. - Peristernia maculata. Rve.
Maculiferus (Fusus), Tapparone-Capefri. Mur. Mar Rosso. 62. =F. luberculatus, Lam.
Maculosa (Eburna), Bolten. Mörch. Yoldi. Cat. 76. = E. lutosa, Lam.
Maculosa (Pisania), Lam. Anim. sans Vert. vii, 269
Maculosum (Buccinum), Martyn. Univ. Conch. t. 8, (non Bl.). ?= Cominella maculata, Martyn. Juv.
Maculosus (Triton), Gmelin. Syst. Nat. 3548.25

Mada, Jeffreys. Brit. Conch. iv. 295, 1867. = Buccinum, L.
Maderensis (Latirus), Watson. Proc. Zool. Soc. 362, t. 36, f. 30, 1873... 89
Magellanicum (Buccinum), Phil, Zeit. Mal. 138, 1848
$=$ Eutheria plumbea, Phil.
Magellanicus (Murex), Chemn. Conch. Cab. x. t. 164, f. 1570. $=$ Triton cancellatus, Lam.
Magna (Fasciolaria), Anton. Verzeichn, 72, 1839............................... 78
Magnifica (Nassaria), Lischke. Mal. Blatt. xviii, 148, 1871........................ 222
Magnum (Buccinum), Da Costa. Brit. Conch. 120, t. 6, f. 4. $=$ Neptunea antiqua, Linn.
Magnus (Fusus), Mart. Conch. Cab. iv t. 144, f. 1339. $=$ F. longissimus, Gmel.
Malsburgianus (Fusus), Menke, Syn. No. 1108.
Mammata (Bursa), Bolten. Morch. Cat. Yoldi. 105.
= Ranella bufonia, Gmelin.
Manchuricus (Sipho) A. Adams. Smith, Ann. Mag. N. Hist. 4 ser. xv. 422, 1875. =S. Jessoensis, Schrenck.

Mancinella. Mus, Berl. H. \& A. Ad. Gen. i, 81. $=$ Melongena, Schum.
Mandarina (Siphonalia), Duclos. Mag. Zool. t. 8, 1831........................ 138
Margaritiferum (Buccinum), Dunker. Zeit. Mal. 60, 1847. = Nassa.
Margaritula (Ranella), Deshayes. Voy. Bellanger, t. 3, f. 13, 15. - 37
Marginata (Ranella), Gmelin. Syst. Nat 42
Marginatus (Fusus), Dujardin. Mém. Géol. ii, 294, t. 19, f. 3.Euthria cornea, Linn.
Mariei (Turbinella), Crosse. Jour. Conch. xvii, 177, 279, t. 8, f. 2, 1869.$=$ var. of Peristernia pulchella, Rve.
Marminea (Mitrella), Risso. Eur. Merid. iv. 272, f. 64.
$=$ Cantharus d'Orbignyi, Payr.
Marmorata (Pisania), Reeve. Buccinum, f. 95, 1846 147
Marmoratum (Buccinum), Anton. Verzeichn. 92, 1836. ? = Nassa.
Marmoratum (Triton), Link. Verzeichn. 152, 1807.$=$ T. Tritonis, Linn, var. nobile.
Marmoratus (Fusus), Phil. Abbild. ii, 120, Fusus, t. 3, f. 7.
$=$ F. Australis, Quoy.
Maroccanus (Fusus), Chemn. Conch. Cab. iv., 62, t. 105, f. 896.$=$ F. Marocensis, Gmel.
Maroccensis (Murex), Gmel. Syst. Nat. 3558 66
Marquesanus (Latirus), A. Ad. Zool. Proc. 315, 1854.
= Penisternia ustulata, Rve.
Martensiana (Euthria), Hutton. Jour. de Conch. 17, 3, .ser. xv. iii, 1874. 151
Martiniana (Melongena), Plil. Abbild, Pyrula. i, 95, t 1, f. 9.M. corona. Gmel.
Martinianum ('Triton), d'Orb. Moll. Cuba, ii, 162, 1853. $=$ T. pilearis, Linn.
Maura (Cominella), A. Adaıns. Zool. Proc. 313, 1854 207
Mauritianus (Triton), Tapparone-Canefri. Bull. Soc. Mal. Ital. ii, 288, 1876 24
Maxima (Siphonalia), Tyron. 135
Mayeria, Bellardi. Mem. Acad. Turin. xxvii, 186, 1873 226
Mazzalina, Courad. Am. Jour. Conch. i, 23, 1865. = Lagena, Schum. 225
Mediterraneus (Triton), Risso. Hist. Nat. iv. 202. $=$ T. nodiferus, Lam.Mediterraneus (Triton), Sowb. Zool. Proc. 71, 1833.
$=$ T. reticulatus, Blainv.
Meganema, Conrad. Am. Jour. Conch. iii, 267. = Tortifusus, Conrad.
Melanoides (Buccinum), Deshayes. Voy. Belanger, 4, 30, t. 2, f. 3, 4.$=$ Bullia.
Melanostoma (Cantharus), Sowb. Tank. Cat. App. 21, 1825 154
Melo (Buccinum), Lesson. Rev. Cuv. 355, 1840 194
Melongena, Schum. Essai, 212, 1817 ,107
Melongena (Melongena), Linn. Syst. Nat. Edit. 12, 1220 107
Mendicaria (Engina), 220
Menkeanus (Cantharus), Dunker. Mal. Blatt., vi, 222, 1860 157
Mercatoria (Voluta), Delle Chiaje, iii, t. 46, f. 44, 46.Pisania maculosa, Lam.Mesorhytis, Meek. Hayden's Survey, ix, 356, 1866.= S. G. of Fasciolaria, Lam50
Metula H. \& A. Adams. Gen. Recent. Moll., ii, 84, 1858. 152
Metula (Buccinum), Hinds. Voy. Sulphur., 31, t. 16, f. 13, 14, 1844.$=$ Metula Hindsii, H. \& A. Adams.
Metulella, Gabb. Proc. Philad. Acad. 270, t. 11, f. 3, 1872 104
Metzgeria, Norman. Quar. Jour. Conch., ii, 56, 1879.
$=$ Meyeria, Dunker \& Metzger.
Mexicanum (Buccinum), Brug.
= Cominella porcata, Gmel. var. Anglicana.
Meyeri (Fusus), Dunker. Novit. Conch., 127, t. 43, f. 1, 2 63
Meyeria, Dunker \& Metzger. Sars, Moll. Norv. 245, 1878. 48

Microstoma (Turbinella) Kïster, Conch. Cab. 111, t. 26, f. 8, 9. $=$ Peristernia nassatula, Lam., var. Forskalii, Tapp.
Middendorff (Chrysodomus), Cooper. Pac. R. R. Rep. xii, 370. = Neptunea lirata, Mart.
Milleti (Fusus), Petit. = Pusionella.
Minutisquamosus (Fusus), Reeve. Icon. f. 80, 1848
Minutum (Buccinum), Pennant. Brit. Zool., iv, 11, t. 79, f. 122. = Nassa incrassata, Müller.
Minutes (Fusus), Desh. Exped. Morée, 193, t. 19, f. 31, 33. $?=$ Murex corallinus, Scacchi, vol. ii, pp. 119, 148.
Miocænica (Ranella), Michelotti. Mioc. It. Sept. 258. $=$ R. gigantea, Lam.
Mirabilis (Thatcheria), Angas. Proc. Zool. Soc. 529, t. 54, f. 1. 1877..... 112
Mirandum (Buccinum), E. A. Smith. Ann. Mag. Nat. Hist. 4 ser. xvi, 186
Mitræfusus, Bellardi, Mem. Acad. Turin, xxvii, 234, 1873...
Mitrella (Metula), Adams \& Reeve. Voy. Samarang., 32, t. 11, f. 13.. ... 152
Modestum (Buccinum), Powis. Zool. Proc., 94, 1835. =Truncaria.
Modestus (Fusus). Anton. Philippi ; Abbild., i, 111, $t, 1$, f. 11. $=$ Latirus 90
Modestus (Fusus), Gould. Bost. Proc., vii, 327, 1860........................ 67
Modificata (Neptunea), Reeve. ' Buccinum, f. 67, 1846......................... 134
Moebii (Neptunea), Dunker \& Metzger. Jahrb., 148, t. 7, f. 1, 1874. $=$ Sipho Sarsii, Jeffreys.
Moestum (Buccinum), Phil. Zeit. Mal., 60, 1851. = Pisania............... 146
Mohnia, Friele. N. Mag. Natur., xxiii, f. 14, 1877.

- S. G. of Sipho Klein...99, 133

Mohnii (Mohnia), Friele, N. Mag. Natur., xxiii, f. 14, 1877................ 133
Mölleri (Buccinum), Reeve. Conch. Icon., f. 29, 1846 and Index. $=$ B. ciliatum, Fabr.
Molliana (Eburna), Chemn. Sowb. Thes., iii, 69, t. 215, f. 1.
=E. Valentiana, Swn.
Molliana (Eburna), Martini. Conch. Cab., iv, 16, f. 1119. - E. Zelandica, Brug.

Mollis (Pisania), Gould. Bost. Proc., viii, 327, 1860............................ 149
Monachus (Fusus), Anton. Verzeichn., 78, 1839................................. 69
Monilifer (Triton), Ads. \& Rve. Voy. Samarang, 37, t. 10, f. 18, 1848... 21
Monoplex, Perry. Conch., 1811. = Simpulum, Klein.
Montrouzieri (Pisania), Crosse. Jour. Conch., 3 ser. ii, 251, t. 10, f. 7, 1862. - P. fasciculata, Rve. var.

Mörchiana (Volutharpa), Fischer. Jour. de Conchyl., vii, 299, t. 10, f. 2, 1859. = Buccinum cyaneum, Brug., var.

Mörchianum (Bucc.), Dunker. Novit., i, t. 2, f. 1, 2, 1858. = B. glaciale, L.
Mörchii (Buccinum), Friele. Jahrb. Mal. Gesell., iv, 260, 1877. N. Mag. Naturvid., xxiii. f. 7, 1877. ? = B. Humphreysianum, Bennett.
Morio (Melongena). Linn. Syst. Nat., edit. xii, 1221.
Morrissii (Bucc.), Dunker. Zeit. Mal., 60, 1847.=Phos. plicosus, Dunker.
Moritinctus (Triton), Reeve. Icon., f. 49, 1844. = T. cynocephalus, Lam.
Mucida (Siphonalia), A. Ad. Kobelt, Conch. Cab., 93, S. munda, A. Ad.
Multangula (Fusus), Phil. Zeit. Mal. 25, 1848. = Leucozonia.
Multicarinatus (Fusus), d'Orb. Voy. Am., 446. = F. closter, Phil.
Multicarinatus (Fusus), Lam. Edit. Desh., ix, 446.
Multicarinatus (Fusus), Reeve. (non Lam). Icon., f. 22, 1847.
= F. spectrum, Ad. \& Rve., var.
Multicostatus (Fusus), Gray. Zool. Beechey's Voy., 118.
$=$ Trophon clathratum, vol. ii, p. 140.
Multigranosum (Bucc.), Dunker. Zeit. Mal. 61, 1847. = Nassa.
Multinoda (Turbinella), Petit. Rev. Zool., 232, 1842.=T. rosa-ponti, Lesson.
Multiplicata (Nassaria), Sowerby. Thes. iii, 87, t. 220, f. 6, 7.$=\mathrm{N}$. nivea, Gmel.
Mulus (Murex), Dillw. Desc. Cat. ii, 704. = T. cancellinus, Roissy.
Munda (Siphonalia), A. Adams. Ann. Mag. N. Hist. 3̀d ser. xi, 206.1863137
Mundum (Triton), Gould. Bost. Proc., 143, 1849. $=$ T. gemmatus, Rve.Mïnsteri (Triton), Anton. Verzeichn., 83, 183919
Muricatus (Fusus), Mont. Test. Brit. i, 262, t. 9, f. 2.$=$ Trophon, vol. ii, p. 140.Muriceus (Fusus), Blainv. Encyc. Meth., t. 4:8, f. 3.= Murex frondosus, Lam. (Fossil).
Muriciformis (Fusus), King. Zool. Jour., v, 348, 1835.$=$ Trophon, Geversianus, Pallas, var. vol.ii, p. 144.
Muriciformis (Ranella), Brod. Zool Proc., 179, 1832.
= Eupleura, vol ii, p. 158.
Muriciformis (Ranella), var. Sowb. Conch. Ill. f. 11.$=$ Eupleuratriquetra, Reeve vol. ii, p. 158.
Muricinus (Fusus), Anton. Verzeichn. 78, 1839 69
Muricoides (Fusus), C. B. Adams. Bost. Proc.. ii, p. 3 68
Muriculatus (Phos), Gould. Sowb. Thes. iii. 89, t. 221, f. 12.
$=$ Ph. senticosus, Linn.
Mutabile (Buccinum), part Val. Voy. Venus, t. 6, f. 2, e, f, Carp.Mazat. Cat., $516,515 .=$ Cantharus gemmatus, Rve.
Myristica, Swainson. Malacol., 86, 307, 1810.
$=$ S. G. of Melongena, Schum.
Myristica (Melongena). Encyc. Méth, t. 431, f. 3, a, b.= M. galeodes, Lam.
Myristica (Melongena), Reeve, Conch. Icon. Fusus, f. 57, 1848 109
Nagasakiensis (Latirus), E. A. Smith. Proc. Zool. Soc., 482, t. 48, f. 7, 1880 225
Nana (Peristernia), Reeve. Icon., f. 67, 1847 84
Nana (Ranella), Sowb. Zool. Proc., 51, 1841 38
Nassa (Leucozonia), Gmel. Syst. Nat. 3551. = Leucozonia cingulifera, Lam.
Nassaria, Link. Mus. Rost. iii, 123, 1807 102, 220
Nassatula (Peristernia), Lam. Hist., vii, 110 80
Nassoides (Cominella), Reeve. Buccinum, f. 12, 1846. 206
Nassoides (Nassaria), Gray. Griffith's Cuvier 222
Nassoides (Peristernia), Reeve. Icon., f. 71, 1847 85
Nasuta (Voluta), Gmel. Syst. Nat. 3455. = Triton Tritonis, Linn.
Natator (Tritonium), Bolten. Mörch, Cat. Yoldi., 106.$=$ Ranella tuberculata, Brod
Nebulus (Fusus), Montagu. Test. Brit., t. 15, f. 6. $=$ Pleurotoma.
Neglecta (Ranella), Sowerby. Zool. Proc., 52, 1841.= R. Margaritula, Desh.
Neglectus (Latirus), A. Ad. Zool. Proc., 314, 1854 94
Neobuccinum, E. A. Smith. Trans. Roy. Soc. London, vol. 168, p. 168. 1879 $.100,197$
Neptunea, Bolten. Mus., 1798 113Neptunella, Meek. Cret. Check List, 38,1804 ; Pal. Hayden's Survey,ix, 343. = Pyrifusus, Conrad103
Neptunella, Verrill. Rept. U. S. Fish Comr., 639, 1875. = Sipho, Klein.Nerei (Murex), part. Dillw. Desc. Cat., ii, 728.$=$ Triton nodiferus, Lam.

Newcombi (Latirus), A. Ad. Zool. Proc., 314, 1854.

- Peristernia chlorostoma, Sowb.

Nicobaricus (Fusus), Lamarck. Edit. Desh., ix, 445............................ 53

Nigricans (Clea), A. Adams. Zool. Proc., 119, 1855............................ 208
Nigricostatus (Cantharus), Reeve. Buccinum, f. 73, 1846.
= C. fumosus, Dillw. var.
Nigrinus (Fusus), Phil. Abhandl. Nat. Gesell. Halle, 21, $1857 \ldots$.
Nigrirostratus (Fusus), E. A. Smith. Zool. Proc. 202, t. 20, f. 33, 1879. 62
Niponicus (Fusus), E. A. Smith. Zool. Proc. 203, t. 20, f. 34, 1879........ 65
Nisotum (Buccinum), Potiez et Michaud. Galerie., i, 378, 1838.
? = Columbella.
Nitens (Fusus), Adams. Contrib. Conch., 60. 1850............................... 68
Nitida (Ranella), Brod. Zool. Proc., 179, 1832. = Eupleura, vol. ii, p. 158.
Nitidulus (Triton), Sowb. Zool. Proc., 71, 1844............................... 27
Nivale (Buccinum), Friele. North Sea Exped., t. 3, f. 24, 25........... 195
Nivea (Nassaria), Gmel. Syst. Nat., 3504... 221
Niveus (Fusus), Gray. Ann. Nat. Hist., i, 28, 1838............................ 68
Nobilis (Fusus), Reeve. Conch. Icon. f. 60, 1848................................ 62
Nobilis (Ranella), Reeve. Zool. Proc., 137, 1844.
= R. bufonia, Gmel. var.
Nobilis (Triton), Conrad. Jour. Philad. Acad. 2 ser. i, 212.
= T. Tritonis, Linn., var.
Nodatus (Latirus), Martyn. Univ. Conch., t. 51................................... 92
Nodicincta (Cominella), Martens. Sitzb. Berlin., 23, 1878................... 206
Nodicinctus (Fusus), A. Adame. Zool. Proc., 222, 1855. = F. Australis, Quoy

68, 227
Nodicostata (Hindsia), A. Adams. Zool. Proc. 183, 1853. - Nassaria acuminata, Reeve.

Nodiferus (Triton), Lem. Edit. Desh., ix., 624................................... 10
Nodiliratus (Triton), A. Ad. Ann. Mag. Nat. Hist., 4 ser. v, 419, 1870... 14
Nodicostatus (Phos.), A. Ad. Zool. Proc., 154, 1850. $=$ P. senticosus, Linn.
Nodosa (Pyrula), Lam. Edit. Desh. ix, 518.

- Melongena Paradisiaca, Reeve.

Nodosa (Siphonalia), Martyn. Univ. Conch. t. E...........................136, 194
Nodosa plicatus (kusus), Dunker. Novit. Conch. 99, t. 33, f. 3, 4......... 54
Nodosum (Triton), Mart. Conch. Cab. iv, t. 131, f. 1256. - T. Wiegmanni, Anton.

Nodulosa (Peristernia), A. Ad. Zool. Proc., $\varepsilon 13,1854 . ~ 87$
Nodulosa (Pisania), Biv. Nouv. Gen. = Cantharus d'Orbignyi, Payr.
Nodulosa (Siphonalia), A. Ad. Ann. Mag. Hat. Hist., xi, 206, 1863...... 137
Noduliferum (Buccinum), Phil. Zeit. Mal., 136, 1848. = Nassa.
Nodulus (Triton), Mörch. Yoldi Cat., 109. = T. tuberosus, Lam.
Notatus (Phos.), Sowb. Thes. iii, 94, t. 221, f. 17, 18. $=$ P. pallidus, Powis.
Noumeensis (Peristernia), Crosse. Jour. de Conch., xviii, 247 , 870. xix, 199, t. 6, f. 1, 1871
Novæ-Hollandiæ (Fusus), Reeve. Icon. f. 70, 1848. Carpenter, 2d Report, $49 .=$ F. spectrum, Ads. and Reeve.
Norvegica (Neptunea), Chemn. Conch. Cal., x, 218, t. 157, f. 1497-8.... 119
Norvegicum (Buccinum), Encyc. Méth, t. 399, f. 5. - Cominella porcata, Gmel., var. Anglicana.

Nucleus (Murex), Brod. Zool. Proc. 175, 1832. Sowb. Conch. Ill. f. 2. - Fusus67
Nux (Liomesus), Dall. Calif. Proc., 1877 195
Obesum (Buccinum), C. B. Ad. Bost. Proc., ii, 2, 1845. Columbella. Obesus (Fusus), Sowb. Thes. Conch., sp. 129, f. 92, 1880. $=$ Sipho. 132
Obliqua (Cyllene), Kiener, Petit. = Nassa.Obliqueplicatum (Bucc.), Dunker. Zeit. Mal. 61, 1847. = Nassa.Obliquicostatus (Cantharus), Reeve. Buccinum. f. 91, 1846161Oblitus (Fusus), Reeve. Icon, f. 29, 1847. =F. Nicobaricus, Lam.Obscura (Buccinum), Reeve. Buccinum, f. 68, 1846.$=$ Cominella lineolata, var. virgata.
Obscurus (Fusus), Phil. Icon. Fusus, i, 108, t. 1, f. 5. 67
Obscurus (Triton), A. Ad. Zool. Proc. 312, 1854 33
Obscurus (Triton), Reeve. Icon. f. 63, 1844 26
Occidentalis (Ptychatractus), Stearns. Prelim. Desc., 1871. Cal. Proc. v, 79, 1873 72
Ocellata (Turbinella), Gmelin. Syst. Nat., 3488 95
Ocelliferus (Fusus), Born. Encyc. Méth. t. 429, f. 7 65Ochotensis (Tritonium), Midd. Reise ii, 235, t. 10 , f. 1, 2 ; t. 9, f. 5 ,1851. Buccinum striatum, Sowb.
Odontobasis, Meek. Hayden's Survey, ix, 351, f. 41, 42, 43, 1876 105
Olearium (Murex), Linn. Syst. Nat., edit. 10, 748.$?=$ Ranella gigantea, Lam.
Olearium (Triton), Linn. Syst. Nat., edit. xii, 121611
Olivator (Ranella), Mensch. Mœrch, Cat. Yoldi., 106.$=$ R. bitubercularis, Lam.
Opis (Triton), Bolt. Morch, Yoldi Cat., 108. = T. nodiferus, Lam.
Oregonensis (Fusus), Reeve. Icon. f. 61. = Triton Oregonense, Jay,
Oregonensis (Triton), Redfield. Ann. N. Y. Lyc., iv, 165, t. 11, f. 2,1848. $=$ T, cancellatus, Lam.
Orientalis (Cyllene), A. Ad. Zool. Proc., 205, 1850. = C. Owenii, Gray
Orientalis (Triton), Nevill. Jour. Asiat. Soc. Bengal, xliii, 29, 1874.$=$ T. labiosus, Wood, var.
Ornata (Siphonalia), A. Ad. Ann. Mag. Nat. Hist., ii, 204, 1863.$=$ S. Cassidariæformis, Reeve.
Ornatum (Buccinum), Say. Jour. A. N. S., 229, 1822.

- Melongena corona, Gmel.
Orphnostoma (Tritonidea hæmastoma, var.), Wimmer. Sitzb. Akad.Wien, lxxx, 472. = Cantharus hæmastoma.
Oryza (Bucc.), Dunker. Zeit. Mal., 64, 1847. ? $=$ Astyris.
Ossiani (Neptunea), Friele. Jahrb. Mal. Gesell., vi, 279, 1879 133
Ovata (Fasciolaria), Menke. Synops. No. 1030. Mörch, Mal. Blatt, xviii,126. =F. salmo, Wood?Ovoides (Neptunea), Midd. Reise, ii, 236, t. 8, f. 7, 8, 1851.- Buccinopsis Dalei, Sowb.
Ovum (Buccinum), Turton. Zool. Jour. ii, 366, t. 13, f. 9. $=$ Buccinopsis Dalei, Sowb.
Ovum (Tritonium), Midd. Mal. Ross. Pt. 2, 174, t. 4, f. 12, t. 6, f. 1-4. = B. Humphreysianum, Bennett.
Oweni (Cyllene), Gray. Griffich's Cuvier, t. 41, f. 2 224
Pachycheilos (Triton), Tapparone-Canefri. Bull. Soc. Mal. Ital. ii, 243, 1876. 21
Pachyraphe (Fusus), E. A. Smith. Zool. Proc., 205, t. 20, f. 37, 370, 1879. = Coralliophila, vol. ii, p. 209.
Pacifica (Eburna), Swains. Zool. Ill. iii, t. 146. =E. lutosa, Lam.
Pacifica (Turbinella), Lesson. Rev. Cuv., 211, 1842. $?=\mathrm{P}$. chlorostoma, Sowb.
Packardi (Buccinum), Stimpson. Canad. Nat. N. S., ii, 375, 1865. $?=$ B. plectrum, Stimpson, var.
Pæteli (Fusus), Dunker. Novit. Conch., 100, t. 33, f. 5, 6. $=$ F. gradatus, Reeve.

INDEX.

