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P R E F A C E

HE purpofe of thefe Memoirs is to improve the va-
rious branches of fcience in which mathematical rea-
foning is neceflary, by illuftrating its ufe in treating of a va-
§ riety of interefting fubje@s: —and, thereby, furnithing fuch
N Pprecedents as may be the means of enabling the reader, who
N\ may be curious either in Analytics, Geometry, or Mechanics,
™ to apply fuch reafoning to new fubjects; and to deduce,
® from clear principles, with as much facility as poﬂible,
9 the moft fatisfatory conclufion the nature of the fubject
- may admit of, in any difquifition, that he may be induced
to attempt, to which any method of computation propofed

to be explained in this Work may be applicable.

To promote the defign of the Work, the Theorems for
the calculation of Fluents in the Appendix, I prefume,
will be found of very confiderable ufe: the Tables con-
taining thofe theorems being, perhaps, more complete
and extenfive than any that are to be met with in other
books on the fame fubje@.—I do not take upon me to
fay, that a// the theorems in my Tables are of my own
invention ;—1I truft, it is enough to fay, that moff of them
are : —fome indeed that have been publithed by other
writers are inferted, to make the Sez the more complete.

How the principal theorems in the Tables are invefti-
gated may be colleted from the Memoirs relative thereto,
which will appear in the courfe of the Work.

Thefe Papers, befides furnithing precedents for facili-
tating computations, will, it is prefumed, be found to
A2 afford
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afford many new geometrical and philofophical Improve-
ments (_)f confiderable importance.

The new demonftration of the property of the ftraight

Lever, and fome other articles, in the firft Memoir, I con-
ceive, may probably give pleafure and fatisfation to fome
readers, who may be particularly curious in fuch difquifi-
tions.—But I almoft aflure niyfelf, there are few geome-
tricians who will not be pleafed with the difcovery of the
theorem in the fecond Memoir, which enables us 76
affign the length of any arc of any comic hyperbela by means
of two elliptic arcs :—a thing which, I am inclined to be«
liecve, had not even been thought poffible by former
writers on the properties of thofe curves; and of whofe
ufe there are many remarkable inftances in the following
pages. _
The new theorems in the third and fixth Memoirs,
refpe@ing the motion of a Pendulunr, I am induced to
think, will not be unacceptable to readers who under-
ftand what had before been publithed concerning fuch
motion.—And I am perfuaded that the new method of
computation, whereby the fums of many feries are ob-
tained, in the fifih Memoir, will engage the attention of
the intelligent analyft; and incite him to exercife his fkill
in the farther application of that method.

- With regard to fuch matters (in thefe Memoirs) as have
been confidered by other writers, I muft particularly ac-
knowlege, that my fourth Memoir is on a fubje® upon
which the celebrated Mr. D’ALEMBERT, as I have lately
found, has written at fome length, in his Opufcules Ma-
thematiques: yet, 1 flatter myfelf, that the critical reader
will find, in that Memoir, a great number of new and
interefting articles, among(t which are fome very re-

’ ' markable
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markable inferences refpecting the gyration of certain
bodies there fpecified.

We may underftand by what is faid in the fifth Tome
of the Opufeules juft now named, that, after the perufal
of what had been written on the fubje®, a doubt re-
mained with fome mathematician, whofe name is not there
mentioned,—whether there be any [olid, befides the fphere,
in whick any line whatever, paffing through its center of gra-
vity, will be a permanent axis of rotation ?—Upon that point
(which fome perhaps may think is not very fatisfactorily
explained by Mr. D'ALeMBERT ¥) I have touched a little
in the Philofophical Tranfaitions for the year 1777; but;
in the Memoir here alluded to, I have, it is prefumed, fo
fully explained the matter as to obviate or remove every

doubt concerning it.

T the feventh, eighth, -and ninth -Memoirs, in which:
the motion of a projeitile is confidered, the reader will
find fome propofitions before confidered by many authors;
neverthelefs I perfuade myfelf, that what I have written
refpe@ing thofe propofitions will not be deemed trite and:
uninftru@ive.—Moreover, there are (in thofe Memoirs)
fome neiv refearches concerning the motion of bodies,.
which the ingenious mathematician may poffibly find not.
unworthy of his regard.

It may be obferved, that the common do&rin¢ of cen-
tripetal forces comprehends orly a part of what is ne-
ceflary to be underftood in order to-determine in genéral.
the path of a proje@ile and its motion therein, from a-
knowlege of its velocity and diretion at any given time,.

® He bas not given one inftance of a body having the remarkable pro-
perty in queftion!.

N and
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and of the force or forces a&ing thereon whilft moving;—
there being innumerable cafes in which fuch force or
forces may not continually urge the body towards a cer-
tain center as the faid common do&rine fuppofes.—The
deficiency of that do@rine in the books publifhed on that
fubje@, I have endeavoured in fome meafure to fupply in
the three Memoirs laft mentioned :—and, as a farther ap-
plication of the principal theorems in thofe Memoirs may
be requifite to explain fufficiently the gencral dorine of
a projecile’s motion, I purpofe to make fuch application
in fome fubfequent Memoirs refpeing propofitions too
intricate to be confidered among& the examples which I
thought proper to be given in the Memoirs wherein thofe
principal theorems are inveftigated.

Suppofing the reader to know what is meant by any
term commonly ufed in mathematical writings, 1 fhall
feldom formally define the technical terms I may make
ufe of in thefe Memoirs; but, that I may not be mif-
underftood, I fhall endeavour particularly to explain my
meaning, where, by ufing a new term or an ambiguous
old one, I apprchend fome explanation is neceflary :—my
defign' being to treat the fubje@ts I may take upon me to
confider—per{picuoufly, but not prolixly ;—in the profe-
cution of which, I fhall lay down the principles requifite
in computations, and fhew how from thence conclufions
may be readily deduced, as well in fuch propofitions as

are generally reckoned abftrufc as in fuch as are cﬁcemcd

more cafily inveftigable.

j. LANDEN.

Y- ——— ——
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A}

Of the Mechanic Powers, fo far as relates to Equilibriums.

RITERS on the mechanic powers have, gene-
nerally, founded their demonftrations of the pro-

perties of thofe powers, on a principle which has been
obje&ed to, as obfcure and unnatural. For, in treating
of Equilibriums (where. no moving bodies a& on each
other,’or are any way concerned in the enquiry), they have
negle@ed the proper principles of that do&rine, and have
borrowed a foreign, lefs evident, one from a confideration
of motion. They infer from the do@rine of motion, that
¢ as thofe bodies are equipollent in the congrefs and re-
¢¢ flexion, whofe velocities are reciprocally as their innate
¢ forces: fo, in the ufe of mechanic inftruments, thofe
¢ agents arc equipollent and mutually fuftain each the
« contrary preflure of the other, whofe velocities, efti-
B ¢ mated
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“ mated accarding to the determination of the forces, are
s reciprocally as the forces.” This, properly underftood,
is indeed true; and being admitted, renders the bufinefs of
the writer on the fubjet of thofe inftruments very cafy.:
yet, as it is not a clear and natural inference, but rather.a
theorem, wanting a demonftration, afflumed as a priaciple;
and many have exprefled a diflatisfation at the manner
in which this fubje@ is ufually treated ; it may be of ufe
to confider the matter in a different light, and to build our
demonftrations on principles more natural and evident.
Such, 1 prefume, are thofe upon which, without any re-
gard to the do@rine of motion, I purpofe to eftablith the:
fundamental parts of this do&rine.

As we fhall all.along, in this memoir, have frequent.
occafion to confider the tenfions of ftrings drawn. over:
pullies, it will beft fuit our purpofe to begin with the ex-.
plaining the properties of thofe inftruments.

1. The tenfion of a ftring, by what means foever it be-

.ﬂretched is faid to be equal to that weight which would:

ftretch it juft as much, being faltened to .one end of it
and fuftained by it, whilft the ﬁrmg itlelf is fufpended at-
reft, in a vertical pofition, by its other end.

_ 2. Any firing, which is no where faftened to any thmg;
but at its ends, will, in every part of it, be equally
firetched by any force a@ing upon it, fuppofing it void of-

gravity.
3. If a firing ABCDEF G.be drawn. ever the immove-

able pullies B, C, D, E, F; and one end of it (G) be--
ing faftened to the ﬁxed point G, a weight A be faftened
to the other end ; the ftring will in every part be equally
firetched, and the parts AB, BC, CD, EF, FG, of the:
ftging being all fuppofed perpendicular to the horizon, t:;
poins:
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point G will be pulled upwards by a force equal to (A) the
firing’s . tenfion’; and, the reaction of the point G being
equal to (A), the a&ion thereon, it ¢vidently follows, that
- each of the lower pullies (C, E) will be pulled upwards,
and each of the upper pullies (B, D, F) pulled downwards,
by twice that force. :

4. The rea@ion of the point G being equal to A, the
aion thereon, and the rcaction of each of the pullies
being equal to 2A ; if, inftead of faftening the end G to
an immoveable obftacle, a weight equal to A were fufpend-
ed by it; or if any pulley, inftead of being faftened to
an immoveable obftacle, were pulled againft the ftring
"ABCDEFG by a fufpended weight equal to 2A, the
refiftance oppofing the aQion of that firing would be the
fame, and the ftring would be ftretched as before, and re-
main at reft. ‘
* 5. Any of the lower pullies, with or without the end

F‘i‘- 2.

F: i‘O 3

Fig. 4.

G, being faftened to one weight only; it follows, that if Fis-s-

that weight be to the wéight A as the number of parts
(BC, CD, &c.) of the ftring pafling between the greater
of the two weights and the upper pullies is to unity, the
ftring will have the fame tenfion as if the pullies and
end G were all faftened to the immoveable obftacle; and
it will likewife remain without motion, its a&ion being
equally refifted in both cafes.

Thus it appears, that, by drawing a-ftring over -feveral
pullies, it may be made to fuftain various weights, whil@t
its tenfion remains the farse; and that, by fuch-means, a
very great weight may be made to reft in equilibrip with a
much lefler one. .

6. If a ftring' ABCD' be drawn’ oveér thé pullies B.and
C, and, onc end of it being faftened to a fixed point D;
" B2 a weight

Fig. &
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a weight A be fufpended at the other end; the pulley B
being an immoveable one, and C faltened to. one end ¢ of
another ftring cde, which is drawn over an immoveable
pulley 4, and has its other end faftened to a fixed point
e; and the parts AB, BC, CD, cd, de, of the ftrings
being all perpendicular to the horizon ; the tenfion of the
ftring ABCD will be equal to A, and the pulley C will
be pulled upwards by twice that force. Confequently the
ftring cde oppofing the afcent of that pulley (C) will have
its tenfion equal to 2A, and the pulley 4 will be pulled
upwards by a force equal to 4 A.

‘Therefore, -according to what has been before obferved,

- if inftead of the pulley 4 being.faftened to an immoveable

obftacle, a weight equal to 4A be fufpended by it, the
a&ion of the ftring cde will be refifted as before; and the
weights A and 44, it is evident, will reft in equilibrio.
-The application of this method of reafoning to any
combination of pullies (whether one, two, or more ftrings
be employed) is fo eafy, that I think it unneceffary to in-
fift any longer on this head." : :
AB being an inflexible rod (confidered without weight)
on which three forces a&, at right angles thereto, by
means of three parallel ftrings Ag, B4, Cec, faftened at
any three points A, B, C, of the rod, two of them on one
fide oppofing the third on the other fide, keeping the rod
at reft : I now propofe to inveltigate (without any regard
to the do&rine of motion) the ratio of the two forces act-
ing on the fame fide of the rod; whofe fum, it is plain,
muft be equal to the other force alting on the contrary
fide. A :
7. If the weight W be fufpended from the middle of
the inflexible horizontal rod BD, which is itfelf fu(pcnd;d '
x
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by two parallel ftrings AB, CD; thefe ftrings will be
equally ftretched, and each will bear half the weight W.
And CD being faftened at G, and AB drawn over the
pulley A, the weight N appending to this ftring, re-
quifite to keep an equilibrium with W, muft be cqual to
half W.

8. The weight W being fufpended from any point P of
the inflexible horizontal rod BD, which is itfelf fufpended

by two parallel firings AB, €D; if the tenfion of the

Fig.a0.

firing A B be denoted by T, the tenfion of CD will be~

exprefled by W ~ T; and the ratioof T to W — T will
_be the fame, let W be what it will; for the tenfion of

cach ftring will be increafed or diminithed in the fame:

proportion in which W fhall be increafed or diminithed.
- g. If BQ be equal to DP, any force a&ing at Q_at
right angles to BD will affe& the tenfions of the ftrings
AB, CD refpedively, in the fame proportion as that in
which the tenfions of the ftrings CD, AB would be- re-
fpe@ively affe@ed by the application of apy force at P in
~ a parallel direion. :

’ 10. Therefore, if a ftring QR, parallel to the other
three, having one end faftened to the rod at Q, be drawn
over the pulley R by fuch a weight N hung to the other.
end of it, that the fame be juft fufficient, with the ftring
CD, to fuftain the rod, with the weight W appending
thereto, in its former pofition ; the firing A B then having
no tenfion, the weight which it bore being now borne
by the ftring QR, together with part of the weight which
before was borne by CD ; T, the decreafe of tenfion in
AB, will be to N — T the decreafe of tenfion in CD,.as
'va —g‘ to T. Confequently, W —T will be ta W as

to IN.. o ;

DP
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:D'P is here confidered as lefs than half BD, that cofte

‘fideration being fufficient for our purpofe.

11. If DP be a fubmultiple of BP; that is, if, # being
Tome integer, 7 x BQ_be equal to BP; let BQ, QQ,

"QQ”, &c. be cach equal to DP. Then applying ftrings

QR’, QR", &c. fucceffively to the points Q', Q”, &c. of
the lever, as defcribed in the preceding article, and denoting
the refpeCtive tenfions of thofe ftrings as they are applied

by N, N% &c. we fhall have.

W T LN TW
W-T:W:uT:N =%

o N NW O TW
W-N:WaN:N=g— =y
WO e NN NYW_ TW

W-N .W..N -N —W—N”—W—3T’
&c. &c. &c.

-And, con‘tinuing the operation to the neceflary length, we
have N ' = Tw = which (by art. 7.) will be

We—n—-i1x
equal to half W: whencen x T=W - T, or T:W=T"
3 N 2
Thus it appears, that, in cafe BP be any multiple of
PD, the tenfions of the ftrings AB, CD (which are de-

qnoted by T and W — T) will be as 1 to 2, that is, as

DP to BP.
12, From what has been faid it evidently follows, that,
DP being any diftance whatever, if BQ,, inftead of being
equal thereto (as hitherto fuppofed)-be equal to ¢, any fub=
multiple of r — g, » being the whole length of the rod
BD; r — ¢ will be to ¢, as T, the decreafe of tenfion in
AB, to N — T, the decreafe of tenfion in CD, upon ap-
Plying a fring QR at Q asabove. Whence r =¢:r:: T 3“1?.
13. We
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13. We will now fee what will be the ratio of the ten-

" fions of the firings AB and CD, when BP is not a mul-

tiple of DP. Firft let us fuppofe DP and BP commen-
furable, and equal tom X p and n X p rcfpe&Wely, p being

a common meafure of BP, DP. Then conceiving a firing, Fig.12.
28 QR, applicd fucceflively to the points: whofe diftances-

from B are p, 2p, 3p, &c. till it comes-to a- point equi-
diftant from P with the point D, and determining the fe-

veral fucceflive values of N', N, &c. (the tenfions of
QR', Q'R &c.) in terms of T (the tenfion of AB) and:
known quantities, the laft of them will (by art. 7.) be
equal to g : from which equation the ratio of T to W—T"

will appear. Thus, applying the ftring QR’ to the

point Q, whofe diftance from B is p, we fhall, by the-
preceding article, bave r —~p:r 1 T : ,’f,'= N, the
weight then borne by Q'R’. Applying the firing Q"R”
to the point whofe dnﬁancc from B is 2p, we fhall have.
re2pir—p- -P : - :1;.p= N’ the weight borne by.-
Q'R” in that fituation. And it is obvious, that the weight
which the ftring QR will bear, when applied to the point:
whofe diftance from B is n — m x p (that is, when its-
diftance from P is equal to DP) will be ——— T =

r‘—u—mxp

."L"—z’-';x——T, which (by art. 7.) muft be equal to Y-V-. Con-.
fequeatly T will be to Wasmtom + 7, and T to W-T
a8 mto n. Therefore, T being the weight borne by the
firing AB before the application of Q'R’, Q’R”, &c..
sad W.—T the weight borne by the ftring CD at the-

fame:
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fame time, it is manifeft, that the tenfions of thofe ftrings

- (AB, CD) when they fuftain any weight W, appending’

to the point P, will be reciprocally as their diftances
from that point, though DP be not a {ubmultiple of BP,
if thofe diftances be commenfurable. '

14. Suppofe now that DP and BP are incommenfurable:
and if the tenfion of A B be not to the tenfion of CD as DP
to BP, letit be as DP to 4P greater or lefs than BP. Let
Dm, lefs than B4, be a {fubmultiple of DP : and D # being
the leaft multiple of Dm which exceeds BD, if 4P be
fuppofed greater than BP; or the greateft multiple of Dm
which is lefs than BD, if 4P be fuppofed lefs than BP;
Bz will in either cafe be lefs than Dm, and 2 will fall
between B and 4 in both cafes. Now, by what has been
proved, if the firing AB were at », its tenfion to that of
CD would be as DP to »P : therefore, if 4 be put for the

difference of the tenfions of AB, when applied at B, and

when applied at #; and ¢ be its tenfion when at B, and T
that of CD at the fame time; we fhall have t £d: T x4
:: DP: 2P, and ,;.ij x nP = DP. But by hypothefis,
t:T::DP:4P, and -,;-.- x 6P = DP; and confequently

= % nP fhould be = g x 4P. This, it is plain, is

impoffible : for ’;‘1‘:{ &
as nP is lefs or greater than 4P. “The ratio of the ten-
tions -of the ftrings can then be no other than recipro-

cally as their diftances from P.
15. ‘Inftead of any force whatever aling on 2 body
by other means -than that of a ftring, we may conccive
another

is lefs or greater than —, according
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another force to be fubftituted, which pulling by 2 firing
in the fame dire&ion, the fame effe@ fhall be produced ;

and forges being meafured by the effe@s they produce, this

force muft be efteemed equal to that in whofe ftead it may
be fo fubftituted. Therefore, whatever we infer concern-
ing the ratio of the tenfions of ftrings, Ly means whereof
any body is kept at reft, the fame may be inferred of the
ratio of any other forces a&ting in- the fame dire&ions, and
producing the fame or an equal effe¢t. Confequently, a
ftraight inflexible rod being kept at reft by three forces
acting thereon, at right angles thereto, whether thofe
forces a& by means of ftrings or otherwife, the two forces
oppofing the third (which muft neceflarily a&t between

them) muft be reciprocally as the diftances of their points

of a&tion from the point at which the third force aéts..

Hence the properties of ftraight levers, the power and

weight a&ting at right angles thereto, are evident.

16. AB being a lever of the firft kind, F the fulcrum,
and M and N two weights fufpended from A and B re-
fpeQtively, and fuftaining each other in equilibrio with
AB in a horizontal pofition ; the lever may be confidered
as kept at reft by three forces M, N, and M + N «aging
at A, B, and F refpectively in the manner above defcribed.
For the reation or refiftance of the fulcrum is of the fame
effe@ with refpe to fuftaining M and N as an aQive force
equal to thofc two would be of, if it oppofed them by
pulling or prefling at right angles to the lever at the point
~ F. Therefore, by the preceding article, M muft be to N
reciprocally as AF to BF, And in the fame manner it
appears, by changing the place of the fulcrum, that any
forces whatever, which, a&ing on a ftraight lever of the
fecond or third kind at right angles thereto, are equipol-

Pig. 4.
Fig. 15. .

c - ~ lens,
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lent, are reciprocally as the dnﬁances at which they a&

from the fulcrum.
17. Inftead of confidering the lever as a fingle ftraight

. line, let us conceive the fulcrum F to be at a point in an

extended plane of any form (without weight), and that the
faid plane is freely moveable about F as a center. Then,
if the weights M and N, a&ing at the points B and D in
the faid plane at right angles to the right line BFD, reft
in equilibrio; they will, it is obvious, likewife reft in
equilibrio, if, inftead of ating at B and D, they act at any
other points 4 and 4 refpeively, in the lines B4, Dd;
thefe lines being the dire@ions in which the forces a&,
whether B and D or 4 and 4 be the points of a&ion.

Moreover, the weights M and N will alfo reft in equi-
librio, if, FE being equal to FD, the force N, inftead of
acting at D in any dire@tion Dd, a& at E in the dire&ion
Ee, the angles FE¢, FDJ bemg equal.

Now, by what is proved in the preceding amcle, BF
'x M will be =DF x N. Join Fd, and fuppofe that,
inftead of the weight N acting at Jin the dire&ion 4N, a

weight equal to 1—)}"7;3{ a@& at d at right angles to 4F,

Then, by what is already proved, will this laft mentioned
weight reft in equilibrio with the weight M a&ing at B
or 4 as before. Therefore, with regard to preferving an
equilibrium with any oppofing force, the weight a&ing at
d on the lever JF in the dire@ion 4D, or Dd, is to the
weight a@ing at the fame point of the fame lever at right

angles thereto, as N to Dl;;f N ; that is, as dF to DF, or

as radius to the fine of the angle which the oblique di-
rection makes with the ray from the fulcrum to the point

of a&ion,
18. Let
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18. Let two forces, G and H, a& obliquely at the points
B and D, on the ftraight lever BF D, moveable about the
fulcrum F; and BA, DC, being the direGions in which
thofe forces a&, let the fines of the angles ABF, CDF,
to the radius 1, be denoted by g, p”, refpe@ively. Then,
by what is faid in the preceding article, p° x G and p”" x H
will be the refpeive equivalent forces confidered as aiting
at the fame points (B and D) at right angles to the lever.
And, the lever being fuppofed to be kept in equilibrio,
?' x G x BF will be equal to p” x H x DF.

19. Confidering now three forces, G, H, I, as acting
at the point P in an extended plane of any form (without
wcight), in the dire@ions PA, PB, PC refpe&ively, fo
as to preferve an equilibrium ; the ratio of thofe forces
will be found as follows, by means of what is done above.
Continue BP to any point ¥, and draw dFe at right angles
thereto. Then, fecing that it is the fame thing with re-
gard to keeping the plane at reft, whether the forces (G,
H, I) a& at the points d, F, ¢, in the {aid plane refpec-
tively, or at P, as before mentioned, their dire@ions be-
ing the fame in both cafes; we have, by the precedin
article, p" x G x dF equal to p” x I x ¢F, p' and p” be~
ing the fines of the angles AdF, CeF refpe@ively, to the
radius 1. Whence it is evident, that the forces G and I
muft be as p” x ¢F and p' x dF. But if ¢, 4" be the
refpeive cofines of AdF, CeF, or the fines of JPF, ¢PF;

dF will be = ¢ XFP and oF = £/ XFF 1 appears

4 7t

therefore, by fubftitution, that the force G mutft be to the
force Ias ¢ to 4.

" And, continuing AP to E, and denoting the fine of
¢PE by 4", it appears by the fame way of reafoning, that

G2 , the
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the force H muft be to the force I as 47 to ¢’; the angle
BPE being manifeftly equal to the angle dPF Confe-
quently the forces G, H, I, muft be as ¢”, ¢, ¢’; that is,
drawing BE parallel to PC, as the fines of the angles EBP, -
BEP, BPE; or, which is the fame thing, thofe forces muft
be refpeively as the fides EP, BP, BE of the triangle BEP
which are in, or parallel to, their refpe@ive dire&ions.
20. If three forces (G, H, I) aing at any three
points of a moveable plane fuftain the fame in equili-
brio, the diretions in which thofe forces a& (unlefs
they be parallel to cach other) will interfe@ ecach
other in one point only, For let the points of a&ion be
d, e, f; and the dire&@ions JA, ¢B, fC. Then if thefe
direGions be fuppofed not to interfe® each other in one
point, let them be fuppofed to interfe@ at ¢, r, s, as in
our fcheme : and let the point of a&tion of the force G bé
confidered as at p (in dgr), inftead of 4; which change, it
is plain, will not caufe any alteration in the cffe@ of .the

forces upon the plane. Now, the point p being between

g and r, the forces H and I aing in the diretions sreB,
¢sfC will both urge the plane to turn the fame way about

.'the point p; and confequently will caufe the plane to

move. Therefore the fuppofition is abfurd, and the plane
cannot remain at reft whilt three forces a& upon it at dif-
ferent points, unlefs their dire@ions (being not parallel to
each other) interfe@ each other in only one point.

21. By means of the laft two articles we may readily
find the quantity and dire@ion of one fingle force, which
fhall have the fame cffe@t as any two forces whofe

-quantities and direQions are given: and, on the contrary,
- one fingle force being given with its direCtion, we may

- find two forces, which, aQting together in any propofed

dire&ions,
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dire@ions, fhall be equivalent to that fingle force. ‘Thus,
PA, PB denoting the quantities and direGions of two
forces, draw AQ, BQ_parallel to PB, PA refpetively;

and the diagonal PQ_will denote the quaatity and direc-

tion of a fingle force equivalent to the other two. And,

13
Fig. z0.

PQ_denoting the quantity and dire@ion of a fingle given °

force; draw at pleafure QA, PB parallel to each other;
and PA, QB alfo parallel to each other ; then will PA, PB
denote the quantities and dire@ions of two forces, which
a&ing together will be equivalent ta the faid fingle given
force. '

22. The wheel AB being fixed to the cylinder Can,
with its center C at the center of a circular-fection of the
faid cylinder, and the wheel itfelf in the plane of that fec-
tion ; and m# being a radius of another circular fe@ion of
the cylinder, whofe center is #; any weight P pulling at
A, at right angles to the radius AC, will have the fame
cffe@ in oppofing the action of another weight W, pulling
at m at right angles to mn, (and urging the cylinder and
wheel to turn the contrary way,) let the diftancs of C from
n be what it will. Therefore, it being manifeft that, if
C coincided with #, the two radii m»n, CA would form a
lever mnA ; the weights P and W will (by art. 17.) reft
in equilibrio, when the former is to the latter reciprocally
as AC to mn, whether the radii, to which they a& at
right angles, have the fame pofition with refpe& to the
horizon or not, the machine being confidered as only
moveable about the axis (Cx) of the cylinder.

23. AB being an immoveable inclined plane, if a weight
W reft thereon in equilibrio with another weight P pulling
in the dire&ion W B, parallel to the plane, by means. of a

ftring PBW pafling over the immoveable pulley B, the
s weight

Fig. 21,

Fi‘l 22
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weight W may be confidered as kept at reft by three forces -
a&ing thereon, one whereof is its own gravity urging it in

the direQion Wm dire&ly downwards, another the repref~
fure of the plane urging it in the dire@ion W perpendi-

cular to AB, and the third the tenfion of the firing (or

the weight P) pulling it in the dire&ion WB. Therefore,

BC being a vertical line, and CD perpendicular to AB,

BCD will be a triangle having its fides in, or parallel to,

the dire@ions of thofe three forces. Which forces will,
therefore, (by art. 19.) be refpe@ively as BC, CD, and

BD; thatis, as AB, AC, and BC, fuppofing AC parallel

to the horizon.

24. The weight W refting on the immoveable inclined
plane AB, in equilibrio with another weight P pulling it
in the horizontal dire®ion W 4, by means of a proper con-
trivance ; if #W o be perpendicular to AB, and W= per-
pendicular to the horizontal line AmoC; the weight W, .
the rea&ion of the plane in the diretion Wz, and the
weight P will (by art. 19.) be to each other refpeQively as
Wm, Wo,"nd mo; that is, if BC be perpendicular to

- AC, as AC, AB, and BC. Therefore P muft be equal

to %—g- x W,
25. But if the weight W be kept at reft on the plane

by P aing at the point E of a horizontal lever EWF,

at right angles thereto, in a dire@ion parallel to AC; F
being the lever’s fulcrum, the value of P in this cafe muft,
‘by the property of the lever, be toits value in the former
¢afe -(confidered in the laft article) reciprocally as EF to

- WPF. Confequently in this cafe P muft be equal to

WF xBC _
EF x AC w.
. 26. When
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26. When a weight is raifed by means of a fcrew, one
part of the fcrew rifes with the weight, and the afcent of
that part of the fcrew is effe@ed by fliding its fpiral threads
up the fpiral threads of the other part of the fcrew. A
weight therefore, when it is fuftained in equilibrio by any’
power ating on the fcrew, may be confidered as refting on
an inclined plane, whofe inclination to the horizon is the
fame as that of a particle of the fpiral whereon it refts,

Which inclination will be the fame as that of AB to

A C, if AC be the circumference of a circular fe&ion
of the cylinder on whofe fuperficies the fpiral is defcribed;
and BC, a perpendicularon AC, be the diftance cf two
contiguous threads of the fpiral meafured according to the
cylinder’s length.

Moreover, the fcrew being worked by a horizontal lever
whofe fulcrum is at the axis thereof, and the whole force
of a weight raifed or fuftained by this inftrument being
incumbent on the fpiral threads, and the diftance of every
point of thofe threads from the axis being equal te the
radius of a circular fection of the cylinder whereon they
are defcribed 3 if that radius be denoted by r, the wc:ght
will, with regard to the lever, a& at the diftance r from
the fulcrum. Therefore, the fcrew being loaded with the
weight W, and 4 being the diftance from the fcrew’s axis

at which a power P ats on the lever, in a horizontal

dire&tion at right angles thereto, fuftaining W in equili-

‘brio; P muft, by the laft article, be equal to ;x ig x. W,.

dand r being written inftead of EF and WF. But ¢ being
the circumference of a circle whofe radius is unity, AC
will here be equal to ¢ x . Therefore P will be equal to

BC

15
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‘ic — x W, or P to W as BC to (c x d) the circumference

of a circle whofe radius is 4.

We have here fuppofed the fpiral threads of the {crew
to be cut but a very little depth into the cylinder they are
defcribed upon. But it appearing by our demonftration
that, if 4 and BC remain the fame, P will have the fame
advantage with regard to fuftaining W, let r be what it
willy it is plain, that, how deep foever the threads of
the fcréw be cut, P muft be to W in the ratio above af<
figned. '

27. If we would enquire when there will be an equi-
librium between a power prefling againft the back of a
wedge, and a force a&ing againft its fides in oppofition to
that power, we muft firt confider in what dire@ion the
wedge is refifted by that oppofing force; for the queftion

" cannot be anfwered in general terms.

Some writers fuppofe the wedge refilted by a force a&-
ing at right angles to its fides ; others confider the refifting
force as a&ing in a diretion parallel to the back of the
wedge.? whence it'is, that their conclufions are different.
- A wedge ABC, prefled downwards by the force of a
weight P, being refifted by two forces W and W (equal to
each other) prefling perpendicularly againft its fides, and
fuftaining P in equilibrio; thofe three forces will be as
AB, AC, and BC refpe&ively : and confequently P will
be to (2W) the fum of the other two forces, or the whole
refiftance oppofing the progrefs of the wedge, as (AB) the
back of the wedge to (AC + BC) the fum of its fides, or
as half the back of the wedge to one of its fides. For,
DE, FG being perpendicular to AC, BC refpeQively,

, draw
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draw DF parallel to GF, and EF parallel to the vertical
line CP, a perpendicular on AB. Then EF being put
to denote the force P prefling the wedge dire&tly down-
wards, DE, DF will (by art. 19.) denote the equal forces
prefing againft AC and BC. But the angles ACP, CEF
will be equal, and confequently DEF equal to CAP,
And, DE, DF being equal, the angles DEF, DFE will
be equal to each other, and each to each of the angles
CAB, CBA. Therefore the ifoceles triangle DEF will
be fimilar to CAB, and the forces will be in the ratio we
have affigned.

In making the experiment, reprefented by our fcheme,
the weight of the wedge, it is obvious, muft be confidered
as part of P. And part of the weight of the fliders Q_
and R, which reft on the inclined planes § and T, a&ing
conjundtly with the wedge id oppofing the forces W and
W,. urging the faid fliders againft its fides ; an equivalent
weight muft be added to W: which equivalent weight
muft (by art. 23.) be to the wenght of the refpe&tive flider
as half EF to DE or, which is the fame thing, as AP
to 'AC.

"28. If the forces oppoﬁng the progrefs of the wedge,
inftead of a&ting as fuppofed in the laft- arncle, a& in direc-
tions parallcl to its back ; the reft being as in that article,
the ratio of the power urging the wedge forward to the
equipollent refiftance may be determined as follows. The
two forces prefling the fides of the wedge a@ing by means
of fliders as reprefented by our fcheme, the wedge will

prefs the end E of the flider Q_in the dire@ion ED, and

%EE x P will (by the preceding article) denote the force of

17
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that preflure.  Moreover, (by art. 21.) the efficacy of that

D preflure
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preflure in a dire@ion parallel to HD will be exprefled by
DH « P; being to the faid preffure in the direction ED,

EF
as DH to DE ; DH being drawn parallel to A B, to which

QE is now fuppofed parallel. Now W, the force urging
the flider Q againft AC, being equal to %I'FI x Ps (as it is

evident it moft be, to refift the prefiure of the wedge, foas
to fuftain it in equilibrio;) the equal force W urging the
flider R againft the other fide of the wedge will likewife

be exprefled by 2.—;1 x P. Therefore, the power P will be
to 2W, the whole refiftance oppofing the progrefs of the

'wcdge, as Pto2x %-? x P; that is, as EF to twice DH;

or, which is the fame thing, as (AP) half the back of the
wedge to (CP) its height.

In cleaving of wood, the refiftancé oppofing the force
of the mallet (fuppofing the fides of the wedge perfely
polifhed, and its edge a line withoat breadth) is the ate
traGtion of cohefion of the particles of the wood which
are about to be feparated ; and this being a kind of preffive
force alting againft the fides of the wedge, it is extremely
abfurd to attempt to compare it with the percuffive force
of a mallet, as fome writers have dené. For the greatefk
finite preflive force muft give way to the leaft percuflive
one, and there cannot poffibly be an equilibrium between
two fuch different forces. Any percuffive force a&ing on
a moveable body generates a finite quantity of motion in
an indefinitely fmall particle of time; but the time will
be finite in which any given preflive force whatever, a&t-
ing on the fame body, can generate or deftroy the fame
quantity of motion, Therefore, a body being urged in a

certain
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certain dire@ion by any preflive force whatever, and in
the contrary dire&ion by any percuﬂive one, the preﬂivc
force will be fome finite time in deftroying the quantity of
motion which the percuffive one generated in an inftant,
Confequently how great foever the preflive force may be,
and how fmall foever the percuffive one, the body will be
moved (at leaft for fomg fhort time) by this laft force.
Indeed, after the ftroke is given, the preflive force may
quickly prevail and force back the body which the im-
pulfe of the other force had drivea forward. And fo it
would frequently be with refpe& to cleaving wood, if the
fides of the wedge were perfe@ly fmooth. For, after the
firoke of the mallet, the wedge, unlefs itse weight were
cquivalent to the force of the attration of the parts of the
wood about to be feparated, would prefeatly be forced
back from the place whereto the mallet had driven it.

And it is chicfly the roughnefs of the fides of the wedge,

and of the parts of the wood in gonta@ therewith, which,
in that operation keeps the wedge from receding. It is
that roughnefs too, and the bluntnefs of the edge, which
fometimes prevent the wedge from being moved by the
firoke of the mallet. For, were it not obftructed by fuch
goughnefs and bluntnefs, it would, acecording to what we
juft now obferved, be always driven forward eyen by the
leaft percuffive force.

Having eftablithed ‘the do&rine of equilibriums on its
own proper principles, and explained the fame fo far as
relates to an equipollence between the power and wieight
in the ufe of the inftruments commonly called the Me-
chapic Powers;. I fhal] conclude this Memoir with an
artuclc or two, fartber explaiping the dorine particularly
inculcated above; and moreover exemplifying the applx~

D2 cation
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cation of the theorem borrowed from the do@rine of mo~ -
tion, to which recourfe is commonly had in treating of
equilibriums. :
29. If the wedge (or inclined plane) ABC, placed with
one of its fides (BC) on a polithed horizontal plane BD, be
urged in the dire@ion BCD by a weight P aling at the
angular point C by means of a ftring pafling over the im-
moveable pulley D, whilft the weight W appending to
the firing EN W (having one of its ends faftened.to the
fixed point E, and the other to the faid weight W) prefles
againft the other fide (AC) of the wedge: P and W will

“reft in equilibrio when, MO W being a vertical line, and

MN, N O at righpangles to AC, MW refpetively, P is
to W as NO to MW, let the length of the firing EW be
what it will, and the point E where it will between the
vertical line WM and the fide CA, or their continuations,
For then W will be kept at reft by its weight, the repref-

fure of the plane AC, and the tenfion of the ftring ENW;

which (by art. 19.) will be to each other refpe@ively as
MW, MN, and NW. The preflure of W, in a dire@ion

parallel to MN, will therefore be equal to -EM% x W
and (by art. 21.) the efficacy of that preflure, in a dire@ion
parallel to ON, will be exprefled by -L—r}% x W ; which
muft, in the cafe of an equilibrium, be equal to P, let the:

.weight of the wedge be what it will. Confcquently P

will in that cafe be toWaa—g—-?v xW to W; thatis, as -

NO to MW, ,
~ If the firing EN'W be parallel to AC, and AF be a

perpendicular from A on BC; N'W will be equal to
' AF
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therefore, in this.cafe, NO to MW - (that is, P to W) as
AF x CF to AC'. Mr. Fergufon (in his Le@ures) erro-
ncoufly afferts that, in this cafe, P will be to W as AF
to AC; and he endeavours to fupport his affertion by expe-

riments, but deduces therefrom (by notrightly confidering

the effe@ of friion in the different experiments) a con-
clufion moft egregioufly abfurd, purporting that, in two

cafes of equilibriums, the powers will be equal, whereas.

in truth (their ratio being as CF to AC) the power ia

one cafe may be ten thoufand times greater than in the-

other cafe!

When, fuppofing the power and weight (in any ma-
chine) to be moved, the afcent of one and defcent of the
other (eﬁlmated vertically) do not always retain an invae
riable ratio to cach other, it will be wrong, in applying
the theorem regarding the ratio of the velocities mentioned
at the beginning of this memoir, to take the ratio of the
contemporancous afcent and defcent at the end of any
certain time whatever for the ratio of the velocities of the
power and weight. For inftance, in the cafe of our wedge
and weights, whilft P defcends in a vertical line, W will de-~
» {eribe a circular arc WX 'Y about the center E, and QX
drawn from A C to the faid arc being parallel. to the horir

zon, and Wyg perpendicular thereto, the defcent of P will.

be to the afcent of W 2s.QX to Wg, which being a va-
. riable ratio, no ufe can be made of it in afcertaining the
ratio of the velocitics of P and W, unlefs we confider the
arc WX as indefinitely fmall. Now, confidering that arc
as an indefinitely fmall particle of the arc WXY, Wg a
tangent to that arc at W, CG parallel to that tangent, and-

AgG

'_C x MW, and NO cqual to M%%CF x MW: and

21
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~ AgG parallel to BFCD, Wy will be to QX as AF to AG,
that is, (in the cafe of an equilibrium) as P to W. But

(the triangles ACG, MN W' being fimilar) AF is to AG
as NO to MW, It is evident therefore that the conclu-

. fion thus deduced agrees with that which is deduced above

from the proper principles of equilibriums, whether EW
be .parallel to AC or not.

30. If, inftead of the weight W being faftened to the
{tring EW, it be perforated and moveable upon a firing

pafling through the perforation and faftened at H and K,

the reft being as before, when the power P defcends the
weight W will defcribe an ellipfis (whofe foci are H and
K); to which let Wg be a tangent at W, (that is, let Wg
be perpendicular to the line bife&ing the angle HWK,)
and let CG be parallel to Wg: then, in the cafe of an equi-
fibrium, P will be to W as AF to AG; as appears by
properly applying the theorem before mentioned, regard-
ing the velocities of P and W when moved : —and the
fame conclufion is deducible from the proper principles of
equilibriums, the line bifeing the angle HWK being the
diretion of the force on the weight W arifing from the
tenfion of the ftring HWK, and the effe@ of that weight
on the wedge the fame as if it were faftened to the end
of a ftring coinciding with, and having its other end faft-
cned to a fixed point fomewhere in that bife@ing line.

ME-
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Of the Ellipfis and Hyperbola.

SOME of the theorems given by mathematicians for
the calculation of fluents by means of ellipticand hyper-
bolic arcs requiring, in the application thereof, the dif-
ference to be taken between an arc of a hyperbola and its
tangent; and fuch difference being not dire@ly attainable
when fuch are and its tangent both become infinite, as
they will do when the whole fluent is wanted, although
fuch fluent be at the fame time finite; thofe theorems
therefore in that cafe fail, a computation thereby being
then impra&icable without fome farther help.

"The fupplying that defet 1 confidered as a point of fome
importance in geometry, and therefore I earneftly withed.
and endeavoured to accomplith that bufinefs ;. my aim be-
ing to afcertain, by means of fuch arcs as above men-
tioned, the /imit of the difference between the hyperbolic:
arc and its tangent, whillt the point of conta@ is fup-
pofed to be carried to an infinite diftance from the vertex
of the curve, feeing that, by the help of that lims, the
computation would be rendered pradicable in the cafe’
- wherein, without fuch help, the before-mentioned theo~
sems fail. The refult of my endeavours refpeiting that

point -
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point appears in this Memoir : which, amongft other mat-
ters, contains the inveftigation of a general theorem for
finding the length of any arc of any conic hyperbola by
means of two elliptic arcs. A difcovery (firft publithed
by me in the Philof. Tranfaél. for 1775,) whereby we are
enabled to bring out very clegant conclufions in many in-

terefting enquiries, ag well mechanical as purely geome-
trical, '

1. Suppofe the curve ADEF be a conic Ayperbola, whofe
femi-tranfverfe axis AC is = m, and femi-conjugate = n.
Let CP, perpendicular to the tangent DP, be called p;

and put f=2—% =L * Then will DP — AD be

! —}m*z‘i - .
= the fluent of Yy ¢ and = being each ==

when AD is =o. For, denoting the femidiameter CD
by 7, and its femi-conjugate diameter by s, we have (by
the nature of the curve) »* —s*=m' — s =2/m, and"

ps = mn. Whence & .-:r’—zfu:-"l"-‘: 5‘5; and

'Q

2fmz + mx®

, and DP = \/'r'--p' =
Hence_ the flaxion of DP is found

confequently »* =

Vun® + 2fmz — mz*
o
_ m*n‘i'-l- m*z’é
NN -y ey
Now it is obvious that the fluxion of the curve AD
is to r as 7 to \/;-‘—-7)‘- : therefore the fluxion of AD

rr

Vs which by fubﬁxtuuon‘ appears to be =

-
—

i8 =
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F .

~———""—. Confcquently the difference of the
22"V + 2fz —2* o
5,1

o D . — —im*ztg .
fuxions of DP and AD is Ny

2. Suppofe the curve adefg to be a quadrant of an
ellipfis, whofe femi-tranfverfe axis cg is =Vm* +n* and
femi-conjugate ac = Let ct be perpendicular to the

tangent dt, and let the abfcifia cp be =2 X = %. Thcn

m
“will the faid tangent dt be = m x :f_::;}% ; and the

. . NPT Sy |
fluxion thercof will be found = imn'z" %z x n‘+m;—*

_ §m%z§£
Vit a2fz—2
. 9—1.
. In the expreflion A
3 P @+ 6y\" X c+ayl
pofed = z. 'Then will ;z_——b; be = ¥ and the PI'OPOde €X=
ad = 5T e =1g )
az= ' xd— jprte=r—s
4. Taking, in the laft article, » and s cach =i
g=% a=-d=

¢+ dy
»» let 757 be fup-

preflion will be =

— b=1, and ¢ = », we have

i; e 2 ' .
e (=) = - et
—-~+] xn’——;‘ ; .

m— 2\t

x . It appears therefore, that, v being = #* x
wyma TP » thal, y being
" E m—

2§

Fig. 30.
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P 4 L
"m—2z fm*yty %m%z’é
n* + mz’ Vi + 2fy — ] Via* + 2fz —2*
‘—'jm_z{- %mé Tg

» tmz3 TV +2/%— 2t

is = imnrz—iz

X

; which, by Art. 2. is = the

" fluxson of the tangent dt.

Confequently, taking the fluents by Art. 1, and cor-
reCting them properly, we find
DP - AD +FR - AF =L + dt

L
CP, in fig. 29, bcing = miz¥; cp, in fig. 30, =2 xé!‘;
CR, perpendicular to the tangent FR, = miy®;

lméz*z
DP - AD = thcﬂwntofmf_z:_;

‘mél 5 ;
FR — AF = the fluent of — T
and L the /Zms¢ to which the difference DP — AD, or
FR — AF, approaches upon carrying the point D, or F,
from the vertex A ad infinitum.

5- Suppofe y equal to 3, and that the points D and F
then coincide in E, the points d and p being at the fame
time in ¢ and q refpe&ively. Then cv being perpcndl-
cular to the tangent ev, that tangent will be a maximum
and equal to cg — ac = v'm' + n*— n; the tangent EQ_
(in the hyperbola) will be = /m* + 7*; the abfcila BC=m

n . ) n
I+ : the ordinate BE =2 X Vv :
Vm"+u" ' Vo +at

and it appears, that L is —= 2EQ_— 2AE —ev =1
+ V/m* + n* = 2AE. Thus the Zimit which I propofed to”

afcertain is inveftigated, » and # bemg any right lﬁncs
what-
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whatever. Another expreflion for fuch limit will be
found in a fubfequent article in this Memoir.

P
EX (e .
6. The whole fluent of ey generated whilft z

from o becomes = m, being equal to L; and the fluent
of the fame fluxion (fuppofing it to begin when z begins)
being in general equal to L + AD -~ DP=FR —AF - d¢;
it appears that £ being the value of 2 correfponding to the
fluent L + AD - DP, %":f;’l? will be the value-of & cor-
re(ponding to the fluent L + AF —FR, and FR —AF

will be the part generated whilft =z from 5’;?—_{-”—":5 be-

comes =m. It follows therefore, that the fangens dt, to-
}m*zéé

n* + 2/ —2*

from o becomes equal to any quantity &, is equal to the

mn®* — n*k

gether with the fluent of generated whilft z

~ fluent of the fame fluxion generated whilft = from

\ . i
becomes = m; cp being taken =z x ;:- .

n'k

. Suppofe & = 2225 its value will then be ;’,'-’\/m‘ +n*

n* 4+ mk
£.%

im*z*z
27 —_=— generated
3

n* 4 2f%— 2%
n

whiltt = from o becomes = — V'm* + #* — :T:’ tog.cthcr

-—%’. . Confequently the fluent of

with the quantity v/m* + n* — n, is equal to the fluent

of the fame fluxion generated whilft = from 2vm + n‘—-’-'”;
. m

becomes = m: and thefe two parts of the whole fluent
"E 2 -  being

A ————
n +.mk

27
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being denoted by M and N refpeQively; M will be =
n—AE, and N = /m* + n* — AE.

i %,
. h .—f—”:—z—.z— —
7. The fluent of iy being = L+ AD~DP,
i 4,
,m z /e -
the fluent of m-&DP AD —L will be =o.
!. !.
Therefore, the fluent of —et? % ‘___ + the fluent of
vt +2fz — 2t
{m""n z~tg -1 ' B+ mz)?
VY being = the ﬁucnt of 1z 2z x m_?] ’
*n z *i
it_is obvious, that the fluent of mfz_z is = DP-:-

AD —L + the ﬂucnt of %z"'§'z x"’;t':z’ =DP-AD-L
'+ the elliptic arc dg (Fig. 30.) whofe abfcifla cp is

-

Confcqucntly, putting E for  of the penphcry of .that

im “tpa—iz
Vr t 2fs -z
generated whilft 2 from o becomes = m, is equal to E~L
=E + 2AE — 8 — V/m' + n".

ellipfis, it appears that the whole fluent of

8. By takxng, in Art. 3. ¢, r, and 5, each=%; and
a_..-—d-‘—- b6 =1, and ¢ = #*; we find, that, if y be

.._."m —"‘z z-f’-“—-—— + 2 *’__. will be = o,
n*+ mz.” Vi tafs—22  Viartafy—y

_§.
It is obvious therefore, that the fluent of -—;—z—z—-——,
. . Va4 2fz—2*

gene-
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gencrated whiltt z from o becomes equal to any quantity
#, is equal to. thc ﬂuent of the fame fluxion, generated -

whilft z from Za— — + t bccomes = m.

:: "f. its value will be

s 2t

;,', vm + n”--;‘-. Confequently the fluent of

Now, fuppofing £ =

vVint + 2/z—z‘
. —_
generated whilft 2 from o becomes = ; vm+nt——,

is equal to 4alf the fluent of the fame fluxion, generated
whilit z from o becomes = m; which Aalf fluent is known
by the preceding article. :

1miyi; {m*zti

\/_.21‘]— +Vn +2fz—x
is === the fluxion of the tangent dt; and it appears by the

<m {n’y_*.y imTin*z -t
Vit 2fy—y \/m—z
mn’-—n’y-—n’z—m_yz being = o. ‘Therefore, by ad-

. i ¢
.. . n* + my -— n"+ mz
dition, we have Ly~ y X —2 — + Iz Tz x m__z.’

