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joining the second focus to the ends of the minor axis will envelopea curve
of degree 4 and class 3, which is the involute starting from the vertex of
the first negative pedal with respect to the focus) of the parabola whose
vertex is A, and whose trix cuts SA at right angles in 8 ; and (2) if
Q, P be corresponding points on this curve and on the paraboln and PM
be drawn perpendicular to the axis, PM = PQ, so that the circlo with
centre on the parabola which touches the axis will also envelope tlns
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curve; (2) if the pomt moves on a given straight line, the locus of each of
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AB, a point 8 is found, in a path parallel to the range, at which the
report of a rifle and the sound of the bullet hitting the target are heard
simultaneously. SC is the bisector of ASB; and AC, BD are n-
diculars from A, B on SC. EAFmperpendlculertoAB and DE,
parallel to SA, moets EF in E. AF is equal to AE, and CFis drawn.
Prove that the intersections AC, SC; BD, SC; DE AC; FC, DA, lie
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7268, (W. 8. M‘Cay, M.A.) —Prove that two equal non-inter-
secting circles are polar reciprocals to an imaginary parabola. ......... 24
7275. (D.Edwardes.)—If tan a cot } (8 +7) = tan B cot § (y +a), prove
that sin (a+B)+8in (B+7) +8in(Y+a) =0, crvvviviiimenniciinnenenines
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extremity of a lever, is balanced by a weight Q at the other end, or by a
weight Q' from a second fulecrum : find P, and show that there are two
values (P, P’) such that PP'= QQ’; also, if @ be the length of the lever,
and @ I » the distance between the two fulcrums,
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7290, (8. Tebay, B.A.)—In a given triangle inscribe a rectangle



m@mmnmhnmp_qinyq

SETMUTIE LI cooenniiiiinecicetesscesernnnerrsassncssssssnmmmmaamasomooosonsensamsenn &

"l T Tiwwne — dnr ymbi w e ee—inef soovs s
TEre o e YT r S—pe e —- = L Ieow Do o amiit oo Sne
MeTiierl CIYies IF e CRleSISTL SMMOk &7 e Y W X
M=l =T e el & :—-S‘-_::'—-_)[—"::=l

e —

.............. T
“ug o XXt L2 Vet toa T srnasm
AR XA

Pl peidu—Al el L=l - R S-TET
="4-F s-g-z -] -3 -~
avale 31 i Cofisrerm] Tescior
hinad L L = = L. 2B
AellreyltaTT I B = Lo e
THe  Frdeser Wiotaunume. WA ] B S sy ©f S oo
LY. O pooan O rpeamw F I e STACLD Imes sy viome
WAL Jeods I e Tuncy AT U Tl mon o nans of The e
ZA%e 3 Wl £LOE € Ll Doumae @Ol 3 3 oros RO oo She secemsd
Jo70E I LI Al THEE SHRCT 2

L DL LD TTALOH A0 ANL DATIRE M LYRE A3
W ol . FETTE TUAD L OIhd TWI DAL . D:dmsl IV I AURADImE
AY DL =32 . (8 ="-7 A% Iy o b oWl me &l ol I
ot reae 1-z A Iooml I  TsxdAsy Tax D w10
Lrom asier pomm Fopegem I TASY I LSWWE Or ¢ SIO8E K Y TURLOE
LDT . s ey $0Tnel 1T JUT e il hef 0 AhoRt RECTEDLCLISSS WO
oo incaral.  Z Ay ano: A RO M o« 1800 T suokw sulGEnosd
v e A4 ke e ABC 2 o poan T newaar O snE O
1y e widss of B~ 5, € - 4071 i3 the mbar poox ser wil e
ey A—oU. B-oi". 6°—C. ¥ A~ smi R~R°,
o S —A 6 —B.C—6F. ¥ A< i R<fP.. . .. W
v W_J.C Smarp MAL and G. Hegowi MoA —H S dmroe
the sum of tihe v homozensoRs IEOGRLE Of SLY CUATTTIS. & the FEw of
mmmd&emm:;ﬁp the sum & The oeepibcne-
tavns ¥ tugether : prove that
=8 2N =8Rn-n |, ={ir-Rin-r ~08
S =S aneSae-S g eaes VT ’
B =8 1-5—Sr s+ Sy Py e P ey >N ]
7217. (Astyva: Mokhopadhyiy.}—Any rumba o' of xnpmcs are
druwn 40 3 paraioa such that the arcs hetwesn the poimis of comtact
sutad egual angies at the focus. If 2 be the angle which the axis
A Y g sl muukes with the radius vector drawn to the adiomt
y s A oomiwdt, prove that the product of the perpemdiczlars from
thw: fsoms 0B the tangents varies inversely as Sin S ... e-cceesacananeens »
742). ‘D. Edwardes.)—The extremities of a heavy uniform string
s1¢ sttwduod b the ends of a weightless bent lever, whose arms are at
nigut anghs b oue anther and of lengths £, . If a, B, 0 are the imch-
acticnss W the: vertical, in the position of equilibrium, of the tangeats to
the strig at its extremitics and of the line joining its extremities, prove
a 3 coto = f’cotc—h’eots . £~
A 4+ f3—&f (0ot & + cot B)




. \
)
‘ * L}
\ .’/ .
. .. \
. \ -.
_. \ U \ ;
, ._. —w_ _
R
\
N aa
L ! .

\ \ Ly ,.‘
// . \ . //‘._y
W\ , ”:,,..// it N \ \ s A
R LLIFTERNAR PR it

NIRY V,..e AR AR

\ \ '
/,/,; /,,; K ; ,C (% I w ﬁ
L %, Vg ,,f// y? ,_,. ,_22 . 1 |

. ,_ SR RS
N W






CONTENTS. b 3111

7329, (The late Professor Seitz, M.A.)—Show that the average area
of & triangle drawn on the surface of a given circle of radius r, h;;inrgiu
6

Dase parallel to a given line, and its vertex taken at random, is
....... vereenee 118
7331, (Professor Malet, F.R.8.)—If A = 1—/i3, prove that

1 1]o A 1
u -8 B84z =9 -t -
LAllogAdz 8.[0 5 ]oA%d.ua(l i 2log (1= -3).

7332. (The Editor.)—If p,, 7, p, be the perpendiculars from the
vertices of a triangle on the opposite sides; d,, dy, d; the distances from
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smbola, AY be drawn perpendicular to the tangent at P, and YA go-
uced meet the curve again in Q ; prove that PQ cuts the axis in a g;l

PR tereresetnitieneressanetanse cereeeenes

7395. (R. Tucker, M.A.)—If we have

A= ac®, bal i |and A'=
abl, bl ca? ab, b, ot
cos A, cos B, cosC $, cos B, cos C

where the elements involved are those of a plane triangle, prove that
28 = (@*+8+N) A . ceeeeeees B8

7397, (C. Bickerdike.)—A point moves with constant velocity in a
straight line: prove that its angular velocity about any fixed point is
inversely a8 the square of the distance from this point. ................. . 88

7398. (R. Knowles, B.A.) —In the side BC (>AB) of a triangle
ABC, BD is taken equal to one-half of AB+BC; and in BA produced,
BE s taken equal to BD : prove that DE bisects AC at G. ............... 39

403, (Professor Sylvester, F.R.8.) — From the principle of con-
servation of areas, deduce geometrically Euler’s equations for the motion
of a body revolving about a fixed point. ........ccoocvvriiirnunnnninnieeeenns 54

7405. (Professor Townsend, F.R.8.) —The rectangular coordinates
(2 ) of & variable point Py, in & fixed plane, being supposed connected
with those (23, ¥,) of another point P, in the same or in another plane,
by a relation of the form f(z,+ty,, %3+iy;) =0, where f 18 the
representative of any function,—

(1) If P, describe & curve of small magnitude in its plane, show that
P, will describe a curve of similar form in its plane.

(2) If P, and P, be the stereographic &mjectlons, of a variable point P
ona fixed sphere, upon the planes of the great circles of which any two
arbitrary centres of projection O, and O, on the sphere are the poles : show
that (z), y,) and (2, y,) are connected as in (1), and determine the
form of f corresponding to the ca8e. ........cceeeerrrirrrrnnunnrereererneenes .. 69

7406. (Professor Hudson, M.A.)—Two inclined planes, of the same
alitude and inclinations a, B, are placed back to back with an
interstice between them. T'wo weights P, Q are placed one on each planeat
the bottom, and connected by a string which passes over two small smooth
g:tlleys at the top and under a movable pulley, weight W, which hun%s

weoen the two planes, the free portion of the string beinﬁmpamlle .
Find the least value of W, in order that both weights may be drawn up;
and, if they arrive at the top at the same time, prove that

4 (sin3q—sgin? ) - 2sina+sinasinB+sin?8 _ 2sin B +sinasing +sinta,
w P Q 5
9

7407. (Professor Wolstenholme, M.A., Sc.D.)—Prove that the three
conics 23+ ay = 43, 23—y? = az, y?— 2y = 4? have three common points
z . ¥ __~—° =-z_ Y a T =Y
Sinjr Snjr &njx snjr sinfr Gnjx Singr snjx  singx’
the other common points of them, taken two and two, being z = y = oo
2=0,Y=06; Y= 0,2 = 6. .ooceiiirinieiniiiinniennnnsinneenes 61

ae, at, b |,
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three diculars from the angles upon the opposite sides of the tri-
angle; prove (1) that the distance of O from any side is half the distance
of I from the o ?onite angle ; and hence (2) that OI is the resultant of
the three eqnalp forces OA, OB, OC. .....c.cceevnireerininniiineriessesnsinnnes .17

7429, (Professor Wolstenholme, M.A., 8c.D.) — The rectilinear
asymptotes of the curve whose polar equation i8 7(sin a— sin 6) = a sin a cos 6
arergin (a40) = asin a. The rectilinear asymptote of the curve

r = atan (}x+40) is rcos 6 = 2a. )

RBeconcile these results ; since, if we put a = ¢ in the first equations, we
get for the curve the equation r = a n co:i:o = atan ({r+16), and for

the asymptote (the two then coinciding) rc0s 8 = 4. ..........cceevunnnee 100

7433. (The Editor.)—Show that the volume of the greatest parcel
that can be sent by the Parcel Post is (1) 8/x = 2:5468 ft. when
unlimited in form and therefore & right circular cylinder, and (2)
2 cubic feet when it is to be four-sided and plane. ..........cccceeuvuernns 119

1437. (J. J. Walker, M.A., F.R.8.)—Prove the following formula
of reduction [employed, without proof, on p. 69 of Vol. 37 of Reprints] for
the parts of any spherical triangle ABC :— .

(seca sin b cos A —gin ¢)® + (8ec a cos b—cos ¢)? (1 —cosec? a gin? A)
=tan?acos?Bcos?C. ......ccoivernniiiinnnnneee 78
1440, (W. J. C. Sharp, M.A.) — Prove that (1) the tangents to the
nine-point circle of a triangle, at the points where it meets either side,
make angles with that side equal to the difference of the angles adjacent
to the side ; and (2) the tangent at the middle point makes angles with
the other sides which are equal to the opposite angles of the triangle.... 70

441, (R. Russell, B.A.)—If from a point (2, y,) four normals
be drawn to %:- + %—1 = 0, prove that (1) the equation of the conic

going through z,, ), and the four centres of curvature on the normals, is
a’;’.}b’y’q.ciy - V._yl’x_‘i‘?_l’y_g‘ =0;
(314 * )1
and (2) if «® = 1, the discriminant of this is
(a%2y? + By,?— o) (a%2)% + B3y %0? — of) (a%2, %0 + BUy fw—cf). ... 103
7443. (For enunciation, see Question 7433.) ..........ccevvvuvvnnnnne 119

7448. (D. Edwardes.) — If a rectangular hyperbola pass through
the centre of the ellipse b3r?+ a2y? = a??% touch it at a point P, whose
eccentric angle is a, and intersect it in Q, R ; prove that tangents to the
ellipse at Q, R intersect on the straight line

Prcosat+adysina+tab (a¥+5°) =0, ..oooevvnnnnnnnns 79

7449. (C. Bickerdike.)—If a circle A is touched internally by a circle
B, and a circle C touches both A and B; show that the locus of the
centre of C is an ellipse round the centres of A and B..........ccoorveuennee 85

7450. (R. Tucker, M.A.) —If a circle passing through the focus
of a given conic intersects the conic in points (8,, 6,, 8,, 6,), prove that
(1) X cos 0 is dependent upon the excentricity only ; and 52) if the diameter
of the circle be inclined to the axis of the conic at an angle sin-!/ / d, where
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1479. (R. Tucker, M.A.)—P, Q are lines parallel to the directrix
of a parabola ; from any %oi.nt pon P tangents are drawn to the curve
cuiting Q in 7, ¢ ; through r, 2 lines are drawn parallel to the ta::i:nts,
and meeting in ¢: prove that these lines envelope a parabola, and that p¢
passes through the pole of P. ........ eerreeeie et ara e ara e enes 120

7484, (Professor Malet, F.R.8.) —If two solutions of the linear
differential equation (A) are the solutions of the equation (B),

g+Q’l% +Q’:_:y‘ +Qgy =0, g +P|%+Psy =0...(A,B);

prove that (1)
PPy (P-Q) =P, (% +P2'Qa) =P (% - Qc),
and (2) the complete solution of (A) is the solution of

- Qage
d’y e l. Py
= +P1% +Pyy =¢P, o sresesessercesens . 112
7490. (Professor Wolstenholme, M.A., 8c.D.)—At each point of a
central conic is described the rectangular hyberbola of closest contact ;
prove that the locus of its centre is the inverse of the conic with respect to
the director=Circle, ........evererirreueeniiriniiiiiiiiiiieiinanieeeeneeereane 123
7496. (R. A. Roberts, M.A.)—A geodesic common tangent is drawn
fo two circular sections of an ellif:gid; show (1) that the perpendiculars
from the centre on the tangent planes to the surface at the points of con-
tact are equal ; and hence (2) find the locus of the points of contact of the
geodesic tangents drawn from an umbilic to the circular sections. ... 121
7605. (G. Heppel, M.A.) — If three hyperbolas be described, to
each of which one side of & given triangle is a tangent, and the other sides
are asymptotes, show that the product of the three latera recta is equal to
the cube of the diameter of the inscribed circle. .......c.ccossvessereraesss 120
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4641. (By thelate Professor CLirrorp, F.R.8.)—If a circular cubic with
a double point O be cut by a circle in four points, A, B, C, D; and if OA,
OB, OC, OD cut the circle again in E, F, G, H; show that any pair of
straight lines joining these four points will be equally inclined to the
bisectors of the angles between the tangents at O.

Solution by W. J. C. SHARP, MLA.

The inverse of the cubic about the node is a conic, the asymptotes of
which are parallel to the nodal tangents, and the axes to the bisectors of
the angles between these.

Now, if 4, b, ¢,d, ¢, f, g, » be the points inverse to A, B, C ... H, the
line joining ab will be parallel to that jé)iéling EF, si(z)we OA.OE=0B.OF

- a
and Oa.0A =06. 0B, and therefore OF ~ 04~ OF

Similarly all the connectors of a, b, ¢, d are parallel to the correspond-
ing connectors of E, F, G, H. And each pair of lines connecting 4, 8, ¢, d
are equally inclined to the axis of the conic. And therefore, &c.

[The property might be more fenerally enunciated, as it is true for the
inverse of a conic, that is to say, for any bicircular quartic or circular cubic
with a double point. ]

7143. (By Professor SyrvesTer, F.R.S,)—If
2Ax
log F (v, y) = Xlog (x—2 cos="=y ),

where A is to assume all values prime to x and not exceeding } («—1);
¥rove that, when z, y are relative primes, F (#, y) can have no prime
actors other than divisors of x or of the form xt 1.
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7331, (By Professor MavLer, F.R.8.)—If A = 1—Es$, prove that

14 I:AilogAa-sj:lszAh - 9]:A!dua(1-k)l[2log(1-h)-a].

Solution by HANUMANTA RAN ; Prof. Nasu, M.A. ; and others.

Since I.A‘logAdx-zA‘logA+]{’;2hl£f{e + %}sd;

log A
= 1-4)28284,_
zA’logA+§j( )Ai !Iszl.
we have, therefore, 14 I atloga d,_gj.lﬂﬁ;Ad,
A

=6z al 1ogA-9jszi = 6z allog A—9z Al+9jA*da.
Integrating between the limits 1 and 0, we obtain the required result.

5850. (By Professor SyLvester, F.R.8.)—1. Sugpose an arborescence
subject to the law that at every joint each stem or branch splits up into
m, the main stem being reckoned as a free branch. Prove that, if » is the
number of such joints, (m—1)n + 2 will be the number of free branches.

2. If m = 2, t.e. for the case of dichotomous ramification, it will be
found that, making as above no distinction between the main stem and
any free branch, the number of distinct forms of arborescence, when there are
1,234,567, 8,9, &c. joints, will be respectively 1,1, 1, 2, 2, 3, 8,
4,4,5,5, &. Let such number be called N. Required to express N
generally in terms of n, when the arborescence is dichotomous.

Solution by W. J. C. SarP, MTA.

The total number of branches including the stem is mn+1, and of
these #—1 are not free; therefore, the number of free branches
=mu+l—(n-1) =n(m—1)+2.
Hence, if m = 2, the number of free branches is # + 2.

If now it be assumed that all systems which have the same number
of joints with two free branches (free joints, say) belong to the same species ;
then, denoting by p the number of free joints, and by ¢ the number of
joints with one free branch, 2p + ¢ = % +2 the number of free Lranches.
Also ¢ cannot exceed n—2.

Then N is the number of integer solutions of the above equation which
satisfies the condition. If # = 1, the equation, is not applicable as there
is one joint with three free branches.

For n = 2,3,4,6,6, 7, &c., the values of N are 1,1, 2,2, 3,3, &ec.,
N being §n or } (n— 1) according as » is even or odd.
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7346, (By D. Epwappzs.)—Prove that, whatever be the value of »,

al f . o L4
L jo (1—-sin@cos ¢)¥* sin 0 dodg = rYTY

Solution by Dr. Curtis; BeLLe Eastox ; and others.

The limits of integration show that this integral is extended to the sur-
face of a quadrantal triangle on the surface of a sphere of radius unity, or,
taking as axes of coordinates z, y, ¢, the radii of the sphere drawn to the
three angular points of the triangle, and supposing radius vector to
any assumed point within the area to make with z, y, z, angles a, 8, v, we
havea = 6, cos B = sina cos ¢, cosy=sin a sin ¢; therefore, if da denote
the element of the area, we have

fﬂ(l--imaou) *sin 040 dp -H (1—cos B)i*da

ir rir

-[ I 2"‘lin“}ﬁsin8dﬁd\k-=2‘““rrsin"‘iﬂeos}ﬂdﬂd¢

0Jo ° o Jdo
b 2intly w2+l -

-ﬂ'f! nnul}ﬂeosiﬂdﬂ-m (ol' ,inmzia)a,—”_—zm-m.
[}

7192, (By Professor Marz, M.A.)—Show that the sum of the series

for I= j":"_’;.’ 6 is 1°3749833960 = ‘—81 nearly.
[}

Solution by W. H. BLytus, M.A.; Professor Nasu, M.A.; and others.
The series required is
. ad a ol -
“sa" 55 7T + &c., where a = 79
and the annexed computation shows the result to be that stated in the
Qnesltion.

oga =logwx—log2 ‘ 1 =

= 1961199 log =7 = 30208187
log &® = -5783597
log 6* = 9605995

LEy?
log i 4-2975694

log @ = 1-3428383 1 =
log @® = 1-7250781 log 71 = 6°2402369
log % = 2:1073179 I 5resst

. — = 8°1988442
log a'® = 2-489565677 log 7, = 81988

log a% = 28717975

1 =
— 10 —_— 10'0057296
log :,71, = 1-2218487 €131

log 1% = 13-6835108,

VOL. XL. . D
























37

Solution by G. Hepper, M.A.

Let 4,5, ¢,d... k,  be the quantities; S, the sum of rt* hom eous pro-
ducts; s the sum of r*t powers; p, the sum of combinations taken r
together. Let % = (1+az+a%?+...) (1 +bz+8%%+...)...or its equiva-

1 . 9 = pz— . -1
lent W, v = p,2—pgz3+...; 80 that o and
% =w+1; u, v, ts, 5, &c., be the successive differential coefficients
of wand v with respect to #; and U,V,, U,V,, &c. be the values of these
when 2=0. Then 8, is the coefficient of 2~ in 4 ; therefore S, = U, +r!

Also Uy = Uy 041Uy 10+ 37 (r—1) %, 2. 09+ ...... +ue,.
Put z = 0, and remember that V, = & r!. p,,
then U, =rU,y1.0y—r(r—1) Up_g. 93+ ... £ 7! py,

therefore S, =8,.19-8,.2.03+8,_3.p,—... £p,.
In ToprUNTER’S Theory of Equations and elsewhers, it is proved that,
8 =8 10— 8205+ 8, _3Py— ...k rp,; but the following new and shorter
proof depends only on first principles :—
& =p8 1 —3(a"-1.8), —Z(a"-1.8) = — pys,_a+3(a""2.bc),
3 (a2, be) = p, 8y_3—3 (a"-3. bed), &c., &c.,
F 3 (a%ed ... k) = F p,_18 £ rp,;
therefore, adding the equations, s, = 8,_1p,—2,_3 . 3+ 8,_395 —... & rp,.
The series in 7309 is derived from these, as follows :—
1t is evidently true for the first few terms. Assume it to be true as far
a8 (r—1) terms; so that (r—1)8,_1—s,.1 = 8, 28+ 8,38 +...+85, 8.3
Then, from the series found above, we obtain
B, —8, = (rS,_1— 8 )1 — ("Sr-2= 8 _2) P + ... £ (rS,—8;) 21
=8, .pl'—2S,_g P3+3S,_3 py—¢ Spoq 4+ % (f—l) Slpr-l
+(Br 2.5 +S, 3.8+ 8,48, +...+8,.8._2) 7
~(Se-3.81+8,4.8+8, 5.8, +...+8,. 8 _3) po+ ... £8, p, 1.
Hence, collecting coefficients of 8,_,, S,.,, &c., and using the second
leries, rS, — 8 = S,-l -8 +8,.,. n,+S,_. 8yt .t S, 8y 1.

7378. (By Professor Havenron, F.R.8.)—A homogeneous rectangular
parallelepiped, the edges of which are a, b, ¢, floats in a liquid whose der-
sity is p ; and is turned through an angle 0 (the top remaining above the
surface of the liquid), so that the plane of a, b remains parallel to itself ;
find the limiting value of 8, when the solid will cease to right itself.

Solution by R. RawsoN ; SARAR MARKS ; and others.

Let ABCD be a vertical section through p
the centre of gravity (G) of the parallele-
piped. The liquid lines FH, F'H’ before
and after the solid is turned through an
angle 0, are determined—(1) by the equality £’
of the weights of the displaced liquid and
parallelepiped ; (2) by the equality of the
weightsof the inandout. Hence EL=aw : v/,
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4. If 0> }, ¢ < §=, and C lies in DA’; or if 6 > §, ¢ > }w, and C lies in
EA’; the triangle will have all its mglu obtuse. Hence we have

Ja [ rkMpdpm¢“+ffarmpdpnn¢d¢}a

4] [ s

3 1
=4—;£'(3—00!60’ $0) do = 8 2

6833. the Enrronz — Show that the volume betwoon z=0
andz = 2lofthe solid bounded by the surface whose equation is
a(yt—2t)—22 (23— 2043 + 20 ~y* (0B + %2 + &%) = 0,
is %(sl‘+4bl'+3c’ﬁ+9c'l).

Solution by D. EpwarDEs; G. EasTwooDp, M.A. ; and others.

While # is constant, the equation of the section is
3= Acos®0+Bain30.....cccceeriiriinninnnniiiinnns 1),

where A =522+ %z + 63, and aB = o*+ 2¢%. The area of (1) is {x (A +B);
therefore the required volume is

%'r(zuww“sa)dz - 6—:(12I‘+86P+6o’l’+18ﬁl) = &c.
[}

8739, Professor WoLsTeNHOLME, M.A.)—If u? = 0 be the rational
equation of e second degree of a conic referred to Cartesian coordinates
inclined at an angle w, prove that the equations giving (1) the foci, (2)
the director circle, (3) all four du'ectnces,

du _dwu _ du du d'u
_— S — = — — 4+— =2 ——CO8 W ...... 1, 2);
iR i dmdy ™ d:c’+dy’ Toay e e (1

(&S [(£) () memriy )

du du du d°u du du du d’u
=]92% 0% = —_ = —— ¢ oee (3).
{ dzay"””(a) v {2dxd cos e +(dz) dy’} ®-

Solution by the PROPOSER.

If & = 0 be the rational equation of a conic referred to Cartesian coor-
dinates inclined at an angle , and we move the origin to (, y) a focus,
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using (X, Y) for current coordinates, the equation will become of the
form k(X3+Y2+2XYcosw) = (pX +qY +7)%;
but 4® will become

w+X. 2u—+Y 2“7' +X’{(E) +0g} +Y’{(—) +u—}

du du . d .
+2xY(“dJ+u“dy) 0;

and, making this coincide with the former,
u? = Ar3, “:—3 -Apr, o Agr,

dy
(:—:)’+u$-k(p’—k), (gs)’“c:—;—':-k(q’—k),
:—5%‘+u%-A(M—km~),
whence Ap? = (%‘) ’ u%--Ak Ag? = (‘%) ’ u:-’.';-—u,
T

or the equations for the foci will be
P P 0w T
a3 dyt dz dy’
The equation of two tangents drawn from a point (2y) is
d
40 - (X —d@ +Y'—‘2(y@ +) ,

and the condition for these being at right angles is, if
s (e 019, "I’": 1)}

443 (6452 008 ) = (%")’+ (%’)’-2(%’) (dﬁ’) cosw.