Pætelianus (Latirus), Kobelt. Küster, Conch. Cab., 71, t. 18, f, 2, 3 91
Pagoda (Nassaria), Reeve. Zool. Proc., 121, 1844. = Nassa 223
Pagodus (Cantharus), Reeve. Buccinum, f. 50, 1846.
= Melongena fusiformis, Bl.
Pagodus (Fusus), Lesson. Ill. Zool., t. 40, 1831 51
Pagodus (Triton), Reeve. Icon., f. 97, 1844. = Nassa.Palæatractus, Gabb. Pal. Calif., ii, 147, 1869103
Pallida (Cyllene), A. Ad. Zool. Proc., 205, 1850.$=$ C. lugubris, Ad. \& Reeve.
Pallida (Pyrula), Brod. \& Sowb. Kobelt, Conch. Cab., Pyrula, 32, t. 7, f. 3 109
Pallidus (Phos), Powis. Thes. iii, 94, t. 221, f. 19-21. 218
Panamense (Buccinum), Phil. Zeit. Mal., 61, 1851.
Papillaris (Eburna), Sowb. Tank. Cat. App., 22, 1825 211
Papillatus (Triton), Dunker. Mal. Blatt., xviii, 166, 1871 32
Papillina, Conrad.: Proc. Philad. Acad., 262, 1855. 103
Papillosa (Fasciolaria), Sowb. Tank. Cat. App. 16, 1825.$=$ F. gigantea, Kiener.
Papillosus (Triton), A. Ad. . Ann. Mag. Nat. Hist., 4 ser. v, 419, 1870.. 14
Paposum (Buccinum), Phil. Atacama, 188, 1860.
Papuanus (Cantharus), Tapparone-Canefri. Ann. Mus. Civ., Genoa, vii, 1028, 1875 159
Papyracea (Cominella), Brug. Encyc. Meth., t. 400, f. 3 202
Paradisiaca (Melongena), Reeve. Icon. Pyrula, f. 17, 1847 110
Parthenopus (Triton), Salis. Reisen, 370, 1793.Parvulum (Bucc.), Dunker. Zeit. Mal., 64, 1847.$=$ Columbella cribraria, Lam.Parvulum (Buccinum), Verkr. Mal. Jahrb., 1876. = B. undatum, L.
Parvus (Triton), C. B. Ad... Contrib. 59, 1850. $=$ T. eximeus, Rve.Pastinaca (Cantharus), Reeve. Buccinum, f. 88, 1846.$=$ C. Coromandelianus, Lam., var.
Pastinaca (Hemifusus), Reeve. Icon., f. 64, 1848 112
Patagonicum (Buccinum), Phil. Archiv für Naturg., i, 68, 1845.
= Euthria plumbea, Phil.
Patula (Melongena), Brod. \& Sowb. Zool. Jour., iv, 377 107
Paulucciana (Ranella), Tapparone-Canefri. Bull. Soc. Mal. Ital., ii, 244, 1876. . $=$ R. cruentata, Sowb 45
Pauperculus (Fusus), Deshayes. Laborde's Voy. Arab., 66, t. 115, f. $15-17$ 57
Pazi (Pisania), Crosse. Jour. de Conch , 2 ser. iii, 380, t. 14, f. 1, $1858 .$. 148
Pectinata (Ranella), Hinds, Voy. Sulphur, 13, t. 4, f. 17, 18, 1844.
$=$ Eupleura, vol. ii, p. 158.Pediculare (Buccinum), Lam. = Planaxis lineatus.Peistochilus. Meek, Check List Cret. Foss. 22, 1864 ; Hayden's Sur-vey.ix, 35647
Pellucidus (Sipho), Hancock .Ann. Mag. xviii, 330, t. 5, f. 3, 1846. 130
Penita (Cassis), Meusch. Mus. Gron, 388.$=$ Triton cancellinus, Roissy.
Pennata (Pisania), Chemn. Conch. Cab., iv, t. 127, f. 1218-1220.P. pusio, Linn.
Pensum (Fusus), Hutton. Cat. Moll. N. Zeal, 8, 1873.$=\mathrm{F}$. spiralis, Adams.
Perca (Biplex), Perry. Conch., t. 4, f. 5, = Ranella pulchra, Gray 43
Percyanus (Fusus) Sowb. Thes. Conch., No. 4, f. 77, 1880. $=$ F. polygonoides, Lam. 227Perdix (Buccinum), Beck. Merch, Spitzbergen's Mollusken, Ann. Soc.Mal. Belg., iv, 18, $1869 .=$ B. сyaneum, Brug.
Perforata (Eburna), Sowerby. Zool. Proc., 252, t. 21, f. 2, 1870. 213
Perforatus (Triton), Conrad. Proc. Philada. Acad., iv, 156, 1849.T. Wiegmanni, Anton.
Pergracilis (Exilia), Conr 49
Pericochlion (Neptunea), Schrenck. Bull. Petersb., v, 514, 1865. 121
Perissolax, Gabb. Syn. Cret. Moll., 66, 1861 104
Peristernia, Mœrch. Yoldi Cat., 99,1852. 48, 79
Perlatus (Cantharus), Küster. Conch. Cab., Buccinum. 61, t. 12, f. 5, 6.Perplexus (Fusus), A. Ad. Jour. Linn. Soc., 106, 1864; E. A. Smith,Zool. Proc., 202, 1879.54
Perryi (Bullia), Jay. Japan Exped., ii, 295, t. 5, f. 13-15, 1856.
Persica (Fasciolaria), Reeve. Icon. f. 15, 1847. = F. aurantiaca, Lam.Persona, Montf. Conch. Syst. ii, 602, 1810. = Distorsio, Bolt.Personella, Conr. Am. Jour. Conch., i, 21, 1865. = Triton.6
Perversus (Fulgur), Linn. Syst. Nat., edit. 12, 1222. 141
Perversus (Fusus), Lam. Kiener, t. 20, f. 1. = Neptunea contraria, Linn.
Pes-leonis (Bufonaria), Schum. Nouv. Syst., 252, 1817.$=$ Ranella scrobiculator, Linn.
Petit Thouarsi (Fusus), Val. Voy. Venus, t. 5, f. 1, 1846.$=\mathrm{F}$. Dupetithouarsi, Kiener.
Petterdi (Cantharus), Brazier. Zool. Proc., 22, 1872. 162
Pfaffi (Sipho), Mörch. Jour. Conch., xxiv, 369, 1876 127
Pfeifferi (Fusus), Philippi. Abbild. ii, 117, t. 3, f. 1. 63
Pfeifferianus (Triton), Reeve. Icon., f. 14, 1844 23
Phalæna (Buccinum), Lesson. Rev. Cuv., 237, 1842. ? - Engina 194
Philberti (Peristernia), Recluz. Mag. de Zool., t. 91, 1844. 79
Philippii (Fusus), Jonas. Mal. Beitr., 129. 62
Philomele (Triton), Watson. Jour. Linn. Soc., xv, 268, 1880 225
Phos, Montfort. Conch. Syst., ii, 494, 1810 215
Picta (Peristernia), Reeve. Icon. f. 19, 1847. 79
Pictum (Bucc.), Dunker. Zeit. Mal., 172, 1846. = Nassa.Pictum (Buccinum), Reeve. Icon. f. 74, 1846. = Pisania ignea, Gmel.Picturatum (Buccinum), Dall. Calif. Proc., 1871.190
Pictus (Cantharus), Scacchi. Cat. 10. f. 14. 158
Pictus (Triton), Reeve. Icon. f. 99, 1844. 30
Pileare (Triton), Orb. Voy. Amer. mérid. 449. = T. olearium, L.
Pilearis (Triton), Linn. Syst. Nat., edit. xii, 1217. 12Pingue (Buccinum), Phil. Zeit. Mal. 61, 1851. = Nassa.Pisania Bivona, Effem. scient. 55, 1832.100, 145Plagosus (Fulgur), Conrad. Jour. Philad. Acad., 2d ser., 583, 1862;Am. Jour. Conch., iii, 182. = F. pyrum, Dillw.
Planaxiforme (Buccinum), Anton. Verzeich. 92, 1839. ? = Planaxis.Plebeius (Fusus), Hutton. Cat. Moll. N. Zeal., 9, 1873.$=$ Trophon, vol. ii, p. 145, 156.
Plectrum (Buccinum), Stimpson. Canad. Nat. N. S. ii, 374, 1865. 184
Pleurotomarius (Fusus), Couthuoy. Bost. Jour. ii, t. 1, f. 9. $=$ Pleurotoma.Pleurotomiforme (Buccinum), Potiez et Mich. Galerie, i, 379, t. 32, f.13-14, 1838.
Pleurotomoides (Fusus), Anton. Vérzeichn. 17, 1839 69
Plicata (Pyrula), Lam. Anim. s. Vert., edit. Desh. ix, 502 111
Plicata (Ranella), Reeve. Zool. Proc. 138, 1844. Conch. Icon. t. 7, f. 33.Kuster, 139, t. 38 a, f. 2. $=$ Eupleura, vol. ii, p. 145, 156.Plicatella, Swains. Malacol. 78, 304, 1840. = Latirus, Montf.97
Plicatula (Turbinella), Anton. Verzeich. 71, 1839
Plicatulum (Buccinum), Nuttall. Jay, Cat. 3d edit., 88. 194
Plicatus (Phos), A. Adams. Zool. Proc. 175, 1857. = P. senticosus, Linn.
Plicatus (Sipho), A. Adams. Jour. Linn. Soc. vii, 107, 1864.
Plicosum (Bucoinum), Dunker. Zeit. Mal. 111, 1846. $=$ Nassa.
Plicosum (Buccinum), Menke. = Urosalpinx cinerea, Say. Vol. ii, p. 152.Plicosus (Phos), Dunker. Zeit. Mal. 111, 1846216
Plumatum (Buecinum), Gmelin, 3494. = Pisania pusio, Linn.
Plumbea (Cyllene), Sowb. Thes. Conch. iii, 78, t. 217. f. 23, 27, 28 224
Plumbeus (Fusus), Phil. Abbild. i, 108, t. 1, f. 3, 1844. $=$ Euthria plumbea 150
Pluriannulata.(Cominella), Reeve. Buccinum, f. 38, 1846.
$=$ C. lineolata, Lam:, var. virgata.
Polare (Buccinum); Gray. Zool. Beechey's Voy. 128, 1839.- B. glaoiale, Linn., var.
Politum (Buccinum), Basterot. Mém. Geol. Env. Bordeaux, 48, t. 2, f. 11, teste Deshayes; Voy. Belanger, 431, t. 3, f. 1, 2. = Bullia.
Pollia, Gray. Zool. Beechey's Voy. 111, 1839. = Cantharus, Bolten.
Polychloros (Ranella), Tapparone-Canefri. Ann. Mus. Civ., Genoa, xii, 1028. 1875. = R. pusilla, Brod., var.
Polygona, Schum. Essai Nouv. Syst., 241, 1817. =Latirus, Montf.
Polygonoides (Fusus), Lam. Anim. sans Vert. edit. Desh. ix, 455 56
Polygonus (Latirus), Gmel. Syst. Nat., 3555 88
Polyzonalis (Ranella), Encyc. Méth. $=$ R. argus, Gmelin.
Ponderosa (Fasciolaria), Jonas. Phil. Abbild., iii, Fasc. 93, t. 2.
$=$ F. trapezium, Linn., var.
Ponderosa (Ranella), Reeve. Zool. Proc. 137, 1844. = R. affinis, Brod.Porcata (Cominella), Gmelin. Syst Nat., 3494202
Porcatum (Buccinum), B. Gmelin, Syst. Nat., 3494. - Cantharus variegatus, Gray.
Porcatus (Cantharus), H. and A. Ad. Kool. Proc., 430, 1863. 166
Porphyrostoma- (Tudicla), Ads. and Reeve. Recve, Icon. Fasciolaria, 1847. 143
Poulsenii (Triton), Morch. Mal. Blatt, xxiv, 33. 1877 14
Poulsoni (Buccinum). Nuttall MSS. Jay, Cat. 3d edit. 88 194
Prevostii (Buccinum), Val. Voy. Venus, t. 6, f. 3.- Cantharus spiralis, Gray.
Priamus;-Beek: Desh. Anim. s. Vert. viii. 299, 1838. = Halia, Risso.
Priene, H. \& A. Adams. Genera, ii, 655, 1858
$=$ S. G. of Triton; Montf.33
Princeps (Fasciolaria), Sowb. Tank. Cat. App. 16, 1825 75
Priscofusus, Conrad. Am. Jour. Conch., i, 150, 1865 49
Prismaticus (Latirus), Martyn 93
Proboscidiferus (Fusus), Lam. Edit. Desh., ix, 449 52
Proditor (Ranella), Frauenfeld. . Verh. Zool. Bot. Gesell. Wien. xv, 894.1865. Velain, Archives, Zool. Exp. vi, 100, t. 2, f. 5.= R. argus, Gmel.
Producta (Ranella), Pease. Zool. Proc., 397, 1860. 45Productum (Triton), Gld. Moll. Wilkes' Exp. 240, 1852.$=$ T. tuberosus, Lam.
Productus (Sipho), Beck. Mörch, Jour. Conch., xxiv, 371, 1876. 129
Propinquus (Sipho), Alder. Cat. North., t. 63 125
Proteus (Cantharus), Reeve. Buccinum, f. 51, 1846.$=$ C. fumosus, Dillw.
Provincialis (Fusus), Blainv. Faune Franc., 87, t. 4, D. f. 1. $=$ F. rostratus, Olivi.
Provincialis (Pyrula), Martin. Jour. de Conch., ii, 249, t. 8, f. 4, 1851 ; Petit, ibid., iii, 272. = Cassidaria echinophora.

Pseudobuccinum, Meek \& Hayden. Hayden's Survey, ix, 349, t. 31, f. 5. 1876.

Pseudodon (Leucozonia), Burrow. Elem., 184, t. 26, f. 2, 1815. $=$ L. cingulata, Lam.
Ptychatractus, Stimpson. Am. Jour. Conch., i, 59. 48, 72Pubescens (Buccinum), Küster. Monog., 73, t. 13, f. 8, $9,1858$.$=$ Cominella porcata, Gmel ., var.
Pugilina, Schum. Nouv. Syst., 216, 1817, $=$ S. G. of Melongena, Schum.
110
Pulchella (Cyllene), Ad. \& Rve. Voy. Samarang, 33, t. 10 224
Pulchella (Peristernia), Reeve. Icon., f. 65, 1847 81
Pulchella (Ranella), Forbes. Voy. Rattlesnake, ii, 328, t. 3, f. 6, a, b, 1852. = R. pulchra, Gray 43
Pulchellum (Buccinum), Adams. Contr. Conch., 130, 1850. 194Pulchellum (Buccinum), Sars. Moll. Norv., 261, t.24, f. 9. 1878.$=\mathrm{B}$. cyaneum, Brug.
Pulchellus (Fusus), Pfr. (not Lam.) Archiv. für. Naturg. i, 258, 1840.$=$ Cantharus limbatus, Phil.
Pulchellus (Fusus), Phil. Enum. Moll. Sicil. ii, 178, t. 25, f. 28. 65
Pulchellus (Murex), Lam. Pfeiffer. Weigm. Archiv., i, 258, 1840.$=$ Cantharus limbatus, Phil.
Pulchellus (Triton), Ad. Contr. Conch., 60, 1850. $=$ T. chlorostomus, Lam.
Pulchra (Ranella), Gray. Sowb. Ill., f. 19. 43Pulchra (Ricinula), Reeve. Icon. f. 20. = Peristernia incarnata, Desh.Pulchra (Siphonalia), Woods. Proc. Roy. Soc. Tasmania, 132, 1876.$=$ Young, Pleurotoma philomenæ
137
Pulchrum (Buccinum), Reeve., f. 80, 1846. = Engina.
Pulchrum (Buccinum), Lesson. Rev. Cuv., 238, 1842.194
Pulla (Fusus), Reeve. Fusus, f. 89, 1848.$?=$ Pleurotoma Vahlii, Moller.
Punctulatum (Buccinum), Potiez et Mich. Galerie, i, 380, t. 32, f. 15, 16.1838. = Columbellidæ.
Punctatum (Buccinum), Monog., 74, t. 14, f. 51.= Amycla, in Columbellidie.
Punctatus (Fusus), Anton. Verzeichn., 77, 1839 69
Puncticulatus (Cantharus), Dunker. Mal. Blatt., viii, 44, 1862. 159
Purpurea (Fasciolaria), Jonas. Zeit. Mal., 1846. = F. aurantiaca, Lam.
Purpurea (Fasciolaria), var. Dunker, Novit., 94, t. 32, f. 1, 2.= F. Heynemanni, Dunker.
Purpuroides (Buccinum), Anton: Verzeichn, 92, 1839. Undetermined.Purpuroides (Fusus), d'Orb. Voy. Am. Merid., t. 65, f. 1.$=$ Melongena fusiformis, Blainv.
Purpuroides (Turbinella), Lesson, Rev. Zool., 211, 1842 97
Pusilla (Distorsio), Pease. Zool. Proc.. 397, 1860 35
Pusilla (Meyeria), Sars. Norv. Moll., 245, t. 13, f. 8, Vid. Selsk. Foreh. Christ., 39, 1858. = M. alba, Jeffreys.
Pusilla (Neptunea), Bolten. Mörch. = Nassaria nivea, Gmel.
Pusilla (Ranella), Brod. Zool. Proc., 194, 1832 44Pusillum (Buccinum), Pfr. Archiv., i, 257, 1840. = Columbella.Pusillum (Buccinum), Phil. Zeit. Mal., 62, 1851.
Pusillus (Fusus), Pfeiffer. Archiv. für Naturg., i, 258, 1840. 67
Pusillus (Triton), Pease. Zool. Proc., 4, 34, 1860 31
Pusio, Gray. Griffith's Cuvier., t. 25, 1823. = Pisania, Bivona.
Pusio (Pisania), Linn. Syst. Nat. edit., xii, 1223. 145Pusio (Pisania), Linn. Philippi et Auct. = P. maculosa, Lam.Pustulosa (Ranella), Reeve. Zool. Proc., 137, 1844. Conch. Icon., f. 11,184441

Puxleyanum (Bucc.) Leach. Moll. Gt. Brit. 127. = B. Humphreysianum, Bennett.
Pygmæa (Ranella), Lam. Anim. s. Vert., vii, 154. = Nassa pygmæa, Lam.
Pygmæus (Sipho), Gould. Invert. Mass., 284, f. 199, 1841................... 129
Pygmæus (Triton), Reeve. Icon., f. 67. = T. reticulatus, Blainv.
Pyramidale (Buccinum), Reeve. Icon., f. 104, 1847. = B. undatum, Linn.
Pyramidalis (Ranella), Brod. Z. Proc., 194, 1832. =R. anceps, Lam.
Pyramis (Siphonalia), A. Ad. Ann. Mag. N. Hist., xi, 206, 1863............. 137
Pyrella, Swains. Mal., 304, 1840. $=$ Tudicla, Bolt.
Pyriformis (Triton), A. Ad. Zool. Proc., 312, 1854............................. 35
Pyriformis (Triton), Conrad. Jour. Philad. Acad. 2 ser. i, 211, 1849. $=$ T. tuberosus, Lam.
Pyrifusus, Conrad. Jour. Acad. Nat. Sci. Philad. N. S. iii, 332, t. 35. f. 12, t. 47, f. 2, 1858. Meek, Hayden's Survey, ix, 343..................... 103
Pyropsis, Conr. Jour. A. N. S. Philad., iv, 188, t. 16, f. 39, 1860, Am. Jour. Conch., iv, 248, 1868.
Pusillus (Triton), Pease. Zool. Proc., 434, 1860... 31
Pyrostoma (Phos), Reeve. Zool. Proc., 200, 1842. = P. textum Gmel.
Pyrula, Perry. Conch. 1811. = Fasciolaria, Lam.
Pyrulatus (Fusus), Reeve. Icon. f. 50, 1847. Var. Dunker, Novit, 103, t. 34, f. 5, 6

Pyrulofusus, Beck, Mörch. $=$ Heliotropis, Dall
Pyruloides (Fulgur), Say. Jour. Philad. Acad., ii, 237. - Fulgur pyrum, Dillw.

Pyruloides (Fusus), DeKay. Nat. Hist. N.Y. $=$ Melongena corona, Gmel. 229
Pyruloides (Fusus). Encyc. Méth. t. 429, f. 6. $=$ Hemifusus ternatanus, Gmel.
Pyrulum (Triton), Ads. and Reeve. Voy. Samarang, 37, t. 10, f. 17, 1848. 23
Pyrum (Buccinum), Gmelin. 3484. = Melongena paradisiaca, Rve.
Pyrum (Busycon), Dillw. Cat. 485.
Pyrum (Triton), Linn. Syst. Nat. edit. xii, 1218... 19
Quisquiliarum (Buccinum), Phil. Zeit. Mal., 62, 1851. ? = Nassa.
Quoyana (Cominella), A. Adams. Zool. Proc. 313, 1854.
$?=\mathrm{C}$. costata, Quoy.
Quoyi (Buccinum), Reeve. Icon. sp. 36, 1846. - C. lineolata, Lam. Var. virgata.

Quoyi (Cominella), Kiener. Buccinum, 16, t. 5, f. 13.......................... 204
Quoyi (Triton), Reeve. Icon. f. 93, 1844... 24
Rana, Humph. Mus. Calonn. 1797. = Ranella, Lam.
Rana (Murex), pars., Linn. Edit. 12, 1216. = Ranella crumena, Lam.
Rana (Murex), Linn. - Ranella albivaricosa, Reeve.
Rana (Murex), var. B., Linn. Edit. 12, No. 527.

- Ranella spinosa, Lam.

Ranella, Lam. Extr. d'un Cours., 1812...6, 36
Ranellæforme (Triton), Sismonda. Synopsis, 39. = T. nodiferus, Lam.
Ranellæformis (Triton), King. Zool. Jour., v, 347.

- Ranella Argus, Gmelin.

Ranellina. Conr. Am, Jour. Conch., i, 21, 1865................................. ©
Ranelloides (Triton), Reeve. Zool. Proc., 1844. Icon. f. 10, 1844. = Ranella cruentata, Sowb.
Ranina (Ranella), Blainv. Malacol, p. 400. $=$ R. gigantea, Lam.
Ranina (Ranella), Lamarck. Edit. Desh. ix, 549. = R. gyrina, Linn.

Ranularia, Schum. Essai, 1817. = Gutturnium, Klein.
Ranzanii (Triton), Bianconi. Revue et Mag. Zool. 217, 1851. Zool. Mozambicana 63, t. 3, f. 1, 2, 1851. $=$ T. tigrinus, Brod.
Raphanoides (Fusus), Gray. Zool, Beechey's Voy., 116, 1839. $=$ Melongena fusiformus, Bl .
Raphanus (Fusus), Lam. Edit. Desh. ix, $454 .=$ Siphonalia nodosa, Martyn.
Rapulum (Buccinum), Reeve. Icon. f. 82. = Pusionella.
Recluzianus (Fusus), Petit. = Pusionella.
Rectiplicatus (Fusus). Sowb. Thes. Conch. sp. 110, f. 101, 1880. $=$ Sipho Kroyeri, Moller.132

Rectirostris (Chrysodomus), Carpenter. 2d Report, 150................... .. 131
Recurva (Nassaria), Sowb. Thes. iii, 86, t. 220, f. 17, 18. $=$ N. acuminata, Reeve.
Recurva (Tudicla), A. Ad. Zool. Proc. 135, t. 28, f. 4, 1854. $=$ T. porphyrostoma, Ad. and Reeve.
Recurvirostris (Latirus), Schubert and Wagner. Conch. xii, p. 100, t. 227, f. 4021.

Recurvus (Fusus). Koch. Pbilippi Abbild. ii, 119, t. 3, f. 6. Urosalpinx cinerea, Say. Vol. ii, p. 152.
Reeveana (Siphonalia), Petit. Jour. de Conch. ii, 365, t. 10, f. 7, 1851.. 138
Reeveanum (Bucc.), Dunker. Zeit. Mal. 62, 1847. = Nassa.
Reeveanus (Fusus), Phil. Abbild. iii, 119. = F. spectrum, Ad. and Reeve. var.
Reeveanus (Fusus). Sowb. (not Petit). Thes. Conch. sp. 62, f. 82, 1880.. 228
Reevei (Fasciolaria), Jonas. Phil. Abbild. iii, 121, t. 3, f. 2. $=$ F. princeps, Sowb.
Regularis (Neptunea), Dall. Kobelt, 115, t. 39, f. 2, 3. $=\mathrm{N}$. Norvegica, Chemn.
Remotus (Fusus), Anton. Verzeichn. 77, 1839.................................. 69
Retecosus (Phos), Hinds. Voy. Sulphur, 37, t. 10, f. 3, 4, 1844............. 218
Reticosus (Triton), A. Ad. Ann. Mag. N. Hist., 4 ser. v, 420, 1870...... 31
Reticulare (Tritonium), Pfeiffer. = T. cancellinus, Roissy.
Reticularis (Murex), Linn. Gmelin, 3536. ?= R. gigantea, Lam.
Reticularis (Ranella), Deshayes. Encyc. Meth. iii, $877 .=$ R. gigantea, Lam.
Reticulata (Pisania), A. Adams. Zool. Proc., 138. 1854.
Reticulatus (Triton), Blainv. Faune Franc., t. 4 D, f. 5.......................... 27
Retusus (Triton), Lam. Edit. Desh., ix, 635.. 23
Rheuma (Fusus), Menke. Zeit. Mal. 19, 1851. $=$ Fusus colus, L. var. toreuma, Martyn.
Rhinoceros (Triton), Bolten. Mörch, Yoldi Cat., 109. $=$ T. lotorium, Linn.
Rhinodomus, Swains, Mal., 80, 305. 1840. = Phos. Montf.
Rhodostoma (Latirus), Dunker. Mal. Blatt., vi, 238, 1860
Rhodostoma (Ranella), Beck. Sowb. Zool. Proc., 52, 1841. $=$ R. cruentata, Sowb. var.
Ridens (Distorsio), Reeve. Icon. f. 46, 1844. =D. cancellinus, Roissy.
Rigidus (Murex), Wood. Ind. Test. Suppl., t. 5, f. 3.
$=$ Latirus nodatus, Martyn,
Ringens (Buccinum), Phil. Zeit. Mal., 59, 1851. ? = Nassa.
Ringens (Cantharus), Reeve. Buccinum, f. 45, 1846. $=$ C. Coromandelianus. Lam
Robustior (Fusus), Sowb. Thes. Conch., sp. 73, f. 63, 1880.................. 228
Robustum (Buccinum), Küster. 81, t. 14, f. 13, t. 15, f. 5. $=$ Cominella porcata, Gmelin.
Rodgersi (Buccinum), Gld. Bost. Proc., vii, $326,1860=$ B. glaciale, L.
Roedingi (Fusus,) Anton, Verzeichn, 75, 1839,

Roissyi (Buccinum), Deshayes. Voy, Belanger, 432, t. 3, f. 3, 4. - Nassa.

Rollandi (Turbinella), Bernardi \& Crosse. Jour. Conch., ix, 50, t. 1, f. 5,
1861... 75
Rombergi (Buccinum), Dunker. Novit. Conch., i, 4, t. 2, f. 5, 6, 1858. - B. glaciale, Linn.

Rosa-ponti (Fusus), Lesson. Rev. Zool., 104, 212, 1842. $=$ Turbinella, Petit, Rev. Zool., 232, 184297

Rosea (Ranella), Reeve. Zool. Proc., 139, 1844 ; Conch. Icon., f. 46. R. Pusilla, Brod., var.

Roseatus (Phos), Hinds. Voy. Sulphur, 38, t. 10, f. 9, 10, 1844............ 217
Roseus (Fusus), Hombr. et Jacq. Voy. et Astrol. et Zel., v, 107. t. 25, f. 4-5, 1854. = Trophon, Vol. 2.

Roseus (Fusus), Anton. Verzeichn, 78, 1839..................................... 69
Roseus (Sipho), Dall. Calif. Proc., 1877.. 128
Rossmassleri (Fusus), Anton. Verzeichn, 77, 1839............................. 69
Rostratum (Triton), Mart., iii, f. 1083. = T. cingulatus, Lam.
Rostratus (Fusus), Olivi. Zool. Adriat., 153..................................... 61

Rubens (Cantharus), Küster. Bucc., 25, t. 6, f. 7, 9............................ 156
Rubens (Fusus), Lam. Edit. Desh. ix, 458... 68
Rubicola (Ranella), Perry. = Ranella granifera, Lam.
Rubiginosum (Buccinum), Krauss (not Reeve). Siid Afr. Moll., 120, $=$ B. cariniferus, Kiister.
Rubiginosum (Buccinum), Krauss. Siid Afrk. Moll., 120. =Pisania carinifera, Küster.
Rubiginosus (Cantharus), Reeve. Buccinum,f. 47, 1846.

- Tritonidea fumosus, Dillw. var.

Rubrclineata (Cyllene), Sowb. Zool. Proc., 251, 1870........................... 225
Rubrolineatus (Fusus), Sowb. Zool. Proc., 252, 1870...............................5., 228
Rubrum (Buccinum), Potiez et Mich. Galerie i, 381, t. 32, f. 17, 18, 1838. $=$ Lachesis minima. Mont.
Rudicostatus (Fusus), Sowb. Thes. Conch., sp. 30, f. 19, 1880.
$=$ F. Australis, Quoy.. 227
Rudis (Turbinella), Reeve. Icon., f.51, 1847. = Leucozonia cingulifera, Lam.
Rudis (Triton), Brod. Zool. Proc., 6, 1833.. 34
Rudolphi (Fusus), Dunker. Novit. Conch., 128, t. 43, f. 3, 4. 64
Rufocinctus (Phos), A. Adams. Proc. Zool. Soc., 154, 1850.
$=$ Ph. senticosus, Linn.
Rufulum (Buccinum), Kiener. Monog., t. 10, f. 9, 10.

- Desmoulea ventricosa, Lam.

Rufum (Bucc.) Dunker. Zeit. Mal., 59, 1847. = Nassa.
Rufus (Fusus), Hombr. et Jacq. Voy. Astrol. et Zel. v, 107, t. 25, f. 1-3, $=$ Euthria plumbea, Phil.
Rufus (Fusus), Reeve, Icon. f. 58, 1848. = Fasciolaria rufa, Rve 78
Rugosa (Distorsio), Schum. Nouv. Syst. 249. = D. anas, Linn.
Rugosa (Fasciolaria), Val. Recueil d'Observations, 286
Kugosa (Ranella), Sowerby. Zool. Proc., 53, 1841. Conch. Ill., f. 7. $=$ F. cruentata, Sowb.
Rustica (Turbinella), Gmelin. Syst. Nat., 3486. = T. smaragdula, Linn.
Rusticula (Tudicla), Bast. H. \& A. Adams' Genera, i, 152 . Unidentified,
Rutilum (Tritonium), Menke. Moll. Nov. Holl., 25, 1843. $=\mathrm{T}$. labiosus, Wood.
Rutilum (Tritonium), Mörch. Dunker, Novit. Conch., 3, t. 1, f. 5, 6. $=$ B. glaciale, L .

Saginella, Conrad. Am. Jour. Conch., i, 21, 1865. = Buccitriton, Conr.
Sagitta (Ranella), Küster. Conch. Cab., 147, t. 38 a, f. 6.
$=$ R. pusilla, Brod., var concinna, Dkr.
Salmo (Fasciolaria), Wood. Ind. Test. Suppl., t. 5, f. 14.
Sabini (Fusus), Hancock. = Sipho Islandicus, Chemn., Juv.
Sabini (Tritonium), Middendorf (not Gray).
$?=$ Siphonalia Harfordi, Stearns.
Sabinii (Fusus), Friele. N. Mag. Natur., xxiii, 7, f. 15, 16.
$=$ Sipho togatus, Mörch.
Sabinii (Fusus), Gray. Append. Parry's Voy., 240, 1824.
Sagenella, Conrad.
Salebrosa (Turrispira), Conrad, $49 ?=$ Buccinofusus Berniciensis, King.
Salmo (Fasciolaria), Wood. Index Test. 78.
Samier (Triton), Petit. Jour. de Conch. iii, t. 2, f. 10, 1852. $=$ T. ficoides, Reeve.
Samoënsis (Cantharus), Dunker. Mal. Blatt, xviii, 165, 1871............... 161
Sanctr-Luciæe (Murex), v. Salis. Reise, 371, t. 7, f. 3.
$=$ Fusus rostratus, Olivi.
Sandvichensis (Fusus), Sowb. Thes. Conch. sp. 17, f. 25, 1880.
$=$ F. spectrum, Ads. and Reeve, var.. 227
Sanguifluus (Latirus), Reeve. Icon. f. 58, 1847................................... 93
Sanguineus (Murex), Mawe. Wood Ind. Test. Suppl. p. 217, f. 10.
$=$ Latirus varicosus, Reeve.
Sanguinolentus (Cantharus), Duclos. Mag. de Zool. t. 22, f. 1833......... 164
Sarcostoma (Triton), Reeve. Icon. f. 21, 1844.....................................: 20
Sarsii (Sipho), Jeffreys (Wood). Sars, Moll. Norv. 275......................... 128
Saturus (Fusus), Martyn. Univ. Conch. t. 47.
$=$ Neptunea despecta, Linn., var. fornicata.
Sauliæ (Triton), Reeve. Proc. Zool. Soc. 112, 1844. Icon. f. 17, 1844. $=$ T. nodiferus, Lam.
Savignyi (Fasciolaria), Tapparone. Mur. Mar. Rosso.
$=\mathbf{F}$. lignaria, Linn.
Scaber (Murex), Lam. Anim. S. Vert. vii, 175.
$=$ Fusus craticulatus, Brochi.
Scaber (Triton), King. Zool. Jour. v, 348.. 34
Scabra (Cantharus), Monterosato. Giorn. Acad. Sc. Palermo, xiii, 102, 1878. (For P. d'Orbignyi, Payr. var. subspinosa, Monts. Nuova Revista, 39)
Scabra (Peristernia), Souverbie. Jour. Conch. xvii, 419, 1869, xviii, 430, t. 14 , f. 3,1870 .