= == the fuxion of the t:mgmt dt. Confequently, by
taking the corre@ fluents, we find the zangent dt (= the
tangent fw) = the arc ad — the arc fg! the abfcifia cp

-\

9- It appears by Art. 4. that ———"—=c=

laft article, that

1 i
being =7 x —-, , the abfciflacr =2 x L = and. their rela-
tion exprefied by the equation 7°~ #*s* — n*v* = m*s*v* = o,

ot |
u and o being put for 7 x 7’?‘ and 7 x q refpeively.

muv

Moreover the tangents dt; fw, will each be =~—~, and

— :
Ct X CW=CV =acXcg.

E .

1s—o~‘

29
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If for the femi-tranfverfe axis cg we fubftitute % in-
ftead of &/m* + ', the relation of u to v will be exprcﬁed
by the equation #°— n*s* = n*0® — A" —a* X 4’0" = o
and dt (= fw) will be =252

If u and v-be refpeively put for fr and dp, their rela-
tion will be exprefled by the equation 4®— A*y* — A*o?

X av.

"2
X 4.

+ A =—n" X 8*v* =0, and dt (= fw) will bc:b‘;

10. Suppofe y equal to =z (that is, v =« ;) and that

“the points d and f coincide in ¢, In which cafe the tan-

gent dt will be a maximum, and = cg — ac. It appears
then that the arc ae — the arc egis == cg - ac. Confe-
-<quently, putting E for the quadrantal arc ag, we find that

. E+4+b—
the arc ae 1s=-——+—2-——1'!
__F-—b+n,
the arceg = ——F7—1

There are, T am aware, fome other parts of the arc ag
whofe lengths may be affigned by means of the whole
length (ag) with right lines ; but to inveftigate fuch other
parts is not to my prefent purpofe,

11. Taking m and n each = 1; that is, ac (=AC) =1,
and cg =+/2; let the arc ag be then exprefled by ¢: put

¢ for one fourth of the periphery of thc circle whofe radius
52 4‘2—*5‘
is 1; and let the whole ﬁumt.r of VT-—z' and = gene-

rated whilft = from o becomes = 1, be denoted by F and
G refpe@ively. Then, by what is faid above, F + G will
be =.¢; and, by Part X, of my Marh, Lucubrat. it ap-

" pears
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pears that F x G is = £c. From which equations we find
=leemliy/e—zc, and G = Le + L Ve —2c.

But m and 7 being each = 1, L is = F; therefore
1+ V2—2AE, the value of L from Art. §, is, in this
cafe, = je— L Ve —2c. Confequently, in the equila-
teral hyperbola, the 4r¢ AE, whofe ablciffla BC is
= x+é, will be =%+\‘7x=;_i‘+i‘\/"—?"
by what is faid in the article laft mentioned. Hence the

rectification of that arc may be effeCted by means of the
circle and ellipfis !

12. By fubftitoting a — &, 2 x 26", and G—48 —¢,
for m, n, and m=z refpectively,. in Art. 1. it appears, that,
if (in the hyperbola) the femi-tranfverfe axis AC be =
a— b, the femi-conjugate = 2 X adt, and the perpendi-

= 3
cular CP =a—4"— 1] ; the difference (DP — AD) be-
tween the tangent DP and the arc AD will be equal ta.

: 3* ..
the fluent of 2= =% "" X £.
at+b -l

13. Itis well known, that, in any eHipfis whole femi--
tranfver(e axis is 4, and femi-conjugate &, if x be the ab-
fciffa, meafured from the center upon the tranfverfe axis,,

and Q_the arc between the conjugate axis and the ordi-

L x* * . . .
nate correfponding to x, ib,—_-i—,-' x x will be = Q, g be~
ing= -b:—;-——,”‘
Hence; by fubflituting 4.+ &, 2 x.22",, and s—t—:x fs,

for

31
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for £, m, and x refpe@tively; it appears, that, in the
elliplis aed whofe femi-tranfverfe axis cd is = ¢ + b,
femi-conjugate ca =2 x 44!, and abfciffa cb (correfpond-

. . b
ing to the ordinate be) = % x ¢, the arc ac (denoted

’ — 2 :)* .
by Q) will be equal‘to the fluent of ﬁf"‘_" x £,

a—b)" =14

14. 1In the ellipfis zed, the femi-tranfverfe axis ¢d be-
ing = a, the femi-conjugate ca = 4, and the abfcifla ¢4
(correfponding to the ordinate 4¢) = x; if ep, the tangent
at e, intercepted by a perpendicular (cp) drawn thereto

' T wa\F . )
from the center ¢, be denoted by #; g x “: g:"‘ (as is
a* — §*

a:—

well known) will be = #, g being =

ag+ ’1__ b —2xaf b x4t
2 .28 . *
From which equation, by taking the fluxions, we have

Whence we have x* =

a* + 6 %X tt — 13t

s 1t
T XX = — 2 =
28 2gVa — V' —2 X F R X+
te a* + 0 X tt— ¢
= + -

2g~/a—bl':—{—’ X ;_—-f N —

- L] . z— z * .
But R, the fluxion of the arc ae, being = “, _g:; X %,

according to the preceding article, it follows that Bl is

*

=R. Itis obvious therefore that

<

Ris
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; t @40 Xt —tt
RlS:; — m——)
2Ja—b|‘—t"xa+bl'—t"
; R —r’xt st b —Pxt
— 2

4Ja—b —t*xXa+ \—t‘ 4Ja—b‘ —t*Xa+ N -

. —N—pat - T LI
¥ {xf-—i-;—-t-‘xt+-}x”+”.;£l x £,
+8' -1 a—b) — £

From whence, by taking the fluents ,according to Art. 12.

~
+

and 13. we find R = a¢ (Fig. 32.) _..;t+D —4D (Fig. 29.)
+ g‘ Confequently the hyperbolic arc AD is =DP +
Q_—- 4R+ 22

Thus, beyond my expeQation, I find, that the Ayperbola
,may in gcncral be reified by means of two elipfes!
p ¢, p"¢” be equal tangents to the ellipfis a¢'¢”d; the
. arc a¢ (denoted by R) will (by Art. 9.) be equal to the
arc d¢” + the tangent p”¢’, or p'¢’ (denoted by #). There-
fore, fubflituting for # its value found by this laft equa-
~ tion, it appears that AD is = DP + Q — 2R — 2 x d¢’
= DP + Q+ 2 x é¢’ — 2E", and DP — AD = 2E" - 2
x ¢'¢"— Q; E” being put for the quadrantal arc ad. It
is obfervable that, when 7 is = g2 —4, ¢’ (by Art. 5.) coin-
cides with ¢ and ¢'¢” is = 0; Q_(by Art. 13.) = the qua-
drantal arc ad; and (by Art. 12) DP and AD both be-
come infinite. Confequently writing E for that quadrantal
.arc (ad), and L for the /imst of the difference DP — AD
whilft the point of conta& (D) is fuppofed to be carried to
an infinite diftance from the vertex A of the hyperbola, we

find 2E’ = E = L.
F 15. Ex-

33
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15. Exterminating 4, 4, and.#, by means of the equa-
tions a=b=m, 2x a6’ =n, and g—4 = ' =mz;

.. m* — n* . .
and writing f for ——— as in Art. 1. it appears that

émézéé

Va4 2fz—3a*

rated whilt 2 inereafes from o. Moreover the fluent of

T P 3 x 5"“ ) £i l}m'*n’z"*ii-in*z*i
sm*z R -zl * or oI its equa m )
being = de, as obferved in Art. 7. we find by fubtra&ion
. {m"*n’z"*a’: __‘ —
(W) the fluent ofm =2 xde-¢¢
The femi-tranfverfe axis of the ellipfis acd being now
= /m* + n*, the femi-conjugate — n; the abfcifla cb
2 2 *
=2 :" x m — 2%, and the ordinate be = # x gi.

- The femi-tranfverfe axis (a) of the ellipfis a¢'e"d =

(V) the fluent of is =2 x ¢ —de gene-

".2"' ~ 4+ =; the femi-conjugate () = -V—’"-;"-'-'f - =; the

tangents ¢'p’, ¢“p”, intercepted by perpendiculars (cp’s cp”)
drawn thereto from the center ¢, each = m# x m — 2V ;

and the abfcifla (¢4, or c4”) on ¢d, correfponding to the
point ¢, or ¢, of the curve, is determined by the expreflion

\/a'+a’)§+m—z':|: «/z’-i-gz
X

2t x w F 1k
From what is done above, many other new theorems

for the calculation of fluents are deducible : the motft re.
markable

a.

e .
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markable of which, I intend to infert in the App:nduc
to be anncxed to thefe Memoirs,

16. Taking m and # each equal to 1, we find by the
above theorem (marked W) the whole fluent of =

V -z
=2 x ¢—d; e denoting one fourth of the periphery
of ‘an ellipfis whofe femi-tran{verfe and femi-conjugate

axes are /2 and 1; and 4 one fourth of the periphery of

another cllipﬁs whofe femi-tranfverfe and femi-conjugate

axes are — V' + £ and _\/—f — I, But, by Art, 11. the fame

fluent is found = -; + +V/e* —2¢, ¢ denoting % of the pcn.

phery of the circle whofe radius is 1. Confequently

v 2 —
- ~ =, we have, from that equa-

2 xe~—d being :% +

tion, d=3e—1ve —2c; or e=1id + 1 VT — 2¢.
Thus it appears that the periphery of one certain ellipfis

may be found by means of the periphery of another clllpﬁs -

and the periphery of a circle!

Before Mr. MacLAURIN publithed his excellent Treatife
of Fluxions, fome very eminent mathematicians imagined,
that the elaflic curve could not be conftruéted by the qua-
drature or re&ification of the conic fe@ions. But that
gentleman has thewn, in that treatife, that the faid curve
may, in every cafe, be conftru&ted by the reification of
the hyperbola and ellipfis ; and he has obferved, that, by
the fame means, we may conftru& the curve along which,
if a hcavy body defcended, it would recede equally in
cqual times from a given point. Which laft mentioned

F 2 curve

35
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curve Mr. JamMEes BerNouILLI conftru@ed by the reQifica-
tion of the elaftic curve, and Mr. LE1BN1TZ and Mr. Joun
BerNoutLLI by the re@ification of a geometrical curve of a
higher kind than the conic feGions. It is obfervable, that
Mr. MacLAvURIN’s method of conftru@ion, juft now ad-
verted to, though very elegant, is not without a defe&.’
The -difference between the hyperbolic arc and its tangent
being neceflary to be taken, the method (for the reafon
mentioned at the beginning of this Memoir) always fails
when fome principal point in the figure is to be deter-
mined ; the faid arc and its tangent then both becoming
infinite, though their difference be at the fame time finite.
The contents of this Memoir, properly applied, will evince,
that both the elafiic curve and the curve of equable recefs
Jfrom a given point (with many others) may be conftru&ted
by the reification of the cllipfis only, without failure in
any point,

. MEMOIR
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Of the Defeent of a Bo@ in a Circular Are.

1. ET /pgn be a femi-circle perpendicular to the pig. 33..
__4 horizop, whofe higheft point is 4 loweft. »,.and

and center m. Let ps, ¢g¢, parallel to the horizon, meet.

the diameter /m# it s and #; and let the radius /m (or ma)

be denoted by r; the height ns by d; and the diftance sz

by x. Then, putting 4 for (16; feet) the fpace a heavy

bedy, defcending freely from- reft, falls through in one

fecond of time; and fuppoling a pendulum, or other

heavy body, defcending by its gravity from p, along the

arc pgn, to have arrived at ¢; the fluxion of the time of

rb—te—ts
defcent will (as is well known) be = irh

2dr —dt — 2.r—-d.4-—-x?
The fluent whereof, or the time of defcent from p to ¢
is, by Art. 15. of the preceding Memoir, = ——e——
.’ y 5 P g cmorr, Mxar—d
x de — ¢'¢’: m, in the theorem referred to in that Memoir,

. ; .
being taken = 4%, n=2r — d'%, z = f;; .and accordingly

the axes v/m' + 4 and 7 equal to s/;; and V2ar—d, and -

: Vm gt m Vm4+nt m i at
th.cam ——i—"—-l-z and——v--—- - ;.cqual to ;.I +/—;-

2
and.;
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zmdq -3 cb(F;g 3;)-— _] d—x'.and:p'.:”p",,
(Fig. 32.) eaph'_ d—x1
Hence it appears, that the whole time of defcent from

ptonis= x E — E; when, in Fig. 31. and

2
bt x2r—d
32. the femi-axes are taken according to the values' of m
and #, juft now fpecified: E and E” denoting the qui-
.drantal arcs acd, aed, refpeQively. \

2. If pgn be a quadrant; that is, if d be =#r; the -
E-F

whole time of defcent from p to » will be = % X .

by what is found in the preceding article. Which time
will alfo be = 2 x E + V' — 2¢ (= 1.31102877 x 5 ),
« being  of the periphery of the circle wbofe Jadius is r;
gro~temhy
V; —
-of the time of defcent, and referring to Art. 11. of the pre-

. :
ceding Memoir for the whole fluent of Ardathe the
vi—2z

refulting expreflion: E here denoting the quadrantal arc
of the ellipfis, whofe femi-tranfverfe and femi-conjugate

axes are 27 and r¥; and E” the quadrantal arc of another

cllipfis, whofe femi-tranfverfe and femi-conjugate axcs
* r *

arc?i + irt and ;} - it

3. The femi-axes of the ellipfis (Fig. 3‘1.), of which E

<denotes the quadrantal arc, being V2r and Var—d;
and

as appears by writing r& for x in the fluxion
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and the femi-axes of the ellipfis (Fig. 32) of which E”

) i 4*
denotes the quadrantal arc,” being ‘\ + = an j

thofe ellipfes become circles when 4 is = o, and E and
E” are then quadrantal arcs of the circles whofe radii are
V/2r and q\ refpe@ively. Therefore, ¢ being § the peri-
phery of the circle whofe radius is 7, the laﬁ mentioded

quadrantal arcs are equal to 2 x 7"— and —= v_ refpeively.

Confequently, it appears by fubftitution, that the /Jmit of
=—— x E—E’) the whole time of defcent from p-

bt x2r—4d
to n, taking d lefs and lefs, is = \/:77: which may be
confidered as the time of defcent in a very fmall arc ; and-

21 ] '
Vi’ of its cqual—j‘ x ¢, may accordingly be confidered

~ as the time of vibration of a pendulum defcribing fuch-

{mall arc in its defcent and a fimilar one in its afcent, ¢

being the quadrantal arc of the circle whofe radius is 1.

4. Having joined /p, p#, make the angle /pv equal to
the angle /£p, and draw rv parallel to the horizon, inter-
feGing the cirale in r, and the diameter Imn in v. Then
the pendulum or other heavy body, defcending by its
gravity from p along the arc pgra, will pafs over the arcs
pq and rz exallly in equal times: and therefore, ¢# and-
rv coinciding when /¢ is equal to Jp, it follows, that the
time of defcent from p to ¢ will then be presifely equal to
half the time of defcent from p to .

Foe-
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S |
For m, n, and 2z being as fpecified in Art, 1. F——
n° + mz
. 2dr—d*— 2rx 4 dx . e e
15-= sr—a1 5 Which by our conftrution is = sv.

Therefore, by Art. 8. of the preceding Memoir, the parts
of the fluent of the fluxion in Art. 1. (of this Memoir)
correfponding to the times of defcent from p to ¢ and from
r to n are equal.

5. If pn be an arc of 120° ¢ and r will coincide in
the point of the arc go* above #; and, by the preceding
article, the defcending body will be juft as long in paffing
over the quadrantal arc between ¢ and # as in pafling over
the firft 30° between p and g. Moreover, # and v then co-
inciding in the center m,. it is obvious, that the vertical de-
fcent in the firf# half of the time (of the whole defcent)

will be equal to 4alf the vertical defcent in the orker Aalf

of the time.

6. In general, the vertical defcent.in the fr/# salf of the
time will be to the vertical defcent in the other half of the
time, as V/2r — d to a/27. It.is therefore manifeft, that,
in the circle, the vertical defcents correfponding to thofe
two equal parts of the time (of the whole defcent) cannot
in any cafe be equal, as they always are in the cycloid.

M E-
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- Of the centr fugal Force of the Particles of a Body, ar jing
Jrom its rotation about a certain Axis paffing through its
center of Gravity.

1. I ET p be a particle of matter firmly conne&ted
- A

A with the plane DOEFQG, in which the line
OCQUis fituated s and, pg being a perpendicular from p to
the faid plane, let the diftance pg be denoted by u; alfo,
the line ¢/ being at right angles to O/CQ, let the di-
fiance p/ be denoted by 4. Then, the faid plane with the
particle p being made to revolve about O/CQ_as an axis,
with the angular velocity e, meafured at the- d:ﬂanqc a

from the faid axis, the velocity of p will be = =, and its-

centrifugal force from / will (by a well known theorem)
be ::'-}-)-‘- x p. Whence, by refolving that force into two

others, one in the direGtion ¢p, and the other in a dxrcc-

tion parallel to /g, it appears that, in confequencc of the
faid contrifugal force of p, the point / of the plane
.DOEFQG will be urged in a dire@ion at right angles

to that plane by a force = ";‘,: x p, let the diftance /g be
what it will. : '
G . 2. The

Fig. 34.
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. 2. The particle p being conne&ed with the plane
DOEFQG as mentioned in the preceding article, and the
diftance C/ being denoted by wv; if p be urged direétly
from the faid plane by a force = fu x p, the efficacy of
that force to turn the faid plane about the line HCI,

therein drawn at right angles to OCQ,_ will (by the pro-
perty of the lever) be equivalent to the force ﬁ”;—-x" a&-

ing on the faid line OCQ, at right angles to the faid
plane, at the diftance g from the point C.

Moreover it is obvious, that, ceteris paribus, the efficacy
will be the fame, let the diftance of ¢ from / be what
it will.

Let ¢ coincide with /; and let C4 be a line -in the
plane C/p continued, (which plane will be at right angles
to the plane DOEFQG); alfo, p£ being at right angles
to C#, let thofe lines p£ and C4 be denoted by w and
x — & refpe@ively, £ and x refpe@tively denoting the di-
ftances of the points C and £ from fome ‘given point V in
the line paffing through. thofe two points. Then, the fine
and cofine of the angle 2CO (to the radius 1) being re-

fpecively denoted by m and n, the force f ngP will be

'=L’2xﬂmx'w‘—-x—k?'—m'—n'x'wx—k.

Coflfcquently, if each particle of any folid body, through
which a line HCI and a plane DOEIFQGH may be con-
ceived to pafs, be urged from that plane by a force” ex-
prefled by fu X p as above; the force which, a&ing on
the line OCQ_at the diftance g from C, would be equi-
valent to the efficacy of all the forces acting on the fe-

veral particles of that body, to turn the fame about lt'he
ine
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line HéI will be obtained by computing the fum of all

thcforccsf menxw-—x-—@ m—n'x wx—A

ating on thc faid body. _

The computation of fuch equivalent forcc will, in
many cafes, be abridged by obferving, that, .if pZ be
continued to p” fo that ép” be = 4p, the efficacy of the
force on' the particle p”, to turn the body about the

43

line HCI in oppofition to the force on the particle P

[ xp

will be reprefented by the equivalent force — %

mnXx— A —w'—m —n X wx — & aQing on the
line OCQ_at the diftance g from C; and that therefore
the efficacy of the two forces on p and p”, to turn the
body about HCI, will be reprefcntcd by the equivalent

force ~—= fx' X mn X w —x— & aling on the line 0CQ,

at right anglcs to the planc DOEIFQGH, at the dxﬂance
g from C,

3. The body being of any fuch (hapQ that the fe&ion
thereof 47, paffing through p and p" at right ‘angles to the
line C%, is a circle whofe center is 2; and every other
fe&tion’ thereof, parallel to the faid fe@ion 44, a circle
whofe center is in the tine paffing ‘through C and £; the
ordinates correfponding to the abfcifle £p, £p”, in the faid

circular feion 44, will each be parallel to that diameter

(HCI) of the circular fe@ion paffing through C about
which the body will be urged to turn, C being the center

of gravxty of the body¥: and cach of thofe ordinates will

be

® In a fpheroid, cylinder, cone, or any other body conformable, in re-
gard to fetions, to this under confideration, (which is called 4 folid of - re-
G 2 vﬂ’u‘l”’

Fig. 36.
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be = v/y* — w*, y being the radius of fuch fe@ion. There-
fore, writing 2’ v/y* — w* X w’ inftead of p, it follows that

'-‘-'EA'-f x mnx x 14- — x — A%y, the whole fluent ofﬂ%ﬁ
X mnx' X w—%—k X w, generated whilft w (= 4p =
£p") from o becomes equal to the radius y, (both x and

.being confidered as invariable,) will exprefs the value
of (E) the force which, ading on the line OOQ_ at
the diftance g from C, would be equivalent to the force

of all the particles in the faid fe&ion, whofe thicknefs °

is denoted by the indefinitely fmall quantity «'; the di-
ftance C# bing denoted by x — &, and A being put for

(-78539) the arca of a quadrant of a circle whofe ra~

dius is 1. »

4. In the fpheroid whofe proper axis is 24, and equa-
torial diameter 2r; taking & cqual to 4, we have y* =
:;;xsz—x‘, and {-—x-—?’,]: =;’%x 20—

> rPxXr*4 468 - ,' .
z;xx—»‘b“xﬂx-—x’z——;;—i—xq.bx'—.;éx’.;x'«

. ° s "?"‘"",,
= 7' X 26% — #*. Confequently, the fluent of '——XL‘,;}'-.“-”-

‘xZZ’x'—46x’+x‘x§c— r* x 20% — % x x, generated

wolution, becaufe it may be conceived to be generated by the revolution of
fome line about the proper axis C#,) the (um of the farces arifing from the
rotation about OCQ_, to turn it about a diamcter at right angles to HCI

" in the circular fetion whofe center is C, it is obvious, will be = o; it

being manifeft that the force of any one particle p, urging it to turn about
fuch diameter, will be counter-balanced by the force of another particle

aing in the oppofitc direQion.
whilft
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' ' ' . brt
whilft x from o becomes = 24, being = il? x r' =6,

we ﬁdeAf; ¥ mn x T ="« =4 x 8 the

58
‘the value of (E) the force which, acting at the diftance g

from C the center of the fpheroid, would be equivalent to
the efficacy of the forces ating as above on all the particles

of the fpheroid to turn it about a diameter of its equator,

S being (= 224~

) the mafs or content of the féhcrofd.

5.. In the half of the. fpheroid \,memibned‘ in the pre-

ceding article, (cut off at the equator,) taking £ equal to
¥* ! —_— r2 ’ﬁt
-§- we have T—-x—k y‘-—-—xsz Xt —m XX —-

b 8
x',zéx 207 — . Confequently, the fluent of{-_ x—R 'y X %,

2

generated whiltt » from o becomes = 4, being = il X

480
%?ﬁ X 64r* — 196* x M for the

64r — 194, -we obtain
value of (E) the force which, adting at the diftance g
from the center of gravity of the hemifpheroid, would be
equivalent to the eflicacy of the forces alting. as above on
all the particles of the hemifphcroid to turn it about a
diameter of the circular fe€tion in .which the faid center
is fituated, M being the mafs or content of thc hemi-
fpheroid.

6. In the parabolic conoid, the equation -of whofe- gene-
rating curve is px = *; if the hexght be =4, and V be

at the vertex, 4 will bc-—--?-, and—-—x )y'- ik -px

)_(x
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:. . 7 3 ) P -
X X =— %-l . Confequently, the fluent ofPTx-px X x—-zs-b‘

x %, generated whilft x from o becomes = 4, being = %:
: 3

x 3p — 8, the force E will be = {T”'g X 3pb—F XM =

{%’i X 3r*—46"x M, r being the radius of the bafe, and

"M (= 2Ap4*) the mafs or content of the body.

. 7+ In the folid confifting of two parabolic conoids joined’
together at their bafes ; it the dimenfions of each conoid
be denoted as in the preceding article, and £ be taken = o,

? =

y willbe=p.5—x, and £ — 7By = L2235 Sgndx

LIRS

éonfcqﬁently, twice the fluent of P’—‘I’EL' - px".b-—x X x,
genératcd whilft ‘x from o becomes = 3, being = —’62.
X p —%, the force E will be ={Lg"x 7 =& x N, the
mafs of the double coneid being denoted by N.

8. 1In the cone, the radius of whofe bafe is =r, and
perpendicular height = 4; if V be at the vertex, 2 will

6’ . L ] 3

P b * . -
- X X — 3:' » Confequently, by taking the fluent of

rq x‘ 'I xﬁ

T Xx— i—b’ X %, (gedcratcd whilft » fron; o be-

comes = 4,) and multiplying it by'}-ég-{m-", (2s in the pre-
' ceding
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ceding éxamples,) we find the force E:A’;':'éﬁ X 4r° -5
== %{—ogl X 47— b X M, (‘A' thc content of the body

being denoted by M.

9. In the folid confifting of two cones joined together
at their bafcs; if the dimenfions of each cone be denoted
as in the preceding article, the force E, by proceeding as

above, will be found = L— X 3r*— 24" x N, the con-
tent of the double cone bcmg denoted by N,

10. In the cylindcr whofe lcngth is 4 and diameter 27;’

taking £ equal to —, we have —-x Ay =r x y

2

.a:_ x - 9 > y being = r.  Confequently, the fluent of

—————
2

-';r- —_—— -2-’ X %, generated whilft x from o becomes = 4,
being = ﬂ— ﬂ, we find, by multiplying that fluent by

12

ﬁ%"ﬁ'_ thc value of ‘E = Af:;ﬁ X 3r‘-- 5 = 7

td

3r"—46" x M, the content of the cylmder being de-
noted by M.

Thefe equivalent forces are diftinguithed by the name of
motsve forces; the corre{pondent accelerative forces are com-
puted in the following manner.

* 11. The body being a fpheroid whofe center is. C, and
whofe proper axis PN is = 24 and equatorial diameter
AB = 2r; let F be the accelerative force of a particle of

the

47

Fig. 37.
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the body at the diftance g from. the axis about which the
body is arged to turn, which axis is a diameter of its equa-

‘tor when the motive force is fuch as we have confidered -

above. Denote C4 and 47 by x — % and y as above ; and

. let the abfciffa £p, and its correfpondent ordinate (parallel
‘to the laft mentioned axis) in the circle whofe radius is &7

be denoted by w and ¢ refpcively. Then, confidering
the body as urged to turn about that diameter of its equa-

‘tor which is at right angles to AB, the accelerative force

e————— —

of ;vcty particle in the faid ordinate will be --‘—/i-"-'g—{—-:h;—:
X F, and the motive force of all the particles in the fame
ordinate will be = LI o Froy = Vo SLEL
P Fw’x'.\/}T:uT‘ : to which (by the property of the lever)
a' motive force = @ x Fuw's’ vy’ — w', afting at

the diftance g from the center C, at right angles to a ray
therefrom, would be equivalent. Therefore, confidering

/
x and y as invatiable, and w only as variable, %—’- X the

whole fluent of w vy — @ X w* 4+ x — & will denote a

force which, aQing at the diftance g from €, would be

. equivalent to the motive force of all the particles in the

circular fe@ion Ai, whofe radius is Z27 4nd thicknefs the
indefinitely finall quantity #. Which fluent is = A x

Pag—
4

-;% X 2bx—a* + £ =0V
in our fphcrmd k bemg taken equal to CN =4 Confe-
quently -
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quently %E % the whole fluent of XX 2bx =" X

X2 cL
comes — 25, will denote a motive force which, acting at
the diftance g from C, at right angles to a ray therefrom,
would be equivalent to the whole motive force urging the
fpheroid to turn as above mentioned. Such equivalent

force will therefore be = s—l;-; x r* + &* X 8: and this be~

ing put = Lsﬂig: % 7" — & x S, (the value of the fame force

bx — » + x — B\, generated whilft x from o be-

found in Art. 4.) we find F = fgmn x ::—:_;%:; which will

T o
LA :. 2 if f be taken = 2;, agreeably to the

be =~
a

computation in Art. 1. and 2.

d

Or F will be denoted by, = X :—:i——:;; ifibetoeas m

to d, and as 7 to ¢; & and g being cach =r.

12. Tt is evident from what is done in the preceding
article, that the circle 44, whofe radius is £4 (= ¥), being
the fe&ion of any folid of revolution whole proper axis
-coincides with C%, if C be the center of gravity of the
body, and C# be = =&, 4372 x L 4+ ¥— Ay will
denote a force which, a&ing at the diftance g from C, as

above defcribed, would be equivalent to the motive force -

of all the particles in the faid circular fe@ion, whofe radius
is y and thicknefs the indefinitely fmall quantity . It fol-

lows then, from Art. 4. and what is here faid, that %E X

H ' the
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the fluent of x x %’ pr= kl".y‘ will be = "Aé'" x the

fluent of & x f’-— X — k\'. y: "whcn'ce we have the theorem
-—_.——-.&—-l.
tbeﬂnentofx x ———x—&\ "

..fgmux
..."": theﬂllentofxx—+x_ ' ’

the value of 4, and the faid ﬂuents, being fo takon as to
. comprehend the whole of the hody under confideration,
according to the examples given above.

°
3

13. Computmg by the theorem juft now inveftigated,
it appears that,

in the hemi-fpheroid, F will be = 4 Z—r}—:;—?.
in theparabolic conoid, F = d g—::_—:: ;
in the double conoid, F ‘d ::::: ;
in the cone, F ...dx:::::.
in the double cone, F ‘d %—:—:—i—;,
in the cylinder, F . =% x 3527,

a and g being cach taken =7, f=* =i 1toeasmtod,

and as 7 to c¢: and reference being had to the refpe@ive
articles above for. the quantities denoted by ¢, m, 2, 4,
and r.

14. Seeing that the force which we have computed above

n
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8r
in the hemi- fphcroxd the height (4) is = v

in the parabolic conoid, the height (4) is = 3tr;
in the double conoid, the half length (8) it = r;
_in the cone, the height (4) is = 2r;

in the double cone, the half length (4) is = "Tr,

in the cylmdcr. the length (4) is = 3ir;

it is manifeft, that cach of thofe bodies will (with refpest
to its own particles) undifturbedly revolve about any axis
‘whatever pafling through its center of gravity, as will a
fphere! And it is obvious that, by means of what is
done above, -other bodies (being folide of revolution, or
fruftums of fuch folids) of various forms, may be found
having the like property! No more being requifite there-
to than tbat the dimenfions of the body be fo propor-

tioned that the Auent of ¥ X -'::-—x‘-—M'y‘ be =o; &

being taken equal to the dnﬁancc from the center -of ‘gra-
'vity of the body to one end of its- proper axis, and x being,
_confidered as flowing from o, till it bccomcs equal to the
whole lcngth of that axis.

15. Any axis about whxch a bbdy will fo undnﬁurbcdly
revolve, I call @ permanent axis of rotatton

SECOND PART.

Having hitherto only thewn how to compute the values
of E and F when-the body is afolid-oftrdvelution, - pur-
pofe now ‘to thew “how ithole "values shayibe compuosd
when the body is not fuch afolid; and likewile liow: the

H 2 forces
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forces E” and F”, at right angles to the dire&ion of the
forces E and F, may be computed : which forces E” and
F’, though always =o in a folid of revolution, arc not
generally = o in other bodies.

16. By refalving the force )-i—:: X p, mentioned in Art. 1.

into two others, as fpecified in tmt article, we found that,
in confequence of the centrifugal force of the particle p,
(revolving as there defcribed,) the point / of the plane
DOEFQG will be urged in a dire@ion at right angles to

that plane by a force = %'-,: X p, let the diftance /g be

-what it will. Now it is farther obfervable, that, at the

fame time, the fame point (/) will, in confequence of the
fame’ centrifugal force, be urged in the dire@ion /g by a

force ={;f:- X p, let the diftance pg (denoted by z) be

. what it will, &” bein.g put for v4* — u* =/g. And it fol-

lows, from the property of the lever, that, C/ being de-
noted by v (as before), 'if the fame point / be urged in the
faid dire&ion /7 by a force = fu’ % p, the efficacy of that
force, to turn the faid plane edgeways about an axis pafling
through the point C at right angles to HCI, will be

equivalent to the force %’3 X p ading on the line OCQ,"

in a dire@ion parallel to /g, at the diftance g from the
point C.

17. C# beingaline in the plane 0/CQ#p" at right angles
to the plane DOEFQG, let the planc 289d%"3", or a fe&ion

of the body at right angles to C#, be conceived to pafs throu %h
the
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the points £, 8, p, p”, ¥, ", 8"; and let 9 Bpy”, §233” (drawn
in the laft mentioned plane) be at right angles to each
other. Call the abfciffa JB8 and its correfpondent ordi-
nates By, By’; «x, &, &, refpe&ively : and call the di-
ftances £4, £3”, and Bp; &', 4", and y refpe@ively. Alfo,
VCV” being the other dimenfion of the body, meafured
upon the line VC£V”, let the diftances CV, CV" and
Vi be called #, &”, and = refpe@ively. Moreover, the
the fine and cofinc of the angle £2C/ (to the radius 1) be-

ing refpeively denoted by m and # (as before), let the.

fine and cofine of the angle B£p” (to the fame radius) be
denoted by s and # refpetively; pg, p“/ being each per-
pendicular to the plane DOEFQG, in which the points /
 and ¢ are fituated ; and pp” parallel to /g. Then will

- vhe=mtx —d + mey — b + nz— %,

8 =ntx—a +nsy—b-—mz—Fk,

/"

v = ty—b —sx —a.
It appears therefore, by fubftitution, that, E and EB”
being. refpe@ively put for the values of the motive forces

which, aing at the diftance g from C on the line OCQ,

in dire&ions parallel to /p”, /g refpeively, would be equi-
valent to the force of all the particles of the body, to
turn it about a line paffing through the point C in a plane
at right angles to OCQ;

E (=L x the fom of all the 4v x p) will be

==£ xmnx At + B's* + 2Ast—K"4+ n*~m* x Bs + Kz,

E* (= £ x the fum of all the v x )

=€ X m xxt";.:‘ +Dst+nxBr—Ks;
A being

53




s¢ - OF THE CENTRIFUGAL FORCE [Mem.IV.
A being = the {um of all the p x » — é’.j - Y,

. B v.::thcfumofallthcpxy—é’.z—é’,
K = the fum of all thep X x —d.z—F,
A" = the fum of all thcp X x—al,

B’ the fum of all the p x y — &',

K"’ = the fum. of ali the p x z — £V,
and D'=B" - A" _
Which fums may commonly be computed in the following
manner.,’
1ft. To find thevalue of A ; take the fluent of —a'.y— 4.,
generated whilft y from o becomes = 4’ + 4%, confidering'y
only as variable: which fluent is = L.x — 26" — 4" -
2dly. Having fubftitated, in that fluent, the values of
. ¥ and & in terms of x; multiply by x and take the fluent,
generated whilt » from o becomes =4’ + 4', confidering
x only as variable.
3dly. Having fubflituted, in the fccond fluent, the va-
lues of 4 and 4” in terms of z; multiply by z and take
~ the fluent, generated whilft = from o becomes = £ + £,
confidering = only as variable.
Then wnll fuch third flaent exprefs the fum of all the
pxx—d.y—&: andin the fame_manner the values of
‘B, K, A", B', K" are to be computed.

18. It is obvious that, if 4" be every where = b"',

. (+6°=%") the whole fluent of y — 5.y, generated whilft y
from o becomes = 4 + 4, willbe =o0; thercforc A and

B wnll then be each = o.
19. If
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- 19. If the line joining the point £ and the conter of
gravity of the refpe@ive fe@ion £B8ydy"3" be always at
right angles to the line 8484”; the whole fluent of

¥x—d.b t b, generated whilft x from o becomes =
@ + &', will, by the property of fuch center, be =o:

therefore K will, in fuch cafe, be = o whcthcr § be = ¥

or not.

s,

" 20. When all therordinates o 89" can be biﬂc&cd by a
right line (not ceincident with 434"), & — 6 will be
=9 + q"x—-_--;, ¢ and q being fome invariable quanti-
ties : therefore, } ey 1. B=08" (thc whole fluent of y — £.y)
bcing 1gb + 8 +1¢"s—adF+4; B, by what is
faid in the preceding article, will be = o, if the point £
be fituated as defcribed in that article and ¢4’ be = o,

If ¢” be =o, (i. e. if the bife@ing line be parallel to
dkB3 ), and £ be fo fituated ; A and K will each be = o.
" Such remarks as thefe in the laft three articles ferve to
abridge the expreflions for the values of E and E”.

21. If A, B, and K be each =0, and A" = B” = K”;
A" + B"s* will be = A”; and both E and E” will vanith,
let m and s be what they will : therefore, in that cafe, any
line whatever paffing through C, the center of gravity of
the body, will be a permanent axis of rotation.

22. If, A, B, and K being each = o, A” be = B"; E”
will vanith, let m and s be what they will; and E will
vanilb:when m is = 1 : therefore, in fuch cafe, any line
whatever paffing through C, in a plane at right angles to
C%, will be a permancat axis of rotation. Moreover E

being

127
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"being alfo made to vanith by 'taking m = o, C# will alfo
be a permanent axis of rotation.

. 23. If, A, B, and K being each = 0, A” be = K” and
s = o3 E and E” will both vanith, let m be what it will :
therefore, in fuch cafe, any line whatever pafii ng through
C, in the plane 8283°C, will be a permanent axis of rota-
tion. And, as E and E” will alfo both vanith when m
and s are each = 1; the body will alfo have a permanent
axis of rotation (pafling through C) perpendicular to the
faid plane 84B4”C, in which the other fuch axes will be
fituated.

24. If, A, B, and K being each = o, B” be = K” and
3 =1; E and E” will both vanith, let m be what it
will : thcrcfore, in fuch cafe, any line whatever paffing
through G, in a plane C# at right angles to the plane
3£B3"C, will be a permanent axis of rotation. And, as
E and E” will allo .both vanith whenmis =1 and s = o,
the body will alfo have a permanent axis of rotation (paffing

through C) parallcl to §234”,

25. If, B and K being each =0, A” be = B", A" — K"
+ A =0, and s'=#; E and E” will both vanith let m
be what it will : therefore any line whatever pafling
through C, in a certain plane, will then be a permanent

‘axis of rotation. Which planc will pafs through C and 4,

and make an angle of 45° with the plane §28¢”C, fo that

¢ fhall be = \/-;- or =--\/ —» according as the upper or

lower of the two figns prefixed to the term A takes place.

And, as E and E” will alfo both vanith when m is =4 and
$=



Mem. IV.] OF THE PARTICLES.OF A BODY, &c.

s* =, the body will alfo have a permanent axis of rota-
tion (pafling through C) perpendicular to the planc m
which the other fuch axes will be fituated. :

26. If B and K be each = o, E and E” will both vanith
. if m be = o: and they will alfo both vanith if m be =1,

and D'st—A.#—rr=0. Now = being, -by this laft equa-

D’ VD" £ 4A° ? D7 4 4A?
tion, =—+——;—A1—L—, or = %—f-nti—- (which

<an neither become equal, nor imaginary values ;) and the
fum of the two arcs whofe tangents are thofe,values of (the
tangent) -E-, being (as may be eafily proved) = go°; it is
- «vident that the body will, at leaft, have #%ree permanent
axes of rotation ; whereof C£ will be one, and the other
two will each pafs through C and be pcrpendlcular to C4
and to each other.

Moreover, B and K being each = o, E and E/ will
~ both vanith when A”#* + B’ — K" + 2As¢ is = o, and
D'st 4+ A.* — s* = o at the fame time : in which cafe m
may exprefs the fine of any angle whatever. Therefore,
at firft fight it feems poffible, that, when A, A”, B”, and
K” have a certain relation amonglt thomfelves, the two

values of = < in the one of thofe equations may correfpond to.

"two values of -% in the other of thofe equations; and that,

in fuch cafe, the body may have an infinite number of
permanent axes of rotation (paffing through C) in fwo dif-

ferent planes. But, by exterminating -:- by means of the

two laft equations, it appears that, for thofe to be true
cquations,
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equations, D” muft be = D’”, or A* = D”D"’; D” being

put for K/ — A’, and D" for K — B”. If D” be = D",

A’ will be = B/, and D’ = A = o; and our cafe the fame

as that confidered in the preceding article. If A* be =

D’D” 5+, in the equation D'sz + AF —s* = o, will be
DII DII/

==— = or = &~ : at the fame time -:- in the qther equa-
tion (A’f 4+ B/s* — K’ + 2As¢z = 0) will have only one

_ A i A ,. _ D
value = — g - Confequent Yo = 7 being = — —+,

but not = -I-);: the values of E and E’ can only vanifh

together when, = being = o, -:- is of any value whatever 3

’

or, when ’Z:- being of any value whatever, —:-is =— %3 On
. _ D~ e s

m being = 1, -;— is = —— Therefore it is evident, that, -

befides the fingle permanent axis of rotation determined by
. DIII .

the equations » = 1 and %= = the body (in the cafe

here confidered) can only have an infinite number of fuch

axes in one certain plane determined by the equation -:- =

- %I‘, (=- &) : to which laft. mentioned plane, the faid

fingle axis will be perpendicular; the fum of the twa

/4 V4

D . .
arcs whofe tangents are - apd — being go°.

27. "Suppofing the general values of E and E7each=o,
and exterminating m and » by means of thofe two equa~
tions, we get

P
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P5+Q5+Ri+8=0;
P being = A*B + AD”K'— BK?,

Q = 2B*'K — A’K — K*! — D'D”K — AB.D' + D/,
R — 2BK? — A'B — B* 4+ BD'D’ + AK.D'— D",
S = A'K + ABD’ — B'K.

Now, by our equation fo founq, it appears that% will,

at leaft, have one real value; and confequently that 1;'—,

Bt —-Ks .

, will
As—p =D'sz
alfo, at leaft, have ome real value. Therefore, in en-
quiring concerning the number of permanent axes of ro-
tation in any body, we may fuppofe OCQ_to coincide with
Ck4; and then, that the values of E and E/ may each va-
pith upon taking m = o, our expreflions for thofe values
will become

E = fx mn X Al 4 B/s* — K? + 2A 54,

which according to our fuppofition is =

E!:f Xmx At*—s'+ D'st;
B and K being neceffarily each = o.

28. Confequently, confidering C% as a permanent axis
of rotation, it appears, by art. 26. that any body what-
ever will, at leaft, have #4ree fuch axes, fituated as defcribed
in that article : ' .

And, by art. 22, that, if A and D’ be each = o, any line
paffing through C, in a plane at right angles to C4, will be
a permanent axis of rotation :

12 : - -Alfo,
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Alfo, by art.23. 24. 25. and 26. that, if A and D’ be
each=o0; or A and D” each = o0; or D’ and D7 % A cach
=o0; or A*~ D"D” = o3 any line paffing through C, in
a tertain plane C4/, (determined as thewn above,) will be
a permaneng axis of rotation ; the body, at the fame time,.
having fuch an axis (paffing through C) perpendicular to
the faid plane: ,

Moreover, by art. 21. that, if A, D’, and D? be each
= o0; any line whatever paffing through the center of gra-
vity (C) will be a permanent axis of rotation.

29. The accelerative forces F and F?, correfponding to-
the motive forces E and E#, will, after what has been faid,
be readily found : it being now obvious enough, that

E will be = g- x the fumof all the p x v* + %*

3

= x ATF + B + K+ 2Ast
e e ———————————— ]
=-‘§ XmnAlt* + B/s* — K' 4+ 2Ast + n* - m*.Bs + K¢,
E*eiiin= g—: X the fum of all the p X v* + u’*

” 7 J AT ol T A ‘
:I-;—,xm'.A +B'+n*. A +B+K"—2As¢ +2mn.Bs+ K¢

—_—_—-- —
= fx m.D'st + At — s* 4+ n.Bt — K. .
Whence the values of F and F” may be immediately ob-

“tained.

30. Two or three examples will, I prefume, fufficiently
explain the method of computing by the theorems above

inveftigated.

Example
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Example 1. Let the body be a parallelopipedon, whofe
dimenfions are 4, 4, and 2. Let the feion £Bydy"d" be
parallel to one face thercof, whofe length is 4 and breadth
b: and, C% being conceived to pafs through the middle
point (or center of gravity) of the faid fection £8989"4d", and

" of every other fe@ion parallel thereto; let the line 3484"

divide the fe&ion wherein it is- drawn (which will be a
parallelogram) into two equal parallelograms, fo that the

length and breadth of each fhall be 4 and-g-

Then, by our remarks above, A, B, and K will each.

be = o; and confequently
E=£xmn.At + B's* = K’ E":{XIIJD'JI;

. a*bk abk ab
” — *® Y e e /) o e o
where A” will be = =5 B= ) and K” = =

If abe =4, A” willbe=B", D'=0, E= l_{ xmnA =K.
.and E' =o. In which cafe, (that is when the body is a

fquare prifm,) any line pafling through the center of gtavity
of the body, in a plane to which the permanent axis of
rotation C# is perpendicular, will be fuch an axis.

If abe =4 =%, E and E” will each be = o, let m and
s be what they will. It appears therefore, that, in a cube,
(as in a fphere,) any line whatever pafling through the

® The value of A” is found.in the following manner.
sft. Take the fluent of j.x — o : which fluent is = 2. Pl

N — .
* 2dly. Take the fluent of 28 3% —a\ : which fluent is = 4eY = 1‘4;
3 12
a’ being = }a, ¥ = }5.
3dly. Take the fluent of ":”: which fluent is = 2% — A7,

In like manner the values of B and K” are found.

center
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center of gravity of the body will be a permanent axis of
rotation. '

‘Example 2. Let the body be a triangular prifm, whofe
ends are ifofceles triangles; the bafe of each of which tri-
angles being =.4, the perpendicular thereon from the
angle made by the two equal fides (in each) = #, and the
length of the body = 4.

Then, conceiving the feQion %2Byd9"3” (whereof % is
the middle point) to be parallel to that fide of the prifm
whofe length is ¢ and breadth 4, and fuppofing the line
34B3” to divide fuch fe@ion {which will be a parallelo-

gram) lengthwife into two equal parallelograms; A, B,

and K will each be = o; and coniequently E =£ x

mn. A"t + B"s* — K", and E”=€ X mD'st; as in the pre-

abk ab*k

ceding example: but now A’ will be = =-*, B"= 5
.
and K" = %6

" If b be = 2iq, any line pafling through the center ot
gravity of the body, in a plane to which the permanent
axis of rotation C# is perpendicular, will be fuch an axis.

® The value of A” is computed in the following manner.
1ft. Take the fluent of j.x— @) : which fluent is = 25'.x — 4] -

2dly. Take the fluent of 2¥#.x —a]": which fuent is = =T

. :
@ being = o, ¥ = ;-:f-
> 3
822 . hich fluent is = "—2:—‘ = A”,

3dly. Take the fluent of vy
In like manner the values of B and K” are computed.
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i
If 2be = -;i\ a; any line paffing through the center of

gravity of the body, in a plane bifeding the angle made
by the two equal fides of the triangle at each end of the
prifm, will be a permanent axis of rotation ; and the body
will alfo have fuch an axis (paffing through its center of
gravity) perpendicular to the faid bifecting plane.

u
If 2be = 3;—6 ; that is, if the ends of the prifm be equi-

lateral triangles ; any line paffing through the center of
gravity of the body, in a plane parallel to the planes of the
faid triangles, will be a permanent axis of rotation : and
the body (as is very obvious) will alfo have fuch an axis
paffing through the center of gravity of the triangte at cach
end of the prifm. - _

i
If 4 be = 2t and £ = -?I a, E and E” will each be = o,

let m and s be what they will: therefore, in fuch a prifm,
(whofe ends will be equilateral triangles,) any line what-

ever pafling through the center of gravity.of the body, wilk
be a permanent axis of rotation.

Example 3. Let the body be a pyramid ; whofe bafe
is a parallelogram, the length and breadth whereof are
a and 4; and the perpendicular height of the body = £.

Then, conceiving the fe@ion 285393 (whereof % is
the middle point) to be parallel to the bafe, and fup-
pofing the line §4@34" to divide fuch fe&ion (which will
be a parallelogram) lengthwife into two equal parallelo-
grams; A, B, and K will each be =0 ; and the values
of E and E” will be exprefled as in the preceding ex-

amples s
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amples : but here A” will be = 06:‘ , B' = az; , and K”

= S8 R ]
= 8o ' ‘

If % be =,-\27:; ; any line paffling through the center of
gravity of the body, in a plane paffing through the vertex
of the pyramid and bifecting its bafe lengthwife, will be a -
permanent axis of rotation : and the body will alfo have
fuch an axis (paffing through its center of gravity) perpen-
dicular to the faid bife&ting plane.

If g be = &; that is, if the body be a fquare pyramid of
any height whatever ; any line paffing through the center
of gravity of the body, in a plane to which the permanent
axis of rotation C# is perpendicular, will be fuch an axis. -

Ifbe=a and 2= \/"’ E and E” will each be = o,

let m and s be what they will : therefore it appears, that,

. in a fquare pyramid whofe height is to the fide of its bafe

as 2 to v/3, any line whatever paffing through the center
of gravity of the body will be a permanent axis of ro~
tation.