& (¥ du\s K& d%w) .
But a-‘_d(éﬂa {(E) +“7d;*} H
du dPu “du di P,
b (2;) trrdy P dy dmdy
so that the equation becomes

g | (du\3, d¥  (du au du du a*u
4u{(“> +udw2+( )+ il (da:d+“dzdy)}

- 4y? [ du o Py
4y (dx) +4u3 (dy) Bcoouu“—wy,
d’u | d*u a*u .
or 4"'(_"'4?-2“"4—;7)'0'
that is, the equation of the director circle is

d’u a3 2du

8w = 0.,
s dp T Y amay O
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A pair of directrices, the director circle, and the conic, have four common
points ; hence the equation of a pair of parallel directrices will be
A=y d..“+d’“ 2 — i cos w
dz?  dy? dsdy
where A is some constant ; and the two values of A can be most readily
determined by making this equation represent two parallel straight lines.
di du\3% _du
But uz-:-az+hy+y, (‘—:) +ud;-,-a;
B) Y G s
or the equation for the pair of directrices is
A (ax2+ by? + o+ Uy + 292+ 2hzy) = W (6 + b—h 008 w) — (ax + Ay +¢)3
—(Az+by+f) +2(az+hy +g)(hz+dy+f) cosw;
the coefficient of 22 is
ar—a (a+b—2hcos w) +4*+A3—2ah 008w, O aA +A2—abd.
Similarly the coefficient of y2 is A+ A*—ab; and the coefficient of 2zy is
Ah—h (a+b—hcosw) +ah +bh—(ab+ A%) cosw, or A+ (A? —abd)cosw
8o that the equation for A is
(@A—P)? (bA-P) = (Ar—P cos w)?, where P = ab—A3,
or Al—A (a+b—2hcosw) + (ab—A%) sin’e = 0.
Hence, to get the equation of all four directrices, we have to eliminate A
u | du d3u
between the equations A = u (dz’+ & 2“70««)
A=A (a+b—2hcoiw) + (ad—A?) sin'w = 0 ;
d%u du @u ;  dudu d3u
h - (% Lo .
where a (dx) +“dz“’ b= (dy) +“dy" h= dzdy+“dxdy
Hence a+6-2hcosw—A = ('13)’ (d—“)’—2£d—“cos~,

(da)’ JPu_y. du as

dx
and the final equation is

) G e} (B g -]
- (LR () - (E G 5) oo

And this will be found (I hope) to coincide with the given equation,
which I must have obtained in some different way, long forgotten.

7290. (By 8. TeraY, B.A.)—In a given triangle inscribe a rectangle
havmi one nde puallel’ the base, and the perimeter equal to given
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Equations (1), (2), and (3) solve the problem. It is not difficult to
discuss in a similar manner the question in which the weight of tho lever
(homogeneous or not) is considered, and the arms are inclined at any angle.

6925. (By Professor Marz, M.A.)—Solve the equation
s 3\t o 9[2—10R (2—c08?6)]
2 [log (1 + sin? 6)] [1—log (2—cos 0)

Solution by J. HammonDp, M.A. ; Professor Cocurz; and others.
Writing 2 —log (2—cos? §) = 2z, the equation is

@-22) = —2 . or a'A—823+202°—162+4 = 0.
(2z—-1)}
The completion of the square gives (z3—4z+2)? = (1—a*) n‘...‘..‘....(l),
whence s’[l—(l—a‘)’]—iz+2 =0, or z= 2402+2(1-a)]
1—(1—at
But  2+2(1—a%} = [(1+a%)}+(1—a?)}]? = o2, suppose.
Then s 2024a) _ 2 _ 2

4—a’ 2xa  2i(l+ad)li(l—at)} ’
Neglecting the ambiguities, which can be introduced again at plea.suro,
2a

2
=2, log(2—cos?@) = 2—cos?f = zu
= og ( ) = T cos?0 = ¢

2
The simplest form of the final result is sin 8 = (¢***~1)%.

7395. (By R. Tucker, M.A.)—If we have

A= ac®, ba ¢cb? |and A'=

ab®, b3, ca® |,
cos A, cos B, cos C

ace, a?, be
ab, be, a3
$, cos B, cos C
where the elements involved are those of a plane triangle, prove that

= (a*+83+ %) A",

’

Solution by G. G. Morrice, B.A.; J. O'REcAN ; and others.
Putting, in the last row of A, cos A = “i%?, with two similar
substitutions, and then subtracting the first two elements in each column
VOL. XL. - @
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_ 4% (=)} (a2— 227)
whence Area AABC @+ a)i—4c

find this expression to be a maximum when z/3 =

, and by differentiating we
3a%e! + 6a%e3—a?
8¢?

, there-

2
fore the maximum area of the triangle ABC is zj’; A (4a2—383},
]
Again, sin ACB = ?Mﬁ“";xf;’)- - é” (when ¢ = §./6) = sin 60°.

7411, (ByC. Lecvpesporr, M.A.)—8 is the focus, A the vertex, of the
parabola y® = 4az. A conic has double contact with the parabola and also
with the circle on SA as diameter; prove that its director circle will en-
velope the curve y* (162 +25a) = 4 (z +a) (a® + 4ar—42-).

Solution by D. EpwarpEes; R. KNowLes, B.A.; and others.

The equation of a conic having double contact with the curves in
question will be p%*—2u (24 +22—5ar) + (x+3a)3 = 0. Writing down
the equation of a pair of tangcnts from z, y : equating to zcro the sum of
the coeflicients of 2* and g3, the equation of the director circle becomes

(r—1)% (22 +y%) + (u—1) (10az + 44a3) + 16azx + 25a* = 0,
whose envelope is a (6z + 2a)? = (23+y3) (162 + 25a), which reduces to the
stated form. .

7409, (By W.S. M‘Cay, M.A.)—Two circles A, B are inverted from
an origin O into two circles A’, B’; if O be on a polar with respect to A
or B of either of their centres of similitude, prove that after inversion O
will still be on a polar with respect to B’ or A’ of one of their centres of
similitude.

Solution by G. B. MatHEWs, B.A.; KATE GALE ; and others.

Let the circles be  (r—d)?+y2 =12, (z—d®+y? =92 .......... (A, B).
The polar of the origin with regard to (A) is dz = @*—#*; and if this
goes through the centre of similitude

a. 08 _ s pdd = v (r i)

r+vr
therefore  r(r+7) =d(@—d) or B—rP =1 +dd ......c.cvveunnnnnnn (1.
Now, if 3p, ¥'p’ refer to the inverse circles, it is easily seen, geometrically,
S i W S (_’"__L)__’i’f_.
that 8 =1 (d-r + d+r) @ey? p=1 d-r d+r] d&—=r¥’
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than the greatest of the quantities P sin « and Q sin 8, or W greater than

the test of the val 4PQsina 4PQ 8in 8
greatest of the valuos (2+en8)Q-Peina’ (2+sine) P—Qemp’

Let ¢ be the whole time of motion. Then o 3‘7 = {3, 0r fsina = f'8in 8 ;
and, substitating for f and f* their values, viz.,

T—-Psina T—-Qsin 8
g—p —andy Q
we have the required equation.

7417. (By R. Russerr, B.A.)—Show that A}, A, ... A3, can bo found
such that, if a certain invariant relation holds between a), ay ... as,
A(z—a)® + Ap(z—ag)®™ + ... + Apu(r—a2a) " =P(2—a)) (z— a3) .. .(T—@2n).

Solution by G. B. MaTHEWS, B.A.; SArAE MARKS ; and others.
. Since the left-hand side is rational and homogeneous of degree 2sin z,
it is sufficient to make it vanish when z = a, a, ... azs respectively : hence
Ag (=)™ + Az (a3—a3)? +... = 0,
A (ag—a) " +...+ As (ag—ag)?+... = 0;
whence the invariant relation
0 (a—a)™ ... (a;—am)™ | = 0, and the A’s are proportional to
(g—ay)2n 0 ... ... .. first minors of this determinant.
(o3 —ay)?»
1

7407. (By Professor WoLsTeNHOLME, M.A.)—Prove that the three
conics 23+ ay = 4% 2°—y? = az, y*—zy = a3 have three common points
Z___ Y _ —a -z Y e At
Sinjx sinjx 8injx Binjx Sinfx Snjx Sinfw snjx  sinfx’
the other common points of them, taken two and two, being 2 = y = o ;
t=0,y=0;y=0,z=a.

Solution by R. Rawson ; G. B. Maraews, B.A.; and others.
Put z = az, and y = ay, in each conic; then we have
ity =1, zl-yl=2, yi-my=1... ceonnnens (1).
The elimination of x,, y, respectively from the 1st and 2nd, 1st and 3rd,
and 2nd and 3rd conics gives, respectively,

(@—1) @3+ 2,2 22,—1) =0, g (y°+22-y,—1) =0.....(2, 3),
7 (28 +22-22—1)=0, (y,~1) (y3+2y2—y,—1) = 0......(4, 6),
Z3+22-20,—1) = 0, (¥3+2y2~9—1) = Ouueurerenes (6, 7).

VOL. XL. un









65

6870. (By D. Epwarpes.)—A particle under no forces is projected

with velocity V along a rough helix ; prove that it makes the first » com-
. . . a . .

plete revolutions in the time iVooa (e%n=cose—1), a being the pitch of

the screw, and a radius of cylinder upon which the helix could be drawn.

Solution by G. M. Rerves, M.A. ; Sarau Marks; and others.

If  be normal pressure and uk the friction, we get (mass of particle
being unity)

] . doy3 %
a;i?.ta.na=-—p.ksma, and a(z) =k;
a0 [do\? .
therefore E‘l‘ (ﬁ) "-.#0080»
0, -

1
therefore  — @ = C—pucosa.t,

dt

a .. @ _Vecosa: ..,
C “Voma @~ e initially ;

y

1 a dt _a+uVcosla.t
therefore —— = + g 9t _a+pVeosla.t,
orelore dg  Vcosa neose-5 26 Vcosa '

dt
therefore ! .log (a+uVcos?a.t) = 0+C.

nCo8a

log a

Taking 6 = 0, when ¢ =0, C= y
JCOB

log(a+uVecos®a.t) = pcosa.0+loga, 1+ M.t-cﬂm‘-';

=8 (ertcosa_
therefore t Voor'a (e» )
and time of describing the angle 2nx is
8 (2nwcose_1),
uV cos? a G )

7276. (By S. Tesay, B.A.)—A snbstance P, suspended from one
extremity of a lever, is balanced by a weight Q at the other end, or by a
weight Q' from a second fulcrum : find P, and show that there are two
values (P, P’) such that PP'= QQ’; also, if & be the length of the lever,
and 4 /p the distance between the two fulcrums,

Q=(p—-12mi-n?, Q = (p+1)?m?-n? P = (pmxn)’—m?;
m, n being any integers prime to one another.



67

Solution by R. Kxowres, B.A.; E.J. HeNcRIE; and others.
The points A’, B/, ¢’ are evidently the mid-points of EF, FD, DE;
therefore AA’B'C’ = $ADFE = } (ODE + ODF + OFE)
= 4r*(sin A + 8in B +8in C) = }r2 cos A cos § B cos }C.

7408. (By the Eprror.)—If a portion of the parabola y? = 4az cut off
by the terminal ordinate ¢, revolve around the tangent at the vertex,
show that the volumes of (1) the solid thus generated, and (2)the greatest

: x & 16w &
cylinder that can be cut therefrom, are 10 2 3125 &

Solution by G. B, Matuews, M.A. ; Prof. Marz, M.A.; and others.
—2watdy = = pay= "

1. Volume 2 Jo w23dy 82 Joy‘ dy 108%
2. Constructing a cylinder as in figure, its volume

=xzte—y) = — 4 (c—);

1642
making this a maximum, we have 3(4c—5y) =0,
whence y =4

x 44 & 16x &

d vol - 8 4 16x &
and votume T6a " 5 3125 &

5682. (By E. W. Symons.)—A series of triangles are inscribed in an
ellipse so that their orthocentres coincide with the centre of the ellipse ;
find (1) the locus of their centroids; and (2) prove that the normals at the
vertices generally meet in a point.

Solution by D. Epwarves; J. A. KeavLy, M.A. ; and others.

Let a, B, v be the excentric angles of the corners of one such triangle;
then, since the perpendicular through a to the chord through B, ¥ passes
through the centre, we have 52sin a = a?tan } (8 +7) cos a,

similarly b*sin B = a*tan § (y +a)cos B....... cerreeeierenens (A);
whence, dividing and reducing,
sin § (a—B) [sin (a + B) +8in (B +) +8in (y+a)] = 0;
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7405. (By Professor Towwnsenp, F.R.8.) — The rectangular co-
ordinates (,, v,) of & variable point P,, in a fixed plane, being supposed
connected with those (zg, y3) of another point Py, in the same or in another
plane, by a relation of the form f(r,+14y,, #3+4ys) = 0, where fis the
representative of any function.

(1) If P, describe a curve of small magnitude in its plane, show that
P, will describe a curve of similar form in its plane.

(2) If P, and P; be the stercographic projections, of a variable point P
ona fixed sphere, upon the planes of the great circles of which any two
arbitrary centres of projection O, and O, on the sphere are the poles : show
that (r, y,) and (23, ¥;) are connected as in (1), and determine the
form of f corresponding to the case.

Solution by G. B. Matuews, B.A.; Profussor Nasu, M.A. ; and others.

LIf z =z +1iy,, z9=xg+1y,, Wehave

LIy dz, + LI . dzg = 0, for small variations.
8z, 3z

Hence dz, ¢ dzg = — ¥, i, aratiodepending only onthe P
LI pe y

valuesof z,, z, ; therefore, supposing Py, P, in the same plane,
and P/, Py’ any consecutive positions, the complex (quaternion)

ratio -i'% = constant for small displacements ; hence P,/, Py A

describia :imilar small curves.

2. Take CO, for axis of 7, 0,CO, for plane of yz,
and let ¢, 7, ¢ be the coordinates of P where
E+7?+(*=1; then the line O,P is

z _y _z-1,

€ (U
hence, putting z = 0, we get

I =1
£ 1_() N i—¢
Biq? _ 1-0 _1+¢
a-¢p 1-¢2 1-¢
S4yi—1 2
h nty—1 - —2
whenee ¢ zl+yi+ 1 1-¢ z3+y?+1
2z, 2
also =—1 —
¢ g+l 1T aptyiel
If £0,CO4 = a, we get
zy= ¢ = 2z,
1—({cosa—nsina) (2*+y,®+1)+ 2y 8ina— (23 +y,>~1) cosa
= z)
(=2 +y,2) sin? $a + 2y, sin 4a cos }a + cos? a
= Z
)3 8in? a + (y,8in 4a + cos ja)?’
VOL. XL. I

Hence we have z2+y,2 =
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+_ _(sinatncosa _ _ (r'+y’-1)sina+2y cosa
Y1 [ (Covsa—vnsing) 22,7 8in® fa+ 2 (v, 8in fa + cos a)?
o (m2+y2—1)sin {acos {a+ y,/cos® {a - sin® {a),
23si0® ja + (¥, 8in da +cos {a)* '
e, (cos*}a + sind{a) + iy, (cos?ja—sin?}e) + i(x,3 + ¥;2—1'sintocnela

£3+1yy =

[(x) +iy,) 8in fa + i cos §a] [(+)—iy)) sin ja—4 cos {a]

).

_ iz +iy)cosa+sinia _ .
(@, + 1)) 8in §a + 3 cos §a flae

This may be con-
firmed by geometry;
thus, let a small curve
o be described about P
on the sphere, and let
o, be its projection on
the plane AB.

Then the planes of
o, 0,are ultimatelyper- 8\ _ A
pendicular to CP, CO,
and are therefore equally inclined to OPP,, the axis of the slender cone
O (0); hence the curves o, o, are ultimately similar; so for the curves o, o ;
therefore ¢y, o3 are ultimately similar, so that, if 2, = 1, + iy, =Xy + iy,

£, varies continuously with z,, and the limit of # is independent of the
direction of dz; ; therefore &c. LS

7440, (By W.J. C. SHArP, M.A.)—Prove that (1) the tangents to

e nine-point circle of a triangle, at the points where it meets either side,
make angles with that side equal to the difference of the angles adjacent
to the side; and (2) the tangent at the middle point makes angles with
the other sides which are equal to the opposite angles of the triangle.

Solution by G. HeppeL, M.A.; SARAH MARKS; and otAers.

1. If AD be the perpendicular from A on BC, then, with D as origin

and BC as axis of r, the equation to the nine-point circle is
22+y2—Rsin (B—C)z—Rcos (B—C)y =0;

hence the tangent at the origin is R sin (B—C) z+Rcos (B—C) y = 0.

2. The tangent at the middle point also makes an angle equal to (B—C)
with the axis of z, and therefore an angle C with AB.

[If O be the centre of the nine-point circle, and M the middle point of
BC, the angle made with BC by the tangent at either D or M is

,;n-n2;1;m = sin-1 bc“(?zgmB =B~ C, which proves (1), and (2)

follows as above. ]
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7355, (By Professor Seitz, M.A.)—If P, Q, R be thrce consecutive
vertices of a regular polygon of » sides and area 4, and AB the diameter
of the circumscribing circle, and if a triangle be formed by joining three
random points on the surface of the polygon: prove that the respective
averages of the (1) area and (2) square of area of the triangle are

w2 (20) + (72) -0} zmt2(30)" (3R)-1)-
6348 & 6985. (By W. 8. B. WooLnousg, F.R.A.8.)—If five points

taken at random on the surface of a regular polygon of n sides, prove
(1) that the probabilities that they will be the corners of a (1) convex,

(2) regular pentagon, are respectively
C1-3 (a6 (ABY_ (ABY'_ 1o} o gs
n=t-ga{s(52) - (2a) 18} = vem10ivs

Solution by Professor E. B. Sgrrz, M.A.

(7365). 1. Let

CDE..IK...PQR...
be the regular polygon, O its
centre, and OH its apothegm.

Let a3 be the average area of
the triangle when L, one of the
points, is taken at random in the
perimeter of the polygon, and M,

N, the other two points, are taken
at random on the surface.

Let OH=a, CD =3, and z=the
apothegm of a regular polygon of
n sides, whose centre is O, and
whose sides are parallel to those
of the given polygon. Then, if
L be taken in the perimeter of
this polygon, and M, N on its sur-
face, the average area of LMN will be a2 +4?, and we have

_ % Aq2? (ﬁ’)’(mx) a(Ax*)’(nu) _
A v\ @ " dz +Jo - - dz = §4;.

Let the polygon be divided into triangles by drawing lines from L to
all the vertices; and let LIK and LPQ be the ¢h and (r+ ¢)t® triangles
respectively ; and let S, F be the middle points of IK, PQ; G, F the
centres of gravity of LIK, LPQ; HL =y, and £/COH = 6 = x+#; then

LHSI = £ SHD = t9, HS = 2asin ¢4,
area HIK = {HS . IK sin HSI = assin?¢0,
area LIK =HIK (HS — 2LH cos SHD) + HS =3 sin ¢ (a sin ¢6— y cos ¢6),
area LPQ = ssin (r +¢) 0 [a sin (r +¢) 6—y cos (r + ¢) 6],
area LGF =4LST =4asin r0 [2a sin ¢@sin (r-+£) 6 —y sin (r + 2¢) 6].

If M, N be taken in the triangle LIK, the average area of LMN will be
$7rLIK (see WiLL1aMsON’s Integral Caleulus, p. 321), and while L ranges
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produced, so that OL . OP = square on the radius of the circumscribed circle,
ad AP BP _CP_OP_ R _ 1

AL"BLTCL™ R ~OL  (1-8cos A cos BoosC)!
Hence the points will be fixed for all triangles inscribed in the same circle
and having the same centroid.

Solution by the PrRoPoSER.

1. The second point (P) whose distances from A, B, O are as
cosA : cosB : cos C (one such point being L, the centre of perpendwulau)
lies in GL produced (G being the centroid), so that

GP:GL = 1+4cos Acos BcosC :1-8cosA cosBcosC.
If (z, 4, z) be areal coordinates of P, we have
PA? = —ayz+ 8% (y + 2) + Py (y + 2) = 632 + Sy + 2bc cos A yz,
B2+ 52 + 2bccos A yz a2+ 4%+ 2ea cosBzz  a%y? + B322 + 2abcos Cry
cos? A = cos: B = cos? C .
But 8222+ 6%? + 2bc cos A yz
= (z+y+2) %2+ 3Y)— (ayz + b2z + Pry) = b2 + Py -8,
b2+c—8 ctr+a%—8 'y +b%r—8
co*A | s B cosC
whence  (cos? B—cos? C) (4% + ¢%y) + (cos? C—cos? A)(c3z + a%)
+ (cos? A —cos? B) (a3y + b%) = 0,
or the point lies on G'L. Let then 2z =A+utanA, y=A+putanB,
‘o:GAL +putan C, which for proper values of A, u represent any point

Substituting these in any single equation, the term involving u? dis-

appears, and (taking the first equation) we get
A [(26%+ 2¢2— %) cos? B — (2¢2 + 2a2— 8%) cos? A]
+2u {[b'tanC+c’tanB+6ccosA (tan B + tan C)] cos? B

—[c*tan A +a2tan C + ca sin? B (tan C + tan A)] cos’A} -0,

or A (2 sin? C—cos? B —cos? A — cos® B + 8in%A)
+2u [sin C cos C—tan C (cos? B—sin? A)] = 0,

or A[3~2 (cos? A + cos? B + cos? C)] + 2u tan C (cos? C —cos? B +5in? A) = 0,
or A(l+4cosAcosBcosC)+2utanC.28in AsinBcosC = 0,

or y

or A (1+4cosAcosBcosC)+4usin Asin Bsin C = 0.
But the point divides GL in the ratio utan Atan BtanC : 3a,
or GP :PL =1+4cosA cosBcosC: —12cos A cos BcosC,

whence GP :GL =1+4cosAcosBcosC;:1—8cos AcosBcosC,
or, if O be the centre of the circumscribed circle,
OL = OP (1—8 cos A cos B cos C).

But OL? = R?(1—8cos A cos B cos C), whence OP .OL =R? or P, L
are reciprocal points with respect to the circumscribed circle (whlch
st;ggests that there must be a much simpler proof from some other point
of view)
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Let g, g, be the accelerating forces at Q produced by A, A,; then,
since accelerating forces are proportional to the moving forces,
.!L = ﬁ = l)—" - LDL. ELT T PYY YT
s AT D from (3), therefore g, > (4).
If g, 4y be the accelerating forces of A,, A, at a unit distance from O,
where A, is the attractive force of the (Earth,), we have

3, 2

k=gl = ’—‘—l;’),“’. "= LJ—I;):‘ ................. (5, 6).

If, however, Q be on the surface of the (Earth), then 2a = D, and

§=327%; hence (5) and (6) become

3 3

P I Lol J— wee(T, 8).

Again, if O, P be the initial positions of (Earth,), (Earth,) respectively,

aud 0, P’ their positions at the end of (¢) seconds; and we put OP =8,

00’'= z, OP'= y, the dynamical equations of motion are

S__m By u Ply-2) __ ptn

Rl T whence 4= (y_z)a...(sa,xo,u).

This equation, as integrated by Earnsuaw, pp. 73, 74, is as follows :—

8 i a2(w-2)

t= - - | . 1 ...(12).

(i) {#8r+ =28y + 2 —averst ZEZD (1)

If we say that the spheres come together when they touch, then

y-z=4(D,;+D,;), and if we further take D; = D; = 1, then (12) be-

comes t= (];—B)' { } (Bx) + (8— 1)1 —48 vers-! -% } ........... (13).

When 8 = 4§ feet, this formula gives for (¢) the value 150-91 seconds.
:h;‘ifresnltmso wide apart from a month that I am afraid of having
e a slip.
By integrating (11) the velocity of approach is readily seen to be

9 U NS O O GO, SRR L
R+ w] y-z p} {7912'4“5280”9} 000126 nearly,

in the case here considered.

7448, (By D. E»pwarbes.)—If a rectangular hyperbola pass through
the centre of the ellipse b3r?+ a%y? = a%4?, touch it at a point P, whose
eccentric angle is a, and intersect it in Q, R ; prove that tangents to the
ellipse at Q, R intersect on the straight line

Bz cosa+ aby sin a + ab (a?+ 4%) = 0.

Solution by R. E. 8prrAD, M.A. ; MarcARET T. MEYER ; and others.

Let the tangents at Q, R intersect at T (¢, ) ; then the equation to
any conic passing through Q, R, and touching the ellipse at the point (a),
18 a2+ 5%23 -6 + A (a%n + 6°2E —a)? (ay sina + bz cosa—ad) = 0;
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Solution by the Proroser ; Prof. Nasu, M.A. ; and others.

o (a-8)'+ (=2 = 58 —an and (a—pp(y-#) = 2+ 2],
where A is & root of (az)¥ -1 (az) + 2J,
16H 41 247 \
the roots of y’—y (—a’—' et ‘A) + ; + .GTA = (0 are (u—B,’, (1-8)’.
Hence the result of eliminating A between this equation and
(@AP=T(ar) +2J = O.coevveeereeeierisinrnnnnnnns 1)
must be the equation of differences. Now we may write the above
, o (LB, 1), 6
equation ;\,q/+(4 = T 7\+aJ 0.

Conbining this with (2), we get
SA’—Ay—(ﬁ-ﬂ+4—I) =0,

4 a a?
(¥ _4Hy _1_) (-I. G_J)_i’_-’ -
and X ( 4 p + ps +A Al ] aay 0.

Eliminate A and A% and we get the required result.

6990. (By J. Haummoxp, M.A.)—Referring to Professor CAYLEY'S
Question 5244, prove that the 16 nodes lie by sixes on sixteen conics, that
six of these conics intersect at each node, and that four conicoids may be
found, each of which passes through four of the conics and twelve of the
nodes, the tetrahedron of reference being self-conjugate with respect to
all four of the conicoids.

Solution by the Prorosen ; Saran Manks; and others.

The sixteen conics are the conics of contact of the sixteen singular tan-
gents, and the four conicoids are
Az?+ By?+ C22+Du? = 0, Ay*+Br?+ Cw2+D:2 = 0...... Q, 2),
Az?2+Bu?+C22+ Dy’ = 0, Aw?+B:z2+Cy?+Ds® = 0...... (3, 4).
For, by the solution to Question 5244,
AB?+Ba?+C32+Dy? = 0, Ay +B3?+ Ca?+DB2 = 0,
A%? + B2+ Cg2+ Da* = 0.

If now we denote the nodes by a,, as, a3, ay, by, by, bs, by, ¢y, €3, €5, ¢4,
dy, dy, d3, d,, the order in Quest. 5244 being preserved, and the conics of
contact of the singular tangents by A,, Ay, &c, then it is evident, from
the reduced form of the equation to the surface, that

Ay, Ay Ay, A and the twelve nodes b, ¢, d lie on (1),
B,, B, B;, By ”» ” edya 4 (2,
Cli C‘.h Ca: 04 ’” 1 2] d’ @, 14 ” (3)>
Dl' D&’ Dl’ Dl 11 ” @y b) € (4) )
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mean scope ; then ‘—;é =z, whence x=s/a_b; consequently, to find the

entire value of a piece, we multiply its value as an agent of attack by its
mean scope, and take the square-root of the product. This gives the
following results :—

Value in Mean sccpe .

Ni;‘ir;‘:ed offensive under average gﬁfﬁ?
' capacity. conditions. :

10-00 10:0 10-00

5-68 60 5-84

312 4-0 353

2-78 30 2:89

0-25 1-0 C:50

But we have not taken into account the possibility of the pawn reaching
the last row of squares and becoming a queen ; and it is the difficulty of
determining the value attaching to this possibility that renders the pawn,
a8 we have before intimated, so unfit to {: a standard by comparison with
which to reckon the values of the other pieces. To gueen a pawn is a
matter of such infrequency, that it seems at first sight scarcely fair to
introduce it as a modifying circumstance. On casually opening
SraunToN’s Chess-Player’s Handbook, out of 24 games examined, only two
contain an instance of the kind. In one of these, moreover, the pawn’s
aggrandisement is followed by instant defeat. And, even supposing that
it occurs on the average once in every ten games, this is one pawn out
of sixteen becoming queen once in ten games; and, supposing that the
promoted pawn enters into the play during a fifth of the game, the mean
value of the pawn will only be advanced from 0-56 to'0-512. Ifif occurred
once in every game, and the promoted pawn played as queen during four-
tifths of the game, the mean value of the pawn would not be doubled.
At the same time, there can be no doubt that, although the probability of
the pawn’s aggrandisement is small, the possibility alone makes attention
to the adverse pawns imperative, and lends a value to these humble
agents which they would not otherwise possess. It may mnot seem un-
reasonable, therefore, to raise their mean value from -5 to *76. But this
is quite arbitrary.

