LIBRARY
 UNIVERSITY OF CALIFORNIA DAVIS

$$
d
$$

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

M A N U A L

OF

Structural and Systematic.

WITII ILAUSTRATIONS OF THE SPECTES.

By george W. TRYON, Jr.

 \&CIEN(:E: (HF I'HILADELDILA.

I'OT. IV.

PHILADELPHIA: Published by the Author, academy cf Natural. Sciences, Cob. 15th \& Race Stc. 1882.

- LIBRARY
(i) UNIVERSITY OF CALIFORNIA
'The Fourth Volume of the Manual of Conchology contains, monographs of four important families, embracing genera of which many representatives are included in the cabinet of ever! collector of marine shells. It is hoped that it will be found useful in facilitating the identification of specimens, as well as in correcting the hitherto very confused synonymy.

The kind offices of many correspondents in furnishing specimens (particularly unfigured types), drawings and information concerning the species, are again gratefully acknowledged; and I am equally indebted to others for their endeavors to promote the sale of the Manual. I shall endeavor to deserve and recompense this active interest in behalf of the work by making it as thorough as circumstances will permit.
G. W. T., Jk.

January, 1882.

> The Almighty Maker has throughout Discriminated each from each, by strokes And touches of his hand with so much art Diversified, that two were never found Twins at all points.

Cowler.

To ask or search 1 blame thee not; for Nature
Is as the book of God before thee set, Wherein to read his wondrous works. But what created mind can comprehend Their number, or the wisdom infinite That bronght them forth, but hid their causes deep.

Milton.

MANUAL OF (OONCHOLOGY.

Family NASSIDE.

Shell ovate, spire usually elongated, base of aperture a notch or short recurved canal, inner lip usually callous. Operculum corneous, ovate, nucleus apical; margins plain or serrated. Animal having two small processes or tails at its posterior extremity. Lingual teeth arched, pectinated; the uncini with a basal horn, and occasionally intermediate serrations: the dentition is illustrated on Plate 3.

A few fossil species are known, commencing with the Eocene.

Synopsis of Genera.

NORTHIA, Gray. Shell elongated, turrited, polished ; spire elevated, acuminated, whorls depressed and sloping at their upper part; aperture shorter than the spire ; outer lip with the margin serrated. Dentitiou unknown.
'TRUNCARIA, Ads. and Reeve. Shell acuminately obloig, thick; suture of the spire channelled ; aperture anteriorly dilated, posteriorly subemarginated; columella arcuated, abruptly truncated in front, with a single anterior fold. Dentition unknown.
BULLIA, Gray. Shell ovate or turrited ; spire more or less acuminated, sutures enamelled; inner lip excavated in the middle, callous posteriorly ; aperture oval, moderate. Operculum fusiform, nucleus apical. Dentition, Pl. 3, fig. 20.
Subgenus Buccinanors, d'Orb. Shell with the whorls somewhat angulated, and with a rounded or nodulous band next the sutures.
Subgenus Pseudostrombus, Klein. Shell elongated, smooth, without epidermis, last whorl ventricose; spire acuminate; aperture ovate, columella arched, smooth or transversely striated, outer lip thin. No enamel round the sutures. Dentition, Pl. 3, fig. 21.

Subgenus Adinus, H. and A. Adams. Shell subulate, spirally striated; columella abruptly truncated at base ; inner lip corrugated, with a callosity at hind part ; outer lip grooved internally, externally marginated.

NASSA, Lam. Shell ovate, ventricose, body whorl variously sculptured ; aperture ovate, with a short, reflected, truncated, anterior canal ; inner lip smooth, often widely spread over with enamel, with a posterior callosity or blunt dentiform plait; outer lip dentated, internally crenulated. Margin of operculum serrated or entire. Dentition, Pl. 3, figs. 22 to 25.*

The following "subgenera" may be retained as convenient group designations, although the species, varying much in their sculpture cannot always be positively assigned.

Subgenus Arcularia, Link. Body whorl gibbous on the back; spire produced; callus of inner lip greatly extended and covering the spire.
Subgenus Naytia, H. and A. Adams. Shell smooth; aperture with a channel at the hind part continued up the spire.
Subgenus Alectrion, Montf. Spire elevated, whorls glabrous, polished or papillary ; inner lip spreading; outer lip denticulate, not variced externally,
Subgenus Zeuxis, H. and A. Adams. Spire elevated, smoorh, or longitudinally plicate, polished; inner lip with the callus defined, or somewhat spreading; outer lip externally variced, sometimes dentate anteriorly. \dagger
Subgenus Aciculina, H. and A. Adams. Shell turrited, polished, smooth or longitudinally plicate : inner lip with the callus sharp, straight, defined; outer lip produced in the middle, variced externally.
Subgenus Phrontis, H. and A. Adams. Spire elevated, acuminate, whorls ribbed or nodulose, distinctly shouldered; inner lip smooth, with an extended, thickened callus, outer lip with an external varix.

[^0]Subgenus Hebra, H. and A. Adams. Whorls spinose, muricated or sharply tubercular; inner lip with the callus defined ; outer lip with a marginal varix, when adult.
Subgeuus Hima, Leach. Spire elevated, whorls c:mcellated; inner lip with a rugose callus, callus defined ; outer lip with a marginal varix.
Subgenus Niotha, H. and A. Adams. Shell cassidiform; spire short, whorls granulated or cancellated; inner lip with the callus very large and spreading ; outer lip crenate, not variced externally.
Subgenus Tritia, Risso. Spire elevated, whorls reticulated; inner lip, smooth, with the callus moderate; outer lip simple, not variced.*
Subgenus Ilyanassa, Stimpson. Shell dark olive brown, reticulated, outer lip without varix, striate within, columella covered with a spreading callus. Operculum with entire (not serrated) margin. Animal having a broad foot, not bifurcated behind as in Nassa. Dentition, Pl. 3, fig. 25.

NERITULA, Plancus. Shell ovate, depressed, axis distorted; spire flattened, oblique, whorls smooth ; aperture depressed ; columella smooth ; inner lip callous, spread over the body whorl, outer lip reflected, not denticulate or striated. Dentition, Pl. 3, fig. 26.

DESMOULEA, Gray. Shell ovate-globose, covered with a downy epidermis; spire short, conical, apex papillary; whorls depres ed; aperture ovate; inner lip thickened, with a ridge posteriorly; outer lip contracted, thickened externally, plicated internally. Dentition unknown.

Fossil Genera and Subgenera.

Subgenus Molopophorus, Gabb. (S. G. of Bullia). Short, robust, spire moderately elevated, suture bordered by a more or less distinct carina. Surface longitudinally ribbed or striate. Aperture obtuse behind, and very slightly notched; outer lip simple, inner lip very slightly incrusted, sinuous, anterior notch small, but distinctly defined.
B. striata, Gabl. Pl. 3, fig. 27 . Cretaceous, California.

Genus PTYCHOSALPINX, Gill. Shell ovate, buccinoid, whorls regularly rounded and ventricose; spire moderate (about as long as the aperture), furnished with equal revolving linear ridges, siphonal canal very short, very obliquely twisted and concurrent with the siphonal

[^1]fasciole ; aperture rhombo-ovate, oblong; labrum entire, not sinuous, smooth within ; columella inversely sigmoidal, concave near the middle, with a very thin callous deposit and with a revolving linear plait in front. Tertiary, United States and France.
Dr. Gill refers his genus to the family Buccinidæ, but I agree with the late Mr. Conrad that his description indicates (as do the types cited) Nasse.
P. altilis, Comrad. Pl. 3, fig. 28. Miocene, Virginìa.
P. scalaspira, Conrad. Pl. 3, fig. $29 . \quad$ Miocene, Virginia.

Subgenus Paranassa, Conrad. Differs from Ptychosalpinx in the submargin of the labrum being slightly thickened within and striate; siphonal canal shorter. Eocene, Miocene, America and Europe.
P. granifera, Conr.* Pl. 3, fig. 30.

Virginia.
Subgenus Tritiaria, Conrad. Elongated, subturrited, labrum not thickened within. This does not seem to differ gencrically from the true Nassas; it has very little resemblance to Ptychosalpinx.
T. peralta, Conrad. Pl. 3, fig. 31. Miocene, Virginia.
[Bulliopsis, Conrad. Placed by its author at first as a subgenus of Nassa, it was subsequently removed by him to Melanopsidæ. It has some resemblance to Bullia.]

Genus NORTHIA, Gray.
The animal of this genus is unknown, but the operculum has been figured by H. and A. Adams, in their "Genera." The shell is in its general aspect much closer to Pusionella in the family Terebridæ than to the genera with which it is here (and has been heretofore) associated; the variceal thickening at or near the outer lip, is however, a feature which does not obtain in the Terebridæ. Pusionella, moreover, has a concentric operculum, with its nucleus near the middle of the inner margin. Perhaps the figured operculum of Northia is abnormal; it has that appearance. I think that if these shells had not been assigned to the Nassidix or to any other family, I would have placed them in Terebridæ: as it is, I prefer to allow them to remain here, rather than possibly complicate the sibject by changing their position.

[^2]N. serrata, Dufresne. Pl. 5, figs. 50, 51.

Livid olive, becoming chestnut-colored on the spire; a humplike projection often occurs parallel with and just behind the margin of the outer lip. Length, $2-2 \cdot 5$ inches.

Panama; St. Elena, W. Col.
Gray's name Buccinum Northix, has priority, but has not been adopted. Deshayes called it B. pristis because Dufresne's name was preoccupied in Buccinum for a fossil species-an objection which has no force since the shell has been dismembered from that genus.
N. albopunctata, Adams and Reeve. Pl. 5, fig. 52.

Light yellowish, minutely punctate with opaque white, apex rosaceous. Length, 8 inch.
N. Rissoides, Reeve. Pl. 5, fig. 53.

Whitish, with clouded yellow streaks. Length, 9 inch.
Philippines.
First described as a Pleurotoma. The specimen figured shows a single rib or varix on the body whorl. Adams remarks that N. albopinctata is closely allied to this species: I think it probable that they are identical.

Genus TRUNCARIA, Adams and Reeve.
This genus is founded on a singular shell discovered during the voyage of the "Samarang," and is principally characterized by the abrupt truncature of its columella, and by its anteriorly dilated aperture.
T. fllosa, Ads. and Reeve. Pl. 5, fig. 54.

Yellowish brown, maculated with two or three series of chestnutbrown spots. Length, $1 \cdot 1$ inches.

China Sea.
T. Australis, Angas. Pl. 5, fig. 55.

Moderately solid, shining; the two apical whorls thin and papillose, the rest somewhat distantly and flatly longitudinally plicate on the upper portion, the plicæ crossed with fine impressed lines, the middle of the last whorl smooth, with a few impressed lines near the base; sutures grooved. Pale brown, columellar callus white. Length, 7 mill.
T. rugata, Reeve. Pl. 5, fig. 56.

Whitish or light brown. Length, $1 \cdot 1$ inches.
Habitat unknown.
The pertinence of this species to the genus is very doubtful. I have not seen a specimen of it.
T. modesta, Powis. • Pl. 5, fig. 57.

Yellowish, longitudinally strigate or maculate or nearly covered with chestnut-brown, with a white central band.

Length, $8-1$ inch.
Panama.
Quite as closely related to Euthria as to the type of this genus.
T. sulcata, Kiener. Pl. 5, fig. 58.

Yellowish white, under a rufous epidermis. Length, 15 mill. Habitat unknown.
T. eurytoides, Carpenter.

White, with a revolving series of brown maculations on the periphery; sometimes the base is brown, or the whole surface brown spotted; with about twenty longitudinal riblets, becoming evanescent towards the aperture ; aperture subquadrate, lip scarcely thickened, striate finely within, columella abruptly truncate. Length, $\cdot 3$ inch.

Cape St. Lucas, Lower California.

Has not been figured hitherto, and the specimen before me (an author's type) is not in good condition for illustration. Very probably the species is not a Truncaria, at all; its size indicates close relationship with Columbella.
T. trifasciata, A. Ad. This name is given in the "Genera of Recent Mollusea," but I have not found a description of it.

Genus BULLIA, Aray.

Animal without eyes; tentacles long and slender. Foot enormonsly expanded, and bifid behind in the typical species. There is no operculum.

Bullia (restricted sense) has a raised band of enamel round the sutures of the whorls as in Ancillaria. The animal has the faculty, according to M. Quoy, of absorbing, through the pores of its foot, a great quantity of water, which it ejects when disturbed,
in various directions; it is caught by baiting lines with bits of flesh. The genus is oriental, mostly So. African in distribution, and reminds one of the Arctic genus Volutharpa (vol. iii, p. 197).
H. and A. Adams separate a genus Pseudostrombus on account of the want of the sutural band of enamel, and the foot of the animal being simple instead of bifid behind; but as in Nassa, the difference in the animal is not certainly to be regarded as generic; and as to the shell, there is no sharp line of division between species with and those without enamelled sutures-the globose species generally showing the most of it and the narrower ones less. Nevertheless it will be convenient to group together the narrow species as a subgenus.

In Woodward's "Manual of the Mollusca," Bullia is erroneously made a synonym of Anaulax, Roissy, a fossil form of Ancillaria.

Typical.

B. Levissina, Gmel. Pl. 5, fig. 59.

Yellowish white to brownish red; smooth and polished.
Length, 2:5-3 inches.
Cape of Good Hope.
B. Globulosa, Kiener. Pl. 5, fig. 60.

Spire shorter, whorls slightly contracted above the middle, suture bit slightly, or not at all enamelled. Length, $2 \cdot 5$ inches. Habitat unknown.

I doubt whether this is more than a variety of B. lævissima.
B. deformis, King. Pl. 5, fig. 61.

Yellowish brown, obscurely brown banded.
Length, 22-33 mill.
Mouth of the Rio de la Plata; Rio Negro, South America.
B. tenuis, Pl. 5, fig. 62.

Thin, yellowish white, one or two revolving grooves just below the suture and a number on the lower half of the body whorl. Length, $1 \cdot 75$ inches.

Habitat unknown.
B. callosa, Gray. Pl. 5, fig. 63.

Yellowish gray, sutural and columellar callosities generally chestnut-brown. Length, $1 \cdot 25 \div 1 \cdot 5$ inches.

Remarkable for its callous deposit upon the columella, which sometimes is so thick as to give the shell a distorted appearance, producing an angle or hump on the periphery.
B. Mauritiana, Gray. Pl. 5, figs. 64, 65.

Yellowish white, deeper yellow within the aperture; the callous sutural band frequently opaque white. Length, $1 \cdot 25-1 \cdot 75$ inches. Mauritius; Madagascar.
B. Mauritiana was not figured by Gray, and his description is so unsatisfactory that the recognition of the species must rest upon the illustration in Reeve's Iconica. With this, there is no doubt that B. Grayi, Reeve (fig. 65), is identical. The babylonic spire, strong sutural band of enamel, and distant revolving incised lines distinguish this species.
B. semiplicata, Gray. Pl. 5, fig. 66.

Whitish or yellowish, sometimes encircled by two broad, faint, brown bands. Length, $1 \cdot 25-1.5$ inches.

Habilat unknown.
This has very much the form of the preceding species, but the revolving incised lines are absent, and instead, the spire, and frequently the upper portion of the body whorl are longitudinally plicate.
B. Digitalis, Meuschen. Pl.5, figs. 67-69, 72.

Cream-color to yellowish white, sometimes darker around the suture; orange-yellow within the aperture. Smooth, with obsolete spiral impressed lines near the base. In very large individuals the whorls are somewhat plicately wrinkled next the suture.

Length, 1•5-2.5 inches.
South Africa.
B. rhodostoma, Gray (fig. 69), is somewhat stouter than the typical form, and B. semiusta, Reeve (fig. 68), is a mere color variety.

Var. Natalensis, Krauss.
Whorls shortly plicate at the suture.
The figure (fig. 72) represents a young specimen, but this plicate condition persists, frequently, in the adults. I have one before me, measuring 2.5 inches.
B. Persica, E. A. Smith. Pl. 5, fig. 70.

Greyish, or lavender-color; spirally sulcate, somewhat granulous next below the suture. Length, 1 inch.

Bushire, Persian Gulf.
B. sulcata, Reeve. Pl. 5, fig. 71.

Lavender or lead-color, rather solid; whorls closely, concentrically grooved.

- Habitat unknown.
B. semiflammea, Reeve. Pl. 5, fig. 75.

Yellowish white, lower half of whorls with longitudinal chestnut flames. Length, 1×25 inches.

Cape of Good Hope.

Subgenus Buccinanops, d'Orb.

Embraces three species from the Southern parts of the Coast of South America. They are of rude growth, usually with a Hattened shoulder below the sutures.
B. cochlidium, Kiener. Pl. 5, fig. 73; Pl. 6, figs. 76-81.

Yellowish white, sometimes with two obscure bands of longitudinally disposed chestnut-brown flames; whorls sometimes decidedly shouldered, and the shoulder defined by a somewhat corded ridge. Length, $1 \cdot 5-3$ inches.

Brazil to Patagonia ; on the Pacific Coast, north to Peru.
I do not agree with Deshayes and Reeve that Kiener's species is different from that of Chemnitz, and therefore I do not adopt Deshayes' name B. gradata: still, as Chemnitz was not a binominal writer I cannot cite him as authority for the species. The fact is that B. cochlidium is of rude, frequently distorted growth, and a collection of specimens exhibits many forms. The figure of cochlidium given by Reeve, as exhibiting the type of the species is but slightly shouldered, and large as it is, is not adult (fig. 76); Kiener's figure is also given (fig. 73). B. gradata, Desh., is represented by figure 77, from Reeve's Iconica, B. Lamarckii, Kiener (fig. 78), is another form which is scarcely shouldered, and other intermediate forms are shown in B. Paytense, Val. (fig. 79), and B. squalida, King (fig. 80). A remarkably distorted shell, called by Gmelin Buc. labyrinthum (fig. 81), very probably belongs here.
B. annulata, Lam. Pl. 5, fig. 74.

Yellowish white, columella white. Length, 1.5 inches.
Narrower than the preceding species, and covered with revolving striæ; yet it may be only a variety of it.
B. armata, Gray. Pl. 6, figs. $82,83$.

Yellowish white, with two broad, faint, chestnut bands.
Length, 1-2 inches.
Rio Negro, Patagonia.
This species is considered by d'Orbigny merely a spinose variety of B. cochlidium.

Subgenus Pseudostrombus, Klein.

Leiodomus Swainson, cannot be distinguished as a subgenus, the distinctive characters gradually merging in those of Pseudostrombus.
B. turrita, Gray. Pl. 6, fig. 84.

Shell smooth, very finely plaited at the sutures; white, sometimes obscurely brown-flamed on the lower part of the body whorl. Length, $1 \cdot 25-1 \cdot 5$ inches.

Habitat unknown.

Very like the next species, but is somewhat longer and narrower, with more convex whorls; the plications shorter, only occupying a small portion of even the spiral whorls, fainter; not decussated by revolving striæ.
B. melanoides, Desh. Pl. 6, figs. 85, 86.

Upper whorls crossed by well-marked plications, body whorl sometimes only plicate on the upper part; revolving. strix decussate the plications of the spire. Color, yellowish white, sometimes with a chocolate-colored narrow band near the sutures and a broader one at the base, or whole surface clouded or covered with chocolate. Length, $1-1.25$ inches.

Cochin China; Mozambique.
B. Mozambiceısis, F. A. Smith (fig. 86), is described from a well-grown specimen of the dark-colored variety.
B. granulosa, Lam. Pl. 6, fig. 91.

Chestnut or chocolate, sometimes obscurely banded on the periphery, with a double row of bead-like nodules revolving below the suture. Length, 1 inch.

Kiener, who figures this species as Bucc. vittatum, Linn., confounds with it B. melanoides, a shell from the opposite coast of Africa, and quite distinct, judging from the specimens before me. Lamarck considered it a Terebra, a genus to which this shell is closely assimilated by its usually very narrow form, polished surface and sculpture.
B. polita, Lam. Pl. 6, figs. 88, 89.

Cream-color, yellowish brown or livid olive, with frequently a very indistinct darker band near the suture; whorls of the apex plicate, rest smooth and polished. Length, $1-1 \cdot 25$ inches.

Senegal.
B. vitrea, Reeve (fig. 89), is synonymous.
B. Kurrachensis, Angas. Pl. 6, fig. 90.

White, tinged with rose-color on the upper whorls.
Length, $1 \cdot 75$ inches.
Kurrachi, Scinde, N. W. Indin.
Only the type specimen known.
B. vittata, Linn. Pl. 6, figs. 87, 92.

Yellowish or lilac-white, or bluish or brown; sometimes the spire is clouded bluish whilst the rest of the shell is light colored. Sutural plications defined by an incised revolving line and sometimes cut in two by another line. Length, $1 \cdot 5-1 \cdot 75$ inches. Ceylon; Zanzibar.
B. livida, Reeve (fig. 92), is only one of the many slight variations which can be readily traced to the typical form. This species occasionally develops a varix on the outer lip, and specimens are before me in which a former varix is persistent.
B. Taheitensis, Gmelin. Pl. 6, fig. 93.

Spirally ridged, ridges finely granose, two or three ridges next the suture more distant than the rest; yellowish, maculate with orange-brown, interior of aperture brown stained.

Length, 1.75 inches.
Taheiti.
A very rare species, and the only one having its pattern of sculpture. The figure in Chemnitz is evidently poorly drawn, \cdot and there can be no doubt that the British Museum specimen, figured by Reeve, is a better representation of the species, as it more nearly approaches a specimen now before me.

ADINUS.

B. Belangeri, Kiener. Pl. 6, figs. 94, 95.

Whorls smooth, polished, with distant revolving grooves which are most apparent at the suture, and base of the body whorl; yellowish, with waved longitudinal faint chestnut lines.

Length, $9-1 \cdot 4$ inches.
Aracan, Ceylon.
B. polita, Desh. (fig. 95), is this species, figured from a faded specimen.
13. diluta, Krauss. Pl. 6, figs. 96, 97.

Whorls with revolving striæ; whitish, lower part of body whorl longitudinally flamed with chestnut-brown; columella truncate at base. Length, 1 inch.

Natal, So. Africa.
Painted like B. semiflammea, Reeve, but immediately distinguished from that species by its narrow Terebra-like form and truncate columella. This last character suggests the succeeding species which, however, is peculiar in having a thickened lip, minutely dentate within. It is possible that they are identical, and that B. diluta has a thin, unarmed lip because the specimens are not adult. Von Martens has described a var. mediolævis (fig. 97), in which the revolving grooves do not occur on the middle of the body whorl-a character of no importance.

Snbzenus Adinus, H. and A. Adams.
13. truncata, Reeve. Pl. 6, fig. 98.

Yellowish white; whorls striated above and at base.
Length, $1 \cdot 25-1 \cdot 5$ inches.
Habitat unknown.
The characters of this species are those of the subgenus. It is probably So. African. See remarks under preceding species.

Unidentified and Doubtful Species.

B. elongatula, Anton.

Habitat unknown.
13. ICterica, Solander. H. and A. Adams' Genera.
B. osseum, Menke. The type specimen is lost.
B. velata, Gould This is undoubtedly a Nassa gaudiosa.
-1. Tamsiana, Dunker.
B. Cumingiana, Dunker
B. elegans, Dunker.
B. Lymineana, A. Ad.

Guinea, W. Africa.
Habitat unknown.
Habitat unknown.
$=$ Volutharpa.

Genus NASSA, Lam.
H. and A. Adams in their "Genera of Recent Mollusca" have enumerated 210 species of Nassa; Reeve's Monograph in the "Conchologia Iconica" contains 182 accepted species and 13 synonyms,$=195$ names in all. The present monograph includes 595 specific names, of which 131 only are accepted as good species, 364 are relegated to the synonymy of these, and 100 are undetermined for want of illustrations or specimens. The distribution of the genus is world-wide, except that no specimens exist in the icy seas near the poles-where they appear to be replaced by the Buccinums. They occur principally in the waters of tropical and subtropical latitudes.

The fossil species are few in number, commencing with the Eocene formation. For some of the American fossils Mr. T. A. Conrad has proposed distinct generic names, but their separation from Nassa is scarcely advisable.

The animal of Nassa has a broad head, and a foot quadrately expanded in front, with the corners often pointed, whilst behind it bifurcates and is prolonged frequently into two subulate tails. The operculum is usually serrate on the margin but is sometimes plain. The Nassæ are very active, and not at all shy when kept in confinement. They may be occasionally seen floating with the foot upwards. They are predaceous, feeding on other mollusks, the shells of which they bore. I have frequently seen the shells of the American species themselves bored, the hole being of such a size as to suggest cannibalism. Perhaps the avenger of their misdeeds is a beautiful and very active hermit crab which disports itself in the Nassa's shell, immense multitudes being seen at low tide in the water near the shore line. Whether begged, borrowed, stolen, or lawfully captured by the red right claw, it is certain that, at Atlantic City, New Jersey, the hermit inhabits a vast majority of the specimens of Nassa occurring to the collector. Although most of the species are littoral, a few have been collected at considerable depths; the undescribed N. brychia, Watson, was dredged at 620 fathoms by the "Challenger Expedition." Some of them have been observed to spring up and throw themselves over on being suddenly disturbed. Usually they glide along the surface of the mud, leaving a track indicating their line of march, at the end of which is a small
round pellet; under this the creature conceals itself. The fry twist and twirl about by means of their ciliated lobes. N. mutabilis is an article of food in Italy. The generic name is that of a narrow-necked wicker basket used for catching fish, and in such a basket, lobster pots, etc., the Nassa itself is frequently canght, attracted thither by odors savory.

Nasisa reticulata is said to be very destructive in the oyster pares of Arcachon (S. of France). It is so numerous that a single tide has yielded 14,600 specimens within a space of 40 French hectares (= about 100 acres). The adult Nassa will bore through the shell of an oyster three years old, within eight hours; but the young shells are far more destructive because they select the tender shells of the very young oysters, sometimes piereing fifteen or twenty in succession before their hanger is satistied. An oyster a month old is destroyed in a half hour.*

One of the best students of the genus Nassa is undoubtedly Mr. F. I'. Marrat, of the Liverpool Museum. \dagger Imbued with extreme development views he has, unfortunately, adopted the principle in his seientific work that, the variations of species being illimitable-species in fact, as usually defined, being nonexistant, the naturalist may apply a specific name for each modification of form, sculpture or coloration ; a principle the absurdity of which must be apparent when it is considered that, no two shells being exactly alike, it will, admit of the description of every individual specimen as a "new form." Mr. Marrat has, however, fully demonstrated the insufficiency of distinctions based on seulpture in a number of species of the genus; a result most confusing to the s. stematist, and which leaves the validity of many forms described from single or few specimens very questionable. I am tempted to make some extracts from Mr. Marrat's latest paper, ${ }_{+}^{+}$the subject of variation being sufficiently important in a general sense to justify me in devoting a few lines to its illustration in this particular genus.

[^3]" The study of varieties in the genus Nassa," says Mr. Marrat, "has achieved one great object-it has taught us the whole details of the plan on which the external ornamentation of shells has been elaborated. The whole of the variation, from the smooth shell to the most elaborately-sculptured examples, is plainly to be seen as effected through almost imperceptible gradations.
"Variation through the whole kingdom of Nature is the rule and not the exception. It is the prejudice exhibited by Scientists against so much that is clear and cistinct, that creates the confusion. If studied as it exists, the whole group is manifestlydeveloped, step by step, and we see the wisdom, power and beneficence of the Maker.
"The greater part of the works on Natural History are written in the closets of the authors, who both theorise and copy to a large extent ; but, unfortunately, they copy errors as well as facts.
"The study of variation has opened up a sulject so vast in its dimensions that the mind almost shrinks from the task of estimating it. In every direction variation extends, in every way variation seems to ramify, until we gaze and wonder if there be any end.
"Instead of 200 species, at least 3000 varieties are before me, and the end appears nearly as far off as ever. Taking a careful survey of the shells under consideration, and noting more particularly the common forms and the changes presented by them, we are enabled to form an estimate of the enormous number likely to be met with, if we persevere in our work of collecting varieties.
"Species are and have been made by men in their ignorance Had they known the alliances, it would have been impossible for them to have committed such mistakes as are to be found in conchological books. Species have been and still are the ultimatum of scientists. It appears to me that they have an instinctive horror of the nameless. Lamarck described the Nassa subspinosa from shells that were subspinous, not then knowing that there were carinated, costated, muricated, and smooth varieties of it. At least six good (?) speries have emerged from the varieties of Lamarck's sheli: N. lyrata,

Marrat, is the lyrate form ; N. tricarinata, Lam., is the carinated form; N. sculpta, Marrat, is another; N. sistroides, Nevill, N. trinodosa, Smith, and N. corticata, A. Ad. Another variety occurs, showing a close affinity with the N. muricata, Quoy and Gaim., and the shell figured in Reeve's Conchologia Iconica as the N. vibex, Say, is a spiny form. Some of the shells from Ceylon are very closely connected with varieties of the N. Gruneri, Dunker, and others with smoother ribs to the N. Jacksoniana, Quoy and Gaim.
"We may name these shells and describe them as distinct, but they will not be so after we have finished; on the contrary, we may adopt another plan and name them varieties, but the same objection continues; the variety we have named as coming from any locality will be found to differ from the shells brought up from the same ground by the next hanl of the dredge. It is a very disagreeable task to be compelled to state that the starting point of the systematist, upon. which the whole fabric is built up, is wrong, and the whole of the deductions drawn from this source are erroneous; nevertheless I am compelled to utter that which I believe to be strictly and unquestionably true. I cannot expect that conchologists who are totally unacquainted with the materials upon which I have based my deductions, will coincide with my views. If they had obtained a knowledge of the whole of the figured or described species of Nassa, they could not by this plan follow the intricate passages revealed by the study of variation. It is not by an intimate knowledge of the described species that these facts are elicited, but it depends upon a knowledge of the innumerable intermediate forms which diverge from them in every direction as to how these deductions are to be drawn.
"In a long series of forms, commencing with shells representing the largest specimens in the genus, these can be traced with unerring certainty into others, forming the smallest examples known to exist; again, the broadest varieties can just as easily be connected with others that are the narrowest examples in the group; and every grade of difference throughout the long lines of progressive variation is distinctly seen. In the case of the shells having smooth forms, such as N. glans, Linn., the varieties may not be all smooth specimens, but they may vary into costate
and even cancellated examples. Again, instead of there being a uniform thickness observable, one set will be almost transparent, or thin and hyaline, and another thick and quite opaque. The sculpturing is in many cases confined to thè upper whorls, but we find shells in which the pattern is commenced on the top, gradually spreading in successive development until it covers the whole shell; in one case it may form smooth unsculptured ribs, or in another it may diverge into any of the forms of sculpture we meet with in other groups of shells. The tip of the spire may be of the same color as the remaining portion of the shell, or it may vary into almost every shade of pink, rufous, brown, purple, or almost black.
"From these observations taken from the shells, and not intended to support or illustrate any theory, it is very easy to see that instead of a fixedness in the characters used for the determination of species, exactly the opposite appears to be the case; the specimens presenting such an amount of variation in every direction that it becomes absolutely impossible to affix any set of characters to them that will lead to their future recognition.
"The greater part of the shells figured and described as new species have for their recommendation to our notice a single specimen, and that often in bad condition. Men are so anxious to have their names appended to something new that every other consideration is overlooked by them. They cannot wait until sufficient evidence is produced either to confirm their opinions or show them that the characters they had given were incorrect, but down it goes on to paper, and there it remains."

What a commentary on this and preceding paragraphs is the printing of numerous new names and descriptions in the very pamphlet from which these brave extracts are made! These new speciés, alas! are not even figured, no dimensions are given, and in many cases no locality. The descriptions are prefaced by the remark-" What are the shells described in the following pages ?-My answer is, I do not know. The amount of knowledge is confined to the single specimens (!) in most instances and to three or four at most in any case. At present these shells appear to me to be distinct, simply because of my ignorance of all their alliances, but that this should be the real
state of the case is exceedingly improbable if not absolutely impossible."

Mr. Marrat's dilemma is that, whilst disbelieving in species, he cannot pursue his work without naming and describing species. It would be impossible to give a full descriptive portraiture of an object every time it is referred to, in order that the writer's conception of it and that of the reader shall agree; therefore we adopt a conventional system-the binomial nomenclature to recall certain characters by the use of two names. I think, however, that it is a logical deduction from the views expressed by Mr. Marrat that his species should not possess such salient characters as those proposed by authors who believe more or less in the doctrine of the persistence of form: if the latter species do not present very strong claims for recognition, the former may be supposed to present no claims whatever,-unless we agree that each individual specimen in the genus shall receive a distinct specific name. If there be only one species in the genus Nassa, as opined by Mr. Marrat, science still requires names for those groups which normally present recognizable distinctive chararcters; without a nomenclature and a system, however arbitrary and unnatural, the publication of the results of scientific research would be impossible. . The doctrine of unalterable uniformity in specific characters is overthrown, but a wise conservatism will, let us hope, cause conchologists to refrain from naming and describing every individual specimen: at least, gentlemen, do not overwhelm our ancient and tottering barriers with your logical deluge, until we, who have so carefully erected and guarded them, shall have retired from conchological pursuits. Après nous le déluge, if you please!

Typical Species.

N. mutabilis, Linn. Pl. 7, figs. 1-3.

Light brown, with somewhat undulated longitudinal darker markings, generally confluent into a darker interrupted band at the sutures. Length, $1-1 \cdot 25$ inches.

> Mediterranean Sea, 4 to 10 fathoms; W. Const of Africa; Canary Isles, Fossil in the miocene of S. Europe.

Upon the embryology of this species see Bobretsky, in Archiv fíir Mikros. Anat., xiii, 97.
N. Pfeifferi, Phil. (Pl. 11, fig. 144), has been referred to this species as a variety by Marrat and others; I do not think, however, that it can be placed in the same groúp at all, als all its affinities are with Zeuxis.

N. tenuis, E. A. Smith. Pl. 7, figs. 4, 5.

Yellowish white, mottled with yellowish brown, darker at the suture. Length, 20 mill.

This species was described by Lischke as N. Japonica, afterwards changed to N. balteata, on account of the previous use of the first name by Mr. A. Adams. N. balteata being preoccupied by Pease, Mr. E. A. Smith has referred the species to his N. tenuis, which was originally described without reference to these relationships. Mr. Smith also refers the N. Japonica, Adams, here, doubtfully, the type having disappeared from the Cumingian collection. I fear I must add to this confusion by doubting the identity of Mr. Smith's species with balteata, Lischke, although it appears to correspond well with Adams' description of Japonica.
N. sufflata, Gould (not figured), appears from the description to be identical.

The species is very closely allied to N. mutabilis, L.
N. Lefigata, Marrat. Pl. 7, fig. 6.

Yellowish white, with darker strigations, which tend to mass into revolving bands in some specimens. The suture is sometimes noduled. Length, 75 inch.

China.
The spire is more elevated, the shell more solid than the last species; the coloration and polished surface allies it to the mutabilis group.
N. coronata, Brug. Pl. 7, figs 7, 8.

White, olive or chestnut; with usually a white median zone on the dark varieties or a darker zone on the light colored specimens. Length, $1-1 \cdot 2$ inches.

Madagascar, Java, Philippines, etc.
N. Bronni, Phil. (fig. 8), is not distinct.
N. arcularia, Limi Pl. 7, figs. 9, 10.

Light colored with dark zone, or dark-with a light zone; shoulder noduled, with usually a rib-like fold arising from each nodule.

Length, $1-1 \cdot 25$ inches.
Philippines, Viti Isles.

- N. laticostata, Marrat (not figured), is probably this species, not adult.
N. sulclefra, A. Ad. Pl. 7, fig. 11.

Ash-color, banded with .white, longitudinally subplicated, trimsversely ridged. Length, $1 \cdot 25$ inches.

Algoa Bay.
Probably only a variety of N. arcularia: the single specimen known is abnormal in its appearance, and it is therefore not easy to assign to it a definite place in the synonymy.
N. pulla, Limn. Pl. 7, figs. 12-14.

The plications are much closer and more numerous than in. N. arcularia; an incised revolving line separates the shoulder extremity of these ribs, forming a row of nodules; additional incised lines cross the entire surface, but are most conspicuous on the spire, and lower portion of the body whorl.

Length, $1-1 \cdot 35$ inches.

Red Sea, Java, Plilippines. -

N Rumphii, Hombr. and Jacq. (fig. 13), is synonymons. That N. pulla is itself identical with N. arcularia, is demonstrable from the series of specimens before me.

In N. plicata, Bolt., the longitudinal ribs are less and the revolving lines more prominent; another similar variation of sculpture has received the name N. Deshayesii, Homb. and Jacq. (fig. 14).

Subgenu: Arcularia, Link.

N. gibbosula, Linn. Pl. 7, figs. 15-17.

Light yellowish or ash-color, banded, flecked, or blotched with white or darker shades; edge of callus frequently defined on both sides of the back by an orange-colored line; callus whitish; within the aperture yellowish. Length, $\cdot 75$ inch.

Mediterranean Sba.
N. circumcincta, A. Ad. (fig. 17), is founded on specimens showing the orange-bordered callus. It was erroneously reported from the Red Sea, but has been found at Alexandria and on the Syrian Coast.
N. Kraussiana, Dunker. Pl. 7, figs. 18, 19.

Yellowish brown, indistinctly dark banded; callus yellowish or orange. Length, $\cdot 4-5$ inch.

South Africa.
N. orbiculata, A. Ad. (fig. 19), is identical.
N. Thersites, Brug. Pl. 7, figs. 20-23.

Ash, yellowish or brown, sometimes mottled, with usually a light central band. Ribs usually obsolete on the mouth side of the dorsal hump. Length, $\cdot 6-\cdot 85$ inch.

Indian Ocern, Hong Kong, Manilla, Australia.
N. bimaculosa, A. Ad. (fig. 22), represents a stumpy specimen of this species. It was described as from the Philippine Islands, and Mr. E. A. Smith reports it from Andaman Islands, " sandbanks, at low tide; very active animal." N. dorsuosa, A. Ad. (fig. 23), from Philippines, is evidently a monstrosity; besides, the shell looks as if it had been roasted: it is probably a synonym.
N. leptospira, A. Ad. Pl. 7, figs. 24-28.

Yellowish ash-color, longitudinally rather closely plicated; callus yellowish, wide spread. Length, $\cdot 75$ inch.

> llo Ilo, Isle of Panay, Philippines (on mud banks, at low water, Cuming); Jupan; Ascension İsl. (Pease '.

This may be considered on the one hand as a less-developed form of N. Thersites, on the other as connected with N. foveolata, N. livpscens, etc., in which the sculpture and general appearance are similar, but the callus is not spreading. I unite with it N. gracilis, Pease (fig. 25), N. bellula, A. Ad. (fig. 26), N. labida, Reeve (fig. 27), and N. Persica, Martens (fig. 28). N. Ieshayesiana, Issel, has been considered the equivalent of N. Persica, von Martens, by several excellent conchologists : very probably it is so, but it is tuberculate, shouldered, without spreading callus, and typically is no closer to N. Persica than are most of the nodulous species.
M. Jonasi, Dunker. Pl. x, figs. 29-32.

Whitish, yellowish or ash-color, usually chestnut at the suture and hase, with sometimes a central chestnut band. Spire and upper portion of body whorl ribbed, sometimes cut into nodules helow the suture. Length, $4-6$ inch.

Port Jackson, Australia.

N. Burchardi, Dunker (fig. 30), is in every respect typical. N. labecula, A. Ad. (fig. 31), and N. nana. A. Ad. (fig. 32), are evidently the same species.
N. callosa, A. Ad. Pl. 8, figs. 33, 34.

Very broadly gibbous when adult, with wide-spreading, thick margined callus ; ribs small, distant, sometimes cancellated and norlulous; white, three banded with chestnut or suffused with with olive. Length, $\cdot 4-5$ inch.

Philippines, in sandy mud at seven fathoms; Indian Ocean.
This may be only a variety of the preceding species, from which it is distinguished principally by form and sculpture. N. callospira, A. Ad. (fig. 34 , is synonymous.
N. cancellata, A. Ad. Pl. 8, fig. 35.

Light brown, maculated with darker brown. Length, $\cdot 6$ inch. Philippines.
The type is said to be rather thin and semitransparent.
N. Mangeliohdes, Reeve. Pl. 8, fig. 36.

Solid, dark ash-color; whorls tuberculated at the upper part, tubercles here and there prolonged into ribs, interstices cancellated. Length, $: 5$ inch.

> Port .Jarkson, Australia (Augas).

May be only a more solid growth of N. cancellata.
N. globosa, Quoy. Pl. 8, figs. 37, 38.

Longitudinally finely plicaterl, crossed by revolving striæ; yellowish white, tinged or nearly covered with chocolate, with frequently a white central hand. Length, $5-\cdot 65$ inch.

New Ireland, Viti Isles.
N. clathrata, Kiener (fig. 38, is the same.
N. granifera, Kicner. Pl. 8, figs. 39-41.

White or yellowish, tuberculate. Length, $\cdot 6-\cdot 9$ inch. Plilippinies to Central Polynesia; Isle of Bourbon.

Mr. Marrat considers his Nodulosa probably a deep-water form of N. granifera: it is not figured. N. obliqua, Hombr. and Jacq. (fig. 40), N. obliqua, Pease (unfigured), and N. onerata, Desh. (fig. 41) are synonyms.

Subgenus Naytia. II. and A. Adams.
N. Glabrata, Sowb. Pl. 8, figs. 42, 43.

Light fawn-color, highly polished, with sometimes, traces of ribs at the sutures. Length, $\cdot 5-\cdot 6$ inch.
W. Coast of Africn.

Described doubtfully as a Strombus. N. obliqua, Kiener (ig. 43), is a synonym.
N. grana, Lam. Pl. 8, fig. 44.

Yellowish white, brown spotted at the sutures, and with interrupted revolving brown lines. Length, $\cdot 4$ inch.

Mediterranean Seir.
Subgents Alectrion, Montf.
N. GLans, Linn. Pl. 8, figs. 45-49, 52-54.

Yellowish white, clouded with yellowish brown, encircled with equidistant, narrow, chestnut-colored lines.

Length, $1 \cdot 5-2$ inches.
Jupın, Philippines, Australiu.
This is the largest species in the genns: it either varies much; however, in size and proportion, or else the following forms should be considered distinct. As they all possess the revolving dark-colored lines, I prefer to consider them as simple dwarl ${ }^{\circ}$ varieties. .

Var. Lata, Tryon. Fig. 46.
Broadly ovate, approaching N. mutabilis, L. in form.
Length, 22 mill.
Three specimens, without locality, in the Museum of the Philadelphia Academy.
Var. elegans, Kiener. Figs. 47-49.
Whorls inconspicuously shouldered beneath the sutures. Besides the revolving brown lines the surface is clouded or striped longitudinally, and revolving series of quadrangular spots frequently oceur upon the shoulder and middle of the whorl. Length, 22-27 mill.

A smaller, more gracefully formed shell than the type, and typically sufficien tly distinct, but varies much. Kiener's figure is a poor one (fig. 47), and that which Reeve has given, as well as his description, refers to a N. trenia, Gmel. The following are synonyms: N. rufula, Reeve (fig. 48), and N. spirata, A. Ad. (fig. 49).
Var. suturalis, Lam. Figs: 52-54.
Shoulder coronated by a row of tubercles.
Length, $1-1 \cdot 5$ inches.

> Philippines. Australia, Neio Caledonir.

Fig. 54 represents the typical form, whilst fig. 53 shows a variety with the tubercles almost obsolete, passing into var. elegans N. intermedia, Dunker (fig. 52) is an equivalent form, and N. bucculenta, Marrat, an unfigured species, may also be placed here.
N. hirta, Kiener. Pl. 8, figs. 50, 51, 55-59.

Light yellowish or orange-brown, with usually a pale central band. Length, 1 inch.

Philippines, A/Btralia, Polynesia, Indian Ocoan.
The undoubted synonyms of this species are N. Vitiensis, Hombr. et Jaeq. (fig. 57), N. Stoliczleana, Nevill (fig. 58), N. costata, A. Ad. (fig. 50) and N. crenuläa, Reeve, not Brog. (fig. 56). N. crenulata, Brug. is not to be identified positively, bot looks more like N. arcularia than the present species. N. hirta probably runs into the next species, N. monile. N. nodifera, Powis (fig. 55), is not a satisfactorily determined form; if the figure which I copy from Reeve is correct, it appears to be a very broad, short, large specimen of N. hirta, connecting with N. pulla, Linn. The localities of N. nodifera, "Panama and Galapagos," are almost certainly incorrect. N. bifaria, Baird (fig. 59) is, I think, a stumpy variety.
N. monile, Kiener. Pl. 9, figs. 60-68.

Yellowish or ash color, with a rather broad darker central band, and sometimes narrower ones above and below it. Surface beautifully polished, ribs more flexuous than in N hirta; a double row of nodules below the suture, caused by an impressed line on the sloping shoulder. Length, 1 inch.

Philippines, Australiic, Central Polyiesia.

This species is, typically, readily distinguished from N. hirta, but appears to approach the latter through varieties. The oldest name given to it is possibly N. hepatica, Mont., who figured a similar species in error as British, but it is well known as monile, and no useful purpose will be subserved in changing its name. N. lachrymosa, Reeve (fig. 62) and N. pauperata, Quoy $=N$. bullata, Marr. (fig. 61), are synonyms, and N. Jacksoniana, Quoy (figs. 63, 64) is a dwarf race, from Australia-a wellmarked variety. N. mucronata, A. Ad. (fig. 67), is a variety in which the ribs are partially separated into granules, and N. distorta, A. Ad. (fig. 68), is a monstrosity, apparently of this species. N. corticata, A. Ad. (fig. 66), appears to $=$ var. Jacksoniana, as does also N. acuticostala, Montr. (fig. 65), and N. Tasmanica, Woods (unfigured).
N. obesa, G. and H. Nevill.

Shell thick, shining ; brown indistinctly and minutely mottled with white, irregtularly stained near the suture with a darker shade of brown; two rows of more or less, granulose ridges immediately beneath the suture, columella with a moderately large, white callosity, slightly rugose, aperture ridged near its margin. Length, 22 mill.

Kutch.

Var. Ceylonica, G. and H. Nevill.
More acuminate, less globose, suture more distinct; longitudinal ribs on the antepenultimate whorl more or less obsolete.

Length, 19 mill.

Ceylon and Penang.

Has the coloration but not the fragility of N. mutabilis, differing also in being sculptured. Thickness, sculpture, and particularly the double row of granules beneath the suture indicate intimate relationship with N. monile.
N. scalaris, A. Ad. Pl. 9, figs. 69, 70.

Pale yellowish, obscurely banded with reddish brown.
Length, $1 \cdot 3$ inches.
Isle of Corrigidor, Philippines, in coarse sand at seven fathoms.-Cuming.
Appears to partake of the characters of N. monile and N. papillosa. N. crenulata, Kiener, not Brug. (fig. 70), and N. crenellifera, A. Ad. (fig. 75), seem to be the same species.
N. Siquijorensis, A. Ad. Pl. 9, figs. 72, 73.

Yellowish white, three banded with chestnut.
Length, ${ }^{7}-1$ inch.

Indian Ocean, Plilippines, Central Polynesic.

A narrower form than any of the preceding, and conneeting undoultedly with N. scalaris, A. Ad. Except the one. below the coronal of tubercles around the suture, the revolving lines are only apparent towards the base of the shell. N. celata, A. All. (fig. 73) appears to be the same.
N. paphlusi, Linm. Pl. 9, figs. 74, 71.

Whitish, more or less blotched with yellowish brown, spire usually pink tipped. Length, $1 \cdot 25-2 \cdot 25$ inches.

Plitippine Islands, Central l'olynesia.
N semimodosa, A. Ad. (fig. 71), may connect this form with the last, and through it, with N. momele.

subgenus Zeuxis, H. and A. Ad. *

With this group is united Telasco, H. and A. Adams, the characters by which those authors distinguish them being, in some cases at least, dependent upon the age of the specimens; jurenile forms belonging to T'elasco, adult to Zeuxis. To be sure, none of the subgeneric groups have suflicient claims to distinctness, but in this case I am utterly mable to distinguish them. Messrs. Adams give as characters of .Telasco, "inner lip spreading, outer lip simple, acute; " but many well-grown species have the inner lip, with well-defined margin to the callus, and all of them, when adult, have a thickened or externally variced outer lip, dentate within. Zeuxis is said to be "covered with an epidermis," but in most of the species referred to it, there is certainly no epidermis. For N. elegans, Reeve, Messrs. Adams make a subgenus Zaphon, but as I consider that shell a synonym of N. trenia, Gmel., the type of Zeuxis, of course Zaphon becomes a synonym.
N. tenia, Gmel. Pl. 9, figs. 76-82.

Chocolate or chestnut brown, with usually a central, narrow, light band; spire whorls ribbed, body whorl varying from smooth to plicate-ribbed. Length, $1 \cdot 25-1 \cdot 75$ inches.

Ceylon, Singapore, Australia, Polynesia.

The habitat" West Indies," given by Reeve, is erroneous, as is also that of "Chili," in Kiener. A goodly number of species may be referred to this form with some confidence: They are N. plicata, Pease (preoccupied) $=$ N. approximata, I'se., N. fusca, Hombr. et Jacq. (fig. 78), N. mitralis, A. Ad. (fig. 79), N. badia, A. Ad. (fig. 81), N. cinnamomea, A. Ad. (fig. 80). In N. elegans, Reeve, not Kiener (fig. 82), the style of painting varies considerably from the type, but I have before me a similarly painted specimen, which is undoubtedly a N. trenia.
N. canaliculata, Lam. Pl. 9, figs. 83-86.

Ash-olive, sometimes faintly two banded with chestnut; sutures channeled and frequently cremulate; upper whorls closely ribbed, ribs sometimes apparent on the back of the body whorl. Length, $1 \cdot 1-1 \cdot 5$ inches.

> Philippine Islandx, Polynesia.
N. lævis (Chemn.), H. and Λ. Adams (fig. 86) is a synonym.
N. stolida, A. Adams. Pl. 10, fig. 87.

Bluish-ash, sparingly blotched or banded with yellow and brown. Length, $1 \cdot 25$ inches.

Habitat unknown.

Described from a single specimen, which is evidently of abnormal growth.
N. unicolorata, Kiener. Pl. 10, figs. 88, 89, 90.

Livid ash-color, sometimes stained or banded with brown; aperture chocolate-colored within. Length, $1-1 \cdot 3$ inches.

Moluccas, Australia, Nero Zealand.
A Bullia-like species, normally very distinct, yet undoubtedly closely connected by transition forms with N. canaliculata and N. tænia. N. unicolor, Hombr. and Jacq., is identical; the figure which I give (fig. 89) probably represents a similar shell to that which Gmelin called N. trifasciata. N. rutilans, Reeve (fig. 90), and probably N. glauca, Dunker, an unfigured species, belong here.
N. varicifera, A. Adams. Pl. 10, fig. 91.

Whitish, with two brown bands; whorls crossed occasionally by a varix. Length, 1 inch.

Has the appearance of an Epidromus (Tritonidæ), but wants the produced canal of that group. The production of true varices is certainly not a characteristic of the genus Nassa, yet the species has been collected often enough to show that it is not an abnormal condition: it is strange that Messrs. Adams dill not make a new genus for it.
N. Cuvieri, Paỵ. Pl. 10, figs. 92-97.

Yellowish white, usually mottled with chestnut, with a darker line beneath the suture, and frequently, a chestnut central band.

Length, $\cdot 4-75$ inch.

Mediterranean Sea; Allantic Coast of Spain, Portugal; Madeira ; 'anary Isles.

This pretty little species is the victim of an immense synonymy, and of much uncertainty as to nomenclature. It is frequently referred to as N. variabilis, Phil., and as N. Ferussaci, Payr.; less frequently as N. unifasciata, Lam., N. nitidula, Lim., N. cos'tulata, Ren., and a dozen other names. As regards the Linnean name, the specimen bearing it in the Linnean collection has been identified with this species, but the only figure cited in the description is that of a Columbella. The description itself will suit almost anything. N. Maderensis, Reeve (fig. 97), differs only in the numerous revolving, interrupted, chestnut lines, which, faintly seen in many Mediterranean specimens, here become more prominent.
N. semiplicata, A. Ad. Pl. 10, fig. 98.

Yellowish, encircled by two chocolate bands.
Length, 22 mill.
Chusan.
N. teretiuscula, A. Ad., Pl. 10, fig. 99.

Yellowish or ash-olive, with a narrow red revolving line.
Length, 6 inch.
Eastern Seas.
The locality is very indefinite, and the figure, notwithstanding the red line, is very suggestive of N. exilis.
N. exilis, Powis. Pl. 10, figs. 100-102.

Ash-olive, with a central white band. Length, $\cdot 4-\cdot 7$ inch.
Pinama, Vili Isles, Solomon Is., Peru.

The synonyms are N. Panamensis, C. B. Ad., N. Fontainei, d'Orb. (fig. 102), and N. moesta, Hinds (fig. 101). I give the locality Viti Islands on the authority of Mr. A. Garrett, and Solomon Is. on that of Mr. John Brazier, who personally collected it at those places.
N. Fontainei, d'Orb. (fig. 102), from the Coast of Peru, is larger than the Panama specimens of exilis, yet immature; of its identity there can be no doubt; form, sculpture and coloration being the same.
N. complanata, Powis. Pl. 10, figs. 105-107.

Olive or ash, with a yellow band above the periphery. Obliquely granosely ribbed, ribs and granules frequently obsolete on middle and lower portions of the body whorl. Aperture dark within, but showing the light band. Length, $\cdot 5$ inch. W. Columbia, Panama.

Proportionally wider than N. exilis, but with the same coloration, its form being intermediate between that species and N. tegula, Reeve. N. scabriuscula, C. B. Ad., and N. Wilsoni, C. B. Ad. (fig. 106), are synonyms. Possibly N. gemma, Phil. (fig. 107), máy also belong here, as suggested by Mr. Marrat.
N. Capense, Dunker. Pl. 10, figs. 108-110.

Yellowish or white, with a brown band. Length, $\cdot 65$ inch.
South Africa.
N. pulchella, A. Ad. (fig. 110), is a variety.
N. casta, Gould. Pl. 10, fig. 103.

Whitish, with a subsutural and a central brown band.
Length, $\cdot \mathbf{4}$ inch.
Pacific Islands.
Evidently immature, and the figure rather inaccurate. It is a doubtful species, and is only inserted here because Gould remarks upon its resemblance to N. Cuvieri.
N. Isabellei, d'Orb. Pl. 10, fig. 104.

White, ribs evanescent on the body whorl. Animal white, active in its movements. Length, 5 mill. Rocks; San Blas, Patagonia.

Probably not a Nassa.

N. foveolata, Dunker. Pl. 10, fig. 111.

Ash-colored; longitudinally finely ribbed, interstices cancellated. Length, $\cdot 7$ inch.

Hab. unknown.

The figure is rather wider than the usual form of N. leptospira, and shows a narrow, defined columella-callus; nevertheless, I strongly suspect that this is only an immature form of that species.
N. planicostata, A. Adams. Pl. 10, fig. 112.

Ash-colored, closely, and finely flat-ribbed, ribs sometimes obsolete on the body whorl. Length, 20 mill.

Payta, Peru; under stones at low water.-Cuming.
N. sparta, Marratt. Pl. 10, fig. 113.

Light ash-color, fasciate with fulvous, purplish within.
Length, 5 inch.

> W. Coast of So. America.

I am not acquainted with this species.
N. gaudiosa, Hinds. Pl. 10, figs. 114-120; Pl. 11, figs. 121-124, 126-132.
Spire usually acuminate, ribbed, sutures crenulate or smooth, body whorl generally smooth. Whitish, yellow, rufous, chocolate, with frequently distant, narrow red revolving lines and irregular broad bands; maculate or closely punctate with darker markings; sometimes unicolored. The form varies from elongated to broad ovate, frequently constricted at the upper part of each whorl. Length, ${ }^{75-1}$ inch.

> Straits of Malacca, Philippines, Polynesia, Sandwoich Islands, Guinea Coast, W. Africa.

- A solid, smooth, usually gaudily painted species, varying very much in form and coloration. A large number of these variations have received specific names, but I do not find in any of them really distinctive characters. N. sertula, A. Ad. (fig. 116), and N. semisulcata, Dunker (fig. 117), have the typical coloration, and the latter possesses the distant red revolving lines, which so frequently form the groundwork of the ornamentation. In N. zonalis, A. Ad. (fig. 118), the three brown bands which are obscurely marked in N. sertula, become well colored. Another
modification of the banded form is N. succincta, A. Ad. (fig. 119). N. Marratii, E. A. Smith (fig. 120), is a small form in which the sutures are maculate; the colored revolving lines are present in the specimens before me, but in the darker colored ones are much obscured by the coloration. In N. punctata, A. Ad. (fig. 121), the sutural painting is retained, but the shell is so clouded with dark chocolate-color as to obscure the other markings. N. compta, A. Ad. (fig. 122), is similar; whilst the inkiest specimens have been called N. velata, Gould (figs. 123, 125), and N. luctuosa, A. Ad. (fig. 126). N. lentiginosa, A. Ad. (fig. 127), has been proposed for shells allied to punctata, dark in color, with sutural crenulations and red revolving lines. N. mustelina, Gould, and N. ferruginea, Marrat, both unfigured, are also probably synonyms. A light colored or nearly white variety, with the revolving brown lines and brown maculations, has been called by Gould N. lilacina (fig. 128), and by Dunker N. coturnix (fig. 129). To these may be added also N. sesarma, Marrat (fig. 130), from Whydah, Coast of Guinea, W. Africa; and N. pallidula, A. Ad. (fig. 131), a faded specimen from Malacca, and which equals N. micans, A. Ad. (fig. 132), a similarly faded specimen from the Philippines. N. fava, Marrat, habitat unknown, and N. polita, Marrat, from Mauritius, both unfigured, are, judging from the descriptions, at least very closely related to N. gaudiosa. N. clandestina, A. Ad., an unfigured Japanese species, may also be placed here until a figure may perhaps furnish the distinctive characters which cannot be found in the description.
N. PICTA, Dunker. Pl. 11, figs. 133-142.

Shell broadly ovate, very smooth and polished; spire short, conic, first finely, then distantly, undulately plicate; body whorl narrowly round-shouldered above, sometimes obsoletely tuberculate on the shoulder, incisely striate near the base. Color everywhere minutely flecked with brown or ash and white, with sometimes narrow brown revolving lines. Length, $\cdot 6-\cdot 8$ inch.

Philippines, Mauritius, Australia, Central Polynesia, Cape Verd Is.
It is with considerable hesitation that I'allow this to stand as a distinct species from the preceding, with which it has much in
common. It has many synonyms: N. filosa, Gray (fig. 134), N. graphitera, Beck (fig. 135), N. Reeveana, Dunker (fig. 136), N. dispar, A. Ad. (fig. 137 , N. lurida, Gould (fig. 138), N. musiva, Gould (fig. 139), as well as probably the the following unfigured species, N. Kieneri, Anton, N. obliquata, A. Ad., N. plicatula, Dunker.

The three following species appear to me to be mere varieties of N. picta, perhaps connecting it with N. gaudiosa:
Var. marmorea, A. Ad. Fig. 140.
Whitish, marbled with yellowish brown, the maculations sometimes disposed in two or three bands. Length, 1 inch.

Philippines, sandy mud, at $2 \overline{5}$ fathoms.-Cuming.
Var. algida, Reeve. Fig. 141.
Livid olive, blotched with white, and painted longitudinally with waved brown streaks. Length, 1 inch.

Moreton Bay, Australia.
Var. bicallosa, E. A. Smith. Fig. 142.
Whitish, livid at the sutures. Length, 1 inch. West Australia, Swan River, Cape Natal.
The double tubercular callus at the base of the columella is not unfrequently developed in very heavy specimens of other, species, and is an individual rather than specific character.

N. conspersa, Phil. Pl. 11, figs. 143, 144.

Shell very small, smooth, thick; yellowish or white, maculate with chocolate, forming on the body whorl two irregular bands.

Length, $\cdot 4-5$ inch.

Canary Islands.

Does not differ essentially from N. picta, except by its much smaller size and heavier structure : it may well be a dwarf form of that species. N. Pfeifferi, Phil. (fig. 144), is synonymous. Several authors have recognized this shell as N. glaberrima, Gmel., but the description is indefinite, and the figures referred to are unrecognizable.
N. Haldemani, Dunker. Pl. 11, figs. 145, 146.

Whitish, marbled with yellowish brown or chestnut zebra-like markings, smooth and polished, initial whorls longitudinally plicate, base of body whorl with revolving impressed lines.

Length, $\cdot 5$ inch.

Besides the typical figure, I give a drawing of one of four specimens in the Museum of the Philadelphia Academy, which I identify with this species (fig. 146).
N. insignis, H. Adams. Pl. 11, fig. 147.

Smooth, yellowish brown, with three revolving bands of chestnut maculations. Length, 11 mill.

River Peiho, China.

Said to have been found in company with Velorita, and therefore possibly a brackish-water species. Mr. Adams has proposed for this shell the generic name Nassodonta, and refers it to the family Buccinidæ. The generic character is the development of a tubercle within the thickened margin of the lip, and rather above the periphery-a position in which, according to experience, such a feature ought to be regarded as abnormal. It is just possible that this shell is a Melanian.
N. corniculum, Olivi. Pl. 11, figs. 148-150; pl. 12, figs. 151-153.
Upper whorls finely plicate or smooth, three last whorls smooth, impressed revolving lines on base, or sometimes entire surface of body whorl. A very thin horny eptlermis covers fresh specimens. Yellowish or reddish brown, with usually, a pale central band; sometimes maculated with white and brown at the sutures, sometimes finely maculated over the entire surface, with red-brown, sometimes trifasciate, or the bands broken up into maculations. Salmon-colored within the aperture.

Length, $\cdot 5-75$ inch.

Mediterranean Sea, Atlantic Coasts of Southern Europe, and Northern Africa.

A protean species, which, together with N. conspersa, Messrs. Adams have referred to Amycla in Columbellidæ: the shell, animal and dentition, are decidedly Nassoid, however. N. semistriata, Brocchi (fig. 150), a fossil form, is considered distinct by some of the best European conchologists, and N.trifasciata, A. Ad. (unfigured), is made one of its synonyms ; whilst N. Gallandiana, Fischer (fig: 152), is regarded as a variety of it. I am not able to separate these from corniculum. N. Tinei, Marav. (fig. 153), is also doubtfully referred to corniculum: it is immature, possibly distorted in growth; and perhaps badly
figured. N. quercina, Marrat, published without figure, locality or dimensions, is stated by Marrat to be "nearly allied to that very variable shell N. corniculum, Olivi, and may be only a variety of it."
N. insculpta, Carpenter. Pl. 12, fig. 154.

Shell with close revolving striæ, upper whorls of spire slightly costate longitudinally; light yellowish brown, interruptedly fasciate or marked with chestnut. Length, $\cdot 75$ inch.

Catalina Island, Cal. - 40 fathoms.
I owe to the kindness of Mr. R. E. C. Stearns, the opportunity of illustrating this rare and hitherto unfigured species.

Subgenus Aciculina, H. and A. Ad.

The characters "outer lip produced in the middle, variced externally," do not hold good for all the species: in fact, Aciculina differs from Zeuris only in the species being longer in proportion to their width-still, it will be convenient to retain it.
N. anthricina, Garrett. Pl. 12, fig. 155.
smooth, with fine revolving impressed lines. Bláck or blackish brown, with a light brown line on the upper part of the body whorl; aperture brown within. Length, 7 mill.

Viti Isles.
Only two specimens obtained, of which one (the type figured) is in the Museum of the Philadelphia Academy. Somewhat resembles a Planaxis, but is a true Nassa.
N. glabrata, A. Ad. Pl. 12, figs. 156, 157.

Smooth, pupiform, slightly costate at the apex, with fine revolving striæ on the body whorl. Olive brown, sometimes banded with ash-color. Length, $5-6$ inch.

Philippines, Aracan, Solomon Islands.
I have unicolored specimens before me, and specimens have been collected with from one to three bands. N. Pupinoides, Reeve (for N. striata, A. Ad., preoccupied), is a synonym (fig. 157).
N. maculata, A. Ad. Pl. 12, figs. 158, 159.

Polished, with sometimes slight indications of rounded ribs and revolving basal striations. Whitish, longitudinally maculated with chestnut, frequently disposed in two revolving series or interrupted bands. Length, 5 inch.
N. vittata, A. Ad. (fig. 159), is a synonym.
N. serotina, A. Ad. Pl. 12, fig. 160.

Yellowish brown, shining, lighter at the sutures.
Length, $\cdot 5-\cdot 7$ inch.

> Australia, Cape of Good Hope.
N. labiata, A. Ad. Pl. 12, figs. 161, 162.

Yellowish brown or ash-color, obscurely light banded in the middle. Length, $\cdot 7$ inch.

Malacca.
N. Terebroides, Reeve (fig. 162), is a synonym, the flexuous sinus of the upper end of the lip figured in N. labiata, being nothing but an individual variation.
N. elata, Gould. Pl. 11, fig. 125.

Whorls eight, flattened, turrited, with a marginal line near the suture; six upper ones with distant, acute folds; penultimate and upper half of body whorl smooth; lower part of the latter with half-a-dozen regular, deeply impressed, revolving strix.

Length, ${ }^{7}$ inch.
Africa.
I am not acquainted with the species.

Suhgenus Phrontis, II. and A. Adams.

N. luteostoma, Brod. and Sowb. Pl. 12, figs. 163-165.

Olive brown or ash-color, sometimes with a broad black or narrow white band ; lip and expanded callus orange.

Length, $9-1 \cdot 2$ inches.
N. luteostoma, Kiener (fig. 163), is a synonym : its locality is erroneously given "Senegal." N. xanthostoma, Gray (fig. 165). is also synonymons.
N. tequla, Reeve. Pl. 12, figs. 166, 16 个.

Ash-color, usually lighter below the sutures and on the nodules, with a light band just below the nodulous shoulder; aperture dark within, but showing the whitish band; lip and columella callus white. Length, $\cdot 5-75$ inch.

Galapagos; Panama (Cuming); Mazatlan; Southern Coast of California.

The name adopted for this species is not the earliest one, but it is too well established to be superseded without disadvantage to science, especially as N. glauca, C. B. Ad. (fig. 167), which has a year's priority of publication, is not positively identified. Several Pacific Islands and East Indian species have been supposed by Carpenter, Marrat, Pease and others to be identical, but though resembling tegula in sculpture, the painting in all these is different.
N. annellifera, Reeve. Pl. 12, fig. 168.

Yellowish, encircled by bands of brown, thread-like lines.
Length, ${ }^{7}$ inch.
Habitat unknoun.
I know nothing about this species.
N. Sancte-Helene, A. Adams. Pl. 12, fig. 169.

White, interruptedly banded with red. Length, $\cdot \mathbf{3}$ inch. St. Helena, in sandy mud, at 20 fathoms.-Cuming.
Said to resemble N. ambigua, Mont.
N. obtusata, A. Ad. Pl. 12, fig. 170.

Whitish, filleted with red spots or interruptedly banded.
Length, 65 inch.
I. of Ticao, Plilippines (in coral sand, at 7 fathoms. - Cuming).
"Chiefly distinguished," says Reeve, " by the obtuse, widely separated character of the ribs, and the fine-ridged sculpture of the interstices." I have before me a series of specimens said to come from the Straits of Malacca, which correspond well with the figure of this species. They are heavier, larger and more quadrate in form, yet closely resembling the West Indian N. ambigua.
N. fissilabris, A. Ad. Pl. 12, figs. 171-173, 179.

Ash-colored, faintly light banded, or whitish and interruptedly red-banded. Length, $\cdot 6-75$ inch.

> Philippines.

The posterior channel of the aperture, may have been more developed than usual in the type of this species, but it is a character which pervades most of the species of this group. N. nodicostata, A. Ad. (fig. 172), N. crenolirata, A. Ad. (fig. 179), and N. Stearnsiana (Garrett), Marrat, are equivalent forms-the
latter being unfigured and undescribed. N. albipunctata, Reeve (fig. 173), said to have faint white-dotted bands, but which are not shown by the figure, can scarcely be different.
N. tiarula, Kiener. Pl. 12, figs. 174-178.

Ribs few, rounded, prominent; whorls broadly shouldered and frequently tuberculated on the shoulder. White, with a single central, or several interrupted, narrow, brown bands.

Length, $5-6$ inch.
Solomnn'× Is., Philippines, ? Madagascar, Kiener.
This is a more quadrate, solid, smaller form than the preceding. It, as well as some of its synonyms, has been referred to N. tegula, Reeve, by such experienced students as Pease, Carpenter, Marrat: I think, however, that the form and coloration and difference of habitat, will justify a separation. I add to Kiener's figure (fig. 174) one by Reeve, in which the ribs are obsolete (fig. 175). N. coronula, A. Ad. (fig. 176), N. delicata, A. Ad. (fig. 17t), tire synonyms. N. trinodosa, E. A. Smith (fig. 178), from Solomon's Is., is probably a variety of this species, although it has partly the features of N. subspinosa. Lam.
N. cinctella, Gould. Pl. 13, figs. 180-182.

Shoulder rounded, ribs narrow, strongly laticed by revolving lines. White, with sometimes a narrow median brown band.

Length, $\cdot 45-6$ inch.

> Philippines, Central Polynesia.
N. clathratula, A. Ad. (fig. 182 ', is synonymous. A. cinctella, A. Ad. (fig. 181), from St. Helena, is very close, if not identical.
N. nigra, Hombr. et Jacq. Pl. 13, figs. 18:3-187.

Dark chocolate-color within and without, with usually a light band. Length, 5-65 inch.

Philippines.

With this I unite N. lirata. Marrat, which I figure from an author's type (fig. 184, N. Deshayesiana, Issel (fig. 185), in which the ribs, especially round the upper part of the body whorl, are more or less nodulous, N. scalarina, Marrat (fig. 186). I am inclined to believe that N. Novæ-Zealandix, Reeve (fig. 187.), is merely a variety.
N. Crassa, Koch. Pl. 13. tigs. 188-190.

Yellowish or greyish, with usually a superior white band. Very thick, ribs rather small, broken into granules.

Length, - $;-75$ inch.
China, Viti Isles:
Fig. 188 is a copy of the type, said to come from China, but that locality is doubtful: the more usual form of the species is that of fig. 189. N. semisulcata, Hombr. et Jacq. (fig. 190), is a symonym. The species is remarkable for the ponderous thickness of well-grown individuals:
N. mita, Brug. Pl. 13, figs. 191-193.

Ohliquely costate, costae sigmoid, with close revolving stria which are frequently obsolete on the body whorl except its lower part. Yellowish or orange-red, banded; or sometimes parti-colored on the body whorl, the lower portion being darker.

Length, $\cdot \boldsymbol{\circ}-7$ inch.

West Africa.

Fig. 192 represents an elongated variety, and fig. 193 is N. obliqueplicata. Dunker.
N. ambigua, Mont. Pl. 13, figs. 194-197, 213.

Narrowly shouldered, ribs pretty close, crossed as weil as the interstices by fine revolving lines. White or yellowish, generally handed, spotted or maculated with brown. Length, $\cdot \mathbf{4}-55$ ineh.

West Indies, West Coast of Africa.-Dunker.
First described by Montagu as a British species, and occasionally found on the westem shores of Europe, but its oceurrence is adventitious. Its more scalariform spire, finer sculpture, color, absence of the strong nodules, and narrow, defined columella callus will serve to distinguish it from N. vibex, Say. The synonyms are N. Antillarum (fig. 194), N. Candei, (fig. 195) and N. Hotessieri (fig. 196), all of d'Orb., and all immature shells, of different ages; and N. acuta, Say (fig. 197), probably. N. consensa, Ravenal, is very poorly described from a single specimen found in a fish at Charleston, S. C. It is probably this species.
N. Vibex, Say. Pl. 13. figs. 198-207.

Spire turrited, angulated by a nodulous series on each whorl, body with a rather broad. sloping shoulder, the border of which
is defined by nodules; ribs not close, frequently broken into nodules by the revolving strix ; columella callus rather widely spread. Usually olive, chocolate or nearly black, light banded on the periphery and flecked with revolving chestnut spots; sometimes the shell is nearly white, and then, whilst retaining the red spots, the band is also red, or absent.

Length, $\cdot 6 \rightarrow \cdot 8$ inch.
West Indies; Atlantic Coust of the United States, northward to Chesapeake Bay; Rio Janeiro, Brazil.
Say's type was a stunted specimen, and is badly figured (fig. 198). Reeve's figure represents a very different species, a juvenile N. subspinosa, Lam., from the Philippines ; but N. Antillarum, Phil. (figs. 199-201, and N. Sturmii, Phil. (fig. 202!, will give a fair representation of the usual range of the species in size and color. M. tessellata, Reeve (fig. 203), N. fida, Reeve (fig. 204), both described without locality, and N. cinisculus, Reeve (fig. 205), from St. Thomas, W. I., are also synonyms. N. Fretenses, Perkins (fig. 206), is supposed by its author to possess distinguishing characters in its proportions, sculpture and color, but it is well within the range of variation of N. vibex, in all these particulars : it is found, though rarely, at New Haven, Conn., and near Salem, Mass., and may have been carried there with southern oysters. N. paucicostatu, Marrat, an unfigured species from Nassau (Bahamas?), is also a probable synonym. N. polygonata, Lam. (fig. 207), is certainly very closely allied to N. vibex; it has been misunderstood by Reeve, who has figured for it a very different species, and Kiener has confounded with it N. Jacksoniana, Quoy, a valr. of N. monile, Kiener.

Subgenus Hebra, II. and A. Adams.
I retain this group after modifying the original diagnosis, which only applies to immature specimens. The muricated or spinose ornamentation forms a convenient separation from Phrontis, and the columella callus is also more defined, but the spire is not "elevated" more than usual, nor is the outer lip without varix or denticulations, when mature.
N. subspinosa, Lam. Pl. 13, figs. 208-212.

Spiny, nodulous, the nodules generally forming three prominent revolving series on the body-whorl, but sometimes subor
dinated to the longitudinal ribs. Ash-color to dark chocolate, mostly light banded between the spiral rows of tubercles.

Length, $\cdot 6-\cdots$ inch.
Indicıu Ucern, I'hilippines, New Zealand, Central Polynesia.
N. viber. Reeve, not Say (fig. 209), is an elongated, immature shell of this species: to which I refer also, \boldsymbol{N}. geniculata, \mathbf{A}. Ad. (fig. 210), and N. sistividea, G. and H. Nevill (fig. 211). N. sealpta, Marrat (fig. 21上, is described as passing into N. subspinosa on the one hand and N. corticata on the other.
N. mericata, Quoy and Gaimard. Pl. 14, figs. 214-218.

Whitish or yellowish, with narrow bands or blotches of chestnut or chocolate.

Indian Ocean, Madagascar, New Ireland, Polynesia.
Mr. Marrat considers this a variety of N. subspinosa, Lam., and he is probably correct-yet the less developed shoulder, more swollen periphery, more numerous, smaller and decidedly prickly tubereles, as well as lighter color, constitute characters deserving of recognition, I think. With it are to be united N. horrida, Dunker (fig. 216), N. Gruneri, Reeve (fig. 217), and N. curta, Gould (fig. 218).
N. Gruneri, Dunker. Pl. 14, tigs. 219-292.

White or yellowish, sometimes obscurely banded or spotted.
Length, $\cdot 65-8$ inch.

Philippines.

Distinguished by its regular. close sculpture of bead-like tubercles, forming both longitudinal and revolving series. The synonyms are N. hispida, A. Ad. (fig. 220); N. Webjei, Petit (fig. 221), said to come from West Coast of Africa (doubtful), and N. acinosa, Gould (fig. 222).
N. echinata, A. Ad. Pl. 14, figs. 223, 224.

Yellowish white, longitudinally flecked with brown.
Length, ${ }^{7}$ inch.
Philippines, China, Anamman Isles.
This pupa-like species is a form rather unusual in the genus : it may be only a scalariform monstrosity of N. muricata. I have not seen specimens of it. Those from the Andamans are said to be proportionally shorter than the type. N. nodulifera, Phil. (fig: 224, is probably the same species : it is said to come from China. If identical, it will have priority.

Subgenus Hima, Leach.

N. stolata, Gmel. Pl. 14, fig. 225.

Whitish or yellowish, with a broad chocolate band on the periphery, and usually a narrower, subsutural one.

Length, $\cdot 75-1$ inch.

Indian Ocean.

N. pagoda, Reeve. Pl. 14, figs. 226-228.

Whitish or yellowish, stained or obscurely banded with brown. Length, $8-1 \times 2$ inches.

Galapagos Is., Panama to Mazatlan.

Kiener's N. decussata (fig. 227) is synonymous, and his locality "W. Coast of Africa," as well as that given by Reeve for decussata "Brisbane Water, E. Australia," are both erroneous. N. angulifera, A. Ad. (fig. 228), is a juvenile shell ; it comes from Galapagos (at ten fathoms), on the authority of Cuming. N. canescens, C. B. Ad., and N. acuta, Carpenter (not Say), both unfigured, are evidently the same species.
N. Tritoniformis, Kiener. Pl. 14, figs. 229, 230.

Yellowish, ash-color, or light brown ; columella-callus and lip white. Length, 1 inch.

Philippines, on mud thats-Cuming ; Corisco Bay-Marrat.
N. fuscuta, A. Ad. (fig. 230), is probably the same species.
N. myrisitica, Hinds. Pl. 14, figs. 231, 232.

Light brown, the revolving ridges darker, sometimes darkspotted below the sutures. Length, 1 inch.

Cape of Good Hope.
Notwithstanding the greater prominence of the revolving ridges, more undulating longitudinal sculpture, and more rugose columella, I doubt the distinctness of this from M. Tritoniformis.

Var. rufolineata, Marrat. Fig. 232.
Whitish or yellowish, stained or lineated with brown.
Length, $\cdot 9$ inch.
Philippines.
It is the N. polygonata of Reeve (not Lamarck), and differs trom the typical N. myristica only in being shorter and broader.
N. scabriliscula, Powis. Pl. 14, figs. 233-235.

Brownish, or usually ash-color, with a superior white band, which is occasionally visible on the spire; revolving lines sometimes chestnut-brown. Length, $\cdot 6-\cdot 75$ inch.

Panama.

N. collaria, Gould (fig. 234), and N. Stimpsoniana, C. B. Ad. (fig. 235), appear to be equivalent forms.
N. nodata, Hinds. Pl. 14, fig. 236.

Yellowish brown, with one or two faint chocolate bands.
Length, 8 inch.

> Straits of Malacca.
N. fasciata, Lam. Pl. 14, figs. 237, 238.

Whitish, with a central chestnut band, tinged with chestnut at the base. Length, $\cdot 65-9$ inch.

- South Australia.

The whole surface of this species is beautifully granulated.
N. festiva, Powis. Pl. 14, figs. 239-242.

Longitudinal ribs coarsely latticed by strong, close, rounded, revolving riblets. Whitish, interstices of riblets chestnut or chocolate color ; columella and lip white. Length, $\cdot 7-85$ inch. Japan.
N. festiva is said to have been dredged by Cuming at Panama and St. Elena (in sandy mud at six to ten fathoms), but I am not aware that either locality has been confirmed. The next species (N. dentifera, Powis) is a native of those regions, but is constantly distinguished by being thinner, more swollen, and dark chocolate color within and without. The Japanese habitat is undoubted. The synonyms are N. lirata, Dunker (fig. 240), N. dealbata, A. Ad. (fig. 241), a somewhat narrower form, usually white, with a central brown band-it might perhaps be distinguished as a variety, and N. acutidentata, E. A. Smith (fig: 242 .
N. dentifera, Powis. Pl. 14, figs. 243-245.

Chocolate-brown within and without, with occasionally an obscure lighter central band. Length, $\cdot 7-85$ inch.
Panama to Callao. Peru.
N. unidentata, Powis (fig. 244), is an immature shell, and a still younger one is N. Trchudii, Troschel (fig. 245'. To these
syonyms should probably be added N. corpulenta, C. B. Ad. (unfigured), from Panama.
N. abyssicola, A. Ad. Pl. 15, fig. 255.

Dirty white, slightly bead-margined at the sutures.
Length, 33 inch.
Isle of Bohol, Philippines, in clayey ground, at
sixty fathoms-Cuming.
I do not know this species.
N. paupera, Gould. Pl. 15, figs. 246-250.

Elevated, narrow, whorls rounded, closely costate, and with fine revolving lines; aperture small, rounded. White or yellowish, sometimes fasciated with brown, or marbled, or with the lower half of the body-whorl brown. Length, $\cdot 35-5$ inch.

Japan, Australia, Central Polynesia.
Differs from the Nasse preceding it in this group by its pupiform shape and comparatively small body-whorl and mouth. The spire is sometimes much exserted, causing very deep sutures. The variable painting, etc., has caused a very large synonymy, namely-N. plebecula, Gould (unfigured), N. microstoma, Pease (fig. 247), N. "mifasciala and N. turricula, Pease MS., N. balleata, Pease (fig. 248), N. dermestina, Gould (unfignred). N. frateronlus, Jumker (fig. 249), is a stonter form, which may possibly be identical with the next species. N. Samoensis, Dunker MS., and N. Iuteola, E. A. Smith (fig.' 250), from Japan, described from a single dead specimen, are very probably synonyms.
N. tringa, Souverbie. Pl. 15, figs. 251, 252.

Yellowish brown, sometimes mottled with chestnut, and spotted on the varix of the lip.

New Caledonia, S. Australia.
With this I unite N. compacta, Angas, of which I am able to give a figure from a specimen (fig. 252) :"it is the Australian representative of the European N. incrassata.
N. denticulata, A. Ad. Pl. 15. fig. …54.

Yellowish, banded and blotched with chestnut.
Length, $\cdot 9$ inch.
Mediterranean Sea.
A rare form, confounded by several authors with N. clathrata. Born (=limala, Auct.).
N. peritremia, Tenison-Woods. Pl. 18, fig. 571.

Milky white, subpellucid, shining. Length, 7 mill.
Port Jackson, Australia.
N. concentrica, Marrat. Pl. 15, fig. 260.

Greyish, with two brown bands; beaded at the sutures, closely ribbed, impressed with revolving lines at the base.

Length, 65 inch.

Habitat unknown.

A doubtful species founded upon a figure in Reeve's Iconica intended for N. concimma, Powis-which it is not.
N. Rissomes, Marrat. Pl. 15, fig. 253.

Shell white. Length, 55 inch.

Habitat unknown.

Much more slender than the typical N. paupera, yet I doubt its distinctness. I have before me a single specimen which is just intermediate between the two forms.
N. eximia, H. Adams. Pl. 15, fig. 257.

Cancellated by very close, small longitudinal and revolving lines; light yellowish brown, with three pale brown revolving hands. Length, 8 mill.

> New Hebrides ; Viti Islands - A. Garrett.

Still more pupiform than N. paupera, and smaller, with much finer senlpture. N. pusilla, Marrat, an unfigured species from Singapore, is probably (judging from the description) identical.
N. concinna, Powis. Pl. 15, figs. 25̌6, 258-259.

Closely cancellated, with an impressed line at the suture, dividing off a single row of gramules. Length, $\cdot 65-8$ inch.

Polynesict ; Australia.

In form, sculpture and coloring like the preceding species, but differing greatly in bulk. N : crebrilinpata, Hombr. and Jacq. (fig. 258), and probably N. pulcherrima, Marat (fig. 259), are synonỵins.
N. interlirata, E. A. Smith. Pl. 15, fig. 261.

With spiral lire in the interstices of the longitudinal riblets. Dark brown, blackish beneath the sutures. Length, 6.5 mill .

San Christocal, Solomon 1slands.
N. nucleolus, Phil. Pl. 15, fig. 262.

Whitish, brown at suture and base, with usually a brown central band. Length, $5-6.5$ mill.

> Mazatlan ; Acapulco -W. M. Gabb.

This is one of the few Mazatlan species unknown to Carpenter; it is a very distinct and pretty form.
N. incrassata, Ström. Pl. 15, figs. 263-266.

Brownish white, usually obscurely maculate or banded with brown ; whorls with or without a slight shoulder ; shell broad to elongated ovate; occasionally (in some specimens) with a varix crossing the whorl; lip varix strong, usually with three brown spots. Length, $\cdot 45-6$ inch.

Iceland, and North Europe to Azores, Mediterranean.
Fossil, widely distributed in European tertiary and quaternary deposits. Owing to the great variability of this species, it has received numerous names: one of these forms, indeed, is usually separated by some of the best European conchologists, and it will be as well, perhaps, to designate it as var. pygmæea, although the immense series of specimens before me compels me to agree with Dr. von Martens, that it has no real claim to specific distinctness.

Var. pygmea, Lam. Fig. 265.
Shell narrower and more finely sculptured; whorls rounded, not angulated above; spire proportionately longer.
N. incrassata is a very active mollusk, and now and then changes its crawling position by leisurely floating with its foot upwards. It often gets into lobster and whelk pots. The spawn eases are solitary, yellowish, and shaped like a round flask, with a small neek or opening at the top.
N. rosacea, Reeve. Pl. 15, fig. 267.

Deep rose-color, black edged at the base, lip white.
Length, $8 \cdot 5$ mill.
Habitat unknown.
May be a variety of N. incrassata.
N. prompta, Marrat.

Ovately conical, highly polished, pale yellowish white, with two reddish-purple dotted bands, one in the centre of the body-
whorl, the other near the canal at the base, whorls rather flattened, ribbed to the base in front and not more than half-way down behind, raised into blunt nodules at the sutures, aperture semilunate, columella thickened but not spreading, tubercular, outer lip very thick, with a thin edge near the aperture; throat with rather strong and somewhat distant ridges, canal very short, stained on each side of the hase with brown. This may be only a variety of that interminable shell, N. incrassata, Müll., but I have not seen any varieties that are likely to connect them.

The above is Marrat's deseription ; no figure, dimensions or locality.
N. Alba, Say.

Shell white. L. $\cdot 45$, lat. $\cdot 3$ inch.
Southern Coust of E. Florida, West Indies.
The sculpture of this species is said to be similar to that of N. incrassata, with which Say compares it. It has not been identified by later investigators. Unfigured.
N. tenella, Rceve. Pl. 15, figs. 268, 273.

Semitransparent orange, tinged with rose towards the apex, transversely grooved, longitudinally flexuously ribbed, aperture small, colnmella callons, lip thickly varicose, varix white.

Length, © inch.
Cascues Bay, Portugal.
Possibly a variety of N. incrassata, var. pygmaxa, which it appears to connect with the next species.
N. Cochinemsis, Thorpe, appears to be an unpublished species, although alluded to by Mr. Marrat; specimens under that name received from Mr. Sylvanus Hanley, are before me-they do not differ essentially from the figure of N. tenella, Reeve. The description of N. argentea, Marrat (fig. 273), from W. Africa, agrees very well with N. temella.
N. Desifayesif, Dronet. Pl. 15, fig. 969.