* The value of A” is computed as follows.
1ft. Take the fluent of 5.5 — @) *: which fluent is = 2//.% — #)".

2dly. Take the fluent of 25°%.x—4'] : which fluent is = ““y:'.{?‘f‘;}
' — b
ad being = -—, V= rYa
gdly. Take the fluent of £2%£. which fuent is = 2% = A7,

60
The values of B” and K” are comguted in the fame manner.

It
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It likewife appears by computation, that the tetrahedron

and the oéfakedron have each the laft mentioned property.

31. That the axis of rotation of any revolving body,

under no reftraint in regard to its rotatory motion, will

always pafs through the center of gravity of the body, is
afflumed above as a well-known truth. Indeed it is a very
obvious truth : for it appears by what is faid above coen-
cerning the centrifugal force of a particle of a revolving
body, that the fum of all the p x x — & and the fum of all
the p x y — & muft each be = o0*: or elfe the joint centri-
fugal force of all the particles of the body would give mo-
tion to that point thereof about which the body is, by that
fame force, urged to turn; that is, the body would be

moved entirely out of its place by an internal force arifing

from its own trotatory motion, without being acted on by
any external force to give it a progreflive motion; which
is abfurd. But, by the property of the center of gravity,

when the fum of all the p X x — & and the fum of all the
p X y = & are each = o, our point C is that center.

® By what is faid above, the centrifugal force of the particle p urges the '

point /, in the dire&tion /p”, with a force

- ——
) .fpuzfpxnt.x—a’+m.y—-b’—m.z—
and in the direCion /g, (at right angles to /p”,) with a force

PV =fpRty—b—sx =
whic:”eqmtions, upon fuppofing (as we may) C# coincident with CO, and
$484Y parallel to lp”, become fou = frx —o 7= fp.y —
in.and s being then each = o, andfzmd tf ﬁach = :.nd{,l::'reforipém tbl::
joint centrifugal force of all the particles of the body may not give a pro=
greflive motion to it, the fum of all the p x x — & and the fum of all the
? X y—¥ muft each be = o, ‘

K 32. It
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32. It is obfervable, that our method of computing the
forces E, E’, F, and F” holds true when the body is re-
ftrained from revolving freely about an axis paffing through
its center of gravity, and is made to revolve about any
point C which is not that center ; excepting fuch infe-
rences as are exprefsly derived from the property of fuch
center. o

When the force compounded of the two forces E and E”,
(or F and F”,) which we have been computing, is not = o,
it will difturb the rotatory motion of the body fo as to
caufe it to change its axis of rotation every inftant, and
endeavour to revolve about a new one: the compound
motion arifing from fuch perturbation, and likewife from
the perturbation caufed by the a&ion of an external force,
I have, in fome meafure, explained in the Philyf. Tranfait,
for the year 1777 ; and I intend to treat of the fame fub-
je& more fully in fome {ubfequent Memoir.

MEMOIR



M EM OT1 R V.

" A new Method of obtaining the Sums of certain Series.

1¢

HE fluxion of the circular arc 2 whofe radius
_ e : e —-—x —
is 1 and cofine #, being = = x” nz is
-z

—

— ‘ - . ’
Vs ety 4 being the cofine of (n2) # times the

arc z. Whence it appears that = is = 7:2-—# 5 s denoting

V1 — ¢*, the fine of nz.

—ce -— ncs PR
Moreover 5 i§ — ——— = g¢% = ——==- Hence <
T Vi I—x »
. —cx ‘
Vi —x*
2.

V;_ being affumed =
the fluents,

Log.of ¥ + v —1 "—Log ofy + Vy*—1,

orx+\/x-—1)=y+s/ — Iy
fuppoﬁng x=1whenyis=1.

\/._._- ‘we gct, by taking -

K 2 Whence
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st Ve-1 4+s—Vae—il

Whence y = = .
’_x-{—\/x‘.-xl -— eV E -
and V4 — ~/.... i,
2

But \/x — bcmg 7;—:-1- \/———ﬁWlube m‘:
whereof the equation of the fluents is

n X circ. arc, rad. 1, cofine x = circ, arc, rad. 1, cofine 75
where x is = 1, when 5 is = 1, agreeable to the fuppofi-
tion we made -above when we took the fluents of the
affumed equation by logarithms. Therefore, if A be put
for the leaft arc whofe cofine is » and C for the whole
circumference, to the radius 1; y being the cofine of A,
A+C, A+ 2C, A+ 3C, &c. » will be the cofine of

b A X S Y Confequently the values of v/1—y?

- S —
] n ? n *

and y, found above, are refpectively equal to the fine and.
cofine of (72) n times the arc whofe cofine is x.

3. Let s, &, & &c. &, &, & &, denote the fines and.
cofines.of 2, 23, 32, &c. refpedtivelg. Then,,

ifxbe=13;
sy &% &% s, &ec. will be o, 0, 0,.0, &c..
e ¢y &Ciae e Iy In 1y 1, &
1fxbc-o, :

.;, sy &, sv, &e. wilklbe 1,0, =1, o, &c..
s &y " &S wiee . Oy =Ky O, &, &Co
fxbe=« 1;

s, s &, s, &c. will be o, o, 0, 0, &c.
Wy O &C v ienee =, 1, =1, 1, &C
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if x be = =3

£,5, 55", 8% 51, &e. will be @, -’-\/-;-, O —Y;-;, —\—/;-34; o, &c.

s e & L =L =1y =1, L 1, &c.
ifxbe =— +3 _

£,5% 5% 5" &0, 7, &c. will be :/-2-3-. —[}, o, ‘_/21’“_ ﬁ’ o, &c..

2
Pon

(SRR AN AN T S v— =0 I, — 1, =31, 1, &

&c. &e..
4. The Log. of 1 + u being = a-—»§»+ %’-—--'—;-‘ &c. we. .
from thence, by. fubftituting % inftead.of #, have
Log.of 1 + %—:Log. of 1 +.u —I.‘.ovg.ofi;:uf"---.“—;f + "—3-—3&(:.-.
and, by. fubtration, get:

Wyt PP yTI gt g4

Log."of USR8 =4 ——— 3~ &e..
Now, if u be fuppofed =x + Vv** —1, %will.bc:z%_::: L,

u =ZEYof and. the fluent of = ¢

= VST TR vio s wdothe fluent of , o
Log.of 4, =z +/ 1, z denoting the circular arc whofe -
radius is & and cofine «.

Therefore, by (ubftitution, we have, after dividing by.2 /=1,

the feri x+\/.¥’—x—x:\/_x!‘-xf_' x+‘/xf_"j', '__,_\/;""—;m"
he feries = I o

3 — ;-
x4+ Ve )-x—;v“x'—'-n
+, YYVird fi.dcc.,.
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” P iv
or its equal 4'—i-+?_’1- & .:_';

except when (the cofine) x is =— 1.

Example. Let x be = %, and let a4 denote one fourth
of the periphery of the circle whofe radius is 1.  Then,
/4 wr o \/— \/— \/— \/‘

s s, s, &c. being ——2-3—, —2?'-, o, -——23-, __TS’ o, &c.

as obferved in the preceding article ; we have

\/; 1 I I 1 I a

— —_—— = 4 — —— &C. = —.
X1=7+ + 5 + 7 8 3

2a

Whence it appears that— + +7—8&c. 13_;3-

5. Puatting a to denote the fame quadrantal arc as in
the preccding example, 24 — 2z will denote the arc whofe
cofine is = —~x (—'- ¢); and the fines of z; 22, 3z,
42z, &c. being ¢, 5, &, &, &c. the fines of 2a—z,

2 X za—z, 3 X23—2, 4 X248— 3, &c. will be s, — s,
S =", &e. rcfpe&wcly, Therefore, by_fubﬁitution, it

appears that

Il/

¢+ + + &c.xs..a—-z-

except when xis = 1:
and, from this and the theorem in the preceding amclc,
it follows that :

E)
S+

i §

v vi
+ &c. is =a— 2,

. a
and & + 3 +-§ &ec. =2

except when xis =1, or=— 1.
' Example.
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Example. Taking x = L; the correfpondent values of
¢, &y &, &c. in art. 3. being properly fubftituted in our
theorem, we find

1 I I .
whence T.;+7.u + 13.17 + 19.23 &e. —4\/§

| W o
6. Denoting the fine and cofine of ¢z by s and ¢ re-
(7) . ’ (9

and ———2_
\/x-x V=N

(9) (9)
art. 1. be refpe@ively equal to -;— and %-*

fpeively ; the ﬂuents of

will,. by

Therefore, from our equation

» (found in art, 4.)

x
2 3 4 2
x

by multiplying one fide by —m=— T and the other by its

equal — 2, and taking the fluents, we get
‘/II
c—1+_s—£‘z&c P——z:"
#" denoting the feries 1 — 'F -[-? - F»&c.

and the equation bcing fo adjufted that each fide fhall
vanith when » (or ¢) is =1and 2 = o.

thncc, by taking x = o, and z.= a; (¢, ¢/, ¢”,.
"y ¢vy &c. being, accordmg to art. 3. cqual to 0y = I,.

0, 1, 0, &c. refpe@ively;) we have
1 AL R P a*
z—ctE— 3. ==
‘ But

71
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4
But — — P’;—: confequently

1 I I . . .
relaiy +g;-‘- g &c. is evidently —

ai

L — AW —_ ”=€:.
= (== )13 4, and p” =3

Let P” denote 1 + 2 + +_‘. &e.

and (L e T4 + + _ &e.
Then Q + %’- being mamfcﬁly = P‘, and Q~_¥ =4

it follows that P” is = i;'. and (L'zg;

Thus, with great eafe, are the fums of thofe feries ob-
tained: and with equal facility our method may be pur-
fued in finding the fums of a great number of other feries;
the obtaining of which fums has generally been confidered
as a bufinefs of fome difficulty.

7. To proceed with perfpicuity, lct us put
Pr=1+= +3+ &e.
p _1—23+3Is-£1-&c'
Q=1+ +;+ 8&c:
o —_I- I
'=1 T+ 7, &ec.
Ph_i"*' +; + &Co
.P"—I‘-—q.?—-;— &ec.
Q—1+ 7t + 5 &c.

glo=‘__+5. 71’ &c
&c. &, - Then,
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Then, from our cquation
& c" =*
C’ — 20 + — 3 &c. —""P’ — 4

by multnplymg one fide by "—: and the other by its

equal z, and taking the ﬂuents, we get
i rdid giv ot

§ -;5"';’-'_?&(:'_?2:_?5:

and, by repeating the operation, we from thence obtain -

’” L v s
-5+ 3.—4 &e. +’-’—z--p"-"—

And fo we may proceed as far as we pleafe, obtannmg a
new feries and its {um at each fucceflive operation.

8. From the laft equation but one, (s, 5", s, s, 5", &c.
bcmg refpe@ively equal to 1, 0, — I, 0, I, &c. whcn X
is=oand z _.a,) we ﬁnd

I’_ a’.
.33+53 &C.—d _12’

or, ap” being found = 3"

al?

9"’=x—v-?:-,-+-—-'-&c.=—-

s 7T 4
9 Theequatnon ¢ — ,+%;——&,c. +’-?:_P'r=§,

upon taking ¥ = o and 2 = 4, becomes

1 1 I’ a’

;:—;:-'_6‘ 8‘&c'+———-—P"—;_

I 1 .
But —; — e 6‘ - 8' &c. is manifeftly =%

confequently % +-—2- - (:%: '”‘) ie = 48‘

and pi* = 7{;—‘-
More-
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Moreover, Q' + — bemg P", and Q\_—“' =p"s

(]
follows that P is = gfs-, and Q" = %"

10. The arc whofe cofine is » being denoted by z,
2a — z will denote the arc whofe cofine is — x; and the
cofines of z, 22, 32, &c. being ¢, ¢, ¢, &c. the cofines

~of 284 — 2, 2 X 24—2, 3 X 28—2, & willbe -7,

—¢”, ¢, &c. Therefore, by fubftituting accordingly in

- the theorem deduced in art. 6. it appears that

I III g

¢‘+ s = &c:s=—§--—az+-:

and, from this and the theorem juft now mentioned, it
follows that

c"+ + &:c ns=3§——-2az+z,

and t’+ + > &e. =laa~— 2z
from whence othcr theorems may be derived by our me-

. thod purfued above.

11. Let F denote the fluent of — x Log. of 1 + 4, which

from art. 4. is found
2 3 :
=u—%+;——“—‘-&c -7
: St
or=w—u""* +—-;- —'-‘—-+—-&c + +p”,
U denoting the Log of u,

and F being fuppofed = o when #is = L.
Let G’ denote the fluent of uF »

G” ..... the fluent of - ~G.
Then
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Then will

, _ u’ ut " " _ R’
Gbe =gy —grt 7,5 —pu+)p R

ﬂ-' 8= 3& ,” 7” Rr,
or_—;z;+;.—3:—3—.;: c.tutpu—p —1+
' +'%—uU—U;

G = : .—z':.;s+3',';. &c. ~pa+p —RU4Lp'—8

"- - “—3 ,” 4 S
S Trg s &c. 4 gut+pu—p'— 3 -
«U* U*

+T—-;-—-2uU—p”+ 1 —R"U;

or

#” being put for 1 -f;+?'.—f,-&c. =2

1 I 1
23 +
I

4 STt X
R........form. 27 Y32
I 1 I  {
s ¢s e ' for 1%.2% - 21.32 + 31.43 —41.5:. &c.
where it is obfervable that R" 4+ R"is = 2p"— 1= 24 _ 1,
and R"— R”" =8,

Whence, by multiplying each fide of the equation arifing

. 1
R’........forl,.z‘—

” u t .
from the two values of G” by YV bringing the two feries
together in order to form only one feries, and fubftituting
according to the method explained in art. 4. we find

(€] ($) (1 ()
s s s

s ® 2a* x*. ;*)
T 2"1.3:.+3«.'4.‘:.'-'4'1..5‘:.&CO—-")("_3""'-"2--l-3—21:2;
to- )

L2 y

S

75
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@ @ @ @ D @ L
s, s, 5, &c. and ¢, ¢, ¢, &c. denoting the fines and

“cofines of {2, 1z, £z, &c. refpeively.

,. 12. The fines of 1 X 2a=2, J;X 28 w= 2, & X 24—z, &c.
®m et W .
being ¢, — ¢, ¢» — ¢, &c. refpeively; and the cofine
— @

of L X 24—z equal to s; we find by fubftitution

1) # (£ :
¢ 3 ¢

+ 22.32 + 32.43 &CO — 2

$.26—2 + c.—3——2az +Z—3.

1%.2*

(
Example. 1f x (=) be =1, z and s will each be = o;
3 @ &
and ¢, ¢, ¢, &c. each equal to 1. Therefore we have
by our theorem
I X

1 ‘__ 4a* .
1%.2° + 2%.3 + 34 &e. = 3 3

13. F denoting the fluent of -5 % Log.of 1 + % as in
art. 11. let '
" H’ denote the fluent of x4 F,

H”..... the fluent of% H,
H”.....the fluent of zu H’,

H'..... the fluent of —:—H"’.
Then will :
u* o

| ’ —— _f_ — e - P’,.’ P” "
H' be = 1.3 2’.4.+3’.5 &e. - —2—+-2_ -R

or
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- - c- 3
u I u 2

1.3* 2.4, 35’
_.-—--.|.—-—-—+8 —R";

PIIuS

u
&c. — 4 + 5 + 5

4 4 4 2
H'= x:‘.;s 2:‘4‘ + 3"‘.’5,‘ e, B+ %’,-. "U+ PT:‘ -
or = :‘,-3: + :’:’ ;-:’ bec. —u +"3116’ +£}:
+ 5 U's‘l"ﬁ?"%:‘%*w'u"%"'%*' "3
, I 1 r

rr I — L S  § .
S @ 0 0 8 @ = 11;31- 23.4“; + 32-5' &C..
where it is obfervable, that

R”+R"is =3, and R“ —~R" = 25"
Whence,. by multiplying each fide of the equation ariftng-

from the two values of H” by ”—;—, bringing the two ferics.

together, and fubﬁituting according to our method, we find.
‘// ‘/II' —_——— .
15.3 27.42+ 4 67, &Co_ +c,_——~+?——.

Moreover, the coﬁnes of 28—z, 2 x2a—z, 3 X 28—z, &c..

being — ¢, ¢’y — ", ¢, &c. as obferved in art. 10. we.
get by fubftitution

! e ¢" f —— ¥ 3 L
lz.3,+2,. &'.c...+2a—z+c },"_“—"'——E—'{--

.And, from thxs and the preceding theorem, we have

v
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4 I3 —
o +23+34&c 4:a—z+c?—4az+zz—3

Example 1. 1f x be = 1, ¢ and = will each be = o; and
¢, ¢ ¢, &c. each = 1: therefore it appears by fubfti-

tution, that

! . S
l’.3’ ‘ + &c' ls e 6 '6’
1  § 4 a* I
TS +w&°~ =37
] ¢  { a* 4
13.3:. + 31.53 + 51.71. &C. — py — 2

Example 2. 1f xbe =o, s wilbe=1, 2=4; and ¢,
&, & ¢y &c. refpe@ively equal to o, —1, 0, 1, &c.
therefore, by fubﬁituting 'accordingly, it appears that

1 T a

b § . .
roroh z+517 T &c. is=7—>:

‘and, from this and the theorem next above, that

-1 I ¢
15'31+ + &Co 1§ = 8.4 - e

5%7* 9'11

14. By proceeding as in the preceding article, the values
of H” and H' will be obtained: and then, by multi-
plying each fide of the equation -arifing from the two

values of H" by '-‘;, bringing the two ferics together,

" -and fubftituting as in that article, it will appear that

o
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3z ¢
l 128 9 +
o dar o ol . , @ = _% 3
1%.3%5 - 2"-4."-6' + 3:_51.7:. - 41.61.85 &C. 15= { C '96 128 32.32
. . a =z 2 L 1
L+3 48 64" 64

Hence, by fubftitution ; the cofines of 24 — z, 2 x2a—2,
3 X 2a — 2, &c. being — ¢, ¢, — ", c'r, &c. and the fine
of 2 x 24 — z being = —¢*, as obferved above; we find

4

. ‘ 3¢ T _i
12828 % +
o dr P2 g a* az 2’ 2
t 3 kY Y —4 < ”.———— -—~—3._
lss+z46+3s7 &e. |‘ S ntEm wn
a* a% z* I -
| R iy
And, from thefe Iaft two theorems, we have
44 3sa ¢ a at=az

‘+357,+579&c._ -—+6.a z+

128

R 3‘// 2a*
r M crin ——a—2 -l- — —2a2 4+ 2*—1.
o 2
1+

1%.2%3" 7 2%.3.%" : 3’.4‘.5‘&e‘= P = 23

1%.3%5 32 *

Example f If x be =1, s* and z will each be = o

and ¢, ¢, ¢, &c. each = 1: it appears therefore, by fub~
ftitution, that

I . a* 673
2 2oz 2 &c. 1§ = ——
1.3.5 24b+357

?

32 932.32
_ 4 1375
1’ 3 T 6‘+ 3.5%7? s&e. =3 9-32.32"
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1 3a* 1
2 a. z 1 2 zzl&CO=——~
13 +3s7+579 64 9’

I 39
z 2 2,2 z L2 2&c0 -—4'—
1%2 3+234F34w 16

Examp/e 2. If x be =0, s will be =0, 2=a; and
¢, ¢’y ¢y &c. refpettively equal to o, — 1, 0, 1, &c.
thercefore it follows, that

I

7 @&

11.22.3 2 33 4.“' + 1 s &CI 13 — 'z‘ —— F.
And) by additlon, we havc
= - S—— s-—“- .
l’.zi_ 3‘1 + 314 sz + 5 63 &C. — 12 1 :
and, by fubtraion,
- : ! =74 _ 23
2°.354° + 4’-5‘-6‘ + 6*.7°.8° &c. = 2 3

15. The fluent of —— “,, beginning when » is =1,

u W a
is _u—-+—--;&c.—;
=3 w5
or ——u""-vl-—— ——-+—-&ZC-+"'
From which equation, by brmgmg the two ferics to-
gether and fubftituting aocordmg to our mcthod we have
’ ad it a . [
¢ - ? + _ - 7 Co = 273
except when x (= ¢') is ncgatwe, or =o.
Hence, by proceeding as in art. 7. many other theorems
may be readily deduced : and more theorems may be de-

rived from the two valucs of the fluent of —, by pro-

+ 'l.’
cceding as in art. 11.
. 16. By
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16. By art, 4, we have : .
u—-—+—‘—3—‘&c.
g2 Log. 1 + u—Log. u = u_, . 3 o
Ut - —-—-—-&c
3 4

Hence, by fubftituting ¥ + v** — 1 for u, according to

our method purfued above, we get

a7

'3— - : &C.
And, writing — x inftead of x; and — ¢, — ¢, — ¢", &c.

inftead of ¢, ¢, ¢, &c. refpetively, agrecably to what is
faid in art. 10. we have

%Log.m+%Log.z=c’—-¢-;:+

‘II ‘I/l

1Log.1—x + + Log. 2_-—4'—----;-&&
Therefore it is obvious, that ’
+ Log. + Log. 213:-‘-'-'-+£+%‘-&.
+ (II
and % Log.—-»-—_c +3 + = &c.

By which laft theorem, and that in the prcccdmg article,
we find
I4x a

,-Log-— -;:c'+ + ~ &c.
and%Log.x—"'—"--‘-'-z-‘Z-}-‘-':‘--i-fx—l-&c.

I1—x 4 3 7 II
when x is a pofitive quantity.

Example. If x be the cofine of 45°; ¢, —c”, —¢", ¢,

¢, &c. will each be = ‘7'—;; and confequently
M 11—
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—a+Log14V2
— '—" -’

. 1 ¢ )
] =—— —— e e 0
5+9 13&c

23
L S I _a—Log. 14+V2
and PR TR &c. = 3 :

which ferics, it may be obferved; are refpeQively equal to-

the fluents of - _”_ ~ and 1’+jy*’ gv:incratcd whiltt y from a-

becomes equal to 1.

The fluent of ek
17. e fluent o
7 oY -
R = umtr mta - WA
o T &c. - M,
“.—.. ‘uﬂ—ﬂ—' "'.--fl"u

&c. + M

of == ot atis  mio-n

R ee 41 ,,,_¢.¢+1.e+z>
¢ being = ——, & =———, &
and M’ and M” refpe@ively denoting:

. 4 e i
the feries ;—m+n+m+” &c.

1 ] red
and cn—m-¢n+z—‘m+¢n+zn-—m

Co-

- » m—x L T P
which are the refpe&tive fluents of 1‘-—-—"-; and L—_—""a:‘
P 144" I+ &" ’

generated whilft z from o becomes equal to 1.
Whence, by multiplying by s#=~:1y and taking the
fluents, we have
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] ™ Np— "”um+u-- & ‘M’u"—“ M’ .
m.m—m_m+n.m+n—m m+42n.en+ 2n—m Co= en—2m +cn-2u

u-—- ‘u—ﬂ—l ‘nu—-ll-—zu . M”“en—z- MI[

=m.m—m—m+n.¢u+n—m m<2n.en+ 2n-m&c'+ en——2m —'m—zm

And hence, bringing the two feries together, after multi=
m—Len N
plying b 217__—_1. and fubftituting » 4+ +/%* — 1 for 4, &cue

according to our method, we find
Mr + My (hea—m)
pryurvall S
(1en) (Aent-n) , e tan) ,, Gen 4 30)
s - e s + ¢ s - e’ s
men—m minentn—m  mtanentan—m m+3Nend3n—m

(Js—m) (Jm) (fent5) (fent20) . .
$ 5 8§, § 5 & o 8c. denoting the fines of

&c.

Len — mz, Yenz, ven <+ n.2, ten + 2nz, &c. refpec-
tively ; of which arcs, the cofines will be denoted by

Ha—=) (o) (Gt 3) (i + 20) .
€ 3¢5 ¢ 3 ¢ , &c. refpeivelys and the fines

and cofines of other arcs, which are multiples or fub-
multiples of the arc 2z, will be exprefled in like manner,
—1‘;

Now it is obfervable that, if 'y be = =, = will be
! t ] .7 u “—_"\’I + u. ¢

I4 y'].

increafes from 1 to infinity, it follows, that the fluent of
L il o S

-_-=:=a—:'-, generated whilft » from o becomes equal to 1,
1+ - :

= - : therefore, y decreafing from 1 to o whilft &

M 2 will
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m—1,

will be equal to the fluent of -——___ » generated whilft #
1+ &”
from 1 becomes infinite ; and confequently, that (M'+M")
the fum of the fluents of e d"n—.—. , generated
1+ u'. 14+ %" D &
whilft « from o becomcs equal to 1, will be equal to the
whole fluent of =———, or of —:_—:'—,, enerated whillt »
1+u] 1+ 4" 8

from o becomes infinite. Confequently, denoting this
laft mentioned whole fluent by M, our feries which we
found equal to

M’ 4 M (e=m) M (e=w)

—am ¢ w:llbe:ln_m- S .

Ge)  Gentn) Gatas)  (foand30) -
18. If nzbe=2a; s, — § , § ,— s , &c.

o
will each be equal to the fine of ea; and s equal to
the fine of = : therefore it appears, t.hat‘

' (Ha—s)
M s ‘1 _
-n_:_z;'_(i-":)— will then be =
1 - [ Ll L &
m.en—m m4n.en+-n—m m+ 2n.en4 2n—m m+ 3n.gu+3n—m C.
(¢ ) (fen—m)

s and ¢ Dbeing as juft now mentxoncd

-, N’ and N’ being the

But this ferfes i# equal to N

fluents. of —"—;—:—', and ".:::," refpe@ively, generated
1—u" 1—u" )

whilft
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whilft # from o becomes equal to 1. Hence therefore we -

have the rcmar‘kablc theorem

Sincof 2—2Z4sx M = fineofeca X N — N”,

which is of confiderable ufe in the calculation of fluents.

(3en)
Example. If ¢ be.=1, and m=rn; s willbe =1, .

(fn—m)  (w)

s = ¢, and-(By our Appendix) M:-%---Confequemly-. :
ns.

* (a B
22,5, will be =N —N", .
s

w1 sy

the difference of the fluents of ——= and .~———, gene~:

I~ Y -

rated whilft z from o beécomes equal to 1; .and:

(m)
28 ¢ - T - - 1 LI

x—zr'T-_):r.x—-r"' 1+t-z—r+ 2+ r3~r §+r.4—r&c’ :

()

(= . . Ly
s and ¢ being the fine and cofine of 2r4 refpeively. .

19. Multi’p]'y‘ing cach.fide of the general theorem in .

art. 17. by 71_;?’ and taking the fluents, we have -

M B e feries
e ——1 c —~1I- = tne {crics
en.—2m .

(=) (fobn) - (s +29) -
¢ I3

) e ¢ + 4
m.en.en—m m4n.en+2n.en $+n—m ‘m + 2n.en + gn.en+ 28 —m

&c.

&ec.

, Y )
MR AN =1 - M AR+ 2Nt B—m

S being =

20. If .
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(%) (Jadts) Qb)) (jodge)
20-IfﬂZbe=2a} C 5 ™ € » C 5 - ¢ ,&C\
will be equal.to each other; therefore it follows, that

Mo T
X ¢ =185 will then be =

QN == mu;
G‘") 1 ¢ 7’
¢ xm.cn.m—m+m-l-n.m-]-znm+n-—m+gu+an.:q+4,n.:n+an—m&c'

(ta=m)
Example. If ¢e be = 1, and m = r#u; the cofine ¢

O] () (for +0)
will be =, and the other cofines ¢ , ¢ y &c. each

= 0 : confequently M being then = %,

n+
(m)
Y —s 24 .
X ; will be (=S) =
(;') “—-‘"‘l 2 ) |
X I 1 I

+ &c,

l.r.l-r-3-l+l‘-2—f 5»2-{-!‘-3‘-"_7-3-{-}'.4.-"

I
s being the fine of 274,

~x+ vV — 1\'-]-::.-— V-1 and x+\/x'—x] -x—;\/x'—l‘

2 2/

21

being refpeively equal to ¢ and s, feries whofe {ums are

@ & @ (ﬁ) A
. ' s £
s of —;, —, =, and — ma ire@! -
the value ('W" *GT W, (_ﬂ‘ y be dire&ly ob
¢ (3 5 £}

tained by means of the binomial theorem: and by re-
colle@ing- what is-proved in art. 1. we may, by means of
thofe feries, deduce moft of the theorems inveftigated in
the preceding articles, and many others, without deril\:ing

them
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them (by fubftitution) from other algebraic expreffions as. '
we have done above.
By the binomial theorem,

H My ey
=2+ V. ;T:l*“—e.x+ Vii—1 g‘"’H-ye".a:-]-- Vi—1 Rl Y
orzm"—e.mh+'+ a— V=1 e,
whence, by multiplying the firft feries by » 1 Ve

and the fecond by x — V/5* — 1 )"w, and -‘fubtra&ing‘one
.of the produ@s from the other, we have, after dividing

by 2 \/‘— I,
(m—1fev) ’ ’ .
() (m+ ) (wd28) (w4 39)
——=s—e 5§ +& s =& & &c
(i')\-
2¢

And, by adding thofe ‘produés together, we have, after
dividing by 2,

(-'-}") (») m+s)  (mta) LR ED)
=Cc=-—¢ ¢ +€ ¢ =—¢ ¢

- &e.
(*}-)l :
2 ¢ .
¢, ¢y &c. being as in art. 17.
From thefe theorems, others (of confiderable ufe in cal-

eulations) may be cafily deduced in the following manner.

(m—Jen)

s (m) (m+n)
= d—e s &c. by mul-
2¢

22. From the equatior

tiplying by ‘/x_f___? and taking the fluents according to

what is proved in art. 1. we have

dG
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"'_-"7:3:; ™  m+n) ()
dG-I—ﬂ '_____:_c___c ¢ +‘¢ ¢ &e.

Vi-— )Y m mt s m 4 2n
2 ¢

which is adjufted fo that the fluent is fuppofed to begin

when z is = -:-'3; x (the cofine of z) being then the greateft

root of the cquation X+ ve—1 Fx— Ve —1 }*‘ =o,

whcrcof the othcr roots are the cofines of -6—a 32 &e. fo

long as thefe arcs are lefs than 242: 4 dcnotlng the cofine
¢ <

of 3%3, and G the fum of the feries % + + &ec.

m+n m+ 2n

which is equal to the whole fluent of d _l""‘, generated
{ —x"

(m
whilt » from o becomes equal to 1. For, ¢ being =4

(mts) (md2n) (mf30)
when x is the cofine of Z the cofines ¢ s € 5 €

&c. will be equal to — d, d, —d, &c. refpcé'tivcly.

(m) (m+9)
23. When the coﬁncxls =I1,2is=0,and ¢, ¢ ,

(m + 29) .
¢ 5 &c. cach = 1: confequently, denoting the cofine

of -’;‘- by & and putting H for the fum of the fcrics

X P P4 g . .

‘;—,+"+m+”—m+3u &c. which is equal to the
m—t.

fluent of Z——, gcncratcd whilft x from o becomes equal

l-i-xl

te
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, (n=fo)
. ; .

to 1; the fluent of —===+——, generated whilft x from
: V= 2(1‘))

¢ becomes equal to 1, will be = H - 4G.

1 mbe=ten I will be =o, and fl —Fert
24. Wmbe=ienm, s willbe=o, and fl. = _ﬂc
2 ¢

== 0; therefore it appears that dG will then be = H.
In this eafy manner we difcover, that

_the cofine of ea is to radius,
II ,II’

o I [ 4
as the feries 7—‘+2+‘++—‘+6&c.
N | ¢ - red
to the feries 7+‘+2+‘+4+‘+6&c.
. R .
that is, as the fluent of - generated whilft » from o
14 =) .
’ . glo—1,
becomes equal to 1, is to the fluent of - generated
1 —x"

in the fame time. Which fluent of the firft written fluxion
is equal to ka/f the whole fluent of the fame fluxion, gene-
rated whilft » from o becomes infinite *.

- . Jene—1x .
®* Ifybe = x 2 % yillbe =—2 {: therefore, y decreafing
. x I+ x.\‘ . 1+ ’ul ’ .
from 1 to o whilft x increales from 1 to infinity, it is evident that the fluent
fen—1x .
i_:T:, generated whilft » from 1 becomes infinite, will- be equal to
I 4 %"
the fluent of the fame fluxion, generated whilft x from o becomes equal
tor, )

N 25. If

x

of
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n—{a)

25. If m = Len be =f, ewill be:zm:zf, and —

l-—#

=fxf_'+f'”xf"—x+fxf5. " &c. = 2xV""
+ L=3 f—4—9f—s f-4-f"5-f"62"}f—7
2.3
f_Sf—26;i- 2L = 8719 &e. till the exponent of the
power of 2x' becomes o or 1: which feries will both
g= ff=1f—12

2.3 ’

—f = 2.2V

terminate if £ be a- pofitive integer; £ bein

co = LL =1, ;—324-’); ~-3f—4 , &c. Therefore it follows, that:

£ x TN F 2238 &e

x+ Ve +x—\/x —W '
] (:) ‘(- ;l-') ‘”(--!‘-n-) ‘m t + %)
will bc:-;— i Y T e &c:
thic fluent being, fuppofed to begin when x is cqpal to the

dG + the fluent of

cofine of—
But if thc fluent be fuppofcd to begin when x is = I,.
xxz?f z'---f“?.zjf 3 &ec.

x+\/x'-3 + 5=V j
(») (mt9) p (m +.2x) o (w4 3%)

. [3 e ¢ ¢ (3
w:llbc_—,-n—__—m_l_"+m+m- T3 &ec.

H+ the fluent of

Example 1. 1f ebo. =1, m =2, and n=2; f will be
=1, and
‘ +Log.
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+Log. 2 + 1 Log. #:
orLog.x:c”—f;-i

H, in this cafe, being = ;Lo

Example 2. m being = ¢ +

f— 1 f=22477
H+3f 'xf_‘xf—c j‘—c—z6

4  (+f+2)
— [ ¢ €.
“e+f e+f+ta2
. I e
where H is = pry bl by
Hence, by taking x = o, it
than ¢,

His=dG + 2/~

-

d being here the ¢

1 p
and G:m-l--;_-*_T

26. From the theorem H +
preceding article, we get, by

taking the fluents,
) (=)

Vies m

N
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the fluent begianing when x is =1 and 2=0; and F

denoting the fluent of

Likewife, by multiplying the laft theorem by e
-

taking the fluents again, we get
(») ° (m-]--) (u-{-au)

-l . ) *F —¢
vHa'—fl. Vl—x fl. \/I—x’+Q& m »T-l-_ﬂ m
. . X e
Z - & .
Q. denoting the feries — = += = “] c

And, by repeating the operation, other theorems may be
obtained.
If we confider the fluents as beginning when x is

=¢, we, by the like operatien, obtain, from the theorem

(m) (m+n)

dG+F=—;——;_’_

&ec. in the preceding article,

(m) (m+1) o (= + 24)

- s e s
dG.z——-ﬂ ‘/.x___x.+5Q +ﬂ,+m+2ﬂ,&c.

e red
mEA m+an

(Ldenotmg the fcnes -+

‘and 4 the ﬁne of 222, of which d is the cofine.

And from hencc, by procccdmg in the fame manner,

other theorems may be deduced.
] . LM (mta) (mtan)
When v is =1, 2 is=esand’" s, s , ¢ , &c

each = o: therefore it appears that

Qe
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«iF

V=
generated whilft » from ¢ becomes equal to 1.

Example 1. If m be = Len, fand F will each be = 03
and confequently Q, = %9: % 3
Pd &
+ o c.
{cﬁ—l*

= dG (=d x the whele fluent of Z=

P

2

. d ;
5Q,is = aaG + the fluent of

2¥ 1 ¢
°r an x ‘1.‘-'-: ;—ra;

a1,

?
14"
generated whilft x from o becomes = 1;

which is a very ufeful theorem, for computing the valucs
of fuch fluents in numbers. - _
Taking ¢ and m each = %, and n = 2; & will be = ¢

= H = the fluent of

1
==t confequently we find

T 1.3 1.3.§
I+ 2.5* + 2.4.9* + 2.4.6u13 &c.

Y —4aG _a ——
=== x E+4E*~23;

. . . ‘ _*'
G being (in this cafe) the whol X .
g ( ) the whol fluent of‘/____, the

1 —x*
value whereof, as is thewn in the Appendix, is E 4
VE* — 24, E denotiﬁg_thc quadrantal arc of an ecllipfis
whofe femi-axes are +/2 and 1. .

Exomple
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Example2, Ifebe=1, m=1% and n=12; b will be
. .

R e
== d= ‘/;,c_o,f_x.F_.\/z_x, and F= V/2x,

fuppofing the fluent to begin when x begins : confe-
quently we have

1 I 1.3 1.3.5
3t 2.7* + 2.4.11% + 2.4:6.15°
2F” —~ aG — S atae—————————
=1Q= 4a =244XE—\/E'—24;
. .* > °
G being now the whole fluent of ——=—, and F” equal to
V-t

the fame fluent.
Example 3. Takinge=1, m=2, and 2 = 2; we have

(J X
f=1nF=5 and

x % __ stro 1!
Hz — :fl. v fl. ;—;;—E-l-a-; &ec.

the fluent Leing fuppofed to begin when x is = 1, and H

being = +Log. 2 = the fluent of -l—?;,— generated whillt »

from o becomes equal to 1.

.- fl. _:_:_ is._-.—_—-z_LOg..@‘—jﬂ. ;'ﬂ.\/;x:?—

E

Vi-#

But fl.

— x3 1.32° 1.3.547
=9,ta— z.Log. ¥ —x— 2.3° 2.4.5° 2467 &e.

1
2.3

1.3 135 g
+oat

g, being =1 + 7267

Therefore
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%ZLOg- 2—-—;—.a—z.Log.x— %q//+
Hence, by taking » = o, it apj

- % being then=4, 4 — z.Log. :
=0. Confequently, after fub:
found, it follows, that

x4 23.+;zs 237 sec.is=a—z.Lo

I x be =— I,zwnll '‘be = =

2

equal to 1, o, — 1, 0, &c. re¢
cvident, that

&c 8=

\/zx1+ .+ 245

Which laft feries bemg

Cor=fl. =

L o=t o5
whilﬁ x from o becomes eqt

14 = &c being equal to -
m:d in the fame time; it foll

@&-Logl X+ VIt is=:

and l.v—2 ;— a Loy
shefe fluents being all generate:

-
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tioned, and # denoting the circular arc whofe radius is .1
and tangent x, and v an arc (of thc fame circle) whofe
verfed fine is x,

=1,d=0, c= _,f...x, andF"'-;-\;;:_::f it fol»

‘lows therefore, that

% "..__
2* fl. \/T-'-T m, generated whil& » from ¢ be-

comes == I,

which, by the precedmg exsmple. isxe Lg A

Examﬂe 5o Ifmbe=eandn=2, fand F will cach
be=o0; thercforc, taking = equal to 2, we have ©

=ﬁs+—'—;&°-=—4 H+JX + ——s+m,&c.

c+4.
dbemg the eofinc ofeae T .y
and H =1. ___\ ) genented whilft » from o hcom‘e_sin

w}nch fluent, by art. 24, is = 4 X tho w/ivk fluent of = -l-—-o_‘_ v

Wheneis=1, dis =0, sad H =fa; and we :have, in.

' thet cale, x.-;‘;+§~,—;§&a=§4'. asinart. 8

27. From
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(m—Jen) ) (mtn) e i ,
-27. From the equation === ¢—¢ ¢ &C. In art
2¢

21." by multiplying by \-7.1::7 and taking the ‘fluents ac-

<ording to what is {hewn in art. 1. we get
m—fen) (o + (m 4 28)
== ) ‘(m, 9,

+ I &ec.

4G - o
Vl—# ({-] ll T m4n m+ an

. the fluent bemg fuppofed te begin when x is (— ¢) the

(m) (m4-9) (wsa) (-+3-)
coﬁnerf ; thefines s, s , ~:”

then cqual 0 b4 —b, 4, — b, &c. refpeQively.

(w) (m+a) (m+t30),
Whenxis=1, thefines s, s , + . &c. are each

==t
\/1_7 = generated

2¢

= o1 vonfequently 4G m fl. ———

whilft ¥ from ¢ becomes egual to 1.
If the fluent be.confidered as beginning when x is = -1,
- the theorem will ftand (without the term.4G)

A (-':f") . (:) (-‘i") ‘l(""l'”)
— 4. v T )’ =-;;—.*"+'+ ‘m-2n &c.

Example 1. Takmg e=—1, and m and # cach eqoal 2,

we have z = 4* -z + £ &, when x is pofitive: from

¢ o whence,

s » &c. ‘being

97
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whence, by multiplying by = and taking the flueats, .
other theorems may be eafily deduced, as in art. 6. and 7.
Example 2. Ifebe=1, m=1, and #=6; 4 will be-

=5¢ ::-2—3, and

2=, _{i

1 G —.the fluent of
i xVie=
’. - gvit 4 sxinl 4.9 sxiz .

"..‘.:sz-"g"' 3613—36919 Ce .
P ; .
denoting the whole fluent of —%—., or of 2L
G denoting the whole fluen of —=7, or =
enerated whilf x, or y, froth o becomes cqual to 1.: the
value whereof is affigned, in Table 1V. of the Appendix, .
by means of a circular and an elliptic arc. .
,dl

The feries s’ — — 7 -&c. vamfhmg when # is = 1, the

i,—i- - :
. ﬂucnt of = gcncratcd whxlﬁ x. from V? -

45t — ]*'xs/x

becomcs equal to 1, is = —-&

E.rampk 3 If m bc =e and n=z2,

U Cte)- (f +4)

F) e 3
———\/‘-—_—:Twﬂlbe_-‘—— ‘+2+‘++ &c.

G —1l.

apd the :zq&o/eﬁugngof

:JZE

x
2 M Nt ..

( .

= be= Zlg.tg_t.:\wl_g_oile ﬂu of. :———;‘ '

-

b
d
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—l

= = X the contemporary fluent of =

d -, by art. 24.

1+ x
" bandd bemg the fine and cofine of' ea.

Example 4. Taking m=¢ + 1 and n="2, we have -
Jra D Gy (k)

& 5
G = ﬂz Py ‘_H ‘+3+‘+5 &ec.

Y=¢ .

and 4G = the whole fluent of ——= =

2 I —

Moreover, G, by Ex. 2. art. 25. being = < FXH ===

21 —¢

it appears that

—;— % H — - is alfo = the fame wbole fluent;

2.0—¢

4 and d being here the fine and cofine of 73 1 + La,

. . c @
*’- G == the ahole fluent of _":.Y :
Vor—a"
.. . e L e "0 . ‘/l/
= the feries +1+‘+3+‘+5+‘+765c.

o3
and H... the contemporan fluent of
. - porary SooadeY
" ‘II . P
. ,_thcﬁ:ncs‘_H Pl

Other thcorems may be deduced from the general

theorem in this article, by multiplying by ‘-/—"—‘ and
J =X
taking the fluents, as in the preceding article,

0z 28. By

<9
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28. By divifion we have

< . -
- Lzt VR 1] =yt SE T
x=Vae1| 4yxtVE—1) » o
+y‘}.m"&c-

-

I S ) "R 5 U
nd PRV ,l{'+,.x—\7"_ﬂ_=ﬂ-x_\_/ﬁ Yz /5=
+pam V=1 &c.
whence, by fubtraling one equation from the other, and+
divxdmg by 2 V—1, we get
. W @ &) (”)
Iy = § =Y. ) &
1+y+2y¢
and, by taking 7z equal to 2,
b { _y.-—l—-—;il
TR 4

Hence, by multiplying by fi?’ takiég the fluents,-

= -yt &ei

- and writing y* inftead of 9y, we find

1=y

i FaS
1 Circ. Arc, rad. 1, tang. st s _“’...;Z._'..‘_;'_‘ &e. .-

where both x and  may be confidered as variable, inde--

pendent of cach other.

mn .

) g
—_, wehavec,c ,.C"s ¢y &Ou

V2
equal to —, — 7—, — 7.-.,, ‘/=, "&ec. refpeively; and

Example 1, Taking x =

s/

Nl
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2ty
.TCu‘c.Arc, rad. 1, tang. - ,—}'+——!£—-——&c.

:ﬂ.l+r+ﬂ 1+]‘-
Moreover, the fum of thefe two fluents, generated whilft y
from o becomes cqual to I, bemg, by art. 17. equal to the

aohole fluent of —— + " o of ‘. generated whilt y from

o becomes infinite; it appears that each of dhefe w. whale
-2 .
fluents i is= =
Eixample 2. If x be =13 c', &, o, Yy &, &e.o will
beequal to &, =1, 3, +H — 1, &o. refpc&wc]y, and

Girc, Arc, rad, l,ta‘ngl 2"’+ ‘--7"* ;’ %&c.
= 1. *l—_l_—;z-l-aﬂ ;{-;_—;:-i»ﬂ.‘_l_’

or, ﬂ. ’:’ Be]ﬂg ‘-“Clrc. AIC. rad l. tdﬂg y’

Girc. Arc, rad. 1, tang. < -————erc Arc, rad.1, tang. y’

R A ARy A Pl
"]-7+|3 -19&c+5~- u+x7 a3
Y SN Y - A
ﬂ,+,+ﬁ~1+r

Moreover, the fum of thefe two laft written fluchts; gene- -
rated whilft y.from o becomées equal to 1, being, by art. 17. .

equal to the whole fluent of 5, or of —-!—g; .generated -
whilft y from o becothes infinite ; xt follows. that each of

thafc whole fluents is = 3—- .
29. Addw-
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29. Addmg together the firft two equations in the pre-
. ceding.artigle, and dmdmg by 2, we have

=5 6 o
»—————-—m:.c-— cCy+ ¢y

14y +2y¢
and, by taking # equal to 2y

+ y-x 7 .
.*U———!——.—_. — + c &c.
1=l + 494 7 &

‘Hence, by multiplying by \/—‘_-:= taking ‘the * Auents,
and- writing » mﬂead of y, we have o
Coai . Vioa o, . SR rysl
R N
“Example t. :T_aking x =~-‘7‘§i‘, we hivc £33, 5, Y &l

N

. B | . . .
cqual to ~—= . \/_’ V;., v;’: — 7—:, &c. refpe&xv;!y, and
. . i, - S . W7 "
X 145 +2 J" A
:i*L? 14— ,-7 s-+7 &e.
= ﬂ ; +J . -8 55 1 +v

‘But we have found in Ex, 1.70f the prccedmg artncle,

that the {fum of thefe. two laft: written ﬂuents 1s -5: Con-
2

.fequently we find. Lo
gt AL AL,
ﬂ- 1 +J‘ — ‘2* aﬂd ﬂ i“y"u 2* b N

A de-
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I
Ardenoting the Circ. Arc, rad. 1, tang. -i’_—!—;a

iif_if_“f_‘*- tpeay
and L the Log. of o Log. i

" -

Example 2. 1f xbe=1; 5. s s &7 s, will bc cqual*

to ﬁ, 0, —-\/—3 i &c refpe&ively, and
.._tf_i'_u_. _2’.__ pa
2\/—Lo_g x-l:y —3* _ ) 5 + &c'
J*J
—ﬂ.l'l'J . ﬂ.l-}-J.

o , L
chce, and from Ex. 2..of the: prcccdmg article,. we have -

G mA A LA AL
ﬂl+’—?_‘3+4¢-.andﬂ _______

A being = Cire..Ar¢s rad. 1, tang.. ;=3 A" = Circ. Arg,

. ; R £ *
rad. 1, tang, }'?3 .gmd.L = Log. I.-’F ’; s 3*.’
. oot 1+y —3"y

3o Multiplying tha firlt cquation in art; 28.: by .

m?’ and the fecond. bij - \/.x‘e- 1 ]:’:: we have
—\/?:;\,Z ;

i LS x+\/x—l\—yx+v’x.:' &c.

x—s/F’;\u,; E&Z‘“TTF

v

and = = —x‘—\/x -1 —yr—‘»lx-rﬂ &c., .

" x+Vx m‘-!-]x—\/x -ll‘ *

.

= Whence,..,

108 -
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Whence, by fubtracting one equation from the other, .and
dividing by 2/ =1, we get

@ __ G s
G s— syt 5yt— s j &

1+ +ayc

Hence, by. multiplying by ‘/_.._ ‘and taking the fluents,

' We, upon adjufhng the equation, find

@ @ (s

+Log. x+}' +3yc=cy— 3’ + 3”—"4"&&

31. Writing =y inftead of y, we ‘have :{from the laft

theorem) ,
o) @ o (1)

" tLog. 1 yr—2yc == cy-—-_.’...... &c.
and confeguently (from the'laft two theorems)

sty taye @ (3: ) (’:)
%+ Log 5= +—-’-‘3 +=- &e.

. (22)  (4a) (6s)
and 3Log: 2 —-"+‘r+¢f&a
' * )
. T+ 9 —41?] |
. Example. If x be = L5 ¢, ¢, ¢, &c. will be as in

-Ex. 2..art.28. and therefore, from the laft. theorem but
- ene, n being therein taken equal to 1, we have

” +r+
tLog LEEb oy 20 24 L 22 K,

=1f
—— L ]
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=ﬂ.—':-_-’3 —2fl. == +ﬂ 1—]'
or, fl. ’J bemg:-;Log l+’

' +y+y +)
-;Log.H_y + y Log. ——:3

=y+1;-&c.+ + &c—ﬂ .,+ﬂ ’-

32. Taking » eqnal to 1, we have from the preceding
article and art. 28.

x+v‘+2xy
7 Log. Ty —asy T +Circ. Arc, rad. 1, tang. T—

:c’y+-‘—5’—+¢ 4 &c.