Scabra (Pollia), Gray. - Triton scaber, King.
Scabra (Ranella), Grateloup. Mém. 62, t. 4, f. 14, 1840. $=$ Triton scaber, King.
Scabrosa (Peristernia), Reeve. Icon. f. 60, 1847. $亡$ P. chlorostoma, Sowb.
Scabrum (Argobuccinum), King. Carpt. Rept. 218, and note. $=$ Triton scaber, King.
Scabrum (Bucc.), Dunker. Zeit. Mal. 171, 1846. 59, 1847. $=$ Nassa horrida, Dunker.
Scacchianum (Buccinum), Phil. Enum. Moll. Sicil. ii, 188, t. 27, f. 5. $=$ Cantharus pictus, Scacchi.
Scalariforme (Buccinum), Beck. Kroyer's Tidssk. iv, 84, 1842. $?=$ B. tenue, Gray.
Scalariforme (Tritonium), Beck. Amtl. Bericht, No. 18. Möller, Moll. Grœenl. 11, 1842. $=$ Sipho Kroyeri, Möller.
Scalariformis (Triton), Brod. Zool. Proc. 7, 1833................................... 25
Scalarina (Canidia), Deshayes. Nouv. Archiv. Mus. Bull. x, 153, t. 8, f. 18-20.
Scalarinus (Fusus), Lam. \rightleftharpoons Pusionella Nifat, Adanson.
Scalaroides (Phos), A. Ad. Zool. Proc, 154, 1859. = P. senticosus, Linn. Scalaspira, Conrad 49
Scarlatina (Septaria), Perry. Conch. t. 14, f. 2. $=$ T. rubecula, Linn.
Schantaricus (Sipho), Midd. Reise, ii, 230, t. 10, f. 7-9. 1851 127
Schrammi (Fusus), Crosse. Jour. de Conch. xiii, 31, t. 1, f. 9, 1865 57
Schroederi (Buccinum), Beck. Jay's Cat. 3d edit, 88 194
Scrobiculator (Ranella), Linn. Sy:t. Nat. edit. xii, 1218. 40Scorbiculatus (Fusus), Dunker. Phil. Abbild, ii, 118, t. 3, f. 4.$=$ Murex purpuroides, Dkr. Rve. vol. ii, p. 120.
Sculptilis (Phos), A. Ad. H. and A. Adams, Genera i, 115 220
Sculptilis (Triton), Reeve. Icon. f. 76, 1844. 28
Sechellarum (Buccinum), Duffo. Ann. Sci. Nat. 68, 1840 195
Seguenzæ (Triton), Aradas and Benoit. Atti Acad. Giania, ser. 8, v. 90,1871. = T. Tritonis, Linn, var. nobilis.Semigranosa (Ranella), Kiener, Monog. 19, t. 11, f. 2.$=$ R. cælata, Brod.
Semigranosa (Ranella), Lam. Edit. Deshayes, ix, 548.$=$ R. granifera, Lam.
Semigranosum (Bucc), Dunker. Zeit. Mal. 170, 1846. Nassa.
Semipicta (Eburna), Sowb. Thes. Conch. iii, t 291, f. 12, 13 213
Senegalensis (Cyllene), Petit. Jour. de Conch. iv, 144, t. 5, f. 5, 1853.$=$ C. Owenii, Gray.
Senticosus (Phos), Linn. Syst, Nat. edit. 12, $12 \% 0$. 215
Sepimentum (Buccinum), Rang. Guerin's Mag. t. 18, 1832.$=$ Pseudoliva, vol. ii, p. 196.
Septemdentata (Personella), Gabl. 6 .
Seriale (Buccinum), Deshayes. Laborde Voy. Arab. t. 115, f. 32-34.$=$ Cuntharus puncticulatus, Dunker.
Sericatum (Buccinum), Hancock. Ann. Mag. N. Hist. xviii, 328, t. 5, f.6, 1846. $=$ B. cyaneum, Brug.
Serotina (Clavella), Hinds. Ann. Nat. Hist. xi, 257. 70
Serrifusus, Meek. Hayden's Survey, ix, 373, t. 32, f. 6, a. b. 1876. $=$ S. G. of Fusus, Lam 49
Setosa (Cassidaria), Hinds. =Triton Wiegmanni, Anton.
Signatum (Bucc.), Dunker. Zeit. Mal. 61, 1847. = Nassa.Signum (Siphonalia), Reeve. Buccinum, f. 6, 1846.136
Similis (Fusus), Baird. Brenchley's Voy. Curaçoa, 432, t. 36, 1873.$=F_{\text {. undatus, Gmel. }}$
Simoniana (Euthria), Jour. de Conch. iii, 164 t. 7. f. 7, 1852 150
Simplex (Fusus), E. Smith. Wool. Proc. 204, t. 20, f. 35, 1879 65
Simpulum, Klein. Ostrac. 50, 1753. Adams' Genera, i, 102. 三S. G. of Triton, Montf. 9, 11
Sinarum (Buccinum), Phil. ' Zeit. Mal. 63, 1851. Nassa.
Sinensis (Hindsia), Sowb. Thes. iii, 86, t, 220, f. 8, 9.= Nassaria acuminata, Reeve.
Sinensis (Triton), Reeve. Icon. f. 18, 1844. 20
Sinistralia, H. and A. Adams. Genera Recent Moll. i, 79, 1858. $=$ S. G. of Fusus, Lam 66Sinistralis (Fusus), Lam. Edit. Desh. ix, 458.$=$ F. Maroccensis, Gmel.Sinistrorsus (Fusus), Deshayes. Encyc. Meth. ii, 160.$=$ Neptunea contraria, L.
Sipho, Klein. Ostracol. 53, 1753 99,123
Siphonalia, A. Adams. Ann. Mag. Nat. Hist. 3d ser. xi, 202, 1868 99, 138
Siphonata (Ranella), Reeve. Zool. Proc. 138, 1844.
$=$ R. bufonia, Gmel, var.
Siphonatus (Triton), Reeve. Icon. f. 81, 1844 28
Siphonorbis, Mörch. = Sipho.Sitchensis (Tritonium), Midd. Mal. Ross: ii, 149. t. 2, f. 5-8, 1857.$=$ Euthria dira, Reeve.
Smaragdula (Leucozonia), Linn. Mus. Ulric. 610 96
Solidulus (Fusus), A. Ad. Journ. Linn. Soc. vii, 106, 1864 68
Solidulus (Fusus), Sowb. Thes. Conch. sp. 131, f. 97, 1880. $=$ Sipho Stimpsoni, Mörch, var. 132
Solidum (Buccinum), Reeve. Buccinum, f. 81, 1846.$=$ Peristernia chlorostoma, Sowb.
Solomonensis (Pisania), E A. Smith. Jour. Linn. Soc. xii, 541, 1876. 149
Soluta (Neptunea), Gould. H. and A. Ad. Genera, i, 80.$=$ Bela subluta, Gld.
Solutum (Buccinum), Dillw. Desc. Cat. $=$ B. undatum, Linn.
Sophiæ (Nassaria), Benoit. Conch. Mar. Sicil. 270, t. 5, f. 7. 221
Sowerbyi (Triton), Reeve. Icon. f. 65, 1844. $=$ T. lineatus, Brod. 26
Spadre (Pisania), Libassi. Atti, Acad. Palermo, iii, 43, f. 29, 1, 2, 1859. Monterosato, Giorn. Acad. Palermo, xiii, 102.
$=$ Cantharus fusulus, Brocchi.
Spadicea (Melongena), Kobelt. Küster, Fusus, 179, t. 55, f. 5, 6, 1880... 110 110
Spadicea (Ranella), Montf. Conch. Syst. $375,1810 .=$ R. crassa, Dillw.
Spadicea (Siphonalia), Reeve. Icon. Buccinum, Index 134Spadiceum (Buccinum), Wood. Index Test. 109, t. 23, f. 71.Melongena paradisiaca, Reeve.
Spadiceus (Latirus), Reeve. Icon. f. 44, $1847 . \quad$ L. modestus, Anton.
Speciosa (Nassa), A. Ad. Zool. Proc. 101, 1851.
$=$ Phos plicatus, Dunker.
Speciosa (Triton), Angas. Zool. Proc. 13, t. 1, f. 1, 1871 25
Spectrum (Fusus), Ads. and Reeve. Moll. Voy. Samarang, 41, t. 7, f. 2, 1848. 58
Spengleri (Triton), Lam. Edit. Desh. ix, 627. 16
Spiceri (Fusus), Woods. Proc. Roy. Soc. Tasmania, 137, t. 875 68
Spinicostatus (Phos), A. Adams. Zool. Proc. 154, 1850.$=$ Ph. textum, Gmel
Spinigera, d'Orb. = Strombidæ. 5
Spinosa (Bufonaria), Schum. = Ranella spinosa, Lam.
Spinosa (Peristernia), Martyn. Univ. Conch. t. 4, 1789 80
Spinosa (Ranella), Lamarck. An. sans Vert. edit. Desh. ix, 545. 37
Spinosa (Tudicula), H. and A. Ad. Zool. Proc. 429, 1863. 144
Spinosa (Turbinella), Gray. Ann. Nat. Hist. i, 28, 1838. 81
Spinosa (Turbinella), Phil. Archiv für Naturg. i, 68, 1845. 97
Spinosum (Busycon), Conrad. Proc. Philad. Acad. 583, 1862. Am.Jour. Conch. iii, 182, $=$ Fulgur carica, Gmel.
Spiralis (Cantharus), Gray. Kool. Beechey's Voy. 111, 1839. 154
Spiralis (Fusus), A. Ad. Zool. Proc. 221, 1855 227
Spirata (Eburna), Lam. Anim. sans Vert. x, 233. 212Spirata (Eburna), Linn. Edit. 12, 1203 (Part.). Sowb. Thes. iii, 70, t.215, f. $4 .=$ E. areolata, Lam.
Spirata (Eburna), Linn. Syst. Nat. edit. 12, 120\% (Part). Reeve, f. 7. $=$ E. spirata, Lam.
Spirata (Eburna), var. Martens. Vorderas. Con. 92, t. 5, f. 46. $=$ E. Valentiana, Swains.
Spirata (Eburna), var. Mart. Chem. ii, t. 65, f. 5:
$=$ E. semipicta, Sowb.
Spirata (Pyrula), Kiener. t. 10, f. 1. = Fulgur canaliculatus, Linn.'
Spirata (Pyrula), Lam. vii, 142, 1822. = Fulgur pyrum, Dillw.

Spirilla, Humph. Mus. Callon. 1797. = Tudicla, Bolt.
Spirilla (Tudicla), Linn. Syst. Nat., edit. xii, 1221
Spitzbergensis (Buccinofusus), Reeve. Last of the Arctic Voy., 395, t. 32, f. 6 a. b. $=$ B. terebralis, Gld.

Splendidulum (Bucc.), Dunker. Zeit. Mal., 170, 1846. = Nassa.
Splendidus (Fusus), Anton. Verzeichn. 76, 1839. ? = Turbinella
Squameus (Fusus), Dunker. Zeit. Mal. 50, 1852.
$=$ Trophon, vol. ii, p. 149.
Squamosa (Peristernia), Pease, Zool. Proc. 240, 1862. Am. Jour. Conch. iii, 279, t. 23, f. 16, 186885

Squamosa (Pyrula), Lam. Edit. Desh. ix, 518. = Melongena galeodes, Lam.
Squamosus (Murex), Brod. Zool. Proc. 176, 1832. Sowb. Conch. 111. Murex, f. 27. = Melongena..111
Squamulosus (Fusus), Phil. Enum. Moll. Sicil. i, 204, t. 11, f. 31. $=$ Pseudomurex bracteatus, Br. vol. ii. 210
Stangeri (Fusus), Gray. Dieffenbach's N. Zeal., ii, 230.$=$ Trophon, vol. ii, p. 147.

Stigmataria (Peristernia), A. Ad. Zool. Proc., 313, 1854. - P. chlorostoma, Sowb.

Stimpsoni (Bucc.), Gould. Bost. Proc., vii, 325, 1860. = B. glaciale, L.
Stimpsoni (Sipho), Mörch. Moll., Faroer, 84, 1867.
Stimpsonianum (Buccinum), C. B. Ad., Panama Cat., No. 65. - - Nassa.
Stokesii (Turbinella), Gray. Zool. Beechey's Voy. 113, 1839.
Strangei (Latirus), A. Ad. Zool. Proc. 316, 1854...................................... 94
Strangei (Triton), Ad. and Ang. Zool. Proc. 35, 1864. Z. P. 816, t. 50, f. 16, 1879. = T. labiosus, Wood, var.

Strepsidura, Swains. Malacol, 308, 1840.. 103
Streptosiphon, Gill. Am. Jour. Conch., iii, 152 1867................................ 99,142
Striatum (Buccinum), Anton. Verzeichn. 92, 1839. Undetermined.
Striata (Cyllene), A. Ad. Zool. Proc. 205, 1850. $=$ C. pulchella, Ad. and Rve.
Striata (Turbinella), Gray. Zool. Beechey's Voy., 114, 1839............... 96
Striata (Voluta), Gmel. Syst. Nat. 3455. = Pisania maculosa, Lam.
Striatum (Buccinum), Phil. Moll., Sicil. ii, 193, t. 27, f. 1 = B. Humphreysianum, Bennett.
Striatum (Buccinum), Pennant. Brit. Zool. iv, 121, t. 74, f. 91. $=\mathrm{B}$. undatum, L .
Striatum (Buccinum), Sowb. Records of Gen. Sci. i, 134... 185
Striatus (Fulgur), Gray. Griffith's Cuvier, t. 37, f. 4................................... 142
Striatus (Fusus), Reeve. Icon., f. 42, 1847. $=$ Var. of Sipho Stimpsonii, Mörch.
Strigata (Pisania), Pease. Am. Jour. Conch. iv, 93, t. 11, f. 6, 1868....... 146
Strigata (Fusus), Phil. Abbild. iii, 116, t. 5, f. 3................................ 56
Strigosum (Buccinum), part. Gmel. Syst. Nat. 3494. = Cantharus fumosus, Dillw.
Strigosum (Buccinum), Gmel.? Jonas. Archiv fuir Naturg. i, 26, 1841. - Cantharus.

Strigosus (Fusus), Blain. Faun. Franc. 86, t. 4, f. 3. - F. craticulatus, Brocchi.

Strigosus (Fusus), Lam. Anim. sans vert. vii, 130. = F. rostatus, Olivi.
Strombella, Gray. Guide Brit. Mus. 13, 1857. = Volutopsis, Mörch.
Strongylocera, Mörch. Yoldi Cat. 80, 1852. = S. G. of Phos, Montf.
Sturmii (Buccinum), Phil. Zeit. Mal. 135, 1848. = Nassa.
Subalveatus (Tritonopsis), Conrad.

Subantiquus (Murex), Maton and Rackett. Linn. Trans. viii, 147. = Neptunea despecta, Linn.
Subcolubrinum (Triton), d'Orb. Rodr. iii, 77. = T. nodiferus, Lam.
Subdistortus (Triton), Lam. Edit. Desh. ix. 638
Subfuscus (Latirus), Martini. Conch. Cab. iv, 161, t. 141, f. 1317, 1318. = L. turritus, Gmel.
Subgranosa (Ranella), Sowb. Zool. Proc. 52, 1841............................... 38
Subgranulatus (Fusus), Petit. $=$ Pusionella.
Subquadratus (Fusus), Sowb. Thes. Conch. sp. 33, f. 28, 1880. 228
Sublutus (Fusus), Gould. Wilkes' Exped. 235, f 286. $=$ Bela (Pleurotomida).
Subnassatula (Turbinella), Sowerbie. Jour. Conch. xx, 50, t. 1, f. 2, 1872. $=$ Peristernia nassatula, Lam.
Subrostrata (Leucozonia), Gray. Kool. Beechey's Voy., 115, t. 36, f. 15.. 96
Subrubiginosa (Tritonidea), E. A. Smith. Zool. Proc. 200, t. 20, f. 40, 1879. = Cantharus fumosus, var. rubiginosus, Reeve.

Succinctum (Buccinum), Powis. Zool. Proc. 95, 1835
Succinctum (Murex), Risso. Eur. Merid. iv, 198, f. 121.
$=$ Triton cutaceum, Linn.
Succinctum (Triton), Lam. Edit. Desh. ix, 628. = T. olearium, Linn.
Succinctus (Fusus), Menke. Syn. No. 1096, 1899.
= Neptunea lirata, Mart.
Suensonii (Ranella), Mörch. Yoldi Cat. i, 106. = R. spinosa, Lam.
Sulcata (Cyllene), A. Ad. Adams' genera, i, 125. = C. lyrata, Lam.
Sulcata (Fasciolaria), Anton. Verzeichn. 72, 1839.78
Sulcata (Fasciolaria), Lesson. Kev. Zool. 212, 1842 78
Sulcata (Siphonalia), Lam. Anim. s. vert. edit., Desh. ix, 447. 138
Sulcata (Turbinella), Gray. Kool. Beechey's Voy. 116 97
Sulcatum (Buccinum), Friele. Norw. North Sea Exped., t. 3, f. 18. 195
Sulcatus (Murex), Gmelin. Syst. Nat. 3549.$?=$ Cantharus variegatus, Gray.
Sulcosa (Lirosoma), Conr., 50.Sutoris (Turbinella), Küster. Conch. Cab. 106, t. 25, f. 10, 11.$=$ Penisternia pulchella, Rve., var.

Suturalis (Hindsia), A. Adams. Zool. Proc. 183, 1853. - Nassaria acuminata, Reeve.

Swifti (Epidromus), Tryon31
Sycopsis (sub. gen. Busycon), Conrad. Am. Jour. Conch. iii, 184, 1867. 103
Sycotypus, Browne. Hist. Jamaica, 406, 1756. Gill, Am. Jour. Conch.iii, 146. 1867.99, 142
Crassicauda (Pyrula), Phil. Zeit. Mal. 1848. ? = Hemifusus tuba, Gmel?Sycum, Bayle. Jour. de Conch. xxviii, 240, 1880.$=$ Leiostoma, Swainson.

Syracusanus (Fusus), Linn. Syst. Nat. edit. xii, 1224.
Syrinx, Bolton. Mus. 1798. = Fusus, Lam.
Syrtensis (Fusus), Packard. Memoirs Bost. Soc. N. Hist. i, 288, t. 7, f.13. = Bela?
Tabulata (Neptunea), Baird. Zool. Proc. 66, 1863. Nat. in Brit. Colum- bia, ii, 356 121
Tabulatus (Triton), Menke. Moll. N. Holl. 119, 1843. Mal. Blatt, 60, 1844.$=$ T. Spengleri, Lam.
Tæniata (Turbinella), Desh. Voy. Laborde, t. 65, f. 7, 8.
$=$ Latirus turritus, Gmel.
Tæniatus (Fusus), Sowb. Thes. Conch. sp. 113, f. 119, 1880.
? = Neptunea despecta, var. arthritica. 230

Tæniolatum (Buccinum), Phil. Archiv für Naturg. i, 69, 1845. = Nassa.
Taphon, H. and A. Ad. Gen. i, 151. = S. G, of Busycon, Bolt..........99, 142
Tafon (Buccinum), Desh. in Lamarck, x, 158.
= Cantharus variegatus, Gray.
Tahitensis (Turbinella), Lesson. Rev. Zool. 211, 1842........................ 97
Tarentina (Fasciolaria), Lam. Edit. 2, ix, 435. ? = F. lignaria, Linn.
Tasmanica (Cominella), Woods. Proc. Roy. Soc. Tasmania, 139, 1875.... 206
Tasmanica (Josepha), Tenison-Woods. Roy. Soc. Tasmania, 1878, p. 32.. 207
Tasmanica (Pisania), Tenison-Woods. Proc. Roy. Soc. Tasm. 28, 1877. - P. reticulata, A. Ad., var.

Tasmanica (Pisania), Woods. Proc. Roy. Soc. Tasmania, 134, 1875.
= P. reticulata, A. Ad.., var.
Tasmaniensis (Siphonalia), Ad. and Ang. Zool. Proc., 422, t. 37, f. 1. 1863.

Taylorianus (Fusus), Reeve. Conch. Icon. f. 85, 1848. $=\mathrm{F}$. cinereus, Reeve.
Tenebrosum (Buccinum), Hancock. Ann. Mag. N. Hist. xviii, 327. t. 5, f. $1,2,1846$. = B. cyaneum, Brug.

Tenebrosum (Tritonium), Midd., var. borealis. Mal. Ross., p. 162, t. 3. f. 7, 8. $=$ B. ciliatum, Fab.

Tener (Fusus), Friele, Jeffreys. = Var. of Buccinifusus Berniciensis, King.
Tenerus (Triton), Gray. Beeehey's Voy. 111, 1839.
Tenue (Buccinum), Gray. Zool. Beechey's Voy. t. 36 , f. 19, 1839............. 184
Tenueliratus (Triton), Lischke. Mal. Blatt, xxi, 20, 1873.................... 22
Tenuicostata (Canidia), Brot. Jour. de Conch. 3d ser. xviii, 351, t. 12, f. 5, 1876. - Clea Helena, Meder, var

Tenuicostata (Cominella), Woods. Proc. Roy. Soc. Tasmania, 185, 1876.. 207
Tenuiliratus (Fusus), Dunker. Novit. Conch. 198, t. 33, f. 1, 2............ 64
Tenuiplicatum (Buccinum), Lam. Edit. Desh. x, 173........................... 195
Tenuis (Ranella), Potiez and Michaud. Moll. Douai, 426, t. 84, f. 1, 2, 1838. - R. ventricosa, Brod.

Tenuistriatus (Fusus), Sowb. Thes. Conch. sp 91, f. 140, 1880............ 229
Terebra (Phos), Sowb. Thes. Conch. iii, 92, t. 221, f. 28, 29................ 217
Terebralis (Buccinofusus), Gould. Bost. Proc. vii, 326, 1860................ 71
Terebralis (Fusus), Sars (non Gld.). Fide Jeffreys. = Sipho Lachesis, Mörch.
Terebrispira, Conrad. Proc. Philad. Acad. 28, 1862.
-S. G. of Fasciolaria, Lam
Ternatanus (Hemifusus), Gmel. Syst, Nat. 3554.. 112
Terræ-Novæ (Tritonium), Beck. Mörch, Ann. Soc. Mal. Belg. iv, 18, 1869. = B. cyaneum, Brug. var.

Tessellata (Eburna), Swains. Zool. 111. iii. t. 145. =E. areolata, Lam.
Tessellata (Peristernia), Recluz. Mag. de Kool. t. 97, 1844. = P. Philberti, Recluz.
Tessellatum (Buccinum), Anton. Verzeichn. 92, 1829. Undetermined.
Tessellatus (Fusus), Schubert. Conch. Cab. Suppl. t. 219, f. 3048-9. \doteq ? Voluta Junonia, Lam., young.
Tessellatus (Fusus), Sowb. Thes. Conch. sp. 184, f. 165, 1880............... 229
Tessellatus (Triton), Reeve. Icon. f. 91, 1844. =T. concinnus, Reeve.
Testaceus (Triton), Mörch. Yoldi Cat. 107. Mal. Blatt, xxiv, 25. $=$ T. obscurus, Reeve.
Testudinea (Cominella), Martyn. Univ. Conch. i, t. 8........................... 203
Testudineum (Buccinum), Lam. Anim. sans Vort. vii, 265. $=$ Cominella maculata, Mart.
Testudinarius (Triton), Ads. and Rve. Samarang, 37, t. 9, f. 3, 1848.

- T. trilineatus, Reeve, var.

Textilinus (Phos), Mörch. Yoldi Cat. 80. = Ph. Guadeloupensis, Petit. Textiliosus (Fusus), Hombr. et Jacq. Voy. Astrol, et Zel. v, 108, t. 25, f. 9-10, 1854. = Trophon Geversianus, Pallas. Vol. ii, p. 144.

Textilis (Phos), A. Ad. Zool. Proc. 154, 1850. = P. senticosus, Linn.
Textum (Phos), Gmelin. Syst. Nat. 3493... 217
Thalloides (Exilia), Conr... 49
Thatcheria, Angas. Zool. Proc. 1877, p. 529, t. 54, f. 1..................... 98,112
Theminckiana (Canidia), Petit. Jour. de Conch. t. 7, f. 11, 1853. = Clea Helena, Meder.
Thersites (Latirus), Reeve. Icon. f. 21. 1847.................................... 91
Thersites (Ranella), Redfield. Ann. Lyc. N. Y. iv, 166, t. 10, f. 6, 1848. $=$ R. Californica, Hinds.
Thersites (Triton), Reeve. Icon f. 48, 1844. = T. vespaceus, Lam.
Thomæ (Ranella), d’Orb. Moll. Cuba, 164, t. 23, f. 23, 21, 1853. Mörch, Mal. Blatt, xxiv. 24, $1877 .=$ R. cruentata, Sowb. var.
Tigrina (Cominella), Kiener. Monog. t. 10, f. 32. $=$ C. porcata, Gmel. var.
Tigrina (Turbinella), Homb. et Jacq. Voy. Pol. Sud. v, 113, t. 25, f. 30, 31, $1854=$ Peristernia Wagneri, Anton.
Tigrinus (Triton), Brod. Zool. Proc. 5, 1833...................................... 18
Tincta (Cantharus), Conrad. Proc. Phila. Acad. 25, t. 1, f. 9, 1846........ 163
Tinei (Buccinum), Mar. Atti Soc. Gioenia, 1841. = Nassa cornicula, Olivi.
Tissoti (Purpura), Petit. Jour. de Conch. iii, 163, t. 7, f. 4, 1852. = Cantharus164
Toreuma (Fusus), Martyn. Univ. Conch. t. 56. 52
'Togatus. (Sipho), Mörch. Jour. Conch. xvii, 398, 1869. 127
Tornata (Neptunea), Gould. Silliman's Journal, xxxviii. 196, 1839.$=\mathrm{N}$. despecta, Linn.
Tornatus (Fusus), Sowb. Thes. Conch. sp. 97, f. 118, 1880. = Neptunea. 229
Tortifusus, Conr. Am, Jour. Conch. iii, 187, 1867 104
Tortuosum (Buccinum), Reeve. Icon. f. 115, 1847.$?=$ Sipho Kroyeri, Möller.
Tortuosus (Sipho), Reeve. Last of Arct. Voy. 394, t. 32, f. 5, a. b; 1855. 125
Tortuosus (Triton), Reeve. Icon. f. 74, 1844.$=$ T. distortus, Schub. et Wagn.
Torulosus (Fusus), Lam. Edit. Desh. ix, 446 59
Tottenii (Buccinum), Stimpson. Canad. Nat. N. S. ii, 385, 1865 183
Trachytriton, Meek. Smithsonian Check List, Cret Foss. 22, 37, 1864. Hayden's Survey, ix, 303, t. 19, f. 7, 1876 6
Tranquebaricus (Cantharus), Gmelin. Syst. Nat. 3491 154
Tranquebaricus (Triton), Lam. Hist. vii, 189. 14
Trapezium (Fasciolaria), Linn. Syst. Nat. edit. xii, 1124 77
Trapezium (Murex), Dillw. Desc. Cat. = Faciolaria filamentosa, Lam.
Traversi (Siphonalia), Hutton. Cat. Moll. N. Zeal. 7, 1873. 137
Tricarinatum (Buccinum), Dall. Calif. Proc. 1877.$?=$ var of Castaneus, Dall.
Trigonus (Murex), Gmelin. Syst. Nat. 35̄49. = Triton ficoides, Reeve.
Trilineata (Buccinum), Reeve. Buccinum, f. 98, 1846.$=$ Euthria vittata, Quoy.
Trilineatus (Triton), Reeve. Icon. f. 31, 1844 20
Tringa (Triton), A. Adams. Ann. Mag. N. Hist. 4 ser. v, 420, 1870. 14
Tripus (Triton), Lam. Edit. Desh. ix, 634 22
Triquetra (Ranella), Reeve. Zool. Proc. 139, 1844.$=$ Eupleura. Vol. ii, p. 158.
Triserialis (Turbinella), Lam. Hist. vii, 110. 95

INDEX.