Violaceous, with brown revolving lines. Length, 15 mill.
See remark under preceding species.
N. versicolor, C. B. Ad. Pl. 15, figs. 270-272, 275.

Yellowish brown, lower part of body-whorl and sutures usually chestnut-colored. Length, 13 mill.

Panama to Mazatlan.

The ribs are few, rather broadly rounded, color variable. N. proxima, and N. striata (fig. 271), of C. B. Ad., N. rufocincta, A. Ad. (fig. 272), N. crebristriata, Carpenter (unfigured), and N. Lecadrei, Folin (fig. 275), are synonyms.
N. sinusigera, A. Ad. Pl. 15, figs. 274, 276-278.

Whitish, stained or filleted with red-brown; ribs slightly granulated at the sutures, lips varicose; sinuated at the lower part. Length, 5 inch.

Philippines, Mauritius.
The lip-sinus is not, probably, distinctive. G. and H. Nevill figure a variety cernica (fig. 276) from Mauritius. N. fraudulenta, Marr. (fig. 277), from Philippines, and N. cribraria, Marr. (fig. 278, habitat unknown, are, judging from figures and descrip, tions, at least very closely related.

Subg nus Niotha, II, and A. Adams.
The difference between this group and Alectrion is very slight, yet its retention will possibly facilitate the classification of the species; it includes those shells having a reticulated or cancellated 'surface in consequence of the longitudinal and revolving sculpture being about equally. prominent, whereas in Alectrion either the whorls are smooth or the longitudinal ribs are much more prominent than the revolving striæ. In both, the inner lipcallus is spread over the body-whorl, and the outer lip is without external varix.
N. albescens, Dunker. Pl. 16, figs. 279-283.

White or yellowish, sometimes with faintly marked ashcolored bands, which are chocolate-colored within the white aperture; first whorls usually dark ash-color.

Length, 15-20 mill.

Japan, Philippines, Polynesia, Australia, Mozambique, Andaman Isles.

The typical form of this species is easily recognized by its faint bands and dark apex ; of this type is N. bicolor, Hombr. et Jacq. (fig. 280). There is a gradual variation from this to the next species, so that it is difficult to decide where the one should end and the other commence; among these varieties are N. fenestrata, Marr. (fig. 281), a somewhat more ovate form, the
name proposed for N. Isabellei, Reeve, not Orb., N. Keenii, Marr., which I figure from an author's specimen (fig. 282), N. gemmulifera, A. Ad. (fig. 283).
N. splendidula, Dunker. Pl. 16, figs. 284-287.

White, shining, sharply granose by the crossing of the longitudinal ribs by deeply incised lines; occasionally marbled with light chestnut, or spotted with the same next the suture ; suture deeply channeled. Length, $\cdot 6-\cdot 75$ inch.

Philippines, Malacca, Polynesia.
Very close to N. albescens, and perhaps only a variety of that species; the tubercles are more sharp-set, the revolving lines more distant and regularly spaced-not occasionally approximating in pairs as in albescens. The synonyms are N. semigranosa, Dkr. (fig. 285), N. ravida, A. Ad. (fig. 286), and N. densigranata, Reeve (fig. 287).
N. nivosa, Marrat, and N. crispata, Marrat, are unfigured species compared by the author to this form.
N. pauperata, Lam. Pl. 16, figs. 288-291.

Banded with chestnut on the periphery and at the base of the body-whorl, columella and lip-margin sometimes tinged with chestnut. Ribs becoming evanescent below the middle of the body-whorl, cut into tubercles by the revolving lines, a row of these tubercles below the suture, more prominent and separated from the rest by a sulcus. Length, $\cdot 5-\cdot 75$ inch.
S. Australia, Tasmania.
N. lyrella, Beck (fig. 289), is a white or bleached specimen of this species, not in good condition, and I think that N. multigranosa, Dunker (fig. 290), is the juvenile, and N. caperata, Phil. (fig. 271), a pigmy adult of the same species.
N. sordida, A. Ad. Pl. 16, fig. 292.

Yellowish, obscurely banded with light brown.
Length, 65 inch.
Philippines.
The suture is somewhat channeled, the ribs rather sharp, the revolving impressed lines rather faint. This, as well as the following species may be only varietal forms of N. albescens.
N. candens, Hinds. Pl. 16, figs. 293, 294.

Yellowish white, marbled or fasciate with chestnut; a row of granules below the suture, and close, prickly granulations corering the whorls, caused by the incised revolving lines.

Length, $\cdot 7-9$ inch.
Marquesas Isles.
N. cremata, Hinds. Pl. 16, figs. 295-300.

The whorls are usually channeled below the sutures so as to separate a single row of nodules, and the close ribs are crossed by closer revolving incised lines. The color is yellowish or whitish, banded or irregularly marbled with brown or ash color.

Length, $75-1$ inch.

> Sts. of Malacca, Philippincs, Polynesia.

The taller spire, beaded line beneath the suture, prominence of the longitudinal sculpture, etc., are the distinctive features of this species-which connects undoubtedly with N. albescens: on the one hand, and with concinna on the other. Hinds' shell is not adult (fig. 295), and does not exhibit the usual appearance of the species so well as does N. Quoyi, Hombr. (fig. 296), or N. fragum, Hombr. (fig. 297).

Var. margaritifera, Dunker. Figs. 298-300.
The longitudinal ribs are narrower, sharp edged, the revolving sculpture coarse, obsolete in the middle of the body-whorl. Besides the brown or chocolate bands or blotches, the surface is numerously spotted on the sides of the small tubercles with chestnut-brown. N. venusta, Dunker (fig. 299), N. costellifera A. Ad. (fig. 300), are synonyms.
N. Kieneri, Desh. Pl. 16, figs. 301-303.

Longitudinal ribs prominent, upper margin of each whorl tuberculated, incised revolving lines faint except towards the base, where they cut up the ribs into tubercles; white with chocolate or chestnut superior and median bands ; surface somewhat polished. Length, ${ }^{75}-1$ inch.

Singapore, Polynesia, Isle of Bourbon.
The more prominent, less decussated longitudinal sculpture is the chief distinction from N. cremata, Hinds, the incised revolving lines from N. monile, Kiener-which it mot nearly
resembles in its coloring and polished surface. That a series could be arranged to show the gradual transition from one to the other of these species, although arranged in different groups, cannot be doubted. The synonyms are N. marginulata, Reeve not Lam. (fig. 301), called N. Kieneri by Deshayes, N. margaritifera, Reeve, not Dunker (fig. 302), and N. Isabellei, Reeve, not d'Orb. (fig. 303).
N. livescens, Phil. Pl. 16, fig. 304.

Yellowish, clouded with light chestnut. Length, $\cdot 8-\cdot 9$ inch. India, Chinese Sea, Philippines.
This species has the form of albescens, with the revolving sculpture of cremata and ribs of concinna.
N. pusio, A. Ad. Pl. 16, fig. 305.

Fulvous, variegated and spotted with brown.
Length, $\cdot 28$ inch.
Luzon, Philippines, in coarse sand, at six fathoms -Cuming.
This shell is globosely oval, with fine ribs and rather inconspicuous revolving striæ.
N. multicostata, A. Ad. Pl. 16, tig. 306.

White, variegated with pale red; revolving striæ obsolete.
Length, $\cdot 7$ inch.
Philippines, coarse sand, at four fathoms-Cuming.
Proportionally longer, the ribs rather coarser, yet possibly an older example of N. pusio.
N. verrucosa, A. Ad. Pl. 16, fig. 30t.

Yellowish, clouded with reddish brown. Length, 1 inch.
Philippines.
The tubercles are larger and more decidedly warty than in the succeeding species, the sutural channel is deeper, the spire more conical : yet it possibly is only an intermediate form between stigmaria and gemmulata.
N. stigmaria, A. Ad. Pl. 16, figs: 308-310.

Whitish or yellowish, more or less clouded and marked with brown. Sculpture forming flat, somewhat square-shaped granules, those forming a row around the deep (but not wide) suture, somewhat larger. Length, $\cdot 75-1$ inch.

Philippines, Malacca, Indian Ocean.

With this I unite N. cremata, Reeve, not Hinds $=N$. quadrata, Marrat (fig. 309), and N. retecosa, A. Ad., not J. Sowb. $=$ N. Adamsiana, Marrat (fig. 310).
N. Cumingir, A. Ad. Pl. 17, fig. 311.

Ovate, rather ventricose, solid, suture flatly channeled. White, stained with faint chestnut-color. Length, 1 inch.

China.
Distinguished by the swollen character of the whorls-yet probably only an intermediate form between the last and next species.
N. gemmulata, Lam. Pl. 17, figs. 312-315.

Yellowish white, stained and spotted with chestnut; suture flatly channeled. Length, 1 inch.

Philippines, Sts. of Sunda.

N. clathrata, Lam., Encyc. Meth. (fig. 313), N. conoidalis, Desh. (fig. 315), and N. variegata, A. Ad. (fig. 314), are synony!ms.

Distinguished from Niotha by its narrow callus, yet some of the last species in that group form a passage into this. Cæsia, H. and A. Adams, has no distinctive character, and must merge into Tritia as a synonym. Schizopyga, Conrad, founded on a miocene species (S. Californica, Pl. 3, fig. 32), probably equivalent to N. perpinguis, Hinds, is also a synonym.

* West Coast of America.
N. fossata, Gould. Pl. 17, figs. 316-318.

Light yellowish brown, interior of aperture and columella deep orange, the sharp, raised, revolving ribs of the interior white. Length, 1-2 inches.

Coast of California.
A magnificent and peculiar species, not to be mistaken for any other, and the largest in the genus. N. elegans, Reeve (fig. 317), very fairly represents it, the figure and description of Gould (fig. 316) being from a form more ventricose than usual, and not adult. N. elegans being preoccupied by J. Sowerby for a fossil species, Adams changed the name to N. Reevei-which falls before Gould's prior name. To this synonymy is to be added N. Morleti, Crosse (fig. 318).
N. perpinguis, Hinds. Pl. 17, fig. 319.

Yellowish white, obscurely marked or banded with chestnut. Length, $\cdot 75-\cdot 9$ inch.

California.
Fossil specimens occur much larger, and varying considerably from the typical form; some of them approaching a small N. fossata in size and latitude. P. P. Carpenter considers N. interstriata, Conrad, a fossil equivalent-which is somewhat doubtful. Schizopyga Californica, Conrad, is probably identical: it is from the miocene.
N. mendica, Gould. Pl. 17, figs. 320-323.

Yellowish to reddish brown. Length, $5-7$ inch. Puget's Sound to San Diego, Cal.
N. Woodwardi, Forbes (fig. 321), and N. Gibbesii, Cooper, are synonyms of this species ; which is the West Coast analogue of N. trivittata, Say.

Var. Cooperi, Forbes. Figs. 322, 323.
This is typically very distinct, with its seven or eight distant, prominent, shouldered ribs, but specimens are not rare which, commencing with the numerous ribs of N. mendica, suppress alternate ones and increase the prominence of those remaining on the body-whorl. There are also specimens intermediate in form and number of longitudinal ribs, and even some in which the ribs are obsolete on the body-whorl. As it is generally recognized as a distinct species, it may be convenient to retain its name as a variety.
N. Gayi, Kiener. Pl. 17, figs. 324, 325.

Yellowish brown to chestnut-color; longitudinal sculpture usually the most prominent, but sometimes obsolete; a row of bead-like granules usually, next below the sutures.

Length, 15-18 mill.
W. Coast of So. America, Chili, Peru.
N. rubricata, Gould (fig. 325), is a synonym.
N. Coppingeri, E. A. Smith. Pl: 18, fig. 372.

Whitish, with a broad purplish-brown band at the top of the whorls, and two others on the last, the upper one around the
middle, and the other somewhat below ; aperture bluish white. showing the external banding. Length, 13.5 mill.

Patagonia.
N. teniolata, Phil. Pl. 18, fig. 373.

Yellowish brown, tipped with chocolate on the nodules.
Length, 11-16 mill.
Chonos Isl. and So. Patagonia.
Is not N. Coppingeri the same?

* Japan, Philippines, Indian Ocean, W. Africa.
N. nivea, A. Ad. Pl. 17, fig. 326.
- White, solid. Length, 1 inch.

Philippines.
Very like N. reticulata, Linn., of Europe.
N. Munieriana, Crosse. Pl. 17, fig. 331.

White, with a scarcely apparent pale brown revolving band.
Length, 16 mill.
So. Australia.
N. signata, Dunker. Pl. 17, figs. 327, 328.

Yellowish brown, with a pale central band. Length, 4 inch. So. Africa.
Very like N. incrassata, but without the external lip-varix. N. regularis, Küster (fig. 328), is probably the same.
N. turbinea, Gould. Pl. 17, fig. 329.

Shell white. Length, $\cdot 9$ inch.
Africa.
I am not acquainted with this species. The precise locality is unknown.
N. Roissyi, Deshayes. Pl. 17, figs. 330, 332.

Whitish, rather thin ; clathrate. Length, 15 mill.
East Indies.
N. dominula, Tapparone-Canefri (fig. 332), does not appear to differ.
N. pumilio, E. A. Smith. Pl. 17, fig. 333.

Whitish corneous. Length, $3 \cdot 5$ mill.
Wydah, W. Africa.
Is this really distinct from the preceding species? At any rate the shell is so decidedly immature that it ought not to have beem described.
N. Kochiana, Dunker. Pl. 17, fig. 334.

Yellowish white, variegated with chestnut. Length, 3-4 mill. Table Bay, So. Africa.
Another immature and doubtful species.
N. plicatella, A. Ad. Pl. 17, fig. 335.

Yellowish, stained with light brown or ash. Length, 1 inch. Walloich Baý, So. Africa.
Very closely allied to the European N. reliculata.

* * * Atlantic Ocean and Mediterranean. Sea.
N. clathrata, Born. Pl. 17, figs. 336-339.

Shell turreted, rather thin, suture flatly, narrowly channeled, whitish, irregularly yellow-banded in the middle; a deep sulcus at the base of the body-whorl. Length, :9-1 $\cdot 25$ inch.

Mediterranean Sea ; Madeira; Canaries.
Seldom found living, but extensively distributed as a miocene and pliocene fossil. It is a very variable form, and Weinkauff even suspects that λ. iniga, Lamarck, will prove to be a variety -which is not unlikely. The oldest name used for the species is that which I have adopted, and it has the advantage of being binomial, whilst the later and generally adopted name, N. limata, Chemnitz, is only a portion of the phrase givep in that work. N. prismatica, Brocchi (ig. 337), and N. clegains, Dujardin are synonyms among the fossil specimens. Mr. Marrat. figures for N. turrita, A. Acl. (fig. 338), a shell which is certainly identical with this species. V. scalariformis, Val. (fig. 339), is not adult.
N. reticulata, Limn. Pl. 18, figs. 340-345:

Yellowish white, light chestnut or chocolate-color ; seulpture varying considerably, but the longitudinal ribs are usually the most prominent, flexuous, distant, or numerous and close; occasionally the suture is beaded so as to resemble N. monile, Kiener. Length, $\cdot 75-1 \cdot 25$ inch.

Europe, from Norway to the Mediterranean.
Fossil, from the miocene throughout Europe.
Jeffreys* says: At the recess of each tide this mollusk buries itself in the sand in a slanting position, its lurking-place

[^4]being betrayed by a little hillock. It also gets into lobster-pots for the sake of the bait. Bouchard-Chantereaux attributes to this as well as to other whelks, the habit of piereing and devouring bivalves. According to M. Lespés, N. reticulatu is preyed upon by a parasitic Trematode (Cercaria sagittata) which infests its liver. Its spawn cases are deposited on the leaves of Zostera and on various other things which are left dry only at spring tides; the capsules are arranged in rows, and so closely that they overlic each other "like the brass scales of the cheek-band of a hussar" (Johnston). They are compressed pouches, each of the size of a large spangle, supported on a very short stalk, with a small opening at the top to allow the fry to escape. Mr. Peach described and figured the capsules in the Reports of two Cornish Societies for 1843 and 1844 ; and he has given us some amusing particulars of the fry. These behaved themselves like the firy of other gastropods, skipping about and whirling round by means of their ciliated lobes. apparently in a state of pleasurable excitement ; but it seems that the exercise was compulsory, or necessary to prevent the attacks of a swarm of infusoria. which made short work of any tired or feeble infant Nassa.

Mr. Jeffreys has named N. nitida (fig. 340) a shell which he says is as distinct from N. reticulata as N. pygmaea is from N. incrassata, and he states that he has not seen any intermediate forms. He states that nitida is found only in brackish water and on muddy bottoms. A specimen among a number dredged by him in Roach River, had two eyes on the right hand tentacle: the eyes were smaller than usual, and elose together. I agree with Mörch and Von Martens that nitida is merely a variety of N. reticulata. Mr. Jeffreys cites N. reticulata from Japan;* the identity of the Japanese shell must be supposed to be in the sense in which Mr. Marrat would regard it-yet I can admit it also, if it be considered necessary to prove an immense distribution for the species. N. reticulata, figured by Quoy and Gaimard in the Voy. of the Astrolabe, is mo: this species however, but probably N. cremata, var. margaritifera. A curions, thin, swollen form from the Baltic is known as N. cancellata, Chemn (figs. 343-345).

[^5]N. trivittata, Say. Pl. 18, fig. 346.

White or yellowish white, sometimes faintly marked by three revolving light brown bands. Suture channeled, with usually a bead-like row of small tubercles below it, and separated from the cancellated and tuberculated surface by a slight impressed line.

Length, $\cdot \mathbf{T}-9$ inch.

Massachusetts to Florida.

The animal is whitish. sparsely dotted with pale lilac; foot slightly bifid behind with two erect subulate processes. Very active. Comes out of the sand towards low-water mark, in a minute or two after the water passes over them. On most specimens the bands on the shell are either obsolete or so faintly marked as to escape hurried observation.

Suhgents Ilyanassa, Stilljeoll.
The generic characters proposed by Stimpson include an operculum without serrated margin, and the animal without posterior bifurcation. Although the operculum is usually crenated in Nassa, Mr. Marrat has enumerated a dozen species in which it has been observed to have plain margins, or nearly so ; and Dr. Von Martens states* that the European N. reticulata is found in the mud-flats of the Venetian lagunes with the oper: culum plain on one side and somewhat serrated on the other, and that the end of the foot is but slightly notched in these specimens instead of being deeply bifurcated. Under these circumstances, it becomes very doubtful whether the group Ilyanassa ought to stand. I have concluded to retain it provisionally as a subgenus, especially as it may include several species conveniently separable from Tritia by having darkcolored shells.
N. obsoleta, Say. Pl. 18, figs. 347-349.

Chocolate-brown or olive, with occasionally a faint, lighter colored central band; deep chocolate within the aperture, with a central white bancl. Length, $\cdot 75-1$ inch.

Massachusetts to F'lorida.
The animal is variously mottled with slate color, the tentacula are suddenly diminished above the eyes, and become bristle-like.

Its movements are very active, and it collects in numbers about dead crabs and other marine animals, on which it feeds. Inhabits all our muddy shores, preferring situations not exposed to the surf of the open sea; such as inlets and extended flats which are drained at low tide. It is found abundantly at the confluence of fresh and salt water, where the taste is merely brackish. No shell of equal size is so abundant on the whole Atlantic shore. Specimens from Florida vary only in being smaller, more olivaceous, and by having a thick, broad callus over the pillar. The younger shells are most likely to be collected, because the old ones become very much eroded and defaced, and a greenish mould-like plant regetates abundantly upon them. Very few, therefore, of the shells usually collected. have the lines on the interior of the outer lip. Kiener's figure (fig. $348, N$. oliceformis, represents a young shell * The ovacapsules are laid during April and May, are of transparent corneous texture, singly attached to the inside surface of a valve of Mactra, or the inner face of the nidus of Natica; they are deposited in vast numbers, completely covering the object to which they are attached and crowded together promiscuously (fig. 349).
N. Melanioides, Reeve. Pl. 18, fig. 350.

Smooth, thread-margined around the upper part, striated near the apex, last whorl grooved at the base. Thin, dark olive, interior purple-black. Length, $\cdot 85$ inch.

Moreton Bay, Australia - Strange.
Reeve remarks: This species, like N. obsoleta, has a characteristic fresh-water aspect like that of a Melania. I have not seen it.
N. nigella, Reeve. Pl. 18, fig. 351.

Dark brown, without and within, lip, with an exterior varix. Length, 4 inch.
N. nucea, Pease. Pl 18, fig. 352.

Dark chocolate ; closely reticulated; lip with exterior varix. Length, 12 mill.

[^6]More pupæform and apparently with much closer, finer seulpture than N. nigella, yet they may very possibly be identical. I do not hesitate to place these species in this group, although they possess an exterior lip-varix, since otherwise, the relationship is sufficiently apparent.

Undetermined Species of Nassa.
Buccinum Floridanum, Lesson.
Acapulco.
"Is the South Sea representative of B. Cuvieri of authors."
N. Gemmellari, Biondi.
? Mediterranean.
Is exotic, and perhaps $=N$. trivittata, Say.
N. tricarinata, Lam.

Hab. unknown.
Not recognized by Kiener, Deshayes or subsequent authors.
N. nisota, Potiez et Michaud.

Senegal.
N. cancellaria, Potiez et Michaud.
N. seminulum, Tapp. Can.

European Seas.
Papuan Isles.
N. vitrea, Gray.
N. attenuata, Gray.

Sierra Leone.
Pacific Ocean.
N. costulata and N. marmorata, Anton.

Hab. unknown.
N. frigens, Von Martens.
W. Coast of Africa.

Dredged at a depth exceeding 150 fathoms (precise depth not mentioned) ; resembles N. trivittata, Say, somewhat, but more fragile. Owing to the depth of water it has the appearance of the Arctic mollusca. The species of Nassa are decidedly littoral in habit, so that this is an extraordinary exception, and raises the question whether the species is really a Nassa.
N. nitidula and N. candidissima, C. B. Ad. Jamaica.
N. gemmulosa, C. B. Ad. (Very young shell.) Panama.
N. limneformis, N. Herrmannseni, N. Hanleyana, N. rufa, N. sculpta, N. Darwini, N. Forbesir, Dunker; all without locality. N. varians, Dunker, Japan.
N. vitrea, N. acutimargo (China), N. afrum (Aden, Madagascar), N. bicolor, N. Birmanica (Burmah), N. Chinensis (Loo Choo Isles), N. corruscans (Bali Isl.), N. himicola (China), N. Ringens, N. pinguis (Bali Isl.), N. quisquiliarum (China), N. Sinarum (China), N. Letum, all of Philippi.
N. beata (Loo Choo Is.), N. quantula (St. Simon's Bay), N. reposta (Sydney, N. S. W. ?), N. pediculina (Hong Kong), N. optata (Sydney, N. S. W.), N. spurca (St. Simon's Bay), N. plicatella (British Burmah), all of Gould.

Most of the above are from the collections of the North Pacific (U.S.) Exploring Expedition: they have not been figured, and the type specimens were destroyed in the great Chicago fire. Some of them might be identified with other described species, but it is better not to do so, I think, under the circumstances.
N. nodicincta (Galapagos Is.), N. corrugata (Easterm Seas), N. Australis (Australiu), N. crenicostata, N. scitula, all of Arthur Adams.
N. fuscolineata, E. A. Smith. Japan.
N. (Cesia) simplex, E. A. Smith.

Uruguay.
The following forty "species" are described (but not figured) by Mr. F. P. Marrat, who does not believe in species. I take them, with great pleasure, at his own valuation, for I cannot afford to expend my time over diagnoses which should never have been written by a gentleman holding such opinions as Mr. Marrat does, as to the instability of every specific character. Theoretically, Mr. Marrat relegates all the Nassa to one specific form; practically, be deseribes such individuals of that form as he likes to name; and if every other collector should adopt his views and be equally industrious, we should eventually have every individual specimen of the genus bearing a distinct specific name: moreover each collector would possess the sole specimens of his own species. No locality is given with most of the descriptions.
N. nodosa (Malacia), N. picturata, N. acuminata, N. lyraformis China', N. grandlosa, N. lactea, N. grata (Canton), N. cerdlea, N.tabescens, N.crassicostata (Bombay), N.lauta © Malacca), N. quinquecostata, N. Hanleyana (Dunker has preoccupied the name', N. parva, N. Sinensis Chi:a Seas', N. oblonga, N. rugosa, N. Smithif, N. clara, N. harpularia, N. Abyssinica (Abyssinia, N. rotundicostata, N. bella, N. acutangulia, N. undata, N. prechllosa, N. multilineata (South America), N. vincta, N. pura (W. Indies), N. minor (Kabenda,
W. Africa), N. elongata $=$ N. oriens (China Seas), N. lućida (Keeling's Isl.), N. Æthiopica (Kabenda, W. Africa), N. cingenda.
The following species are mentioned by name only in Marrat's "Varieties of Nassa," and I presume that they have not been described.
N. nivifer, N. interstincta, N. corrugata, N. recediva (Cape de Verds).
In the "Varieties" I find the following specific names attributed to other authors, but which do not appear to have been described: N. hineolata, Phil.; N. pusiola, Dunker (Viti Isles); N. sprela, Watson (Amboina); N. agapeta, Watson (Lavuka); N. angulata, Thorpe (China); N. beychia, Watson (Gomera, 620 fathoms); N. spilus, Watson (Rain Isl., Torres Sts.); N. Babylonica, Watson; N. bibalteata, Pease (balteata, Pse?); N., emersa, Carp. (immersa, Carp.?); N. Galilea, Clark; N. conferta, Martens.

Genus NERITULA, Plancus.

In Neritula the last whorl is depressed and extends over the penultimate whorl, mearly covering and concealing the spire, which consequently appears very obtuse. The animal has a bifid tail, and operculum similar to Nassa. Risso's name Cyclope has been almost equally used for this group. H. and A. Adams' genus Teinostoma was originally placed next to Neritula, in their "Genera;" subsequently they removed it to the Rotellinæ or Umboniine.
N. neritea, Linn. Pl. 18, figs. 353-356, 359.

Shell smooth and polished; fulvous minutely speckled with chestnut-brown, with usually darker and larger markings, forming a sutural band and another upon the periphery; the callous, flattened columella, yellowish stained with brown, is spread out in circular form covering the inferior surface to the periphery.

Diam., 5 inch.
Mediterranean Sea.
The shell has very much the appearance of a Rotella, being transversely flattened into a disk-like form. N. Italica, Issel, is a synonym; I figure two examples of it to show the young and half-grown states of the species (figs. 355,356).
plate 1.

1

PLATE 2.

Cunvunuwitw ynunamm
9.

2.

?
n nanis
25.

-
27.

43.

34.

48.
46.
45.
44.

I'LATE 9.

88

89

90

107

247

249

248

246

2.5

257

 258

2.54

267

273

274

鼻
 2.3

272268

259

260

235

256

TOLUTIDA:
PLATE 30.

N. pelluclda, Risso. Pl. 18, fig. 360.

Hyaline, with opaque white spots and callus; frequently brownspotted around the suture, and sometimes on the periphery.

Diam., $\cdot 25-35$ inch.

Mediterranean Sea.

Weinkauff considers this var. minor of N. neritea, but the coloration is decidedly different as well as the size being smaller.
N., Kamieschi, Chemn. Pl. 18, figs. 357, 358.

Brown, with a white sutural and peripheral band, callosity rosy-brown. Last whorl enveloping a portion of the spire, which only shows three minute whorls, and has a sharp point.

Black Sea.

Genus DESMOULEA, Gray.

Desmoulea is remarkable for its obtuse apex and solid growth, much resembling some species of Cassididæ; when in fine condition, the shell is clothed with a velvety epidermis, but most cabinet specimens are denuded of this. The animal is unfortunately unknown, and therefore the systematic position of the genus remains somewhat uncertain-for, whilst some species connect closely with Nassa, the revolving sculpture, globose form, sunken suture and mouth of others are suggestive of Semicassis.
D. abbreviata, Gmelin. Pl. 18, fig. 361.

Yellowish white, with chestnut-colored spots and strigations. Length, 1-1.5 inches.

Cape of Good Hope.

Differs from all the other species in its distant incised revolving lines.
D. pinguis, A. Adams. Pl. 18, figs. 362-364.

Yellowish and white, variegated, with alternate white and yellowish brown irregular spots around the suture; revolving sculpture close and fine raised lines. Length, 1 inch.

Senegal, Japan.
The latter locality is assigned for D. crassx, A. Ad. (fig. 364), which Reeve changed to Nassa ponderosa, the former name being preoccupied in Nassa. D. pulchra, Gray, the type of his genus is
very probably this species, but has never been figured, and remains unidentified.
D. retusa, Lam. Pl. 18, figs. 365-367.

Marbled with chestnut and white, or blush-pink, sometimes obscurely banded with spots around the suture and on the periphery. Length, 1 inch.

Liberia.

D. Tryoni, Crosse (fig. 367), is described from a remarkably thickened specimen, with a copious callous deposit on the columella, but it does not afford any varietal characters.
D. Japonica, A. Adams. Pl. 18, fig. 368.

Light fulvous, ornamented with brown longitudinal flames and spots variegated with white, especially around the suture.

Length, 1 inch.
Japan.
The pertinence of this species, as well as of those which follow, to the group, is somewhat doubtful, as they have the form of Nassa, including its pyramidal spire.
D. pyramidalis, A. Adams. Pl. 18, fig. 369.

Yellowish brown, apex violet-tinged. Length, 85 inch.
Port Elizabeth, So. Africa-Marrat.
D. ringens, A. Adams. Pl. 18, fig. 370.

Brownish orange. Length, ${ }^{7}$ inch.
Habitat unknown.
A singular species which unites the sculpture of Nassa with the mouth of Desmoulea-the latter even exaggerated in its characters.

Family TURBINELLIDA.

This group includes a few ponderous tropical species, allied in the characters of the mouth, and in general form and ornamentation to the Peristerniinæ (see vol. iii, p. 79), on the one hand, whilst in size they approach the Volutidæ. The plications on the middle of the pillar are rather distant, narrow, high, and transverse, whilst in Fasciolariinæ they are situated lower, are not so prominent, and oblique in direction. The epidermis is frequently persistent.

The animal (of Vasum) is slow-moving, timid and inactive, shrinking quickly within the shell on the slightest alarm. The operculum is ovate, acute, with an apical nucleus; it is very thick, claw-like, and partially free at the hind part. The dentition resembles somewhat that of the Buccinidæ, differing in the lateral teeth; it differs widely from the Nassidæ, and quite as much from that of the Fasciolariinæ or Peristerniinæ.

Synopsis of Genera.

Genus TURBINELLA. Lam. Thick, obconic, smooth, last whorl large ; spire obtuse, apex papillary ; aperture oblong, narrow ; canal long and straight; columella with several strong, transverse plaits in the middle; outer lip thin, simple. Animal unknown.

Subgenus Caricella, Conrad. Columella-folds decreasing in size from above, as in Mitra, base canaliculate and not emarginate. The above characterization is somewhat vague, but the small group of fossils referred to it may be said to resemble Turbinella in essential characters, the difference being that the folds are situated lower down on the pillar, and that the shell is thinner.*
C. pratenuis, Conrad. Pl. 3, fig. 35. Eocene, Claiborne, Alabama.

Genus VASUM, Bolten. Shell oval, oblong, solid, tubercular or spinose, with spinose fascioles below ; spire short, apex not papillary; aperture oblong ; canal short, somewhat recurved ; columella with several transverse folds in the middle; outer lip thickened and sinuous. Dentition, Pl. 2, fig. 1.

(ienus TURBINELLA, Lam.

I adopt Lamarck's generic name in preference to that of Mazza, Klein, because the latter included several groups, and was only limited to its present signification by Messrs. H. and A. Adams, whilst the former author cites as his sole type a species which possesses the distinctive characters now assigned to the genus. The difference between the shells of Turbinella and Vasum is not such as to indicate any differential characters in the animals (unfortunately that of Turbinella is unknown) and the separation of these genera is merely a matter of convenience

[^7]to the systematist. The dentition of Imbricaria, Schum., a group of Mitridæ, differs radically from the type of that family and approaches closely to Turbinellu-that is, if Troschel has correctly identified the mollusk examined by him; but the species are so essentially Mitræ in other characters that to separate them from that family would be very inexpedient.
T. pyrum, Linn. Pl. 19, figs. 1-3, 5-7.

Whitish or yellowish white, under a thick,light olive epidermis; sometimes irregularly sprinkled with chestnut-colored spots; interior of aperture and columella yellowish to orange-brown.

Length, $4-7$ inches.
Ceylon.
T. rapa, Gmel. (fig. 5), = gravis, Dillw., = clavata, Wagn., = napus, Lam. (fig. 3), is distinguished by most authors on account of its more swollen growth and absence of spots, but the distinction does not hold good, the shell becoming more swollen and less spotted with increase in size; like our Virginia Deer the spotted coat is a juvenile condition of which, however, traces sometimes remain, or rather recur, in the adult shell. I figure a very curious planorboid monstrosity (figs. 6, 7), existing in the Museum of the University of Ghent.

The shankh or chank is the sacred shell of the Hindus, and the national emblem of the Kingdom of Travancore. The god Vishnu is represented as carrying a chank shell in one hand and a chakra in the other.

The Hindus believe that unless they worshiped this shell at the commencement of every worship or prayer, their offerings would not be accepted. The first incarnation of Vishnu, called Machhávatár (which literally means transformation into a fish), was undertaken for destroying Shankhásura (the giant chank shell), in order to regain the Vedas, he having stolen them and taken refuge under the ocean.

The fishery for these shells is principally carried on in the Gulf of Manaar, in the vicinity of Ceylon, and on the coast of Coromandel, at Travancore, Tuticorin, and other places, the shells being brought up by divers in about two or three fathoms of water. Those taken with the animal in, and called green chanks,
from having the epidermis on, are most in demand. The white chanks, or dead shells thrown upon the beach by strong tides, having lost their enamel, are scarcely worth the cost of freight to Calcutta. The number obtained varies considerably in different years, according to the weather and the success attending the divers. Frequently four or five millions of these shells are shipped in a year from the Gulf of Manaar. In some years the value of the rough shells, as imported into Madras and Calcutta, reaches ten to fifteen thousand pounds sterling. A few hundreds are occasionally imported into Calcutta from the Arabian and Persian Gulfs. The chank fishery of Ceylon at one time employed six hundred divers, and yielded a revenue to the island government of $£ 4000$ per annum for licenses. The fishery is now free.

These shells are often used as oil vessels or lamps in Indian temples, for which purpose they are carved and sculptured or otherwise ornamented. A reversed chank is so highly prized for its rarity as sometimes to sell in Calcutta for its weight in gold, or at from forty to fifty pounds sterling. In Ceylon, also, the reversed variety is held sacred by the priests, who administer medicine by it. This shell, from its weight and smoothness, is used in Dacca for calendering or glazing cotton, and in Nepal for giving a polished surface to paper.

The principal demand for these shells is for making bangles or armlets and anklets, and the manufacture is still almost confined to Dacca. The shell is cut or sliced into segments of circles, or narrow rings of various sizes, by a rude semicircular saw, the hands and toes being both actively employed in the operation (Pl. 3, fig. 34). Some of these bangles, worn by the Hindoo women, are beautifully painted, gilded and ornamented with gems.

The shell rings are coated inside with plaster to smooth the roughness. Filagree-bordered edges of plaster are also added; patterns and devices of red, blue and gold are figured on them, and they are further ornamented with silver or gold tinsel, spangles, small colored glass beads, etc. The larger bracelets, formed of many segments, are made to open to admit the hand, by two spiral pins, which unscrew and let out the piece (Pl. 3, fig. 33). These bangles are not removed at death, and hence
there is a continual demand for them, many wearing several, both on the legs and arms.*

In India, China and Siam the chank shell is highly prized, especially a sinistral variety found on the coasts of Tranquebar and Ceylon, and made use of by the Cingalese in some of their most sacred rites. Such reversed shells are held in special veneration in China, where great prices are given for them. They are kept in the pagodas by the priests, and are not only employed by them on certain special occasions as the sacred vessels from which they administer medicine to the sick; but it is in one of these sinistrorsal turbinellas that the consecrated oil is kept with which the emperor is anointed at his coronation. These shells are often curiously ornamented with elaborate carvings. The turbinella is so extensively employed in ornamental manufactures in the East Indies that upwards of four million shells have been exported in a single year from Ceylon to the ports of Calcutta and Madras; these are chiefly employed in making armlets and anklets, which are often highly ornamented and are known by the name of bangles. The mamillary apex of the shell is made into a button or bead; the latter are called krantahs, and necklaces of these are so commonly worn by the Sepoys in the East India service as almost to be deemed a regular part of their uniform. \dagger
T. ovoidea, Keiner. Pl. 19, fig. 4

Whorls smooth or obsoletely striated; pinkish white, under a thin, smooth, horny epidermis. Length, 4-6 inches.

Bahia, Coast of Brazil.
Occurs numerously in the miocene of Santo Domingo, West Indies.
T. scolymus, Gmelin. Pl. 20, fig. 8.

Yellowish white, under a thin, fibrous, olive epidermis; columella and interior flesh-pink. Length, 8-10 inches.

Bahia, Brazil; West Indies?
The largest species in the genus and one of the largest of univalve mollusca. Fine specimens occur in the miocene of Santo

[^8]Domingo, and the West Indies is given as habitat in the "Conchylien Cabinet," but the species does not occur in the Swift Collection, and I think there is no other authority for this locality. The young shell is so covered with nodules and revolving ribs as to be readily mistaken for another species. The revolving sculpture disappears and the nodules become fewer and more prominent with advancing age. This and the next species do not fall completely within the generic characters of Turbinella; the sculpture and nodules indicate a transition to Vasum, but they have not the elaborate ornamentation of the latter genus_particularly its spinose fasciole.
T. fusus, Sowb. Pl. 20, fig. 9.

White, covered with a thick, fibrous epidermis tufted in rows. Length, 7 inches.

Habitat unknown.
The tufting occurs upon the distant revolving riblets. It is possible that this is a specimen of T. scolymus, in which the development of the tubercles has been partially arrested.

Genus VASUM. Bolten.
V. muriaticum, Born. Pl. 20, figs. 10, 11 ; Pl. 21, fig. 19.

White, covered with a rather thick, fibrous brown epidermis; colurnella tinged with rose-color. Length, $3 \cdot 5-5 \cdot 5$ inches. West Indies ; Panama; Mazatlan.
Reeve attempts to distinguish V. cæstus, Brod. (fig. 12), from the Bay of Caraccas, by its having broader furrows, larger tubercles and only four instead of five plaits on the columella, but these characters vary considerably in the numerous specimens before me. The fifth plait is merely an incipient one which sometimes occurs between the normal upper plait and the next one below it. The West Coast specimens which I have examined are all four-plaited, and this corresponds with Carpenter's remark upon them in his "Mazatlan Catalogue." I think that T. Crosseana, Souv. (fig. 19), described from a single specimen, the locality of which was doubtful, is probably only a worn individual of this species.
V. rhinoceros, Gmelin. Pl. 21, figs. 13, 14.

Variegated, whitish and chestnut-brown; columella and
interior of shell brown or pink; columellar plaits three in number. Length, 2•5-3 inches.

Zanzibar; Carthagena, N. G.; Bahia, Brazil.
V. Cassidiforme, Val. (fig. 14), is merely a more perfect growth of this species, the revolving sculpture being squamous. The expansion of the posterior part of the aperture, that of the columellar callus, the more distant nodes on the shoulder of the body-whorl serve to distinguish this from the preceding species. V. ceramicum, Linn. Pl. 20, fig. 10 ; Pl. 21, figs. 15, 18.

Yellowish white and black, variegated, stained and irregularly banded; outer lip usually black-bordered within.

Length, 3•5-6 inches.

Philippines, Polynesia.

V. armatum, Brod. (fig. 10), is the juvenile of this species, and V. vexillulum, Reeve (fig. 15), is a still younger state.
V. miperiale, Reeve. Pl. 21, fig. 23.

Whitish, scorched with brown, tubercles blackish; interior white, columella stained with rich purple-brown.

Length, 3.5 inches.

Philippines, on the reefs.-Cuming.

The upper spines are more luxuriantly foliaceous than in V. ceramicum, and the spire shorter; in form, this shell appears to connect the latter with V. cornigerum. Turbinella tubigera, Anton, an unfigured species, may be the same.
V. turbinellum, Linn. Pl. 21, figs. 16, 20-22.

Yellowish white and chestnut-black, stained and obscurely banded; aperture yellowish white, border of lip black-spotted.

Length, $2 \cdot 5-3 \cdot 5$ inches.
Red Sea, Moluccas, Philippines, Mauritius, Central Polynesia.
A rather smaller, but proportionately heavier, shell than V. ceramicum, with a much shorter spire.

Messrs. Adams and Reeve* state that the animal crawls with difficulty, appearing to labor under the weight of its heavy shell as the tortoise does with its carapace. Turbinella variolaria, Lam. (fig. 16), is a very young individual of this species, as demonstrated by a series of specimens before me.

[^9]V. capitellum, Linn. Pl. 19, fig. 25 ; Pl. 21, fig. 24.

Yellowish white, or light brown. Length, 2-3 inches.
West Indies.
V. mitis, Lam. (fig. 25), is a depauperate shell, not adult.
V. globulus, Lam. Pl. 21, fig. 17.

Yellowish brown, the revolving ribs whitish; interior of aperture and columella flesh-pink. Length, $1 \cdot 25-1 \cdot 75$ inches. W. Africa; West Indies.

Family VOLUTIDE.

The shells of this family are conspicuous and showy, and many of them rare ; like the Cypræidæ and Conidæ, the acquisition of fine collections is frequently deemed worthy the expenditure of much time and money, and information upon the classification and determination of the species is eagerly sought. The consequences of this state of things are a large number of so-called species erected out of mere individual variations and a succession of classifications, each vying with the other in complexity. Neither the anatomy of the animals nor the differences between the shells justify the numerous generic divisions which have been proposed, and I gladly follow one of the latest as well as the most judicious of systematists, Mr. H. Crosse, in reducing most of them to mere groups within the genus Voluta. H. and A. Adams included a classification of Volutidæ in their "Genera of Recent Mollusea," Vol. 1, 1853. They were shortly followed by Dr. J. E. Gray, in " Zool. Proceedings," 1855, " Catalogue of the British Museum," xxvii, 1855, and "Guide to the Mollusea," 1857. The latter was partially adopted, and partially adapted to their former system by Messrs. Adams, in the "Appendix" to their work, published in 1858. Crosse's arrangement of the Volutes was published in "Journal de Conchyliologie," 3 ser. vi, 105, 1866 ; and xi, 263, 1871. Finally, Mr. Wm. M. Gabb published a modified version of Dr. Gray's system, including, however, the fossil genera, omitted by his predecessors. (Proc. Philad. Acad., 286, 1876.)

Two subfamilies have been made by Gray, Gill and others, based primarily upon differences in the lingual dentition. One of them, containing the genera Amoria and Volutimitra of Gray,
is instituted upon the examination of the dentition of a single species in each of these genera. That of Amoria Turneri, Gray, has been supposed by some conchologists to be an error on the part of that very able but exceedingly hasty and careless observer, as it appears to correspond very closely with that of a nudibranchiate mollusk, Favorinus albus, Alder and Hancock.* The dentition of Volutimitra Grenlandica is similar, but with the addition of lateral teeth. We are not willing to remove a number of tropical species heretofore classed in this genus along with this single boreal one, from the Mitridæ to the Volutidæ, merely upon the evidence of the armature of this one species. The shell of Volutimitra has no intimate relationship with Voluta, but it is essentially a Mitrid. Gray included a considerable number of species of Marginellidæ in his subfamily Volutimitrina, but these were excluded by H. and A. Adams. It remains to specify an entirely different type of dentition, as discovered by Dr. P. Fischer in Voluta musica, which approaches that of species of Marginellidæ. It is evident that such diversity in the few tongues examined must be fatal to the classification of the group upon this character, until we shall have determined the dentition of every species before assigning to it a definitive position. Fischer thus tabulates the dentition of the family, as far as known :

1. Formula $: 0 \cdot 1 \cdot 0 .\left\{\begin{array}{c}\text { 1. Tooth tricuspid, with large lateral points. } \\ \text { Cymbium, Melo, Voluta, Lyria. (Pl. 2, } \\ \text { figs. 2, 3, 4, 7.) } \\ \text { 2. Tooth unicuspid, with concave base. } \\ \text { Amoria. (Pl. 2, fig. 5.) } \\ \text { 3. Tooth multicuspid, very transverse. } \\ \text { Voluta musica. (Pl. 2, fig. 6.) }\end{array}\right.$
2. Formula : 1•1•1. Volutimitra. (Pl. 2, fig. 8.)

This last form I place in Mitridæ, as explained above.
Volutes are rarely collected with their animals, except when they are accidentally thrown ashore after a storm. They have therefore been said to live in the depths of the sea. The reason they are not found is that, like the Naticæ, they bury themselves under the surface as soon as the water falls and the sand is left

[^10]dry by the tide; they are only to be procured by digging for them, or when a violent storm disturbs the sand and throws them on the beach.*

The above remark is upon Australian species, but those of the southern extremity of South America are also found numerously in shallow water, feeding on Mytilus, etc.; nevertheless other species have been dredged from great depths, as V. papillosa at 1900 fathoms.

The cavity of the nucleus in a cut specimen of the shell of V. vespertilio is nearly entirely filled with an amber-colored pellucid calcareous deposit; and the whole of the rest of the cavity is lined with a thick glossy deposit. In a cut specimen of V. Hebræa (the nucleus of which is destroyed) the cavity of the upper whorl is quite filled with a white glossy deposit, and a similar deposit lines the whole of the inner cavity of the shell. \dagger

Synopsis of Genera.

* No operculum. (An operculum in V. musica.)

CYMBIUM, Klein. Shell oval-oblong, ventricose, thin; spire short, nucleus large, globular, forming an obtuse papillary apex; whorls few, forming a flat edge around the nucleus; aperture oblong, wide; columella with several oblique plaits; outer lip thin, simple. Dentition, Pl. 2, fig. 2.
MELO, Humphrey. Shell large, subovate, ventricose, thin; spire short, apex obtuse, papillary, persistent; whorls smooth, the last posteriorly coronated; aperture oblong, wide; columella with several oblique plaits, the anterior the largest; outer lip simple, acute, obliquely truncate in front. Dentition, Pl. 2, fig. 3.
VOLUTA, Linn. Shell ovate or subconical, thick, solid; spire usually short; shoulder of whorls usually angulated, sometimes nodose or spinous; aperture generally rather narrow; columella with a callous deposit and plaited; lip generally thickened, sometimes subreflected. Dentition, Pl. 2, figs. 4-6.

* * With operculum.

[Volutolyria, Crosse. Shell with the obconic form of Voluta, longitudinally plicate; columella numerously plaited; operculate.

Unites the form and solidity of Voluta with the smaller size and

[^11]numerons plaits of Lyria. Differs from Voluta in possessing an operculum, and in dentition. I am unable to follow Mr. Crosse in this separation from Voluta, for several reasons:

1 st. The dentition of only a single species (V. musica) of the Volutes with numerous columellar plaits has been examined, and there are others, V. Hebrau, for instance, which cannot be separated conchologically from V. musica, but the dentition of which is unknown.

2d. The assumed type of dentition of Voluta rests upon the examination of only three or four among the numerous species of the genus-it may differ widely in some of the others

3d. The presence of an operculum is proven in V. musica, but its absence is not proven in most of the Volutes, although we know it to be absent in several of them. The presence or absence of an operculum has but little value in the classification of some groups; indeed it is well developed or absent in the same species occasionally, as in Volutharpa, etc.

4th. If we assume V. Hebraea and V. virexcens to be, with V. musica, Volutolyriæ, what shall we do with the groups Harpula and Fulgoraria, which form the passage into the Volutes with few plaits?

5 th. If we adopt Voluta, Linn, or even the restricted Voluta of Gray, in either case V.musica is the type, and if a new name is required it is for those species the characters of which are different from V. musica.]

LYRIA, Gray. Shell ovately fusiform, solid; spire acuminate; whorls longitudinally ribbed; aperture ovate, rather narrow; columella with numerous transverse plaits; outer lip simple, acute. Dentition, Pl. 2, fig. 7.

The species are smaller than in Voluta, and Mitræform, connecting with the genus Mitra.

MICROVOLUTA Angas. Shell small, ovately fusiform, solid, smooth, shining; spire as long as the aperture, apex papillary; whorls simple; aperture narrowly ovate; columella with four strong transverse plaits, the anterior one the smallest; outer lip thin, simple, slightly contracted at the base; base rounded, spout-shaped, with a flexuous bend upwards towards the columella, which is a little thickened and reflected below the plaits.

The above description is drawn up from the only known species, and probably many of its characters are of slight importance. The animal is unfortunately unknown.

Fossil Genera.

The following groups are enumerated by W. M. Gabb. They should probably all be considered as subgeneric under Voluta rather than as distinct genera.

VOLUTODERMA, Gabb. Shape similar to Fulgoraria, which it also resembles more or less in surface sculpture; apex not papillate; inner lip marked by from three to five well-marked folds, not very oblique, and of pretty uniform size. This is a group of shells characteristic of the cretaceous rocks and perhaps peculiar to them. They are all somewhat slender, and are marked by longitudinal ribs; the columella is always straight or nearly so, and the folds are as isolated and distinct as those of Turbinella. But the most strongly distinguishing character is the entire absence of the irregularly rounded mass at the apex of the shell, one of the best characters of Fulgoraria. Cretaceous of United States, Europe and India.
V. Navarroensis, Gabb. Pl. 4, fig. 44.

California.
VOLUTOMORPHA, Gabb. Shell elongate, fusiform; whorls cancellated by longitudinal and revolving ribs; columella with one very oblique fold, and sometimes one or more smaller secondary folds.
V. Conradi, Gabb. Pl. 4, fig. 45. A cast. Cretaceous, Nezo Jersey.

ROSTELLITES, Conrad. Narrow, subulate, with elongated spire, numerous subequal plaits on the columella, and the outer lip somewhat expanded anteriorly.
R. Texana, Conr. Pl. 4, fig. 46.

Cretaceous, Texus.
VOLUTIFUSUS, Conrad. Fusiform; body-whorl finely striated or smooth, with the exception of the shoulder, which is sometimes tuberculated; columella plaited, folds two to three, sometimes very prominent, oblique; apex papillated; initial whorl acute, subspiral, narrow; beak produced, recurved or sinuous. * Miocene of Europe and America.
V. typus, Conrad. Pl. 3, fig. 36. North Carolina.

ATHLETA, Conrad. Ovate, Voluta-shaped; spire short, acute; columella with plaits as in Voluta; a callus projecting on the shoulder, and covering a portion of the spire. Cretaceous. Miocene of Europe.
A. Tuometi, Conrad. Pl. 3, fig. 37.

Mississippi.
LEIODERMA, Conrad. Shell largely covered with enamel; with very oblique columellar folds; outer lip somewhat emarginate on the upper part to its junction with the body-whorl; base deeply emarginate.
L. leioderma, Conrad. Pl. 3, fig. 38. - Cretaceous, Mississippi.

PTYCHORIS, Gabb. Differs from Athleta in the want of the characteristic callus, in being subglobular instead of subfusiform and angulated, with very oblique folds on the anterior part of the columella.
P. purpuriformis, Forbes. Pl. 4, fig. 47.

Cretaceous, India.

[^12]¿Ficulopsis, Stoliczka, referred by him to the Volutidæ, is a Ficus with the addition of columellar folds. I agree with Mr. Gabb in including it in the Ficulidæ = Pyrulidæ.]
PLEIOPTYGMA, Conrad. Subfusiform; aperture long; columella with very oblique plaits, numerous, alternated in size, or irregular; the largest heing the second one from above.
P. Carolinensis, Comrad. Pl. 4, fig. 48. Miucene, So. Carolina.

CRYPTOCHORDA, Mörch. Shell smooth, Volutiform, enameled; columelia without plications. Tertiary. Seems to connect Voluta with Harpa.
C. stromboides, Gmel. Pl. 4. fig. $47 . \quad$ Tertiary, France.
[Otocheilus, Conrad. An uncharacterized genus placed by its author in Volutidæ. The type is lost, but the second species, O. Mississippiensis, Conrad, has been referred by Prof. Heilprin to Cythara in Pleurotomidæ - to which determination I agree.]
GOSAVIA, Stoliczka. Shell convolute, spire turbinated, last whorl inversely conical; aperture narrowly elongate, base emarginate; lip siuuate at the suture; columella plicated, anterior plicæ strongest. Cretaceous, Europe and India.

Stoliczka refers this genus to Conidæ, as he does also doubtfully Imbricaria and Cylindra, which he considers closely related. The two latter are known to be in no way closely related to Conus, and Gosavia possesses every characteristic of a Volute; indeed I cannot separate it readily from such forms as V. musica.
G. Indica, Stol. Pl. 4, fig. 49.

India.

Genus CYMBIUM, Klein.

The animal is large compared to the size of the shell, when expanded. The foot partially covers the shell, which is sunk into its substance. There is no operculum. Ovoviviparous; the young when born being of a large size and covered with a shell with a large irregular callous apex. They leave the parent when they have attained a length of about an inch; the brood appearing to consist of four or five individuals. Adanson observes that the high winds of April cast the " yet" up in such vast quantities as sometimes to cover the shore; the natives of Senegal using them as food. The species are limited in distribution; one being an inhabitant of the Mediterranean Sea, the others of the West Coast of Africa.

Cymbium is separated from Melo by its flat or slightly
channeled shoulder and want of coronal spines. When fresh, the epidermis is more or less covered by a thin glaze deposited by the enveloping mantle.

Gray, Reeve and Sowerby have published monographs of this genus; the two latter with illustrations. For the figures of Cymbium, Melo and Voluta, in the present work, I am mainly indebted to Sowerby's Thesaurus; they are usually much reduced in size, but the dimensions of the species are indicated in my text.
C. proboscidale, Lam. Pl. 22, figs. 1-4.

Yellowish brown, or light salmon-color ; epidermis very thin, brown, over which the mantle of the animal deposits a thin glaze; columellar plaits four in the adult, of which the last is small.

Length, 1 inch to a foot or more.

> W. Coast of Africa.
C. porcinum, Lam. (figs. 3, 4) is the young of this species, having only two columellar plaits, and the ends of the shell not so attenuately contracted; it has generally been distinguished as a species with some doubt, but the specimens before me afford good evidence of the gradual evolution of proboscidale from porcinum. Between the glaze and the epidermis particles of sand and even small organic bodies are frequently imprisoned; the former giving the surface a minutely pustulate appearance.
C. Rủbiginosum, Swains. Pl. 22, fig. 6.

There is some little difference of form between this and the last species, but I scarcely think them distinct. It was referred to Australia by Sowerby, and misunderstood and made a synonym of C. cymbium (not of Linn) by Dr, Gray $=$ C. cisium, Lam. Its true locality is N. W. Coast of Africa. Length, $4 \cdot 5$ inches. C. cisium, Lam. Pl. 22, figs. 5, 7, 8.

Shell light yellowish brown, elegantly marbled with chestnut. Length, 3-5 inches,

W. Africa.

Gray and others have referred C.cymbium, L., to this species, but the evidence given by Mr. Reeve that the true C. cymbium $=C$. proboscidale is pretty conclusive.* C. gracile, Brod. (figs. 5,8), appears to be a form of this shell.

[^13]C. Neptuni, Gmel. Pl. 22, figs. 9-12 ; Pl. 1, fig. 3.

Yellowish or reddish brown. Length, 6-10 inches.
W. Africa.
C. Tritonis, Brod. (fig. 10), is a synonym. The shell when young and in good condition, is frequently mottled with lighter and darker brown, and this color-variety has received the name of C. Navicula, Gmel. C. patulum, Brod. (fig. 11), is another synonym. I figure, actual size, a quite young individual, with protruding spire (fig. 12) which afterwards becomes immersed in the succeeding whorls.
C. olla, Linn. Pl. 22, fig. 13.

Pale fulvous. Columella two-plaited. Length, $3 \cdot 5-5$ inches.
Southern Spanish shores of the Mediterranean, N. W. Africa, Portugal, Canaries.

Genus MELO, Humphrey.

The apex of the shell is spiral, regular, very different from the shapeless apex of Cymbium. The distribution of Melo is exclusively tropical and exotic, ranging from the Indian Ocean to Australia. Messrs. Adams state that the animal of this genus, like Cymbium, is ovoviviparous, the young ones being arranged in the oviduct of the female in a long string, without egg-shells.

> * Spire covered or enclosed, unarmed.
M. Indica, Gmelin. Pl. 23, fig. 14.

Lemon-yellow to orange-color, with two or three revolving zones of tessellated spots ; sometimes without spots when large. Epidermis very thin, light olive, not often seen on cabinet specimens. Length, 6-9 inches.

> Indian Ocean.
** Spire exposed, not produced, surrounded by decumbent spines.
M. tessellata, Lam. Pl. 23, figs. 15, 16.

Yellowish or orange, under a light olive epidermis, with or without two or three revolving zones of brown tessellations.

Length, 6 inches.
Indian Ocean.
The species of coronated Melos are very hard to separate, and
in fact, the number and direction of the spines vary so in different species that the distinction appears very arbitrary.

* * * Spire exposed, nat produced, spines ercet, spreading.
M. Ethiopica, Linn. Pl. 23, figs. 17-21.

Yellowish or orange; generally maculated and tessellated with chestnut, usually in revolving zones. Length, 6-12 inches.

Indian Ocean, Manilla, Japan.
In deference to the opinion of the British conchologists, the following "species" may retain their names as stages of variation in the form, coloration and development of spines. It is easy to point out from the numerous excellent illustrations given by Reeve and Sowerby, how these authors differ in estimating these so-called species, and how even some of their figures refute their arguments for distinctness.
Var. regia, Schubert. Fig. 18.
Yellowish brown, with zones of white blotches.
Var. nautica, Linn, Pl. 23, fig. 19.
Spines close-set, converging towards the apex (also towards M. tessellata, very decidedly). Length, 6-8 inches.

Var. Broderipir, Gray. Pl. 23, figs. 20-21.
Spines very numerous, small. Length, 8-14 inches.
M. diadema, Lam. Pl. 23, figs, 22-28.

Variable in proportions but generally more narrow than M. Athiopica; spines few and long. Yellowish, marked with chestnut, frequently forming two interrupted zones connected by irregular or zigzag markings. Epidermis thin, light olive.

Length, 6-13 inches.
Indian Ocean; Australia.
Its narrower coronal, and the few long spines composing it are the best distinctive characters from M. Athiopica. As in that species I include here as varieties, several forms which have been heretofore considered distinct. M. armata, Lam. (figs. 24, 25), is a synonym.

Var. ducalis, Lam.
This, and its synonym M. umbilicata, Brod. (fig. 26), are more
elaborately painted than the type, the inter-zonal markings forming an elaborate network of chestnut-brown veins.

Moreton Bay, Australia.
I am unable to separate from this variety the shell described by Dr. J. E. Gray as M. Georginæ. Mr. Reeve speaks in a knowing manner of "a separate system of characters in M. ducale and M. Georginæ," distinguishing them from diadema, but he neglects to point out these distinctions.

Var. Militonis, Gray. Fig. 28.
Shell more cylindrical, consequently showing more of the spire.

Swan River, Australia.

Genus VOLUTA, Linn.

The animal is essentially like those of Cymbium and Melo, but the mantle is not usually so greatly expanded, nor is the foot proportionally so large.

This genus is oviparous, at least the South American species are so, and M. Duhant-Cilly has given us some interesting particulars concerning them.* He noticed the Volutes in clear shallow water in Magellan's Straits, and, with the aid of natives, procured specimens-which nearly all grasped dead shells of Venus exalbida, a common bivalve of that locality. Upon examining these shells they were found to contain within the cavity of one of the valves, a round, slightly convex membrane, comparable for size and transparency with a watch-glass. The contents appeared to be merely a milky fluid in some cases, but in others, the egg having advanced further in development, three or four small, but perfectly formed Volutes could be seen swimming in the fluid, which had become transparent. D'Orbigny also \dagger collected large numbers of these eggs, and in the month of February saw the young Volutes, four of five in number, in each. The containing membrane, which becomes corneous, he describes as 80 to 100 millimetres in length, more than half the size of the animal which lays it, and he conjectures that it expands after coming into contact with the water.

Voluta of Linnæus, Lamarck, and other old authors, comprised many species of other genera, but in restricting it more and more, until the advanced school of conchologists have left to it but a couple of species, the citation of Linnæus as its author has generally been retained. Mr. H. Crosse has, however, eliminated from the genus thus restricted, the V. musica, which is the first actual Voluta in Linnæus' list (after a crowd of Auriculæ, Columbellæ, Marginellæ, Mitrids). In compensation, he has reduced the numerous genera of H. and A. Adams, and Gray, to sections, retaining Voluta in something like the same comprehensive sense as that in which we use Helix, Fissurella, Pleurotoma and other old generic names. These "sections"are rather circumscribed geographically, yet the range of the entire genus is very great, including the Indian Ocean, Japan, Alaska, Australia, Eastern Polynesia, Atlantic coasts of Southern South America, to West Indies, Southern Africa, etc. No species exists in the seas of Europe, although they were numerous during the tertiary epoch; V. abyssicola, an African species, is the sole surviving representative of the group to which most of these small tertiary species belonged. Australia is the metropolis of the Volutes, and, as M. Crosse remarks, a triangle the respective points of which shall include Ceylon, Japan and New Zealand will cover the habitats of about 80 per cent. of the species.

Sẹct. 1. Voluta (tıpical), Gray.

Longitudinally plicate, plicæ becoming prominent on the shoulder, columella with four or five principal plaits, and several smaller ones. Operculum (of V. musica) fusoid, narrowly elongated, with terminal nucleus.
V. musica, Linn. Pl. 24, figs. 29-34, 38.

Color generally pale yellowish or brownish, punctate, strigate and clouded with chestnut and other colors, with three revolving, more or less distinct bands of distant, parallel, fuscous lines, crossed by strigations; these bands are bordered by a row of dark spots, and the space between these rows is finely punctate with chestnut ; outer lip dark chocolate, or chestnut-spotted.

Length, 2-4 inches.

The coloration varies greatly; as does also the degree of development of the plications, causing Lamarck and others, before this great variability became known, to describe different forms of the species under distinct specific names. These are V. thiarella, Lam، (fig، 31) ; V. Guinaica, Lam. (fig. 32) ; V.carneolata, Lam.; V. lævigata, Lam.; V. sulcata, Lam. (fig. 33); and V. polypleura, Crosse (fig. 34) ; the latter being the most distinctive of these varietal forms. I add a figure of the animal, with operculum (fig. 38); the dentition is also illustrated (Pl. 2, fig. 6).
V. virescens, Solander. Pl. 24, figs، 35, 36،

Light chestnut or ash color, with distant white bands; frequently numerous punctations of dark chestnut color are scattered over the surface ; outer lip with dark spots,

Length, 24 inches.
West Coast of Africa.
V. pusio, Swainson (fig. 36), is a short form of this species, the surface in a worn condition.
V. Hebrefa, Linn. Pl. 24, figs. 37, 40،

Ovate, thick, pale fulvous with undulated angular vein-like lines of chocolate color, and sometimes interrupted bands of the same. Length, $3 \cdot 5-4 \cdot 5$ inches.

West Coast of Africa. Brazil (Nägely !)
Var. turbinata, Kiener. Fig. 40.
Darker reddish brown, without the hieroglyphic markings of the type-form.

> Sect. 2. Harpula, Swains.

Shell oval-conic, spire with a papilliform but small summit; columella with larger plaits below, and additional smaller ones above, but less numerous than in the preceding section; exterior lip thickened within, sharp without.
V. interpuncta, Martyn. Pl. 24, fig. 39.

Flesh-color with numerous revolving series of chestnut linear spots, and frequently, under them, two or three series of revolving much larger and paler spots, sometimes also with longitudinal chestnut streaks. Length, $2 \cdot 5 \cdot-3 \cdot 5$ inches.

Ceylon; Indian Ocean.

Reeve says, "I quite agree with Mr. Sowerby in the propriety of abandoning the (earlier Linnæan) name Lapponica given to this species, indicating a country and climate in which such a mollusk could not by any possibility exist. Instead of inhabiting the Arctic shores of Lapland, it is a native of the seas of tropical India. The error did not, however, originate with Linnæus. The species was known before his time to Dutch naturalists, as the Lapphoorn or Lapphoren, signifying the FlapEar or Dog's-Ear Shell. This seems to have been corrupted into Ailée Laponne, Alata Lapponica, Voluta Lapponica, and Meuschen and Rumphius compounded the name Laplandsche Lapphoorn. It only remains a matter of wonder that, whilst Seba described the species as an exotic shelf from India, the error should have remained so long unexplained."
V. vexillum, Lam. Pl. 31, fig. 153.

Flesh-color, with distant orange revolving bands, and sometimes narrower intermediate ones; occasionally the surface is longitudinally clouded with orange in addition to the above specific pattern. Length, 3-4 inches.

Sect. 3. Fulgoraria, Schumacher.

Shell oblong-fusiform ; spire moderately elongated, terminated by a papillary summit with the apex lateral, instead of central and vertical as usual in spiral shells; surface plicate longitudinally, crossed by engraved revolving lines; columellar plaits six or seven, or more; lip thickened within, its margin slightly crenulate.

The swollen bead-like apex, the initial whorl of which is lateral, is a curious feature of this group, which may indicate some important difference in the development of the mollusk-which is so far unknown to science.
V. rupestris, Gmelin. Pl. 24, figs. 41, 42.

Yellowish flesh-color, with zigzagged longitudinal chestnut lines ; interior flesh-color. Length, 3-6 inches.

China, Japan.
V. Hamillei, Crosse (fig. 41), is described from a large, yet immature specimen of V. rupestris, as indicated by Lischke in his work on the Japanese Mollusca.

Sect. 4. Vespertilio, Klein.

Shell oval-oblong, more or less ventricose. Spire terminated by a regularly spiral summit, papilliform, but having an apparently crenulated nucleus, caused by the presence of numerous little tubercles, more or less apparent. Columella four-plaited.

V. vespertilio, Linn. Pl. 25, figs. 43-49, 52.

Yellowish flesh-color, covered by an irregular network of chestnut brown, which is occasionally confluent into broad angulated blotches. Length, 3-5 inches.

Philippines Moluccas.
One of the most variable species in form, development of spines and folds, and coloring. I figure V. pellis-serpentis, Lam. (fig. 46), V. mitis, Lam. (fig. 49), V. serpentina, Lam. (fig. 47), and V. lineolata, Küster (fig. 52). Also a reversed specimen (fig. 45).
V. pulchra, Sowerby. Pl. 25, figs. $50,51$.

Pale flesh-color, with white specks, and small chestnut dots, irregularly disposed in three bands. Length, $2 \cdot 5-3$ inches.
N. and N. E. Australia.
V. Wisemani, Brazier (fig. 51), is acknowledged by its author to be a variety only, of V. pulchra.

V. nivosa, Lam. Pl. 25, fig. 53.

Grayish flesh-color, sprinkled with small white specks; with two revolving bands, consisting of longitudinal, subparallel, more or less interrupted chestnut-colored lines; columella and aperture saffron-yellow. Length, $2 \cdot 5-3 \cdot 5$ inches.
W. Coast of Australia.

V. Norrisit, Giay. Pl. 25, fig. 55.

Grayish brown, flecked with white and less numerously with brown; there are two interrupted bands of darker color, here and there marked with longitudinal lines; the shoulder also is darker and strigate with brown ; aperture light chocolate within.

Length, 2.5-3 inches.
W. Coast of Australia.

The markings on the bands frequently assume a somewhat irregular checker-board appearance. Dr. Gray described this species in 1838, and Sowerby (probably finding a specimen
labeled, but without authority for the name attached) redescribed it under the same name in 1844 ; since then, the species has been quoted in all the monographs as well as in Crosse's list as Sowerby's, and Gray himself, forgetting that he had described it, quotes it as of Sowerby in his British Museum monograph.
V. Sophie, Gray. Pl. 25, fig. 57.

Yellowish white, with two interrupted darker bands, which are bordered on either side by a line of chestnut spots.

Length, 2.5 inches.
Perhaps a variety of V. Norrisii.
V. rutila, Brod. Pl. 25, figs. 56, 54.

Shell variegated, whitish and saffron-red, forming subtrigonal blotches; and irregular veins, and usually indicating obscurely by their confluence and broadening two revolving bands ; sometimes slightly tuberculate on the shoulder ; aperture salmon-red within. Length, $3-3.5$ inches.
N. E. Coast of Australia ; New Guinea.

Var. innexa, Reeve. Fig. 54.
Lighter colored, tuberculate.
Louisiade Islands, near New Guinea.
V. piperita, Sowb. Pl. 26, fig. 60 ; Pl. 27 , figs. 75, $76,78$.

Finely netted and peppered with orange-red on a whitish ground, with three interrupted bands of large orange-red spots, and columella and interior of aperture same tint.

Length, 2:5-3 inches.
Solomon 1s., Woodlark Isl., near New Guinea.
V. Rückeri, Crosse (fig. 75), V. Macgillivrayi, Cox (fig. 76), and V. Ceraunia, Crosse (fig. 78), are all mere color-varieties of this species.

Sect. 5. Aulica, H. and A. Adams.

Agreeing with the preceding section in general form and principal characters, the summit of the spire differs in having a completely smooth instead of a tuberculated surface.
V. aulica, Sowb. Pl. 26, figs. 61, 62.

Flesh-colored, with large salmon-colored clouds, sometimes
forming three very broad, interrupted bands, sometimes confluent, irregularly covering most of the surface; interior fleshyellow. Columellar plaits oblique. Length, $3 \cdot 5-4 \cdot 5$ inches.

Sooloo Is.
V. Cathcartif, Reeve, Pl. 27, fig. 79.

Orange and flesh-white, the former making an irregular zigzag or netted pattern, with three bands of dark chocolate spots.

Length, 3.5 inches.

Habitat unknown.

The figure of the type resembles V. piperita except in its smooth apex, rather more closely than V. aulica, with which M. Crosse compares it.
V. Deshayesit, Reeve. Pl. 26, fig. 63.

White or pink, with orange-red irregular clouded markings, and a central band whereon they do not appear ; aperture orangecolor; columellar plaits much stronger than in V. aulica, and nearly transverse. Length, 3-4 inches.

New Caledonia.

V. Rossiniana, Bernardi. Pl. dj, fig. 64.

Flesh-color, with longitudinal angular markings of chestnutbrown. Length, 7 inches.

New Caledonia.
The spire is more elevated, the spines less developed than in V. imperialis; the plaits on the columella are five in number (four in imperialis) and more transverse, the outer lip more expanded; yet it may be only an extreme variety of that species.
V. luteostoma, Desh. Pl. 25, fig. 58.

Shell resembling the last species, but smaller, and having four plaits only on the columella-which, however, are transverse like it, and not oblique as in V. imperialis, The interior of the aperture has the orange-coloring of V. Rossiniana.

Length, 2.5 inches.

Habitat unknown.

Certainly very closely allied to the preceding species.
V. imperialis, Lam. Pl. 26, fig, 65.

Fulvous, marked with angular, interlacing chestnut lines,
sometimes confluent into trigonal blotches, and occasionally forming interrupted bands. Length, 5-8 inches.

Philippine Islands.-Cuming.
V. punctata, Swains. Pl, 27, fig. 80.

Pale fulvous, with numerous small light chestnut dots, sometimes confluent into larger spots, forming interrupted bands.

Length, 3 inches.

Eustern Australia.

The figures in Swainson, Sowerby and Reeve represent an immature individual, the only one known until ten years ago, when the adult was first figured by Dr. Cox.
V. Hargreavest, Angas. Pl. 27, fig. 82.

Reddish brown, with an indication of two darker bands, ornamented with numerous, scattered longitudinal and somewhat angular blotches of white ; columella and border of lip tinged with orange, aperture flesh-color within. Length, 3 inches. Habitat unknown.
The specimen described is so far unique.
V. Bednalli, Brazier. Pl. 26, fig. 66.

Whitish, with four narrow chestnut-colored revolving bands, which are connected by angular longitudinal chestnut markings; aperture white within. Length, $3 \cdot 3$ inches.

Port Darwin, Torres Sts., N. Australia.
V. scapha, Gmelin. Pl. 26, fig. 68.

Shell ponderous, smooth, yellowish flesh-color, with zigzag longitudinal chestnut markings, sometimes widening into series of irregular spots, forming two interrupted bands.

Length, $3 \cdot 5-5$ inches.
Singapore, on the reefs.-Cuming.
V. magnifica, Lam. Pl. 26, fig. 70.

Rather thin; pale fulvous, with three broad orange-chestnut bands marked with white and fuscous angular spots, intermediate surface reticulated with pale orange angular lines; columella and interior orange or salmon-color.

Length, 6-8 inches, or even a foot.
One of the largest species of the genus; it is found half-
burying itself amongst weed and ooze on sandy and muddy flats beyond tide-mark.
V. Junonia, Chemn. Pl. 26, fig. 67.

Pale yellowish or whitish, with numerous rather large rounded square chestnut-colored spots arranged in revolving series; interior flesh-white. Length, 3.5-4*5 inches.

East and West Coasts of Florida.

It is an inhabitant of deep water, and is somewhat rarely obtained and highly prized by collectors. Specimens have been sold as high as two hundred dollars, but of late years the value has greatly decreased in consequence of increased supply.
V. dubia, Brod. Pl. 27, figs. 77, 81.

The spire is proportionally longer, the spots more sharply square than in V. Junonia, the longitudinal ribs, which in that species are barely visible upon the first whorl below the embryonal apex, show traces of their existence as far as or even including the body-whorl. V. Junonia is spirally sculptured towards the base of the body-whorl, whilst in this species the sculpture covers the entire whorl. Length, $3 \cdot 6$ inches.

Caribbean Sea, off the Southern
and Western Coasts of Florida.
This shell was first figured as Fusus tessellatus by Schubert and Wagner, and subsequently described by Broderip as V. dubia (fig. 81), but the shell was only known in an immature and faded condition until Dr. Dohrn in 1879 gave a full description with figures of what he supposes to be the adult shells. My impression is that it is merely an elongated variety of V. Junonia, but the question of identity can only be settled satisfactorily when a larger mass of material shall be at the disposal of naturalists, than is now available.
V. Kaupir, Dunker. Pl. 26, fig. 69.

All the whorls except the embryonal apex are slightly plicate below the sutures; last whorl obtusely angular ; pale yellowish red, marbled irregularly with a darker tint. Length, $2 \cdot 25$ inches. New Zealand?
Probably not mature; the type is the only specimen known.
V. flavicans, Gmelin. Pl. 26, fig. 71 ; Pl. 27, fig. 84.

Yellowish gray, fasciculated with brown beneath the sutures; surface marbled, strigated and reticulated with brown.

Length, $3-3 \cdot 75$ inches.

> N. Australia.
V. signifer, Brod., is an elongated flavicans, with the lip not quite mature. V. Tissotiana, Crosse (fig. 84), is also a variety.
V. exoptanda, Sowb. Pl. 26, fig. 72.

Pale rose-orange, densely promiscuously painted throughout with sharply waved fine chestnut-red lines; columella and interior of shell orange-color. Length, 4 inches.

Port Elliott and Port Lincoln, Australia.
Is V. Hargreavesi, Angas (Pl. 27, fig. 82), a possible varicty of this species?
V. Australie, Cox. Pl. 26, fig. 73.

Reddish orange, with dark chestnut undulated longitudinal markings. Length, 2.5 inches.

Bass Straits, Australia.

The sutures are said to be vitrified, a character of the next group, Amoria; from which it differs in having only four columellar plaits. Appears to be rather too closely allied to V. exoptanda. Mr. Brazier considers it a variety of V. undulata, Lam.
V. Graye, Crosse. Pl. 26, fig. 74.

Yellowish, with zigzag longitudinal brown lines, increased in thickness so as to indicate three interrupted revolving bands.

Length, $5 \cdot 5$ inches.

Northwest Coast of Australia.

Described by Gray as V. Maria-Emma, and the name very properly changed by Crosse because not binomial ; and if permitted to stand in this case, some Spaniard having baptismal names enough to fill half a page might have them all immortalized in a single species. This species is, so to speak, intermediate between Aulica and Amoria, for to the nucleus characteristic of the first group it unites the system of coloration and suture of the second.
V. Kingi, Cox. Pl. 27, fig. 86.

Yellowish flesh-color, with a very few slightly apparent darker zigzag lines. Length, 3 inches.

King's Isl., Bass Straits, 'Australia.
Supposed by some conchologists to be a variety of V. undulata, Lam., but appears to differ in its proportions, in the convexity of the spire-whorls, in having only four columellar plaits, etc.
V. marmorata, Swainson. Pl. 28, fig. 89.

Slightly coronate; yellowish flesh-color, with irregular strigations and angular, flexuous, longitudinal brown lines, faintly indicating two revolving bands. Length, $4-5$ inches.

East Coast of Australia.

Sect. 6. Amoria, Gray.

Shell fusiform, smooth and polished; spire conical, with a small, more or less pointed nucleus; sutures slightly callous; columella with five oblique, more or less developed plaits.
V. undulata, Lam. Pl. 28, figs. 88, 87.

Pale fulvous, with undulated narrow chestnut, longitudinal lines. Length, $3-3 \cdot 5$ inches.

> E., W. and S. Australia, Tasmania.
V. Angasi, Sowb. (fig. 87.), is only a form of undulata with shorter spire. Mr. Brazier thinks thatV.Sclateri,V. Kingi, and V. Australiæ of Cox, are all mere varieties of this species.
V. Sclateri, Cox. Pl. 27, fig. 83.

Pure white, without markings. Length, 3 inches.
Tasmania.
Perhaps a variety of V. undulata, Lam.
V. Turneri, Gray. Pl. 27, fig. 85 ; Pl. 30, fig. 123.

Whitish or flesh-yellow, with longitudinal, somewhat waved narrow chestnut lines; yellowish or light chocolate within the aperture.

> N. E. Australia ; W. Australia (V. Ellioti).
V. Ellioti, Sowb. (fig. 123), is not entitled to distinction even as a variety, and, together with several varietal names given by Gray himself, must merge in the synonymy.
V. voisva, Gmelin. Pl. 28, fig. 90.

Whitish, with three faint yellowish bands, upon which are a few longitudinal, pale orange strigations; yellowish brown or coffee-colored within. Length, 3 inches.
W. Australia; abundant.

Certainly very close to V. Turneri. The species was redescribed by Gray as V. pallida, but he subsequently united it with V. Turneri. The patterns of coloration of the two specics are different, and I find no connecting links.
V. maculata, Swains. Pl. 25, fig. 59.

Obconic, marked with chocolate spots forming two interrupted bands on an orange surface ; aperture orange within.

Length, $2 \cdot 25$ inches.

East Australia.

The coloring is more vivid than in V. volva, and the spire is shorter, but the species may be only a variety of that shell, to which it bears the same relation that V. zebra does to V. Turneri.
V. zebra, Leach. Pl. 28, fig. 91.

White or yellowish, with close-set, narrow somewhat waved longitudinal chestnut streaks; very pale yellow or pink within the aperture. Length, $1 \cdot 5-1 \cdot 75$ inches.

E'ast Coast of Australia.
Resembling V. Turneri in coloration, but differing in its smaller size, and short, obconic form.
V. Loroisi, Valenciennes. Pl. 28, fig. 92.

Light pinkish, with brown zebra-like stripes, columellar plaits almost obsolete. Length, 3 inches.

Habitat unknown.
Described from a worn specimen in the Paris Museum. It belongs to the same group as V. zebra and Turneri, and may be an overgrown specimen of the former.
V. canaliculata, McCoy. Pl، 28, fig: 95.

Whitish, with five revolving rows of chestnut-colored oblong spots ; suture channeled. Length, $1 \cdot 75$ inches.
E. Australia.
V. Harfordi, Cox, described a few months later, is identical.
V. reticulata, Reeve. Pl. 28, fig. 93.

Light fulvous, triangularly marked with chestnut, forming three bands on the body-whorl ; yellowish within.

Length, 3-4 inches.

> W. Australia.
V. pretexta, Reeve. Pl. 28, figs. 94, 96.

Pale fulvous, finely reticulated with chestnut, forming triangular spots, and two darker bands. Length, $1 \cdot 5-2$ inches.

North Australia.
Bears somewhat the same relation to V. reticulata that zebra does to Turneri. V. reticulata, Sowb. (fig. 96), is only a wellgrown specimen of V. prætexta; although Sowerby afterwards renamed it V. Reevei.

Sect. 7. Aloithoe, H. and A. Adams.
Shell oval-fusiform, spire elongated, terminated by a papilliform summit; aperture oval-elongated, inner lip covered by a callous deposit, outer lip expanded and more or less reflected; columella with four, and more rarely five to seven oblique plicæ.
V. Pacifica, Solander. Pl. 28, figs. 97-99.

Yellowish, with zigzag longitudinal chestnut markings, and frequently four interrupted revolving bands.

Length, 3.5-4.5 inches.
The specimens vary much in the development of the shoulderangle and tubercles, both being obsolete in some species. V. fusus, Quoy (fig. 98), is the immature shell.
Var. aracilis, Swn. (fig. 99), has been distinguished principally by its much smaller size,
V. Kreuslere, Angas. Pl. 30, fig. 124.

Resembles V. Pacifica, but has a longer spire, is narrower, and differs in the painting of orange-brown maculations forming the three bands. Length, 2 inches.

So. Australia.
V. Americana, Reeve. Pl. 28, figs. 100, 101.

Yellowish white, faintly banded and reticulated with orangebrown. Length, 1.75 inches.

Only a single specimen known. V. Cleryana, Petit (fig. 101), is the young of it.
V. festiva, Lam. Pl. 30, fig. 125.

Rosy white, clouded with orange-red, with chestnut spots and bands formed of series of longitudinal flexuous chestnut strigations. There are three prominent oblique plaits at the lower part of the columella, and above them a number of oblique rugosities. Length, $4-5$ inches.

East Africa.
One of the rarest of Volutes. The exact locality is unknown. D'Orbigny speaks of collecting it on the Patagonian coast, but he doubtless refers to V. Magellanica.
V. Africana, Reeve. Pl. 30, fig. 127.

Orange-brown, with sparse hieroglyphic brown markings disposed in bands; upper part of columella black.

Length, 2.5 inches.

> E. Africa.

The type, which formed part of the Cuming collection, is not in good condition, so that the pattern of painting is obscure. It is closely related to V. festiva, but appears to differ in its greater proportional width and short spire.
V. megaspira, Sowb. Pl. 28, fig. 102; Pl. 30, fig. 132.

Reddish flesh-color, longitudinally marked with zigzag chestnut streaks, sometimes forming three obscure bands.

Length, 4 inches.

Japan.

An elegant smooth species; rather thin, with the first volution of the papillary apex lateral instead of terminal-a character shared by some of the following species. The animal is a common article of food in Japan, yet the shell is rather rare in collections. V. lyriformis, Kiener (not Swains.), is apparently a variety of this species, although Mr. Crosse has recently characterized it under the name of V. Prevostiana (fig. 132).
V. fusiformis, Swainson. Pl. 28, fig. 103.

Fulvous or flesh-colored, with irregular, zigzag, longitudinal chestnut markings. Length, $6-7$ inches.

Tasmania; So. Australia.
V. fulgetrum, Sowb. Pl, 28, figs. 104, 105.

Yellowish flesh-color, with broad, undulated, longitudinal, dark chestnut or chocolate streaks. Length, 4-5.5 inches.

So. Australia.
The spire is shorter, the shell is more shouldered, the painting is usually much broader than in V. fusiformis. Sometimes the markings include a faint, closer reticulation besides the above more prominent features, and occasionally bands are indicated. V. fulgetrum, in fact, is intermediate between V. fusiformis and V. papillosa, and very probably the three are merely diverse forms of one species.
V. papillosa, Swn. Pl. 28, fig. 106.

Very finely retioulated longitudinally with chestnut color on an orange-brown surface, with interrupted bands.

Length, 4-5 inches.

> So. Australia ; N. Tasmania.

Kiener unites, apparently, this species and fusiformis in his V. Sowerbyi. Specimens were brought up by the dredge from 1,900 fathoms, 25 miles off the coast of New South Wales (Brazier).

Var. Macquariensis, Petterd.
Shell same form and size as typical, but of a more or less intense yellow-color throughout, without any markings. It is not figured.
V. Thatcheri, McCoy. Pl, 30, fig, 126,

Pinkish white, with narrow chestnut reticulations.
Length, 4-5 inches.
Bampton Reef, near N. W. Coast of New Caledonia.
Appears to be very closely related to V. Pacifica, Sol.
V. Roadnighte, McCoy. Pl. 30, fig. 128.

Pale brownish creamy white, with acutely angular zigzag, longitudinal, sparse markings of rich, raw-sienna brown.

Length, 6-4 inches.

Sect. 8. Gymbiola, Swainson.
Shell oval, thin, recalling the form of Cymbium. Spire more or less elongated, terminated by a slightly irregular, papilliform summit. Aperture large, the columellar side covered with a slight coat of enamel ; columella usually with four oblique plications; outer lip sharp, occasionally slightly expanded. An American, and principally Antarctic group.
V. ancilla, Solander. Pl. 29, fig. 110.

Yellowish, with faded chestnut, longitudinal, irregular streaks. Length, 5-6.5 inches.

Coast of Patagonia.

This is the V. Magellanica, of Sowerby, Kiener and Gould, who describe the latter species as anoilla; the latter has an excellent figure of the animal.
V. Stearnsif, Dall. Pl. 30, fig. 130.

Livid purple, more or less obscured by an ashy white outer layer; exterior smooth, but not polished ; aperture white and livid purple, with a dash of brighter purple at the posterior notch, and on the anterior portion of the callus.

Length, $4 \cdot 13$ inches.
Alaska; living from stomach of cod, dead on beach.
Very closely related to V. ancilla.
V. Magellanica, Lam. Pl. 29, figs. 107, 108.

Yellowish white, generally irregularly painted with longitudinal, zigzag, brown streaks, sometimes interruptedly banded. Length, 5-6 inches.

Patagonia.

Var. tuberculata, Swains.
Whorls with a more pronounced, tuberculate shoulder.
A wider species than V. ancilla but may possibly be a mere variety of it.
V. Beckil, Brod. Pl. 29, fig. 109.

Yellowish, with chestnut-colored, undulated, longitudinal streaks. Length, 11 to 14 inches.

The Philadelphia Academy possesses a specimen of the largest
dimension given above. Although the habitat of the species is not known, it is very probably Patagonia.
V. Brasiliana, Solander. Pl. 29, figs. 113, 115, 111; Pl. 30, fig. 131.
Ventricose, with depressed conicai spire; brownish yellow, without markings. Length, 4-6 inches.

So. America, from mouth of Rio de la Plata to Patagonia.
V. Ferussaci, Donovan (fig. 131), is almost certainly a worn specimen of this species. I have a shell before me, precisely the same shape, but with the tubercles slightly indicated on the shoulder. V. rudis, Gray (fig. 111), is usually considered a synonym of Ferussaci; Gray's figure represents a shell in very bad condition. The specimen figured in the Thesaurus corresponds so little with the description as to indicate a very vivid imagination on the part of the colorist of that work.