. 14y +2xy 10 2xy
and § Log. Ty —am Circ. Arc, rad. 1, tang, —y
‘/II 3 ‘yll 7 I 1z
y i Y ¢y &0.
3 7 11

‘Example 1, Taldng x equal to 1, we have
+ Log -l- Circ. Arc, rad. 1, tang. y

y

—y+ + &c =fl. ——;

1)

- +J ';Clrc. Arc, rad. 1, tang. y

and %

2 —q. 22,
.".:—3-4"7-"!"—I &ec. =1l. rpped

Circ. Arc, rad. 1, tang. ;—2_’-— being =2 Circ. Arc,rad. 1, tang. y.

Example 2. 1f xbe=2%; ¢, ¢, ¢, &e, will be as in

Ex. 2. art. 28, and :
P 3 Log.
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1+ +y
14y —

J
1=y

2 Log. >+ Cu-c. Arc, rad. 1, tang.

S ll l1

:}'+—5-—_+—+ 2,;: &ec.

—ﬁ Jn.+ﬂ r]u-2ﬂl ’Jai

-J -

1 1 +7 + y y
and-  Log. TTr—y 1 Circ. Arc, rad. 1, tang. 7=

-’—’3+"—'+-’3&c.

=—2ﬂ. ’Ju+ﬂ "’u"'ﬂ l-—] T

But by Ex. 1. . 7= 7—,= and ﬂ .. are equal te

1+y’

Log 7 + 4 Circ. Arc, rad. 1, tang. y',

-

and . Log. - — % Circ. Arc, rad. 1, tang ¥’ refpe&ively.
Confequently we have

+y'+y

'LogH_y =

+3Log.—= — ], 'Cnrc.Arc.rad l,tang - ’

— +Circ, Arc, rad. 1, tang. y = fl. ——= ]., +1. L,

3 1—y
1+5'+y

and {Log.—<— e

: |
+ -}Log.I—_% — Circ. Arc,rad. 1, tang :—7

+ +Circ. Arc, rad. 1, tang. yr =fl. ”

1 ,l‘

33. Adding together the firft two equations in Art. 0.
and dividing by 2, we have '

® B N B
rte o c—yc+yc—yc&c
I+J +=y¢

, Hence,
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Hence, by taking 7 equal to 1, multiplying by ;——;-_l.-_f_..—;—;
and taking the fluents, we find

2 _ Girc. A p x-x*

7 o3

= Circ, Arc, rad. 1, tang.” ”+I _JJ]—{:"‘—"&

34. Writing — y inftead of y, we have

14y —at
-; — Circ. Arc, rad. 1, tang. S _Jx T
. _:_1 &’ y* 7.3
=Circ. Arc, rad. 1, tang. AL : =—4iy—- L _ 12 &

and confequently (from thc laft two theorems)

III

+Circ. Arc, rad. 1, tang. = \/1 -x _:’y+-— +—= ", &ec.
and
. 2;,’
“1tyt—2xyt V! z 4 6
Example. 1fxbe=1; &, &', s, &c. will be equal to-
!}—, o, -';/3 , &cc. refpe@ively ; and

ICirc.Arc, rad. 1, tang

= Circ. Arc, rad. 1, tang. l:_’_-”‘

3* \

N LIPSy SR I N 2
—-y— s + 7 11 &C. —-ﬂ. l——’°— ﬂo l—y°'
Hence, and frdm art. 31. we have fl. -—j_—- =

s —

1,
+ +Log. :i;,i; +;Log. = H'” \/-Clrc.Arc,rad 1, tang. —= —3—-

P2 and
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and fl. -y:j-—,,:
-J

1Lo 1+y’+y r 1 i
8 T4y =y T av3

In the fame manner, from the 3d theorem in art. 31. and

+ ;Log.—; L

the 3d theorem in this article, we find . -—'-"-’-'-; =

1
+Log. 1+y +y‘— +Log.1—y + erc Arc, rad.1,tang. == 3"

and fl. 27 =
-J

. r.
':'Log' 1 +ji+},4_.;.Log,[ -y ---—-—Cll'C AI'C, rad. l,tang-ﬁ;;:

2vV3
; \
or fl. —’ ;=
1—=)

)
!Log l+y+y —lLog I—y +——-Cll'¢. Al’C l'ad l, tang 3

24y 5

2 It . ’ *
tLog-1+y+y*—; Log. I—y’—\73_-Cuc. Arc,rad. 1, tang.‘;%

35 " From the preceding article and art. 29. we have

1 Circ. Arc, rad. 1, tang. -——\/1—.1 +3Log. 12 +2yVi=s

14y =2V i—x*
14 Ix,9
=sy+ = - y +- ’ .
+y +2y\/1-—x
and Circ, Arc,rad. 1,tan ———s/ l—x'—LLopg i 2L TN
' ) g 708! 14y* —2ny—x

My grllyT iy
3 7 3

&e,

Example.

Circ.Arc, rad. 1, tang. ;%_i];
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Example. Taking x equal to &, we have ¢, ", &, &c.
as in the prcccding example; and

* B t.|. i

3y I ) 3°)

— Circ. Arc, rad. 1, tan - + — Log, — 5~

2\/3 1 Ar ’ ’ g - 4\/3 5 ‘+’z_3*’
e B M g g S
—‘y—‘s—-+'3—l7 &C.— . l-‘y‘. ﬂ.l—y",

Atc rad i, tan ..3_._.__ Lo li.y:i—"j!-

\/3. ’ ’ 8 |7= l+’z_3§,
PP A LI LAY A VSR Y i AR N b 2
7 ‘! +19 23 &CQ —ﬂn l_’y‘; ﬂo ._.y.3

Hence, and from Ez. 2. art. 32. the fluents of - 24

—yi2?
’ J y“' 129 and lz
T 1-y -y

may be rcadlly obtained.

36. Muliiplying the firt cqmmn in art. 28, by

x+ \/xi-x) ~ and the 2d. equat. by »— v/»* — .\"_7,

bringing the produ@s together according to our method,

writing y inftead of y, and afterwards multiplying by y?-'y

and taking the fluents, we have

g r—:}; x'. (:)_ (n:-)’ _ (;-)" (u-r-)”_'_ (--:-z.)yp_i_"
il x+2L:)y'+ R 4 ptyq p+2g
ﬁnd ﬂ'}"-lj X (:)-l-(h:‘.)j (:)yp (mj-.’yﬂ'? (--I;a::’”_'_z e,
z+z(¢),f+,=e » p+q T P2y

Whence, by confidering y only as variable, we may ob-

tain dll the theorems which we, by eonfidering » only as
variable, have' dedaced in art: 28. 29, 30. and'33. and'we

may

109
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may likewife obtain, from thefe two, fome other theorems

(-) (n—=m)

not unworthy netice; the valucs of fl. PPy X — 2

. 142y +94
(ﬂ).+("—-) .
[ .
= —2— being always affignable by means
143¢cy74 5y
of circular arcs and logarithms, as will be fhewn in the
Appendix.

Taking p and g equal to m and # refpe&wely, we have

and fl. y?='y x

(m) (s=m) (m) + (s—m)
Y I Lt L NV S, S
ﬂ y- ']x ™ . ﬂ mx (.?
. 1+2¢)"+5 14+2¢Y+5*
(:)’. (-;*-')’--i-u (.t”)’--l- 28
m m+4n m+ 2n &c.
- (-)+(n-£—n) -- (») (n—m)
L »” _ 1% s = s y"
and fl. y==7y x = fl. =X w
1+2¢)" 4™ 1420y 4™
(.)y (.2..)’-4-- ('tu)’u-l-u &
~ m m+n m+ 2n c.

Hence the theorems in art. 33. and 30. may be obtained

by taking m and n each equal to 1; and the theorems in~

art. 29. and 28. by taking m=1 and n=2.

> ;‘—‘
By expanding x—v/»* — x]’ +yx+\/x ~1/*| and

Ve —ll’ +yx—\/x —1] ] by the binomial theo-

rem, we may extend our analyfis ftill farther.

37- It
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37. It may be obferved, that, as the value of the ex-

+1_ p+1
prefiion -f—;_—l_-—-— becomes = Log. — when pis=—1,
fo, when p has that value (— 1), the value of the ex-
(+1) ,
preffion ;—i—; becomes = =z, and the value of the expreffion

@+1)
¢ =—1 *

= . . )
=5 becomes = : as appears by applying the rule

derived from the do&rine of fluxions for finding the value
of an algebraic fra&ion when its numerator and denomi-

(P+ 1)
nator both vanith together; the fluxion of being
e+v. u+x) ¢+ .
==z ¢ p, and the fluxion of =z s p, p only

being confidered as variable. Whnch being recollected,

our theorems will be found ufeful in cafes wherein they

may without fuch recolle@ion feem to fail.

" I prefume, I have now fufficiently explained this new
analytical Improvement: by which the intelligent analyft
may obtain the fums of many other feries, and the fluents
of many other fluxions, perhaps with greater facility than
by any other method.

POSTSCRITPT
The feries confidered in the following articles having

relation to fome of thefe in the preceding articles, it is
thought not improper to take rotice of them here, though

their fums are obtained by a method different from our
new method explained above.
. 38. It

11X
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38. It is well known that
Log. ——1s=.x.+ + &nt

. -

and, by fubfhtutmg ;—’-’7 for x, the famo

I—x = I-—’x"'-s
-3

&ec.

From which equations, by fubﬁntuhng "'Tl (or ¥ =—x)

for x, we have _ -
14! “;.—". +1 ‘.‘.;_" &

I—kq‘ !‘,-;r <o
T3 &ec.

Log. x =1 —x~

or=—1J—x—

_ It follows therefore that

fl. -—Log g 21+ &c,
"“T_, =P e

2

the feries 1 + = +—3: &c. being found = -3?-
But the fum of the two fluents on one fide is manifeftly

3 ‘T3

equal to Log. » x Log. —— which thencfore is
Cx %+-§; &‘,c.
+x—x+’:,’ _"&c—-?—;--

Hence, by taking ¥ == {, it appears that, when » has that
value

&+
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d+§+£m. is ::'%:-ifq. Log. 2.

39. Seeing that = is the fluxion of = ', we, from
our two values of Log r in the precedmg article. get
(by multiplying by - +—— or its equal —~ =X — l, and
taking- the flucnts)

— = +- —:"ﬂ’ &ec. '
3 3 == i q. Log. »:
!—x\ t—ﬂ i
F1l=x4 + &ec.

I=2""4

and from hence the value ofx + -‘-’-‘ +35 * &c. when xis = L,
may be found as above.

L] -~

Moreover, taking 1 —x =“‘-'-'-';—‘“ » we have

NN
{-xx+—+-3-&.c.

2 _ =—11q. Log. %3
x* being =l.-.x::3—_—2ﬁ, and x—_fi‘:‘_'.
Therefore it appears that then

A 4

,s+.‘f.+-"-‘ &c.is=4x x-l--t-:-{-?—’, &c. —.+1q.Log. x,

It alfo appears, by our value of Log, » x Log. - —-—-— in
the preceding article, that, 'when #* is == 1 — - %

Q %

. 113
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-’-X“"-{' -v~+ &‘ L ’
_ xs—---zfq Log 'R
-*n+q%1&a _.?1; a7 -

anfcquemly we havy, in this eafcg T N

3°+"§+§ &Cc' .

= ‘——-f?.Log x——xx+?+ = &,

=&X x4 37,+§; &c.-——;-fq, LOg_. %

our former value off the fame ferics.
chce we ﬁnd

x+3,+ &c —:-—-;fq_ Log x,

£ bmng_.‘./.s— d

Now the value of this (euc,s.hung found, we, by means
thereof, find

L +—;&c:4: T fq.Logx,

or%xx‘+-;;.+§.&c~.=;;—%_{<1.Log.x.
BustZefaa) L L
P is = % + or + 37+ 3 e

+-'-xx’+-:-:-.-i::;-&c;
. andz+ .+i &c.

:r°
Xx-!- 3&c.J
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Therefore it is evidcnt, that

x+ +3+ &cu ¢'~quogx,'

S At

andx-—-;.+;;——&¢. =#&a-1(q. Log x3
xbeing:-v-&'—‘-o

Mr. Joun Bervoviri, Mr. EurEr, and fomc othcr‘

authors have found the fums of the feries y = .  + - : &c.

2 .|. z : &c. when y is=1; and the laft mentnoned

gentlcman. xn his Ir_zﬂxt Cale. Integ. has alfo given the
value of the feries y-l- +5 Z z &c. when y is = £ : which

value I had before given m the Philof. T3 rarg/b& for
the Ycar 1760 3 together with the values of x5 z + &:c.

andy-l-

and y ui- + - &e. in the firft mcntnoned cafe.

" In this Memoxr, the -value of the ferics y + Z R &c ’

is affigned, not only lin both thofe cafes, but alfo whcn

,w*‘ -V—;f‘l,.or :'--?21-5 ‘s’ value bémguhcrc'found

equiltér-‘-,' “-—ITq Log. 2,4—"—-fq Log. ‘/5- " Of 74"

- 4. Log. L/—-——-—, accordmg,as Jie tak:be:q.ual o1, 4
3- \/- \/_n-l t,

2 o. ‘ = oo “:- .=

Q.2 The

lls
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The value of y + §;+-s’-:- &c. which befo.rc, I beliéve,
had been affigned only when yis =1, is found above, not

only in that qafc, but likewife when y is = ‘/5-2—

the value of this laft mentioned feries (as alfo the value of

. and as

y* {; + i—: &c.) is ufeful, as wellin ﬁgning the fums of

fome other feries of different forms, as in the calculation
of certain fluents ; I think it worth while to proceed to

fhew how the values of the faid feries y + Z: + &c, are
obtained in two other cafes.

40. It is obvious that

ﬂ- fl. - ,..,Log—xLog —
a-x+3 + &c.
= 1=y . _ =
Letybe. x+x’ thenwnllxbe '+”x_—+7r’

..f. voune ': —— @
x x_’l’l & ﬁ-l-’i.m I—x‘ z’cmq the—ten

fore it follows, that

ﬂ.l:‘pﬂ.%willbe:ﬂ.i A ’ y+"+”&c.—5;-
| —gLog. ;25
Confequently =
%+ % + 5 &e, will be =v; Log. # x Log. 72 + £

2_2
-y =g &
d and
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x xS
and x+§1+-;.' &ZC

S +
; l—.\‘+ 1—1_'_ 1—1 - &c. %+7Log.xxLog.iT:"-
I+x it T 5% l-l-.v\
Hence, by taking ¥ = +/2— i, we find that, when y has
that value,

y+ 5+ Lae is=% - 1fq. Log. y+
s/s_..

and, by taking » = ', (and tefcrring to the preceding

article for the value of x4+ = 7 + : & ) we find that,

when y is = \/-—z,

y+ §;+;; &ec. is _g +%fq.Log.x—%Log. x x Log. y.
By means of our conclufions refpe&ing the values of the

 feries ]'+§;+§. &c. and y + £+3’-: &c. fome ufefiil

theorems for the calculation of fuents may be obtained :
for imftance, it being known that the whdl fluent of

J J .
v fl. Visi generatcd whilft y from o becomes

equal to 7, is equal to r -|- + 2 &c. we, by referring
- to what is proved in this and the ptecedmg article, eafily
infer that, the whole flucnt of \/r—:T' generated in the

time before mentioned, is equal to —3- — 1 1{q. Log. r,

quO&r: 0r3-+’fq Log. - - +Log.r x Log.
14r

———

2 3
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1+r

——» according as r is equal to L, ¥2-1,0r V52,

refpe&ively; z denoting the cuculat arc whofe radius is 1.

and fine 5, and & the quadrantal arc of the famc circle.
l+.¢

" Other theorems relating to fl. -~ Log Txx apd 1. Log
are more obvious,

41, By proccedmg a ftep farther accordmg to the me-
thod purfued in art, 38. and 39.

1+3,+ - & (= -}xx+-‘-—+3-+-'—&c.)

is found = § Cube Log. x——Log x+x+ + ; &ec.

}‘ 5
and[-l- +—&c—‘CubeLogy——Logy—l--;xr-l- 3 &c.

V=1 _3—\/-

¥ being =1, y ....-—-—,y —> and 4 as in thc

preceding article.

" Note. All the Logarithms mentioned in this Memoir
sre of the Ayperéolic kind,

MEMOTR
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A remarkable new ‘Property of the Cycloid difcovered, which
Juggefis a new Method of regulating the Motion of a
Clock. .'

1. T ET ABPEQ, A'B'P'E'Q’ be two fimilar,

curved, fmall tnbes, fituated exaltly alike in a
vertical plano; let a fmall ball be fuppofed to be put into
each tube ; and, both the balls P/, P” being equal, let them

be conceived to be conne@ed by a perfeétly flexible line,

without weight, pafling from P’ up the tube wherein it is
put to the top A’, and from thence to the top” A” of the
other tube, then down that other tube to P”: let that
flexible line (P’A'A”P”) be equal to E'BA'A"B'E”; and
A’A”, BB", E'B", Q Q! being horizontal lines, let B'E,,
E'Q, B’E", E'Q” be all equal, that, the balls being
moved, P”may’- be at QY, E’ or B”, when P’ fhall be ‘at
- By B or Q_ refpeQively. Then the ball P’ being raifed
to B', and'left to defcend from thence in the tube A'B'E'Q;
and the ball P, daring the defcent of P, being drawn up the
other tube from Q”, by means of the faid conne@ing line ;
it is propofed to find the nature’ of the eurve into which
the tubes muft be bent, that the time of defcent of-the
ball P’ (fo conne@ed with the ball P”) from B’ to Q may
always be the fame, let the heiglit BE’ be what it-will.

Put

Fig. 38.
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Put 4 for the length of the part B'E’ of the tube into
which the ball P’ is fuppofed to be put; 5 for the vertical
height of B’ above E’; = for the fpace pafled over by P’ in
the tube in its defcent; x for the vertical defcent of P’;

for the vertical afcent of P”; v for the velocity of each
of the balls; ¢ for the time elapfed during the defcent of
P'; and g for 324 feet, the accelerative force of gravity :

then will L— be the motive force by which the velocity
o will be accelerated, & -—‘.-- P the motive force by which v will

be retarded, and g x :-:2- the a&ual accelerating force of -

cach ball. Now, that P’ may always arrive atE’ in the fame

time, let the diftance B'E’ be what it will, its accele-
rating force muft be always as the fpace to be paffed over

during fuch defcent®; that is, [g x i:—’-'- muft be =¢

X @ — 2z, ¢ being fome invariable quantity not yet knowa.

® Let s be any fpace to be paﬂ'ed over, x a part of that fpace; and fup-
pofe that, in the time #, the moving body has pafled over that part %, and
has acquired a velocity © by the continued aQion of an accelerating force -

=e¢xXs—%z Thnwillexs—zxx 5 be = v, and confequently
¢35 — fex® = }v*, v being = o when x'is = 0. Moreover ¢ (= -:7) will
be = £ : and ' . =t . .
T and hence ¢ is found 3 x Circ. Arc, radius r,.
verfed ﬁne-’:-. Confequently, taking x equal to s, we find the sobole time

of paffing over the fpace s :-'-*- x the quadrantal arc of the circle whofe
[ 4

radius is 1 ; which, ¢ being given, is always the fame, let s be what it will.

Whence
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g

'thncewchavc—xx—y—zaz-—zzz and, bytakxng '

the fluents, we ﬁnd = Xxr—y=24% - 2.

2. Let ABPERQN be a femi-cycloid inverted, the Fig. 39.

diameter MHpI7KN of whofe generating circle is 2 let
AB be =¢, BE=ZEQ=4, HI =4, Hp==x, Kr=y,
and BP = QR = =z; BH, Pp, EI, Rr, and QK being
cach parallel to the horizontal line AM. We fhall then,

by the nature of the curve, have AN =24, HN = 241

7
Np=T=2, NR =2 Nr:’T:‘_i“_“@‘.
E‘P =HN — Np=y, and 2=tttV z2d=emad’
= Nr —NK =y. Hence, it appearing by fubtra®ion that
x=—yis= 4“;": we have 5 Xr—y=-=% = X “24—4“’3

which, if ¢ be = 2 =, will be = 24z — 2% and the equa-

tion the fame as that which we have deduced in the pre-
ceding article. It appears therefore, that our cycloid is
the curve required : and, the accelerating force of the ball

P’ being = ;% x a—z, the time of its defcent from B’ to Q.

. . . Y ’ 2a t e
(= twice the time of defcent from B’ to E') = —{-‘ x femi-

circle, rad. 1, which, J being given, will be the fame,
let B'E’ be what it will ; and will be equal to twice the.
time of free defcent, from B to N, in the fame cycleid;
or the limit of the time of vibration (in a circular arc) of
a pendulum whofe length is 24. I
R t
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It is obvious that the confequence will be the fame, if

P, P’ be fimilar, flender chains perfe&ly flexible.

When P’ (hall have defcended from B’ to Q5 P”, having
been drawn up from Q” to B”, will begin to defcend from
the laft mentioned point and draw P’ upwards, fo that a
vibratory motion will enfue, which will be fuch, that,
abftra@ing from friction, the time of vibration will be the
fame, from what point foever P’ may begin to move, and
whatever may be the length of the line conné&ing the balls
or chains. By means of which line, a rod applied to a
clock may be made to vibrate in any plane whatever:
and, only fmall parts of the ¢ycloidal tubes being requi-
fite, the mechanifm may, in a little room, be fo adapted,
by tiking the diameter d of a proper length, (agreeable
to what is proved above,) that any given number of vi-
brations fhall be performed in a given time.

The evolute of the cycloid being a fimiltar cycloid, the
balls (P, P”) may be eafily made to defcribe any cycloidal
arcs by evolution : and, by fubftituting evolutes inftead of
tubes, the frition of the movement may be diminithed;
but it will then take up more room.

.  MEMOIR:
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Of the Motion of a Body, keeping ahways in the fame given
Pilane, whilff aéied on-by any Force, or Forces, urging it
cantinually to change its Direétion in that Plane.

ET a body (B) be fuppofed to defcribe the tra-
jectory ABDb about the center C: let (CB) its
diftance from C be denoted by y: let B x f denote a mo-
tive force urging it continually towards the faid center :

let B x g denote another fuch force always ating on it at

right angles to (CB) the radius vedor, or ray drawn from
C to the body: let v denote the velocity of thé¢ body

from the center C, in the variable dire@ion -CB; (which

is fometimes called its paracentric welocity); u its angular
velocnty about C, meafured at the diftance r therefrom;
and w its vclocxty at B in the dire@ion Bd, at right angles
to CB; (which is fometimes called its circalatory velosity.)
Then, the right line BP being a tangent to the trajeGory
at B; if the right line CP, drawn in any manner from C
to that taogent, be denoted by p'; and the fine of the

’

- angle CPB (to the radius 1) by s; the finc of the angle
CBP will be --5. and the abfolute velocity of the body,
in the dire@ion of the tangent PBb, (or particle Bb of
the curve,) will be =;'%: which would continue in-

" Ra variable

F ixo p'
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variable if no force aGted on the body. In which cafe -
it would continue to move in the right line PBb, and

. . . wy + wy
¢’ and 5 would remain invariable. ‘Therefore —7;;—"—.

the fluxion of its velecity, would, in that cafe, be = o,

u u .
and W= = — = — —)-', w being = -!. But the motive

forces Bxf and B X g (anfwering to the accelerating or re-
tarding forces f and g)* aQing on the body, w will be

—ﬁ—:‘—'g; Confequently, ‘the dire@ions BC, Bd being

+u;

—’-—t———’ (the excels of —— &y —_—

at right angles to cach other,

the fluxion of w when the forces a&, above — fr-, Wthh

would be the fluxion of w if the forces ceafed to act) will
be the fluxion of the velocity generated or deftroyed by
the acion of the forfzc B x g only : and, the motive force

into (-’5) the fluxion of the time being equal to the fluxion

* The quantity here called an accelerating or retarding force is the mea-
fure of the force caufing acceleration or retardation ; and is denoted or ex-
prefled by the wlmty that would be generated or deftroyed in the fame or
an equal body, in a guven time, by the aQion of the fame or an equal force
uniformly continued in the direQion in which the body, during fuch unform
aQion, might move.

The mealure of fuch a force may alfo, in comparing the effe&s of forces,
be denoted or exprefled by the fpace which a body would be made to pafs
over in a given time by the a&ion of the fame or an equal force uniformly ~ -
continued ; fuch fpace being always the Aalf of the fpace which a body
would pafs over with the velocity acquired in that time by the a&ion of
fuch force, and the halves of quantities being to each other as the whole
quantities are to each other refpectively : but due care muft be taken, that
thefe two Ways of exprefling the meafure of fuch force be not confounded
and both ufed in the fame procefs.

of
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of the quantity of motion generated or deﬁ:royed by that
force, Bx g x% will be=B xig—t——, and g—— x 20,

Moreover Vo' + w?, ti:e velocity of the body in the di-
reGion PB4, would be invariable if the forces ceafed aéte

+ww

ing : therefore —-;-’-—‘/__'__.-—- (the fluxion of that velocity)

would then be = o, and v=— %'f == ’:, w (in that cafe)

being = '—‘;Z and w :—'—?, by what is faid above. But,

the motive forces B x f and B x g continuing to a& on*

the body, the fluxion of v will in general be exprefled
by v. Confequently (the direGtions BC, Bd being at right

angles to each other) 1‘:7";-’ - v will be the fluxion of the

velocity deftroyed or generated by the motive force B x f;
and therefore (#) the retarding or accelerating force pro-
duced by the a&ion of the faid motive force (being equal
to the laft mentioned fluxion divided by the fluxion of the

time) will be equal to -—’?-:L—'-'—'-'

The general thcorems

f=u]_yrjr vv’ andg v xu]-i‘-izu_y’
which we have inveftigated (with others that will be fug-
gefted by the particular nature or circumftances of the
propofition to be confidered) will be fufficient for the
purpofe of determining every thing that may be required
refpecting

125
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refpeing the trajeQory and the motion of the body there-
in; as every force which can a& on the body, in any di-
reCtion (in our given plane) different from BC, Bd, (the
two dire@ions in which we have fuppofed the forces B x £,
B x g to a@®,) may be refolved into two forces ading in
thofe two particular directions.

2. It is obvious that our two forces /" and g may be
refolved into two others 4 and #; the former in the direec-
tion of the tangent to the traje&ory, retarding or accelerat-
ing the abfolute velocity of the body; and the latter in
a dire@ion at right angles 1o the faid tangent, ncither res
tarding nor accelerating the abfolute velocity of the body,
but only changing its dire®ion. Which forces found by
fo refolving the forces above inveftigated are

b= —v ov + uiy* + &’yy
SV iy N

3= 1 % r*viay — r'vq;uy + Efv’u_; + u'y’j.
R u;? r'y

3. It is likewife obvious that one fingle force (F) com-
pounded of the forces f and g, or 4 and &, is fufficient to
caufe a projecile to defcribe any trajeCtory whatever,
with a velocity varying in any poflible manner; the di-
re&ion in which F muft a& being properly varied at
every inftant: which fingle force is = V/f* +g*; the di-
reion in which it as at every inftant making angles
with the radius vector and tangent to the trajectory, fuch
Suy + gro_
Vvt 1wyt

to

that their fines (hall be to redius as g to F, and
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d frv —gay

to F, and their cofines to radius as fto F, and ——=
’ SroF, and s

to F refpectively.

4 1f & be the fluxion of the circular arc deferibed by a

point in the radius ve@or, at the diftance r from the center:

C, v will be to 2 as y to 2%, and uy = vz.

5. If the traje@ory, inftead of being referred to the
center C, be referred to a bafe ; and, y being the ordinate
correfponding (at right angles) to the abfcifla ¥, v be the
velocity of the body from the bafe, (in the dire@ion of
the faid ordinate,) and # its velocity in a dire@ion patallel
to the bafe ; the force (/) urging it towards the bafe will

be = — -'-;,3, and the force (g’) urging it in a direQion pa-
rallel to the bafe will be :'—;5 Moteover uy will be
= v,

6. Which two lat mentioned forees may be refolved
into two others, 4’ and £’ : whereof the former, in the di-
re@ion of the tangent to the traje€tory, (retarding or acce-

) ) . . L 6?6‘-'- LT Y] .
_ lesating the velocity of the body,) will be =— Vos@dns

and the lfatter, in a direftion at right divgles 1o the faid
tangent, (cha‘nging thf: dite&ion of the body,)ifz "v:‘_::: ”:Ja
The ufe of the theorems; obfained above with fuch

facility, {8 far more exteafive than the comimon doGHinNg
of
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of centripetal forces; as will in fome meafure appear by
the following articles. -

7. If only the centripeté.l force B x f a& on the body;

g being = o, we have uy + 2:4}: = o; and, by taking the
fluents, after multiplying by y, we get uy* = a4, 4 being

. R *b
the value of « when _y is = a. Therefore, u being = fy—,-,

w (= ——) will be = T and (U) the abfolute velocity of

Viath* + r* v*y*

the body in its trajeGtory = » the value of

ry
vv'+w': which (being to w as y to p) is alfo = —';,

# denoting the perpendicular from C, (the center of force)
to the tangent to the trajeory at the point where the
body fhall then be. Morcover the force

vy _ v -—---'i.'-'
S(=4 )wn be = 55— 2
L S s
== X the fluxion ofr el
. y ‘ -
vbcmg:-f:" (P A Nk

Y= = rpy
Hence, by fubftitution, the requifite force may be found,

. when the nature or equation of the curve is given : or,

if the force be given in terms of p, v, u, y, or z; the
nature of the curve defcribed by the projeétile, and its
motion therein, may be determined.

Example 1. If, r being taken = g, the centripetal force f

be = —- (— ¥y ) = the centrifugal force arifing from the
circulatory
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circulatory. velocity of the projedtile ; » will be = o, and
% (=Z= "") --‘—;z: whence z = a-x’-;a

It is remarkable, that, when y is infinite, p and z will
each be = ‘-‘;:

Example 2. Let fbe fuppofcdfz 1%;2- ; as it will be in

the cafe of a body B revolving on a horizontal plane, about
d given point (C), and drawing another body 4, on the
fame plane, directly towards that point, by means of a
ftring conne&ing the bodies ®.

In this inftance, f, which we above found equal to
::—:— —-'.'7"-, being = %}, we have, from that equation,
*¥y __A + B

= by taking the fluents, we get
ad sy—-a A+B . ) , s
= exiZiz 5 v* v being fuppofed =0 wheny is=¢

~ * ape

and & =b. Therefore v will be = e X Vy—at :.3.—5.'!.

] ya

thc value of v found above; and =, in confcqucnce,
VO e

P* X == Vo z3 r being taken equal to g, and P beirg

put for T-%'E' By taking the fluents again, 2 is found

® In this cnfefia = BT’ T being the tenfion of the firing : and it is obe "

mthat('l't-)—-u dv; thereforcfu....;._".'
By
8

L]
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=-I%* X circ. arc, rad." a, fec. y: and ¢ the time elapfed
(computed from the time of y being = a) is, from the

e L ; "——1_. 3
equation ¢ = ;:%:WT‘/‘!’{T fo und_’ -

It is obfervable that, = being (= F;) = F;- x the qua-

drantal arc of the circle whofe radius is 4, when y is in-
finite; the body B, after having made a number of revo-

, . _ 1 _A B]* ‘ .
lutions (= -L*- =31 X —;— ) about the center C, will
. 4P

fly off to an infinite diftance from that point ; approaching
continually to a re@ilineal afymptote, whofe diftance from
——-——ﬂ*

Cis _A; | X % parallel ta the ultimate dire@ion: of
the radius veQor: which dire&ion will be known, the

A+Dt

ultimate value of z being (mamfcﬁly =_B_u X da) as

above mentioned.

Exnmple 3 Let = ,_p - -‘:2 X the fluxion of 2 —,,—; be

fuppofed = — + = T bcmg takcn =a “Thén,’ by mul~

txp]ymg by 2y and taking the ﬂuents, we have 5* + c’—?

a‘b’j‘_zMa’—'+2Na'-' QM],-._QN”_.

T — —— =
y=t m—1 n—1 meT n—~1

the value of v when y is = .

» ¢ heing

Whence
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a*by™j
zMy3 -~ + 2Ny3™*
-1 A=x,

- a*bs,

Whence z is found =
\/ Ky +

b Lol N Je=gn
Kbeing::&’-l-c‘-—zMg -

m—1 ne=—1

And it follows from what is done above, that

# will be = L

l". N l""-;
Vg M 2N

m—l n—1

{b M PO N l=s |
u:‘;;—,v:‘/K+2 + 2 - a*8’y—*;

¥
m—1 n—1

\/ vt + w* (thc abfolute velocity of the body in its trajeGory)

=V v+ L=V *+-'—:=f My

2—1

and ¢ (the fluxion of the time) = b2l

3—= ]
; Ky*+ 2My + aNy —ath®

m—=1 n -1

Now, though we cannot in general determine the tra-
jeGory, and the motion of the projeile therein, from
thefe equations, without fometimes having recourfe to in-
finite feries ; yet there are certain cafes wherein the curve,
and the motion of the body defcribing it, may be deter-
mined by means of logarithms, or circular or elliptic arcs:

concerning fome of which cafes, I purpofe to fub_]om a
few remarks.

Remark 1. 1f m be =2 and # = 3, z will be equal

aby”ly 3 - -2,
\/—‘-szy«l-N—_?—’ K bcmg 5 4 ¢* —2Ma=* — Na

S 2 and
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and it appears by our Appendix, that, in all poffible
cafes, the fluent z will be afligned by logarithms or cir-
cular arcs.

SVN=TF s
M

M « e
Ibee:N—a’b” ZWIHbc-— N —a*5*?
: A"
TN
‘4 «M J=TM
and 2 = === x Log. sy = X ——3

N
in which cafe ¢* is = % X a+ ;:’ T'
Confequently, if, whilft the body is continually urged

towards the center C by a force ;,l. it be continually urged

Jrom that center by a force 24, N being greater than g*4¢;

the proje@ile, fuppofing y to increafe after being =4, itbht
is, fuppofing ¢ to be pofitive,) will revolve in a fpiral
about C, and for ever recede therefrom ; yet never will
arrive at the periphery of the circle whofe center is C,
and radius =—3; 2 a given quantity greater than 4: or,
fuppofing y to decreafe after being = 4, (that is, fuppofing
‘¢ negative,) the body will revolve about C, ard continu-
ally approach nearer and nearer to that peint ; yet never
will get within the circle whofe center is C and radius
== -I;/la - » a given quantity lefs than a: M being accord=
N —a*}?
) a

center, or greater than l—%ﬂ when it approaches towards

the center.

ingly lefs than

when' the body recedes from the

Remark
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Remark 2. If mbe = 2 and 7 = 4, =z will be equal to

a*by —‘j (1 - -r__ 1 _3 Y
ey Y e i Kbcmg =6 +¢* ~2Ma='— tNg~3:
and it appears by our Tables, that the fluent z will always
be affigned by elllptxc or circular arcs, or by logarithms,

- or by algebraic quantitics,

If M be = o, z will be =

aby ™ 5
VKy’—a’b’y-l- IN

1,005 t,a,—1;
3ahy =L whenKns_.——,,
Vy —3A% +2A% ' . y— AVy+2A 3A

3 whnch will

be =

A being = %;» Hence, by taking the fluents, we find

y—A _ a+2A+ VéaA + 34
z = a x Log. X —————3
X R X T A+ VoAt ar

Confequently, if J gaﬁgg X afm' X a+2A (the value of

¢) be pofitive, the proje@ile will defcribe a {piral about C,
and for ever recede therefrom; yet never will arrive at
the periphery of the circle whofe center is C and radius

=5 ¢ or, if the value of ¢ be negative, the body' will re-

volve about C, and continually spproach nearer and nearer
to that point; yet never will get within the circle whofe

center is C and radivs —; 1;* N being greater or lefs than

a*}*, according as the body recedes from, or approaches

towards the center.
a*h*

IfK be = & ;b,andN-;M—.

z will

133 -
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¥ i,
z will be = L_Az—i'-;-z and, by Theorem 111, Table L
A—y

t at b
z_z3§ax_t_ﬂ* A__ai,Abe:mg } b

Confequently, if, M being a pofitive quantity lefs than

—a\t
tab, (6————’( = ) the value of ¢ be taken pofitive, the
3*a*A

proje&ile will defcribe a fpiral having a circular afymptote
whofe center is C and radius %%‘:-
Remark 3. If, n being = 4, mbe = 3; or n béing

=5, m be equal to 2, 3, or 4; the value of z will, by
our Tables, be always affigned by elliptic or circular arcs,

" or by logarithms.

If, n being =5, M be = 0

a*by

z will bc-..‘/i?&__a““_‘_%N
v . . N ZiAﬂJ
which, when K is = {73, will be = s—%, A being
3 -—
aa%-- Hence 2 is found=;-*~xLog wx:‘_}ﬁ

Confequently, if ~/ -2%\—. X a';A‘I’ (the value of ¢) be
taken cither pofitive or negative, the proje@ile will de-
fcribe a fpiral having a circular afymptote whofe center

. i
is C and radius -?—; 3 N being greater or lefs than 4*5°, ac-
‘ cording
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cording as the body recedes from, or approaches towards,
the center.

8. The remarkable circumftance of the trajeGtory com-
tinually approaching to a circular afymptote, I believe,
was firft taken notice of by Me. MacLAuURIN, in the cafe

wherein (g being =0) fis = %: afterwards Mr, S1MPsoN

obferved, that the fame thing will happen in an infinity

of other cafes, g being = o, # greater than 3, and f= "'Ii"
,»”

It is farther obfervable, that fuch circumftance always
takes place when, g being == o, the value of f'is exprefled
in any manner whatever : -provided the valucs of b ¢, and

J» determined from the equations Fycy—ab—2 P ak

ab
the fluent offy—'o andy = p (=b*+¢“ “ﬁemofmg ’

be real; the fluent mentioned in thefe expreflions being

generated whilft y from being = 4 becomes = A = the value
of y in the equation (f3* = a*4’) refulting from thofe two
equations. Which cquat(ons are obtained by confidering
C as the center of curvature of the traje®ory when the
value of v is =o. From whence it follows, that (A) the
value of y in the equation fy* = 4*4* will be the radius
of the afymptotic circle; the value of £ when y is = 4
being fo adapted, that A thall be greater or lefs than 4,
according as the body is confidered as afcending or de-
fending towards fuch afymptote, that is, according as ¢ is
taken poﬁuvc ar negative,

g. If only the forcc g a& on the projedile ; f being

.= 0, we have % 5= ”, by means of which equation and

that
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that of the propofed curve, the requifite value of 3

yx 22w +3 o (=g) may be readily computed; or, g being
g:vcn, the trajeGtory, and the motion of the body therein,
may be determined.

Example 1. 'To find the force requifite (at every inftant)
to caufe a proje&ile to defcribe a logarithmic, or equi-
angular fpiral, by alting therecon always in a dire&ion at
right angles to the radius ve@or?

Let p be= m;y. m* + n* being = 1; then will z be i"%i

]
e k&

: whencc u =—§!- Thérefore = “ (- --) will be

L 3 0‘ m‘

v, and -"-;—: -:‘;— hence v is found =¢. :] Confes

quently u will be -67 s and g = 'E"""'- * s

mna g
r being taken = g, and 74 being then = mc.

2 . .
If m be = ;-,-; and n = J%, g will be equal to the in+

. b
variable quantity f;:‘

]
ls

<

Example 2. Let the traje@ory be a conic fe&ion,

. . d
whereof C is a focus, and whofe femi-axes are ~— —r and

m_; the curve being a circle when ¢ is =0; and an
¢

ellipfis, a parabola, or a hyperbola, according as e is lefs,
equal to, or greater than 1.
Then
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d i ) 2
24 = ———=L—: and, ex-

Then will p be =
2d+ & — 1y Vir*vt + uty*

terminating vv, we find

= 4 2
T A1y +ady—dt )

.
4

whence, by taking the fluents, # is found = ;;2 X

4
" . e —— e — .’-. - -
ct1y—dxe—1a+d”, Confcqucntly v will be equal to

== N
c-‘-ly‘+d§<c+xa-‘-d

e—la+dl" c+ly—;|"
"} ¢+ la—d

e—1y+
.Which being known, we are tbercby enabled to obtain,
by fubftitution, the requifite value of the force

- fdd
_a®  e—1a+d) iy 1y—d¥
g—FJ?xc+x.a—d x-____ 3te
l—:.}+h"

By which ‘it appears, that the body cannot begin to -

‘move from the vertex of the curve unlefs e be =2. In
,‘whxch cafe the curve is an equilateral hyperbola, whofe

femn-axes are each = d; and g muft then be = f:. x
a+d \* x

3a—dl © y+4d
a= g, it follows, that the body re(’dng at the vertex of

Therefore, taking 4* = 32— and r=

the curve ‘may be moved from thcncc by the force g, (at

fuflt = d’ and be afterwards made to defcribe fuch
T hyper=
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byperbola by the continued aion of the force g =

L. ‘
sty +d

Example 3.. Let u be always = -N-r_‘-_i;g as it will be in.
the cafe of a ball moving within a tube (or a ring upon = .
rod). revolving in a horizontal plane about one of its ends;.
the ba]l and tube, (or ring and rod) after the firft per-

cuffive impulfe,. being difturbed by no force but their mu~-
tal preflure againft each ather®.

o 3 (y< 3 ., - 2R3,
Then will'-g(z =) be= M, and po =020

; Nty ~NFpo
i R Mz 3 2232
Bence v is found = vies '_L LA Confe-
N +a 2Nty + .
. zMN& M5 M
quently g will be = Iy g R Ve s Nie N
MriN 45~ ;

. - -“-—’ ' .
and z (= )- m‘xN-u M N+a®
Which value of = becomes = 2422 oMy » upon

< Virtet + MP* x x — M*5*
fubftituting x for N +y* : and therefore it appears by our
Appendix, that the fluent z will -always be afligned by
elliptic arcs, or by logarithms.

being =1.

& It will appear by a fubfequent Memoir, that, in this cafe, when the
tube (or rod) is very flender, N (= M — &) is =53-;-‘, 1 being the length
of the tube (or rod), T its weight, and B the weight of the ball (or ring)-

If,
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If, taking » =a, N be =‘-.3'._—l_’%; M will be = c-—--.a_:‘;u

'__aN* -1 s b+ N‘—\/ﬁ-r"y:‘_ . —_'E.
z_\/-—ﬁ-l:_.}- Z=3a8X%X Log. b_‘x N*-{-\/N'-i-?’_’ (—- .)
t . Ve e
=%y-yx\/ﬁ+f, and t=€§ — - x N1y -2
Whence it is evident, that, their firft velocities being
. adapted accordingly, the tube and ball within it will fo
revolve about the center C, to which one end of the tube
is fixed, that the ball will continually approach nearer

and ncarer to that center ; yet never will arrive at it.

In other cafes, if the ball firft moves towards that cen<
ter, it will, in a finite time, make its neareft approach
thereto; and afterwards it will continually recede there-
from till it comes to the revolving end of the tube : or,

$ .
¢ being greater than -N@l x b, it will, in a finite time, ar-
0 . ) b" Py
rive at the center, with a velocity =V ¢* = yﬁ-, r being
taken = 4.

10. In general, we may, by means of our theorems,
either find the requifite force, or forces, from the nature

or equation of the curve and fome circumftance refpe@ing

the motion of the projeile or the a&ion of the force, of
forces, thereon ; or, from fome fuch circumftance and a
knowlege of the force, or forces, acting on the body, its
trajeGory may be found, and every thing clfe that may be
required relative to its motion. |

T2 : : Evample
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Example 1. To find the force and its dire@tion requifite
(at every inftant) to caufe a body to revolve in a traje&ory,
fo that it (hall, in equal times, recede equal fpaces from,
and defcribe equal angles about, a given point; that is,
that it fhall defcribe the fpiral of Archimedes. with an in~

variable angular velocity 2

In thns cafe v and # being invariable, we havc, by art. 1.
f== and g= —l’—‘ : therefore v/ + g, the force fought,

muft bc—-b- Vigric' + 6%y ; and, fbcmg togas—tp fs .

if a perpendicular to the radms ve@or, drawn from the
center C to the tangent to the trajeGory at. the paint (B);
where the body thall at any time be, be bifected by a right:
line drawn from that fame point.of conta®, the line from
B at right angles to that bifecting line will be the direGion
in which that force muft a&.

Example 2. To find the force, or forces, requifite (at: .

every inftant) to caufe a projeile to defcribe an ellipfis

. with an invariable angular vclocxty about one of its foci ?

In any clhptnc orbit, vis = dr 2 % Je -1y +2dy—-d;

. . d d ot
the femi-axes bein — and == and p=—nnt
&= =e ? 2d4e—1y
therefore, firft fuppoﬁng u, the angula® velocity about
"I

the focus C, to be invariable; we have v* = T X

¢ —1 1y* + 2dy — 4* ; and, by fubftitution,
F=
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'b’ v;" bi" 253 e ——————————
:-;3'-—-;—:;1—'7—4, T X =1y +2dy-d*,
26y . .
g:—r—::-zq’» Je‘—xy+2dy—d, b
l—-l’ 77 -y —————.:-——..__.

y bcmg the diﬁance of the body from the focus C, and'

d s
y (=2 :':_ ") its diftance from the other focus.

Secondly : fuppoﬁng C to be one focus of the orbit, and
the angular velocity about the other focus to be mvanable,
z will be—%i-and'v=-::x Ji—-¢ gy —d, & de-
notmg the faid angular velocity meafured at the diftance:
r from' the refpecive focus: confequently, by fubftitution,,
we find in this cafe

Wy YO _ Yy iy =T
SR TSR T T X 1=y —d,
vk By gy ==

E=7"5 Ty xJ1=cyy—d,

II III

F V; +g T—'XJ!"‘Zon 'y, XI—-G]j—-d'-- :

Remark. Tt is obfervable that 1 — ¢ .yy -4 is=o0
when the body is at either enid-of the tranfverfe axis, and .
y” —y=o when it is at cither end of the conjugate axis, .
let the excentricity of the orbit be what it will : ‘and.

/I

_—_—b——u———
when the excentricity -is fmall, Ix1—eyy —d"

is always a-very {mall quantity; thcrefore it may then be:
reje&ted.:
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:reje&ed as inconfiderable; and, g being at the fame time
inconfiderable, the only force to be confidered, as affe@t-

273 J/F a

ing the motion of the body, wxll be f= 5 d’, , in -our fe-

cond cale.

Now, if a body be madc to revolve in the fame ellipfis

by the action of a centripetal force at C, that force will

be = -—_;Ei’—’— b denoting the angular velocity of the
. g .rt

bedy at the apfis neareft to the focus C; and the angular

velocity of the body about the other focus will, at the

fame time, betodas1—¢to 1 +¢. Moreover, if 4” be

s 10,

T=d By

‘will become = —————; which is to the centripetal

ar
:force 'ﬁ-':]: -, juft now mcnuoned as y'y™ to ———;f.--

But y'y" is = -;-—__d__}— 'when the body is at cxthcr apﬁs 5 and,

if the excentricity be fmall, ¢* being then very fmall, and
the focal diftances y and y* differing very little from the
d4

e

3 /e

femi-parameter d, y*y™ will always be nearly =

“Therefore, in fuch an orbit, the motion of the body made

to defcribe it by the action of the centripetal force

B
1+ ‘rﬁ"".’
ftance of the body from the focus C, will be nearly the
dame as the motion of a body revolving in the fame orbit
with

which is reciprocally as the fquare of the dif-
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with the invariable angular velocity :—}-:- X & about the
other focus.

Thus, without any regard to the area of the trajectory
defcribed, we fee the phyfical ground of the celebrazed
Bifbop Warp's method of determining the. place of a
Planet in its orbit: which method, it appears by. what is.
here fhewn, is not mercly an hypothefis, as it: is coma-
monly called ; nor is it indeed, in any elliptic orbit, ftrict--
ly true; but it may properly be confidered as an-ufeful ap=--
proximation in.orbits nearly. circular,.

Example 3. ‘To find how a ball will'move within a:
firaight flender tube, revolving in-a vertical: plane, with.

an invariable angular velocity, about an:axis at:the. point:
C of the tube ?
The tube being continued both. ways from C, let the Fig. a1
circular arc z, whofe radius is » and fine x, meafure the
angle of elevation BCH, (above the horizontal line CH,)
of the afcending branch CB of the tube, in which the ball.
is fuppofed at firft to-move: Then, putting m= 16 feet,,
the force of gravaty urging the ball. towards the axis C:

will be = 2==; which will be = f="=/ _!’__ 4 denoting -

the angular ve10c1ty of the tube about tbe faxd axis, meas-
fured. at the: diftance r therefrom.  Moreover # will be- -

= by 3

=--¥—-~ therefore v- will be = :, and o= ) z being :

conﬁdered as mvanable _and, by fub{hmtmg accordmgly,.

we have 2‘—" = b-;‘% - ——, and confcqnently =yzt=ry..