Triskaedekagonus (Fusus), Anton. Verzeichn. 76, 1839....................... 69
Triton, Montfort. Conch. Ssst. ii, 586, 1810...................................5, 6, 9
Triton (Buccinum), Lesson. Rev. Cuv. 37, 1841, 237, 1842. ? - Siphonalia nodosa, Mart. var.144

Tritonidea, Swains. Mal. 74, 302,1040 . Cantharus, Bolt.
Tritonis (Triton), Linn. Syst. Nat. edit. xii, 1222
Tritonium, Fabr. Faun. Groenl, 1780. Buccinum, Linn.
Tritonium, Link. Besch. Rostock, iii, 121. 1807. = Triton, Montf.
Tritonium (Pisania), Chemn. Conch. Cab. vii, 55, t. 127, f. 1217. =P. ignea, Gmel.
Tritonofusus, Beck. Amt. Berl. 24, 1847. = Sipho, Klein.
Tritonoides (Pisania), Reeve. Buccinum, f. 77, 1846. $=$ P. ignea, Gmel, var.
Tritonopsis, Conr. Am. Jour. Conch. i, 20, 1865
Triumphalis (Columbella), Duclos. Chenu, Ill. Conch. t. 5, f. 13-16, 1843. - Cantharus distortus, Gray.

Triumphis, Gray. = Clavella, Swains.
Trochlea (Pollia), Gray. Voy. Blossom, iii, $18: 39$. ? = Purpura trochlea. Vol ii, p. 169.
Trochlearis (Latirus), Küster. Conch. Cab. 79, t. 19, t. 1, 2. $=$ L. Maderensis, Watson.
Trochulus (Siphonalia), Reeve. Buccinum, f. $7,1846 \ldots \ldots . . \ldots \ldots$.
Trumbullii (Fusus), Linsley. Am. Jour. Sci. 1 ser. xlviii, 28, f. 1, 2, 1845. = Sipho pygmæus, Gould.

Tuba (Hemifusus), Gmel. Syst. Nat. 3554.. 112
Tuberculata (Fasciolaria), Anton. Verzeichn. 99, 1839......................... 78
Tuberculata (Melongena), Anton. Verzeichn. 79, 1839........................ 108
Tuberculata (Purpura), Risso. Küster, 146, t. 24 a, f. 6. \leftrightharpoons Triton doliarium, Linn.
Tuberculata (Ranella), Brod. Zool. Proc. 179, 1832............................ 4:
Tuberculata (Ranella), Risso، Eur. Merid. iv, 203, f. 123.
$=$ Triton cutaceum, Linn.
Tuberculata (Turbinella), Brod. Kool. Proc. 7, 1833. $=$ Latirus ceratus. Gray.
Tuberculatus (Fusus), Lam. Edit. Desh. ix, 444................................... 54
Tuberosa (Siphonalia), Reeve. Fusus, f. 7, 1847. Lischke Jap. Suppl. 27. 135
Tuberosissima (Ranella), Reeve. Zool. Proc. 139, 1844. $=$ R. bufonia, Gmel.
Tuberosum (Buccinum), Chemnitz. Conch. Cab. iv, 83, f. 1236-123!. = Ranella lampas, Linn.
Tuberosum (Buccinum), Lam. Edit. Desh. ix, 635............................... $2: 3$
Tubulosum (Buccinum), Reeve. Icon. f. 105, 1847. $=$ B. Donovani, Gray.

Tudicula, H. and A. Ads. Kool. Proc. 429, 1863. $=$ S. G. of Tudicla, Bolt.
Tulipa. (Buccinum.), Lesson. Rev. Cuv. 238, 184................................... 194
Tulipa (Fasciolaria), Linn. Syst. Nat. edit. xii, 1218................................... 74
Tumens (Fusus), Carpenter. Mazatl. Shells, p. 508, 1857.
\Longrightarrow Fusus ambustus, Gld.
Tumens (Latirus), Carpenter: Zool. Proc. 166, 1856. $?=$ L. gracilis, Reeve.
Tumida (Kanella), Dunker. Kool. Proc. 239, 1862. \quad R. argus, Gmel.
Tumidulum (Buccinum), Sars. Moll. Norv. 263, t. 25, f. 5, 6, 1878.
$=$ B. Humphreysianum, Bennett.
Turbinelloides (Fusus), Reeve. lcon. f. 56, 1848. $=$ Melongena pallida, Brod. and Sowb.
Turgidulus (Sipho), Jeffreys. Friele, Prelim. Report, N. Mag. Nat. xxiii, f. 17,1877 127
Turgidum (Buceinum), Gmelin. Syst. Nat. 3490. = Cominella maculata, Martyn.
Turricula (Fusus), Kiener. Monog. t. 5, f. 1. 62Turriculatus (Triton), Desh. Expéd. Morée, 187, t. 19, f. 58-60.$=\mathrm{T}$. reticulatus, Blainv.
Turris (Fusus), Val. Humb. et Bonpl. 287, 1833.$=\mathrm{F}$. Dupetithouarsii, Kiener.
Turrispira, Conrad. Eocene Check List, p. 19, 1866. 49
Turrita (Nassaria), Sowb. Thes. iii, 87, t. 220, f. 19, 20.$=\mathrm{N}$. fusiformis, Sowb.
Turrita (Siphonalia), Woods. Proc. Roy. Soc. Tasmania, 138, 1875. 137
Turritum (Tritonium), Sars. Vet. Forh. Christ. 39, 1858. ${ }^{\circ}$$=$ Sipho tortuosus, Reeve, var.Turritus (Phos), A. Ad. Zool. Proc. 154, 1850. $=$ P. articulatus, Hinds.Turritus (Latirus), Gmel. Syst. Nat. 345693
Turritus (Triton), Menke. Synops. No. $973 .=$ Phos roseatus, Hinds.
Turtoni (Neptunea), Bean. Ann. Mag. N. H. i, 493, xix, t. 10. 119
Umbilicatus (Fusus), Phil. Keit. Mal. 77, 1851. 68
Undatum (Buccinum), Dawson. Canad. Nat. ii, 415, 1857.= B. glaciale, L., var. polare.Undatum (Buccinum), Fabricius. Faun. Groenl. 395, 1780.= B. cyaneum, Brug.
Undatum (Buccinum), Linn. Syst. Nat. edit. xii, 1204 173
Undatus (Fusus), Gmel. Syst, Nat. 3556 56Undosum (Buccinum), Kiener, Monog. t. 12, f. 41 c. (female).$=$ Cantharus gemmatus, Reeve.
Undosum (Buccinum), Kiener, t. 12, f. 41 a. Cantharus fumosus, Dillw. Undosum (Triton), Kiener. Monog. 44, t. 6, f. 2. = T. cingulatus, Lam. Undosus (Cantharus), Linn. Edit. xii, 1203. 162
Undulata (Sipho), Friele. Norw. North Sea Exped. t 2, f. 33-35. 133
Undulatum (Buccinum), Hancock. Ann. Mag. N. Hist. xviii, 327, 1846.$=$ B. cyaneum, Brug.
Undulatum (Buccinum), Möller. Stimpson, Canad. Nat. N. S. ii, 1842. 379. Index Moll. Greenl. 11, 1842 176
Unicarinatus (Fusus), Phil. Mal. Blatt, xv, 223, 1868, $=$ Trophon, vol. ii, p. 151 68
Unicincta (Nassa), Say. Jour. Philad. Acad. v, 211, 1826. $?=$ Phos Guadeloupensis, Petit. 220
Unicolor (Cantharus), Angas. Zool. Proc. 110, t. 13, f. 2, 1867. 162
Unimaculata (Cyllene), A. Ad. Zool. Proc. 123, 1855. = C. lyrata, Lam. Ustulata (Peristernia), Reeve. Icon. f. 62, 1847. 84Ustulatus (Buccinum), Reeve. Buccinum, f. 56, 1846.$=$ Murex contractus, Reeve, vol. ii, 131 .
Ustulatus (Fusus), Reeve. Icon. f. 66, 1848 66
Vaginatus, (Fusus), Jan. Cat. rar. nat. 11, Desh. Anim. s. Vert. ix, $\ddagger 64$. 51.
Valentiana (Eburna), Swains. Zool. Ill. iii, t. 144. 213Valenciennesi (Fasciolaria), Kiener. Monog. 16, t. 4, f. 1.$=$ F. salmo, Wood.

Varians (Phos.), Sowb. Thes. iii, 93, t. 221, f. 24-27. = Ph. textum, Gmel.
Varicifera (Hindsia), A. Ad. Zool. Proc. 183, 1853. = Nassaria acuminata, Reeve.

Varicosa (Pyrula), Menke. Syn. No: 1085. $=$ Strombus gibberulus L., Juvenile.
Varicosa (Siphonalia), Chemnitz. Conch. Cab. x, t. 162, f. 1545-6.
Varicosa (Siphonalia), Kiener. Monog. Fusus, 41, t. 10, f. 2.............. 137
Varicosa (Siphonalia), Kiener. Monog. Fusus, 41, t. 10, f. 2................................. 69
Varicosus (Fusus), Anton. Verzeichn. 78, 1839..............
Varicosus (Latirus), Reeve. Conch. Icon. f. 6, 1847............................. 92
Varicosus (Phos.), A. Adams. H. and A. Adams' Genera, i, 115............ 220
Varicosus (Phos.), Gould. Bost. Proc., iii, 143, 1849. $=$ P. roseatus, Hinds.
Variegata (Purpura), Schub. and Wagner. 148, t. 233, f. 4093, 4094. \doteq Pisania maculosa, Lam.
Variegatum (Triton), Lam. Edit. Desh. ix, 623. = T. Tritonis, Linn.
-Variegatus (Cantharus), Gray. Zool. Beechey's Voy. 112, 1839............ 165
Variegatus (${ }^{[}$usus), Deshayes. Anim. s. vert. ix, 468. $=\mathrm{F}$. laticostatus, Desh.
Varius (Fusus), Lam. Edit. Desh. ix, 457..................................... 68
Veraguensis (Phos.), Hinds. Voy. Sulph. 37, t. 10, f. 13, 14, 1844........ 219
Veliei (Triton), Calkins. Davenport Acad. 235, t. 8, f. 1, 2, 1878. $=$ T. pilearis, Linn.
Ventricosa (Ranella), Brod. Zool. Proc. 178, 1832.............................. 40
Ventricosum (Buccinum), Gmel. Syst. Nat. 3498. $=$ Neptunea despecta, Linn., var. fornicata.
Ventricosum (Buccinum), Kiener. Monog. 4, t. 3, f. 7, 1841. = B. Humphreysianum, Bennett.
Ventricosum (Buccinum), Lam. = Desmoulea.
Ventricosum (Triton), Grateloup. Atlas, t. 29, f. 17. - T. nodiferus, Lam.

Ventricosus (Fusus), H. Adams. Zool. Proc. 110, 1870........................ 52
Ventricosus (Fusus), Anton. Verzeichn. 77, 1839............................... 69
Ventricosus (Fusus), Beck (not Gray). Reeve, Icon. f. 34, 1847; f. 34 b, t. 17, 1868. = F. Nicobaricus, Lam., var.; Beckii, Reeve.

Ventricosus (Fusus), Menke. Moll. Nov. Holl. 26. 1843...
Ventricosus (Sipho), Gray. Zool. Beechey's Voy. 117, 1839................... 128
Venustum (Buce.), Dunker. Zeit. Mal. 59, 1847. = Nassa.
Venustula (Ranella), Reeve. Zool. Proc. 138, 1844. $=$ R. bufonia, Gmel., var.
Vera (Cassis), Martini. = Triton anus, Linn.
Verkrüzeni (Sipho), Kobelt. Jahrb. Mal. Ges. iii, 70, t. 2, f. 1, 1876.,... 128
Verrucosa (Kanella), Sowerby. Conch. Illus. f. 20. \doteq R. cruentata, Sowb.
Verrucosus (Murex), Gmel. Wood, Index Test. 126,t. 26, f. 77. ? = F. Australis, Quoy.
Verrucosus (Triton), Reeve. lcon. f. 71, 1844.................................... 24
Verruculatus (Fusus), Lam. Edit. Desh. ix, $45 \overline{0}$. $=\mathrm{F}$. ocelliferus, Bory.
Versicolor (Murex), Gmelin (part). Syst. Nat. 3556. ? = Fusus distans, Lam.
Versicolor (Pyrula), Gray. Zool. Beechey's Voy. 114, 1839.
Vespaceus (Triton), Lam. Edit. Desh. ix, 636.
Vespertilio (Murex), Gmelin, $3553 .=$ Melongena pugilina, Born.
Vestita (Chlanidota), Martens. Sitzb. Berlin, 23, 1878. 201
Vestitum (Triton), Hinds. Zool. Proc. 21, 1844. = T. pilearis, Linn.
Vexillum (Ranella), Sowerby. Zool. Proc. 51, 1841. =R. argus, Gmel.
Vibex (Murex), Brod. Zool. Proc. 175, 1832 ? = Peristernia87
Vinculum (Trachytriton), H. and M. 6
Vinosum (Buccinum), Lam. Anim. s. Vert., edit. Desh. x, 172. 195
Violacea (Cominella), Quoy. Voy. Astrol. ii, 456, t. 30, f. 32-34 203
Violaceus (Fusus), Desh. Exp. Morée, iii, 174, t. 19, f. 19-21, 1832. $?=$ C. leucozona, Phil.
Violaceus (Latirus), Reeve. Icon. f. 59, 1847. 93
Viperinum (Triton), Kiener. Monog. 39, t. 18, f. 4. = T. Quoyi, Rve.
Virens (Chrysodomus), Dall. Calif. Proc., 1877 130
Virga (Fusus), Gray. Zool. Beechey's Voy. 116, 1839. 53
Virgata (Cominella), H. and A. Ad. Genera, i, 110, t. 16, f. 6 a. - C. lineolata, Lam., var.
Virgatus (Phos), Hinds. Voy. Sulphur, 37, t. 10, f. 11, 12, 1844 217
Virgatus (Sipho), Friele. Jahrb. Mal. Gesell. vi,281, 1879. 132
Viridula (Euthria), Dunker. Jap. Moll. 3, t. 1, f. 16, 1861.
$=$ E. plumbea, Phil.
Vittata (Euthria), Quoy. Voy. Astrol. ii, 504, t. 34, f. 18, 19 152
Vittatum (Buccinum), Linn. Edit. 12, 1206. = Bullia.
Vitreum (Buccinum), Pfr. Kritisches Register, i, No. 5. = Nassa.Vitreus (Triton), Gray. Beechey's Voy. 110, 1839.3.
Viverratoides (Purpura), Orb. Voy. Canaries, 91, t. 7, f. 38= Cantharus variegatus, Gray.
Viverratum (Buccinum), Kiener. Monog. 35, t. 10, f 35.
$=$ Cantharus variegatus, Gray.
Voigtii (Fusus), Anton. Verzeichn. 77, 1839. = Triton cingulatus, Lam.
Volema, Bolt. Mus. 1798. = Melongena
Volutharpa, Fischer. Jour. Conch. 2 ser. i, 85, 1856. 100, 197
Volutopsis, Mörch. Rink's Groenland, 1857, Sars. Moll. Norv. 268, 1878. $=$ S. G. of Neptunea, Bolt. 99, 118
Vulgare (Buccinum), Da Costa. Brit. Conch. t. 6, f. 6. =B. undatum, Linn.
Vulpicolor (Fusus), Sowb. Thes. Conch. sp. 49, f. 78, 1889 228
Wagneri (Turbinella), Anton. Verzeichn. 71, 1839. 80
Wallaysii (Fusus), Petit. = Pusionella rapulum, Keeve.
Waterhousei (Triton), Ad. and Ang. Zool. Proc. 35, 1864. 17
Whitneya, Gabb. 50
Wiegmanni.(Triton), Anton. Verzeichn. 77, 1838. 15
Woldemarii (Purpura), Kiener. Monog. 129, t. 39, f. 91. ? = Cominella maculata, Mart., Juv.
Woodii (Fasciolaria), Gabb. 50
Wrightii (Macron), H. Adams. Zool. Proc. 753, 1865 214
Xanthostoma (Turbinella), Nuttall MSS. = Peristernia chlorostoma, Sowb.
Zea (Latirus), Mörch. Yoldi Cat. 94Kealandica (Peristernia), A. Ad. Kiister, Conch. Cab. 108, t. 25, f. 14, 15.$=$ P. despecta, A. Ad.
Zealandica (Siphonalia), Quoy. Voy. Astrol. ii, 500, t. 34, f. 4, 5.$=$ S. mandarina, Duclos.
Kelandicum (Buccinum), Hombr. and Jacq. Voy. Moll. 24, t. 21, f. 5-6. 1854. = Cominella acutinodosa, Reeve.
Zealandicum (Buccinum), Reeve. Icon. f. 28, 1846. 183^{6} 183^{6}
Kebra (Buccinum), Lam. Edit., Desh. x, 177. 195
Zelebori (Ranella), Dunker, Novit. Conch. 56. $=$ R. argus, Gmel.
Zemira, H. and A. Adams. Genera i, 110, 1858. $=$ S. G. of Eburna, Lam 101, 213
Zetlandicum (Buccinum), Forbes. Ann. Nat. Hist. viii, 593, f. 62, 1835. - B. undatum, L., var.
Zeyheri (Cominella), Krauss. Küster. 85, t. 15, f. 6-8. 203
Keylanica (Eburna), Brug. Dict. No. 27. 211

REFERENCE TO PLATES.

Plate 1.
PAGE.FIGURES.

1. Triton Tritonis, Linn. Gould, Moll. Wilkes' Exped., f. 292 9
2. Triton nodiferus, Lam. Hidalgo, Moll. Espagne, t. 18, f. 1 10
3. Triton nodiferus, Lam. Kiener, Iconog., t. 1 10
Plate 2.
Dentition of Tritonidx.
4. Triton Tritonis, Linn. Troschel, Gebiss der Schnecken, t. 19, f. 12, $\mathrm{a}, \mathrm{b}, \mathrm{c}$. 9
5. Triton nodiferus, Lam. Ibid., f. 11, a, b 10
6. Triton (Simpulum) aquatile, Rve. (= pilearis, Linn.). Ibid., f. 4... 12
7. Triton (Cymatium) femorale, Linn. Ibid., t. 20, f. 2. Middle plate and jaw. 18
8. Triton (Cabestana) cutaceum, Linn. Ibid., t. 19, f. 10. 15
9. Distorsio anus, Linn. Ibid., t. 20, f. 1 35
10. Ranella spinosa, Lam. Ibid., f. 19, f. 4 37
11. Ranella subgranosa, Beck. Ibid., f. 5 38
12. Ranella (Argobuccinum) argus, Gmelin. Ibid., f. 11 44
Plate 3.
13. Trachytriton vinculum, Hall and Meek. Hayden's Survey, ix, t. 19, f. 7, b 8
14. Ranellina Maclurii, Conrad. Tert. Foss., t. 18, f. 9 8
15. Personella septemdentata, Gabb. Jour. A. N. S. Phil., 2d ser. iv, t. 67 , f. 21 8
16. Triton variegatus, Lam. (=Tritonis, Linn.). Reeve, Icon., f. 3, b... 9
17. Triton Sauliæ, Reeve (= nodiferus, Lam.). Reeve, Icon., f. 17, a... 10
18. Triton subdistortus, Lam. Kiener, Monog., t. 16, f. 2. 11
19. Triton Americanus, Orb. ($=$ olearium, Linn.). Moll. Cuba, t. 23, f. 22 11
20. Triton Bassi, Angas. Zool. Proc., t. 2, f. 2, 1869 11
21. Triton (Tritonopsis) subalveatus, Conrad. Jour. Phil. Acad., 2d ser., ii, t. 1, f. 8 8
Plate 4.
22. Triton variegatus, Lam. ($=$ Tritonis, var. nobilis). Reeve, Icon., f. 3, a 9
23. Triton fusiformis, Kiener. Reeve, f. 6 11
24. Triton Australis, Lam. (= nodiferus, Lam.). Kiener, t. 3, f. 1 10
25. Triton Brazilianus, Gld. ($=$ olearium, L.). Wilkes' Exped. Moll., f. 296 11

Plate 5.

FIGURES． PAGE．
25．Triton variegatus，Lam．（＝Tritonis，L．）．Kiener，t． 2. 9
26．Triton Seguenzæ，Arad．and Benoit（三Tritonis，var．nobilis）．Jahrb． Mal．Gesell．，i，t． 14. 10
27．Triton olearium，Linn．Reeve，f． 32. 11
28．Triton Brazilianus，Gld．（＝olearium，L．）．Moll．Wilkes＇Exped．， f．296，a． 11
29．Triton succinctus，Lam．（ $=$ olearium，L．）．Astrol．et Zel．，t．25，f． 34 11
Plate 6.
31．Triton pilearis，Linn．Reeve，Icon．，f． 23 12
32．Triton pilearis，Linn．Operculum．From specimen 12
33．Triton pilearis，Linn．Quoy and Gaim．Voy．Astrolabe，t．40，f． 13. 12
34．Triton aquatile，Reeve（ $=$ pilearis，Linn．）．Icon．，f．24． 12
35．Triton intermedius，Pease（二 pilearis，Linn．）．Donum Bism．，t．1， f． $6, a$ 12
36．Triton Veliei，Calkins（ $=$ pilearis，L．）．Shells of Florida，f． 2 12
37．Triton succinctus，Lam．（三olearium，L．）．Kiener，t．6，f． 1 11
Plate 7.
88．Triton vestitus，Hinds（＝pilearis，L．）．Voy．Sulphur，t．4．f．1．．．． 12
39．Triton vestitus，Hinds（ $=$ pilearis，L．）．Reeve，Icon．，f． 101 12
40．Triton rubecula，Linn．Reeve，Icon．，f．29，a 12
41，42．Triton gemmatus，Reeve．Icon．，f．60，a, 13
43，44．Triton mundum，Gld．（＝gemmatus，Rve．）．Moll．Wilkes＇Exp．， f． 279,297 ，a 13
45．Triton Beccarii，Tapparone Canefri．Mar Rosso，t．19，f． 7 13
46．Triton ficoides，Reeve．Icon．，f． 51 13
47．Triton chlorostomus，Lam．Reeve，f． 25 13
48．Triton chlorostomus，Lam．Quoy，Voy．Astrolabe，t．40，f． 16 13
Plate 8.
49．Triton corrugatus，Lam．Reeve，Icon．，f． 15 13
50．Triton Krebsii，Mörch（＝corrugatus，Lam．）．Küster，t．70，f．3．．． 13
51．Triton lineatus，Brod．Keeve，f．4，b ． 14
52，53．Triton Tranquebaricus，Lam．Reeve，t．14，f．55，t．20，f． 55 14
54．Triton Poulsenii，Mörch．Küster，t．70，f． 1. 14
55．Triton cingulatus，Lam．Reeve，f． 35 15
56．Triton Voigtii，Anton（ $=$ cingulatus，Lam．）．Philippi，Abbild．i， Fusus，t．1，f． 1 15
Plate 9.
57．Triton Chemnitzii，Gray（二 Wiegmanni，Anton）．Reeve，Icon．，f． 37 15
58．Triton clandestinus，Lam．Reeve，f． 13 15
59．Triton cutaceum，Linn．Reeve，f． 39 15
60．Triton doliarium，Linn．Kiener，Monog．，t．15，f． 2. 16
61．Triton Spengleri，Lam．Reeve，f． 36 16
62．Triton Waterhousei，Ad．and Angas．Küster，t．69，f． 1 17
63．Triton lignarius，Brod．Reeve，Icon．，Triton，f． 40 15
64，65．Triton labiosus，Wood．Reeve，f．52，b, c 17
66．Triton Loroisii，Petit（＝labiosus，Wood），Jour．de Conch．，iii，t． 6，f． 8 ． 17
figures. PAGE.
67. Triton Strangei, Ad. and Ang. (= labiosus, Wood, var.). Zool. Proc., t. 50, f. 16,1878 17
68. Triten orientalis, Nevill (= labiosus, Wood, var.). Küster, t. 69, f. 8 17
Plate 10.
69. Triton Barthelemyi, Bern. Jour. de Conch., 2 ser. ii, t. 1, f. 1 17
70. Triton femorale, Linn. Kiener, Iconog., t. 10, f. 1 18
71. Triton Ranzanii, Bianc. (=tigrinus, Br.). Mem. Acad. Bologna, iii, t. 3 18
72. Triton tigrinus, Brod. Chenu, Manual Conch., f. 695 18
73. Triton Africanus, A. Ad. Küster, t. 69, f. 3 16
74. Triton pyrum, Linn. Reeve, Icon., f. 33 19
75. Triton sarcostoma, Reeve, Icon., f. 21, l 20
76. Triton grandimaculatus, Rve. (三 lotorium, L.). Icon., f. 20. 19
77. Triton trilineatus, Reeve. Icon., f. 31, a 20
Plate 11.
78, 79. Triton lotorium, Linn. Reeve, Icon., figs. $19 a, 19 b$ 19
80. Triton cynocephalus, Lam. Reeve, f. 26 19
81. Triton moritinctus, Rve. (= cynocephalus, Lam.). Icon., f. 49 19
82. Triton Dunkeri, Lischke. Jap. Meeres Conch., t. 3, f. 1 19
84. Triton testudinarius, Ad. and Reeve. Voy. Samarang, t. 9, f. 3 b... 20
85. Triton Sinensis, Reeve. Icon., 18 a 20
86. Triton clavator, Lan. Reeve, Icon., f. 7. 21
87. Triton ægrotus, Reeve ($=$ trilineatus, Rve.). Icon., f. 42 20
88. Triton exilis, Reeve. Icon., f. 11 b 21
89. Triton gallinago, Reeve. Icon., f. 5 21
90. Triton monilifer, Ad. and Reeve. Voy. Samarang, t. 10, f. 18. 21
Plate 12.
91. Triton amictus, Reeve. Conch. Icon., f. 62. 22
92. Triton canaliferus, Lam. ($=$ caudatus, Gmel.). Reeve,.f. 8. 21
93. Triton tripus, Lam. Kiener, Icon., t. 8, f. 2. 22
94, 95. Triton vespaceus, Lam. Reeve, f. $61 a, b$ 22
96. Triton elongatus, Reeve ($=$ vespaceus, Lam.). Icon., f. 59 22
97, 98. Triton gracilis, Reeve (= vespaceus, Lam.). Icon., f. $58 a, b$ 22
99, 100. Triton Thersites, Reeve ($=$ vespaceus, Lam.). Icon., f. $48 a, b$ 22
102, 104. Triton exaratus, Reeve. Icon., f. $50 a, b$ 22
103. Triton gibbosus, Brod. Küster, Conch. Cab., t. 69, f. 7. 23
101. Triton gibbosus, Brod. Reeve, t. 14, f. $38 b$. 23
105. Triton tenuiliratus, Lischke. Küster, Conch. Cab., t. 64, f. 4 22
106. Triton Lœebbeckei, Lischke. Jap. Meeres Conch., Pt. 2, t. 4, f. 13.. 23
Plate 13.
107. Triton Pfeifferianus, Reeve. Icon., f. 14 23
108. Triton retusus, Lam. Reeve, f. 47 23
109. Triton pyrulum, Ad. and Reeve. Voy. Samarang, t. 10, f. 17. 23
110. Triton encausticus, Reeve. Icon., f. 43 23
111, 112. Triton tuberosus; Lam. Reeve, Icon., f. 1, a, b. 23
113. Triton tuberosus, Lam. Gould, Moll. Wilkes' Exped., f, 295 23
114. Triton crispus, Reeve. Icon., f. 68. 24
115. Triton eburneus, Reeve. Icon., f. 69 24
figures. PAGE.
116. Triton Quoyi, Reevc. Icon., f. 93. 24
117. Triton verrucosus, Reeve. Icon., f. 71 24
118. Triton convolutus, Brod. Reeve, Icon., f. 92. 25
119. Triton scalariformis, Brod. Reeve, Icon., f. 89 25
120. Triton speciosa, Angas. Proc. Zool. Soc., t. 1, f. 1, 1871 25
Plate 14.
121. Triton maculosus, Gmel. Reeve, Icon., f. 64 25
122. Triton Sowerbyi, Reeve. Icon., f. 65 b 26
123. Triton clathratus, Sowb. Reeve, Icon., f. 57 a 26
124. Triton clathratus, Sowb. Küster, Conch. Cab., t. 60, f. 3 26
125. Triton distortus, Schub. and Wagner. Reeve, Icon., f. 66 26
126. Triton tortuosus, Reeve ($=$ distortus, S. and W.). Icon., f. 74, a., 26
127. Triton obscurus, Reeve. Icon., f. 63. 26
128. Triton testaceus, Mörch ($==$ obscurus, Rve.). Küster, t. 70, f. 7... 26
129. Triton Cumingii, Dohrn. (=clathratus, Sowb.). Küster, t. 69, f. 9. 26
130. Triton nitidulus, Sowb. Reeve, Icon., f. 70 27
131. Triton Ceylonensis, Sowb. ($=$ nitidulus, Sowb., var.). Reeve, Icon., f. 73 27
132. Triton Brazieri, Angas ($=$ nitidulus, var. Ceylonensis). Zool. Proc., t. 2, f. 3, 1869 27
Plate 15.
133. Triton siphonatus, Reeve. Icon., f. 81 28
134. Triton antiquatus, Hinds. Küster, Conch. Cab., t. 68, f. 9. 28
135. Triton sculptilis, Reeve. Icon., f. 76 28
136. Triton eximius, Reeve. Icon., f. 77 28
137. Triton decollatus, Sowb. Reeve, Icon., f. 82 28
138. Triton truncatus, Hinds. Reeve, Icon., f. 83 28
139. Triton cylindricus, Pease. Am. Jour. Conch., iv, t. 11, f. 9 29
140. Triton decapitatus, Reeve. Icon., f. 85 29
141. Triton bracteatus, Hinds. Voy. Sulphur, t. 4, f. 6 29
142. Triton digitalis, Reeve. Küster, Conch. Cab., t. 68, f. 17 29
143. Triton digitalis, Reeve. Icon., f. 86 29
144. Triton concinnus, Reeve. Icon., f. 87 29
145. Triton tessellatus, Rve. ($=$ concinnus, Rve.). Icon., f. 91 29
146, 147. Triton angulatus, Reeve. Kïster, Conch. Cab., t. 68, f. 15, 16. 30
148. Triton latevaricosus, Reeve ($=$ bracteatus, Hinds). Icon., f. 90. 29
149. Triton bacillum, Reeve (=bracteatus, Hinds). Icon., f. 94 29
150. Triton fictilis, Hinds. Reeve, Icon., f. 98 30
151. Triton Coxi, Brazier. Proc. Zool. Soc., t. 4, f. 9, 1872. 28
152. Triton cynocephalus, Lam. Operculum. Specimen. 19
153. Distorsio anus; Linn. Quoy, Voy. Astrol., t. 40, f. 7. 35
154. Triton pictus, Reeve. Icon., f. 79 30
Plate 16.
155. Triton reticosus, A. Ad. Specimen 31
156. Triton pusillus, Pease. Specimen. 31
157. Triton comptus, Sowb. (= obscurus, Rve.). Zool. Proc. t. 72, f. 2, 1874. 33
158. Triton Swifti, Tryon. Specimen 31
159. Triton lineolatus, Conrad. Proc. Philad. Acad., t. 1, f. 18, 1846 31
160. Triton reticulatus, Blainv. Reeve, Icon., f. 72 27
figurics. PAGE.
161. Triton pygmæus, Reeve (= reticulatus, Bl.). Icon., f. 67 27
162. Triton lanceolatus, Menke. Küster, Conch. Cab., t. 65, f. 8 27
163. Triton anomalus, Hinds. Reeve, Icon., f. 100. 31
164. Triton cancellatus, Lam. Reeve, Fusus, f. 62 34
165, 166. Triton Oregonensis, Redf. ($=$ cancellatus, Lam.). Reeve, Fusus, f. $61 \mathrm{a}, \mathrm{b}$ 34
167. Triton Oregonensis Redfield ($=$ cancellatus, Lam.). Ann. N. Y. Lyc., iv, t. 11, f. 2 a 34
168. Triton scaber, King. Reeve, Icon. Triton, f. 34. 34
169. Triton rudis, Brod. Reeve, Icon., f. 53 34
Plate 17.
170-172. Triton cancellatus, Lam, Gould, Moll. Wilkes' Exped. f. 298.. 34
173, 174. Distorsio anus, Linn. Quoy, Voy. Astrol., t. 40, f. 6, 8 35
175. Triton cancellinus, Roissy. Reeve, Icon., f. 45 35
176. Triton constrictus, Brod. ($=$ cancellinus, Roissy). Reeve, f. 41 35
177. Triton ridens, Reeve ($=$ cancellinus, Roissy). Icon., f. 46 35
178. Triton decipiens, Reeve ($=$ cancellinus, Roissy). Icon., f. 102 35
Plate 18.