> Sect. 9. Volutella, d'Orbigny.

Shell smooth, subcylindrical, with angulated whorls; spire acuminated, polished, and entirely covered by an enamel deposit, obliterating the suture-line more or less entirely; columella with three oblique plaits; lip sharp, not reflected. The development of a lobe of the mantle to cover the spire is a peculiarity in this animal not shared by the other species of the genus.
V. angulata, Swainson. Pl. 29, figs. 112, 121.

Pale yellowish; with longitudinal irregular chestnut lines.
Length, 4-6 inches.

> Mouth of Rio de la Plata to Patagonia.

The enamel deposit frequently projects above the spire into a beak (fig. 112), but is usually broken off in cabinet specimens.

Suct 10. Psephæa, Crosse.

Shell oblong-fusiform, very finely transversely striated and furnished with longitudinal ribs, disappearing towards the middle of the last whorl. Nucleus? Columella furnished with two principal plicæ, above which there are two or three minute ones hardly visible; it presents also this peculiarity (in the adult shell), that these plicæ are situated so far within as to be invisible when the shell is placed right in face of the observer.

Internal margin strongly callous ; external lip obtuse and thickened.
V. concinna, Bröd. Pl. 29, fig. 114.

Yellowish brown, with close-set, undulated, longitudinal chestnut lines. Length, $4-5$ inches.

Japan.
At first sight this shell might appear to be related to V. rupestris, from the same locality, but it differs in several respects, and particularly in the character of the plice.

Sect. 11. Ausoba, H. and A. Adaus.
Spire short and obtuse, terminated by a papilliform summit; last whorl coronated.
V. cymbiola (Chemn.), Sowb. Pl. 29, figs. 118, 119.

Pale yellowish gray clouded with a darker tint, and punctate with chestnut ; aperture light chocolate. Length, 3 inches.

Moluccas.
The name was changed by Kiener to V. coronata because cymbiola had already been used by Lamarck for another species -an error, as Lamarck had not used the name at all. V. corona, Chemn. (fig. 119), is only known by the figure of a juvenile shell in that author, copied by Sowerby in his Thesaurus. Mr. Crosse believes it to be distinct, but I cannot agree to this, as it appears to me to be a faded young cymbiola. The nucleus is supposed to be proportionally much larger, but it is really not larger than in Kiener's figure of V. coronata. Sowerby says that corona having, besides the four principal plicæ, several smaller ones above them, is a character not shared by cymbiola, yet a characteristic specimen of the latter, before me, has two very distinct smaller plaits above the four principal ones.
V. Kirki, Hutton.

Widely oval, spire depressed ; last whorl ornamented with a small number of blunt tubercles; columella with four very profound plications, the upper part with a thin callous deposit. Color yellowish brown. Length $1^{\circ} 75$, diam. $1 \cdot 57$ inches.

Said to be a Cymbiola; not figured. Possibly a young shell.

Sect. 12. Volutilithes, Swains.
Shell oval-fusiform, spire elevated, terminated by a pointed summit; whorls cancellated or longitudinally plicate; mouth oval-oblong; columella with numerous rudimentary or obsolete plicæ; lip thin. The group is represented by a single living species and numerous tertiary forms.
V. abyssicola, Adams and Reeve. Pl. 29, fig، 120.

Fulvous ash-color, encircled by three or four narrow chestnut bands. Length, $1 \cdot 5$ inches.

Cape of Good Hope, 132 fathoms.
Only the type specimen known.

$$
\text { Sect. } 13 \text {. Volutoconus, Crosse. }
$$

Oblong, subcylindrical, longitudinally and transversely striate; spire short and obtuse, terminated by a rounded summit; columella with four slightly developed teeth ; lip simple, slightly inflected in the middle; base with flexuous striæ.
V. confformis, Cox. Pl. 30, fig. 129.

Yellowish brown, with three broad chestnut bands, and superposed upon the bands and interspaces irregular or triangular large and small white spots and blotches. Length, 70 mill.
N. W. Australia.

Has the system of coloration so frequently met with in a group of Conus.

> fect. 14. Callipara, Gray.

Shell oblong, subcylindrical; spire short, nucleus small; columella with two plications.
V. bullata, Swainson. Pl. 29, fig. 116.

Fulvous, with chestnut spots and angulated lines, and three darker bands of the same. Length, 2.5 inches.

Algoa Bay, So. Africa.
Resembles somewhat Conus bullatus.
V. Brazieri, Cox. Pl. 29, fig. 117.

Yellowish brown, with a wide irregular chestnut band, and chestnut markings. Length, $1 \cdot 1$ inches.

New South Wales.

The figure is enlarged. The spire is more sunken than that of V. bullata, but it may be only a color-variety of that species.
[Sect. 15. Aurinia, H. and A. Adams.
Shell oval-fusiform ; spire terminated by a large mamillary summit; columella with obsolete, scarcely apparent plications; whorls of the spire finely transversely striated; lip simple, thin. This group was proposed for V. dubia, Brod., known only to Messrs. Adams and Crosse from juvenile examples. The species is closely related to, if not identical with, V. Junonia, and follows that species in this monograph ; Aurinia, consequently, will not stand.]

Secr. 15. Mamillana, Crosse.

Shell widely oval, ventricose, rather thin, intermediate between Voluta and Cymbium; nucleus papilliform, very strongly developed, excentric and lateral ; columella with a few oblique plicæ; lip thin.
V. mamilla, Gray. Pl. 29, fig. 122.

Yellowish, strigated with brown. Length, 6-8 inches. Tasmania; Australia.
The first whorl of the spire is completely lateral in this species, as in V. rupestris.

Undetermined Species.
V. nana, Anton. Belongs to Vespertilio group. No locality given.
V. Largilliertiana, d'Orb. (Related to V. pallida, Gray.) Seas of India.

V. pumilio, Brusina.

Dalmatia.

Not figured. Shell ovate, transversely closely striate; spire very short, apex obtuse; lip simple, acute; columella subuniplicate. I do not know where to place this species; it is certainly not a Voluta. Length, 7-16 mill.
V. Moltkiana and V. Spengleriana, Martini, H. and A. Adams' Genera, i, 161.

> (senus LYRIA, Gray.

Dr. Paul Fischer, who has studied the anatomy of Lyria deliciosa,* finds it to be essentially the same as that of Voluta,

[^14]except in the presence of an operculum and in the dentition (Pl. 2, fig. 7). The shell, however, presents certain modifications from Voluta which, in connection with the operculum, suffice for the establishment of a legitimate artificial group, which may be characterized by the narrowness of its mouth, the predominance in size of the two columellar plications nearest the base, and the transverse rugosities covering the inner lip above the plications, their comparatively small size and mitriform aspect, and the externally thickened lip. The distribution is wide, including West Indies, West Coast of Central America, East Coast of Africa, Moluccas, Japan, Australia, etc. A few fossil species may be here referred; and notably V. harpula, Lam., of the Paris basin. The classification of the species is based on that proposed by Mr. H. Crosse.*

> * Shell smooth.
L. deliciosa, Montr. Pl. 31, figs. 133-135.

Pinkish gray, with distant revolving brown lines and interrupted bands; spire minutely longitudinally plicate; base of body-whorl with revolving incised lines. Length, 30 mill.

New Caledonia.

> * * Shell obsoletely or faintly plicate.
L. nucleus, Lam, Pl. 31, fig. 136.

Flesh-brown, here and there dotted and variegated with chestnut; lip and varices black-dotted. Length, 1-1.25 inches. N. E. Australia.

The spotted varices which occur occasionally upon this shell indicate the position of former rest-periods in its growth, being the thickened lip, which the animal in resuming growth has failed to absorb away.
L. Beaur, Fischer and Bernardi. Pl. 31, fig. 137.

Yellowish flesh-color, with revolving chestnut lines, interrupted between the obsolete costæ. Length, 70 mill.

> Marie-Galante, West Indies.

A rare species.

[^15]L. cassidula, Reeve. Pl. 31, fig. 138.

Cream or flesh-color, clouded with chestnut and white, with interrupted chestnut revolving lines. Length, $1-1 \cdot 25$ inches.

Japan.
L. pusilla, Schrenck. Pl. 31, fig. 139.

Yellowish chestnut, with a band of red and white spots at the suture, surface maculated with rufous ; aperture yellowish chestnut. Length, 9.5 mill.

Described as obsoletely plicate, with two plaits near the base of the columella; neither of these features being very apparent on the enlarged figure of the species. Possibly a young L. cassidula? At any rate the specimen appears to be immature, for the description is "labro simplici, recto."

* * * Longitudinal ribs strongly marked.
L. Delessertiana, Petit. Pl. 31, fig. 140.

Flesh-color with orange-red maculations and bands and chestnut revolving lines. Length, $2-2 \cdot 25$ inches.

Madagascar.

L. hyrefformis, Swains. Pl. 31, fig. 141.

Flesh-color, with revolving, interrupted chestnut lines, and blotches of the same arranged in three revolving bands.

Length, $3 \cdot 75$ inches.
F. Coast of Africa.

The figure represents a very different looking shell from L. Delessertiana, but intermediate forms occur, and I am very doubtful of their distinctness.
L. costata, Swainson. Pl. 31, fig, 142.

Whitish, with orange-red spots and interrupted revolving lines. Length, 2 inches.

> Moluccas ; Indian Ocean.
L. Mitreformis, Lam. Pl, 31, fig. 143.

Flesh-color or yellowish, with dark chestnut spots and revolving lines, the latter sometimes broader so as to form interrupted bands. Length, 2 inches.

> Australia, Tasmania, Java, S. Africa.
L. costata has a flattened shoulder, upon the angle of which the longitudinal ribs terminate in spines; whilst L. Mitraformis
has a shelving shoulder merely obtusely angulated; yet I suspect that the two forms are mere varieties of one species.
L. Archeri, Angas. Pl. 31, fig. 144.

Yellowish, clouded and lined with chestnut; lip punctate with black, dentate within; columella with three strong basal plicæ, and numerous smaller ones above. Length, $1 \cdot 33$ inches. Montserrat, West Indies.
The form and coloring are very like the preceding species, but the dentate lip is an extraordinary feature which may distinguish it from all others. The type is the only specimen known, and the locality is doubtful. Appears to connect Lyria proper with its subgenus Enæta.

> S \&bgonus Enæt3, H. and A. Adams.

Exterior lip thickened, inflected and bearing an obtuse tooth upon its middle inner margin.
L. harpa, Barnes. Pl. 31, fig. 145.

Pale flesh-color or gray, with chestnut or chocolate angular spots and maculations, frequently forming faint interrupted bands. Length, $1-1 \cdot 5$ inches.

> W. Coast of Central America.
L. Cumingir, Brod. Pl. 31, figs. 146, 147.

Pale flesh-color, clouded and lined with chestnut.
Length, 1-1.5 inches.
W. Coast of Central America, northward to San Blas.
L. Cylleniformis, Sowb. (fig. 147), appears to be a small shell of this species.

E. Pedersenir, Verrill.

Shell small, rather slender, elongated; the spire regularly conical, acute, about two-thirds the length of the body-whorl; each whorl much flattened below the suture and encircled by a row of rounded tubercles; the body-whorl with low, rounded, longitudinal costr below the tubercles. Whole surface finely longitudinally sulcated or striated, on the upper whorls also transversely striated. Color fulvous brown, specked with bluish white, with an interrupted band, or spots, of deep brown below the suture, a pale
band over the tubercles, and another, bordered with brown, below the middle of the body-whorl. Length, 1 inch.

La Paz, Lower California.
Not figured; said to be more slender, with the spire more acute, smaller tubercles and costæ, a more prolonged and recurved siphon, and more contracted aperture than L. Cumingii. The surface is not smooth and the color is lighter.
L. Guildingif, Sowb. Pl, 31, fig. 148.

Fulvous, with white and darker lines; longitudinally ribbed, granose at the sutures. Length, $\cdot 5$ inch.
I. St. Vincent, West Indies.

I am not acquainted with the species.
L. guttata, Reeve. Pl, 31, fig. 149.

White, maculated with brown; longitudinally plicate.
Length, 5 inch,
Honduras.
Possibly identical with the last species; if so, it will become a synonym, Guildingii having priority of publication.
L. Columbella, Sowb. Pl. 31, fig. 150.

Small, oblong, smooth, pallid maculated with red; spire acuminate, aperture elongate; lip incurved in the middle; columella very obscurely plicate. Having the form of Columbella nitida, and showing rather faint plicæ on the columella.

The above is a copy of Sowerby's description and figure. It is certainly not a Voluta, and appears more like a Marginella.

Genus MICROVOLUTA, Angas.

The deep siphonal notch, and the toothed projection of the base of the pillar, so characteristic of the Volutes, are absent in this curious little genus.
M. Australis, Angas. Pl. 31, figs. 151, 152.

White, or ornamented with two rows of distant irregular chestnut blotches and zigzag lines, Length, 10 mill.

Port Jackson Heads, Australia, 25 fathoms.-Brazier.

Family MITRID压.

The animal has a small, narrow head; tentacles close together at the base; eyes near the base or towards the outer middle of the tentacles; proboscis cylindrical, flexible, very extensible, mantle enclosed; siphon simple at the base; foot small, triangular, usually truncate in front.

Some of the larger species have no operculum, but it is often present, though small and rudimentary, on the foot of the smaller species.

Shell with acute apex, usually well developed spire and plicate columella ; for the most part destitute of epidermis, which is very thin, smooth and translucent when present.

Mitra is related on the one hand with Voluta, on the other with Marginella; it is distinguished from the former by its columellar plaits, of which the largest are posterior whilst in Voluta they are anterior, by its form, and the apex, which is never papillary; from Marginella it is distinguished by its much longer spire, less polished surface, generally large size and particularly by wanting the thick marginal varix of the lip.

The dentition of the Mitridæ presents several distinct types; so that Troschel and Gill have divided the family upon this character. The group Cylindra has the teeth of Marginella and is placed near that genus by these authors; the form of the shell also recalls Marginellidæ, and although the preponderance of characters accords with Mitra, it may be reasonably considered a connecting link with Marginella. Volutomitra has been placed in Volutidæ on account'of the dentition of V. Grœnlandica, the only Arctic species of Mitra, but I have preferred to retain it and its congeners in Mitridæ, because we know nothing of the dentition of the numerous tropical species. Turricula and Strigatella are allied by their dentition to the Olividæ, and Imbricaria to the Turbinellidæ.

Mitra has been divided by H. and A. Adams and others into a number of subgenera, whilst Sowerby separates the species into thirteen numbered but unnamed sections. The groups are certainly not entitled to subgeneric rank, yet I believe that the retention of Adams' names for the sections is better than to
designate them merely by numbers. The grouping of the species by these two authorities is in many respects widely different; I have carefully compared them together, and with the shells, and shall attempt to improve upon both.

The Mitras have been monographed by Küster, Kiener, Reeve and Sowerby, the work of the latter being by far the most recent and complete, embracing nearly five hundred species. The "Thesaurus" was published in 1874, and since that date some additional species have been described; there are also a number of species obscurely published or which, for some other cause, appear to have escaped Mr. Sowerby's attention, so that in all the number of specific names which might nominally hold place in the present work would not be far from six hundred and fifty. The vast increase of our knowledge of specific variation developed during the past few years has, however, induced a decidedly more conservative, and it is believed, more philosophic, view of species, than that prevalent only six years ago, so that I have been enabled to effect a vast reduction in the specific ranks-a reduction which will probably become still greater as additional material is given to the student for comparison.

When irritated, some species of Mitra emit a purple fluid having a nauseous odor.

The genus is at present tropical and subtropical in distribution, but few small species being found in the colder latitudes. Bathymetrically they range from low-water to eighty fathoms, the smaller species being usually found along shore-lines.

About a hundred fossil species have been described, commencing with the cretaceous period. M. Grœenlandica, at present confined to Arctic waters, is found associated with M. cornea, a somewhat similar Mediterranean species in the latest British Tertiaries. The Mitridæ inhabit various stations; many being strictly reef shells, where they lurk in holes and crevices under sea-weed, but are most generally concealed under stones and blocks of dead coral. Others burrow in sand or sandy mud at various depths; some delight in stony ground inside the reefs, where they remain concealed under clumps of coral during the day, and like the sand species are nocturnal in their habits.

Mr. Andrew Garrett* suggests that the Polynesian shells which have been described by H. and A. Adams under the name of Thala, as a subgenus of Mitra, are more nearly related to Pleurotomidæ, the so-called folds of the columella not being true plaits, but simply more or less irregular transverse rugosities precisely of the same character as those upon certain species of Clathurella and Cithara of that family. Two species of true Mitræ have, however, been referred to Thala, and I have preferred to retain the genus in the Mitridæ for the present, upon duly weighing the value of its known characteristics. Mr. Pease's genus Mitropsis is excluded, being a member of the family Columbellidæ. Finally, Mitromorpha, A. Ad., appears to be more nearly related to the Pleurotomidæ, several of its species having been described as Daphnellæ。

Synopsis of Genera:

MITRA, Lamarck. Shell fusiform, thick; spire elevated; aperture small, narrow, notched in front; columella transversely, somewhat obliquely plicate; outer lip thick, smooth within, not variced externally. Dentition, Pl. 2, figs. 9, 10, 11.
[Volutomitra, Gray. Separated from Mitrd on account of the peculiar dentition of an Arctic species, V. Grcenlandica. Twenty additional species have been included in the genus by H. and A. Adams; they are all Mitras in appearance, and the dentition of none has been examined except that of \dot{V} : cornea, which decidedly differs from Granlandica, and is of the regular Mitra-type. Dentition of V. Gronlandica. Pl. 2, fig. 8.]

THALA, H. and A. Adams. Small, narrowly fusiform, scalptured or smooth, last whorl attenuated and recurved below; outer lip thickened, straight or incurved in the middle, lirate internally, with a slight sinus at the hind part. Dentition unknown.
[Strigatella, Swainson. Shell ovate or Columbelliform, solid; spire acuminate; whorls smooth or transversely striated, usually covered with an epidermis; inner lip with a callosity at the hind part; outer lip usually thickened in the middle, and internally grooved or dentate. Dentitiou unknown.]

[^16]ZIERLIANA, Gray. Ovate or Columbelliform, solid; spire short, acute. last whorl tumid at the hind part; columella with a posterior callosity; outer lip thick, flattened, lirate-dentate within; a sinus or short canal posteriorly. Dentition, Pl. 2, fig. 12.

MITROIDEA, Pease. Shell mitriform, smooth, spire acuminated; aperture narrow, linear; columella with numerous, small oblique plaits, narrowed and turned to the left at the base; outer lip thickened, peculiarly truncated and recurved at the base. Dentition similar to that of Mitra.-Macdonald.
DIBAPHUS, Philippi. Subcylindrical, covered with a thin epidermis, transversely sculptured; spire acute; aperture narrow, linear; columella without plaits, narrowed and turned to the left at base; outer lip thickened, rectilinear, abruptly truncated and recurved at the base. Dentition unknown. The unarmed columella is the principal and perhaps insufficient distinction for this genus from Mitroidea.
TURRICULA, Klein. Shell elongated, turreted. longitudinally plicately ribbed; spire acuminated; aperture narrow; columella with numerous plaits; outer lip internally striated. Dentition, Pl. 2, fig. 13.
CYLINDRA, Schumacher. Shell oliviform, subcylindrical: spire conical; aperture linear; columella straight, with several oblique anterior plaits; outer lip thickened, smooth within. Dentition, Pl. 2, fig. 15.
IMBRICARIA. Schumacher. Shell coniform, often covered with an epidermis; spire depressed conical, apex mucronate; aperture linear; columella straight, with numerous transverse imbricated plaits in the middle; outer lip thickened.

Fossil Genera.

LAPPARIA, Conrad. Uncharacterized.
L. dumosa, Conrad. Pl. 3, fig. 43. Eocene, Jackson, Miss. FUSIMITRA, Conrad. Uncharacterized.
F. cellulifera, Conrad. Pl. 3, fig. 40. Oligocene, Vicksburg, Miss. CONOMITRA, Conrad. Uncharacterized.
C. Fusordes, Lea. Pl. 3, fig. 41. Eocene, Claiborne, Ala.
(ienus MITRA, Lam.
The animal of Mitra has in general a very short foot, straight and continuous from side to side in some species, but in others notched and produced, with a thickened anterior margin. It is commonly narrow and rounded, or acuminated posteriorly, and it often bears a very small semitransparent horny operculum, in
some instances scarcely visible. The siphon is mostly directed forward, and the somewhat short, tapering tentacles have the eyes either situated about half-way or they are placed on the outer side of the base. The head is long and very flat, and the tentacles are very close together at their bases. The proboscis is rarely exserted when they are crawling and lively, but as they become languid after capture it becomes distended with water and protrudes considerably.

The Philippine Islands would seem to harbor the greatest number of these elegant and beautiful shells, although a great many species were obtained by Mr. Cuming in tropical America. They appear to be chiefly confined to the equatorial regions, scarcely any being natives of cold climates. The transversely ribbed species are frequently found in very deep water, and many have been dredged in twenty and thirty fathoms at Sooloo and in the China Sea.

Although M. Quoy has rightly termed the Mitra an "animal apathique," the small longitudinally ribbed species crawl about pretty briskly over the smooth sand among the low coral islands. The Mitra episcopalis, probably on account of the small size of its locomotive disk, and the ponderous nature of its long shell, is, however, a very sluggish mollusk. Some of the Auriculashaped Mitres that live among the Philippines, in the shallow pools left by the receding tide, crawl about the stones out of the water, in company with Planaxis and Quoyia. The Mitres, like many of the large Volutes, prefer, however, to associate together, and may be seen in dozens crawling over the sandy mud-flats in shallow water, being most active just as the floodtide makes. When the tide recedes, they bury themselves superficially in the yielding soil, and are with difficulty discovered. Some of the small-ribbed species cover themselves entirely with the sandy mud, and in that disguised condition travel about with comparative security.*

Among the Bashu group, and more particularly on the island of Ibayat, the natives form very elegant and commodious pipes from different species of shells, the columella and septa of the convolutions being broken down, and a short ebony stem

[^17]inserted into a hole at the apex of "the spire. A pipe of this manufacture, in my possession, is formed from the Mitra papalis, and I have seen others made out of Mitra episcopalis and of Cerithium and Terebra.*

Typical Group.

Mitriform, thick, spire elevated, apex sharp; mouth rather small and narrow, notched in front; columella obliquely plicate ; lip rather thick, smooth within.

> * Edge of lip crenated, whorls generally spirally grooved and punctured.
M. eriscopalis, Linn. Pl. 32, fig. 1.

White, with somewhat quadrangular bright red spots, arranged in revolving series. Length, $2 \cdot 5-6$ inches.

> Ceylon, Philippines, Polynesia.
M. papalis, Linn. Pl. 32, fig. 2.

White, spotted and blotched with deep scarlet in revolving series. Length, $3-4 \cdot 5$ inches.

Kingsmill, Caroline and Paumotu Isles.
Much more rare in Polynesia than M. episcopalis, according to Mr. Andrew Garrett.
M. pontificalis, Lam. Pl. 32, fig. 3.

White, with oblong or square red spots in revolving series.
Length, 2-3 inches. Polynesia.
Animal creamy white, with opaque white dots. Sometimes the shell is encircled with impressed lines, which are deeply punctured at intervals.
M. cardinalis, Gmelin. Pl. 32, fig. 4.

Whitish, encircled by rows of chestnut-bay spots.
Length, $1 \cdot 75-2 \cdot 5$ inches.

> Oeylon, Polynesia.

Usually found in shallow water inside the reefs. Animal uniform creamy white.

[^18]M. Lamarckit, Deshayes. Pl. 32, fig. 5.

A somewhat narrower shell than M. cardinalis, with fewer and larger spots, which are longitudinally oblong.

Length, 2-2.25 inches.
Habitat unknown.
It is possibly a variety of cardinalis in which approximate rows of spots have coalesced into larger ones.
M. versicolor, Martyn. Pl. 32, figs. 6-8.

Yellowish or brownish white, variegated with chestnut-brown blotches and spots, and numerous small white spots edged with brown. Length, $2 \cdot 25$ inches.

Red Sea, Zanzibar, Madagascar, Polynesia.
The surface is usually ornamented with revolving incised lines bearing punctures. Several species have been manufactured out of slight variations of color and form ; they can scarcely be designated as varieties. Among these are M. nebulosa, Swains. teste Reeve (fig. 8); it is more clouded than the type, and without the white spots ; M. nubila, Gmel., in which the spots become longitudinal, and narrowed into stripes; M. erronea, Dohrn, proposed for the shell figured by Kiener as M. versicolor (fig. 7) ; and Reeve's figure of M. nebulosa (fig. 8), the true nebulosa being, according to Dohrn, figured by Reeve as M. infecta, drawn, he says, from the original type of nebulosa in the Cumingian Collection. To add to the confusion, Arthur Adams, at an earlier date, decided also that Reeve's nebulosa was not that species, and accordingly renamed it M. propinqua. Finally, the shell which Sowerby figures as M. propinqua, A. Ad., is an entirely distinct species.
M. propinqua, Sowerby. Pl. 33, fig. 11.

White, with faded chocolate bands and longitudinal brown strigations. Length, 2.8 inches.

Habitat unknown.

Figured by Sowerby for M. propinqua, A. Adams, but no such species was ever described, Mr. Adams having given that name to Mr. Reeve's M. nebulosa, which he considered different from Swainson's. It seems to be a very distinct species.
M. variegata, Reeve. Pl. 33, figs. 9, 10, 12, $13,14$.

Whitish, clouded with pale chestnut. Length, $1 \cdot 25-1 \cdot 75$ inches. Red Sea, Mauritius, Philippines.
The type had an unusually depressed spire, for the species, accompanied by a slight angulation on the superior portion of the body-whorl. I have before me a specimen exhibiting similar divergence from the normal grawth, but not quite so marked. In young, fresh specimens the spire is almost clathrate, the sutures especially being closely plicated; when the shell becomes adult, and somewhat worn, this longitudinal sculpture mostly disappears. It is usually a heavier shell, but comes close enough to M. versicolor to give rise to doults of its distinctness; on the other hand it approaches certain species in which the edge of the lip is not crenulate, and as it is a certain fact that this character also is frequently obliterated with age, there is strong probability that eventually several other synonyms will be added, besides those which I herewith subjoin: these are M. nympha, Reeve (fig. 12), being the normal growth, M. Rossix, Reeve (fig. 14), which is a full-grown and somewhat worn specimen, and probably M. lacunosa, Reeve (fig. 13). If the latter is the same species, it will have priority over M. variegata.
M. sanguinolenta, Lam. Pl. 33, fig. 15.

Shell encircled by punctate impressed striæ. Yellowish red, strigate with chestnut and spotted with white.

Length, $1 \cdot 25$ inches.

Habitat unknown.

This species is known to conchologists only through the type figured by Kiener ; Lamarck himself, according to his synonymy, appears to have confounded it with M. versicolor.
M. eximia, A. Adams. Pl. 33, figs. 16, 17.

White, clouded with chestnut. Length, 1 inch.

> Mauritius, Ceylon.

Said to be somewhat clathrate by the growth-lines. Is very probably only a stunted specimen of M. variegata. M. lacunosa, Sowb., not Reeve (fig. 17), is a more advanced stage of growth; it is said to come from Ceylon.
M. cerlulea, Reeve. Pl. 33, fig. 18.

Whitish, clouded with bluish gray, with a few chestnut spots or strigations arranged in two revolving series, and below the suture besides; orange-brown within the aperture.

Length, 1.5 inches.
Viti Islands. - Garrett.
Highly colored as is this species, its form and sculpture are so like M. variegata, that I doubt its distinctness.
M. Mauritiana, Sowb. Pl. 33, fig. 19.

Cancellated by pitted grooves and longitudinal ridges; white, with two broad bands of interrupted brown spots.

Length, 1.5 inches.

Mauritius.

M. incisa, Ad. and Reeve. Pl. 33, figs. 20, 21.

Whitish, variously clouded with purplish brown, sometimes forming two broad bands, variegated sometimes with small brown spots and whitish fine zigzag lines. Length, 22 mill.

China, Andaman Islands.
Sowerby considers M. Mariæ, A. Ad. (fig. 21), a synonym, but Mr. E. A. Smith attempts to separate it on account of slight differences of form. I am satisfied that they are identical, and suspect that they are merely the young of a form of M. variegata.
M. serpentina, Lam. Pl. 33, fig. 22.

White, indistinctly stained and zoned with orange, longitudinally painted with waved brown lines shadowed with white; aperture yellowish. Length, $1 \cdot 5-2 \cdot 25$ inches.

Philippines, Polynesia.
M. Deshayes remarks that M. variegata, Gmel., having priority of publication, should be used in place of serpentina; the latter has, however, become so well established that Reeve has used the former name for another recognized species, and under the circumstances it is better not to be too strenuous for the maintenance of individual rights.
M. Marquesana, A. Ad. Pl. 33, fig. 23.

Color of M. serpentina, but finer sculptire, and much smaller size. Length, 23 mill.

Marquesas Islands.
Possibly not distinct from M. serpentina.
M. Bovei, Kiener. Pl. 33, fig, 24.

Turriculated, coronated with small tubercles, and encircled with close-set punctured striæ. Ashy white, with two broad bands of ashy violet, flaked with numerous small, snow-white spots ; brownish within. Length, $2-2 \cdot 25$ inches.

Red Sea.
In young specimens the tubercles are said to be scarcely apparent, and it may be doubted whether M. cærulea, Reeve, is not a non-coronate form of the same species, the painting being very similar.
M. puncticulata, Lam. Pl. 33, fig. 25.

Whitish, tessellated with yellow, with two broad, irregular orange bands, upon which are longitudinal chocolate strigations; aperture yellowish within. Whorls coronated, with closely punctured revolving incised lines, crossed by rugose lines of growth. Length, $1 \cdot 5-1 \cdot 75$ inches.

Philippines.
M. Sophie, Crosse. Pl. 33, fig. 26.

Yellowish brown, whorls tuberculated at the angle of the shoulder, with one or two rows of tubercles below it.

Length, 43 mill.
New Caledonia.
The columella has six plications, whilst that of M. puncticulata has but four or five.
M. cratitia, A. Ad. Pl. 33, fig. 27.

Pale yellowish white. Length, $1 \cdot 6$ inches.
South Africa
I am not acquainted with this species.

* * Outer lip not crenulated on its edge, whorls seldom grooved or punctured.
M. floccata, Reeve. Pl. 34, fig. 29.

Yellowish bay-color, longitudinally flaked with white, lip crenated near its base. Length, 2 inches.

Habitat unknown.
Described from a unique specimen in the late Cumingian cabinet. The lip is said to be crenulated near its base, and possibly finer examples may be crenulated throughout. It is a doubtful species, too close to M. variegata, Reeve.
M. chalybeia, Reeve. PI. 34, fig. 30.

Whorls smooth, grooved towards the base ; rudely very finely crenulated next the sutures; longitudinally streaked with white and ashy blue, transversely indistinctly banded, encircled throughout with equidistant reddish brown lines; columella reddish orange, four-plaited. Length, 2 inches.

Habitat unknowon.
Only one specimen known, in the Cumingian collection. Probably an individual variation from some well-known type, such as M. variegata.
M. limata, Reeve. Pl. 34, fig. 33.

Shell rather thick, polished, transversely grooved throughout, grooves punctured; whitish, encircled by a pale white-flaked band. Length, 1 inch.

Isl. of Bohol, Philippines.
Probably a variety of M. variegata, Reeve.
M. Guttata, Swainson. Pl. 34, fig. 31.

Yellowish brown, longitudinally mottled with white.
Length, 2 inches.
Ceylon.
M. Fergusoni, Sowb. Pl. 34, fig. 32.

More volute-shaped than any other species ; it is smooth, solid, pale fawn, with fine articulated lines and a little cloud of chestnut; spire rather short, obtuse; aperture large, with smooth outer lip. Length, $1 \cdot 75$ inches.

Panama.

I am not acquainted with this species. The authority for the locality is not given.
M. Florida, Gould. Pl. 34, fig. 35.

Whitish, clouded with yellowish brown, with numerous revolving series of small brown spots; pinkish white within the aperture. Length, 1.75 inches.

Dr. Gould's type, received from Dr. Edmund Ravenel, of Charleston, S. C., is said to have come from Florida; another specimen in the Jay Collection has the habitat Philippine Islands. Its characters are intermediate between Mitra and Voluta. My
figure is from Gould's type, and I can add nothing to the above meagre information concerning this curious form.
M. Desetangsif, Kiener. Pl. 34, fig. 34.

More ventricose and thicker than M. variegata, less strongly cancellated on the upper portion of the two last whorls; with three zones of spots upon the last whorl, one of them sutural, and the other two separated by a wide very light reddish-brown band. Length, 29 mill.

Mauritius.
Kiener's description and my figure (copied) are from a dead and bleached specimen. Liénard gives the above particulars of coloration, and acknowledgesits close relationship to M.variegata -from which, nevertheless he distinguishes it.
M. cancellata, Kiener. Pl. 34, fig. 36.

Whitish, cancellated and pitted. Length, $1 \cdot 3$ inches. Habitat unknozon.
This shell has been overlooked by subsequent monographers; I can make nothing out of it; it is evidently in bad condition, and only a single specimen is known, in the Massena Collection. There is a M. cancellata, Swainson, a very different species.
M. Hamillei, Petit. Pl. 34, fig. 37.

Brown, marbled and tinted with chestnut and olivaceous, finely cancellated by revolving incised lines and close growthlines. Length, $1 \cdot 5$ inches.

> Cape Verd Islands.

Distinguished by its compressed cylindrical form. A species from Moreton Bay sent to the Philadelphia Academy as M. cylindrica, Reeve, by Dr. J. C. Cox, of Sydney, N. S. W., appears to be identical with the above.
M. Senegalensis, Reeve. Pl. 34, fig. 38.

Livid olive, longitudinally ornamented with a very few white flames; aperture livid chestnut. Length, $1 \cdot 3$ inches.

Senegal.
M. glabra, Swainson. Pl. 34, fig. 42.

Smooth, polished, with slight incised revolving lines; base truncated and a little recurved. Orange-red, encircled by fine
brown, hair-like lines; deep orange within the aperture ; epidermis smooth, blackish, seldom present upon cabinet specimens.

Length, 2-4 inches.
So. and W. Australia.
Specimens are not usually over two inches in length. M. buccinata, Quoy, described ten years later, is identical.
M. Declivis, Reeve. Pl. 34, figs. 39, 41.

Whorls smooth, with very faintly impressed revolving lines, angularly bent around the upper part; ashy flesh to orangecolor. Length, 2 inches.

Australia.

The locality is given by Sowerby ; it was unknown to Reeve, whose specimen was in the Norris Collection. The epidermis is said to be very black, and there is no trace of the brown revolving lines of M. glabra; still I strongly suspect that this will prove to be a deformed specimen of that.species.
M. fulgurita, Reeve. Pl. 34, fig. 43.

Revolving striæ closely punctured; yellowish bay, slightly banded with pale longitudinal streaks. Length, 2 inches.

Habitat unknoran:
A common enough but characteristic species, of which excellent specimens are before me.
M inquinata, Reeve. Pl. 34, figs. 40, 44.
Whorls encircled by distant, punctate, impressed lines; whitish, tessellated longitudinally with chestnut-brown, sometimes broken up into quadrangular spots by the revolving sculpture. Length, 2-3 inches.

Japan (M. Wrighti).
Described from a single specimen without locality. It is difficult to point out distinctive characters from the last species, and I suspect that they are identical ; M. Wrighti, Crosse (fig. 44), is evidently the same species as inquinata.
M. Barbadensis, Gmelin. Pl. 35, figs. $45,46,48,49$.

Yellowish brown, polished, sometimes faintly, narrowly zoned with chestnut, flaked here and there with white.

Length, 1-1.75 inches.
M. tessellata, Kiener (fig. 48), is a short shell of this species,
and M. picta, Reeve (fig. 49), is also a synonym; Sowerby erroneously refers the latter to the Cape of Good Hope.
M. simplex, Dunker. Pl. 35, fig. 50.

Smooth, slightly striate at base; chestnut, sometimes sparsely flecked with white. Length, 9 mill.

Cape of Good Hope.
Much smaller and broader than M. Barbadensis, which it appears to resemble.
M. variabilis, Reeve. Pl. 35, figs. 47, 56.

Yellowish brown, sometimes narrowly lined with chestnut, tessellated with white around the suture and periphery, the latter sometimes confluent into an irregular broad white band; yellowish brown within the aperture. Length, $1 \cdot 5-1 \cdot 75$ inches. Torres Straits, Australia.
Fig. 56 represents Reeve's M. cylindracea.
M. rubiginosa, Reeve. Pl. 35, fig. 54.

White, with large spots or tessellations of yellowish brown ; closely punctured in revolving lines. Length, 28-40 mill.

Isl. Ticao, Philippines.
M. cancellata, Swainson. Pl. 35, fig. 55.

Sutures crenulated, whorls cancellated by revolving impressed lines and longitudinal raised striæ. Light yellowish brown, longitudinally streaked with white, with three rather indistinct bands of interrupted orange spots. Length, 1.75 inches.

Habitat unknown.
Described from a unique Cumingian specimen.
M. ustulata, Reeve. Pl. 35, fig. 51.

Whitish, maculated with chestnut so as to form interrupted bands. Length, $1-1 \cdot 7$ inches.

Viti Islands.-Garrett.
M. ianobilis, Reeve. Pl. 35, fig. 52.

Whitish, with interrupted bands of chestnut spots.
Length, 1.5 inches.
Philippines.
Broader than M. ustulata, the revolving sculpture more distinct.
M. contracta, Swainson. Pl. 35, fig. 53.

Yellowish white, clouded with chestnut, engraved with revolving striæ. Length, $1-1 \cdot 5$ inches.

Red Sea; Philippines; Polynesia.
The peculiar form of this species will at once distinguish it from its neighbors. It is narrower and without the elevated ridges of M. chrysostoma, and approaches the genus Mitroidea in shape. It has been usually known as M. abbatis, Chemn., but he was not a binomial author, so that I have preferred Swainson's later name.
M. latruncularia, Reeve. Pl. 35, fig. 59.

Whitish, obscurely banded, and tessellated with chestnut.
Length, $1-1 \cdot 25$ inches.
Cape of Good Hope (Sowerby); Viti Isles (Garrett).
M. solida, Reeve. Pl. 35, fig. 57.

Fulvous bay-color, with irregular white spots in a series upon the periphery, and another at the suture. Length, 18 inches. Australia.
M. pigra, A. Ad. Pl. 35, figs. 58, 60.

Olive-brown, tessellated with white around the suture ; aperture brown within. Length, 1.5 inches.

Australia.

M. caliginosa, Reeve. Pl. 35, fig. 61.

Whitish, covered with a black epidermis. Length, $1 \cdot 4$ inches. Habitat unknown.
M. sacerdotalis, A. Ad. Pl. 35, fig. 62.

Chestnut-brown, with a light band at the suture and another on the periphery, and longitudinal dark chestnut streaks.

Length, 3 inches.
Australia.
M. Chinensis, Gray. Pl. 36, figs. 65, 66.

Pale brown under a brownish black, smooth epidermis ; upper whorls and base of body-whorl with revolving striæ.

Length, 2.25-3.5 inches.
China.
Sowerby's figure of this species (fig. 65) is much larger than the type, and differs in having some obscure darker longitudinal streaks and a light sutural line; it is not very different from \boldsymbol{M} sacerdotalis. M. obliqua, Lesson, an unfigured species, is com-
pared by him with Chinensis; its distinctive characters do not appear to be important.
M. strigata, Swainson. Pl. 35, fig. 63.

Smooth, reddish brown, with lighter longitudinal streaks.
Length, 2 inches.

Habitat unknown.

M. Rosettef, Angas. Pl. 35, fig. 64.

Deep orange-brown, longitudinally strigate with white; with distant impressed revolving striæ. Length, $1 \cdot 25$ inches.

So. Australia.
The whorls are flatter than in the preceding species-with which nevertheless it may be synonymous.
M. Swainsoni, Brod. Pl. 36, fig. 68.

Turreted, with rather deep sutures, smooth, striated towards the base ; brownish or dirty white covered with a blackish brown epidermis. Length, $3 \cdot 4-3 \cdot 6$ inches.

Monte Christi, W. Columbia; sandy mud, 7 fathoms.
Much larger than the next species, but may prove to be identical with it; the shoulder of the whorls, amounting to a deformity, is exactly imitated in specimens of M. maura before me.
M. maura, Swainson. Pl. 36, fig. 67.

Dirty white or brown, with revolving striæ; covered by a smooth black or blackish brown epidermis; aperture light chocolate. Length, 1-2•25 inches.

Peru, northwards to San Diego, Cal.
This species attains its maximum development upon the Peruvian Coast, where it is plentiful, in fissures of rocks at low water ; it is much smaller in the waters of California. Gray's name, M. orientalis, has priority, but is not adopted becanse geographically misleading. It is the M. Chilensis of Kiener. According to d'Orbigny the animal has a narrow foot, is pure white, with black eyes.
M. induta, Sowb. Pl. 36, fig. 70.

Very obscurely striated, but strongly grooved towards the base; outer lip thin, arched, very minutely crenulated, smooth within ; epidermis blackish brown. Length, 33 mill.

Habitat unknown.
A doubtful species; apparently founded on a single specimen.
M. Quoyr, Desh. Pl. 36, fig. 71.

Shell smooth, with faint impressed revolving striæ; epidermis black: Length, 20 mill.

New Ireland.

This species, described and figured by Quoy under the name of M. nigra, is very different from the previously described M. nigra of Chemnitz, and is scarcely equivalent to that figured by Reeve ; it is, then, an unidentified species. I give a copy of one of the original figures.
M. abbreviata, Sowb. Pl. 36, fig. 69.

Smooth, faintly striate at base ; epidermis black.
Length, 28 mill.
Nero Zealand.
Name proposed for M. nigra, Reeve (not Chemn. nor Quoy). M. nitida, A. Ad. Pl. 36, fig. 73.

Smooth, chocolate-brown, with a few impressed revolving lines. Length, $\cdot 5$ inch.

Habitat unknown.
Probably a worn, juvenile specimen.
M. infrafasciata, Souverbie. Pl. 36, fig. 72.

Smooth, slightly striate near the base; brownish black, with a yellowish band on the periphery, visible within the brown aperture. Length, 8-9 mill.

New Caledonia.
Two specimens obtained.
M. fusca, Swainson. Pl. 36, fig. 75.

Smooth, very finely striated with punctures near the apex; slightly striate at the base, body-whorl slightly contracted in the middle; epidermis very dark brown, sometimes lighter beneath the sutures. Length, 1-1.75 inches.

> Madeira, Atlantic Coast of Portugal and So. France.
M. Adansonii, Phil., described as from Gabon, in Guinea, W. Africa, appears to agree fairly with this species; it has not been figured nor alluded to by the monographers.
M. cornicula, Linn. Pl. 36, figs. 74, 76-81.

Horny brown ; smooth, impressed striæ at the base.
Length, 1-1.25 inches.
Mediterranean Sea; Atlantic Coast of N. Africa.

Considerable confusion exists in the nomenclature of this species, the names of cornicula and cornea having been rather loosely applied by different authors; several of the most recent investigators have applied to it that of M. lutescens, Lam., as a name about which there can be no doubt ; I agree with Deshayes, Reeve, etc., that the name given by Linnæus may be fitly preserved for the species. The form and coloration are certainly variable-how variable, I am not able to determine. The following, among the large number of synonyms, have been variously separated as varieties and even as species, and there are not wanting connecting forms even with so typically diverse a species as M. ebenus.
M. Philippiana, Forbes (fig. 77), is considered by Weinkauff a minor form of var. cornea, Lam. ; it appears to me to be merely a young shell without distinctive features. A curious colorvariety is that figured by Kiener as M. cornicularis, Lam. (fig. 76). M. graja, Reeve (fig. 78), is from the Isle of Paros, Grecian Archipelago ; it is a solid shell and appears to connect with

Var. lactea, Lam. (fig. 79).
Shell smooth, solid, white ; with fine revolving striæ.
Var. plumbea, Reeve (fig. 80).
Mitra plumbea, Lam., is usually referred to the smooth form of M. ebenus, Linn., but the shell which Reeve and Sowerby have figured for plumbea is very different from that species. It is nearer to cornicula, but may be entirely distinct, being a larger, stouter shell, chestnut-brown covered partially by a plum-like bloom.

Var. Schreteri, Desh. (fig. 81).
Pale horny brown, marked with white next the sutures and with an irregular central light band. Length, $1-1 \cdot 25$ inches.

Weinkauff* thinks this a West Indian species, but no such form is known there. Deshayes considers it fully equivalent to M. cornicularis, Lam. It connects closely with M. Kieneri, Sowb.

[^19]M. insolata, Sowb. Pl. 36, fig. 82.

More pyramidal, and the whorls not gibbous at the suture as in M. lactea (= lutescens, var.), White. Length, $1 \cdot 1$ inches.

Habitat unknown.
An unsatisfactory species.
M. petrosa, Sowb. Pl. 37, fig. 99.

Thick, white, with slight revolving striæ. Length, $1 \cdot 5$ inches. Habitat unknown.
Described from a single specimen in the late Taylor Collection.
M. Kieneri, Sowb. Pl. 36, fig. 86.

Plum-color, mottled or streaked with dark chestnut, with a narrow white band above the periphery, and visible on the spire.

Length, $1 \cdot 25$ inches.
Sowerby describes and figures this from a shell which he says agrees with Kiener's illustration of M. ebenus, and from which species it is perfectly distinct. It appears to me to hold about the same relation to M. ebenus that Schroeteri does to cornicula, and to be as closely related also to Schroeteri; in fact, it seems to be a connecting form between cornicula and ebenus.
M. Grenlandica, Gray. Pl. 36, fig. 83.

Whitish, under a corneous epidermis. Length, $\cdot 5-85$ inch. Greenland.
This is the type of the genus Volutomitra, Gray, separated from Mitra on account of possessing an entirely different lingual dentition. If it be recognized as a distinct genus on this account, it must stand alone, as the twenty species referred to the genus by H . and A. Adams are indistinguishable from Mitra by the shell, and their dentition is entirely unknown.
M. ebenus, Lam. Pl. 36, figs. 84, 85, 87, 88 ; Pl. 37, figs. 89, 90.

Smooth, shining, chocolate-brown; with a narrow yellowish line upon the upper part of the body-whorl, visible on the spire.

Length, $\cdot 75-1$ inch.
Mediterranean Nea ; North Atlantic Coast of Africa.
Var. costata has the shell wrinkled longitudinally, a well-marked example being M. Defrancii, Payr. (fig. 88); all intermediate stages occur to the smooth form.

Among the synonyms are M. cornicularis, Costa, not Lam.; M. cornicula, Risso, not Linn.; M. plumbea, Lam., not Reeve or Sowb., and M. plicatula and pyramidella, Brocchi-two fossil forms.
M. livida, Reeve (fig. 89), habitat unknown, and M. chelonia, Reeve (fig. 90), said to come from the Island of Burias, Philippines, are both referred to M. ebenus by Sowerby.
M. patula, Reeve. Pl. 37, fig. 91.

Light corneous, sometimes with a narrow, superior white band; surface slightly folded longitudinally, or nearly smooth.

Length, 5 inch.
Cape of Good Hope.
M. Weldir, Tenison-Woods.

Banded orange and dark brown ; translucent, with faint ribs on the upper whorls. Length, 10 mill.

Tasmania.

This species has not been figured, and I know nothing concerning it.
M. capensis, Dunker. Pl. 37, figs. 95, 92, 94.

Yellowish or orange-brown, banded with chocolate on the periphery, sometimes with a second band beneath the suture and chocolate-tinged at the base.

Length, $\cdot 6$ inch.

> Natal, South Africa.
M. vincta (fig. 94), and M. rufocincta (fig. 92), of A. Adams, appear to be synonymous.
M. PICA, Reeve. Pl. 37, fig. 96.

Smooth, dark chocolate, tinged with white below the sutures and at the base. Length, $\cdot 7$ inch.

Cape of Good Hope.
M. Lachryma, Reeve. Pl. 37, fig. 93.

Thin, whorls finely longitudinally ribbed at the upper part, crossed by revolving obsolete raised striæ; white, with an orange-brown blotch at the back.

Habitat unknown.

The several foregoing species, from the Cape of Good Hope and its vicinity, are all known only from the figured types. M. lachryma may well be identical with M. pica.
M. funerea, Reeve. Pl. 37, figs. 100-103.

Spire-whorls well rounded, closely longitudinally sculptured, decussated by revolving lines; upper portion of body-whorl similarly sculptured, middle smooth or nearly so, base with close revolving striæ. Chocolate-brown, with a narrow yellow band below the shoulder of the whorl. Length, $1-1 \cdot 25$ inches.

Isle of Luzon, Philippines; six fathoms, sandy mud.
Possibly M. chelonia, Reeve (fig. 90), referred to M. ebenus, may be a smooth variety of this species. That it varies considerably is shown by Sowerby's figure of it (fig. 101). M. bilineata, Reeve (fig. 102), and M. analogica, Reeve, not Sowerby (fig. 103), both appear to be younger individuals of this species.
M. Australis, Swainson. Pl. 37, figs. 104, 105.

Smooth, polished ; brown, with a broad yellowish band stained with chestnut. Length, $1 \cdot 25$ inches.

Van Dieman's Land; Australia.
This shell approaches very closely to M. Kieneri, Sowb. If Quoy's M. melaleuca (fig. 105) is a synonym, as decided by Reeve and Sowerby, then it must be the normal form of the species, and Australis a stunted, scalariform monstrosity of it.
M. Lamberti, Souverbie. Pl. 37, fig. 106.

Whorls encircled by punctate, impressed striæ; chestnutbrown, with a narrow yellowish band on the upper part.

Length, 1 inch.
New Caledonia.
M. polita, Reeve. Pl. 37, fig. 107.

Upper part of the spire longitudinally plicate, body-whorl with revolving striæ at base, otherwise smooth and polished; chestnut or ashy brown, with a narrow light band.

Length, $1 \cdot 25-1 \cdot 75$ inches.
Philippines, Ceylon.
M. callosa, Reeve. Pl. 37, fig. 108.

Smooth, striate towards the base; leaden brown, variegated, spotted or obscurely banded with brown. Length, $1 \cdot 1$ inches.

Philippines.
Looks like a" telescoped" condition of M. polita, described above.
M. effusa, Swainson. Pl. 37, fig. 109.

Uniform dark chestnut, encircled with fine raised ridges.
Length, $1 \cdot 25$ inches,
Guacomayo, Central America; Gallapagos 1s.
M. testacea, Swainson. Pl. 37, figs. 110-112.

Chestnut-brown, with obsolete or deep-cut revolving lines at the base. Length, $1 \cdot 25$ inches.

Kingsmill, Cook's, Society and Paumotus Is.
That M. Bulimoides, Reeve (fig. 111), and M. badia, Reeve (fig. 112), are both synonyms, I have little doubt; they are described without locality.
M. rhodia, Reeve. Pl. 37, fig. 114.

Smooth, polished, with very fine, obsolete spiral striæ, becoming more distinct towards the base; dark olive or chestnut-brown. Length, 1 inch.

Habitat unknown.

More narrowly acuminated than the preceding species; of which nevertheless it may be a variety.
M. castanea, A. Ad. Pl. 37, fig. 115.

Chestnut-color; transversely punctate-striate. Length, $\cdot 9$ inch. Habitat unknovon.
"This species most nearly resembles M. badia, Reeve, but the whorls are rounded, and it differs in other particulars." The white spots on Sowerby's figure (the only illustration of the species) are not described :-do they represent punctations?
M. melaniana, Lam. Pl. 37, figs. 118, 119.

Dark olive-brown, or dark chestnut, smooth and polished, usually with small white spots below the suture.

Length, 2-2.5 inches.
Port Jackson, Australia.
Sowerby and Reeve call this species M. nigra, Chemn., but the figures in that scarcely quotable author do not indicate this shell. Reeve gives Isl. of Annaa, Pacific Ocean, as locality, and Lamarck quotes Guinea, India and Greenland!-all errors. Something like M. Chinensis, Gray, but differs in its more flattened whorls. M. digna, A. Ad. (fig. 119), is synonymous.
M. scita, Tenison-Woods.

Shell small, ovate, shining, entirely pure deep brown; spire obtusely rounded, apex mamillated, whorls six, smooth, tumid, suture finely impressed; aperture rather wide, brown within, lirate, columella triplicate. Length, 8 mill.

Tasmania.
Very distinct from its size, and intense uniform coloring, though belonging to the series of which M. badia (=testacea) is a large representative. The above is the original description; not figured.
M. Teresif, Tenison-Woods.

Shell oblong-ovate, somewhat thin, shiny, subventricose, brown, with two whitish bands; spire somewhat short, scarcely acute, whorls five, smooth, tumid, shining conspicuously, finely canaliculate at the suture, aperture ovate, bifasciate within, columella triplicate. Length, 7-14 mill.

Tasmania.
The coloring seems very persistent, and therefore the species is not easily mistaken. I confess, however, that if this species could lose the white bands, and were to have the mouth lirate within, I should regard it as a variety of M. scita. I think the liræ are not persistent in the latter, and therefore the shell may be the same. The above is the original description; unfigured.
M. тypha, Reeve. Pl. 37, figs. 113, 116.

Encircled by fine striæ; horny, transparent, with a broad, rusty brown band. Length, ${ }^{6} 6$ inch.

Viti 1sles; I. of Bohol, Philippines, under stones at low water.
M. peculiaris, Reeve (fig. 116), appears to be a shouldered monstrosity of this species.
M. flexilabris, Sowb. Pl. 37, fig. 98.

Smooth, with faint spiral striæ; yellow, with two orangebrown bands. Length, 13 mill.

Mauritius.
More cylindrical and narrower than M. typha, Reeve, and differently banded, yet I doubt its distinctness from that species.

TURBINELLIDE.
plate 19.

64 .
71.

PLATE 26

PLATE 29.

M. tenuis, Sowb. Pl. 37, fig. 117.

Transparent, horny, wich a light fulvous band on the upper part of the whorls. Length, $\cdot 65$ inch.

Habitat unknown.
"Much like M. typha, but more pyramidal." I suspect that it is not distinct from that species.
M. micans, Reeve. Pl. 37, fig. 120.

Smooth, polished, ivory-white, faintly orange-banded.
Length, $\cdot 7$ inch.
Cook's Islands, Polynesia.-Garrett.
Perhaps this also is a form of M. typha.
M. Соoкıi, Hanley. Pl. 37, fig. 121.

Chestnut-brown, variegated with blue-gray; delicately striated.
Length, 1.25 inches.
I do not know this species.
M. albina, A. Adams. Pl. 37, fig. 97.

Spire and upper part of body-whorl folded longitudinally; white. Length, $1 \cdot 1$ inches.

Island of Luzon, on the reefs.
Described from a single specimen in the Cumingian Collection.

Section Aidone, H. and A. Adams.

Shell fusiform, smooth, polished, small; spire acuminate, as long as the aperture; inner lip excavated, with two prominent plaits in the middle; onter lip thin, simple.

This little Olivella-like form may prove to be generically distinct from Mitra.
M. alba, Pease. Pl. 51, fig. 471.

White, polished, finely striated. Length, $7 \cdot 5$ mill. Society and Paumotus Islands.
Mr. Pease describes the columella as quadriplicate, but his specimens now before me have only two distinct plicæ, although there are slight indications of additional ones, as might be expected.
M. insignis, A. Ad.

An unfigured species, referred to Aidone, as its type: It comes from Rains' Island.

Section Swainsonia, H. and A. Ad.
Oliviform, smooth, polished, spire nearly as long as the aperture.
M. zonata, Marryatt. Pl. 38, figs. 122, 126.

Yellowish brown, the lower half of the body-whorl chocolatebrown, forming a narrow band on the spire. Length, $2 \cdot 5$ inches. Mediterranean; deep water, in rocky places.
Petit, writing in 1869, says: "Cette coquille est le rêve et en même temps le désespoir de l'amateur. Elle n'a été trouvée, dit-on, que deux' fois." It has since become more common, and although one of the rare species, all doubt as to its being really an inhabitant of the Mediterranean Sea, has finally been dissipated. It has been found at Toulon, on the North African Coast, near Catania, in the Gulf of Naples, Leghorn, Sardinia, etc. M. Santangeli, Maravigna (fig. 126), is founded on a worn example in which the colors have faded to white and orange.
M. casta, Lam. Pl. 38, fig. 123.

Ivory-white, covered, except a narrow band at the suture and another wider one at the base, by a persistent smooth, thin chestnut- or olive-brown epidermis. Length, $1 \cdot 25-2$ inches.

Zanzibar; Mauritius; Polynesia, in sandy mud, laminarian zone.
Cabinet specimens usually preserve the epidermis, but when specimens are weathered, they become uniformly polished white. Mr. Sowerby makes M. lævis, A. Ad., an unfigured species, a synonym. I have preferred quoting Lamarck for this species rather than Chemnitz or Solander, who used the name, less definitely, at an earlier date. M. bicolor, Swainson, is the young shell of this species.
M. FILUM, Wood. Pl. 38, fig. 127.

White, with a very broad chestnut, or olive-brown band, which is finely streaked across with white, apex and base black tipped.

Length, 85 inch.
Zanzibar.
Kiener and Deshayes have erroneously identifled with this species M. bicolor, Swains., which is really the young of M. casta. M. affinis, Lesson, an unfigured species from the Gambier Islands, may be identical with it.
M. Oliveformis, Swainson. Pl. 38, fig. 131; Pl. 33, fig. 28.

Whorls encircled by punctate incised lines, which are usually obsolete except around the upper part; yellowish or orange, apex and base dark blue-black. Length, 65 inch.

Society Islands, gregarious, in sand inside the reefs.
M. dactyloidea, Anton (fig. 28), appears to be a young shell of this species.
M. formosa, Pease. Pl. 38, fig. 128.

Smooth, polished, transversely regularly punctate-striate; light flesh-color, spotted or striped longitudinally with white, aperture yellowish. Length, 14 mill.

Ascension Isl.
Allied to M. filum, Wood.
M. Newoombir, Pease.

Shell elongate, rather cylindrically fusiform; spire short, acute; whorls flatly convex, transversely punctate-striate, striæ becoming sometimes obsolete on middle of last whorl ; spire and upper part of last whorl decussated by longitudinal impressed striæ; base distantly grooved and somewhat truncate ; columella fiveplaited, white, remotely punctured with reddish brown dots, last whorl encircled with a broad dark brown band.

Length 27, diam. 8 mill.
Sandwich Isles.
Allied to M. filum, Wood, but somewhat larger. It is unfigured, and I have not seen a specimen, but I suspect that it is a variety of that species.
M. fissurata, Lam. Pl. 38, figs. 124, 125.

Smooth, polished, sometimes partly or wholly encircled with distant, slightly impressed revolving lines; pale pink-gray, with a broad obscure darker band, overlaid with a china-crackle pattern of white lines; sometimes the band is bordered above by brown ocelli, visible above the suture-line of the spire; livid within the aperture. Length, $1-2$ inches.

Red Sea; Mauritius; Zanzibar.

M. ocellata, Swainson (fig. 125), is the shell with the dark spots; it is not a distinct variety as these may be detected obscurely marked on most specimens, and occasionally become more or less prominent.
M. zephyrina, Duclos. Pl. 38, figs. 129, 130.

Cylindrical oliviform, with distant, slightly impressed revolving lines; chestnut-brown, sometimes flecked with white in two spiral series. Length, $\cdot 75-1$ inch.

Mauritius.

The variety without spots has been called M. Nevilli by Mr. Hanley (fig. 130).
M. eburnea, Philippi. Unfigured. Marquesas Islands.

Not included in the monographies, and unknown to me.

Section Scabricola, Swainson.

Mitre-shaped or pyramidal ; granulated or scabrous.
M. tessellata, Martyn. Pl. 38, figs. 139, 136.

Pale yellow, with chestnut-brown longitudinal flames.
Length, 2.5-3.5 inches.
Polynesia; Zanzibar?
The longitudinal plications sometimes become obsolete, on which state M. terebralis, Lam. (fig. 136), is founded. It is doubtful whether the latter form comes from Zanzibar; at any rate, I have before me examples of it from the Paumotus Islands. Garrett says that the animal is cream-yellow; the small triangular foot is reddish brown above, and the siphon is varied with a lighter shade of the same color. Philippi contends that Lamarck's species terebralis is different from the figure bearing that name in Reeve, and so calls the latter M. Reevei; but Deshayes, in Lamarck, refers to Kiener's figure, which is the same as that of Reeve and Sowerby.
M. impressa, Anton. Pl. 38, fig. 132.

Yellowish or orange-brown; sometimes slightly shouldered. Length, 1-1.25 inches.

> Japan.

So closely is this related to the M. granulosa, that, were it not for the difference in locality, I would be disposed to consider it a variety.
M. vitellina, Gould. Pl. 38, fig. 134.

Pale orange, with an imperfect white vitta adjacent to the posterior revolving striæ, a second at the anterior third of the
last whorl, and with the other parts of the shell slightly mottled with white, except the sutural portion. Length, $1 \cdot 75$ inches.

Hab. uncertain; probably East Indies.
Narrower than M. impressa, of which, nevertheless, it may be only a variety.
M. granulosa, Lam. Pl. 38, fig. 138.

Orange, or sometimes chestnut-brown ; occasionally obscurely banded, or with the granules next the suture lighter colored.

Length, 1-1.5 inches.
West Indies; on rocks.
M. oniscina, Lam. Pl. 38, fig. 135.

Chocolate-brown, with a superior white band, and an inferior one less distinct. Length, $\cdot 6-1 \cdot 2$ inches.

East Indies.
An obscure species figured by Kiener, and not recognized by subsequent naturalists.
M. Lens, Wood. Pl. 38, figs. 133, 137 ; Pl. 39, figs. 140-142, 144.

Ashy violet or brownish white, covered with a dark epidermis, varying from chocolate to nearly black. Length, $2-2 \cdot 5$ inches.

Peru; Panama; Mazatlan ; Galapagoṣ Is.
The dark color and very coarse, rude sculpture of this species will readily distinguish it from all others ; there is, besides, on well-grown specimens, two rows of very deep punctures, encircling the middle of the whorls. The Peruvian locality is on the authority of d'Orbigny, who has described a young shell as M. inca (fig. 140). M. Dupontii, Kiener (fig. 137), is said to come from the Red Sea, but I agree with Reeve and Sowerby that it is a synonym of M. lens, and the habitat is very doubtful. M. lignaria, Reeve (fig. 141), dredged at fourteen fathoms from rocky ground, at St. Elena, W. Columbia, is merely a lighter colored variety, somewhat narrower than the usual form. M. rupicola, Reeve (fig. 144), obtained with the last, and unique in the Cumingian Collection, is a M. lens, more shouldered than usual ; I have before me shells somewhat like it. M. muricata, Swainson (fig. 142), cannot be distinguished from a very usual form of young specimens of M. lens; Cuming obtained it at the Galapagos Isles, from sandy mud, at six fathoms.
M. vultuosa, Reeve. Pl. 39, fig. 143.

Orange-brown. Length, 1 inch.
Isl. of Capul, Philippines (found on the reefs).
Closely allied to M. impressa, Anton.
M. nucleola, Lam. Pl. 39, figs. 145-147, 151.

Fulvous yellow, Length, $\cdot 75-1$ inch.

Habitat unknown.

The figures given by Kiener (fig. 145), Reeve (fig. 146), and Sowerby (fig. 147) for this shell, are so different that they seem to represent distinct species. The first, which is presumably from the type, if well drawn, has but little affinity with the present group ; M. unifascialis, Lam., as figured by Kiener (fig. 151), certainly appears to be synonymous with it.
M. spherulata, Martyn. Pl. 39, fig. 149.

Whitish, yellowish or light brown, variously stained with dark chocolate or blackish spots on the granules; aperture orange.

Length, 2-2.5 inches.

> Philippines ; Polynesia.
M. eburnostoma, Garrett.

Creamy white, sparingly mottled with brown. The sculpture is almost precisely the same as in M. sphærulata, but it may be at once distinguished from that species by its paler color, more slender form and pure white aperture.

Length 41, diam. 13 mill.

Paumotus Isles.

A very rare species, of which two examples were found buried in sand in the upper region of the laminarian zone. Its distinctness from M. sphærulata may well be doubted; it has not been figured.
M. texturata, Lam. Pl. 39, figs. 150, 148.

Shell variegated with white and rusty brown.
Length, $1 \cdot 25-1 \cdot 5$ inches.
Philippines, Viti Isles.
Var. Lifouana, Crosse. Fig. 148.
Distinguished from the type by its small size, stumpy form, and uniform white coloring. Length, 16 mill.

Lifou, Loyalty Isles.
M. succincta, Swainson.

Habitat unknown.
M. subtexturata, Garrett.

Society Islands.
Unfigured species, said to be allied to M.texturata.
M. crenifera, Lam. Pl. 39, figs. 152, 164, 165.

Yellowish or pinkish white, with two irregular clouded bands of chestnut or chocolate color, or sometimes irregularly maculate ; the whole surface is closely decussated. Length, 2 inches. - Mauritius, Manilla, Red Sea, Indian Ocean.

This species is so well-known under its present name that it would be injudicious to revive for it the previously given name of M. clathrus, Gmelin. M. pretiosa, Reeve (fig. 164), is a young shell of this species; M. Antonix, H. Adams (fig. 165), is synonymnus with it.
M. scabriuscula, Linn. Pl. 39, fig. 158.

Whitish, clouded with chestnut or chocolate-brown, often appearing like interrupted spiral series on the revolving ridges.

Length, 2-25 inches.

Philippines; Viti Islands, sandy stations.

A stouter species than M. crenifera, the prominent spiral ridges alternating with impressed striæ, the longitudinal sculpture subordinate. The animal is diluted white, maculated with numerous small opaque white spots.
M. helvacea, Phil.

An unfigured species, from China, said to be intermediate between M. scabriuscula and M. Isabellina. Sowerby does not allude to it, although published twenty years before the appearance of his monograph, and I suppose it may be considered a lost species. So much allowance must be made for the personal equation in descriptive and distinctive characters that in these days of minute distinctions it is rarely worth while to attempt to identify unfigured shells, or to reproduce the descriptions for the confounding of students. In nine cases out of ten a description cannot be made sufficiently accurate to identify a species positively, and in ninety-nine cases out of a hundred it is sufficiently indefinite to secure a wrong identification from those who attempt to fit it to their unnamed species. Conchologists have suffered more than enough in endeavoring to acquiesce in the cheaply bought glorification of naturalists; it is full time to inaugurate a reform
by ignoring all unfigured species. As my purpose, distinctly stated at the outstart, is to include in my monographs all published species, I shall, at least mention them all; although I have been frequently disposed, as in the present case, to allow them to remain in the oblivion into which they had sunk, rather than bring them again to the notice of science.
M. punctolirata, A. Ad.

Described as a Scabricola. Unfigured. From Gotto Is., Japan.
M. Ehrenbergi, Jickeli. Pl. 39, fig. 153.

Whitish, with two pale rosy bands, appearing within the aperture. Length, 24 mill.

Red Sea.
Described from a single specimen.
M. Hemprichit, Jickeli. Pl. 39, fig. 155.

Yellowish red, with two white bands. Length, 19 mill.
Red Sea.
Described and figured from a single dead specimen.
M. arenacea, Dunker. Pl. 39. fig. 154.

Very closely and finely reticulated; yellowish white, clouded with chestnut. Length, 35 mill.

Habitat unknown.
M. gracilis, Reeve. Pl. 39, fig. 156.

White, clouded orange or chestnut and obscurely banded, with chestnut or chocolate spots on the granules; revolving sculpture most prominent. Length, 2 inches.

1sle of Ticao, Philippines, sandy mud, at six fathoms.
Very much like M. scabriuscula, Linn., but more slim; perhaps only a variety of that species.
M. Strangei, Angas. Pl. 39, fig. 157.

Rather thin, white, closely spirally ridged, the ridges on the last whorl alternately larger and smaller, crossed by .very fine longitudinal lines. Length, ${ }^{6}$ inch:

Port Jackson, Australia.
M. citharoidea, Dohrn. Pl. 39, fig. 160.

White, with revolving ribs and longitudinal striæ.
Length, 21 mill.
Habitat unknown.

This may possibly be an older individual of M. Strangei, Angas ; if so, its name should have preference on account of priority of publication.
M. Norrisi, Reeve. Pl. 40, fig. 166.

White, under a black, thin, horny epidermis; surface very finely decussated. Length, $3 \cdot 4$ inches.

Habitat unknown.
Described from a unique specimen, thirty-five years ago; no others have been recorded.
M. nivea, Swainson. Pl. 40, fig. 167.

White, with obsolete, rather distant, orange-brown revolving lines, and a few scattered brown spots next to suture ; encircled with very fine, punctured, impressed striæ. Length, $2 \cdot 75$ inches.

Isl. Annaa, on the reefs.
M. Isabella, Swainson. Pl. 40, figs. 168, 169; Pl. 39, figs. 159, 162.

Yellowish white, clouded and sometimes indistinctly banded with orange-brown ; closely spirally ribbed, more or less clathrate by fine longitudinal lines. Length, $2 \cdot 5-3 \cdot 5$ inches.

China.
Aperture small and narrow, shell contracted to a canal below. M. Mörchii, A. Ad. (fig. 169), is founded on an individual in which the spiral sculpture is more, and the longitudinal less prominent than in the usual form. M. Herklotsiana, Dohrn, an unfigured species from Japan, is said to have the longitudinal sculpture more prominent than M. Isabella, crossing the spiral ribs and cutting them into granules: it is probably not distinct. Perhaps this is like M. loricata, Reeve (fig. 162), described without locality, and which is very plainly a variety of M. Isabella. I find no distinctive characters in M. Peasei, Dohrn (fig. 159), described as from Australia, and said by Sowerby to come from Sandwich Islands.
M. Hebes, Reeve. Pl. 39, fig. 161.

Whitish or yellowish, slightly shouldered.
Length, $1 \cdot 25-1 \cdot 5$ inches.
M. formosa, A. Ad. Pl. 39, fig. 163.

Whitish, clouded with chestnut; slightly round-shouldered.
Length, $1 \cdot 4$ inches.
Moluccas.
I have not seen either this or the preceding species: the figures look much alike, and the difference in coloring is of little account, but M. formosa appears to have finer sculpture.

Section Cancilla, Swainson.

Shell fusiform, slender ; with revolving, linear, elevated ridges, and no longitudinal ribs; outer lip thin, not dentate within.
M. filaris, Linn. Pl. 40, figs. 174-176, 180.

Pinkish white or yellowish white, with elevated, narrow, brown, beaded ridges. Length, 1•25-1 75 inches.

Mauritius, Philippines, Polynesia.
Mr. Garrett considers M. nexilis, Martyn, a distinct species; it is a shorter, stouter form than the type, but intermediate conditions are not wanting. Philippi considers M. filosa, Born (= filaris, L.), the equivalent of the obese form, and makes of the narrow form a var. gracilis, whilst a smali race is designated as var. Bernardiana.

Var. nexilis, Martyn. Fig. 174.
Q Var. Bernardiana, Phil. Fig. 180.
Var. circulata, Kiener. Fig. 176.
The ridges are uncolored, sharper, devoid of granules; in some specimens the intermediate revolving striæ are most prominent, others are cancellated between the ridges, and others again show mostly the longitudinal inter-costal striæ. M. circulata has usually been considered a distinct species, but even in the coloring of the ribs there is a gradual change from the uncolored typical M. circulata to the full-colored M. filaris.
M. crebrilineata, Sowb. Pl. 40, fig. 170.

This little shell resembles filosa (= filaris), but is narrower, and has more numerous and finely beaded ridges. Length, 8 inch. Mauritius.
Probably not distinct from filaris, but I have not. seen a specimen.
M. Tathne, Jickeli. Pl. 40, fig. 178.

Whitish or yellowish white. Length, 18-20 mill.

Red Sea.

I do not know the species; two specimens were collected.
M. sulcata, Swainson. Pl. 40, figs. 171, 177, 182-184.

Brownish white or light brown, under a chestnut or chocolate epidermis. Length, $1-3 \cdot 25$ inches.
W. Coast of Central America.

I unite under this, the oldest name, several species agreeing with it in color and sculpture but varying somewhat in form and considerably in size; they are all inhabitants of the same region. The largest of these is M. gigantea, Swn. (fig. 177), then come in order of size, M. Hindsii, Reeve (fig. 182), M. attenuata, Swn. (fig. 184), M. funiculata, Reeve (fig. 183).
M. lineata, Swains., Pl. 40, fig. 172.

Whitish, longitudinally stained with chestnut, ridges chestnut.
Length, 1 inch.
W. Coast of Central America.

Stouter, with a more acute shoulder than the last species, and differently colored ; yet I suspect that it is only a variety of it.
M. Belcheri, Hinds. Pl. 40, fig. 179.

Whitish, under a dark chocolate epidermis; sculpture consisting of flat, broad ribs and narrow, deeply cut intervening grooves. Length, $4 \cdot 5$ inches.
W. Coast of Central America; in mud, at 17 fathoms.-Hinds.
M. egra, Reeve. Pl. 40, fig. 181.

Whitish, clouded with yellowish brown; ridges smooth and close, interstices punctured. Length, $1 \cdot 7$ inches.

Habitat unknown.
M. pia, Dohrn. Pl. 41, fig. 189 ; Pl. 40, fig. 173.

Yellowish white. Length, $2 \cdot 25$ inches.

> Australia.

The locality is somewhat doubtful. M. multilirata, A. Ad. (fig. 173), said to be from the China Sea, may possibly be a juvenile example of it.
M. carnịcolor, Reeve. Pl. 40, fig. 185; Pl. 41, figs. 186, 187.

Whitish to yellowish brown, light pink or white within the
aperture; slightly shouldered, ridges close, with longitudinal striæ. Length, $1-1 \cdot 25$ inches.

Philippines.
Approaches too closely to the stouter varieties of M. filaris, L., in form and sculpture. M. incarnata, Reeve (fig. 186), and M. pura, A. Ad (fig. 187), are synonyms.
M. straminea, A. Ad. Pl. 41, fig. 188.

Thin, light yellowish white. Length, $\cdot 9$ inch.
Habitat unknown.
M. flammea, Quoy. Pl. 41, figs. 190-193, 195-197, 199, 200.

White, stained and maculated with orange-brown; sometimes smaller ridges are developed between the principal ones; longitudinal striæ close, distinct. Length, $1-1 \cdot 25$ inches.

China, Philippines, Australia, Polynesia, Sandwich Islands.
This is not the M. flammea figured by Reeve, = Philippinarum. The principal synonyms are M. flammigera, Reeve (fig. 191), M. interlirata, Reeve (fig. 192), M. tornata, Reeve (fig. 196), M. avenacea, Reeve (fig. 193), M. rufilirata, Ad. and Reeve (fig. 197), M. Novæ-Hollandiæ, Sowb. (fig. 199), M. hystrix, Montr. (fig. 200).
M. roborea, Reeve. Pl. 41, fig. 201.

Pyramidal, brown, corded throughout with narrow white ridges, columella two-plaited, plaits somewhat indistinct.

Length, 75 inch.
Habitat unknown.
Judging from the figure, this little shell is a Latirus rather than Mitra.
M. duplilirata, Reeve. Pl. 41, fig. 202.

Whitish, longitudinally flamed with reddish brown ; revolving ribs duplicate. Length, $1 \cdot 15$ inches.

Habitat unknown.
M. annulata, Reeve. Pl. 41, figs. 203, 205-209.

Yellowish white, spotted, or clouded with chestnut or chocolate. Revolving ridges sharp; with sometimes intermediate liræ, and longitudinal striæ in the interstices, sometimes smooth.

Length, ${ }^{75-1}$ inch.
Red Sea, Oeylon, Philippines, New Caledonia, Polynesia.

It has a shorter spire than M. flammea, Quoy. The synonyms include M. nitens, Kiener (not of Risso or Blainv.), M. insculpta, A. Ad. (fig. 205), M. amena, A. Ad. (fig. 206), M. Fischeri, Souverb. (fig. 207). The latter is unsculptured between the ridges: I have specimens which are plain between some of the ridges and well sculptured between others. Equivalent forms are M. rosacea, Reeve (fig. 208), and M. acuta, Sowb. (fig. 209). M. rufescens, A. Ad., an unfigured species, is probably synonymous with annulata.
M. acutilirata, Sowb. Pl. 41, fig. 204.

Pale rose, encircled with angular ridges, painted on the angles with interrupted red-brown lines, longitudinally striated between the ridges. Length, $1 \cdot 4$ inches.

Habitat unknown.
M. Philippinarum, A. Ad. Pl. 41, figs. 210, 211.

Whorls encircled with rounded ridges, and usually narrow sulci between them; light olive or yellowish white, with irregular chestnut or chocolate markings. ${ }^{\circ}$ Length, $1-1 \cdot 2$ inches.

Andaman 1s., Philippines, Polynesia.
This species was first figured by Reeve, in mistake for M. flammea, Quoy. Sowerby also seems to have mistaken it, his Philippinarum being an entirely different species; in consequence of this error he has re-described and figured it as M. semiconica (fig. 211).
M. strigillata, Sowb. Pl. 41, fig. 212.

Whitish, longitudinally flamed with brown. Length, $\cdot 9$ inch. Habilat unknown.

I am not acquainted with this species; it seems to be very like M. Philippinarum, Ads.
M. bacillum, Lam. Pl. 41, fig. 213 ; Pl. 58, fig. 692.

Grooved towards the base; brown, with longitudinal, white, waved streaks. Length, $\cdot 9$ inch.

Malacca, Australia.
There is some confusion regarding this species. The figure given by Deshayes does not correspond well with that in Reeve's Iconica. Mr. Sowerby makes bacillum, Reeve, not Lam. = his M. strigillata; but then he figures a shell similar to Reeve's
illustration for bacillum. Deshayes' figure appears to me to be very like M. Philippinarum, A. Ad.
M. pruinosa, Reeve. Pl. 41, fig. 215.

Pale brown, with short, narrow snow-like streaks, rather irregularly descending or striking out from the sutures; decussately engraved with longitudinal and transverse impressed lines.

Length, $\cdot 9$ inch.
Habitat unknown.
A doubtful species.
M. fulgetrum, Reeve. Pl. 41, figs. 216, 217, 198.

Transversely impressedly grooved, grooves narrow, very finely punctured; reddish chestnut, with conspicuous waved longitudinal white streaks. Length, 1 inch.

Isl. of Burias, Philippines; under stones at low water ;
New Caledonia.
Var. Boissaci, Montroúzier (fig. 217).
Has the same sculpture, and differs only in presenting a series of quadrangular chestnut spots, appearing like interrupted longitudinal bands: they are the bands of fulgetrum, in fact, but interrupted by the impressed striæ. M. Cyri, Dohrn (fig, 198), is the same as M. Boissaci.
M. Haneti, Petit. Pl. 41, fig. 194.

Light yellowish. Length, 23 mill.
Hab. unknown (supposed to be not far from Mazatlan, W. Coast of Mexico).
M. Malleti, Petit. Pl. 42, fig. 218.

Light chestnut or olive-brown ; longitudinally striated between the angular revolving costæ. Length, 1 inch.

Habitat unknown.
Possibly only a well-grown, fresh specimen of M. Haneti.
M. Carinata, Swainson. Pl. 42, figs. 219-223, 241.

Yellowish, olive or chestnut-brown; shoulder of whorls obtusely or sharply angulated or carinated; with distant impressed revolving striæ, sometimes covering a portion only of the bodywhorl, sometimes altogether obsolete.

Length, $1-1 \cdot 5$ inches.
Cape Verd Isles; Sierra Leone, W. Coast of Africa.
M. Senegalensis, Reeve (fig. 221), appears to be a rude, dis-
torted growth of this species, and M. Gambiana, Dohrn (fig. 222), a non-shouldered and perhaps the normal form. I figure from Sowerby's Thesaurus (fig. 223), a shell called M. Gambiana, but which is decidedly of the carinata type. M. astyagis, Dohrn (fig. 241), is probably a color variety only.
M. telescopium, Reeve. Pl. 42, fig. 225.

Whorls rudely shouldered, with impressed, punctured revolving striæ, often partially obsolete; chestnut-brown, with a superior white band, above which the color is lighter.

Length, ${ }^{\cdot 75-1}$ inch.

Isle of Ticao, Philippines.

Very similar to the preceding species in form, but differing in coloration, etc. It appears to be a monstrosity, yet four specimens before me all agree closely with the heretofore published figures.
M. mesta, Reeve. Pl. 42, fig. 226.

With revolving impressed striæ, yellowish brown to chestnut.
Length, 85 inch.
Isle of Corrigidor, Philippines; in coral sand at ten fathoms.-Cuming ; Andaman Islands - E. A. Smith.
This also appears to be a distorted shell : I am not acquainted with it.
M. cingulata, A. Ad.

Habitat unknown.
M. spiripunota, Garrett.

Viti Islands.
Both unfigured species, apparently belonging to this section.
Section Chrysame, H. and A. Adams.
Shell ovate, spire and aperture usually about equal in length; whorls encircled by rounded ribs; inner lip with a few strong transverse plaits ; outer lip with the margin crenate.
M. cucumerina, Lam. Pl. 42, figs. 227-229.

Orange-red, with an interrupted band of white spots, and occasional white strigations. Length, $\cdot 75-1 \cdot 25$ inches.

Polynesia, on reefs.
Garrett remarks that Paumotus examples, which are much larger than obtained elsewhere, are sometimes nearly pure white. The animal is whitish with creamy yellow dots. Mr. Pease
mentions a uniform dark red variety of the shell as occurring at Ralick Island. M. fraga, Quoy (fig. 229), may be the young of this variety; it can scarcely be synonymous with M. peregra, Reeve, as supposed by Sowerby.
M. Adamsoni, Gray. Pl. 42, figs. 230, 231, 240.

Longitudinally granulosely plicated, crossed by revolving impressed striæ. White or yellowish white, clouded with large reddish brown or orange-red blotches; a narrow superior white band; aperture brownish red, lip and columella deeper.

Length, $1-1 \cdot 4$ inches.
Philippines; Mauritius.
Very close to M. cucumerina, and may be only a variety of that species in which the occasional longitudinal folds become regular and rib-like.
M. Antoni, Küster (fig. 231), described without locality, from an immature shell, appears to be closely related, if not identical; in the latter case it would have priority.
M. Tornatelloides, Reeve. Pl. 42, fig. 232.

Shell encircled by somewhat indistinctly punctured grooves; chestnut or reddish brown, with a white zone and longitudinal waved streaks. Length, $\cdot 5$ inch.

Philippine Islands.
Evidently an immature shell; perhaps a young cucumerina.
M. Chrysalis, Reeve. Pl. 42, fig. 233.

Yellowish brown, with an interrupted band of white.
Length, $\cdot 6-85$ inch.
Polynesia; Bay of Islands, New Zealand.
Very closely allied to cucumerina, but differs in its smaller size, more compressed form and lighter color.
M. turgida, Reeve. Pl. 42, figs. 234, 235.

Uniform pale luteous. Length, $\cdot 65-1$ inch. Philippines; Polynesia.
M. indentata, Sowb. (fig. 235), is the usual form and size of this species, Reeve's type being a specimen of extraordinary size.
M. peregra, Reeve. Pl. 42, figs. 236-238, 224.

Dark red, revolving ridges tuberculate, tubercles white.
Length, ${ }^{\cdot 75-1}$ inch.
Philippines; Polynesia.

Sowerby considers this species as well as M. nucleola, Lam., identical with M. fraga, Quoy. The latter is apparently the young of M. cucumerina; the former is more like this shell in form but has not its markings, and the sculpture appears to be different.
M. porcata, Humph. (fig. 237), appears to be a synonym, and M. miniata, Anton (fig. 238), as figured by Kiuster can scarcely be different. M. spadicea, Dunker (fig. 224), is placed in the synonymy by Garrett; it is darker and smaller than the type, but usually spotted with white on the tubercles, although not so represented in the figure, copied from Sowerby. It may be considered a variety.
M. gracilior, Carpenter. Pl. 42, fig. 239.

Red-brown, with sharp revolving lines, decussated at the upper part of the whorls by longitudinal riblets; plications of the columella inconspicuous. H., '2 inch.

> San Diego, .Cal., on kelp-roots in deep water.

Dr. P. P. Carpenter named but did not describe this minute species; he referred it to Mitromorpha, a group belonging to the family •Pleurotomidæ. Mr. Henry Hemphill, of San Diego, Cal., collected the original lot and it is from one of these that the figure is drawn. It is one of several similarly sculptured minute species occurring on the California coast. I figure it here to call attention to the group, as they may be Mitrids, although most probably Pleurotomæ.
M. nucleola, Lam. Pl. 34, figs. 145-147.

Dark red ; the revolving ribs decussated by longitudinal sculpture. Length, 1 inch.

As already mentioned, Sowerby makes this species equivalent to M. fraga, Quoy, and M. peregra, Reeve : from the former it differs in form, from the latter in color and sculpture. Reeve's figure of it is so different from that in Kiener, that I doubt if it belongs to the same species. That Kiener's figure is not a good one, is self-evident ; still it is the only authentic illustration, and I have therefore copied it.
M. turben, Reeve. Pl. 42, fig. 242.

Closely and finely longitudinally ribbed, crossed by revolving impressed striæ. Orange-yellow. Height, $\cdot 75$ inch.

Philippine Islands.
All the specimens collected by Mr. Cuming had the lower part of the outer lip absorbed or worn away, as in the figure.
M. tabanula, Lam. Pl. 42, figs. 243-247.

Reddish chestnut to chocolate-color; whorls encircled by elevated keel-like ridges, varying in number, so that sometimes the interstices are as wide as the ridges, on other specimens merely narrow deeply engraved lines. Length, $5-\cdot 66$ inch.

> Andaman Isles ; Philippines ; Polynesia.

I unite with this species several others, the types of which show some differences, but the series of specimens before me clearly indicates their indentity. Fig. 243 is the typical tabanula: to which I add M. pediculus, Lam. (fig. 244) ; M. minor, Sowb. (fig. 245), and M. rotundilirata, Reeve (fig. 246). M. Caledonica, Petit (fig. 247), can scarcely be distinguished from the short form of tabanula, such as M. pediculus, Lam.
M. Hanleyt, Sowb. Pl. 43, fig. 248.

Yellowish white, Length, $\cdot 5-\cdot 7$ inch.
China Seas.
M. Solandri, Reeve. Pl. 43, figs. 249-251.

Light chestnut to chocolate. Length, 1-1•3 inches.
Red Sea.
Reeve's original specimen was probably worn and faded. The relative width of ridges and grooves appears to vary as in M. tabanula; in the type (fig. 249), the former are narrower than the latter, whilst in Mr. Sowerby's specimen. (fig. 250), they are more nearly equal; a dark shell of this stage is M. Rüppellii, Reeve (fig. 251) ; finally well-grown specimens have broad, somewhat flattened ribs $=M$. planilirata, Reeve.
M. vexillum, Reeve. Pl. 43, figs. 253, 254.