Heénce,,
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‘Hence, by multnplymg by N' and taking the fluents ac-

cording.to what is thewn in the Appendix, we get.

g.—'- x xN-"z. — rN7§ =erzp — f.'N-’:.y. —a—d.z;
d being = f—': 5"3-:-:, N = the number whofe hyperbolic
logatithm is 1; and 4 and ¢ being the values of y and o

refpc&xvely, whcn x.and =z are each =0, x:z, and y.. gl

¢ being confidered as pofitive when the ball at firt moves
in the afcending branch of the tube fo that y (then =a)
increafes. )

From which equation of the ﬂuents, we have

ryN '--yN rzzFxrxN '—xN 'z--a ZN 'é;

from whence, by again taking the fluents, we get

E ] . o . * -’: . :‘
yN - —-ﬁf-?]—-:-l--’—.a—-d.N * 4 ta+d.

‘aConfcquently the gcneraI equation of the curve defcribed
by the ball is . - .

L yE= -3,5 + 23 =dN"" + %.ZT?.N?; '

. m rﬁ__xs b ——— _:—- b—— :
-and v will be = = z g N "+ —~a+dN’,
ar 27 - _

Remark 3, If a be = o, and.t ;1;5,; that is; if the

"ball begins to move from C, with- the horizontal velo- -

city
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city ?, in the afcending branch of the tube; the equation

of the curve defcribed by the ball becomes y = . . Which,’

. . (24 .
anfwermg to a circle, whofe diameter is -, touchmg

the horizontal line pafling through C, fuggefts this re-
markable inference : the ball being put in motion at G, with

the velocity 5;—' as juft now mentioned, it will revolve uni-

formly in a circle (whofe diameter is ‘7') ftanding upon

the horizontal line with which the tube at firft is fuppofed
to coincide! and it will continue fo to revolve (moving
up and down alternately in the different branches of the
tube) fo long as the uniform motion of the tube is con-
tinued, making two complete revolutions whilft the tube

makes one revolution! and the uniform velocity '-”;f-)

wherewith the ball fo revolves in fuch circle will be to
its velocity along the tube every where as r to v/7* —a*,
That the ball, in the cafe adverted to in this Remark,
will defcribe a circle, will, without ﬁndmg the gencral
equation of the frajeGory, readily appear upon enquiring
what angular velocity the tube muft have, that the ball,
when g is = o, fhall defcribe a given circle, or part of a
given circle, touching the horizontal line at C. Thus:

y being = 2x, and v to u as yto -—4—‘/_:’_.__1-——, by the nature

of the circle, when 7 is_the radius of the given one as
well as of that upon which z is meafurcd we, by fubfti-

tuting proPerly in the equatmn.-—- = :—" - 2 5 {=/), have
U . my

"
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‘ my _2u’y  quis , misy®

r r 5 r‘y °

';vhence it plainiy appears, that » may be. equal to the

. -t . .
invariable quantity ’Z‘;\ (= 8)s which, ¢ being = amr|¥
(=24) is agreeable to what is faid above.

Or, by taking the fluents, after multiplying by y and
bringing the fluxionary equation into a convenicnt form,

- we find

RV 4 - 8mriy* 4 225674
x muft be = Lt 2 T r*-;’--—----;‘?z ;
2P X g7 -y

4 being the initial value of u, and ¢ =24,
If the velocity » were regulated according to this equa-~

tion, and 4 were lefs than "—ﬂ‘, the ball could only de-
fcribe a part of the given circle; of which part, the chord

/ =
would be = 27 x 1—-’5‘—'—;;3-".'.

In a fimilar manner, we may find how the angular
velocity of the tube muft be regulated, that the ball fhall
defcribe a given cllipfis, or part of a given cllipfis, or
dther figure, touching the horizontal line at C.

Remark'2. 1If abe = 5; - -':—:-'-, our equation of the tra«
jeGory becomes: ’

: »
and v will then be = aN7 == 2 —.{‘- r® -t x-;-
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ar®

Remark 3. If a be = S-—5, the equation of the
fpiral defcribed by the ball will be g

el Lo
y=aN " 4+> 4 5-%;
and v will be = % 4 3. \/—r‘—x‘_aN_Tx;.

In this cafe, fuppofing both 4 and ¢ pofitive, the ball
will revolve in a fpiral B'B"B" &c. having a circular
afymptote CD; and will make two revolutions in fuch
fpiral whilft the tube makes one revolution : which revo
lutions in the fpiral will be alternately without and within

the circle whofe diameter is g + -}', ftanding upon, and

touching at the point C, the horizontal line paffing through
that point; to the periphery of which circle, the ball,
going alternately into and out of it at the faid point C,
will continually approach nearer and nearer, but never can
abfolutely revolve in it!

In each of the fpirals which, in a preceding article, we
found to have circular afymptotes, the defcribing projec-
" tile either kceps always without or always within the
afymptotic circle. The fpiral here defcribed is perhaps
ftill of a more extraordinary nature, being in its revolu-
tions alternately without and within its afymptotic circle;
and, at its ingrefs and egrefs, always interfe@ing the pe-
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riphery of that circle in the fame point C  And this {piral

is a curve, that (abfira@ing from refidance within the
tube) a ball would aQually be made to defcribe by the

force of gravity, whilft carried about C by the uniform
Uaz motion
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motion of the tube revolving in a vertical plane-as above

“explained.

The fpiral deferibed by the ball will be of the fame
kind, when a and ¢ are not both pofitive, provided a + -‘{

be equal to the pofitive quantity %:; but it may fome-

times make more than one revolution before it enters the
afymptotic circle. :

Remark 4. The angular velocity about C being inva-
riable, the force B x g wherewith the tube, by the nature
of the motion, would neceflarily urge the ball in a direc~
tion at right angles thereto, if gravity did not a&,

Virt—xt
r

3 s 1 ¥
15 — 2Bév +]_3r_g_,a+d.N'—-li—t.a—d.N T

=2Bm.

Vs
r

, the preflure againft the
tube arifing from the gravity of the ball B, we have

to which adding 2Bm.

Vr‘_xi Bb’ —:

Z By .
+"'Toa +an'_";’-oa‘—doN "

4Bm.

r

the quantity cxprefling the whole preflure arifing from the
ravity of the ball and the mutual a&ion or re-action of
the ball and tube againft cach other.
2Bje¢
r ?
the inftant the tube is moved from a horizontal pofition ;
and it is the fame let 2 be what it will: whereas the
preflure, if the tube refted in that pofition, would be only
2Bm; which likewife wi]l be the preflure when it is
Huft moved, if ¢ be = o,

Which preflure, it may be obferved, is = 2Bm +

Remark
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Remark 5. If the ball be fuppofed to defcend from the
point C along a revolving plane, (inftead of being included
in a tube,) whillt the plane itfclf moves uniformly about
that point, from a horizontal pofition; the preflure againft
the plane will, by taking sand ¢ each = o, be found By
our theorem = Bm x £ "X _N"—N" 7. Which
being = o when the angle meafured by the arc z is =
47° 11’ 54”3 it follows that the ball fo defcending will
quit the plane when, by revolving as juft now mentioned,
it comes to make that angle (47° 11’ 54”) with the hori-
zon, let the invariable angular velocity of the plane: be
what it will.

Remark 6. Retaining the plane (continued above the

axis) inftead of the tube, if 4 be = 5i-, and c=o0; that

is, if the ball be laid at a diftance = %—:-: from the axis of

motion, upon the afcending part of the plane, afterwards
made to revolve (from a horizontal pofition) as above; the

— =
2Vr — x*

== —~N"". Which will

preflure will be = 2Bm x

be = o when 2¢/7 — #* is =N 7 ; that is, when the
angle meafured by the arc z becomes = 83° 17’ 21%; and
confequently the ball, at that inftant, will quit the plane,

y being at the fame time = 1.2268 x a: the ball at firft |

afcending up the plane, and continuing to do fo till y be-

comes = 1.2361 X @3 'r>— x* being then = rN—"—,Q and
the inclination of the plane to the horizon 74° 3° 58"

Remark

149
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-Remark 7. If the ftraight flender tube DBPE be faft-
ened to the lever CP, and the tube with a ball in it be
made to revolye about the axis C, in a wertical plane, fo
that the angular velocity of CP fhall be invariable; we
may, in fuch cafe, find how the ball will move, by ob-
ferving that its relative velocity from the point P within
the tube will be the fame, let the length of the lever CP
(which we will fuppofe at right angles to the tube) be
what it will: provided the angular velocity of CP, the
firlt pofition of the tube, the firft diftance of the. ball
from P, and its firft velocnty towards D, be refpeively
the fame.

Accordingly, having refpe& to a tube {o moved, and
fuppofing 4 now to denote the velocity of a point in CP
at the diftance » from C; 2 the circular arc defcribed by
fuch point ; « the finc of that arc; Y the variable diftance
of the ball from P; A the value of Y when x and z are
each = o; V the variable relative velocity of the ball
within the tube towards the end D thereof ; and C its re-
lative velocity, towards the fame <nd, at the commence-~
ment of the motion, when the tube is fuppofed to be pa-
rallel to the horizontal line CH :

Y=Vy—P willbe=T7+1 A+DN'+ \A=D.N™ 7;

vt¥onVrEoe BN - LATDN T
% b 2r ar
2, the velocity of the ball from the center C, = :—P‘x V;

U, the abfolute velocity of the ball in the curveit will defcribe,

_ Vib*yr + r*V:— 261 PV ‘
= p -3

and
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VA= 2V P
and the preflure = ~~—— + *———x B;

r r?

mr*

D being = '—:—3- — = and P = the perpendicular CP.
Remark 8. If A be = o0 and C ="'T', y will be =

P + %‘-:-'-': and the ball will deferibe a geometrical oval,
which: will be a line of the fourth order, whofe equation is

W:=1P' + RX = X*+ LPvP* 4+ 4RX — 4 X*;
X being the abfcifla, meafured upwards from C on a line
at right dngles to CH, and W the correfpondent ordinate

: . rC_ mr?
parallel to CH; and R being put for - =

The oval defcribed by the ball will be 9s in Figure 44, pig. ...
45> or 46; according as R is greater, equal to, or lefe l;iix-w
than P; R, when lefs than P, being greater than £ P. g 46

If R be lefs than £P, the oval will be every where con~
cave towards C. '

Remark g, If ‘A4 D be=o, the ball will defcribe a fpiral

whofe equation is y* =P+ 4 C;f: + ZAC";N “+A'N 7, of

which fpiral, one or other of the ovals mentioned in the
preceding Remark will be an afymptote.

Remark ro. It is obvious.that; by making the tube
revolve uniformly in fome certain plane between the hori-
zontal and vertical, the fine of whofe inclination to the
horizon (to the radius 7Y fhall be s, we may make the
ball deferibe a curve whofe equation is

Y= !'b—’:i +:A+DN" +2A-DN 7;
A where
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-

4 ' . .
where -'—;.—, the coefficient of x, may’ be of any value be-
tween o and %’-; and where D is = 'TC- ?-;1{-

Remark 11. If & be taken = o, the equation of the
curve which the ball will defcribe becomes

Y=Vy-P=1A+ '—C.N7 ++A=CNT7,

and V will be = ﬁ‘.i 'CNT "‘_:;ﬁ.N‘?'.

Which equations relate to the curve defcribed by a ball
within a ftraight tube at the lever CP, revolving in a ho-
rizontal plane about the center C.

And if Ab — rC be = o, the equation of the curve be-
comes

=P AN,

Remark 12, If, ¢ being =0, C be = —%—é; that is,

if the ball at firft moves towards the point P of the tube,

with the relative velocity %é ; our equation of the curve
defcribed by the ball becomes

=P +A'N 75 and V will be ——éﬁ;—'--
By which it appears that the ball, in that cafe, will re~
volve about the center C in a {piral, continually approach-

~ ing nearer and nearer to the circumference of the circle

whofe ceater is C and radius = P, yet never will arrive
at it. : :
In
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In other cafes, (the tube revolving- in a horizontal
plane,) if the ball at firlt moves towards the point P of
. the tube with a relative velocity lefs than 4, r being taken
=A, it will, in a finite time, make its neareft approach
. to that point; (when Y will be = é__:_'_;E_';)
wards it will continually recede therefrom : or, C being
lefs tham — 4, the ball will, in a finite time, arrive at P

with the relative velocity +/C* — 4+; and, after touching
the circumference of the circle juft now mentioned, con-
tinually recede from it.

and after-

Remark 13. ‘The relation hetween () the radius ve@or Fig. 47.
and (V) the relative velocity of the ball moving in any
ftraight tube, revolving -uniformly in a horizontal plane '’
about C, being (by what is faid above) expreffed by the

equation 4%y = rVV, let the perpendicular P and the
angle made by the tube and radius ve@or be what they
will ; it follows, that the fame equation will exprefs the
relation between the radius veQor and the relative velocity
of a ball moving in any curved tube, carried about the
center C in a horizontal plane fo that the angular velocity
of the lever CQ_(to which we fuppofe the curved tube to
be faftened) fhall be .exprefled by the invarjable quantity 4.
From which equation, by taking the.fluents, we get

63..’2 _;{ —_ rg.vf-._ C 3

and confequently V:\/C"+ g.}';—-a';
C being the value of V when y-is =d.
3 G ’ ‘ There-
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a,’_‘

Thcrefore z= il =
JorErma

Z denoting the fluxion of the curve QB, or (which is the
fame thing) of the relative fpace pafled over by the balk
within fuch eurved tube.

Whesnce the 'raje&ory of the ball may be found, and its:

motion therein; Z being given in terms of y and y.

Remark v4. If the form of the tube be the circum~
ference of a circle whofe radius is , and. C be a point:
e S . - 2rj . . '
therein, % will be = ‘/;T-':f;f ; and con(equentlx.
2%ry
Vier —y x JC‘ t)’—a’

Fherefore, by what is fhewn in Table XH. of the: Apr
pendix, the motion of a ball in a circular tube, revolving’
uniformly in a horizontal plane about a point in fuch tube,
will be determined: by means of eHiptic arcs.

When, fuppofing a=0, C (the: velocity of the ball' at
the point C) is =24; the time in which the tube will
make one revolution, about the axis C, will be to the
time in which the ball will' make one revolution in the:
tube, as 44 to ¢+ Ve* —2¢; thatis, as 3.14159265. to

13110287771 ; ¢ denoting the quadrantal arc of a circle:
whofe radius is 1, and ¢ the quadrantal arc of an cllipfis.
whofe femi-axes are 2% and 1.

Example 4. Let the body B’ defcribe any traje&ory
whatever about the center C, by means of known forces

(f and g) acing thercon; and: let another body B de--
fcribe:

=
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feribe fuch a traje@ory about the fame center, that the
bodies fhall always be equidiftant therefrom, and the an-
gular velocity of the former to that of the latter (about that
center) as 4 to e+ mu: to find the force, or forces, requi-
fite to retain the. body B” in fuch a trajeQory, ¢ and m
being invariable quantities ?
The forces a&ing on B’ being

f:fr;’é';v", andg:—xzu-}-%’-s
thofe a&ing on B” will be
f':-‘-i%‘-‘z—f;g. and g":-';’-xz.e+mu+-"-'§1:

the additional forces therefore muft be .
" e+ 2em4m— 1t
S == X3
” -9 — LUy
ad g’ —g=—X2.c4+m—1.u+ —

Remark 1. If e and g be each =o, the only additional

force requifite will be f” — f = m -r"-"’r _m -: ‘;;a‘b"
. a*b )

u bcihg then = 7, by art. 7.

.
which agrees with the conclufion deduced by Sir Isaac
NewTon and others,. relative to the requifite additional
force in this cafe. '

Remark 2. If mbe=1 and g=o,

) v . _ &+ 2eu __:-_’_z 2a*bhe ” 2¢v
S =f will.be = —; Xy=3+—7 ad g'-g="7";5

u being as in the preceding Remark.
Example 5. Let the proje@ile be fuppofed to move near

the earth’s furface, in a medium, the refiftance whereof -

X 2 is

155
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is MDU"; D denoting the denfity of the medium, M .
fome invariable quantity, and U the abfolite velocity of
the body in the path it may defcribe.

Then the refiftance in a dire@ion parallel to the hori-

.zontal bafe ACD will be = MD.U .'i; and in a direQion

perpendiculdr o the fame bafe :_MDflj 5 % 3, and z, re-
fpé&ivcly dendtihg the abfciffa AC (parallel to the hori-
zon), the ordinate CB (at right angles thereto,) and the
length A B of the traje®ory. Thercfore, by art. [

vo . MDU"; MDy":"~*
=—s wilbe=2m+ ——=2m4——=
) Vi ‘__ MDU®: _  MDuys""'i"*
E= G s ST S,
#75
£_3_ -
TTa=v=6

= being the velocity of the body from the bafe ACD, u its.
velocity in 4 dite@ion parallel to the faid bafe, and 2 the
accelerative force of gravity in the medium.
Whence, by exterminating v and v, we have 2mxt =~u'y;.
Pl being confidered as invariable. :
From which equations every thing relative to the tra-

, jeQory, and the motion of the projectile therein, may be
. determined.

Remark 1. If # be =1, and MD equal to the invariable:

quantity 4; we - have, from the values of g, ¥ = — dx. =
whence, by taking the fluents, we find u=5~dx, é.being

the value of # when x is == 0, Confequently we havcf., II;Y
UD=
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fubftitution, 2mx* == =4 — dxl'.)"; or y == = ri%z.
_ : ' — dx\

2mx

d.b—dx;

Hence, by taking the fluents, we have y = ex —

and, by' taking . the fluents-again, y is found = ex + % x

Lég.‘ b—;d’ ; ¢ being = -;-+:—:', where ¢ denotes the
moitial vertical velocity of the projetile.
Remark 2. If » be = 2, and MD as in the preceding

remark ; we hév.c? from the values of 'g', % = —d%

whence, by taking the fluents, we get LOg,% = —dz;

“and confequently # = SN~ * N being the-number - whofe
byperbolic logarithm is 1. Thercfore, by fubftitution, we

have 2mx“f—é‘yN . Let sx be=z= Jx +y T

Y agq ® . % bass
thenwillybe=x /s =1, y= s 2"“':;-..-—
. J ’ }' V4 s vit—1

—sdz Bsrs —adx
x N~ and = zmzN -
k NTT, T

Hence 5: % s/#—1+ Log. ;—}% INT

&IS

g being =, where € denotes the initial abfolutc velocnty»
of the pro;céhlc '

Now, from the equation fo found, expreffing the rel&-
tion of s and 2, the value of this laft mentioned quantity:
may be found in terms of s; and confequently the values of
(= —) andy (;—_-f.)(‘:___) wilt’ be had it terms of.r and £
from whcnce the valucs of x and d y may be fouad interms of &

ME~
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Of the Motion of a Body in (or upon) a Spherical Surface;:

in (or upon) which st és retained by fome Forge urging it
towards the Center of the Sphere, whilff it is continually im-
pelled by fome other Force, vr Forces, to change its Direttion
tn (or upon) that Surface.

ET the body B be fuppofed to defcribe the curve Bb
in (or upon) the fpherical {urface CPBbd, wherein
C is a given point : let'the fine of the arc CB (part of a

great circle paffing through C.and B) be denoted by y: let

B x f denote a_motive force continually urging the body
towards C, in the dire&ion of the tangent to the faid arc
CB at the point B, where the body is fuppofed to be : let
B x g denote another fuch force always alting on it, in a
dire@ion Bd at right angles to fuch tangent, and to the
plane of the great circle CB: let v denote the velocity
of the body from -G, in the variable diretion of the
faid tangent ; » the angular velocxty of a plane con-
fidered as revolving with the point B about the diameter
from C, wmeafuring fuch velocity at the diftance » (= the
radius of the fphere) from the fphere’s center; and w the
velocity of the body at B, in the dire@ion Bd. Then,

BP being a great circle touching the track (Bb) of the-

body in B; if the fine of the arc CP (of another great circle)
be dsnoted by ¢, and the finc of thc angle C %B (to the
radius
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tadive 1) by « ; the Gine of - the angle CBP will be =&,

snd the abfolute velocity of the body in the dire@ion (Bb)
of the'tangent to its track at B will bp:%: which
would continue invariable, and the body would defcribe
the great ciecle PBb, if no force a@ed thereon but ‘that

which, by urging it towards the center of the fphere, -

would be requifite to retain it in (or upop) the furface
thereof. In which cafe, the great circles BP and CP
keeping their pofitions, g and s would remainm invariable ;
and %,"—;—'l’:, the fluxion of thcive‘l‘ocity of the body,
would be =0 :. thetefore % would then be = -WTj =

r ¥

w being = ';—’ But the forces Bx f and Bxg acting on.

iy + vy
r

the. body, w will be = - Confequently,  the. direc—-

‘tions in ' whith thofe. forces a@& being at right angles to.

Y, 2i "y . uy: y .
each other, = 'Fri (the excefs of 3—’—'—:-2, the fluxion of, w0

when thofe forceg;a&, above —T"j, whicblwou]d be the fluxion
of w-if thofe forces ceafed to a@) will be the fluxion of the-

velocity generated or deftroyed by the aQion of the force:

Bxg only: and, the motive force into ( v'ﬁ 2) the:
vVirt—y
fluzion of the time being equal to the fluxion of the quan-

* tity of motion generated or deffroyed by that force;. A

Bgry . . by 4 2uy L V=3 iy
M/',_"‘vnu-bc_.Bx 7 and.g = ———= x 3

Moreover v/* + w", the velocity of the body, in its track
Bb, would be: invariable if the forces B xf and B » g
‘ ceafed!
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<ceafed a&mg s and it would then (as. obfcrved abeyq) de-

kdbc.a geeat cu'ele thcrofore :,—"—i.—: {the ﬂumon of that

velocity) would, in that cafe; be=o0; and v = — ==

::” 3 W bcmg then = 44 = and zi;:-—ﬁ by ‘what is faid
above. But the fid fosccs continving to 2& on the body,
the fluxion of v will in general be expreﬁ'cd by v. Con-
fequently {the forces a&mg in direCtions at right angles.

to cach other) — v will cxprefs the fluxion of the

velocity deﬁroyed or generated by the motive ‘force: Bxf;

and-therefore () the retarding or acceleratmg foree pro-

duced by the action of the faid motive force (being equal

to the laft mentioned fluxion divided by the fluxion of the
Vir* =y ulyy —-or? w

time) will be = ——L x = " ,_.._exprcﬂing

the fluxion of the txmc, as bcforc obferved,

The forces
f(:—f;:’—"xﬁr:.z—-—) andg(— '—’ xza+" ‘

according to the method pusfucd in art. 2. of the pre-
ceding Memoir, may be refolved into two others 4 and k;

the former in the dire@ion of the tangeat to the track
of the body, retarding or accelerating its abfolute velo-
city; and the latter in a direion at right angles. to .fuch:
tangent, changing the dirc@ion of the body. Which
forces & and £ being to the forces denoted by the fame
fymbols in the article juft now mentioned manifeltly as

Vr—ytor refp:&xvcly, I omit fpecifying their values
particularly,
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particylarly, and proceed to explain_the gfe of the t]ma—,

reins already inveftigated.

2. If only the force B x £ a& on the body : g being =o,
we havc uy+ 2uy = 0; whence we get #y' = a'4, .4 being

the valuc of « when y 19 == a. Therefore, u bcmg = ;,b.

w (— —) will be = T!- ; and- (U) the ab(nlutc velocxty of

RZALEY
thc body = _%_2. Morcaver the forcc
Vi N rgange :
Flm T x 2 =2 ) will he = YL 0 55 2
r AN |
NV aer JEirycampy N
= —-L——’- p ” x the ﬂuxion of -z-z_-f".——,
], 2y L
. Ruy s e

v being =

AVPE—y vy’

where z (=u7) depotes the fluxion of the fpbencal angle
BCP, the arc CP being fuppofed to keep its pofition.

) Example 1. If the body defcribes a circle whofe radius

is 4, in a plane at right angles to the diameter of the {phere

drawn from C, v will be = ¢, and y always =4 : confe-

quently the force £ muft, in that cafe, be = 'L::;-‘f

avirt—a
ar

in the circle it defcribes.

» d denoting the invasiable velocity of the bo;'ly

Which theorem is of confiderable ufe in enquiries re-
lative to the motion of a point, or body, in (or upon) the
furface

141
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" and hence, by taking the fluents,
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furface of a fphere, as will appear in a fubfequent Me-
moir.

Example 2. Let the body be fuppofed to defcribe a
loxodromsc, m:king an angle, whofe fine (to the radius 1)
is s, with the great circles paffing through the pole C.

In which cafe v will be = AT :a‘bv'_f’, and

rs rsy
. bV —s* xy

v = — —————=: confequently the force / muft then

rsy
b _ VP ai+rb’.m_rb’m
€= r i r*s*yt T sy

This cafe comcndcs with that in the preceding. example,
if s be taken equal to 15 y being then always equal to the
invariable quantity 4.

Example 3. Oncend of a ftring (whofe length is 7) being
faftened to an immoveable point, let a fmall ball be faft-
encd to the other end thereof ; and, after ﬂrctchmg the
ﬁrmg ﬁraxght out in any direQion, and putting the ball in
motion in a dire@ion makmg a given angle with the horizon,

lct it be left to move in fuch a track as the a@lon of its gra- .

vity and the tenfion of the ftring fhall caufe it to defcribe.
Then, fuppoﬁng C to be the loweft point of the fpheri-
cal furface in which the ball will move, and putting 2m
(= 324 feet) for the.accelerative force of gravity,
Ve —y — 9t q*h? vy

. _20'}_ v,
S will be = —~ = x,,], 5

. . . a*h’y 2myy
from which equation we have vv = 5 - ——2—;
: : ry \/r_‘_—y‘

v=
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' lbl
-v‘:.:\/ mxs/r‘—y —\/r’-a —77-+ +——,—,

4y b, and ¢ being the rcfpc&ive values of ¥, », and v, at
the commencement of the motion. - - |

Therefarc FTT e i e T
- A , - - I'*x‘
-———?—;:t will be = = L.
vvr=y \/4.mx r—y—- r—j a’t’
1 J’
ss ' ¢

-

n bcmg put for ¢ + e

Nt

- £ will be = = 'r
. 4mrix 4 n'rt X ot —2 rPeatrext —atb

"and, by our Appcndnx, ¢ will always be aﬂ’gncd by means
of the arcs of the conic fections.
Rémark 1. 1f ¢ be = o, £ will be
' .{rm"'* —i;

a,_a’b’\/;;:_? a*h 4 er‘\/r‘—a -
amr* 4mr®

and the value of # may always be afligned by means of
elliptic arcs; or, by what is doqe in Mem. III. the time
¢t may be comparcd with the time of defcent of a common
pendulum in a circular arc.

Let R denote the length of fuch a pcndulum, D -the
vertical height from which its bob defcends, x its verti-
cal defcent, and T the time of its_defcent :

_ then will # bc...';P, v

Y2 e i{being
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R being = vP*+Q, and D= vVP*+ QL = Q,

a*h? r—

the value of P* is pofitive ;

when ¢* —

Q+VF

o R=="""""= and D=Q—~ vP'+Q,

‘when, (‘—6 ) the initial velocity of the ball being greater

_‘wi
than ¢.—3'» P* is ncgatxve ;

47" — 3a* —P*
4r—b

Q_being put for—a—;;; +r—-h=

and % for r — /r* —a*, the height of the ball at the com-
mencement of ‘the motion above the horizontal plane
touching the fpherical furface at its loweft point C.

The -afcent ‘and defcent of the ball will, it is ob-
vious, be limited by two horizontal circles; in which
the places of the apfides "will contimxally vary : but

bry~%
-y
(whlch .meafiires, on a horizostal planc, -thc angle de-
fcribed by the ball about the vertical diameter of the fur-

¢ havc not found that =z, ‘the “fluent of =ut,

“face in ‘which ‘it moves,)-can be affigned without having

Teceurfe' to &n-infinite feries, or to fome curve of -a-higher
kifid than the ¢onic (c@ions.

‘Relnark 3." «H; ¢ béig £ o, the initial velocity () of
the ball, in+a ‘hotizontal dird@ion at right angles to ' the
. 3 plamiipidyo
firing, be = ~/8m./y—- o
o }m-x'*r.\;-*a'r

l: Win’ be = ﬁ=——=——.
4 =30~
And




Mewm. VIIL] IN A SPHERICAL SURFACE.

And it follows, that the time of revolving from apfis to

apfis (that is, from the higheft point of its track to the

loweft, or from the loweft to the higheft) will be to the

time of defcent (of another body) in the quadrantal arc,
_whofe loweft point is C and radius r, as rt to 47 — 347} :
ﬂ* c+\/c’—zq‘_

—_— =

- which time of. defcent will be = = X

r i
1.31102877 x-;‘ » by’ Mem. 1II. ¢4 denoting the quadrantal

arc of a circle whofe radius 1, and ¢ the quadrantal arc of
- an ellipfis whofe femi-axes are 2t and 1.
Remark 3. Y b be = o, the ball will move in a ver-
tical plane, and
}m-‘r

t.' Wi]l'be: —-: ud o
% ::—-+xx2r—b+xx5—:r

And it appears by our Tables, that # will then be affigned

by. means of clliptic arcs : except ¢ be = J 4m.2r — h;

when, -
im trx

—————————
2r-b+x\/b—x

Vair—-vh \/zr-l-\/b—-x
¢ will be-= mxr‘ogs/r;ﬂ/b Vir-Vi—s

Remark 4. 1f, 6 bcmg =o, ¢ be = /8mr and /) = zr,
) §m™— M

thll be—-ﬁ-:?,

and the ball will revolve in .a vertical circle, fo that the

time of -sevolation will be to the time of defcent (of an-
other

+ being =
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other body) in the quadrantal arc, whofe loweft paint is C
and radius , as 2% to 1; which txmc of defcent is fpcc1—
fied in the preceding Remark.

Remark 5. Taking'w and 'u cach _o, in the valuc of
f above written, we get . .
zma_ab’Vr - at 2,,71 drt

=6 = —
— 3 "—— 2’
r ' \/r - a*

4 denoting the initial velocity of the ball.

Whence we have J =4 x \/____;_‘*: and thcrefére' 'it
follows, that the ball, having a velocity given it equal to
that particular value of 4, in a horizontal direGion at r:ght
angles to the ftring, will revolve uniformly in a circle in
a horizontal plane; as has been demonftrated in a different

manner by Mr. HuyGens and others.
Remark 6. When the initial velocity of the ball is

i
nearly = a X -'-:_—A _lt? grack (proje&ted on a horizontal
plane) will be nearly a circle, and the time of its revolu-

. - : qV —b . ) . .
tion therein nearly = ﬂ——.%*—-, g being as in Remark 2.
2m .

Moreover the /mit of the time of moving from apfis to

apfis, upon taking the initial velocity nearer and nearer to
:

,2_'."“ » appears, by fuch comparifon as is mentioned
29rVr—b

T amt xvgi—3a

when the track differs but little from a circle, the angle

r.180°

Vir—3e’

in Remark 1, to be = Confequently,

between apfis and apfis will be nearly =
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found by Mr. EULER, (in his Mechanics,) by a very dif-
ferent method.

3. If only the force g alt on the body; f being = o,

“ will be = ‘—;—;—' and, by means of that equation, the

'
oVt —y*
r* X

uy + 2v_y)

value of the force g (= may be readily

computed, when the equation of the curve defcribed by
the body is given.

Example If the propofed curve be the loxodromic fpe-
cified in Examplc 2. of the preceding article ; & being

rsv D') ) , v v ‘t o
= — (= =) will be = -—m—Z
- Vl—:’.]’ v b x_,t’z’ v 1—s y°

and v = c.a:'_'; Confequcntly u will be = 4. q =,
32— 12

and g =vr-y, ;] ‘=%, crs being =abvVi—gs,

rsvi—s 6
3abrviri—y -
atn

If s be'= -7-;, g muft be =

4. In general, from proper data, we may, by means
of our theorems inveftigatad in art. 1. find not only the
requifitc force or forces, but alfo every thing elfe that
may be required relative to the track of the body and its
motion therein.

Example 1. Suppofe the bo'dy. to deferibe with an in-
variable vclocuy, the loxodromic {pecified in Ex. 2. art. 2.
and. referred to in the laft example,

Then,
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Then, d being the given velocity of the body, v will be _
=dv1—s and 2 =dbs. Confequcntly, by fubltito-

tion, we have f= 22 ‘/; =7 indg= JT::,;*v,z_,-

The fingle force requifite to caufe the body fo to move in
&V —y

; the vanable

the propofed curve is s/f +gl=—"

dire@ion in which it muft a& being always at right angles
to the track of the body.

Example 2. If the body defcribe the loxodromic re-
ferred to in the preceding example, fo that. the velocity
thall always be equal to the invariable quantity 4; s will

be to -b;’ asVi—stov= ‘_'":‘_.{::Z. Confequently, by
fubfﬁtution, we have in this cafe,

abt v/ —t’j\/r’—f .

025 — 1 yVrt —
f - r’:y’ ’ and | g = s
The requifite ﬁngfe force is V/f* +g* = EL;{;::L‘; and

its variable dire@ion fuch, that the angle it muft make
with the great circle paffing through the place of the body
and the pole C fhall always be bife&ed by the track of the
body.

Example 3. Let u and the abfolute velocity of the body .
be fuppofed invariable.

Then, thofc velocities being denoted by 4 and 4 re('pcc-

tively, v* + _ “will'be =%, v=V 4* = b:;v‘, and £ =

] v|a
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. L X3
—ten —— — r.’

— vvrg_,z - \/f‘—"" x \/d"" — bzy:
our Appendix, that # and =z will always be afligned by

Q.

And it appears, by

means of elliptic arcs : except whcn d is = 4; and then,

t(_:—‘ )bcmg— =, £ (= b) will be =
= % Log. ::: :+’; ; and it follows, that, in this parti-

tular cafe, the body (defcribing a fpiral) will continually
npproach nearer and nearer to the great circle of which C
is a pole, yet never can arrive thereat.

The fingle force requifite to caufe the body to move ac-

cording to our fuppofition’is v/f* +g* _’”V Coy and

the variable dire@®ion in which it muft a& wxll always be
at right angles to the track of the body.

Example 4. Suppofing the velocities # and v to be i in-
wariable, and equal to 4 and ¢ refpeQively: it appears by
. pur theorems, that

PyVrt —y* 2be /7 — y*
fmuft be = 4 ,,——‘-’-, andg:—.-——-—;—’—

and the requifite’ fingle force v/f*+g*, compounded of

‘ bVt —y* x Vgrrt + 2yt
.thofe two forces, muft be = J n 4 + by ; the

dire&tion in .which it muft a& being inclined to the plane
of the great circle BC (pafling through the place of the

body and the pole C) in att angle whofe fine fhall be to .

Vir 1 by
r

to the plane of the faid grcat circle. .
' Z : Remqu.’

radius as 2¢ to » and in a planc at right anglcs
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Remark. Mr. SimpsoN, in Lem. 2. pag. 3. of his.

- Mifcell. Traéts, computes (by a different method) the-

value of the force g (making it as above): upon the
fuppofition that, if » be invariable, v will likewife be
fo; without taking any notice that v will not be in-
variable when - is fo, unlefs the body be acted on by.
a force f = -—--———-—’ Vs as well as by the force g = _--—-—-Lb‘ _-—

Indeed he bas confidered the velocity & as very (mall::
and then the force f will be very fmall, but not abfolutely
= o0, nor yet indefinitely fmall 5 for & (ghough {mall) being
finite, the value of £ will be alfo finite.

Mr. De ta Lanope, in his 4fronomy (art. 3547-)s pro-
pofing to explain Mr. SiMpsoN’s computation, has ob=-
ferved, that, only the force g- a&ing on the body, v will
not be invariable when # is fo. But, without computing
the requifite force f, or the exa@ value of the force g
when f is = o, he negle@s a part of the force g, and en-
tircly negle@s the force f; as being what he calls infins-
ments petits du troffieme ordre; whereas they are not gene-
sally infinsments pettt.r of any order whatever, being affign-
able finite quantities which may in fome cafes be con-
fiderable, and therefore fbould not be negleGted without.
firft computing their values, and thewing that, in the cafe

in queftion, they are really.inconfiderable.

Example 5. 1f, u being invariable, the force f be =o;.
VvVt + 2y

v will be _.é’y » apd v =———, ¢ bcmg the:

# If only this force g a& on the body, neither v nor « will be invariable;.

. 2
u being, in that cafe, ...—:—‘;u— and »* =I§, as appears by the
Begrema in ast. x,

value
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valuc of v when y is =o, 'Therefore it follows, that g
zb\/r’—y‘x\/t‘r’+b’y’ :
ré »

will, in that cafe, be =

2.

L E ry
andt_b-.-7==—r oy — 'r"-H“_'
and, by our Appendix, it appears that ¢ and 2 will always
be affigned by means of elliptic arcs.

Remark 1. If c be=4, the time in which the rcvoIvmg
_ great eirele éCB} will make one revelution, abeut the
diameter drawn from the pole-C, will be to the time in
which the body will make one revolution in that circle,

15 ,2¢ t0 ¢4 /e 2q; that is, as 1.§7079632 ta
1.311028727713 ¢ and ¢ being as fpccxﬁcd in Rem, 2. Ex,
3. Art. 2. e '

Remark 2. The t:onfequem‘:e is obvious when a number
of bodies, kept from flying from the fpherical furface by
any force whatever tending to its center, follow one an-
other in the revolving circle CB from the pole G, each
havmg the fame velocity (c) when at that pole. If only
26V r* = y* x Ver +b’y

r3
will always be found {forming a kind of ring) in one and
the fame great circle CB, fuppofed to revolve uniformly
about the diameter drawn from C; but they will not re~
volve uniformly in fuch circle, unlefs each be continually
acted on by the two forces f and g>» ‘whofe values are com-
puted in the 4th -Example.

~ the force g = a& on each, they

‘Example 6. If a fmall ball move within a flender cir-
'cular tube, or a fmall ring upon a flender circular rod,
Z 2 whilt

e
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whilft fuch tube or rod revolves uniformly about a dia-

meter thereof perpendicular to the horizon; # being in-

variable, and f= —':1, r*ov will be = & yy ‘;ﬁ%.

Vot — amrd 4 8y + 4mr* Vit —y? 5

r

and v =

¢ being the value of v when y is =o.

Therefore
. —— . *'
t= 3— — 2 willbe= iy R ——X1
¢ T uVir—y Ver'— amr + b’y + qmr'Viri—y*

which, by fubftituting x for V/r* —y*, will be adaptcd ‘to
our Tables, and we have another inftance of their ufe in
affigning the fluent by means of e]hptnc or circular arcs,
or logarithms, as the cafe may require.

This cafe coincides with the preceding, if, abﬁra&mg;
from gravity, = be confidered as =o.

MEMOIR




 — ——e e —— . —— W
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M EM OI1IR IX.

Qf the Motion of a Body in any, variable Plane..

1. LET the plane BCD, in which the body (B) is al- pig, 4,
.4 ways to be found, be fuppofed to revolve about
an- immoveable axis €D, with- the angular- velocity u
meafured on the circular arc 2, defcribed about-the center C -
by a point in that plane at the diftance.r from the faid
axis : let v.denote the velocity, and y the diftance of the
body. from that-axis; v its velocity, and x — # the'di
ftance it has moved in the dirction B@ parallel to the fame.
axis-:: and let B x.f denote. a motive force. continually
urging the body towards the faid axis CD; B x g another
fuch force urging it. in a dire&ion at right angles to tha
faid plane BCD ; .and B x4 a third force urging it in the
faid dirc&ion BB
Then, by the method purfued in Memoir VIL.-

. n’yj—r‘m; v, uy+ 2uy-
f:ngound..——-r—,;——, g—-;.X—‘.’.——..
v._ v.

snd 7, the fluxion of the time, will be = {-:{;:-’5
From thefe theorems others may be readily derived, by

the refolution. or compofition of forces or motion,fto
. uit .
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fuit particular propofitions : and the theorems fo derived,
with others that the particular circumftances of the pro~
pofition to be confidered may fuggeft, will enable the in-
telligent analyft to proceed in determining the path of the
body and its motion thercin in any poffible ‘cafe what-

. ever; as every force that can a& on the body in any di-

&Fig. 520

reGion different from the particular dire&ions in which
we have fuppofed the forces Bx f, Bx g, B x4 to a& may
be refolved into two or three others acting in two or three
of thofe particular dire@ions.

2. If the force gbe=o; ;q' + auy being = oy we have
wy» == a@'4, b being the value of & when yis =a: and f

. a*ht vo
Wl“ be = ;‘2)—, e 'JT'

Let B, the place of the body, be proje@ted in B’ by a
perpendicular on a plane CB’’at right angles to the axis
CD; and let Z be the fuxion of the line in which the
point B” fhall be found, U the velocity of that point in
that line, and p the perpendicular from G on the tangent
to the fame linc at the point B” correfponding to the

pry TR o
place of the body : then will U be = L ;" 7

&b vy o - a*s? . » ___ a‘l’i
f= P Tl the fluxion °fyﬁ£= =755
u __aby oy —p
’;' — yz‘- — '?’ .

‘wwwzgz

3. Suppofing the body to move near the earth’s furface
in the concave fuperficies of a folid. of revolution, gene<
rated by the line DB tevolving about the axis DC; let
the abfcifla Db, and’ the correfpondent ordinate bB l:,t

: ' right
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right‘anglcs _thcreto,'-be denoted by x and y refpe@ively ;
and let £ denote the fluxion of the faid line DB.

Then, DbC being perpendicular to the horizon, g will -

be =o0; and g- will denote the force upwards, in the di-

rection of the tangent to the line DB, arifing from the
aQion of the force Bx 4; !gl the force downwards, in the

direGtion of the faid tangent, arifing from the acion of the

force B x 3 and f’—b"( @8y _ve_wv_a¥i VYV

3 rpE £ £ ryE
wWwW

= - —é— the a&ual force downwards in the faid direc-

tion; V denoting the velocity of the body upwards in..

that fame dire&tion, and W its abfolute vcloclty in the
path it defcribes.

Which laft mentioned force will be = 3—':-;‘; ihg force -

arifing from the gravity of the body. in the direQion of

the faid tangent, 2m denoting (32 fect) the accelerating .

force of gravity dire@ly downwards. Therefore .
%%’ — V¥V will be = 2mx;°

and confequently V. = v+ ‘—:f-: + gmk — 4mx —- pt

d being the value of V whenx is = 2and y = a..
- 'Whence we have

and

5

'ya’ '

7§



176 OF THE MOTION OF A BODY [Mem.IX.

. ’6. ) 1h, 3
and z = .’,‘ aby2§ :

= , . @ b o atsr
Jd +7-+4mk—4mx—-;z7;

and hence, the relation of x and ¥ being given, the vilues
of # and z may be found; by which means the place of
the body at any time will be determined.

a*h*y .

V being = o when, y being =w, -;-;,s;’-ns T amxy
it fellows, that, if the -initial velocity of the body be

am= |t . . e e -
=2—;"'—l and in-a horizontal dire@ion, the body will re-

volve uniformly in a circle parallel to the horizon.

Fig.53.  Example 1. “Let the (uperficics in which the body
: moves be-that of an inverted cone, the radius of whofe

bafe is to its perpendicular height as r to g.
Then, x being fuppofed to begin at the vertex D, :’f

will be = y, ?:zs

~ T Myl o
V_\/d + ot —4mx—

risxx

t. = PP — P AR ]
g\/d‘r‘ + a*b*r* + 4amqr‘ X &% gmrtxt — a2 g*

. a*bgrx™ " .
y - -~ — —— ]
Vidirt 4 a*b'r* + gamqr’ X x* — 4mrts’ — abg? ’

and 2=

. s being put for v/¢* +r*:
and, by the help of our Tables, the value of # may be
afligned by medns of elliptic arcs : the value of 2z alfo may
Jometimes be fo afligned; for inftance, when, d being =0 and

r=a, the initial velocity of the body is =2v/2t =1 x Vmg.
Remark
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Remark 1. If dbe = o, )

V will be :x““/,g.mx.;:-—a—fkR'—xxR”-l-x; '

Va'b* + 168> mgr + a*5°
8mr* ’

R’ being =

R”....= Viattt + lba’b’mqr—a’bi
o e o0 = 8”"2

Hence it appears, that the afcent and defcent of the bo.dy
will be limited by two horizontal circles; whofe heights

above D, in this cafe, will be frgand R’: and the places

of the apfides (in thofe circles) will vary every revolution,

Remark 2. If the initial velocity of the body be = za;nq) ,

and in a dire@ion parallel to the horizon, the two limiting
circles (mentioned in the preceding Remark) will coin-
cide, and the body will revolve in the circle of coinci-
dence, always keeping the fame diftance from the vertex

of the cone; the value of V being then = o, as well as
V=o0o. - - - '

. ; .
When the initial velocity is nearly = 3—'?2' , and in a

dire&ion' paraliel 'to "the horizon, the path of the body
will be nearly a circle: and ‘the limit of the angle de-
fcribed between apfis and apfis may be found by the me-
thod commonly purfued in fuch cafes; or by means of
the limit of the time of moving from apfis to apfis, as in
the like cafe in the preceding Memoir.

Remark 3. 'If, abfira®ing from gravity, m be confi-
‘dered as =0,

Aa ¢ will
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eV d*r* + a*b*r* X & — a‘b’q‘r

¢ will be =

a*bgsx” s

Zves oo, o w—mbe = 'y
) Vd*r* + a*b*r* X x* —atb*g*
-d*r* + abr .
t-d‘r“l-a’b" ""Xx'-a‘b'—adr,
. VT +ab
Cire. arc, rad. s, fec. AL Lk LLA a,' 7 : X
and z2 =4 4
. sVdir* + a*b*
—Cire. arc,. rad.s, fec,. ——3—1:
" ar, fuppofing d = o,. ’
'.le .

Fig.54.

£ will.be = 1:7 X - — %

rix

and = circ. arc, rad. s,. fec: e

Example 2. If the fuperficies wherein the body moves
be that of a parabelic conoid,. generated by the revalution:
of the parabola whofe equation is ¢gx =y' about 1ts oWD:

axis ; x.being fuppofed so begin.at D, A will bo = ’,,

375 T
V:\/;'+‘-‘-,g-+ﬁ—--—4m» ' ;;b.;,
t.= __dgtrivids >
\/d‘qr‘ + @*9q + 4a'mr* X x — 4mgrtst — &IV
and*;: _ §atdg —tyy—ts g+~

V& + @] + 48 B0 X & — 4mgr*s* — pryid

and in this Example, as well as in the preceding one;.
thie valuc of ¢ may,. by having recourfc to.ouc: Tables, be-

afiigned.
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affigned by means of elliptic arcs : the value of z alfo may
Jometimes be fo affigned; for inftance, when, 4 being =o,

i

the initial velocity of the body is = 24 x q—-—,mi’ =] *

Moreover it is obvious, that remarks refpecting the mo-
tion of the body, fimilar to thofe in the preceding ex-
ample, may be here made: except that, if m were here
confidered as = o, the values of # and z would not be
afligned by the like means as in that example; but the
value of ¢ would be afligned by means of a logarithm,
and the value of = by means of a circular arc and a lo-
garithm.

4. If the body be acted on by the force F, urging it
towards the center C in the axis CD ; and by the force G,
urging it towards the plane CAB” pafling through C at
right angles to the faid axis, and always in a dire@ion
perpendicular to that plane;

P’ oo y

gbcing'—"O,f:;,—;;—Twillbe: x’-l-y‘XF’
—-v—!."'—- J =y d
wdh=F =mGuole xF.

~ Hence, when the values of the forces F and G are given

in terms of x and y, the path of the body and its motion
therein may be determined. - ;

Example. Let the forces F and G be fuppofed to be
as the diftances ?f the body from the centcl? % and from
* the plane CAB” refpetively; that is, let F be fuppofed

=mVi'+y and G=ns, mand » being invariable quan-
titics,

Adaaz Then

179
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P - . .
Then will Ty VY be = myy, and vw=—=m+ nxx:

' a5 a5
whence we have v :\/maq._r;__,,,},:_ﬁ’

v= Je‘+m+n.k‘—m+n.x',

x ryy

———

Ve +mtn X -2 - Vma‘r’-i--a:;’-xy’ —mr'y‘-a"b”

r=

-

and z = abry" .
\/m xy’-—mr’y‘—a‘b"

v being fuppofed =oand v =¢, when xis=4%and y=a4.