1. Ranella spinosa, Lam. Kiener, Icon., t. 5 37
2. Ranella foliata, Brod. Reeve, Icon., f. 8 37
3. Ranella crumena, Lam. Reeve, Icon., f. 17 a. 37
4. Ranella neglecta, Sowb. (=margaritula, Desh.). Conch. Ill., f. 22. 37
5. Ranella albivaricosa, Reeve. Voy. Samarang, t, 13, f. 4 38
6. Ranella albivaricosa, Reeve. Icon. f. \%. 38
7. Ranella elegans, Beck (= subgranosa, Sowb.). Reeve, Icon., f. 22. 38
Plate 19.
8. Ranella subgranosa, Sowb. Reeve, Icon., f. 1 38
9. Ranella albifasciata, Sowb. (=nana, Sowb., var.). Reeve, Icon., f. 27 38
10. Ranella crassa, Dillw. Reeve, Icon,, f. 18, b 38
11. Ranella siphonata, Reeve ($=$ bufonia, Gm., var. venustula). Icon., f. 38 39
12. Ranella Lampas, Linn. Reeve, Triton, f. 30 b 38
Plate 20.
13. Kanellà venustula, Reeve ($=$ bufonia, Gmel., var.). Icon., f. 37 39
14. Ranella tuberosissima, Rve. (二bufonia, Gmel.). Icon., f. 39 39
15. Ranella nana, Sowb. Reeve, Icon., f. 29 a 38
16. Ranella ventricosa, Brod. Kiener, Monog., t. 14, f. 2. 40
17. Ranella ventricosa, Brod. Gould, Moll. Wilkes' Exped., f. 302. 40
18. Ranella ventricosa (eggs). Orb. Voy. Am. Mérid., t. 62, f. 11 40
19. Ranella scrobiculator, Linn. Reeve. Triton, f. 28 b 40
20. Ranella coriacea, Reeve ($=$ scrobiculator, L.). Icon., f. 26 40
Plate 21.
21. 23. Ranella bufonia, Gmel. Reeve, Icon., f. $23 \mathrm{a}, \mathrm{b}$ 39
1. Ranella bufonia, Gmel. Gould, Moll. Wilkes' Exped., f. 299, 39
2. Ranella cruentata, Sowb. Reeve, Icon., f. 20 39
3. Ranella rhodostoma, Beck (= cruentata, var.). Reeve, Icon. f. 32. 39
figures． PAGE．
26．Ranella Thome，d＇Orb．（ $=$ cruentata，var．rhodostoma）．Moll． Cuba，t．23，f． 23. 39
27．Ranella verrucosa，Sowb．（＝cruentata，Sowb．）Conch．Ill．，f $20 .$. 39
28．Ranella Grayana，Dunker（＝bufonia，Gmel，）．Novit．Conch．，t．19， f． 5. 39
29．Ranella asperrima，Dunker（ $二$ bufonia，Gmel．）．Novit．Conch．，t．19， f． 3. 39
30．Ranella Ranelloides，Reeve（＝cruentata，Sowb．）．Icon．Triton，f． 10 a 39
31．Ranella rugosa，Sowb．（＝cruentata，Sowb．）．Conch．IIl．，f．7． 39
32．Ranella Thersites，Redfield（二Californica，Hds．）．Ann．N．Y．Lyc． iv，t． 10 ，f． 6 b 40
68．Ranella nobilis，Reeve（二 bufonia，Gmel．）．Icon．，f． 16 39
Plate 22.
33．Ranella pustulosa，Reeve．Icon．，f． 11 a 41
34．Ranella ccelata，Brod．Reeve，Icon．，f． 10 41
35．Ranella granifera，Lam．Reeve，Icon．，f． 30. 41
36．Ranella granifera，Lam．Quoy，Voy．Astrol，，t．40，f． 21. 41
37．Ranella semigranosa，Lam．（＝granifera，Lam．）．Reeve，Icon．，f．25． 41
38．Ranella affinis，Brod．Sowb．，Conch．Ill．，f． 12 42
39．Ranella livida，Reeve（ $=$ affinis，Brod．）．Icon．，f． 28 42
40．Ranella Cubaniana，d＇Orb．（＝affinis，Br．）．Moll．Cuba，t．23，f． 24. 42
41．Ranella Cumingiana，Dunker（ $=$ affinis，Br．）．Novit．Conch．，t．19， f． 7. 42
42．Ranella Californica，Hinds．Reeve，Icon．，f． 9 b． 40
43．Ranella candisata，Lam．Reeve，Icon．，f． 5 ． 41
Plate 23.
44．Ranella bitubercularis，Lam．Reeve，Icon．，f． 40 42
45．Ranella fuscocostata，Dunker（＝tuberculata，Br．）．Novit．Conch．， t．19，f． 1 43
46．Ranella tuberculata，Brod．Reeve，Icon．，f． 36 43
47．Ranella tuberculata，Brod．Novit．Conch．，t．18，f． 1 42
48．Ranella gyrina，Linn．Reeve，Icon．，f． 49 43
49．Ranella cuspidata，Reeve．Icon．，f． 48 43
50．Ranella concinna，Dunker（＝pusilla，Brod．）．Novit．Conch．，t．18， f． 3. 44
51．Ranella pulchra，Gray．Reeve，Icon．，f． 47 43
52．Ranella lærigata，Lam．（＝marginata，Gmel．）．Reeve，Icon．，f． 50. 42
53，54．Ranella leucostoma，Lam．Quoy，Voy．Astrol．，t．40，figs．3，4．．． 42
55．Ranella ponderosa，Reeve（＝affinis，Brod．）．Icon．，f． 14. 42
Plate 24.
56，57．Ranella pusilla，Brod．Reeve，Icon．，f． 44 a，b． 44
58．Ranella rosea，Reeve（＝pusilla，Br．）．Icon．，f． 46. 44
59．Ranella anceps，Lam．Reeve，Icon．，f． 43 44
60．Ranella hastula，Reeve．Icon．，f． 42 44
61．Ranella argus，Gmel．Reeve，Icon．，f． 12 44
62．Ranella vexillum，Sowb．（＝argus，Gmel．）．Conch．Ill．，f． 3 44
63．Ranella vexillum，Sowb．（＝argus，Gmel．）．Gould，Moll．Wilkes＇ Exped．f． 301. 44
64．Ranella proditor，Frauenf．（＝argus，Gmel．）．Voy．Novara，t．1， f． 1 b ． 44
bigures. PAGE.
4. Ranella tumida, Dunker (=argus, Gmel.). Novit. Conch., t. 18, f. 8. 44
5. Ranella sagitta, Küster ($=$ pusilla, Br., var. concinna). Conch. Cab., t. 38 a, f. 6 44
6. Ranella lamellosa, Dunker (= anceps, Lam.). Novit. Conch., t. 18, f. 6. 44
7. Ranella gigantea, Lam. Reeve, Icon., f. 3 42
Plate 25.
Lingual Dentition.
8. Fusus inconstans, Lischke. Jahrb. Mal. Gesell., i, t. 6, f. 1 a 47
9. Fasciolaria tulipa, Linn. Troschel, Gebiss der Schnecken, ii, t. 5, f. 12 48
10. Fasciolaria lignaria, Linn. Troschel, t. 5, f. 17 48
11. Buccinofusus Berniciensis, King. Sars, Moll. Norv., t. 10, f. 26 b 48
12. Ptychatractus ligatus, Mighels. Am. Jour. Conch., i, t. 8, f. 8. 48
6, 7. Meyeria pusilla, Sars. Moll. Norv., t. 9, f. 13 b, c. 48
13. Peristernia nassatula, Lam. Troschel, t. 6, f. 3 48
14. Leucozonia fuscata, Gmel. Troschel, t. 6, f. 1. 48
15. Melongena melongena, Linn. Troschel, t. 7, f. 13 98
16. Melongena pugilina, Linn. Troschel, t. 7, f. 17. 98
Plate 26.
Lingual Dentition.
17. Melongena citrina, Lam. Troschel, Gebiss der Schnecken, ii, t. 7, f. 18 98
18. Melongena aspera, Mart. Troschel, Gebiss der Schnecken, ii, t. 7, f. 19 98
19. Neptunea antiqua, Linn. Troschel, t. 6, f. 15. 98
20. Neptunea bulbacea, Bern. Troschel, t. 6, f. 16 98
21. Chrysodomus Turtoni, Bean. Sars, Moll. Norv., t. 10, f. 16. 98
22. Sipho islandicus, Linn. Sars, t. 10, f. 19 99
23. Sipho latericeus, Mörch. Sars, t. 10, f. 24. 99
24. Hemifusus tuba, Gmel. Troschel, t. 7, f. 14 98
25. Sycotypus pyrum, Gmel. Troschel, t. 7, f. 1 99
26. Metula mitrella, Ad. and Reeve. Troschel, t. 7, f. 10. 100
27. Cantharus undosus, Linn. Troschel, t. 7, f. 8. 100
28. Cantharus distortus, Linn. Troschel, t. 7, f. 7. 100
24, 25. Volutopsis Norvegica, Chemn. Sars, Moll. Norv., t. 10, f. 17 a, b. 99
Plate 27.
Lingual Dentition.
29. Cantharus proteus, Rve. Troschel, Gebiss, ii, t. 7, f. 4 100
30. Euthria cornea, Linn. Troschel, t. 7, f. 11 100
31. Euthria lineata, Chemn. Troschel, t. 7, f. 12 100
32. Buccinum undatum, L. Troschel, t. 6, f. 10 100
33. Buccinum hydrophanum, Hancock. Troschel, t. 6, f. 11 100
34. Volutharpa Perrxi, Jay. Troschel, t. 6, f. 14. 100
35. Buccinopsis eburna, Sars. Moll. Norv., t. 10, f. 15. 100
36. Eburna lutosa, Lam. Troschel, Archiv Naturg., i, t. 3, f. 4, 1868. 101
37. Nassaria acuminata, Rve. Troschel, Archiv, t. 3, f. 5.35. Phos senticosus, L. Troschel, Gebiss, ii, t. 8, f. 1.36. Engina mendicaria, Trosehel, t. 8, f. 4220
FIGURES. PAGE.
38. Canidea. Jour. de Conch., t. 12, f. 3, 1876 101
39. Clea. Jour. de Conch., t. 12, f. 4, 1876. 101
40. Cominella limbosa 101
Plate 28.
41. Buccinofusus parilis, Conr. Tert. Foss., t. 49, f. 5. 48
41, 42. Peistochilus Scarboroughi, Meek and Hayden. Geol. Survey, ix, t. 32, f, 4 a. b 47
42. Exilifusus Kerri, Gabb. Proc. Phil. Acad., t. 17, f. 1, 1876. 49
43. Exilia pergracilis, Conr. Jour. Phil. Acad., 2d ser., iv, t. 47, f. 34. 49
44. Exilifusus, thalloides (= Exilia), Conr. Tert. Foss., t. 18, f. $12 \ldots$ 49
45. Turrispira salebrosa, Conr. Tert. Foss., t. 18, f, 13 49
46. Priscofusus geniculus, Conr. Geol. Wilkes' Exped., t. 20, f. 3. 49
48, 49. Serrifusus Dakotensis, Meek and Hayden. Geol. Surv., ix, t. 32, f. 6 a, b 49
Plate 29.
47. Terebrispira elegans, Emmons. Geol. N. Car., f. 114. 50
48. Mesorhytis gracilenta, Meek. Pal. Hayden's Surv., ix, 364, f. 45... 50
49. Cryptorhytis Cheyennensis, Meek and Hayden. Ibid., t. 19, f. 13 b 50
50. Lirosoma sulcosa, Conr. Am. Jour. Conch., iii, t. 23, f. 3 50
51. Fasciolina Woodii, Gabb. Jour. Philad. Acad., 2d ser., iv, t. 67, f. 7. 50
52. Bulbifusus inauratus, Conr. Tert. Foss., t. 18, f. 2. 102
53. Cornulina armigera, Conr. Ibid., t. 15, f. 1 102
54. Leistoma bulbiformis, Lam. Swain's Malacol., 308, f. 75. 102
55. Fusispira ventricosa, Hall. 24th Rep. N. Y., t. 8, f. 6 102
56. Closteriscus tenuilineatus, Meek. Pal. Hayden's Surv., ix, t. 19, f. 10 b 103
60: Palætractus crassus, Gabb. Pal. Calif., ii, t. 26, f. 26 103
57. Pyrifusus subdensatus, Conr. Jour. Phil. Acad., 2 d ser., iii, t. 35̃, f. 12 103
Plate 30.
58. Pyrifusus (Neptunella) Newberryi, Meek and Hayden. Survey, ix, t. 31, f. 6 b. 103
59. Hercorhyncus Tippana, Conr. Jour. Phil. Acad., 2d ser., iv, t. 46, f. 41. 103
60. Lirofusus thoracicus, Conr. Tert. Foss., t. 18, f. 6 103
61. Strepsidura costata, Swains. Eneyc. Meth., t. 428, f. 2. 103
62. Papillina papillatus, Conr. Tert. Foss., t. 18, f. 3. 103
63. Perissolax brevirostris, Gabb. Pal. Calif., ii, t. 18, f. 48 104
64. Levifusus trabeatus, Conr. Tert. Foss., t. 18, f. 1 104
65. Tortifusus curvirostra, Conr. Am. Jour. Conch., iii, t. 19, f. 1 104
66. Pyropsis perlata, Conr. Jour. Phil. Acad. 2d ser., iv, t. 46, f. 39. 104
67. Clavifusus Cooperi, Conr. Tert. Foss., t. 18, f. 15. 104
68. Clavifusus altilis, Conr. Ibid., t. 18, f. 16 104
Plate 31.
69. Cantharulus Vaughani, Meek and Hayden. Survey, ix, t. 32, f. 5 b. 104
70. Metulella fusiformis, Gabb. Proc. Phil. Acad., t. 11, f. 3, 1872 104
71. Agasoma gravida, Gabb. Pal. Calif., ii, t. 1, f. 6 105
72. Agasoma sinuata, Gabb. Ibid., t. 1, f. 7. 105
73. Erypachia perforata, Gabb. Ibid., i, t. 18, f. 39. 105
Figures. page.
74. Pseudobuccinum Nebrascense, Meek and Hayden. Surv., ix, t. 31, f. 5 , d 105
75. Odontobasis ventricosa. Meek. Pal. Hayden's Surv.. ix, 354, f. 43.. 105
76. Ectracheliza truncata, Gabb. Proc. Phil. Acad., t. 9, f. 2, 1872 106
77. Brachysphingus liratus, Gabb. Pal. Calif.. i, t. 28, f. 211 106
78. Haydenia impressa, Gabb. Ibid., t. 18. f. 51 106
79. Buccitriton cancellatum, Lea ($=$ sagenum, Conr.). Contrib. Conch., t. 5 , f. 170 106
80. Lacinia alveata, Conr. Tert. Foss., t. 15, f. 2 106
81. Buccitriton altum, Conr. Am. Jour. Couch., i, t. 21, f. 9 106
Plate 32.
82. Fúsus pagoda, Lesson. Reeve, Icon., Fusus, f. 32 b 51
83. Fusus vaginatus, Jan. Reeve, f. 51 51
84. Fusus echinatus, Kiener (=vaginatus, Jan.). Iconog., t. 2, f. 2... 51
85. Fusus colus, Linn. Reeve, Icon., f. 11 52
90-92. Fusus colus, Linn. Quoy, Voy. Astrol., t. 44, figs. 1-3. 52
86. Fusus proboscidiferus, Lam. Kiener, Iconog., t. 17 52
87. Fusus ventricosus, H. Adams. Zool. Proc., 110, 1870 52
88. Fusus toreuma, Mart. (= colus, Linn., var.). Reeve, f. 27 52
89. Fusus Brenchleyi, Baird ($=$ Nicobaricus, var.). Voy. Curaçoa, t. ©7, f. 1 53
90. Fusus oblitus, Reeve (= Nicobaricus, var.). Icon., f. 29 53
91. Fusus Nicobaricus, Lam. Reeve, 37 a
Plate 33.
92. Fusus Beckii, Reeve ($=$ Nicọbaricus, var. oblitus). Icon., t. 17, f. $34 b$ 53
93. Fusus tuberculatus, Lam. Reeve, Icon., f. 38 54
94. Fusus laticostatus, Desh. Reeve, Icon., f. 33 53
102-107. Fusus inconstans, Lischke (= perplexus, A. Ad.). Jap. Conch., t. 2, figs. 1-6 54
95. Fusus multicarinatus, Reeve ($=$ spectrum, var. Novæ Hollandiæ). Icon., f. 22 58
96. Fusus multicarinatus, Lam. Kiener, Monog., t. 10, f. 1 55
Plate 34.
97. Fusus nodosoplicatus, Dunker ($=$ tuberculatus, Lam.). Novit. Conch., t. 33, f. 4. 54
98. Fusus nodosoplicatus, Dunker (= tuberculatus, Lam.). Lischke, Jap. Conch. Suppl., t. 3, f. 6 54
99. Fusus Lœbbeckii, Kobelt. Küster, Conch. Cab., t. 48, f. 1 54

- 113. Fusus Australis, Quoy. Voy. Astrol., t. 34, f. 11 55
-114. Fusus marmoratus, Phil. (=Australis, Quoy). Abbild. ii, Fusus, t. 3, f. 7 55
-115. Fusus marmoratus, Phil. ($=$ Australis, Quoy). Reeve, Icon., f. 1 a 55

116. Fusus aureus, Reeve ($=$ Australis, Quoy). Icon., f. 17 55
117. Fusus aureus, Reeve ($=$ Australis, Quoy). Phil., Abbild. iii, Fusus. t. 5 , f. 4 55
-118. Fusus crebriliratus, Reeve ($=$ Australis, Quoy). - Icon., f. 20 55
118. Fusus caudatus, Quoy (- Australis, Quoy). Voy. Astrolabe, t. 34. f. 20 55
119. Fusus longissimus, Gmel. Kiener, Monog., t. 2, f. 1 56$5^{3}$
Plate 35.
figuris. PAGE.
120. Fusus undatus, Gmelin. Reeve, Icon., f. 12. 56
121. Fusus strigatus, Philippi. Abbild. iii, Fusus, t. 5, f. 3 56
122. Fusus gradatus, Reeve. Icon., f. 65 57
123. Fusus Hartwigi, Shuttlew. (二 gradatus, Reeve). Specimen 57
124. Fusus Paeteli, Dunker (=gradatus, Reeve). Novit. Conch., t. 33, f. 5 57
125. Fusus similis, Baird (=undatus, Gmel.). Voy. Curaçoa, t. 36 56
127, 128. Fusus polygonoides, Lam. Reeve, Icon., figs. 36 a, d. 56
126. Fusus leptorhynchus, Tapparone-Canefri. Mar. Rosso, t. 19, f. 5.. 56
127. Fusus Schrammi, Crosse. Jour. de Conch., xiii, t. 1, f. 9, 1865.... 57
Plate 36.
128. Fusus distans, Lam. Reeve, Icon., f. 28. 57
129. Fusus closter, Phil. ($=$ distans, Lam.). Abbild. iii, Fusus, t. 5, f. 1. 57
130. Fusus Dupetithouarsi, Kiener ($=$ distans, var.). Monog., t. 11. 57
131. Fusus Dupetithouarsi, Val. Voy. Venus, t. 5, f. 1 57
132. Fusus spectrum, Ads. and Reeve. Reeve, Icon., f. 68 58
133. Fusus torulosus, Lam. Reeve, Icon., f. 24 59
Plate 37.