Bright reddish orange, the incised lines which separate the rounded, slightly raised revolving ribs, are darker-sometimes chestnut-colored. Sometimes the ribs are obsolete, when the grooves are scarcely marked, except by the persistent colpr.

Length, $1-1 \cdot 2$ inches. ${ }^{\circ}$
Philippines.

Closely allied to the preceding species. M. crassicostata, Sowb. (fig. 254), is evidently the same.
M. aurantia, Gmelin. Pl. 43, figs. 255-258.

Orange to chestnut or light chocolate color, upper part of whorl encircled by a white band. Length, $1-1 \cdot 5$ inches.

Muuritius, Philippines, New Zealand, Polynesia.
M. nanus, Reeve (fig. 257), is a small variety or stunted growth, with the revolving ribs usually finer. M. Michelinii, Guerin (fig. 258), is a probable synonym ; Sowerby's figure of it is, however, a M. limbifera.
M. proscissa, Reeve. Pl. 43, figs. 259-262.

Whitish or yellowish, longitudinally stained with orangebrown, sometimes obscurely white-banded in the middle ; interstices of the revolving ribs cancellate.

Length, $1 \cdot 25-1 \cdot 5$ inches. Mauritius, New Caledonia.
M. rubiginea, A. Ad. (fig. 260), M. carinilirata, Souv. (fig. 261), and probably M. consolidata, Sowb. (fig. 262), are syno-nyms-the latter is described from a single specimen, without locality.
M. crassa, Swainson. Pl. 43, figs. 263-265; Pl. 44, figs. 270, 272.

Chestnut or chocolate color, usually white-banded above; whorls faintly striate throughout, striæ developing into ribs towards the base. Length, $\cdot 8-1 \cdot 25$ inches.

Philippines, on reefs, at low water, Polynesia.
It is easy to connect M. Ticaonica, Reeve (figs. 264, 265, 270), with this species, and I fear that it is allied too closely with aurantia, as well as with other species of the group. Material collected especially to show the extent of variation of a species rarely comes into the hands of the conchologist, the collector usually working with the desire to secure as many species as possible. M. coligena, Reeve (fig. 272), is probably a synonym of crassa, the only difference being the possession of occasional white spots, promiscuously scattered over the surface.
M. ambigua, Swainson. Pl. 43, figs. 266, 267, 268.

Orange-brown, indistinctly white-banded above; the incised revolving lines are punctate. Length, $1 \cdot 5-2 \cdot 5$ inches.

Philippines, Viti Isles; under coral and stones, at low water.

Var. fulva, Swainson. Fig. 267.
Chestnut- or chocolate-brown, with usually an irregular faint superior band; whorls encircled by punctured, engraved lines, sometimes with scattered white dots. Length, $1 \cdot 75-2.5$ inches. Polynesia.
The animal, according to Garrett, is chestnut-brown, the creeping disk white, siphon pale brown, ocular region and tips of the tentacles white.
M. fulva appears to connect with M. ambigua in. such a manner as to have justified Kiener in considering it a synonym. In deference to conchological opinion, I separate it as a variety, the typical examples being somewhat different in form from \boldsymbol{M}. ambigua. M. attenuata, Reeve (fig. 268), is synonymous.
M. adusta, Lam. Pl. 43, fig. 269 ; Pl. 44, fig. 276.

Variegated with chestnut- or chocolate-brown and yellowish, disposed in longitudinal flames, or nearly uniform brown, lighter on the periphery; upper part of the whorls compressed, making a sharp, crenulated ridge next the sutures; the impressed revolving lines are rarely punctate.

Polynesia, under coral, at low water.
A species which might almost as well be placed with the typical Mitræ as here ; analogies of coloration and the succession of intermediate forms connecting it with the typical Chrysame, induce me to prefer for it the present position.
M. Tahitensis, Garrett.

An unfigured species, evidently allied to M. adusta, of which a single specimen, 37 mill. long, was found at Tahiti, Society Islands.
M. fulvescens, Swainson. Pl. 44, fig. 271.

Pale yellowish brown ; whorls encireled with punctured incised lines. Length, $1 \cdot 25$ inches.

Isle of Annaa, on the reefs.
M. striata, Gray, is doubtfully referred here by Reeve, but evidently belongs to the genus or group Strigatella.
M. coronata, Lam. Pl. 44, figs. 273-275, 277, 281-283; Pl. 58, fig. 687.
Orange-brown to chocolate, dotted occasionally with white,
suture crenulations white-tipped, and white spots, sometimes confluent into an irregular band, below the sutures; revolving incised lines strongly punctate, sometimes obsolete on the middle of the body whorl. Length, $1 \cdot 25-1 \cdot 75$ inches.

Red Sea; Philippines to Sandwich Isles; Mauritius.
M. aurora, Dohrn (fig. 27.7) is, I think, a synonym, although Mr. Garrett considers it distinct; it is a beautifully brightcolored form from Polynesia. M. tiarella, A. Ad. (fig. 275), is only a small form of M. coronata, and M. assimilis, Pease (fig. 281), is a young shell. Pease mentions the want of crenations at the sutures as the principal distinction from M. coronata, but the specimen sent to me by Mr. Pease shows these sutural nodes, and they are minutely white-tipped ; although small, they ought not to have escaped his scrutiny. M. marginata, Sowb. (fig. 282), described from a single specimen, without locality, is probably also a young coronata. M. floridula, Sowb. (fig. 283), from Mauritius, has the engraved striæ deeper, the punctations wider than in the type form ; the consequence is that the intermediate spaces appear more like revolving, broad ribs. I cannot agree with Sowerby that these differences are specific.
M. digitalis, (Chemn.) Dillw. Pl. 44, fig. 278.

Yellowish, clouded with yellowish brown, sutural nodes whitetipped, surface irregularly spotted with white, larger spots, sometimes forming a more or less interrupted central band; incised striæ deeply punctate. Length, $1 \cdot 5-2 \cdot 25$ inches.

Philippines, Polynesia.
M, Lugubris, Swainson. Pl. 44, figs. 284-287.
Reddish chestnut to chocolate color, white beneath the sutures, and sometimes at base; encircled by impressed, punctured striæ crossed by close, rough growth-lines; sutures crenulated.

Length, $\cdot 8-1 \cdot 4$ inches. Polynesia.
Mr. Garrett thinks M.lacunosa, Reeve (Pl. 33, fig, 13), identical, but I can scarcely agree to this, as it appears to be totally dissimilar-in fact to belong to a different group (p.113). M. albofasciata, Sowb. (fig. 286) said, perhaps erroneously, to come from So. Africa, appears to be a narrow, somewhat smoother form of lugubris. M. coriacea, Reeve (fig. 287) is probably a young lugubris.
M. picea, Pease. Pl. 58, fig. $6 \overline{8} 5$; Pl. 44, fig. 288.

Decussated by longitudinal ribs and revolving striæ ; chestnutbrown with a superior narrow white band. Length, 7-9 mill.

Paumotus, Sandwich Islands.
Sowerby figures a shell (fig. 288), under the same name, but without author, which may be a dark, unbanded specimen of this species ; if distinct, it must receive a new name.
M. Uzielliana, Crosse. Pl. 44, fig. 289.

Uniform yellowish brown; cancellated. Length, 1 inch.
? Tahiti.
Sowerby thinks this may be synonymous with M. lugubris, but it seems to have characters of sculpture and color which should distinguish it-at least until better known to conchologists.
M. ferruginea, Lam. Pl. 44, figs. 279, 280, 290.

Yellowish or whitish, longitudinally stained with chestnutbrown, the markings interrupted so as to show a light band on the periphery. Length, $1 \cdot 5-2 \cdot 25$ inches.

> Philippines; Polynesia, coral reefs ; Mauritius.

The animal is cinereous or pale luteous and slightly varied with reddish brown. M. rubritincta, Reeve (fig. 280), is a short, stout form, connecting with ferruginea, by a series of transitional forms. M. clara, Sowb. (fig. 290), an immature specimen, with a slight shoulder, appears to be merely a slender variety.
M. pudica, Pease. Pl. 44, figs. 291, 292.

With revolving ridges and longitudinal striæ; whitish or yellowish, variegated with smoky brown, Length, $\cdot 7-9$ inch.

Sandwich Islands.
With this I unite M. nuxavellana, Dohrn, an unfigured species which its author concedes to be a synonym ; also M. subrostrata, Sowb. (fig. 292. These are all immature shells, and are evidently related to M. ferruginea.
M. candida, Reeve. Pl. 44, figs. 293, 294.

Whitish to chestnut, closely ridged, finely longitudinally striated between the ridges. Length, 88 inch.

La Guayra, So. America.

Possibly identical with the next species. The locality needs confirmation.
M. crenata, Swainson. Pl. 44, fig. 295.

Yellowish brown, encircled throughout with rather distant, slightly elevated lines. Length, ${ }^{\cdot} 75$ inch.

Bay of Xipixapi, W. Columbia; sandy mud at six fathoms.
M. Lienardi, Souverb. Pl. 44, fig. 296.

Whitish, longitudinally flamed with light chestnut.
Length, $\cdot 8$ inch.
Nero Caledonia.
A much narrower shell than those which precede it.
M. Williamsi, Newcomb. Pl. 44, fig. 297.

Whitish, with longitudinal orange flammules ; finely longitudinally striate between the revolving ribs. Length, $\cdot 6$ inch. ? Philippine 1slands.
Described from a unique specimen.
M. luctuosa, A. Ad. Pl. 44, fig. 298.

Brownish, with a white band near the suture ; whorls flattened, with revolving liræ, the interstices clathrately punctate.

China Seas.
An obscure species, collected by the Samarang expedition many years ago.
M. rutila, A. Ad. Pl. 44, fig. 299.

Orange-red, sparsely maculated with white, a white band, spotted with orange next the suture. Length, $1 \cdot 5$ inches.

Habitat unknown.
M. pellis-serpentis, Reeve. Pl. 44, fig. 300 ; Pl. 45, figs. 303307, 314 ; Pl. 58, fig. 690.
Yellowish brown; surface decussated by longitudinal and revolving ribs. Length, $\cdot 9-1 \cdot 25$ inches.

Philippines, Mauritius, Polynesia.
Specimens in which the revolving ribs are most prominent, but cut into obtuse granules by the rugose growth-lines, have been called M. granata, Reeve (fig. 690). M. brumalis, Reeve (fig. 314), and M. microstoma, Sowb. (fig. 303), are narrow forms, with
the typical sculpture-a white variety of these has been distributed by the late Mr. Pease as a new species, M. reticulata (fig. $304)=$ M. cretacea, Sowb. (fig. 306). Mr. Reeve has called a slightly shouldered specimen M. suturata (fig. 305), and M. Recluz has figured and described a faded specimen as M. Grelloisi (fig. 307).
M. Nassoides, Sowb. Pl. 45, fig. 308.

Shell yellowish white, reticulately sculptured.
Length, 1.5 inches.

Mauritius.

A stouter shell than the typical M. pellis-serpentis; yet it may be only a well-grown state of that species.
M. serotina, A. Ad. Pl. 45, fig. 309.

Yellowish, with two obscure darker bands; surface reticulated. Length, $\cdot 9$ inch.

Marquesas (Adams) ; Mauritius (Sowerby).
M. dealbata, A. Ad. Pl. 45, fig. 311.

White; whorls planulate, distantly sulcate spirally, sulci evanescent in the middle of the body-whorl. Length, $1 \cdot 2$ inches.

Habitat unknown.
M. semiferruginea, Jonas. Pl. 45, fig. 310.

Whorls encircled.by narrow, granulated ridges, interstices punctured; yellowish, upper part of body with longitudinal chestnut flames. Length, $\cdot 8$ inch.

Habitat unknowon.
Described thirty-five years ago from a single immature specimen in the Royal Cabinet at Copenhagen ; it remains unconfirmed by additional specimens.

Unfigured Species.

M. cingulata, Phil. (Related to M. peregra, Rve.)

Hab. unknown.
M. Peteli, Dohrn (Related to M. nanus, Reeve.) N. Africa? M. Propinqua, Garrett.

Society Islands.
M. pusilla, King.

Habitat unknown.

Section Striga ella, Swainson.

This group is very generally recognized as a distinct genus, but it will be better to regard it simply as a section of Mitra; indeed no sharp line separates it from many of the species ranged under the preceding section; the principal distinctive characters being a more decidedly columbelliform appearance, a smooth surface, single color or with brown longitudinal flames and maculations. Of the two subgenera heretofore assigned here, the first, Mitreola, contains those species which connect the typical form with the last section of Mitra; the secone, Zierliana, includes a number of species having a peculiar character of the aperture, and readily distinguishable from the other groups. Moreover the species of Strigatella, so-called, which possess the dentition differing so widely from Mitra, belong to this group Zierliana, which may therefore well be separated as a subgenus. Of the group Strigatella as thus restricted, the dentition remains unknown.
M. acuminata, Swainson. Pl. 45, fig. 312.

Yellowish, sometimes with a' lighter band in the middle, frequently invested with a slight epidermis. Length, 1 inch.

Philippines; Polynesia.
M. coarctata, Swainson. Pl. 45, fig. 313.

Yellowish, longitudinally clouded with chestnut.
Length, 9 inch.
Isle of Annaa.
Only distinguishable by its painting from M. acuminata. It is very likely a variety.
M. brunnea, Pease. Pl. 45, fig. 301.

Yellowish brown, spire rather obtuse.
Length, $75-1 \cdot 10$ inches.
Polynesia.
The animal is milk-white.
M. nigricans, Pease.

An unfigured species, blackish with a light band, and leadcolored aperture. Length, 20 mill.

Polynesia.
This species has not been identified by Mr. Garrett.
M. astricta, Reeve. Pl. 45, figs. 315-318.

Whitish, under a light olive, smooth epidermis, or yellowish obsoletely banded with brown, sometimes sparingly strigate.

Length, $1-1 \cdot 5$ inches.
Sandwich Islands.
M. Samuelis, Dohrn (fig. 317), is identical.
M. auriculoides, Reeve. Pl. 45, fig. 319.

Chocolate-brown, with a whitish band on the upper part of the body-whorl, and sometimes white-dotted. The whole surface is encircled with fine punctated, incised lines, which are sometimes obsolete on the middle of the body. Length, $8-1 \cdot 1$ inches.

Polynesia.
M. fastigium, Reeve. Pl. 45, fig. 320.

Light yellowish brown, faintly banded. Length, • 75 inch.
Habitat unknown.
Possibly a variety or faded example of M. auriculoides. I am not aware of the existence of any specimens besides the type.
M. Mölleri, Küster. Pl. 45, fig. 321.

Whitish, longitudinally flamed with chestnut.
Length, 66 inch.
Habitat unknown.
An immature shell, described from a cabinet specimen at Gotha; I shall not attempt its identification.
M. limbifera, Lam. Pl. 45, figs. 322-326.

Chestnut- or chocolate-brown, usually with white or yellowish patches on the upper part of the body-whorl, forming a more or less continuous band; frequently with scattered light spots elsewhere ; aperture columbelliform. Length $1-1 \cdot 6$ inches.

Philippines, Polynesia.
The shells are usually covered by a thin olive-yellow epidermis. The animal is rich chestnut-brown with a diluted-white creeping disk. Head slightly varied with white. The peculiar character of the outer lip of the shell increases in importance with age; M. Columbellæformis, Kiener (figs. 323, 324), being its adult or aged state. M. striata, Gray (fig. 325), is probably a synonym, as is also M. Mitchelini of Sowerby, not Petit (fig. 326).
M. maculosa, Reeve. Pl. 45, figs 327, 328.

Chestnut color under a deciduous corneous epidermis, a broad white band above the middle, and brown revolving lines, punctate with white towards the base. Length, 15-21 mill.

> Red Sea, Australia, Polynesia.
M. Arabica, Dohrn (fig. 338), does not differ. Typically it is distinet enough from M. litterata, but there are varieties which certainly approach extreme examples of that species very closely.
M. tristis, Swainson. Pl. 45, fig. 329.

Shell white or light-chocolate, under a persistent, smooth dark olivaceous or black-brown epidermis, with a yellowish band at the top of the whorls; frequently slightly round-shouldered, and rudely folded at the sutures, forming obsolete tubercles; aperture chocolate-colored. Length, $\cdot 75-1 \cdot 25$ inches.

Galapagos Is. ; Panama to Mazatlan.
M. chrysostoma, Swainson. Pl. 46, figs. 330, 331.

Whitish or yellowish, tessellated or strigated longitudinally with orange-brown or chocolate, interrupted by a white, irregular band on the periphery. Length, $1 \cdot 35-2$ inches.

Polynesia, Philippines, Mauritius.
Kiener has figured this species in error for M. contracta, Swn. (=abbatis), and Phillippi, discovering that this figure did not represent Swainson's species, has called it M. Kieneri.
M. scutulata, Lam. Pl. 46, figs. 332-337.

Chocolate-brown, sometimes with merely an irregular, or interrupted yellowish or whitish band below the sutures; sometimes irregular small spots of the same color are on the lower portion of the body-whorl; sometimes these spots unite longitudinally into strigations above and below, but always leaving a central chocolate space-which thus becomes defined as a broad band. Length, $1-1 \cdot 75$ inches.

Philippines, Polynesia.

M. amphorella, Lam. (fig. 334), M. decurtata, Reeve (fig. 335), and M. oleacea, Reeve (fig. 336), and M. sertum, Duval (fig. 337), are synonyms.
M. litterata, Lam. Pl. 46, figs. 338, 339.

Yellowish or whitish, with irregular, longitudinal chocolate
markings, sometimes appearing like rude letters, and interrupted more or less by revolving bands. Length, ${ }^{\cdot 75-1}$ inch.

> Red Sea, Java, Mauritius, So. Africa, Philippines, Polynesia.

In many specimens the dark color so predominates as to appear to be the ground-color, upon which are superimposed the yellowish spots and letters; I figure a shell which Sowerby has called M. maculosa, Reeve (fig. 339) which shows this variety pretty well. As already stated, the true maculosa closely approaches this form.
M. paupercula, Linn. Pl. 46, fig. 340.

Chocolate, with uninterrupted whitish or yellowish longitudinal strigations. Length, $1-1 \cdot 4$ inches.

Red Sea, E. Africa, Indian Ocean, Philippines, Polynesia.

M. virgata, Reeve. Pl. 46, fig. 341.

Color and markings as in M. paupercula, but distinguished by smaller size, more abbreviate, Columbella-like form and conspicuous revolving grooves at the base of the shell.

Length, $\cdot 75-\cdot 9$ inch.

Polynesia.

Mr. Reeve included two species in his M. virgata, his first figure being a species previausly described by Lamarck, and which immediately follows this description. Some specimens of virgata have the Melampus-like form of M. retusa, but they appear to be constantly distinguished by the want of the white band and fewer and larger color flames.
M. retusa, Lam. Pl. 46, figs. 342-344.

Surface covered with revolving striæ; dark chocolate, with line close, thread-like undulating longitudinal yellow or white lines, and superiorly a narrow yellow or white revolving band.

Length, ${ }^{-75-1}$ inch.

Polynesia.

M. virgata, Reeve (fig. 341), in part, is synonymous with M. retusa, and M. capillata, Gould (fig. 344), is probably a juvenile of it.
M. zebra, Garrett.

An unfigured Polynesian species, the description of which accords tolerably with M. virgata.
M. tigrina, A. Ad. Pl. 46, figs. 348, 347.

Glandiniform, with revolving striæ; longitudinally finely strigate with chocolate and yellowish or whitish, aperture chocolate. Length, $1 \cdot 8$ inches.

Mauritius.

A giant edition of M. retusa, but proportionally narrower than that species. M. jucunda, Tapparone-Canefri (fig. 347), is identical with it.
M. Anaïs, Lesson.

An unfigured species from the Gambier Islands. It evidently belongs to the present group.
M. fuscescens, Pease. (Unfigured.) Sandwich Islands.

Subgenus Zierliana, Gray.

In the introductory remarks upon the Strigatella section of Mitra (p. 153), I have stated the reasons which induce me to merge that group in the Mitras and to separate from it Zierliana, which H. and A. Adams and their successors have considered as a subgenus of Strigatella.
M. Ziervogeliana, Gmelin. Pl. 46, figs. 345, 346, 349, 350.

Dark chocolate-brown, aperture and columella white or slightly tinged with light chocolate. Length, $\cdot 9-1 \cdot 1$ inches.

Philippines, Polynesia.
Sometimes the ribs are denuded of epidermis, and give a zebra-like coloration to the species.

Var. robusta, Reeve, Fig. 346.
Not so coarsely sculptured, with less shoulder and somewhat higher spire. This is the ordinary Polynesian form. It is littoral, under lava stones on rocky coasts.
Var. Woldemarit, Kiener. Fig. 349.
Still more finely sculptured and with higher spire than var. robusta; with which it insensibly connects.
Var. solidula, Reeve. Fig. 350.
Sculpture fine, lightly impressed, more or less obsolete in the middle portion of the body-whorl. The young shell which

Quoy described as M. nigra (=M. Quoyi, Desh., p. 122), may possibly be intended for this variety.
M. Athiops, Reeve. Pl. 46, fig. 351.

Dark brown or olive-black, finely decussated. Length, 1 inch. Solomon's Islands, Philippines.
Very much narrower than any of the forms of M. Ziervogeliana; yet it may be only a variety of that species. M. creniplicata, A. Ad. (unfigured) is said by Mr. Sowerby to be a synonym.
M. anthracina, Reeve. Pl. 46, fig. 352.

Shell covered by a smooth, black epidermis. Length, 1 inch.
Isle of Ticao, Plilippines, on reefs at low water.-Cuming.
Differs from M. Athiops only in the want of sculpture.
L. choava, Reeve. Pl. 46, fig. 353.

Blackish, smooth. Length, $\cdot 75$ inch. Isle of Johanna, Mozambique Channel -Hennah.
I do not know the species; except in being smooth, it resembles closely a juvenile of the typical M. Ziervogeliana.
M. albomaculata, A. Ad. Pl. 46, fig. 354.

Chocolate-brown, maculated with white next the sutures. Length, $\cdot 5$ inch.

Habitat unknown.
I do not know the species.
M. Columbellina, A. Ad. Pl. 46, fig. 355.

Variegated with chestnut and white, with obsolete revolving lines.

> Hab. unknown.

Mr. Sowerby's figure of this species shows a tuberculated shoulder, a character not referred to in the original description.

Undetermined Species of Mitra.

M. granulifera, obliquata, claviulus, conularis, crebralis, of Lamarck.
M. cinerea, apicata, Reeve. H. \& A. Adams' Genera.
M. obscura, Hutton. New Zealand.
M. fusoides, A. Adams. Sowerby, Thes. Conch. Index.
M. Hanleyana, Dunker.

Japan.
M. semistriata, Krynicki.

Caspian Sea.
M. ordinata, Pease (ubi) Pætel's Catalogue.

Sandwich Islands.
M. sectilis, M. pallida, Pease. Sandwich Islands.
M. obscura, Humphrey ; M. mutelina, Duclos; M. globosa, Chemn.; M. cincta, Meuschen. H. \& A. Adams' Genera of Shells.
M. Tasmanica, Legrandi, scalariformis, semilivida, Franciscana, granatina, Tenison-Woods. T'asmania.
M. russa, Gould. China Seas.
M. secalina, Gould.

Ousima.
M. leta (China Seas); M. delicata (Cape York, Australia); M. asperulata, (Australia); M. reticulata (Port Essington, Australia); M. pallida (Marquesas); M. (Volutomitra) cinnamomea (Natal); M. punctostriata (Ceylon). All of Arthur Adams.
M. Antoni (Sandwich I\&lands); M. gibba (New Caledonia); M. autumnalis (New Caledonia), of Dohrn.
M. leucostoma, Swainson.
M. intersculpta, Sowerby.
M. humeralis, Garrett.

No locality.
Mauritius. Paumotus Is.

> Genus THALA, H. and A. Adams.

Mr. Garrett remarks * that some of the species included in this genus are Pleurotomoid shells; that the wrinkles or folds on the columella are not true plaits, but simply more or less irregular transverse rugosities, precisely of the same structure as observed in certain species of Clathurella and Cithara. Some of the species which he declares should be excluded from Mitridæ, appear to me to possess the character of the family, whilst in others, so minute are the specimens that it is difficult to decide whether they have. plaits or not-the difficulty being enhanced by the poor state of preservation of several individuals. M. todilla, Mighels is one of the excluded species, yet it possesses them, as mentioned by Dr. von Martens. Of course the difficulty of deciding is enhanced with those species of which figures only are accessible. Unfortunately the animal is unknown; this is

[^20]one of those cases where the dentition would be of much collateral value. I have preferred to retain all the species in Mitridæ rather than attempt to divide them upon insufficient data.
T. foveata, Sowb. Pl. 47, fig. 356.

Cancellated, chocolate-brown. Length, $\cdot 5$ inch.
Hab. unknown.
T. roseata, A. Ad. Pl. 47, fig. 357.

Cancellated, pinkish white. Length, $\cdot 4$ inch.
Hab. unknowon.
Very closely allied to T. foveata.
T. solitaria, C. B. Ad. Pl. 47, fig. 358.

Cylindrically fusiform, cancellated, brown. Length, $\cdot 4$ inch. Panama.
A single specimen obtained by the discoverer; I have not heard of its being found since.
T. exilis, Reeve. Pl. 47, fig. 359.

Violet-purple with a darker band; granosely decussated throughout with minute ridges. Length, 66 inch.

Isle of Ticao, Philippines; under stones at low water.
T. todilla, Mighels. Pl. 47, fig. 360.

Whitish or light violet, sometimes obscurely banded or spotted; surface tuberculately cancellated. Length, $\cdot 35$ inch. Sandwich Islands.
Described as a Pleurotoma, the columellar plaits being indistinct.
T. milium, Reeve. Pl. 47, fig. 361.

Chestnut-brown, cancellated. Length, $\cdot 35$ inch.
Hab. unknown.
The figure is somewhat different from that of T. todilla, yet it may be that species.
T. recurva, Reeve. Pl. 47, fig. 362.

Pinkish or violet, minutely dotted here and there with brown; longitudinally sculptured, tranversely impressly striate.

Length, $\cdot 35$ inch.
Island of Capul, Philippines; under stones at low water.
Certainly very closely allied to T. todilla.
T. gratiosa, Reeve. Pl. 47, fig. 363.

Pink or violet, minutely decussated. Length, $\cdot 4$ inch.
Galapagos Islands.
T. mirifica, Reeve. Pl. 47, fig. 364.

Pink or light violet, somewhat transparent, sometimes with a narrow white zone. Length, $\cdot 3$ inch.

Philippines.-Cuming; Paumotus.-Pease.
Said to be thinner and more slender, with finer sculpture than T. gratiosa, but the specimens before-me vary so much that it would be difficult to separate some of them from the figures of that and other species.
T. cernica, Sowb. Pl. 47, figs. 365-369.

Shell rosy orange. Length, •65 inch.
Mauritius
T. angustata, Sowerby (fig. 366), from same locality, presents no valid differences.

Var. angiostoma, Pease. Fig. 367.
White, shaped like T. mirifica, but larger, with somewhat stouter and coarser sculpture. Length, 12 mill.

Paumotus.
Var. fusus, Souverbic, figs. 368, 369.
Slightly stouter than the type, light violet, or pink-white, obscurely banded. Length, 10 mill.

New Caledonia.
The above are from widely separated localities, and as there are slight differences, they may be distinguished as varieties for the present.
T. brevicula, Souv. Pl. 47, fig. 370.

Light violet. Length, 7 mill.
New Caledonia.
T. adumbrata, Souv. Pl. 47, fig. 371.

Dirty white, maculate with chestnut, forming an interrupted band. Length, 10 mill.

New Caledonia.
Distinguished by its cylindrical form and very fine sculpture.

Unfigured Species.

T. Jaculanda, Gould. Allied to T. recurva, Reeve, but the sculpture is much more delicate.

China Seas.
T. saltata, Pease.
T. exquisita, Garrett.
T. violacea, Garrett.

Polynesia.
Polynesia.
Polynesia.
Genus Mitroidea, Pease.
The peculiar tubular and recurved anterior portion of the columella, the truncate outer lip, the numerous small columellar plaits, the smooth surface and outer lip will distinguish this genus upon conchological characters, although the animal and its dentition do not differ from Mitra. Mitroidea has four years' priority over Mauritia, A. Adams. The two species which H. and A. Adams included in their subgenus Mutyca, also belong here. If Mutyca had a sufficient diagnosis it would be entitled to precedence over Mitroidea on account of priority of publication, but its authors only perceived a portion of the characters of the group and made it an artificial section of Mitra. Mitroidea is closely allied to Dibaphus, but the latter has a shorter spire and is without columellar plaits.
M. multiplicata, Pease. Pl. 47, figs. 372, 373.

White, solid, polished under a thin light olive epidermis, with distant brown revolving lines and band-like maculations.

Length, 1-2 inches.

Polynesia; Mauritius.

Mr. Pease's species has never been figured, but the careful descriptions by himself and Garrett and the fact that he, like Adams, made his species the type of a new genus, leaves no doult that M. Barclayi, H. Adams is synonymous with it. Dibaphus Leebbeckeanus, Weinkauff (fig. 373), is the juvenile of this species. Sowerby, who does not mention Pease's prior name, changed M. Barclayi to M. Dibaphiformis, on account of the alleged prior publication of Mitra Barclayi, Hanley.
M. Anclludes, Swainson. Pl. 47, fig. 374.

Pale fulvous yellow, or creamy white ; upper whorls minutely granulated. Length, 20 mill.
M. eburnea, Garrett.

Closely allied to M. Ancillides, but may be distinguished by its ivory-white color, more contracted base, smaller size and more robust form. Length, 12 mill.

Paumotus Isles.

I do not know this species; it has not been figured.
M. bellula, A. Adams. Pl. 47, fig. 375.

White, polished, with revolving striæ, upper whorls cancellated, a necklace-like row of reddish spots near the sutures.

Length, $\cdot 75$ inch.
Isle of Capul, Philippines; on the reefs, low water.
Described from a young and possibly abnormal specimen; may it not $=$ Ancillides?
M. telum, Sowb. Pl. 47, fig. 376.

Yellowish brown, lower half of body-whorl darker, smooth.
Length, $1 \cdot 1$ inches.
Mauritius.
I have not seen this species. The figure is very like M. multiplicata (Barclayi), which also inhabits Mauritius, but the columella does not show so many plications.
M. infecta, Reeve. Pl. 47, figs. 377-380.

Yellowish, marbled with chestnut-brown, sometimes forming two interrupted bands; revolving striæ inconspicuous or distinct.

Length, $1 \cdot 25-1 \cdot 5$ inches.

Mauritius. Paumotus.

Sowerby says that Reeve's figure is erroneous, as it does not show the revolving striæ, and he gives another figure (fig. 378), which differs somewhat in form and coloring. Reeve's figure is probably from a worn specimen-Dohrn says, from the original specimen of M. nebulosa, Swains. ; but nebulosa, as first figured by Reeve, is a very different species and $=M$. versicolor, Martyn. No doubt M. Barclayi, Hanley, not H. Adams, (figs. $379-380$), is a synonym.

Genus DIBAPHUS, Philippi.
Differs from Mitroidea in the columella being without plaits. It resembles in general form Conus mitratus, as well as, more distantly, Strombus terebellatus, and Adams, Crosse, and others
formerly assigned to it a position between Conus and Mitra. The animal was first made known to science by Mr. A. Garrett in 1872,* who, after a careful study could not detect any difference between it and a Cylindra. On plunging a living example in alcohol, the spirit became much discolored, of a fine purple, the same as when any other Mitridæ are placed in spirits.
D. Philippit, Crosse. Pl. 47, fig. 381.

Yellowish brown, or whitish, clouded with chestnut in the form of two interrupted irregular bands. Length, $1-1.75$ inches. Polynesia; Mauritius.
The earlier specific name D. edentulus, Swainson, has been displaced because the character indicated by it has become generic.

Genus TURRICULA, Klein.
The Turriculæ, including the old sections Costellaria and Callithea, are sand species; the section Pusio, however, contains reef-dwellers. The group is exclusively tropical and subtropical in distribution, its metropolis being Central Polynesia.
T. regina, Sowb. Pl. 48, fig. 382.

Whitish or gray, with orange bands bordered by narrow chocolate-colored stripes. Length, 2-3 inches.

Moluccas.
T. teniata, Lam. Pl. 48, figs. 383-390.

Yellowish or orange, with a broad white central band, partly visible on the spire, bordered with narrow chocolate bands; one or two additional chocolate bands below, sometimes replaced by a single broad one next below the white.

Length, $1 \cdot 75-2 \cdot 75$ inches.
Philippines, Moluccas, Polynesia.
Has not the sharp angulation of the whorls of T. regina, but is otherwise closely allied to that species. T'. vittata, Swainson (figs. 384-386), does not present any permanently distinctive characters, and scarcely merits the name of variety. \dddot{y}. compressa, Sowb. (fig. 387), is a narrow variety, not adult; like all the young of this species the base is reflected more than in the
adult. T. coccinea, Reeve (fig. 390), is a color-variety in which the chocolate bands have disappeared; Sowerby has figured it under the name of T. crocea, Reeve-which is a very different species. T. Tayloriana, Sowb. (figs. 388,389) is intermediate between I'. coccinea and the typical coloration.
T. Dennisoni, Reeve. Pl. 48, fig. 391.

Yellowish or orange, stained with chocolate between the ribs, with a median white zone. Length, $2 \cdot 25$ inches.

Philippines.-Cuming; Red Sea.-Sowerby.
Sowerby figures a variety of this species which appears to connect it too closely with the preceding one of this monograph.
T. jucunda, Dunker. Plate 48, fig. 398. .

Yellowish or orange brown, with a median, obscure white band. Length, 61 mill.

Saigon.
There is a thin, deciduous, pallid corneous epidermis. More finely sculptured and more regular in growth than the variety of T. tæniata represented by coccinea, Reeve, there is nevertheless considerable resemblance between them.
T. elegans, Reeve. Pl. 48, fig. 392.

Whitish or fleshy-brown, encircled with one or more narrow chocolate lines. Length, $1 \cdot 1$ inches.

Phillippines.

T. sanguisuga, Linn. Pl. 48, figs. 393-397.

Yellowish white to ash color, the ribs tipped with scarlet, sometimes with one or more chocolate bands, base and apex chocolate. Length, $1 \cdot 5-2 \cdot 25$ inches. Philippines, Mauritius, Polynesia.
Mr. Cuming found it in coral sand at low water, at the Philippines; Mr. Garrett, in sandy mud, at the Viti Isles-sometimes buried to the depth of two feet. The color variations are numerous ; two of them have received names.
Var. stigmataria, Lam. Figs. 396, 397.
Lighter colored, with the scarlet spots confined to two revolving rows on the body-whorl, one on those of the spire.
Var. granosa, Chemn. Fig. 395.
Light colored, without scarlet spots.
T. Stainforthil, Reeve. Pl. 49, figs. 399, 400.

Whitish, base and apex ashy blue, ribs painted, with square scarlet spots. Length, $1 \cdot 25-2 \cdot 25$ inches.

Philippines.
The distant, rounded ribs, crossed by close striæ, and regular painting seem to distinguish this species sufficiently from T. sanguisuga.
T. melongena, Lam. Pl. 49, figs. 401, 402, 407.

Chocolate or ash and white, in revolving bands and lines of variable thickness. Length, $1 \cdot 5-2 \cdot 5$ inches.

Moluccas, Philippines.
T. lyrata, Lam. Pl. 49, fig. 403.

Ribs narrow, sharp; light olive or ash, with narrow dark chocolate or blackish revolving bands. Length, 1•5-2 inches. Philippines, Polynesia.
T. curvilirata, Sowb. Pl 49, fig. 404.

Yellowish white, with chestnut or chocolate bands.
Length, $1 \cdot 25-1 \cdot 75$ inches.
China?
Distinguished from T. melongena by its curved ribs and painting, but may nevertheless be only a variety.
T. Radius, Reeve. Pl. 49, fig. 406.

Flesh color or brownish, with a brown band on the periphery. Length, 1 inch.

> Plilippines ; Indian Oceàn.
T. balteolata, Reeve. Pl. 49, fig. 405.

Spire and upper portion of body-whorl yellowish white, lower portion of the latter orange; a brown band separates the two colors, and another one or two are situated inferiorly.

Length, $2 \cdot 5$ inches.
Moluccas, Philippines.
T. costellaris, Lam. Pl. 49, fig. 408.

Dark chocolate, with a superior narrow white band, and occasionally an obscure, wider, lower one.

Length, 1•5-2 inches.
Philippines.
T. Peasei, Garrett.

An unfigured species from the Viti Islands, has the coloring of T. costellaris,. I do not know it.
T. vulpecula, Linn. Pl. 49, figs 410-413.

Whitish, obscurely banded with orange, and tipped with dark chocolate at the sutures and base; or orange, with sometimes an obscure light band ; or orange with dark chocolate bands, sometimes covering nearly the entire surface. Shoulder obtuse or sharply angulated. Length, 1•5-2 inches.

Moluccas, Philippines, Polynesia.
A variable species in form, sculpture and coloration. T. umbrosa, Sowerby (fig. 414), is said to have the ribs more defined than T. vulpecula, and raised into tubercles at the angle of the whorls; I might make several equally good species out of the series of vulpecula before me. .
T. caffra, Linn. Pl. 49, fig. 409 ; Pl. 50, fig. 424.

Dark chocolate, with two or three yellow zones, the upper one visible on the spire. Length, $1 \cdot 75-2 \cdot 25$ inches.

Isle of Ticao, Philippines.
T. bifasciata, Swainson, has long been recognized as a synonym; T. zonalis, Quoy (fig. 424), may be added. This species approaches so near to the smoother forms of T. vulpecula, that their specific identity is not improbable.
T. plicata, Lam. Pl. 50, figs. 420-422.

Orange-yellow, with narrow superior and inferior brown bands, interrupted by the ribs, and a broad central band; whorls shouldered, with or without revolving strix.

Length, $1 \cdot 5-1 \cdot 75$ inches.

Philippines.

Var. pullata, Reeve. Figs. 421, 422.
Less shouldered, ribs rather closer, revolving striæ more distinct.

I use the name plicata, Klein, adopted by Lamarck, in preference to plicaria, Linn, the former being so well known, that it would be injudicious to displace it.
T. cinctella, Lam. Pl. 50, fig. 423.

Whitish and gray or lead or yellowish in alternate zones, overlaid, on the body-whorl by one or several chestnut-colored lines. Length, $1 \cdot 15-2 \cdot 25$ inches.
T. intermedia, Kiener. Pl. 50, fig. 430.

Alternately zoned with ashy or chocolate-brown and white. Length, 2-2.5 inches.

Moluccas.

This species is entirely too intermediate for the satisfactory separation of several other forms; in its smoother varieties it approaches very closely to chocolate-banded specimens of T. vulpecula; its long, costate varieties are allied to T. costellaris, Lam. and T. cinctella; its short, corrugated specimens are too near to T. corrugata, Lam. (= T. rugosa, Gmel.).
T. corrugata, Lam. Pl. 50, figs. 429, 428, 427.

Whitish or ash color, banded with chocolate.
Length, $1 \cdot 25-1 \cdot 75$ inches.
Indian Ocean, Philippines, New Guinea, Australia.
It is too late to revive Gmelin's prior name (rugosa) for this species. T. Jukesii, A. Ad. (fig. 428), is founded on juvenile Australian specimens. T. fulvolirata, Sowb. (fig. 427), is very close, if not identical.
T. Berthe, Sowb. ` Pl. 49, fig. 417.

Ash or yellowish, encircled by narrow chocolate bands.
Length, 32 mill.
China Sea.
Appears to hold the same relation to T. corrugata that cinctella does to costellaris.
T. Gruneri, Reeve. Pl. 49, figs. 418, 419, 416.

White, more or less distinctly banded with ash, with a superior, and sometimes one or two inferior narrow chestnut revolving lines, shell smooth between the longitudinal ribs.

Length, $\cdot 75-1 \cdot 25$ inches.
Ceylon, Philippines, Polynesia.
Resembles T. Berthæ, but is distinguished by wanting its revolving striæ. T. cinctella, of which it might be suppposed to be the young, has the earlier whorls closely ribbed, not shouldered. It may be the young of a variety of T. plicata, a species from which it is only distinguished by the character of its narrow bands. T. modesta, Pease (fig. 419), of which the type specimen is now before me is certainly identical; and so is T. lævicostata, Sowb. (fig. 416).
T. interrupta, A. Ad. Pl. 50, fig. 426.

Whitish, interruptedly banded with chocolate.
Length, $1 \cdot 4$ inches.
North Australia.
Differs in form from T. corrugata.
T. ornatá, A. Ad. Pl. 50, fig. 425.

White with chestnut bands, or dark colored with white bands; revolving striæ between the ribs. Length, $1 \cdot 25$ inches. Habitat unknown.

The ribs appear to be closer than in T. corrugata, but I fear that it will prove to be a variety of that species.

Section Coste'laria, Swainson.
Shell smaller, with elevated spire, body-whorl anteriorly contracted, slightly ventricose in the middle, aperture sometimes internally striated.
T. angulosa, Küster. Pl. 50, figs. 432, 431.

Yellowish white, stained or strigated with brown.
Length, $1 \cdot 2-1 \cdot 8$ inches.
Philippines, Mauritius, Polyntsia.
T. mirabilis, A. Ad. (fig. 431) is a synonym.

Mr. Garrett says that Viti Islands specimens are ashy-slate color, with a more or less distinct pale band just beneath the sutural angle.
T. nasuta, Sowb. Pl. 49, fig. 415.

Subfusiform, white, with thin sinuously curved, rather distant ribs, and rather distant spiral striæ. Length, $\cdot 9$ inch.

Habitat unknown.
I am not acquainted with this species.
T. decora, Reeve. Pl. 50, fig. 434.

White, with two brown bands. Length, 1 inch.
Habitat unknown.
Ribs more distant than in T. angulosa, but may be avariety of it.
T. salmonea, Sowb. Pl. 50, fig. 433.

Yellowish white, clouded with salmon color.
Length, 1.5 inches.
Habitat unknown.
T. Cumingil, Reeve. Pl. 50, figs. 435-439.

Longitudinal ribs rude, rounded; crossed by revolving rounded riblets, the interstices between the latter deeply impressed except where they cross the ribs. Whitish, sometimes spotted with brown, and usually brown-banded in the middle.

Length, 1-1:5 inches.

Ceylon, Philippines, Polynesia, Mauritius.

Besides a copy of Reeve's type (fig. 435), I give one from Sowerby's Thesaurus (fig. 436), which corresponds more nearly with the richly-colored specimens lineated with brown, found by Mr. Garrett at the Paumotus Isles. With this species must be united T. clathrata, Reeve (fig. 438), and T. dimidiata, Sowb. (fig. 437), which is now admitted by him to be a synonym.
T. rugosa, Sowb. (fig. 439), of which only a single specimen is known, appears to differ only in the somewhat greater prominence of the revolving sculpture on the body-whorl. I think it is the same species: if it is, then its priority of publication must cause the adoption of its name instead of that of Cumingii.
T. Montrouzieri, Souv. Pl. 50, fig. 440.

Yellowish brown, lighter at the angle of the shoulder.
Length, 1 inch.
New Caledonia.
T. lucida, Reeve. Pl. 50, fig. 441.

Ribs swollen at the upper part, transversely elegantly ridged; transparent white. Length, $\cdot 66$ inch.

Philippines.
T. nodulifera, A. Ad. Pl. 50, fig. 442.

The figure given by Sowerby is white, but Mr. E. A. Smith describes a specimen from the Solomon Islands as pale pinkish with white ribs, the aperture orange. Length, 11.5 mill.

It possibly equals T. lucida.
T. modesta, Reeve. Pl. 50, fig. 443.

White, slightly tinged with pink towards the base, aperture pink. Length, 8 inch.

Isle of Ticao, Philippines.
"A very chaste pink-white shell, with a highly relieved lattieed sculpture."
T. propinqua, Garrett.

An unfigured species resembling T. modesta, Reeve, but more contracted at the base, with much smaller and more numerous transverse ridges. Length, 15 mill.

Viti Islands.
T. cineracea, Reeve. Pl. 51, figs. 444, 445.

Ashy gray, with an interrupted white band at the shoulder, and white-tinged at the base. Length, $\cdot 75$ inch.

Philippines.
T. Judeorum, Doinrn. Pl. 51, fig. 446.

Orange-brown, ribs and base white. Length, 22 mill. Red Sea, Mauritius.
A longer, narrower shell than T. cineracea, but may be a variety of it.
T. militaris, Reeve. Pl. 51, figs. 447-455.

Yellowish brown, with a chestnut band. Length, 1 inch. Isle of Ticao, Philippines.
Perhaps not distinct from T. angulosa, Küster, the difference being principally in its straighter ribs.

Var. Antonelli, Dohrn. Fig. 448.
Chocolate- or chestnut-brown, or dark gray, white-tinged or banded above.

> Red Sea, Mauritius, Polynesia.

Specimens sent to me from the Viti Islands by Mr. Andrew Garrett, under the name of T. mutabilis, Reeve, are more slender than Sowerby's figure, approaching the form of militaris very closely.

Var. lubens, Reeve. Figs. 449-451.
Yellowish white, tinged with pink at apex and base.
Philippines.
T. compta, A. Ad (fig. 450), and T.turricula, A. Ad. (fig. 451), are synonyms.

Var. cophina, Gould. Fig. 453.
The figure of the type shows a shorter shell than the preceding, but specimens before me serve to connect it directly with var. lubens. A somewhat rounded instead of an angulated shoulder is the only difference, and that not constant. To this form may be referred the Sandwich Islands species T. bella,

Pease (fig. 452), yellowish white, interruptedly banded or marked with light chestnut ; a faded, stumpy specimen of it was called T. Wisemanni by Dohrn.

As there is some diversity of sculpture and coloration in the typical shells above enumerated, I have thought it advisable to retain their names as varieties, for the sake of those who, less well provided with specimens than myself, may not be able to convince themselves that they are mere individual stages or local races perhaps, of one species. T. cimelium, Reeve (fig. 454), is a young shell referable to this species. The shell which Sowerby has erroneously determined as T. rorata, Gld. (fig. 455), may also be placed here.
T. interstriata, Sowb. Pl. 51, fig. 456.

Longitudinal costæ smooth, distant, the interstices with spiral striæ. White, banded with orange, maculated with chestnut between the ribs. Length, $1 \cdot 15$ inches.

China Seas.

I have not seen this species, but think it will prove to be a variety of T. militaris.
T. corbicula, Sowb. Pl. 51, fig. 457.

Yellowish white, shaded with yellowish brown, the tubercles of the shoulder angle tipped with chestnut, forming a necklacelike row ; interior of aperture light yellowish. Ribs and revolving riblets both close, forming granules. Length, $8-1$ inch.

Mauritius.
T. Suluensis, Adams and Reeve. Pl. 51, fig. 459.

Yellowish white, spotted with chestnut, forming two interrupted bands. Length, 1 inch.

Sooloo Islands.
T. Collinsoni, A. Adams. Pl. 51, figs. 458, 460, 461.

Whitish, stained with brown at the apex, obssurely banded with bluish ash a little below the top of the whorls, and spotted irregularly with brown in the same part, generally between the costæ; lower half of the last whorl cinereous brown.

Length, ${ }^{-75-1}$ inch.
Japan.
Differs from T. Suluensis in having a non-turreted spire, finer spiral sculpture, a shorter aperture, and in its color. The fore-
going description indicates such close affinity with T. Suluensis, however, that I think it would have been more prudent not to separate it. T. fusco-apicata (fig. 460) and T. Gotoensis, E. A. Smith, (fig. 461), are both synonymous, varying only slightly in sculpture and marking from the type.
T. cruentata, (Chemn.) Reeve. Pl. 51, figs. 462-466, 468, 469 ; Pl. 58, fig. 686.
Chestnut or chocolate-brown, with a superior narrow white band, and occasionally an inferior one. Sometimes lighter colored between the band and the suture. Length, $\cdot 75-1$ inch. Indian Ocean, Philippines, Polynesia..
A very variable species, which has received a number of names.
Var. proxima, Nevill. Figs. 464-466, 468.
The usual Polynesian form; when one-banded it has been, called var. Sandvichensis, Nevill. T. exarata, A. Ad. (fig. 465), T. ligata, A. Ad. (fig. 466), and 'T. vibex, A. Ad. (Pl. 58, fig. 686) are synonyms. I think that T'. larva, Lam. (fig. 468) may also be placed here.

Var. armillata, Reeve. Fig. 467.
A narrow form, with spire drawn out, typically very different from cruentata, var. proxima, but connected with it by Polynesian specimens before me.
T. Schomburgkit, Angas. Pl. 51, fig. 470.

Livid brown, with a broad, pale, suffused band on each whorl, and four narrow, dark-lrown lines encircling the, last whorl, one above and three below the band. Length, 10 mill.

So. Australia.
I am not acquainted with this species.
T. buccinoidea, Sowb. Pl. 51, fig. 467.

Yellowish white, with a white central band bordered with chestnut on each side. Length, 4 inches.

Habitat unknown.
T. Rawsoni, Mörch.

An unfigured species, from the West Indies, is said to resemble T. cruentala.
T. fusconigra, Garrett.

An unfigured species, dark, brownish black, with a superior white spiral line. Length, 18 mill.

Viti Isles.
Three dead specimens found. I am not acquainted with it; appears to be closely allied to the preceding species.
T. semifasciata, Lam. Pl. 51, figs. $472,473$.

Yellowish white or ash-gray on the upper part of the whorls, darker ạsh or orange on the lower part, encircled by two or three narrow chestnut lines. Length, $\cdot 75-1 \cdot 25$ inches.

> Red Sea, Philippines, Polynesia.
T. semisculpta, Ad. and Reeve. Pl. 51, fig. 474.

Ash color tinged with pink, with a light, narrow revolving band on the periphery. Length, $\cdot 9$ inch.

Sooloo Isles, Japan.
T. mucronata, Swainson. Pl. 51, figs. 475-479; Pl. 52, figs. 480-482.
Whitish or yellowish, stained, spotted or irregularly banded with light chestnut. Length, $1-1 \cdot 25$ inch.

Red Sea; Polynesia; in sand, inside the reefs, shallow water.
Mr. Garrett says the animal is a rich brown, irregularly dotted with yellow on the back, the creeping disk cinereous, the siphon dusky with yellowish spots.

The shell varies considerably in proportions and in the development of the spinose tubercles; a smoother form is T. concentrica, Reeve, (fig. 476). I add as synonyms T. fusiformis, Reeve, not Kiener (fig. 477) ; T. obtusispinosa, Sowb. (fig. 478) ; T. echinata, A. Ad. (fig. 479) ; T. nodilirata, A. Ad. (fig. 480); T. fusiformis, Chemm. (fig. 481 ; a narrow variety, which, through T. Dohrni, A. Ad. (fig. 482), approaches T. fusiformis, Kiener.
'T. verrucosa, Reeve. Pl. 52, fig. 483.
Yellowish white, spotted or banded with pale brown.
Length, 1 inch.
Philippines.
Closely allied to the preceding species, of which it may prove to be a variety.
T. fusiformis, Kiener. Pl. 52, figs 484, 485, 487-489.

Yellowish white, spotted or banded with brown.
Length, 1 inch.

Philuppines.

Kiener figured this as fusiformis, Chemnitz, but it does not correspond with the illustrations in the Conchylien Cabinet; the latter represent a narrow form of T. mucronata, Swains. T. spicata, Rve. (fig. 487) appears to be a synonym. T. turriger, Reeve, (fig. 488) and possibly T. armiger, Reeve (fig. 489) are also to be placed here.
T. purpurata, Reeve. Pl. 52, fig. 490-492.

Ashy brown, with a conspicuous white zone; interstices of the ribs strongly latticed. Length, $\cdot 75$ inch.

Red Sea ; Philippines.
T. dædala, Reeve (fig. 491) and T. cineracea, Reeve (fig. 492) are probably synonymous.
T. fidicula, Gould. Pl. 58, fig. 693.

Yellowish brown with a central white band; ribs whitish, sometimes a little nodular at the shoulder angle. Length, ${ }^{\cdot} 75$ inch. Hab. unknown.-Gould; Red Sea.--M'Andrew?
M'Andrew's identification of a Red Sea form with this species is questionable.
T. cellata, Reeve. Pl. 52, figs. 493-495.

Yellowish or chestnut-brown, with an indistinct lighter band.
Length, $\cdot 5-75$ inch.

Philippines.

T. sculptilis, Reeve (fig. 494), appears to be the adult. Probably T. mica, Reeve (fig. 495), is a synonym.
T. inermis, Reeve. Pl. 52, fig. 496.

Chestnut, with a white band crossed by longitudinal brown zigzag lines. Length, ${ }^{7} 75$ inch.

Philippines; Japan.
Possibly a smooth variety of T. crlata.
T. rectilateris, Sowb. Pl. 52, fig. 497.

Banded with chestnut and white; spiral striæ between the ribs. Length, $1 \cdot 2$ inches.

Habitat unknown.
T. rubella, Ad. and Reeve. Pl. 52, fig. 498.

Yellowish brown. Length, 1 inch.
T. scitula, A. Ad. Pl. 52, fig. 499.

Yellowish white, sparsely punctate with chestnut.
Length, 5 inch.
China Seas.
A young shell, the position of which is not readily determinable.
T. interteniata, Sowb. Pl. 52, fig. 500.

Ash color with narrow chestnut bands. Length, 1 inch.
Habitat unknown.
Possibly $=T$ rectilateris, Sowb.
T. rustica, Reeve. Pl. 52, fig. 501.

Whitish, lower part of the shell ash color, with occasional brown dots upon the middle of the whorl. Length, $\cdot 75$ inch. Habitat unknown.
A species having no marked characteristics. T. Deshayesil, Reeve. Pl. 52, figs. 502-507, 486.

Turreted, with an angle at the shoulder, longitudinal ribs small, rounded, interspaces wider, smooth ; white or ash color, with chestnut revolving bands, usually tipping the ribs only and thus appearing as rows of spots. Length, $\cdot 75-1$ inch.

Red Sea, Indian Ocean, Mauritius, Nero Caledonia, Polynesia.
First described from a poor specimen, in which the upper portions of the ribs only are distinct, and the bands not well defined. The shell which Reeve figures as T. rigida, Swainson (fig. 504), is synonymous-the true rigida being equivalent to T. semifasciata, Lam. Other synonyms are T. Michaudi, Crosse and Fischer (fig. 505), proposed for T. rigida, Reeve, not Swainson, T. Dunkeri, Schmeltz MSS., and T. alauda of Sowb. (figs. 506, 507), not Quoy, Voy. Astrol. as quoted by Sowerbyno such species occurring in that work. I figure also, a variety of uniform dark chocolate color.
T. amanda, Reeve. Pl. 52, fig. 508.

Ribs crossed by fine revolving striæ, a little nodulous next the suture ; alternately banded with light chestnut and white.

Length, 5 inch.

> Indian Ocean, Philippines, Polynesia.
T. festiva, Garrett.

Unfigured. Resembles Deshayesii, Reeve.
Viti Islands.
'T. pulchra, Garrett.
Unfigured. Resembles Deshayesii, Reeve.
Viti and Samoan Islands.
'T. casta, H. Ad. Pl. 52; fig. 509.
White. Length, •4-75 inch.
Red Sea.
The name being preoccupied in Mitra, Sowerby changed it to hastata.
T. filistriata, Lowb. Pl. 52, fig. 514.

Fulvous, lower part of the body-whorl with pale brown Hames. Length, 9 inch.

Mabitct unknown.
Very probably equivalent to the preceding species.
T. subulata, Lam. Pl. 52, figs. 510, 511.

Flesh-color clonded with orange-brown.
Length, 1•5-2.25 inches.
Polynesia.
The shoulder is not always distinctly marked. There is frequently a Terebra-like appearance given to this shell by the first incised revolving line below the suture, being deeper than the others.
T. macrospira, A. Ad. Pl. 59, fig. 512.

Whitish or yellowish, with rows of chestnut spots.
Length, 2 inches.
Habitat unknown.
This, like the preceding species, has the aspect of a Terebra, but it is stouter than T'. subulata.
T. Lincolnensis, Angas. Pl. 52, fig. 513.

Whitish, with irregular longitudinal chestutt flames, a narrow band of interrupted spots on the centre of the whorls, lower half of body-whorl chestnut, with a faint band of reticulated brown and white spots in the middle. Length, 7 lines.

Port Lincoln, So. Australia.
T. catenata, Swainson. Pl. 53, fig. 515.

White, with large irregular chestnut-brown spots, arranged in bands. Length, $\cdot 5$ inch.

> Isle of Annaa, Polynesia.

An obscure shell, probably not adult.
'T. lilacina, Sowb. Pl. 53, fig. 516.
Shell finely decussated; ash color, lighter at the suture.
Length, $\cdot 6$ inch.
Habitat unknowon.
T. marmorea, A. Ad. Pl. 53, figs. 517, 518.

Olivaceous, marked with reddish brown; longitudinally costate, costæ thick, subnodose above, interstices with revolving striæ.

Length, $\cdot 5$ inch.
Isle of Negros, Philippines; coarse sand, ten fathoms.
Sowerby's two illustrations, the only figures of this species heretofore published, and which I copy, appear to represent two different species.
'T. Arracanensis, Sowb. Pl. 53, figs. 519.
Brown, with a median white line, ribs lighter colored.
Length, 65 inch.
T. crebrilirata, Reeve. Pl. 53, figs. 521-526, 530.

Light chestnut or olive, tops of ribs lighter, with usually a narrow central brown band, and a superior white line; ribs narrow, interstices with close revolving striæ.

Length, $1 \cdot 25-1 \cdot 75$ inches.

> Indian Ocean; Japan; Philippines ; Polynesia.

Reeve hesitated to describe this as a distinct species from his M. polita, to which, he says, it bears the same relation that the ribbed does to the smooth variety of M. ebenus; I venture, nevertheless, to locate the two species in distinct groups. I do this, whilst expecting that Reeve's suspicion of their identity will be confirmed, as it is a case paralleled by many others in this genus, all pointing to the evanescent nature of the sculpture and patterns of coloring. In fact, unless we set up an artificial standard for the separation of species, in some genera, we should have no species remaining, to speak of. T. rosea, Kiener, not Duclos (fig. 522), T. tenuilirata, Sowb. (fig. 523), T. rubricata, Reeve (fig. 524), T. subtruncata, Sowb. (fig. 525), T. Layardi,
A. Ad. (fig. 526), T. Japonica, A. Ad. (fig. 530), are all synonyms.
T. Zebuensis, Reeve. Pl. 53, figs. 527-529, 520.

Yellowish white, blotched or spotted irregularly with chestnut. Length, $1 \cdot 25-1 \cdot 5$ inches.

Philippines; Polynesia.
The synonyms are T. rorata, Gould (fig. 520), T. prextexta, Sowb. (fig. 529).
T. rufomaculata, Souverbie. Pl. 53, fig. 531.

Whitish, with four revolving series of chestnut maculations; intervals of the ribs with punctate revolving striæ.

Length, 1 inch.
New Caledonia.
Described and figured from a single specimen.
T. acupicta, Reeve. Pl. 53, figs. 532, 533.

White, tinged with yellowish or pink, profusely spotted and maculated with chestnut or chocolate color. Length, $1 \cdot 25$ inches.

Red Sea, Andaman Isles, Cochin China, Zanzibar, Mauritius.
Sowerby figures a variety in which the ribs are less numerous but more prominent than in the type.
T. puncturata, Sowb. Pl. 53, fig. 534.

Pink, maculate and flammulate with reddish brown ; interstices of the ribs profoundly punctate. Length, 20 mill.

Habitat unknown.
Described from a single specimen.
T. obeliscus, Reeve. Pl. 53, fig. 535.

Chestnut-brown, with a central white band, and sometimes an inferior narrower one.

Andaman Islands, Philippines, Viti Islands.
Reeve's figure is from a faded specimen. G. and H. Nevill have described a var. Andamanica, but it has no differential characters. It is possible that T.obeliscus is a non-angulated form of T. cruentata, Chemn.
T. Macandrewi, Sowb. Pl. 53, fig. 536.

Fawn color, lighter on the periphery. Length, $\cdot 6$ inch. Red Sea
A juvenile shell with no distinctive features. It may be a young obeliscus.
T. flexicostata, Garrett.

An unfigured species, allied to $T \cdot$. obeliscus. Length, $\cdot 6$ inch. Polynesia.
T. radix, Sowb. Pl. 53, fig. 537.

Like obeliscus, but the coste more distant, curved; orangebrown with a white superior band. Length, 1 inch.

Habitat unknown.
'T. longisplra, Sowb. Pl. 43, fig. 538.
Fawn-colored, light banded in the middle. Length, 9 inch. Habitat unknown.
One of a number of very doubtful specimens, once forming part of a private collection, and which, coming into the hands of Mr. Sowerby, have been described by him as new'species.
'T. Ethiorica, Jickeli. Pl. 53, fig. 539.
A miserable little young shell, the description of which is of advantage to Mr . Jickeli, perhaps. Length, 4 mill.

Red Seu.
May be identified with anything.
T. crispa, Garrett. Pl. 53, fig. 540.

White or yellowish white, with usually a central darker band; ribs sharp, flexuous, somewhat distant, interstices foveolate, the revolving ridges being thread-like and well raised.

Length, $\cdot 65-8$ inches.
Samoa and Viti Isles.
T. exasperata, Gmelin. Pl. 53, figs. 541-544; Pl. 54, figs. 545, 546.

Whitish or yellowish usually two-banded with chestnut to dark chocolate, sometimes colored only on the ribs.

Length, $\cdot 75-1$ inch.
Red Sea, Indian Ocean, Juca, Philippines, Polynesia.
T. arenosa, Lam. (figs. 545, 546), is a synonym, and not entitled to varietal distinction as its typical form is connected with exasperata by almost insensible gradations: Reeve's reason for retaining it as a species is curious; he says: "M. Kiener regards this species as a variety of the following (exasperata), but I do not think it expedient to follow his opinion. One-half of the established species may be dispensed with were every one of two that approximate abandoned upon the discovery of their intermediate link." Mr. Garrett gathered thousands of living
specimens by digging in clear sand and sandy mud at the Tonga and Viti Isles. All the Mitres of this type bury themselves in sand and only come to the surface during the night. The shell is minutely granulated by the crossing of the sculpture. The ribs vary considerably in size and number, and are sometimes obsolete. The angle on the shoulder is also subject to variation and is occasionally very indistinct. The color is white or cinereous, and sometimes nearly uniform blackish brown. The ribs are frequently lineated with light brown or blackish brown, the lines often interrupted so as to form two transverse rows of linear spots-which gradually merge into the conspicuously banded and more closely ribbed variety which represents Lamarek's arenosa. T. cadaverosa, Reeve, the description of which follows, is possibly a marked variety only of this species.
T. cadaverosa, Reeve. Pl. 54, figs. 548-554.

Whitish, with a narrow chestnut or chocolate band, either continuous or interrupted by the ribs. Length, $\cdot 65-\cdot 9$ inch.

Red Sea, Indian Ocean, Mauritius, Philippines, Polynesia.
The shell is more stumpy, usually smaller, less disposed to granulation than T. exasperata, and its single band, when not continuous, appears in the interstices of the ribs, unlike the interrupted bands of exasperata, which appear on the backs of the ribs : I am by no means certain that it is distinct, however. In the Polynesian Islands it lives buried in the sand.

The synonyms are T. Pacifica, Reeve (fig. 550), T. Pharaonis, Issel (fossil), T. mutabilis, Reeve (fig. 551), and T. brevicaudata, Sowb. (fig. 552). TV. Wisemanni, Dohrn, an unfigured species is referred to this synonymy by Jickeli,* but I agree with Mr. Pease that it agrees better with his T. bella (=militaris). T. Appelli, Jickeli ($=$ Pharaonis, H. Ad., not Issel) is at most a variety (fig. 553), and T. subquadrata, Sowh. (fig. 554), is synonymous with it.
T. asperrima, Dohrn. Pl. 54, fig. 547.

Orange-yellow, white upon the shoulder of the whorls.
Length, 22 mill.
Habitat unknown.

* Jahrb. Mal. Gesell., i, 37.

Described from a specimen in the Hanley collection. Three examples, without locality, are also in the collection of the Philadelphia Academy.
'T. spretta, A. Ad. Pl. 54, fig. 555.
Light yellowish brown. Length, $\cdot 25$ inch.

Japan.

A juvenile shell. It is not at all probable that it is distinct from one of the previously described species: judging from the figure it could be safely referred to any one of half a dozen species, including the last.
T. roseocaudata, Hanley. Pl. 54, fig. 556.

Light yellowish brown. Length, $\cdot 2$ inch.

Habitat unknown.

Probably a starved, rugose, young specimen of T. cadaverosa. T. laterculata, Sowb. Pl. 54, fig. 557.

Yellowish brown, with a central band, bordered on each side by a row of brown spots. Length, $\cdot 7$ inch.

Habitat unknown.
T. zelotypa, Reeve. Pl. 54, fig. 558.

Alternately banded with yellowish brown and white.
Length, 1 inch:
Habitat unknown.
Section Pusia, Swainson.
Shell small, ovate, more or less ribbed or nodulous; spire usually short, convex, with obtuse apex; outer lip sometimes thickened.
'T. dermestina, Lam. Pl. 54, figs. 559-566.
Chestnut or chocolate-brown more or less spotted with yellowish white on the ribs, with a superior interrupted white band and an inferior narrower one. Length, $\cdot 75$ inch.

West Indies; Paumotus; Sandwich Islands ; Red Sea?
The West Indian habitat of this species is established by Mörch, Krebs, Swift, etc.; the Paumotus are given on the authority of Hugh Cuming; Mr. Pease reports it from the Sandwich Islands, M'Andrew from the Red Sea. Probably the latter is a mistaken identification; but specimens from the two oceans are alike and cannot be specifically distinguished. The
synonyms are T. cavea, Reeve (fig. 560), reported by Bean from Guadeloupe, W. I.; T. Adamsi, Dohrn (fig. 561), described from a worn specimen ; T. pulchella, Reeve, (fig. 562) ; T. pisolina, Lam. (fig. 563) ; T'. ansulata, Sowb. (fig. 564) ; and T. histrio, Reeve (fig. 565), a brilli:ntly colored form.

Var. consanguinea, Reeve, tig. 566.
Orange to brown, with a revolving row of white spots, and scattered spots on the base and spire. Length, 75 inch.

It varies considerably in the length of the spire. It is frequently confounded, says Mr. Garrett, with T. dermestina, with which it is very closely allied.
T. Tatei, Angas. Pl. 54, fig. 567.

Yellowish brown, with two chocolate bands. Length, 3 inches.
So. Australia.
T. merozonias, Lam. Pl. 54, figs. $568,569$.

Dark chestnut or chocolate-brown, with a row of white spots on the ribs at the periphery, forming an interrupted band or necklace ; sometimes an inferior narrow band.

Length, $\cdot 5-75$ inch.
West Indies ; Polynesia.
Mörch, Krebs and Swift report it from the West Indies, Cuming and Garrett from Polynesia; specimens from both localities before me are precisely similar. The species is distinguished with difficulty from varieties of I'. dermestina, and will, I think, prove to be synonymous with it.
T. gemmat́a, Sowb. Pl. 58, fig. 688.

Brown, usually slightly angular above the middle ; ribs distinct on and above the angle, becoming obsolete below it ; angle with a band of white spots. Length, $8-10$ mill.

Habitat unknown.

Three good specimens are before me; with the general character of M. microzonias, they have a much narrower form.
'T. pardalis, Kiister. Pl. 54, figs. 573-575.
Yellowish to chocolate-brown, with an interrupted or conHuent white band composed of irregular spots; the tops of the longitudinal ribs lighter in color, sometimes white.

Length, $\cdot 6$ inch.
Red Sea ; Philippines ; Mauritius ; Polynesia, on coral reefs.

Kiister described his species from young specimens; there can be no doubt, however, of its identity with the forms subsequently characterized by Reeve as T'. lauta (fig. 574), and T. leucodesma (fig. 575). Reeve's figure of T. pardalis is a Columbella.
'T. mediomaculata, Sowb. Pl. 55, figs. 581, 582.
Somewhat indistinctly plicately ribbed, ribs smooth, wide, close together, interstices with revolving striæ; sculpture altogether obsolete on the back of the last whorl ; rich chestnutbrown, broadly white-banded, with a row of square, regular brown spots in the centre of the band. Length, $\cdot 5$ inch.

Mauritius.
T. Cernica, Nevill (fig. 582) is a synonym.
T. puella, Reeve. Pl. 55, fig. 583.

Dark chestnut or chocolate with jagged flames or spots of white, frequently confluent around the suture Surface polished, with obsolete, minute, decussating sculpture. Length, $\cdot 3-4$ inch. West Indies.
T. turturina, Souverbie. Pl. 55, fig. 584.

Smooth, polished, solid, columbelliform, with revolving striæ; dark chestnut, with small white revolving points or spots.

Length, ${ }^{5}$ inch.

Loyalty I., Nen Caledonia.

Resembles the preceding species, differing in its columbelliform aperture, and the disposition of the spots.
T. oremans, Reeve. Pl. 55, fig. 585.

Dark chocolate, with an irregular white band, tending to spread longitudinally on the tops of the distant folds or ribs, these being sometimes obsolete ; irregularly white-banded near the base; when the shell is fresh, close, very fine spiral lines are visible. Length, $\cdot 5-6$ inch.

Philippines.
The figures of Sowerby and Reeve are both taken from smooth uncharacteristic specimens. It is near T. pardalis. M. Timorensis, Dohrn, an unfigured species, from the island of Timor, is apparently synonymous.
'I. alveolus, Reeve. Pl. 55, fig. 586.
Longitudinally finely ribbed, base with revolving grooves;
whorls dark chocolate, tessellated with white around the upper part, and on the spire. Length, 5 inch.

Habitat unknown. (Red Sea?)
I am not acquainted with the species; it may be a variation of T. pardalis.
T. aperta, Sowb. Pl. 55, fig. 587.

Slightly ribbed ; chocolate, with an irregular yellowish band.
Length, ${ }^{7}$ inch.
Habitat unknown.
Described from a single specimen in the late Taylor collection.
T. millecostata, Swainson. • Pl. 55, fig. 588.

Closely, finely longitudinally ribbed, with impressed revolving striæ at the base ; orange yellow to dark chestnut-brown, sometimes with two interrupted lighter bands. Length, $\cdot 5$ inch.

Island of Annaa.
T. luculenta, Reeve. Pl. 55, figs. 589-594.

Short pupæform, with obtuse apex; or ventricose in the body-whorl, with a more or less angulated periphery, and distantly irregularly folded or ribbed; somctimes narrow. Color alternate revolving bands of white or light yellowish and dark chocolate or black. Length, 5 inch. Philippines ; Polynesian Islands, on coral reefs.
A species of very variable form, and sculptured or smooth; the typical state is pupeform furnished with white bands as wide or wider than the black ones (fig. 589) ; a more ventricose shell with the black bands proportionately wider is T. dichroa, Ad. and Reeve (fig. 590) ; a still more ventricose and more usual form has been called by Mr. Crosse T.Græeffi (fig. 591); it is ribbed, and the white bands are narrow ; Sowerby has redescribed it under the name of T. nigrofasciata (fig. 592). A narrower variety of the shell with narrow white bands Mr. Sowerby calls T. lævizonata (fig. 593). To complete the synonymy, we may probably add T. tricolor, Montr. (fig. 594) in which there are indistinct rufous bands in the middle of the white bands; this is not a constant character, as in a specimen sent to me by M. Crosse, the rufous markings are not visible. Tapparone-Canefri has changed the name to Montrouzieri, that of tricolor being preoccupied. Mr. Garrett remarks of this
species that "they are usually found associated with Engina mendicaria, which they resemble so closely in shape and color as to be easily mistaken for small specimens of the latter species. Mr. Crosse's figure, which is slightly enlarged, very correctly represents the usual form. They, however, frequently differ in being more slender, and the ribs are sometimes nearly obsolete. Animal black. The foot is ohlong, margined with yellow, slightly auriculate in front, and about three-fourths the length of the shell. Siphon rather long, irrorated with white. The pale tentacles are marked by two black zones."
'T. lota, Reeve. Pl. 54, fig. 570.
Pale reddish orange, variegated with brown. Length, $\cdot 75$ inch. Isle of Ticao ; Philippines.
A species of no determinate character, closely allied to or identical with T. microzonias, Lam. Sowerby considers it a synonym of 'T. pisolina, Lam., a species which I believe to be identical with T. dermestina.
T. glandiformis, Reeve. Pl. 54, fig. 571.

White, variegated with brown. Length, 5 inch.
Red Sea; Indian Ocean.
Messrs. G. and H. Nevill say that T. dædala, radius and this species are identical, ruming together through intermediate forms; the types are so different, however, that having no series of specimens by which to verify this for myself, I prefer to keep them distinct.
T. cithara, Reeve. Pl. 55, fig. 599.

Light purple-brown with a narrow, pale band. H., $\cdot 75$ inch. Hab. unknown.
T. approximata, Pease.

Shell ovate, turreted; whorls convexly angulated at the sutures, longitudinally ribbed, crossed by impressed strix ; interstices punctured; aperture striated within; columella four-plaited. Color white, handed and botched irregularly with chestnutbrown.

Sandwich Islands.
Not figured. Not seen by either Mr. Garrett or myself.
'T. Bronni, Dunker.
An unfigured species said to be very like T. glandiformis, Reeve, but much larger, narrower, paler in color, and somewhat curved before. Length, 20 mill.

Japan.
'T. Kraussi, Dunker.
An unfigured species, resembling the preceding, somewhat, and also recalling the narrow variety of T. microzonias. It is found in the Japanese seas.
'T. crocata, Lam. Pl. 55, figs. 595-597.
Reddish orange or yellowish brown, with a superior narrow white band. Length, $\cdot 75-1 \cdot 25$ inch.

Philippines; Polynesia.

The type figured by Kiener, fig. 595, is even larger than the size given in Lamarck's description-which is, length one and a quarter inches. I have some doubt whether the shell usually identified with T. crocata, and which is common enough in cabinets, is really that species, for it is always much smaller and less shouldered-sometimes without any superior angle on the whorls. If this identification is correct, a large synonymy must be added (principally on account of inconstant coloration), including T. aureolata, venustula, flavescens, etc. I prefer to let crocata stand as a somewhat doubtful form, and include the others under the name of T. aureolata. T. concinna, Reeve (fig. 597), is a smaller shell, varying only in the interstices of the revolving ridges being darker colored.
T. pyramidalis, Reeve. Pl. 55, fig. 598.

Yellowish or orange-hrown, with a white superior zone.
Length, $1 \cdot 25-1 \cdot 5$ inches.
Isle of Annau, Paumotus Group.
Garrett obtained a specimen which is white with two orangeyellow bands. The spire is more elegated and less angular than in T. crocata: the ribs much more curved and more roughly tuberculated. This is the aurantia of Swainson, not Gmelin, and Garrett proposes to revive that name; Gmelin's species being a true Mitra and Turricula now generally accepted as a distinct genus : in common parlance the Turricule, however, will probably continue to be referred to as Mitræ, so that some confusion might arise from reinstating T. aurantia.
T. aureolata, Swainson. Pl. 55, figs. 600-606.

Orange-brown, with a small white superior zone, and sometimes one or more thread-like inferior bands; sometimes white with an orange band below the suture and another at the base.

Length, 75 inch.

Philippines; Polynesia.

A very variable species in seulpture and coloration, and therefore having a large synonymy. I have already, under T. crocata, alluded to the fact that that species has usually been identified with this ; it remains to figure the crocata of collectors (fig. 600), which is a lemon-yellow variety of aureolata, with or without a superior thread-like white band. T. multicostata, Swains. (fig. 602), and T. crocea, Reeve (fig. 603), are examples of shoulderless varieties of the type and of "crocata" respectively; they are both somewhat enlarged in the figures. In T. venustula, Reeve (fig. 604), the revolving sculpture is darker colored ; and in T. flavescens, Reeve (fig. 605), a portion of them are so marked, giving the shell a bright, banded appearance. T. affinis, Reeve (fig. 606), is also a synonym.
'T. plicatissima, Schröter. Pl. 55, fig. 607.
Grayish white, apex and base tinged with brown; two dark bands on the body-whorl. Length, 20 mill.

Habitat unknown.
Perhaps a variety of T. aureolata.
T. rubra, Swainson. Pl. 55, figs. 608, 609.

Light pink and darker banded, or roseate with a light band, sometimes interrupted by dark tints in the interstices of the ribs. Length, $\cdot 25$ inch.

Paumotus; New Zealand?
The specimens before me, as well as the figures, show that it is not an adult shell. Sowerby's fig. 393 (fig. 608) represents the shell described by Garrett as T. exquisita; it is at most, a mere variety.
'I. bicolor, Garrett.
An unfigured species, cinereous with two rose-colored bands. Length, 8 mill.

Samoa and Paumotus Isles.
Appears to be closely allied to T. rubra.
T. paligera, Sowb. Pl. 55, fig. 610.

Yellowish white, interruptedly fasciate with chestnut.
Length, 65 inch.
Hab. unknown.
T. infausta, Reeve. Pl. 55, fig. 576.

Fleshy straw-color, stained with chestnut. Length, 63 inch. Isl. of Ticao, Philippines.
T. Garrettir, G. and H. Nevill.

Name proposed for Mitra assimilis, Garrett, not Pease; an unfigured species, of a whitish color, with closely set, slightly raised deep brown lines.

> Cook's, Samod, and Viti Islands.
T. fortiplicata, Pease. Pl. 55, fig. 577.

Light chestnut, base and apex whitish. Length, 8 mill.
Paumotus Is., in beach sand.
T. Eminif, Schmeltz. Pl. 55, fig. 578.

Reddish chestnut, encircled by two or three narrow yellowish bands. Length, 8 mill.

P'aumotus Is., in beach sand.
Described by Mr. Pease as T. plicatula, a name preocenpied for a fossil species.
T. rosea, Swainson. Pl. 55, fig. 579.

Purple-rose, tipped with white on the ribs; sometimes with a row of dark spots between the ribs and below the shoulder.

Length, $\cdot 5$ inch.
Lord Hood's Island.
T. discoloria, Reeve. Pl. 5 5́ , fig. 580.

Alternately banded with white and orange or reddish brown, or chocolate. Usually the bands are much darker in color between the ribs. Length, $\cdot 5-65$ inch.

Solomon Is. (Brazier) ; Philippines (Paetel) ; Viti Is. (Garrett).
T. Amabilis, Reeve. Pl. 56, fig. 611.

Ashy or pinkish gray, with a broad white superior band, and sometimes narrow white revolving lines below it.

Length, $\cdot 35-\cdot 4$ inch.
Red Sea; Philippines; Polynesia.
A coral reef species, widely distributed.
Q
T. Nicobarica, Frauenfeld. Pl. 56, fig. 612.

Shell chocolate-brown, aperture also chocolate. H., 16 mill. Nicobar Isles.
'T. ficulina, Lam. Pl. 56, figs. 613-615.
Dark chocolate-brown, more or less shouldered and distantly longitudinally ribbed, sometimes crossed by revolving striæ, which become more distinct towards the base; aperture chocolate within. Length, ${ }^{7}$ inch.

Philippines; Solomon Is.; Australia ; Galapagos Is.
I refer to this species T. gausapata, Reeve (fig. 614), from the Galapagos, and T. forticostata, Reeve (fig. 615); the latter without revolving sculpture except at the base.
T. zebrina, d'Orb. Pl. 56, figs. 630, 616.

Smooth, dark chocolate with white longitudinal strigations.
Length, 10-12 mill.
Canary Islands.
The type figured (fig. 630), is a narrower form than that depicted by Sowerby ; the latter corresponds very well, however, with a specimen before me, which I feel confident belongs to this species.
T. semen, Reeve. Pl. 56, fig. 618.

Smooth; yellowish white and chestnut-brown in alternate longitudinal narrow waved lines. Length, $\cdot 5$ inch.

Philippines; Polynesia: Sandwich 1sles.
1 add the localities following the Philippines, believing that T. flammulata, Pease, and T. zebrina, Garrett, both unfigured, will prove to be synonymous with T. semen. It seems to be closely allied to the typical form of T. zebrina, d'Orb., in coloring and shape.
T. putillus, Pease. I'l. 56, fig. 617.

Finely granulated by decussating lines; dark chocolate, with a narrow white superior band; sometimes with a few white spots on the upper half of the shell. Length, $\cdot 4$ inch.

> Paumotus and Society Islands.

- T. trunculus, Sowb. Pl. 56, fig. 619.

Polished, ventricose, chestnut-brown. Length, $\cdot 25$ inch.
Habitat unknown.
Described from a single specimen.
T. muriculata, Lam. Pl. 56, fig. 620.

Orange yellow to dark chestnut, the shoulder and tubercles whitish. Length $\cdot 65-8$ inch.

Philippines; Mauritius.

T. patriarchalis, Lam. Pl. 56, figs. 621, 622, 625; Pl. 58, fig. 689.

Nodosely ribbed at shoulder of whorls, ribs becoming evanescent lower down ; spirally incised, the striæ becoming stronger towards the base, and occasionally raised into nodules or riblets; above, they cross the ribs. Color varying from light yellow, through orange and red to dark chocolate, the ribs and usually upper part of body-whorl and spire white, the base of the shell with one or more interrupted white bands, or entirely suffused with white. Length, $6-\cdot 75$ inch.

Philippines; Viti Islands.

T. tuberosa, Reeve (fig. 622) is the young of this species, and a very immature specimen of it appears to be described and figured by Kiister as T. elegantula (fig. 625).
T. porphyretica, Reeve. Pl. 56, fig. 626.

Smooth, plicately ribbed, ribs angular, three or four revolving granulous striæ at base. Ash, chestnut, etc., with a broad white zone around the suture, and narrower ones marking the basal striæ, or entire base white. Length, $\cdot 6$ inch.

Philippines, Viti and Samoa Islands.
Differs from the preceding species in the longitudinal ribs being continuous over the body-whorl, less tuberculate above, closer and narrower, in the want of revolving sculpture except at the base; the coloring is essentially the same, and it may be only a variety of T. patriarchalis.
T. Osidiris, Issel. Pl. 56, ligs. 627, 628.

White, with a central chestuut or chocolate band.
Length, $\cdot 9$ inch.

> Red Sea.

With longer spire and somewhat different coloring, this is very closely allied to the preceding species; it differs from T^{\prime}. cadaverosa by its broader band and want of revolving sculpture, but appears to be intermediate between it and porphyretica. T. umbonata, Sowb. (fig. 628), is a synonym.
T. tumida, Reeve. Pl. 56, fig. 629.

Whorls swollen and angulated around the upper part, the angle with a few large nodules; yellowish white, orange or reddish between the nodules and at the base, with a broad central chocolate band. Length, 1.5 inch.

Australia.

So close to the preceding species that I hesitated about separating them. The color is the same, but this shell is wider, and the nodules are less numerous and larger, with a decided shoulder on the whorls.
T. interrupta, Anton. Pl. 56, fig. 631.

Whitish, with interrupted revolving lines of chestnut-brown, forming a central band, with traces of an inferior one.

Length, 4 inch.
Habitat unknown.
Evidently immature. Not included in the genus by either Reeve or Sowerby, and I am unacquainted with it.
T. nodulosa, Pease. Pl. 56, fig. 632.

White, interruptedly encircled with brown below.
Length, 10 mill.

Paumotus.

Appears to be very closely allied to, if not identical with T. interrupta, Anton.
'T. encausta, Gould. Pl. 56, fig. 633.
Ash-colored, with eight or nine coarse longitudinal ribs, and deeply incised, regular revolving striæ of a dusky color.

Length, 35 inch.

Fiji Islands.

A young shell, the aflinities of which I cannot make out, neither from the original figure and description, nor from an authentic specimen before me.
T. speciosa, Reeve. Pl. 56, fig. 634.

Pinkish white, with a central reddish-brown band, appearing only on the tops of the regular longitudinal ribs; a row of spots above, and another below it ; aperture pink within.

Length, ${ }^{7}$ inch.

VOLUTID.E.

MITRID E.

122

PLATE 38.

PLATE 39.

MITRIDE.

-MITRIDE.
PLATE 43.

T. pusio, Philippi.

Longitudinally costate, nodulous above, granular at base, with revolving impressed strix ; white, with a narrow chestnut central band interrupted by the ribs. Length, $\cdot 35$ inch.

Hab. unknown.
An unfigured species, omitted by the iconographers, and unknown to me except by the short description.
IT. variata, Reeve. Pl. 56, fig. 635.
Yellowish brown with a dark superior band, and a white band with dark margins below the middle. Length, 7 inch.

Paumotus and Viti Islands, coral reefs.
Animal light brown, spotted with yellowish white. T. fratercula, Garrett, is a synonym.
T. Discors, Grandidier. Pl. 56, figs. 636, 637.

Spire and upper half of the body-whorl lilac or yellowish white, periphery with a narrow white band, lower half of body-whorl chestnut-brown. Length, 6 inch.

Caroline Istands (Pease).
I unite with this species T. glabra, Pease (not Swains.), changed by Pease to T. lubrica (fig. 637). The original description in Kuister has no locality, and the figure is poor, though recognizable.
T. nodosa, Swainson. Pl. 56, figs. 638-641.

White, sometimes with a central brown band or row of spots interrupted by the tubercles, which cover the entire surface; upper part of body-whorl with close impressed revolving strix ; aperture yellowish within. Length, $\cdot 6-\cdot 75$ inch.

Red Sea, Philippines, China, Polynesia, Mauritius.
Mr. Garrett mentions a variety occurring at the Paumotus, having a slate-colored band articulated with orange-yellow. I unite with this species M. tuberculata, Kiener, M. fraga, Kiener (fig. 640), not Quoy, M. pinguis, Reeve (fig. 641), which is a juvenile, and M. cancellarioides, Anton.
T. tusa, Reeve. Pl. 56, fig. 642.

Spire and upper portion of body-whorl white, with occasional brown spots, lower portion of body-whorl brown.

Length, 4 inch. Philippines to Sandwich Is.; Red Sea.
Animal greenish white, marbled with chocolate-brown.
'T. semitica, Jickeli. Pl. 56, fig. 623.
Gray, lower half of body-whorl ferruginous. Length, 16 mill. Red Sea.
I only know this species through the original description and figure.
'T. festa, Reeve. Pl. 56, fig. 624.
White, with a broad central brown band. Length, $\cdot 5$ inch. Philippines.
Closely allied to, or perhaps synonymous with T. tusa, Reeve.
T. pupula, Dunker. Pl. 57, fig. 643.

Reddish brown, with a white superior band, appearing on the spire. Length, $\cdot 25$ inch.