. a*b .
Therefore p will be = IV ek and it fol-
lows, that the curve of projetion will be an ellipfis

whofe center will be C, and femi-axes .‘.:_ and ¢; which
n'r

curve becomes a circle whofe radius is 4, when, v being
= o, the initial velocity of the body is = /ma* + ¢

From thofe fluxional equations we find, by taking the
fluents,

m+n.ix+¢\/c’+m+n.l’—x'
e+ mi it
aﬁbﬂ — mr’,z.*

4 .
= =3~ x circ. arc, rad. 4, cofine |

. b —mriyg)
and z = r X circ. arc, rad. 1, cofine -;- X -Z——"";-:-,L) -

It is evident that, the ordinate bB” being at right angles.
to. the fhorter femi-axis CbA (denoted by a4), the abliffa,

% circ. arc, rad.a, cof. a X

=

m+n#xa

Ch
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' Py A
Cb will be = 22222, and, if that abfcifia be repre=-

6* —mr*
fented by w,

r
mtatxe |
therefore, from comparing this value of # with that ?bovc.
found in terms of #, it follows, that ‘

X circ. arc, rad. @, cofine w:

¢ will be =

—_— 2 L k.
m+n.kx+t\/e 4+ m+ nb —x will be
¢’+m+n.l-‘

. '
= ;’- X cofine of‘-"—’-;—"— times the arc, rad. a, cofine w;:

which, by art. 2. Mem. V. is

_wi Ve —aftw_ Vw2 m+n*..
= 4 — l

» ¢ being put for

2ai

Confequently the value ef x will from hence be obtained:
in terms of the abfcifla w. '

The points in. which the path of the body interfe@s the-

planc CAB” being diftinguithed by the name of the nodes ;.
let the body, when y is =4, be fuppofed to be delow the
faid plane and approaching towards an afcending node.

Then, x being = o at the time the body comes to the:

node, w will at the fame time be the cofine of ?, A de-

ae

noting the arc whofe radius is 2 and cofine —=—meee;,
\/ &+ m+nk

and, when the body comes to the next defcending node,,

w will be the cofine of é;, A” denoting the arc (of the:
fime:

181




382

OF THE MOTION OF A BODY [Mewm.IX.
fame circle) whofe cofine is —===—====, the quantity
&+ m+nkt

exprefled by o/ ¢* +m+ n.2' — x* becoming negative after
being equal to o, as it will be when the body fhall be at
the greateft diftance from the faid plane CAB”: moreover,
when the body comes again to an afcending node, w will

be the cofine of %’:. A" denoting the arc whofe radius

which is the fame as the

° as

is @ and cofine Ve
<ofine of the arc A. Therefore, denoting the quadrantal
arc of the circle whofe radius is @ by Q, it evidently
follows, that the fucceflive places of the nodes (varying in
antecedentia) will be determined by taking (in the ellipfis

of projetion) the abfcifla w equal to the cofine of %.
-A—i'-z—Q‘, -'4—:—';—43', _-‘_\_-'_;_6_&’ + fucceflively.

q
The pofition of the ray CB” when the body fhall beat .

the greateft diftance from the plane CAB” is found by tak-
Ve smink
m+n
the value-of x-at fuch time, as alternately pofitive and ne-
gative. By which means it appears, that the fucceflive
pofitions of the faid ray CB”, when the body fhall be ac
the greateft diftance from the faid plane, will be deter-
‘mined by taking (in the faid ellipfis of projeion) the ab-

ciffa w equal to the cofine of At gs A +43Ql, A ";50‘, &e.

—_—
fucceflwely ; -—}'_".______ lx__; (= = the fine of the arc A)
V4 m+ndt

ing the value of v equal to ¢, and confidering

being




Mem. IX.] IN ANY VARIABLE PLANE.

being the cofine of A + Q,, confidering 4 as negative, agree-

able to the fuppofition above.
£
mt 'l ) be a rational number.
m »

= % in its leaft terms,. the nodce,.after 1D or D revolu-

It is manifet that, if ¢ (=

tions of the body, (according as D is even or odd,) will.

fucceflively fall in the fame points as before.

The theorems in the preceding Mémoir, it is obvious,.
might be deduced from thofe in art. 1..of this Memoir :.

and many other inftances might be given of the. ufe of

the principal theorems in thefe laft three Memoirs ; fome-
other inflances of their ufe may probably appear hereafter
in the courfe of this Work, when we come to confides

fome particular fubje&s in.diftin& Memoirs.

" END: OF THE FIRST VOLUME.-
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APPENDI X:

CONTAINING

TABLES of THEOREMS

FOR THE

"CALCULATION of FLUENTS.
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TA~BLE-S of THEOREMS.
"FOR THE

CALCULATION of FLUENTS.

T A BLE I

- THEOREM 1.
F:x”i‘.
F—*-+l—"”+,

At
" ¢ the quantity to which « is cqual when F = o,

Note. When n is = — 1, the expreffion for the value of

F becomes = Log. -

22 THE O-




RN )

T ABLE |1

THEOREM IL

F=2a" % 6z x x"x,

F = PEEID L S I t:",’-+'
- lm.;—-i-._l

¢ the value of x when F = o.

When p is = — 1, the expreffion for the value of -
a" + bx"

F becomes = — x Log.
én -] “-+ b‘n’

NoTE.

THEOREM IIL
- Pl )
_a"+ bx")P+l

N '

F

F o L ~ X P— Pc
npa a" + ba") a" + bt”\

¢ the value of x when F = o,

Note. When p is = o, the expreflion for the value of
1 " a"4 b” .
-~ —— ey . — x -
F becomes = — X Log iy

THEO-




T ABLE L 5

THEOREM IV,

F:K+—;-xLog.a+k’+\/2ax”+x”'.

NoTe. K here, and in the following theorems, denotes
fome invariable quantity ; which will be determined in
any equation whereto it may appertain, by propesly fub-
ftituting therein any koown contemporary values of
the variable quantities. And when K is fo determined
the equation may be faid to be fitly adjufted, or cor-
re&ed.

. THEOREM V,

F=K+ 2 x Log. # + vba» + x.

THEOREM VI

n .
x"

F=

aiﬁ'—_ xil

F=K + d xLog.ﬁz—i-i-

2na” a —-x"

THE O-



T ABLTE L

‘THEOREM VII.

.F— x—t

- \/B‘”-I-b#'” )
3 N l_‘/ 2l+bx2-
F =K 4+ —— X Log. "——1—=—.
2na” g 0’-[-\/02"-]-5#”

*

THEOREM VIIL
F =~ x"-!X. .
V24" %" — x**

F=K+ -i; x Circ. Arc, rad. g%, verfed fine x*,

THEOREM IX!

= ‘/az-_;;

F = K + — X Circ. Arc, rad. 2, fine »
na

THEOREM X.

. *""
F= ,
ai” +*Iﬂ

F =K + — x Circ. Arc, rad. a", tang. x"
L na .

THEO-




T ABLE 1L - 7

THEOREM XL

- .
F z .z

2 a8
x"-a

F=K+ a—:;; x Circ, Arg, rad. a", fecant x*.

TABLE




T A B L E IL.

CONTAINING

T H E o R E M S

FOR THE

CALCULATION of FLUENTS.

THEOREM I

F= x':}.

m any pofitive integer.

m xﬂ—l x.—z
F=K+a- x .x—— -—x+ n—2 (m)*iLog.x+a.
ma™ m—1.a m—2.a

* 4 or — according as m is even or odd.

THEOREM 1L
F=x+a.

m any pofitive integer.

- — ™=
a" ! a2 a™3 p

F:K-}-—I;x -
a

-
m—1.x"

x+ta
— —(n— 1)+ Log.—-
m—2.x m—13.x *

* 4+ or — according as m — 1 is even or odd, .

THEO.




T A B L

E II. 9.

THEOREM IIL

x" %
F_x‘-l-a

m any even pofiti

ive number,

w1 L]
X

F=K 4 g™ x —o—

m—2

m—1.a4 = m—3.a

—3 =
”_4+m:5.a'—6(’£)' *A.

A = Circ. Arc, rad. g, tang. x.

* 4 or — according as ;

is even or odd.

THEOREM 1V.

F_#‘

x

m any even pofitive number.

*m! *™3

x™=5

F=K +a¢"* x

=X

=13 +
m=—1.a m—3.a m—5.a

m)+lLog.-_—

s\ 2

THEOREM V,

F=

x+a ®

m any odd pofitive number.

m—3 m—3

F=K +4* "% ———— - e

m=—1.6 7~ 3 a
a* cither pofitive

. ”m
* 4 or — according as

me— ;.a""'S\ 2

m—§ - ———
+ X {m x).i |Log.xl+al.

or negative,

b

-1, )
P is even or odd.

THE O-
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F=K-

T A BULE IL.
THEOREM VI
F= P +:
m any even pofitive.- number.

5
a - a + a ‘ ‘i&,

"""" m—1x" " m—3.4"3 ”"‘5 P 5\"

A = Circ. Arc, rad. 1,. tang, ;..

¢ 4 or — according as -:— is even or odd.

THEOREM VI

-— e
N
F=—57F
X" = g% .
m any even pofitive number.

F=K+ =

+‘ m—1a""" m—3.4""3 g

-+

THEOREM VIIL

-ﬂ.
x

F-x‘-i-a o +a

m any odd pofitive number.

aﬂ'— 2 ¢ ﬂ.-s m—-g

F:‘K -

: —!)e s Log. T3S

‘M+l;‘ e X m—3 m—s. xl'—S\ 2

m—1.x m—3x
a® either poﬁtive or negative,

. m—1.
$ 4+ or — according as ——isevenor odd.

TABLE




T A B L E III,

CONTAINING

T H E O R E M s

FOR THE

CALCULATION of FLUENTS.

THEOREM L

- « 4 .
R

F=K+-§-x—de—:’e’7 =K +-‘3*-x de+DP—AD—L.

THEOREM II.

» 1, . '
‘The ﬁugnt of = generated whilft x from o becomes

equal to any quantity £, is equal to.the fluent of the fame
fluxion, generated whillt x from a X :—:—: becomes equal
to 4.

Note. All the theorems in this Table refer to the Scheme
at the end of it, for the values of the quantities re-
«quired.

b2 THE O-
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M
comes equal to 2t — 1 % g, is =3

T A BLE IL

THEOREM Il ' ;

The fluent of — = generated whllﬁ x from o be-

\/ -
Q i

THEOREM 1V,
2M

1§ = —-

-l P
\/a‘—v o

* ‘The whole ﬂuent of ——

F=K+%x£?4&=K+;xL+AB_mn

“The tangent ¢o (= ax" X

fluent of =

equal to any quantity %, is equal to the ﬂucnt of the
fame fluxion, generated whilt x from & x — ? becomes

equal to a.

THEOREM V.,

x*i

THEOREM VI

-t .
. +:;) together with. the
tatst; : -
generated whilt x from o. becomes

9
‘/al_xl

THEO-




T A B L E IL 13

THEOREM VIL

i, .
The fluent of —i:_—_:.;, gencrated whilft x from o be-
a - X )

—_— . L ——
comes equal to 2t — 1 x g, is =g =2t = 1 X dh
a -

THEOREM VIIIL
*1z.

@* X

The whole fluent of

=i = 2
==

]

THEOREM IX. .

_,}-,
-2 7 .,
F Vy —a _
F=K+ -‘-; xac—-E +¢ ¢ =K + = x.ac+ AD — DP.
a* az
a’
x=—
. y

"THEOREM X,

-, ,
The fluent of ——== _,.,_, generated whillt y from. g be-

5 M
comes equal to 28 + 1 X g, is = %
[

THEOREM XL

l
’ 1 [ -?M-o
The whole luent of vica is = 3

THEO-



14 . TABLE II1,
THEOREM XII

*

F'v————;:7

F=K + %xl—)T-;- ac + 2¢¢ — E"=K+%x'AD.
a - ]

“x - e

y
T H EOREM XIII
Thc fluent of

v‘y—-"_ generated .whiltt y from 4 be-

comes cqual to 2t + | x a, is=2t + 1 x 4 ..%.
- a

NotTe. The whole fluent is infinite,

THEOREM XIV.
. —*’
Y
F=Trrs
; i
F:iK+fxac+é'e”—E”=K+?—-xac + AD = DP,

® = ;._"'?t*_)"

-

T'HEOREM XV.

‘The fluent of F:: generated whilt y from o be-

. |
<comes equal to g, is = —i- x M.
a

THE O-

——




T ABLE IL 15

THEOREM XVL
The whole fluent of

-, 3

y % . 2
——is = — x M.
Vi +y* at

THEOREM XVIIL
F = b .
7T
1 ' i
F=K+2—*xac+z?e"—zE”+ D =K+%xK§.-%DP..
e a’

.x=a£+yi*—y‘

THEOREM XVIIL

*.
"Fhe fluent of s/—i_—JT_'?’ gencratgd whiltt y from o be-
. i .
eomes equal to 4, is = V24 — -‘;;1 x L.’ .

NoTte. The‘ whole fluent is infinite,.

THEOREM XIX, -

o

F—yh

F=K+ %-x 2E" = 26" —ae =K +-3-%--x DP - AD.
[ 3 a

x = “a""‘]‘o
THEO-



16 T A B L E I

THE'OR.ﬁM XX.

The fluent of —=—, generated whillt y from o be-

=

L ———
comes equal to V2t — 2 x a, is =--*+z*—1 x af,

THEOREM XXI .
The whole fluent of 2L

J
F-At Tt

 THEOREM XXIL

Fo=2i
el |
g
F=K+ 2t x 28" = 2¢¢ — ac — ay — 3! x a+‘;"

i
a:l']

=K + 2t x DP — AD-ay._y\*

=
x—ﬂxa+

THEOREM XXIII.
* *The fluent of

..___‘* gcncrated whilt y from o be-

v;’ is = 7?"
THEORE M XXIV.
Thc awhole fluent of

comes equal to

is = 2%L.

r:ﬂ*
THE O-




TABLE I 1y

TH.EOREM XXV,
. B=

;—:m
' .t
F= K+—xae+zei—-zE" —DP_.K+ xA"D—‘"‘

_]—x/y - a'

THEOREM XXVI.

- The fluent of ——, generated whilft y from & be-

J_ﬁk F—an

comes equal to 2ta, is = 2t x gt — %
Q

Note. The whole fluent is infinite.

THEOREM XXVIL

. L ¥

__ )

F T FC et

Foaie
Fa }* A 3d proportiosal
. ’—mw ' to DP, CP.-
=K+DP=AD—L4—n— ’*

F=K +de—2¢"+

-x:

c ’ THE O-




8 T ABLE .IE

TH E 0 REM XXVIIL
" 'The fluent of

——‘t - generated whilft y from a. be-
y*—a

o .
comes cqual to — ‘Xa, is=;%xa—-L.

Note. 'The whole fluent is infinite..

THEOREM XXIX,
F=

| =
F=K3 ixacr2dd 28 + DP=K 3 S » A%
‘! ’ @

a*

x =

TH E‘O REM XXX
‘The fluent of
S

e et L
*comes cqual to J2+s/'2' % ayis =2t + 1 % gt e
. . a

generated whillt y from ‘o be-

Note. The whole ﬂucn_t is infinite.

* THEO-




T ABLE I&I 19

THEOREM XXXIL

Fa2Y_.
Tt
— — Ny ﬁ * .
F=K+de—2sd+ s }*A 3lgpyoportional
—K +DP—AD-L+—2_" Pk cF
TR
=L
va +y ' ) _ .
" THEOREM XXXIL )
-
The fluent of _—i_—%;, generated whilft .y from o be-
a+y
. <comes equal to V/ -&L—;—% Xa,is=5t%Xae~-L.

Note. The whole fluent is infinite.

THEOREM XXXIL
F =2

=y}
. F=K+‘%xae+e'f—5”'=K+-?;§xae+AD—DP.
a a

.x—-— a—]o -

c2 ~ THEO-
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00 T A BLE I

THEOREM XXXIV.

—, gencrated whillt y from o be-

"ﬁ

. M
comes equal to Jz— V2 Xxa, is ==
: a2

THEOREM XXXV.
The whole fluent of —2— is = 2

e

THEOREM XXXVI.

F= K+-—-xac+e’e" E" = K+——xac+AD DP.

— 4-7
x—axa_i_’

THEOREM XXXVII

—i;
The fluent of =—= __,*, generatcd whilft y from o be-
et =

comes equal to —, is = x M.

Va

THEOREM XXXVIII.

o? ‘
18 = — - x M.

THEO-

‘The whole fluent of
o ?:ﬂ,*




TABLE I a1

THEOREM XXXIX,

F=—Z
y—at
F= K+-;xac+e’e”—E”..K+—-xac+AD -~ DP.
]
x=y =y —a.

THEOREM XL..

- The fluent of —=— —:ﬂ*’ generated whillt. y from & be-
{3

comes equal to 2t x 4, is = % x M.
a

THEOREM XLIL.

The whole fluent of = —ﬂ* x M.

.7-4#

THEOREM XLIIL
-1;

=
F=K+%xdc—¢¢ =K + % x de + DP — AD— L.

F=

" THEO-



22 T A B LE . IN

T‘H'EOREM XLl

-i;
The fluent of .ﬁ*’ generated whilft y from a be-

. M
«comes equal to * + 5| xa s =5

THEOREM XLIV.

| ~4; ‘
“The whale fluent of ‘,’i_—;ﬂ* is = 2:‘:1 |

THEOREM XLV.

T -
2

F=K +'—% xact+ée —E =K+ -%x ac + AD—DP,
a : a* .

2

a

-

X =
‘/a"l‘]‘

THEOREM XLVI.
The fluent of

“ji’ generated whillt y from o be-

———— . M
‘comes equal to Jz +vV2xa is= <
a

THEO-




T ABLE IL. 23

THEORTEM XLVIL
J 2M,

is=

‘The whole fluent of = =

THEOREM XLVIIL
F =L
- az+yz§

F=K+%xde—77=K+%xdcs DE—AD - L.

—_ .

= Veir

THEOREM XLIX.

. -%.
The fluent of _’__’_'] , generated whilft y from: o be-

ﬂ‘-l-"*

\/ 1 1 . M
.eomes equal to —=——x 8 i6 =

va

THEOREM -L.
—* .
The whole Qucnt of a_j +__; 7 is -:.%.’L

§C HEME.




S € H.E M E

T A B L E IL

d [ = % of the periphery of a circle whofe radius is 1.
=1 §7079632.

acd (Fig.1.) isa quadrantal ‘a
arc of an ellipfis = E*,

Semi-tranfverfe axis cd = 21a.

Semi-conjugate axis ac = a.

Abfcifla cb = 2¢y/a*—ax.
. Ordinate be = Vax, ~ C
’ the value of E’ when g is = 1.
{... I. 91009889
aée’d (Fig. 2.) is a quadrantal arc of
another ellipfis = E”.

" Semi-tranfverfe axis cd = — + — < X a.

\/_.

&I .bll

l
Semi-conjugate axis ac = E-—-; Xd.

ep’ and its equal ¢“p” (each = /a* —ax) are tangents, to
which cp’, ¢p” are perpendiculars.
The abfcifla ¢4, or c4”, correfponding to the ordinate e,

) 23 —
or 8¢ is == :'xa*Jz*a+a—x..—.s/ax+x’.
2

f {: the value of E” when g is = 1.

=1.2545845059. SCHEME

- —— ————n




SCHEME for TABLE IIl. continued.

AD (Fig. 3.) is an equilateral
hyperbola, whofe vertex is
A and center C.

DP is a tangent, to which CP
is perpendicular.

AC=a.
CP = Vax.
DP = &' x ==, C"“\i,/ A B
Abfciffa CAB (correfponding to the ordinate BD)
=ax m*'
2% |

L, the limit of DP-AD, is = 2E"~E' = ax 2f —e=7xe— v/r'~2d
=.5990701173 X a.
M:zxmzzax:ffz-‘-;-Xe+ Ve —2d
= 1.3110287771 X a.

NoTe. A/l the T, Aearem..r. in TABLE III.-.I‘?ﬂ’r 2o this Scheme.

d TABLE



T A B L E 1V, -
CONTAINING

T H E O R E M §

FOR THE

CALCULATION of FLUENTS.

T HE ORIEM I
. it I3 _%y—L
F_a’—xﬂ*.—b’—y’#
F = K - —:~0_*B. .
‘é:a‘;x*:b'_y.
x J

THEOREM IL

-%. t,—fp
The whole luent of ——=— is = 3 .
@ — 3t

NoTe. The neceflary explanation, refpe&ing the values
of the quantities concerned in the theorems in this
Table, is given at the end of it.

. THEO-




TA BLE 1IV. . 87

THEOREM IL
=~ o

= s\{=bg_yr\§'
F=K— 127D,

Y g __'5—]
of y

F=

2=

THEOREM 1V. -
P PR 3*a-iP

is = 2= .

The whole fluent of === -?-:-I—

THEOREM V.

; 3. 145
AL N U
E—az_,q?__bs_._’ai

F=K+ 22t xC—D.

o= ai—»xi_l-.-y“
— ai - 3

THEOREM VI

‘ R {.
* - x°x LYY {
The whole ﬂufnt of Y is = 34 Q_

v a3 1
a* — x*\*

>

d2 THE O-



T A B L.E LIV,

THEOREM VIL
Fo_ s _ wh
T et T o
F=K +1stxA +B ~ ix /o — =
‘43:_-::; b—y

2= = -

x7T Y

THEORE M VIIL
Thc whole fluent of

ﬁ* 2

THEOREM X.

-3
ls_ga P.

The whole fuent of x_j* 3

THE O~




T ABLE IV 29

T H E.OOREM. XL
F= 1 . .
h _xz;_az* m*

2 *
x3 = a3 ’_b
2= —— — .
a¥ . 4

THEOREM XIL

o i,~Ip
The whole fluent of —— is =32 "
x‘-—a’f}' 3*+t °

THEOREM XIIIL

Fo_ _ 1
S e—at. yop)

F:K+—1—cixA+B.

3 2
XxT—a7 __y—b
= ——=
a3 b

NoTe. The whole luent is infinite.

THE O-



T ABETER IV

THEOREM XIV.
F= fTi _ pi .
' -—x‘_ai"f‘_:yj_ﬂ?*
F=K+—}a%xC—D+-ix“*\/x‘—a'.

- a 2 .
. 2T~ a7 . —-b
z = .—.'_’ ant

7
- x7 ' J

NoTs. The whole fluent is infinite.

THEOREM XVIL

— * -2
The whole fluent of :3-—“; js=234"7P
a4 5t 3* +1

THEO-




T ABLE 1V 3

THEOREM XVIL
. -%. 5.
F=2_: —-_%_
~ . a; -". xfl* b; +’q{
F=K + ia~1D.

2 EY
a%+xT b4y
Z = T =

a’¥ b

THEOREM XVIIL

-1; i~
The whole Ruent of —= "'* g = 234 P,
a* + #°| 3t+r

THEOREM. XX
oo o b
) a’+ﬂ1 ‘b"l']"
F=K+ 24t xC-D.

2 2
ua’}-}xf’___b-l-y L
‘z".' Y 7-“:7_

a3

" NoTe. The whole fluent is infinite.

" THEO-



T T A B L E _IV.

NoTe. The whole fluent is inﬁnitc.,

THEOREM XXI.
) x—;é

F= =3y

=

~§.: . .
F=~fl,— 3'—*, to be found by theorem xvir.
442-}- z .

s Py

x —Ji

w =

THEOREM XXIIL

-_—2, 2 * _i

73 . 2!3 a P

The whole fluent of — is = .
=\t 3t 4

THE O-




T ABLZE 1IV. 33
THEOREM XXIL

. .
x o - iy.r .

F = - fl. =——=7» to be found by theor. v.

wiw
Fow)
w=a-a'=F -yt

THEOREM XXIV.
The whole fluent of = is = gtalQ._

THEOREM XXV

Pt __ 15
Tt p_,ﬂi

‘w
m*
a* — 5 _ by

x‘—y{

F=-jiw? 4+ il » to be found by theor, xx.

w =

THEOREM XXVI

]
. — 3°47Q a?Q
The whole fluent of a—?ﬂ* 18 = = T




34 . TABLE "IV,

T HEOREM XXVII,

. 3 . 3,
F=_2%____ 45

FoA m—pi
adwh wiw s ‘
F_m*-?alﬂ.ﬁ, to be found by theor. xx.
SEAF Fev

THEOREM XXVIL ~

" The whole fluent of chd is =21,

az—xz* . 3*

THEOREM XXIX.

F = =t _ p7
¥ p_Pu

_q _wte
T

w=

F to be found by theor. xvir.'

xl-‘-a‘_”-—lb’ .
~ ’*

THEOREM XXX,

. X
- . sa— 3P

The whole luent of ——>— js = 22322

e fluent e e

THEO-




TABLE IV. 38

THEOREM XXXL

TP
x‘_aﬂl ]’_m'!

-

F = 0. ==, to be found by theor. xIx.

w =x‘—a’|* =y ) ’F.‘
NorTeE. The_. whole fluent is infinite,

THEOREM XXXII.

F_. x"’:’r___._,’!_.i__.
T e aﬂ§ Ty =R\

2 e
wlw . |
to be found by theor. xx.
a4+ w‘l* ’ . y
¥ —a P

==

. N ) .
=jw?+ 11l

'Norh. The ahole fluent is’ inﬁ'nit.c.

c2 THE O-

-




36 T A BLE IV

THEUOREM XXXIII,

F= x¥i - H*J',

P
% s 2
F=——t i, ===+ to be found by thear, x1v.
w?—g* w—ga*
_ ax byt

T F —at - y—_ bi]f

NoTe. The whole fluent is infinite,

THEOREM XXXIV.
£

-.. -— .
F=21% _ %Y,

ST maagat

F=21. %, to be found by theor. xi.
W' — 44 .

St By
x_’{-

THEOREM XXXV,

-2 . 32 * —i B
I . 273% 1P
The whole fluent of — 18 = —2——un.
_ : S+t 3t

THEO- -




F =fl. =—%—, to be found by theor. x111,

TA.BL,E V..

T HEOREM XXXVIL

F

. L
LI 3 i
a* + Fo +5 i

w:_‘z

w=a+xt =5yt

NoTe. The whole fluent is infinite.

37

THEOREM XXXVIL

- LI
FEA By

ﬂ wlw

.“’~
a*45t P4y

NotTe. The whole fluent is infinite,

<> to be found by theor. x1v.
44

THE O-




8 TABLE IV
THEOREM XXXVIL

Fo_2i__ wb:
ferat Fiad

2

F = L’.'EJ ~ a4} ﬁ_._—-ﬁ%—;, to be found by theer. vir.

g~ w a* — w? ..
ax . b*;{‘
W = —~ *= T
a‘+ﬂ b + y9

'NoTe. The whole fluent is infinite.

THEORTEM XXXIX.

&t~ x ;} b -J ’L

F=a-ifl. L;-J-'”—*, to be found by theor. xv.
] w’ . N

a
‘ g
w = 22

GSAL -
a* —-gﬁi P ’?*

THEOREM XL.

-, f,—1p
The whole fluent of Sz js = 232" 'P,
a’:—qu 3* +1




T A BLE IV. 29

THEOREM XLL
P P 37
d—at po,t

=

A N e
D P=—=fl. ——%_, to be found by theor..xv.
P ) e found by theor..xv
A=t By

‘20-- ek ,%

THEOREM XL
g _,igia—!p
==

Thc wﬁole ﬂdcnt of

THEOREM XLIIL

F= 2 = Y
aa_ﬂ'}‘ bz_lsl*}

_* M
F=-1 _w_ﬂw*, to be found by theor 111.
. w? .

w= a'-—;‘\*:b‘—w.

THEOREM XLIV.
3§ -{p
= i
THE O-

-

The whole luent of

18 =

x
a’—x'ﬁ



40 T ABLTE 1Iv.

THEOREM XLV

F= AL Vi .
a‘_g’lg—bj_’ig

F._--w’+ flo—o—— e ‘, to be found by theor. xix.
at—xt Py
v ——= o
THEOREM XLVL
3 . -
The whole fluent of = is = 283tatQ,

THEOREM XLVIL

-3 -
DL T

-— '_x, — ‘l)i —’3 — 03\%

w w
Tt
ax - &**

Foat poat

to be found by thear. 1x.

w=

THEOREM XLVIIL

st PR to=1p
The whole luent of — is=32_~
et Rl

THEO-




T A BL E IV.

THEOREM XLIX.

= 4 oy

xz__at]i ’)_ﬂ'
—*' .

-F=A1. —2—____1\—'9—*-. to be found by theorem xv.
48 + w

_&—a_y=P

==
y

THEOREM L.

. o P PR P ]
The whole fluent of ——2— is = 2> P.

4%

THEOREM LL
Fo—t = WY
s o

-3 ,
F =Af. w+ :” » to be found by theorem xvir.
w

Fr o)

w=r —af=y = ot

THEOREM LI
z.3*a°‘P.

‘The whole Buent of i
3"+

18 =
=gt

£ THEO-



40 TABLE IV

THEOREM LIL

§ = #3i _ 3yly
‘f-fﬁ“,u4¢

F=iw’ 4+ il ——2_ tobe found By theor. xix.

a+wﬁ

—a PP

)

w..

NoTs.. The whdoe fluent is infinite.

THEOREM LIV.

'F__ x I:: < iy *_’
m’ ﬁr”

If:a‘*ﬁ — *,'to be found by theor. 1.
- ox ) 'b"y*

w= = .
s At ¥ +71
THEOREMLM:
$, -1
Thewﬁo]eﬂucntof =3P

&+ &’ 3"—!-1

THEO-




T A BLE IV 43

THRE OREM ' LVL

Po_tt o ¥
@+t Fd
-{w
F =+ fl. ————, to be found by theorem 1x.
w’_4all* h
="t _F+y
v - x — ’_i_ .

THEOREM LVIL

1 T ¢t | 3
7% . 272%3" 3P
The whole fluent of ——=+ is = 3{ AL
a* + &7 3* 41

THEOREM LVIIL

Fee* - 19t
d+ 2 P

—f wTiw’
T e a
w:a’+ﬂ*=b’+yﬂ*.

F » to be found by theorem xi1.

"THEOREM LIX.

; 1 -
The whole fluent of —*—— is = 32 _°P,

m’f 3*.’.1
f 2  THEO-




44 T A B L E 1V.

THEOREM LX.

2

F= *¥x H*J‘
a‘+ﬂ§ b’-l-ﬂ’}

L d

. Ty
F = twix 1 fl. ——=—, to be found by theorem xur,
o y

— a* + ** ) 3] +’s
W — -_— .
* Ji

Note. The whole fluent is infinite,

EXPL A-




EXPLANATION or TABLE 1V.

—; .
A denotes the fluent of —---——, Bthe ﬁucnt of —==
. v3+3z+3* V3+3z+a?

' 2tz
C .....thefluent of—s——s—z—:: »D thcﬂuentof———-—m

whereof the general values are affigned in TasLE XII by
means of the arcs of the conic fections.

Pis=p+ V- 3—* + 1.d = 4.366203,

QU =p-Jp— 3+ 1.d= .982889;
d being (= 1.570796) the quadrantal arc of a circle whofe
radius is 1,
Povees (— 2.674547) the quadrantal arc of an ellipfis
ataty I,
at

whofe femi-axes are 3t and

The whole fluent (mentioned in any theorem) is gene-
rated whilft x from o becomes equal to @, whillt ¥ from a
becomes infinite, or whilt x from o becomes infinite ;
according as the denominator of the refpe@ive fluxional
expreflion is fome power or roet of " — »*, &* — a*, or
a + x.

TABLE




st
———

T A BLE V.
. COMTAINING

T. H E. O R . E M S

FOR THE

CALCULATION of FLUENTS.

T x

THEOREM L

1‘4 s

.an +x'
M’be M”¢x M/ dsz
F—zam_u ﬂ‘ b5+zz+ﬂu‘3+zg+ﬂ-m.&c.
. ~. = q N'zg 1 Nz Nz
. =i T e T e &c.
m any pofitive integer lefs than the integer 2,
— X —a .
=3 +a
m X 1800
M’ aad N’ A ——
x o
M” and N” ) fine and cofine of '{ 3= ~ 180"
Mm and Nm sm ’;lsoo.

&c. &c.

b= tang. of 2:_" ¢ = tang. of & >:,9°., d=tang, of 3 x”9°°, &ec.

. - fo long as thefe arcs are lefs than go°.

Radius =1.
THEO-




T ABLE V- uy

T HE OREM II.

The fluent of im—"i, generated whilt » from being
. a +x ’

equal to any quantity £ becomes equal to a;, is

M’ x Circ. Are, rad. 1, ta;xg.

: * ple=n .
=4 x | +M” xCirc. Arc, rad. 1, tang.

qm e~ jm ofe

+M” x Circ. Arc, rad. 1, tang.
&c.

m,n, M, M’, &ec. &, ¢, &c. asin the precéding theor. g= :—:—;

THEOREM Il

’--ti, generated whilft x from being

The fluent of - s
a x
equal to any quantity # becomes equal to 4, — the fluent

of the fame - fluxion, generated whilft ¥ from 4 becomes

2

a .
cqual to ¢, 18"

‘Q+g2

=2 x'N’Log. 'b-:{.—g: + N” Log.

P P &Co
: Y e . Y I |
m, n, N, N”, &c. &; ¢, &c. as in theor. 1. g = =

a+t.

THE O-




. 48 T ABLE V,

THEOREM 1V,

The fluent of -’:—:-—f, generated whilft ¥ from o be-
a X

comes cqual to 4, is

o P 1+ 6% o P+
:ir %+N Log. —;i— + N” Log, —— &c.

lm, n, N, N’; &c. b, ¢, &c. as in theorem 1.

Q

. 25
Q: quadrantal arc of the circ. rad. 1. s = fine of —

THEOREM V.

o T

u :., generated whilft » from o

e +
|}

. . . 2a" "
becomes infinite, is = — X Q.

m any pofitive integer or fiaction lefs than the integer ot
fration n.

The whole luent of

Q.and s as in the preceding theorem.

T HE OREM VI.

Moy o
x

F-_—_ ,+a:.-lxl—-3-x ':
a + x°

4" Wiz M7z
F —— » X ﬂo b‘+ z' + ﬁo ‘3+ " &C.
m, n, z, M’y M”, &c. 4, ¢, &c. as in theorem 1.

* THEO-




TABLE V. 7

THEOREM VI

-
x 'x

el generated whilft.

» from o becomes equal to g, or whillt » from a becomes

The fluent of 1 + g*==*x"— X

o’ . . 24
infinite, is = —— x Q.

m and 2 as in theorem v.  Qand s as in theorem 1v.

O vy .’

T HE OREM VIIL

‘—!*

g P
) . @+ 2"
"o-s : N'zz N7 o ¢

4a z%
F=—Txﬂ'b’+z’+ﬂ‘c’+z’&c‘

m, n, 2, N, N”, &c. 8, ¢, &c. as in theorem 1.

THEOREM IX

-, generated whilft

x
a*+ X
x from o becomes equal toa, is. . -

x

The fluent of 1 — g**~*x*~= x

2,“’ l'+‘6. ‘1 + ‘3 . .
R —— X N’ Log. — N7 Log, —— &c. -

m, n, N', N", &c. 4, ¢, &c. as in theorem 1.

g THE O-



50 T ABULE V.

THEOREM X

F=aed x2i 2%

a" 4+ x*
. N%%&- N¥cq
F Q"—rt { fl. Pz —f. 5= ctz + &'C
= = X M’zz M zz
r=—1
na ‘T‘ ﬂ.’b‘-" zz + ﬂo ‘3 + z;- &C.

r any pofitive integer not greater than the integer 7.
m any pofitive integer lefs. than »,

M= P X fine of =z .90°. N’ = P’ % cofine of 9o

=P"x ﬁn-e of 3.-:—.9o°. N’=P”x cofine of 3. f-ﬂ' 9o°.‘.

M"=P"x ﬁnc of 5. == 9o° N"=P"x cofineof 5. —=".gc".
&c. &c. & &c.

6 =tang. of L:'o. ¢=tang. of 3 ’;9°°, d=tang. of $X2% g

?
. fo iong as thefe arcs. are lefs than 90°.

Radius =1..

—

=1487T3, P’ ﬁ . p"'_ T, &

'lfﬁl:‘.‘.o;.




T A B L E -V, 3}

THEOREM XL

F=Gia""x M0
) a® 4 x"
2t Piz 7%
F— r X °b”+z‘_ﬂ¢+z‘+&c.

‘n, % b, ¢, &c PP’ &c. ds in the preceding theorem.
r any even pofitive namber not greater than .

THEOREM XIL
=a+ ’ X—--—-.‘

-l-x
. N’bz N”ex
- . é 2.-'+¥ ‘ fl. m7——= P+ ﬂ T—'—' &c.
F':ﬂ';_fz'"_ —— X .8 Mzz;'ﬂ M"zz+&c
. P 4z . i .

» = 0, or any pofitive intéger not greater than the integer ».
%y by e & P’ P" &c. as in theorem X..

M = P'xﬁncof go. N' choﬁncof .90’

=P X ﬁnco£ 9o° N": P" x coﬁne of 3"-.90 .

M"” =P"” X fine of 5;'.90". N”' P”’x coﬁnc of 2 5 9o.
& ae. | ke s

g2 THE O-



52 TABLE V.

THEOREM XIIIL

Q@ ==y v
M’c M’dn
¥ ’a.—-x { ﬂ-m-l-'ﬂ. ;.-_—_l_;;.&c.-
= § N'zg . N7zs
" "ﬂ-?—ﬂ.‘,+z.—ﬂ.d.+-,&6.
m any pofitive integer lefs than the integer m
X -—ga.
. z= x4+ a :

’ ’ . zm X 180°
Mand N —_—.
M’ and'N” ) fine and cofine of ﬂ'—‘:ﬂ»

w | 6m x 180°
M“and N"J -
&ec. &e.

c= tmé. of -'—?3, d=tang, of ’ﬁi"_"’ e =tang. of Lﬁ:f';:&c.

n
fo long as thef¢ arcs are lefs than go°;
Radius = 1.

THEOREM XV

m—1e e

L

F foed L v aﬁl—lx.l—l. x

L .
. B -yt

Mg MI > MI/"
F=25— x fl 7 + . s e

m, 8, z, M,. M’, &c, ¢, d, &c. as.in the preceding theotem..
' THEQ.




TABLE V. 53
THEOREM XV

The fluent of T — =57 x ‘:-_'f, generated whilft .
q =X

x from o becomes equal to 4,.or whilft x .from_a becomes .

c gl s, 28" .

m and 7 as in theor. ve Qas in theor. 1v; 2z=tang, of e 3 ':Q o

THEOQREM XVIL

Fol dawrgram x 2%
Q@ —N

- - ) N'z= N7z« .
F — Xﬂ. +ﬂ“.+ +ﬂ.d.+z,&¢..

m 7, z,. Ny N, &e. ¢, dy &e. as in theorem x111. .

THEO:.




54 T ABLE VW

THEOREM XVIL

. e, m—1.
Fea+x  x zx.
] Py
' M'cx Mdz
F .—'+l + ﬁ) :_;-;. zg — ﬁ. d‘ + 2 + &c.

f—x . ; .
na =" iz Nzx N o
.ﬂ°z I ﬁ'c‘-l-z" ﬁ'd’+==’ &e.

# any pofitive integer not greater than the integer ».

m any po,ﬁtive'intcgcr lefs than r.

x—a‘
B=2%a. -
Y -2

- -180°%

M’ = P’ x fine of =278 N = P; X c0$ne of

M'=P" X fine of 2'—'—'"3'—"1 gon. N'=P’X cofine of 2."‘:';1”"'1 8o°.
M"=Px fine of 72 180r. N“=P*Xcofine of 327 18cr,
&c. &, . &e. &

¢ =tang. of %9:‘ d=tang, of }—x—;}g.-. ¢ =tang. of 31:_&’_‘_', &e.

_ fa long as thefe arcs are lefs than 9o
Radius = 1.

re=n

=1 +c‘\£:—',,P”=x+ Qr:':, P”f='1+e'\7, &ec.
o o T HE 0-




TABLE.V, 5¢

THEOREM XVIL

F=a+ar o X x:'-"é
PR G —x
' ’-—r-l'-x : t P Wu
F=— ”‘*' Xﬂ. = -ﬂ'c'-i-'z“-*-ﬂ.'.d‘,-l-z‘.'_ &CQ

n, %, ¢, d, &c. P’y P, &c. as jn the preceding theorem.
r any even pofitive numbet not greater than 7.

THEOREM XX

. Wt
Fza+a"" xI—-
@ w=—Xx

t

: M’ % M"ds
+i - s+ &
§s N'ze N’ge -
ﬂ‘-; - 1. c‘+z‘+ﬂ‘ P i &c.

. fe—rdg
F=f -2 -2 = X{

r any pofitive integer not greater than the integer ».
%, ¢, d, &c. P, P”, &c. as in theorem xvir.

M’ =P x fine of ;'.180“. N’ =P’ x cofine of -5- 180",
M"”=P” x fine of :—'.180". N'=P"x cofine of 2;’.180".

M"=P"x fine of £-180". . N"=P"x cofine of 3/.180".
&c. &ec. &c. | &C.
THE O-



56 TABLE €

THEOGR.EM IX

" F= 12

’

.

F=e——x1. f —as; to be found by ‘Theor. 1. or-x111,
rb* e
) CREN Yoy V=T T M

rorw o Py
THEOREM XXI

The fluent of z -" —, generated whilft y from .being
e ‘
equal to / becomes equal to 2"k, is

;-:—'-.-;-x (TZ-— N’ Log. '—%-.‘-.-N”Log.'h.}‘:&c.
‘rb* i o )

‘myn, N',N”, &c. b, ¢, &c. as in Theor. 1. Qand sas inTheor. 1v.

" THEOREM XXIL
The whole Auent of —L‘--’ZT. generated whilft -y from
y—
being equal to 4 becomes infinite, is =

~

zQ
.

mr

rs b-".

o, 'n, Q, and s as in Theorem 1v.

THEO-




b T ABLE WV 57

T HEOREM XXIIL

P 4

0.1 F - ’. j_—-.

gh' + ly'r;
Renm x--' .

F="""yd.=—2, to befound by Theorem I. of X1iL
v r 0. — “‘”

als

b I J

gt + 4y = a® — k"l

THEOREM XXIV.

The fluent of -2

-’

gcneratcd whilt y from o be-
m; v . -.

. b .
comes equal to —, .i8
2'

1+

= LxSeNLe L35 4 N Leg. - &
m,n, N', N”. &c. b, ¢, &c.asin Theor. 1. QandsasinTheor.1v.

THE‘ORE'M XXYV.

te ]
'

The whole ﬁucnt of .-—--— , generated whilfl y from o
b -y .

becomes equal to 4, is = "3'-(-‘2'—

m, n, Q. -and s as in Theorem 1v.
TABLE

]



T A B L E VL

CONTAINING

T H E O R E M
' FOR THE

CALCULATION of FLUENTS.

e,

THEGOREM L

Fza+éaV xxm=1x,.
> £ =0, or any pofitive integer.,

PR b AT+ T R )
=K+50 x4 L B I 1)
=K+*:i' X1+ :—P :z + :i.}::-l-.:jz’ + :f-}:T—‘::-—Z;:’ (P + l)
SR = B e e ()

s=p+r. ZT=a+bx’.
THE

o-




TABLE VI 59

THEOREM IL

F =2+ 821" x x7=1z,
r any pofitive integer.

- 3__. 1 — r—1.a C— 1L.r—2.a" —
F=K + b’ X s §— 1.2 + 2.6 — 2.2° (r)
—K + Tt 5 r—1.2 r — L.r — 2.4
= nb’ pFi " pt2e taprge V)
ra=n_p+41 3
=K x Az_'_ x 1 ~— r—l.a r—JJ.r — 2.2 —
+ bns 5s— L.bx" + S— 1.5 —2.5%*" (r)
m—sn_p+1 7
:K-}-’ x X 1 _r—is r—1r—a2z ,
P + 1.bn P+2Pbx. f+2-f+3-"3" ( )0

s=pAr. z=a+ bx".

THEOREM III.

. . -
F=a+6\? X x™=1x,
2 + r any negative integer.
=" I t—1.bx"  t—1t—2.522%
F=K+ na's” X 7 T Ttz 2.r + 2.2° —(t)
—K =5t 5 — t—1.2 t—1.0—22" )
- na'xtrts PHI 542" 2.p + 3.8°»*"
gttt t—1.bx"  t— 1.t=—2.5°5""
=K+ ~na X1 + r+1.a r + 1.r + 2.4* +(t)
g - #7Tgbt? t = 1.%Z I— 1.t — 2.2°
:KH P+l."a X I = P+2-4 + P+2~P+3.0"—(t)'

t=—p—r. z=a+ bx~

h 2 Nofz




V

6o T ABLE VL

Note 1. When the exponent of the power of x or .z
in any term (taken with its prefixed fator) in thefe theo-
rems is = o, and the denominator of the fame term is
alfo = o, the equation will be fitly adjufted by taking the
value of fuch term according to the Note to Theorem 1.
1L, or 11l in TaBLE I. K being, at the fame time, taken
of a proper value. ‘ '

Note 2. For the fluent of a + bx"\ X x™—'x, when

2 and r are fuch numbers that néither of the feries in the
values-of F, in. the three thecorems in this Table, termi-~

nates, take any one of the values in which the feries

. may be found to converge; and fuch value of F, con-

fidering the feries therein as continued ad infinitum, will
exprefs the faid fluent.

TABLE




| . T A B L E VI

CONTAINING

T H E O R E M. S

FOR THE

CALCULATION of FLUENTS.

THEOREM I.

F=a+6a0" x xm=1x.

™ _p .
F= =2 X1+ 7+ g 1e” + (v)

ns §~—1.5 = 2.2%

pp—1p—2(v) xa”

v "-!.
+ $.5 = 1o — 2 (V) x fl. z#=ox™x,
*"z° pbx" pp — 1625
- nr xl--r+x.:.'. r+x.r+z.s‘_(‘u)

pp—1.p—12(v) % 5% —ooratos—i .
.+ ’.'+l‘r+2(v) Xﬂ. z’ x + !xo

y—agptr — 1.a r—1i1r—2a
bnt +t+xbx t4 1t + 2.5% " ®)
r—l1r—2r—3(v) Xa"  fl. z,x,,_,,_',é.

tt 4 1t 4 2(v) x 6”

—
P




62 T ABLE VIL

-

ATty % 1 r—1.z r— 1.0 —2% _ (w)
p+1bn P+ 2.bx"  p+2.p+ 38 %M

r=—1.r —2.r — 3(v)
pH1p+2.p+3(v) x5

L F x fl, gptogr=—ry

ek t— 102"  t—1t—2.55""

anr X1+ r+ 1.a r+ 1.r+2.a*

+ (v)

‘-‘-‘2-‘-3(”) )(b' x ﬂ. z?x"'l‘“-l:r .
ro+ 1.r h2(v) xa” .

x" gttt s+ 1.% S+ 154 2.2°
p+1.an dP+2a  PpH+2p+3a

+ (v)

s+ 154 25+ 3(v)

-~ X fl. zt+ogm-1y,
p+ip+32.p+3(v) Xa

s$==—=tz=p+r. z=a+bx"

® .}- or — aocording a» v is even or odd.

Note. This theorem being derived from the theorems
in the preceding Table, it may fometimes be neceflary to
adjuft the equation in the manner dire&ed in Note 1. at
the end of that Table: and the following theerems. being
deduced from this, the like corre@ion in fome of them
may fometimes be requifite.
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"TABLE VI 63

THEOREM I

F=a+bx¥ xz™1x. G=a+bx\ x xratenmrg

G= ror 4+ Lr4+2(v) xa”
T t—1d—24—3(v) X °

T
P Ak t— 102" |t —1.8—2.5%%"

anr X1+ r+ 1.a + r+ 1.7 + 2.a* (v)‘

F—

t=—p—r. z=a+bx"

THEOREM. IIL

The whole fluent of 2 4 Fad)f X x+os=1z,

b 4
o becomes = :zﬂ,?, @

enerated whilft x from { —35\% L
£ Tl. becomes infinite, (2

o becomes infinite, (3)

. 7 4 1.y % a* ,
18____rr+ + 2 (v) “,xF:
t—1t—2.4=3(0) X b

() g, n, p + 1, and r being pofitive; 4 negative.
@) 4, », and p + 1 being pofitive; @, and p 4 7 + v negative.
) g, &, », and r being pofitive; p 4 r + v negative, ‘

F’ = the contemporary fluent of 5 + 4x"| X x™"x.
THEO-




64 .T A B L E. VI

THEOREM IV,

F=238 x 272, G =a+ o) x am"=1x.

G tt 4+ 1.t + 2 (v) x b°
T r—i1r—a2r—3(v)xa®

X'.—. P+t Yy —1.a r— 1.5 —2.3°
—_— X1t - ().
F+ bnt t4 1.0x"  t ¥ 1442557 ( )

t=—p—r. z=a+bx"

THEOREM V,
The whole luent of g + 6x"\F x x"-"'".;:,

b 4
97’ (1)

o becomes = 7

gencrated whilft x from == becomes infinite, ¢

o becomes infinite, )

is = ttd1.t42(v) X _x F':
r—1r—2r—3()xa

™ g, n, p+ 1, and r — o being pofitive ; 4 negative.
) 4, n, and p 4 1 being pofitive ; 4, and p + r negative.
) g, b, 5, and r — o being pofitive; p + r negative.

F’ = the contemporary fluent of a + 6x']‘ % :;""':?.
THEO-
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"THEOREM Vk

F =a+ 63". X X"'."'.;t. G =a+ 6xn‘:f+' % xn—xx‘.

G =tt1pt2st3exa

s+ 154 254 3(v) X
P2t T 41z st g+ a2z, o
F+)+x.gux I +p+z.a+p+g¢+3,¢= ('”)'

s=p+r. z=a+ bx".

THEOREM VIL

The whole fluent of ¢ + bx** +o =g

L
o becomes = _T"-, ()
generated whilft ¥ from !