- 137. Fusus Novæ-Hollandix, Reeve ($=$ spectrum, Rve., var.). Icon., f. 70 b 58

138. Fusus ambustus, Gould. Bost. Jour. N. Hist., vi, 374, t. 14, f. 18. 59
139. Fusus cinereus, Reeve. Turbinella, f. 68 a 60
140. Fusus luteopictus, Dall. (= cinereus, Rve.). Specimen. 60
141. Fusus Taylorianus, Rve. (= cinereus, Rve.). Icon. Fusus, f. 85... 60
142. Fusus Dunkeri, Jonas. Phil., Abbild. ii, 191, t. 4, f. 4 60
143. Fusus craticulatus, Brocchi. Reeve, Icon., f. 74 60
144. Fusus scaber, Lam. (= craticulatus, Broc.). Kiener, Murex, t. 9, f. 2. 60
145, 146. Fusus Syracusanus, Linn. Reeve, f. 10 b, c 60
145. Fusus rostratus, Olivi. Specimen 61
146. Fusus fragosus, Rve. ($=$ rostratus, Olivi). Icon., f. 71 61
147. Fusus cælatus, Rve. Icon., f. 35 b. 61
148. Fusus rostratus, Olivi. Reeve, Icon., f. 55. 61
149. Fusus nigrirostratus, E. A. Smith. Zool. Proc., t. 20, f. 33, $1879 .$. 62
Plate 38.
150. Fusus Philippi, Jonas. Phil., Abbild. ii, Fusus, t. 4, f. 1 62
151. Fusus nobilis, Reeve. Icon., f. 60 62
152. Fusus turricula, Kiener. Monog., t. 5, f. 1. 62
153. Fusus Pfeifferi, Phil. Abbild. ii, t. 3, f. 1. 63
154. Fusus Meyeri, Dunker. Novitates, t. 43, f. 2. 63
155. Fusus longicaudatus, Bory. Reeve, Icon., f. 13 63
156. Fusus Couei, Petit. Jour. de Conch. iv, t. 8, f. 1. 63
157. Fusus gracillimus, Ads. and Reeve. Reeve, Icon., f. 69. 63
158. Fusus acus, Ads. and Reeve. Reeve, Icon., f. 75 b. 63
159. Fusus clausicaudatus, Hinds. Reeve, Icon., f. 54 a 64
Plate 39.
figures. PAGE.
160. Fusus Kobeltii, Dall. Specimen 64
161. Fusus tenuiliratus, Dunker. Novit. Conch., t. 33, f. 2 64
162. Fusus Rudolphii, Dunker. Novit. Conch., t. 43, f. 3. 64
163. Fusus ocelliferus, Bory. Reeve, Icon., f. 8. 65
164. Fusus minutisquamosus, Reeve. Icon., f. 80 65
165. Fusus pulchellus, Phil. Reeve, Icon., f. 81 65
166. Fusùs Niponicus, E. A. Smith. Zool. Proc., t. 20, f. 34 65
167. Fusus simplex, E. A. Smith. Zool. Proc., t. 20, f. 35 65
168. Fusus ustulatus, Reeve. Icon., f. 66 66
169. Fusus pyrulatus, Reeve. Icon., f. 50 a 66
170. Fusus pyrulatus, Reeve. Dunker, Novit. Conch., t. 34, f. 5 66
171. Buccinofusus Spitzbergensis, Reeve. Küster, t. 26, f. 7 71
172. Meyeria alba, Jeffreys. Thompson's Depths of Sea, f. 77 73
191, 192. Meyeria pusilla, Sars. (alba, Jeff.). Moll. Norv., t. 13, f. 8 ; t. 18 , f. 45 73
173. Meyeria albella, Sars (二alba, Jeff.). Jahrb. Mal. Gesell. i, t. 7, 73
Plate 40.
174. Fusus Maroccensis, Gmel. Reeve, Icon., f. 72 66
175. Fusus elegans, Reeve (_Maroccensis, Gm.). Icon., f. 87 a 66
176. Fusus Lincolnensis, Crosse. Jour. de Conch., xiii, t. 2, f. 4 66
177. Fusus obscurus, Phil. Abbild. i, Fusus, t. 1, f. 5 67
178. Afer afer, Gmel. Kiener, Fusus, t. 18, f. 2 69
179. Afer Blosvillei, Desh. Guerin's Mag. Zool., t. 85, 1844 69
180. * Afer Blosvillei, Desh. Reeve, Icon., Fusus, t. 25 b. 69
181. Afer lividus, Phil. (- Blosvillei, Desh.). Abbild. iii, Fusus, t. 2, f. 8 69
182. Afer heptagonalis, Reeve. Icon., Fusus, t. 26 a 70
183. Clavella serotina, Hinds. Voy. Sulphur, t. 1, f. 12 70
184. Buccinofusus Berniciensis, King. Jeffreys, Brit. Conch. v, t. 87, f. 1 71
185. Buccinofusus Berniciensis, King, var. solida, Sars. Moll. Norv., t. 14, f. 2 71
186. Ptychatractus ligatus, Mighels and Adams. Specimen 72
187. Ptychatractus Coreanicus, E. A. Smith. Zool. Proc. 1879, t. 20, f. 36 72
188. Fusus nucleus, Brod.' Sowb., Conch. Ill., Murex, f. 2 67
189. Triton amictus, Reeve. Icon., f. 62 24
Plate 41.
194, 195. Melongena patula, Brod. and Sowb. Kiener, Monog, Pyrula, t. 2, f. 1, 2 107
190. Melongena patula, Brod. and Sowb. Juv. Gray, Voy. Blossom, t. 35, f. 3 107
197, 198. Melongena melongena, Linn. Kiener, Monog. Pyrula, t. 1, f. 1, 2. 107
191. .. Melongena corona, Gmel. Reeve, Icon., Pyrula, f. 7 108
192. Melongena corona, Gmel. Sowb., Zool. Proc., t. 48, f. 13, 1878 108
193. Melongena Belknapi, Petit (= corona, Gmel.). Jour. de Conch., iii, t. 2, f. 5 108
194. Melongena Martiniana, Phil. (= corona, Gmel.). Abbild. i, Pyrula, t. 1, f. 9 108
195. Melongena bispinosa, Phì. (= corona, Gmel.). Jour. de Conch. iii, t. 8, f. 3 108

Plate 42.

figures. Page.
204. Melongena galeodes, Lam. Kiener, Pyrula, t. 5, f. 2. 108
205. Melongena galeodes, Lam. Reeve, Icon. Pyrula, f. 23. 108
206. Melongena galeodes, Lam. Voy. Astrol. et Zel., t. 22, f. 40. 108
207. Melongena squamosa, Lam. (= galeodes, Lam.). Kiener, t. 4, f. 2. 108
208. Melongena angulata, Lam. (= galeodes, Lam.). Kiener, t. 7, f. 2.. 108
209. Melongena bucephala, Lam. Kiener, Pyrula, t. 4, f. 1 109
210. Melongena pallida, Brod. and Sowb. Küster, Monog., t. 7, f. 3.. 109
211. Melongena pallida, Brod. and Sowb. Gray, Beechey's Voy., t. 36, f. 14 109
212, 213. Melongena anomala, Reeve. Icon. Pyrula, figs. 9, 12. 109
214. Melongena lignaria, Reeve (= pallida). Icon. Pyrula, t. 9, f. 13 a.. 109
215. Melongena Turbinelloides, Reeve ($=$ pallida). Icon. Fusus, f. 56. 109
216. Melongena Orbignyi, Reeve (= fusiformis, Blainv.). Icon. Pur. pura, f. 32 109
217. Melongena Purpuroides, Orb. ($=$ fusiformis, Bl.). Voy. Am. Merid., t. 63, f. 1 109
218. Melongena pagoda, Reeve ($=$ fusiformis, Bl.). Icon. Bucc., f. 50.. 109
219. Melongena myristica, Reeve. Icon. Fusus, f. 57 109
Plate 43.
220. Melongena pugilina, Born. Kiener, Pyrula, t. 5, f. 1. 110
221. Melongena pugilina, Born. Reeve, Icon. Pyrula, f. 1 a 110
222. Melongena pugilina, Born. Voy. Bonite, t. 42, f. 10. 110
223-225. Melongena paradisiaca, Reeve. Icon. Pyrula, f. 17 a, b, c... 110
226. Melongena cochlidium, Linn. Reeve, Icon., f. 2 110
227. Melongena cochlidium, Linn. Voy. Astrol. and Zel., t. 22, f. 37.. 110
228, 229. Melongena morio, Linn. Kiener, Fusus, t. 22, f. 2 ; t. 23, f. 2. 111
230. Melongena spadicea, Kobelt. Küster, Fusus, t. 55, f. 5. 110
231. Melongena cancellarioides, Reeve. Icon., f. 59 110
Plate 44.
282. Hemifusus colosseus, Lam. Kiener, Fusus, t. 25, f. 1 111
233. Hemifusus ternatanus, Gmel. Küster, Pyrula, t. 5, f. 4 112
234. Hemifusus pastinaca, Reeve. Icon. Fusus, f. 64. 112
235. Hemifusus lacteus, Reeve. Icon. Pyrula, f. 8. 112
236. Hemifusus elongatus Lam. Kiener, Fusus, t. 28. 112
237. Hemifusus tuba, Gmel. Kiener, Fusus, t. '26, f. 1. 112
238, 239. Thatcheria mirabilis, Angas. Zool. Proc., t. 54, f. 1 a, b, 1877. 113
240, 241. Strombus Luhuanus, monstr. Ann. Soc. Mal. Belg. x, t. 2, f. 1,2 113
242. Pyrula Bengalina, Grateloup. Mem., t. 4, f. 5 113
Plate 45.
243. Neptunea antiqua, Linn. Kiener, Fusus, t. 18, f. 1 113
244. Neptunea antiqua, Linn. Operculum. Meyer and Möbius, Kielerb. ii, t. 2, f. 9. 113
245. Neptunea antiqua, Linn. Monstr. Brown, Brit. Conch., t. 58, f. 19. 113
246. Murex decollatus, Donov. ($=$ antiqua, Fry). Brit. Shells, t. 86 113
247, 248. Neptunea despecta, Linn. Reeve, Icon. Fusus, f. 39 b, 116
249. Neptunea despecta, young. Sars, Moll. Norv., t. 14, f. 4 c. 116
250. Neptunea despecta, var. carinata, Penn. Sars, Moll. Norv., t. 14, f. 4 b. 116
FIGURES. PAGE.
251. Neptunea despecta, var. fornicata, Gray. Reeve, Icon. Fusus, f. 63.. 116252, 253. Neptunea heros, Gray ($=$ despecta, var. fornicata). Zool.Proc., t. 7, 1850.116
254. Neptunea borealis, Phil. ($=$ despecta, var. fornicata). Abbild. iii, t. 5, f. 2. 116
Plate 46.
255, 256. Neptunea heros, Gray (= despecta, var. fornicata). Zool. Proc., t. 7, 1850 116
257-260. Neptunea antiqua, Middendorf (= despecta, var. fornicata). Mal. Ross., t. 2, f. 2; t. 5, f. 1, 2, 5. 116
261. Neptunea tornata, Gld. (= despecta, var. fornicata). Invert. Mass, edit. ii, f. 641 116
Plate 47.
262. Neptunea arthritica, Val. (= despecta, var. fornicata). Jour. Conch., 2 ser., ii, t. 12, f. 3. 116
263, 264. Neptunea arthritica, Val. (-despecta, var. fornicata). Küs- ter, t. 13, f. 2, 3. 116
265. Neptunea bulbosa, Val. (= despecta, var. fornicata). Voy. Venus, t. 5, f. 2 a. 116
266. Neptunea bulbacea, Val. (= despecta, var. fornicata). Bernardi, J. Conch., 2 ser., iii, t. 7. f. 1. 116
267. Neptunea saturus, Martyn (= despecta, var. fornicata). Univ. Conch., t. 47. 116
268. Neptunea Cumingii, Crosse ($=$ despecta, var. fornicata). Jour. Conch., 3 ser., iii, t. 5, f. 2. 116
Plate 48.
269-272. Neptunea lirata, Martyn. Küster, t. 11, f. 1; t. 10, figs. 5, 4, 2. 117
273. Neptunea lirata, Reeve (-decemcostata, Say). Icon. Fusus, f. 40... 118
274. Neptunea crebricostata, Dall. Kobelt in Küster, Fusus, t. 39, f. 1. 118
275. Neptunea Turtóni, Bean (Egg-Capsule). Howse, Ann. Mag. N. H., xix, t. 10, f. 9 119
276. Neptunea Norvegica, Chemn. (Egg-Capsule). Howse, Ann. Mag. N. H., xix, t. 10, f. 3. 119
277. Neptunea regularis, Dall. ($=$ Norvegica, Chemn.). Kobelt in Kiister, t. 39, f. 2. 119
Plate 49.
278. Neptunea Largillierti, Petit ($=$ Norvegica). Jour. Conch., ii, t. 7, f. 6. 119
279. Neptunea Largillierti, Petit (= Norvegica). Kobelt, Conch. Cab., t. 35, f. 1 119
280. Neptunea Behringii, Midd. Kobelt, Conch. Cab., t. 12, f. 1 121
281. Neptunea Turtoni, Bean. Reeve, Fusus, f. 83. 119
282, 283. Neptunea Turtoni, Bean (Young and Operculum). Sars, Moll. Norv., t. 25, f. $10 ;$ t. 18, f. 53. 119
284. Neptunea pericochlion, Schrenck. Kobelt, t. 43, f. 4 121
285. Neptunea Halli, Dall. Kobelt, t. 43, f. 1 120
286. Neptunea tabulata, Baird ($=$ pericochlion, Schrenck). Kobelt, t. 45 , f. 3. 121
287. Neptunea collorhina, Dall. Kobelt, t. 45, f. 6 120

Plate 50.

figures. PAGE.
288. Neptunea Norvegica, Chemn. Jeffreys, Brit. Conch., t. 85, f. 3... 119
289. Neptunea Behringii, Midd. Kobelt, Conch. Cab., t. 12, f. 3 121
290. Neptunea Kennicottii, Dall ($=$ Behringii, Midd.). Am. Jour. Conch., vii, t. 15, f. 1 121
291. Neptunea contraria, Linn. Reeve, Fusus, f. 46. 122
292. Neptunea perversa, Lam. (= contraria, L.). Kiener, t. 20, f. 1... 122
293. Neptunea deformis, Reeve. Icon., f. 45 a 122
294. Neptunea harpa, Mürch. Kobelt, t. 14 a, f. 1 122
295. Neptunea harpa, Mürch. Dunker, Novitates, t. 1, f. 3 122
296. Neptunea attenuata, Dall. Kobelt, t. 45, f. 5 121
Plate 51.
297. Sipho Islandicus, Chemn. Jeffreys, Brit. Conch., t. 86, f. 1 123
298. Sipho gracilis, Da Costa. Jeffreys, Brit. Conch., t. 86, f. 2 124
299. Sipho gracilis, Da Costa. Forbes and Hanley, Brit. Moll., t. SS, f. 2. 124
300. Sipho propinquus, Alder. Reeve, Fusus, f. 82 b 125
301. Sipho Ebur, Kobelt (non Mörch = propinquis). Conch. Cab., t. 34, f. 6 125
302. Sipho tortuosus, Reeve. Kobelt, t. 26, f. 4. 125
303. Sipho tortuosus, Reeve. Sars, Moll. Norv., t. 15, f. 4. 125
304. Sipho turrita, Sars (= tortuosus, var.). Moll. Norv., t. 25, f. 10.. 125
305. Sipho attenuatus, Jeffreys (= tortuosus, var.). Sars, Moll. Norv., t. 15, f. 5. 126
306, 307. Sipho glabra, Verkrïzen. Kobelt, t. 34, f, 2, 3 126
308. Sipho Jeffreysianus, Fischer 126
309. Sipho Islandicus (\rightleftharpoons Stimpsoni), Gould. Invert. Mass., 2d edit., f. 638 126
310. Sipho Stimpsoni, Mörch. Kobelt. t. 34, f. 1 126
311. Sipho corneus, Say (= gracilis, Da Costa). Am. Conch., t. 29. 124
312. Sipho lachesis, Mörch. Kobelt, t. 38, f. 5 124
313. Sipho Islandicus, Kiener (=Stimpsoni, var.). Monog, t. 15, f. 2. 126
Plate 52.
314, 315. Sipho turgidulus, Jeffreys. Kobelt, t. 38, f. 2, 3. 127
316. Sipho Schantaricus, Middendorff. Reise ii, t. 10, f. 7. 127
317. Sipho striatus, Reeve ($=$ Stimpsoni, var.). Icon., f. 42 b. 126
318, 319. Sipho togatus, Mörch. Kobelt, t. 38, f. 7; t. 40, f. 4 127
320. Sipho Pfaffii, Mörch. Köbelt, t. 41, f. 4. 127
321. Sipho lividus, Mörch. Jour. de Conch., x, t. 1, f. 1 127
322. Sipho Moebii, Dunker and Metzger (= Sarsii, Jeffreys). Kobelt, t. 25, f. 5 128
323. Sipho Ebur, Mörch (= Sarsii, Jeffreys). Kobelt, t. 38, f. 6: 128
324. Sipho ventricosus, Gray. Kobelt, t. 25, f. 6. 128
325. Sipho Verkruzeni, Kobelt, t. 34, f. 4 128
326. Sipho productus, Beck. Kobelt, t. 41, f. 6 129
327. Sipho Benzoni, Mörch. Jour. de Conch., xx, t. 5, f. 3. 129
328. Sipho Benzoni, Mörch. Kobelt, t. 41, f. 8. 129
329. Sipho roseus, Dall. Kobelt, t. 45, f. 8. 128
330. Siphe pygmæus, Gld. Invert. Mass., edit. 2, f. 639 129
331, 332. Sipho Mohnii, Friele. Kobelt, t. 40, f. 6. 129

Plate 53.

figures. PAGE.
333-335. Sipho Kroyeri, Müller. Kobelt, t. 41, f. 1, 2 ; t. 39, f. 4 130
336. Sipho arcticus, Phil. (二 Kroyeri). Kobelt, t. 14 a, f. 4 130
337. Sipho fenestratus, Turton. Kobelt, t. 26, f. 6. 130
338. Sipho fusiformis, Brod. (= fenestratus). Reeve, Buccinum, f. 31.. 130
339. Sipho fusiformis, Brod. (= fenestratus). Sars, Moll. Norv., t. 14, f. 1 130
340. Sipho latericeus, Möller. Sars, Moll. Norv., t. 15, f. 8 130
341, 342. Sipho latericeus, Möller. Kobelt , t. 40, f. 7, 8 130
343. Sipho brunneus, Dall. Kobelt, t. 40, f. 9 130
344. Sipho pellucidus, Hancock. Ann. Mag. N. Hist., xviii, t. 5, f. 3, 1846 130
345, 346. Sipho Jessoensis, Schrenck. Moll. Amur., t. 17, f. 9, 10 131
347. Sipho virens, Dall. Kobelt, t. 45, f. 1 130
348. Sipho rectirostris, Carpenter. Kobelt, t. 45, f. 7. 131
349. Sipho tortuosus, Reeve ($=$ Kroyeri). •Buccinum, f. 115 130
350. Sipho cretaceus, Reeve ($=$ Kroyeri). Buccinum, f. 112. 130
351. Sipho plicatus, A. Ad. ($=$ Kroyeri). 130
Plate 54.
352. Siphonalia Kellettii, Forbes. ${ }^{\text {K Kobelt, t. 23, f. } 1 .}$ 134
353. Siphonalia varicosa, Kiener. Reeve, Bucc., f. 10 137
354. Siphonalia tuberosa, Reeve. Icon. Fusus, f. 7. 135
355. Siphonalia maxima, Tryon 135
356, 357. . Siphonalia dilatata, Quoy. Reeve, f. 49 a, c. 135
358. Siphonalia dilatata, Quoy. Voy. Astrol., t. 34, f. 15 135
359. Siphonalia adusta (- dilatata). Kobelt, t. 44, f. 4 135
360. Siphonglia Tasmaniensis, Ad. and Ang. Kobelt, t. 43, f. x, 3. 135
Plate 55.
361. Siphonalia fuscozonata, Angas. Zool. Proc., t. 2, f. 8, 1865 134
362. Siphonalia modificata, Reeve. Kobelt, t. 42, f. 2 134
363. Siphonalia spadicea, Reeve. Kobelt, t. 42, f. 8 134
364-369. Siphonalia Cassidariæformis,' Reeve. Lischke, Jap. Conch., t. 4, f. 1, 3, 6, 7, 9, 10 135
370. Siphonalia signum, Reeve. Icon. Bucc., f. 6 136
371. Siphonalia fusoides, Reeve. Bucc, f. 9 136
372. Siphonalia fusoides, Reeve. Kobelt, t. 23, f. 6 136
373. Siphonalia trochulus, Reeve. Buce., f 7 b 136
374. Siphonalia hinnulus, Ad. and Reeve. Kobelt, t. 42, f. 6 136
375. Siphonalia calcarius, Dunker. 137
Plate 56.
376. Siphonalia nodosa, Martyn. Voy. Astrol., t. 31, f. 5 136
377. Siphonalia nodosa, Martyn. Univ. Conch., t. 5 136
378. Siphonalia (Austrofusus) alternata, Phil. Reeve, Fusus, f. 6. 137
379. Siphonalia (Austrofusus) Fontainei, Orb. ($=$ alternata). Voy. Amer. Merid., t. 63, f. 2 137
380. Siphonalia (Austrofusus) sulcata, Lam. Kobelt., t. 44, f. 1 138
381. Siphonalia (Austrofusus) buxea, Reeve. Fusus, f. 18. 138
382. Siphonalia (Austrofusus) Zealandica, Quoy (=Mandarina, Duclos). Kiener, Fusus, t. 14, f. 1 138
383. Siphonalia (Austrofusus) Reeveana, Petit. Kobelt, t. 35, f. 2. 138
384. Siphonalia (Austrofusus) cinnamomea, Reeve. Fusus, f. 16. 138
Plate 57.
figures. AgE.
385. Siphonalia Mandarina, Duclos. Reeve, f. 8. 138
386. Siphonalia Fisheriana, Petit (= buxea, Reeve.). Jour. Conch., $2 d$ ser., i, t. 2, f. 4 138
387. Fulgur carica, Gmel. Kiener, Pyrula, t. 3, f. 1 139
388. Fulgur aruanum, Linn. (= carica, var. eliceans). Chemn., Man. i, 180. 139
389. Fulgur candelabrum, Lam. (= carica, var. eliceans, monst.). Kiener, t. 8, f. 1. 139
390. Fulgur Kieneri, Phil. (= carica, var. eliceans). Kiener, t. 9, f. 2. 139
391, 392. Fulgur perversus, Linn. Kiener, Pyrula. t. 9, f. 1; t. 8, f. 2. 141
393. Fulgur coarctatus, Sowb. (= perversus). Petit, Jour. Conch. iii, t. 7, f. 3 142
394. Sycotypus canaliculatus, L. Am. Jour. Sci., 3d ser., x, 202. 143
395. Sycotypus spirata, Lam. (= canaliculatus). Kiener, Pyrula, t. 10, f. 1 143
396. Sycotypus spirata, Lam. (= pyrum, Dillw), Kiener, Pyrula, t. 10, f. 2 143
Plate 58.
397. Fusus hemifusus, Kobelt (= colus, var.). Conch. Cab., t. 59, f. 5.. 67
398. Purpura baccata, Hombr. and Jacq. (=Siphonalia nodosa, Mart.). Ast. and Zel., t. 22, f. 9 136
399. Melongena squamosa, Brod. Sowb., Conch. Ill., Murex, f. 27. 111
400. Fulgur carica, Gmel. Egg-Capsules. Am. Marine Conch., t. 5. f. 30. 130
401. Sycotypus canaliculatus, L. Egg-Capsules. Am. Marine Conch., t. 5 , f. 27 143
402. Sycotypus pyruloides, Say (= pyrum, Dillw.). Am. Conch., t. 19.. 143
403. Sycotypus spirata, Lam. (=pyrum, Dillw.). Reeve. Pyrula, f. 27. 143
404. Taphon clavella, Reeve ($=$ striatus, Gray). Icon., Pyrula, f. 10... 143
405. Streptosiphon porphyrostoma, Ad. and Reeve. Reeve, Fasciolaria, f. 11 a 143
406. Streptosiphon recurva, A. Ad. (= porphyrostoma). Zool. Proc., t. 28 , f. 4, 1854 143
407. Tudicla Cumingii, Jonas. Reeve, Fusus, f. 67 b. 144
408. Tudicla Couderti, Petit (=Cumingii). Jour. de Conch., iv, t. 2, f. 8. 144
409. Tudicla spirillus, Linn. Reeve, Pyrula, f. 29 b 144
410. Tudicla inermis, Sowb. Zool. Proc., 601, 1878. 144
411. Tudicla armigera, A. Ad. Specimen 144
412. Levibuccinum prorsum, Conrad. Am. Jour. Conch., i, t. 20, f. 17. 104
Plate 59.
1, 2. Fasciolaria tulipa, Linn. Kiener, Monog., t. 1. 74
3. Fasciolaria tulipa, Linn. Dunker, Novit., t. 11, f. 5 74
4. Fasciolaria tulipa, Linn. Kiener, Monog., t. 2. 74
5. Fasciolaria distans, Lam. (= tulipa, var.). Reeve, f. 10 a 74
6. Fasciolaria lugubris, Reeve. Icon., f. 2 a 75
7. Fasciolaria badia, Krauss (=lugubris). Sudafr. Moll., t. 6, f. 12.. 75
8. Fasciolaria filamentosa, Lam. Reeve, f. 4 a 75
9. Fasciolaria filamentosa, Lam. Kiener, t. 8, f. 1 75
10. Fasciolaria filamentosa, Lam. Quoy, Voy. Astrolabe, t. 35, f. 2...... 75

Plate 60.

figures. PAGE.
11. Fasciolaria princeps, Sowb. Kiener, t. 12 75
12. Fasciolaria ferruginea, Lam. (filamentosa). Kiener, t. 9, f. 2.... 75
13. Fasciolaria inermis, Jonas (= filamentosa, var.). Phil., Abbild. iii, t. 3 , f. 3 75
14. Fasciolaria gigantea, Kiener. Reeve, f. 12. 75
15, 16. Fasciolaria papillosa, Sowb. (= gigantea). Reeve, t. 1, f. 1 ; t. 7, f. 1 75
17. Fasciolaria Reevei, Jonas (= princeps, Sowb.). Phil., Abbild. iii, t. 3, f.' 2 75
Plate 61.
18. Fasciolaria fusiformis, Val. Reeve, Icon., f. 8 b. 76
19. Fasciolaria fusiformis, Val. Küster, Conch. Cab., t. 22, f. 1 76
20. Fasciolaria aurantiaca, Lam. Küster, t. 29, f. 2 76
21. Fasciolaria purpurea, Jonas (=aurantiaca). Küster, t. 29, f. 4..... 76
22. Fasciolaria crocata, Phil. Abbild. iii, t. 1, f. 3. 76
23. Fasciolaria crocata, Phil. Küster, t. 30, f. 1 76
24. Fasciolaria Audouinii, Jonas (= trapezium, var.). Phil., Abbild. iii, t. 3, f. 1 77
25. Fasciolaria Audouinii, Jonas (= trapeziım, var.). Dunker, Novit., t, 32, f. 3 77
26. Fasciolaria trapezium, Linn. Kiener, Monog., t. 6. 77
Plate 62.
27. Fasciolaria Lischkeana, Dunker (= trapezium, var.). Novit., t. 14. 77
28. Fasciolaria ponderosa, Jonas (= trapezium, var.). Küster, t. 13 b. 77
29. Fasciolaria purpurea, Jonas, var. (=Heynemanni, Dunker). Novit., t. 32, f. 2 77
30. Fasciolaria Antonii, Recluz (= coronata, Lam.). Guerin's Mag., t. 92, 1844 77
31. Fasciolaria salmo, Wood. Reeve, f. 7 a 78
32. - Fasciolaria granosa, Br. (= salmo, var.). Reeve, f. 6 78
Plate 63.
33. Fasciolaria Persica, Reeve ($=$ aurantiaca). Reeve, f. 15 76
34. Fasciolaria coronata, Lam. Kiener, Monog., t. 9, f. 1 77
35. Fasciolaria Valenciennesi, Kiener ($=$ salmo). Monog., t. 4, f. 1. 78
36. Fasciolaria lignaria, Linn. Reeve, Icon., f. $13 b$ 78
37. Fasciolaria Tarentina, Lam. (= lignaria). Kiener, t. 8, f. 2. 78
38. Fasciolaria rufa, Reeve. 'Icon. Fusus, f. 58 78
Plate 64.
39. Peristernia picta, Reeve. Turbinella, f. 19 79
40. Peristernia Belcheri, Reeve, f. 22 79
41. Peristernia Australiensis, Reeve, f. 56 b 79
42. Peristernia Philberti, Recluz. Reeve, f. 63 a 79
43. Peristernia Lœebbeckei, Kobelt. Küster, Conch. Cab., t. 25, f. 4 79
44, 45. Peristernia nassatula, Lam. Reeve, Icon., f. $45 \mathrm{a}, \mathrm{b}$ 80
46. Peristernia nassatula. Lam. Quoy, Voy. Astrol., t. 35, f. 17 80
47. Peristernia Deshayesii, Kobelt (二nassatula). Küster, t. 26, f. 4... 80
48. Peristernia spinosa, Martyn. Reeve, f. 43 80
49. Peristernia spinosa, Martyn. Voy. Astr. and Zel., t. 25, f. 28 80
figures． PAGE．
50．Peristernia iostoma，Nutt．（ $=$ spinosa）．Küster，t．9，f． 1. 80
51．Peristernia Forskalii，Tapp．（二 nassatula，var．）．Küster，t．26，f．6．． 80
52．Peristernia subnassatula，Souverb．（＝nassatula）．Jour．Conch．， t．1，f．2． 1872 80
53．Peristernia pulchella，Reeve．Icon．，f． 55 b． 81
54，55．Peristernia pulchella，Recve．Küster，t．26，f．10， 12 81
56．Peristernia sutoris，Kobelt（＝pulchella，var．）．Küster，t．25，f． 10. 81
57．Peristernia Mariei，Crosse（＝pulchella，var．）．\because Jour．Conch．，t．8， f．2， 1869 80
58．Peristernia microstoma，Kobelt（二 nassatula，var．）．Küster，t．26， f． 8 ． 80
59．Peristernia bucciniformis（ $=$ Wagneri），Kiener．Purpura，t．8，f．19．． 80
60．Peristernia tigrina，Hombr．（ $=$ Wagneri）．Voy．Astr．and Zel．， t． 25 ，f． 30 80
61．Peristernia crenulata，Reeve（ $=$ Wagneri）．Reeve，f． 24 80
62．Peristernia Wagneri，Anton．Küster，t．5，f． 9 80
Plate 65.
63．Peristernia incarnata，Desh．Reeve，f． 55. 81
64．Peristernia pulchra，Reeve（＝incarnata）．Icon．Ricinula，f． 20 b．． 81
65．Peristernia elegans，Dunker（＝incarnata，var．）．Specimen 81
66．Peristernia gemmata，Rouss．（＝incarnata，var．elegans）．Voy． Astr．and Zel．，t．35，f． 23. 81
67．Peristernia Carolinæ，Kiener，t．18，f． 1 82
68．Peristernia Carolinæ，Kiener．Küster，t． 9 a，f． 9. 82
69．Peristernia lauta，Reeve（ $二$ incarnata，var．elegans）．Icon．，f． 73 81
70．Peristernia lauta，Reeve（ $=$ incarnata）．Kuister，t． 9 a，f． 18. 81
71．Peristernia lirata，Pease（三 gemmata，var．）．Reeve，f． 61 b． 82
72．Peristernia gemmata，Reeve．Icon．，f． 5. 82
73．Peristernia granata，Koch．Phil．，Abbild．Fusus，t．2，f． 6. 83
74．Peristernia gemmata，Reeve．Dunker，Novit．，t．42，f． 6 ． 82
75．Peristernia chlorostoma，Sowb．Küster，t．25，f． 2. 83
76．Peristernia Newcombii，A．Ad．（ $=$ chlorostoma）．Küster，t．22，f．6．： 83
77．Peristernia crocea，Gray（ $=$ chlorostoma）．Reeve，f． 66 83
78．Peristernia scabrosa，Reeve（ $=$ chlorostoma）．Icon．，f． 60 83
79．Peristernia scabrosa，var．gracilior（ $=$ chlorostoma）．Küster，t．23， f． 4 ． 83
80．Peristernia crenulata，Kiener（ $=$ chlorostoma）．Monog．，t．9，f．2．． 83
81．Peristernia solida，Reeve（ $=$ chlorostoma）．Icon．Bucc．，f． 81 83
8．）．Peristernia Wagneri，Anton．，var．Samoensis，Kobelt（＝chloros－ toma）．Kïster，t．26，f． 14. 83
83．Peristernia bella，Reeve（ $=$ Carolines）．Icon．Ricinula，f． 15 82
84．Peristernia stigmataria，A．Ad．（ $=$ chlorostoma）．Küster，t． 9 a， f． 11 83
85．Peristernia ustulata，Reeve．Icon．，f． 62 ． 84
86．Peristernia ustulata，Reeve．Küster，t．22，f． 4. 84
87．Peristernia Caledonica，Petit（＝ustulata）．Jour．Conch．，ii，t．10， f． 6 84
88．Peristernia iricolor，Hombr．（ $=$ ustulata）．Voy．Astrol．Zel．，t．25， f． 25. 84
89．Peristernia infracincta，Kobelt（＝ustulata）．Küster，t．22，f．16．． 84
90．Peristernia Marquesana．A．Ad．（三 ustulata）．Küster，t．22，f． $17 .$. 84
91．Peristernia decorata，A．Ad．（＝chlorostoma）．Küster，t．25，f．12．． 83
92．－Peristernia clathrata，Val．Kiener，t．18，f． 4 82

Plate 66.