‘We have now accomplished the task we took in hand, and it remains
only to expressa wish that ere long some means may be devised of ac-
curately registering the progress made during a game of chess. We can
score in cricket and tennis and billiards, and positively tell what are good
and bad hits ; but the progress made in chess, except in so far as the
capture of pieces is concerned, is in many iunstances a matter of the barest

- conjecture, until the final check puts an end to doubt.

Now, the mean scope of the several pieces, and the average effect they
produce on the adverse king’s movements, have largely entered as factors
inte the computation of their mean value. It is reasonable, therefore, to
believe that in their actual scope at any time, and the actual command
they have over the adverse king’s squares, will be found the true solution
of the difficulty, care being taken not to neglect the question of defence
meantime.
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Since writing the above, I have had the advantage of examining, at the
Reading Room of the British Muscum, several works on the subject of my
paper, of which Mr. MiLLER has been kind enough to make a brief cata-
logue for my use. The chief of these are PraTT’s or PHILIDOR’S Chess
Studies, and ToMLINSON'S Awmusements in Chess, the latter being little
better in this particular than a reprint of the former. In fact, PuiLipor
appears to have been the pioncer in invest'gations of this sort, and
TouLivsoN and StavnToN have copied his results verbatim. The book I
saw bore date 1817, and gave the values of the picces as follows :—

Pawn 1:00, Knight 3-05, Bishop 3.50, Rook 5°48, Queen 9.94.

Inthe Westminster Chess Club Papers for July, 1876, Mr. Peirce, a
correspondent, gives the following résumé of ToMLINSuN'S treatment of
the question (which I find to be a copy of PuiLivor’s) :—(1) Average
power to move over open board. (2) Power of preventing picces occupy-
Ing any square in a particular line (about miudle of game). Relutive
power of commanding squares. (3) Power in choosing what point to
select as a position of attack. (4) Power to compel rcmoval of assailed
piece. (5) Power in giving mate.

Mr. PeircE points out that the various results are added to arrive at the
fina] average. I am glad I had not seen the investigations of PuiLivor
or Toxrixsox before making my own indcpendent calculations.

7458, (By Professor WorsteExnoLME, M.A., D.8c.)—If « = 0 be the
Tutional equation of a quadric referred to rectangular axes, prove that the
lucus of the point of concurrence of three tangent liues, at right angles to
@ud aret @b
—_— 4+ — + — = 0.
dur? dy? dz*

[The corresponding equation when the coordinate axes are inclined at

a2t Attt arud d ot
angles a, B, v is it e tog = 2cos a 7{;++]

each other two and two, is

Solution by G. B. Maruews, B.A.; T. Woobcock, B.A.; and others.
bt = Yu-1d,u, LT du 18 u— &,‘—2 Beu? = 4—1—2 [2u8:', u—(8:%)%],
u
and similarly for G:u*, 52u}; thus, ifu= (abcn’fgklmnizyzl )? 8o that
: u =2a, b,u=ar+hy+gzrl, &c.,
the equation 2! becomes in its rational form
4 (a+b+c)u—(3zu)"—(3,u)*— (3, %)2 =0...... crerene wne(1).
Now the tangent cone from (¢, n, ¢) to the quadric may be written
4 (abe ... Jn€1)? u— {28 u+y8,u +2Bu+..J* = 0,

and, if this have three geunerators at right angles, the sum of coefficients of
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" Solutions by (1) the Proroskr, (2) G. Herrer, M.A., and oggers.

1. In the former curve r =
when § =a or x—a, and, taking

1 ] d
$= the value of d—:, when

fnf=gnag is —

— ; whence 9 A
asing
the asymptotes are as stated, and
the curve is of the form in Fig. 1;
abeing taken between 0 and i,
0 the origin and OA =a. The Fig. 1.

du .
wtualvalueofﬁ is
l_(_“_sinogsina-sino));

¢ging cos?
and, although the second term
erally = 0 when sin 8 = sin a,
is is not the case when a =}, c -}
its limit then, when 6 =a (or A

*~a), being }, so that 5‘3‘ is then

_214’ and the asymptote -
rcos 0 = 2a.

The discrepancy thus arises from Fig. 2.

neglecting to consider this term.

At the same time, it seems singular that, if we suppose a to change
gradually from a value <}« to a value the supplement of the former, the
asymptotes should, as a passes through i, take a sudden leap from A to
B(Fig. 2), and back again; which they must do, since the curve is the
same for x —a as for a.

1t should be noticed that, when a =4, part of the locus of the equation
7 (sin a—8in 6) = a 8in a cos  is the straight line § = }x, drawn through
0 at right angles to OAB.

2. Assuming the results to have been verified, let a line parallel to the
axis of z, and at a distance y from it, have a portion ¢ intercepted be-
tween the first curve and its asymptote.

Then ¢=g—a—ycota = rcos0—a—rsin 0 cot a,
therefore r (cos0—sinbcota) =a+o¢;
therefore sina—sin® _ asinacosd,
cos@—sinf cota at+e '
whence we obtain omgBini(a—0)sing
: cos § (a+6)

Now, if a have any value less than }x, 6 = a gives ¢ = 0, as it should do.
But, if @ = }x, then ¢ = asin 6, and then, if 6=4r, 0 =a. Hence we are
led to conclade that, if two intersecting asymptotes tend to coincide in
consequence of the variation of some element, it does not follow that the
single asymptote produced by this coincidence will pass through the point
of intersection. Here the two, gradually closing like a pair of scissors,
seem at the moment of closing to jump together to another position.
VOL. XL. N
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one from circumcentre = distance of first B-point in other from circum-
centre. Therefore in any triangle the two B-points will be at same
distance from circumcentre, therefore HO = H(’, therefore OO’ is per-
peadicular to, and bisected by, HP.

41, (ByR. RusszLz, B.A.)—If from a point (z,, ¥,) four normals

be drawn to % + %—1 =0, prove that (1) the equation of the conic
going through z,, y,, and the four centres of curvature on the normals, is

a’.c;’+b’y"+01"’ - ﬁﬁ’z—'—'l"y—c‘ =0;
i Ty %
and (2) if &® = 1, the discriminant of this is
(a%2,% + 82y,3— cb) (682,20 + B2y 3w?— c4) (a’7%w? + By 2w —cb).

Solution by E. W. Symons, M.A. ; R. W. Hoga, B.A.; and others.

The four centres of curvature are the four points of contact of the tan-
gents from (), y,) to the evolute whose equation is (az)} + (by)t = o, or
rationally (a32% + b%2 — )3 + 27a%b7cAey? = O...ovvvennennnnns (L.
Also the equation of a tangent to the evolute at (z, y) is

okt +Iﬁ' = ¢l (f n being current coordinates).
z‘ y“

If this tangent pass through (z;, v,), we have
do oty _ 4
a} 3
or, rationally, (a%r,3y + 6% 3z — cAry)3 + 27a%B%cA 2 3y B 2%y? = O............ (2).

(1) and (2) are then two curves passing through the four centres of cur-
vature. Multiplying (1) by z,3y,3 and subtracting (2), we got, after ex-
tracting the cube root, z,y, (a2? + 63y?— ct) = a2r 3y + b2y,3z— *ry; aconio
through the centres of curvature, and which is obviously the conic re-
quired for its equation is also satisfied by (z,, ¥,). Its discriminant is
—aBAp By + } a?bAr Py B -} alr Ty, — § 052,y + } Mgy,

= - } 21y, (a2)8 + 859,85 — 012 + 3a2b3cAr 3 y)?)
=- } 2y, (%22 + B3y, 2 —cb) (aPr 2w + 6% 300 — o) (6%, 2 0 + % 2w —¢t)
if w¥=1.

[If 6 be the eccentric angle of one of the feet of normals from (', ¥’),
we have a’zsin p —by cosp—c?sinp cos ¢ = 0,
+". a%/3 gind ¢ — B3y’ cosd ¢ — ¢b sin3 ¢ cos® ¢ — 3abe’r’y sin%p c0s* ¢ = 0 ;
but sinf¢ 4+ cos’¢ = 1—3sin?¢ cos?¢;

hence, substituting z = %cos’ ¢, y=— ‘c;_ sind ¢,
We have the equation in (1), whose discriminant is that stated in (2).]
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Solution by the ProPosEr.

Let a, 5, ¢ be the sides of the evanescent triangle formed by the three
straight lines ; p,, pg, p3 the radii of curvature of their envelopes, then

ap, +bpgtepy = 0.enninnirnireniiniineniennnanne (1).
The equation to an epieycloid is of the form p = Asin (aw+8). Let the
two be = A, 8in (aw + 8)), p; = Agsin (aw + B;).

Bubstituting in (1), we find for the envelope of the third side

p3 = — B, sin (aw + B,) — By sin (aw + By) = Aysin (aw + B;),
if B, cospB;+ B;cosBy =— Ay cos By, B,sin g, +B,sin B, = — A,sin 8.
This proves the property.

Consider a special case. Take two consecutive tangents to the same
epicycloid ; the envelope of the line bisecting the angle between them
is the evolute of the curve. Hence the evolute of a cycloidal curve is a
similar curve.

[Mr. WiLL1AMS0N has shown (Reprint, Vol. xxxiii., p. 87, and Vol. xxxvi.,
p. 63) that if two sides of a triangle moving in a plane envelop in-
volutes of a circle, the third will also. This, of course, holds for any
involute : the »t involute is defined by

% = constant = £;
and from ap, +bpy +cpy = 24 we get
T P P
adw"+' a‘“4-4:",‘”“ 0;
whence, if two of the terms are constant, the third is also. Similarly, the
ntt involute of an epicycloid is defined by d“—"” p=Asin (aw+B). And
'

we see that if two sides onvelope such curves, the third will also. The
equiangular spiral p = Ae= has the same property.]

7452, (By G. B. Maruews, B.A.)—Prove that (1) if A’, B/, C’
divide the sides BC, CA, AB of the triangle ABC so that BA’: A’C =
(B : B’A = AC’ : C'B = m : n, the area of the triangle A”B”C” inclosed
by AA’, BB’, CC’ is (m—n)? [ (m®+mn +n%) A ABC, and

(2) B“C" : AA’ =C"A” : BB’ = A”B" : CC' = m2 ~ n? : m? + mn + 02,

Solution by A. MARTIN, B.A. ; Marcarer T. MEYER; and others.
1. Taking AC, AB as axes, and putting 13
LCAB = w, 4,
the equations of AA’, BB/, CC’ are P

_mh =z g/(m-t-n)=l z(m+»)+l=1,
_ncx’ c+ on ! me b A [ ]
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6983. (By Professor Hapamarp.) — 8i m et » sont deux nombres
entiers dont la somme, augmentée de 1, donne un nombre premier, on a

min!=M.de(m+n+l) £ 1.

Solution by the ProPosEr.
En effet, soit m+ 7% +1 = p. Le théoréme de Wilson donne :
(p-1)! =M.dep—1; mais(p—-1)!=(p=-2)! (p-1),

ot évidemment p—1=M.dep-1.
En retranchant membre & membre ces deux égalités, on obtient :

[(p—2)! =1](p=1) = M.de p.
Mais p est premier avec p—1. Donc (p—2)! = M.dep+1. Multiplions
cette égalité par 2 et ajoutons-lui I'égulité p—2 = M .de p—~2, en remar-
quantque (p—2)! =(p—3)! (»p—2>. Nousavons: 2 (p—3)! =M .dep—1.
De méme remplagons (»—3)! par (p—4)! (p—3); multiplions par 3 et
reiranchons p—3 = M.de p—3; nousavons: 2.3(p—4)! = M.dep+1;
et en général : (k=1)! (p-k)!=M.dep % 1.

Pour démontrer cette loi, comme elle a été vérifiée pour k=2, k=3, k=4,
il suffit de montrer que, si elle existe pour une valeur de k, elle existe pour

Ia valeur immédiatement supérieure. Soit donc
(k-1)!(p-k)!=M.dep 1,

on (k=1)![p—(k+1)]! (p—k) = M.dep £ 1.
Multiplions par k et ajoutons ou retranchons p — ¥ = M.de p — k. Nousavons
(k-1)k..., ou {k[(A+1)—1]! [p—(k+1)]! £ 1} (p~k) =M .dep,
ou, puisque p est premier avec (p—£k):

[(F+1)=1]![p=(k+1)]! = M.dep F 1,)
ce qui démontre la Ioi,

Pourk = p—m = n+1, la formule devient #n!m! = M .dep 4 1.

-

6737. (By Professor TownNsenp, F.R.S.)—In the irrotational strain
of an incompressible substance in a tridimensional space, if the equi-
Potential surfaces of the strain be a system of confocal ellipsoids in the
space, determine the form of the potential ¢ of the strain as a function of

the parameter A of the system.

Solution by the PROPOSER.

The circumstance of the incompressibility of the substance, from which
it follows that for every displacement filament of the strain the product of
the displacement into the transverse area is constant throughout the entire
extent of the filament, enables us to determine the required form very

readily as follows..
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7298, (By Captain MacManow, R.A.)—Verify that the equation
(A+3Bz+3Cz? + Da) (A + 3By + 3Cy? + Dy®) (A + 3Bz + 3Cs? + Ds?)
= [A+B(z+y+5)+C (ys + 52+ 2y) + Days)
leads to the differential relation
dz +£L+___.d‘__...-
(A+3Br4+3Ca*+Da¥)t  (..)} (A +3Bz+3Ce?2+ D}

1. Solution by the ProPOSER.
Writing the equation XYZ = P3, and differentiating logarithmically,

we have

l aX 1dY 1 dZ dP

S R LA P{adz+—- dy+—dz}
r( —-—XdP)dz-!-(iP-———Y d +(§P—-Z )dz-O.

Now, if X~Ydz+Y—tdy+Z-1dz = 0, we should have
Y{;Pz-xz’}'- X{*P ‘;Y Y“P} -0;
expanding the left-hand side, and multiplying out, it is found to be
(XYZ-P) (z—y) [ 3(B*— AC)*—3 (B*~ AC) (AD - BC) (z +)
+{(AD- BC?)—(B?-AC)(C?—BD)} (+* + 3% + { (AD-BC)s
+8 (B2—AC)(C*—BD) } zy —3 (AD~BC)(C*—BD) zy (z +y)

+3(C*-BDy %],
which vanishes, and completes the verification.

II. Solution by G. B. MaTHEWS, B.A.

Consider the curve
Sf=y*—(A23+3Bz?'+3Cz+D) = 0.

Corresponding to this, we have the Abelian function

J’ dz - dz or j‘g - j dx
F@ I3 )y Jase )t
The differential relation is
dny dzy | S
\’ 0

+ +

(Az2+.. ) (Azp+.)Y  Azd+.

and correspondmg to this we have the integral relat:on expressing that
the points (1, 2, 3) lie in a line, viz.,

(#2—23) 41 + (23— 1) Y+ (11 —2,) y3 = 0,

or (2a—25) (A2 + ..V 4 (73 —2) (Azd+.. ) +... = 0.
This is of the form P+ Q'+ R =,
or, rationalized, (P+Q+R)®=27PQR ........ s wreeene(a)y
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tnd the plane touches along the conic z+y+se 0, sy—y( = 0; and
smilarly for the next three planes. Again, if az+ by +os = 0, by the
second identity f¥ + gn + A = 0, and 2§ = afag = (by + cz) (99 + A(), and g)
dues o [(by +cz) (gn + h() — (yn +2€)]* = dyen(, or (cgen—bhyC)® = 0 by
the given conditions ; and therefore the plane az + 8y + ez = 0 touches (1)
dlong the conic az + by + ¢z = 0, cgzn—bhy{ = 0; and similarly the planes
ign+ez =0, fF+by +c2 =0, ar+by+ h{ = 0 touch along conics, the
equations to which may be derived from the above.

z y o0t
Ifm+—-——l_ca+———l_ab 0, it is easy to show that

siyio= (b-9U=t){~(@-5 L +(—a) £}

te=a)1—ca) { ~=0) £ +(@-0) £}

: (a—b)(1 —ab) { —(c—a) .ﬁ_ +0-9 1 } ;

and therefore
sgiynis=a(=o)(1=b){ ~(a=5) 1 ¢ (c-a)g |

18(e=) (1=ca) { ~(0—0) 2 +@-}2}

: 0(6—5)(1—a6)'{ —(0—a)% +(b—c)%§ g.,

or A(—Z+Y):B(-X+Z):C(-Y+X), where A+B+C =0;
therefore the equation to the surface is

[A(Y-2)1+[B(Z-X)]'+[CX-T)]!=0,
therefore A (Y—Z)+B(Z-X)+2[AB(Y-Z)(Z-X)]' = C(X-Y);
<. —=(B+C)X+(A+C)Y—(A-B)Z+2[AB(Y-Z)(Z-X)}' =0,
or A(X-2)+B(Z-Y)+2[AB(Y-Z)Z-X)}! =0,

. and the plane touches along
[AX-Z)P+[B(Z-Y)} =0 or AX+BY+CZ=0;

thatis, a(-0)1=8)2% +5 (c—a)(1-e2) & 4o(a—8)(1-a5) & =0,

& conic. And similarly in the case of the last plane.
[Mr. SnarP remarks that he does not see why Professor CAYLRY has not
he si z _1]_ — =
reckoned the six planes p— tiT=t g o,
z_ .1, £ S e,

i—gpticaati-a ™" ik ' 1—ptizgr

N SN A 2 . . € _o
Cetim i ~" —aticati-e"

X S A S ind.
—u* l—j‘h+l—- 7 0, as tangent planes of fhe same kind.] .
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" In (3) substitute v = v, I w dz, where (v,) i8 a particular solution of (3),

dw dy d, e-'r e
then 'm+2v—l7lz+3yl—";|;+Q,=0, or w-Tyl’_ ......... 4).
-1 Q.dz
Since v, and v, je - @« are each particular solutions of (3), it follows,
Y)* Qi
therefore, that y,, y,It‘l dz, y, [ { v, ji e iz } dr are each particular
v 1 J1

solutions of (A). In (1) substitute Y, I Vdz, where Y, is a particular
solution of (1), then particular solutions of (1) are given by

frd=

e
Y, Y, J—?i— dr.
1

d',/ I Rdz

dy
P =08 0 cesesssccsssssesescsians ‘
i +Py =cs (6",

Instead of (2) tuake -=+DP,
dua?
where R is a function of z, and in (5) substitute y = YlI Udz, where Y,
is, of course, a solution of (l); therefore

e_I Fids .[“' R)ds
°Y, I { e j Y, e . dr } AT o (6
is a particular solution of (5). If, therefore, y, =Y,, by the question,
ddu, | a*u, ay, - @y, dy, -
‘-I?- Q,l oz + Q‘ dz +Q3_'/| 0, 2z + Pl az +P3yl 0...... (7).
Differentiate the latter, and from the result take the former; then
& !fzpl+P’_Q’ a fTP’_
an, 2 VR SN (8)

i ' T P-Q  dz @ P-Q
Equation (8) cannot, therefore, be satisfied except

dP, dP,
;;‘ +P;-Q; =P, (P,-Q), ELQ" =P (P;—=Q)) ceeuenees 9),
which are the conditions given in the question.

Since 3 = i—1)3--P. +Q,, equation (2) readily reduces to
P, Pyax

& d (P,-Q,)dz
;§+P,d—:+P,y= € s (10),
which coincides with (§) when R = P,—Q,.
Again, if the second particular solution of (A) is equal to the second
-IP,d:
. e
solution of (1), then v, = .

)
This value of {»,) satisfies (3) by means of the conditions (9). Hence,
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Hence g:fs_m(l-m(um' ¢_ig=4c7\*(8+x3;
ar (1+A3%)3 7N (1+A%)3

and there are cusps when A = 0, or +(—3)}; i.e., at the points (a, 0),

[~84,+6(—8)¥a] ; or, moving the origin to A, (0, oz. [—9a, £6(—3)'a];

ad the equations of the joining linesare 2z +y (—3)*=0, 22—y (-8)'=0,

s+9=0. The values of these three quantities, at the point A of the

2aA3 _gyip 268 o avigg afAB+31
curve, are 1+A2[A+( ) l_+A’[ (=3)", T’

wihat [22+y (=3 4 : [22—y (—=3) 7V : (z+9a) "}
== (=3 :a+ (=3 : a2},
and the equation is therefore
[z+4y (=3 + [2—1y (=3)'] V42 (2 +9a) H = 0.
The equation of the normal at the point A is (A origin)
_axl g)\’—3)) 1_1 ( _ 4ax® ) oA =
(z Ten ) )+ fn) 2= 0
or “z (A3—1) + 2y = aA? (A3 +3);
and the perpendicular on it from (a, 0) is (# —a) 2A = y (A3—1), hence at
the foot of the perpendicular z = aA%, y = 2aA, or the point lies on the
bola y2 = 4az. Thus the normal to the tricusp is a straight line
wh from a point of the parabola at right angles to the focal radius
vector, and therefore envelopes the first negative pedal of the parabola
with respect to the focus [whose equation is 27ay? = r(2—9a)?]. The
tricusp is therefore an involute of this curve, starting from the vertex,.

since it has a cusp at that point.
If Q be the point A on the tricusp, P, P’ the corresponding points on

the parabola and its first negative pedal ; we have already seen that

A3 (A3-3 4ard |
M z=* l(+7\2 )’ 1T Tea’ (2) 23 = X, 9y = 2a7;

and, by taking the envelope of the normal at Q, we get
z (l+ Il") = 3a (1+A%), or a3 = 3aa3,

and therefore ys = aA (3—A%).
4aa2 Al-1
Hence f-Ty=— 1y Nh= 2a Nl

80 that PQ? = 44a%A2; or PQ = 2aA = y;; and the circle with P as centre
and QP as radius will touch the tricusp in Q, and will also touch the axis.
Hence also the tangents at P, Q will meet on the axis of . Hence the
tricusp is also the envelope of the circle whose centre is on the parabola,
and whose radius is the ordinate to the centre.

1f 5, 85, 83 be the arcs of the three curves measured from A,

9 L oo BN _ons A s = a[A3+210g (1+A9)];

T T T+
Z_;z =2 (1+A%)}, and 5 =a {A(1+A%)} +log [A+ (1 +A94},

% =3a(1+A%, & =a(3A+A%).
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may go through all possible variations, evidently

n = jhrrz.rsinodﬂ. 2r38in%0 = §mré;
]
hence the required average is

(i — - . . _ 2560
:L [— % sin? @ — 0 cos 6 sin* 6 + }x cOB g gin4 9 + 8in® 0] 46 = 52m

7333. (By the Rev.T. P. Kirkman, M.A,, F.R.8.)—Approaching each
other from rest at equal heights in the same normal section of two smooth
planes, each making an angle 8 with the horizon, slide by gravity two
equal smooth spheres of homogeneous matter perfectly rigid and incom-
pressible. About the lowest points » and ¢ of their paths, the planes are
scooped spherically in their inferior surface, so that the thickness at p and
¢ vanishes. At the instant ¢ of collision, two other spheres exactly like the
former impinge by projection from below perpendicularly on the planes at
the points » and g, with the same velocity v tan 6, v being the velocity
acquired by the descending spheres. Required, for the peace of mind of
Dr. MusTBESo, an orthodox account of the motion.

Solution by the PROPOSER.

Resolving along vertical and horizontal axes, the velocities of the
four spheres, we obtain for each, at the time ¢, v =0 in all directions ; i.e.,
the two descending spheres remain at rest at the points » and ¢, while the
two others begin to descend at the time ¢ from rest at those points by
gravity, But Zmo?>0 being the sum of four positive quantities; how
18 thig vis viva conserved ? Not by thermal or other insensible vibrations
of the spheres ; for by definition they cannot be compressed and made to
recoil or vibrate in any way, so as to communicate vibrations to any
medium, Not by vibrations in the planes; for at the time ¢ the planes
receive no blow. The vis viva seems to be destroyed at the time ¢ without
compensation of any kind.

If it be denied that there are in the cosmos any perfectly rigid and in-
compressible spheres, what becomes of the atomic constitution of matter

fit be affirmed that particles of matter cannot actually collide by reason
of a ropulsion working at close quarters by actio in distans between those
points without parts, their centres of gravity; I remark that, if the in-
scrutable Cause were to act in the same manner as at present in the lines
connecting those ever-moving centres, in the absence of all matter, the
facts of the universe would be to us exactly what they are now. Who can
Prove the presence of this wonderful matter? What clear question about
the datg of the cosmos given to us all is answered by the word matter ¢ If
any one informs me that he has a concept of matter, I reply that unfortu-
Dately I have none, but that, if he will kindly produce his concept, I will
try to study it and to become wiser. As to the m for mass in Dynamics,
what is it but & number determined by experiment, which would yield the
8ame answer on the above supposition in the absence of matter? Is it
enough to reply to these questions—that's all Metaphysics ? Quite.

YOL. XL, b3
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m=0,n =’1%I7” the integral equation is cos (¢ —¢) = ksin¢,
and we have, from the stated result,

ay - 9D . . or if § = 20—}m,
e P—2ksm ) (I—Rsinte) ¥ = 2¢—ir

2d9, - de h i —¢) = ksine.
e hp—sksmig)] ~ (L= Bamgy o n (Bh=¢) = kein

This is LANDEN’S equation.]

7433 & 7443. (By the Ebprror.) — Show that the volume of the
greatest parcel that can be sent by the Parcel Post is (1) 8/» = 2:5468 ft.
when unlimited in form and therefore a right circular cylinder, and (2)
2 cubic foet when it is to be four-sided and plane.

Solution by W. M. Mzg, B.A.; Professor Roy ; and others.

1. The parcel must clearly be a right circular cylinder; thus, putting
« for the length of its axis, and r for the radius of its base, we have
length + girth = 6 ft. = z+ 27y, and volume = wxr3r = a maximum.
These equations readily give z = length = 2ft., girth = 2%y = 4ft.,
radius = 2 / x ft., and volume = xay? = 8 [ x cubic feet.

- 2. Here the parcel must evidently be a square parallelepiped, and in
like manner to (1) it appears at once that its length must be 2 feet, each
of its sides 1 foot, its girth 4 feet, and its volume 2 cubic feet.

7468. y S. TEBAY, B.A.)—Fiud an integral value of 4, such that
1012+ and 1012—a shall be rational squares.

Solution by G. HEpPEL, M.A. ; W. G. LAx, B.A.; and others.