—a-

- becomes infinite, ()
o becomes infinite, (s)

s _PpH1p+2p43(v) xa®
T s+ is+254 3(v)

x F:

®) 8y n, p + 1, and 7 being p&ﬁtive; b negative,
@) 4, n, and p + 1 being pofitive ; 4, and p + 7 + v negative,
4) 6, 4, n, and r being pofitive; p + r + v negative.

F'=the contemporary fluent of ¢ + 67" x x™=1x.
i THEO-




66 T ABLE -VIL
THEtrREM VHI.
F=a + bx*)f x x"""bg". G = + Zx‘:l"" X e

G = 8.5 — l.:-z(v)
T pp—1p—2(v) Xa”

e ]
x™ =P pa + .0 — 1a* ().

S= 1B @ §==1S5=2.%

s=p+r. z=a+ bx".

THEOREM IX.
‘i‘hc dhole fluent of )z ¥ 5x ¥ x x""‘.;';

—\L
o becomes = -—;-"'. (

. = 3 X

generated whilft x from :; * becomes infinite, (3)

s . .

o becomes infinite, (3

=o

e 5.8 = 1.5 —2[v) - ‘F"
pp—1p—2(v)Xn

() g, n, p 4= v 4 1, and r being pofitive; 4 megative.
® 8, n, and p—~v+1 being pofitive; 4, and'p + r negative,
() g, 4, n, and r being pofitive ; p 4 r negative.
F' = the contemporary Huent of 'z A F#7)° x ¥z,
o | T HE O-
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T HE OREM X.

Fza+6a\ x 270, G =g+ b2V " x amto—ig,

G=%+ ror+ 1.+ 2(v)
- pp—1.p—2(v) x 8%

n ¥ s — g SN
Xz pbx pp— b
F~ ar XI-—’,_'_ 1.Z ,r+l.r+2.k‘—(‘v)

Zz2=a++bx"

THEOREM XI.
‘The whole fluent. of a + bx7)! ™" x xrte—14,

4
(1)

o becomes = _l"’

enerated whilft x from = s
g 'Ta" becomes infinite, ()
o becomes infinite, ()
r.r+ 1.7 4 2 (v)

is:ﬂ: XF’: '
pp—1-p—2(v) x5

M g, . %= v + 1, and r being pofitive; 4 negative,
W/ - andp—v 41 bemg pofitive; 4, and p+r ncgauve.
.. . n, and r being pofitive; p + r negative.

F*= the contemporary fluent of ¢ + 5x7? X x5,

® + or — according as v is even or odd.

i2 THEO-
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T HE OR E‘M XII.
F—z+ bxY x % G=a + bx’l‘+' X xri—we=ig,

G'_‘:‘_p+r.p+2.p+3(v)xb'
- T r—ir—2r—3(v)

""“"ZP"“ - y —1.% r — 10— 2.2.'

Fem—nuo— X1 — + - (V)
pt 1.6n P+ 2.bx"° p+2p+ 3‘51‘,:. (‘U)

z:a-l-bx:.

THEOREM XIIL
The whole fluent of a4 21?1 x x™—=—1x,

I
o becomes = :6;‘! », ()

1 B
—_T“ * becomes infinite, (3

.0 becomes infinite,

generated whilft x from

prrpt2p 3@ X o
7 — 1.5 — 2.5 = 3(v) x F:

is=%=2

W) g, n, p + I, and 7 = v being pofitive; 4 negative.
1) b, n, and p + 1 being pofitive; a4, and p +.r negative,
) g, b, n, and » — v being pofitive; p + r negative.

F = the contemporary fluent of 2 + 4x"Y x %=1

* 1 or — acpording as v is even or odd.
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T A'BLE VI 69

THEOREM X1V,

F=a+dz)Y X 1%, H= bt'\“"' X grton—1g,

H_p+1.p+2(w)xa xf’+"z'+' L s+1.2z s+ t.:+2.z( )
= s+ 18+ 2(w) p+1.0n X p+2a p+2p+34a
. rrt1(v) Xp+1p+2(w) xa't
p+r+xp+r+2(v+w)xb
R t—1.bx"  t—14—2.4"

anr X1 + r+41.a + r + kr + 2.4* (‘v)°
s=ptr+v. t==—p=r. z=a+tbx"

THEOREM XV,
The whole fluent.of 4 + b )t x g1

alm

=2
o becomes = —1" (x)

generated whilft x from = ¥ becomes infinite, (3
\ o becomes infinite, ¥
s=* "'+l(v)x?+tp+z(w)xa XF':
T optrtiptrd2(viw) x
M g, n, p + 1, and r being pofitive ; & negative.
() &, , and p+ 1 being pofitive; g, and p + 7 +v + w negative.
@ g, 4, n, and r being pofitive; p + r + v + w negative.
F' = the contemporary fluent of a o5\ X x™x,

® 4 or = according as v is even or odd.

THEO-




48 - T ABLE VIL

THTEOREM XVI.

F=3 + 6x')‘ X x*~1y. H=a+ bx']’"" X grrbonmr g

1 (w) S pa p-p — 1.6*
- pp—1(w)xa” X=X+t oo (")

rr41(0) Xss—1(w) Xa"""™
t— 1.t —2(v) Xp.p—1(w) x5’

Pl Ak t—1bx" t—1.t—2.02"

anr X1+ r+4 1.a + r+ 1r 4 2.4* (‘U).

STPAIr 4V e Py, x = a4 ba

THEOREM XVIIL
The whole fluent of g 4+ Zx'l' =% ¢ gty

—_—r

o becomes = :b:"" Q)

nerated whilft x from ( —J\- o -
Ee —T’" becomes infinite, (¢

o becomes infinite, ()

_rr 4 1) X ss—1[w) x """
T t=1t—2(0) Xp.p— 1 (w) X °.

-is x F’;

W a, n,p—w + 1, and r being pofitive; & negative,

©) 4,5,and p—w+ 1 being pofit.; a,p + 7y and p 4 r+ v—w negat.
. Wa, b, n, and 7 being pofitive ; p+r; and p+r+ v—w negative.

F = the contemporary fluent of a + s X x™=*x.
| ~ THEO-




T'ABLE V&E 1
THEOREM XVIL

Fezt+daY xar=a. H=G+bz)™x x"'"’"i‘_. '

.- P 41 0 ?
L pHupa(w)Ka” F T2t s+1.z, sH15+2%
H== it X e it e rse ™
tt+1(v) Xp+ 1.p+ 2(w) X 8°

V-0

P r—Lr—2 (v)T( s+ 1.5+ 2(w) X4

—
e ftl r— 1.a — 1. — 2.a°

F‘-.l-._ - bmt x1 +7+ 162" t+il.¢-|: P L (v).

:zf—l—tj—'v. t=—p—r. z=a+bx"

THEOREM, XIX.
The whole flucat of a + bx"f 7™ X xm—==1z,

X
« o0 | o becomes = —;I', @
b

gex?ffétgd :whll'ﬁ x from . -':;E.]T becomes. infinite, G

o becomes infinite, (3

I xF'
) g%, p+1, andr—v being pofitive ; 4 negative.

(). 4; m, and p+1 beiog pafitive; g, p +-r,and p + 7—o+ wnegative,
44,5, #,and 7~ u being pofitive; o474 and pt-7 - v+ w negate
F'.= the cyntrrapgrary. fuspt.of 4 + 8577, % g™ 4.
S C  THEO-

.
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e TABLE .VIL

 THEORBM XX
F=z+ bxV x a1y, H= p YL K prA=en=1y

s.8—1(w)
_P-P-l(w)Xa" T S=1.% @ §=1d—2.%>

224 1(¥) X 5.5 — 1 (w) % 8°
r—t.r—=2(0) Xpp—1(w) xa*t™

rR=—n_pt1 r — 1.0

F+”——-———b” X1+

7 — 1.0 —2.a

t4+ 100"t 41t g2t

(v)

S=Pptr=—v. f=m—p=—r. z=a-+bx"

THEOREM XXI
The whole luent of g + Zx’f"" X x""""'-;:

—_—T
o becomes = :5_" ‘7, O}

generated whilft x from -___; * becomes infinite, ®

o becomes infinite, (s

.03 1(0) X 55— 1 (W) X 5°
re=1r—2(v) Xp.p=1(w) xa

R s = T x s

©) g, 71, p = w 4 1, and r — v being pofitive ; 4 negative.
©) 4, n,-and p — w +1 being pofitive ; 4, and p + r negative.
W) g, 4, n, and r = v being pofitive; p + r negative.

F = the contemporary fluent of 4 -+ %Y x xm—ix,
THE O-
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T A BLE VI 73

T HE OREM XXIL
- The whole fluent of a—x7? x =% x P+ Qx" + Ra* &c.

generated whilft » from o becomes equal to a,

Qar +Ra‘r.r+ 1 Sadror41r4+2
s+1 0 st1s+2 0 sti1s+2s5+43

a, n, p+ 1, and r being pofitive; s =p+r;

is=FxP+

&c.

F = the contemporary fluent of @ — x9f x #™~'x,

THEOREM ' XX
he wlzoleﬂuent of a-»"Y X =15 P+Q.a—#+R. a-x'i &ec.

generated whilft x from o becomes equal to a'

Qap+: Ra*p+1p+2 | S@’p+1.p+2.p+3
“"FXP+ + s+ 1542 + s+1s+25+43 &c.

G, m, pt 1,750, and F being as in the preceding theorem.

A THEOREM XXIV,
The whole fluent of #— 2! X x*=1% x P+ Qx~"+Rx~* &c.

1
generated whilft x from a* becomes infinite,

. . Rss—1i Ss5.5— 15— .
ls=FxP+,.,(f,+- 2 &G

ar—1r—2 ' ar-— 1.7 =275 —3
4, n, and p + 1 being pofitive ; s (=p + r) negative ;
F = the contemporary fluent of +*— 2\ x +™'s.
k T HE O-




74 T A BLE VL

THEORTEM XXV

"The whole fluent of " — AT x ¥™1x x P+ CQ’;:‘ + R."';n" &c,
. »
» .
generated whillt » from 4 becomes infinite,

(Lp+t+i€p+li+2 bp+|p+2p+3&

7 -—1 P LY ) f—l."—z."-—

8, n, p+1, p+r, and F boing as in the preceding theorem.

$=FxP—

-1 HEOREM XXVL

"The whok fluent of a + I xx""ixl’+4—_%—x:+%—,&c-,
K a+

gcnerated whiltt » from ¢ becomes. infinite,

Qs Rss—1x Ss.6— 15— 2
]6 ny"' +BPP +4’P-P""I-P—2 &CO

4, %, and r being poﬁ.txve 3 ¢ (= p + r)negative ;.
F = the contemporary fluent of & + x*¥ x x==14,

THEG®@REM XXVIL

The whole fluent of e+ \'xx"-’xxP-l- Q" + &c.‘
at s a+x'r

generated whilft x from © becomes infinire,

_(Lr 11‘7-}1 Srr-t-xr-]-z
s=FxP +M—l P —1p—7
@ n ryp+r, and F being as in the ptccedmg theoreny.

TABLE
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ke

T A BL E- VIL

CONTAINING
T H E O R E M S
FOR THE o

CALCULATION of FLUENTS.

THEOREM I

1.2.3(r—1) Xp+ g+ Tp+ g+ 2P+ 74 3(r—1) is __
pti1pt+2p+3(r—1) xg+19+29+3(r—1)"

' P19 pp—1Xgq—1 PP~ x.p—xz X §.g—Iqg— 2
Fxl+7+ iaxrr+1 T 1.2.3 Xr7r + 1+ + 2 &e.

F being = ng x the whole fluent of 3 —x71* x 2,

THEOREM IL

pHrptrdIptrd2(y). _
rr 4+ 1.7 4 2(g) 8=

21 PP—=1IXgqg—T1  PPp—1Pp—2Xgqg=—Tg=—2 .
§+ T+ axrrtr T :.2-3xr.r+l.r+2—&c‘

k2 ‘ THE O-




76 T ABLE VIL

THEOREM IL

F=a—x\" x zm—1x,

"zttt s4 r.x” o s 104 z.x"'( )

_
K+=—Fm X1+ +

r+ 1. r 4 1.r + 2.a*

s+1s42 (0) x""g? : px® o — 1.5°
rr+1(v)xd XS X1+ ot o e (W)

s 4154254 3(v) pp—rp—2(w) & T A—wtr
_ rr41r42(v)xa s 42 (w) anr’ +w

B S 8 T W o
X1 +'/1/+ a AT T 24 &ec..

gt tr S 15" 54 154 2.4
r *x"z
K+ anr xx+"+.l.a r+ Lr 4+ 2.a8° (‘v)

. ;""'" 2(v) s px" pp —1.x*" ’
ro+41.(v) xa" ne” X1+ r+i1.% + 1 (w)

sS4 154254 3(0)  pp—1p~—2(w) 252
" rrdrrd2(w) xa® P IIR2(w) T g0 g g ®
y 3 3.577
Xyt + 3.+ 2" 4+ 32+ 5 + 25'+ 325" . 525"+ 7 &ec..
r=rtv. £'=r"yw. s=ptr. S=p+r’. ym=—— =g~
24 —-x

v and w-any poﬁiivc integers ;
1]
fo that w — v, in the fecond value of F, be =2p+7r+ A
THEO-




= X

_ |+ n.p+i.p+3(r+w+y)xf+ Lr 4 2.7+ 3(v)

T ABL E VIL 77

THEOREM 1V,

The whole fluent of 2 — x* Y X x™1x,

b 4

generated whillt x from o becomes equal to a*,

r.2.3(r) dt 123
—p+1p+2p+3(r) ar _r+x.r+2.r+3(p)x nr

F 1.223(r+v+y) Xtt+ 1.2+ 2 (w) xa"’"
nr.

‘ p—vt+wxy p—vtwp—vdw—i1xyy—1
' tX I+ rfv-1 + L2 Xrtdvdilrfov42 &c.
f 1.:.3(p+v+y§,x ti+ 1t 4 2(w)y attr
p+l.p+2.2+3(v)Xr+x.r+2.r+3(p+w+y)x nr
F r—v+4+ wxX :
— y r—v4wr—9v4+w—1i1xyy—1

le+ P +vt1 12Xp+v+1p+v+2 &c.

= the Limit of 12.3(z) Xtf+ 1042 (%) - a?tr

pHip+2p+3(2) Xr+1r+42.r+43(z) x. ar
% increafing ad infinitum,
g, n p+1, and x.being pofitive. z2=p+r + I.
. p +y orr+y, any pofitive integer.. '
» and w any pofitive integers..

£
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4 - T A BLE VI

THEDO REM V..

F=s—af xx™'x

‘x"'z"l" s+ 1.z, s+ 1.5+ 2.2°
K+ anp+1 X3 T ptaa +p +2p434a " (u’
F= .
po_fHrit2(0) x""‘”‘""x Tl | rolr—aet o
ptipta(v)xa® M H1 p "4 2.4 p”+2.p"+3.:“ *
m_pt1 2
r Xz _.I'-I-l.z sS4+ 154 2.% —
. K"‘.aﬁ-* ! p+a.c+p+z.r+3e‘ (v)
+#® :+1:+2(v) St r—i1z | r—ir—zz%

"

X XI—
‘ p+1p+3(v)x4 np +1 f“l"l-ﬁ p"+z.p”+3.“‘ ( )

s+ 154 2.5+ 3(v)

] 1_ r—1.r—2.r—3(w) 22"‘”
U rroprasrs@xe

P”""-?”"'z'?":.'i(w)

b

,.2{I+ !'..v"'

y L 35 &
XY+ o d3 T 21320 +s 2 ¥ 32 § 5217 4 7 XCe

F=p+v. s=p+r. c":p"+r. y... Z=x"—a,

" +a
vand w any pofitive integers ; fo that @ — v be = P42

¢ + or — aocording as v is even or odd. *
4+ + or — according as v 4- w is even or odd.

THE O-




TABLE VIL 9%

-

T HEOREM VI,

The whole fluent of T 7Y X *="15,

X
generated whilft » from 4* becomes infinite,

. 123 =" 12.3(p) % &
8 —P+I’P+ 2.?.'.3‘(1) nr _‘+I.‘+.2J+.3 () nr

1.23(t+v+y) Xrr4 142 (w) " at="

pH1p+2p+3(t+wty) Xt + 12+ 224 3(v) nr
P—vkwxy p—'v~.+mp-6-g;u..z’—.£jx-y.,_’j
X1+ t+v+1 + 12Xt+v4+id+v+2 See.

1.2.3(p + v+y) %7y 4 1.r+2(w) . 'xaf""
pr1p+2p43(W)xt+1a+2243(p+wy) nr .

——
—

1=Vt wXy 1=—V$WL—VFW—TXJy—1
. x""" p+v+1 12Xp+vE1ptvt2 &cc.

- o .o 1.2.3 (z) X r.or 4~ 1.r 42 (2) o=
= the Limit ofP+‘.P+2.P+3(z)x'+“,+u+,3(z)x —

z-increaling od infinitum.

e, n, p+ 1, and » — p being pofitive. 2= 7 —p —1.
P+ or £+ y, any pofitive integer.
vand w any pofitive intcg.crsi
| THEO-
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THEOREM VIL

F=a+ 2\ x x™ 14,

r P e 1 1 -—r.t.—- 2.4
K+ anr X1 + r<41a + r+ i.r + 2.a* (v)’
=9 .
| t—12—=a(y)  smtomat pa" pp— (.4°"
L rr+i1(v)xa®  mr+v X1 '+ l.z+1”+ 10" +2.2° —&c.
rK '_x"z'+' %1+ t—a.x'  t—1t—2.x*"
’ + anr 1 r 4 1.0 + r 4+ 1.7 + 2.4 (v)
- ‘ t—12=2(v) _ & "gf px" + P~ 1. (w)
= rr+a(v)xa® nr’ X1 -_--f"-i--l-z i 2.2
.Lﬂ:.t—r.t—z.t—g(v) pp— 1.p— 2 (w) 22"

= X
rr+1s42(v)xa” Pt 2 ()T gt

ya 37 3.5
xy+ 25+3 + 26+ 32545 + 25+ 325+ §5.25+7 &e.

P=rdo. sSphr. S —per y=—— Z=atan
28+

v and w any pofitive integers; fothat w—vbe=2p+r+1.

® 4 or — according as w is even or odd.
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THEOREM VI

The whole fluent of & + %° 7 X x™=1x,
generated whilft x from o becemes infinite,

Peup re=g
is = 1.2, 3(!) % e T _ 1.2.3 (r) % a
r+ s+ 2.+ 3(0) ar t+x.t+2.t+3\(r)

1230494y Xpp+1.04 2 (w) X‘ a""?
r4iort+ar+3@t+wty) Xe+ it +s043(v) ar

r—v4wxy r—v+wr—v+w-—1x11—x
| X I+ t e xiFvriituTta &c.

[ 1.2.3(r+9+9) X pp + 1.p+ 2 (w) a"" ‘
r+1r+2r+4+3(v) xt+lt+2t+3(r+w+})

t—v+4wXy
r+v+1

r—-v+w.t—-v+w—( Xyy=—1
JI2Xr+v+ir+v+42

&c.

+

XI+
-

. xz;(z)xjp+!p+2(z) a?
= the Limst Ofr+lr+2r+3(2)xt+lt+2.t+3(z) p

z increafing ad infinitum,
a, n, 7, and p — r being pofitive. z=p—-r-1,
r+y, or £ 4y, any pofitive integer.

v and w any pofitive intégers,

. 1 THE O-



82 T A BLE VI

"THEOREM 1X.

Tthmm‘ofl-m 2 —mn, 3'-m (z)x N 1s=-ﬁneofzm1

z mcreaﬁng ad mﬁmtum.

THEOREM X

The Limit of 1.2. 3 (=) x is = 24%.

i

THEOREM XL ‘
The Limst of bz +a.bz+a+b.bz+a+25 (=) x T.f%, is=qo7 &
~ o . 21%6%3"

-

. THEOREM XII

The Limit of 1.3.5 (2) x ;—z+x Z+2. z+3(z)x L
: z

ls—zf.

THEOREM XIIL

N= . Ve Vi34
h L f 1. =
The xmxt of 1.5.9 (z) x TR 18 it

THEOREM XIV.

) N* vervEiad —2d
The Limst of 3.7.11 (2) o is= i

THE O~




T ABLE VI . 8

THEOREM " XV.

‘ - 0t
The Limst of 1.4.7 (2) X zN is = 3.
37 at

THEOREM XVI.
.s—zés'lild':"

The Limit of 2.5.8 (z) x ,,bi; Y

THEOREM XVILI.
.. ' N* . _ Q|
The Limit of 1.7.13 (=2) xz,—;,—_;m—m-

THEOREM XVIIIL.

" N* . ¥ 3tat
The Limst of 5.11.17 (2) X s = 2232
6=zt Q

N = 2.718281 = the number whofe hyp. log. is 1.
Q=.982889 = f — Jf’—3*+ 1.d, |
d = 1.570796 = the quadrantal arc of a circ. whofe rad. is 1.
¢ = 1.910098 = the quadrantal arc of an ellipfis whofe fe-
mi-axes are 2f and 1.
F=2.674 547 = the quadrantal arc of anather ellipfis whofe
fater

femi-axes are 3% and 23
2

12 TABLE




W
T A B L E IX,
CONTAINING -

‘T H E O R E M s

FOR THE

CALCULATION of FLUENTS.

e A E e ——

THEOREM I.

The whole fluent of —=
. a+ x'\?’
generated whilft x from o becomes infinite,

. _p—2r fing of p % go° 1 P ?’ B
18 _“p—r x fine ofmx90° x r.p—r+ r+ip—r+41 + r+z.p—r:+2&c’
a, m r, and p—r being pefitive.
pp+ 11 m__??""-?"" ﬁﬁ+lﬁ+2ﬁ+3
= Tl daimarweansl M L.2:3:4 &c.

THEOREM IL

pu—x
The wlwle fluent of = =)
l—#
generated whilft x from o becomes equal to 1,
.. 2" x fine of pd }
b = fine of pd ’+ pP2EL  ppFIpta

m 2p+4l 2.3p+60"
P and 2 — p being pofitive.
d= the quadrantal arc of a circle whofe radius is 1.

- THE O~
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THEOREM IL
g—pg—p—2.9—p—4 (9}
pp+ 1942 (9)

F 20 and r —p being pofitive. Radius=1.

%P-Hv-!

the whole fluent of J V1 —+"
i tigm—1

G= _T‘-_:ﬁT’

gencrated whilft » from o becomes equal to 1.

F=%x2x xcofincof p +¢.90° x G,

F=

» + or accordmg as ¢ is even or odd.

THEOREM IV.
e (=t g—p—29—p—4(q)
F * P?+1P+2(9) ®

2, ? pp+1
ng—Pp x.l g—p—2 q—p—z.g-—p_“,_(g)’

g being = o, or any pofitive integer;

p + g any pofitive integer, or fraGion.

sipstio—1,
Vi—x" )

H = tho conite fuent of T 13
€o ) porar ue —"—""‘—‘
porary —=

* +ot—mr4mgaszucmorodd&

2’H —

F = the whok fluens of .

THEO=




86 T A B L E IX. .

THEU OREM V.

The whole ﬂucnt of

’ -
1=x"

gcncratcd whilft x from o becomes equal to 1,

. 2 l-3 1'3.5 o
15 X +2r+|+2-4-'+2+2-4-6-"+3(r)’

the fum of r terms of the feries being exa&ly equal to Aslf
the fum of the whole feries continued ad infinitum, » be-
ing any pofitive number whatever!

THE'OR‘EM VI

‘The whole fluent o.f mﬁ,

generated whilft x from o becomes equal to 1;

=X .
x

the whole fluent of —
generated whilft x from 1 becomes infinite;

and the whok fluent of ;_;:_;;,’

“generated whilft x from o becomes infinite ;

are to each other ‘
as the fines of,p':'-x 180°, r x 180°% and p x 180°
refpeively ;
4 =—p, p—r, and r being pofitive.
TABLE




T A B L E X
CONTAINING .,

T H E O R E M 8

FOR THE

CALCULATION of FLUENTS.

) THEOREM L
The whole fluent of ¢ — x"\’ X xm-1%, generated whilf® .

x from o becomes equal to a',' is to the fluent of the fame-
fluxion, generated whilft » from o becomes: equal to any
quantity £, as
af to k9" + gAT="a— k" + f""_m (p+1)s
a ny p+1, and r bemg pofitive :

g=p+n-
-When r is =g + 1, the whole fluent is to the part gene-

X

sated whillt » from o becomes equal to -:?l'-'- as 2 to 1,

whether g+ 1 be an integer or not. :
THE O~
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THEOREM IL
The «wbole ﬂuent of " — 4 x x~™-1x, genesated whilft

x from a" becomes mﬁmte, is to the ﬂuent of the fame
b 4

fluxion, generated whilft x from a* becomes equal to any
quantity £, as
rto—a +rak—a T+ sk —a ’(r—P),

1.2

-~ a n, p+1, and r—p being pofitive.
When r is = 2p + 1, the whole fluent is to the part gene-

- ) 1

rated whilft x from a* becomes equal to 24" as 2 to 1,
whether » — p be an integer or not.

THBEOREM IIL

’ The whole fluent of ———— ._._‘ n _H , generatéd whillt » from

o becomes infinite, is to the fluent of the fame ﬂuan.
~generated whilt x from o becomes equal to any quan-
tity £, as

a+ Y to k¥ 4 pakt=r + L—'awﬂ-u (p—r+1);

a, n, p—r + 1, and r being pofitive. :
When 27 is =p + 1, thc. whole fluent is to the part

x

generated whilft » from o becomes equal ta a” as 210 I,

whether p = r + 1 be an integer or not.
TABLE




T A B L E XI.
GONTAINING

T H E O R E M S

FOR THE

CALCULATION«%F%ﬁENT&

ol

THEOREM 8

F=e2= .2 greater or lefs than < <
a+ xxd+cx ¢
. d+te a+bx
F XLO a4 bc  d+ ex

- ¢ the value of vylgen F=o.

fHEOREM;m

. " d a
F=—__. Z oreater or lefs than =
a4 bx Xd+ex B *

d d+cx a+b.v
ae x ] Log' d fiec Log a4+ bc

" ¢ the value of x whcn F =o.

szd

THEOREM IIL

F= -—Tﬁ%:_: ; greater or lefs.than %—

F—- . xir..
64-0: *+1 *_l__t_i_
b S,

m "THEO-




90 T A B L E XI. t

THEOREM IV.

F = s————%- £ atly value pofitive or negative.
- '.D-}-y
F_ 7 X Log. ‘+‘x‘__;.

y=x+4a, b=ayv/¥F + 1. .cthe valae.of y when F=o.

A .

THEOREM W
@ — 24kax — x*

bxj*
!

& apy value pofitive or negative.

C

F= xé-l-la Log b +é ka. Log
| ¥ 6, and ¢ as-in thc preseding rhcorem. ,

THEOREM VL

0 = 2kax —x

F= o kany. value pofitive or negative..

-7 P x" %
r:;;ptﬂ.#_”‘—ﬁ.x_l_q»

d=aylt +1. p=ka+b g=ka=b.

THEO-



TABLE XL ot

THEGOTREM VI

F= iy % greater than 1, or lefs than = 1..

b+: b—y
F_beg PRl wra

y=x—ka. b=aVF —1. cthevalueof ywhenF=o..

e

THEOREM VIIL

xx .
F=or Yy & greatcr than 1, or lefs than — 1.

F... x6+kaLog —+6 kaLogb

9> &, and'c as in the preceding theorem.

THEOREM IX

b_._ x N :
¥ = .,__-"—-F % greater than 1, or lefs than - 1..

=avk —1. p=ka+b g=ka—b.
m 2 THEO-
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THEOTREM .X.

F= a*— 2;;.\- T & k lefs than I, but greater than -,

28% —#.a* 4 5%

F=K X circ. ar F—inihdy
+2¢b c Whofc coﬁnc Y 7

=K+ b X cire. arc whofe tangent is i—-
b =the tangent of /ajf the asc. whofe fine is 4 and éofine &

Radius:l. h=v1 — 2 y:”::.

- Nore. The valuc of the fluent, F, generated whilft «
from o becomes equal to g, is cqual to

— b x the arc, fine #; — x Q+ the arc, fine ks

or '275 X 2§L+ the arc, fine £;

. . 1=b 1+ 5
according as g is equal to —4— X 4, s, 0r — X g

. and the whole fluent F, generated whilft x from o be-

. . . o o T
comes infinite, is = -7 X Qa4 the arc, fine £:

‘Q being the quadrantal arc. .

THEOREM XL

xx

F= Py Py % lefs than I, but greater than = 1.
— a®— 2kax + x*
F-—-L0g. : zécd+d‘+'é a X ﬂ zéax—b:r

d the value of » whenF =o.
THEO-




T ABLE XL 03
T HE ORE M ~ XIIL
-+1.
F=—>"—2__. }lefs than 1, but greater than — 1.

—F —2kax + &

m any poﬁtive integer.

(-+!) »
e -+t —_——
&" xfl 7= a* zlax+x a lzxﬂ a*—2kax+ x*

Yos™—d® Y S L asblﬁ_xg—t__dn—z
= E + (m).

n m—1 m ——2

B the arc whofe radius is 1 and cofine 4.

(=)
A = the fine of B. h = the fine of mB.

: - n4-1) " —— ’
" W'=thefincof 2B - A = the fific of m ¥ 1.B.
&c.: . -
d-the value of » when F'=o.

THEOREM XIL

F-;;_—_—;-“%’_x # lefs-than 1, but greater than. — 1. .

m any pofitive integer.

(-) P (z) (.Zt) ' .

X
F“"- into ‘l+lL°g d ,,,“xﬂ 2&ax+x’ + ™ X ﬂ'a’—ztax +&2
=y

+

a

y e T e T
m-—1a*" m— 2.a%

) ™ (=) : .

d and &y k', K", &c. h, h asin the preceding theorem.

THEO-

(m=—1)...



o4 . TABLTE XL

T HE O REM XIV.

My . -3 e
X x x. ’x.
—_

—P+2‘x.+x=. R’-l-#-XE'T-I-x.

k* greater than P.

L L% 3 F )

F: ) § — ﬁ, x x _ﬁ. X 2
z\/t‘—P X R+ «* R"4 &°

=b—=VvE =P. R'=k+ b —P.

THEOREM XV.

The whole fluent of Z_~ ., generated whiltt x
P+4a2ks" 44" *

/7 = RIII

np \/&"-—P XQ_

# and P being both poﬁt-ive; and 4 g-rw than-P.

from o becomes infinite, is =

m any pofitive integer or fraiion lefs than the intcger or
fradQion n.

Q = the quadrantal arc of the circle whofe; radius. is. 1.
# = the fiae of the arc =-Q,

Nore. When £ is = P, R' and R” being each = &, the
cxpreflion for the value of the who/e fluent becomes

——2

2.1 — m.b
£quasl to -
E ?

x Q.
THEO-
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THEOREM XV

*s-l--: * xﬂ—n-—_ 3 %

F= - - == ———— %* greater than P..
P4ake"4» R' 4 +" xR” + &*

Ra—"% R
F: : X ﬂ-‘. - I3 .-
2V - - R4 5" R+ &*

R"and R” as-in: theorem xiv..

T HE ORE M XVIL

s4-m—3 .

The whole fluent of 5 : —, generated” whillt -

246x" + &

= =

fr be infinite. is “% _ R'®
om o becomes-infinite, i$ = ———=X Q,
» b= Q.

A B; m, n, p, and Qs in theorem xv:

Norr. When 4+ is =-P, R’ and R” being each =-%,.the"
expreflion for the-value of the whol fluent. becomes.

equal to 2:‘,’; X QL

T H.E O--
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T HE OREM XVIL

. )
F=—2 = - % lefs than 1, but greater than —1.
a* —2ka"x" 4 £ . ’ g
Nibég N dx
a’n-u fl. b‘+z"+ﬁ‘¢ +z ﬁ' d‘+z‘&c'
F= bn X 4 M=z Mgz —4. M” 2% Mgz &
- t'-{-z etz Ttz C.

m any pofitive integer lefs than the even number 2.

#—d

. x+¢
M’ and N’ “"xB.

z =

M” and N” ) fine and cofine of '1-';'1' x B 360°.

M" and N™ : ﬁ:—" X B + 2.360%

&ec. o . &,

b= A

= tangent of A +: B’

d= A+ :;.180°‘ '

&c. ' 0 At n—-;—x'.IBO'

(n). -
A half the arc B whofe fine is 4 and cofine 4.
~ Radius = 1.

T HE O-
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*+HEORTEM XX

P ¥

The whole fluent of — ‘”, generated whiltt

a¥ + 2ka"x" + x

' e oo s _2ga" ™
-» from o becomes infinite, is ==— N X Q.
% lefs than 1, but greater than — I.
m, n, p, and Q as in theorem xv.

g = the fine of 'gB ; B being the arc whofe fine is Aand
cofine 4.

Radius = r.

THEOREM XX

PR e 0

The whole fluent of ~
‘ @ +2ka =+«

—, generated whilft

x from o becomes infinite, is = 3’—:;;-5( Q.

. by kym,m, p, B, Q, a_nd' radius as in the preceding theorem,
¢ = the fine of =B.

Note. When m is =o, the expreflion for the value of

the whole fluent becomes equal to ;3 o
) . noa

a " THEO-




¢8 T A BLZE XL
" T HEOREM XXL

o m:'-’ ® x“-! .
F=° d 1 _
@™ ~2ka"x" ¢ ™ & lefs ,Xthan 1, but greater than =1,
Nz N”¢z
F 2!.'—" ﬂ. ‘z+zt + ﬂ. m &c.
- ’lbd'_- " M'zz M zs
+ ﬂo ‘:‘+zn + ﬂ. “+:. &C,

r any pofitive integer not. greater than: the even number 27,
m any pofitive integer lefs than r.

g =2=2
T x+a
M’ =P xfincof ——.A N'=P x cof. of —.A.

M"=P” x fine of ::;zg.A + 180 N"=P” x cof. of ";m.A + 180"

M"=P"”xfine ofr——:m.A+ 2.180°.N"”=P” x cof. of' LT,,’—".A-&-:.IE;;:
&ec. &ec. &c. &ec.
A

d= ~
. A+ n—1.180
: (n)
A = haif the arc whofe fine is 4 and cofine 4.
Radius =.1.

_ PI= i_m*'_" R”“: Tm*r-”. Pr”: 14 d: *"—" &c.
| THE O~
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THEOREM XXIL

P

¢ —2ka"x" 4+ £

F=

"!l—r P"i P”Cé
F——-‘:Xﬂcm'*'ﬂ-r-‘_‘z &

nba
h, k, #, 2, b, ¢, &c. P, P, &e. as in the preceding theorem.’
r any even pofitive number not greater than 27,

THEORZEM  XXIL

Yl Lo d (4ad )
v- a+4x X x x
F- %,

e —2ka"x" + 2™

' N'b& " Nk
2np { fi. Frio +_ﬂ. +7= &e. |

. % 2 k1
F=A. x-—z+ nb x q M'zx 1 M"zg&
e+ a5 &
hy b, ony 7y 2 b, ¢, &c. A, P, P”, &c. as in theorem xxI,

M’ =P xfine of-E.A. ‘ N =P’ % cof. of-;';.A.
M"=P’ x fine of -;-m N’ = P" x cof. of %m
M"=P" x fincof -;m N"=P" x cof. of z.A + 2.180°%
&ec. ‘&e. | &ec. &c
n 2 THE O«
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THEOREM XXIV.

onfm—7 .

L x

F=

A lefs thax; 1, but greater than == 1.
@™ —2ka"x" + 2" 4 g

( (v=1)

27" Z)x'+.—'£ ' a” b "

F f

‘2 —2ka " 2™ ‘e —2ka"x" 4 £

1
FX

+1l. X1 X B x 7= 4 g} xv*—3n (v=1). .
v aay pofitive integer.
B the circ. arc whofe rad. is 1 and cofine £. -

’-l) ' *
% = the fine of B. (I: = the fine of v—1.B.
A" = the fine of 2B. b) = the fine of vB.

' (w41 k —
A= the fine of 3B. 4 = the fine of v+ 1.B.
- &e. . &c.

THEOREM XXV.

"'+.- b % -

x ®

F=.

a* = a2ka"x "+ &

# lefs than 1, but greater &an -, '

‘—n('t') ATy ﬂ o« " (I.;)x"*"-'i

.F—-LX ) " @ = 2ka"x" + - ‘e 2ka"s" 4 2
-— ” N

. . bl -—R b/, S=—vs y" p—wn R

+ e X :,, e o e (0)-.

a¥ T e

~ () (40 - o '
v, B, X, & &c.. 4, k., as in the preceding theorem. .

TH.E O-




TA BL E XL 101:
T HEOREM XXVI.

B_ x
Va* + 2bdx 4 &5

E=K+ % xLogib+dv + v/ +26d5 + &'

T HEQREM XXVIL
- F=

x

‘ Vet abtdr —din
I < . dx —b
F=K + = x Circ. arc, rad. 1, fi ..
=K+ 7 X Circ. arc, 1, nem_‘.‘.

T HE OREM XXVIL.

,F — .
. ‘Va +zbdx:hd’ 3

Va + 2bdxt d'

F= —_ 7 x fi.
: ey \74 + zb:;dxi' o

THEOREM XXIX.

F = Ly 3
Ve +zu,':|:d' >
E=lxfl 2E0J xﬂ b+“"+“’"
h=2bdxcd*. k=va*# 26¢'d‘:tc d‘
€= 0, 05 aDY quannty, fathat the valnc of % be not imaginary.

l'-l-\/a + 2bdx" :n:d*:ﬂ

1’
.~ . ) ’ —‘
b+zlv+w )

N .owm -
JC.. a—— v :“ __\y‘; -2. -

T HE O-.
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THEOREM XXX,

re=11°

Fs—m22,
btby xp+gy
F=— na-' xa,-—x-:'—x—‘

: ‘ n ]
‘ rhg—kp)r . @t .
1 1
a.bhg — kp)a bg ~tp.o” — px‘l'r-

#=Z2 PR, y= 2

PP o
T HEOREM . XXXI.

7o =

The fluent of —I—Z—, generated whilft y from
b'l’]"(]f—?\: -

z b
being equal to p7 becomes equal to &+ 2pT, is
— X %— N’ Log. - +2 N Log. l—}f: &c.

=
. ﬂml -
m, n, N', N", &c. 4, ¢, 8e. Q, and s as in Theor, rv. Tab. V.
# and A + p any pofitive quantities.

"THEOREM . XXXH.

The whoke fuent of —L—Fa - gﬁacrated whilft y
bty uy mpls )

‘l

i . :
from being equal to p” becomes infinite, is = 2Q—_—
L e e rib+ pe
m, n, Qand s as in Theorem 1v. Tab. V
and 4 + p any pefitive quantities. -
? e b THEO-




T ABLE XL

- 103;
"PHEOREM XXXIL

: {
F= 2 9

>

ba by %p+qy n=

Ll

Me=] o
F=— — % fi. 7ot +‘;
=T
T r N
= .‘P_Ea:.’ﬂ. r= ,r‘r : )
p+ari=

kp ~hga" — gx* |7
THEOREM XXXIV,

Thie fluent of —2— J___, generated whilfty froms
144" xp -yl

o becomes equal to—L-

-, is-
BT
= x—g-g- N’ Lo g. +N"Log +‘ &c.
rm

‘m, n, N', N, &c. b, ¢, &e. Q, and s as in Theor. 1v. Tab. V..
2 and 2p + 1 any pofitive quantities.
THEOREM XXXV.

—-—,

The whole fluent of 2"

—, gencratcd whiltt y.
T+l xp—y l'

from o bcgomes équal to p' s 18 _—_--—.2&—--

o Ty enTy ‘
m, n, Q, and s a8 in' Theorem 1v. Tab. V..

-and &9 + 1 any. pofitive quantities..
# and &p Y.P q T HLE Os-




104 T A'B L.E. XL

. T HE OREM ' XXXVL

ya=x,

A

Fa. _
b+2ly'+l;"xp+qﬁ7

h+m-—1x‘

F"—_ et Xﬂ.
ama—— 28 —. P . s as
""1' T

+ HEOREM XXXVI.
A ~, generatcd v

The whole fluent of
b+zb +y¥ xy -ﬂ-

whilft y from being equal to p' becomes infinite, is ‘

£+ +W' b‘» —1+ -\/P b\- )
rt'V’ xtheﬁneof.?.'.’.'

s#rgreaterthan A, pand 2+ p= /#=h any pofitive quantmes :
m, n, and (Las in Theorem xv. ,

7 t=vVh+ zkp F
Note. When 4 is=#* the e‘xpxeﬂion. for the value of.the
- am X Q '

whole fluent becomes = -
: nr;_?l » xth:ﬁncof—Q_
THEO-




‘THEORVEM XXXVIII.

Pamy,

The whole fluent of e A— generated
b-l-zb Fy¥ xy -l

whilft y from being equal to p becomes infinite, is
fine of :B
= - % A. '
r1* VB —F x the Gioe of S A.
#'lcfs than 4. p any pofitive quantity.
m any pofitive integer lefs than the integer .
_ t=vh+2kp+p.
A =the femi-circumferenceé of the circle whofe radius is 1;

B=an arc of the fame circle whofe fine is ¥ —_ -

Nore. If mbe=0y0, the.ﬂucnt _generated whillt y from

being equal to any guantity p becomes infinite,

- B
will-be = s

THEOREM XXX

The whole fluent of LA — is

b—299" 9% %y .a.:
=, R

-+-

rI-rru x the cofine of — Q_

h greater than p*. -m, o, M&Qnm\ﬂmm xv, -
No'rz. If m be:—~Q, the fluent, generated whilft y from

p' beaom:t mﬁm&c, w:ll"be‘.. . ‘/%:_.?- ‘
o THEO-
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THEQREM ‘XL,
) r-l-——l ’ -
F= 2 J
btaby 41y "xp+gyF

Nf-Me= g
x + x

npa
F -— ,m+. x ﬂt ‘P— b
P ba™ + 2.—"——?./:{'- + 5™

t=vhe—2kpg+ip’.
at:}::;. y= p7x7
p+erV 1a" — g5}

THEOREMXLI

X =

l

r+——1
The whole fluent of 2 JF ____ generated
b4 2k +y "X p— ;']-

whilft y from o becomes cqual to p', is .
b+it+wt' N —b+lp-p\/__l" H\=
rt'V bxtheﬁneof?l‘

A, p, and A+£p any pofitive quantmes, fo tbat %*be greater than 4.
m, n, and Qs in Theorem xv.

xQ

‘ t=vht2kp+p°.
Nors. When h is = 4* the expreffion for the value of the
 awhhole fluent becomes = —— 222 A X Q.

nrk+p * X the fine of—-Q_
THEO-
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. T A B L. B XL foy
THEOREM XLL

The whole fluent of 2_2 . penerated

b+ a2k +: Ny

whilt y from o becomes equal top, is

", b"‘ ‘X the fing of %B ;
o S . — X A,
. P VF<B xthe finc of =A
%y p,and & + kp any politive quantities, fo that #* be lefs than 4.
m any pqfitive integer lefs than the integer .

t=Vhi2kp+p'.
A =the femi-circumference of the circle whofe radius is 1;
B =an arc of the fame circle whoﬁ: ﬁ'ne is 2 :*— £
Nore. If m be o, the ﬁuen;. generated whll& y from Q
b e sentity ill be = __B
ecomes equa o any q an ity p7, wi = =
THEOREM XLIIL
r+——!
The whole fluent, o£-=_.._..____ J__ = is
. fJ— T} +3" xp—y
R S A ,;,uQ’. C s
’ mtn -

T L Ruxthecoﬁueqf—-Q_' .

LR ¥

? greater thanlz LMy apd Qgs jo theorem xv. -
NoTe. I mbe=o, “the’ fluent, generated whiltt y from

oo - l pQ
rb*s/f-/,

© becomes equal to 27 will be =
oz . THEO-
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THEOREM XLIV.

A b4 ky'|s
F=y Jx’+;.
F:m—-—;—%-ﬁx L
~ diar i
_@% ey a1l
Srml TEisg

THEOREM XLV.

The whele fluent of y='y x :-:__:;-‘3' > ge_nemed whilft y

from being equal to A’ becomes equal to p7. i

" s = 4
. . )
== A
7p* X the fine of =A

| A and p any pofitive quantitics, fo that 4 be lefs than
m any pofitive integer lefs than the integer ».
A as in theorem xLII.
” THE O




TA BL E XL -

THEOREM XLVL
-2 Jx"HJf'
Y H-ut
F"“'J"-‘; e .
aand 28 in Theorem x11v,

THEOREM XLVIL

Y , ted. aa o
TheubolcmnnteﬁH’ L] » gemerate whilft y

fmm being equal to Ia' becomes equal to p’, is
’5—3- -b==f"' |
. Irp g D% the fine of =A

A, m, n, b and p.as in Theorem xi,v.
& pofitive or negative; fo that it be greater than — 4.

* AQ“

Norz. lflbe_—ln, the whole Ruent (of { e )
N ey

A

wﬁlbe.. =%
rh* f xtheﬁneof—-A ,
THEO-
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T HE O REM' XLVIL

; ;"...,--,; ‘
r& 21"z _ a---~>¢ """’Xr:t:x.x+r+la‘ %

proend —_— -7 x
1+Q'+I—T 2"t a" 4"
‘M‘és- . Mex - M’”f;’
; r" ﬂ.‘_ +'. ﬁn. ‘."'-8.- &c.
F= " X N’z% . N7g

+&l‘1+‘3¢ﬂ‘+z tﬂ.dl-*_zl:&c.

m=0, Or any evep poﬁtxvc numbcr lefs than the integer n—1,

or any odd poﬁtxve number lefs than the | integer z.

S L ‘x'...a-x""'f"“ Clyxx—a .
b " end ~.-~ B et t—" o .
4 1=z z x4 a8

M = P’xcoﬁneofmA’. » -P’xﬁneofml)
M'=P'x cofine of mA" N"=P"x fine of mA”,
M”"=P"x qoﬁge..of.m' ;' "2 _N"’ P“'x ﬁnc of mA”,

&c. &c, . i &e.., |, &c.

A, A, A’” &c. are circular ‘aics, whafe ndun is 1 and

ie !
tangentsi = , &. refpeQively. <8

by ¢, d, Buc. a5 in Thco,rcm 1, Table V., . .,
,_ ek mra L, Fidl
P __.F)i.-l’_.P:_ %u—] P”’.-? r—;h‘ym) &CQ
VA e

THEO-



T -ABLE X1, 111

TH BEORE'M. XLIX.

F— r+z"% e 8 xx-kal",""')(r:txx+r:|¢|x
mf—-x-:ﬂ’— 2"~ & — 5"
T M o, M'di
tﬂo ‘z+z:¢-ﬂ0 a* +z.,¢&¢.
F=Lyx )
» " ir""' N’z N”z
*ﬂ —ﬂa ;+za+ﬂ d"-‘-z‘ &c,

....

or any odd pofitive number lefq than thc integer 7 — 1.
~ »and 2 as in the p.rcccdmg, theorem.
M =P.x fineof mA. N =P x cofine.of m A',
M = B . fine of ;A" N"=P” x cofinc of mA”"
M"=P" x fine of mA™. N”=PR"x cofine of mA™.
-See. &c. - &ec. &c.

A, A” A", &c. are circular arcs whofe radius is 1 and.

@ oL
= r, &ec.. rcfpe&nvcly;

gangppts_ 5
6 J, e, &c. as in Theorem x111. Table V..

AR L, FERR L, FEal
"“"—'\*l—l,' ——7".-1 | 24 m{.—;’

THEO~

&e.



m T ABLE XL

. THEOREM .1

F_. Ea%%
\""-zi—zs\ t—2 41—

T SRS LY =% %7k txt7F a4

-z""t 'i"-zh * +;‘T“
M“ "M% ‘M"de )
, "a ‘+£ “*‘g ‘C‘.+.M
F:;;;X Nas N

*wy 6‘+s‘ 8 aot T—?‘%&"'
#1eks than 1, but grcatcr ‘than —=-1.
m=0, or #ny pofitive iisteger 1cTs than the even number 2.
x and % ¥s in the preceding theocem.
M =P x ¢ofineof wA’. N =P x line of mA"
M'=P"x vofincof mA”. N"=P" x.finc of wA",
M”=P” x cofine of mA”. N"=P"xfinc of m A",
&ec. &c. &c. &ec.

A, A", A"’ &c. are éircular arcs wbofc‘ radius is 1 and

tangcnts 2, v 53 2, &e. rcfpe&wely

h b, ¢, d &c. asin theorem VL,

S ERELin & ==3;-""“§‘ - e,
‘.‘.‘- 4 = M

TABLE




T A B L E XII.
CONTAINING

T H E O R E M 8

FOR THE

CALCULATION of FLUENTS.

THEOREM L
s 7 o 13

F;Vb‘+zfx—x‘=J »

Q=X —+4x
a

| J— t —_ —_—
F=K+%4-xde=¢7 =K1 xqc7 DP-AD-L.

a® — bt
2a

F =

THEOREM IL
-*i' . c
The fluent of W’Tx?f‘;"_‘?’ generated whilft » from o

becomes equal to any quantity £, is equal to the fluent of

£}
the fame fluxion, generated whilft & from %Ax p_l be-
-+ &
.a

comes equal to 2.