FLGURESS. PAGE.
93. Peristernia maculata, Reeve. Turbinella, f. 70 b 84
94. Peristernia maculata, Hombr. and Jacq. Voy. Astr. Zel., t. 25, f. 32.. 84
95. Peristernia nana; Reeve. Icon, f. 67 84
96. Peristernia bicolor, Kobelt. Küster, t. 18, f. 8 84
97. Peristernia despecta, A. Ad. Küster, t. 25, f. 6 85
98. Peristernia Zealandica, A. Ad. (= despecta). Küster, t. 25, f. 14... 85
99. Peristernia squamosa, Pease. Am. Jour. Conch., iii, t. 23, f. 16. 85
100. Peristernia Rollandi, Bern. Crosse, Jour. Conch., 3 ser., i, t. 1, f. $5 .$. 85
101. Peristernia nassoides, Reeve. Icon., f. 71 85
102. Peristernia scabra, Souv. Jour. Conch., xviii, t. 14, f. 3 85
103. Peristernia Nouméensis, Crosse. Jour. Conch., xix, t. 6, f. 1 86
104. Peristernia fuscozonata, Angas. Zool. Proc., t. 2, f. 8, 1865 86
105. Peristernia granulosa, Pease. Am. Jour. Conch., iii, t. 23, f. 18. 86
106. Latirus polygonus, Gmel. Reeve, Turbinella, f. 1 b 88
107, 108. Latirus polygonus, Gmel. Küster, t. 17, f. 4, 1 88
Plate 67.
109. Latirus tessellatus, Kobelt (= polygonus, var.). Reeve, f. 1 c...... 88
110. Latirus Barclayi, Reeve (= polygonus, var.). Icon., f. 20 88
111-113. Latirus polygonus, Gmel. Eyd. Souleyet, Voy. Bonite, t. 44, f. 13-15 88
114. Latirus candelabrum, Reeve (= polygonus, var.). Icon., f. 9 88
115. Latirus amplustris, Martyn. Kiener, t. 20, f. 2 88
116. Latirus amplustris, Martyn. Gould, Wilkes' Exp. Moll., f. 289 88
117. Latirus gibbulus, Gmel. Reeve, Icon., f. 36 88
118. Latirus cariniferus, Lam. Reeve, f. 14 88
119. Latirus cariniferus, Lam. Kiener, Monog., t. 13, f. 1 88
120. Latirus ceratus, Gray. Kiener, t. 16, f. 1 88
121. Latirus recurvirostris, Schub., Wag. Reeve, f. 10 89
122. Latirus attenuatus, Reeve (=infundibulum). Icon., f. 69 89
123. Latirus lyratus, Reeve. Icon., f. 13 90
Plate 68.
124. Latirus Maderensis, Watson. Zool. Proc., t. 36, f. 30, 1873 89
125. Latirus trochlearis, Kobelt (= Maderensis). Küster, t. 19, f. 1 89
126. Latirus filosus, Lam. (= gibbulus, Gmel.). Kiener, Fusus, t. 21, f. 1.. 88
127. Latirus infundibulum, Gmel. Kiener, t. 14, f. 1 89
128. Latirus filosus, Schub., Wagn. Reeve, f. 64 89
129. Latirus modestus, Anton. Phil., Abbild. i., Fusus, t. 1, f. 11 90
130. Latirus spadiceus, Reeve ($=$ modestus). Icon., f. 44 90
131. Latirus Amaliæ, Kobelt. . Kïster, t. 19, f. 4 89
132. Latirus lanceolatus, Reeve. Icon., f. 12 90
133. Latirus lancea, Gmel. Reeve, Fusus, f. 52 a 90
134. Latirus aculeiformis, Sowb. (= lancea). Genera, Fusus, f. 2 90
135. Latirus ligula, Kiener (=lancea). Fusus, t. 9, f. 2 90
136. Latirus Pætelianus, Kobelt. Küster, t. 18, f. 2 91
137. Latirus Thersites, Reeve, Icon., f. 21 91
138. Latirus castaneus, Reeve. Icon., f. 26 91
139. Latirus acuminatus, Kiener. Monog., t. 15, f. 2 91
140. Latirus acuminatus, Kiener. Reeve, f. 47 91
141. Latirus gracilis, Reeve. Icon., f. 53 91
142. Latirus concentricus, Reeve ($=$ modestus). Icon., f. 2 90
143. Peristernia gibba, Pease. Am. Jour. Conch., iii., t. 23, f. 17 86
144. Latirus attenuatus, Reevē ($=$ infundibulum). Icon., f. 69 89
145. Latirus lyratus, Reeve. Icon., f. 13 90

Plate 69.

figures. PAGE.
146. Latirus aureocinctus, Sowb. Zool. Proc., t. 24, f. 2, 1875. 91
147. Latirus Cayohuesonicus, Sowb. Zool. Proc., t. 48, f. 4, 1878 92
148. Latirus nodatus, Martyn. Reeve, Icon., f. 27. 92
149. Latirus varicosus, Reeve. Icon., f. 6. 92
150. Latirus rhodostoma, Dunker. Moll. Japon., t. 1, f. 21. 92
151. Latirus filamentosus, Koch. Küster, t. 9, f. 8 92
152. Latirus contemptus, A. Ad. Küster, t. 27, f. 7. 92
153. Latirus fallax, Kobelt. Küster, t. 19, f. 2. 93
154. Latirus brevicaudatus, Reeve. Icon., f. 50. 92
155. Latirus Brazieri, Angas. Zool. Proc., t. 26, f. 4, 1877 93
156. Latirus violaceus, Reeve. Icon., f. 59 93
157, 158, Latirus sanguifluus, Reeve. Icon., f. 58 a, b. 93
159. Latirus craticulatus, Linn. Reeve, f. 7 93
160. Latirus turritus, Gmelin. Reeve, f. 57 93
161. Latirus lineatus, Lam. (=turritus). Quoy, Voy. Astrol., t. 35, f. 14. 93
162. Latirus prismaticus, Martyn. Reeve, f. 25. 93
163. Latirus prismaticus, Martyn. Univ. Conch., t. 2. 93
164. Latirus fastigium, Reeve. Icon., f. 72. 91
Plate 70.
165. Leucozonia cingulifera, Lam. Reeve, f. 17 94
166. Leucozonia angularis. Reeve ($=$ cingulifera). Icon., f. 49. 94
167, 168. Leucozonia angularis, Reeve ($=$ cingulifera). Küster, t. 19, f. 10,12 94
169. Leucozonia Knorri, Desh. (= cingulifera). Reeve, Icon., f. 52. 94
170. Leucozonia Braziliensis, d'Orb. (= cingulifera). Voy. Amer. t. 77, f. 17. 94
171, 172. Leucozonia Braziliensis, d'Orb. (= cingulifera). Voy. Bonite, t. 44 , f. 16,17 94
173. Leucozonia rudis, Reeve (= cingulifera). Icon., f. 51 94
174. Leucozonia dubia, Petit ($=$ triserialis). Jour. Conch., iv, t. 2, f. 9. 95
175. Leucozonia triserialis, Lam. Reeve, Icon., f. 39 95
176. Leucozonia triserialis, Lam. Küster, t. 9 a, f. 3. 95
177. Leucozonia Hidalgoi, Crosse ($=$ triserialis). Jour. Conch., t. 14, f. 1,1865 95
178. Leucozonia ocellata, Gmelin. Kiener, t. 21, f. 4. 95
179. Leucozonia ocellata, Gmelin. Reeve, Icon., f. 38 b. 95
180. Leucozonia cingulata, Lam. Küster, t. 7, f. 8. 96
181. Leucozonia subrostrata, Gray. Küster, t. 24, f. 2. 96
182. Leucozonia agrestis, Anton (= subrostrata). Küster, t. 16, f. $3 \ldots$ 96
183. Leucozonia leucozonalis, Lam. Reeve, f. 48 96
184. Leucozonia leucozonalis, Lam. Kiener, t. 21, f. 3. 96
185. Leucozonia smaragdula, Linn. Reeve, f. 18 96
186. Leucozonia smaragdula, Linn. Quoy, Astrol., t. 35, f. 21 96
187. Leucozonia multanguła, Phil., Abbild. iii, Fusus, t. 5, f. 6 95
Plate 71.
188. Pisania pusio, Linn. Küster, Bucc. t. 11, f. 8 145
189. Pisania articulata, Lam. (= pusio). Kiener, Fusus, t. 26, f. 2. 145
190. Pisania picta, Reeve (= ignea, Gmel.). Icon. Bucc., f. 74. 145
191. Pisania flammulata (= ignea) Quoy. Voy. Astrol., t. 30, f. 29. 145
192. Pisania flammulata (= ignea), Hombr. et Jacq. Astrol. et Zel., t. 22, f. 1 145
FIGURES. pagk.
193. Pisania Tritonoides, Reeve ($=$ ignea, var.). Bucc., f. 77 145
194. Pisania lacertina, Gld. (- ignea, var.). Jahrb. Mal. Gesell., i, t. $6, \mathrm{f} .2$ 145
195. Pisània fasciculata, Reeve. Icon. Bucc., f. 76 146
196. Pisania Kossmanni, Pagenstecher. Kossmann's Reise, f. 27 146
197. Pisania Montrouzieri, Crosse ($=$ fasciculata, var.). Jour. de Conch., 3d ser., ii, t. 10, f. 7 146
198. Pisania strigata, Pease. Am. Journ. Conch., iv, t. 11, f. 6. 146
199. Pisania Hermannseni, A. Ad. Zool. Proc., t. 28, f. 7, 1854. 146
200. Pisania gracilis, Koch. Philippi, Abbild. ii, Fusus, t. 2, f. 3 147
201. Pisania reticulata, A. Adams. Specimen 147
202. Pisania marmorata, Reeve. Icon. Bucc., f. 95 147
203. Pisania Billeheusti, Petit (= marmorata, var.). Jour. de Conch., iv, t. 8, f. 5. 147
204. Pisania cinis, Reeve. Icon. Bucc., f. 84 147
205. Pisania Pazi, Crosse. Jour. de Concb., 2d ser., iii, t. 14, f. 1 148
206. Pisania maculosa, Lam: Reeve, Bucc., f. 85 148
207, 208. Pisania maculosa, Lam. Küster, Bucc., t. 4, f. 3, 4 148
209. Pisania Жthiops, Phil. (= maculosa). Abbild. ii, Bucc., t. 1. f. 14. 148
210. Pisania Janeirense, Phil. Abbild. iii, Bucc., t. 1, f. 16 448
211. Pisania cingulata, Reeve. Bucc., f. 75 148
212. Pisania cingulata, Reeve. Specimen 148
213. Pisania cingilla, Reeve. Icon. Bucc., f. 101 149
214. Pisania guttata, Busch. Philippi, Abbild. i, Fusus, t. 1, f. 6 149
215. Pisania glirina, Blainv. Nouv. Ann. Mus., t. 12, f. 9 149
216. Pisania discolor, Kiener (= glirina). Küster, Bucc., t. 11, f. 6. 149
Pisania discolor, Kiener (= glirina). Reeve, Bucc., f. 99 149
217. Pisania Solomonensis, Snith. Jour. Linn. Soc., xii, t. 30, f. 4 149
Plate 72.
218. Euthria lignaria, Lam. (= cornea, Linn:). Kiener, Fusus, t. 22, f. 1 149
219. Euthria lignaria, Lam. (= cornea, Linn.). Kiener, Fusus, f. 5 149
220. Euthria Aracanensis, Angas. Zool. Proc., 182, t. 20, f. 1, 1873 150
221. Euthria plumbea, Phil. Abbild. i, Fusus, t. 1, f. 3. 150
222. Euthria rufa, Hombr. et. Jacq. (= plumbea). Voy. Astr. et Zel. t. 25 f. 1. 150
223. Euthria ferrea, Reeve (= plumbea, var.). Icon. Bucc., f. 102. 150
224. Euthria Magellanica, Phil. (=plumbea). Abbild. iii, Bucc., t. 1, f. 15. 150
225. Euthria viridula, Dunker ($=$ plumbea). Lischke,' Jap. Conch., t. 5, f. 5 150
226. Euthria Patagonica, Phil. ($=$ plumbea). Abbild. iii, Bucc., t. 1, f. 11 150
227. Euthria Simoniana, Petit. Jour. de Conch., iii, t. 7, f. 7, 1852 150
228. Euthria Antarctica, Reeve. Buccinum, f. 30. 150
229. Euthria lineata, Martyn. Reeve, Icon. Fusus, f. 31 151
230. Euthria lineata, Martyn. Quoy, Voy. Astrol., t. 34, f. 6 151
231. Euthria Littorinoides, Reeve (= lineata, var). Bucc., f. 94 151
232. Euthria dira, Reeve. Icon. Bucc., f. 92. 151
233. Euthria incisa, Gould (= dira). Moll. Wilkes' Exped., f. 283 151
234. Euthria bicincta, Hutton. Specimen 152
285. Euthria vittata, Quoy. Voy. Astrol., t. 34, f. 19 152
236. Euthria trilineata, Reeve ($=$ vittata). Icon. Buccinum, f. 98 152
figures. PAGE.
2\%7. Euthria fuscata, Brug. Kiener, Bucc., t. 8, f. 24 152
238 . Metula clathrata, Ad. and Reeve. Moll. Voy. Samarang, t. 11, f. 12. 152
239. Metula mitrella, Ad. and Reeve. Moll. Voy. Sanarang, f. 13 152
240. Metula metuln, Hinds ($=$ Hindsii, H. and A. Ad.). Voy. Sulphur, t. 16, f. 14 153
241. Metula Cumingii, A. Adams. Zool. Proc., t. 20, f. 2, 1853 153
Plate 73.
242. Cantharus spiralis, Gray. Reeve, Bucc., f. 13. 154
243. Cantharus Prevostii, Val. (= spiralis). Voy. Venus, t. 6, f. 3 154
244. Cantharus Tranquebaricus, Gmel. Reeve, Icon. Bucc.; f. 17 154
245. Cantharus melanostoma, Sowb. Reeve, Icon. Bucc., f. 15. 154
246. Cantharus erythrostoma, Reeve. Icon. Bucc., f. 14 155
247-249. Cantharus proteus, Reeve (=fumosus, Dillw.). Icon. Bucc., f. 51 a , b, 155
250. Cantharus undosus, Quoy (= fumosus). Astr., t. 30, f. 1 155
251. Cantharus rubiginosus, Reeve (= fumosus, var.). Icon. Bucc., f. 47. 155
252. Cantharus subrubiginosis, E. A. Smith (- fumosus, var.). Zool. Proc., t. 20, f. 40, 1879 155
253. Cantharus biliratus, Reeve (= fumosus, var.). Icon., f. 71 155
254. Cantharus nigricostatus, Reeve (=fumosus, var.). Icon., f. 73... 155
255. Cantharus Desmoulinsii, Montrouzier (= fumosus, var.). Jour. de Conch., $3 d$ ser., iv, t. 10, f. 3. 155
256. Cantharus cariniferus, Kïster. Buccinum, t. 12, f. 9 155
257. Cantharus limbatus, Phil. Abbild. ii, Fusus, t. 1, f. 9. 156
258. Cantharus extensus, Dunker. Phil., Abbild. iii, Bucc., t. 2, f. 11 155
259. Cantharus Bolivianus, Souleyet. Voy. Bonite, t. 41, f. 23 156
260. Cantharus Capensis, Phil. Abbild. i, Fusus, t. 1, f. 7 156
261. Cantharus rubens, Kuister. Bucc., t. 6, f. 8 156
262. Cantharus ligneus (= Cecillii, Phil.), Reeve. Bucc., f. 57 157
263. Cantharus balteatus ($=$ Cecillii, Phil.), Reeve. Bucc., f. 59 157
264. Cantharus Menkeanus, Dunker. Moll., Japon., t. 1, f. 7 157
265. Cantharus fusulus, Brocchi. Conch. foss. subapp., ii, t. 8, f. 157
266. Cantharus Orbignyi, Payr. Reeve, Bucc., f. 44 158
267. Cantharus assimilis, Reeve (= Orbignyi, var.). Icon., Bucc., f. 90 158
268. Cantharus violaceus, Desh. Expl. Sci. Morée, t. 19, f. 19 158
269. Cantharus Australis, Pease. Specimen 161
Plate 74.
270. Cantharus leucozona, Phil. Bull. Mal. Ital., ii, t. 4, f. 3 158
271. Cantharus Scacchianus, Phil. (= pictus, Scacchi). Kiister, Buc- cinum, t. 15, f. 17 158
272. Cantharus homoleuca, Küster. Buccinum, t. 15, f. 15 158
273. Cantharus perlatus, Küster. Buccinum, t. 12, f. 6 158
274. Cantharus lanceolatus, Koch. Phil., Abbild. ii, Fusus, t. 3, f. 9... 160
275. Cantharus gracilis, Reeve. Icon., f. 96. 160
276. Cantharus crocatus, Reeve. Icon., f. 97 160
$277-278$. Cantharus obliquicostatus, Reeve. Icon., f. $91 \mathrm{a}, \mathrm{b}$ 161
279. Cantharus unicolor, Angas. Zool. Proc., t. 13, f. 2, 1867. 162
280. Cantharus undosus, Linn. Reeve, Bucc., f. 55. 162
281, 282. Cantharus cinctus, Quoy (= undosus). Voy. Astrol., t. 30, f. 5,7 162
283. Cantharus gemmatus, Reeve. Icon. Bucc., f. 49 162
HIGURFS. pagr.
284. Cantharus cancellaria, Conrad. Proc. Philad. Acad., t. 1, f. 12, 1846.. 162
285. Cantharus Floridanus, Petit ($=$ cancellaria). Jour. de Conch., 2 ser., i, t. 2, f. 5 162
286. Cantharus tincta, Conrad. Proc. Philad. Acad., t. 1, f. 9, 1846 163
287. Cantharus Coromandelianus, Lam. Reeve, Icon., f. 62 163
288. Cantharus ringens, Reeve ($=$ Coromandelianus). Icon., f. 45. 163
289. Cantharus pastinaca, Reeve (=Coromandelianus). Icon., f. 89... 163
290. Cantharus lautus, Reeve ($=$ Coromandelianus). Icon., f. 63 b 163
291, 292. Cantharus Tissoti, Petit. Jour. de Conch., iii, t. 7, f. 4 a, b... 164
293. Cantharus sanguinolentus, Duclos. Mag. de Zool., t. 22, f. 1, 1833.. 164
294. Cantharus hæmastoma, Gray (= sanguinolentus). Icon., f. 46. 164
295. Cantharus Janellii, Val. (= sanguinolentus). Voy. Venus, t. 6, f. 1.. 164
296. Cantharus elegans, Gray. Griffith's Cuvier, t. 25, f. 2 164
297. Cantharus insignis, Reeve ($=$ elegans). Icon., f 58 164
298. Cantharus variegatus, Gray. Reeve, Icon. Bucc., f. 48. 165
299. Cantharus viveratum (= variegatus), Kiener. Bucc., t. 10, f. 35.. 165
300. Cantharus distortus, Gray. Reeve, Bucc.. f. 86 165
301. Cantharus Inca, d'Orb. Voy. Amer., t. 78, f. 3 164
302. Cantharus Haneti, Petit. Jour. de Conch., v, t. 2, f. 7 163
303. Cantharus buxeus, Brod. Sowb., Conch. Ill. Murex, f. 28 167
304. Cantharus Gualtierianus, Kiener. Bucc., t. 19, f. 70 167
305. Cantharus distortus, Gray. Kiener, Bucc., t. 18, f. 65 165

Plate 75.

306. Buccinum undatum, L. Embryo, showing mouth and digestive cavity. Lubbock, Rept. Brit. Assoc., 142, f. 1, 1860 173
307. Buccinum undatum, L. Embryo, in act of swallowing an egg. Lubbock, f, 2 173
308-311. Buccinum undulatum, L. Female and male. Morse; Bost. Proc., xviii, 286 173
308. Buccinum undatum, L. Ova-capsules. Woodward's Manual, f. 83.. 173
309. Buccinum undatum, Forbes and Hanley. Brit. Moll., t. LL, f. 5.. 173
310. Buccinum undatum, var. cocrulea. Sars, Moll. Norv., t. 24, f. 3... 173
311. Buccinum undatum, var. pelagica. Sars, Moll. Norv., t. 24, f. 4... 173
312. Buccinum undatum, var. littoralis. Sers, Moll. Norv, t. 13, f. 12... 173
313. Buccinum undatum, var. Schantarica, Middendorff. Reise, ii, t. 10, f. 4. 173
314. Buccinum undatum (undulatum), Gould. Invert. Mass., Binney's edit., f. 634 173
315. Buccinum undatum, var. striatum, Pennant. Brit. Zool., iv, t. 74, f. 91. 173
316. Buccinum undatum, monst. acuminatum, Br. Reeve, Bucc., f. 4.. 173
317. Buccinum undatum, monst. sinistrorsum, Kiister. Bucc., t. 2, f. 2.. 179
Plate 76.
318. Buccinum Labradorense ($=$ B. undatum, var. undulatum), Reeve. Icon., f. 5 173
319. Buccinum parvulum, Verkruzen ($二$ undatum). Sars, Moll. Norv., t. 24, f. 5 173
320. Buccinum fragile, Verkruzen ($=$ undatum). Sars, t. 24, f. 6 173
321. Buccinum conoideum, Sars ($=$ undatum). Moll. Norv., t. 24, f. 7.. 173
322. Buccinum Totteni, Stimpson. Specimen 183
323. Buccinum tenue, Gray (elatior). Middend., Mal. Ross., t. 6, f. $6 .$. 184
324. Buccinum striatum, Sowb. Mem. Wernerian Soc., viii, t. 1, f. $9 .$. 185
Figures. PAGE.
325. Buccinum Ochotense, Midd. ($=$ striatum). Reise ii, t. 10, f. 2.... 183
326. Buccinum Donovani, Gray. Gould, Invert. Mass., 2d edit., f. 636.. 187
327. Buccinum Grenlandicum, Chemn. (= cyaneum, Brug). . Sars, Moll. Norv., t. 25, f. 1 188
328. Buccinum Grenlandicum, var. patula ($=$ cyaneum), Sars, t. 25, f. 2., 188
329. Buccinum hydrophanum, Hancock (= cyaneum). Sars, t. 24, f. 8.. 188
330. Buccinum hydrophanum, Hancock. Ann. Mag. Nat. Hist., xviii, t. 5, f. 7, 1846 188
331. Buccinum sericatum, Hancock (=cyaneum). Ibid., t. 5, f. 6 188
332. Buccinum tenebrosum, Hancock ($=$ cyaneum). Ibid., t. 5, f. $1 \ldots$ 188
337, 338. Buccinum tenebrosum, Hancock (= cyaneum). Sars, Moll. Norv., t. 13, f. 9 a b 188
333. Buccinum pulchellum, Sars ($=$ cyaneum, var.). Moll. Norv., t. 24, f. 9. 188
340, 341, 342. Buccinum Finmarkianum, Verkr. (= cyaneum). Sars, Moll. Norv., t. 13, f. 10 ; t. 25, f. 3, 4 188
343, 344. Buccinum Humphreysianum, Bennett. Sars, Ibid., t. 25, f. 7, 8. 192
334. Buccinum glaciale, Linn. Kiener, Bucc., t. 2, f. 4 185
Plate 77.
335. Buccinum Humphreysianum, Bennett. Sars, Moll. Norv., t. 25, f. 8 192
336. Buccinum fusiforme, Kiener ($=$ Humphreysianum). Bucc., t. 5, f. 12 192
337. Buccinum ciliatum, Gould ($=$ Humphreysianum). Invert. Mass., f. 635. 192
338. Buccinum striatum, Phil. (= Humphreysianum). Moll. Sicil., ii, t. 27, f. 1 192
350, 351. Buccinum tumidulum, Sars ($=$ Humphreysianum). Moll. Norv., t. 25, f. 5, 6. 192
339. Buccinum ovum, Midd. ($=$ Humphreysianum). Mal. Ross., ii, t. 6 , f. 1 192
340. Buccinum Belcheri, Reeve. Last Arctic Voy., t. 32, f. 7 a. 193
341. Buccinum Escalæ, Phil. Atacama, f. 28 194
342. Buccinopsis ovoides, Midd. ($三$ Dalei). Sib., Reise, t. 8, f. 7 196
343. Buccinopsis eburnea, Sars ($=$ Dalei, var.). Moll. Norv., t. 13, f. 13. 196
357, 358. Neobuccinum Eatoni, Smith. Trans. Roy. Soc., vol. 168, t. 9, f. 1, 1 a. 201
359, 360. Volutharpa ampullacea, Midd. Sib., Reise, t. 8, f. 3; t. 17, f. 2 200
Plate 78.
344. Buccinum undatum, Linn. Reeve, Icon., f. 3. 173
362, 363. Buccinum undatum, Linn. Forbes and Hanley, Brit. Moll., t. 109, f. 3, 5 173
345. Buccinum undatum, var. Zetlandicum. Forbes and Hanley, Brit. Moll., t. 109, f. 4 173
346. Buccinum imperiale ($=$ B. undatum, L., monstr.), Reeve. Iconica; fig. 8. 173
347. Buccinum pyramidale, Reeve ($=$ undatum). Icon., f. 104. 173
348. Buccinum glaciale, Linn. Reeve, Icon., f. 18 185
349. Buccinum angulosum, Gray (-glaciale). Beechey's Voy., t. 36, f. 6 185
350. Buccinum rutilum, Mörch (= glaciale). Dunker, Novit., t. 1, f. 5. 185
351. Buccinum Rombergi, Dunker ($=$ glaciale). Novit., t. 2, f. 5 185
352. Buccinum Mörchianum, Dunker (= glaciale). Novit., t. 2, f. 1.... 185
REFERENCE TO PLATES 30.
piqures. PAGE.
353. Buccinum carinatum, Dunker ($=$ glaciale). Novit., t. 2, f. 3 185
354. Buccinum Gronlandicum, Hancock ($=$ glaciale, var.). Recve, f. 118 185
355. Buccinum tubulosum, Reeve (= Donovani, Gray). Icon., f. 105.. 187
356. Buccinum hydrophanum, Hancock ($=$ cyaneum, Brug.). Reeve, f. 103 188
Plate 79:
357. Buccinum effusum, Reeve. Icon., f. 65 183
358. Buccinum Baeri, Middend. (= cyaneum, var.). Kïster, t. 8, f. 4.. 188
359. Buccinum tenebrosum, Hancock (= cyaneum). Reeve, f. 26 188
360. Buccinum Mörchianum, Fischer (=cyaneum). Jour. de Conch., vii, t. 10, f. 2 b 188
361. Buccinum Donovani, Reeve ($=$ cyaneum, var. terree-novie). Icon., f. 2. 188
362. Buccinum ciliatum, Fabr. Reeve, f. 29 191
363. Buccinum tenebrosum, Midd. (= ciliatum). Mal. Ross., ii, t. 3, f. 8. 191
364. Buccinum Humphreysianum, Bennett. Forbes and Hanley, Brit. Moll., t. 110, f. 1 192
365. Buccinum Zealandicum, Reeve. Icon., f. 28. 183
366. Buccinum ventricosum, Kiener (= Humphreysianum). Iconog., t. 3, f. 7 192
367. Buccinum cyaneum, Brug. Reeve, f. 69 188
368. Buccinopsis Dalei, Sowb. Forbes and Hanley, Brit. Moll., t. 109, f. 2 196
369. Buccinopsis ovum, Turton (= Dalei). Reeve, Icon., f. 25 196
389.: Volutharpa Perryi, Jay. Japan Exped., ii, t. 5, f. 14 200
370. Volutharpa Deshayesiana, Fischer ($=$ ampullacea, Midd.). Jour. de Conch., 2 ser., i, t. 3 , f. 9 200
371. Chlanidota vestita, Martens. Conch. Mittheil, t. '9, f. 3 a 201
Plate 80
372. Cominella porcata, Gmel. Reeve, Icon. Bucc., f. 22. 202
373. Cominella ligata, Lam. ($=$ porcata). Kiener, Bucc., t. 5, f. 15. 202
374. Cominella Anglicana, Mart ($=$ porcata). Reeve, Bucc., f. 23...... 202
375. Cominella pubescens, Küster ($=$ tigrina). Conch. Cab. Bucc., t. 1\%, f. 8 $20:$
376. Cominella trigina, Gmel. (= porcata, var.). Kiener, Bucc., t. 10, f. 32 202
377. Cominella limbosa, Lam. Reeve, Icon. Bucc, f. 35 202
378. Cominella limbosa, Lam. Kiener, Purpura, t. 40, f. 95 202
379. Cominella robusta, Küster (三 porcata). Conch. Cab. Bucc., t. 14, f. 13 $20:$
380. Cominella lagenaria, Lam. (=limbosa). Kiister, Bucc., t. 14, f. 16. 202
381. Cominella papyracea, Brug. Reeve, Lcon. Bucc., f. 24 202
382. Cominella intincta, Reeve (= papyracea). Icon., f. 32 202
383. Cominella lagenaria, Lam. ($=$ limbosa). Reeve, Icon., f. 33. 202
384. Cominella biserialis, Küster ($=$ porcata). Bucc., t. 14, f. 12 202
405, 406. Cominella Zeyheri, Krauss. Küster, Bucc., t. 15, f. 7, 8 203
385. Cominella lineolata, Dunker ($=$ Dunkeri, Kïster). Phil., Abbild. i, Fusus, t. 1, f. 10 203
408,.409. Cominella Dunkeri, Küster. Conch. Cab. Bucc., t. 15, f. 10, 11. 203
410-412. Cominella violacea, Quoy. Voy. Astrol., t. 30, f. 32-34 203
386. Cominella Delalandi, Kiener. Icon. Bucc., t. 5, f. 14 203

REFERENCE TO PLATES.