Figured from an authentic specimen, received from the Godeffroy Museum.
'I. elegnntula, Dunker.
Small, white maculated with reddish brown, forming a tessellated series on the last whorl; spire elate, whorls slightly angulated ; plicated, the interstices with revolving striæ.

Length, 15 mill.

Samoan Islands.

Has not been figured and the specimen before me is too immature for illustration.
T. tricolor, Gmelin. Pl. 57, figs. 644-646, 651.

Spire and upper portion of body-whorl distantly ribbed, sometimes smooth; yellowish to chocolate, with a white band, and frequently maculated with red-brown or chocolate across or on either border of the band; occasionally a second maculated band near the base. Length, $\cdot 25-\cdot 35$ inch.

> Mediterranean Sea.

A very variable little shell, of which T. Savignii, Payr. (fig. 644), may be considered the typical ribbed form, and T. picta, Sandri, T. granum, Farbes (fig. 645), and T. littoralis, Forbes (fig. 646), smooth varieties. To these must be added a costate variety recently described by Issel, as var. pallida (fig. 651). M. Lowei, Dohrn, an unfigured species, from the Canary Islands, is probably a synonym.
T. semicostata, Anton.

Chestnut-brown, blotched with white on the spire.
Length, $\cdot 5$ inch.
Habitat unknown.
The sculpture appears to be different from that of T. tricolor: it is a doubtful species.
T. Columbellaria, Scacchi. Pl. 57, figs. 647, 653.

Yellowish to dark chocolate ; revolving striæ becoming obsolete in the middle of the body-whorl ; columella with two plaits.

Length, $\cdot 25$ inch.

Mediterranean Sea.

Referred by some authors to the genus Columbella. The synonyms are T. obsoleta, Phil.; T. olivoidea, Cantraine; T. clandestina, Forbes (fig. 647) ; T. leontocroma, Brusina; T. striatella, Calcara ; T. Greci, Phil. (fig. 653), a Sicilian fossil.

Three little Mitras are published by Brusina without figures : M. columbulæ, M. striata, and M. typostigma, all from Dalmatia; they are possibly all referable to this species.
T. suavis, Souverbie. Pl. 57, fig. 648.

Rose-color, with a broad white band margined with chestnut. Length, $5 \cdot 5$ mill.

New Caledonia.

T. Hanleyi, Dohrn. Pl. 57, fig. 654.

Gray, maculated and banded with chestnut; closely plicate longitudinally, with a median spiral sulcus, tuberculate at base.

Length, $5 \cdot 5$ mill.
Habitat unknown.
Said to resemble T. Columbellaria, but distinguished by its sculpture.
T. corallina, Reeve. Pl. 57, fig. 655.

Amber or coral-red, ribs whitish. Length, $\cdot 6$ inch.
Philippines.
T. pusilla, A. Adams. Pl. 57, fig. 649.

Yellowish white, banded above with orange or pink.
Length, $\cdot 5$ inch.
T. articulata, Reeve. Pl. 57, fig. 656.

Pale pinkish scarlet, encircled with a small white brownarticulated zone. Length, 75 inch.

Habitat unknown.
T. emula, E. A. Smith. Pl. 57, fig. 650.

Blackish brown, with a narrow yellow line round the middle of the whorls, and yellow at the upper margin, and a second line on the last whorl rather below the middle; clothed with an olive epidermis obscuring the coloring; aperture dark-brown with two yellow bands, lirate far within. Length, 12 mill.

Japan.

Undetermined Species of Turricula.

T. pyramidalis, A. Ad.

Japan.
T. castanea, Hoyti, instricta, levicostata, modicella, luteo-
fusca, unilineata, of Garrett.
T. virginalis, Lesson.
T. semiplicata, Lam. Adams' Genera.
T. elegantula, Dunker.
T. olivacea, Anton.
T. rufofilosa, E. A. Smith.

Polynesia.
T'ahiti.
Hab. unknown.
Samoan Islands.
California.
Solomon Islands.

> Genus CYLINDRA, Schum.
C. nucea, Gronov. Pl. 57, fig. 659.

Smooth, or with obsolete impressed spiral lines towards the base. Yellowish white, with, olive-black epidermal revolving lines, partly aggregated into two broad, somewhat interrupted bands; under the epidermis are six or eight spiral rows of minute punctations, of chestnut color, scarcely visible, but showing each a terminal dot on the margin of the lip; aperture smooth, rosy white within. Length, $1 \cdot 5-2 \cdot 5$ inches.

Polynesia.
The animal is diluted white, foot and siphon margined with dashes of black and white. Reeve gives New Zealand as the locality of the species, which is an error.
C. dactylus, Linn. Pl. 57, figs. 658, 664.

Spire decussated, body-whorl with sometimes a slight shoulder.
Whitish, clouded with chestnut-brown ; encircled with distant, narrow, closely punctate, incised brown lines.

Length, $1 \cdot 25-1 \cdot 75$ inches.
Philippines; Polynesia ; sand or sandy mud inside the reefs.
C. obesa, Reeve, is a specimen covered with its greenish epidermis, and C. Potensis, Montr. (fig. 661) is a small, more cylindrical variety from New Caledonia.
C. ornata, Schuberth and Wagner. Pl. 57, fig. 660.

Thick, white, with close revolving series of red punctæ.
Length, $1 \cdot 5$ inches.
Ilabitat unknown.
I have copied the poor figure of this species-which has been passed over by both Reeve and Sowerby. Very probably it $=$ C. dactylus.
C. crenulata, Gmelin. Pl. 57, figs. 662-666.

Cylindrical, with impressed, closely pitted revolving lines; white, with waved clouds of chestnut-brown, frequently disposed in two or more broad interrupted bands of large spots.

Length, 30-40 mill.
Red Sea, Indian Ocean, Mauritius, Philippines, Polynesia.
C. undulosa, Reeve (fig. 664), differs typically in six or eight of the revolving lines being colored, and the form is not quite so cylindrical ; it is connected by intermediate stages with C.crenulata. In C. radula, Sowb. (fig. 665), the form, and in some cases the coloring, of C. undulosa are preserved, but the growth-lines are close and deep, decussating the revolving lines and forming numerous little square tubercles at their intersection ; this also gradually shades off into the smoother typical form. It is not unlikely that this rough form will be found to be a connecting link in a chain of variations uniting C. crenulata with C. fenestrata. C. arctata, Sowb. (fig. 666), is a variety with more produced spire, and two interrupted brown bands ; it is included in the series of specimens before me.
C. Sinensis, Reeve. Pl. 57, figs. 668, 670.

Brownish white, marked with darker brown or uniform brown ; revolving ridges granose. Length, $1 \cdot 5-1 \cdot 75$ inches.

China.
Distinguished from C. crenulata by its elaborate sculpture. C. lima, Sowerby (fig. 670) appears to be a smaller specimen of the same species.
C. fenestrata, Lam. Pl. 57, figs. 671, 667.

Thick, rudely folded longitudinally, the ribs sometimes almost obsolete ; crossed by regular, rather narrow revolving riblets and intervening grooves, the riblets become nodulous on the longitudinal folds; color whitish or yellowish, revolving ribs very dark chocolate usually, sometimes uncolored.

Length, 1-1•25 inches.
Philippines; Polynesia, in sand, inside coral reefs.
C. glans, Reeve (fig. 667) has the revolving ribs uncolored. There can be no doubt of its identity, as in most specimens of C. fenestrata a portion of the whorl next the outer lip is precisely like glans, and a broken specimen before me has been repaired with the orange-brown color characteristic of glans.
C. punctata, Swainson. Pl. 57, fig. 669.

Olive-brown, whorls encircled with engraved, punctate striæ. Length, $1 \cdot 25$ inches.

Habitat unknown.

This shell is unknown in collections.
C. nux, Sowb. Pl. 57, fig. 657.

Orange or chestnut-brown, closely lineated by incised, minutely punctured lines and irregularly spotted and clouded with white: aperture chestnut within. Length, $\cdot 75$ inch.

Habitat unknoron.

Mr. Sowerby has figured but not described this species; it appears to be distinct, and a very good specimen is included in the Swift Collection in the Museum of the Philadelphia Academy.

Genus IMBRICARIA, Schumacher.
Distinguished by its Conus-like shells, the columella with less numerous plications than most of the species of Cylindra. The transition between this genus and the latter is gradual, some of the species placed in Cylindra, such as C. dactylus, being almost cone-shaped.
I. conica, Schumacher. Pl. 58, fig. 673.

Yellowish or ash-color in darker and lighter clouds, encircled by equidistant narrow brown lines, and mottled by quadrangular white spots. Length, 1 inch.

> Philippines ; Polynesia.

Gregarious in sand in sheltered places inside the reefs. It is the Mitra marmorata of Schuberth and Wagner, and the type of Swainson's genus Concelix.
I. Crounni, Crosse. Pl. 58, fig. 674.

Violet flesh-color, with irregular longitudinal whitish streaks; smooth. Length, 15 mill .

Galapagos.
I. conulus, Lam. Pl. 58, fig. 672.

Smooth, distantly spirally grooved at the base ; yellowish brown, under a thin olivaceous epidermis, with revolving blackish or brownish lines. Length, $1-1 \cdot 25$ inches.

Philippines, in mud at the roots of mango trees.
I. citrina, Reeve. Pl. 58, fig. 675.

Smooth spire with rows of small tubercles; orange-brown, stained with livid chestnut. Length, $1 \cdot 5$ inches.

Habitat unknown.
I. carbonacea, Hinds. Pl. 58, figs. 676, 677.

Spire smooth, body-whorl with a few engraved revolving lines towards the base; black, with traces of darker revolving lines.

Length, $\cdot 9$ inch.
Cape of Good Hope.
Possibly equivalent to the preceding species. Very probably
I. Rollandi, Bernardi (fig. 677), described from a somewhat worn specimen, locality unknown, belongs here, although the spire is somewhat different.
I. punctata, Swainson. Pl. 58, figs. 679-681.

Yellowish white, clouded with a darker shade, apex black; body-whorl encircled with engraved, sometimes minutely punctured lines.

Length, $\cdot 5-\cdot 8$ inch.
Society Islands.
With this species must be united M. conovula, Quoy, partly (fig. 681), and M. ossea, Reeve, a name given because Swainson had previously given that of punctata to a Mitra; M. truncata, Kiener (fig. 680), a poorly figured shell, may also be placed here for the present.
I. Lineata, Swainson. Pl. 58, fig. 678.

Yellowish, smooth, with revolving chestnut hair-like lines. Length, 1 inch.

> Inhabits the South Seas.

This species has not been recognized by the monographers. It is described as smooth, yet I think it is merely a large punctata, which it much resembles in the spire and upper part of aperture.
I. virgo, Swainson. Pl. 58, fig. 683.

Yellowish white, apex and base tipped with black-violet, spire much depressed, mucronate, upper portion of body-whorl swollen.

Length, $\cdot 6$ inch.
Polynesia? sand at low water.
Although so bulbous, I cannot help thinking that this will prove to be an extreme variation of I. punctata.
I. Vanikorensis, Quoy. Pl. 58, figs. 684, 682.

Encircled by closely punctured strix ; ashy, or reddish gray, whitish towards top of body-whorl and on the spire, ornamented with numerous minute white spots and streaks, edged with chestnut; aperture chestnut within. Length, $\cdot 65-9$ inch.

Philippines ; Polynesia, in sandy mud at low water.
I find no good reason for the separation from this species of I. Deburghiæ, Sowb. (fig. 682), recently described from Taheiti.

INDEX

To Genera and Species, including Synonymy.

Abbatis (Voluta Mitra), Chemn. Conch. Cab., xi, f. 1709, 1710. PAGE.$=\mathrm{M}$. contracta, Swainson.
Abbreviata (Desmoulea), Gmelin. Syst. Nat., 3478 , 65
Abbreviata (Mitra), Sowb. Thes. Conch., f. 328, 1874 122
Abyssicola (Nassa), A. Adams. Zool. Proc., 100, 1851 47
Abyssicola (Voluta), Adams \& Reeve. Voy. Samar., 25, t. 7, f. 6. 100
Abyssinica (Nassa), Marrat. New Forms of Nassa, 8, 1877 63
Achatina (Bullia), Lam. An. s. Vert., x, 158. =B. digitalis, Meusch.Aciculina, H. \& A. Adams. Gen. Rec. Moll., $i, \overline{121}$.$=$ S. G. of Nassa, Mart6
Acinosa (Nassa), Gould. Bost. Proc., iii, 154, 1850; Moll. Wilkes' Exped., 262, f. 329. $=$ N. Gruneri, Dunker.
Acuminata (Mitra), Swains. Zool. Ill., 2d ser., t. 128. 153
Acuminata (Nassa), Marrat. Vars. of Nassa, 78, 1880. 63
Acupicta (Mitra), Reeve. Conch. Icon., f. 76, 1844 179
Acuta (Mitra), Sowb. Zool. Proc., 797, t. 48, f. 7, 8, 1878.$=$ M. annulata, Reeve.
Acuta (Nassa), Say. Jour. Philad. Acad., ii, 234, 1822.$=\mathrm{N}$. ambigua, Mont.
Acuta (Nassa), Carpenter (not Say). Mazat. Cat., 497, 1857. $=$ M. pagoda, Rve.
Acutangula (Nassa), Marrat. New Forms of Nassa, 9, 1877 63
Acuticostata (Nassa), Montr. Jour. de Conch., 3 ser., iv, 273, t. 10, f. 8, 1864. $=$ N. monile, Kiener, var. Jacksoniana.
Acutidentata (Nassa), E. A. Smith. Zool. Proc., 212, t. 20, f. 46, 1879. 46
Acutilirata (Mitra), Sowb. Thes. Conch., No. 129, f. 273, 274, 1874. 141
Acutimargo (Bucc.), Phil. Zeit. Mal., 55, 1851. 62
Adamsi (Mitra), Dohrn. Zool. Proc., 20す̄, 1861. = M. dermestina, Lam.Adamsiana (Nassa), Marrat. Vars. of Nassa, No. 1387.$=$ N. stigmaria, A. Ad.
Adamsoni (Mitra), Gray, Reeve. Conch. Icon., sp. 150, 1844. 144Adansonii (Mitra), Phil. Zeit. Mal., 155, 1848. Undetermined.Adansonii (Mitra), Kiener. H. \& A. Adams' Genera, i, 173.$=$ M. Adamsonii, Gray.
Adinus, H. \& A. Adams. Genera, i, 114. = S. G. of Bullia, Gray. 6
Adumbrata (Mitra), Souv. Jour. de Conch., 379, t. 13, f. 6, 1876. 161
Adusta (Mitra), Lamarck. Anim., vii, 303. 148
Ægra (Mitra), Reeve. Conch. Icon., f. 252, 1845. 139
Emula (Mitra), E. A. Smith. Zool. Proc., 215, t. 20, f. 52, 1879. 194
Ethiopica (Turricula), Jickeli. Jahrb. Mal. Gesell., i, 47, t. ii, f. 9, 1874. 180
※thiopica (Nassa), Marrat. Ann. Mag. N. Hist., 4 ser., xii, 426, 1873. 64
Ethiopica (Melo), Linn. Syst. Nat., 1195 81
Ethiops (Mitra), Reeve. Conch. Icon., f. 324, 1845.
$=$ M. Woldemarii, Kiener. 158
Affinis (Mitra), Reeve. Conch. Icon., t. 26, f. 211, 1844.
$=$ M. aureolata, Swn.
PAGE.
Affinis (Mitra), Lesson. Rev. Zool., 142, 1842. $\quad=$ M. filum, Wood.
Africana (Voluta), Reeve. Zool. Proc., i, t. 33, f. 3, 4, 1856 95
Afrum (Bucc.), Phil. Zeit. Mal., 56. 1851 62
Agapeta (Nassa), Watson. Marrat, Vars., No. 1337. 64
Aidone, H. \& A. Adams. Genera, i, 172. $=$ Mitra, Lam 129
Alauda (Mitra), Quoy. Sowb., Thes. Conch., f. 134, 135, 158, 1874.
$=\mathrm{T}$. Deshayesii, Reeve.
Alba (Mitra), Pease. Am. Jour. Conch., 215, t. 15, f. 8, 1867. 129
Alba (Nassa), Say. Jour. Philad. Acad., v, 212, 1826 50
Albescens (Nassa), Dunker. Zeit. Mal., 170, 1846 ; Phil., Abbild. Bucc., 68, t. 2, f. 15 51
Albicostata (Mitra), C. B. Ad. Cont. Conch., 57, 1850.
$=$ T. dermestina, Lam.
Albina (Mitra), A. Ad. Zool. Proc , 137, 1851 129
Albipunctata (Nassa), Reeve. Icon., f. 144, 1853. = N. fissilabris, A. Ad.
Albofasciata (Mitra), Sowb. Thes. Conch., f. 300, 1874.
$=$ M. lugubris, Swn.
Albomaculata (Mitra), A. Ad. Sowerby, Thes. Conch., f. 449, 1874 158
Albopunctata (Northia), Adams \& Reeve. Voy. Samarang, 33, t. 11, f. 21. 9
Alcithoë, H. \& A. Adams. Genera, i, 164, 1853. = Voluta, Linn, sect... 94
Alectrion, Montfort. Conch. Syst.. ii, 566, 1810. $=$ S. G. of Nassa, Mart.. 6
Algida (Nassa), Reeve. Icon., f. $145,1853 .=$ N. picta, Dunker, var.. 36
Alveolus (Mitra) Reeve. Conch. Icon., f. 334, 1845 184
Amabilis (Mitra), Reeve. Conch. Icon., f. 274, 1845 189
Amanda (Mitra), Reeve. Conch. Icon., f. 318, 1845 176
Ambigua (Mitra), Swains. Zool. Ill., 2d ser., t. 30, f. 2 147
Ambigua (Nassa). Mont. Test. Brit., t. 9, f. 7. 42
Americana (Voluta), Reeve. Zool. Proc., 2, t. 33, f. 1, '2, 1856 94
Amœna (Mitra), A. Ad. Zool. Proc., 137, 1851. $=$ M. annulata, Reeve. Amoria, Gray. Zool. Proc., 64, 1855. = Voluta, Linn, sect. 92Amphora (Voluta), Solander. Gray, Zool. Proc., 54, 1855.
= Melo diadema, Lam.
Amphorella (Mitra), Lam. An. sans Vert., vii, 316. = M. scutulata, Lam.
Ampullacea (Bullia), Deshayes. An. s. Vert., x, 203.
B. globulosa, Kiener.
Anaïs (Mitra), Lesson. Rev. Zool., 142, 1842 157
Analogica (Mitra), Reeve. Conch. Icon., f. 293, 1845.
? M. funerea, Reeve.
Ancilla (Voluta). Kiener. Monog., t. 52. = V. Magellanica, Lam.
Ancilla (Voluta), Solander. Portl. Cat., No. 187397
Ancilloides (Mitra) Swainson. Brod., Zool. Proc., 1835 162
Andamanica (Turricula), G. \& H. Nevill. Jour. As. Soc. Beng., 99, t. 8,f, 19, 20, $1875 .=$ T. obeliscus, Rve.Angasi (Voluta), Sowb. Thes. Conch., f. 29. $=$ V. undulata, Lam.Angiostoma (Thala), Pease. Am. Jour. Conch., iii, 216, t. 15, f. 9, 1867.$=$ T. cernica, Sowb., var.
Angulata (Voluta) Swains. Exot. Conch., t. 3, 4. 98
Angulata (Nassa), Thorpe. Marrat, Vars, No. 906 64
Angulifera (Nassa), A. Adams. Zool. Proc., 109, 1851.= N. pagoda, Reeve.
Angulosa (Mitra), Kiuster. Conch. Cab., t. 12, f. 8, 9. 169
Angustata (Mitra), Sowb. Thes. Conch., f. 671, 1874.
= M. cernica, Sowb.
Anna (Voluta), Lesson. 7ool. Illust., 1832. = L. costata, Swains.Annellifera (Nassa), Reeve. Icon., f, 168, 1853.40
Annulata (Bullia), Lam. Edit. Desh., x, 156. 14
PAGE.
Annulata (Mitra), Reeve, Conch. Icon., f. 103, 1844 140
Anomalum (Teinostoma), C. B. Ad. $=$ Rotellidæ.
Ansulata (Mitra), Sowb. Thes. Conch., No. 3E8, 1874.
= T. dermestina, Lam,
Anthracina (Mitra), Reeve. Icon., f. 137, 1844 158
Anthracina (Nassa), Garrett. Proc. Philad. Acad., 229, t. 3, f. 57, 1873. 38
Antillarum (Nassa), Phil. Zeit. Mal., 139, 1848. = N. vibex, Say.
Antillarum (Nassa), Orb. Moll. Cuba, ii, 141, t. 23, f. 1-3, 1853.
$=\mathrm{N}$. ambigua. Mont.
Antonelli (Mitra), Dohrn. Zool. Proc., 367, 1860.
$=$ M. militaris, Rre., var.
Antoniæ (Mitra), H. Adams. Zool. Proc.. 788, 1870. = M. pretiosa, Reeve.
Antonii (Mitra), Küster. Conch. Cab., 77, t. 14, f. 11-13, 1841.$?=$ M. Adamsonii, Gray.
Antonii (Mitra), Dohrn. Zool. Proc., 368, 1860 159
Aperta (Bullia), Chemn. Mörch, Cat. Yoldi, 76. = B digitalis, Meusch. Aperta (Mitra), Sowb. Thes. Conch., f. $820,321,1874$. 185
Apicata (Mitra), Reeve. H. \& A. Adams' Genera, 1, 179 158
Appellii (Mitra), Jickeli. Jahrb. Mal. Gesell., i, 39, 1874.
= T. cadaverosa, Reeve, var.
Approximata (Mitra), Pease. Zool. Proc., 146, 1860 186
Approximata (Nassa), Pease. Am. Jour. Conch., iii, 232, 272, t. 23, f. 3,1867. = N. tænia, Gmel.
Arabica (Mitra), Dohrn. Zool. Proc., 206, t. 26, f. 4, 1861.$=\mathbf{M}$. maculosa, Reeve.Arabica (Voluta), Martyn. Univ. Conch., t. 52. = V. Pacifica, Soland.Arausiaca (Voluta), Solander (ubi ?), teste Gray. $=$ V. vexillum, Lam.Archeri (Voluta) Angas. Zool. Proc, 55 t. 2 f 4, 5, 1865104
Archiepiscopalis (Mitra), Lam. Anim., vii, 302.$=$ M. cardinalis, Gmelin.
Arctata (Mitra), Sowb. Thes. Conch., sp. 188, 1874 196
Arcularia, Link. Rost. Samml., iii, 126, 1807. = S. G. of Nassa, Mart. 6
Arcularia (Nassa), Linn. Syst. Nat., edit. xii, 1200 24
Ardeola (Turbinella), Valenc. Observ. 283. = Vasum muricatum, Born.
Arenacea (Mitra), Dunker. Zeit. Mal., 51, 1852 136
Arenosa (Mitra), Lam. Edit. Desh., x, 338.$=$ Turricula exasperata, Gmelin.Areolatum (Bucc.), Tiberi. = Lachesis Lefebvrei, Marav.
Argentea (Nassa), Marrat. New Forms of Nassa, 9, t. 1, f. 21, 1877.$?=$ N. tenella, Reeve.
Armata (Melo), Lam. Edit. Desh., x, 376. = M. diadema, Lam.Armata (Bullia), Gray. Zool. Beechey Voy. 126, 183914
Armata (Turbinella), Brod. Zool. Proc., 8, 1833.$=$ Vasum ceramicum, Linn.
Armiger (Mitra), Reevè. Conch. Icon., f. 288, 1845.
$=$ T. fusiformis, Kiener.
Armillata (Mitra), Reeve. Conch. Icon., f. 315, 1845.$=$ T. cruentata, Chemn., var,
Arracanensis (Mitra), Sowb. Thes. Conch., f. 473, 1874. 178
Articulata (Mitra), Reeve. Conch. Icon., f. 302, 1845 194
Ascanias (Buecinum), Lam. Edit. Desh., x, 173. $=$ Nassa incrassata, Strom.
Asperrima (Mitra), Dohrn. Mal. Blatt, viii, 138, 1862. 181
Asperulata (Mitra), A. Ad. Zool. Proc , 136, 1851 159Asperulum (Buccinum), Phil. Moll. Sicil., 220. =N. incrassata, Strom.
PAGE.
Assimilis (Turricula), Garrett. Zool. Proc., $\cdot 841,1872$. $=$ M. Garrettii, G. and H. Nevill.
Assimilis (Mitra), Pease. Am. Journ. Conch., 211, t. 15, f. 1, 1867. $=$ M. coronata, Lam., juv.
Asteriscus (Cyclops), Michaud. Coll. = C. pellucida, Risso. Astricta (Mitra), Reeve. Conch. Icon., f. 188, 1844. 154
Astyagis (Mitra), Dohrn. Zool. Proc., 367, 1860. = M. carinata, Swn., var.
Athleta, Conrad. Proc. Acad. Nat. Sciences, Philad., vi, 449, 1853 77
Attenuata (Mitra), Reeve. Icon., f. 45, 1844.
$=$ M. ambigua, Swn., var. fulva.
Attenuata (Mitra), Swains. Brod., Zool. Proc., 1835. = M. sulcata, Swn. Attenuata (Nassa), Gray. Voy. Blossom, 127, 1839. 62
Auguria (Voluta), Solander. $=$ Cymbium Neptuni, Gmel.
Aulica (Voluta), Solander, Sowb. Tank. Cat. App., t. 6. 87
Aulica (Voluta), Kiener. Monog., t. 47, f. 1. = V. rutila, Brod.
Aulica, Gray. H. and A. Adams (partim) Genera i, 160, 1853. $=$ Voluta, Linn., sect 87
Aurantia (Mitra), Gmelin. Syst. Nat., 3454. 147
Aurantia (Mitra), Swains. Brod., Zool. Proc., 1835.
$=$ T. pyramidalis, Reeve.
Aurantiaca (Mitra), Lam. Edit. Desh., x, 330. = M. aurantia, Gmelin. Aureolata (Mitra), Swainson MSS. Reeve, Icon.,, f. 209, 1844. 188
Auriculoides (Mitra), Reeve. Conch. Icon., f. 228, 1845 154
Aurinia, H. and A. Adams' Genera, i, 166, 1853. = Voluta, Linn., sect. 101
Aurora (Mitra), Dohrn. Zool. Proc., 205, 1861. = M. coronata, Lam.
Ausoba, H; and A. Adams. Genera i, 160, 1853. = Voluta, Linn., sect.. 99
Australiæ (Voluta), Cox. Zool. Proc., 643, t. 52, f. 1, 1871. 91
Australis (Truncaria), Angas. Zool. Proc., 172, t. 26, f. 5, 1877. 9
Australis (Nassa), A. Adams. Proc. Zool. Soc., 272, 1851 63
Australis (Mitra), Sweinsen. Zool. Illust., 1st ser., t. 18 126
Australis (Microvoluta), Angas. Zool. Proc., 35, t. 5, f. 2, 1877. 105
Autumnalis (Mitra), Dohrn. Zool. Proc., 367, 1860 159
Avenacea (Mitra), Reeve. Conch. Icon., f. 246, 1845. $=$ M. flammea, Quoy.
Babylonica (Nassa), Watson. Marrat, Vars. No. 922 64
Bacillum (Mitra), Lam. Anim. sans Vert., vii, 33] 141
Badia (Mitra), Reeve. Conch. Icon., f. 157,1844. = M. testacea, Swains.
Badia (Nassa), A. Adams. Zool. Proc., 107, 1851. $=$ N. tænia, Gmel.
Balteata (Nassa), Lischke. Mal. Blatt, xvi, 107, 1869.$=\mathbf{N}$. tenuis, E. A. Smith.
Balteata (Nassa), Pease. Am. Journ. Conch., v, 70, t. 8, f. 5, 1869. 47

- Balteolata (Mitra), Reeve. Conch. Icon., f. 54, 1844 166
Barbadensis (Mitra), Gmelin. Syst. Nat. 3455 118
Barclayi (Mitra), Hanl. Thes. Conch., f. 225, 612, 1874.$=$ Mitroidea infecta, Reeve.
Barclayi (Mauritia), H. Adams. Zool. Proc., 273, t. 19, f. 5, 1869.$=$ Mitroidea multiplicata, Pease.
Barclayana (Mitra), Robillard. Trans. Roc. Soc. Maurit., iii, 106.$=$ M. fulva, Swn., var.
Beata (Nassa), Gould. Bost. Proc., vii, 330, 1860 63
Beaiui (Voluta), Fischer and Bernardi. Jour. de Conch., 2 ser. i, 296, t. 9, f. 1, 2, 1857 102
Beckii (Voluta), Brod. Zool. Proc., 43, 1847 97
Bednalli (Voluta), Brazier. Proc. Linn. Soc. N. S. Wales, iii, 81, t. 8. f. 3. 89
Belangeri (Bullia), Kiener. Coq. Viv., t. 14, f. 48 16
PAGE.
Belcheri (Mitra), Hinds. Ann. Nat. Hist., xi, 205 ; Voy. Sulphur, 40,t. 11, f. 1, 2.139
Bella (Mitra), A. Ad. Sowb., Thes., f. 377, 1874. $=$ Turricula bella, Pease.
Bella (Turricula), Pease. Zool Proc., 145, 1860.$=$ T. militaris, Reeve, var. cophina.
Bella (Nassa), Marrat. New Forms of Nassa. 9, 1877 63
Bellula (Nassa), A. Adams. Zool. Proc., 102, 1851. = N. leptospira, A. Ad.
Bellula (Mitroidea). A. Ad. Zool. Proc., 138, 1851 163
Bernardina (Mitra filaris, var.), Phil. Zeit. Mal., 26, 1850 138
Berthæ (Mitra), Sowb. Zool. Proc., 797, t. 48, f. 11, 1878. 168
Bibalteata (Nassa), Pease. Marrat, Vars., No. 932 64
Bicallosa (Nassa), Smith. Jour. Linn. Soc., xii, 543, t. 30, f. 1, 1876. $=\mathrm{N}$. picta, Dunker, var. 36
Bicolor (Mitra), Swainson. Zool. Illust. = M. casta, Lam., juv.
Bicolor (Nassa), Hombr. and Jacq. Voy. au Pol. sud, 84, t. 21, f. 41, 42,1854. - N. albescens, Dunker.
Bicolor (Bucc.), Phil. Zeit. Mal., 56, 1851. 62
Bicolor (Turricula), Garrett. Jour. of Conch., iii, 38, 1880 188
Bifaria (Nassa), Baird. Curaçoa, 436, t. 38, f. 1, 2; Zool. Proc., 1878,808, t. 50. f. 7. = N. hirta, Kiener, var.Bifasciata (Mitra), Swainson. Zool. Illust., i, t. 35, ii, t. 88.= M. caffra, Lam.
Bilineata (Mitra), Reeve. ' Conch. Icon., f. 294, 1845.$?=\mathrm{M}$. funerea, Reeve.
Bimaculosa (Nassa), A. Adams. Zool. Proc., 102, 1851.$=$ N. Thursites, Brug.25
Biplicata (Mitra), Risso. Eur. Merid., iv. = M. ebenus, Lam.
Birmanicum (Bucc.), Phil. Zeit. Mal., 57, 1851 62Bizonalis (Columbella), Làm. Edit. Desh., x, 269. = Mitra litterata, Lam.Boissaci (Mitra), Montrouz. Jour. de Conch., 2 ser., iii, 373,1859 ; iv,$118,1860 .=$ M. fulgetrum, Reeve, var.
Bonellii (Nassa), d'Orb. Prodr., iii, 176. = N. mutabilis, Linn.
Bovei (Mitra). Kiener. Iconog., t. 2, f. 5.......................................Bowerbanki (Buccinum), Michelotti. Foss. Mioc. It., 211.- Nassa reticulata, Linn.
Brasiliana (Voluta), Solander. Portl. Cat., 186, No. 3958. 98
Brazieri (Voluta), Cos. Zool. Proc., 568, t. 48, f. 8, 1873 100
Brevicaudata (Mitra), Sowb. Thes. Conch., No. 359.=T. cadaverosa, Reeve.
Brevicula (Mitra), Souv. Jour. de Conch., 378, t. 13, f. 5, 1876. 161
Broderipi (Voluta), Gray. Ann. Mag. Nat. Hist., 3 ser., xiv, 237, 1864.$=\mathrm{V}$. Turneri, Gray.
Broderipii (Melo), Gray. Griffith's Animal Kingdom, Suppl., t. 26. $=$ M. Ethiopica, Linn., var.
Bronni (Mitra), Dunker. Mal. Blatt, vi, 229, 1860 187
Bronnii (Nassa), Phil. Zeit. Mal., 137, 1848 ; Abbild., iii, Buc., t. 1, f. 17. $=\mathrm{N}$. coronata, Brug. 23
Brumalis (Mitra), Reeve. Conch. Icon., f. 280, 1845.$=$ M. pellis-serpentis, Reeve.
Brunnea (Mitra), Pease. Am. Jour. Conch., iii, 215, 233, t. 15, f. 7, 1867. 153
Brychia (Nassa), Watson, Marrat, Vars., No. 722. 64
Buccinanops, d'Orb. Voy. Am. Merid., 1841. = S. G. of Bullia, Gray , 13
Buccinata (Mitra), Quoy. Voy. Astrol., ii, 653, t. 45 bis, f. 14, 15.$=$ M. glabra, Swains.
Buccinoidea (Mitra), Sowb. Thes. Conch., f. 411, 1874. 173
page.
Bucculenta (Nassa), Marrat. Vars. of Nassa, 79, 1880.
$=$ N. glans, L., var. suturalis.Bulimoides (Mitra), Reeve. Conch. Icon., f. 224, 1845.$=$ M. testacea, Swainson.
Bullata (Nassa), Marrat. New Forms of Nassa, 5, 1877.$=\mathrm{N}$. monile, Kiener.
Bullata (Voluta), Swains. Zool. Ill., ii 100
Bullia, Gray. Griffith's Cuvier, t. 37, 1834 5, 10
Burchardi (Nassa), Dunker. Phil. Abbild., iii, t. 2, f. 14, 1849.
$=$ N. Jonasi, Dunker 26
Cadaverosa (Mitra), Reeve. Conch. Icon., f. 161, 1844 181
Cælata (Nassa), A. Adams. Zool. Proc., 97, 1851.$=\mathrm{N}$. Siquijorensis, A. Ad.
Cælata (Mitra), Reeve. Conch. Icon., f. 265, 1845 175
Cæligena (Mitra), Reeve. Conch. Icon., f. 227, 1845.? = M. crassa, Swainson.
Cærulea (Nassa), Marrat. Vars. of Nassa, 81, 1880 63
Carulea (Mitra), Reeve. Conch. Icon., f. 113, 1844. 114Casia, H. and A. Adams. Gen. Rec. Moll., i, 120. = S. G. of Nassa, Mart.
Cæstus (Turbinella), Brod. Proc. Zool. Soc., 8, 1833.= Vasum muricatum, Born.Caffra (Mitra), Linn. Syst. Nat. Edit., 12, 1192167
Caffra (Voluta), Delle-Chiaje. Poli, iii, 36, t. 46, f. 52.$=$ Mitra ebenus, Lam.
Caledonica (Mitra), Recluz. Jour. de Conch., iv, 248, t. 7, f. 7, 1853.= M. tabanula, Lam.
Californica (Schizopyga), Conrad. Pac. R. R. Rept., vi, 69, t. 2, f. 1,1856. ? = Nassa perpinquis, Hinds.
Caliginosa (Mitra), Reeve. Conch. Icon., f. 121, 1844 120
Callipara, Gray. Zool. Proc., 62, 1855. = Voluta, Linn., sect 100
Callithea, Swainson. Malacol., 320, 1840. = Turricula, Klein. 164
Callosa (Bullia), Gray. Wood, Ind. Test. Suppl 11
Callosa (Nassa), A. Ad. Zool. Proc., 98, 1851 26
Callosa (Mitra), Reeve. Conch. Icon., f. 251, 1845 126
Callospira (Nassa), A. Ad: Zool. Proc., 102, 1851. = N. callosa, A. Ad.Callosum (Bucc.), Dujardin. Mém, Geol., ii, 298, t. 20, f. 5-7:$=$ Nassa mutabilis, Linn.
Calmeilii (Nassa), Payr. Moll. Corse., 160, t. 8, f. 7-9.$=\mathrm{N}$. corniculum, Olivi.
Canaliculata (Voluta), McCoy. Ann. Mag. N. Hist., 4 ser., iv, 34, t. 3, f. $1,2,140,1869$ 93
Canaliculata (Nassa), Lam. An. sans Vert. (Desh. Edit.), x, 161 31
Cancellaria (Nassa), Potiez et Mich. Gall. des Moll., 374, t. 32, f. 3, 4... 62
Cancellaroides (Mitra), Anton. Verzeichn., 68, 1839. = T. nodosa,Swn.Cancellata (Nassa), Chemn. $=$ N. reticulata, Linn.Cancellata (Mitra), Kiener. Iconog., t. 30, f. 98.117
Cancellata (Mitra), Swainson. Zool. Illust., 1st ser 119
Cancellata (Nassa), A. Ad. Zool. Proc., 99, 1851 26
Cancilla, Swainson. Malac., 320, 1840. = Mitra, Lam., section 138
Candei (Nassa), d'Orb. Moll. Cuba, ii, 142, t. 23, f. 4-6, 1853.$=$ N. ambigua, Mont.
Candens (Nassa), Hinds. Voy. Sulph., 35, t. 9, f. 6, 7, 1844. 53
Candida (Mitra), Reeve. Conch. Icon., f. 328, 1845 150
Candidissima (Nassa), Ad. Bost. Proc., ii, 2, 1845 62
Canescens (Nassa), C. B. Ad. Pan. Cat. No. 43, 1852. = N. pagoda, Rve.
PAGE.
Capense (Nassa), Dunker. Zeit. Mal., 110, 1846. 33
Capensis (Mitra), Dunker. Reeve, Icon., f. 268, 1845 125
Caperata (Nassa), Phil. Abbild. Bucc., t. 2, f. 18. = N. pauperata, Lam.
Capillata (Mitra), Gould. Bost. Proc., iii, 171, 1850. = M. retusa, Lam.
Capitellum (Vasum), Linn. Mus. Ulric., 633. 73
Carbonacea (Imbricaria), Hinds. Voy. Sulphur, 41, t. 11, f. 9, 10, 1844. 198
Carbonaria (Mitra), Swains. Bligh Catal. Ex. Conch., App.
$=$ M. melaniana, Lam.
Cardinalis (Mitra), Gmelin. Syst. Nat., 3458 111
Caricella, Conrad. Tertiary Foss., 44. 1835. =S. G. of Turbinella, Lam. 67
Carinata (Mitra), Swainson. Zool. Ill., 2d ser 142
Carinata (Fastigiella), Reeve. = Cerithiidæ.Carinilirata (Mitra), Souverbie. Jour. de Conch., 3d ser., xi, 335, 1871;xii, 49, 1872. = M. proscissa, Reeve.
Carneolata (Voluta), Lam. Edit. Desh., x, 393. = V. musica, Linn.Carnicolor (Mitra), Reeve. Conch. Icon., f. 164, 1844139
Cassidiforme (Turbinella), Val. Kiener, Monog., 20, t. 9, f. 1.$=$ T. rhinoceros, Gmel.
Cassidula (Voluta), Reeve. Icon., f. 60 103
Casta (Turricula), H. Adams. Zool. Proc., 9, t. 3, f. 2, 1872. 177
Casta (Mitra), Lamarck. Anim. sans Vert., vii, 304 130
Casta (Nassa), Gould. Bost. Proc., iii, 154, 1850; Moll. Wilkes' Exped., 261, f. 328 33
Castanea (Turricula), Garrett. Jour. of Conch., iii, 42, 1880 195
Castanea (Mitra), A. Ad. Zool. Proc., 140, 1851 127
Catenata (Mitra), Swainson. Brod., Zool. Proc., 1835 178
Cathcartix (Voluta), Reeve. Zool. Proc., 2, t. 33, f. 5, 6, 1856 88
Cavea (Mitra), Reeve. Conch. Icon., f. 149. =T. dermestina, Lam.Cecillii (Bucc.), Phil. Zeit. Mal., 27, 1848, = Cantharus.
Ceramicum (Vasum), Linn. Mus. Ulric, 634 72
Ceraunia (Voluta). Crosse. Jour. de Conch., 3 ser., xx, 148, t. 4, f. 1, 1880. $=$ V. Rückeri, Crosse, var.
Cernica (Mitra), G. \& H. Nevill. Jour. Asiat. Soc. Beng., 24, t. 1, f. 9, 1874. = T. mediomaculata, Sowb.
Cernica (Mitra), Sowb. Thes. Conch., f. 670. 1874 161
Chalybeia (Mirra), Reeve. Conch. Icon.. f. 59 116 116
Chelonia (Mitra), Reeve. Conch. Icon., f. 289, 1845. ? = M. ebenus, Lam.Chilensis (Mitra), Gray. Kiener, Icon., 26, t. 10, f. 28.$=$ M. Maura, Swainson.Chinense (Bucc.), Phil. Zeit. Mal , 57, 185162
Chinensis (Mitra), Gray. Beechey's Voy., 125, t. 35, f. 2, 1839 120
Chinensis (Fulgoraria), Schum. Essai Nouv. Syst., 242, 1817.$=$ V. rupestris, Gmel.Chlorosina (Voluta), Lam. Edit. Desh., x, 392. = V. musica, L.Choava (Mitra), Reeve. Icon., f. 135, 1844158
Chrysalis (Mitra), Reeve. Icon., f. 200, 1844 144
Chrysame, H. \& A. Adams. Genera, i, 171. = Mitra, Lam., section 143
Chrysostoma (Voluta), Swainson. Exot. Conch., t. 45.$=$ V. luteostoma, Desh.
Chrysostoma (Mitra), Swains. Zool. Proc., 1836. 155
Cimelium (Mitra), Reeve. Conch. Icon., f. 260, 1845.$=\mathrm{T}$. militaris, Reeve.
Cincta (Mitra), Meuschen. H. \& A. Adams' Genera, i, 169 159
Cinctella (Nassa), A. Adams. Zool. Proc., 110, 1851.$?=\mathrm{N}$. cinctella, Gld.
Cinctella (Mitra), Lam. An. sans Vert. vii, 309. 167
PAGE.
Cinctella (Nassa), Gould. Bost. Proc., iii, 154, 1850 ; Moll. Wilkes' Exped., 260, f. 327 41
Cineracea (Turricula), Reeve. Conch. Icon., sp. 311, 1845 171
Cineracea (Mitra), Reeve. Conch. Icon., f. 311, 1845.$?=$ M. dædala, Reeve.
Cinerea (Mitra), Reeve. H. \& A. Adams' Genera, i, 177 158
Cingenda (Nassa), Marrat. Vars., No. 1451 64
Cingulata (Mitra), A. Ad. Zool. Proc., 136, 1851 143
Cingulata (Mitra), Phil. Zeit. Mal., 28, 1850. 152
Cinisculus (Nassa), Reeve. Iconog., f. 146, 1853. $=$ N. vibex, Say.
Cinnamomea (Volutomitra), A. Ad. Zool. Proc., 134, 1854. 159
Cinnamomea (Nassa), A. Ad. Zool. Proc., 107, 1851. = N. tænia, Gmel.Circulata (Mitra), Kiener. Iconog., t. 5, f. $13 .=$ M. filaris, L., var.Circumcincta (Nassa), A. Ad. Zool. Proc., 102, 1851.$=\mathrm{N}$. gibbosula, L. var.25
Cisium (Cymbium), Lam. Edit. Desh., x, 380 79
Cithara (Mitra), Reeve. Conch. Icon., f. 248, 1845: 186
Cithara (Voluta), Solander. Gray, Zool. Proc. 54, 1855.$=$ Melo armata, Lam.
Citharoidea (Mitra), Dohrn. Zool. Proc., 203, 1862. 136
Citrina (Mitra), Reeve. Icon., f. 215, 1834 198
Clandestina (Nassa), A. Ad. Ann. Mag. Nat. Hist., 4 ser., v, 426, 1870.? N. gaudiosa, Hinds.
Clandestina (Mitra), Forbes. Reeve, Conch. Icon., f. 263.
$=\mathrm{T}$. Columbellaria, Sc.
Clara (Mitra), Sowb. Thes. Conch., f. 652, 1874. =M.ferruginea, Lam.63
Clathrata (Nassa), Kiener (not Lam.). Monog., t. 27, f. 108.$=\mathrm{N}$. globosa, Quoy.26
Clathrata (Nassa), Lam. Encyc., t. 394, f. $5 .=$ N. gemmulata, Lam.Clathrata (Mitra), Reeve. Conch. Icon., f. 71, 1844170
Clathrata (Nassa), Born. Mus., 261. t. 9, f. 17, 18. 58
Clathratula (Nassa), A. Ad. Zool. Proc., 99, 1851, = N. cinctella, Gould. 41Clathrus (Mitra), Gmelin. Syst. Nat., 3457. = M. crenifera, Lam.
Clavata (Turbinella), Wagner. Conch. Cab., xii, 99, t. 227, f. 4018.
$=$ T. pyrum, Linn.
Clavulus (Mitra), Lamarck. Edit. Desh., x, 338 158
Cleryana (Voluta), Petit. Jour. de Conch., 2 ser., i, 182, t. 6, f. 3, 4,1856; 3 ser., xix, $5,1879 .=$ V. Americana, Reeve.
Coarctata (Nassa), Eichw. Lith., $923 .=$ N. mutabilis. Linn.Coarctata (Mitra), Swainson. Reeve, Icon., f. 145, 1844153
Coccinea (Mitra), Reeve. Conch. Icon., f. 49, 1844. 165
Coccinella (Nassa), Lam. An. sans Vert., vii, 274. $=$ N. incrassata, Ström.Cochinensis (Nassa), Thorpe. Marrat, Vars., No. 908.
Cochlidium (Buccinum), Kiener. Monog., 10.13Collaria (Nassa), Gould. C. B. Ad., Panama Shells, 59.$=$ N. scabriuscula, Powis.
Collinsoni (Mitra), A. Ad. Jour. Linn. Soc., vii, 200, 1864 172Colocynthis (Voluta), Chemn. Conch. Cab., xi, t. 175, f. 1695, 1696.$=\mathrm{V}$. Braziliana, Soland.
Coloratum (Buccinum), Eichw. Vollh. u. Pod., 122.= Nassa reticulata, Linn.
Columbella (Voluta), Sowb. Thes. Conch., t. 260, f. 123. 105
Columbellaformis (Mitra), Kiener. Iconog., t. 15, f. 46.- M. limbifera, Lam.
Columbellaria (Mitra), Scacchi. Cat., p. 10, f. 13. 194
PAGE.
Columbellaria (Mitra), A. Ad. Sowb., Thes. Conch., f. 560.$=$ M. Columbellina, A. Ad.
Columbellina (Mitra), A. Ad. Zool. Proc., 141, 1851 158
Columbulæ (Mitra), Brusina. Verh. Zool. bot. Gesell. Wien, xv, 14, 1865. 194
Compacta (Nassa), Angas. Zool. Proc., 154, 1865. $=$ N. tringa, Souverb.
Complanata (Nassa), Powis. Zool. Proc., 96, 1835 33
Compressa (Mitra), Sowb. Thes. Conch., f. 50, 133, 1874.
=T. tæniata, Sowb.
Compta (Mitra), A. Ad. Zool. Proc., 134, 1851. = T. militaris, Reeve, var.
Compta (Nassa), A. Ad. Zool. Proc., 107, 1851. = N. gaudiosa, Hinds.
Concentrica (Mitra). Reeve. Conch. Icon., f. 128, 1844.
$=$ M. mucronata, Swains.
Concentrica (Nassa), Marrat. Ann. Mag. N. Hist., 4 ser., xiii, 71, 1874 ; New Forms, 7 48
Concinna (Voluta), Brod. Zool. Proc., 43, 1836 ; Crosse, Jour. de Conch., xix, 302 , t. 12, f. 7 99
Concinna (Nassa), Powis. Zool. Proc., 95, 1835 48
Concinna (Nassa), Reeve (not Powis). Icon., f. 82.$=$ N. concentrica, Marr.
Concinna (Mitra), Reeve. Conch. Icon., f. 203. = T. crocata, Lam.
Conferta (Nassa), Martens. Marrat, Vars., No. 1463 64
Conica (Imbricaria), Schum. Essai Nov. Gen., 1817 197
Coniformis (Voluta), Cox. Jour. de Conch., xix, t. 4, f. 1, 1871 100
Conœelix, Swainson. Zool. Ill., t. 24, 1821 ; Malac., 129, 321, 1840.= Imbricaria, Schum.
Conoidalis (Nassa), Desh. Voy. Belang., 433, t. 3, f. 6, 7.
- N. gemmulata, Lam.
Conomitra, Conrad. Am. Jour, Conch., i, 25, 1865. 109
Conovula (Mitra), pars, Quoy. Voy. Astrol., t. 45, bis, f. 22.= M. olivæformis, Swains.Conovula (Mitra), Quoy. Voy. Astrol., ii, 655, t. 45 bis, f. 18-21.= Imbricaria punctata, Swn.
Consanguinea (Mitra), Reeve. Conch. Icon., f. 241.
= T. dermestina, Lam., var.
Conseusa (Nassa), Ravenel. Proc. Philad. Acad., 43, 1861.? = N. ambigua, Mont.
Consolidata (Mitra), Sowb. Thes. Conch., f. 271, 1874.$=$ M. proscissa, Reeve.
Conspersa (Nassa), Phil. Zeit. Mal., 138, 1848 36
Contracta (Mitra), Kiener. Iconog., 24, t. 9, f. 25. = M. chrysostoma, Swn.
Contracta (Mitra), Swains. Zool. Illust., 1 ser. i, t. 18 120
Conularis (Mitra), Lamarck. Edit. Desh., x, 338 158
Conulus (Imbricaria), Lamarck. Edit. Desh., x, 329 197
Conus (Mitra), Reeve. Conch., Icon., f. 73. = Imbricaria conulus, Lam.
Cookii (Mitra), Hanley. Sowb. Thes. Conch., No. 78, f. 228, 1874 129
Cooperi (Nassa), Forbes. Zool. Proc., 273, t. 11, f. 4, 1850.
$=$ N. mendica, Gld., var.
Cophina (Mitra), Gould. Bost. Proc., iii, 171, 1850.$=$ T. militaris, Reeve, var.
Coppingeri (Nassa), E. A. Smith. Zool. Proc., 30. t. 4, f. 7, 1881 56
Corallina (Mitra), Reeve. Conch. Icon., f. 330, 1845 194
Corbicula (Mitra), Sowb. Zool. Proc., 258, 1870 172
Cordieri (Mitra), Marav. Rev. Zool., 325, 1840. = M. ebenus, Lam., var.
Coriacea (Mitra). Reeve. Conch. Icon., f. 231, 1845.
$?=$ M. lugubris, Swn., juv.

Cornea (Mitra), Lamarck. Ann. du Mus., xvii, 241. = M. cornicula, Linn.
Cornicula (Mitra), Linnæus. Edit., xii, 1191
Cornicula (Mitra), Risso. Eur. Merid., iv, 242: $=$ M. ebenus, Lam.
Cornicularis (Mitra), Lam. Ann. du Mus, xvii, 210. $=\mathrm{M}$. cornicula, Linn.
Cornicularis (Mitra), Costa. Cat. Syst., 73. $=$ M. ebenus, Lam., var. costata.
Corniculum (Nassa), Olivi. Zool. Adriat., 144
Cornigera (Turbinella), Lam. Hist. vii, 105. = Vasum turbinellum, Linn.
Corona (Voluta), Chemn. Conch. Cab., x, 142, t. 148, f. 1387, 1388.
$=$ V. cymbiola, Sowb.
Coronata (Nassa), Brug. Dict. No. 46 ; Lam., Edit. Desh., x, 180......... 23
Coronata (Mitra), Lamarck. Anim.. vii, 317....................................... 148
Coronata (Voluta), Kiener, t. 41, f. 1. $=$ V. cymbiola, Sowb.
Coronata (Mitra), Schum. Essai Nouv. Syst., 336, 1817. $=\mathrm{M}$. crenulata, Gmelin.
Coronata (Nassa), Lam., var. Quoy, Voy. Astrol., t. 32, f. 11, 12. $=$ N. monile, Kiener.
Coronatum (Bucc.), Martyn. Univ. Conch. $=$ V. Hebrea, Linn.
Coronula (Nassa), A. Adams. Zool. Proc., 96, 1851. = N. tiarula, Kiener.
Corpulenta (Nassa), C. B. Ad. Panama Cat. No. 45, 1852. $=$ N. dentifera, Powis.
Corrugata (Nassa), A. Ad. Zool. Proc., 110, 1851.............................. 63
Corrugata (Nassa), Marratt. Vars. of Nassa. Nos. 1298-1300................ 64
Corrugata (Mitra), Lamarck. Anim., vii, 308..................................... 168
Corrugata (Mitra), Wood. Index Test. = M. exasperata, Gmelin.
Corruscans (Bucc.), Phil. Zeit. Mal., 58, 1851.
Corticata (Nassa), A. Ad. Zool. Proc., 98, 1851. $=\mathrm{N}$. monile, var. Jacksoniana.
Costata (Nussa), A. Ad. Zool. Proc., 98, 1851. = N. hirta, Kiener.
Costata (Nassa), A. Ad. Zool. Proc., 114, 1851. = N. labiata, A. Ad.
Costata (Nassa), A. Ad. Zool. Proc., 98, 1851. = N. hirta, Kiener.
Costata (Lyria), Swains. Jour. Sci., 33, 1824.103
Costellaria, Swainson. Malacol., 320, 1840. = Turricula, Klein, sect 169
Costellaris (Mitra), Lamarck. An. sans Vert., vii, 308 166
Costellifera (Nassa), A. Ad. Zool. Proc., 113, 1851.$=$ N. cremata, var. margaritifeıa, D. Kr.
Costulata (Nassa), Renieri. Conch. Adriat. $=$ N. Cuvieri, Payr. 52
Costulata (Nassa), Anton. Verzeichn., 92, 1839. 62
Coturnix (Nassa), Dunker. Zeit. Mal., 59, 1853; Novit. Coneh., 97, t. 32,f. 7,8 . $=$ N. gaudiosa, Hinds.
Crassa (Desmoulea), A. Adams. Zool. Proc., 113, 1851.$=$ D. pinguis, A. Ad.
Crassa (Mitra), Swainson. Zool. Illust, 1st ser 147
Crassa (Nassa), Koch. Phil. Abbild., 43; Buccinum, t. 1, f. 4 42
Crassicostata (Nassa), Marrat. New Forms of Nassa, 6, 1877. $=$ Var. of N. Cuvieri, Payr 63
Crassicostata (Mitra), Sowb. Thes. Conch. No. 285, f. 387, 1874. $=$ M. vexillum, Reeve.
Cratitia (Mitra), A. Adams. Zool. Proc., 132, 1851 115
Crebralis (Mitra), Lamarck. H. and A. Adams' Genera, i, 170. 158
Crebrilineata (Mitra), Sowh. Thes. Conch., No. 122, f. 626, 1874 138
Crebrilineata (Nassa), Hombr. et Jacq., Voy. Astrol. et Zel., v, 81, t. 21,f. $33,34,1853$. - N. concinna, Powis.
Crebrilirata (Mitra), Reeve. Conch. Icon., f. 92, 1844.$=$ M. polita, Reeve, var.178
PAGE.
Crebristriata (Nassa), Carp. Mazat. Cat., 499, 1857.

- N. versicolor, C. B. Ad.
Cremans (Mitra), Reeve. Conch. Icon., f. 242, 1844. 184
Cremata (Nassa), Reeve (not Hinds). Icon., f. 26. - N. stigmaria, A. Ad.
Cremata (Nassa), Hinds. Voy. Sulphur, 35, t. 9, f. 8, 9, 1844. 53
Cremata (Mitra), Swainson. Brod. Zool. Proc., 1835 151
Crenellifera (Nassa), A. Adams. Zool. Proc., 98, 1851.
$=$ N. scalaris, A. Ad.
Crenicostata (Nassa), A. Ad. Gen. Rec. Moll., i, 120 63
Crenifera (Mitra), Lamarck. Anim. s. Vert., vii, 306 135
Crenilabris (Mitra), A. Ad. Zool. Proc., 140, 1851. = M. astricta, Rve.
Crenilirata (Mitra), A. Ad. Thes. Conch., No. 207. $=$ M. Ethiops, Rve.Crenilirata (Mitra), A. Ad. Sowb. Thes. Conch., f. 331.
- M. creniplicata, A. Ad.
Crenilirata (Nassa), A. Adams. Zool. Proc, 100, 1851. 40
Creniplicata (Mitra), A. Ad. Zool. Proc., 139, 1851. = M. Ethiops, Rve.Crenulata (Mitra), Gmelin. . Syst. Nat., 3452196
Crenulata (Mitra), pars, Kiener. Icon., 105, a. = Cylindra Sinensis, Rve.
Crenulata (Nassa), Kiener. Monog. Bucc., t. 14, f. 49.$=$ N. scalaris, A. Ad.
Crenulata (Nassa), Brug. Encyc. Méth., t. 394, f. 6. ? = N. arcularia, L.
Crenulata (Nassa), Reeve (not Brug). Icon., f. 2. $=$ N. hirta, Kiener.
Cretacea (Mitra), Sowb. Thes. Conch., f. 577, 578, 1874.
-M. pellis-serpentis, Reeve.
Cribraria (Nassa), Marrat. New Forms of Nassa, 12, t. 1, f. 20, 1877.$?=\mathrm{N}$. sinusigera, A. Ad.
Crispa (Turricula), Garrett. Proc. Cal. Acad., 2 § $1,1872$. 180
Crispata (Nassa), Marrat. New Forms of Nassa, 14, 1877 52
Crocata (Mitra), Auct. = T. aureolata, Swainson. Crocata (Mitra) Lamarck. Edit. Desh., x, 307. 187
Crocea (Mitra), Sowb. (not Reeve) Thes. Conch., f. 120.
= T. tæniata, Lam.
Crocea (Mitra) Reeve. Conch. Icon., f. 320, 1845. = T. aureolata, Swn.
Crosseana (Turbinella), Souverbie. Jour. Conch, 297, 1875; 382, t. 13,f. 1, 1876. ? = Vasum muricatum, Born.
Crouani (Imbricaria), Crosse. Jour. de Conch., 3d ser., viii, 274, t. 9, f. 8,1868 197
Cruentata (Mitra), Chemn. Reeve Icon., f. 126, 1844 173
Cryptochorda, Mörch, Jour. de Conch., 2 ser., iii, 43, 1858 78
Cucumerina (Mitra), Lamarck. Edit. Desh, x, 332 143
Cucurbitina (Mitra), Phil. Keit. Mal., 27, 1850. = M. cucumerina, Lam.
Cumingiana (Bullia), Dunker. Zool. Proc., 355, 1856 16
Cumingii (Voluta), Gray. Ann. Mag. N. Hist., 3 ser., xiv, 237, 1864.- V. Turneri, Gray.
Cumingii (Mitra), Reeve. Conch. Icon., f. 67, 1844. 170
Cumingii (Voluta), Brod. Zonl. Proc., 33, 1832; Sowb., Thes., t. 55, f. 105-107; Am. Jour. Sci., xlix, 227. 104
Cumingii (Nassa), A. Adams. Zool. Proc., 98, 1851 55
Curta (Nassa), Gould. Otia, 69; Wilkes' Exp. Moll., 258, f. 326.
$=$ N. muricata, Quoy.
Curvilirata (Mitra), Sowb. Thes. Conch., f. 128, 129, 1874 166
Cuvieri (Nassa), Payr. Cat. Moll. Corse, t. 8, f. 17, 18, 1824 32
Cyclocyrtia, Agassiz. Nomen., 1847. = Neritula, Plancus.Cyclonassa, Swains. Malacol., 69, 300, 1840. = Neritula, Plancus.Cyclops, Montf. Conch. Syst., ii, 370, 1810. = Neritula, Plancus.Cylindra, Schumacher. Essai Nouv. Genera, 236, 1817.109, 195

Cylindracea (Mitra), Reeve. Conch. Icon., f. 97. = M. variabilis, Reeve.
Cylindratus (Melo), Brod. 1855. = M. Miltonis, Gray.
Cylleniformis (Voluta), Sowb. Proc. Zool. Soc., 151, 1844; Thes. Conch.,
t. 55 , f. 112. 113. = Lyria Cumingii, Brod.

Cymba, Brod. and Sowb. Genera of Shells, 1826. = Cymbium, Klein.
Cymba (Voluta) Linn. Syst. Nat. Edit., x, 733.
= Cymbium proboscidale, Lam.
Cymbiola, Swains. Malacol., 317, $1840=$ Voluta, Linn, sect.............. 97
Cymbiola (Voluta), Chemn. Sowb., Tank. Cat., t. 3, f. 1....................... 99
Cymbium, Montf. Conch. Syst., ii, 554, 1810. = Melo, Humph.
Cymbium (Cymbium), Gray, Brod. Adams, Sowerby's Thesaurus (not
Linn). = C. cisium, Lam.
Cymbium, Klein. Ostrac., 1753; H. \& A. Ad. Genera, i, 158............ 75, 78
Cynodonta, Schum. Essai d'un Nouv. Syst., 241, 1817. = Vasum, Bolt.
Cyri (Mitra), Dohrn. Zool. Proc., 367, 1860. = M. fulgetrum, var.
Dactyloidea (Mitra), Anton. Verzeichn., 68, 1839.
= M. olivæformis, Swainson.
Dactylus (Cylindra), Linn. Syst. Nat. Edit.; xii, 1188
Dædala (Mitra), Reeve. Conch. Icon., f. 281, 1845................................ 175
Damoni (Voluta), Gray. Ann. Mag. N. Hist., 3 ser., xiv, 237, 1864. $=$ V. Turneri, Gray.
Darwini (Nassa), Dunker. Zeit. Mal., 95, 1853.................................... 62
Dealbata (Nassa), A. Ad. Zool. Proc., 112, 1851. = N. fe3tiva, Powis.
Dealbata (Mitra), A. Ad. Zool. Proc., 140, 1851.................................... 152
Deburghiæ (Mitra), Sowb. Zool. Proc., 798, t. 48, f. 12, 1878. = Imbricaria Vanikorensis, Quoy.
Declivis (Mitra), Reeve. Conch. Icon., f. 44....................................... 118
Decora (Mitra), Reeve. Conch. Icon., f. 234, 1845................................. 169
Decurtata (Mitra), Reeve. Conch. Icon., f. 154, 1844. = M. scutulata, Lam.
Decussata (Nassa), Kiener. Bucc., 109, t. 30, f. 3. $=$ N. pagoda, Rve.
Deformis (Bullia), King. Zool. Jour., v, 349
Defrancii (Mitra), Payr. Moll. de Corse, t. 8, f. 21. $=$ M. ebenus, Lam., var. costata.
Delessertiana (Voluta), Petit. Mag. de Zool., t. 57................................. 103
Delicata (Mitra), A. Ad. Zool. Proc., 137, 1851.................................... 159
Delicata (Nassa), Rre. Icon., f. 163, 1853. - N. tenella, Rve.
Delicata (Nassa), A. Adams. Zool. Proc., 99, 1851. = N. tiarula, Kiener.
Deliciosa (Voluta), Montrouz. Jour. de Conch., 2 ser., iii, 375, 1859; iv, 121. 102
Dennisoni (Mitra), Reeve. Conch. Icon., f. 14, 1844............................. 165
Densigranata (Nassa), Reeve. Icon, f. 181, 1854. $=$ N. splendidula, Dunker.
Denticulata (Nassa), A. Ad. Zeol. Proc., 110, 1851............................. 47
Dentifera (Nassa), Powis. Zool. Proc., 95, 1835.................................. 46
Dermestoideum (Bucc.), Payr. Moll. Corse., 158. - N. corniculum, Olivi.
Dermestina (Mitra), Lamarck. Ann. du Mus., 76, 1811........................ 182
Dermestina (Nassa), Gould. Bost. Proc., vii, 331, $1860 .=$ N. paupera, Gld.
Desetaugsii (Mitra), Kiener. Icon., t. 29, f. 94 ; Lienard, Jour. de Conch., 3 ser., ix, 226, 1869
Deshayesiana (Nassa), Issel. Moll. Mission Italiana, 9, 1865, t. 1, f. 1, 2. $=$ N. nigra, Hombr. et Jacq.
Deshayesii (Nassa) Hombr. et Jacq. Voy. Astrol. et Tel., v, 76, t. 21, f. 11, 12, 1853. $=$ N. pulla, Linn.
Deshayesii (Voluta), Reeve. Zool. Proc.. 73, t. 26, 1854...................... 88
Deshayesii (Nassa), Drouet. Moll. Açores, 32, fig. 1858....................... 50
PAGE.
Deshayesii (Mitra), Reeve. Conch. Icon., f. 170. 176
Desmoulea, Gray. Zool. Proc., 140, 1847 7, 65
Diadema (Mitra) Swains. Bligh Cat.; Exot. Conch. App.$=$ M. puncticulata, Lam.
Diadema (Melo), Lam. Anim,, vi, 375. 81
Dibaphiformis (Mitra), Sowb. Thes. Conch., f. 309, 310, 1874.
= Mitroidea multiplicata, Pease.
Dibaphus, Phil. Wiegm. Archiv., 61, 1847. 109, 163Dichroa (Mitra), Ad. \& Reeve. Moll. Voy. Samarang, 27, i. 10, f. 29,1848. = T. luculenta, Reeve.
Dichroma (Mitra), Sowb. Thes. Conch., sp. 315.
$=$ M. dichroa, Ad. \& Reeve
Digitalis (Mitra), Chemn. Dillw. Desc. Cat., i, 559. 149
Digitalis (Bullia), Meuschen. Mus. Gevers., 296 12
Digna (Volutomitra), A. Ad. Zool. Proc., 135, 1854.- M. melaniana, Lam.
Diluta (Bull ${ }^{\circ}$), Krauss. Südaf. Moll., 121 16
Dimidiata (Mitra), Sowb. Zool. Proc , 259, 1870. = T. Cumingii, Reeve.
Discoloria (Mitra), Reeve. Conch Icon., f. 230, 1845 189Discors (Mitra), Grandidier. Küster, Conch. Cab., 131, t. 17 d, f. 4.Dispar (Nassa), A. Adams. Zool. Proc., 96, 1851. = N. picta, Dunker.Distorta (Nassa), A. Adams. Zool. Proc., 105, 1851. = N. monile, Kr.Dohrni (Mitra), A. Ad. Jour. Linn. Soc., vii, 200, 1864.$=$ T. mucronata, Swains.Dominula (Nassa), Tapparone Canefri. Voy. Magenta, 19, t. 1, f. 17,1874. = N. Roissyi, Desh.
Donoriana (Cyclops), Risso. Suppl. 271. = Neritula pellucida, Risso.
Dorsanum, Gray. Zool. Proc., 139, 1847. = Pseudostrombus, Klein.
Dorsuosa (Nassa), A. Adams. Zool. Proc., 102, 1851.
$=$ N. Thersites, Brug
Dubia (Voluta), Brod. Zool. Jour., iii, 81 t. 3, f. 1. 90Ducalis (Melo), Lam. Edit. Desh., x, 377. = M. diadema, Lam., var.Dufresnii (Voluta), Donovan. Nat. Repos., ii, t. 67.= V. angulata, Swainson.
Dujardini (Nassa), Lam. Edit Desh., x. 241. = N. mutabilis, Linn.
Dunkeri (Mitra), Schmeltz. Cat. Godeffr. Mus., No. 4, 84.$=$ Turricula Deshayesii, Reeve.Duplilirata (Mitra), Reeve. Conch. Icon., f. 229, 1845.140
Dupontii (Mitra), Kiener. Iconog, 43, t. 1.s, f. 39 ; Jickeli, Jahrb. Mal.Gesell., $\mathrm{i}, 20 .=$ M. lens, Wood.
Ebenacea (Nassa), Gemari. Marrat, Vars of Nassa, No. 367.= N. mutabilis, L., var.
Ebenus (Mitra), Lamarck. Ann. du Mus., xvii, No. 58. 124
Eburnea (Mitra), Garrett. Jour. of Conch., iii, 15, 1880. = Mitroidea.. 163
Eburnea (Mitra), Phil. Zeit. Mal., 29, 1850 ; 84, 1851 132
Eburnostoma (Mitra), Garrett. Jour. of Conch., iii, 15, 1880. 134
Echinata (Mitra), A. Ad. Zool. Proc., 138, 1851. = M. mucronata, Swn.Echinata (Nassa), A. Adams. Zool. Proc., 101, 1851; Smith, Zool. Proc.,810, 1878.44
Edentulus (Dibaphus), Swains. Reeve, Icon. Mitra, sp. 80, 1844.$=$ D. Philippii, Crosse.
Effusa (Mitra), Swainson. Brod. Zool. Proc., 1835. 127
Ehrenbergi (Mitra), Jickeli. Jahrb. Mal. Gesell., 24, t. 2, f. 3, 1874 136Eione, Risso. Hist. Nat., iv, 171, 1826. = Arcularia, Link.
Elata (Nassa), Gould. Bost. Jour. N. Hist., v. 293, t. 24, f. 11, 1845. $=$ N. gaudiosa, Hinds 39

Elegans (Bucc.), Dujardin. Mém. Geol., ii, 298, t. 20, f. 3, 10. = Nassa clathrata, Born.
Elegans (Nassa), Reeve. Zool. Proc., 199, 1842. $=$ N. fossata, Gld.
Elegans (Nassa), Reeve (not Kiener). Icon., f 10. ? = N. taenia, Gmel.
Elegans (Bucc.), Costa. Cat. Sist, 80. = Nassa Cuvieri, Payr.
Elegans (Bullia), Dunker. Proc Zool. Soc., 355. 185616
Elegans (Nassa), Kiener. Monog. Bucc., 56, t. 24, f. 97. 27
Elegans (Mitra). Reeve. Conch. Icon.; f. 233, 1845 165
Elegantula (Mitra), Küster. Conch. Cab., 103, t. 17, f. 6, 8.$=$ T. patriarchalis, Lam.
Elegantula (Turricula), Dunker. Mal. Blatt, 154, 1871 193
Ellioti (Voluta), Sowb. Jour. Conch., 3 ser., iv, 338, 1864, v, 25, t. 3,f. 19, 1865. = V. Turneri, Gray.

Elongata (Voluta), Swains. Exot. Conch., t. 20, 21. $=$ V. Pacifica Soland., var.
Elongata (Nassa), Marrat (not Sowerby). Ann. Mag. N. H., 4 ser., xiii, 70,1874 . = N. oriens, Marr.64
Elongatulum (Buccinum), Anton. Verzeichn., 91, 1839. = Bullia. 16
Enæta, H. \& A. Adams. Genera. i, 167, 1853. = Lyria, Gray, sect 104
Encausta (Mitra), Gould. Bost. Proc., iii, 172, 1850 192
Encaustica (Nassa), Brusina. Jour. de Conch., xvii, 233, 1869.$=$ N. Cuvieri, Payr.
Emersa (Nassa), Carp. Brit. Mus., Marr. Vars., No. 1065 64
Emiliæ (Turricula), Schmeltz. Cat. Godeff. Mus., No. 5, 119 189
Episcopalis (Mitra), Linnæus. Edit., xii, 1193 111
Ericea (Mitra), Pease. Zool. Proc., 146, 1860 ; Am. Jour. Conch., v, 85.$=$ M. turgida, Reeve.
Erronea (Mitra), Dohrn. Mal. Blatt, viii, 134, 1862.$=$ M. versicolor, Mart.
Eurytoides (Truncaria), P. P. Carpenter. Ann. Mag. N. Hist., 3d ser., xiv. 48, 1864. 10
Exarata (Mitra), A. Ad. Zool. Proc., 133, 1851.$=\mathrm{T}$. cruentata, Chemn. (Reeve), var.
Exasperata (Mitra), Gmelin. Syst. Nat., 3453 180
Exigua (Mitra). "Reeve, Conch. Icon., f. 298."-Catlow Nomencl.$=$ M. rubra, Swainson.
Exilis (Thala), Reeve. Conch. Icon., f. 313, 1845 160
Fxilis (Nassa), Powis. Zool. Proc., 95, 1835 32
Eximia (Nassa), H. 亡dams. Zool. Proc., 14, t. 3, f. 28, 1872 48
Eximia (Mitra), A. Ad. Zool. Proc., 135, 1851 113
Exoptanda (Voluta), Sowb. Reeve, Icon., f. 22, 1849 91
Exquisita (Thala), Garrett. Cal. Proc., 202, 1872 ; Zool. Proc., 842, 1872 162
Exquisita (Turricula), Garrett. Zool. Proc., 842, 1872.= T. rubra, Swn., var.
Fasciata (Nassa), Lam. Edit. Desh., x, 172 46
Fasciata (Voluta), Schub. et Wagn. Conch. Cab., t. 216, f. 3029, 3030.$=$ V. scapha, Gmel.
Fasciata (Mitra), Martyn. Univ. Conch., f. 20. = M. casta, Lam.
Fasciolata (Nassa), Lam. An. sans Vert., vii, 272. = N. corniculum, Olivi.
Fastigiella, Reeve. $=$ Cerithiidæ.
Fastigium (Mitra), Reeve. Conch. Icon., f. 221, 1845.? - M. auriculoides, Reeve, var154
PAGE.
Fenestrata (Cylindra), Lamarck. Edit. Desh., x, 328 196
Fenestrata (Nassa), Marrat. New Forms of Nassa, 10, 1877.$=$ N. albescens, Dunker.
Fergusoni (Mitra), Sowb. Thes. Conch., f. 70, 71, 1874 116
Ferrugata (Mitra), Solander. Dillw., Desc. Cat., 535.- M. cucumerina, Lam.
Ferruginea (Mitra), Lamarck. Anim. sans Vert., vii, 303 150
Ferruginea (Mitra), var. b., Lam. Edit. Desh., x, 1305.
= M. contracta. Swainson.
Ferruginea (Nassa), Marrat. Vars. of Nassa, 78, 1880.$?=\mathrm{N}$. gaudiosa, Hinds.
Ferussaci (Nassa), Payr. Moll. Corse, 162, t. 8, f. 15, 16.
= N. Cuvieri, Payr.Ferussaci (Voluta), Donovan. Nat. Rep., ii, 67, 1824.$=\mathrm{V}$. Brasiliana, Sol.
Festa (Mitra), Reeve. Conch. Icon., f. 303, 1845. 193
Festiva (Turricula), Garrett. Jour. of Conch., iii, 46, 1880. 177
Festiva (Nassa), Powis. Zool. Proc., 95, 1835 46
Festiva (Voluta), Lamarck. Edit. Desh., x, 404 95
Festiva (Voluta), J'Orb. (nec Lam.). Voy. 426. = V. Magellanica, Lam. Ficulina (Mitra), Lamarck. Edit. Desh., x, 336. 190
Ficulopsis, Stoliczka. Pal. India, ii, 84. =Ficulidæ 78
Fida (Nassa), Reeve. Icon., f. 88, 1853. = N. vibex, Say.
Fidicula (Mitra), Gould. Bost. Proc., iii, 170, 1850 175
Filaris (Mitra), Linn. Mantissa, 548 138
Filistriata (Mitra), Sowb. Thes. Conch., f. 402, 1874. 177
Filosa (Nassa), Gray. Reeve Icon., sp $35 .=$ N. picta, Dunker.
Filosa (Truncaria), Ads \& Rve. Voy. Samarang, 33, t. 11, f. 18. 9
Filosa (Mitra), Born. Mus. Cass., t. 9, f. 9, 10. $=$ M. filaris, Linn.
Filum (Mitra), Wood. Ind. Test. Suppl., t. 3, f. 30. 130
Fischeri (Mitra), Souverbie. Jour. de Conch., 2 ser., iv, 323, 1860.- M. annulata, Reeve.
Fissilabris (Nassa), A. Ad. Zool. Proc., 99, 1851. 40
Fissurata (Mitra), Lamarck. Edit. Desh., x, 322 131
Flammea (Mitra), Quoy. Voy. Astrol., ii, 659, t. 45, f 23-25. 140
Flammea (Mitra), Reeve. Icon., f. 120, 1844.$=$ M. Philippinarum, Adams.
Flammeum (Buccinum), Brug. Dict., No. 32. = Bullia lævissima, Gmel.
Flammigera (Mitra), Reeve. Conch. Icon., f. 173. = M. flammea, Quoy.
Flammula (Voluta), Goodall. Wood, Index Test. Suppl., f. 5.$=$ V. cymbiola, Sowb.
Flammulata (Turricula), Pease. Am. Jour. Conch., 212, 1867.
-T. semen, Reeve.
Flava (Nassa), Marrat. New. Forms of Nassa, 6, 1877.? = N. gaudiosa, Hinds.
Flavescens (Mitra), Reeve. Conch. Icon., f 207, 1844.
$=$ M. aureolata, Swn.
Flavicans (Voluta), Gmelin. Syst. Nat., 3364 91
Flexicostata (Turricula), Garrett. Jour. of Conch., iii, 46, 1880 180
Flexilabris (Mitra), Sowb. Zool. Proc., 127, t. 24, f. 4, 1875. 128
Flexuosum (Bucc.), Costa. Cat. Syst., 78. = Nassa Cuvieri, Payr.
Floccata (Mitra), Reeve. Conch. Icon., f. 16
Floccata (Mitra), Reeve. Conch. Icon., f. 16 115 115
Florida (Mitra), Gould. Bost. Proc., vi, 13, 1856 116
Floridanum (Bucc.), Lesson. Rev. Zool., 237, 1842. = Nassa 62
Floridula (Mitra), Sowb. Thes. Conch., No. 267, f. 283, 611.
= M. coronata, Lam.
PAGE.
Fluctuata (Voluta), Solander. Gray, Zool. Proc., 64, 1855.
$=$ V. undulata, Lam.
Foliosum (Bucc.), Wood. Index Test., t. 22, f. 39. $=$ N. mutabilis, Linn.
Fontainii (Nassa), d'Orb. Voy. Am. Mérid., 433, t. 77, f. 5, 6.$=$ N. exilis, Powis.
Foraminata (Mitra), Swains. Brod., Zool. Proc., 194, 1835.$=$ M. lens, Wood.
Forbesii (Nassa), Dunker. Zeit. Mal., 60, 1853 62
Formosa (Cylindra), Pease. Am. Jour. Conch., 271, t. 23, f. 1, 1867. 131
Formosa (Mitra), A. Ad. Zool. Proc., 138, 1851 138
Forticostata (Mitra), Reeve. Conch. Icon., f. 238, 1844.$=$ T. Ficulina, Lam.
Fortiplicata (Turricula), Pease. Am. Jour. Conch., 213, t. 15 f. 3, 1867. 189
Fossata (Nassa), Gould. Otia, Conch., 67. 55
Foveata (Mitra), Sowb. Thes. Conch., No. 213, f. 408, 1874. = Thala. 160
Foveolata (Mitra), Dunker. Novit. Conch., 46, t 15, f. 5, 6.- flammea, Quoy.
Foveolata (Nassa), Dunker. Zeit. Mal., 63, 1847 34Fraga (Mitra), Quoy. Voy. Astrol., ii, 660, t. 45, bis, f. 28, 29.$?=\mathrm{M}$. cucumerina, Lam.
Fraga (Mitra), Kiener. Iconog., t. 27, f. 87. = T. nodosa, Swains.
Fraga (Mitra), Quoy. Voy. Astrol., ii, 660, t. 45, bis, f. 28, 29.
? = M. cucumerina, Lam.
Fragum (Nassa), Hombr. et Jacq. Astrol. et Zel., v, 83, t. 21, f. 39, 40,
1854. = N. cremata, Hinds.
Franciscana (Mitra), Tenison-Woods. Proc. Roy. Soc. Tasm., 133, 1876. 159
Fratercula (Turricula), Garrett. Zool Proc., 482, 1872.
$=\mathrm{T}$. variata, Reeve.
Fraterculus (Nassa), Dunker. Mal.Blatt, 230, 1850. $\quad=$ N. paupera, Gld.
Fraudulenta (Nassa), Marrat. New Forms of Nassa, 8, t. 1, f. 24, 1877.$=\mathrm{N}$. sinusigera, A. Ad.
Fretensis (Nassa) Perkins. Bost. Proc., xiii, 117, 1869. $=$ N. vibex, Say.
Frigens (Nassa), von Martens. Sitzb. Berlin, 134, 187862
Fulgetrum (Voluta), Sowb. Tank. Cat. App., 28, t. 4, f. 5, 1828. 96
Fulgetrum (Mitra), Reeve. Conch. Icon., f. 115, 1844. 142
Fulgora (Voluta), Martini. Adams' Genera. - V. rupestris, Gmel.
Fulgoraria, Schum. Essai Syst., 242, 1817. = Voluta, Lina, sect 85
Fulgurita (Mitra), Reeve. Conch. Icon., f. 61, 1844. 118
Fulminata (Voluta), Lam. Edit. Desh., x, 399. = V. rupestris, Gmelin.
Fulva (Voluta), Lam. Edit. Desh., x, 395. = V. virescens, Soland., var.Fulva (Mitra), Swainsen. Zool. Illust., 2d ser. $=$ M. ambigua, Swn., var.Fulvescens (Mitra), Swaiuson. Zool. Proc., 1835.148
Fulvolirata (Mitra), Sowb. Zool. Proc., 797, t. 48, f. 9, 10, 1878. ? = T. corrugata, Lam.
Funerea (Mitra), Reeve. Conch. Icon., f. 108, 1874. 126
Funiculata (Mitra), Reeve. Conch. Icon., f. 122, 1844.$=$ M. sulcata, Swainson.Fusca (Mitra), Swains. Zool. Ill., 2d ser.122
Fusca (Nassa), Hombr. et Jacq. Astrol. et Tel., v, 74, t. 21, f. 7, 8, 1854.$=$ N. tænia, Gmel.
Fuscata (Nassa). A. Ad. Zool. Proc., 112, 1851.$=$ N. Tritoniformis, Kiener.
Fuscescens (Mitra), Pease. Zool. Proc., 146, 1860 ; Am. Jour. Conch., iii, 233 157
Fuscoapicata (Mitra), E. A. Smith. Zool. Proc., 214, 1879. 173
Fusćolineata (Nassa), Smith. Ann. Mag., 4 ser., xv, 423, 1875. 63

INDEX.

 217PAGE.
Fusconigra (Turricula), Garrett, Jour. of Conch., iii, 47, 1880............. 174
Fusiformis (Voluta), Kiener. Monog., 41, t. $49 .=$ V. Beckii, Brod.
Fusiformis (Mitra), Reeve (nee Kiener.) Conch. Icon., f. 182, 1844. $=$ M. mucronata, Swains.
Fusiformis (Mitra), Chemn. Sowb. Thes., f. 384, 1874. $=\mathrm{T}$. mucronata, S wains.
Fusiformis (Voluta). Swains. Bligh Cat. Ap....................................... 95
Fusiformis (Mitra), Kiener. Inconog., t. 29, f. 97............................... 175
Fusimitra, Conrad. Am. Jour. Conch., i, 25, 1865............................... 109
Fusoides (Mitra), A. Ad. Index Sowerby's Thesaurus........................... 158
Fusus (Voluta), Quoy et Gaim. Voy. Astrol., t. 44, f. 7, 8. $=$ V. Pacifica, Soland, juv.
Fusus (Mitra), Souv. Jour. de Conch., 376, t. 13, f. 3-4, 1876. $=$ M. cernica, Sowb., var.
Fusus (Turbinella), Sowb. Tank. Cat. App., 15, 1825........................... 71
Galilea (Nassa), Clark. Marrat, Varieties, No. 1353........................... 64
Gallandiana (Nassa), Fischer. Jour. Conch., x, 37, xi, 82, t. 2, f. 6. $=\mathrm{N}$. corniculum, Olivi. ${ }^{\text {. }}$
Gambiana (Mitra), Dohrn. Zool. Proc., 206, 1861. =M. carinata, Swn.
Garrettii (Mitra), G. \& H. Nevill. Jour. Asiat. Soc. Beng., 29, 1874..... 189
Gaudiosa (Nassa), Hinds. Voy. Sulphur, 36, t. 9, f. 16, 17, 1844......... 3
Gausapata (Mitra), Reeve. Conch. Icon, f. 317, 1845. = T. ficulina, Lam.
Gayii (Nassa), Kiener. Bucc., 71, t. 21, f. 79.
Gemma (Nassa), Phil. Abbild. Bucc., t. 1, f. 5. ? = N. complanata, Powis.
Gemmata (Mitra), Sowb. Thes. Conch. sp., 334, 1874.................... 183
Gemmellari (Nassa), Biondi. Atti Accad. Catan., xi, 1855..................... 62
Gemmulata (Nassa), Lam. Edit. Desh., x, 169................................... 55
Gemmulifera (Nassa), A. Ad. Zool. Proc., 99, 1851.............................. 52

Geniculata (Nassa), A. Ad. Zool. Proc., 100, 1851.
= N. subspinosa, Lam.
Georginæ (Melo), Gray. Griffith's Cuvier, t 34, 1833. $=$ M. diadema, Lam., var. ducalis.
Gibba (Mitra), Dohrn. Zool Proc., 368. 1860..................................... 155
Gibberula(Nassa), Marratt. Vars. No. 1205. = N. incrassata, Müll., var.
Gibbesii (Nassa), Cooper. Pac. R. R. Rept. App., 371. $=$ N. mendica, Gould.
Gibbosula (Nassa), Linn. Syst. Nat. Edit., xii. 1201........................... 24
Gibbum (Buccinum), Dillw. Cat., ii, 602. = Nass mutabilis, L.
Gigantea (Mitra), Swainson MSS. Reeve, Icon., f. 27, 1844. $=$ M. sulcata, Swainson.
Glabella (Nassa), Marrat (not Sowb.). New Forms of Nassa, t. 1, f. 7. $=$ N. lævigata, Marrat.
Glaberrima (Nassa), Marrat. Vars. Nos. 1203, 1204. $=$ N.incrassata, var.
Glaberrima (Nassa), Gmelin. Syst. Nat. Bucc. ? = N. conspersa, Phil.
Glabra (Mitra), Pease (not Swains.). Am. Jour. Conch., iii, 272, t. 23, f. 2, 1867. $=$ M. lubrica, Pease.