Let 101244 = (101 + %)%, 101°—a = (101—7p3,
a =k (202+%) = 1(202=0);
hence ! is greater than % ; thus, putting ¢ = & +¢, we have
k(202 +%) = (k+¢) (202—k—c), 242 = 202c—2ke—c2,

Now, if ¢ is a measure of %, the only values are 2 and 10i ; and neither of
these lead to a solution. But if ¢ does not measure k, it must measure
24% and hence the only other possible value of ¢ is8 4. This gives
kB+4k—396 = 0, (k+22) (k—18) =0; so that 4 = 18, @ = 3960; and
1012+¢ = 1193, 1012—qa = 792,
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7496, (ByR.A.RorerTs,M.A.)—A geodesic common tangentisdrawn
to two circular sections of an ellipsoid ; show (1) that the perpendiculars
from the centre on the tangent planes to the surface at the points of con-
tact are equal ; and hence (2) find the locus of the points of contact of the
geodesic tangents drawn from an umbilic to the circular sections.

Solution by T. Wooncock, B.A.; Professor Nasu, M.A.; and others.

1. Along any geodesic on the ellipsoid, pD = constant, p being the per-
pendicular upon the tangent plane at any point P, and D the semi-
diameter paralilel to the geodesic’s tangent at P. Let p’, D’ be the lengths
of the same lines for any other point ¥, and let a, 4, ¢ be the semi-axes of
the ellipsoid. It the same geodesic touch one circalar section at P and
another at P’, we have D = 4 = D’; therefore p = p'.

2. Along all geodesics through an umbilic, pD = ac. Therefore, at the
points of contact of these geodesics with the circular sections p = .
This equation represents a polhode on the surface of the ellipsoid. b

7245, (By R. Knowres, B.A., L.C.P.)—Three normals are drawn
from a point to a parabola, and tangents are then drawn at the points
where the normals meet the curve; prove (1) that the area of the triangle
formed by the tangents is kalf that formed by joining the points in the
curve; (2) if the point moves on a given straight line, the locus of each of
its angular points is the same hyperbola.

Solution by W. H. BLyrug, M.A.; Professor Marz, M.A. ; and others.

1. This applies to any three points (m,, m,, mz) on the parabola,
y? = 4ar, putting the coordinates into the form z = am3, y = 2am. Then
the points of iutersection of tangents become am,m,, a (m,+my), &c. ;
taking ordinary formulse for the area ofa triangle. First, for the three
points (am?2.2am,), &c., we get a® (m —mq) (my—mg) (mg -m,); next,
taking the points am,m,, a (m, +m,), &c., we get

§a? (my—mg) (mg—my) (mg—my).
2. We take m,, mq, mz as the roots of the equation
amd +m (h—2a) + k = 0,
(%) being the point at which the normals meet, and, since (4k) moves on
a fixed line, we may take k = oh +¢, b and ¢ being constants; therefore
(m,, mq, my) are the roots of amd+m (h—2a) +bh+c =0 ......... covens(@)y
where 4 varies. Take any one of the intersection of tangents z = am, ms,
y = a (my +my), since m,, my are two roots of (), we obtain
(h—26a)a = y*+axr, abh+ac=ay;

whence, eliminating A, we obtain

by? + abx + 243 = xy - ac, or (y —abd)(by—z + ab?) + a%B® + ac +24% = 0,
an hyperbola with asymptotes y = ab and @ = b (y + ab).
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7490, (By Professor WoLsTENHOLME, M.A., 8c.D.)—At each point of a
central conic is described the rectangular hyberbola of closest contact;
prove that the locus of its centre is the inverse of the conic with respect to
the director-circle.

Solution by Professor Townsenp, F.R.S.
This pretty result is manifestly a
particular case of the following more
general propert{—that, if O and O’
(see figure) be the centres of any two
conics U and U’ having double contact
at any two points P and Q, I the inter-
section of their common tangents at
those points, and J the middle point of
their chord of contact PQ, the two
points I and J being of course collinear
with O and O’; then, when director- 4
cirde of U’ is evanescent, rectangle / /0 \
0I-00’ = radius? of director-circle of
U. Which may be readily proved as follows :—Since, manifestly, XY
and XY’ being the paralleﬁ through O and O to PQ,
radius? of director-circle of U = OI-0J + 0Y -JQ,
radius? of director-circle of U’ = O'I-0J+0'Y’'—JQ,
therefore when the latter circle is evanescent, and when consequently by
similar triangles OI—0'J + OY ~JQ = O, then, by subtraction, radius?
of director-circle of U = OI (OJ - 0’J) = OI-O0’, and therefore, &c.
The analogous property in Geometry of three dimensions—viz., that,
of all central quadrics having closest contact with a given central quadric
ab any point of its surface, the centre of that whose director-sphere is
evanescent is the inverse of the point of contact with respest to the
director-sphere of the given quadric—is manifestly also a particular case
of the more general property that, if O and O’ (same figure) be the cen-
tres of any two quadrics U and U’ having triple contact at any three
points P, Q, R, I the intersection of their common tangent-planes at
those points, and J the centre of their conic of contact PQR, the two
points I and J being of course again collinear with O and O’ ; then, when
irector.sphere of U’ is evanescent, rectangle OI—OO’ = radius? of
d r-sphere of U. Which again may be proved nearly similarly with
s analogue as follows :—Since manifestly, for any pair of conjugate radii
JQand JR of the conic of contact, XYZ and X'Y’Z’ being the parallels
through O and O’ to its plane PQR,
radius? of director-sphere of U = OI-0J+0Y~-JQ + OZ-JR,
. adiug? of director-sphere of U’ = 0'I-0'J +0'Y’'-JQ + 0'Z'—JR.
Therefore, when the latter sphere is evanescent, and when consequently
by similar triangles OI- 0’J + 0Y—JQ+ OZ—JR = O; then, by sub-
traction, radius? of director-sphere of U=0I (0J—0'J) = OI-00”,
and therefore, &c.
he conic or quadric U’, in the above general property corres-
ponding to the case, with the line or plane of contact PQ ér PQR, being
supposed to remain fixed, and U on the countrary to vary, and its centre
0 to assume in consequence every possible position on the fixed line IJ ;
it follows at once, from the above general equation corresponding to the
case, viz., (radius)? of director circle or sphere of U = 00’—OI, that
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iped such that its edges, the diagonals of its faces, and the
i of the solid, shall all be integral.........ccceeseieiririiirieiiennnans 60
8836. (The Editor.)—The sides of a triangle ABC are BC = 6,
CA =6,AB=4; and Q, R are points in AC, AB, such that CQ = 2;
BR = 3. BShow (l) by a general solution, that the distance from B to a
point Pin BC, such that £ CQP = BRP, is BP = 4 (6011 —13) = 3-83843;
and (2) give a construction for finding the point P. ...coviiiiiiniinnnninns 63

3873. (J. B. Sanders.) —The horizontal section of a cylindrical
vessel i8 100 square inches, its altitude is 36 inches, and it bas an orifice
whose section 18 J; of a square inch; find in what time, if filled with a
fluid, it will empty itself, allowing for the contraction of the vein. ... 122

4516. (The late T. Cotterill, M.A.)—In a spherical triangle, of the
five products
cosecos A, cosbcosB, cosecosC, cosacosbcose, —cosAcosBcosC,
one is negative, the other four being positive. In the solution of such

triangles, what parts must be given that the affections of the remammg
three can be determined by this theorem ? ..............ecceervunniieninnnenes

4925. (The late Professor Clifford, F.R.8.)—Let U, V, W =0 be
the point equations, and %, v, w = 0 the lnne-equstlons of three
quadrics inscribed in the same developable, and liei; %+ 9 + w0 be identically
sero. Then, if a tangent plane to U, a tangent plane to V, and a tan-
gent plane to W, are mutual]y eoangabe in respect of au+bo+cw = 0,

L) v w
they will intersect on G- ), (c—a)? = b),_o
which passes through the curves of contact of the developable vnth
a% + by 4 ow and one other qUAATIC. .........ccvveiriiirmeiiieieniniienineninnn,

4904. (Dr. Hart.)—Find the equation of the Cayleyan of the cnbxo
a8y + 325 + 39+ 2maye = 0, and compute the invariants of this cubic. 111

§860. (8. A, Renshaw.)—An ellipse and hyperbola have the same
b .
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6884. (For Enunciation, see Question 4904) ................. creeeane 111

6%07. (S. Tebay, B.A.)—If A, B, C can do similar pieces of work
ine, &, ¢ hours ively, (¢<b<¢); and they begin mmultaneously,
and regulate their labour by mutual interchanges at certain intervals, so
that the three pieces of work are finished at the same time : find the num-
ber of solutions........c.covvvunniinininicniennninns cerernr e neene ceeens 47

7040. (Rev. T. R. Terry, F.R.A.8.)—If p and ¢ be two positive in-
fegers that p >¢, and if r be any positive integer, or any negative
integer numerically greater than p, show that

1= . r + q(g—1) . r(r—=1) —&e.
P—g+1 p+r—1 (p—gq+1)(p—gq+2) (p+r—=1)(p+r-2)
-2=g 2T ceerereeereneanes 98
P P—g+r
7185. (T. Woodcock, B.A.)—If P, Q be the points in which the
plane the optic and ray axes intersects the circle of contact PQ of
a tangent p.

pegendiculu to an optic axis of the wave surface of a
biaxal crystal, and if @, ¢, the greatest and least axes of elasticity, be given ;
prove that, O being the centre of the wave surface, (1) the triangle POQ,
(2) the circle of contact PQ, (3) the angle POQ will have their greatest

ues respectively, when the square of the mean axis & is (i.& the
arithmetic, (ii.) the geometric, (iii.) the harmonic mean of x2 and #2;
and the cone whose vertex is O and base the circle PQ will have its
maximum volume when 43 = } [4%+¢3 + (a4 + 1462 + )} ]. ...cveenennen. 46

7159. (R. Knowles, B.A.,, L.C.P.) —In a parabola whose latus
rectum is 44, if @ be the angle subtended at the focus 8 by a normal chord
PQ, prove that the area of the triangle 8PQ =42 cot {6 (tan §6 + 4 cot $6)3.

........................... 64

7194. (Professor Wolstenholme, M.A., Sc.D.)—In the examination
for the Mathematical Tripos, January 2, 1868, Question (6) is as
follows :—¢¢ If there be n straight lines lying in one plane so that no
three meet in one point, the number of groups of # of their points of in-
tersection, in each of which no three points lie in one of the n straight
lines, is § (n—1).”” Prove that this is not true; but that, if ¢ n-sided
ﬂzgonn" be written for ¢ groups of n points, &c.,”” the result will be

: and calculate the correct answer to the question enunciated. ... 57

. 1280. (The Editor.)—On a square (A) of a chess-board, a knight
is placed at random : find the probability that it can march #l) from that
square (A) to a given square (B), as, for example, to one of the corner-
squares, within & moves; and (2) over 4 squares in less than ¢ moves, for
instance, over the four corner-squares of the board. ...........ccocuvveunee 70

7286. (The Rev. T. W. Openshaw, M.A.)—On AB, a chord of an
dhge, a8 diameter, a circle i8 drawn intersecting the ellipse again in
0, D; it AB, OD are parallel to a pair of conjugate diameters : show that
the locus of their intersection i8 53z +ady = 0........ccceverrrernnnrernnnne 44

7247. (Dr. Curtis.) —Two magnets, whose intensities are I,, I,,
and a), @y, are rigidly connected so as to be capable of moving
only in a horigontal plane round a vertical line, which passes through the
mllﬁlerfnt of the line connecting the two poles of each magnet; if 2a
denote the angle between the lines of poles of the two magnets in the
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7421, (R. Knowles, B.A.)—~Two oqual tangents OF, 0Q ao drawn
to & parabola; prove that (1) the angle POQ is bisected by the axis,
and (2) the distance of the centre of the circle OPQ from the vertex is

constant and equal to one-half the latus rectum.............cccceeeeeniinins 28
7422. (For Enunciation, see Question 6878)............c.ccecevenennnn.. 99

7427. (Professor Townsend, F.R.8.)— A lamina, setting out from
any arbitrary position and moving in any arbitrary manner, being sup-
posed to return to its original position after any number of complete
revolutions in its plane ; show that—

(s) All systems of points of the lamina which describe curves of equal
area in the plane lie on circles fixed in the lamina ;

(6) All systems of lines of the lamina which envelope curves of equal
perimeter in the plane are tangents to circles fixed in the lamina ;

(¢) The two systems of circles, for different values of the area in the
former case and of the perimeter in the latter case, are comcentric, and
bave & common centre in the laming...........coeeviniieiininiiiinanenes ceeeee 112

7431t.lm(Profeesor ‘Wolstenholme, M.A., 8c.D.)—If 2s=a+B8+y+3,
t

sin } (8—7) sin § (a—2) [sin (¢ - ) + 8in (¢+— ) —sin (s-—a) —sin (s—3)
+6in § (y—a) sin } (8—3) [sin (s—7) + sin (+—a) —sin (s— B) —sin (s—3) J*
+40 § (a—B) in § (y—2) [sin (s—a) +8in (s— B) —sin (s —v) —sin (+.—3) J?
=-16sin} (B—7)sin} (a—3)sing (y—a)sin (B—3)sin} (a—ﬂ)sini('r-i)é
. 7439. (R. Rawson.)—Two inclined planes of the same height and
inclination a, B, are placed back to back, with an interval between them
(24). Two weights P, Q are placed one on each inclined plane, and kept at
rest by the connection of an inextensible string, indefinitely long, ing
over two small tacks, one at the top of each inclined plane. A weight w,
baving a vertical velocity (c), is then placed on the string by a smooth ring
ata goi.nt midway between the inclined planes. Show that the system

&m y put in motion will come to rest at a point determined by a root of
0 q tic
(4P%sin%a—w?) 82— %(4yaPain¢+wc3:— (2Pa sina +%’) 'L;’ =0.

creernenronens seereenesonne 42

146. (R. Knowles, B.A., L.C.P.)—(Suggested by Question 7385.)
~In an equilateral triangle ABC a circle is inscribed, and a tangent
to the circle meets the sides CB, CA in the points A’, B'; the line join-
ing the orthocentre of the triangle A’B’C with the centre of its circum-
wribing circle meets BC or AC in D; prove that, in either case, as A'B’
varigs, the maximum and minimum values of DC are respectively two-
ninths and two-thirds of a side of the equilateral triangle................ 119

1456. - (Professor Townsend, F.R.S.) — A system of plane waves,

pagated by rectilinear vibrations perpendicular to the plane incidence,
Kﬂ‘gxg supposed divided into, two by refraction and reflexion at the
murface of separation of two isotropic elastic solids in molecular con-
tact with each other ; determine, given the coefficients of resistance to
com; ion and to distortion for both solids,—

(s) The relative amplitudes of vibration, for any angle of incidence, of
the three systems of waves.
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the volume formed by the revolution of any segment, cut off b
cherd PQ, from any conic, about an axis of the conic, Eerovndcd PQ oeo
not cut the axis ; , more generally, (2) if PM, QN be drawn perpen-
dicular to the axis, and a sphere be described on MN as diameter, the cen-
&xroid of any part of the volume generated by the segment, mtoreo ted
between two planes perpendicular to the axis of revolution, is coincident

wwith the centroid of the volume of the sphere intercepted between the
BAXNE tWO PIANOS. ...ciieuiiiiiiiiniiiiiiieiiiii et 39
‘7487, (Professor Wolstenholme, M.A., Sc.D.)—Given two conics U,
U7, atangentat P to U meets the polar omet.hrespectto U’in P’ ; prove
that the%enlu of P’ is the quartic UV = U”, where V is the polar re-
ciprocal of U with respect to U’ 80 taken that the discriminants of o, U,
'V are in geometrical progression. ........cue-cievveirnminiiineiiininiiinninnan. 27

7488. (Professor Hudson, M.A.) — If O be the circumcentre of
ABC, and forces act along OA OB, OC proportional to BC, CA, AB
prove that their resultant passes through the in-centre..............ccceee

7489. (Professor Wolstenholme, M.A., Sc.D.) — Prove that, 1!
28 =a+B+y+3, the equation of the directrix of the parabola that

touches the four tangents to the elhple—- + ’ = 1 at the points whose
excentric angles are a, 8, 7, 3, is

7[c,os (s—a) +cos (s—B) + cos (s—7) +cos (s—3)]

+ .’L [sin (s—a) +sin (s—B) + sin (s~%) +&in (s—3)]
= (#-89) oou+(a’+b’) [cos (s—a—3) + cos (a—p —3) +cos (3—7—8)]

.......................

1492, ('W J. C. Sharp, M.A.)—Show that at an mﬂenon on the

ourve U = thy, the, th | = 0. [This is an application of the form of
thygy tigg, Ug the Hessian suggested at the end of
t, %y O the Solution of Questlon 6762.
........... veeeene 81
7494, (W. J. C. Sharp, M.A.)—Show that
1 dn-m(g3—1)% drim (22—1)n 2
]_‘ dz(“_,_ ", e s =~ Z o nt e 36

7495 (8. Tebay, B.A.)—Show that the mean length of the ‘¢ Sailor’s
’ or geographical mile, in latitude A, is approximately
1-1566 (1-°00667 cos®A) mile. ........ cerenseeneens 61
7497. (G. Heppel, M.A.) — If four concurrent normals meet an
ellipse in points whose eccentric angles are a, B, 7, 3; show that
&+B+y+3 = 3x or 6w, according as the ordinate of the point of con-
CWITENCE 18 — OF 4 .cveeenurirunninniienunninnunieruieeiieiseuserrascsranssssssscanes 30
7499. (R Tucker, M.A.) — OA, OB are two fixed lines, A is a
fixed peg, and B a peg movable along OB an inextensible endless string,
passing round AB, is kept stretched by a pencll C; find the envelope of
the loci of the curves traced out byC on theplane AB, by varying the
Position of B. .....coceiiiiiiiniiiiiiiiiii e [TTPPITN
7606. (8. Tebay, B.A. )—Fmd (l) the form of & when z2+ 4 andz’—a
are rational squares; also (2) deduce the simple values
z= (k=01+48, a=28I(k-38)) (kK-PF)
C
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corresponding ocoefficients of the reciprocal conics ; (3) the analogous pro-
position is true of qUAArICS........ccceveeniiriiiiniiiinnans crenrenes [T . 44

75623. (8.Tebay, B.A.)—Show that the mean value of the radius of cur-
vature for all points of an ellipse is %(l e+ Aty ). 81

7526. (T. Muir, M.A,, F.R8.E.)—If in a determinant of the ath
order the elements in the main diagonal be all negative and all the
others positive, prove that the number of positive terms in the develop-
ment is n!—(=20"-2(n-2)............ oereneraenaneone 27

7526. (W. G. Lax, B.A.) — A swing-bridge is movable about a
vertical axis on one bank of a river, and has a load of ballast suspended
from the tail end of it ; if the cost of bridge per ton be n times that of
ballast, and the river a yards wide, find the length of the tail end of the
bridge so that the cost of the whole may be a minimum. ..........ceunees 29

7630. (BR. Knowles, B.A., L.C.P.L—From a point A a perpen-
dicular AD is drawn to a straight line BC given in position, and the in-
scribed circle of the triangle ABC passes through the orthocentre ; prove

that the maximum value of its radius is one-half of AD ............ ceeere 46
7633, (J.J. Walker, M.A., F.R.S.)—Prove that the common centre
of the -mass of the four faces of a tetrahedron is the centre of the

sphere inscribed in that determined by the four centres of the faces; and
hence prove the obvious analogue in tri-dimensional space of Professor
Hudson’s Question 7488—which is true in any position of the point O,
for forces proportional to OAgin A, OBeinB, OCsinC. ..........ceuvee. 84

75634, (The Rev. T. O. Simmons, M.A.) — A number is known to
consist of four digits whose sam is 10; show that the odds are 154 : 65
in favour of the sum of the digits of twice the number being equal to “é

2

...........................

7635. (B. Lachlan, B.A.) — Prove that, if a<$x, and » be posi-

tive and <1 ]" andz - sin na
’ o 1+20co8a+23 sinnw sina’
and sl _w sn(l-s)e e 41

o 1+2zcosa+e? sinnx  sina

7536. (Professor Sylvester, F.R.8.)—If 8s—2 points are given on
a cubic curve, and through 3n—3»—2 of these an (n—»)-ic be drawn,
cutting the cubic in two additional points, and through these and the
remaining 3» given points a third curve of order »+1 be drawn, prove
that its remaining intersection with the given cubic is a fixed point.... 69

7581. essor Townsend, F.R.8.) — An ellipsoidal shell being
supposed, by a small movement of rotation round an arbitrary axis passing
the centre of its inner surface, to put into irrotational strain a
contained mass of incompressible fiuid completely filling its interior ; in-
vestigate, in finite terms, the equations of the displacement line-system of
the BEAIN ..ooovveririiiiiiiii 37
7638." (Professor Haughton, F.R.S8.)-—Show that the law of pro-
2 dv

. . . . dy d%
pagation of heat in a solid sphere is 2?=a(%’+;d_x) IR 88
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Iateral insoribed in one circle, and circumscribed about another, are a, 5,
¢, d; prove that the angle between its diagonals is cos-! ::_'_;:: .17

7667. (Professor Sylvester, F.R.8.)—Let nine quantities be supposed
to be placed at the nine inflexions of a cubic curve, then they
will group themselves in twelve sets of triads, which m:c{ be called
collinear, and the product of each such triad may be called a collinear
product. From the sum of the cubes of the nine quantities subtract three
times the sum of their twelve collinear triadic products, and let the func-
tion 8o formed be called F. With another set of nine quantities form a
similar function, say F'. Prove that FF' will be also a similar function
of nine quantities which will be lineo-linear functions of the other two
sets, and find their values. [The inﬂexion-points are only introduced in
order to make clear the scheme of the triadic combinations, so that the
imaginariness of six of them will not matter to the truth of the theorems.]

........................... 3

7669. (Professor Townsend, F.R.8.)—In a tetranodal cubic surface
in a space, show that—

a) The four nodal tangent cones envelope a common quadric.

gb) Their four conics of intersection with the opposite faces of the nodal
tetrahedron lie in a common quadric.

(¢) The two aforesaid quadrics envelope each otheralong a plane having
triple contact with the surface ........c..cccoeiiiiiiiiiiniiniiiiiiniiniennnn, 65

7571, (Professor Haughton, F.R.8.)—A solid body is bounded by
two infinite parallel planes kept constantly at the temperature of melting
ice, and by a third plane, perpendicular to the first two planes, kept con-
stantly at the temperature of boiling water. After the lapse of & very
long time, show that the law of distribution of temperatures will be repre-
sented by the equations (between the limits y = & §x)

v =ae-*cosy+be~3cos3y+&c., 1=acosy+bcos3y+&e. ... 64

7673. (Professor Hudson, M.A.)—Parallel forces act at the angular
points of a triangle proportional to the cotangents of the angles. Can
they be in equilibrium ? .......c.cooeviririiiiiiiiiiiiiiiienrerceeeee e 60

7674. (Professor Wolstenholme, M.A., 8c.D.) —If we denote by
F(z,%), the determinant of the nth order

2,1,0,0,0, ...... prove that F(z, 2r +1) = 2F (232, ),
1,210,000 .. F(z, 2r)=F (2?-2,r) +F (222, r -1),
0,,z2100 .. - o
F(z,n) = (z—2cos-—-) (x—2cos-——)
0,0,0.....1, 2, ntl n+l
0,0,0....0, 1, x(x—ﬂcosi)...(x—zcos-'l).
: n+1 n+1

........................... 112

7675. (Professor Wolstenholme, M.A., Sc.D.) —Two normals at
right angles to each other are drawn respectively to the two (confocal)
parabolas y3 = 4a (0 +4), y® = 4 (z+5) ;- prove that the locus of their
common point is the quartic

2y = (at +58) [2—2 (ad)i]} + (at —B1) [+ 2 (ad)I 4,
which may be constructed as follows :—draw the two parabolas
v = (a+b)z—4ab & 2 (ad)t (x—a~D),
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of a chord I’Q of the par?,bola, y? = 4az and its pole (Ak); prove that (1)
it oquation is 2%+ 57~ £=225— £ (a—k)y+ 4 (26—h) = 0; ()it PQ

is perpendicular to the axis, the focus is the centre; (3) if the circle cuts
the parabola again in CD, the middle point of the line joining the poles of
PQ and CD, with respect to the parabola, is the focus...................... 78

7594, (W. J. C. Sharp, M.A.)—If the circle inscribed in the triangle

ABC touch the sides at the points D, E, F respectively, and P be the
int of concurrence of the lines AD, BE, CF; and again, if I, E/, F',
be the corresponding points for the escribed circle opposite A,

PD_ PE_ PF _ P _PE _ PF _

show that E"' + 1 +CI‘V 1.,... (1, 2).

BE'CF~ " TAD'BE
[In the second result, the lines are considered as signless magnitudes ;
if regard were had to the signs, the — should be omitted.] ............ 79

1697. (Professor Townsend, F.R.8.)—A system of plane waves, pro-
pegated by small parallel and equal rectilinear vibrations, being supposed
fo traverse in any direction an 1sotropic elastic solid, under the action of
its internal elasticity only; show that the direction of vibration is neces-
warily either parallel or perpendicular to that of propagation, and deter-
mine the velocities of the latter corresponding to the two cases. ......... 86

7598. (Professor Wolstenholme, M.A., 8c.D.)—1. Circles are drawn
with their centres on a given ellipse, and touching (a) the major
axis, (8) the minor axis; prove that, if 2¢ be the major axis, and e the
eccentricity, the whole length of the arc of the curve envelope of these

circles is 44 (l+l—:f-’log %"), 4o ((l—c’)‘+ 22‘_"“_‘1’) ...... (a, B).

2. Circles are drawn with their centres on the arc of a given cycloid,
and touching (a) the base, (8) the tangent at the vertex ; prove that the
curve envelope of these circles is (a) an involute of the cycloid which is
the envelope of that diameter of the generating circle of the given cycloid
which passes through the generating point; (8) a cycloid generated by
a circle of radius 4 rolling on the straight line which is the locus of the
centre of the generating circle (radius 4) of the given cycloid.