Nore. 4l the theorems in this Table refer to the Scheme ab
the end of it, for the values of the quantities required.

p THE O--



314 T A B L E XII.
T HE OREM IIIL.

- «t; «i

“W—‘F:J

5:.
a—xX—+x
a

F=K 43 x2¢f —de=K+xL+AD—DP.
. a a

J as in the preceding theorems..
THEOREM IV.

The tangent co (_D* x \) together with. the:

3alats
\/——;Tsz-x
equal to any quantity. 4, is cqual to- thc fluent. of the fame:

fluent of

, generatcdwhim x from o bccomcs~

fluxion, generated whilft xfrom = x 7 bocorncscqual to a.
-+

Q

T HEOREM V.

I:__ b f’ — ]-{i .
Vrtafi b [— &
ytaxy—=—

MEN— i —.
E= K+4 Xac+ee'—E' =K 3-"—)(~ae+A‘D--D?:. .

. fasin the preceding theorems.
T HEOREM VL

_* .

The fluent-of ——= \/__.__2_;’_:._., generated: whilft y. from -

becomes equal to any quantity £, is equalto the fluent of :
* k4ia

the fame fluxion,. generated. whillt y. from b; x" +,, be--

s .
" comes inﬁnitc..

THEO-.




T A B L E XIL 11§

TI!E()RIBM’ VIL.
Yy

F_—_V;-k afy~ & J “:

y+ax;-—- )

F=K+3 x AD. fandxasin the two preceding theorems.
a* .

ST s~
;mﬁzgy‘} A - ===
]+MXJ+;

F= K+——xae+(e“-—f= K+-—-—xae+AD DP.
M+5" __ab
“my+ 4

a=Vm—¥. g=

THEOREM IX
—-f.
The fluent of —;‘/_3.%—-?——-—-:’_?;‘_. generated whilit y from o

becomes equal to any quantity £, is equal to the fluent of
the fame fluxion generated whilft y from ;bccomes infinite.

F=K 4+ f; x DP —ac. 4, g, and x as in theorem vIII,
| P2 THEO-




116 . T ABL E XN
THEOREM XL

F= )Y = )
Vagy—y ¢ —_— B
m—yXy——
F:K-I-‘z: xde—-ed'=K+ 7;- xde+DP—AD—L.
—_— b -5
a=vm—o6'. g= 2: x_—_""a. .

THEOREM XL
-}. 2
y~% : . b
The fluent of Ty generated whilit y from ~-

- becomes equal to any quantity £, is equal to the fluent.of:

the fame fluxion, generated whilft 5 from l-';— becomes equal
w m.

T HE O R E M XIII,

b .
Vagy—y =58 ;n_:]x]—-T-:
' =

F=K+ 5 xde a,. g, and.x as in theorem x1;.
m?* N

THEOREM XIV.
£
The tangent .e0 (= %’ x V2gk—k — 4') togethier:

1z, ’ 9 .
with the flient-of —21722%) === generated-whilft y from f—»
28y —y* -
becomes equal to any quantity 4, is equal to the fluént of
the fame fluxion, generated whilt'y from " becomes cqual

$0. m..

T HE O--~




T A B L E XIL oMy
THE OREM XV
. -t -i; s
F= Vit aT T = y lefs than —
m-—]X-’;-—]

8 3 .
E=K+f’bm7xae+e'e —E’—K+.y—"fxac+AD—DP..

b=m"— a'. g...m +a, x:a’—;’"’.
THEOREM XVIL
e
The fluent of L 2., generated whiltt y from o:
—2gy+a* .

becomes equal to any quantity £, is equal to the fluent of

the fame fluxion, generated whilft y from f-;—:%‘ becomes

a
equal to —

, ’I‘HEOREM XVII.
i‘ zg - J-}J'
BT =Ty =

= )jlc.ﬁsthan%-
-:xi—y S

l
SN
F=K +% —-xgrae-wz.ee - L’ -—K+—-x -ac-l-m AD—DP.

b, g, and.x as in the two prcccdmg theorems..
THEOREM XVIL

The fluent-of Vs gcncratcd whilft y from o

becomes cqual to any quantity 2, s equal to the tangcnt:’

—— 4
co (= méd) ’ ) togcther wnth the fuent of the famc

flaxion, gcncratcd whilft y from

bccomcs -equal to ..
TH F..O-



s T A BLE XU

THEGOREM XIX.
-1. .
Lt —— -y greater than m.

x H S
. ¥ gy o y
F=K+i£';—xac+e’e'-—E =K+3{:—xac+AD—DP.

— T _m* 4 a* _ ab*
é—-“m—ao g—- 2m * .t‘-.—my_‘s'
T HEOREM XX
-
The fluent of ——2--2—, generated whilt y from m

) Vy-agy+e
‘becomes equal to any quantity &, is equal to the fluent of
the fame fluxion, generated whilft y frem 5"‘—}_-_;; becomes

infinite.

THEUOREM XXTI. -
— % —-—tY . y greater }hm m.

Ty —egyt+a T J__ —
y=—mXy—=—

¥

F=XK+ ii—"; X -:—;—DP +gact+med—E.

4, g, and x as in the two preceding theorems.

THEOREM XXIL

P
Viyt—2afy + g*

i ——— R —
F=K+ZT xacted —E=K + 2 xae+ AD — DP.
a*—5* L . - PR gy — 24y
f=5 5= ¥+ Vi —ih+g. DP=vza.
, THE O-




T A B L E XL 37
THEORE M XXIL
The fluent of ——=27 generated whilft y from o

vy -2+
becomes equal to any quantity £, is equal:to the fluent of: -

the fame fluxion, generated whilft yfrom -g;‘ becomesinfinite. .

%.
F:K:-{-‘it;- Seac+ g.e'e’— E+ DP

Js- 8 x, and DPas: m.the. two preceding thcorcms.-

H

ﬂ

-— ”.__2 —z_.-=-
ity xg—y VS EVg—a
F=K+%‘:—ix,ge’e”—-—de
a* = b* PR

THEOREM XXVI
1
The tangent-co (=a* f+‘kl* xi—}ﬂ‘) together with.

the fluent of ;= bryj. , generated whilt y from —f
Vityxg=r
becomes equal :to any quantity &; is equal to the fluent of

the fame fluxion, generated whilft y from g x ——g—i[;— be--
comes equal to.g,




120 T A B L E . XIIL

T H E O R E M XXVII.
F= 2 ==
Vizy x ‘-a‘-—y’ Vbt Vie—w

F K'l"—'—)(/le'e—g.de.

g=1la+ ;‘:‘; h=ia+ ;j x=taty=laxt Vi -2
THEOREM XXVIIL
The tangent eo (= sl x° *a ’ ) together ‘with the

1"'.’] N

fluent of gencratcd wbxlﬁ y from — ig

- Vbt yxia—y
becomes- <qual to any quantity £, is equal to the fluent of

the fame fluxion, generated whilft y from — i—b—:".—.l.:{ be-
comes equal to ;a, ‘

THEOREM XXIX. .
3y _ %
—_%.
~/b-—yx b

4+
}—;:, ' bh— ;‘7+z

. . 3 ) '\} 4
F:K-}-%Xe’e". ﬁ=a+—-—-- x= —‘——f—-+z*] L
a.
THEOREM XXX
The tangent €0 (._ a*x k—q x ——q) together

with the fluent of - =_—*-° v generated whilt y
b—y ®y* —;6:-

from f— becomes equal to any quantity &, is equal to the

fluent of the fame fluxion, generated whilft y from -b— X

b + 4abh—24q

* 1 247 * becomes equal to A

THEO-




T A B L E XIIL. . 121

THEOREM;XXXI

P'- b2
Jb+]><y - Jb-l' ~/—+”'
F=K+ *xDP+’” —E".
2ab* __ 2ab*
h—a““;:' "g‘+2¢y-b'+\/b‘+4a‘z"

THEOREM XXXIL
./ :
\/y—fXJ -5 g+ﬂ*—ﬂ*
F= K+ *aac+zg(¢-E"+ ~.DP.
L. 2 R .
- 2a g— 2a x_f—f—g‘.‘.z“%_f
THEOREM-XXXIII.'
75
= V be —%a* _i—a +aﬂ* I*
F=K+b xgae+lx'e”—E’+ DP

B »> 25 25
- — -1 — = =
=ia+; lz_‘a+a_ x=

2y~a" Gt
T HE OREM XXXIV.
F= 75 — =

= VityxbF +y VfEVE—R
F=K+§T x 2AD - DP.
a*- b

f_..;a_.. =0 +]‘|*¢y=z..-’. VLS DP=$/2af—’-:.7.



122 T A-B L E XI1I.
T HEOIREM XXXV,

. z—‘+ f
F=x-txx 2 . F=K+-1‘xde.
a

0—#]

THEOREM XXXVL
The tangent co (_ﬂ*x ., ) together with the

» )5

fluent of Lats—ix x :_

equal to any quantity ky is equal to the fluent of the fame
fluxion, generatéd whilft x from i}x ;,-:‘- becomes equal to 2.
C ik :

T HEOREM XXXVIIL

a—x '*‘
—+x
’ Il

F= K+—-—-xza 't bde—24 + 28'c

F=x—ix X3z

THEOREM XXXVIII.

The fluent of Latx—tr x — ", generated whilft » from

—_—t X
4+l

o becomes equal to any quantity 4, is equal to the tangent

eo(=ah? x ;_‘ ’i) together with the fluent of the fame
= +i

fluxion, generated whilft x from Cxa=t 6, . 2 becomes cqual
-—

to a. “

THEO-
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T HEOREM XXXIX.
DL

f“:y‘*}.’x’

+a

F=K + -?- X DP —ae.

b T
x=7 :9 ‘/y+axy__.

T HE OREM XL.
. ——;&
F=y~ty x =5
=3
F= K+——-Xb’DP+za‘+6‘ac+2a‘+zb‘e’ - L,

x, and DP as in the preceding theorem.

THEOREM XLL

. . 4z 2

—— L. b —_‘-b—‘—-.
a=v'm — b e

THEOREM XLIL

- - ytmyp
F=y‘*yxf?':|-
”

#_-—

F= K+——x 2'.DP + 2m" —b*.ac+2m°d¢ —E'.
———ﬁé
4, and « as in the preceding theorem. DP=my* x 227 +;“'
r+

q2 THE O-
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THEOREM XLIL

IRB
F:y'*jx;_’; . F= K+ LXZ(t—de.

my b

~a=\/m'—b'. r=
THEOREM XLIV.

The tangent co ( = q X=Xk — —ID together

with thc fluent of Lmiy-iy x ’ gencratcd whilft y
from - becomes equal to any quantity &, is equal to the

fluent of the fame fluxion, gencratcd whilft y from be-
comes cqual to m.

THEOREM XLV.
m]
Fey—ty x =1

. 2 — 2
F=K+ —5 X 2wt — b'de — 2m’.c' ¢,
m3p

4, and x as in the two preceding theorems.
THEA QR E M XLVI

i
The fluent of Lmiy—ty x 5,’, generated whilft
L

from S becomes equal to any quantity %, is equal to the

m)t A
tangent €o (:-a Xm—Fkxk— %l ) together with the

fluent of the fame fluxion, generated whilft y from 675 be-

comes equal to m.
THEO-
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THEOREM XLVII.
1

——y ) 2
F_y — ylcﬁsthan:.—-
F=K+~—§x DP—AD:K+—2;}-x 2E" = 2.6'¢" —ac,
m m

=v m— a’. x:ﬁ—_‘fﬂ-
T HEOREM XLVIL

a* )}
The tangent ¢o (=mA) x ﬂ) together with the
F )
fluent of fmiy—dy x = d
becomes equal to any quantxty k, is equal to thc ﬂuent of

the fame ﬂuxlon, generated whilft y from - ** becomes

» generated whilft y from o

equal to —-

THEOREM‘XLIX

"—wi
F=y-tyxZ ] ylcfsrban— F=K+ *Xae
——y
b, and x as in the two preceding .theorems
THEOREM

The tangent eo ( r;zﬂ]é x 2 m_ l) together with the

fluent of 1miy

- -7
becomes equal to any quannty k, is cqual to thc fluent of

the fame fluxion, generated whilft y from :——;— becomes
.m -

equal to = A

" THEC-
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T HE OREM LI

a7
F _*. J—=
=y yx’

ab*
=Vvm-a. x= <

my—a

T HEOREM LIL

. F:y-iyx ’ y greater than m. F= K+ ; X DP-ac,

b, and « as in the preceding theorem. , DP=my)t x 1=2 :: ; .
=

n—
——

THEOREM LIIL

- v/ — —
F=y-iy P* + 2.1 q?7+9 99"
7 Vap—yqy
F=K+VW. (Fig. 4.)

When g is negative, VW is an Ayperbola whofe femi-axes

? ?
-are = and V=1
Whengis=o, . .. VW is a parabola whofc femi-para-
meter is p.
When ¢ is pofitive, VW is an ellzpﬁ: whofe femi-axes
are -’1 and -2 7,

which becomes a circle when ¢ is = 1.

_: .y greater than m. F=K+-ﬂ-3xAD. -

THEO-
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THEOREM L.

F= v”ig - —wiw
TvHfxVev tdvte 1+ wx Vet dwt et
*"%x i
"—XH _ﬂ'
2f V5t —2dx + d*— g4ce — e
F= * 4 . * d+‘f+f
ef*—e xT % ..
+ L X,

x—d+cf+}_x\/x‘—2dx+d’-—4a

_w‘+dv+c' __:_.__x—d+\/x’-—.a,dx+d’—4u

v w 2¢
w=21 _x¥—d—=Vx* —2dx + d* — 4¢e
T e 2¢
€Cafe 1. e=cf.

2f '\/x‘—zdx+d‘—4.c_¢--ﬂ’x—d+uf'

Cafe 2. '=c"f".

_'XH- /2 3 _ﬂ;
P 2f Vx — 2dx + d* — 4ce -\‘-d-}-cf—}-i
3,
LML VY [ i S W

4f’ Viy—2dly @ = 4 fl. y—d Fac
’_ — " — _ I d g
d=1.d'=—2d. '=d*—4ce. f’ —ff-l-‘f—a'-y— - .

In which cafes F will be affigned by the arcs of the conic.feitions,

Note. By fubftituting repeatedly in the refulting term *

fimilar to the original value of F, the value of F may:
be affigned, by means of the arcs of the conic fections, in
other particular cafes, though not in general.

THEO-~




128 T ABLE XIL
THEOREM LV.

- vy _ —wiw
e S e ————— — .
\/230+l:x\/w+ 2dv+e Vg +bhwx Vit 2dw + ew?
Fe ,21)g Viitex \/g’x‘-f‘d)’—zdgb-g-2eg',x+ﬂ..¢a‘ Vixte -
42b* \/;--l-—;x \/g'x'+cb’—2dgb+zcg .x+dz—cg) )
cv* 4+ 2dv 4 ¢ 1 \/g’x’+px+q +gx —
7 t2dvte —_ g
w=2 Ve  trxt g —gr+g
v = hx
p=ch —2dgh+ 2eg g:dblz—eg. .
chv?
Cafe I. dﬁ—t’g. x_;—gm-

—_ L xq ____gﬁ_ii_____iLim
Y} Vetex Vgixe+ ch* Vxte

Cﬂﬁ 2, d"/z"_g g x=‘b" + 2.db — eg.v,

2gv+ b
___x  — g x5
2b Vit x VI 1 2d's+ "Virte
T ab-eg 'y =3 a2

— ﬁ! -
WHZ X e x Vet Ohn Vy+ e

d=g.d'=lch - dg/z+eg . &'=dh—eg). g'=1. K'=e.
_ It 2dlx+ ”__ tgx
y=éex x+¢ - = iye

In which cafes F will be afligned by thearcs of the conic feétions.

NoTe. The value of F will be fo afligned in other parti-
cular cafes (though not in general) by proceeding as in-
timated in the Note to the preceding theorem.

THEO-
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THEO R\E M LVL

' —wiw
azgv-l-bx\/w + 24v +¢ \/ wa\/c+zdw+cw
Vzgg+3xV¢v +2dv+e cguv
F —f. Vagu+bx Ve +2dvte
== Thteg xf. vy
X
+ teg \/zgv-}-bxs/w +2dv+¢
w = I,
v

Note. The value of F will be affigned by the arcs of the
conic fettions, not only when dh+eg is = o, but like-
wife when the fluent of the laft written fluxion * can
be fo afligned.

THEOREM LVII.

oo % -
Vc+zdv+w'fo+zgv+bu“ Ucw +zdw+4x\//w +2gwtd
ﬂ x

VP +gx+ra?
p=d—ce. g=cht+ef—2dg. r=g'—fh
¢+ 2dv 4 ev* I _ d—gx-{-\/p + gx + rat
x""f—i—agv-{-bv V== bx—-c

= __.ﬁ
O F=m b e T
P =dh—egl’. CL_ ch —efh—2dgh+2eg*=hg+2er.

hx£+2dv+n; ‘D“‘-l—— 1 x P—gy+\/—P"'+—_Q—;—+ry‘
J= f+2gv-the? ée Tw b y

Nore. The value of F will always be affigned by the
arcs of the conic fections. .
r. THE O-
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THEOREM LVIII.

')U —_—w" w

Vt+zdv+¢v x\/f+zg-v+1m’ er +zdw+¢x\/ﬁo’+zgw+

fl. ————-—8-1-——;—.—_—~_—ﬂ. y_J

F="!'ix Vetyx VP +Qy+ 1y Viety
25 e e —3 .
—~dh—eg x1fl. e

Vityx VPt Qtrrt

P,Q, 7 v w and‘y as in the preceding theorem.
NoTe. The value of F will be affigned by the arcs of the
consc fections when dk is = eg, and likewife in the par-

ticular - cafes wherein the fluent of the laft written
fluxion * can be fo aﬂigned.

cb-ef

Y gy~ %5 @ A
=-—— ﬂ e e et e _ﬁ '
F=—3x Vitrx Vb= ofbig—fhy Vit

ch—=ef +2dh—ego

Cafe 20 ce—d xh=fh—g xe's y=

[4 280 + bo?
o — e
f. B .12
F _r_x \/c+yx~/P’+-l:-y+ry' “ty
= 2t =1 —
+db_'gxﬂ == g, =%,
26t VIEFEx Vil g —fhiz ‘VPiz
==
= oyt

THE O-




[

- T A B L E XIL X131

T HE OTREM LIX.

-

vy - - —w' T

hd _———-—m_ e — ——— A
.F:Vc+2dv+w‘x\/f+2gv+lm‘ \/ow’+zdw+:fow’+zgtg+'b
—~ —
—2- XVetyx VP 1 Qy+ry
-1 -
2 Xﬁ ._-——v-l—-— o .
+2g Vit 241) egxﬁ —\-/—‘a_‘_zy

2b2x< +j/z—~zg x fl. 7__,(‘/1_:;___’.”)

fb—g* 1. - . f;
+ . X V:+]XV‘§‘+Qy+ry

+db-—:gxdb+:g 1 .
~ . Vet xVP’+Qy+ry*

P Q7 'v, w, and y as in the two precedmg theorems,

NoTtEe. Thc value of F wxll be afligned by the ares of the
conic ﬁ&tom when dk is = eg, or dh = —eg; and likes
wife in the particular cafes wherein the fluent of the
laft written fluxion * can be fo affigned.

rz SCHEME

*



AY

'S C H E M E

FOR

T A BL E -XIL

acd (Fig. 1.) is a quadrantal a — 0 °
arc of an ellipfis=FE’. \‘\ CF ig.l.

Semi-tranfverfe axis cd =+/a*+46"
Semi-conjugate axis ac = 4.

) * ."'
Abfcifla cb =22~ '“ xa—at, F

; .
Ordinate be =5 X = J € b d

i, —];
~ ""l"zf*—# 6 +ax|®
co bcmg pcrpendxcular to co.

a2c'd (Fig. 2.) is a quadrantal arc
of another ellipfis =E".

Semi-tranfvcrfc' axis cd=LvVa + &
+ ;a. )

Semi-conjugate axis ae:‘ Va1 b
—ia.

¢y and its cqual ¢ "p" (cach = V/a* — ax) are tangents,
to which ¢p’, cp” are perpendiculars,

The abfciffa ¢4, or ¢4”, correfponding to the ordinate &',
- TR
. Va*+ b +a—xx ~/£-x-+x‘ .
01’ & 6’ ] ls — 2 x‘d‘
2Ve +
ad —de' =ep =¢'p".

. SCHEME
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AD (Fig. 3.) is a hyperbola,
whofe vertex is A and cen- .
ter C. . F; ig, 3.

Semi-tranfverfe axis =a.

Semi-conjugate axis =8&.

DP is a tangent, to which CP

is perpendicular,

CRN

CP = Vax.
o)t .
DP = q X&+t2fx—xt C ~T7 A B
f_a — : . P

The abfcnﬁ'a CAB, correfpondmg to the ordinate BD,

s ER
L, the /imit of DP — AD, is = 2E"—F';
AD bcmg always =DP tacs 2e'e" 2E".

VW (Fig. 4.) is an Fiog.
arc of a conic fec- 84
tion, whofe vertex
is V.

Abfcifla VQ_, corref-
ponding to the or- R v e R

dinate QW, =y;
RVQ, or VQR being an axis of the fection :

2
. which axis is = -—p;-

—

NoTe. Al the Theorems in TAsLE XIL (where any
reference is meceffary) refer to this Scheme.
TABLE



T A B L E XTI,

"CONTAINING

T H E O R E M g

FOR THE

CALCULATION of FLUENTS. °

LR

T HE OREM I.

A :V’z"é, B =V’z”+’é’ é = sz..""z.n &C. ’

P,=Vttizgmy P =V? Frgmiag 'P',”:V)""l zvtmy &,
Q,\:V’ \"z""", Q:V' Vz atotr %::V" \.fz-+n+l’ " &c.
V=a+4éz"+4 ca + dzv (¢).
P—=aA+iB+cC (1) Q =nx6B+2,C+ 3dD (r—4).
P ._—.‘aB+6C+cD () Qu=nxéC+2cD+3dE (z‘-—xj.

P,=aC+4D+cE (f). Qu=nxéD+ 2¢cE + 34F (¢=7).
&ec. &c. &c. : &ec., - .

ViHigmbn = g xP,+p+1x%

Vi gmbrhi=  E a FIXP,+2 1 X Q.
VI gt = g nF IXP, 4P+ 1 X Q.
&ec. &e.’

Hence, if #—1 of the fluents A, B, C, &ec. P,P,P , 6 &c.

v "

Qs Qus Qu» &c. be given, the reft will be determined.
| T HE O-
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T HE OREM IL.
A=V'Wiz=z,  B=V’Watz, &
P =Vt Wizeg, 13”=V’+'W’z'+'§, &ec.

- Q: VIW gz,  Q=V’ Witigming &c.
R=VHEWtigng, R =V W getez, .
§ =VIVWItigmts, § =VIVWI T zmtrbs, &,
'i',=V'+'W'Wz“+’, '1.",,=V’+"W’Wz"+'+', &c.

V =a + bz" + cz* + dz¥ (t).
W=a"+b'z"+ "z +d"z% (7).
P,=aA+4B+cC () Q=4A+5B+C().
P,=4B 4 4C +(D-(f). Qu=4"B+4C+¢'D ().

&c. &c. &c. &ec.
R, = oQu+ 6Qu+ ¢Qu ()= &'P, + §'P, 4+ ¢'P,, (")

R, = aQu+ 6Qu+ Qi (1) = a'P,+ &P, + 'P, (t")
&:c. &c. &ec. . &c

8,=nxb6Q.+ ch+3dQ(t—1).T =nx&'P, +20P, 4 3d'P, ().

S, =nxbQu+2cQu+3dQ¢-1). T,=nx¢'P + zc"P“+ 3dP v( "21).

-&c. &c. &e. &ec.

VAW get = m 1 XR 4P+ XS, 4+¢+1xT,

v Wt getrti=mr st IX R +p + 1 XS, +g+1xT,
&c. : &e.

Hence, if # + ¢"— 2 of the fluents A, B, C, &c. P, P,,

P , &c Qi Qu Qs &c. R, R, R, &c. §,, S, S, &

n?

T, T., T, &c, be given, thc rcﬂ: wxll be determined.

TABLE
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T A B L E XIV.
CONTAINING

T H E O R E

FOR THE

CALCULATION o FLUENTS.

e e —— —= — 3
M S

" THE OREM L
The fluent of = x fil. == + —, gencrated whilft » from o

Py ¥
becomes equal to 4, is equal to ? or is——i {q. Log. >=— 5 =

P_

according as 4 is equal to 1, or 2 =

a = the quadrantal arc of the circle whofe radius is 1.
T HE 0 REM IL

The flueat of — x fl. ——, generated whll& x frém o

becomes equal to 4, is cqual to l;:, 33:-- lfq. Log. 2,

1
—-—fq Log»-—-!, or 2= — (q. Log. &
5*-: —\/"

as bisequal to 1, %, —= or

s according

a being as in the precedmg theorem.

THEOREM IIL.

xim=1y
The whole fluent of i x fl. enerated whilft
] —x I g
from o becomes equal to1r, is = ;_'_l:
h-—t,
F = the contemporary fluent of = — =

-x"
a as in the preceding theorems.
s =the finc of pa. p and 2 —p pofitive.
\P ? THEO-
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TH E O R E. M IV.
The fluent of —— X fl.

x

o= generatcd whilft x

Vi -t X V-
from o bccomcs equal to 4, (= the contempc;rary fluent of
—xﬂ )1sequalto— ——’fq Logs - a—-—fq

sio
Log. z*—x, or ¢ 6 +1fq Log.2—— — £ Log. 5% —2 x Log.
4
5 —

1 . . 5*—[ ¢
; according as 4 is equal to 1, 2——, 2t—1, or gt —2.

a being as in the preceding theorems.
THE O R E M V.

The whole fluent of \/;_.__ s/x_-l-'x_" generated whilft

x from o becomes equal to 1, (= 2 X the contemporary

~ fluent ofT': x fl. ‘/.’_*:;;,) is = 24 Log. 2.

a being as in the preceding theorems.
THEU OREM VL

R~ . Ne=3 .
The whole fluent of =——=- x fl. =—"_, generated
: 8" — x7} ¢ +dx"Y
FIF/I

e —
¥ e

whillt x from o becomes equal to 4, is =

rR-tsn~—1 .
X + x

F = x

the contemporary fluent of ¢ 4" —* |
" x"_ti
F =

—— - -1
: + d it

d 1 _ .
— greater than —5 PHe=resil. 1—p and r + s pofitive.

NoTe. This theorem may be of afe in computing the fluent

-1 . " — "
M +!-u| 1. P T 3

== X fl. =—=
b —x”IP c+ tlx"|7+w + dx" "*w
lﬂ-l

may be affigned in terms of fl, ——=- ;:? - and algcbmc quan-

tities by Theorem x1v, xvI, Xvili, or XX, Tas. VIIL.
v and w being pofitive or negative integers.,

s T H E O«

——, as the. value of ﬂ



138 TABLE XIV.

THEOREM VI

F=a2"12'%. =z=the hyp. log. :— =1, -:.:.
K+— x z.— -.z.-! + z._’ —_ 1;”—23'-""&3.

NoTe. The fluent of mz + 7 x xm=~1z7=1 2 is =K + a"2".

THEOREM VIIIL.

'I""=z'x. = ﬂ—:=:’=='
\/b+zcx+dx

F=K+ve — -'-a]z"‘ + = gruzr

f’—l"— S !."—2"

&ec. A
v=x+3 y=vbtacxids.

'f‘ HEOREM K
F= x{yfz';. yand 2 as in the preceding theorem.
F=K+Pz-14Qz ~'+n.n~1.48'R2"~*-n.n- 1.1-2.4'S2"3+&c.
P=f. xtyrr, Q= 25, R=4, ¥, 8=4. 7, &
THEO-




T A BLE XIV. - . 13

THEOREM X .

Pp+ Qgx+ Rrs* 4 Ssa* + Tra* &ec.
#=PG +DFs+ DF'I 4 D’”F”’i- &

G being = p + gx + ra* 4 54 &c
P, Q: R, &c. p, q, r, &c. any invariable quantmes

F’:=;-, F”: 7t F”’:—;, &c. x being conﬁdcrcd as invasiable.

D'=Q-—P

D"=R-=2Q+0P,
D"=8§—=3R+3Q-=P,
D"=T-— 48+ 6R—4Q4+ P,
&c. &c.

Norr. IfP, Q, R, &c. be equal w0 1, '":', "?’:’::’“,

mitnminttmints o0 refpe@ively ; D', D", D”, &c.

nnt 10842

will be refpeQively’ cqual 07, T :':::':_:: , &e,

eet 1
And if p, ¢, r, &c. be equal to 1, < f ' 7T 7as 0

_‘f}:- : } i: &, &c. refpe@ively; G will be equal te

ol xf;:;ﬂ'—fh x fl.2 -—éx“;f X xf”;:.

s 2 TABLE




ST . T ———p—
T A BL E XV,
' ‘cou'unnmo
T H E O R E M S
’ FOR THE

CALCULATION of FLUENTS.

4

T HEOREM L
ax+6y+c>(x+jx+gy+ﬁxy—o
205 +r+b4f—g y+:[ xzax+r+6+f+gy+:|
. bh— ef —ab
¢=VEifT —4ag. PSS

Jz+ ab

Note. If4fbe=ag, x willbe =1L = xf_“ rpyayy

z being = ax + &y.

THEOREM I
axtyt + bxr="y1+ 8. X x+ fat—iyrti 4 gxf;‘]“"&c. X y =0..
fott 4 goft &e x v
" avt 4+ bo?t & 4 fot T ot ge,

L.,
x

F1.§=-

V=

T HE O-




TABULE IXV. I4L
THE OREM III.
¥ aP? + §Q4 &y x PP 4 0Q 4 & Qj+c”f}‘xl’"’&c.be:o».
PP T £ p— 1L PTIQ p— 2.0 PPTIQ &e.
P 18Py 4 p— 2. Pt ’(Ly&c
+p—2.¢"PP %y &c.

. &c.
+6’P'—!y:—. + 2C’P’—’Q!-_’. .+ 3 JP'-!Q,’ s—m .&C.
. o+ clrp?*SJp—-] + zd”Pf"SQ!a-—uy &c.
+ f"P’_’]"’}:' &ec.
. - &c.

will be =o.
P being=y™+'x + naymy, Qz=y 'z + my'y
By means of which equations -; may be exterminated,
and the relation of x and y determined by a parzicular equa-
tion of the fluents refpe@ing the firft equation: and the

fame will be the general equation of the fluents refpeiting
the fecond equation.

. Moreover n—m.xy"*t* + hy" = ky~ (derived from the equa-
tion mnx_:y‘ +m4n+ 1.y_y.§ +y"a.c= o) will be an equa-
tion of the fluents refpe@ing the firft equation.;. the rela-
tion of the invariable quantities 4 and # (by which the
equation of the fluents may be adjufred) being exprefled.
by the. equanon .

ok + 6 h+ G Xk TR A Ch+ C x kT &e.= o
Note. The fecond equation is deduced from the firft by

taking the fluxions of the feveral terms, conﬁdcrmg_y asin-

vanable, and dlvndmg byy'-'xtmxxy +m4n+tt. yyx +y: %

(" ' "‘VMQ‘) THEQ~
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" T.H E ORE M IV° ;

el ikt s L Rk TR

+ nay* + : "éj"+"+mdyi' x x9 bbe = o,
.. - b"]- + ‘/l’i .
T Xy

(et -

or nay* 4 1;26’;»"*" + mc’};“ x xy:’c-[- A :‘ “y

yi
+mway=+ mnby " 1 Wy xx'y 4 2Fy ¥ miy xay
' +¢"y be =o,

m-—rzrxé’—4~;c7xx'_y”+"‘ -
Py i P e ill be=
+2.m—nX b6 —=2ac" yr—b"—26°¢ .y % xym+ pWill be=o,

+4y" + c?y) — 40" x ay =K By g oy

Not1e. This theorem is derived from the preceding one,
# being therein taken equal to 2.

And it is obfervable that, though, with refpe@ to the
firft equation here, the third is the gemeral equation of
the flaents; yet, with refpe@ to the fecond €quation
here, and the equation :

axy iz + neyyl 4 8y Hia L mayy 4 by x g tn 1 maymy

.
4

,+c'.y'+':5_+m.xyﬂ + c'j x]'+':; + mx_y"y' +cy'=o,
(from which this theorem is derived,) the faid third
equation is only a particular equation of the fluents,
unlefs 2 or 7 be =o: and then it is general, as well -
with refpect to the fecond equation as to the firft,

THE O-

r
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THEOREM V.

If d+ 6y + ay* x "t""':’ Xe—bx=—cy=—2axy -xy' be=o,
or f+ ¢x +ax* x}d-_:.x e—=bx—cy—2axyxx =o,

S 2
or Vf+cx+¢x’_\/d+‘.' +ay*’
¢ = 4df = 2be + 4cdix — 2¢ce + 4bfy = 2bc + 4ae.xy
+ & — 4ad.xr 4 c*— 4af.y* will be =o.

NoTe. This theorem is derived from the third, p being
~ therein taken equal to 2, m=o0, n = — 1, and-4, 4",
o, " equal to b, —c¢, d, e, frefpeQively.
And it is obfervable that, though, with refpe& to the
three fluxional equations here, the fourth equation is the

general equation of the fluents ; yet, with refpe& to the

equation 2 x y.;—a)ﬂ’ + bxmmcy X yx—3y + di* + exy + fr=o,
(from which the theorem is derived), the faid fourth
equation is only a particylar equation of the fluents,

T HE OREM VL

If a Xyt 4 nxyy + b X y=+ix + mxy*y + cy be = o,

' n—m.xy™+ 4 hy* will be=4y*;

" the relation of the invariable quantities 4 and 4 being ex-
prefled by the equation a4 + 44 +c=o.

Nore. This theorem is a particular cafe of the third;
- being thercin taken equal to 1, and 4, 4 equal to 4,
¢ refpe@ively,

THE Q.
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T HEOREM VI
If paP™ 4 p — LHP Qi p—2.0PQ &e.
4P —= 1Py 4 p—2.0PPTIQy &
T R pm 2Py &

. &e.
+EPP Ty 4 20 PPTIQUy o 3d PTI QR e,
+ c"P""y"“_"ji 'tfd"P?.—.’(_Lf—-): &c.
+ .2"P?73yn—my &,
&e,

be=F,
aPh. 4+ FQ+ 8y x PP 4 ¢ Qi+ "QU + ¢yt x PP &e.
will be = fl. FP.
P, Q, and P(= y-—'Q) being as in theorem 111.

and };, in computing the value of fl. FP, being. confidered
as invariable : which value will be aflignable when F isa

proper funcion of P and y; and then, by means of thefe

cquations, -J: may be exterminated, and the general rela-
*tion of x and y determined ; as well as when F is = o.

Example. lf‘j—.l be =4y x_yfc—le; to apply-tlie theorem,

m may bc.talgcn ==—1,7=0, p=2, ¢'=1h and g, 4,

4y ¢", ¢, &c. each = o: then P being =, P= x, and

Q=yr—ays
- FP= f;f will be = Ay.yx — xy.x,
A FP =Ky +15=thyr—m) ;

and, confequently, 3x‘-‘-k\' =k x 25y’ — Okxy’ + k)Y,

% being the invariable quantity whereby the equation (of
the fluents) may be adjuffed.

THE O-
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THEOREM _VIL

If ——————be= A
Vb + mx + anx® Vbn + my + ay*
the general equation of the fluents will be
axy —cnx—cyt2viem+c'n+abxxtyt +b=o,

THEOREM IX,

Ifaxy~tix+ n+gymxy +n — t.gxy"-‘j‘
+ bxy i 4 Mt gy xy +m— 1.gXY" Y
+ cy* be = o.
the general equation of the fluents will be

7 — may~ et 4 g ymts 4 pymtebt = pyriet,
y being invariable, and the relation of the invariable quan-
tities 4 and £ (by which that equation may be adjuffed) be-
ing exprefled by the equation

ag—m+ 1.h+bg—n+ 1h+c=o.

THEOREM X
antgy"+bm+qy' +  am—1.gy" " 4bm—1.4y""".
"ty gt T Y
ay " +by ay* "l + by
be =o.
- the general equation of the fluents will be
gt Tyt =1y
VS TR e e

If{:+w‘j+

+  a.g—m+ 1.k being = b.g—n + LA
Note.. This theorem is derived from the preceding, by
fubftituting v for ;f;- '

¢ " THEO-
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T HZE OR EM XI.
Qx*=Ayz* 4+ Bxyx'—' 4 Cx’yx*=* + Datyx™3 (n+1).
the coefficicnt of the laft term being = 5, Quany funion

of x and y, and x mvarlablc
"(n) ()
= =K=%” + K% + K" (n) + Fx".

v, r", Y, &c. are the roots (r) of the equation
A4+B.r+Crr—14D.rr—1r—2....4rr—1.r—-2(n)=o.
F=1. +~"='Qx, F'=Af. »'-"~1F, F’” fl. »"~"=1F"%, &c.

Notel. In deducmg the theorem by repeatedly taking the
fluents, after multiplying by x="=1, x”~r"=1, x/'=r"=1 &,

G'x /—r’ FLL )

fucceffively, the terms ~G’:}'-' —— + G”x"-'
. G’/"'"'i""’ G’'s K Tad é--—z

e "' "

the roots r’, r”, r, &c. being fuppofed unequal. But when

..
ris=r’, L Z+ K" % &= arifes (by fach operatnon) inftead
()

- + G“x*=3, &c. fucceflively arifes

, —r ” ,-' -’ ) Gl r-r . ‘ G” r’—-r
Ofo" +K x'” 'J, "'#_Tj'(?l l) 7 7, /I_’l,("_z) H
’ e P et
G x f. w1y bemg thCn = G % inftcad of —
(=)

z being=Log. x: thorcforc, whcnr’xs*—r = veeeaz=ry,

- L'z*='4 L"2"=% 4 L"z"s (fn"— 1)‘+ K x #” moft be taken
(m the valuc of y) inftead of K "+ K% 4+ K"x™ (m).

N?'rr. IL. Ifr be =a+4bv~—1, x' will be = x‘N""/_
the value whereof is thewn in the Scholium at the :nd

of the Tablcs. ~
.. ' THE Q-
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THEOREM XIL

.
Xov

If A +Bv+Cv'+ Dv’+C+D.2+3D==+DFbe=o, °
‘v will be = %;
# being invariable, and y = K'»” + K"s” + K"z ;

where 7/, r*, ¥ are the roots (r) of the equation
' A 4+Br+4Cr +Dsri=o.

. THEOREM . XL
If A+ Bv+Cv + Dv’ x v+ Cww +3wam}+ Dww be=o,

. Xy XU
owillbe=3, andw==;
yx x

" y being as in the preceding theorem.

THEOREM XIV.

If Av+ Bvv + Ce2v + Dzvv — Dotz + D2z be = o,
i i =¥ X5
v will be_ﬂ, andz_ﬁ +y*“

x and y being as in theorem xi1.

T HEOREM XV.
If Av+B+C+D.vv+C+D.2v+Dvz—Dv'z+Dzzbe =0,

. _2 __ x5
v will be =% and z =k

% and y Abcing as in theorem x1r.
t 2 THE O-
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T HE OREM XVI.

If, z being = V#*+y* and x invariable, 2*+ yy be = axx;

v will be = y Vemay =4,

1—aw
y'z—aszk;:, and ¥ = fl. X —
Vi + 2aty + 2> — 19*

where x is confidered as the abfcifla of § curve (2); y as
the correfpondent ordinate, at right angles to the bafe
upon which x is meafured; v as the normal te the curve,
terminated by that bafc ; and w as the fine {to the radius
1) of the angle made by the faid normal and bafe; 4 being
an invariable quantity ferving to adju/t the equation of the
fluents, with another fuch quantity that muft be added
b
.\/l + 2aky + ;'—:;-y’

1

upon taking the value of fl.

o p——
. —v" ] - - ' w.ow v

NOTE. _yls =¢J‘w.—-:,y=-ufw+v¢w,y=-—___u’
® w.1 — w?

. ° w.t;w+'vt.v . t.;w+v;v
x=wz= —, and T = ——:
Vi—uwt 1 —w

and, by properly fubftituting as many of thefe values as
may be requifite, the equations of the fluents may be
veadily deduced from fome other fluxioaal equations.

TABLE




T A B L E_ XVL

CONTAINING

T H E O R E M S

FOR THE

CALCULATION of FLUENTS.

T HE OR E M L

F=N"xz.
e — —1.p— -
F=R+m x it =L apms B2 ypma BPTLP72 0 | g,

N being (everywhere in this Table) the number whofe
byp. log. is 1.

Nore. pxf. N™x*%4rx fl. N"ss is = K+ N"a".

THEOREM IL
e e .‘ 5N"" . .
F=ryN”x —=—— - z invariable.

erx
.

The fluent of PN = — 2N _ _ KN7

¥ ar

THE O-

F=yN"x— + K=
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THEOREM IIL
£y + gye 4 pya—iz =P
P and z any fun&ions of x or y.°
yt=x=tN ’”xK+ﬂ #NFP.
' Example 1. 1f z be=x?, and P=4bx" + cx" &c. =b2F + cz" &e.
y* will be=w=#tN"" XK+ x fl. N"z'z+ 3 x fl. N™ 27z .

m4p—h n+ b
ebemg———i—,f_ :

Example 2. If ax + by be =Py + Q, P and Q_being
fun&ions of without » or y being concerned therein ;

ax+by Py_-ar+b—ny will bc—Py+Q,

j—yfw._%, andy..N'"xK+ﬂ _(_l._

r being :;‘-,’ v=x<ar+5b-~P, and w= ﬁ. ;-«

By which means » may be exterminated, and the equation
of the fluents obtained.

Example 3. 1f w+p wv='0 be = 5H#, » being invariable;

aw (=y) will be=v—* X Kx+A. bv*Hx, and w= g Ki+8 bPHS ""::"” Hz.
. 4,1 B
And if pv=tv be = — 2‘:: 2 and 4H= +x.;

'v will be = -—j';io

and w=&"+4 x+—aLog T _¥x Circ,drc, rad. a5 tang %
REMARK,
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ReMARK. Sometimes, when the value of fl. #* N™P
cannot be immediately-obtained, it may be of ufe to fup-

pofe a new variable quantity # =K +fl. ¥’ NP = y2*N*;
and, by fuch means, to exterminate x (or y): the rclatlon
of % and y (or x) being afterwards aflignable, as in the fol-
lowing examples.

Example 4.y + gyz being = rN™yy,
v (by the theorem) will be = N x K + fl. N "z'{"?‘ynj.
Now, fuppofing =Ny =K + fl. rN™H%yny  N==tee

-+7 . '+, .,_,_.
willbe:ﬂ SN ey
S ay—gen _+"

o andrxﬂ_y 7 y::ﬂu T oa
Examj;le 5. Ify—y-; bc_bxx-i-—x-

y (by the theorem) wilt be = x K + fl. 6z + fl, ¢

Suppofcu— —K+ﬂ.6x+ﬂ c—-
then, xbcmg:;, x:%_i-':.‘,
- 2. 33 )]
andbx""‘y‘—;":—"——y—':-l—cuy ”’
- : i ’ -
H At ¥ —uu
y—y.u—-'i- will be =~ T
1+7l’ :l‘+-—u‘

whence, by applying thc theorem a fecond tlme,

"y is found = ==——g i)(K-}- 1. =
!+—l¢" 1+—u‘

L% being =2 o 5 wwhen wis = =<7, by Theor. 1.and 111, Tab.I.
1 +"l¢‘ b § +le'

THE Q-
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T HE OR E M IV.

. Qa"=Ayx*+Bys 4 Cyx"~* + Dys*—3 (n+1);
the coefficient of the laft term being = 1, Quany fyn&ion
of x and y, and x invariable.
y=K'N™ + K"N"" K”N""* () + l:.'L N(')’
r,r",r",&c. the roots(r) of the equation A+Br+Cr*4+Dr..r"=0.
F=£.QN ~*% F'=fl. N*"™F%, F'=fl. N"*""F%,

Fr=1f. N:’”x—r"wa%’ &C.

Nore. In deducing the theorem by repeatedly taking the
fluents, after multiplying by N, N~ N~ &.

G’N gy’ sx-—z

fucceflively, the terms G'x*~', ————— + G'x—,

INE=% . a—3 N\ E=rlllz g =3 N
?J-;.—N_.'—”'—,___’;” G'N pr ',,f + G"”x"=3, &c. fucceflively

arife ; the roots 7/, ", r*, &c. being fuppofed unequal.
(=

Ve rn

But when 7"is=#, L'x + K" xN arifes (by fuch ope-

() ® ®

-— - Nr’c-—r:
ration) inftead of K’N"' "+ K'N™“=* ¢ :
r’-—-"’ - (n—1)

r—rx
+ __911_4_____) G'xfl. N** being then=G'x in-
P rlv("__z)

G’ Nr’x—r" ! (m)
ftead of ———;—: therefore, when Yis=r'=r".....=r,

- Lix™ 4+ L™ + L"x"3 (m—1) + K x N muft be taken
(in the value of y) inftead of K'N"™ + K"N " + K“N"*(m).
THE O-
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THEOREM V

If A+Bv+Co® +D‘v’+C-—+3D—+D-— be =o.

J
v .will be_ﬁ

P being invariable, and y= KN+ K'N™ +K"N"";
where 7/, ", 77 are the roots (r) of the equation
A+B"+C"'+Dr’=o,

T H E o R E M VI.
If Ax* + Ba* — Cx+sz+Cx 3Dw + Dw?

+a_:_§. < + waf”_+D be =o,

w will be =7 = J being.as in the preceding theorem,

"T HE OREM VL
y-rmyrt =0 ptatrei=o. =;’;-

- ) TR e
KN*+K'N™™ x 5= + 9_'__. : + e 44
y= ‘ 2camf1)  2cam+1)

- ~3jm—3 ~7m=3 —iim=-3
+K'N'.t-K"N XB—‘F’?—— + D= F" S&c
zt'zm-i-l z:zm-{-]l 2:.zm+1\

¢
e — - p2mtr,
rE ey %=#

B:—m.m+1,C=-%.-3-f;4-—}'.3m+sz,D:-}.5m+ 2.5m+3%xC,
Ez=—3iom4+3.9m+4%xD, F=—i.9m+4.9m+ 5 xE, &c. |
NoTe. Both the feries will terminate, if, » being any
integer whatever, m be = = -;;%_—x
And then, from the above value of y, that of v (= —’-)

may be eafily obtained.

&c,

ek,

u . THEO-
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THEOREM Vi
F=fl.N"'z, F'=f.N"s~1yz, F"=f.N"st-1yz, &
G'=fl.N"xr=12, G'=fl. N"s+y2, G"=1. N™s?-3y's, &c.
H =l N"xt-15, H":ﬂ.N"xP'”yz., H"=A1, N"xf-4y'z., &c.

&c.

. y= \/é+z;:x+dx'. z:ﬂ.F.-.:é-_-_-gra
b+ 2¢x + dx*

L]
r ar

r ar ) ar ar
_#T N p—a P 2dFY 2Gr

r ar ar ar
Fr= *Psl'N"_ p—3F 34F7  3G™
- r ar ar

ar
(p+1)-
,_xTIN™ p~1.G”
G= r - ar

_#"N™ p—0.G” 4G’ (H

— SRS s cm——

. G*

r . ar ar . ear
(9
—Snyrs — 2. B
H’z”’ rN L :r"H .
H'= x"";N"_ 3.H”'- ;l_f'_l:- fK'
r "f ar ar
(=)
&e.

Hence, when p is a pofitive integer, all the fluents F, F”,
(p+1); G, G’ (p); H, H, (p-1); &c. may be found.
’ THEO-




T ABLE XV

. 155

THEOREM IX,
*"x e — 2= " z —l_ —x\/?l!” *
Thcﬂucntofm?fs——:—m—;xﬂ.N N | X 2,

. (=) (»—12) (s—4)
2 _:- 5 nNN—1 ¢ ' P
ﬁ{' X ' —”-"_2 + 2 ”__4(';”)i ';Mz.

whichis=K +

t— (=) (a=2) , (n—4) +
2 ] € nn— 3 n4 1
or =K——_x';'—”-'_z+ 2 "-4< 2 )’

q‘.—‘
according as # is an even or an odd pofitive number.
— "n—1n—2(§n) - £
Ta3 G z=fl. V';-T_C"c' Arc, rad. 1, fine s,
() (s=3) (s—4g) (=) (nr2) (s=4)
5H s, s €. &6 ¢ ¢ &c. the fines and cofines
of nz, n—2.2, n—4.2, &c. rcfpe&ively.

* = or — according as £ is even or odd,

e ——————S e

8 CH OUL 1 U Mm
In computations wherein €xponentials are concerned, it
may fometimes be neceffary to obferve, that,

s/ =1 my/ =3

tmam——"

:z_\/:; ‘ n:\/::
«a _N a PR Rt
axN N +N .

2vV—3 and & x 2
denoting the fine and cofine of r=z refpe@ivel ¥s

2 being an arc of the circle whofe radius is = g;
if that fine and cofine be alfp refpetively denoted by
/= — T —
sande, N « willbe:'“a —, and N~ ==V
‘\
& All the Logarithms mentioned in thefe Tables, and
likewife in te Memoirs, are of the Ayperbolic kind.

END OF THE APPENDIX,