Glabra (Mitra), Risso. Eur. Merid., iv, 241. = M. cornicula, Linn.
Glabra (Mitra), Swainson. Exot. Conch., 24, t. 18.
Glabrata (Nassa), Sowb. Strombus, Thes. Conch., i, t. 8, f. 66, 67. $=\mathbf{N}$. obliqua, Kiener.27
Glabrata (Nassa), A. Ad. Zool. Proc., 114, 1851 38
Glandiformis (Mitra), Reeve. Conch. Icon., f. 310, 1845 186Glans (Voluta), Gmelin. = Cymbium Neptuni, Gmel.
PAGE.
Glans (Nassa), Linn, Syst. Nat. Edit., xii, 1200 27
Glans (Mitra), Reeve. Conch. Icon., f. 192, 1844.$=$ Cylindra fenestrata Lam.
Glauca (Nassa), C. B. Ad. Panama Cat., 61. 1852. = N. tegula, Reeve.
Glauca (Nassa), Dunker. Zeit. Mal., 125, 1852.$?=\mathrm{N}$. unicolorata, Kiener.
Globosa (Nassa), Sowerby. Genera of Shells, f. 6.
\Rightarrow Desmoulea abbreviqta, Gmel.
Globosa (Mitra), Chemn. H. \& A. Adams’ Genera, i, 171 159
Globosa (Nassà), Quoy. Voy. Astrol., ii, 448, t. 32, f. 25-27 26
Globulosa (Bullia), d'Orb. (not Kiener). Voy. Am., 435. $=$ B. deformis, King 11
Globulosa (Bullia), Kiener. Coq. Viv., t. 10, f. 33 11
Globulus (Cassis), Menke. Synopsis Moll., No. 806, 1828.$?=$ Desmoulea, Lam.
Globulus (Vasum), Lam. Hist., vii, 107 73
Gosavia, Stoliczka. Sitzb. Akad. Wiss. Wien, lii, 1865 ; Pal. Indica. ii, 72.. 78
Gotoensis (Mitra), E. A. Smith. Zool. Proc., 215, t. 20, f. 51, 1879.
$=$ T. Collinsoni, A. Ad.
Gracilior (Mitra), Carpenter MSS 145
Gracilis (Cymba), Brod. Spec. Conch., 7, f. 8. = C. cisium, Lam.
Gracilis (Voluta), Gray. Griffith's Animal Kingdom, t. 40, f. 4.
$=$ V. Pacifica, Soland.
Gracilis (Voluta), Swains. Jour. Sci., xvii, 52. =V. Pacifica, Sol., var.
Gracilis (Nassa), Pease, Am. Jour. Conch., iii, 273, t. 23, f. 4, 1867$=\mathrm{N}$. leptospira, A. Ad.
Gracilis (Mitra), Reeve. Conch. Icon., f. 31, 1844 136
Gradata (Bullia), Deshayes. Lam., An. s. Vert., x, 186.= B. cochlidium, Kiener.Greffei (Mitra), Crosse. Jour. de Conch., 3 ser., vii, 297, 1867.
$=$ Turricula luculenta, Reeve.
Graja (Mitra), Reeve. Conch. Icon., f. 327. = M. cornicula, Linn.
Grana (Nassa), Lam. Hist. Nat., vii, 27427
Granata (Mitra), Reeve. Conch. Icon., f. 271, 1845.
$=$ M. pellis-serpentis, Reeve.
Granatina (Mitra), Swains. Tenison-Woods, Proc. Roy. Sọc., Tasm., 133, 1876 159
Granatina (Mitra), Lam. Edit. Desh., x, 310. = M. scabriuscula, Linn. Granifera (Nassa), Kiener. Monog., 100, t. 27, f. 111 26
Granulatum (Bucc.), Phil., i, 226, ì. 11, f. 2.
$=$ Nassa incrassata, var., pygmæa.
Granosa (Mitra), Chemn. Conch. Cab., x, t. 151, f. 1442, 1443.$=$ T. sanguisuga, Linn., var.
Granulifera (Mitra), Lamarck. Edit. Desh., x, 340 158
Granulosa (Bullia), Lam. Edit. Desh., x, 250. 14
Granulosa (Mitra), Lamarck. Anim. s. Vert, vii, 304 133
Granulosa (Nassa), Marrat. Vars. of Nassa, 80, 1880 63
Granum (Mitra), Forbes. Egean Invert., 191, 1843.$=\mathrm{T}$. tricolor, Gmel.
Graphitera (Nassa), Beck. Hombr. et Jacq., Voy. au Pole sud, v, 80,
t. 21, f. 28, 29, 1853 . N N. picta, Dunker.
Grata (Nassa), Marrat. Vars. of Nassa, 81, 1880 63
Gratiosa (Mitra), Reeve. Conch., Icon., f. 277, 1845 161
Gravis (Voluta), Dillwyn. Desc. Cat., i, 569. = Turbinella napus, Lrm.
Grayæ (Voluta), Crosse. Jour. de Conch., xix, 287, 1871 91
Grayi (Bullia), Reeve. Conch. Icon., sp. 7, 1846. =B. Mauritiana, Gray.
Greci (Columbella), Phil, Moll. Sicil., ii, 194, t. 27, f. 18, 1844.- Turricula Columbellaria, Scac.
Grelloisi (Mitra), Recluz. Jour. de Conch., iv, 247, t. 7, f. 8, 1853.$=$ M. pellis:serpentis, Reeve.
Gronlandica (Mitra), Gray. Reeve, Icon., f: 106, 1844 124
Gruneri (Mitra), Reeve. Conch. Icon., f. 119, 1844 168
Gruneri (Nassa), Reeve (nọt Dunker). Icon., sp. 75.$=$ N. muricata, Quoy.
Gruneri (Nassa), Dunker. Zeit. Mal., 171, 1846. 44
Guadaloupensis (Nassa), Petit. = Phos (vol. iii).
Guildingii (Voluta), Sowb. Proc. Zool. Soc., 151, 1844 ; Thes. Conch., t. 55, f. 110, 111. 105
Guinaica (Voluta), Lam. Edit. Desh., x, 393. = V. musica, Linn.
Gussoni (Bucc.), Calacara. = Nassa Tinei, Marav.
Guttata (Voluta), Reeve. Icon., f. 56, 1849 105
Guttata (Mitra), Swainson MSS. Reeve, Icon., f., 69, 1844 116
Haldemani (Buec.), Dunker. Zeit. Mal., 62, 1847 36
Hamillei (Mitra), Petit. Jour. de Conch,, ii, 259, t. 7, f. 9, 1851 117
Hamillei (Voluta), Crosse. . Jour. de Conch., 3 sp., xvii, 115, 178, 1869 ;ẋviii; t. 1, f. 5; t. 2, f. 1, $1870 . \sim$ V. rupestris, Gmel.Haneti (Mitra), Petit. Jour. de Conch., iii, 57, t. 2, f. 11, 1852.
Hanleyana (Mitra), Dunker. Mal. Blatt., xxiv, 70,1877 158
Hanleyana (Nassa), Marrat. Vars. of Nassa, 83, 1880 63
Hanleyanum (Bucc.), Dunker. Zeit. Mal., 63, 1847 62
Hanleyi (Mitra), Sowb. Thes. Conch., No. 168, f. 661, 1874 146
Hanleyi (Turricula), Dohrn. Mal. Blatt.. viii, 138, 1862 194
Harfordi (Voluta), Cox. Zool. Proc., 358, t. 26, f. 2, 1869.$=\mathrm{V}$. canaliculata, McCoy.
Hargreavesi (Voluta), Angas. Zool. Proc., 613, t. 42, f. 13, 1872'. 89
Harpa (Voluta), Barnes. Ann. N. Y. Lyc., i, 139, t. 9, f. 4. 104Harpa (Harpula), Swains. Exot. Conch. $=$ Voluta costata, Swn.Harpæformis (Mitra), Lamarck. Edit. Desh., x, 334.= M. cruentata, Chemn.Harpula, Swains. Malacol., 317, 1840. = Voluta, Linn, sect.Harpularia (Nassa), Marrat. New Forms of Nassa, 8, 1877.63
Hastata (Mitra), Sowb, Thes. Conch., f. 620, 632.
$=$ Turricula casta, H. Adams.Haustrum (Voluta), Solander MSS. Gray, Zool. Proc., 54, 1855.= Melo tessellata, Lam.
Hebes (Mitra), Reeve. Icon., f. 292, 1845 137
Hebra, H. \& A. Adams. Gen. Rec. Moll., i, 120. =S. G. of Nassa, Mart. 7
Hebrea (Columbella), Lamarck. Edit. Desh., x, 270.$=$ Mirra litterata, Lam.
Hebræa (Voluta), Linn. Syst. Nat. Edit., xii, 1194. 84
Helvacea (Mitra), Phil. Zeit. Mal., 84, 1851 135
Hemprichi (Mitra), Jickeli. Jahrb. Mal. Gesell., i, 21, t. 2, f. 1, $1874 .$. 136
Hepatica (Nassa), Mont. Test. Brit., 243, t. 8, f. 1. ? $=$ N. monile, Kiener.
Herklotsiana (Mitra), Dohrn. Mal. Blatt., viii, 137, 1862.$?=$ M. Isabella, Swn.
Hermannseni (Bucc.), Dunker. Zeit. Mal. 63, 1847. = Nassa. 62
Hima, Leach. Gray, Ann. Mag. N. H., xx, 1847. = S. G. of Nassa, Mart. 7
Hindsii (Mitra), Reeve. Conch. Icon., f. $165,1844 .=$ M. sulcata, Swn.
Hirta (Nassa), Kiener. Monog., 63, t. 19, f. 72 28
PAGE.Hispida (Nassa), A. Ad. Zool. Proc., 101, 1851. = N. Gruneri, Dunker.Histrio (Mitra), Reeve. Conch. Icon., f. 144, 1844. = T. dermestina, Lam.Horrida (Nassa), Dunker. Keit. Mal., 59, 1847. = N. muricata, Quoy.Hotessieri (Nassa), d'Orb. Moll. Cuba., ii, 142, t. 21, f. 40-42, 1853.$=$ N. ambigua, Mont.
Hoyti (Mitra), Garrett. Jour. of Conch., iii, 47, 1880 195
Humeralis (Mitra), Garrett. Jour. of Conch., iii, 18, 1880 159
Hybrida (Mitra), Kiener. Iconog., 74, f. 69. = T. intermedia, Kiener.Hystrio (Mitra), Montrouzier. Jour. de Conch, 3 ser., ii, 240, 1862.$=\mathrm{M}$. flammea, Quoy.
Icteria (Bullia), Soland. Adams' Genera, 114 16
Ignea (Voluta), Wood. Index Test. = Turricula subulata, Lam.
Ignobilis (Mitra), Reeve. Conch. Ic , f. 152, 1844 119
Ilyanassa, Stimpson. Am. Jour Coneh., i, 61, 1865. = S. G. of Nassa 7
Imbricaria, Schumacher. Essai Nouv. Gen., 236, 1817 197
Immersa (Nassa), Carp. Marrat, Vars., No. 1249. $=$ N. bimaculosa, A. Ad.
Imperiale (Vasum), Reeve. Proc. Zool. Soc., 1842 72
Imperialis (Voluta), Lam. Edit Desh., x, 385 88
Impressa (Mitra), Keeve (not Anton.) Conch. Ic., f. 130, 1844.= T. rubricata, Reeve.
Impressa (Mitra), Anton. Verzeichn., 67, 1839 132
Inca (Mitra), d'Orb. Voy. Am. Merid., 427, t. 79, f. 1. $=$ M. lens, Wood.Incarnata (Mitra), Reeve. Conch. Icon., f. 299, 1845.$=\mathrm{M}$. carnicolor, Reeve.
Incisa (Mitra), Ad. \& Reeve. Moll. Voy. Samarang, 27, t. 10, f. 31, 1848. 114
Incisa (Turricula), Garrett. Jour. of Conch , iii, $63,1880$.
$=\mathrm{T}$. Zebuensis, Reeve.
Incrassata (Nassa), Ström. Kongl. Vid. Selsk. Skr., iv, 369, t. 16, f. $25 .$. 49
Indentata (Mitra), Sowb. Thes. Conch., No. 173, f. 412, 1874 144
Indica (Voluta), Sowb. Thes. Conch. 1, 210, t. 51, f. $68-70$. $=V$. interpuncta, Martyn.
Indica (Melo), Gmel. Syst. Nat., 3467 80
Induta (Mitra), Sowb. Zool. Proc., 128, t. 24, f. 9, 1875. 121
Inermis (Mitra), Reeve. Conch. Icon., f. 273, 1845 ; Zool. Proc., 216, 1879. 175
Infausta (Mitra), Reeve. Conch. Icon, f. 326, 1845 189
Infecta (Mitra), Reeve. Conch. Icon., f. $75=$ M versicolor, Mart.... 163
Inflata (Nassa), Lam. An. sans Vert., vii, $270 .=$ N. mutabile, Linn.
Inflata (Mitra), Risso. Eur. Merid., iv. = M. cornicula, Linn.
Infrafasciata (Mitra), Souverb. Jour de Conch., 3 ser., v, 155, t. 5, f. 7, 1865 122
Innexa (Voluta), Reeve Icon., f. 9, 1849; Brazier, Proc. Roy. Soc. Tasmania, 171, $1876 .-$ V. rutila, Brod., var.
Inquinata (Mitra), Reeve. Conch. Icon.. f. 29, 1844 118
Insculpta (Mitra), A. Ad. Zool. Proc. 133, 1851. = M. annulata, Reeve.
Insculpta (Na-sa), Cpr. Cal. Proc, iii. 223, 1866 38
Insignis (Mitra), A. Ad. Zool. Proc., 132. 1851 129
Insignis (Nassodonta), H. Adams. Zool. Proc., 445, 1866. 37
Insolata (Mitra). Sowb. Thes. Conch., No. 77, f. 650, 1874. 124
Instricta (Turricula), Garrett. Jour. of Conch.. iii, 48, 1880 195
Insularis (Voluta), Solander. Portl. Cab. = V. Pacifica, Soland.
Interlirata (Nassa), E. A. Smith. Jour. Linn. Soc., xii, 545, t. 30, f. 5, 1876 48
Interlirata (Mitra), Reeve. Conch. Icon., f. 70. $=$ M. flammea, Quoy. Intermedia (Mitra), Kiener. Iconog., t. 22, f. 70 168
PAGE.Intermedia (Nassa), Forbes. Rept. Æg. In., v, 140.= N. incrassata, Ström.Intermedia (Nassa), Dunker Verh. Z. B. Soc. Vienna, xvi, 909, 1886.$=$ N. suturalis, Lam.
Interpuncta (Voluta), Martyn. Univ. Conch., t. 127 84
Interrupta (Mitra), A. Ad. Zool. Proc., 135, 1851 169
Interrupta (Mitra), Anton. Verzeichn., 68, 1839 192
Intersculpta (Mitra), Sowb. Zool. Proc., 258, 1870 159
Interstincta (Nassa), Marratt. Quar. Jour. Conch., Vars. No. 1163. 64
Interstriata (Mitra), Sowb. Zool. Proc., 259, 1870. 172Interstriata (Nassa), Conrad. Pac. R. R. Rept., v, t. 6, f. 49, 1856.$?=\mathrm{N}$. perpinguis, Hinds.
Interteniata (Mitra), Suwb Thes. Conch., f. 154, 1874 176
Isara, H. \& A. Adams. Genera, i, 171. = Mitra, Lam.
Isabella (Mitra), Swainson. Zool. Illust., 2d ser 137Isabellei (Nassa), Reeve (not Orb.) Icon., f. 47. $=\mathrm{N}$ fenestrata, Marrat.sabellei (Nassa), d'Orb Voy Am Mérid, 423 t 61, f 18-21Italica (Cyclonassa), Issel. Bull. Mal. Ital., ii, 79, t. 4, f. 9-11, 1869.$=$ C. neritea, Linn.
Jacksoniana (Nassa), Quoy. Astrolabe, ii, 452, t. 32, f. 28, 29.
$=$ N. monile, Kiener, var.
Jacksoniana (Nassa). Kiener. Mnnog., 64, t. 19, f. 73. = N. monile, Kien.
Jaculanda (Mitra), Gould. Otia Conch., 129 ; Bost. Proc., vii, 332, 1860. 162
Jamrachi (Voluta), Gray. Ann. Mag. N. Hist., 3 ser., xiv, 236, 1864.
$=$ V. Turneri, Gray.
Japonica (Mitra), A. Ad. Jour. Linn. Soc., vii, 198, 1864.
$=$ T. crebrilirata, Reeve.
Japonica (Nassa), Lischke. Mal. Blätt., xv, 220. = N. balteata, Lischke.Japonica (Desmoulea), A. Adams. Zoo'. Proc , 113, 185166
Japonica (Nassa), A. Ad. Zool. Proc., 110, 1851.
$?=$ N. tenuis, E. A. Smith.
Jonasi (Nassa), Dunker. Zeit. Mal., 171, 1846 ; Phil. Abbild. Bucc., iii,66, t. 2, f. 1026
Jucunda (Mitra), Tapparone-Canefri. Voy. Magenta, 27, t. 1, f. 3, 1874. $=$ M. tigrina, A. Ad.
Jucunda (Mitra), Dunker. Jour. de Conch., 3d ser., xix, 212, t, 9, f. 1, 1879. 165
Judæorum (Mitra), Dohrn. Zool. Proc., 367, 1860. 171
Jukesii (Mitra), A. Ad. Zool. Proc., 139, 1851. = T. corrugata, Lam.
Junonia (Voluta), Chemn. Conch. Cab., xi, t. 177, f. 1703, 1704. 90
Kamieschi (Cyclops), Chemn. Marr. Conch., i, 165, f. 792-4 65
Kaupii (Voluta), Dunker. Mal. Blatt., x, 145, 1863 90
Keeni (Nassa), Marrat. New Forms of Nassa, 15, 1877.
$=\mathbf{N}$. albescens, Dunker, var.
Kiencri (Buccinum), Anton. Verzeichn., 92, 1830.
$?=$ Nassa picta, Dunker.
Kieneri (Mitra), Phil. Zeit. Mal., 22, 1850. = M. chrysostoma Swn.Kieneri (Nassa), Desh. Moll. Ile Bourbon, 129, 1863.53
Kieneri (Mitra). Sowb. Thes. Conch., No. 429, f. 324, 1874. 124
Kingi (Voluta), Cox. Jour. de Conch., xix, 76, i. 4, f. 2, 1871 92
Kirki (Voluta), Hutton. N. Zeal. Cab., 18; Jour. de Conch., 3 ser., xviii, 21, 1878 (三 V. flavicans, Gmel., teste Hutton in litt.) 99
Kochiana (Nassa), Dunker. Zeit. Mal., 111, 1846 58
Kraussiana (Nassa), Dunker. Zeit. Mal., 111, 1846 25
PAGE.
Kraussii (Turricula), Dunker. Mall. Jap., 8, 1861 187
Kreuslere (Voluta), Angas. Zool. Proc., 55, t 2, f. 3, 1865 94
Kurrachensis (Bullia), Angas. Zool. Proc., 529, t. 54, f. 6, 1877 15
Labecula (Nassa), A. Ad. Zool. Proc., 98, 1851. = N. Jonasi, Dunker.Labiata (Nassa), A. Ad. Zool. Proc., 114, 185139
Labida (Nassa), Reeve. Icon., 179, 1854. $=$ N. leptospira, A. Ad.
Labyrinthum (Buccinum), Gmelin. Syst. Nat., 3483.
$?=$ B. cochlidium, Kiener.
Lacepedii (Buccinum), Payr. Moll. Corse, t. 7, f. 23, 24.
= Nassa incrassata, Ström.
Lachrymosa (Nassa), Reeve. Monog., f. 52, 1853, = N. monile, Kien.Lachryma (Mitra), Reeve. Icon., f. 258, 1845125
Lactea (Mitra), Lamarck. Anim., vii, 12 . = M. cornicula, Linn.Lactea (Nassa), Marratt. Vars. of Nassa, 80, 1880.63
Lacunosa (Mitra), Reeve. Icon., f. 65. ? = M. variegata, Reeve.Lacunosa (Mitra), Sowb. (nec Reeve). Thes., f. 171, 1874.
$=$ M. eximia, A. Ad.
Leta (Mitra), A. Ad. Zool. Proc., 135, 1851 159
Latum (Buccinum), Phil. Zeit. Mal., 140, 1848 62
Lævicostata (Mitra), Sowb. Thes. Conch., f. 139, 1874.
= T. Gruneri, Reeve.
Lævicostata (Turricula), Garrett. Jour. of Conch., iii, 50, 1880 195
Lævigata (Nassa) Marrat. New Forms of Nassa, 3, t. 1, f. 7, 1877 23
Lævigata (Voluta), Lam. Edit. Desh., x, 394. = V. musica, L.
Lævigata (Mitra), Gmelin. Syst. Nat., 3455. = M. cornicula, Linn.
Lævigata (Bullia), Mart. Conch. Cab., iv, t. 127, f. 1215, 1216.
= B. lævissima, Gmel.
Lævigata (Nassa), Pusch. Pol. Pal., 122, t. 11, f. 8. $=$ N. mutabilis, Linn.
Lævis (Mitra), A. Ad. Zool. Proc., 132, 1851. = M. casta, Lam.
Lævis (Mitra), Eichwald. Zool. Russ. Pol., 297, t. 5, f. 14.
$=$ M. ebenus, Lam.Lævis (Nassa), Chemn. H. \& A. Adams' Genera, t. 12, f. 7.
$=\mathrm{N}$. canaliculata, Lam.
Lævissima (Bullia), Gmel. Syst. Nat., 3494 11
Lævissimum (Nassa), Bronn. It. Tert., 25. = N. cornicula, Olivi.
Lævizonata (Mitra), Sowb. Thes. Conch. sp. 314, 1874.
$=$ T. luculenta, Reeve.
Lamarckii (Mitra), Deshayes. Encyc. Meth., ii, 448 112
Lamarckii (Bullia), Kiener. Coq. Viv., t. 3, f. 6. $=$ B. cochlidiam, Kiener.
Lamberti (Mitra), Souv. Jour. de Conch., 284, t. 13, f. 3, 1875. 126
Lapparia, Conrad. Am. Jour. Conch., i, 24, 1865 109
Lapponica (Voluta), Syst. Nat. Edit., xii, 11כ5. = V. interpuncta, Mart. Largilliertiana (Voluta), d'Orb. Rev. Zool., 210, 1841 101Larva (Mitra), Lamarck. Edit. Desh., x, 339. $=$ T. cruentata, Chemn.Laterculata (Mitra), Sowb. Thes. Conch., f. 651, 1874.
Laticostata (Nassa), Marrat. New Forms of Nassa, 12, 1877.
$?=\mathbf{N}$. arcularia, Linn21
Latruncularia (Mitra), Reeve. Conch. Icoa., f. 166, 1844 120
Lauta (Mitra), Reeve. Conch. Icon., f. 244, 1844. = M. pardalis, Küster. Lauta (Nassa), Marratt. Vars. of Nassa, 82, 1880 63
Layardi (Mitra), A. Ad. Zool. Proc., 135, 1854. = T. crebrilirata, Rve.Lecadrei (Nassa), Folin. Meleagrinicoles, 73, t. 6, f. 14, 1867.
$=\mathbf{N}$. versicolor, C. B. Ad.
Lefebrei (Bucc.), Maravigna. Rev. Zool., 325, 1840. $=$ Lachesis.

INDEX.
223

PAGE.
Legrandi (Mitra), Tenison-Woods. Proc. Roy. Soc. Tasm., 140, 1875; 159
Leioderma, Conrad. Proc. Philad. Acad, 184, 186: 77
Leiodomus, Swains. Malacol., 74, 3t 2, 1840. $=$ S. G. of Bullia, Gray.
Leptospira (Nassa), A. Ad. Zool. Proc., 103, 1851.
25
Lens (Mitra), Wood. Index Test. Suppl., t. 3, f. 28............................... 133
Lens (Nassa), Chemn. Marrat, Vars., No. 1355. = N. nitidula, Linn.
Lentiginosa (Nassa), A. Adams. Zool. Proc., 105, 1851. $=\mathrm{N}$. gaudiosa, Hinds.
Leontocroma (Mitra), Brusina. Contrib. No. 80. = M. columbellaria, Scacchi.
Leucodesma (Mitra), Reeve. Conch. Icon., f. 243, 1844. $=$ II. pardalis, Küster.
Leucostoma (Mitra). Swains. Sowb., Tank. Cat. App.. 27, 1825............ 159
Leucozona (Mitra), Bellardi. Monog., 26. M. ebenus, Lam.
Lienardi (Mitra), Souv. Thes. Conch., f. 239.151
Lifouana (Mitra texturata, var.), Crosse. Jour. de Conch., xx, 74, : 19 , 1872. 134

Ligata (Mitra), A. Ad. Zool. Proc., 134, 1851. $=$ T. cruentata, Chemn., var. proxima.
Lignaria (Mitra), Reeve. Conch. Icon., f. 64, 1844. M. lens, Wood.
Lilacina (Nassa), Gould. Wilkes' Exp. Moll., 265, f. 336, 1852. $=\mathrm{N}$. gaudiosa, Hinds.
Lilacina (Mitra), Sowb. Thes. Conch., f. 634, 1874............................. 178
Lima (Mitra), Sowb. Thes. Conch., sp. 181, 1874. = Cylindra Sinensis, Reeve.
Limata (Mitra), Reeve. Conch. Icon., f. 312.. 116
Limata (Nassa), Chemn. Conch Cab., xi, 87, t. 188, f. 1808-9. $=$ N. clathrata, Born.
Limbifera (Mitra), Lamarck. Edit. Desh., x, 329 154
Limicola (Bucc.), Phil. Zeit. Mal., 59, 1851.. 6: 6)
Limnæforme (Bucc.), Dunker. Zeit. Mal., 64. 1847. $?=$ Nassa............. 62
Lincolnensis (Mitra), Angas. Zool. Proc., 313, t. 18, f. 10, 11, 1878...... 177
Lineata (Mitra), Swainson. Brod., Zool. Proc., 1830̄............................ 139
Lineata (Voluta), Leach. Zool. Misc., i, t. 12, f. 2. $=$ V. zebra, Leach.
Lineata (Nassa), Pult. H. \& A. Adams' Genera, i, $118=$ Planaxis.
Lineatus (Conœlix), Swainson. Zool. 1ll., 1st ser., i, t. 24, middle figures, 1821. = Imbricaria

Lineolata (Nassa), Phil. Marrat, Vars., No. 1356................................ 64
Lineolata (Planaxis), Risso. Eur. Merid., iv, 173, f. 136. $=$ N. Cuvieri, Payr.
Lineolata (Voluta), Küster. Conch. Cab., t. 36, f. 6. $=\mathrm{V}$. vespertilio, Linn.
Lirata (Nassa), Marrat. Ann. Mag. Nat. Hist., 4 ser., xiii, 70, 1874. $=$ N. nigra, Hombr. et Jacq.
Lirata (Nassa), Dunker. Moll. Jap., t. 1, f. 22 ; Mal. Blatt, 231, 1860. $=\mathrm{N}$. festiva, Powis.
Litterata (Mitra), Lamarck. Edit. Desh., x, 339. 155
Littoralis (Mitra), Forbes. Rep. Egean Invert., 190, 1843. $=$ T. tricolor, Gmelin.
Littoralis (Mitra), Risso. Eur. Merid., iv. $=$ M. ebenus, Lam.
Livescens (Nassa), Phil. Zeit. MaI., 135, 1848
Livida (Mitra), Reeve. Conch. Icon., f. 134. $=$ M. ebenus, Lam., var. costata.
Livida (Bullia), Reeve. Conch. Icon., sp. 10, 1846. $=$ B. vittata, Linn... 15
PAGE.Loubbeckeanus (Dibaphus), Weinkauff. Kïster, Pleurotoma, 2 , t. A, f. 1 .Mitroidea multiplicata, l'ease, juv.
Longispira (Mitra), Sowb. Thes. Conch., f. 403, 1874 180
Loricata (Mitra), Reeve. Conch Icon., f. 174, 1841. = M. Isabella, Swn.
Loroisi (Voluta), Valenc. Jour. de Conch., xi, 71, t. 1, f. 1, 1863 93
Lota (Mitra), Reeve. Conch. Icon., f. 239. 1845 186
Lowei (Mitra), Dohrn. Zool. Proc., 203. 1862. ?= T. tricolor, Gmel.
Lubens (Mitra), Reeve. Conch., Icon., f. 331, 1845.$=$ T. militaris, Rve., var.Lubrica (Mitra), Pease. Am. Jour. Conch., iv, 85, 1868.T. discors, Grandidier.
Lucida (Mitra), Reeve. Conch., lcon., f. 266, 1845 170
Lucida (Nassa), Marrat. Ann. Mag. Nat. Hist, 4 ser., xiii, 70, 1874. 64
Lucida (Neritula), Ad. \& Ang. Zool. Proc., 35, 1864.
$=$ Callomphala (Trochidæ).
Luctuosa (Nassa), A. Adams. Zool. Proc., 105, 1851. ? - N. gaudiosa, Hinds 151
Luculenta (Mitra), Reeve. Conch. Icon., f. 245, 1844. 185
Lugubris (Mitra), Swainson. Zool. Ill., 1st ser., t. 66. 149
Lugubris (Voluta), Swains. $=$ V. Havicans, Gmel.
Lurida (Nassa), Gld. Bost. Proc., iii, 153, 1849 ; Moll. Wilkes' Exp., f. 325. 36
Lutea (Mitra). Quoy. Voy. Astrol., ii, 650, t. 45, bis, f. 7-9.
N. acuminata, Swn.
Luteofusca (Turricula), Garrett Proc. Zool. Soc., 842, 1872 195
Luteola (Nassa), E. A. Smith. Zool. Proc., 212, t. 20, f. 47, 1878.? = N. paupera, Gld.
Luteostoma (Voluta), Deshayes, in Lamarck, x, 409 88
Luteostoma (Nassa), Brod. and Sowb. Zool. Jour., iv, 376, 1829. 39
Luteostoma (Nassa), Kiener. Monog. 110, t. 30, f. 1.
N. luteostoma, Brod. and Sowb.
Lutescens (Mitra), Lamarck. Anr. du Mus., xvii, 210.
$=$ M. cornicula, Linn,
Lymnæana (Bullia), A. Ad. Genera, 113. Volutharpa, vol, iii. 15
Lyræformis (Voluta), Swains. Zool. III., t. 54 ; Brod., Zool. Jour., iii, 83, t. 3, f. 3. 103
Lyreformis (Nassa), Marrat: Vars. of Nassa, 79, 1880. 63
Lyreformis (Voluta), Kiener (nec Brod.). Monog., 35, t, 42, f. 2V. megaspira, var. Prevostiana, Crosse.
Lyrata (Nassa), Kiener. Monog. Bucc:,38, t. 22, f. 88. = Cyllene (vol. iii).
Lyrata (Voluta), Humph. Sowb., Tank. Cat., 2140. =L. costata, Swn.
Lyrata (Mitra), Lamarck. An. sans. Vert., vii, 308 166
Lyrella (Nassa), Beck. Reeve, Icon., f. 95. $=$ N. pauperata, Lam.
Lyria, Gray. Zool. Proc., 1847 ; H. \& A. Adams' Genera, i, 116 76, 101
Lyriformis (Voluta), Vigors. Kiener, Monog., 35, t. 42, f. 2.
$=$ V. megaspira, Sowb.
Macandrewi (Mitra), Sowb. Thes. Conch., f. 421, 1874 179
Macgillivrayi (Voluta), Cox. Zool. Proc., t. 47, f. 9, 1873,$=\mathbf{V}$. piperita, Sowb., var.
Nacquariensis (Voluta), Petterd. Jour. of Conch., ii, 343, 1879.$=\mathrm{V}$. papillosa, Swn., var.
Macrospira (Mitra), A. Ad. Zool. Proc,, 138, 1851 177
Macula (Buccinum), Mont. Test. Brit., 241, t. 8, f. 4.
= Nassa incrassata, Ström.
Maculata (Voluta), Swains. Exot. Conch., t. 38 93
Naculata (Nassa), A. Ad, Zool. Proc., 114, 1851. 38
Maculosa (Mitra), Reeve. Conch. Icon., f. 175AGE.
Maculosum (Bucc.), Costa. = Nassa incrassata, Ström.Maderensis (Nassa), Reeve. Iconog, f. 182, 1854. $=$ N. Cuvieri, Payr.
Mrsta (Mitra) Reeve Conch Tog f 323, 1845 - . Mæsta (Mitra), Reeve. Conch. Icon., f. 323, 1845 143
Magellanica (Voluta), Lam. Edit. Desh., x, 398. 97
Magellanica (Voluta), Kiener (nec Lam.). Monog., t. 51.$=\mathrm{V}$. ancilla, Soland.Magnifica (Voluta), Lamarck. Edit. Desh., x, 39789
Malabarica (Bullia), Hanley. Adams' Genera, 113.=B. melanoides, Desh.
Malleti (Mitra), Petit, Jour. de Conch., iii, t. 58, t. 2, f. 1, 1853 142
Mamilla (Cymba), Gray. Sowb., Zool. Proc., 149, 1844 ; Zool. Proc., 34, t. 45, 1859. 101
Mamillana. Crosse. Jour. de Conch., xix, 308, 1871. = Voluta, Linn., sect. 101
Mamillata (Planaxis), Risso. Eur. Mer., iv, 178, f. 122.$=\mathbf{N}$. reticulata, Linn.
Mangelioides (Nassa), Reeve. Iconog., f. 152, 1853 26
Margaritifera (Nassa), Dunker. Zeit. Mal., 60, 1847.$=$ N. cremata, Hinds, var.
Margaritifera (Nassa), Reeve (non Dunker). Icon., f. 59.$=\mathbf{N}$. Kieneri, Desh.
Marginata (Mitra), Sowb. Thes. Conch., f. 311, 1874.? = M. coronata, Lam,, juv.
Marginulata (Nassa); Lam. An.s. Vert., vii, 278. =N. reticulata, Linn.Marginulata (Nassa), Reeve (not Lam.), Icon., f. 43, 50, 51.
$=$ N. Kieneri, Desh.
Mariæ (Mitra), A. Ad. Zool. Proc., 140, 1851. = M. incisa, Ad. \& Rve.Maria-Emma (Voluta), Gray. Zool. Proc., 230, t. 48, 1859.$=$ V. Grayæ, Crosse.
Marmorata (Nassa), Anton. Verzeichn., 92, 1839 62
Marmorata (Voluta), Swains. Exot. Conch., t. 1 92
Marmorata (Mitra), Swains. Zool. Illust., t. 24.$=$ Imbricaria conica, Schum.
Marmorea (Nassa), A. Ad. Zool. Proc., 106, 1851.$=$ Var. of N. picta, Dunker.36
Marmorea (Mitra), A. Ad: Zool. Proc., 139, 1851. 178
Marquesana (Mitra), A. Ad. Zool. Proc., 270, 1851 114
Marratii (Nassa), E. A. Smith. Jour. Linn. Soc., xii, 543, t. 30, f. 4 ;Zool. Proc., 8u9, t. 50, f. 8, 1878 . = N. gaudiosa, Hinds.
Matronalis (Mitra) Schum. Nouv. Syst., 239, 1817. = M. casta, Lam.Maura (Mitra), Swains. Zool. Proc., 193, 1835121
Mauritia, A. Ad. Zool. Proc., 273, 1869. = Mitroidea, Pease.
Mauritiana (Bullia), Gray. Zool. Beechey, p. 226, 1839. 12
Mauritiana (Mitra), Sowb. Thes. Conch., 2, f. 610, 1874 114
Mazza, Klein. Ostrac., 62, 1753; H. \& A. Adams' Genera, i, 156.$=$ Turbinella, Lam.
Mazzalina, Conrad. Am. Jour. Conch., i, 23, 1865. =Lagena.(vol. iii).
Media (Mitra), Risso. Eur. Merid., iv. = M. cornicula, Linn.
Mediolaris (Bullia), von Mart. Jahrb. Mal. Gesell., i, 137, t. 6, f. 4.$=$ Var. of B. diluta, Krauss,
Mediomaculata (Mitra), Sowb, Zool. Proc., 255, 1870 184Mediterranea (Nassa), Risso. Eur. Mer. iv, $170 .=$ N. mutabilis, Linn.Megaptygma, Conrad. Proc. Philad. Acad., 563, 1862; Gabb. Philad.Proc., 292, $1876 .=$ Volutifusus, Conrad.
Megaspira (Voluta), Sowb. Zool. Proc., 150, 1814 95
PAGEMegaspira (Voluta), Adams. Ann. Mag., June, 1876. $=$ V. Hamillei, Cr.Melaleuca (Mitra), Quoy. Voy. Astrol., ii, 657, t. 45, bis, f. 26, 27.$?=$ M. australis, Swn.
Melaniana (Mitra), Lamarck. Ann. du Mus., 212 127
Melanioides (Nassa), Rve. Iconog., f. 150, 1853 61
Melanoides (Bullia), Desh. Voy. Belang., 430, t. 2, f. 3, 4 14
Melo (Voluta), Soland. = Melo Indica, Gmel.
Melo, IIumphrey. Mus. Calonn., 1797; Sowerby, Genera, 1827 75, 80
Melongena (Mitra), Lamarck. An. sans Vert., vii, 309 166
Mendica (Nassa), Gould. Otia Conch., 70, 1849 56
Mica (Mitra), Reeve. Conch. Icon.. f. 314, 1845. = T. cælata, Reeve. Micans (Mitra), Reeve. Conch. Icon., f. 285, 1845. 129
Micans (Nassa), A. Ad. Zool. Proc., 106, 1851. = N. gaudiosa, Hinds.
Michaudi (Turricula), Crosse \& Fisher. Jour. de Conch., 337, 1864.$=\mathrm{M}$. Deshayesii, Reeve.
Microstoma (Nassa), Pease. Zool. Yroc., 145, 1860. $=$ N. paupera, GouldMicrostoma (Mitra), Sowb. Thes. Conch , f. 291, 1874.$=$ M. pellis-serpentis, Reeve.76
Microzonias (Mitra), Schrenck. Moll. Amurl., 451.? = M. Kraussii, Dunker.
Microzonias (Mitra), Lamarck. Anim., vii, 320 183
Miga (Nassa), Brug. Dict., No. 41 42
Militaris (Mitra), Reeve. Conch. Icon., f. 236, 1845 171
Milium (Mitra), Reeve. Conch. Icon., f. 257, 1845. 160
Millecostata (Mitra), Swainson. Brod., Zool. Proc., 1835 185
Millepora (Mitra), Lamarck. Ann., No. 5. = M. digitalis (Chemn.), Dillw.
Miltonis (Melo), Gray. Griffith's Animal Kingdom, t. 29.= M. diadema, Lam., var.
Miniata (Mitra), Anton. Verzeichn., 67, 1839. = M. peregra, Reeve.Minor (Nassa), Marrat. New Forms of Nassa, 14, 1877.63
Minor (Mitra), Sowb. Thes. Conch., No. 167, f. 662, 1874.
= M. tabanula, Lam
Minutum (Buccinum), Pennant. Brit. Zool., iv, 122, t. 79.
= Nassa incrassata, Ström.
Mirabilis (Mitra). A. Ad. Zool. Proc., 136, 1851. = T. angulosa, Küster.
Mirifica (Mitra), Reeve. Conch. Icon., f. 278, $184 \overline{5}$161
Mitchelini (Mitra), Sowb. Thes. Conch., f. 259, 1874
$=$ M. limbifera, Lam.
Mitchelinii (Mitra). Guerin. Mag. de Zool., t. 38, 1830.
$=$ M. aurantia, Gmelin.
Mitis (Turbinella), Lam. Anim. sans Vert., ix, 382.
$=$ Vasum capitellum, Linn.
Mitis (Voluta), Lam.• Edit. Desh., x, $888 .=$ V. vespertilio, Linn.
Mitra, Lamarck, Prodr., 1799 ; Syst., 74, 1801 108, 109
Mitræformis (Voluta), Lam. Edit. Desh., x, 404 ; Proc. Zool. Soc., 54,1864103
Mitralis (Nassa), A. Ad. Zool. Proc, 108, 1851 = N. tænia, Gmel.
Mitraria, Rafinesque. Anal. Nat., 1815. = Mitra, Lam.
Mitrella, Swainson (not Risso), Elem., 1835 ; Malacol., 129, 321, 1840.$=$ Swainsonia, H. \& A. Ad.
Mitreola, Swainson, Elem., 1835 ; Malacol., 129, 320, 1840.
$=$ Strigatella, Sw.
109,162= Strigatella, Sw
Mitrolites, Krug. Urw., ii, 431, 1823. = Mitra, Lam.
PAGE.
Mitromorpha, A. Ad. Ann. Mag. N. Hist., 3d ser., xv, 322, 1865.$=$ Pleurotomidae.
Mitropsis, Pease. Am. Jour. Conch., iii, 211, 1867. $=$ Columbellidæ.
Modesta (Truncaria). Powis. Zool Proc., 1835, p. 94 10
Modesta (Mitra), Reeve. Conch. Icon., f. 254, 1845. 170
Modesta (Voluta), Wood. Cab. Suppl., f. 24. = V. flavicans, Gmel.
Modesta (Turricula), Pease (not Rve.) Am. Jour. Conch., 212, t. 15, f.$6,1867 .=$ T. Gruneri, Reeve.
Modicella (Turricula), Garrett. Jour. of Conch., iii, 53, 1880 195
Mœsta (Nassa), Hinds. Zool. Voy. Sulphur, 36, t. 9, f. 18, 19, 1844.$=$ N. exilis, Powis.
Molleri (Mitra), Küster. Conch. Cab.. 109, t. 17a, f. 12-14 154
Molopophorus, Gabb. Pal. Calif., ii, 156, 1869. $=$ S. G. of Bullia, Gray. 7
Moltkiana (Voluta), Mart. H. \& A. Adams’ Genera, i, 161 101
Monile (Nassa), Ki ner. Bucc., 68, t. 11, f. 40. $\stackrel{2}{2}$
Monilifera (Mitra), C. B. Ad. Contrib. Conch., 57, 1850.
$=\mathrm{T}$. microzonias. Lam.
Moniliferum (Bullia), Val. Kiener, Coq. Viv., t. 3, f. 8.
= B. armata, Gray.
Monoceros, Fleming. Brit. An., 342, 1828. $=$ Alectrion, Montf.
Montrouzieri (Mitra), Tapparone-Canefri. Ann. Mus. Genera, vi, 1874.$=$ T. tricolor, Montr.
Montrouzieri (Mitra), Souverb. Jour. de Conch., 282, t. 13, f. 1, 1875. 170
Mörchii (Mitra), A. Ad. Zool. Proc., 134, t. 28, f. 5, 1854.
$=$ M. Isabella, Swn.
Morleti (Nassa), Crosse. Jour. de Conch., xv, 445, 1867. $=$ N. fossata, Gld.
Morrissii (Nassa), Dunker. Zeit. Mal., 60, 1847.$=$ Phos plicosus, Dunker (vol. iii).
Mozambicensis (Bullia), Smith. Zool. Proc., 719, t. 75, f. 18, 1877 14
Mucronata (Nassa), A. Ad. Zool. Proc., 105, 1851. $二$ N. monile, Kiener.
Mucronata (Mitra), Swainson. Reeve, Conch. Icon., f. 125, 1844 174
Mucronata (Melo), Brod. Sowb., 1855. =M. diadema, Lam., var. ducalis.
Multicostata (Voluta), Brod. Zool. Jour., iii, t. 3, f. 2.
$=\mathrm{V}$. Mitræformis, Lam.
Multicostata (Mitra), Swainson. Brod., Zool. Proc., 1835.$=$ T. aureolata, Swn.
Multicostata (Nassa), A. Ad. Zool. Proc., 98, 1851 54
Multigranosa (Nassa), Dunkır. Zeit. Mal., 61, 1847.= N. pauperata, Lam.
Multilirata (Mitra), A. Ad. Zool. Proc., 135, 1851.
Multilineata (Nassa), Marrat. New Forms of Nassa, 11, 1877 63
Multiplicata (Mitroidea), Pease. Zool. Proc., 514, 1865: Garrett in Leeds Jour. Conch., iii, 68 162
Munieriana (Nassa), Crosse. Jour. Conch. 345, t. 13, f. 6, 1864. 57
Muricata (Mitra), Swainson. Brod., Zool. Proc.. 1835. = M. lens. Wood.
Muricata (Nassa), Quny and Gaim. Voy. Astrol., ii, 450, t. 32, f. 32, 33... 44
Muricata (Turbinella), Encyc. Méth., t. 431, bis, f. 4.$=$ Vasum capitellum, Linn.
Muricatum (Vasum), Born. Mus. 233 71
Muriculata (Mitra), Lamarck. Anim. sans Vert. Edit. Desh., x, 333 191
Musica (Voluta), Linn. Syst. Nat. Edit., xii, 1194. 8 EMusica, Humphrey. Mus. Calon., 18, 1797; Fischer, Jour. de Conch.105, 1879. = Voluta, Linn.
Musicalis (Voluta), Mart. H. \& A. Adams' Genera, i, 165. $=$ V. virescens, Solander.
PAGE.
Musiva (Nassa), Gould. Bost. Proc., iii, 153, 1850. $=$ N. picta, Dunker.
Mustelina (Nassa), Gould. Bost. Proc., vii, 331, 1860.$?=\mathrm{N}$. gaudiosa, Hinds.
Mutabilis (Mitra), Reeve Conch. Icon., f. 235, 1845.
$=$ T. cadaverosa, Keeve.
Mutabilis (Nassa), Linn, Syst. Nat Edit., xii, 1201. 22
Mutellina (Mitra), Duclos. H. \& A. Adams' Genera, i, 174. 159
Mutyca, H. \& A. Adams' Genera, i. $172 .=$ Mitroidea, Pease.
Myristica (Nassa), Hinds. Voy. Sulphur, 36, t. 9, f. 10, 11, 1844 45
Nana (Nassa), A. Ad. Zool. Proc., 102, 1851. = N. Jonasi, Dunker.
Nana, Schum (pars.). Nouv. Syst. 225, 1817, = Neritula, Plancus. Nana (Voluta), Anton. Verzeichn., 70, 1839. 101
Nanina, Risso. Hist. Nat.. iv, 1826. = Neritula, Plancus.
Nanus (Mitra), Reeve. Conch. Icon., f. 194, 1844. = M. aurantia, Gmel.Napus (Turbinella), Lam. Anim. s. Vert., ix, 377. = T. pyrum, Linn.Nasica (Voluta), Schubert and Wagner, t. 217, f. 3031, 3032.$=\mathrm{V}$. angulata, Swains.
Nassa. Lamarck. Prodr., 71, 1799 6,17
Nassodonta, H Adans. Zool. Proc., 445, t. 38, f. 8, 1866. ? = Zeuxis, H. \& A. Adams 6
Nassoides (Mitra), Sowb. Thes. Conch. f. 631, 1874 152
Nassula (Buccinum), V. Salis. Reise, 367. = Nassa reticulata, Linn.
Nasuta (Mitra), Sowb. Thes. Conch., f. 623, 1874. 169
Natalensis (Bullia), Krauss.' Südaf. Moll., 121, t. 6, f. 16. $=$ B. digitalis, Meusch., var 12
Nautica (Melo), Lam. Edit. Desh., x, 374. = M. Athiopica, Linn.
Navicula (Cymba), Gmel. Syst. Nat., 3467. =C. Neptuni, Gmel.Naytia, H. \& A. Adams. Gen. Rec. Moll., i, 118.$=$ S. G. of Nassa, Mart.6
Nebularia, Swainson. Malacol., 319, 1840. = Mitra, Lam.
Nebulosa (Mitra), Swainson. Brod., Zool. Proc., 1835.$=$ M. versicolor, Mart.Nebulosa (Mitra), Reeve. Icon., f. 3. $=$ M. erronea, Dohrn.Neptuni (Cymbium), Gmel. Syst. Nat., 3467.80
Neritea (Neritula), Linn. Syst. Nat. Edit., xii, 1201. 64
Neritula, Plancus. Conch. Min. nob., 27, 1739 7, 64
Nevillei (Mitra), Hanley. Sowb., Thes. Conch., f. 306, 1874.$=$ M. zephyrina, Ducl.
Newcombii (Mitra), Pease. Am. Jour. Conch., v, 69, 1869. 131
Nexilis (Mitra), Martyn. Univ. Conch., t. 22, $=$ M. filaris, Linn., var.
Nicobarica (Mitra), Frauenfeld. Voy. Novara, 7, t. 1, f. 5, 1865. 190
Nigella (Nassa), Reeve. Icon., f. 173, 1854. 61
Nigra (Nassa), Hombr. et Jacq. Voy. Astrol. et Zél., v, 78, t. 21, f. 18, 19, 1853 41
Nigra (Mitra), Dillwyn (not Chemn.). Desc. Cat., i, 553.$=$ M. melaniana, Lam.
Nigra (Mitra), Quoy. Reeve, Conch., Icon, f. 109.= M. abbreviata, Sowb.
Nigra, (Mitra), Quoy. Astrol., ii, 644, t. 45, f: 16-18. = M. Quoyi, Desh.
Nigricans (Strigatella), Pease. Zool. Proc., 514, 1865; Am. Jour. Conch., 215, 1867.153
Nigrofasciata (Mitra), Sowb. Thes. Conch., sp. 313, 1874.= T. luculenta, Reeve.Niotha, H. \& A. Adams. Gen. Rec. Moll., i, 117. =S. G. of Nassa, Mart.7

INDEX.

 229PAGE.
Nisotum (Buccinum), Potiez et Michaud. Galerie, i, 378, 1838 62
Nitens (Mitra), Rissn. Eur. Merid., iv, 241. = M. cornicula, Linn.
Nitens (Mitra), Kiener. Mitra, t. 29, f. $96 . \rightleftharpoons$ M. annulata, Reeve. Nitida (Mitra). A. Ad. Zool. Proc., 139, 1851 122
Nitida (Nassa) Jeffreys. Brit. Conch., iv, 349, 1867.
$\overline{=}$. reticulata, L., var.
Nitidula (Nassa), Ad. Jay's Catalogue 62
Nitidulum (Buccinum), Linn. Hanley. =N. Cuvieri, Payr.
Nivea (Mitra), Swainson. Brod., Zool. Proc., 1835 137
Nivea (Nassa), A. Ad. Zoul. Proc., 110, 1851 57
Nivifer (Nassa), Marrat. Vars., No. 1400 64
Nivosa (Nassa), Marrat. New Forms of Nassa, 9, 1877 52
Nivosa (Voluta), Lam. Edit. Desh., x, 389 86
Nivosa (Mitra), Swains. Bligh Cat. Exo ${ }^{\dagger}$. Conch. App.
$=\mathrm{M}$. versicolor, Martyn.
Nobilis (Voluta), Solander. Gray, Zool. Proc., 62, 1855$=\mathrm{V}$. scapha, Gmel.
Nodata (Nassa), Hinds. Voy. Sulphur, 36, t. 9, f. 14, 15, 1844. 46
Nodicincta (Nassa), A. Ad. Zool. Proc., 110, 1851 63
Nodicostata (Nassa), A. Ad. Zool. Proc., 99, 1851. = N. fissilabris, A. Ad.
Nodifera (Nassa), Powis. Zool. Proc., 95, 1835. ? = N. hirta, Kiener.Nodilirata (Mitra), A. Ad. Zool. Proc., 136, 1851.$=$ T. mucronata, Swains.
Nodosa (Nassa), Marrat. Vars. of Nassa, 77, 1880. 63
Nodosa (Mitra), Swainson. Philos. Mag., 401, 1823.
Nodulifera (Mitra), A. Ad. Zool Proc, 140, 1851 ; Jour. Linn. Soc., xii,550170
Nodulifera (Nassa), Phil. Zeit. Mal., 136, 1848; Abbild. Bucc., t. 1, f. 3.$?=$ N. echinata, A. Ad.
Nodulosa (Turricula), Pease. Am. Jour. Conch., iii, 214, 1867 192
Nodulosa (Mitra), var. B, Gmelin. Syst. Nat., 3453.
$=$ M. granulosa, Lam.
Nodulosa (Nassa), Marrat. Ann. Mag. N. Hist., 4 ser., xii, 426, 1873.$=\mathrm{N}$. granifera. Kiener.Nodulosa (Voluta), Lam. Edit. Desh., x, 396.$=\mathrm{V}$. musica, L., var. polypleura.
Norrisii (Mitra), Reeve. Conch. Icon., f. 6, 1844 137
Norrisii (Voluta), Gray. Jardine's Annals, i, 414, 1838; Sowb., Zool. Proc., 150, 1844 86
Northia, Gray. Zool. Proc., 140, 1847 5
Northiæ (Buccinum), Gray. Griffith's Cuvier, t. 36, f. 3.$=$ Northia serrata. Dufresne.
Novæ-boracense (Nassa), Wood. Index Test. Suppl., t. 4, f. 26.
$=\mathrm{N}$. obsoleta, Say.
Novæ-Hollandiæ (Mitra), Sowb. Thes. Conch., f. 368, 417, 1874.$=\mathrm{M}$. flammea, Quoy.
Novæ-Zelandiæ (Nassa), Reeve. Icon., f. 186, 1854.$?=\mathrm{N}$. nigra, Hombr. et Jacq., var.
Nubila (Mitra), Gmel. (var. A). Syst. Nat., 3450. = M. versicolor, Mart
Nubila (Mitra), Gmel. (var. B): Syst. Nat., 3450.
$=$ M. versicolor, Martyn.
Nucea (Nassa), Pease. Am. Jour. Conch., v, 70, t. 8, f. 7, 1870 61
Nucea (Cylindra), Gronovius. Zoophylacium, Pt. 3, t. 18, f. 11 195
Nucleola (Mitra), Lamarck. Edit. Desh., x, 337 134
Nucleola (Mitra), Lamarck. Ann., No. 64; Kiener, Iconog., 84, t. 26, f. 83 145
page.
Nucleolus (Nassa), Phil. Zeit. Mal., 52, 1846 49
Nucleus (Lyria), Lam. Edit. Desh., x, 405 102
Nux (Cylindra), Sowb. Thes: Conch., sp. 187, 1874 197
Nux-avellana (Mitra), Dohrn. Zool. Proc., 368, 1860; Mal. Blatt., viii,137. = M. pudica, Pease.
Nympha (Mitra), Reeve. Conch. Icon., f. 249, 1845.$=\mathrm{M}$. variegata, Reeve.
Obeliscus (Mitra), Reeve. Conch. Icon., f. 107, 1844 179
Obesa (Mitra), Reeve. Conch. Icon., f. 87, 1844.
$=$ Cylindra dactylus, Linn.
Obesa (Nassa), G. \& H. Nevill. Jour. Asiat. Soc. Bengal, 95, t. 5, f. 2, 3, 1875. 29
Obliqua (Nassa), Pease. Zool. Proc., 513, 1865. = N. granifera. Kiener.
Obliqua (Nassa), Hombr. et Jacq. Voy. au Pol sud, v, 84, t. 21, f. 43, $44,1854 .=N$. granifera, Kiener.
Obliqua (Nassa), Kiener. Monog. Buccin., t. 31, f. 4 27
Obliqua (Mitra), Lesson. Rev. Zool., 142, 1842 120
Obliquata (Mitra), Lamarck. Edit. Desh., x, 339 158
Obliquata (Nassa), A. Ad. Zool. Proc., 105, 1851.$?=$ N. picta, Dunker.
Obliqueplicata (Nassa), Dunker. Zeit. Mal., 61, 1847 ; Phil., Abbild.Bucc., t. 1, f. 13. $=$ N. miga, Brug.
Obliquum (Buce), Brocchi. Conch. foss., ii, 336, t. 4, f. 16. $=$ N. mutabilis, Linn.
Oblonga (Nassa), Marrat. New Forms of Nassa, 5 63.
Obscura (Mitra), Humphrey Cat. H. \& A. Ad Genera, i, 170 159
Obscura (Mitra), Hutton. Cat. N. Zeal. Moll., 19; Jour. de Conch., 3 ser., x viii, 21,1878 158
Obsoleta (Nassa), Say. Jour. Philad. Acad., ii. 232, 1822 60
Obsoleta (Mitra), Phil. Enum. Moll. Sicil., 1, 230.$=$ M. Columbellaria, Scacchi.Obtusispinosa (Mitra), Sowb. Thes. Conch., f. 373, 1874.$=\mathrm{T}$. mucronata, Swains.
40
Obtusata (Nassa), A. Ad. Zool. Proc., 100, 1851
Ocellata (Mitra), Swainson. Zool Illust., 2d ser. =M. fissurata, Lam.
Oleacea (Mitra), Reeve. Conch. Icon., f. 105, 1844. = M. scutulata, Lam.
Olivacea (Mitra), Anton. Verzeichn., 68, 1839 195
Olivacea (Nassa), Brug. Dict. No. 38. $=$ N. tænia, Gmel.
Olivaceum (Bucc.), Delle-Chiaje., t. 47, f. 14, 15. $=$ N. corniculum, Olivi.Olivæformis (Mitra), Swainson. Zool. Illust, 2 Ld ser131
Olivaria (Mitra), Lamarck. Edit. Desh., x, 309. = Cylindra nucea, Gron.Olivaria (Mitra), Sowb. Index, Thes. Conch. = Cylindra nucea, Gronov.Oliviforme (Buccinum), Kiener, t. 25, f. 99. $=$ N. obsoleta, Say.Olivoidea (Mitra), Cantraine. Bull. Acad. Brux., 391, 1835.$=\mathrm{M}$. Columbellaria, Scacchi.
Olla (Cymba), Linn. Syst. Nat., 1196 ; Reeve, Ann. Mag., Nat. Hist., 3 ser., vii, 273 80
Onerata (Nassa), Desh. Conch. He Bourbon, 130, t. 12, f. 24, 25, 1863. $=$ N. granifera, Kiener.
Oniscina (Mitra), Lamarck. Edit. Desh., x, 340 133
Optata (Nassa), Gould. Bost. Proc.; vii, 331, 1860 63
Orbiculata (Nassa), A. Adams. Zool. Proc., 102, 1851.
$=\mathbf{N}$. Kraussiana, Dunker 25
Ordinata (Mitra), Pease (ubi). Pætel Cat 159
Oriens (Nassa), Marrat. Vars. No. 552 64.

Orientalis (Mitra), Gray. Griffith's Animal Kingdom, t. 40, f. 5, 1834.
= M. Maura, Swainson. Wagn. Conchyl., t. 225, f. 3098, 3099........... 195
Ornata (Mitra, Schub. \& Wagn.
Ornata (Mitra), Kientr. Icon., t. 3, f. 8. M. Rossiæ, Reeve.
Ornata (Mitra), A. Ad. Zool. Proc., 135, 1851169

Ornata (Nassa), Kiener. Bucc., 80, t. 21, f. 83. $=$ N. stolata, Gmel.
Osidiris (Mitra), Issel. Mal. Mar Rosso, 263, t. 3, f. 9, 1869............... 191191

Ossea (Mitra), Reeve. Conch. Icon., f. 219, 1844.
$=$ Imbricaria punctata, Swn.
Osseum (Buccinum), Menke. Cat. No. 624; Mal. Blatt, xviii, 126, 1871. 16
Otocheilus, Conr. Am. Journ. Conch., i, 24, 1865.
$=$ Cithara (Pleurotomidæ.).............................78

Ovoidea (Turbinella), Kiener. Iconog., 7, t. 17, f. 1...................................... 70
Pacifica (Mitra), Reeve. Conch. Icon., f. 272. = T. cadaverosa, Reeve.
Pacifica (Voluta), Soland. Port. Cat., 190
Pæteli (Mitra), Dohrn. Mal. Blatt, vii, 125, 1861................................ 152
Pagoda (Nassa), Reeve. Icon. Triton, f. 97, 1844................................ 45
Paligera (Mitra), Sowb. Thes. Conch., f. 515, 1874............................. 189
Pallida (Mitra), Pease. Zool. Proc., 146, 1860..................................... 159
Pallida (Mitra), A. Ad. Zool. Proc., 139, 1851.................................... 159
Pallida (Nassa), Powis. Zool. Proc., 96, $1835=$ Phos (vol. iii).
Pallida (Mitra), Issel. Ann. Mus. Genova, xi, 418, fig. 1, 1878. $=\mathrm{M}$. tricolor, Gmel.
Pallida (Voluta), var., Kiener. Monog., t. 43, f. 12. $?=$ V. maculata, Swains.
Pallida (Voluta), Gray. Griffith's Cuvier, t. 30, f. 4, 1834. $=\mathrm{V}$. volva, Gmel.
Pallidula (Nassa), A. Ad. Zool. Proc., 106, 1851. $=$ N. gaudiosa, Hinds.
Panamensis (Nassa), C. B. Ad. Panama Cat. No. 51 ; Carpenter, Second Report, 179. = N. exilis, Powis.
Papalis (Mitra), Linn. Syst. Nat. Edit, xii, 1194.
Papillaris (Voluta), Reeve. Icon., f. 10, 1849. V. papillosa, Swains.
Papillaris (Voluta), Gmelin. = Cymbium olla, Linn.
Papillatum (Cymba), Schum. Essai Nouv. Syst., 237. = C. olla, Linn.
Papillosa (Voluta), Swains. Bligh, Cat. App
Papillosa (Nassa), Linn. Syst. Nat. Edit., xii, 1200............................ .. 30
Paranassa, Conrad. Am. Journ. Conch., iii, 262, t. 19, f. 6, 1867. $=$ S. G. of Ptychosalpinx, Gill... 8
Pardalis (Mitra), Küster. Conch. Cab.. 105, t. 17, f. 14, 15...................... 183
Parva (Nassa), Marrat. Vars. of Nassa, 83, 1880.................... 63
Patriarchalis (Mitra), Lamarck. Anim. sans Vert., vii, 318 191
Patula (Cymba), Brod. Spec. Conch., 5, f. 2, a, b. Pouton, Zool. Proc., 375, 1868. $=$ C. Neptuni, Gmel.
Patula (Mitra). Reeve. Conch. Icon., f. 333, 1845. 125
Paucicostata (Nassa), Marrat. New Forms of Nassa, 11, 1877. $?=$ N. vibex, Say.
Paupera (Nassa), Gould. Bost. Proc., iii, 155, 1850 ; Moll. Wilkes' Exp., 262, f. 33047
Pauperata (Nassa), Lam. Edit. Desh., x, 183 52
Paupercula (Mitra), Linn. Syst. Nat. Edit., 12, 1190 156
Paupercula (Mitra), Schreter. Einl., i, 217, t. 1, f. 11.

Paytense (Bullia), Val. Kiener, Coq. Viv., t. 6, f. 16. = B. cochlidium, Kiener.
Peasei (Mitra), Dohrn. Zool. Proc., 366, 1860. =M. Isabella, Swn.
Peasei (Turricula) Garrett. Jour of Conch., iii, 57, 1880.

Peculiaris (Mitra), Reeve. Conch. Icon., f, 305, 1865. $?=$ M. typha, Reeve.
Pedersenii (Enæta), Verrill. Am. Jour. Sci., N. S., xlix, 226, 1870....... 104
Pediculing (Nassa), Gould. Bost. Proc., vii, 332, 1860.......................... 63
Pediculus (Mitra), Lamarck. Ann. Mus., No. $80 .=$ M. tabanula, Lam.
Pellis-serpentis (Mitra), Reeve. Conch. Icon., f. 66, 1844..................... 151
Pellis-serpentis (Voluta), Lam. Edit. Desh., $x, 386=$ V. vespertilio, Linn.
Pellucida (Neritula), Risso. Eur. Mérid., $271 \ldots . ~$ 5
Pepo (Voluta), Solander, teste Gray. = Cymbium Neptuni, Gmel.
Perdicina (Voluta), Schub. et Wagner. = Lyria nucleus, Lam.
Peregra (Mitra), Reeve. Conch. Icen., f. 186, 1844............................ 144
Peritrema (Nassa), Tenison-Woods. Proc. Linn. Soc N. S. Wales, iv, 21,
t. 4, f. 5, 1879... 48
Perlata (Nassa), Meuschen. $=$ N. granifera, Kiener.
Perpinguis (Nassa), Hinds. Voy. Sulphur, 36, t. 9, f. 12, 13............... 56
Perrónii (Mitra), Lam. Ann., Ňo. 71. = M. aurantia, Gmelin.
Persica (Bullia), E. Smith. Zool. Proc., 730, t. 46, f. 11, 1878.. 13
Persica (Cymba), Mart. $=$ C. Neptuni, Gmel.
Persica (Nassa), von Martens. Vord. Asiat. Conch., 94, t. 5, f. 47. $=$ N. leptospira, A. Ad.
Pertusa (Mitra), Linn. Syst. Nat. Edit., 12, 1193.
$?=$ M. digitalis (Chemn), Dillw.
Pertusa (Mitra), Linn.? Dillw., Desc. Cat., 558. = M. cardinalis, Gmel.
Petrosa (Mitra), Sowb. Thes. Conch., f. 314, 1874................................ 124
Pfeifferi (Nassa), Phil. Abbild., iii, Buc.. 45, t. 1, f. 7.
$=\mathrm{N}$. conspersa, Phil.
Pharaonis (Mitra), Géné. Issel, Mal. Mar. Risso, 119, t. 3, f. 8, 1869.
$=$ T. cadaverosa, Rve.
Pharaonis (Mitra), H. Ad. Zool. Proc., 9, t. 3, f. 1, 1872.
$=$ T. Appelii, Jickeli.
Philippiana (Mitra), Forbes. Eg. Invert., 191. = M. cornicula, Linn.
Philippii (Dibaphus), Crosse. Rev. et Mag. Zool., 1860, t. 3, f. 1, 1858.. 164
Philippinarum (Mitra), A. Ad. Zool. Proc., 141, 1851......................... 141
Philippinarum (Cymba), Mart. $=$ C. olla, Linn.
Phrontis, H. and A. Adams. Gen. Rec. Moll., i, 117.
$\quad=$ S. G. of Nassa, Mart.. 6
Pia (Mitra), Dohrn. Zool. Proc., 366, 1860...
Pica (Mitra), Reeve. Conch. Icon., f. 247, 1845................................... 125
Pica (Mitra), Chemn. Conch Cab., xi, 24, f, 1721, 1722. $?=$ M. paupercula, Linn.
Picea (Mitra), Sowb. Thes. Cọnch., f. 658, 1874.................................. 150
Picea (Strigatella), Pease. Zool. Proc., 146, 1860.................................. 150
Picta (Nassa), Dunker. Zeit. Mal., 172, 1846.. 35
Picta (Mitra), Reeve. Conch. Icon., f. 123, 1844. $=$ M. Barbadensis, Gmel.
Picta (Mitra), Danilo et Sandri. Brusina, Verh. Zool. Bot. Wien, xv, 15, $1865 .=$ M. tricolor, Gmel.
Picturata (Nassa), Marrat. Vars. of Nassa, 78, 1880............................ 63
Pigra (Mitra), A. Ad. Zool. Pròc., 133, 1851... 120
Pingue (Bucc.). Phil. Zeit. Mal., 61, 1851. = Nassa.............................. 62
Pinguis (Desmoulea), A. Adams. Zool. Proc., 113, 1851........................ 65
Pinguis (Mitra), Reeve. Conch. Icon., f. 304, 1845.
$=$ T. nodosa, Swains.
Piperita (Voluta), Sowb. Zool. Proc., 150, 1844.......................... 87
Pisolina (Mitra), Lamarck. = T. dermestina, Lam., var.
PAGE.Planaxis, Risso. Hist. Nat., iv, 172, 1826. = Tritia, Risso.Planilirata (Mitra), Reeve. Conch. Icon., f. $184 .=$ M. Solandri, Rve.Planicostata (Nassa), A. Ad. Zool. Proc., 108, 1851.34Plebecula (Nassa), Gould. Bost. Proc., 332, 1860. $=$ N. paupera, Gld.Plebeja (Mitra), Dohrn. Zool. Proc., 368, 1860 ; Mal. Blatt, viii, 137,1862. = M. latruncularia, Reeve.
Pleioptygma, Conrad. Proc. Philad. Acad., 563, 1862 78
Plicaria (Mitra), Linn. Syst. Nat. Edit., x, 732, 1758.$=$ T. plicata, Klein.
Plicata (Mitra), Klein. Reeve, Icon., f. 56 167
Plicata (Nassa), Bolt. $=$ N. pulla, Linn.Plicata (Nassa), Pease MSS. Carpenter, Z. Proc., 516, 1865.$=$ N. tænia, Gmel.Plicata (Voluta), Dillw. Desc. Cat., i, 563. = V. musica, L., var. sulcata.Plicatella (Nassa), Gould. Bost. Proc., viii, '280, 186263
Plicatella (Nassa), A. Ad. Zool. Proc., iii, 1851 58
Plicatissima (Mitra), Küster. Conch. Cab., 119, t. 17 b, f. 11, 12 188
Plicatula (Mitra), Pease. Am. Jour. Conch., 1867, t. 15, f. 4.$=$ Turr. Emiliæ, Schmeltz.Plicatula (Mitra), Brocchi. Foss. Subap., ii, 318, t. 4, f. 7 ; Petit, Cat.Test. Eur., 281. = M. ebenus, Lam.
Plicatula (Nassa), Dunker. Godeffroy Exped. Cat. = N. picta, Dunker.
Plicosa (Nassa), Dunker. Zeit. Mal., iii, 1846 ; Marrat, No. 1309.$=$ Phos (vol. iii).Plumbea (Mitra), Lam. An. sans Vert., vii, 332. = M. ebenus, Lam.Plumbea (Mitra), Lamarck. Reeve, Icon., f. 156 ; Sowb., Thes.$=$ M. cornicula, Linn., var.
Polita (Mitra) Reeve. Conch., Icon., f. 94, 1844. 126
Polita (Bullia), Gray. Voy. Blossom, 126, 1839. = B. polita, Lam.
Polita (Bullia), Deshayes. Voy. Belanger, t. 3, f. 1, 2.
$=$ B. Belangeri, Kiener 16
Polita (Bullia), Lam. An. s. Vert., x, 162 15
Polita (Nassa), Marrat. Vars. of Nassa, 79, 1880.$?=\mathrm{N}$. gaudiosa, Hinds.
Politum (Teinostoma), A. Ad. = Rotellidæ.
Politum (Bucc.), Bivona. = Nassa cornicula, Olivi.
Polygonata (Nassa), var., Kiener. Buccin., 92, t. 27, f. 107. $=$ N. Jacksoniana, Quoy.
Polygonata (Nassa), Lam. Edit. Desh., x, 184. ? = N. vibex, Say.
Polygonata (Nassa), Reeve (not Lam.). Icon., f. 123. $=\mathrm{N}$. rufolineata. Marrat.
Polypleura (Voluta), Crosse. Jour. de Conch., 163, t. 5, f. 6, 1876. $=\mathrm{V}$. musica, L., var.
Polyzonalis (Voluta), Lam. Edit. Desh., x, 394. = V. virescens, Soland. Ponderosa (Nassa), Reeve. Icon., f. 196, 1854. $=$ Desmoulea pinguis, A. Ad.
Pontificalis (Mitra), Lamarck. Anim. s. Vert., vii, 300
Porcata (Mitra), Humphrey. Reeve, Icon., f. 187, 1844. $=$ M. peregra, Reeve.
Porcina (Voluta), Lam. Edit. Desh., x, 383. $=$ Cymbium proboscidale, Lam.
Porphyretica (Mitra), Keeve. Conch. Icon., f. 195, 1844....................... 191
Potensis (Mitra), Montrouz. Jour. de Conch., 2 ser., iii, 374, 1859 ; iv, 120, 1866. = Cylindra dactylus, Lam., var.
Præcallosa (Nassa), Marrat. New Forms of Nassa, 11, 1877
PAGE.
Prætexta (Voluta), Reeve. lcon., f. 29, 1849 94
Pratexta (Mitra), Sowb. Zool. Proc., 258, 1870. = T. Zebuensis, Rve.
Pretiosa (Mitra), Reeve. Conch. Icon., f. 116, 1844.$=$ M. crenifera, Lam., juv.
Prevostiana (Voluta), Crosse. Jour. de Conch., 3 ser., xviii, 165, 1878; xix, 41, t. 1 ; t. 2, f. 1, 1879 95
Prismatica (Nassa), Brocchi. Conch. foss., ii, 337, t. 5, f. 7.
$=$ N. clathrata, Born.
Prismatica (Nassa), Monterosato. Nuova Revista, 40 ; Aradas \& Benoit,292. $=$ N. denticulata, A. Ad.
Prismatica (Nassa), Monterosato (non Brocchi). $=$ N. renovata, Monts.
Pristis (Northia), Deshayes. An. s. Vert., x, 192.
$=$ N. serrata, Dufresne.
Proboscidale (Cymbium), Lam. An. sans Vert. Edit. Desh., x, 382 79
Productum (Cymbium), Lowe. Linn., Proc., v, 169, 1860. = C. olla, Linn.
Prompta (Nassa), Marrat. Vars. of Nassa, 77, 1880 49
Propinqua (Turricula), Garrett. Jour. of Conch., iii, 58, 1880 152
Propinqua (Mitra), Sowerby (not A. Ad.). Thes, sp. 22, f. E9, 1874 112
Propinqua (Mitra), Garrett. Jour, of Conch , iii, 22, 1880 171
Propinqua (Mitra), A. Ad. Zool. Proc., 270, 1851. = M. versicolor, Mart. 112
Propinqua (Nassa), J. Sowb. Min. Conch. $=\mathrm{N}$ corniculum, Oliv.Proscissa (Mitra), Reeve. Conch. Icon., f. 177, 1844147
Proxima (Turricula), Nevill. Jour. Asiat. Sôc. Bengal, 98, 1875.$=$ Var. of T. cruentata, Chemn.
Proxima (Nassa), C. B. Ad. 'Panama Cat., No. 52,' 1852.
$=$ N. versicolor, Ad.
Pruinosa (Mitra), Reeve. Conch. Icon., f. 171, 1844. 142
Psephæa, Crosse. Jour. de Conch., xix, 302, 1871. \rightleftharpoons Voluta, Linn., sect. 98
Pseudostrombus, Klein. Ostracol., 35, 1753. =S. G. of Bullia, Gray..... 5
Ptychoris, Gabb. Proc. Philad. Acad., 291, 1876 77
Ptychosalpinx, Gill. Am. Jour. Conch., iii, 153, 1867; Conrad, Am. Jour. Conch., iii, 261, 1867 7
Puella (Mitra), Reeve. Conch. Icon., f. 276, 1845 184
Pugillaris (Turbinella), Lam. Hist., vii, 104.
$=$ Vasum muricatum, Born.
Pulchella (Mitra), Reeve. Conch. Icon., f. 142, 1844.
$=$ T. dermestina, Lam.
Pulchella (Nassa), A. Ad. \%ool. Proc., 108, 1851.
$=$ N. Capensis, Krauss, var
Pulcherrima (Nassa), Marrat. New Forms of Nassa, 10, t, 1, f. 15, 1871. $?=\mathrm{N}$. concinna, Powis.
Pulchra (Turricula), Garrett. Jour. of Conch., iii, 56, 1880 177
Pulchra (Desmoulea), Gray. Ann. Nat. Hist., i, 29, 1838. 65
Pulchra (Voluta), Sowb. Tankerv. Cat., t. 3, f. 2.. 86
Pulla (Nassa), Linn. Syst. Nat. Edit., xii. 1201...? 24
Pullata (Mitra), Reeve. Conch. Icon., f. 102, 1844. = T. plicata, Klein. Pullus (Buccinum), Burrows. Elem., 147, t. 16, f. 4.$=$ Nassa gibbosula, Linn.
Pullus (Buccinum), Pennant. Brit. Zool., t. 72, f. 92.$=$ Nassa reticulata, \mathbf{L}.
Pumilio (Nassa), E. A. Smith. Zool. Proc., 732, t. 75, f. 11, 1871 57
Pumilio (Voluta), Brusina. Verh. Zool. Bot. Vereins, xv, 13, 1865 101
Punctata (Nassa), A. Adams. Kool. Proc., 105, 1851. 35
Punctata (Mitra), Swains. Zool. Illust., 2d ser 197
PAGE.
Punctata (Voluta), Swains. Zool. Illust., i, t. 161 89
Punctata (Voluta), Kiener. Monog. t. 46, f. 1. = V. flavicans, Gmel. Punctatus (Conœlix), Swains. Zool. Ill., 1st ser., i, t. 24, f. 3. = Imbricaria 198
Puncticulata (Mitra), Lamarck. Edit., Desh., x, 312, 115
Puncto-lirata (Mitra), A. Ad. Jour. Linn. Soc., vii, 199, 1864. 136
Punctostriata (Mitra), A. Ad. Zool. Proc., 134, 1854 159
Puncturata (Mitra), Sowb. Zool. Proc., 798, t. 48, f. 5, 1878. 179
Pupinoides (Nassa), Reeve. Icon., f. 162, 1853. $=$ N. glabrata, A. Ad,
Pupula (Turricula), Dunker. Cat. Godeff. Mus., No. 4, 84 193
Pudica (Mitra), Pease. Zool, Proc., 146, 1860. 150
Pura (Mitra), A. Ad.' Zool. Proc., 136, 1851. = M. carnicolor, Reeve.
Pura (Nassa), Marrat. New Forms of Nassa, 13, 1877 63
Purpurata (Mitra), Reeve. Conch Icon., f. 275 175
Pusia, Swainson. Malacol., 320, 1840. = Turricula, Klein, sect 182
Pusilla (Nassa), Marrat. Vars. of Nassa, 82, 1880
Pusilla (Mitra), King. Zool. Journal, v, 349. 152
Pusilla (Turricula), A. Ad. Zool. Proc., 141, 1851 194
Pusilla (Lyria), Schrenck. Bull. St. Petersb., v, 514 ; Amar. L. Moll., 445, t. 17, f. 13-15 103
Pusilla (Mitra), Bivona. Nuove Gen., 23, t. 8, f. 3. $=$ M. tricolor, Gmel.
Pusio (Nassa), A. Ad. Zool. Proc., 100, 1851 54
Pusio (Mitra), Phil. Zeit. Mal.; 29, 1850; 85, 1851.Pusio (Voluta), Swains. Zool. Illust., t. 181. = V. virescens, Soland.Pusiola (Nassa), Dunker. Marrat, Vars. of Nassa, No. 285.64
Putillus (Turricula), Pease. Zool. Proc., 1865 ; Am. Jour. Conch., 214. t. 15 , f. 24,1867 190
Pygmea (Nassa), Lam. Hist. Nat.,vii, 154. = N. incrassata, Ström., var. 49
Pygmæa (Mitra), Reeve. Conch. Icon., f. 268, ; Catlow's Nomenclator.$=$ M. Capensis, Dunker.
Pyramidalis (Desmoulea), A. Adams. Zool. Proc., 113, 1851 66
Pyramidalis (Mitra), Reeve. Conch. Icon., f. 208, 1844 187
Pyramidella (Mitra), Brocchi. Foss. Subapp., ii, 318, t. 4, f. 5.$=$ M. ebenus, Lam.
Pyramidella (Turricula), A. Ad. Ann. Mag. N. Hist., 3 ser., ix, 297, 1862. 195
Pyramis (Voluta), Wood. Index Test. = Mitra cancellata, Swains. Pyrum (Turbinella), Linn. Syst. Nat. Edit., xii, 1195 68
Quadrata (Nassa), Marr. Vars., No. 1480, 1880. $=$ N. stigmaria, A. Ad. Quantula (Nassa), Gould. Bost. Proc., vii, 331, 1860 63
Quercina (Nassa), Marrat. Vars. of Nassa, 80, 1880.$?=\mathrm{N}$. cornicula, Olivi.
Quinquecostata (Nassa), Marrat. Vars. of Nassa, 82, 1880 63
Quisquiliarum (Bucc.), Phil. Zeit. Mal., 62, 1851 62
Quoyi (Mitra), Deshayes. Lam., Edit., 2, x, 348 122
Quoyii (Nassa), Hombr, et Jacq. Voy. au Pol sud, v, 79, t. 21, f. 20-22,1854. = N. cremata, Hinds.
Radiata (Mitra), Schum. Essai, Nouv. Syst., 238, 1817.
$=$ M. paupercula, Linn.
Radiata (Marginella), Lam. Edit. Desh., x, 436. = Voluta zebra, Leach.
Radula (Cylindra), Sowb. Thes. Conch., sp. 183, 1874196
Radius (Mitra), Reeve. Conch.Icon., f. 309, 1845; Nevill, Jour. Asiat. Soc. Beng., 100, 1875 166
Radix (Mitra), Sowb. Thes. Conch., f. 552, 1874 180Page.
Ramosa (Melo), Meuschen. H. and A. Adams' Genera. $=$ M. diadema, Lan.
Rapa (Turbinella), Gmelin. Syst. Nat., 3458. = T. pyrum, Linn.
Rapum, Humph. Mus. Callon. (Swainson), 1797. = Turbinella, Lam.
Raricosta (Planaxis), Risso. Eur. Mérid., 174, f. 106.
$=\mathrm{N}$. cornicula, Olivi.
Ravida (Nassa), A. Ad. Zool. Proc., 97, 1851. = N. splendidula, Dkr.
Rawsoni (Turricula) Mörch. Jour. de Conch., 373, 1876
Reata (Nassa), Gould. Marrat, Vars. of Nassa, No. 830. $=$ N. beata. Gld.
Recediva (Nassa), Marr. Vars. of Nassa, No. 1463.
$=$ Var. of N. conferta, Mart64
Rectilateris (Mitra), Sowb. Thes. Conch., f. 404, 1874 175
Recurva (Mitra), Reeve. Conch. Icon., f. 297, 1845 160
Reeveana (Nassa), Dunker. Zeit. Mal., 62, 1847 ; Phil., Abbild. Bucc.,t. 2, f. 3. = N. picta, Dunker.
Reevei (Mitra), Phil. Zeit. Mal., 23, 1450. $=$ M. tessellata, Martyn.
Reevei (Nassa), A. Ad. Zool. Proc., 109, 1851. = N. fossata, Gld.
Reevei (Voluta), Sowb. Thes Conch., 269. $=$ V. pretexta, Reeve.
Regia (Melo), Brod. Sowb., Thes. Conch., t. 83, f. 26, 27. $=$ M. Broderipii, Gray.
Regia (Melo), Schub. et Wagn. Conch. Cab., xii, 13, t. 218, f. 3038, 3039. $=$ M. Ethiopica, Linn, var.
Regina (Mitra), Sowb. Genera of Shells
Regularis (Nassa), Küster. Buccinum, 68, t. 12, f. 23, 24. $=\mathrm{N}$. signata, -Dunker.
Renovata (Nassa), Monterosato. Enum. e Synon., 43; Bull. Soc., Mal. Ital., vi, 259. $=$ N. denticulata, A. Ad.
Reposta (Nassa), Gould. Bost. Proc., vii, 331, 1860
Reticosa (Nassa), A. Ad. Zool. Proc., 97, 1851. = N. stigmaria, A. Ad.
Reticulata (Mitra), Pease. Thes. Conch., f, 290. $=$ M. pellis-serpentis, Keeve.
Reticulata (Nassa), Quoy (not Linn.) Voy. Astrol., ii, 444, t. 32, f. 16, 17. $=\mathrm{N}$. cremata, var. margaritifera.
Reticulata (Nassa), Linn. Syst. Nat. Edit., x, 740............................... 58
Reticulata (Mitra), A. Ad. Zool. Proc., 136, 1851...............................: 159
Reticulata (Voluta) Reeve. Zool. Proc., 144, 1843............................... 94
Reticulata (Voluta), Sowb. (nec Reeve.) Thes. Conch., f. 47, 48. $=\mathrm{V}$. Reevei, Sowb.
Retusa (Mitra), Lamarck. Anim. s. Vert., vii, 319.............................. 156
Retusa (Desmoulea), Lam. Edit. Desh., x, 158.............. 66
Rhinoceros (Vasum), Gmelin. Syst. Nat., 3458..................................... 71
Rhodia (Mitra), Reeve. Conch. Icon., f. 225, 1845.............................. 127
Rhodostoma (Bullia), Gray. Reeve, Conch. Icon., sp. 25, 1847. $=$ B. digitalis, Meusch.
Rigida (Mitra), Swainson. Zool. Ill., i, t. 29. = T. semifasciata, Lam.
Rigida (Mitra), Reeve. Conch. Icon., f. 169. = T. Deshayesii, Reeve.
Ringens (Bucc.), Phil. Zeit. Mal., 59, 1851..62
Ringens (Desmoulea), A. Ad. Zool. Proc . 42, t. 27, f. 6, 1854.............. 66
Riparia (Planaxis), Risso. Eur. Mérid, 75. $=$ N. Cuvieri, Payr.
Rissoides (Northia), Reeve. Iconica, Pleurotoma, f. 111........................ 9
Rissoides (Nassa), Marrat. New Forms of Nassa, 14, t. 1, f. 25, 1877..... 48
Roadnightæ (Voluta), M'Coy. Ann. Mag. Nat. Hist., 5, ser. viii, 89, t.
7 , f. 1, 2, 1881... 96
Roborea (Mitra), Reeve. Conch. Icon., f. 306, 1845............................ 140
Robusta (Mitra), Reeve. Conch. Icon., f. 140.
$=$ M. Ziervogeliana, Gmel., var.
PAGE.
Roissyi (Nassa), Desh. Voy. Belanger, 432, t. 3, f. 3, 4, 1834 57
Rollandi (Mit'a), Bernardi. Jour. de Conch., iv, 67, t. 2, f. 6, 7, 1853.? = Imbricaria carbonacea, Hinds.
Rorata (Turricula), Gould. Sowb. Thes., f. $240=$ T. militaris, Reeve.Rorata (Mitra), Gould. Bost. Proc., iii, 171, 1850. $=$ T. Zebuensis, Reeve.Rosacea (Nassa), Reeve. Icon., f. 183, 185449
Rosacea (Mitra), Reeve. Conch. Icon., f 321, 1845. $=$ M. annulata, Reeve.
Rosea (Mitra), Swainson. Brod., Zool. Proc., 1835. 189
Rosea (Mitra), Kiener. Icon., 83, t. 23, f. 73. = M. crebrilirata, Reeve.Rosea (Mitra), Duclos. = T. subulata, Lam.Roseata (Thala), A. Ad. Zool. Proc., 135, 1854160
Roseo-caudata (Mitra), Hanley. Sowb.. Thes. Conch., f. 655, 1874. 182
Rosettæ (Mitra), Angas, Zool. Proc., 55, t. 2, f. 6, 1865 121
Rossiæ (Mitra), Reeve. Conch. Icon., f. 198, 1814. = M. variegata, Reeve.Rossiniana (Voluta), Bernardi. Jour. de Conch., vii, 377,1859 ; viii, 127,t. 1,186088
Rostellites, Conrad. Emory's Mex. Bound. Surv. Rept., i, 158, 1855. 77
Rotundicostata (Nassa), Marrat. New Forms of Nassa, 8, 1877 63
Rotundilirata (Mitra) Reeve. Conch. Icon., f. 178, 1844.
$=$ M. tabanula, Lam.
Rubella (Mitra), Adams \& Reeve. Moll. Voy Samarang, 27, t. 10, f. 30,1848.176
Rubens (Nassa), Küster. Conch. Cab., Bucc., 25, t. 6, f. 7-9.
$=$ Cantharus (vol. iii).
Rubiginea (Mitra), A. Ad. Zool. Proc., 134, 1854. 二- M. proscissa, Reeve.Rubiginosa (Mitra), Reeve. Conch lcon., f. 68, 1844.119
Rubiginosa (Mitra), Hutton. Cat. N. Zeal. Moll. 20 : Jour. de Conch., 3ser., xviii, $22,1878 .=$ M. rubra, Reeve.
Rubiginosum (Cymbium), Swains. Exot. Conch., t. 28 79
Rubra (Mitra), Swainson. Brod.. Zool. Proc., 1835 188
Rubra (Nassa), Potiez et Mich. Gall. des Moll., 381, t. 22, f. 17, 18.$=$ Lachesis minima
Rubricata (Mitra), Reeve. Conch. Icon., Index. = T crebrilirata, Rve.
Rubricata (Nassa), Gould. Proc. Bost. Soc , iii, 155, 1850.$=\mathrm{N}$. Gayi, Kiener.
Rubritincta (Mitra) Reeve. Conch. Icon., f. 147, 1844. $=\mathrm{M}$. ferruginea, Lam.
Rückeri (Voluta), Crosse. Jour. de Conch., xv, 144, 1867; xvi, 97, t. 1, f. 1. = V. piperita, Sowb., var.
Rudis (Voluta), Gray. Griffith's Cuvier, t. 30, f. 1, 1834. $=\mathrm{V}$. Ferussaci, Donovan.
Rufa (Bucc.), Dunker. Zeit. Mal., 59. 1847.62Rufescens (Mitra), A. Ad. Zool. Proc., 137, 1851. ? = M. annulata, Reeve.Ruffina (Mitra). Linn. Syst. Nat. Edit., 12 1192 ? = M. crenifera, Lam.Ruffina (Voluta), Linn. Dillw., Desc. Cat., i, 545. ? = Mitra adusta, Lam.Rufilirata (Mitra), Ad. \& Reeve. Moll. Samarang, 26, t. 10, f. 26, 1848.$=\mathrm{M}$. flammea, Quoy.
Rufocincta (Mitra), A. Ad. Zool. Proc., 134, 1851. = M. Capensis. Dunker.
Rufocincta (Nassa) A. Ad. Zool. Proc., 106, 1851.$=$ N. versicolor, C. B. Ad.
Rufofilosa (Turricula), E. A Smith. Jour. Linn. Soc., xii, 548, 1876 195
Rufolineata (Nassa), Marr. Vars. of Nassa, No. 212. $=\mathrm{N}$. myristica, Hinds, var. 45
Rufomaculata (Mitra), Souverbie. Jour. de Conch., 2 ser., iv, 321, t. 11, f. 9,1860 179

Rufula (Nassa), Reeve (non Kiener). Icon., f. 14, 1853. $=\mathbf{N}$. glans, L., var. elegans.
Rufula (Nassa), Kiener. Bucc., 89, t. 24, f. $95 .=$ N. mutabilis, Linn.
Rufulum (Nassa), Kiener. Bucc., 89, t. 24, f. 95. $=\mathrm{N}$. mutabilis, Linn.
Rugata (Truncaria), Reeve. Bucc., f. 111, 1847.................................. 10
Rugosa (Nassa), Marrat. New Forms of Nassa, 5, 1877.......................... 63
Rugosa (Mitra), Gmelin. Syst. Nat., 3456. = T. corrugata, Lam.
Rugosa (Mitra), Swains. Sowerby, Tank. Cat. App., 27, 1825.
$?=\mathrm{T}$. Cumingii, Reeve.
Rumphii (Nassa), Hombr. et Jacq. Voy. Astrol. et Zel., v, 75, t. 21, f. 9, 10, 1853. = N. pulla, Linn...
Rupestris (Voluta), Gmelin. Syst. Nat., 3464 ; Lischke, Jap. Meeres
Conch., Suppl., 59... 85
Rupicola (Mitra), Reeve. Conch. Icon., f. 53, 1844 . M. lens, Wood.
Rüppellii (Mitra), Reeve. Conch. Icon., f. 179, 1844. $=$ M. Solandri, Reeve.
Russa (Mitra), Gould. Bost. Proc., vii, 332, 1860; Otia, 129............... 159
Rustica (Turricula), Sowb. (not Reeve). Thes. Conch., f. 143. $=T$. Deshayesii, Reeve.
Rustica (Mitra), Reeve. Conch. Icon., f. 329, 1845.176

Rutila (Mitra), A. Ad. Zool. Proc., 137, 1851.. 151
Rutila (Voluta), Brod. Zool. Jour., ii, 30, t. 3..87

Rutilans (Nassa), Reeve. Iconog., f. 147, 1853. $=\mathbf{N}$. unicolorata, Kiener.