3. Circles are drawn with centres on a given curve and touching the

axis of z; prove that the arc of their curve envelope is z—2_[ y do, where
#, y are the coordinates of the centre of the circle, and % = tand. ... 108

7601, (Professor Hudson, M.A.)—The lenses of a common astro-
nomical telescope, whose magnifying power is 16, and length from object-
glass to eye-glass 8} inches, are arranged as a microscope to view an
object placed § of an inch from the object-glass; find the magnifying
power, the least distance of distinct vision being taken to be 8 inches... 76

7602. (Professor Hudson, M.A.)—A ray proceeding from a point
P, and incident on a plane surface at O, is partly reflected to Q and
- paxtly refracted to R : if the angles POQ, POR, QOR be in arithmetical

Jogression, show that the angle of incidence is cot~! (,.L':/:) v 111
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7635. (Professor Angelot.)—Démontrer que
tan'1}+tan"§+tan-'ﬁ-+...+tan"§-l';+...ad. inf. = 4w 93
7638. (The Editor.)—If from a given point O, in the prolongation
through C of the base BC of a given triangle ABC, a straight line OPQ
be drawn, cutting the sides AC, AB in P, Q; show that, R being any
point in the base, the triangle PQR will be a maximum when a parallel
Q8 to AC through Q cuts BC in a point 8, such that OS is a mean pro-
portional between OB and OC. .........cccociiiiiiiniiininiiiiiiiiiiniiiin, 87
. 7644. (W.S.McCay, M.A.)—Prove that the three lines that join the
mid-point of each side of a triangle to the mid-point of the corresponding
perpendicular meet in & point. ..........c.ooeiiiiiiien i, 88
7648. (D. Biddle.)—A series of isosceles triangles, beginning with the
equilateral, is such that each in succession has two-thirds the vertical
angle and two-thirds the base of its predecessor. Show that, when the
base and vertical angle reach zero, the height of the last in the series is to
the height of the first a8 2,/3 : w......ocoov ciiiiiiin 92

7653. (For Enunciation, see Question 6878)...........cccevvnienunerinnns 99

7657. (J. Crocker.)—If an ellipse be described under a force f to
focus 8 and f; to focus H, and SP = r, HP = r, ; prove that

@ df _o(S _ S
d_;l‘,'ilé—‘z(r rj,') ...................... . 114

7658. (S. Constable.) — The vertex of a triangle is fixed, the
vertical angle given, and the base angles move on two parallel straight
lines ; construct the triangle when the base passes through a fixed point.

........................... 115

7660. (R. Knowles, B.A., L.C.P.) —From the angular points of a
triangle ABC, lines are drawn through the centre of the circum-circle to
meet the opposite sides in D, E, F, respectively ; prove that

1 2

1 ==
A—D+ﬁ+ e e 123

L

CF R
7666. (Professor Haughton, F.R.8.) — Prove the following formula

for finding the Moon’s parallax in altitude in terms of her true zenith

distance, viz., sinp =sin P sin z + } sin?P sin 2z 4 § sin3 P sin 3z + &c.... 117

7669. (Professor Townsend, F.R.8.)—A thin uniform spherical shell
being supposed to attract, according to the law of the inverse fifth power
of the distance, a material particle moving freely in either region of its
space external or internal to its mass; if, in either case, the current
velocity of the particle be that from infinity under the action of the force,
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Of the BRELl.......ueeiiriniiii it 101

7676. (J. J. Walker, M.A., F.R.S.)—If F (syz) = 0 is the equation
to any surface referred to rectangular axes, show that the equation to
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7382. (By Professor SYLVESTER, F.R.S.2 —1If p and ¢ are relative
primes, prove that the number of integers inferior to pg which cannot be
resolved into parts (zervs admissible), multiples respectively of p and ¢, is

1 (p-1)(g-1)

[lfp=4,9 =17, we have } (p—1)(¢—1) = 9; and 1, 2, 3, 5, 6, 9, 10,
13, 17 are the only integers inferior to 28, which are neither multi-
ples of 4 or 7, nor can be made up by adding together multiples of 4 and 7.]

Solution by W. J. CurraN SmARP, MLA,

It the product (1+2P+2% +...4+a7) (1+29+aM+...+27) be con-
sidered, each term between 1 and z#¢ corresponds to a number less than
9, and of the form mp+ng; also 2277 is the middle term, and the co-
efficients from each end are the same. Hence twice the number of in-
tegers of the form mp +ng, and less than pg, is the value of the above
product when z=1 with four deducted, since the terms involving 2!, 279,
4% are not included ; and therefore the number of these integers is

i (p+1)(g+1)-2
and the number of those which cannot be put into this form
=p~1-[}(p+1) (¢ +1)-2] =} [pg—p—-g+1] =} (p-1)(¢-1).

1585. (By the late Professor Crirrorp, F.R.S.)—If three circles are
mutually orthotomic, prove that the circles on their common chords as
diameters have a common radical axis.

YOL, XLI. C
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and (b cos B +¢cosC) cos Az+ (—b cos B + ¢ cos C) sin Ay

= (—bcosB+ccosC)(—acosA+bcosB+ecosC).
Thethree have the same radical centre as the three orthogonal circles, viz.
the point O. The common chords of the three derived circles are equal ;
in fact, the square of each is

2(a?+82+¢3) cos Acos BcosC = 2 (¢ + da’ +a'b)— (a3 + U2+ ¢3),

where & = B, C, .., and the three chords are parallel respectively to the
three radii drawn. from the circum-centre of A, B, C to its corners. The
subject is re-proposed for further discussion as Question 7605.]

7455 & 7481, (By Professor Tow~senD, F.R.8.)—(7455). A system of
plane waves, propagated by rectilinear vibrations perpendicular to the plane
incidence, being supposed divided into two by refraction and reflexion at
the surface of separation of two isotropic elastic solids in molecular con-
tact with each other ; determine, given the coefficients of resistance to
compression and to distortion for both solids,—

(s) The relative amplitudes of vibration, for any angle of incidence, of
the three systems of waves.

(5) The particular angle of incidence corresponding to the evanescence
of the reflected vibrations.

(7481.) A system of plane waves, propagated either hy normal or by
transversal vibrations, being supposed divided into two by perpendicular
refraction and reflexion at the surface of separation of two isotropic elastic
solids in molecular contact with each other: show that,in either case, the
vis viva of the original is divided without loss of total amount between
the two derived systems of waves.

Solution by the PROPOSER.

(7455.) Denoting by %, ¥, k, the amplitudes of the incident reflected
and refracted vibrations, by 6, ¢', 9, the angles of incidence, reflexion and
refraction of the wave systems, and by u, u’, x, and v, ¥, v, the coeflicients
of resistance to compression and to distortion respectively in their pro-
pagation through the solids ; then, the vibrations being manifestly per-
pendicular to the (flane of incidence, and therefore to the direction of pro-
pagation in each derived as well as in the original system of waves, and
all systems of waves propagated by transversal vibrations in isotropic
media producing only distortion, but not compression of the molecules of
the media, the six ordinary equations of condition, three geometrical and
three dynamical, at the separating surface of the solids become reduced
in this simple case to the two, one geometrical and one dynamical, viz.,
k+K¥ =" and »cot 8k +/ cot 'k’ = v cot 9, k,, or, since in the same case
¥=» and cot@=— cotd, to the equivalent two (k+4’) =%, and
veot 8 (k—K) = v cot 6, %k, ; from which, solving for ¥’ and &, we get at

vcot 06—, cot 6, 2vcot 6 :
- ———— = —_—
once that ¥=k veot 8+, cot 8, and that &, =k v cot 04, cot 6, which
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7357, (By Professor A. MoxreL.)—Résoudre un triangle, connaissant
une hauteur, le rayon du cercle inscrit, et le rayon du cercle circonscrit.

Solution by ArtHUR HiLL Curmis, LL.D., D.Sc.

Let ABCbe the triangle, then, denoting by 4, 4,¢, s,
R,r, p the three sides of the triangle, its semi-peri-
meter, the radii of its circaumscribed and inscribed
circles, and the altitude passing through the vertex
C, we have pc = area = rs, therefore s :c=1r:pis
known, and in the annexed well-known figure the
ratio of CF [ = 4 (@ + )] to AD (= {¢) is known, or
its equivalent CE : AE is known, and therefore
CE2: AE?is known ; but CE.EO = AE? therefore
CE:AE = AE:EO, .- CE:EO = CE*: AE? is
known, and therefore CE : CO or EG :p is known, therefore EG is
known, and ED, which is equal to EG —p, is known. Draw, then, in
the given circumscribed circle a diameter EH, take ED as found above,
through D draw AB perpendicular to EH, take DG =p, draw GC
parallel to AB, then ACB is the required triangle.

7510, (By Professor Haventon, F.R.8.)—If a, 3 denote right ascen-
sion and declination, and /, A longitude and latitude; show that the
inclination of the ecliptic is given by the equation
_sinAtani+sindtana

€08 w - - .
8in A tan a + 8in § tan /

Solution by B. REy~NoLDps, M.A. ; Professor Matz, M.A. ; and others.

By twice applying the cot.-formula to the tri-
angle here shown (avoiding the angle of position
8), we get

tan A sinw—sin /cos w = — tana cos? ...(1),
tan 3 sin w + sina cosw = tan/cos a ...... (2);
whence, eliminating sin o, we find
tan A tan /cosa +tan dtana cos !

08 o0 - -
= tanAsina+ tan § sin?
sin A tan 7 %°%2 4 gin 5 tan o 2254 . . .
- COSA cosd _sinAtan/+sindtana
sinAtana 8% 1 gingtan €3¢ sinAtana+sindtans
COSA v8 &

cosa _ cos!
SOfa _ CO5°
COBA  co8d

since , by a well-known formula.
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Solution by G. B. Maraews, B.A. ; Prof. Nasa, M.A.; and others.

Q Q

Fig. 1. Fig. 2.

The construction throughout is to draw a chord PAQ of the fixed circle,
and set off Pp = Qg = 4. Then, if OA =4, 0C =¢, AP =r, CAp =6,
we have ¢ = OP%? == OA?+ AP?-20A . AP cos OA

= (b—r)3+a3—2a (b—r) cos 6.

The first figure applies when a2+ 5% & ¢%, the second when ¢ =a +9,

and so for each of the other cases. .

7421, (By R. Knowires, B.A.)—Two equal tangents OP, OQ are
drawn to a parabola ; prove that (1) theangle POQ is bisected by the axis,
and (2) the distance of the centre of the circle OPQ from the vertex is
constant and equal to one-half the latus rectum.

Solution by A. Muu'm, B.A.; KaTe GALE; and others.

It is clear that the point O must be on the axis; hence POQ is bisected
by the axis, and, as 8O = SP = 8Q, the centre of the circle must be the
focus.

7534. éBy the Rev. T. C. Smmons, M.A.)—A number is known fo
consist of four digits whose sum is 10 ; show that the odds are 154 : 66
in favour of the sum of the digits of twice the number being equal to 11.

Solutions by B. ReynoLps, M.A.; A. MARTIN, B.A.; and others.
Of 4- 'git numbers, those are favourable to the event specified which
have one digit equal to or greater than 6. Unfavourable ones are those

with two 6°s (and two 0’s therewith, of course), or with all the digits less
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[This Question is almost identical with Mr. Herper's Quest. 6214,
solved by Mr. WaLker on p. 58 of Vol. 34 of the Reprints.]

7487, (By Professor WorsTeENHOLME, M.A.,Sc.D.)--Given twoconics U,
U',atangent at P to U meets the polar of P with respect to U’in P’ ; prove
that the locus of P is the quartic UV = U”, where V is the polar re-
ciprocal of U with respect to U’ so taken that the discriminants of U, U’,
Vare in geometrical progression.

Solution by T. Woopcock, B.A. ; G. B. MatHEWS, B.A. ; and others.
Using areal coordinates, we may write U and U’ in the forms
PR B | RN eeeen(1)
and a2*+ by + cz? = 0; the equation to V will be a%2%+8%2+ %% = 0.
We have to eliminate zyz between (1) and the pair a¢+yn+:z{ = 0,
szt +byn + cz{ = 0. From the last two, we have
z ¥y . z .
(G=c)n¢ (c-a)it (a-0)fn’
therefore, by (1),  #?(2 (8% + 2 —2bc) +... +... = 0.
This may be putin the form (£2+ 9*+ (3) (a8 + ... + ...) = (a8 +... +...)},
which is the one required.

7525, (By T. Muir, M.A,, F.R.S.E.)—If in a determinant of the
n'h order the elements in the main diagonal be all negative and all the
others positive, prove that the number of positive terms in the develop-

ment is nl—(=2*-2(n-2).

Solution by the ProrosEr ; R. LacuraN, B.A. ; and others.

Let z, y be the numbers of positive and negative terms, respectively,
and D the value of the determinant in question when each element is in
magnitude equal to unity; then we have

z2—y=D=(-2)"1(n-2) and z+y = n!; whence, &c.

7470. (By J. Hammonp, M.A.)—Trace the curve
@+ (b—r)3—2a (b—r) cos 6 = ¢3,
with special reference to the cases (1) when a2+5% = ¢3, (2) when
@b 4 ¢ = 0; and prove that it admits of an easy mechanical description.
[When ¢ = 4, the curve degenerates into a circle and a limagon.]
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than 5 ; hence, considering the numbers according to the highest digit in
each, and remembering that 0 cannot stand as a first digit, the cases for
and against are as follows : —

9100, 8200, 7300, 6400 give 6 each ............
8110, 6220 give 9 each ............ceuuuvee
TI11 gives ....ccccevivveniiinenirinnienianees
7210, 6310, 5410, 5320 give 18 each .
6211, 5311, 5221 give 12 each..................
Total of favourable cases......... =164
5500 gives ..........ccceveenns W= 3
4222, 3331 give 4 each .. = 8
4411 gives ........ cevirieninnnnn. TN = 6
4420 and 4330 give 9 each ........... veee = 18
4321 ZiVeS.......eciiriiiirinniiiii e - 24
3322 ZIVES......iiriiiiininire e = 6
Total of unfavourable cases...... = 656

7528, (By W. G. Lax, B.A.)—A swing-bridge is movable about a
vertical axis on one bank of a river, and has a load of ballast suspended
from the tail end of it ; if the cost of bridge per ton be # times that of
ballast, and the river @ yards wide, find the length of the tail end of the
bridge so that the cost of the whole may be a minimum.

Solution by the Rev. T. C. Stumons, M.A. ; BerLe EasToN ; and others.
Lot w=weight in tons of unit length, 5= weight of ballast, z =required
P
length of tail ; then}a .ws = {2 .wx+ 2.5, whence b = %—}wx,andwe

2
require the minimum of y = nw (s + 2) + %— twz. Putting % =0, we

2
get nw— %—}w = 0, whence 23 =

a2
m—1"

5350. (By S. A. Rensnaw.)—An ellipse and hyperbola have the same
centre and directrices, and they have a common taugent which touches
the ellipge in D and the hyperbola in E, and meets one of ‘the directrices
in H. "Also from the common centre of the curves S'R is drawn parallel
to the common tangent and meeting the same directrix in R. Tangents
RW, RV are drawn to the auxiliary circles of the ellipse and hyperbola.
8how that, if FH, fH be joined, F and f being the foci of the curves be-
longing to the directrix RH, -

DH.HF:EH.fH - WR’. . VR.
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vhence a%z3tant 0— 2 abry tan®e
+ [a323 + b3 — (a3— 5%)7] tan? 0 — 2adzy tan 0 + B3 = 0.

Whence, since coefficients of tan? 6 and tan 6 are equal and of same sign,

fana+tan B +tany +tan 3 =tanatan gtany+tanatanytand+...;
tana+tang tany+tand _
l—tanatanB 1-tanytand
ortan(a+ B) +tan (y+3) = 0; whence generally a+B+y+8=nx; nan
integer. Now, since the last term is positive, only two, or four, can
be negative together; this consideration with the geometry of the figure
vill show that # can be only 3 or 5.

whence y

'7488, (By Professor Hupson, M.A.)—If O be the circumcentre of
ABC, and forces act along OA, OB, OC proportional to BC, CA, AB;
prove that their resultant passes through the in-centre,

Solution by C. Morean, B.A., R.N.; G. B. MArniws, B.A.; and others.

The force along OA is equivalent to two
forces proportional to cos B, cos C along BA,
CA respectively ; hence, resolving the other
forces similarly as in the figure, the trilinear
equation of the resultant is -
(c8 B— cos C) a + (cos C—cos A) B

+(cos A~cosB)y = 0,
zhich goes through a« = 8 = 7; therefore 8
c.

cosC cosB c

5787 & 5945, (By W. J. C. SmarP, M.A.)—From an ordinary point
on a quartic five straight lines can be drawn so as to be cut harmonically
by two curves. How far is this modified when the point is a node ?

(6946.) From a double point on & quintic, a triple point on a sextic,
ora pic point on a ( p+ 3)¢, prove that a limited number of lines can be
drawn 80 as to be harmonically cut by the curve. (This is an extension
of Question 5787, which may be extended to surfaces as follows) :—
Through an ordinary point on a quartic surface lines may be drawn
s0as to be cut harmonically by the surface; the points of section will
trace out a quintic curve on the surface.

Solution by the PROPOSER.
The £n—p)“' polar of O with respect to an n-ic curve or surface is the
locus of & point R in OR,, cutting the figure in R,, Ry, R;... Ra, such
that 3(OR,-OR)... (OR,—OR) OR;.) -.. ORy = 0.
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Differentiating, and putting 6 = 30°,

; A (m+2m") {a(m-&-}m’)—-“T’m } V3 +mme3,/3
aim’ (m+3m' :

Now, when 6 = 30°, m::ml Z = V3 6’+3;

/

whence, substituting, we have, when @ = 30°,
3 i’ /Y ’
o 2mm'y +A{ 7 (m + §m’) — 2am }
v3 (m+3m’)?

Let B be the stress along either rod, then m‘:—; = R/3,

2mm’v? + A { %’ (m + §m") —2am’ }
a (m+§m')3

o 4mmlvt +an {2am + (9a—4D) m'}
al (2m + 3m’)*

therefore R=m

7494, (By W. J. C. Smary, M.A.)—Show that
1 dn-m (.’t’— l)" dan+m (xi_l)n
j-l dzn-m : drn+m

d = (=1 2 gy,

Solution by D. EDWARDES ; BELLE EAsTON ; and others.
Let y = (1—2%", and D= %. Then, integrating by parts,
Y= [Dum-lyDa-m y—Dr+m-2yDremily
S D"yD""y] ’:+(-)”' r:D".f/D"ydz-

Now, if P, be the coefficient of #» in the expansion of (1 + 22z +2%)~4, by a

+1 2 D* (1-29)"
well-known theorem j_lP.P.dz =7 Vhere P, =2 (n+1)° ’

from the equation (1-—z9) %+ 2nzy = 0, we find, when z=1 or -1,
92n+1

Dy=0[r<n]; hence s = (—)"‘2”.._l

(n )2,

7273. (By A. McMugcuy, B.A.)—Prove that, if radii be drawn to a
tphere parallel to the principal normals at every point of & closed curve of
continuous curvature, the locus of their extremities divides the sphere

into two equal parts.
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5421, (By Professor CaviLry, F.R.8.) — Suppose 8, = m, (z—g,),
y (2~ ag), my (2 — a3), m, (z—a,) ; where, for any given value of z, we write
+, -, or 0, according as the linear function is positive, negative, or zero,
and where the order of the terms is not attended to. If z is any one of the
values a;, a;, @3, a4, the corresponding Sis0+ + +, 0———, 0+ + —, or
0+--; and if I denote indiffcrently the first or second form, and R
denote indifferently the third or fourth form, then it is to be shown that
thefour S'sare R, R, R, R, orelseR, R, I, I.

Solution by W. J. C. Saarp, M.A.

. Ifa, ay, a, a, be in ascending order of magnitude, then, ¢ 4+ 4+ 4+
if the m’s be all positive, the S's are I, R, R, I, being _ 0+ +
and the signs in each column will change sign with the corres- — — 0 +
ponding . Now a change of sign in either outer column _ _ _ 0

leaves the result R, R, I, I, and one in either or both the
middle columns gives R. R, R, R; whilst these changes, in
addition to the change of one or both the outer columns, give R, R, I, L.

7537. (By Professor Townsexp, F.R.8.)—An ellipsoidal shell being
supposed, by a small movement of rotation round an arbitrary axis passing
through the centre of its inner surface, to put into irrotational strain a
contained mass of incompressible fluid completely filling its interior ; in-
th;i‘::ﬁ in finite terms, the equations of the displacement line-system of

8 .

Solution by (1) C. GraHAM, M.A.; (2) the ProPOSER.

L. Let w;, wy, wy, be the component angular velocities about the axis of
the ellipsoid, and V the velocity-potential referred to axes which atany in-
stant coincide with the axes of the ellipsoid ; then we have

aV z 4V y  dV s
dz a®  dy b®  dz ¢
z y £
= (wgz—wyy) a7t (w52 —w, %) ut (w19 —wy) ]

along the surface, and ] +-d7§ +o5=0 throughout the liquid ;
whence we easily deduce
o &= (@=a) (@=% .
V=u T e Y2+ wg e 2z + wg P Y5

which, by giving different values to V, represents a series of similar
and concentric hyperboloids, having their common centre at the centre of
t::e shell. Transform this system to its axes, and let its equation be
- +% + 2 _ K, where K is the parameter; then the directions of
v
YOL. XLI. E.
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Solution by C. Graran, M.A.

Suppose A and A’ to be two consecutive positions of the centre of in-
stantaneous rotation, and P any point. If the acceleration of P is to be
zero, we must have the velocity of P the same in direction and magnitude
when the body is rotating about the two points A and A’. Therofore, if
v and o’ be the angular velocities in these two positions, we must have
AP.w = A'P. o' to make the velocities equal. Therefore P must lie on a
Imown circle, since the ratio of AP to A’P is known ; and to make the velo-
cities parallel we must have AP parallel to AP’ when P’is the socond
position of P, and therefore AA’sin (PA’A) = AP. ¢ when ¢ is the small
angle through which the body has turned in going from the first to its
second position. This determines the angle PA’A, and therefore the
position of P on the circle already found. So we see there is one position,
and only one position, of P.

Agsin, since the acceleration of P is zero, the acceleration of any point
relative to P is its absolute acceleration ; but, if Q is any point, its accele-

ration relative to P along PQ=PQ . «*, and perpendicularto PQ="LQ . :-‘;'
and therefore the angle which the resultant acceleration makes with
PQis = tan-1 ({ldl: T ), which is independent of the position of Q.

7483. (By Professor WorstenmoLME, M.A,, Sc.D.)—In WaLToN’s
Hechanical Problems (3rd ed., p. 19, *Centres of Gravity of Solids of
Revolution,”” Ex. 10) it is stated that the centroid of thte solid formed by
scooping out a cone from a paraboloid of revolution, the bases and vertices
of the two solids being coincident, bisects the axis; prove that (1) this is
true for the volume formed by the revolution of any segment, cut off by a
chord PQ, from any conic, about an axis of the conic, provided PQ does
not cut the axis ; also, more generally, (2) if PM, QN be drawn perpen-
dicalar to the axis, and a sphere be described on MN as diameter, the cen-
troid of any part of the volume generated by the segment, intercepted
between two planes parpendicular to the axis of revolution, is coincident
with the centroid of the volume of the sphere intercepted between the
same two planes. :

Solution by T. Woopcock, B.A. ; Professor Marz, M.A.; and others.

1. Taking the axis MN for axis of z, and the
middle point O of MN for origin, the equation
to the conic may be written y* = Az?+ Bz +C.
Let PM =%, QN =/, MN = 2a. Consider
two equally narrow strips RL, RL’, drawn
parallel to Oy, on opposite sides of it, and equi-
distant from it, meeting the curve in R, R’, the
chord PQ in r, #/, and the axis in L, L’. Let
OL = A =O0L. We have

A = Aa?+Ba+C, A?=Ad?-Ba+C, RL2= AI\”+ BA;I- C.
’ ’
AlsorL=2=W ) L B2 ; therefore RL2—7L* = G iV —Ad? (a2—a3).
2a 2 2a?
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Similarly R1/2—#'1.% is equal to the same quantity. Therefore the
volumes generated by the elements Ry and R’s, when the figure revolves
round the axis of z, are equal. Therefore the centre of gravity of the
volume generated from the segment PQ is at O.

2. If the circle on MN as diameter meet RL in S, S8L? = a3— A3, there-
fore RL?— L2 varics as SL3. Therefore the volumes generated by the
elements R» and SL are always in the same proportion. Hence the second
part of the theorem follows.

[Otherwise: = = [z (y?—y,?)dz + [(u?=9s?)dz, and yg?—y,? is a
quadratic function of z vanishing at P, Q, when z = z, or z,, therefore
g= ]‘_z(.t'-_z,)_(ﬂz’ which is the expression for the centroid of the

[ @=x)(2s~2) dz
volume of the sphere on MN as diameter, either in part or whole.]

7413. (By the Rev. T. P. Kirgman, M.A., F.R.8.)—Prove that no
polyedron can have a seven-walled frame of pentagons.

Solution by the PRoPOSER.

It should have been added, if the ray-points of the frame are all triaces ;
but it is best to consider only solids whose summits are all triaces, and
whose least faces are pentagons. We have first to reproduce a theorem of
Evrer’s. Let a solid baving only triad summits have a; triangles,
a, quadrilaterals, a; 5-gons, ... a,, m-gons ... If from the four equations
e=2s+f—2, f=ag+a,+ag+&c., 2¢ = 33= 3ay + 4a, + bay+ &c., we elimi-
nate ¢, s, and f, a¢ disappears, and we get EvLER's result,

a5 =12+ a;+2 (ag—ay) + 3 (ag—az) + 4810+ ... + Mg, m + ... (> 4),
which, when a3 = @, = 0, becomes a5 = 12 + Smag., .

On all the edges of a (6 +)-gon A draw 6-gons, making 6 + r summits
665, and 12 + 2r summits 665 with a circle of 12 +2r pentagons, within
which draw 6 +r more 6-gons collateral with a central (6 +r)-gon A,
and making with the same 5-gons the like summits. We thus get a
(26 + 4r)-edron P, which has no frame, but a circle Ciz.2r) = 1.

If a (6+¢)-walled frame F is possible, F can be imposed on the
(6 +7)-gon A’, and equally well on any (6 + )-gonal face of any polyedron.
Let F be imposed on A/, a face of P. e frame F will have a contour
1y Cgs wee C54py Cosry (¢mS 0). The 6-gonal wall which carries ¢, ray-
points becomes a (6 + ¢m)-gon, which will contribute by EvLer’s theorem
¢ pentagons to the as of the completed solid : that is, if ¢, + ¢3+... =R, the
(6 + 7) walls will contribute to that sz R pentagons. The (6+r)-gon A,
the only non-pentagon > 6 besides these walls will contribute to that ag
r pentagons, and the compl. ted solid can have no more than ¢z=12 +r+R
pentagons. In imposing F we have made no change in the 12 + 2r penta-
gons of P, and we have added to them not fower than R more.

It follows that 12+2r+R P 12+r+R; Q.E.A,, if r>0.
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7535, (By R. Lacurax, B.A.)—Prove that, if a<r, and » be posi-

mdz % 8inna

14+2zcosa+a? sinnw sina

tiveand « 1, —_—— = —)
o l+2mcosa+a? sinnw sina
and . J" a"-ldr - sin(l—n)a’
0

Solution by Professor WorLsTENHOLME, Sc.D.; R. KxowLes, B.A.; and others.
@ gn-ldr x
By a well-known formula, j = -
0o “+a sin nwx
all values of a, real or impossible. Putting @ = cosa+¢sina, and there-

1 _®+cosa-fsina : :
forg — =27 "G P F .
re re = a7 %zcmar 1’ and denoting the integrals prorosed by

a*-1, if n>0<1; for

U, V, respectively, we have )
.. L3 . .
U+(cosa—isina) V = e [cos (n—1) a+¢sin (n—1) a];
whence U+ V cosa = —~— cos(l—#)a, Vsina= —2sin(l—n)a;
sinnw sin i
whence the results stated.