FIGURES. PAGE.
414. Cominella testudinea, Mart. Reeve, Bucc., f. 66. 203
415. Cominella cataracta, Chemn. ($=$ testudinea, Mart.). Küster, t. 3, f. 15. 203
416. Cominella lineolata, Lam. Kiener, Bucc., t. 8, f. 25 204
417. Cominella lineolata, Lam. (var. virgata). Reeve, f. 36. 204
418. Cominella Quoyi, Kiener. Iconog. Bucc., t. 5, f. 13. 204
419. Cominella Quoyi (= lineolata), Reeve. Icon. Bucc., f. 107. 204
420. Cominella alveolata, Kiener (= lineolata). Reeve, Bucc., f. 37. 204
Plate 81.
421. Cominella maculata, Martyn. Reeve, Icon. Bucc., f. 16. 204
422. Cominella testudinea, Lam. (\quad maculata). Quoy, Voy. Astrol., t. 30 , f. 12 204
423. Cominella maculosa, Mart. (= maculata, Juv.). Univ. Conch., t. 8. 204
424. Cominella Woldemarii, Kiener ($\%=$ maculata, Juv.). Purpura, t. 39 , f. 91 204
425. Cominella lineolata, Lam. (var. virgata). Quoy, Voy. Astrol., t. 30 , f. 15 204
426. Cominella obscura, Reeve ($=$ lineolata, var. virgata). Conch. Icon., f. 68. 204
427. Cominella pluriannulata, Reeve (= lineolata, var. virgata). Conch. Icon., f. 38. 204
428. Cominella lineare, Reeve (= lineolata, var. virgata). Conch. Icon., f. 116. 204
429. Cominella lactea, Reeve (= lineolata, var. virgata). Conch. Icon. f. 117 204
430, 431. Cominella costata, Quoy. Voy. Astrol., t. 30, f. 17, 20. 205
432. Cominella Angasi, Crosse (costata). Jour. de Conch., Sd ser., iv, t. 11, f. 5 205
433. Cominella Adelaidensis, Crosse (= costata). Jour. de Conch., 3d ser., iv, t. 11, f. 6. 205
434. Cominella eburnea, Reeve ($二$ costata). Conch. Icon. Bucc., f. 93.. 205
435. Cominella acutinodosa, Reeve. Bucc., f. 21. 206
436. Cominella glandiforme, Reeve (acutinodosa). Icon., f. 109. 206
437. Cominella Zealandica, Hombr. ($=$ acutinodosa). Voy. Ast. et Zel., t. 21, f. 5. 206
438. Cominella funerea, Gld. (= costata). Moll. Wilkes' Exped., f. 320. 205
439. Cominella lurida, Phil. (=acutinodosa). Abbild. iii, Bucc., t. 1. f. 10 206
440. Cominella filicea, Crosse. Jour. de Conch., xiii, t. 3, f. 15. 206
441. Cominella citrina, Reeve. Icon. Bucc., f. 70. 206
442. Cominella Nassoides, Reeve. Icon. Bucc., f. 12 206
443. Cominella nodicincta, Martens. Mittheil. i, t. 9. f. 4 a 206
445, 446. Clea nigricans, A. Ad. Reeve, Icon. Hemisinus, f. 25 b, c.. 208
447. Clea Helena, Meder. Reeve, Icon. Hemisinus, f. 24 b 208
448. Clea Theminckiana, Petit ($=$ Helena). Jour. de Conch., iv, t. 7, f. 11 208
449. Clea tenuicostata, Brot. Jour. de Conch., t. 12, f. 5, 1876. 208
450: Clea Bandoniana, Mabille et Le Mesle. Jour. de Conch., t. 7, f. 1, 1866 208
451. Clea Cambojiensis, Reeve. Jour. de Conch., t. 7, f. 2, 1866. 209
452. Clea Cambojiensis, Reeve. Icon. Melania, f. 468 209
453. Clea scalarina, Desh. Archiv du Mus., x, t. 8, f. 18 209
454. Clea Jullieni, Desh. Ibid., f. $2 \hat{2}$. 209
REFERENCE TO PLATES. 307
piguris. PAGE.
455. Clea bizonata, Desh. (\rightleftharpoons Jullieni). Ibid., f. 25. 209
456. Clea. Broti, Desh. ($=$ Jullieni var.). Ibid., f. 27 209
457, 458. Clea fusiformis, Desh. Ibid., f. 21 ; t. 7, f. 31. 209
459. Clea Bocourti, Brot. Jour. de Conch., t. 12, f. 6, 1876. 209
Plate 82.
460. . Eburna papillaris, Sowb. Thes. Conch., t. 215, f. 7 211
461, 462. Eburna Zeylanica, Brug. Thes. Conch., t. 215, f. 5, 6 211
463. Eburna Japonica, Sowb. Ibid., t. 215, f. 11 211
464. Eburna Borneensis, Sowb. Ibid., t. 291, f. 14 212
465. Eburna lutosa, Lam. Ibid., t. 215, f. 10 211
466, 467. Eburna canaliculata, Schum. (= spirata, Lam.). Ibid., t. 215, f. 2,3 212
468. Eburna canaliculata, Schum. (= spirata, Lam)., Voy. Bonite, t. 41 , f. 28. 212
469. Eburna chrysostoma, Sowb. Thes. Conch., t. 291, f. 15. 212
470. Eburna semipicta, Sowb. Ibid., f. 13 213
471. Eburna perforata, Sowb. Zool. Proc., t. 21, f. 2, 1870 213
472. Eburna ambulacrum, Sowb. Thes. Conch., t. 215, f. 8 213
473. Eburna Molliana, Chemn. (= Valentiniana, Swains.). Ibid., t. 215, f. 1. 213
474. Eburna Australis, Sowb. Ibid., t. 216, f. 8 213
475. Eburna Formosæ, Sowb. Ibid., t. 291, f. 18 211
476. Eburna areolata, Lam. Sowb. Ibid., t. 215, f. 4 212
477. Macron Kellettii, A. Ad. Sowb.,, Thes. Conch., t. 216, f. 12. 214
478. Macron livida, A. Ad. Sowb., Thes. Conch., t. 216, f. 6. 214
Plate 83.
479-482. Phos senticosus, Linn. Sowb., Thes. Conch., iii, t. 221, f. 8-11. 215
483. Phos senticosus, Linn. Quoy, Voy. Astrol., t. 31, f. 1 215
484. Phos muricatulus, Gld. (= senticosus). Thes. Conch.; t. 221, f. 12. 215
485. Phos angulatus, Sowb. (= senticosus). Ibid., f. 7 215
486. Phos scalaroides, Ad. (= senticosus). Ibid., f. 13 215
487. Phos filosus, A. Ad. (= senticosus). Sowb•,, Thes. Conch., t. 221, f. 15 215
488. Phos ligatus, A. Ad. (= senticosus). Ibid., f. 16 215
489. Phos plicatus, A. Ad. (= senticosus). Ibid., t. 222, f. 23 215
490. Phos rufocinctus, A. Ad. ($=$ senticosus). Ibid., t. 221, f. 14 215
491. Phos cancellatus, A. Ad. (= Adamsi). Ibid., t. 222, f. 39 216
492, 493. Phos textilis, A. Ad. (= senticosus). Ibid., f. 48, 49 215
494, 495. Phos pallidus, Powis. Ibid., t. 222, f. 19, 21 218
496. Phos notatus, Sowb. (= pallidus). Ibid., t. 221, f. 17. 218
497. Phos Cyllenoides, A. Ad. Ibid., t. 222, f. 34 216
498. Phos cancellatus, Quoy ($=$ textum). Voy. Astrol., t. 32, f. 31 217
499. Phos lævigatus, A. Ad. Sowb., Thes. Conch., t. 221, f. 6. 217
500. Phos Blainvillei, Desh. (= textum). Ibid., t. 222, f. 42. 217
501. Phos pyrostoma, Reeve ($=$ textum). Conch. Syst., t. 268, f. $1 . .$. 217
502. Phos virgatus, Hinds. Voy. Sulphur, t. 10, f. 12. 217
503, 504. Phos varians, Sowb. (= textum). Thes. Conch., t. 222, f. 26, 27 217
505. Phos spinicostatus, A. Ad. (= textum). Ibid., f. 45 217
506. Phos nodicostatus, A. Ad. (= senticosus). Ibid., f. 47 215
507. Phos cyanostoma, A. Ad. ($=$ textum). Ibid., f. 46 217
FIGURES. PAGE.
508, 509. Phos roseatus, Hinds. Ibid., t. 221, f. 2, 3. 217
510. Phos Borneensis, Sowb. ($=$ roseatus). Ibid., t. 222, f. 22 217
511. Phos varicosus, Gould (= roseatus). Moll. Wilkes' Exped., f. 360. 217
512. Phos unicinctus, Say ($=$ Guadeloupensis). Am. Conch., t. 57, f.1. 219
513. Phos Terebra, Sowb. Thes. Conch., t. 222, f. 29 217
514. Phos retecosus, Hinds. Ibid., f. 36 218
515. Phos gracilis, Sowb. Ibid.. f. 33 218
516. Phos articulatus, Hinds. Voy. Sulphur, t. 10, f. 8. 218
517. Phos turritus, ${ }^{\text {A. Ad. (}=\text { articulatus). Sowb., Thes., t. 222, f. 37.. }}$ 218
518. Phos gaudens, Hinds. Ibid., f. 31 218
519. Phos Cumingii, Reeve ($=$ gaudens). Elem. Conch., t. 3, f. 16. 218
520. Phos Guadeloupensis, Petit. Jour. de Conch., iii, t. 2, f. 3. 219
521. Phos crassus, Hinds. Voy. Sulphur, t. 10, f. 1 218
522. Phos Morrisii, Dkr. (=plicatus). Phil., Abbild. iii. Bucc., t. 2, f. 5. 216
523. Phos plicosus, Dkr. Krauss, Siidafrik. Moll., t. 6, f. 19 216
524. Phos speciosus, A. Ad. ($=$ plicosus). Reeve, Nassa, f. 16 b. 216
515. Eburna areolata, Lam. Ad. and Rve., Voy. Samarang, t. 8, f. 2... 212
575. Phos fasciatus, A. Ad. ($=$ senticosus). Thes. Conch., t. 221, f. 4.. 215
Plate 84.
526. Eburna caualiculata, Schm. (= spirata, Lam.). Quoy, Voy. Astrol. t. 31, f. 12. (See Anatomy of the Prosobranchinates, vol. ii of this Manual, Pl. 3.)
527. Phos gaudens, Hinds. Voy. Sulphur, t. 10, f. 6. 218
528. Phos Cumingii, Reeve ($=$ gaudens). Sowb. Thes., t. 222, f. 38 218
529. Phos Veraguensis, Hinds. Voy. Sulphur, t. 10, f. 14 219
530. Phos Veraguensis, Hinds. Sowb., Thes. Conch., t. 222, f. 41 219
531. Phos. Antillarum, Petit ($=$ Veraguensis). Jour. de Conch., iv, t. 8, f. 9. 219
532. Phos Grateloupiana, Petit (= Veraguensis). Jour. de Conch., iv, t. 8, f. 4 219
533. Phos Beaui, Fischer. Jour. de Conch., 2d ser., i, t. 12, f. 8. 219
534. Phos Candei, d'Orb. (= Veraguensis). Moll. Cuba, t. 21, f. 23..... 219
535. Nassaria nivea, Reeve. Icon. Triton, f. 75 221
536. Nassaria alba, Mart. (= nivea). H. and Adams' Genera, iii, t. 13, t. 1 221
537. Nassaria carduus, Reeve (= nivea). Triton, f. 95 221
538. Nassaria multiplicata, Sowb. (= nivea). Thes. Conch., iii, t. 220, f. 7. 221
539. Nassaria acuminata, Reeve. Küster, Conch. Cab., t. 76, f. 7 221
540. Nassaria acuminata, Reeve. Triton, f. 54 b 221
541. Nassaria bitubercularis, A. Ad. (= acuminata). Zool. Proc., t. 10, f. 6,1850 221
542. Nassaria suturalis, A. Ad. (= acuminata). Küster, t. 77, f. 11, 1850. 221
543. Nassaria recurva, A. Ad. (= acuminata). Küster, t. 17, f. 14. 221
544. Nassaria varicifera, A. Ad. (= acuminata). Thes. Conch., iii, t. 220, f. 3 221
545. Nassaria nodicostata, A. Ad. (=acuminata). Thes. Conch., t.220, f. 13. 221
546. Nassaria Sinensis, Sowb. (= acuminata). Ibid., f. 9 221
547. Nassaria fusiformis, Sowb. Thes. Conch., t. 220, f. 11 222
548. Nassaria turrita. Sowb. (=acuminata). Ibid., f. 19 221
549. Nassaria Nassoides, Gray. Reeve, Icon. Triton, f. 96 222
550. Nassaria Nassoides, Gray. Sowb. Thes. Conch., t. 220, f. 4 222

REFERENCE TO PLATES.

FIGURISS. PAGE.
551. Nassaria magnifica, Lischke. Jap. Meeres Conch., ii, t. 4. f. 11 222
552. Nassaria magnifica, Lischke. Küster, Conch. Cab., t. 76, f. 3...... 222
553. Nassaria egregia, Reeve. Icon. Triton, f. 78 222
554. Nassaria clathrata, Reeve. Icon. Murex, f. 185 222
555-557. Cyllene lyrata, Lam. Sowb., Thes. Conch., iii, t. 217, f. 2-4.. 223
558. Cyllene lyrata, Lam. Jour. de Conch., xxiii, t. 15, f. 5 a 223
559. Cyllene sulcata, A. Ad. (= lyrata). Thes. Conch., t. 217, f. 11 223
560. Cyllene unimaculata, A. Ad. (- lyrata). Thes. Conch., f. 31 223
561. Cyllene lugubris, Ad. and Reeve. Ibid., f. 9 224
562. Cyllene fuscata, A. Ad. (= lugubris). Ibid., f. 17. 224
563. Cyllene pallida, A. Ad. (= lugubris). Ibid., f. 22 224
564. Cyllene Oweni, Gray. Ibid., f. 20 224
565. Cyllene orientalis, A. Ad. (= Oweni). Ibid., f. 13 224
566. Cyllene Senegalensis, Petit ($=0$ weni). Jour. de Conch., iv, t. 5, f. 5. 224
567. Cyllene pulchella, Ad. and Reeve. Thes. Conch., t. 217. f. 25 224
568. Cyllene Grayi, Reeve (=pulchella). Ibid., f. 6 224
569. Cyllene glabrata, Ad. (= pulchella.). Ibid., f. 15 224
570. Cyllene striata, A. Ad. (= pulchella). Ibid., f. 26 224
571. Cyllene Guillaini, Petit (=pulchella). Jour. de Conch., i, t. 7, f. 4. 224
572. Cyllene concinna, Solander.' 'Thes. Conch., t. 217, f. 30 224
573, 574. Cyllene plumbea, Sowb. Ibid., f. 23, 28 224
Plate 85.
576. Epidromus Bednalli, Brazier. Specimen 225
577. Mazzalina pyrula, Conrad. Specimen 225
578. Latirus Nagasakiensis, E. A. Smith. Zool. Proc., 1880 225
579. Junia angulosa, Brocchi. Bellardi, Mem. Turin, xxvii, 226
580. Mitrofusus orditus, Bellardi et Michel. Ibid., t. 11, f. 1 226
581. Anura inflata, Brocchi. Ibid., t. 11, f. 8 226
582. Genea Bonellii, Gené. Ibid., t. 11, f. 1 226
583. Mayeria acutissima, Bellardi. Ibid., t. 10, f. 7 a 226
584. Fusus acuticostatus, Sby. (= coclatus, Rve.). Thes. Conch., f. 30. 228
585. Fusus vulpicolor, Sowb. Thes., f. 73 228
586. Fusus Percyanus, Sowb. (= polygonoides, Lam.). Thes., f. 77 227
587. Fusus caudatus, Sowb. Thes., f. 167 229
588. Fusus lævigatus, Sowb. (= Australis, Quoy). Thes., f. 157 227
589. Fusus depictus, Sowb. Thes. f. 86 228
590. Fusus delectus, A. Ad. (= distans, Lam.). Thes., f. 36 227
591. Fusus Sandvichensis, Sowb. (= spectrum, Ad. and Rve.). Thes., f. 25 227
592. Fusus graciliformis, Sowb. Thes. Conch., f. 62 228
593. Fusus spiralis, A. Ad. (spectrum, Ad. and Rve.). Thes., f. 37 227
Plate 86.
594. Fusus rudicostatus, Sowb. (=Australis, Quoy). Thes., f. 19 227
595. Fusus nodicinctus, A. Ad. (= Australis, Quoy). Thes., f. 35 228
596. Fusus biangulatus, Desh. (= polygonoides, Lam.). Thes., f. 159.. 228
597. Fusus subquadratus, Sowb. Thes., f. 28 228
598. Fusus excavatus, Sowb. Thes., f. 168 229
599. Fusus albinus, A. Ad. (= ustulatus, Rve. ?). Thes., f. 72 220
600. Fusus Reeveanus, Sowb. Thes., f. 82 228
figures. page.
601. Fusus assimilis, A. Ad (= turricula, Kr., var ?). Thes., f. 78. 228
602. Fusus articulatus, Sowb. (= Australis, Quoy). Thes., f. 66 228
603. Fusus robustior, Sowb. Thes., f. 63 228
604. Fusus rubrolineatus, Sowb. Thes., f. 68. 228
605. Fusus fusconodosus, Sowb. Thes., f. 169 229
606. Fusus lætus, Sowb. Thes., f. 166. 229
607. Fusus tessellatus, Sowb. Thes., f. 165 229
608. Fusus tenuistriatus, Sowb. Thes., f. 140. 229
Plate 87.
609. Melongena anceps, A. Ad. (= pallida, B. and S.). Sowb., Thes. Fusus, f. 131 229
610. Sipho Danielsseni, Friele. Norw. Polar Exped., t. 3, f. 2. 132
611. Neptunea incisa, Sowb. Thes. Conch. Fusus, f. 112 230
612. Sipho rectiplicatus, Sowb. (= Kroyeri, Möller). Ibid., f. 101 132
613. Sipho virgatus, Friele, t. 1, f. 22 132
614. Neptunea tæniata, Sowb. (= despecta, var.). Thes. Fusus, f. 119. 230
615. Neptunea borealis, Sowb. (= despecta, var.). Ibid., f. 110 230
616. Neptunea tornata, Sowb. Thes. Conch. Fusus, f. 118 230
617. Buccinum Grenlandicum, var. acutum ($=$ cyaneum), Friele, t. 3, f. 17. 188
618. Siphonalia fuscolineata, Pease. Zool. Proc., t. 51, f. 3, 1860 136
619, 620. Buccinum nivale, Friele, t. 3, f. 24, 25 a 195
621. Neptunea Ossiani, Friele, t. 1. f. 1 133
622. Sipho solidulus, Sowb. (=Stimpsoni, Mörch, var.). Sowb., Fusus, f. 97 132
623. Fusus crenulatus, Sowb. ($=$ Siphonalia ?). Fusus, f. 17 228
624. Fusus obesus, Sowb. (=Sipho). Thes., f. 92 132
625. Sipho Dalli, Friele, t. 2, f. 18. 133
626. Sipho undulata, Friele, t. 2, f. 33 133
627. Buccinum sulcatum, Friele, t. 3, f. 18. 195
628. Sipho Hanseni, Friele, t. 1, f. 20. 132

PERISTERNIIN A.

PLATE 65.

66

69

68

67

83

74

82

$\$ 1$

89

90

102

PERISTERNIIN ※.

PLATE 67.

PERISTERNIINA.
Plate 69.

PERISTERNIINA.

PLATE 70.

PISANINA.

PLATE 73.

PLATE 74.

PISANIN.E.

271

272

298

BUCCININA.
Plate 75.

BUCCININE.

PLATE 77.

BUCCININE

PLATE 79.

388

391

385

BUCCININA.

A 400 A 403

PHOTINS.
PLATE 83.

FUSINA.
PLATE
85.

PLATE 86

609

617

624

021

622

RETURN TO the circulation desk of any

 University of California Libraryor to the
NORTHERN REGIONAL LIBRARY FACILITY
Bldg. 400, Richmond Field Station
University of California
Richimond, CA 94804-4698
ALL BOOKS MAY BE RECALLED AFTER 7 DAYS

- 2-month loans may be renewed by calling (510) 642-6753
- 1-year loans may be recharged by bringing books to NRLF
- Renewals and recharges may be made 4 days prior to due date.

DUE AS STAMPED BELOW

 APR 101997
JUN 132000

No 551354

Tryon, G.W.
Manual of conchology.
QL403
776
ser. 1
v. 3

[^0]: January, 1881.
 G. W. T., Jr.

[^1]: * See Vol. 2, Manual of Conchology, page 6π.
 \dagger Vol. II, plate 8.

[^2]: * Conch. Icon., Vol. II, Triton, 1844.
 † Narrative Voy. Samarang, I, 89.

[^3]: Chili; Iquiqui, Peru, in mud and sand, 6 to 10 fathoms, and in coarse gravel, 9 fathoms (Cuming'.

[^4]: * Adams and Reeve, Voy. Samarang, 37.
 \dagger For the species of Eupleura vide Vol. II, p. 157.
 \ddagger Linn. Trans. XXIII, 69.

[^5]: * Archiv. Zool. Exp. VI, 100.

[^6]: * Am. Jour. Conch. I, 54.
 \dagger Ann. Mag. Nat. Hist., 4th Ser. II, 243.
 \ddagger Am. Jour. Conch., I, 60.

[^7]: * Pal. Hayden's Survey., IX, 344.

[^8]: * Craticulata by error on his plate.

[^9]: * Mr. Smith founds his genus principally upon the paucispiral opercu• lum, but the figure given by him shows an operculum which is no more curved than occurs sometimes in the genus Sipho, for example. This, with the dentition indicates relationship with Neptunea, but the absence of canal in the shell on the other hand, relates it to Buccinum.

[^10]: * H. and A. Adams (Genera II, 615) make Adamsia, Dunker, a sub-genus of Cominella; the operculum and facies of the type show it, however, to be a Purpura (See Manual, Vol. II, p. 156).

[^11]: * In describing the fossil genera of Conrad I quote his specific names for the types specified by him. I have indicated, however, the equivalent species of Dr. Lea in brackets. The decision of questions of priority of publication of fossil species does not fall within the scope of this work.

[^12]: * Brit. Conch. IV, 326.

[^13]: * Am. Jour. Conch., VII, 108.

[^14]: * Jeffreys Brit. Conch., IV, 331.

[^15]: * Zool. Proc., 1880.

[^16]: * Memoirs of the Peabody Academy, Vol. I, 1875.

[^17]: * Am. Jour. Conch. III, 182.

[^18]: * The Antarctic as well as tropical species described as Buccinum all belong to other genera; the genus is limited to northern seas.-G.W.T., Jr.

[^19]: * William Stimpson, in Canad. Nat. N. S. II, 364. 1865.

[^20]: * Annals and Mag. Nat. Hist., 5th Ser., VI, 423, Dec. 1880.

[^21]: * Jeffreys, Brit. Conch. IV, 285.

[^22]: * In his Synoptical Table, Stimpson distinguishes the American form (B. undulatum) by its short columella, and the sinus of the outer lip being near the suture instead of near the middle. These distinctions usually hold good, but not always : it is not difficult to find American specimens with the European characters, and vice-versa.
 \dagger The common generic name in English is "whelk."
 \ddagger Details of the anatomy and embryology of Buc. undatum, will be found in the introductory portion of Vol. II of this Manual, with illustrations upon Plates 3, 4 and 8.

[^23]: * Proc. Bost. Soc. Nat. Hist., XVIII, 284, 1876.

[^24]: * Rept. U. S. Fish Com'r, 638, 1875.
 \dagger Fauna der Kielerbucht II.)

[^25]: * Mr. E. A. Smith figures the dentition of this form in Ann. Mag. N. Hist., XX, 134, 1877, and as the side plates have three fangs on one side and two on the other, and the epidermis differs, he considers it distinct from B. cyaneum. Mr. Jeffreys, in same magazine, p. 239, calls attention to the variability of the epidermis in northern shells, and mentions that he had examined numerous specimens of sericatum, and had no doubt of their specific identity with cyaneum. The unequal distribution of denticles upon the side plates of the radula, is itself sufficient evidence of the little value of this character.

[^26]: * As in Buccinum Humploreysianum.

[^27]: * W. H. Dall, Am. Jour. Conch., VII, 106.

[^28]: * Jour. de Conch., 114, 1875.
 \dagger Vol. II, p. 15.
 \ddagger Manual, I, 141.

[^29]: * W. H. Dall, Am. Jour. Conch., VII, 106.
 \dagger Dall, Am. Jour. Conch., VII, 104.

[^30]: * Or of the ecclesiastical group of Mitræ, such as M. episcopalis, pontificalis, papalis, cardinalis, etc.