Sacerdotalis (Mitra), A. Ad. Zool. Proc., 139, 1851............................ 120
Salmonea (Mitra), Sowb. Thes. Conch., f. 375, 1874............................ 169
Saltata (Mitra), Pease. Zool. Proc., 512, 1865; Am. Jour. Conch., 216,
$1867 . \quad$ Thala... 162
Samoensis (Nassa), Dunker MS. Narrat, Vars., No. 962. $=$ N. paupera, Gould.
Samuelis (Mitra), Dohrn. Zool. Proc., 368, 1860. = M. astricta, Rve.
Sanctæ-Helenæ (Nassa), A. Ad. Zool. Proc., 110, 1851.........................
Sandvichensis (Mitra), G. \& H. Nevill. Jour. As. Soc. Beng., 99, 1879. $=$ M. cruentata, Ch., var.
Sanguinolenta (Mitra), Lam. Edit. Desh., x. 305
Sanguisuga (Mitra), Linnæus. Syst. Nat. Edit., 12, 1192........... 165
Santangeli (Mitra), Maravigna. Guerin's Mag., t. 23, 1840. $=$ M. zonata, Marryatt.
Savignii (Mitra), Payraudeau. Moll. de Corse, t. 8, f. 22. $=$ M. tricolor, Gmelin.
Scabra (Nassa), Dunker. Zeit. Mal., 171, 1846; 59, 1847. $=\mathrm{N}$. horrida, Dunker.
Scabricola, Swainson. Malacol., 319, 1840. = Mitra, Lam., section..... 132
Scabricula (Nassa), Powis. Zool. Proc., 1835..................................... 46
Scabriuscula (Mitra), Linn. Syst. Nat., 12th Edit., 1192....................... 135
Scabriuscula (Mitra), Lamarck (not Linn.). Edit. Desh., x, 310. $=$ M. sphærulata, Martyn.
Scabriuscula (Nassa). Ad. (not Powis). Panama Cat., No. 53, 1852.
$=$ N. complanata, Powis.
Scalariformis (Nassa), Val. Kiener, Bucc., 79, t. 21, f. 80. $=$ N. clathrata, Born.
Scalariformis (Mitra), Tenison-Woods. Proc. Roy. Soc. Tasm, 140, 1875. 159
Scalarina (Nassa), Marrat. New Forms of Nassa, 12, t. 1, f. 27, 1877. $=\mathbf{N}$. nigra, Hombr. et Jacq.
PAGE.
Scalaris (Nassa), A. Ad. Zool. Proc., 108, 1851 29
Scalpta (Nassa), Marrat. New Forms of Nassa, 5. $=$ N. subspinosa, Lam.
Scapha (Voluta), Gmelin. Syst. Nat., 3468 89
Scapha (Voluta), Solander. $=$ Cymbium proboscidalis, Lam 89
Scapha, Gray (partim., not Klein nor Humph.). . Zool. Proc., 131, 1847.$=$ Voluta, Linn., sect. Aulica.
Scaphella, Swains. Gray, Zool. Proc., 141, 1847.\rightleftharpoons Voluta, L., sects. Aulica, Alcithoë, etc.
Schizopyga, Conr. Pacif. R. R. Rept., vi, t. 2, f. 1, 1856.
$=$ Tritia, Risso.
Schomburgki (Mitra), Angas. Zool. Proc., 313, t. 18, f. 12, 13, 1878 173
Schrœeteri (Mitra), Deshayes. Lam., Edit., 2, x, 322.
$=$ M. cornicula, Lam., var.
Scita (Mitra), Tenison-Woods. Proc. Roy. Soc. Tasm., 141, 1875. 128
Scitula (Mitra), A. Ad. Zool. Proc., 138, 1851 176
Scitula (Nassa), A. Ad. Gen., i, 119. 63
Sclateri (Voluta), Cox. Proc. Zool. Soc., 358, t. 26, f. 3, 1869 92
Scolymus (Turbinella), Gmelin. Syst. Nat., 3553 70
Scolymus, Swains. Malacol., 78, 304, 1840. = Vasum, Bolt.
Scrofa (Voluta), Solander (ubi ?), teste Gray. $=$ V. flavicans, Gmel.62
Sculptilis (Mitra), Reeve. Conch. Icon., f. 290, 1845. = T. cælata, Rve
155
Scutulata (Mitra), Lamarck. An. sans Vert., vii, 3114.
Secalina (Mitra), Gould. Bost. Proc.. vii, 120, 1860; Otia, 129 159
Sectilis (Mitra), Pease. Am. Jour. Conch., iii, 271, 1867 159
Semen (Mitra). Reeve. Conch. Icon., f. 256, 1845 190
Semiconica (Mitra), Sowb. Thes. Conch., No. 132, f. 619, 1874.$=$ M. Philippinarum, A. Ad.
Semicnstata (Nassa), Brocchi. Brusina, Verh. Z. B. Gesell., 12, 1865.
$=$ N. Cuvieri, Payr.
Semicostata (Mitra), Anton. Verzeichn., 68, 1839 193
Semicostata (Nassa), Brusina. Contr., 66. $=$ N. incrassata, Ström.
Semicostata (Nassa), Mrrrat. Var. of Sculpt., 3.
$=$ Var. of N. monile, Kien.
Semifasciata (Mitra), Lamarck. Desh., 335 174
Serniferruginea (Mitra), Jonas. Reeve, Icon., f. 222, 1845 152
Semiflammea (Bullia), Reeve. Conch. Icon., sp. 17, 1846 13
Semigranosa (Nassa), Dunker. Zeit. Mal., 170, 1846.
$=$ N. splendidula, Dkr.
Semigranulata (Nassa), Dkr. H. and A. Adams' Genera, i, 117.? = N. semigranosa, Dunker.
Semilivida (Mitra), Tenison-Woods. Proc. Roy. Soc. Tasm., 31, 1877 159
Seminodosa (Nassa), A. Ad. Proc. Zool. Soc., 104, 1851. $=$ N. papillosa, Linn 30
Seminulum (Nassa), Tapparone-Canefri. Ann. Mus. Genova, vii, 1029, 1875. 62
Semiplicata (Nassa), A. Ad. Zool. Proc.. 107, 1851. 32
Semiplicata (Turricula), Lamarck. H. \& A. Ad. Genera, i, 176 195
Semiplicata (Bullia), Gray. Beechey's Voy., 127, 1839. 12
Semiplicata (Nassa), Dunker (not Adams). Zeit. Mal., 59, 1853.$=$ Nassa semisulcata, Dkr.
Semiplicata (Mitra), Swains. Brod., Zool. Proc., 197, 1835.$=$ M. microzonias, Lam.
Semiplicatum (Bucc.), Costa. Cat., 91. = Nassa cornicula, Olivi.
Semisculpta (Mitra), Ad. \& Reeve. Moll. Voy. Samarang, 27, t. 10, f.28, 1848.174
page.
Semistriata (Mitra), Krynicki. Bull. Moscow, ii, 67, 1837 159
Semistriata (Nassa), Forbes. Æg. Invert., 140. $=$ N. cornicula, Olivi.Semistriata (Nassa), Brocchi. Conch. foss., 651, t. 15, f. 15.$=$ N. cornicula, Olivi.
Semisulcata (Nassa), Dunker. Novit. Conch., 96, t. 32, f. 5, 6.
$=$ N. gaudiosa, Hinds.
Semisulcata (Nassa), Hombr. et Jacq. Voy. Astrol. et Zel., v, 81, t. 21,f. $30,32,1853 .=$ N. crassa, Koch.
Semitica (Turricula), Jickeli. Jahrb., Mal. Gesell., i, 45, t. 2, f. 8, 1874.
Semiusta (Bullia), Reeve. Conch Icon., sp. 22, 1847.$=$ B. digitalis, Meusch.
Senegalensis (Mitra), Reeve. Conch. Icon., f. 129, 1844 117
Senticosa (Melo), Bolt. H. \& A. Adams' Genera. = M. armata, Lam.Sesarma (Nassa), Marrat. New Forms of Nassa, 13, t. 1, f. 14, 1877.$=\mathrm{N}$. gaudiosa, Hinds.
Serotina (Mitra), A. Ad. Zool. Proc., 132, 1851 152
Serotina (Nassa), A. Ad. Zool. Proc., 108, 1851 39
Serpentina (Voluta), Lam. Edit. Desh., x, 390. = V. vespertilio, Linn.
Serpentina (Mitra), Lamarck. Edit. Desh., x, 312 114
Serrata (Northica), Dufresne. Kiener, Bucc., 23, t. 9, f. 28 9
Serrata (Nassa), Brocchi. Sub. App. Foss., t. 5, f. 4.$?=$ N. reticulata, Linn.
Sertula (Nassa), A. Ad. Zool. Proc., 107, 1851. = N. gaudiosa, Hinds.
Sertum (Mitra), Duval. Jour. de Conch., iii, 160, t. 7, f. 1, 1852.
$=$ M. scutulata, Lam.
Signata (Nassa), Dkr. Zeit. Mal., 61, 1847 57
Signifer (Voluta), Brod. Zool. Proc., 232, 1847. = V. flavicans, Gmel.
Simplex (Nassa), E. A. Smith. Ann. Mag. N. Hist., 5 ser. vi, 319, 1880. 63
Simplex (Mitra), Dunker. Zeit. Mal., 111, 1846 119
Sinarum (Nassa), Phil. Zeit. Mal., 63, 1851 62
Sinensis (Cylindra), Reeve. Conch. Icon., f. 190 b., 1844 196
Sinensis (Nassa), Marrat. New Forms of Nassa, 4 63
Sinusigera (Nassa), A. Ad. Zool. Proc., 100, 1851 51
Siquijorensis (Nassa), A. Ad. Zool. Proc., 97, 1851 30
Sistroidea (Nassa), G. \& H. Nevill. Jour. Asiat. Soc. Bengal, xliii, Pt. 2, t. 1, f. 6, 1874. = N. subpinosa, Lam.
Smithii (Nassa), Marrat. Quar. Jour. Conch., 1, 204, 1877 63
Solandri (Mitra), Reeve. Conch. Icon., f. 172, 1844 146
Solida (Mitra), Reeve. Conch. Icon., f. 18, 1844 ; Angas, Zool. Proc., 194, 1867 120
Solida (Teinostoma), Smith. Zool. Proc., 737, t. 75, f. 25, 1871.
$=$ Rotellidæ.
Solidula (Mitra), Reeve. Conch. Icon., f. 133, 1844.$=$ M. Ziervogeliana, Gmel., var.
Solitaria (Mitra), C. B. Ad. Panama Shells, 44, 1852; Carpenter, Zool. Proc., 341, 1863. = Thala 160
Sophiæ (Voluta), Gray. Ann. Mag. N. Hist., xviii, 431, 1846 87
Sophiæ (Mitra), Crosse. Jour. de Conch., 3d ser., ii, 253, 1862. 115
Sordida (Nassa), A. Ad. Zool. Proc., 97, 1851 52
Sowerbyi (Voluta), Kiener. Monog., t. 50. $=$ V. papillosa, pars.Spadicea (Mitra), Dunker. Sowb., Thes., f. 478, 1874.
$=$ M. peregra, Reeve, var.
Sparta (Nassa), Marrat. New Forms of Nassa, 11, t. 1, f. 22, 1877 34
Speciosa (Mitra), Reeve. Conch. Icon., f. 148, 1844 192
Speciosa (Nassa), A. Ad. Zool. Proc., 100, 1851.$=$ Phos plicosus, Krauss (vol. iii).

PAGE.
Speciosa (Mitra), Reeve. Conch. Icon., f. 209, 1844. = M. variata, Reeve.
Spectabilis (Voluta), Gmelin. Syst. Nat., 3468. $=$ V. ancilla, Soland.
Spengleriana (Voluta), Mart. H. \& A. Adams' Genera, i, 161............... 101
Sphærulata (Mitra), Martyn. Univ. Conch.. f. 21.
134
Spicata (Mitra), Reeve. Conch. Icon., f. 291, 18 ± 5.
$=\mathrm{T}$. fusiformis, Kiener.
Spilus (Nassa), Watson. Marrat, Vars. No. $772 .$.
Spinea (Voluta), Küster. Conch. Cab., ii, t. 31, f. 3, 4. $=\mathrm{V}$. corona, Chemn.
Spiralis (Voluta), Gmelin. Syst. Nat., 3464. = M. exasperata, Gmel.
Spirata (Nassa), A. Ad. Zool. Proc., 106, 1851. $=$ N. glans, L., var. elegans, Kiener,
Spiripuncta (Mitra), Garrett. Jour. of Conch., iii, 27, 1880.................. 143
Splendidula (Nassa), Dunker. Zeit. Mal. 170, 1846............................. 52
Sprela (Nassa), Watson. Marrat, Vars. No. 774.................................. 64
Spreta (Mitra), A. Ad. Jour. Linn. Soc., vii, 201, 1864......................... 182
Spurca (Nassa), Gould. Bost. Proc., vii, 332, 1860............................... 63
Squalida (Bullia), King. Zool. Jour., v, 349. =B. cochlidium, Kiener.
Stainforthii (Mitra). Reeve. P. Z. S., 93. 1841.................................... 166
Stearnsiana (Nassa), Garrett. Marrat, Vars. 89, 1880, $=$ N. crenolirata, A. Ad., var.
Stearnsii (Voluta), Dall. Calif. Proc., N. 270, t. 1, f. 1, 1872.............. 97
Stigmataria (Mitra), Lamarck. Anim., vii, 311. =T. sanguisuga, L., var.
Stigmaria, (Nassa), A. Ad. Zool. Proc., 96, 1851.................................. 54
Stimpsoniana (Nassa), C B. Ad. Panama Shells, 72. - N. scabriuscula, Powis.

Stolata (Nassa), Gmel. Syst. Nat., 3496.. 45
Stoliczkana (Nassa), G. \& H. Nevill. Jour. Asiat. Soc. Bengal, 24, t. 1, f. $8,1874 .=$ N. hirta, Kiener.

Stolida (Nassa), A Ad. Zonl. Proc., 105, 1851.
Stragulata (Voluta), Mühlf. $=$ V. zebra. Leach.
Strangei (Mitra), Angas. Zool. Proc., 110, t. 13, f. 4, 1867.................... 136
Straminea (Mitra), A. Ad. Zool. Proc.. 132, 1851................................. 140
Striata (Nassa), A. Ad. Zool. Proc., 114, 1851. $=$ N. glabrata, A. Ad.
Striata (Nassa), C. B. Ad. Panama Shells, 289, 1852.

- N. versicolor, C. B. Ad.

Striata (Mitra), Gray. Beechey's Voy., 135, t. 36, f. 7, 1839. $=$ M. limbifera, Lam.
Striata (Mitra), Brusina. Verh. Zool. Bot. Gesell. Wien, xv, 14, 1865. 194
Striatella (Mitra), Calcara. $=$ M. Columbellaria, Scacchi.
Striatula (Mitra), Lam. Edit. Desh., x, 323. = M. Barbadensis, Gmelin.
Strigata (Mitra), Swainson. Brande's Jour. App., 1824......................... 121
Strigatella, Swainson. Malacol, 319, 1840.................................... 108, 153
Strigillata (Mitra), Sowb. Thes. Conch., sp. 190, 1874......................... 141
Sturmii (Nassa), Phil. Zeit. Mal., 135, 1848. $=$ N. vibex, Say.
Suavis (Mitra), Souv. Jour. de Conch., 183, t. 13, f. 2, 1875................ 194
Subdivisa (Mitra), Chemn., part. = T. costellaris, Lam.
Subdiaphanum (Bucc.), Bivona. = Nassa Cuvieri, Payr.
Subnodosa (Volıta), Leach. Zool. Misc., i, 24, f. 8.
$=$ V. Magellanica, Lam., var.
Subplicata (Voluta), Hutton. N. Zeal. Cat., 18. $=$ V. gracilis, Swn.
Subquadrata (Mitra), Sowb. Thes. Conch., f. 485, 1874.
= T. cadaverosa, Rve., var
Subrostrata (Mitra), Sowb. Thes. Conch., f. 297, 1874. $=$ M. pudica, Pease.
PAGE
Subspinosa (Nassa), Lam. Edit. Desh., x. 173 43
Subtexturata (Mitra), Garrett. Jour. of Conch., iii, 26, 1880 135
Subtruncata (Mitra), Sowb. Thes. Conch., iv, sp. 468, f. 405.$=$ T. crebrilirata, Rve.
Subulata (Mitra), Lamarck. Anim. sans Vert., vii, 313. 177
Subvariabilis (Nassa), d'Orb. Prodr., iii, $83 .=$ N. mutabilis, Iinn.
Succincta (Mitra), Swains. Sowb., Tank. Cat. App., 26, 1825 135
Succincta (Nassa), A. Ad. Zool. Proc., 107, 1851. = N. gaudiosa, Hinds.
Sufflata (Nassa), Gould. Bost. Proc., vii, 330, 1860.$=$ N. tenuis, E. A. Smith23
Sulcata (Mitra), Swains. Sowb., Tank. Cat. App., 26, 1825 139
Sulcata (Bullia), Reeve. Conch. Icon., sp. 14, t. 4, 1847 13
Sulcata (Mitra), Menke. Mörch, Nachr. Mal. Gesell., v, 70.$=$ M. peregra, Reeve.
Sulcata (Truncaria), Kiener. Buccinum, t. 13, f. 45 10
Sulcata (Voluta), Lam. Edit. Desh., x, $396 .=$ V. musica, Linn. Sulcifera (Nassa), A. Ad. Zool. Proc., 98, 1851. 24
Suluensis (Mitra), Ad. \& Rve. Moll. Voy. Samarang, 26. t. 10, f. 27, 1848. 172
Suluensis (Mitra). Smith (nec Ad. \& Rve.). Ann. Mag. Nat. Hist , 425,1875. = M. fusco apicata, Smith.
Suturalis (Nassa), Lam. An. sans Vert., x, 166. $=$ N. glans, Linn, var.
Suturata (Mitra), Reeve. Conch. Icon., f. 282, 1845.M. pellis serpentis, Reeve.Swainsoni (Conolix), Lesson. Voy. Coquille, ii, Pt. 1, 400, t. 11, f. 5,18:30. = Imbricaria conica, Schum.
Swainsoni (Mitra), Broderip. Zool. Proc., 1835 121
Swainsonia, H. \& A. Adams' Genera, i, 180. = Mitra, Lam., section 130
Tabanula (Mitra), Lamarck. dnim., vii, 323. 146
Tabescens (Nassa), Marrat. Vars. of Nassa, 81, 1880. 63
Tienia (Nas-a), Gmel. Syst. Nat., 3493 30
Tæniata (Mitra), Lamarck. An. sans Vert., vii, 307. 164
Tæniolatum (Buccinum), Phil. Archiv fiir Naturg., i, 69, 1845. 57
Tahitensis (Bullia), Gmel. Syst. Nat., 3490 15
Tahitensis (Mitra), Garrett. Jour. of Conch., iii, 30, 1880 148
'Jamsiana (Bullia), Dunker. Moll. Guin., 19, 1853 16
Tasmanica (Mitra), Tenison-Woods. Proc. Roy. Soc. Tasm., 139, 1875.. 159
Tasmanica (Nassa), Woods. Proc. Roy. Soc. 'Tasmania, 150, 1875.$?=$ N. monile, Kiener, var. Jacksoniana.
Tatei (Mitra), Angas. Zool. Proc., 861, t. 54. f. 8. 1878 183
Tathnæ (Mitra), Jickeli Jahrb. Mal. Gesell., i, 25, t. 11. f. 4, 1874 139
Tayloriana (Mitra), Sowb. Thes. Conch., f. 125, 158, 1874.
$=$ T. teniata, Lam.39
'Teinostoma, H. \& A. A.dams' Genera, i, 132. = Family Umboniinæ.
Telasco, H. \& A. Adams. Gen. Kec. Moll. i, 119. = Zeuxis, H. \& A. Ad.143
Telum (Mitroidea), Sowb. Thes. Conch., f. 613, 614, 1874. 163
Tenella (Nassa), Reeve. Icon. Index, 1854 50
Tenuilirata (Mitra), Sowb. Thes. Conch., f. 407, 1874 178
Tenuis (Bullia), Gaay. Reeve, Conch. Icon., sp. 1, 1846 11
Tenuis (Nassa), E. A. Smith. Ann. Mag. N. Hist., xv, 423, 1875 ; Zool. Proc., 211, 1879. 23
Tenuis (Mitra), Sowb. Thes. Conch., sp. 66, f. 327, 1874 129
PAGE.
Terebralis (Mitra), Swainson. Brod., Zool. Proc., 1835.$=$ T. subulata, Lam.
Terebralis (Mitra), Lamarck. Anim. s. Vert., vii, 303. $=$ M. tessellata, Martyn.
Terebroides (Nassa), Rve. Icon., f. 161, 18i3. $=$ N. labiata, A. Ad.
Teresiæ (Mitra), Tenison-Woods. Proc. Roy. Soc. Tasm., 140, 1875; 34, 1878128
Teretiuscula (Nassa), A. Ad. Zool. Proc., 108, 1851 32
Tessellata (Mitra), Martyn. Univ. Conch., f. 19. 132
Tessellata (Mitra), Kiener. Icon., t. 13, f. 42. $=$ M. Barbadensis, Gmel.
Tessellata (Melo), Lam. Edit. Desh., x, 377. 80Tessellata (Mitra), Swainson. Zool. Ill., 2d ser = M. Rossiæ, Reeve.Tessellata (Nassa), Rve. Icon., f. 167, 170, 1853. $=$ N. vibex. Say.Tessellatum (Bucc.), Scacchi. Cat.. ii. = Nassa Cuvieri, Payr.Tessellatum (Bucc.), Gmel. Syst. Nat., 3479. = Nassa mutabilis, Linn.
Tessellatum (Buccinum), Olivi. Zool. Adriatica, 142, 1792.$=$ N. reticulata, Linn, var.
Tessellatus (Fusus), Schubert et Wagner. T. 219, f. 3048, 3049. $=$ Voluta dubia. Brod
Testacea (Mitra), Swainson. Brod., Zool. Proc., 1835.......................... 127
Textilina (Nassa), Mörch. Kreb's Catal. = Phos (vol. iii).
Texturata (Mitra), Lamarck. Edit. Desh., x, 328.134
Thatcheri (Voluta), McCoy. Ann. Mag. N. Hist., i, 54, t. 2, f. 1, 1868 ; Proc. Zool. Soc., 561, 1869 ; Jour. de Conch., 38, 1873 96
Thersites (Nassa), Brug. Encyc. Meth., t. 394, f. 8. 25
Thiarella, Swainson. Malacol. 130, 1840. = Mitra, Lam.
Thiarella (Voluta), Lam. Edit. Desh., x, 392. =V. musica, Linn.Tiara, Swainson. Malacol., 129, 319, 1840. = Turricula, Klein.Tiarella (Mitra), A. Ad. Zool. Proc., 133, 1851. = M. coronata, Lam.Tiarula (Nassa), Kiener. Bucc., iii, t. 30, f. 4...................................
Ticaonica (Mitra), Reeve Conch. Icon., f. 181, 1844. = M. crassa, Swn.41Ticaonica (Mitra), Reeve Conch. Icon., f. 181, 1844. = M. crassa, Swn.Tigrina (Mitra), A. Ad. Zool. Proc., 132, 1851157
Timorensis (Mitra), Dohrn. Mal. Blatt, 56, 1864. ? = T. cremans, Rve.
Tinei (Nassa), Maravigna. Atti Soc. Groenia, 1841.$?=$ Var. of N. cornicula, Olivi.
Tissotiana (Voluta), Crosse. Jour. de Conch., xv, 195, t. 6, f. 1, 1867. $=\mathrm{V}$. flavicans, Gmel., var.
Todilla (Thala), Migh. Bost. Proc., ii, 24, 1845; Pease, Am. Jour. Conch., iii, 216, 1867160
Tornata (Mitra), Reeve. Conch. Icon., f. 269, $1845 .=$ M. flammea, Quoy.
Tornatelloides (Mitra), Reeve. Conch. Icon., f. 316, 1845144
Torulosa (Mitra), Lam. Edit. Desh, x, 334. = M. exasperata, Gmelin.Tranquebarica (Bullia), Bolten. Mörch, Cat. Yoldi, 77.$=$ B. Belangeri, Kiener.
Tricarinata (Nassa), Lam. Anim., x, 17162
Tricolor (Mitra), Montrouzier.' Jour. de Conch., 3d ser., i, 272, 1861. $=\mathrm{T}$. luculenta, Reeve, var.
Tricolor (Mitra), Gmel. Syst. Nat., 3476193
Trifaseiata (Truncaria), A. Adams. Genera of Recent Mollusca, i, 112.. 10
Trifasciata (Nassa), A. Ad. Zool. Proc., 113, 1851. = N. cornicula, Olivi.Trifasciata (Nassa), Gmel. Syst. Nat., 3489. ? = N. unicolorata, Kiener.Tringa (Nassa), Souverbie. Jour. de Conch., 3 ser., iv, 272, t. 10, f. 7,186447
Trinodosa (Nassa), E. A. Smith. Jour. Linn. Soc., xii, 545, t. 30, f. 2, 1876. = N. tiarula, Kiener.
Page.
Tristis (Mitra), Swainson. Brod., Zool. Soc. Proc., 134, 1835 155
Tritia, Risso. Hist. Nat., iv, 172, $1826 .=$ S. G. of Nassa, Mart. 7
Tritiaria, Conrad. Am. Jour. Conch.. i, 21, 1865 ; Conrad, A. J. C., iii,
264 . = S. G. of Ptychosalpinx, Gill 8
Tritonella, A. Adams. Genera, i, 121. = Hima, Leach.Tritoniformis (Nassa), Kiener. Bucc., 108, t. 30, f. 2.45
Tritonis (Cymba), Brod. Spec. Conch., 5, f. 3, a, b. = C. Neptuni, Gmel.
Tritonium (Bucc.), Blainv. Faune Franc., 121.$=$ Nassa incrassata, var. pygmea, Lam.
Trivittata (Nassa), Say. Jour. Phil. Acad., ii, 231, 1822 60
Truncaria, Adams and Reeve. Voy. Samarang, 33, 1848. 6
Truncata (Mitra), Kiener. Iconog., t. 30, f. 101. ? = Imbricaria punctata, Swainson.
Truncata (Bullia), Keeve. Conch. Icon., sp. 15, 1846. 16
Trunculus (Mitra), Sowb. Thes. Conch., sp. i12, 1874 190
Tryoni (Desmoulea), Crosse. Jour. de Conch., xvii, 409, 1869.$=$ D. retusa, Lam.
Tschudii (Nassa), Troschel. Archiv. Naturg., i, 173, t. 5, f. 4, 1852.$=\mathrm{N}$. dentifera, Powis.
Tuberculata (Mitra), Kiener. Iconog. Index. = M. nodosa, Swn.
Tuberculata (Voluta), Swainson. Exot. Conch., ix, t. 6 .$=\mathrm{V}$. Magellanica, Lam., var.
Tuberculatum (Bucc.), Turton. Dict., 16.$=$ Nassa incrassata, var. pygmæa.
Tuberosa (Mitra), Reeve. Conch. Icon., f. 237, 1844.= T. patriarchalis, Lam.
Tubigera (Turbinella), Anton. Verzeichn., 70, 1839.? = Vasum imperiale, Reeve.
Tumida (Mitra), Reeve. Conch. Icon., f. 51, 1844 192
Turben (Mitra), Reeve. Conch. Icon., f. 213, 1844 146
Turbiata (Voluta). Kiener. Monog, t. 26, f. $2 .=$ V. hebrea, Linn., var. Tu;binea (Nassa), Gould. Bost. Jour. N. H., v, 292, t. 24, f. 10, 1845... 57
Turbinella, Lam. Prodr., 73; Syst. An., 83, 1801 67
Turbinella (Vasum), Linn. Nus. Ulric.. 634 72
Turgida (Nitra), Reeve. Conch Icon., f 273, 1845 144
Turneri (Voluta), Gray Griffith's An. Kingd., t. 40, f. 1 92
Turricula, Klein. Ostrac., 74, 1753 109, 164
Turricula (Mitra), A. Ad. Zool. Proc., 139, 1851.$=\mathrm{T}$. militaris. Reeve, var.Turricula (Nassa), Pease MSS. Carpenter, Zool. Proc., 516, 1865.$=\mathrm{N}$. paupera, Gld.
Turriger (Mitra), Reeve, Conch. Icon., f. 262, 1845.
$=$ T. fusiformis, Kiener.
Turris, Montf. Conch. Syst., ii, 539, 1810. = Turricula, Klein.Turrita (Bullia), Gray. Zool. Beechey Voy., 126, 1839.14
Turrita (Nassa), A. Ad. Zool. Proc., 110, 1851. = N. clathrata, Born.ser., x vii, 73, t. 1, f. 2, 1877184
Tusa (Mitra), Reeve. Conch. Icon., f. 283, 1845
Typha (Mitra). Reeve. Conch. Icon., f. 267, 1845 128
Typostigma (Mitra), Brusina. Weinkauff, ii, 33 194
Umbilicata (Melo), Brod. Sowb., Genera of Shells.$=$ M. diadema, Lam., var.Umbonata (Mitra), Sowb. Zool. Proc., 259, 1870. = T. Osidiris, Issel.
PAGE.
Umbrosa (Mitra), Sowb. Thes. Conch., f. 123, 1874. =T. vulpecula, Linn. Undata (Nassa), Marrat. New Forms of Nassa, 9, 1877. 63
Undata (Voluta), Martyn. Univ. Conch. = V. interpuncta, Mart. Uedulata (Voluta), Lam. Edit. Desh., x, 401. 92
Undulosa (Cyliı dra), Reeve. Conch. Icon., f. 192, 1844 196
Unicincta (Nassa), Say. Jour. Philad. Acad.. v, 211, 1826.$?=$ Phos Gaudeloupensis, Petit (vol. iii).
Unicolor (Nassa), Hombr. et Jacq. Voy. Astrol. et Zel., v, 76, t. 21, f.
13-15, 1853. = N. unicolorata, Kiener.
Unicolorata (Nassa), Kiener. Monog. Bucc., 60, t. 19, f. 69 31
Unidentata (Nassa), Powis. Küster, Bucc., 24, t. 6, f. 4-6.
$=$ N. dentifera, Kowis.
Unifnscialis (Columbella), Chenu. =M auriculoides, Reeve.
Unifascialis (Mitra). Lamarck. Edit. Desh., x, 337. = M. nucleola, Lam.
Unifascialis (Mitra), Anton. Verzeichn., 68. $=$ M. Antonii, Küster.Unifasciata (Voluta), Wood. Index Test. $=$ T. Cumingii, Reeve.Unifasciata (Nassa), Kien. Bucc , 76, t. 14, f. 50. $=$ N. Cuvieri, Payr.Unifasciata (Cyclonassa), Risso. = Neritula neritea, Linn.Unifasciata (Nassa), Pease MSS. Carpenter, Zool. Proc., 516, 1865.$=$ N. paupera, Gld.
Unilineata (I'urficu'a), Garrett. Jour. of Conch., iii, 60, 1880. 195
Ustulata (Mitra), Reeve. Conch. Icon, f. 89, 1844. 119
Uzielliana (Mitra). Crosse. Jour. de Conch., 3 ser., i, 285, 1861 ; ii, 50, 1862. 150
Uzita, H. \& A. Adams. Gen. Rec., Moll., i, 120. $=$ S. G. of Nassa, Mart. 7
Valida (Bullia), Dunker. Zeit. Mal., 191, 1852 ; Novit., 33, t. 10, f. 1, 2.$=$ Pusionella.
Vanikorensis (Mitra), Quoy. Voy. Astrol., ii, 649, t. 45, bis, f. 5, 6....... 199
Variabilis (Mitra), Reeve. Conch. Icon., f. 95, 1844. 119
Variabilis (Nassa), Phil. Enum. Moll. Sicil., i, 221. $=$ N. Cuvieri, Payr.
Varians (Nassa), Dunker. Mal. Blatt., vi, 231, 1860 62
Variata (Mitra), Reeve. Conch. Icon., f. 2u9, Index.
Varicifera (Nassa), A. Ad. Zool. Proc., 108, 1851 : Smith, Zool. Proc., 210, 1879. 31
Varicosa (Nassa), 'Iurton. Zool. Jour., ii, 365, t. 13, f. 7.
$=$ N. incrassata, var. pygmæa, Lam.
Variegata (Mitra), Gmelin. Syst. Nat., 3457. = M. serpentina, Lam.Variegata (Nassa), A. Ad. Zool. Proc., 97, 1851. = N. gemmulata, Lam.Variegata (Nitra), Reeve. Conch. Icon., f. 111, 1844.113
Variolaria (Jurbinella), Lam. Edit. Desh., ix, 380.
= Vasum turbinella, Linn.
Vasum, Bolt. Mus., 1798. Link. Beschreib., iii, 119, 1807 ; Z. P., 231,1851.67, 71
Velata (Bullia), Gould. Otia Conch., 67 ; Wilkes' Exp., 252, f. 319.$\overline{=}$ Nassa gaudiosa, Hinds.16
Velicata (Nassa), Meusch. Marrat. $=$ N. gaudiosa, Hinds.
Ventricosa (Desmoulea), Lam. H. \& A. Adıms' Genera.
$=$ N. mutabilis, Linn.
Ventricosa (Nassa), Lam. Edit. Desh., x, 168. $=\mathrm{N}$ mutabilis, Linn.Venusta (Nassa), Dkr. Zeit. Mal., 59, 1847.
$=\mathrm{N}$. cremata, var. margaritifera.
Venustula (Mitra), Reeve. Conch. Icon., f. 204. = M. aureolata, Swn.Verrucosa (Mitra), Reeve. Conch. Icon, f. 232, 1845.174
Verrucosa (Nassa), Gmel. Syst. Nat., 3497.
PAGE.
Verrucosa (Nassa), A. Ad. Zool. Proc., 97, 1851 54
Versicolor (Mitra), Martyn. Uriv. Conch., f. 23 112
Versicolor (Nassa), C. B. Ad. Panama Cat.. 66, 1852 50
Versicolor (Mitra), Kiener. Iconog., t. 7, f. 18. = M. erronea, Dohrn.
Vespertilio (Voluta), Linn Syst. Nat. Edit., xii, 1494 86
Verpertilio, Klein. Ostrac., 76, 1753. =Voluta, Linn, sect 86
Vexillulum (Turbinella), Reeve. Zoo'. Proc., 184:. $=$ Vasum ceramicum, Linn.
Vexillum (Mitra), Reeve Conch. Icon., f. 183, 1844 146
Vexillum (Voluta). Lam. Edit. Desh., x, 402. 85
Vexillum, Bolten. Mus., 1798. =Turricula, Klein.
Vibex (Nassa), Say. Jour. Philad. Acad, ii, 231, 1822 ; Am. Conch., t. 57 , f. 2. 42
Vibex (Nassa), Reeve (not Say). lcon., f. 81. = N. subpinosa, Lam.
Vibex (Mitra), A. Ad. Zool. Proc., 134, 1851.
$=T$. cruentata, Chemn., var. proxima.
Vincta (Nassa), Marrat. New Forms of Nassa, 12, 1877 63
Vincta (Mitra), A. Ad. Zool. Proc., 134, 1854. = M. Capensis, Dunker. Vinlacea (Thala), Garrett. Cal. Proc., 202, 1876. 162
Virescens (Voluta), Solander. Dillw., Desc. Cat., i, 562 84
Virgata (Mitra), Reeve. Conch. Icon., f. 197, b 156
Virgata (Mitra), Reeve. Conch. Icon., f. 197, a. = M. retusa, Lam.
195
195
Virgo (Imbricaria), Swainson. Zool. Proc., 1835 198
Vitellina (Mitra), Gould. Bost. Proc., iii, 170, 1850) 132
Vitiensis (Na-sa), Hombr et Jacq. Voy. Astrol. et Zel.. v, 79, t. 21, f. $23-25,1853 .=\mathrm{N}$. hirta, Kiener.
Vitrea (Nassa), Phil. Kritisches Register, No. 2 62
Vitrea (Nassa), Gray. Am. Nat. Hist., i, 28, 1838 62
Vitrea (Bullia), Reeve. Conch. Icon., sp 20, 1846 . B. polita, Lam... 15
Vittata (Nassa), A. Ad. Zool. Proc., 114, 1851. = N. maculata, A. Ad.
Vittata (Bullia), Linn. Edit., 12, 1206. 15Vittata (Mitra), Swainson. Zool. Ill., 1st ser. = M. tæniata, Lam.
Vittatum (Buccinum), Kiener. Monog., 25, t. 9, f. 30.$=$ Bullia granulosa, Lam.
Vitulina (Voluta), Dillwyn. Desc. Cat., i, 553. = Mitra ferruginea, Lam.
Votuta, Linn. (emend). Syst. Nat., x, 729 ; xii, 1186 ; Gray, Zool. Proc.,59,18555, 82
Volutella, d'Orb (nec. Swains.). Voy. Amer., 424, 1840. $=$ Voluta, Linn., sect 98
Volutella, Perry. Conch., t. 26, 1811. = Vasum, Bolt.Volutifusus, Conrad. Am. Jour. Conch., ii, 67, $180 ̉ 6$77
Volutilithes, Swains. Malacol., 318, 1840. = Voluta, Linn, sect 100
Volutoconus, Crosse Jour. de Conch , xix, 306, 1871. $=$ Voluta, Linn, sect 100
Volutoderma, Gabb. Proc. Philad. Acad., 289, 1876 77
Volutolyria, Crosse Jour. de Conch., 3 ser., xvii, 99, 1877 75
Volutomitra, Gray. Guide Brit. Mus., 36, 1857. = Mitra, Lam., section? 108
Volutomurpha. Gabb. Proc. Philad. Acad., 290, 1876 77
Volva (Voluta), Gmelin. Syst. Nat., 3457 93
Volvacea (Voluta), Lam. Edit. Desh , x, 403. = V. volva, Gmel.
Volvacea (Voluta), Lam Edit. Desh., x, 403. = V. flavicans, Gmel.
Vulgatum (Buccinum), Gmel. Syst. Nat., 3496. = Nassa reticulata, L.
Vulpecula, Blainv. Dict. Sc. Nat., xxxi, 106, 1824. = Turricula, Klein.Vulpecula (Mitra), Linn. Edit., 12, 1193167PAGE.
Vultuosa (Mitra), Reeve. Conch. Icon., f. 270, 1845. 134
Webbei (Nassa), Petit. Jour. de Conch., i, 404, t. 13, f. 8, 1850.$=\mathrm{N}$. Gruneri, Dunker.
Weldii (Mitra). Tenison-Woods. Proc. Roy. Soc. Tasm., 31, 1877 125
Williamsii (Mitra), Newcomb. Am. Jour. Conch., v, 163, t. 17, f. 1, 1869. 151
Wilsoni (Nassa), C. B. Ad. Panama Cat., 67, 1852.$=$ N. complan ta, Powis.Wisemani (Voluta), Brazier. Proc. Zool. Soc., 108, 1870 ; Jour. deConch., 78, t. 5, f. 1, 1871. = V. pulchra, Sowb., var.
Wisemani (Mitra), Dohrn. Zool. Proc., 367, 1860. = Turr. bella, Pease.
Woldemarii (Mitra), Kiener. Iconcg., t. 17, f. 55.$=$ M. Ziervogeliana, Gmel., var.
Woodwardi (Nassa), Forbes. Zool. Proc., 273, t. 11, f. 3, 1850.$=\mathrm{N}$. mendica, Gonld.
Wrighti (Mitra), Crosse. Jour. de Conch., 3 ser., xviii, 57, t. 1, f. 1,1878. = M. inquinata, Reeve.
Xanius, Bolten. Mus., 1798; Link, Beschreib., iii, 116, 1807.
$=$ Mazza, Bolt.
Xanthostoma (Nassa), Gray. Beechey's Voy., t. 36, f. 3.
$=$ N. luteostoma, Brod. and Sowb.
Yetina, Gray. Zool. Proc., 141. 1847. = Cymbium, Klein.
Yetus, Adamson. Gray, Zool. Proc., 141, 1847; H. \& A. Ad. Genera, i,138. ${ }^{\circ}=$ Cymbium, Klein.
Zaphon, H. \& A. Adams. Gen. Rec. Moll., i, 121. = Zeuxis, H. \& A. Ad. Zebra (Mitra), Garrett. Jour. of Conch.. iii, 35, 1880. 156
Zebra (Mitra), Lamarck. Ann. Mus., 215. = M. paupercula, Linn.
Zebra (Voluta), Leach. Zool. Misc., i, t. 12 f. 1.93
Zebrina (Mitra), Garrett. Zool. Proc., 842, 1872. Turr. semen, Rve. Zebrina (Mitra), d’Orbigny. Moll. Can., 86, t. 6, f. 29-31 190
Zehuensis (Vitra), Reeve. Conch. lcon.. f. 73, 1844. 179
Zelotypa (Mitra), Reeve. Conch. Icon., f. 325, 1845. 182
Zephyrina (Mitru), Duclos. Sowb., Thes. Conch., No. 29, 1874 132
Zeuxis, H. \& A. Adams. Gen. Rec. Moll., i, 119. $=\mathrm{S}$. G. of Nassa, Mart. 6, 30
Ziba, H. \& A. Adams. Genera, i, 179. = Mitra, Lam.
Zidona, H. \& A. Adams. Genera i, 161, 1853. = Volutella, d'Orb.
Zierliana, Gray. Zool. Proc., 141, 1847. = Strigatella, Sw., sect...109, 157
Ziervogeliana (Mitra), Gmelin. Syst. Nat., 3457 157
Zonalis (Mitra), Quoy \& Gaim. Voy. Astrol., ii, 654, t. 45 bis, f. 16, 17.$=$ T. caffra, Linn.
Zonalis (Nassa), A. Ad. Zool. Proc., 107, 1851. $=$ N. gaudiosa, Hinds.Zonalis (Nassa), Brug. Encyc. Meth. Vers., 271.$?=$ N. granifera, Kiener.
Zonata (Mitra), Marryatt. Linn. Trans., xiii, t. 10, f. 1, 2, 1817 ; J. B. Mal. Gesell., i, 227, t. 11, f. 3, 4 130

REFERENCE T0 PLATES.

Plate 1 (Frontispiece).
figures.1. Bullia achatina, Lam. (= digitalis, Meusch). Quoy, Voy. Astrol.,t. 31, f. 1712
2. ,Bullia lævigata, Mart. (= lævissima, Gm.). Quoy, Voy. Astrol., t. 31, f. 14 11
3. Cymba Neptuni, Gmel. Kiener, Iconog. Voluta, t. 1 80
Plate 2.
Lingual Dentition.

1. Vasum cornigerum, Lam. Troschel, Gebiss der Schnecken, ii, t. 8 , f. 5 67
2. Cymbium olla, Linn. Troschel, t. 5, f. 1 75
3. Melo nautica, Lam. Troschel, t. 5, f. 2 a 75
4. Voluta scapha, Gmelin. Troschel, t. 5, f. 3. 75
5. Amoria Turneri, Gray. Troschel, t. 5, f. 5. 75
6. Voluta musica, Linn. Jour. de Conch., t. 5, f. 4, 1879 84, 76
7. Lyria deliciosa, Montrouz. Jour. de Conch., t. 13, f. 7, 1867 102, 76
8. Volutomitra Grœulandica, Gray. Troschel, t. 5, f. 5 b. 118
9. Mitra cornea, Lam. Troschel, t. 6, f. 5 108
10. Mitra (Nebularia) adusta, Mart. Troschel, t. 6, f. 7 108
11. Mitra (Chrysame) fraga, Quoy. Troschel, t. 6, f. 8 108
12. Zierliana Woldemarii, Kiener. Troschel, t. 9, f. 11 109
13. Turricula corrugata, Lam. Troschel, t. 9, f. 13 109
14. Imbricaria conica, Schum. Troschel, t. 8, f. 6. 109
15. Cylindra nucea, Meusch. Troschel, t. 5, f. 7 109
16. Marginella elegans, Gmelin. Troschel, t. 5, f. 6. See vol. v.
17. Volvaria Philippinarum, Redfield. Troschel, t. 5, f. 8. See vol. v.
18. Persicula clandestina, Brocc. Troschel, t. 5, f. 11. See vol. v.
19. Cystiscus Capensis, Stimpson. Troschel, t. 5, f. 10. See vol. v.
Plate 3.
Lingual Dentition.
20. Bullia rhodostoma, Gray. Troschel, Gebiss, ii, t. 8, f. 7. 5
21. Pseudostrombus vittatus, L. Troschel, t. 8, f. 10 5
22. Nassa arcularia, L. Troschel, t. 8, f. 15. 6
23. Nassa thersites, Brug. Troschel, t. 8, f. 14. 6
24. Nassa cornicula, Olivi. Troschel, t. 8, f. 13 6
25. Ilyanassa obsoleta, Say. Troschel, t. 8, f. 22. 7
26. Neritula neritea, L. Troschel, t. 8, f. 11 7Fossil Genera.
27. Molopophorus striata, Gabb. Pal. Calif., ii, t. 26, f. 36 7
28. Ptychosalpinx altilis, Conrad. Am. Jour. Conch., iii, 153 7
29. Ptychosalpinx scalaspira, Conrad. Am. Jour. Conch., iii, t. 19, f. 4. 7
30. Paranassa granifera, Conrad. Am. Jour. Conch., iii, t. 19, f. 6. 8
figure. page.
31. Tritiaria peralta, Conrad. Am. Jour. Conch., iii, t. 19, f. 5.......... 8
32. Schizopyga Californica, Conr. Pac. R. R. Rept., vi, t. 2, f. 1 55
33, 34 Indian Bracelet, made from Turbinella pyrum, and saw uved for cutting the shell. Simmond's Commercial Products of the Sea, f. 20, 21 69
33. Caricella pretenuis, Conrad. Tert. Fossils, t. 17, f. 1 67
34. Volutifusus typus, Conr. Am. Jour. Conch., ii, t. 3, f. 2. 77
35. Athleta Tuomeyi, Conrad. Jour. A. N. S. Philad., iv, t. 47, f. 35... 77
36. Leioderma leioderma, Conr. Jour. A. N S. Plilad., iv, t. 46, f. 32. 77
37. Cryptochorda Stromboides, Gmel. Sowb. Genera, Bucc., f. 8 78
38. Fusimitra cellulifera, Conr. Jour. Philad. Acad., 2 ser. i, t. 12, f. 3. 109
39. Conomitra Fusoides, Lea. Contrib. Geol., t. 6, f. 176 109
40. Volutella (Microspira) oviformis, Conr. Am. Jour. Conch., iv, t. 5, f. 3. See vol. v.
41. Lapparia dumosa, Conr. Wailes' Geol. Miss., t. 15, f. 4 109
Plate 4.Fossil Genera.
42. Volutoderma Navarroensis, Gabb. Pal. Calif., i, t, 19, f. 56 77
43. Volutomorpha Conradi, Gabb. Jour. Phil. Aead., iv., t. 48, f. 10 77
44. Rostellites Texana, Conrad. Emory's Mex. Bound. Surv., i, t. 14, f. 2 b. 77
45. Ptychoris Purpuriformis, Forbes. Pal. Indica, ii, t. 8, f. 5. 77
46. Pleioptygma Carolinensis, Conrad. Tuomey \& Holmes, Pleioc. Foss. S. C., t. 27 , f. 9 78
47. Gossavia Indica Stol. Pal. Indica. ii, t. 6, f. 7. 78
Plate 5.
48. Northia pristis, Desh. (= serrata). Reeve, Bucc., f 39. 9
49. Nor thia serrata, Dufresne. H. \& A. Adams' Genera, t. 12, f. 1 a..... 9
50. Northia albopunctata, Adams and Reeve. Voy. Samarang, t. 11, f. 21. 9
51. Northia Rissoides, Reeve. Icon. Pleurotoma, fig. 111 9
52. Truncaria filosa, Ad. \& Reeve. Voy. Samarang, t. 11, f. 18 9
53. Truncaria Australis, Angas. Zool. Proc.. t 26, f. 5, 1877 9
54. Truncaria rugata, Reeve. Icon. Bucc., f. 111 10
55. Truncaria modesta, Powis. Reeve, Bucc., f. 19 10
56. Truncaria sulcata, Kiener. Iconog., Bucc., t. 13, f. 45 10
57. Bullia lævigata, Mart. (= lævissima, Gm.). Reeve, Bullia, f. 6 11
58. Bullia globulosa. Kiener. Reeve, Icon, f. 5 11
59. Bullia deformis, King. Reeve, Icon., f. 21. 11
60. Bullia tenuis, Gray. Reeve, Icon., f. 1 11
61. Bullia callosa, Gray. Reeve, Icon., f. 24. 11
62. Bullia Mauritiana, Gray. Reeve, Icon., f. 12 b. 12
63. Bullia Grayi, Reeve (= Mauritiana). Icon.. f. 7 12
64. Bullia semiplicata, Gray. Reeve, Icon., f. 18 a. 12
65. Bullia digitalis, Meuschen. Reeve, Icon., t. 4, f. 4 12
66. Bullia semiusta, Reeve ($=$ digitalis). Icon., f. 22. 12
67. Bullia rhodostoma, Gray (= digitalis). Reeve, Icon., f. 25. 12
68. Bullia Persica, E. A. Smith. Zool. Proc., t. 46, f. 11, 1878. 13
69. Bullia sulcata, Reeve. Conch. Icon.. t. 4, f. 14 13
70. Bullia Natalensis, Krauss (= digitalis, var.). Küster, t. 14, f. 2... 12
71. Bullia cochlidium, Kiener. Iconog. Bucc., t. 6, f. 17. 13
72. Bullia annulata, Lam. Reeve, Icon., f. 18 14
73. Bullia semiflammea, Reeve. Icon., f. 17 13

Plate 6.

FIGURE． PAGE．
76．Bullia cochlidium，Kiener．Reeve，Bullia，f． 23 13
77．Bullia gradata，Desh．（＝cochlidium）．Recve，Bullia，f． 3 13
78．Bullia Lamarckii，Kiener（ $=$ cochlidium）．Iconog．，t．3．f． 6 13
79．Bullia Paytense，Kiener（三 cochlidium）．Iconog．，t．6，f． 16. 13
80．Bullia squalida，King（ $=$ cochlidium）．Reeve，f． 26 ． 13
81．Bullia labyrinthum，Gm．（＝cochlidium）．Küster，t．10，f． 11 13
82．Bullia armata，Gray．Reeve，Icon．，f． 2 b 14
83．Bullia moniliferum，Val．（＝armata，Gray）．Kiener，t．3，f． 8 14
84．Bullia turrita，Gray．Reeve，Icon．，f． 16 14
85．Bullia Melanoides，Desh．Voy．Belanger，t．2，f．3 14
86．Bullia Mozambicensis，Smith（＝Melauoides）．Zool．Proc．，t．75， f． 18,1877 14
87．Bullia vittata，Linn．Reeve．Iconog．，f． 9 15
88．Bulli polita，Lam．Reeve，Icon．，f． 19 15
89．Bullia vitrea，Reeve（三polita）．Conch．Icon．，Bullia，f． 20 15
90．Bullia Kurrachensis，Angas．Zool．Prec．，t．54，f．6， 1877 15
91．Bullia vittata，Kiener（三 granulosa，Lam．）．Iconog．，t．9，f． 30. 14
92．Bullıa livila，Reeve（三 vittata）．Icon．，f．10，b 15
93．Búllia Taheitensis，Gmel．Reeve，Icon．，f． 11 15
94．Bullia Belangeri，Kicner．Reeve，Icon．，f． 8 b 16
95．Bullia polita，Desh．（＝Belangeri）．Voy．Belang．，t．3，f． 1 16
96．Bullia diluta，Krauss．Küster，Buccinum，t 14，f． 5 16
97．Bul！ia mediolaris（ $=$ diluta，var．），Von Martens．Jahrb．Mal．，1， t． 6, f． 4. 16
98．Bullia truncata，Reeve．lcon．，f． 15. 16
Plate 7.
1．Nassa mutabilis，Linn．Reeve，Conch．Icon．，f． 6 b 22
2．Nassa mutabilis，Linn．Poli，Test．Sicil．，iii，t．47，f． 6. 22
3．Nassa rufula，Kiener（ $=$ mutabilis）．Iconog．Bucc．，t．24，f． 95. 22
4，5．Nassa balteata，Lischke（ $=$ tenuis，Smith）．Jap．Meeres Conch．， t． 5, f． 10,11 23
6．Nassa lævigata，Marrat．New Forms of Nassa，f． 7. 23
7．Nassi coronata，Brug．Reeve，Icon．，f． 20 c 23
8．Nassa Bronni，Phil．（＝coronata）．Keeve，Icon．，f． 149 23
9，10．Nassa arcularia，Linn．Quoy，Voy．Astrol．，t．32，f．3，4， 1 24
11．Nassa sulcifera，A．Ad．Reeve，Icon．，f． 24 a 24
12．Nnssa pulla，L＇nn．Reeve，Icon．，f． 22 b 24
13．Nassa Rumphii，Hombr．and Jacq．（ $=$ pulla）．Astrol．et Zel．， t． 21 ，f． 9 24
14．Nassa Deshayesii，Hombr．and Jacq．（三 pulla）．Astr．et Zel．，t．21， f． 11 24
15，16．Nassa gibbosula，Linn．Reeve，Icon．，f． 64 a，b． 24
17．Nassa circumcincta，A．Ad．（＝gibbo－ula）．Reeve，f． 71 a 24
18．Nassa Kraussiana，Dunker．Krauss，Südaf．Moll．，t．6，f． 18 25
19．Nassa orbiculata，A．Ad．（＝Kraussiana）．Reeve，Icon．，f． 154 b 25
20．Nassa Thersites，Brug．Quoy，Voy．Astrol．，t．32，f．22． 25
21．Nassa Thersites，Brug．Reeve，Icon．，f． 65 25
22．Nassa bimaculosa，A．Ad．（ $=$ Thersites）．Reeve，f． 61 25
23．Nassa dorsuosa，A．Ad．（三 Thersites）．Reeve，f．141，a 25
24．Nassa leptospira，A．Ad．Reeve，Icon．，f． 84 25
25．Nassa gracilis，Pease（＝leptospira）．Am．Jour．Conch．，iii，t．23， f． 4. 25
FIGURE. PAGE.
26. Nassa bellula, A. Ad. (= leptospira). Reeve, Icon., f. 184 25
27. Nassa labida, Reeve (= leptospira). Icon., f. 17y. 25
28. Nassa Persica, Martens (=leptospira). Vord. As. Conch., t. 5, f. 47. 25
Plate 8.
29. Nassa Jonasi, Dunker. Philippi, Abbild. iii, Bucc., t. 2, f. 10 26
30. Nassa Burchardi, Dunker (=Jonasi). Abbild. iii, Bucc., t. 2 , f. 14. 26
31. Nassa labecula, A. Ad. (ニ Jonasi). Reeve, Icon., f. 166. 26
32. Nassa nana, A. Ad. (= Jonasi). Reeve, Icon., f. 164. 26
33. Nassa callosa, A. Ad. Reeve, Icon., f. 185 a 26
34. Nassa callospira, A. AJ. (= callosa). Reeve, Icon., f. 66 b 26
35. Nassa cancellata, A. Ad. Reeve, Icon., f. 155 b 26
36. Nassa Mangelioides, Reeve. lcon., f. 152 b 26
37. Nassa globosa, Quoy. Voy. Astrol, t. 32, f. 25 26
38. Nassa clathrata, Kiener (= globosa). Iconog., t. 27, f. 108. 26
39. Nassa granifera, Kiener. Keeve, Iconog., f. 72 26
40. Nassa obliqua, Hombr. et Jacq. (= granifera). Voy. Astr. et Zel., t. 21, f. 44. 26
41. Nassa onorata, Desh. ($=$ granifera). Ile Reunion, t. 12, f. 24. 26
42. Nassa glabrata, Sowb. Thes. Conch., i. t. 8, f. 66 27
43. Nassa obliqua, Kiener (= glabrata). Iconog., Bucc., t. 31, f. 4 27
44. Nassa grana, Lam. Kiener, Bucc., t. 16, f. 58. 27
45. Nassa glans, Linn. Reeve, Icon., f. 5 27
46. Nassa glans, var. lata, nob 27
47. Nassa elegans, Kiener (= glans, var.). Iconog., Bucc., t. 24, f. 97. 27
48. Nassa rufula, Reeve (= glans, var. elegans). Icon., f. 14. 27
49. Nassa spirata, A. Ad. (= glans, var. elegans). Icon., f. $1: 3 \mathrm{~b}$. 27
50. Nassa costata, A. Ad. (= hirta, Kiener). Reeve, Icon., f. 142 28
51. Nassa hirta, Kiener. Reeve, Conch. Icon., f. 1. 28
52. Nassa intermedia, Dunker (= glans, var. suturalis). Voy. Novara, t. 1, f. 2 27
53, 54. Nassa suturalis, Lam. (= glans, var.). Reeve, Icon., f. 4, 11... 27
55. Nassa nodifera, Powis (= hirta?). Keeve, Icon., f. 23 28
56. Nassa crenulata, Reeve (=hirta). Icon., f. $2 b$ 28
57. Nassa Viriensis, Hombr. et Jacq. (= hirta). Voy. Astr. et Zel., t. 21, f. 23 28
58. Nassa Stoliczkana, Nevill (=hirta). Jour. As. Soc. Bengal, xxiv, t. 1, f. 8 28
59. Nassa bifaria, Baird (= birta). Voy. Curacea, t. 38, f. 1 28
Plate 9.
60. Nảssa monile, Kiener. Reeve, Icon., f. 38 28
61. Nassa pauperata, Lam. (= monile). Quoy, Voy. Astrol., t. 32, f. 5. 28
62. Nassa lachrymosa, Reeve ($=$ monile). Icon., f. 52. 28
63. Nassa Jacksoniana, Quoy ($=$ monile, var.). Kiener, t. 19, f. $73 \ldots$. 28
64. Nassa Jacksoniana, Quoy ($=$ monile, var.). Voy Astrol., t. 32, f. 29. 28
65. Nassa acuticostata, Montr. (= monile, var. Jacksoniana). Jour. de Conch., 3 ser. iv, t. 10 , f. 8 28
66. Nassa corticata, A. Ad. (= monile, var. Jacksoniana). Reeve, Icon., f. 189 28
67. Nassa mucronata, A. Ad. ($=$ monile). Specimen 28
68. Nassa distorta, A. Ad. (=monile). Reeve, Icon., f. 32 b 28
69. Nassa scalaris, A. Ad. Reeve, Icon., f. 21 29
FIGURE． PACE．
70．Nassa crenulata，Kiener（二 scalaris）．Bucc．，t．14，f． 49 29
71．Nassa seminodosa，A．Ad．（二 papillaris）．Reeve，Icon．，f． 3 30
72．Nassa Siquijorensis，A．Ad．Reeve，Icon．，f． $53 b$ 30
73．Nassa cælata，A．Ad．（二Siquijorensis）．Reeve，Icon．，f． 133 30
74．Nassa papillosa，Linn．Reeve，f． 12 30
75．Nassa crenellifera，A．Ad．（三scalaris）．Reeve．f． 49 a 29
76．Nassa olivacea，Brug（＝tænia，Gmel）．Quoy，Voy．Astrol．，t．32， f． 13. 30
77．Nassa olivacea，Brug（ $=$ tænia，Gmel．）．Reeve，f． 19 30
78．Nassa fusca，Hombr．et Jacq．（二 tænia）．Astr．et Zel．，t．21，f．7．．． 30
79．Nassa mitralis，A．Ad．（＝tænia）．Reeve，Icon．．f． 128 30
80．Nassa cinnamomea，A Ad．（＝tænia）．Reeve，f． 126. 30
81．Nassa badia，A．Ad．（＝tænia）．Reeve，f． 124 30
82．Nassa elegans，Reeve（二 tænia）．Icon．，f． 10. 30
83．Nassa canaliculata，Lam．Kiener，Bucc．，t．23，f． 89 31
84．Nassa canaliculata，Lam．Reeve，Içon．，f． 18 a 31
85．Nassa canaliculata，Lam．Marrat，New Forms，t．1，f． 12. 31
86．Nassa lævis，Chemn．（＝canaliculata）．H．\＆A．Adams＇Genera，t． 12, f． 7. 31
Plate 10.
87．Nassa stolida，A．Ad．Reeve，Icon．，f． 31 31
88 Nassa unicolorata，Kiener．Reeve，f． 17 31
89．Nassa unicolor，Hombr．et Jacq．（＝unicolorata）．Astr．et Zel．，t． 21 f． 15 31
90．Nassa rutilans，Reeve（＝unicolorata）．Icon．，f． 147 31
91．Nassa varicifera．A．Ad．Reeve，f． 118 h 31
92－94．Nassa Cuvieri，Payr．Kiener，t．20，f．74－76 32
05．Nassa variabilis．Phil．（ $=$ Cuvieri）．Reeve，Icon．．f． 129 a 32°
915．Nassa unifasciata，Kiener（ $=$ Cuvieri）．Bucc．，t．14，f． 50 32
97．Na：sa Maderensis，Reeve（ $=$ Cuvieri）．Icon，f． 182 b 32
98．Nassa semiplicata，A．Ad．Recve，f． 78 a 32
99．Nassa teretiuscula，A．Ad．Reeve，f． 104 b 32
100．Nassa exilis，Powis．Reeve，f． 101 a 32
101．Nassa mœesta，Hinds（ $=$ exilis）．Voy．Sulphur，t．9，f 18 32
102．Nassa Foutainei，d＇Orb．（＝exilis）．Voy．Am．．t．77，f． 5 32
103．Nassa casta，Gould．Wilkes＇Exp．，t．19．f． 328 33
104．Nassa Isabellei，d Orb．Voy．Amer．，t．61，f． 19 33
105．Nas：a complanata，Powis．Reeve，Icon．，f． 111 b 33
166．Nassa Wilsoni，U．B．Ad．（ $=$ complanata）．Reeve，f． $158 b$ 33
107．Nassa gemma，Phil．（＝complanata）．Abbild．iii，Bucc．，t．1，f．5．． 33
108，109．Nassa Capense，Dunker．Küster，Bucc．，t．12，f．14， 15 33
110．Nassa pulchella，A．Ad．（＝Capense）．Reeve，Icon．，f． 90 a 33
111．Nassa foveolata，Dunker．Rreve，Icon．，f． $8: 3 \mathrm{~b}$ ． 34
112．Nassa planicostata，A．Ad．Reeve，f． 96 b． 34
113．Nassa sparta，Marrat New Forms．t．1，f． 22. 34
114．Nassa gaudiosa，Hinds．Voy．Sulphur，t．9，f． 17 34
115．Nassa gaudiosa，Hinds．Reeve，Icon．，f． 48 34
116．Nassa sertula，A．Ad．（ $=$ gaudio－a）．Reeve，f． 89 34
117．Nassa semisulcata，Dunker（ $=$ gaudiosa）．Novitates，t．32，f． 6 34
118．Nassa zonalis，A．Ad．（＝gaudiosa）．Reeve，f．93． 34
119．Nassa succincta，A．Ad．（＝gaudiosa）．Reeve，f． 80 b． 34
120．Nassa Marratii，E．A．Smith（＝gaudiosa）．Zool．Proc．，t．50，f．8， 1878. 34

Plate 11.
 Plate 11.

figure． PAGE．
121．Nassa punctata，A．Ad．（＝gaudiosa）．Reeve，Conch．Icon．，f．54．． 34
122．Nassa compta，A．Ad．（三 gaudiosa）．Reeve，f． 106 a 34
123．Nassa velata，Gould（＝gaudiosa）．Marrat，New Forms，f．9．．．．．． 34
124．Nassa velata，Gould（＝gaudiosa）．Moll．Wilkes＇Exp．，f．319，a．． 34
125：Nassa elata，Gould．Bost．Jour．，v，t．24，f． 11 39
126．Nassa luctuosa，A．Ad．（＝gaudiosa）．Reeve，Conch．Icon．，f．109．． 34
127．Nassa lentiginosa A．Ad．（\＃gaudiosa）．Reeve，f． 15. 34
128．Nassa lilacina，Gould（二 gaudiosa）．Wilkes＇Exped．，f． 336. 34
129．Nassa coturnix，Dunker（三 gaudiosa）．Novit，Conch．，t．32，f．8．． 34
130．Nassa sesarma，Marrat（ニgaudiosa）．New Forms，f． 14 34
131．Nassa pallidula，A．Ad．（＝gaudiosa）．Reeve，f． 108 b 34
132．Nassa micans，A．Ad．（三 gaudiosa）．Reeve，f． 140 34
133．Nassa picta，Dunker．Reeve，Icon．，f． 9. 35
134．Nassa filosa，Gray（＝picta）．Reeve，f． 35 b 35
135．Nassa graphitera，Beck（＝picta）．Hombr．，Voy．Astrol．et Zel．， t． 21 ，f． 29 35
136．Nassa Reeveana，Dkr．（＝picta）．Phil．，Abbild．iii，Bucc．，t．2，f． 3 ． 35
137．Nassa dispar，A．Ad．（＝picta）．Reeve，f． 45 35
138．Nassa lurida，Gould（＝picta）．Moll．Wilkes＇Exp．，f． 325 35
139．Nassa música，Gould（＝picta）．Moll．Wilkes＇Exp．，f． 324 35
140．Nassa marmorea，A．Ad（＝picta，var．）．Reeve，Icon．，f． 7 35
141 Nassa algida，Reeve（＝picta，var．）．Icon．，f． 145 a 35
142．Nassa bicallosa，Smith（ $=$ picta，var．）．Jour．Linn．Soc．，xii， t． 30 ，f． 1 35
143．Nassa conspersa，Phil．Abbild．iii，Bucc．，t．1，f． 6 36
144．Nassa Pfeifferi，Pbil（＝ conspersa）．Ibid．，t．1，f． 7 23， 36
145．Nassa Haldemani，Dunker．Ibid．，t．2．f， 4 36
146．Nassa Haldemani，Dunker．Specimen 36
147．Nassa insignis，H．Adams．Zool．Proc ，t．38，f．8， 1866 37
148，149．Nassa fasciolata，Lam．（＝cornicula）．Kiener，Bucc．，t．17． f．61， 62 37
150．Nassa semistriata，Brocc．（ $=$ cornicula）．Conch．Foss．，t． 15 ， f． 15 b 37
Plate 12.
151．Nassa Calmeilii，Payr．（＝cornicula）．Moll．Corse．，t．8，f．7． 37
152．Nassa Gallandianum，Fischer（ $=$ cornicula）．Jour．de Conch．，xi， t 2 ，f． 6 37
153．Nassa Tinei，Marav．（＝cornicula）．Guerin＇s Mag．，t．24， 1840 37
154．Nassa insculpta，Carp．Specimen． 38
155．Nassa anthracina，Garrett．Proc．，Philad．Acad．，t．3，f．57， 1873. 38
156．Nassa glabrata，A．Ad．Reeve．Icon，f． 157 38
157．Nassa Pupinoides，Reeve（＝glabrata）．Icon．，f． 162 38
158．Nassa maculata，A．Ad．Reeve，Icon．，f． 103 38
159．Nassa vittata，A．Ad．（＝maculata）．Reeve，f． 160 a 38
160．Nassa serotina，A．Ad．Reeve，Icon．f． $10 \overline{7}$ 39
161．Nassa labiata，A．Ad．Reeve，f． 159 39
162．Nassa Terebroides，Reeve（＝labiata）．Icon．，f． 161 39
163．Nass：luteostoma，Kiener．Voy．Bonite，t．41，f． 5 39
164．Nassa luteostoma，B．and S．Reeve，Icon．，f 63 39
165．Nassa xanthostoma，Gray（＝luteostoma）．Zool．Beechey＇s Voy．， t．36，f． 3. 39
166．Nassa tegula，Reeve．Icon．，f． 98 39
167．Nassa glauca，C．B．Ad．（＝tegula）．Reeve，Icon．，f． 139 a 39
figure. PAGE.
168. Nassa annellifera, Reeve. Icon., f. 168 40
169. Nassa Sanctre Helene, A. Ad. Reeve, f. 188 40
170. Nassa obtusata, Reeve. Conch. Icon., f. 135 40
171. Nassa fissilabris, A. Ad. Reeve, f. 138 40
172. Nassa nodicostata, A. Ad. (= fissilabris). Reeve, f. 97 b 40
17?. Nassa albipunctata, Reeve ($=$ fissilabris. Icon., f. 144. 40
174. Nassa tiarula, Kiener. Icon. Bucc.. t. 30, f. 4 41
175. Nassa tiarula, Kiener. Reeve, Icon., f. 92 a 41
176 Nassa coronula, A. Ad. (= tiarula). Reeve, f. 99 41
177. Nassa delicata, A. Ad. (= tiarula). Reeve, f. 180 b. 41
178. Nassa trinodosa, Smith (=tiarula). Jour. Linn. Soc., xii, t. 30, f.2. 41
179. Nassa crenolirata, i. Ad. (= fissilabris). Reeve, Icon., f. 165. 40
Plate 13.
180. Nassa cinctella, Gld. Moll. Wilkes' Exped., f. 327 41
181. Nassa cinctella, A. Ad. (= cinctella, Gld.). Reeve, Icon., f. 176 41°
182. Nassa clathratula, A. Ad. (= cinctella). Reeve, f. 125 a 41
183. Nassa nigra, Hombr. et Jarq. Voy. Astrol. et Zel., t. 21, f. 18. 41
184. Nassa lirata, Marrat (= nigra). Specimen 41
185. Nassa Deshayesiana, lssel (= nigra). Conch. Pers., t. 1, f. 2. 41
186. Nassa scalarina, Marrat (三 nigra). New Forms, f. 27 41
187. Nassa Novæ-Zelandiæ, Reeve (三 nigra, var.). Icon., f. 186 a. 41
188. Nassa crassa, Koch. Phillippi, Abbild. iii, Bucc., t. 1, f. 4. 42
189. Nassa crassa, Koch. Reeve, Icon., f. 67 42
190. Nassa semisulcata, H. \& J. (=crassa). Voy. Astr. et Zel., t. 21, f. 30 42
191. Nassa miga, Brug. Kiener, Bucc., t. 22, f. 87 42
192. Nassa miga, Brug. Reeve, Icon., f. 86 42
193. Nassa obliqueplicata, Dunker ($=$ miga). Phil., Abbild iii, Bucc., t. 1, f. 13. 42
194. Nassa Antillarum, d'Orb. (= ambigua). Moll. Cuba., t. 23, f. 1... 42
195. Nassa Candei, d'Orb (= ambigua). Ibid., t. 23, f. 4. 42
196. Nassa Hotessieri, d'Orb. (= ambigua). Ibid., t. 21, f. 41 42
197. Nassa acuta, Say. (= ambigua). Am. Conch., t. 57, f. 3. 42
198. Nassa vibex, Say. Am. Conch., t. 57, f. 2. 42
199. Nassa Antillarum, Phil. ($=$ vibex). Abbild. iii, Bucc., t 1, f. 2 42
200, 201. Nassa Antillarum, Phil. ($=$ vibex). Reeve, f. 77, 115 42
202. Nassa Sturmii, Phil. (= vibex) Abbild. iii, Bucc., t. 1, f, 1. 42
203. Nassa fida, Reeve (= vibex). Icon., f. 88. 42
204. Nassa tessellata, Reeve ($=$ vibex). Conch. Icon., f. 167 b 42
205. Nassa cinisculus, Reeve ($=$ vibex). Icon., f. 146 b 42
205. Nassa Fretensis, Perkins (= vibex). Bost., Proc., xiii, 117. 42
207. Nassa polygonata, Lam. Kiener, t. 29, f. 119 42
208 Nassa subspinosa, Lam. Kiener, t. 20́, f. 103 43
209. Nassa vibex, Reeve (= subspinosa). Icon., f. 81 43
210. Nassa geniculata, A. Ad. ($=$ subspinosa). Reeve, Icon., f. 171 43
211. Nassa sistroidea, Nevill ($=$ subspinosa). Jour. As. Soc. Bengal, sliii, t. 1, f. 6 43
212. Nassa scalpta, Marrat ($=$ subspinosa). New Forms, f. 30 43
213. Nassa ambigua, Mont. Reeve, Icon., f. 187 a 42

Plate 14.