In these results, « is an angle determined as cos-! (cosa), and the
limits are accordingly 0 and w; but, since writing —a for a does not
altef either member, the results will be true from a = — x to a = =.

Both results are included in

® an-1 _ _x sin(l-na
L a3+ 2rcosa+1 sinnx  sina
if we take n>0<2, a>-x<w.

Wiiting z# for =z, % for n, and pa for a, we get

j" e~z __ = sin (p—n)a
I

o &% + 24P cus pa + 1 pein T 8in pa
»
where p is positive, # >0< 2p, and pa > —x < x; and in this form, which
18 not really more gencral than the one proposed, the result will be found
in WoLsteNHOLME'S Math. Problems [1919 (60)].
It we put @ = — = or = (in U or V), both members become , but pro-
bably the limiting ratio of the two members as a tends to  is not one of
euality. [Sve De MorGaN’s Calculus, p. 666.]

7439, (By R. Rawson.)—Two inclined planes of the same height and
inclination «, B, are placed back to back, with an interval between them
(2s). Two weights P, Qare placed one on each inclined plane, and kept at
rest by the connection of an inextonsible string, indefinitely long, passing
over two small tacks, one at the top of each inclined plane. A weight w,
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7399, (By Astrosm MukneripHYAY.)—A sphere is described round
the vertex of a cone as centre; prove that the latus rectum of any section
of the cone, made by any variable tangent plane to the sphere, is equal
to the diameter of the sphere, multiplied by the tangent of the semi-
vertical angle of the cone.

Solution by ArTuur Hrir Curtis, LL.D., D.Se.

It is geometrically evident that, if two given “surfaces of the second
degree touch along a conic, any plane cutting them both will cut the two
surfaces in two conics which have double contact along the line in which
this plane cuts the plane of contact of the two given surfaces; if, therefore,
the plane Zouck one of the surfaces at one of its umbilici, it will cut the
other surface in a conic with which this point of contact, an evanescent
circle, will have (imaginary) double contact along the line in which this
tangent plane cuts the plane of contact of the two given surfaces, or the point
of contact is a focus of the conic and the line a directrix. It is therefore
evident that the foci of any plane section of a right cone of revolution will
be its points of contact with the two spheres which can be described
touching it and touching the cone along a circle whose plane is perpen-
dicular to the axis of the cone. Let then from C, the vertex of the cone,
the perpendicular CD () be drawn to the plane of the conic, and let a
plane be drawn through CD and EF (the line drawn from the centre of
either of the spheres described as above indicated, to the point in which it
touches the plane section), cutting the cone
in the lines CA, CB; with the usual notation o
we have, in the triangle ACB,

. (s—a)(s—0) _(s—a)(s—5)8inC,
sin? §C = ab p.o ’

hence we have
Parameter_ AF.FB_ (s—a)(s—5) _ .
. -3 5 {ptaniC;

therefore Parameter = 2p tan $C, but 2p isthe ’
diameter of the sphere referred to in the Fo8B
question.

7363. (By G. G. Morrice, B.A.)—If | A,, By, C; | be the reciprocal
determinant of | a,, bs, ¢3 | , prove that

(1) 3 (a2 + 65 +a5?) (A + AP+ ASf)
=3 | a6y, by c5 | 2+ 23 (8,3 + 65> +ag?)(10) + bycy + byey)?
— 6 (5y0y + byeg + byes) (1) + cqag + c5ag) (4,5y + agby + aghy).
(2) a,(Ag—Ag) +ay (A3—A)) +ag(A—Ay)
= (By + by + Bg) (018 + cg83+ c395) — () + g + 03) (318, + aghs + aghy) .

Solutson by the PROPOSER.
(A + AP+ A?)(0? + ag? + a5?) — (Ayay + Agag + Agag)?
= (agA5—0yA0) + (a3, ~ 0, A0 + (51 A3— a5A,)%
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Solution by Professor WoLsTENHOLME, M.A., Sc.D.

Referring the two conics to their common self-conjugate triangle, we
may suppose their equations to be

and, if we take another conic 34+ my?+ 722 = 0 ....oveveveeeeennrenneennns (3),
with respect to which the triangle is self-conjugate, the reciprocal polars
of (1), (2) with respect to (3) will be respectively $u?+m2y?+n%22 =0,

1 2
FI + '"T;;’, + '% = 0. Hence, if L: === %, either of the conics (1),
r

(2) ie the reciprocal polar of the other with respect to (3). Thus there
are four such auxiliary conics (a well-known result). Obviously, we
shall have exactly similar equations for conicoids, and there will be eight
auxiliary conicoids with respect to which either of two given conicoids is
the reciprocal polar of the other. [The conics ¢ and F are polar recipro-
cals with respect to the same conics as U and V.  And in space 7 and T
%ﬂd 'r; u%x% T’ are polar reciprocals with respect to the same quadrics as
and V.

7530. (By R. Kxowies, B.A.,, L.C.P.)—From a point A a perpen.
dicular AD is drawn to a straight line BC given in position, and the in-
scribed circle of the triangle ABC passes through the orthocentre; prove
that the maximum value of its radius is one-half of AD.

Solution by the Rev. T. C. Srmmons, M.A. ; R. LacuLaN, B.A. ; and others.

Let O be the orthocentre, and I theincentre; then I0? = 2:3—A0. 0D
(Beprint, Vol. 39, p. 99) ; therefore, if IO = r, 72=A0.0D; and, since A
and D are given, the maximum value of r is half of AD,

7458, (By Professor WoLsTENHOLME, M. A., D.Sc.)—If #, r be positive
integmy and 'Yy = sinas, a"*" :z-:?‘ = 2,
Prove that, according as n + r is even or odd,
s nty ntr-1

dx'=(—l) 3 gnginz, or (—1) ? z"cosz.

[The results may be written:% = g sin {(n+7) %+z}]

Solution by J. Hammonn, M.A.; G. B. Maruews, B.A.; and others.
D= %{’ we have, by the conditions of the question,
2"Dn+r (2ry) = amsin[(n +7) dx + 2], Dr(zn*rDry) = Drs...(1, 2),
and it only remains to prove that anD#+r (27y) = Dr (s7*r Dry).
VOL. XLL. F
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little troublesome to find the constant multiplier. A fuller and more
satisfactory proof is obtained by putting
Gin}(8—7) =, cos} (B+y) =1, sin}(a—3) =p, cos} (a+3) =7,
sing (y~a) = 9, cos} (y+a) =, sin}(B—3) =¢, cos} (B+3) =¢,
gn}(a-B) = w, cos} (a+B) =, sin}(y—3) =7, cosd(y+3) =7r;
then, if U = left-hand member, we have
U = 4pu (g7 + ¢'v) (rw’ —r'w) +4gv (rw’ +r'w) (pu’ —p'u)
+4rw (pw + p'u) (¢v' —¢'v),
10 = o [pg (w0’ +w'v) + uv (pg’ —2'9)] - r'w [qu (pv' +5'0) —pv (g — ¢'v)]
] +rw (po +p'u) (qv' —g'v).
Now the following identities hold good :—
w'+wv =—wcosy, pg—p'q=wcoss,
pV+p'v= rcosa, gqw—q'u=rcosB;
therefore ;U— = — pqu’ co8 y + uow’ cos § — qur cos a + pvr’ co8 B
o + (¥ +p'u) (gv'—q'v)
= pg [W'v'—w cosy] +uv[w’ cos 3 -p'q’]
+qu[p'v =+ cosa]~pv [¢'w -7 cos B],
and every one of these four terms = — pque, therefore U = — 16pgruow.

7343, (By Berie Easton.)—If a debating society has to choose one
out of five subjects proposed, and 30 members vote each for one subject,
show that (1) the votes can fall in 5% ways, and (2) the chance that up-
wards of twenty votes fall to some one subject will be 6.

Solution by W. W. TaYLOR, M.A.; Saram MaREs; and others.

L. Let », w, ®, y, z represent the subjects, then the possible combinations
of votes and the relative probability of each combination will be repre-
sented by the coefficients in the expansion (v + w + # +y +2)*; and the sum
of these coefficients is (1 +1+1+1+1)% = 5%,

2. If upwardsof 20 fall to one subject, 21 is the least number of votes that
¢an be recorded for that subject ; the remainder of the votes is 9. These
can be given in 4° different ways, and the one subject can be chosen in
five different ways ; 8o, the conditions of this part of the problem can be
satisfied in 6 different ways, and therefore the chance required is §-20,

. 6807, (By 8. TEmay, B.A.)—If A, B, C can do similar pieces of work
In g, b, ¢ hours respectively, (2<b<¢); and they begin simultaneously,
and regulate their labour by mutual interchanges at certain intervals, so
that the three pieces of work are finished at the same time: find the num-
ber of solutions.
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both relevant. The whole work is done in 3s-labc hours. If z and y be
both positive, we must have z+y<3s-labe. Applying this test to (2),
(3) (4), (5), we find

2c>a(d+c), 2ab<c(a+d), 2ac<b(a+e), 2ac>b(a+d)..(2,5,3,4).
Here (2') and (6’) are both possible, but only one is applicable. (3') and
(4') are inconsistent, one only being applicable. There are therefore only
two possible solutions.

If b < 2'2, (2) and (4) are applicable; if & > -2—"1, (3) and (5) are
a+c a+c

applicable; if b = 5—”;, (2) and (5), and also (3) and (4), are identical,

the work being completed in & hours.

Eramples.—The harmonic mean between 4 and 12 is 6 ; sothat,if a=4,
& =6, c=12, the whole work is finished in 6 hours; A and C changing
~works at the end of 3 hours.

Take 6 =4, b =8, ¢ = 12; then
& = 2778 hours, y = 1y; hours; z = 2% hours, y = 2/ hours...(2,4),
the whole work being completed in 562 bours.

Take a =4, 6 =7, ¢ =12; then

z =233 hours, y = 2} hours; 2z = 23 hours, y = }4 hour...(3, 5),
the whole work being completed in 6% hours,

7552. (By the EpiTor.)—In a road parallel to a range, find, by ele-
mentary geometry, a point at which the sounds of the firing and of
the hit of the bullet would be heard simultaneously.

Solution by (1) D. BiopLe; (2) A. H. Curris, LL.D., D.Se.

1. Let A be the firing-point, B the target, CD the road, and AF the
distance the sound will travel before the bullet reaches B. Draw BC at
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. ) r(p+1)
is the general integral of 7 6w = =G where

1 a222 1 al 24
U=a2-Prl1—o—n0u T _ 8T _ &
“{ -1 2 T (p-d(p-p 2.2l ‘“}'
1 a2z 1 adzt
Ve=arrt 14 —Z "4  ~ &% .t
{ tre @ +(?+-})(p+£—)2‘.2l+&°}

" Show that the restriction imposed upon r is unnecessary, and that, if
m = n—2p, the general integral of the above differential equation is

_ a2 23 adzt
v = Aosn-s { M ermiD  prhmrmimeD " &}

+n.ma—=l.on“_,_,{1+(n—zzggt—3)+(n—g)(n-2‘:4(':vt‘—5)(m—3)+&°.}

Solution by the ProPOSER.

Let w =0 () =A%
=of[Ag+ A 2%+ Agat + & ]+ 2P 2[A_1 + A 323+ A _3z—4 + &e.]...(1).
Differentiate (1), then
o

B 3(2r+B) A,avrer-t, T4 32+ B) (2r+B-1) A, 23003,

—2‘%‘)" =3—p(p+1) A 203 —ale = T—alh,a¥+A;

) 2ip+1)
hence d_z? —a%w = TU.. ............................ (2)'
if @r+B+p) (2r+B=p=1)A; = 6%As_ 1 ceerreeneennnnnnnn. (3),

the summation extending to all positive and negative integral values of r.

The general integral of (2) is, therefore, ¢ (z), which must be of such a
form that the coefficients of 22r+#-2 and 2%r+5 shall satisfy (3).

Put ne=pB+p, and M=B—p=06—2p...ccccecrtrierrunns (4).
Equation (3) may now be written
B+2r)(m+2r—1) A, = a%A,_; ...t cevrennes (6).

From (1) the following values of A,, A, &c., A_j, A_j, &c., may be
readily obtained :—

A= a%A, - a%A, - a‘A,
' a+2.m+l T3 n+4.m+3 nté.nt2.m+3.m+1
Aa GSA, a‘Ao &c;

T pt6.mtb nib.n d.nr2.mib.mid.m+1
- —~2.m—3.A_ 2. 8. m=38.m~1.A
A’-1="(ma,])A°, A,=" 2.m—3 10 n.m m 0

a? at 4
A =n—4.ma-’-5. A2 - n—4. n—2.n.m:65 m—3.m—1 .Ao’ &o,

Substitute these values in (1), then () is the value assigned in the ques-
tion. By making # = 0, and m = 1, successively, there results the two
Pparticular solutions obtained by Mr. GLAISHER.
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7393. (By W. J. McCreLLaxD, B.A.)—If from any two points in-
verse to each other with respect to a given circle, perpendiculars are
drawn on the sides of an inscribed polygon; show that the polrgons
formed by joining the feet of the perpendiculars are (1) similar, (2) to one
another as the distances of their generating points from the circle’s centre.

Note by T. A. Fincr, M.A.

This is incorrect in every case, except for a triangle, in which case it be-
comes Mr. McCay’s well-known theorem. The Proposer seems to have over-
looked the fact that al corresponding lines in similar figures must be in the
same ratio ; that this condition is not fulfilled, can be easily seen by taking
the ratios of the lines joining the feet of the perpendiculars from the in-
z;erse iz%)loinl:s on any two sides of the polygon which do not intersect on

circle.

7389. (By C. Lrvpesporr, M.A.)—If O, I are the centres, R, r the
radii, of the circumscribed and inscribed circles of a spherical triangle
ABC, and P any point oun the sphere ; prove that
80l cosr s e g
cos P cosR sing(a+b+¢) [sina sin } (AP)
+8in §sin? § (BP) + sin ¢ sin?§ (CP)).

Solution by D. EDWARDES ; SARAR MARKS; and others.

If a, B, 7 be the angles subtended by the sides at the pole of the cir-
cumscribed circle, and P any point on the sphere, it is easy to show that,
since a + B+ = 2,
cos PA sin a + cos PB sin 8+ cos PC siny=4cosOP cosR gin }a8in § Bsin }v.
Applying this to the triangle DEF formed by joining the points of contact
of the inscribed circle, and putting a, &c. for the angle FIE, &c., we have
cos PD sin a + cos PE sin 8 + cos PF sin oy =4 cos IP cos rsin }a sin }8 sin §y.
Now a = 2ATE ; whence, by the right-angled triangle ATE, we get

gina = 2 cos (8—a) sin (s—4a) sin (s—b)sin (s —¢) + sinr sin b sin¢,
and similarly for g and 4. Also
sins sin (s—a)sin(s—5)sin(s—¢) since tan r = —"—
sinrcos’rsinasinbsine gins’
hence cos PDsin a cos (s —a) + cos PE sin b cos (s—5) + cos PF sin ¢ cos (s —c¢)
_ 2cosIPsin s
8r

gin a sin §8sin }y =

col
But, from the triangle PBC, we have
cos PD sin @ = cos PB sin (s—¢) + cos PCsin (s—5) &c.

Hence cos PA sin a +cos PB sin & + cos PC sin ¢ = 2008 1P 8in ¢

Algo (TopHUNTER’S Spherical Trigonometry, Art. 144),
2cos Ol sin &
cosRcosr’

[sin @ sin3 § AP +sin & 8in?} BP + sin ¢ sin? § CP] =cos IP.

ginag+sind +ginec =
. o8OI _cosr
" cosR sins
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7567. (By Professor Svrvesrer, F.R.8.)—Let nine quantities be
supposed to be placed at the nine inflexions of a cubic curve, then they
will group themselves in twelve sets of triads, which may be called
collinear, and the product of each such triads may be called a collinear
product. From the sum of the cubes of the nine quantities subtract three
times the sum of their twelve collinear triadic products, and let the func-
tion so formed be called F. With another set of nine quantities form a
similar function, say F'. Prove that FF will be also a similar function
of nine quantities which will be lineo-linear functions of the other two
sets, and find their values. [The inflexion-points are only introduced in
order to make clear the scheme of the triadic combinations, so that the
imaginariness of six of them will not matter to the truth of the theorem.]

Solution by R. RusseLL, B.A,

The expression denoted by F'maysymmetrically be written down thus:—
F=a3+B+3+B+ud+ 1+ 2%+ y* + 23— 3abe - 3linn —3zyz —3ale—3bmy

— 3cnz—3a (mz +ny)—3b (nx + lz) — 3¢ (ly + ML) ...venenet (1).
A little consideration suggests the transformation (where w3 = 1)
a+b+c=a, I+m+n =, z+y+z=¢§
a+bw+ewt =B, l+mw+nu? =y, a;+yw+zw’-n} (2),
s+buwl+ew =1, l+mwl+nw =y, T+ywi+zw = ¢

which reduces F to the very simple form,

aBy + Ay + {n{—arf—Bun—y{ or F=|a, v, 9
6 B A
wmh
and proves the remarkable property that any determinant of the third
order can be reduced linearly, as in (2), to the form of expression given
in the question.

F' can be expressed similarly ; and FF', being also a determinant of the
third orde? whose corstituents are lineo-linear functions of the two
original sets of nine letters, can by the above be reduced at once to (1).

[The theorem is the analogue to Eurer’s theorem that the product of
one sum of 4 squares by another is also a sum of 4 squares. In a precisely
similar way, any determinant of the second order is reducible to a sum of
4 squares, with the aid of w? = —1.]

4925, (By the late Professor Crirrorp, F.R.8.)—Let U, V, W =0
be the point equations, and , v, w = 0 the plane-equatlons of three
quadrics inscribed in the same developable, and let « + v + % be identically
zero.  Then, if a tangent plane to U, a tangent plane to V, and a tan-
gent plane to W, are mutually conJugate in respect of au+dv+cw =0,

o e T v w
thy =
ey will intersect on F—ap + (c_a)2+ oy 0,
which passes through the curves of contact of the developable with
a4+ b+ cw and one other quadric.

VOL. XLI. G
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stantly at the temperature of boiling water. After the lapse of a very
long time, show that the law of distribution of temperatures will be repre-
sented by the equations (between the limits y = + }) ’

v =ae-2cosy+be-%cos 3y +&c., 1 = acosy+bdcos3y+&o.

Solution by T. Woopcock, B.A.; Prof. Nasu, M.A.; and others.
‘We have to find v in terms of 2z and y, knowing %+§;=0, also
v=0when y=4 4», and v=1 when x =0, as well as when ¢ = .
Try v = 3 % cos ry, where  is independent of y. 'We must have r = an
odd integer = 2m+1 say, and also %-r’u =0; ... u=Ae" +ae-r7,

) Now, when z is infinite, v=0; .*. A=0; ... v=Zae-2m+1)*cos (2m + 1)y»
the summation extending over all positive integral values of m. Putting
z =0, we have 1 = Zacos (2m + 1)y, the limits of y being & §w.

7579, (By R. A. Roserts, M.A.)—Two uniform spherical shells
attract according to the law of the inverse fifth power of the distance ;
show that, if they cut orthogonally, they will be in equilibrium under the
influence of their mutual attraction.

Solution by Prof. Townsexp, F.R.8.; J. A. Owen, B.Sc.; and others.

The attraction, for the law of the inverse fifth power of the distance, of
a thin uniform spherical shell, upon a particle in its space, either external
or internal to its mass, being directed towards the point of its surface
nearest to the particle, and varying directly as the radial distance from
its centre and inversely as the sixth power of the tangential distance
from its surface ; it follows at once that, for two such shells intersecting
at right angles in & common space, if an elementary cone be supposed to
diverge from the centre of either, it will intercept on the surface of the
other two elements of mass, whose attractions by the former pass in
opposite directions through its centre, and are to each other directly as the
cubes of the radial distances from its centre, and inversely as the sixth
powers of the tangential distances from its surface—that is, directly as the
cubes of the radial distances from its centre, and inversely as the cubes of
the perpendicular distances from its plane of intersection with the latter ;
and the two attractions being consequently equal in magnitude and
opposite in direction, therefore, &c., as rcgards the property in question.

7569, (By Professor Townsenp, F.R.S.)—In a tetranodal cubic sur-
face in a space, show that— ‘

(@) The four nodal tangent cones envelope a common ?uadric.

(8) Their four conics of intersection with the opposite faces of the nodal
tetrahedron lie in a common quadric.
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The parabola y? = 44z will be its own ‘‘inverse” if ¢ =4a =L,
then 24 APP = AP.AP sin PAP' = 17/ cos 20 = 2¢2 cot 20 = 32a? cot 20
= L2(2cot 20) = L (cot §’ cot y).
Similar properties are readily obtained for other curves which are their
own i.-c. ¢. a8 2ry = a2 (a? = 2¢?), 23 = ay? (¢ = a), &c.
[Another solution of Quest. 6969 is given on p. 114 of Vol. 37 of the
Reprint.]

7194, (By Professor WoLsTENHOLME, M.A., Sc.D.)—In the examina-
tion for the Mathematical Tripos, January 2, 1868, Question (6) is as
follows :—¢¢ If there be n straight lines lying in one plane 8o thut no
three meet in one point, the number of groups of n of their points of in-
tersection, in each of which no three points lie in one of the n straight
lines, is 4 (#—1).”” Prove that this is not true; but that, if ¢ n-tided
polygons ”’ be written for ¢ groups of n pomnts, &c.,”’ the result will be
tiue: and calculate the correct answer to the question e¢nunciated.

Solution by W. J. GREENSTREET, B.A. ; A. MacMurcuy, B.A. ; and others.

Denote the » straight lines by 1.2.3...#n. Make a group of n intersec-
tions in this way :—1 and 2, 2and 3, ..., n—1and #, nand 1. Then there
are two, and only two, points on each straight line. Hence we must tuke
two points on each straight line, for if not there would be more than twe
onsome line or lines. So that we mercly require now the number of
ways the »# intersections may be arranged in a ring, that is 3 (n-1)!

A}

7247. (By Dr. Curts.'—Two magnets, whose intensities are I, I,,
and lengths a,, a,, are rigidly connected so as to be capable of moving
only in a horizontal plane round a vertical line, which passes through the
middle point gf the line connecting the two poles of each magnet; if 2a
denote the angle between the lines of poles of the two magnets in the
direction of opposite poles, while 6 denotes the inclination to the magunetic
meridian of the line bisecting this angle, prove that (1) the positions of
stable and unstable equilibrium (discriminating between them) are given
by tan 0 = (I,a, + Iywo) tan af (J,a,—I37,) ; and hence (2), if the intensities
of the two muguets be inversely proportional to their lengths, the posi-
tions of equilibrium will be such that the lines of poles of the magnets
will be equally inclined to the magnetic meridian.

Solution by W. M. Coates, B.A.; BeLLE EastoN; and others.

The moment of the first magnet is I,a;, and the angle its axis makes
with the magnetic meridian = 6~a: therefore the moment of the couple
tending to turn it is proportional to I,a, sin (6-- a).

Similarly the mument of the couple tending to turn the second magnet
in the opposite dircction is proportiunal to Iyagsin (8 +a). Hence, when
the system is in equilibrium, T,e, sin(6—a) = I,a,sin (0 + a), whence
tand = (Lia, + Lagtana) [ (1« - I7,). [Whether the sign of the right-hand
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7558, (By W. J. C. Smare, M.A)—If A’, B/, C", I’, be the fect of
the perpendiculars from any point on the four faces of a tetrahedron
ABCD, show that AC'*—B(* = AD*~BD?, &c., and conversely.

Solution by W. G. Lax, B.A.; MARGARET
T. MrvyER ; and others.

Join AP, BP, where P is the point from
which the perpendiculars are drawn ; then,
since PC'B and PC’A are right angles,

AC? -BC*? = AP*-PC“—BP?+PC"?
= AP?—-BP3,
Similarly, AD’”?-BD’?= AP:-BP?,
therefore AC3—BC"? = AD?—BD?,
and so on, and conversely.

7364. (By W. 8. M:Cay, M.A.)—If the line joining two points on
two circles subtend a right angle at a limiting point, prove that the locus
of the intersection of tangents at the points is a coaxal circle.

Solution by T. A. FincH ; Saran MaRrks ; and others.

Let A and Bbe two circles, PN the
chord subtending the right angle at
F. Let PN meet the circles again in
M and Q, and draw PL, ML, NL
and QL p dicular to L the
radical axis of the circles and com-
plete the Figure. Then

RP - sin RNP _ cos BNM
KN sin RPN cos APQ

- MN AP
2BM ° PQ

_ FM .FNsin MFN AP
FP.FQsin PFQ * BM’

and, from right angle, sin MFN = cos PFM ; sin PFQ = cos NFQ, also
LPFM = £ NFQ (since angles MFN and PFQ have same bisectors)
therefore

RP? _FM:.FN3 AP? _BF.ML.BF.NL AP? _BF2.AF! = const,
RN?  FQ?.FP?"'BM? AF.QL.AF.PL BM? AP:.BM? :
Therefore, &c. [The Proroser remarks that this proof is much more
elegant than his own. The theorem was originally derived by reciproca-
tion from Question 6395, solved in Reprint, Vol. xxix., p. 23.]
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fulfilled, there is equilibrium and not otherwise. A particular case is
when one of the angles (B say) is a right angle, so that the force of B
vanishes ; then we must have A = C = 4, and forces at A and C act in
opposite directions along the hypotenuse.

[Mr. RevnoLps states that he ¢ inadvertently made the angle BCA
obtuse, whereas it should be acute, since ¢? < 4%+ §2.”"

Professor HupsoN remarks that ‘‘the figure is manifestly impossible ;
for, C being obtuse, cot C is —, and a force cot C in the opposite direction
to cot A, cot B, isreally in the same direction and cannot counterbalance
them. - ’

¢In the case supposed by Mr. BarTown, the forces are proportional
to cot A, 0, —cot C. Since for equilibrium one of the forces must act in
the opposite direction to the other two, the proper inference is that the
triangle is obtuse-angled.

¢The condition of equilibrium is cot A +cot B + cot C = 0, therefore

sin(A+B) cosC _ 8in*C sin?A +sin°B - 5in?C _ 0
fin AsinB a0 — O therefore ST Zsin AFB ’
therefore sin? A 4+ sin? B +sin? C = 0, which is impossible].”

7495. (By 8. Temay, B.A.)—Show that the mean length of the
¢¢ Sailor’s Knot,’’ or geographical mile, in latitude A, is approximately
11566 (1—-00667 cos?A) mile.

Solution by the PROPOBER.

If the ellipsoid (1—e%)(«®+y?%) +22 = 42 be cut by a diametral plane
passing through a point in latitude A, and inclined to the plane of the
meridian at an angle 6, the equation to the section is

(1—e2cos?A) 23— 2¢% 8in A cos A cos 0y + (1 —e? +¢” cos? A cos? 6) y? = 33,

Let this be written Asr?—2Czy + By? = %

Differentiate twice with respect to z ; thus
Az—Cy—Czp+Byp = 0, A—2Cp—-Cyg+Bp?+Byg = 0,

Hence at a point on the meridian, putting y = 0 and z = %, we have

C'\¢
A+ —
A Al 1+p9) ( A
p-—és q-ﬁ(AB—C’); KN pn( qp’) = AB—C’) )
{ _a‘sin’Acos’Asin’O}i
aa_’{l—c’(2—e’)cos’h} 1—62(2—62) cos? A
[) 1—e2co8%A 1—¢3cos? A sin? @
=g (—nsino)f
B I weme’ PP

- H%’ { 1+ (m—3n)sin36+ (m’—gmn +2l!§n’) sin‘ @

+ (m'—gmin+§1-'§}m’+§l-' gitu‘) ain‘0+&c.}.
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3835. (By the Eprror.)—The sides of a triangle ABC are BC = 6,
CA=5, AB=4; and Q, R are points in AC, AB, such that CQ = 2;
BR = 3. Show (1) by a general solution, that the distance from B to a
point P in BC, such that £/ CQP = BRP, is BP = § (6014 —13) = 3-83843;
and (2) give a construction for finding the point P.

Solution by D. BropLe. ; Prof. Marz, M.A., Ph.D. ; and others.

1. Draw (Fig.1) PM, QS parallel to A
AB,and PN, le‘ el to AC; then
the triangles , RNP will be R
similar, and PN : PM = NR : QM; [

AC.BP AB.PC Q
but PN BG y PM = T

AB.PT AC.8P,
NE="gg— WM="55 £ SP T ¢
Fig. 1.
therefore AC.BP:AB.PC=AB.PT: AC.8P,
BP : PC = AB2. PT : AC. 8P;
but PO = BC-BP, PT = 2C-BR_pp, g = Br+ 2230 _50;
..BP : BO~-BP=AB.BC.BR-AB’BP : AC’BP+ AC.BC.CQ-ACBC,
AC.BC.CQ—ACBC+ABIBC+AB.BC.BR
BP2+ A AR BP
_AB.BC.BR,
- " AC3—ABY '’

whence

’ (AC.BC.CQ-AC’BC+ABBC+AB.BC.BR)? | #
2AC-AB)BP = { +4(AC'—ABY) AB. BC*. BR )

—(AC.BC.CQ-AC*BC+ABBC +AB.BC.BR).

In the given case, BP = } [(601i —13)] = 3-83843.

2. Draw (Fig. 2) QD en-
dicular to BC; make DE = QD ;
join RE; make CF = BF (that
18, from the mid-point of. BC
draw a perpendic thereto).
Draw EH parallel to BF, to meet
ABinT; then TRE will be a triangle
with an angle T = ABF = ABC—-
ACR, and the circle RPE, drawn
round this triangle, will cut BC in
the point P required, so that

¢ CQP = BRP.
For . 8QD =SED = SRI,
£CQD—BRI = ABC—ACB,

.. 8QC—-BRS = ABC—-ACB; .
and, by construction, we have Fig. 2.

LPER+PRE = ABF = ABC—-ACB; but ,PER=PQS8,
.. LPRE+PQS = ABC—~ACB = 8QC-BRS,

and
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. Solution by Marcarer T. MeYer; O. W. H. GRRAVES; and others.

If all the digits are under 5, the double number will clearly have the
sum of its digits =20. If two of the digits are 5 (the rest of course all = 0),
the double number will have sum of digits = 2. In all other cases, the
sum will be 11 (or 20—9). [This is included in Quest. 7534, solved on
P- 28 of this volume.]

7542, (By Professor MarTIN, M.A., Ph.D.)—Prove that for n = o,

g_{ 1 et L pown }-log.z.
Zn 1+«/2sm(h-+%) l+~/2sm(}¢r+-é;)

Solution by Professor WoLsTENHOLME, M.A., Sc.D.
ir dx - 0 dz
L 1+sinz+cosz L 2 cos }z (cos 4z +8in §)

i 1 sec? 3z dr i )

=| /2" =l " =

jo e = log (1 +tan Jo)]i7 = log 2.
‘Writing this in the usual way, dz = »/2n, and the limit of the series in
the question, when # is o, is log 2.

Since j" I " P j" =2

o l+sinzfcosz o l+cosz+sinz

- [ z )
wo get J., 17 Vasm Grra) = = rloe?;
and this integral may be written
the limit of i, 1 + 2 +.
" l+¢25in({w+l) 1+¢2sm(;r+2_')
2n 2n
vt L )
1-n/2sin(t1r+”-—")
2n

when » tends to @ is log 2. This is not new, being only another way
w
of getting at the well-known definite integral
j" log (1+tan ) dz = 3 log 2.
[]

7592. (By 8. TesaY, B.A.)—Find an integral value of & such that
(m?+n33+ g and (m?+n3)2—a shall be rational squares; m and n being
positive integers.
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Solution by W. J. C. Smare, M.A.

1. Evidently X; is the coefficient of ¢ in the exgansion of the infinite
product (1 + z2)(1 +2%)(1 + 2%)....,80 that thisis 1 + X s+ Xys?+ X, 28 + &c. ;
but, if s = y, the same product

=(1+y) (1+29) (1 +2%) (1 +32%) ... = (1 +9) 1+ X,y + X, 9 + &c.)
=(1+22) (1 + X, 25+ X, 2%3 + X,y 233 + &c.) ;
hence, equating coefficients, X; = (1 + X,) #, X, = (X, + X,) 23, &c., &c.,
X = (Xio1+ X)) 2%, 60 that X, = 172’ &e.,
o e+
and - T - s
L= 1% 1-2)(1-2%) ... 1-7)
[a value obtained in a different way in Art. 2]. Similarly X, ; is the
wefficient of ¢ in the expansion of (1 +2z)(1 + 2%) ... (1 + #’z), so that this
poduct = 1+ X, ;54 X;,; 52+ X3, 5 28+ &c.; and if, asbefore, 25 = y, this
< 1+y ;
product 172y (L +2zy)(1+2%) ... (1 +2%)
1
e RUS FETS WIS FE SN
and, multiplying by 1+ 27+12 and equating coefficients,
F1+ Xy, = (1+Xy,;) 2, 291Xy, + Xy = (X, +Xs,5) 2 e,
FX 14X, =(Xioy, 54Xy, ;)% sothat Xy g = ﬂll——_:Q &o.,

X $(s+1)
x"isz‘gl—ﬂf‘“zx‘_l"_=z 3 (l—:d)(l—:d'l)...(l-;:'-‘“)
1- (1=2) (1-29) ... (1-#)
= (1=2i)(1=2/-1) ... (1 —ai-$+1) X,
2 Evidently X;=z+s3+s%+24+&c = l—"‘3:,
and X, = 284 2% + 225 + 228 + 327 + 32 + 42° + &o.
o (1+2) Fad
= 6 .) = = .
2 (1+2)(1 +222 + 32 + 42°+ &c.) (2P ~ (=a)0=5
Now X = (23 + 2% + 29 + &c.) X, ; for, if », be the coefficient of 2 in X,
and p, that in X,, », is made up of u,-s, the number of solutions of
2+9+r = n in which one value is 1( 2, ¢, and r being all unequal in-
tegers) ; of uy—g, the number of solutions in which one value is 2 and

28 ol
none 1, and so on. Therelorex,amx, - m,&nd
a repetition of the same argument leads to the result above stated.

7377. (By Professor Syrvesrer, F.R.8.)—Integrate the equation in
differences tno) = tin 41 (5—=1) thy_1+ (28 —1) wy,
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7536. (By Professor SyLvester, F.R.8.)—If 3n—2 points are given
on a cubic curve, and through 3s—3»—2 of these an (#— »)-ic be drawn,
cutting the cubic in two additional points, and through these and the
remaining 3y given points a third curve of order »+1 be drawn, prove
that its remaining intersection with the given cubic is a fixed point.

Solution by W. J. C. Suarp, ML.A.

This theorem is a consequence of Professor SYLvESTER's theory of
Residuation (Reprint, Vol. 34, p. 34). Taking any 3» points, if A and B be
the additional intersections of an (»—w»)-ic through the other 3n—3y—2
points, and C that of the (v + 1)-ic, is through the 3» points and Aand B, the
3n— 3y — 2 other points are coresidual to Cand the original 3» points. If
A’, B’, C’ be corresponding points obtained by taking another (n—»)-ic
through the same 3% — 3v—2 points, the 3» points and C are coresidual to
the same 3» points and C’, and C and C’ denote the same point. This

int is the single point coresidual to the original 3n—2 points, for the

n+1)-ic system composed of the first (n—w)-ic and the corresponding

v + 1)-ic is such that the 3»— 2 points are residual to A, A, B, B, and C.
Also the nm-ic through the 3n—2 points and C will meet the cubic in a
residual point P, which is, therefore, coresidual to A, A, B, B, and there-
fore residual to C, C (¢.e. it is the tangential of C); and the 3n—2 points
are residual to P and C, and therefore coresidual to C, which is therefore
the same, however the 3#—2 points may be taken.

The theorem alluded to by Professor SYLVESTER is given in SALMON’S
Higher Curves, Art. 1564, p. 131, and is shown to be a consequence of Pro-
fessor SYLVESTER's theory of Residuation, Art. 160, p. 135 ; it is identical
with Mr. J. J. WALKER’S Quest. 7058.

It n = 3 and »=0, the theorem becomes :—*¢ If cubic curves be drawn
through seven points on a given cubic, the lines joining the two remaining
intersections of any of these with the original cubic will all pass through
a fixed point upon it.” .

If n = 2 and » = 1, it becomes :—“If four points be given on a cubic
and through any one of these a straight line be drawn meeting the cubic
in two other points, the conic through these and the other three
original points meets the cubic again in a fixed point; and, as a particular
case of this, * If a conic osculate a given cubic at a given point A aund
touch it at B, it will pass through the single point coresidual to the tan-
gential of B, and three coincident points at A.’”’ In this way innumer.
able theorems may be deduced. .

’

7512, (By Professor Townsexp, F.R.S.)—An ellipsoid and any in-
scribed polyhedron of maximum volume, or circumscribed polyhedron of
minimum volume, being supposed to bound two solids of uniform density
in their common space ; show that both solids have the same principal
axes at their common centre of inertia.

Solution by the ProposEr ; C. GraHAM, MLA. ; and others.

The polyhedron, whether inscribed or circumscribed, being always
regular in the particular case of a sphere, therefore, for both solids,
3(yzdm) = 0, 3 (zedm) =0, Z(zydm) =0, for every triad of rect-
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The followin%hble gives a precise account of the num!.er of squares that

can be reached

Original Reached Reached Reached Reached Reachod

Square. |
A s
B 8
L 4
M 3
Sum 7
Totals } 84
2§
Average  out of
63
1.
both

m

26
22
=
16
22
19
17
14
20
17
13
12
16
14
12 7

9
269

1643

out of :

63

mn m

24 [
24 9
4
26 1l
25 14 1
2
6
4
3
6
10
384 226 41
|
24 | 14} 23
out of out of out of

63 T 63 63

y the knight from each of the 16 in 1, 2, 3, &c. moves:—

' Reached
in

in
' 1 move. 2moves. 3 moves. 4 moves. 5 moves. 6 moves.

1
out of
63

le we find that the probability of (A) and (B),
within one move is §35 = {g; Wwithin 2
moves, ;%% ; within 8 moves, 47y ; within 4 moves, 2825 and within
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7622, (By Syama Cuaran Basvu, B.A.)—PSQ is a focal chord of a
parabola ; tangents PR, QR intersect in R. Show that the third tangent
parallel to PSQ bisects RS at right angles.

Solution by CHRISTINE LADD FRrANKLIN, M.A.; KaTB GALE; and others.

Any line parallel to PQ is at right angles to RS. That the parallel
tangent bisects RS is a reciprocal of the proposition that a chord of a circle
is bisected by the diameter perpendicular to it. Thus:—

A line through any point on a The tangent parallel to a focal
circle cuts the circle again in a  chord passes through the fourth
point which is fourth harmonic to  harmonic to the point at infinity,
the first point, the point atinfinity, the pole of that chord, and the
and theintersection of the line with  focus.
the diameter perpendicular to it.

6053. (By the Rev. A. J. C. ALLex, B.A.)—A prism filled with fluid
is placed with its edge vertical, and a beam of light is passed through an
infinitely thin vertical slit, and is incident normally on the prism iufinitely
near its edge. The emergent beam is received on a vertical screen.
It the rfiactive index of the fluid varies as the depth below a
horizontal plane, find the nature and position of the bright curve formed
in the screen.

Solution by J. J. WALRER, M.A.

Let AB be the edge of the prism, ABB’A’ the
on which a ray of the bcam, as PS’S, isincident

(at the point §’) perpendicularly, emerging from
the other face ABOS at the point S. The points of
incidence lying on a line S0’ parallel to the edge AB,
and consequently the points of emergence in another
ﬁl'dlel 80, it 18 immaterial whether these points
supposed infinitely near the edge or mot. Let
8Q be the emergent ray, SN being the normal to
the second face of the prism. Let YOZ be the
horizontal plane to the distance of S from which the
ive index at S is proportional, OY being
Dormal to and OZ lying on the face of the prism.
Then, taking O8X, OY, OZ as axes, the equationsto

8Qare (08 = #) @ =, yein QSN = zcos QSN,
ad (/8AS' = a) 8in QSN = ¥'#’sina = 2’ [ %, suppose ;

% that, eliminating 2’ and £ QSN, thero results y2:? = z° (K2 —2?), as the
equation of the surface generated by the emcrgent rays, and the bright
curve formed on the vertical screen y = mz +n will be a quartic curve.
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: : [ .
to this ray will have for equation y=tan (8 + a) (z-— TTA—boots o),w}uch
involves tan @ in the second degree, so that the envelope is a conic;
and, since the straight line is altogether at infinity when & + A =5 cot 9, this
conic must be a parabola. -

The following further generalisation is obvious : —

If the points on a right line have a (1, 1) correspondence with the
rays of a pencil, the straight line drawn through any point on the
right line 8o as with its corresponding ray to divide a given segment in
a given cross ratio, will envelope a conic, touching the given segment and
the given right line.

2. The question may be solved more in
the Steinerian manner as follows:—Let Q, Q'
be corresponding points on the right line
which subtend at P, the vertex of the pencil,
an angle equal to the given angle (a); X, X’
being any other corresponding points : viz.,
let PQ’, PX’ be the rays corresponding to
Q, X. Let XK, making with PX’ the given
angle (a), meet PQ in Y; and QL, meeting
PX' in L, make with the given right line the
same angle (a). Then we have

QY. QX =sinX :sinY

= (PL + LX’)sin L ;: PX’sin QPX’

= PQsin PQL + QX' sina : X’Q’ sin Q'

=PQsin PQL-0Q sina+ OX’sina : 0Q sin Q'- 0X'sin Q’;

O being the point on the given range corresponding to the parallel-ray,
and PO’ the ray corresponding to the point of the range at infinity; for
Which 0X’. O’X = ¢* = 0Q’. 0'Q. Hence, multiplying both terms of the
latter ratio by 0’X, 0’Q, and substituting, there results

QY : QX = 4.0’X +0’'Qsina . QXsin Q,
Vhere % = 0’Q (PQ sin PQL - OQsin a), or QY 8in Q' =40'X + 0’Qsin a,
o, i 0” is a point on PQ such that Q0”sin Q' = 0’Q sin a, then 0”Y : 0X
182 constant ratio; and consequently XY touches a given parabola, to which
0'X and 0”Y are also tangents.

.. [The parabolic envelope manifestly touches the given straight line, and
s axis makes with the straight line that joins O to the vertex of the
Pencil an angle equal to the given angle. CHrISTINE LADD FRANKLIN
Temarks that, if we revolve the pencil through an angle equal to the given
angle, the construction becomes the ordinary projective construction for
8 parabola,—which is, in fact, one of the two cases given by STEINER, viz.,
Vhen the lines are drawn parallel to the rays of the pencil or perpen-
dicular, —but he does not seem to have seen his way to the general case,
though why it is difficult to conjecture.]

7611, (By B. RevnoLps, M.A.)—A man, having to pass round the
Corner of a rectangular ploughed field, strikes across the field diagonally,
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object placed § of an inch from the object-glass; find the magnifyin,
power, the least distance of distinct vision being taken to be 8 inches. &

Solution by B. H. Rav, M.A.; Sarau MARKs; and others.
Let F and f be the focal lengths of the object- and eye-glasses of the

felescope.  Then, by question, F+f = 8} in., and 7 = 16; therefore

F=8in., f=}in. Whenarranged as a microscope, these glasses are in-
terchanged in order.

Let O, E, PQ, pg, be the centres of the 14
object-glass, eye-ﬁlass (of the telescope), the 9 P £
object viewed, and its image, respectively. =~ T==--..___ 1. P

Then Op = F = 8in.; PE = §in., 7

1 1 1 Ep 3 cps
l].lo —— = —_— — = 4,
EP+Ep Fi whence EP ~ §—1 4. Now the magnifying
o = 24 PQ -2 8 _8 sE
power Op * Qistance of distinot vision Op "PQ 8 PE ‘.

7605, (ByJ.J. WaLker, M.A., F.R.S.}—Referring to Question 1685,
show that (1) the circles drawn on the common chords of three mutually
orthotomic circles as diametors have not a common radical axis (as
erroneously stated in that Question), but have the same radical centre as
those circles ; and (2) their common chords are equal to one another, and
(3) respectively parallel to the radii of the circle through the centres of
the orthotomic triad, drawn to those centres. -

. Solution by Astrosg MukHOPADHYAY.

. My solution to Quest. 1585, is incorrect; the z-coordinate of C being
In reality — & cos A cos B, 8o that the first term of equation (3) should be
(z+bcos A cos B)3, Equation (4) is correct. But, subtracting (3) as cor«
fected from (1), we get, not the same equation as (4), but

—2c0o8A+ysinA = }(ccosC+bcos B—acosA)............(5).

Hence, the circles have nof the same radical axis. Solving for z and y
from (4) and (5), we get for the coordinates of the radical centre of the
crcles (1), (2), (3), 2 =10, y = }cosecA (ccosC+bcos B—acosA).
But these are well known to be the coordinates of Q. Hence, the three
eircles on the common chords of the orthotomic triad as diameters, instead
of having a common radical azis, have the same radical centre as the three
origina]l mutually orthotomic circles. [This can otherwise be proved by
reasoning similar to what is followed in TowNseND’s Modern Geometry,
Vol.i., Art. 183, Cor. 3.] ,

Again, if P be the circumcentre of the triangle ABC, its coordinates
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7204, (By A. McMurcrY, B.A.)—Without knowing the angles of a
triangular prism, show that its refractive index can be determined by
observing the minimum deviations of rays passing in the neighbourhood
of the three angles ; and if these deviations be denoted by 2a, 28, 2y, then
uis given by p3—u? (cosa + cos B + cos )

+ p[cos (B +7)+cos (y+a)+cos (a+B)]—cos (a+B+7) =0.

Solwution by D. EDWARDES ; Professor Nass, M.A. ; and others.

If 6, ¢, ¥ be the angles of the prism, and 2a the minimum deviation at
one angle, then it is known that sin (a +$0) = u sin {6, and similarly for
28 and 2y. Also, since 6+ ¢ + ¢ = 180°,

tan {0tan {¢ + tan {¢ tan }¢ +tan Yy tan 0 = 1,
and tan §0 = ; ":o: , &c. &c., whence, substituting and reducing, we
- a
have the result in the question.

7372. (By R. RusseLy, B.A.)—Determine 0 (x) and ¢ () where

they are of the form g;“' o' % that, by putting y = 6 (z) or ¢ (z), the
+

quartic (abede)(z,1)* =0 and its Hessian may turn into the quartic

(abede)(y, 1)4 = 0 and its Hessian.—(a) The determination of 6 (z) and

¢(z) depends on the solution of a cubic. (4) The roots of the quartic

may be represented in the form a, 6 (a), ¢ (), 0 [¢ (a)]-

Solution by the ProrosEr ; Professor Matz, M.A.; axd others.

I{X, Y, Z be the quadratic factors of the G-covariant of the quartic,
we know that X2+ Y:+ 22 =0, AX?+uY?+»Z2 = U, and that X, Y, Z
are connected harmonically in pairs. Hence (by the Question I have
Proposed), if we transform (abede) (z, y)* by any of the substitutions,

_ X s r- %

T dy Cay dy
o, -, @),

1=-— n==— n=——

(27 (24 cxr

the quadratics X, Y, Z retain exactly their forms, and therefore the
transformed quartic is (abede) (&, )%

7594, (By W. J. C. Smare, M.A.)—If the circle inscribed in the tri-
angle ABC touch the sides at the points D, E, F respectively, and P be
the point of concurrence of the lines AD, BE, CF'; and again, if D, K/, F,
P be the corresponding points for the escribed circle opposite A,
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Of course the change of notation adopted above obviates all difficulty.
Hence, writing down both resultants as determinants, it follows that

a, 0, —z, 0, @, 0, 0)=1]a, 0, 24—z, 0|3
0, ay 0, -2, 0, a, 0, a 0, 2a6—2
, 0, & 0, —z, 0, 0, a -y, 0
, —Y, —a, 0, 0, 0, 0, 0, o, -y
)y @ —Y, —a, 0, 0,
, 0, a —y, —a, 0,
01 0: Gy —Y, — G
0, 0, 0, a, —y, —

(=4

= a*(y3—ax + 2a%)].

ocoooA
NoooonNo

7492, (By W. J. C. Smarp, M.A.)—S8how that at an inflexion on the
curve U = 0, | #);, %y, %) | = 0. [This is an application of the form of
gy Ugay Vg the Hessian suggested at the end of
4y, tig, 0 the Solution of Question 6762.]

Solution by G. B. MatHEws; B.A. ; J. O'REGAN ; and others.

At an inflexion we have by EvLEr’s theorem,

0= uy, thg, i3 | = | thyy, g2y Tthy 4yt + 30053 | = | thy, thyg, (”—1; %)
Ugyy tag, oz Ugyy Ugy TUg) + YUy, + 2y thgyy tsg, (B—1) 4y
U1y Ugey U3z U1y Uggy Tty + Yilyg + 2tigy Uz gy (n—1) g

= Uy U1z (n=1)u,

U1y gy (n—1) %

(n—1)u, (n—1)us, (n—1) [2, +yug+aug] |
llmﬂarly = 11y LtH §”— Dow |;
tha, thgy n—1) ug
(r=1)uy, (n—1)thp, n(n—1)u

or, since % = 0 at all points on the curve, the stated result follows.

" 7523, (By S. Teray, B.A.)—Find the mean value of the radius of
curvature for all points of an ellipse.

Solution by B. H. Rav, M.A.; A. MukHOPADHYAY ; and others.
The radius of curvature at the point zy of the ellipse %+Z—: =1is
r= %E (l—c’ % )*. Let ¢ be the complement of the eccentric angle
of the point #y ; then # = asin¢g, and y = acos ¢ ; therefore

2
p= -ub— (1—¢% sin? )i,
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s+y+z= | n?+2UE C+2n |:...:=FP=)+0 (- + (@3-
»+ 2m{2, ¢+ 2min ' =
on reduction.
But this point lies on U; it is, in fact. the tangential of the point (¢, #, ¢).
[See CAYLEY’s Memoir on Cubics, or SALMON's Higher Plane Curves.]

7631, (By the late Professor Crirrorp, F.R.S.)—A point moves uni-
formly round a circle-while the centre of the circle moves uniformly with
less velocity along a straight line in its plane ; find the nodes of the curve
which the point describes.

Sojution by G. HeppEL, M.A. ; G. B. MaTHEWS, B.A.; and others.

Let the path of the centre

be the axis of z, and let the

point be always supposed to

start from the radius per-

pendicular to this, which is

the axis of y. Then, if m be

the ratio of the velocities, and

the radius of the circle is

taken as unity, the curve is

given by y = co80, z = mo +

sing. Hence the form of the

curve depends solely on m.

In the limit, when m = 1 the

curve consists of a series of . x me

cycloids. The condition of a

node is that m0+ sin 8 = m (2kx —0) + sin (2kx —6), or sin 0 = m (kx—0).
Now first suppose a line of nodes on the axis of z, then

2
0= kx— =1 er -—
{m, m (kx —}x) = 1, therefore m o
Again, dy , —sinb , and this becomes infinite if cos § = —m. Hence,

dr m+cosé
if loops touch at all, they touch below the axis of z, and the conditions of
touching are that sin 6 = m (kx—0) ; cos@ = —m. Solving this approxi-
mately, if & = 1, m = -217; it k =2, m = -129.

‘We thus arrive at the following results: m = 1, a series of cycloids ;
between 1 and §, one line of nodes below axis of z; m = }, one line on
axig; between ix and °217, one above; m = '217, one above and loops
touching ; between 217 and §x, two below, oneabove; m = 4, one below,
one on axis, and one above ; between 3= and ‘129, one below, two above ;
m = ‘129, one below, two above, and loops touching; between *129 and
§x, three below, two above, and so on.

The figure gives four examples for different values of m.

[Mr. Heeper thinks that some of the curves obtuined in the way
suggested in the Question might be utilized for Art-purposes.]
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Solving for +? in the two cases respectively, and denoting the cor-.
responding velocities by v, and v, as corresponding to normal and to trans-
versal vibrations respectively, we get, in answer to the second part of the

question, that (va)? = X% and that (v)? = % ; which show that the
P P

former depends on the two coefficients u and », and is always greater than
the latter, which depends only on the coefficient » of the substance.

That v¢ should depend only on », and that v, should on the con-
depend on both u and », would appear also & priori from the
obvious consideration that, while transversal vibrations can from their
nature produce only change of form, normal vibrations, when other than
those of the entire mass as a rigid whole in its space, must on the con-
trary produce at once changes of volume and of form in the molecules of
the substance.

7638, (By the Eprror.)—If from a given point O, in the prolongation
through C of the base BC of a given triangle ABC, a straight line OPQ
be drawn, cutting the sides AC, AB in P, Q ; show that, R being any point
in the base, the triangle PQR will be a maximum when a parallel QS to
AC through Q cuts BC in a point 8, such that OS is a mean proportional
between OB and OC.

Solutions by (1) A. H. Curmis, LL.D., D.Sc.; (2) G. Heprer, M.A.