214. Nassa muricata, Quoy. Reeve, Icon., Nassa, f. 73, b. 44
215. Nassa muricata, Quoy. Voy. Astrol., t. 32, f. 32. 44
REFERENCE TO PLATES． 255
FIGURE． PAGE．
216．Nassa horrida，Dunker（ $=$ muricata）．Philippi，Abbild，iii，Bucc．， t． 2 ，f． 8 44
217．Nassa Gruneri，Reeve（＝muricata）．Icon．，f． 75 44
218．Nassa curta，Gould（ $=$ muricita）．Moll．Wilkes＇Exp．，f． 326 44
219．Nassa Gruneri，Dunker．Philippi，Abbild．iii，Bucc．，t．2，f． 2 44
220．Nassa hispida，A．Ad．（＝Gruneri）．Reeve，Icon．，f．37，b． 44
221．Nassa Webbi，Petit（三 Gruneri）．Jour．de Conch．，i，t．13，f．8．． 44
22．2．Nassa acinosa，Gld．（ $=$ Gruneri）．Moll．Wilkes＇Exp．，f． 329 44
223．Nassa echinata，A．Ad．Reeve，Icon，f． 131. 44
224．Nassa nodulifera，Phil．（三echinata）．Abbild．iii，Bucc．，t．1，f．3．． 44
225．Nassa ornata．Kiener（＝stolata，Gmel．）．Iconog．Bucc．，t．21，f． 83. 45
226．Nassa pagoda，Reeve．Conch．Icon．，＇Triton，f． 97. 45
227．Nassa decussata，Kiener（＝pagoda）．Iconog．，Buec．，t．30，f．3．．． 45
228．Nassa angulifera，A．Ad．（＝pagoda）．Reeve，Icon．，f． 34 45
229．Nassa Tritoniformis，Kiener．lconog．，Buce，t．30，f． 2 45
230．Nassa fuscata，A．Ad．（＝Tritoniformis）．Reeve，Icon．，f． 127 b．． 45
231．Nassa myristica，Hinds．Voy．Sulphur，t．9，f． 10. 45
232．Nassa rufolineata，Marr．（＝myristica，var．）．Reeve，Icon．，f． 123. 45
233．Nassa scabriuscula，Powis．Reeve，Icon．，f．174，b 46
234．Nassa collaria，Gould（＝scabriuscula），Reeve，Icon．，f． 169 a 46
235．Nassa Stimpsoniana，C．B．Ad．（ $=$ scabriuscula）．Reeve，Icon．， f．143，a 46
236．Nassa nodata，Hinds．Voy．Sulphur，t．9，f 15 46
237．．Nassa fısciata，Lam．Hombr．et Jacq．Voy．Astrol．，t．21，f．35．．．． 46
238．Nassa fasciata，Lam．Quoy，Voy．Astrol．，t．32，f． 18 46
239．Nassa festiva．Powis．Reeve，Icon．，f 117. 46
240．Nassa lirata，Dunker（二 festiva）．Moll．Japon．，t．1，f． 22. 46
241．Nassa dealbata，A．Ad．（＝festiva）．Reeve，Icon．，f． 105 46
242．Nassa acutidentata，E．A．Smith（＝festiva）．Zool．Proc．，t．20，f． 46， 1879 46
245．Nassa dentifera，Powis．Reeve，Icon．．f． 130 46
244．Nassa unidentata，Powis（＝dentifera）．Küster，Bucc．，t．6，f．5．． 46
245．Nassa Tschudii，Troschel（二 dentifera）．Archiv Naturg．，t．5．f． 4 a， 1852 45
Plate 15.
246．Nassa paupera，Gould．Moll．Wilkes＇Exped．，f． 330 47
247．Nassa microstoma．I＇se．（二 paupera）．Specimen 47
248．Nassa balteata Pse． $1=$ paupera）．Am．Jour．Conch．，v，t．8，f．5．． 47
249．Nassa fratercúlus．Dkr．（＝paupera？）．Moll．Japon，t．1，f． 15 ．． 47
250．Nasva luteola，Smith（＝paupera）．Zool．Proc．，t．20，f．47， 1879. 47
251．Nassa tringa，Souv．Jour．de Conch，3d ser．，iv，t．10，f． 7 47
252．Nassa compacta，Angas（ $=$ tringa）．Specimen． 47
253．Nassa Rissoides，Marr．New Forms，t．1，f． 25 48
254．Nassa denticulata，A．Ad．Reeve，Icon．，f． 55. 47
255．Nassa abyssicola，A．Ad．Reeve，Icon．，f． 175 a 47
256．Nassa concinna，Powis．Reeve，Icon．，f． 91 48
257．Nassa eximia，H．Adams．Zool．Proc．t．3，f．．28， 1872 48
258．Nass̊a crebrilineata，Hombr．et Jacq．（＝concinna）．Voy．Astr．et Zel．，t．21，f． 33 48
259．Nassa pulcherrima，Marr．（＝concinna）．New Forms，f． 15. 48
260．Nassa concinna，Reeve（ $=$ concentrica，Marr．）．Icon．，f．82 48
261．Nassa interlirata，Smith．Linn，Trans．，xii，t．30，f． 5. 48
262．Nassa nucleolus，Phil．Reeve，Icon．，f．178，b 49
263，264．Nassa incrassata，Ström．Forbes \＆Hanley，Brit．Moll．，t．ll， f． $1 ; \mathrm{t} .108$ ，f． 2 ． 49
Figure. PAGE.
216. Nassa incrassata, var. pygmer. Ibid., t. 108, f. 5 49
217. Nassa incrassata, Reeve. Icon., f. 114. 49
218. Nassa rosacea, Reeve. Icon.. f. 183 49
219. Nassa delicata, Rve. (=tenella). Icon, f. 163 50
220. Nassa Deshayesii, Drouet. Moll. Azores, f. 4 50
221. Nassa versicolor, C. B. Ad. Reeve, Icon., f. 110 50
222. Nassa striata, C. B. Ad (二versicolor). Reeve, Icon., f. 177 50
223. Nassa rufocincta, A. Ad ($=$ versicolor). Reeve, Icon., f. 112. 50
224. Nassa argentea, Marr. (? = tenella). New Forms, t. 1, f. 21 50
225. Nassa sinusigera, A Ad. Reevé, Icon., f. $113 b$ 51
226. Nassa Lecadrei. Folin (=versicolor). Meleagrin, t. 6. f. 14 50
227. Nassa cernica, Nevills (=sinusigera, var.). Jour. As. Soc. Beng., t. 1, f. 7,1874 51
228. Nassa fraudulenta, Marr. (? = sinusigera). New Forms, f. 24 51
229. Nassa cribraria, Marr. (? = sinusigera). New Forms, f. 20 51
Plate 16.
230. Nassa albescens, Dunker. Reeve, Icon., f. 100 51
231. Nassa bicolor, Hombr. (= albescens). Voy. Astr. et Zel., t. 21, f. 41 51
232. Nassa Isabellei, Rve. (= Kieneri). Icon., f. 47. 51
233. Nassa Keenii, Marr. ($=$ albescens). Specimen 51
234. Nassa gemmulifera, A. Ad. ($=$ albescens). Reeve, Icon., f. 130 a. 51
235. Nassa splendidula, Dunker. Phil, Abbild. iii, Bucc., t. 2, f. 16.. 53
236. Nassı semigranosa, Dunker ($=$ splendidula). Ibid., t. 1. f. 9 a 52
237. Nassa ravida, A. Ad ($=$ splendidula). Keeve, Icon., f. 68 52
238. Nassa densigranata, Reeve ($=$ splendidula). Icon., f. 181 52
239. Nassa pauperata, Lam. Reeve, Icon., f. 27 52
240. Nassa lyrella, Beck (= pauperata). Reeve, Icon., f. 95. 52
241. Nassa multigranosa, Dkr. (= pauperata). Phil., Abbild. iii, Bucc., t. 2, f. 13 52
242. Nassa caperata, Phil. (= pauperata). Ibid, f. 18 52
243. Nassa sordida, Reeve. Icon., t. 96 52
244. Nassa candens, Hinds. Reeve, Icon., f., 39 b. 53
245. Nassa candens, Hinds. Voy. Sulphur, t. 9, f. 7 53
246. Nassa cremata, Hinds. Voy. Sulphur, t. 9, f. 8 53
247. Nassa Quoyii, Hombr. et Jacq. (=cremata). Voy. Astr. et Zel., t. 21, f. 20 53
248. Nassa fragum, Hombr. et Jacq. (= cremata). Voy. Astr. et Zel., t. 21, f. 39 53
249. Nassa margaritifera, Dunker (=cremata, var.). Phil., Abbild. iii, Bucc., t. i, f. 12. 53
250. Nassa venusta, Dunker (= cremata, var. margaritifera). Ibid., t. 2, f. 1 53
251. Nassa costellifera, A. Ad. (=cremata, var. margaritifera). Reeve, Icon., f. 58 b 53
252. Nassa marginulata, Reeve (= Kieneri, Desh.). lcon., f. 51 a...... 53
253. Nassa margaritifera, Reeve (=Kieneri, Desh.). Icon., f. 59 53
254. Nassa Isabellei, Reeve ($=$ Kieneri, Desh.). Icon., f. 47. See fig. 281 53
255. Nassa livescens. Phil. Lischke, Jap. Meeres' Conch. Suppl., t. 4, f. 2. 54
256. Nassa pusio, A. Ad. Reeve, Icon., f. 172 a 54
257. Nassa multicostata, A. Ad. Reeve, Icon., f. 136 a 54
258. Nassa verrucosa, A. Ad. Reeve, Icon., f. 36. 54
FIGURE. page.
259. Nassa stigmaria, A. Ad. Reeve, f. 42 b 54
260. Nassa cremata, Reeve (= stigmaria). Icon., Nassa, f. 26 b. 54
261. Nassa retecosa, A. Ad. (= stigmaria). Icon., f. 28 b 54
Plate 17.
262. Nassa Cumingii, A. Ad. Reeve, Icon., Nassa, f. 30 a 55
263. Nassa gemmulata, Lam. Reeve, f. 29 55
264. Nassa clathrata, Lam. (= gemmulata). Encyc. Meth., t. 394, f. 5 b. 55
265. Nassa variegata, A. Ad. (= gemmulata). Reeve, Icon., f. 70 55
266. Nassa conoidalis, Desh, (= gemmulata). Voy. Belanger, t. 3, f. 7. 55
267. Nassa fossata, Gld. Moll. Wilkes' Exped., f. 321 a 55
268. Nassa elegans, Reeve ($=$ fossata, Gld.). Conch. Syst., ii, t. 268, f. 3. 55
269. Nassa Morleti, Crosse (= fossata). Jour. de Conch., xvi, t. 6, f. 3. 55
270. Nassa perpinguis, Hinds. Voy. Sulphur, t. 9, f. 12 56
271. Nassa mendica, Gould. Moll. Wilkes' Exped., f. 331 56
272. Nassa Woodwardi, Forbes (=mendica). Zool. Proc., t. 11, f. 3, 1850 56
273. Nassa Cooperi, Forbes (=mendica). Zool. Proc., t. 11, f. 4, 1850. 56
274. Nassa Cooperi, Forbes (=mendica). Marrat, New Forms, f. 13... 56
275. Nassa Gayi, Kiener. Reeve, Icon., f. 87 b. 56
276. Nassa rubricata, Gould (=Gayi). Moll. Wilkes' Exped., f. 332. 56
277. Nassa nivea, A. Ad. Reeve, Icon., f. 122 a 57
278. Nassa signata, Dunker. Philippi, Abbild. iii, Bucc., t. 2, f. 17...... 57
279. Nassa regularis, Küster (=signata). Conch. Cab., Bucc., t. 12, f. 24. 57
280. Nassa turbinea, Gould. Bost. Jour. Nat. Hist., v, t. 24, f. 10. 57
281. Nassa Roissyi, Deshayes. Voy. Belanger, t. 3, f. 3. 57
282. Nassa Munieriana, Crosse. Jour. de Conch., 3 ser. iv, t. 13, f. $6 . .$. 57
283. Nassa dominula, Tapparone-Canefri ($=$ Roissyi). Voy. Magenta, t. 1, f. 17 a. 57
284. Nassa pumilio, E. A. Smith. Zool. Proc., t. 75, f. 11, 1871 57
285. Nassa Kochiana, Dunker. Kïster, Bucc., t. 12, f. 12 58
286. Nassa plicatella, A. Ad. Reeve, Icon., f. $56 b$ 58
287. Nassa clathrata, Born. Museum, t. 19, f. 17 58
288. Nassa prismatica, Brocchi (= clathrata). Conch. foss., ii, t. 5, f. 7. 58
289. Nassa turrita, A. Ad. (= clathrata). Marrat, New Forms. t. 1, f. 17. 58
290. Nassa scalariformis, Val. (= clathrata). Kiener, Iconog., t. 21, f. 80 58
Plate 18.
291. Nassa nitida, Jeffreys (= reticulata), Brit. Conch., v, t. 87, f. 4... 58
292. Nassa reticulata, Linn. Forbes \& Hanley, Brit. Moll., t. 11, f. 3... 58
293. Nassa reticulata, Linn. Forbes \& Hanley, Brit. Moll., t. 198, f. 2.. 58
343-345. Nassa cancellata, Chemn. ($=$ reticulata). Meycr \& Möbius, Kielerbucht, ii, t. 42, f. 3, 8, 13 58
294. Nassa trivittata. Say. Binney's Edit. of Gould, f. 632 60
295. Nassa obsoleta, Say. Reeve, Conch. Icon., f. 79 60
296. Nassa oliviforme, Kiener ($=$ obsoleta). Iconog, t. 25, f. 99 60
297. Nassa obsoleta, ova-capsules. Am. Jour. Conch., t. 9, f. 12. 60
298. Nassa Melanoides, Reeve. Conch. Icon., f. 150 b 61
299. Nassa nigella, Reeve. Conch. Icon., f. 173 a. 61
300. Nassa nucea, Pease. Am. Jour. Conch., v, t. 8, f. 7 61
353-354. Neritula neritea, Linn. Reeve, Nassa, f. 153 64
355-356. Neritula Italica, Issel ($=$ neritea). Bull. Mal. Ital., ii, t. 4, f. 47. 64
357-358. Neritula Kamieschi, Chenu. Manuel, i, f. 792, 793 65
FIGURE． page．
359．Neritula neritea，Linn．Reeve，Adams＇Genera，t．12，f． 8 64
360．Neritula pellucida，Risso．Reeve，Nassa，f． 151 65
361．Desmoulea abbreviata，Gmelin．Reeve，Icon．，Nassa，f． 194 65
362．Desmoulea pinguis，A．Ad．Reeve，Icon．，Nassa，f． 193 a． 65
363．Desmoulea pinguis，operculum．H．\＆A．Adams＇Genera，t．12， f．6，a 65
364．Desmoulea ponderosa，Reeve（三 pinguis）．Icon．，Nassa，f． 196 65
365．Desmoulea retusa，Lam．Kiener，Iconog．，Bucc．，t．24，f． 94 66
366．Desmoulea retusa．Reeve Icon．，Nassa，f． 195 b 66
367．Desmoulea Tryoni，Crosse（三 retusa）．Jour．de Conch．，t．1，f．3， 1871 66
368．Desmoulea Japonica，A．Ad．Reeve，Nassa，f． 192 66
369．Desmoulea pyramidalis，A．Ad．Reeve，f． 191 b． 66
370．Desmoulea ringens，A．Ad．Reeve，Nassa，f． 190 66
371．Nassa peritremia，T，Woods．Proc．Linn．Soc．N．S．Wales，iv，t． 4，f． 5 48
372．Nassa Coppingeri，E．A．Smith．Zool．Proc．，t．4，f．7， 1881 56
373．Nassa tæniolata，Phil．Zool．Proc．，t．4，f．8， 1881 57
Plate 19.
1．Turbinella pyrum，Linn（Junior）．Kiener，Iconog．，t． 7 68
2．Turbinella pyrum，Linn．Reeve，Icon．，f． 15 68
3．Turbinella napus，Lam．（＝pyrum）．Kiener，Iconog．，t． 6 68
4．Turbinella ovoidea，Kiener．Reeve，Icon．，f． 23 70
5．Turbinella rapa，Gmel．（＝pyrum）．Kiener，t． 5 68
6，7．Turbinella napus，Lam．（＝pyrum）．Monstr．，Ann．Soc．Mal．， Belg．，x，t．2，f．4， 5 68
2．5．Vasum mitis，Lam．（＝capitellum，L．）．Kiener，t．12，f． 2 73
Plate 20.
8．Turbinella scolymus，Gmel．Kiener，Iconog．，t． 2 70
9．Turbinella fusus，Sowb．Reeve，Icon．，f． 54 71
10．Vasum armatum，Brod．（＝Ceramicum，Linn．）．Reeve，Turbinella， f． 29. 72
11．Vasum muricatum，Born．Reeve，Icon．，f．35，a． 71
12．Vasum castus，Brod．（＝muricatum）．Reeve，Turbinella，f． 34 a．．． 71
Plate 21.
13．Vasum Rhinoceros，Gmel．Reeve，Icon．，f． 33 71
14．Vasum Cassidiforme，Val．（ $=$ Rhinoceros）．Reeve，f． 32 71
15．Vasum vexillulum，Reeve（ $=$ Ceramicum）．Reeve，f． 31 72
16．Vasum variolaria，Lam．（三turbinellum，juv．）．Kiener，t．21，f．1．． 72
17．Vạsum globulus，Lam．Reeve，Turbinella，f． 11 73
18．Vasum Ceramicum，Linn．Reeve，f． 46 72
19．Vasum Crosseana，Souv．（＝muricatum）．Jour．de Conch．，t．13，f． 1， 1876 71
20－22．Vasum cornigerum，Lam．（＝turbinellum）．Kiener，t． 1 72
23．Vasum imperiale，Reeve．Icon．，Turbinella，f． 28 72°
24．Vasum capitellum，Linn．Reeve，Icon．，f． 30 73
Plate 22.
1，2，Cymba proboscidale，Lam．Sowb．，Thesaurus，i，t．80，f．22， 27. 79
3，4．Cymba porcinum，Lam．（＝proboscidale）．Sowb．，Thes．，i，t．79， f． 5 ：t． 80 ，f． 20. 79
figure. page.
301. Cymba rubiginosum, Swn. Sowb., Thes., t. 80, f. 19 79
302. Cymba cymbium, Sowb. (= cisium, Lam.). Thes., t. 80, f. 21..... 79
5, 8. Cymba gracile, Brod. ($=$ cisium, Lam.). Thes., t. 79, f. 15 ; t. 80 , f. 24. 79
303. Cymba Neptuni, Gmel. Thes., t. 79, f. 14 80
304. Cymba Tritonis, Brod. ($=$ Neptuni). Thes., t. 79, f. 8 80
305. Cymba patula, Brod. ($=$ Neptuni). Sowb., Thess., t. 79, f. 7 80
306. Cymba navicula, Gmel. (=Neptuni). Reeve, Cymba, t. 24, f. $15 .$. 80
307. Cymbia olla, Linn. Sowb., Thes., t. 79, f. 4. 80
Plate 23.
308. Melo Indica, Gmel. Sowb., Thes., i, t. 81, f. 1 80
15, 16. Melo tessellata, Lam. Sowb., Thes., i, t. 81, f. 8, 7 80
309. Melo Ethiopica, Linn. Sowb., Thes., iii, t. 262, f. 33. 81
310. Melo regia, Sch. \& Wagn. ($=$ Ethiopica, var.). Thes., t. 262, f. 31. 81
311. Melo nautica, Lian. (= Ethiopica, var.). Sowr., Thes., i, t. 82, f. 11 81
20, 21. Melo Broderipii, Gray (= Ethiopica, var.). Sowb., t. 83, f, 26, 27 81
22, 23. Melo diadema, Lam. Sowb., Thes., i, t. 82, f. 16, 17 81
24, 25. Melo armata, Lam. (= diadema). Sowb., Thes., t. 83, f. 21, 22. 81
312. Melo umbilicata, Brod. (= diadema, var.). Sowb., t. 83, f. 30 81
313. Melo mucronata, Brod. (= diadema, var. ducalis). Sowb., t. 83, f. 23 81
314. Melo Miltonis, Gray (= diadema, var.). Sowb., t. 83, f. 25 81
Plate 24.
29, 30. Voluta musica, Linn. Sowb., Thesaurus, i, t. 49, f. 4], 40 83
315. Voluta thiarella, Lam. (=musica). Sowb., Thes., t. 49, f. 39 83
316. Voluta Guinaica, Lam. (= musica). Sowb., Thes., t. 49, f. 38 83
317. Voluta sulcata, Lam. (= musica). Sowb., Thes., t. 53, f. 87 83
318. Voluta polypleura, Crosse (= musica, var.). Jour. de Conch., t. 5, f. 6, 1876 83
319. Voluta virescens, Solander. Sowb., Thes., i, t. 52, f. 78. 84
320. Voluta pusio, Swains. ($=$ virescens). Thes., t. 55, f. 119 84
321. Voluta Hebræa, Lam. Sowb., Thes., i, t. 54, f. 96 84
322. Voluta musica, Linn (animal). Fischer, Jour. de Conch., t. 5, f. 1, 1879 83
323. Voluta Indica, Sowb. ($=$ interpuncta, Mart.). Sowb., t. 51, f. 68. 84
324. Voluta turbinata, Kiener ($=$ Hebrea, var.). Iconog., t. 26, f. 2... 84
325. Voluta Hamillei, Crosse ($=$ rupestris, Gmel.). Jour. de Conch., t. 1, f. 5, 1870 85
326. Voluta fulminata, Lam. (= rupestris). Sowb., Thes., t. 50, f. 51... 85
Plate 25.
43, 44. Voluta vespertilio, Linn. Sowb., Thes., i, t. 47, f. 15, 21 86
327. Voluta vespertilio, reversed. Sowb., Thes., i, t. 51 ,ff. 67. 86
328. Voluta pellis-serpentis, Lam. ($=$ vespertilio). Sowb., t. 47, f. 20... 86
329. Voluta serpentina, Lam. ($=$ vespertilio). Sowb., t. 47, f. 23. 86
330. Voluta vespertilio, Linn. Quoy, Voy. Astrol., t. 44, f. 3 86
331. Voluta mitis, Lam. ($二$ vespertilio). Sowb., t. 47, f, 18 86
332. Voluta pulchra, Sowb. Reeve, Icon., f. 54 a. 86
FIGURE. PAGE.
333. Voluta Wisemani, Brazier ($=$ pulchra). Jour. de Conch., t. 5, f. 1, 1871. 86
334. Voluta lineolata, Küster ($=$ vespertilio). Conch. Cab., t. 38, f. 6... 86
335. Voluta nivosa, Lam. Sowb., Thes., i, t. 51, f. 64 86
336. Voluta innexa, Reeve ($=$ rutila). Sowb., Thes.. iii, t. 261, f. 137 87
337. Voluta Norrisii, Gray. Sowb., Thes., i, t. 51, f. 65 86
338. Voluta rutila, Brod. Sowb., Thes., i, t. 46, f. 6 87
339. Voluta Sophie, Gray. Sowb., Thes., iii, t. 261, f. 132 87
340. Voluta luteostoma, Desh. Sowb., Thes., i, t. 51, f. 59 88
341. Voluta maculata, Swains. Sowb., Thes., i, t. 53, f. 86 93
Plate 26.
342. Voluta piperita, Sowb. Thes., i, t. 51, f. 62 87
61, 62. Voluta aulica, Sol. Sowb., t. 46, f. 10, 11 87
343. Voluta Deshayesii, Reeve. Sowb., iii, t. 261, f. 134 88
344. Voluta Rossiniana, Bernardi. Sowb., Thes., iii, t. 261, f. 135 88
(i5. Voluta imperialis, Lam. Sowb., i, t. 54, f. 102 88
345. Voluta Bednalli, Brazier. Zool. Proc., t. 40, f. 1, 1880 89
346. Voluta Junonia, Chemn. Sowb., i, t. 49, f. 44 90
347. Voluta scapha, Gmel. Sowb., i, t. 48, f. 35 89
348. Voluta Kaupi, Dunker. Novit. Conch., t. 22, f. 1 90
349. Voluta magnifica, Lam. Sowb., Thes., i, t. 54, f. 103 89
350. Voluta volvacea, Lam. (= flavicans, Gmel.). Sowb., t. 46, f. 3 91
351. Voluta exoptanda, Sowb. Thes. Conch., iii, t. 261, f. 136 91
73, Voluta Australie, Cox. Zool. Proc., t. 52, f. 1, 1871 91
352. Voluta Maria-Emma, Gray (三Graya, Crosse). Sowb., Thes., iii, t. 261, f. 133 91
Plate 27.
353. Voluta Rückeri, Crosse (==piperita, var.). Jour de Conch., t. 1, f. 1, 1868 87
354. Voluta Macgillivrayi, Cox (= piperita, var.). Zool. Proc., t. 48, f. 9, 1873 87
355. Voluta dubia, Brod. Jahrbuch Mal. Gesell., vi, t. 4, f. 1 90
356. Voluta Ceraunia, Crosse (= piperita, var.). Jour. de Conch., t. 4, f. 1, 1880 87
357. Voluta Cathcartie, Reeve. Zool. Proc., t. 33, f. 6, 1856 88
358. Voluta punctata, Swains. Jour. de Conch., t. 5, f. 2, 1871 89
359. Voluta dubia, Brod. (juv.). Sowb., Thes. Conch, i, t. 55, f. 115 90
360. Voluta Hargreavesi, Angas. Zool. Proc., t. 42, f. 13, 1872 89
361. Voluta Sclateri, Cox. Zool. Proc., t. 26, f. 3, 1869 92
362. Voluta Tissotiana, Crosse (= flavicans). Jour. de Conch., t. 6, f. 1, 1867. 91
363. Voluta Turneri, Gray. Sowb., Thes., iii, t. 260, f. 129 92
364. Voluta Kingi, Cox. Zool. Proc., t. 34, f. 4, 1871 92

Plate 28.

87. Voluta Angasi, Sowb. (= undulata, Lam.). Thes. Conch., i, t. 48, f. 29 92
88. Voluta undulata, Lam. Sowb., i, t. 48, f. 28 92
89. Voluta marmorata, Swn. Sowb., i, t. 46, f. 8 92
90. Voluta pallida, Gray (= volva, Gmel.). Sowb., i, t. 53, f. 91 93
91. Voluta zebra, Leach. Sowb., Thes., i, t. 53, f. 83 93
figure. page.
92. Voluta Loroisi, Val. Sowb., Thes., iii, t. 261, f. 138 93
93. Voluta pallida, Gray, var. (= reticulata. Rve.). Sowb., i, t. 63, f. 94. 94
94. Voluia prætexta, Reeve. Conch. Icon.. f. 29 b. 94
95. Voluta Harfordi, Cox (= canaliculata, McCoy). Zool. Proc., t. 26, f. 2, 1869 93
96. Voluta reticulata, Sowb. (=pretexta). Thes., i, t 49, f. 47 94
97. Voluta lacifica, Soland. Sowb., Thes., i, t. 48, f. 26 94
98. Voluta fusus, Quoy (= Pacifica, juv.). Voẏ. Astrol., t. 44, f. 8.... 94
99. Voluta gracilis, Swn. (= Pacifica). Thes. Conch., i, t. 55, f. 117. 94
100. Voluta Americana, Reeve. Zool. Proc., t. 33, f. 2, 1856. 94
101. Voluta Cleryana, Petit (=Americana). Jour. de Conch., 2 ser. i, t. 6, f. 4 94
102. Voluta megaspira, Sowb. Thes., i, t. 48, f. 32. 95
103. Voluta fusiformis, Swains. Sowb., t. 54, f. 100. 95
104, 105. Voluta fulgetrum, Sowb. Thes., i. t. 48, f. 33,34 95
104. Voluta papillosa, Swn. Sowb., Thes., i, t. 48, f. 30 95
Plate 29.
105. Voluta ancilla, Sowb. ($=$ Magellanica, Lam.). Thes., i. t. 54, f. 101. 97
106. Voluta subnodosa, Leach ($=$ Magellanica). Thes., t. 47, f. 24. 97
107. - Voluta Beckii, Brod. Sowb., i, t. 54, f. 104 97
108. Voluta Magellanica, Sowb. ($=$ ancilla). Thes., t. 54, f. 99. 97
109. Voluta rudis, Gray ($=$ Brasiliana). Thes., t. 46, f. 7. No color. 98
110. Voluta angulata, Swains. Sowb., t. 47, f. 13 98
111. Volutá Brasiliana, Soland. Orb., Voy. Am., t. 60, f. 4. 98
112. Voluta concinna, Brod. Sowb., t. 51, f. 66 99
113. Voluta Brasiliana, Sol. Sowb., Thes., i. t. 54, f. 98 98
114. Voluta bullata, Swains. Sowb., t. 53, f. 88. 100
115. Voluta Brazieri, Cox. Zool. Proc.. t. 48, f. 8, 1873. 100
116. Voluta cymbiola, Sowb., Thes , t. 52, f. 75 99
117. Voluta corona, Chemn. (= cymbiola). Sowb., t. 55, f. 120. 99
118. Voluta abyssicola, Ad. \& Rve. Sowb., Thes., iii, t. 260 , f. 124. 100
119. Voluta angulata, Swains. Orb., Voy. Am., t, 60 , f. 2. 98
120. Voluta mamilla, Gray. Sowb., i, t. 50, f. 57. 101
Plate 30.
121. Voluta Ellioti, Sowb. ($=$ Turneri, Gray). Thes., iii, t. 260, f. 127. 92
122. Voluta Kreuslere Angas. Zool. Proc., i. 2, f. 3, 1865. 94
123. Voluta festiva, Lam. Reeve, lcon., f. 28 , c. 95
124. Voluta Thatcheri, NcCoy. Jour. de Conch., t. 1, f. 1, 1873. 96
125. Voluta Africana, Reeve. Zool. Proc., t. 33, f. 3, 1856 95
126. Voluta Roadnightex, McCoy. Ann. Mag. Nat. Hist., t. 7, f. 2, 1881. 96
127. Voluta coniformis, Cox. Jour. de Conch., t. 4, f. 1, 1871 100
128. Voluta Stearnsii, Dall. Calif. Proc., iv, t. 1, f. 1 97
129. Voluta Ferussaci, Don. ($=$ Brasiliana). Reeve, Icon., f. 23 98
130. Voluta Prevostiana, Crosse ($=$ megaspira, var.). Jour. de Conch., t. 1 , f. 1,1879 95

Plate 31.

133. Lyria deliciosa, Montrouzier. Jour. de Cench., 2 ser., iv, t. 2, f. 7. 102 134, 135. Lyria deliciosa, Jour. de Conch., t. 13, f. 3, 4, 1867. a, foot; b, siphon, cut open ; c, mantle ; d, c, branchix ; g, rectum ; k, appendages of the siphon; l, prerectal glands; m, penis; n, tentacles; o, lateral appendages of the neck ; p, visceral sac
FIGURE. page.
134. Lyria nucleus, Lam. Reeve, Icon. Voluta, f. 41, b. 102
135. Lyria Beaui, Fischer \& Bernardi. Jour. de Conch., 2 ser. i, t. 9, f. 1 102
136. Lyria cassidula, Reeve. Sowb., Thes., iii, t. 260, f. 130. 103
137. Lyria pusilla, Schrenck. Amur Landes Moll., t. 17, f. 15 103
138. Lyria Delessertiana, Petit. Sowb., i, t. 52, f. 74 103
139. Lyria Lyræformis, Swn. Sowb., i, t. 49. f. 45 103
140. Lyria costata, Swains. Sowb., t. 52, f. 71 103
141. Lyria Mitræformis, Lam. Sowb., t. 52, f. 82 103
142. Lyria Archeri, Angas. Zool. Proc., t. '2, f. 5, 1865 104
143. Lyria harpa, Barnes. Sowb., i, t. 55, f. 114 104
144. Lyria Cumingii, Brod. Sowb., t. 55, f. 105 104
145. Lyria Cylleniformis, Sowb. (=Cumingii). Thes., t. 55, f. 113 104
146. Lyria Guildingii, Sowb. Thes., t. 55, f. 110 105
147. Lyria guttata, Reeve. Icon., f. 56 105
148. Lyria Columbella, Sowb. Thes., iii, t. 260, f. 123 105
151, 152. Microvoluta Australis, Angas. Zool. Proc., t. 5, f. 2, 1877 105
149. Voluta vexillum, Lam. Sowb., Thes., t. 50, f. 54 85
Plate 32.
150. Mitra episcopalis, Linn. Kiener. Mitra, t. 1, f. 1 111
151. Mitra papalis, Linn. Sowb., Thesaurus, f. 6 111
152. Mitra pontificalis, Lam. Sowb., Thes., f. 1 111
153. Mitra cardinalis, Gmel. Sowb., Thes., f. 32 111
154. Mitra Lamarckii, Desh. Sowb., Thes., f. 58 112
155. Mitra versicolor, Martyn. Sowb., Thes., f. 44 112
156. Mitra versicolor, Martyn. Kiener, Iconog., t. 7, f. 18 112
157. Mitra nebulosa, Swains. ($=$ versicolor). Reeve, Icon., f. 3. 112
Plate 33.
158. Mitra variegata, Reeve. Conch. Icon., f. 111 113
159. Mitra variegata, Reeve. Sowb., Thes. Conch., f. 162. 113
160. Mitra propinqua, Sowb. Thes. Conch., f. 59 112
161. Mitra nympha, Reeve (=variegata). Icon., f. 249 113
162. Mitra lacunosa, Reeve (= variegata). Conch. Icon., f. $\mathbf{6} 5$ 113
163. Mitra Rossiæ, Reeve (= variegata). Sowb., Thes., f. 113 113
164. Mitra sanguinolenta, Lam. Kiener, Iconog., t. 14, f. 45 113
165. Mitra eximia, A. Ad. Sowb., Thes., f. 266 113
166. Mitra lacunosa, Sowb. (=eximia). Thes. Conch., f. 171 113
167. Mitra cerulea, Reeve. Sowb., Thes., f. 232 114
168. Mitra Mauritiana, Sowb. Thes. Conch., f. 610 114
169. Mitra incisa, Ads. \& Reeve. Thes. Conch., f. 292. 114
170. Mitra Mariæ, A. Ad. (= incisa). Smith, Zool. Proc., t. 50, f. 14, 1878 114
171. Mitra serpentina, Lam. Sowb., Thes., f. 73 114
172. Mitra Marquesana, A. Ad. Sowb., Thes., f. 575 114
173. Mitra Bovei, Kiener. Sowb., Thes., f. 60 115
174. Mitra puncticulata, Lam. Sowb., Thes., f: 9 115
175. Mitra Sophix, Crosse. Sowb., Thes. Conch., f. 546 115
176. Mitra cratitia, A. Ad. ${ }^{\circ}$ Sowb., Thes. Conch., f. 545 115
177. Mitra dactyloidea, Anton ($=$ Olivæformis). Küster, t. 14, f. 2 131
Plate 34.
FIGURE. PAGE.29. Mitra floccata, Reeve. Sowb., Thes., f. 186
178. Mitra chalybeia, Reeve. Conch. Icon., f. 59. 116115
179. Mitra guttata, Swains. Sowb., Thes., f. 166 11632. Mitra Fergusoni, Sowb. Thes. Conch., f. 70
180. Mitra limata, Reeve. Conch. Icon., f. 312. 116116
181. Mitra Desetangsii, Kiener. Sowb., Thes., f. 183. 117
182. Mitra florida, Gould. From type specimen. 11636. Mitra cancellata, Kiener. Iconog., t. 30, f. 98
183. Mitra Hamillei, Petit. Jour. de Conch., ii, t. 7, f. 9,1851
117
184. Mitra Senegalensis, Reeve. Sowb., Thes., f. 347 117
185. Mitra declivis, Reeve. Sowb., Thes., f. 272 118
186. Mitra inquinata, Reeve. Conch. Icon., f. 29 118
187. Mira declivis, Reeve. Sowb., Thes. Conch., f. 272 118
188. Mitra glabra, Swains. Sowb., Thes., f. 54. 117
189. Mitra fulgurita, Reeve. Sowb., Thes., f. 63 118
190. Mitra Wrightii, Crosse (三 inquinata). Jour. de Conch., t. 1, f. 1, 1878. 118
Plate 35.
45, 46. Mitra striatula, Lam. ($=$ Barbadensis, Gmel.). Sowb., Thes., f. 97,374 118
191. Mitra variabilis, Reeve. Sowb., Thes., f. 184 119
192. Mitra tessellata, Kiener ($=$ Barbadensis). Iconog., f. 42. 118
193. Mitra picta, Reeve (= Barbadensis). Conch. Icon., f. 123 118
194. Mitra simplex, Dunker. Krauss, Sudafr. Moll., t. 6, f. 20 119
195. Mitra ustulata, Reeve. Sowb., Theṣ. Conch., f. 227 119
196. Mitra ignobilis, Reeve. Sowb., Thes., f. 110. 119
197. Mitra abbatis, Chemn. ($=$ contraota, Swn.). Reeve, Icon., f. 91 120
198. Mitra rubiginosa, Reeve. Sowb., Thes., f. 167 119
199. Mitra cancellata, Swains. Sowb., Thes., f. 69 119
200. Mitra cylindracea, Reeve ($=$ variabilis). Sowb., Thes., f. 188 119
201. Mitra solida, Reeve. Sowb., Thes., f. 165. 120
58, 60. Mitra pigra, A. Ad. Sowb, Thes., f. 177, 325. 120
202. Mitra latruncularia, Reeve. Conch. Icon., f. 166 120
203. Mitra caliginosa, Reeve. Sowb., Thes., f. 75. 120
204. Mitra sacerdotalis A. Ad. Sowb., Thes., f. 79 120
205. Mitra strigata, Swains. Sowb., Thes., f. 330 121
206. Mitra Rosettre, Angas. Sowb., Thes., f. 339 121
Plate 36.
207. Mitra Chinensis, Gray. Sowb , Thes., f. 81 120
208. Mitra Chinensis, Gray. Reeve, Icon., f. 36 120
209. Mitra orientalis, Gray (= maura, Swn.). Sowb., Thes., f. 40 121
210. Mitra Swainsoni, Brod. Reeve, Icon., f. 4. 121
211. Mitra abbreviata, Sowb. Thes. Conch., f. 328. 122
212. Mitra induta, Sowb. Zool. Proc., t. 24, f. 9, 1875. 121
213. Mitra nigra, Quoy (=Quoyi, Desh.). Voy. Astrol., t: 45, f. 17 122
214. Mitra infrafasciata, Souv. Jour. de Conch., t. 5, f. 7, 1865. 122
215. Mitra nitida, A. Ad. Sowb., Thes., f. 637 122
216. Mitra cornicula, Linn. Sowb., Thes., f. 523. 122
217. Mitra fusca, Swains. Sowb., Thes. Conch., f. 301. 122
218. - Mitra cornicularis, Lam. (= cornicula). Kiener, Iconog., t. 12, f. 38. 122
219. Mitra Philippiana, Forbes (= cornicula). Sowb., Thes., f. 524...... 122
figure. PAGE.
220. Mitra graja, Reeve (cornicula). Sowb., Thes., f. 525 122
221. Mitra lactea, Lam. (cornicula, var.). Sowb., Thes., f. 102. 122
222. Mitra plumbea, Reeve ($=$ cornicula, var,). Conch. Icon., f. 156... 122
223. Mitra Schroeteri, Desh. (= cornicula, var.). Thes., Conch., f. 529.. 122
224. Mitra insolata, Sowb. Thes. Conch., f. 650 124
8:3. Mitra Greenlandica, Gray. Reeve, Conch. Icon., f. 106. 124
84, 85, 87. Mitra ebenus, Lam. Sowb., Thes. Conch., f. 329, 334, $335 .$. 124
225. Mitra Kieneri, Sowb. Thes. Conch., f. 324 124
226. Mitra Defrancii, Payr. (=ebenus, var. costata). Reeve, Icon., f. 159. 124
Plate 37.
227. Mitra livida, Reeve (=ebenus, var. costata). Conch. Icon., f. 134 b 124
228. Nitra chelonia, Reeve (? = ebenus). Conch. Icon., f. 289 124
229. Mitra patula, Recve. Conch. Icon., f. 333. 125
230. Mitra rufocincta, A. Ad. (= Capensis). Sowb., Thes., f. 653 125
231. Mitra lachryma, Reeve. Conch. Icon., f. 258 125
232. Mitra vincta, A. Ad. ($=$ Capensis). Sowb., Thes., f. 520 125
233. Mitra Capensis, Dunker. Sowb., Thes. Conch., f. 654. 125
234. Mitra pica, Reeve. Conch. Icon., f. 247. 125
235. Mitra albina, A. Ad. Sowb., Thes. Conch., f. 547 129
236. Mitra flexilabris, Sowb. Zool. Proc., t. 24, f. 4, 1875 128
237. Mitra petrosa, Sowb. Thes. Conch., f. 314 124
238. Mitra funerea, Reeve. Conch. Icon., f. 108 126
239. Mitra funerea, Reeve. Sowb., Thes. Conch., f. 114 126
240. Mitra bilineata, Reeve ($=$ funerea). Conch. Icon., f. 294 126
241. Mitra analogica, Reeve. Conch., Icon., f. 293 126
242. Mitra Australis, Swains. Reeve, Icon., f. 118 126
243. Mitra melaleuca, Quoy ($=$ Australis). Voy. Astrol., t. 45 bis, f. 26. 126
244. Mitra Lamberti, Souv. Jour. de Conch., t. 13, f. 3, 1875 126
245. Mitra polita, Reeve. Conch. Icon., f. 94 126
246. Mitra callosa, Reeve. Sowb., Thes. Conch., f. 105 126
247. Mitra effusa, Swains. Reeve, Conch. Icon., f. 100 127
248. Mitra testacea, Swains. Reeve, Conch. Icon.. f. 98 127
249. Mitra bulimoides, Reeve ($=$ testacea). Conch. Icon., f. 224 127
250. Mitra badia, Reeve (=testacea). Sowb, Thes. Conch., f. 181 127
251. Mitra typha, Reeve. Sowb., Thes. Conch., f. 323 128
252. Mitra rhodia, Reeve. Conch. Icon., f. 225 127
253. Mitra castanea, A. Ad. Sowb., Thes. Conch., f. 205. 127
254. Mitra peculiaris, Reeve (=typha). Sowb., Thes. Conch., f. 322. 128
255. Mitra tenuis, Sowb. Thes. Conch., f. 327 129
256. Mitra nigra, Chemn. (Melaniana, Lam.). Sowb., Thes., Conch., f. 4 127
257. Mitra digna, A. Ad. (= Melaniana). Sowb., Thes., f. 115 127
258. Mitra micans, Reeve. Sowb., Thes. Conch., f. 588 129
259. Mitra Cookii, IIanley. Sowb., Thes. Conch., f. 228. 129
Plate 38.
260. Mitra zonata, Marryatt. Sowb., Thes. Conch., f. 62 130
261. Mitra casta, Lam. Sowb., Thes Conch, f. 46 130
262. Mitra fissurata, Lam. Sowb., Thes. Conch., f. 90 121
263. Mitra ocellata. Swains. ($=$ fissurata). Sowb., Thes., f. 85 131
264. Mitra Santangeli, Marav. (= zonata). Guerin's Mag., t. 2?, 1840. 130
265. Mitra filum, Wood. Sowb., Thes. Conch., f. 305 130
266. Mitra formosa, Pease. Am. Jour. Conch. iii, t. 23, f. 1. 131
FIGURE. page.
267. Mitra zephyrina, Duclos. Sowb.. Thes. Conch., f. 308. 132
268. Mitra Nevillei, Hanley (=zephyrina). Sowb., Thes. Conch., f. 306. 132
269. Mitra Olivæformis, Swains. Roeve, Conch. Icon., f. 212. 131
270. Mitra impressa, Anton. Sowb., Thes., Conch., f. 106 132
12£. Mitra lens, Wood. Sowb., Thes. Conch., f. 28 133
271. Mitra vitellina, Gould. Moll. Wilkes' Exped., f. 352. 132
272. Mitra oniscina, Lam. Kiener, Iconog., t. 25, f. 79 133
273. Mitra terebralis, Lam. (= tessellata, Mart.). Sowb., Thes., f. 94. 132
274. Mitra Dupontii, Kiener (= lens). Iconog., t. 13, f. 39 133
275. Mitra granulosa, Lam. Sowb., Thes. Conch., f. 90 133
276. Mitra tessellata, Martyn. Sowb., Thes., f. 97. 132
Plate 39.
277. Mitra Inca, d'Orb. (= lens). Voy. Am. Merid., t. 77, f. 1 133
278. Mitra lignaria, Reeve ($=$ lens). Conch. Icon., f. 64 183
279. Mitra muricata, Swains. ($=$ lens). Sowb., Thes., f. 558 133
280. Mitra vultuosa, Reeve. Conch. Icon., f. 270 134
281. Mitra rupicola, Reeve ($=$ lens). Conch. Icon., f. 53 133
282. Mitra nucleola, Lam. Kiener, Iconog., t. 26, f. 83 134
283. Mitra nucleola, Lam. Reeve, Conch. Icon., f. 226 134
284. Mitra nucleola, Lam. Sowb., Thes. Conch., f. 397 134
285. Mitra Lifouana, Crosse ($=$ texturata, var.). Jour. de Conch., t. 13, f. 5, 1872. 134
286. Mitra sphærulata, Martyn. Sowb., Thes Conch., f. 38 134
287. Mitra texturata, Lam. Sowb., Thes., f. 84. 134
288. Mitra unifascialis, Lam. ($=$ nucleola). Kiener, Iconog., t. 26, f. 84. 134
289. Mitra crenifera, Lam. Reeve, Conch., Icon., f. 38. 135
290. Mitra Ehrenbergi, Jickeli. Jahrb. Mal. Gesell., 1, t. 2, f. 3 136
291. Nitra arenacea, Dunker. Novit. Conch., t. 10, f. 3. 136
292. Mitra Hemprichii, Jickeli. Jahrb. Mal. Gesell., i, t. 2, f. 1 136
293. Mitra gracilis, Reeve. Sowb., Thes., f. 187. 136
294. Mitra Strangei, Angas. Sowb., Thes. Conch., f. 289. 136
295. Mitra scabriuscula, Linn. Sowb., Thes. Conch., f. 35 135
296. Mitra Peasei, Dohrn ($=$ Isabella). Sowb.. Thes., f. 76. 137
297. Mitra cytharoidea, Dohrn. Sowb., Thes. Conch., f. 567. 136
298. Mitra Hebes, Reeve. Sowb., Thes. Conch., f. 230 137
299. Mitra loricata, Reeve (=Isabella, Swn.). Sowb., Thes., f. 147 137
300. Mitra formosa, A. Ad. Sowb., Thes. Conch., f. 235 138
301. Mitra pretiosa, Reeve ($=$ crenifera). Conch. Icon., f. 116. 135
302. Mitra Antonix, H. Ad. (= crenifera). Thes. Conch., f. 245. 135
Plate 40.
303. Mitra Norrisii, Reeve. Sowb., Thes. Conch., f. 68. 137
304. Mitra nivea, Swains. Sowb., Thes., f. 77 137
305. Mitra Isabella, Swains. Reeve, Conch. Icon., f. 42 137
306. Mitra Mörchii, A. Ad. (= Isabella). Zool. Proc., t. 28, f. 5, 1854.. 187
307. Nitra crebrilineata, Sowb. Thes. Conch., f. 626 138
308. Mitra sulcata, Swains. Reeve, Icon., f. 176 139
309. Mitra lineata, Swains. Sowb., Thes., f. 554 189
310. Mitra multilirata, A. Ad. Sowb., Thes., f. 556. 139
311. Mitra nexilis, Mart. ($=$ filaris, Linn.). Sowb., Thes. Conch., f. 83. 138
312. Mitra filosa, Born. (= filaris, Linn.). Sowb, Thes, f. 82 138
313. Mitra circulata, Kr. (= filaris, var.). Sowb., Thes., f. 87 138
FIGURE． PAGE．
177．Mitra gigantea，Swains．（三 sulcata）．Sowb．，Thes．Conch．，f．95．． 139
178．Mitra＇Tathne，Jickeli．Jahrb．Mal．Gesell．，i，t．2，f． 4 139
179．Mitra Belcheri，Hinds．Sowb．，Thes．Conch．，f． 80 139
180．Mitra Bernardiana，Phil．（＝filaris，var．）．Specimen 138
181．Mitra ægra，Reeve．Sowb．，Thes．Conch．，f． 112. 139
182．Mitra IIindsii，Reeve（＝sulcata）．Sowb．，Thes．Conch．，f． 95 139
183．Nitra funiculata，Reeve（ $=$ sulcata）．Conch．Icon．，f． 122 139
184．Mitra attenuata，Swains．（＝sulcata）．Sowb．，Thes．Conch．，f． 194. 139
185．Mitra carnicolor，Reeve．Sowb．，Thes．，f． 549 139
Plate 41.
186．Mitra incarnatı，Reeve（三 carnicolor）．Sowb．，Thes．，f． 551 139
187．Mitra pura，A．Ad．（＝carnicolor）．Sowb．．Thes．，f． 566 139
188．Mitra straminea，A．Ad．Sowb．，Thes．Conch．，f． 561 140
189．Mitra pia，Dohrn．Sowb．，Thes．Conch．，f． 550 139
190．Mitra flammea，Quoy．Sowb．，Thes，f． 173 140
191．Mitra flammigera，Reeve（二flammea）．Sowb．，Thes．，f． 108. 140
192．Mitra interlirata，Reeve（二flammea）．Sowb．，Thes．，f． 369 140
193．Mitra avenacea，Reeve（＝flammea）．Conch．Icon．，f． 246 140
194．Mitra Haneti，Petit．Sowb．，Thes．Conch．，f． 624 142
195．Mitra foveolata，Dunker（ $=$ flammea）．Sowb．，Thes．，f． 371 140
196．Mitra tornata，Reeve（＝flammea）．Conch．Icon．，f． 269. 140
197．Nitra rufilirata，Ad．\＆Reeve（＝flammea）．Sowb．，Thes．，f．572．． 140
198．Mitra Cyri，Dohrn（＝fulgetrum）．Sowb．，Thes．Conch．，f．576．．． 142
199．Nitra Novæ Hollandæ，Sowb．（＝flammea）．Thes．Conch．，f．368．． 140
200．Mitra hystrix，Montrouz．（＝flammea）．Jour．de Conch．， 3 ser．，ii， t． 9 ，f．8， 1862 140
201．Mitra roborea，Reeve．Conch．Icon．，f． 306 140
20）2．Nitra duplilirata，Reeve．Conch．Icon．，f． 229 140
203．Mitra annulata，Reeve．Thes．Conch．，f． 92 140
204．Mitra acutilirata，Sowb．Thes．Conch．，f． 274 141
205．Nitra insculpta，A．Ad．（ $=$ annulata）．Sowb．，Thes．，f． 568. 140
206．Mitra amœna，A．Ad．（三 annulata）．Sowb．，Thes．Conch．，f． 244. 140
207．Mitra Fischeri，Souv．（＝annulata）．Sowb．，Thes．，f． 573. 140
208．Mitra rosacea，Reeve（＝annulata）．Conch．Icon．，f． 321 140
209．Mitra acuta，Sowb．（＝annulata）．Zool．Proc．，t．48，f．7， 1878 140
210．Nitra flammea，Reeve（ $=$ Philippinarum）．Conch．Icon．，f．120．．． 141
211．Mitra semiconica，Sowb．（＝Philippinarum）．Thes．Conch．，f． 619. 141
212．Mitra strigillata，Sowb．Thes．Conch．，f． 248. 141
213．Mitra bacillum，Lam．Mag．de Zool．，t．7， 1831 141
214．Nitra Hindsii，Reeve（＝sulcata）．Thes．Conch ，f． 196. 139
215．Mitra pruinosa，Reeve．Sowb．，Thes．Conch．，f． 565 142
216．Mitra fulgetrum，Reeve．Conch．Icon．，f． 115 152
217．Mitra Boissaci，Montr．（＝fulgetrum）．Sowb．，Thes．，f． 574 142
Plate 42.
218．Mitra Malleti，Petit．Jour．de Conch．，iii，t．2，f． 1 142
219，220．Mitra carinata，Swains．Sowb．，Thes．，f．246， 247. 142
221．Mitra Senegalensis，Reeve（＝carinata）．Sowb．，Thes．，f． 347 142
222．Mitra Gambiana，Dohrn（＝carinata）．Novit．Conch．，t．15，f． 11. 142
223．Mitra Gambiana，Dohrn．Sowb．，Thes．Conch．，f． 579 142
2：4．Mitra spadicea，Dunker（＝peregra）．Sowb．，Thes．Conch，f． 478. 142
225．Mitra telescopium，Reeve．Sowb．，＇Thes．，f． 304 143
226．Mitra mœsta，Reeve．Conch．Icon．，f． 323. 143
Figure. PAGE.
314. Mitra cucumerina, Lam. Reeve, Conch. Icon., f. 201 143
315. Mitra cucumerina, Lam. Sowb., Thes. Conch., f. 277 143
316. Mitra fraga, Quoy (? = cucumerina). Voy. Astrol., t. 45 bis, f. 99. 143
2.30. Mitra Adamsonii, Gray. Sowb., Thes. Conch., f. 627 144
317. Mitra Antonii, Küster ($=$ Adamsonii). Conch. Cab., t. 14, f. $12 \ldots$ 144
318. Mitra Tornatelloides, Reeves. Conch. Icon., f. 316 144
319. Mitra chrysalis, Reeve. Conch. Icon., f. 200. 144
320. Mitra turgida, Reeve. Conch. Icon., f. 273 144
321. Mitra indentata, Sowb. (=turgida) Thes. Conch., f. 412 144
322. Mitra peregra, Reeve. Conch. Icon., f. 186 144
323. Mitra porcata, Humphr. (=peregra). Conch. Icon., f. 187 144
324. Mitra miniata, Anton (= peregra). Kïster, t. 14, f. 9 144
325. Mitra gracilior, Carpenter. Specimen 145
326. Mitra Adamsonii, Gray. Keeve, Icon., f. 150 144
327. Mitra astyagis. Dohrn. Sowb., Thes Conch., f. 367 142
328. Mitra turben, Reeve. Conch. Icon., f. 213 146
329. Mitra tabanula, Lam. Reeve, Iconog., f. 325. 146
330. Mitra pediculus, Lam. (二tabanula). Kiener, Iconog., t. 16, f. 53. 146
331. Mitra minor, Sowb. ($=$ tabanula). Thes. Conch., f. 662. 146
332. Mitra rotundilirata, Reeve ($=$ tabanula). Conch. Icon., f. 178 146
333. Mitra Caledonica, Recluz (=tabanula). Jour. de Conch., iv. t. 7, f. 7. 146
Plate 43.
334. Mitra Hanleyi, Sowb. Thes. Conch., f. 661 146
335. Mitra Solandri, Reeve. Conch. Icon., f. 172 146
336. Mitra Solandri, Reeve. Sowb., Thes. Conch., f. 265. 146
337. Mitra Ruppellii, Reeve ($=$ Solandri). Conch. Icon., f. 179 146
338. Mitra vexillum, Reeve. Sowb., Thes. Conch., f. 270 146
339. Mitra crassicostata, Sowb (=vexillum, Rve.). Thes. Conch., f. 387. 146
255, 256. Mitra aurantia, Gmelin. Sowb., Thes Conch., f. 250. 147
340. Mitra nanus, Reeve (= aurantia). Conch. Icon., f 194 147
341. Mitra Michelini, Guerin. Mag. de Zool., t. 38, 1830 147
342. Mitra proscissa, Reeve. Sowb., Thesaurus, f. 282 147
343. Mitra rubiginea, A. Ád. (= proscissa). Thes. Conch., f. 257 147
344. Mitra carinilirata, Souv. (= proscissa). Jour. de Conch., t. 1, f. 1, 1872. 147
345. Mitra consolidata, Sowb. $(?=$ proscissa $)$. Thes. Conch., f. 271. 147
346. Mitra crassa, Swains. Sowb., Thes, Conch., f. 66 147
252, 264. Mitra Ticaonica, Reeve ($=$ crassa). Conch. Icon., f. 181 147
347. Mitra Ticaonica, Reeve ($=$ crassa). Sowb., Thes. Conch., f. $252 .$. 147
348. Mitra ambigua, Swains. Sowb., Thes. Conch., f. 5 147
349. Mitra fulva, Swains. (= ambigua, var.). Reeve, Icon., f. 24. 147
350. Mitra attenuata, Reeve ($=$ fulva). Conch. Icon., f. 45. 147
351. Mitra adusta, Lam. Sowb., Thes. Conch., f. 16. 148

Plate 44.

270. Mitra Ticaonica, Reeve (= crassa). Sowb., Thes. Conch., f. 253... 147.
271. Mitra fulvescens, Swains. Sowb., Thes. Conch., f. 452. 148
272. Mitra coligena Reeve (? = crassa). Sowb., Thes., f. 222 147
273. Mitra coronata, Lam. Reeve, Conch. Icon., f. 104 a 148
274. Mitra coronata, Lam. Sowb., Thes. Conch., f. 220. 148
275. Mitra tiarella, A. Ad. (= coronata). Sowb., Thes. Conch., f. 56. 148
276. Mitra adusta, Lam. Sowb., Thes. Conch., f. 17 148
277. Mitra aurora, Dohrn (= coronata, Sowb., Thes. Conch., f. $223 .$. 148
figure. PAGE.
278. Mitra digitalis, Dillw. Sowb., Thes. Conch., f. 207 149
279. Mitra ferruginea, Lam. Sowb., Thes. Conch., f. 15 150
280. Mitra rubritincta, Reeve ($=$ ferruginea). Conch. Icon., f. 147. 150
281. Mitra assimilis, Pease ($=$ coronata). Am. Jour. Conch., iii, t. 15 , f. 1 148
282. Mitra marginata, Sowb. (? = coronata). Thes. Conch., f. 311 148
283. Mitra floridula, Sowb., (= coronata). Thes. Conch , f. 283 148
284, 285. Mitra lugubris, Swains. Sowb., Thes. Conch., f. 200. 201 149
284. Mitra albofasciata, Sowb. (= lugubris). Thes. Conch., f. 300 149
285. Mitra coriacea, Reeve ($=$ lugubris, juv.). Conch. Icon, f. 231 149
286. Mitra picea, Sowb. Thes. Conch., f. 658 150
287. Mitra Uzielliana, Crosse. Thes. Conch., f. 455 150
288. Mitra clara, Sowb. (= ferruginea). Thes., f. 652 150
289. Mitra pudica, Pease. Sowb, Thes. Conch., f. 296 150
290. Mitra subrostrata, Sowb. (三 pudica). Thes. Conch., f. 297 150
29:, 294 . Mitra candida, Reeve. Sowb., Thes. Conch., f. 288, 562 150
295 . Mitra crenata. Swains. Sowb., Thes. Conch., f. 563 151
291. Mitra Lienardi, Souverb. Sowb., Thes. Conch., f. 239 151
292. Mitra Williamsi, Newcomb. Am. Jour. Conch., v, t. 17, f. 5 151
293. Mitra luctuosa, A. Ad. Sowb., Thes., f. 229 151
294. Mitra rutila, A. Ad. Sowb., Thes., f. 221 151
295. Mitra pellis-serpentis, Reeve. Conch. Icon., f. 66 151
Plate 45.
296. Mitra brunnea, l'ease. Specimen 153
297. Mitra brumalis, Reeve ($=$ pellis-serpentis). Sowb., Thes., f. 210.. 151
298. Mitra microstoma, Sowb. ($=$ pellis-serpentis). Thes., f. 291 151
299. Mitra reticulata, Pease ($=$ pellis-serpentis). Sowb., Thes. f. 290.. 151
300. Mitra suturata, Reeve ($=$ pellis-serpentis). Conch. Icon., f. 272. 151
301. Mitra cretacea, Sowb. (= pellis-serpentis). Thes., f. 578. 151
302. Mitra Grelloisi, Recluz ($=$ pellis-serpentis). Jour. de Conch., iv, t. 7, f. 8 151
303. Mitra Nassoides, Sowb. Thes. Conch., i. 631 152
304. Mitra serotina, A. Ad., Sowb. Thes. Conch., f. 216 152
305. Mitra semiferruginea, Jonas. Reeve, Conch. Icon., f. 222 a 152
306. Nitra dealbata, A. Ad. Thes. Conch., f. 571 152
307. Mitra acuminata, Swains. Sowb., Thes. Conch., f. 88. 153
308. Mitra coarctata, Swains. Sowb., Thes. Conch., f. 99 153
309. Nitra brumalis, Reeve (pellis-serpentis). Sowb., Thes., f. 210 151
310. Mitra astricta, Reeve. Conch. Icon., f. 188 154
316, 318. Mitra astricta, Reeve. Sowb., Thes. Conch., f. 208, 224 154
311. Mitra Samuelis, Dohrn ($=$ astricta). Novit., t. 15, f. 1 154
312. Mitra Auriculoides, Reeve. Sowb., Thes., f. 449 154
313. Mitra fastigium, Reeve. Sowb., Thes., f. 435 154
314. Mitra Molleri, Küster. Conch. Cab., t. 17 a, f. 13 154
315. Mitra limbifera, Lam. Sowb., Thes. f. 262 154
323, 324. Mitra Columbellæformis, Kiener ($=$ limbifera). Sowb., Thes., f. 255, 256 154
316. Nitra striata, Gray (= limbifera). Beechey's Voy., t. 36, f. 7 154
317. Mitra Mitchelini, Sowb. (= limbifera). Thes. Conch., f. 259 154
318. Mitra maculosa, Reeve. Conch. Icon., f. 175 155
319. Mitra Arabica, Dohrn ($=$ maculosa). Zool. Proc., t. 26, f. 4, 1861. 155
320. Nitra tristis, Swains. Reeve, Icon., f. 194 155

Plate 46.

figure. page.
330, 331. Mitra chrysostoma, Swains. Sowb., Thes.. t. 8, f. 95, 96. 155
332, 333. Nitra scutulata, Lam. Sowb., Thes., f. 430, 431 155
334. Mitra amphorella, Lam. (=scutulata). Sowb., Thes., f. 432. 155
335. Mitra decurtata, Reeve (三 sćutulata). Sowb., Thes., f. 460 155
336. Mitra oleacea, Reeve ($三$ scutulata). Conch. Icon.f. 105 155
337. Mitra sertum, Duval (= scutulata). Jour. de Conch., iii, t. 7, f. 1. 155
338. Mitra litterata, Lam. Sowb., Thes. Conch., f. 436. 155
339. Mitra maculosa, Reeve ($=$ litterata). Sowb, Thes., f. 442 155
340. Nitra paupercula, Linn. Reeve, Conch. Icon., f. 84 156
341. Mitra virgata, Reeve. Conch. Icon., f. 197 b 156
342. Mitra retusa, Lam. Reeve, Conch. Icon., f. 198 156
343. Mitra virgata, Rfeve ($=$ retusa, Lam.). Conch. Icon., f. 197 a 156
344. Mitra capillata, Gould (= retusa). Wilkes Exped., f. 351. 156
345. Mitra Ziervogeliana, Gmel. Reeve, Icon., f. 136 157
346. Mitra robusta, Reeve ($=$ Ziervogeliana, var.) Icon., f. 140. 157
347. Mitra jucunda (=tigrina). Tapparone-Canefri, Voy. Magenta, t. 1, f. 3 157
348. Mitra tigrina, A. Ad. Sowb., Thes. Conch., f. 438 157
349. Mitra Woldemarii, Kien (= Ziervogeliana, var.). Tconog., f. 139 157
350. Mitra solidula. Reeve (= Ziervogeliana, var.). Conch. Icon., f. 133. 157
351. Mitra Nthiops, Reeve. Conch. Icon., f. 324 158
352. Mitra anthracina, Reeve. Conch. Icon., f. 137 158
353. Mitra choava, Reeve. Conch. Icon., f. 185 158
354. Nitra albomaculata, A. Ad. Sowb., Thes., f. 449 158
355. Mitra Columbellaria, A. Ad. Sowb., Thes. Conch., f. 660 158
Plate 47.
356. Thala foveata, Sowb. Thes. Conch. f. 408 160
357. Thala roseata, A. Ad. Sowb., Thes., f. 664 160
358. Thala solitaria, C. B. Ad. Sowb., Thes. Conch., f. 665 160
359. Thala exilis, Reeve. Sowb., Thes., f. 672. 160
360. Thala todilla, Mighels. Sowb.. Thes., f 673 160
361 . Thala milium, Reeve. Conch. Icon., f. 251 160
362. Thala recurva, Reeve. Conch. Icon., f. 297 160
363. Thala gratiosa, Reeve. Conch. Icon., f. 277 161
364. Thala mirifica, Reeve. Conch. Icon., f. 278 161
365. Thala cernica, Sowb. Thes. Conch., f. 670 161
365. Thala augustata, Sowb. (= cernica). Thes. Conch., f. 671 161
367. Thala angiostoma, Pease ($=$ cernica, var.). Am. Jour. Conch., iii, t. 15 , f. 9 161
368, 369. Thala fusus, Souverb. (= cernica, var.). Jour. de Conch., t. 13, f. 3, 4, 1876 161
370. Thala brevicu!a, Souverb. Jour. de Conch., t. 13. f. 5, 1876 161
371. Thala adumbrata, Souverb. Jour. de Conch., t. 13, f. 6, 1876 161
372. Mitroidea Barclayi, Adams (= multiplicata, Pse.). Sowb., Thes. Conch., f. 310 162
373. Mitroidea Lœbbeckianus, Weink. (=multiplicata). Küster, Pleurot, t. a, f. 1 162
374. Mitroidea Ancillides, Swains. Sowb., Thes. Conch., f. 100 162
375. Mitroidea bellula, A. Ad. Sowb., Thes. Conch., f. 593 163
376. Mitroidea telum, Sowb. Thes. Conch., f. 614. 163
377. Mitroidea infecta, Reeve. Conch. Icon., f. 75 163
378. Mitroidea infecta, Reeve. Sowb., Thes. Conch., f. 607 163
figure. page.
379, 380. Mitroidea Barclayi, Hanley (_infecta). Thes. Conch., f. 225, 612. 163
381. Dibaphus Philippii, Crossc. Sowb., Thes. Conch., f. 608 164
Plate 48.
382. Turricula regina, Sowb. Thes. Conch., f. 53. 164
383. Turricula tæniata, Lam. Sowb., Thes. Conch., f. 52.. 164
384, 385. Turricula vittata, Swains. (=twniata). Keeve, Conch., Icon., f. 50, b, c 164
386. Turricula vittata, Swains. (= teniata). Sowb., Thes. Conch., f. 121. 164
387. Turricula compressa, Sowb. ($=$ teniata). Thes. Conch., f. 50 164
388, 389. Turricula Tayloriana, Sowb. (= tæniata). Thes. Conch., f. 125, 153. 164
390. Turricula coccinea, Reeve ($=$ taniata). Conch. Icon., f. 49 164
391. Turricula Dennisoni, Reeve. Sowb., Thes. Conch., f. 61 165
392. Turricula elegans, Reeve. Sowb., Thes Conch., f. 142 165
393. Turricula sanguisuga, Linn. Sowb., Thes. Conch., f. 91 165
394. Turricula sanguisuga, Linn. Reeve, Conch. Icon., f. 99 165
395. Turricula stigmataria, Lam. (= sanguisuga, var. granosa). Sowb., 165
396, 397. Turricula stigmataria, Lam. Sowb., Thes., f. 48, 49 165
398. Turricula jucunda, Dunker. Journal de Conch., t. 9, f. 11, 1879.. 165
Plate 49.
399. Turricula Stainforthii, Reeve. Conch. Icon., f. 13 166
400. Turricula Stainforthii, Reeve. Sowb., Thes. Conch., f. 136. 166
401, 402. Turricula melongena, Lam. Sowb., Thes., f. 132, 18. 166
403. Turricula lyrata, Lam. Reeve, Conch. Icon., f. 46 166
404. Turricula curvilirata, Sowb. Thes. Conch., f. 129 166
405. Turricula balteolata, Reeve. Conch. Icon., f. 54 166
406. Turricula radius, Reeve. Conch. Icon., f. 309 166
407. Turricula melongena, Lam Reeve, Conch. Icon., f. 47 a 166
408. Turricula costellaris, Lam. Thes. Conch., f. 25. 166
409. Turricula caffra, Linn. Reeve, Conch. Icon., f. 20. 167
410-413. Turricula vulpecula, Linn. Sowb., Thes. Conch., f. 10, 11, 13, 14. 167
414. Turricula umbrosa, Sowb. (= vulpecula). Thes., f. 123. 167
415. Turricula nasuta, Sowb. Thes, f. 623 169
416. Turricula levicostata, Sowb. (= Gruneri). Thes. Conch., f. 139. 168
417. . Turricula Berthæ. Sowh. Zool. Proc., t. 48, f. 11, 1878. 168
418. Turricula Gruneri, Reeve. Sowb., Thes. Conch., f. 131. 168
419. Turricula modesta, Pease ($=$ Gruneri). Am. Jour. Conch., iii, t. 15, f. 6. 168
Plate 50.
420. Turricula plicata, Kiener. Sowb., Thes. Conch., f. 26 167
421. Turricula pullata, Reeve ($=$ plicata, var.). Conch. Icon., f. 102.. 167
422. Turricula pullata, Reeve (= plicata, var.). Sowb., Thes. Conch., f. 43 167
423. Turricula cinctella, Lam. Reeve, Conch. Icon., f. 63 167
424. Turricula zoitalis, Quoy (= caffra). Voy. Astrol., t. 45° bis, f. 16. 167
425. Turricula ornata, A. Ad. Sowb., Thes. Conch., f. 117 169
426. Turricula interrupta, A. Ad. Sowb., Thes. Conch., f, 118 169
FIGURE. PAGE.
427. Turricula fulvolirata (=corrugata). Sowb., Zool. Proc., t. 48, f. 9, 1878. 169
428. Turricula Jukesii, A. Ad. (= corrugata). Sowb., Thes. Conch., f. 116. 168
429. Turricula corrugata, Lam. Sowb., Thes. Conch., f. 42. 168
430. Turricula intermedia, Kiener. Reeve, Conch. Icon., f. 60 168
431. Turricula mirabilis, A. Ad. (= angulosa). Sowb., Thes., f. 629. 159
432. Turricula angulosa, Küster. Sowb.. Thes. Conch., f. 534. 169
433. Turricula salmonea, Sowb. Thes. Conch., f. 375. 169
434. Turricula decora, Reeve. Conch. Icon., f. 234 169
435. Turricula Cumingii, Reeve. Conch. Icon., f. 67. 170
436. Turricula Cumingii, Reeve. Sowb., Thes. Conch., f. 503. 170
437. Turricula dimidiata, Sowb. ($=$ Cumingii). Thes. Conch, f. 396.. 170
438. Turricula clathrata, Reeve ($=$ Cumingii). Conch Icon., f. 71 170
439. Turricula rugosa, Sowb. (?= Cumingii). Reeve, Icon., f. 101. 170
440. Turricula Montrouzieri, Souverb. Jour. de Conch., t. 13, f. 1, 1875. 170
441. Turricula lucida, Reeve. Sowb., Thes. Conch., f. 541 170
442. Turricula nodulifera, A. Ad. Sowb., Thes. Conch., f. 530. 170
443. Turricula modesta, Reeve. Conch. Icon., f. 254 170
Plate 51.
444, 445. Turricula cineracea, Reeve. Sowb., Thes. Conch., f. 494, 495. 171
446. Turricula Judæorum, Dohrn. Jahrb. Mal. Gesell., i, t. 2, f. 7 171
447. Turricula militaris, Reeve. Conch. Icon., f. 236 b 171
448. Turricula Antonelli, Dohrn (= militaris, var.). Thes. Conch., f. 586 171
446. Turricula lubens, Reeve ($=$ militaris, var.). Conch. Icon., f. 331. 171
450. Turricula compta, A. Ad. (= militaris, var.). Thes. Conch., f. 540. 171
451. Turricula turricula, A. Ad. (= militaris). Sowb., Thes., f 647.... 171
452. Turricula bella, Pease ($=$ militaris, var.). Sowb., Thes.. f. 376 171
453. Turricula cophina, Gould (= militaris, var.). Wilkes' Exped., f. 335 171
454. Turricula cimelium, Reeve ($=$ militaris). Sowb., Thes., f. 643 171
455. Turricula rorata, Gould (= militaris). Sowb., Thes. Conch., f. 240. 171
456. Turricula interstriata, Sowb. Thes. Conch., f. 392 172
457. Turricula corbicula, Sowb. Thes. Conch., f. 538 172
458. Turricula Collinsoni, A. Ad Zool. Proc., t. 20, f. 50, 1879 172
459. Turricula Suluensis, Ad. and Rve. Sowb., Thes. Conch., f. 606 172
460. Turricula fuscoapicata, Smith (= Collinsoni). Zool. Proc., t. 20, f. 49,1879 172
461. Turricula Gotoënsis, E. A. Smith (=Collinsoni). Zool. Proc., t. 20, 172
f 51,1879 172
462, 463. Turricula cruentata, Cbemn. Sowb., Thes. Conch, f. 138, 144. 173
461. Turricula cruentata, var proxima. Reeve, Conch. Icon., f. 126. 173
465. Turricula exarata, A. Ad. (= cruentata, var.). Sowb., Thes. Conch., f. 602. 173
466. Turricula ligata, A. Ad. (= cruentata, var.). Sowb., Thes., f. 584. 173
467. Turricula buccinoidea, Sowb. Thes. Conch., f. 411 173
468. Turricula larva, Lam. (= cruentata, var.). Kiener, Iconog., t. 26, f. 82 173
469. Turricula armillata, Reeve ($=$ cruentata, var.). Cench. Icon., f. 315 173
470. Turricula Schomburgki, Angas. Zool. Proc., t. 18, f. 12, 1878. 173
471. Turricula alba, Pease. Specimen 129
FIGURE． PAGE．
472，473．Turricula semifasciata，Lam．Reeve，Conch．Icon．，f． 131 a，b． 174
474．Turricula semisculpta，Ad．\＆Rve．Sowb．，Thes．，f． 159. 174
475．Turricula mucronata，Swains．Sowb．，Thes．Conch．，f． 377. 174
476．Turricula concentrica，Reeve（ $=$ mucronata）．Conch．Icon．．f． 128. 174
477．Turricula fusiformis，Reeve（ $=$ mucronatia）．Conch．Icon，f． 132 b ． 114
478．Turricula obtusispinosa，Sowb．（＝mucronata）．Thes．Conch．， f． 373. 174
479．Turricula ecbinata，A．Ad．（＝mucronata）．Sowb．，Thes．，f．379．． 174
Plate 52.
480．Turricula nodilirata，A．Ad．（＝mucronata）．Sowb．，Thes．，f．385． 174
481．Turricula fusiformis，Chemn．（＝mucronata）．Sowb．，Thes．，f． 384. 174
482．Turricula Dohrnii，A．Ad．（二mucronata）．Sowb．，Thes．Conch．， f 131 174
483．Turricula verrucosa，Reeve．Conch．Icon．，f． 232 174
484，485．Turricula fusiformis，Kiener．Iconog．，t．29，f． 97 175
486．Turricula rustica，Sowb．（ $=$ Deshayesii）．Sowb．，Thes．，f． 143 187
487．Turricula spicata，Reeve（二 fusiformis）．Sowb，Thes．Conch．， f． 383. 175
488．Turricula turriger，Reeve（ $=$ fusiformis）．Conch．Icon．，f． 262. 175
489．Turricula armiger，Reeve（ $=$ fusiformis）．Conch．Icon．，f． 288 175
490．Turricula purpurata，Reeve．Conch．Icon．，f． 275 175
491．Turricula dædala，Reeve（＝purpurata）．Conch．Icon．，f． 281 175
492．Turricula cineracea，Reeve（＝purpurata）．Conch．Icon．，f．311．． 175
493．Turricula cælata，Reeve．Conch．Icon．，f． 265. 175
494．Turricula sculptilis，Reeve（＝cælata）．Conch．Icon．，f． 290 175
495．Turricula mica，Reeve（ $=$ cælata，var．）．Conch．Icon．，f． 314 175
496．Turricula inermis，Reeve．Conch．Icon．，f． 279 175
497．Turricula rectilateris，Sowb．Thes．Conch．，f． 404. 175
498．Turricula rubella，Ad．and Reeve．Sowb．，Thes．Conch．，f． 594 176
499．Turricula scitula，A．Ad．Sowb．，Thes．，f． 418 176
500．Turricula intertæniata，Sowb．Thes．Conch．，f． 154 176
501．Turricula rustica，Reeve．Conch．Icon．，f． 329 176
502．Turricula Deshayesii，Reeve．Conch．Icon．，f． 170 176
503．Turricula Deshayesii，Reeve．Sowb．，Thes．，f． 618 176
504．Turricula rigida，Reeve（ $=$ Deshayesii）．Conch．Icon．，f． 169. 176
505．Turricula Michaudi，Cr．\＆Fischer（二Deshayesii）．Sowb．，Thes．， f． 157 176
506，507．Turricula alauda，Quoy（＝Deshayesii）．Sowb．，Thes．，f．134， 158. 176
508．Turricula amanda，Reeve．Conch．Icon．，f． 318 176
509．Turricula casta，H．Adams．Sowb．，Thes．Conch．，f． 632 177
510，511．Turricula subulata，Lam．Sowb．，Thes，Conch．，f．149， 150. 177
512．Turricula macrospira，A．Ad．Sowb．，Thes．Conch．，f． 146 177
513．Turricula Lincolnensis，Angas．Zool．Proc．，t．18，f．10， 1878. 177
614．Turricula filistriata，Sowb．Thes．Conch．，f． 402 177
Plate 53.
515．Turricula catenata，Swains．Reeve，Conch．Icon．，f． 259 178
516．Turricula lilacina，Sowb．Thes．Conch．，f． 634 178
517，518．Turricula marmorea，A．Ad．Sowb．，Thes．，f．635， 636 178
519．Turricula Arracanensis，Sowb．Thes．Conch．，f． 473 178
520．Turricula rorata，Gould（二Zebuensis）．Moll．Wilkes＇Exp．，f． 354. 179
521．Turricula crebrilirata，Reeve．Conch．Icon．，f． 92 178
FIGURE. PAGE.
522. Turricula rosea, Kiener ($=$ crebrilirata). Iconog., t. 23, f. 73...... 178
523. Turricula tenuilirata, Sowb. (= crebrilirata). Thes. Conch., f. 407. 178
524. Turricula rubricata, Reeve (= crebrilirata). Conch. Icon., f. 130. 178
525. Turricula subtruncata, Sowb. (= crebrilirata). Thes. Conch., f. 405. 178
526. Turricula Layardi, A. Ad. (= crebrilirata). Sowb., Thes., f. 590.. 178
527. Turricula Zebuensis, Reeve. Conch. Icon., f. 73 179
528. Turricula Zebuensis, Reeve. Sowb., Thes. Conch.. f. 192. 179
529. Turricula prætexta, Sowb. (= Zebuensis). Thes. Conch., f. 198... 179
530. Turricula Japonica, A. Ad. ($=$ crebrilirata). Thes. Conch., f. 156. 178
531. Turricula rufomaculata, Souv. Jour. de Conch., 2 ser., iv, t. 11, f. 9 179
532, 533. Turricula acupicta, Reeve. Sowb., Thes. Conch., f. 372, 548.. 179
534. Turricula puncturata, Sowb. Zool. Proc., t. 48, f. 5, 1878 179
535. Turricula obeliscus, Reeve. Thes. Conch., f. 127 179
536. Turricula MacAndrewsi, Sowb. Thes. Conch., f. 421 179
537. Turricula radix, Sowb. Thes. Conch., f. 552 180
538. Turricula longispira, Sowb. Thes. Conch., f. 403. 180
539. Turricula Athiopica, Jickeli. Jahrb. Mal. Gesell., i, t. 2, f. 9 180
540. Turricula crispa, Garrett. Specimen 180
541. Turricula exasperata, Gmel. Gould, Moll., Wilkes' Exped., f. 350. 180
542-544. Turricula exasperata, Gmel. Sowb, Thes. Conch., f. 419, 424, 425 180
Plate 54.
545, 546. Turricula arenosa, Lam. (= exasperata). Sowb., Thes., f. 322, 427 180
447. Turricula asperima, Dohrn. Dunker, Novit. Conch., t. 15, f. 3..... 181
548. Turricula cadaverosa, Reeve. Conch. Icon., f. 160 181
549. Turricula cadaverosa, Reeve. Sowb., Thes. Conch., f. 628 181
550. Turricula Pacifica, Reeve (= cadaverosa). Sowb., Thes. Conch., f. 388. 181
551. Turricula mutabilis, Reeve ($=$ cadaverosa). Conch. Icon, f. 235. 1 181
552. Turricula brevicaudata, Sowb. (= cadaverosa). Thes. Conch., f. 410. 181
553. Turricula Pharaonis, H. Ad. (= cadaverosa, var.). Zool. Proco., t. 3, f. 1, 1872 181
554. Turricula subquadrata, Sowb. (=cadaverosa, var.). Thes. Conch. f. 485 181
555. Turricula spreta, A. Ad. Sowby., Thes. Conch., f. 648 182
556. Turricula roseocaudata, Hanley. Sowb., Thes., f. 655. 182
557. Turricula latercula, Sowb. Thes. Conch., f. 651 182
558. Turricula zelotypa, Reeve. Sowb., Thes. Conch., f. 510 182
559. Turricula dermestina, Lam. Reeve, Icon., f. 143 182
560. Turricula cavea, Reeve (= dermestina). Icon., f. 149 182
561. Turricula Adamsi, Dohrn (= dermestina). Novit. Conch., t. 15, f. 10 182
562. Turricula pulchella, Reeve ($=$ dermestina). Conch. Icon., f. 142.. 182
563. Turricula pisolina, Lam. (= dermestina). Kiener, Iconog., f. 90.. 182
564. Turricula ansulata, Sowb. (= dermestina). Thes. Conch., f. 474... 182
565. Turricula histrio, Reeve (= dermestina). Conch. Icon., f. 144..... 182
566. Turricula consanguinea, Reeve ($=$ dermestina, var.). Icon., f. 241 182
567. Turricula Tatei, Angas. Zool. Proc., t. 54, f. 8, 1878. 183
568. Turricula microzonias, Lam. Reeve, Conch. Icon., f. 185 183
569. Turricula microzonias, Lam., var. Reeve, Icon., f. 202 183
figure. PAGE.
570. Turricula lota, Reeve. Conch. Icon., f. 239 186
571. Turricula lota, Reeve. Conch. Icon., f. 310 186
573. Turricula pardalis, Küster. Conch. Cab., t. 17, f. 14 183
574. Turricula lauta, Reeve ($=$ pardalis). Conch. Icon., f. 244. 183
575. Turricula leucodesma, Reeve ($=$ pardalis) Conch. Icon., 243 183
Plate 55.
576. Turricula infausta, Reeve. Sowb., Thes. Conch., f. 513 189
577. Turricula fortiplicata, Pease. Am. Jour. Conch. iii, t. 15, f. 3 189
578. Turricula plicatula, Pease ($=$ Emiliæ, Schm.). Am. Jour. Conch. iii, t. 15, f. 4. 189
579. Turricula rosea, Swains. Reeve, Conch. Icon., f. 300. 189
580. Turricula discoloria, Keeve. Sowb., Thes. Conch., f. 516. 189
581. Turricula mediomaculata, Sowb. Thes. Conch., f. 472. 184
582. Turricula cernica (=mediomaculata), Nevill. Jour. Asiat. Soc. Beng., t. 1, f. 9, 1874. 184
583. Turricula puella, Reeve. Conch. Icou., f. 276. 184
584. Turricula turturina, Souverb. Jour. de Conch., t. 1, f. 2, 1877 184
585. Turricula cremans, Reeve. Specimen 184
586. Turricula alveolus, Reeve. Conch. Icon., f. 334 184
587. Turricula aperta, Sowb. Thes. Conch., f. 321 185
588. Turricula millecostata, Swains Reeve, Conch. Icon., f. 301 185
589. Turricula luculenta, Reeve. Conch. Icon., f. 245 185
590. Turricula dichroa, Ad. \& Rve. (= luculenta). Voy. Samarang, t. 10 f. 29. 185
591. Turricula Gräffei, Crosse (= luculenta). Jour. de Conch., t. 11, f. 6,1867 185
592. Turricula nigrofasciata, Sowb. (=luculenta). Thes. Conch., f. 468. 185
593. Turricula lævizonata, Sowb. (=luculenta). Thes. Conch. f. 469. 185
434. Turricula tricolor, Montrouz. ($=$ luculenta). Jour. de Conch., t. 11, f. 2, 1861 185
595. Turricula crocata, Lam. Kiener, Iconog., t. 27, f. 85. 187
596. Turricula crocata, Lam. Reeve, Conch. Icon., f. 206. 187
597. Turricula concinna, Reeve (=crocata). Conch. Icon., f. 203 187
598. Turricula pyramidalis, Reeve. Sowb., Thes. Conch., f. 390 187
599. Turricula cithara, Reeve. Conch. Icon., f. 248 186
600. Turricula aureolata, Swains. Reeve, Conch. Icon.. f. 210. 186
601. Turricula crocata, Auct. ($=$ aureolata). Specimen 186
602. Turricula multicostata, Swains. (= aureolata). Reeve, Icon., f. 322 185
603. Turricula crocea, Reeve ($=$ aureolata). Conch. Icon., f. 320 186
604. Turricula venustula, Reeve ($=$ aureolata). Sowb., Thes., f. 501. 186
605. Turricula flavescens, Reeve ($=$ aureolata). Conch. Icon., f. 207... 186
606. Turricula affinis, Reeve (= aureolata). Conch. Icon., f. 211 186
607. Turricula plicatissima, Schröter. Küster, t. 17 b, f. 11 188
608, 609. Turricula rubra, Sowb. Thes. Conch., f. 203, 394 188
610. Turricula paligera, Sowb. Thes. Conch., f. 515 189
Plate 56.
611. Turricula amabilis, Reeve. Conch. lcon., f. 274. 189
612. Turricula Nicobarica, Frauenf. Voy. Novara, t. 1, f. 5 190
613. Turricula ficulina, Lam. Reeve, Conch. Icon., f 141. 190
614. Türricula gausapata, Reeve (= ficulina). Conch. Icon., f. 317. 190
FIGURE. PAGE.
615. Turricula forticostata, Reeve ($=$ ficulina). Conch. Icon., f. 238... 190
616. Turricula zebrina, d'Orb. Sowb., Thes. Conch., f. 481 190
617. Turricula putillus, Pease. Sowb. Thes. Conch., f. 482. 190
618. Turricula semen, Reeve. Conch. Icon., f. 256 190
619. Turricula trunculus, Sowb. Thes. Conch., f. 319. 190
620. Turricula muriculata, Lam. Reeve, Conch. Icon., f. 205 191
621. Turricula patriarchalis, Lam. Reeve, Conch, Icon., f. 146 b 191
622. Turricula tuberosa, Reeve ($=$ patriarchalis). Conch Icon., f. 237 a 191
623. Turricula semitica, Jickeli. Jahrb. Mal. Gesell. i, t. 2, f. 8 194
624. Turricula festa, Reeve. Conch. Jcon., f. 303 194
625. Turricula elegantula, Küster (= patriarchalis). Conch. Cab., t. 17, f. 7 191
626. Turricula porphyretica, Reeve. Conch. Icon., f. 195 191
627. Turricula Osidiris, Issel. Sowb., Thes. Conch., f. 488 191
628. Turricula umbonata, Sowb. (= Osidiris). Thes., f. 400 191
629. Turricula tumida, Reeve. Sowb., Thes. Conch., f. 65 192
630. Turricula zebrina, d'Orb. Moll. Canaries, t. 6, f. 31 190
631. Turricula interrupta, Anton. Küster, Conch. Cab., t. 15, f. 2. 192
632. Turricula nodulosa, Pease. Am. Jour. Conch. iii, t. 15, f. 5 192
633. Turricula encausta, Gould. Moll., Wilkes' Exped., f. 356. 192
634. Turricula speciosa, Reeve. Sowb., Thes. Conch., f. 415. 192
635. Turricula variata, Reeve. Conch. Icon., f. 209. 193
636. Turricula discors, Grand. Küster, Conch. Cab., t. 17 d, f. 4 193
637. Turricula glabra, Pease ($=$ discors). Am. Jour. Conch. iii, t. 23, f. 2. 193
638, 639. Turricula nodosa, Swains. Sowb. Thes. Conch., f. 269, 268.. 193
640. Turricula fraga, Kiener (= nodosa). Iconog., t. 27, f. 87. 193
641. Turricula pinguis, Reeve (= nodosa). Conch. Icon., f. 304 193
642. Turricula tusa, Keeve. Conch. Icon., f. 283 193
Plate 57.
643. Turricula pupula, Dunker. Specimen 194
644. Turricula Savignyi, Payr. ($=$ tricolor, Gmel.). Reeve, Icon., f. 307. 194
645. Turricula granum, Forbes ($=$ tricolor). Reeve, Conch., Icon., f. 261 194
646. Turricula littoralis, Forbes ($=$ tricolor). Reeve, Icon., f. 296 194
647. Turricula clandestina, Forbes ($=$ Columbellaria). Sowb., Thes., f. 6, 641 195
648. Turricula suavis, Sowerb. Jour. de Conch., t. 13, f. 2, 1875. 195
649. Turricula pusilla, A. Ad. Sowb., Thes. Conch., f. 644 195
650. Turricula æmula, Smith Zool. Proc., t. 20, f. 52, 1879. 196
651. Turricula pallida, Issel (=tricolor). Ann. Mus. Civ. Genoa, xi, 419. 194
652. Turricula Columbellaria, Scacchi. Küster, Conch. Cat., t. 17 e, f. 19. 195
653. Turricula Greci, Phil. (= Columbellaria). Moll. Sicil., ii, t. 27, f. 18. 195
654. Turricula Hanleyi, Dohrn. Novit. Conch., t. 15, f. 7 195
655. Turricula corallina, Reeve. Conch. Icon., f. 330 a 195
656. Turricula articulata, Reeve. Iconica, f. 302 196
657. Cylindra nux, Sowb. Thes. Conch., f. 348 198
658. Cylindra dactylus, Linn. Sowb., Thes. Conch., f 346 197
659. Cylindra nucea, Gronov. Sowb, Thes., f. 360. 196
660. Cylindra ornata, Sch. \& Wag. Küster, Conch. Cat., t. 9, f. 12 197
figure. page.
661. Cylindra Potensis, Montr. (= dactylus). Jour."de Conch., 2d ser., iv, t. 2, f. 2. 197
662, 663. Cylindra crenulata, Gmel. Sowb., Thes. Conch., f. $354,355$. 197
664. Cylindra undulosa, Reeve ($=$ crenulata). Conch. Icon., f. 102. 197
665. Cylindra radula, Sowb. (= crenulata). Thes. Conch., f. 358 197
666. Cylindra arctata. Sowb. (= crenulata). Thes. Conch., f. 317 197
667. Cylindra glans, Reeve (= fenestrata). Sowb., Thes., f. 352. 198
668. Cylindra Sinensis, Reeve. Conch Icon., f. 190 b 198
669. Cylindra punctata, Swains. Reeve, Conch. Icon., f. 168. 198
670. Cylindra lima, Sowb. ($=$ Sinensis). Thes. Conch., f. 353 198
671. Cylindra fenestrata, Lam. Sowb., Thes., f. 363 198
Plate 58.
672. Imbricaria conus, Reeve (=conulus Lava). Icon., f. 83 199
673. Imbricaria marmorata, Swn., (= conica Schum). Quoy, Voy. Astrol., t. 45 bis, f. 1 199
674. Imbricaria Crouani, Crosse. Jour. de Conch.. t. 9, f. 6, 1868 199
675. Imbricaria citrina, Reeve. Sowb., Thes. Conch., f. 367 199
676. Imbricaria carbonacea, Hinds. Voy. Sulphur, t. 11, f. 10 199
677. Imbricaria Rollandi, Bern. ($=$? carbouacea). Jour. de Conch., iv, t. 1, f. 7 199
678. Imbricaria lineata, Swains. Zool. Illust., 1st ser., i 200
679. Imbricaria ossea, Reeve ($=$ punctata, Swn.). Icon, f. 219 200
680. Imbricaria truncata, Kiener (?= punctata). Iconog., t. 30, t. 101. 200
681. Imbricaria conovula, Quoy (= punctata). Voy. Astrol., t. 45 bis, f. 19. 200
682. Imbricaria Deburghix, Sowb. (= Vanikorensis): Zool. Proc., t. 48, f. 12, 1878 200
683. Imbricaria virgo, Swainson. Sowb., Thes. Conch., f. 313 200
684. Imbricaria Vanikorensis, Quoy. Reeve, Icon., f. 220 200
685. Mitra picea, Pease Specimen 150
686. Mitra vibex, A. Ad. (= cruentata, var.). Sowb., Thes. Conch., f. 599 173
687. Mitra coronata, Sowb. Ibid., f. 217 148
688. Mitra gemmata, Sowb. Thes. Conch., f. 649 150
689. Mitra tuberosa, Reeve ($=$ patriarchalis). Sowb., Thes. Conch., f. 267. 191
690. Mitra granata, Reeve ($=$ pellis-serpentis). Conch. Icon., f. 271 151
691. Mitra modesta, Reeve. Sowb., Thes. Conch., f. 539 170
692. Mitra bacillum, Sowb. Thes. Conch., f. 312. 141
693. Mitra fidicula, Gould. Moll. Wilkes' Exped., f. 353 175

MITRID A.

356
 362

$$
357
$$

368

373

379

359

365

370
$3 / 2$

380

371

381

MITRIDA.

426

437

39

433

424

MITRIDE.
PIATE 53.

y

RETURN TO the circulation desk of any University of California Library or to the
NORTHERN REGIONAL LIBRARY FACILITY Bldg. 400, Richmond Field Station
University of California
Richmond, CA 94804-4698
ALL BOOKS MAY BE RECALLED AFTER 7 DAYS

- 2-month loans may be renewed by calling (510) 642-6753
- 1-year loans may be recharged by bringing books to NRLF
- Renewals and recharges may be made 4 days prior to due date.

DUE AS STAMPED BELOW

'APR 101997

UN 132000

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

No 551355

Tryon, G.W.
QL403
176
Manual of conchology.
ser. 1
v. 4

[^0]: * Messrs. H. and A. Adams in their "Genera of Recent Mollusca," hare made a Genus Amycla in Columbellidæ, and included in it some species which are decidedly Nassids; the dentition of one of these erroneonsly placed species, N. (Bucc.) cornicula, Olivi (Pl. 3, fig. 24), has been figured by Troschel as a type of that of the genus Amycla, - which he has accordingly removed to Nassidæ.
 \dagger Nassodonta, H. Adams. Shell oval; spire short, last whorl sulcate anteriorly; aperture sinuated in front, canaliculate behind; columella callous, plicate anteriorly; lip acute, thickened and dentate within, with an anterior marginal denticulation. Operculum and animal unknown. I have included the single species in Zeuxis.

[^1]: * H. and A. Adams have also a subgenus Uzita, but its characters are not different from those of Tritia, whilst its species are, many of them, evidently better placed in other groups: a large number of them, for instance, possess the marginal varix, the absence of which is one of the characters of the group. Uzita can be advantageously dispensed with.

[^2]: *As one of the two specimens of the type of Paranassa is striate within the aperture, while the other is smooth, probably the distinction from Ptychosalpinx will not hold good.

[^3]: * Soubeiran, Bull. Soc. d'Acelimatation, 2 Ser., iii, 3, 1866.
 \dagger "On the variation of sculpture exhibited in the shells of the genus Nassu." "On forty proposed new forms in the genus Nussa," etc.
 + "On the Varieties of the Shells belonging to the genus Nasar."

[^4]: * Brit. Conch., iv, 348.

[^5]: * Jour. Linn. Soc., xii, 107.

[^6]: * Gould, Invert. Mass., Binney's edit., 362.

[^7]: * Conrad has formed a genus Mazzalina (uncharacterized), for a Claiborne fossil, which seems to have suggested to him the recent genus Mazza (= Turbinella). The type is, I believe, more nearly related to Lagena from which it does not appear to have any differential characters (see vol. iii, p. $2 \cdot \mathfrak{j}$).

[^8]: * Simmonds' Commercial Products of the Sea, 288.
 \dagger Wilson, Canad. Nat., iii, 400, 1858.

[^9]: * Voy. Samarang, 43.

[^10]: * Mörch, Jour. de Conch., xv, 241, 1867.

[^11]: * Dr. J. E. Gray, Ann. Mag. N. Hist., 310, 1868.
 † Gray, Beechey's Voy., 134.

[^12]: * I am by no means convinced that Volutifusus should be separated from Scaphella.-Gabb.

[^13]: * Ann. Mag. N. Hist., 3d ser. vii, 271.

[^14]: * Jour. de Conch., xv, 355, 1867.

[^15]: * Jour de Conch., 105, 1866.

[^16]: * Catalogue of the Polynesian Mitridæ, in the (English) Journal of Conchology, iii. A very valuable paper, from which I have drawn largely for these pages.

[^17]: * Arthur Adams, Moll. Voy. Samarang, 26, 27.

[^18]: * Belcher, Narrative of Voy. of Samarang, ii, 448, 1848.

[^19]: * Bull. Mal. Ital., iii, 75.

[^20]: * Leeds Jour. of Conch., iii, 2.