1. Let S be the point such
that OS2 = OB . OC ; then,
if 8Q be drawn parallel to
CA, SP will be parallel to
BA, since

0Q: 0P

=08:0C=0B:08;
and, if OP'Q’ be any other
cutting line, we have ) - 8

ASQP = SQ'P>8QP/;
hence the triangle P8Q is the maximum of all triangles that have a com-
mon vertex at 8, their base angles on AC, AB, and their bases passing
through O ; moreover, AP'RQ’ : P'SQ’ = distance of R from P'Q’ : dis-
tance of 8 from P'Q'= OR : OS = a known ratio, hence these two tri-
angles are together maxima.

2. Draw PT parallel to CB, and let it meet QS, the parallel through Q
to AC, in T ; then, putting OB=4, O0C=¢, AC=4, O8 =2, the maximum
value of APQR depends upon that of QS.OR-PC.OR, or on that of
QS~-PC, or QT. Now we have

Qs = hgb-—x)’ and QT = h(b—z)!x-c);
b—c (b=c)=
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median point, of the triangle,—a fact unknown to the Proroser, who ob-
tained the theorem from the three rectangles in Question 7612 having a com .
mon centre (the Symmedian point). The progert.y in the question may be
more generally enunciated as follows :—¢¢ If the mid-points of the portions
intercepted on any three concurrent lines from the vertices of u triangle,
Letween these and the opposite sides, be joined to the mid-points of the
corresponding sides, the three connectors will pass through the same point,”
—u thcorem which may be proved thus :—I1f D, E, F be the mid-points of
therides and AG, BH, ( K any three concurrent lines meeting the sides in
G, H, K, and g, %, & be the mid-points of AG, BH, CK; then g, 4, k lie on
EF, FD, DE respectively, and Fg = {B4&, ¢F = {GC, Ek = }A#,
kD = {KB, &c. But BG.CH.AK = GC.HA.KB; hence Fg.DA.Ex
= gE.AF . kD, therefore &c.]

4516, (By the late T. CorrerirLL, M.A.)—In a spherical triangle, of
the five products

cosacos A, cosbcosB, cosecosC, cosacosbcose, —cosA cosBcosC,

onsis negative, the other four being positive. In the solution of such tri-
angles, what parts must be given that the affections of the remainiug .
three can be determined by this theorem ?

Solution by J. J. WaLKER, M.A., F.R.S.

(1) If cos a, cos b, cos e are all positive, and ¢ >5>¢; then cos A alone
may be negative, since both cos 4, cose > cosa and therefore 4 fortiors
>cosccosa, cosbcosa. But —cos AcosBcosC is opposite in sign to
csA. Hence either the first or last of the five products alone will be
negative.

(2) If cos @ alone is negative, then cosB cos C are both positive, but
cos A is negative. Hence of the five products cosa cos & cus¢ alone will
be negative.

(3) If cos @, cos b are both negative, but cos ¢ is positive, 2> 5; then cos A
must be, and cos B may be, negative, cos C must be positive. Hence, of
the five products, either cosd cos B or —cos A cos B cos C alone will be
negative.

(4) If cos a, cos b, cos care all negative, then cos A, cos B, cos C are all
necessarily negative. In this case, of the five products, cosa cosé cose
alone czn be negative.

It follows from this theorem that, a, 3, ¢ being the given parts, if all are
<{r, then one only of the three angles canbe> 4= ; but if @, alone, >},
then @ must be >, B, C < }=; if two only of the given parts, as a, b, > i,
then one of the two angles A, B must, both may be, > 4 ; if all three of
the given parts are >im, then all three of the angles A, B, C must
3o be > .

The same things may be predicated vice versd of angles and sides, save
that, if two only of the given angles are obtuse, the opposite sides must
also be obtuse, otherwise three of the five products would be negative.
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7511, (By Professor WorsTeNHoLME, M.A., Sc.D.)—A, B are the
given centres of two circles; Pp, P’p' the external common tangents,
Q7, Q¢ the internal common tangents, P, Q being on the same
side of the axis; Pp, Q'q’ intersect at right angles in V, and P/,
Qg at right angles in V’: prove that (1) P, Q, ¢/, p’ lie on one straight
live, P, Q’, ¢, p on another straight line, whose directions are fixed, and
these two' straight lines and V'V’ meet in one point O ; (2) the common
tangents Pp, P'p’ are equal to the sum of the radii, and Qg, Q’q’ to the
difference ; (3) the points of contact lie on four fixed circles, and the com-
mon tangents pass through two fixed points; (4) PQ’, P'Q, pq’, p'q all
intersect in one fixed point C bisecting AB; (5) PQ, P'Q/, pq, p'q’ are
all of equal length, and the ratio Pp’: Qq’ is the duplicate ratio of
Pp : Qg ; (6) the ratios OP : 'O, OQ : O¢’ are equal, and are equal to
the ratio of the radii of the two circles ; (7) the common tangents and the
two straight lines through the eight points of contact all touch the same
parabola, focus C, and directrix VV’.

Solution by W. J. C. SHARP, M. A.

Let AB meet Pp and Qg in K and K’
respectively, and let Qg meet Pp in W ;
then the points P, 2/, Q/,¢’, V', W’ are
the reflexions of P, », Q, ¢, V, W with
respect to AB, — for the one - half of
each circle is the reflexion of the other
with respect to the same line ; and, if C
be the middle point of AB, the circle
with centre C, passing through A and B,
will also pass through V and W and their reflexions V' and W', for VB
bisects the angle ¢’ Vp, and VA bisects ¢/VA, and AVB is a right angle ;
similarly AWB is a right angle. Hence WW’ passes throngh C, and it
and PP, pp’, QQ/, 9¢’, and V'V’ are all perpendicular to the line of centres.

Now let VK and VW’ be the positive directions of the rectangular

Cartesian coordinates, and e, 4, ¢ be the radii of the circles with centres
A, B, C, so that (2¢)2= (a—b)2+(a+5) = 2(a*+4%) or 263 = a?+49,
then the equations to the circles are

v +y3+2x—20y+a? = 0= A, 22+y—20z—20y+52=0=B,
and 24+y3+(a-b)r—(a+b)y=0=0C,

and therefore W is the point —(s—3), 0, and W’ is 0, @ + 5, and the polar
of W with respect to A is bz —ay +ab = 0, which is also that of W’ with
respect to B, and PQg’p’ is a straight line, and therefore its reflexion
PQygp, the polars of W with respect to B and of W’ with respect to A,
6 +by—ab = 0 and these meet on (a—5)y = (a+b) z, the perpendicular

VOV’ from the origin on y ~4 = — Z%(z—b), the line of centres and at

the point O where these meet. This proves (1), and (2) follows at once from
the values of the coordinates of the points of contact.

. Evidently the circle through any two of the points P, Q, ¢, #’, and with
its centre in AB, passes through the reflexions of the two points, and there
are six such circles, the two given circles being two of them (3). VB cuts
the polar of V with respect to B (p¢’) at right angles, and, as they are the
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series = (3)" a cot [(§)" ], and therefore the required ratio is
1 @racot[@rge] _ ot @ con[()jx)
new acotyw "= gin[(§)"§x] cotyw
=1 1 i @ngr 6 _2/3
V33w ""<gin[(3)"3x] w3 x

[The ProPosER remarks that, if a series of sectors of any circle be taken,
with angles similarly diminishing to zero from 60°, the arcs will bear the
same ratid to one another that the bases of the triangles in the question
do; so that, if we suppose the height of the last of the series of triangles
to correspond with the radius of the circle, = 1, the base of the first in
the series will be i and its height »,/3 ; thus the ratio is

1:3m/3=2/3:x.]

7835. (By Professeur ANGeELOT.)—Démontrer que
tan-'}+tan"&+tan"r‘g+...+tan"2—:ﬁ +oad. inf. =}

Solution by R. Knowrks, B.A., L.C.P.; J. O'RecAN; and others.
Itis easy to prove that the respective sums of 2, 3, 4 ... r terms are

tan-13, tan-1%, tan-13¢, ... tan-! HLl;
hence the sum to infinity = tan-11 = }=.

7628. (By R. Knowwres, B.A., L.C.P.)—If 4, 3, ¢ represent the sides
of a triangle, and s, = s—a, &c., prove that

be—8% = ac—s3 = ab—s? = r (r;+ry+13).

Solution by CurisTiNe L. Frankuiv, B.A.; and W. J. GRRENSTREET, B.A.
From r = s,tan §B, r, = s3cot §B, &c., we have
r(ri+ratrs) = 8%+ 88 + 8183 = 883+ a8y
= § (ab+be+ca)—% (a2 + 52+ ¢?) = be—s2 = &e.

7623, (By the Eprror.)—If a knight is placed in a given square on a
ches. show (1) how to move it 63 times, so that it may not occupy
any square twice ; and (2) how to solve the same problem when the
number of squares is 49 or 81.

1. Solution by M. JENKINS, M. A.

In the problem of the knight’s move I propose to show how to
correct an imperfect arrangement of the moves by 8 method which I have

VOL. XLI. M
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by means of the link 16, 17, and the second chain with the first chain by
means of the link 69, 70, thus obtaining Fig. 8, which is a single un-
broken chain. :
2 23 38 9 36 21 48 7
39 10 25 22 53 8 35 20
2% 27 12 37 60 49 6 47
11 40 63 62 57 64 19 34
28 13 66 69 60 61 46 5
41 64 51 62 65 58 33 18
14 29 2 43 16 31 4 45
142 15 30 3 44 17 32 With Figs. 2 and 3.
Fre. 1.

48 67 22 27 50 55 20 29 38 29 22 59 36 31 20 61
23 26 49 56 21 28 51 654 23 26 37 30 21 60 35 32
58 47 2¢ 17 60 53 30 19 28 39 24 17 58 33 62 19
25 16 59 46 31 18 61 52 25 16 27 40 63 18 57 34
36 45 2 15 62 43 32 9 50 41 2 15 56 43 6+ 9
314 37 44 1 8 63 42 3 14 49 42 1 8 55 44
83 12 5 40 33 10 7 48 51 12 5 46 53 10 7
13 4 39 3¢ 11 6 41 64 13 4 47 52 11 6 45 54

Fia. 2. Fie. 3.
9 30 19 38 7 28 17

20 39 8 29 18 37 6
31 10 43 49 47 16 27

18 15 20 29 36 13
21 30 17 14 7 28
16 19 22 1 12 35

2 231 8 27 6 40 21 32 45 42 53(-;
2 9 4 92 3¢ 11 12; ;; 412 41(: ‘:48 ic 15
- D)
»3 " ;?;G,lf_ > 1 12 23 3¢ 3 14 25
Fic. 5.
With Figs. 5 and 6.
9 30 19 42 7 28 17 L s
20 43 8 29 18 41 6 2 %4
3 10 47 40 33 16 27 | s
44 21 32 49 46 b5 38
11 48 45 34 39 26 16 e
22 35 2 13 24 37 4 "

The loop marks the starting-
Fie. 6. point of a chain.
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returning to its original square) ; and (20—1) is added 6 times and do-
ducted 6 times. The figures denoting change of column amount 1o
46— 46, those denoting change of rowto 50— 50. The balance is perfect.
But, since the arrangement is unsymmetrical, it is evident that a differenco
in the course can be effected by simply starting from each of the 4
corners in rotation, by tuking either of the two directions which lead out
of the corners, and also in each of these 8 cases by reversing the course.
Thus from one primary arrangement we obtain 16 distinct routes by
which the knight can complete the round of the board and return to the
square from which he started. 'We need not here consider the number of
primary arrangements that could be made of this kind. But we may
point out that to fulfil the requirements of the problem, as regards the
ordinary chess-board, it is not necessary to be able to return to the
original square. In Fig. 1 it is easy to see that by going forwards from
1to0 27 and then backwards from 64 to 28, we could finish on a remoto
square and yet traverse the whole board as required. Similarly, we
could finish on 12, 49, or 58 ; and it is not improbable that, by modifica-
tion of some one of the several primary arrangements (each with its 16
distinct routes), we could begin and end on any two specified squares of
different colours.

(2) Where the number of squares on the board is odd, as in the given
instances, 49 or 81, a complete cycle seems impracticable; that is, the
knight cannot return to the square from which he started. The balance
between the outgoing and return moves is necessarily imperfect, where
there cannot be an equal number of each. But it is quite possible to comply
with the requirements of the problem in regard to a 7% board, so far at
least as 25 out of the 49 starting-points are concerned. The following
diagrams (Figs. 10, 11) givo two arrangements from which the 25 tours
mentioned can easily be mapped out :—

16 5 46 256 14 3 19 4 29 6 21 8 11
6 47 26 15 4 45 24 28 37 20 39 10 31 22
17 28 35 40 37 2 13 3 18 5 3 7 12 9
48 73 1 3¢ 23 44 36 27 38 17 40 23 32
2% 18 41 36 39 12 33 45 2 47 26 43 16 13
849 20 31 10 43 22 48 35 44 41 14 33 24
19 30 9 42 21 32 11 1 46 49 34 25 42 15
Fic. 10. Fie. 11.
No. of similar
Routes. starting-points.
1—49 (Fig. 10) 1
1—49 (Fig. 11) 4
49—1 (Fig. 10) 4
49—1 (Fig. 11) ... 8
27—49, 26—1 (Fig. 11) 4
43—1, 44—49 (Fig. 11) 4
25

Treating the squares in the two arrangements as we treated Fig. 1, we
find that, in Fig. 10, (10+2) is added 6 times and deducted 6 times, also
(20+1) is added 6 times and deducted 6 times; but (10—2) is added 7
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times and deducted only 6 times, and (20—1) is added 5 times and deduc~
ted 7 times: balance = —22 = 22—44 (the terminal squares in the chain).
In Fig. 3 (10+2) is added 7 times and deducted 4 times; (10—2) is
added 10 times and deducted 7 times; (20 +1) is added 4 times and
deducted 5 times; (20-1) is added 6 times and deducted 6 times:
balance = + 20 = 31 -11. About this latter there secems no regularity,
which leads one to imagine that there is no real reason why the knight
should be unable to complete his course from the remuining 24 squares of
the 72 board. But these tours are certainly attended with greater diffi-
culty.

Olyl turning to the 92 board, we find that we can divide it into two por-
tions, a central set of 52 squares, and an outer fringe two squares deep,
and that these two portions can each be entirely traversed by the knight,
without crossing the boundary line between the two, provided he start
from a corner square. In Fig. 12, the simplest arrangement is laid down,
and this would serve for a great number of distinct routes, with but
slight modification. In Fig. 13 the two portions are used conjointly.

13 26 39 652 11 24 37 50 9
40 53 12 25 38 51 10 23 36
27 14 69 76 71 66 61 8 49
54 41 70 65 60 77 72 35 22
15 28 75 58 81 62 67 48 7 Fre. 12,
42 65 80 69 64 73 78 21 34
29 16 67 74 79 68 63 6 47
56 43 2 31 18 45 4 33 20
1 30 17 44 3 32 19 46 &

71 54 27 40 69 52 25 38 67
28 41 70 53 26 39 68 51 24
556 72 63 4 9 14 61 66 37
42 29 10 15 62 65 8 23 b0
73 66 &6 64 3 60 13 36 81 Fic. 13.
30 43 16 11 88 7 2 49 22
17 74 67 6 1 12 69 80 35
44 31 76 19 46 33 78 21 48
76 18 45 32 77 20 47 34 79

. 7040. (By Rev. T. R. TerrY, F.R.A.8.)—If p and ¢ be two positive
iutegers such that » > g, and if 7 be any positive integer, or any negative
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integer numerically greater than p, show that
—— _r q(g—=1) . r (r-1) _
=g+l p+r-1 (p—q+1)(p—gq+2) (p+r-1)(p+r-2)
=029 _Ptr
p p-g+r
[This identity has been suggested by Professor SyLvesTer’s Quest. 6978,
but a proof may be given independont of the theorem in that Question.]

&c.,

Solution by W. J. C. Snare, M.A.

1t is easy to see that the cquation holds for all values of ¢ if =0 or 1, and
forall values of r if ¢ = 0 or 1. Supposc it to hold when ¢—1 and »—1
ure written for ¢ and r.
alegzl o r-1 . (g=D(g=2) _ (r=1)(r=2)
p=q+2 p+r—2 (p—q+2)(p—q+3) (p+r—-2)(p+r-23)
_pP—q+l p+r—1

p  p—gq+r
ol _r g(g—1 . r(r—1) -
p—q+1 p+r—1 (p—g+1)(p—q+2) (prr=1)(p+r-2)
=1 q r xp—q+1_p+r—l=u. p+r

Tp—gq+l pir—1 p  p—qt+r p p—g+r’
8ud therefore by induction it holds for all positive values of ¢ and r so
ong as ¢ < p.
Again, if » be negative, = — & say, the formula becomes
o9 . s, q(g—1) 8(s+1) —&
=g+l s—p+l (p—g+1)(p-¢+2) (s-p+1)(3-p+2)
=P=q _:=v
p svq-p
which holds for all values of s > pif g = 0 or ¢ = 1. Suppose it to hold
forg—1and s + 1, put for ¢ and s; therefore

1-.9-1 s+l (¢e—1)(¢g—2) L (s+1)(5+2) &,
P—q+2 s—p+2 (p—q+1)(P—¢+2) (s5—p+2)(s—p+3)
=p—q+l s—p+1, .
therefore p s+q-p’
-4 LI g(¢=1) s(s+1) —&e.
(p—g+1)"s—p+1  (p—g+1)(p-q+2) (s=p+1)(s—p+2)
=1- __1¢ 8 p—q+l s—p+l p-gq s—p

p—gq+ls—p+1 p ‘stg-p p s+g-7p
and the formula holds for all values of s > p; therefore, &c.

8878, 7422, 7653. (By B. H. Rav, M.A.)—Given a concave spherical
mirror, a Juminous point, and the position of an eye perceiving one of the
reflected rays ; find the point of incidence and reflection on the mirror.
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Solution by D. BonLe ; BeLLe Eastox; end others.

Let A be the luminous point, F
B the point through which the
reflected ray is to pass, CD the
concave spherical mirror, and E
the ceutre ot its curve. Then
£ APE=BPE, and AE, BE are
similar chords of the circles EPA,
EPB of which EP is a common
chord. Draw AF, BF at right
angles to AE, BE, and GH tan-
gential to the reflecting surface
of the mirror at P. Then, since
EPG, EAG in the one circle, and
EPH, EBH in the other circle,
are right angles, the centres of
the circles must be at the mid-
points of EG, EH. Moreover,
since AE, EB are similar chords,
the diameters of the circles must
bear the same ratio,

EG:EH = AE : BE,
and the complementary chords
also must bear the same ratio,
AG : BH=AE : BE.

We also have, given, ZAEB; and AB, with the perpendiculars
drawn to it, EI, FN; also AN and BN. Moreover, ¢ ALE=APE,
and £ BKE =BPE. Consequently, EKL is an isosceles triangle and
EI bisects KL. Again, ELG and EKH are right angles; and
LEGL=EAB, and /EHK=EBA. Wherefore, the triangles ELG,
EKH are similar to EIA and EIB, the sides being severally as EL : EI;
and EM, the prolongation of EI, cuts off equal portions of each, and joins
the apices of two triangles EGH, MGH, which have the same base GH,
the height of one, EGH, being the radius EP of the curve of the reflect-
ing surface. Now EI.EM=EL?. Consequently, if EM be found, and
a circle be drawn on EM as diameter, L and K will be its points of inter-
section with AB. Then G and H can be readily found, and GH will
touch the reflecting surface in I, the required point.

Let EM = z, then, since £IEL = AEG, therefore we have
EA:EG=FEIl:EL=EL:zand EA?;: EA3+ AG? = Elc: 2?2=El : 7,
- ET(EA’+AGY) .

EA? i
thus, putting AG =y, EA=1, EB=aq, then, by drawing perpendiculars
to AB from G and H, we find
GH:- {AB_ (AN, BNe) 13 FN_FNa2
Gu:={AB (AF+BF)y3+( )y.

hence

AF BF
AN . BNea _FN_FNa,
Let S=xFtEr ™M ITIF BF’

then GH?=(AB—fy)2+g%?. Moreover, EG®=1 +y*and EH2= (1 + )%’
Now, the area of the triangle EGH
= } (2EG2EI2 + 2EH:GH? + 2 GH:EG— GH'—EG*— EH¢)*.



Bat the area of EGH = { (GH . EP), also. Therefore
GH.EP = { 2EMEH? + 2EH!GH? + 2GH/EG*—GH~EG4- EH4)},

and {EP2[(AB—fy)? + g%7] = 24? (1 +4%)+ 24* (1 +9°) [(AB—fy)? +9%7]
+2(1+9%) [(AB=fy)? + 9% ] - [(AB—/f3)* 4+ g% P~ (1 + ") — (L +5%) a4
e [2(1+0?) (82 + g — (1 —a?)*— (B + 7)) ' — 4ABS (1 + a®) — (2 +g%) ]
+2[(L+ @) (F1+97) ~ (1—a+ (1 +%) ABI— (3 +97) AB?
=2(f1+¢) EP)g?
—4ABf[(1 +a%)— (AB3+ 2EP%)]y + { AB?[2 (1 +4%) — (AB? + 4EP?)]
~(1=a?}= 0.
This equation enables us to find G in any given instance, and then, if we
draw a circle on EG as diameter, the refiecting surface is cut in the
uired point P.
us, to give an example, let AE=1, EB=-5429, AB=1-4143, and
EP=-5357; then AF=1-5143, BF =1-7286, FN=1-4429, AN="4429,
and BN =-9714, whence f='5976, ¢=-4780, and a=EB='6429. Our
equation then yields the following result, after reduction : —
. y*—3-5458y5— 25297 + 6-3971y —2-3881 = 0;
whence y='415=AG, and BH=3AG=-2253. Find G and H by these,
join GH, and the perpendicular EP will give P.
[A solution by Dr. Curris is given on p. 59 of Vol. 39 of Reprints.]

7669, (By Professor TownsenD, F.R.S.)—A thin uniform spherical
ehell being supposed to attract, according to the law of the inverse fifth
power of the distance, a material particle moving freely in either region
of its space external or internal to its mass; if, in either case, the cur-
rent velocity of the particle be that from infinity under the action of
the force, show that its trajectory will be an arc of a circle orthogonal
%o the surface of the shell.

Solutions by (1) A. H. Curmis, LL.D., D.8c. ; (2) the ProrosER.

L 1 4 denote the radius of the sphere,
p the distance of the centre of the sphere
from the attracted point, and r the distance of
this point from any particle of the shell, and
iV denote the function which, differentiated
vith regard to 2, y, ¢, will give the corres.
Ponding components of attraction,

ds 2xasin 040
V= —*H % = _%j: [a”ip’—2apcos 0]2
= h7a { 1 _ 1 } - uwal .
4p La—p) (a+p)) (a3—p?}
Ay this expression involves only p and constants, it shows, as also appears
YOL. XLI, N
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r'lghs angles of the triangle are 60°, 60° & a, where cosa = /2—}; the
ii of the several circles of the triangle are

R = 2897056, r = 12000, », = 6378981, ry = 40970'55, ry = 23121-88,

and the distance between the orthocentre and the circumcentre is
2347964.]

7603. (By the Eprror.)—If on a rectangle AOBZ two random points
(P, Q) be taken, P on the base OB, and Q on the surface OZ, show, by a
ml solution, that, OA remaining constant, (1) as OB increases in-

itely from zero to infinity, the probability that the triangle OPQ is
acute-angled decreases from ¢ to 0; and (2) in the cases when OB = OA,
0B=30A, OB=20A, OB=40A, the probability will fall short of } by
the approximate values A8, &%, 4% %% respectively.

Solutions by (1.) D. BopLe ; (IL.) the ProPosEr.

I The point Q, in order to form with OPan 4 z
acute-angled triangle, must be between the
perallels AO, RP, and outside the semicircle s Q
O8P. The average length of OP=3}0B, and the
chance of Q being in the variable space AP (OB
being fixed) is also §. Consequently the chance 8
of Q being in position to form with OP an acute-
angled triangle is §, when the space enclosed by the semicircle vanishes
831t does when OB has diminished to zero. When OB is infinitely
greater than OA, the semicircle absorbs on the average the whole of the
gpace AP, and leaves no room for Q in the requisite position. Conse-
quently the chance is then 0.

The actual chance at any limit of OB and any pesition of P is repre-
sented by the ratio subsisting between that portion of AP not included
by the semicircle, and the entire rectangle AOBZ. And when the whole
of the semicircle lies within the rectangle at all positions of P, that is,
when OB does not exceed 2A0, the mean area of the semicircle can be
deducted from the mean area of AP, and the remainder, in the ratio it
Jbears to the entire rectangle, gives the required chance.

In these instances OA . OP —4x . OP? gives the area of the space in
question for any single position of P, and the moan area for all positions

of P= 0B.0A (§—§ R O—i , 80 that the probability of Q being in

this space falls short of } by '13°9=%? when OB = OA, by
19635 32355 won OB~ §0A, and by -2618= £ when 0B=20A.
In the fourth instance given, viz., when OB = 40A, the case is
materially altered, since the semicircle (on OP when OP >20A) extends
beyond the boundaries of the rectangle. However, we have already ob-
ed the mean area of the said space whilst the semicircle is within the
Tectangle, that is, in the present instance, when OP<30B. Therefore

Wwe have simply to find the area of the space left by the semicircle, when
OP> 0B,
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1
Now we readily find J-S,dx-z’-irz', [ Sde=1-}r;
)

jas,dz = 32322 (a?— 1)}~ 2% cosec-1 2 + log, [z + (22— )] ;

'\
[ 8ydz = A3—1— A (A1 — 1)} + 3x— JA3 cosec=! A + § log, [A + (A?— 1)1].
1

Hence, when the length is not less than twice the breadth (A not >1),

() gives p = } — @%1)'— $Acosec1A+ 61)\—2 log, [A+ (A= ...... (a),

an expression which, by putting A = cosec a, may be written
P = t—}cosa—}acosec a+}sin’a.log.cot fa ......... (a”).
When the length is four times the breadth (A=2, a=}x), then, from
oquation (a’) or (a«”), we have
2=} (3—4/3)— g+ grlogy (2+4/3), or p = '09166 = F nearly.
When the length is not greater than twice the breadth (A not >1),
equation (8) gives D= AT i (8).
When the length is equal to twice the breadth (A =1), then, from equa-
tion (8'), we bave:  p = }—igw, or p = S nearly.
When the rectangle is a square (A =1), then we have
p = §— o7, or p = 3, nearly.
It we suppose the side OB (or 2A) to increase without limit, the side OD
remaining constant, then p decreases without limit, and becomes zero

Whpn Ais infinite ; and, as OB decreases without limit, p increases up to i,
which is its limit when A is zero.

7876, (By J. J. WaLker, M.A., F.R8.)—If F(2yz) =0 is the
equation to any surface referred to rectangular axes, show that the equa-
tion to the curve in which it is cut by the plane z cos a+y cos 8 +zcos y =p,
referred to the foot of p as origin, and the line in which the plane is cut
by that containing the line p and the axis of z, and a line at right angles
thereto, as axes, is obtained by substituting for z, g, z,in F (zyz) = 0,

2 o8 a+ (¥ co8 B —2z CO8 7 COB a) COSEC 7,
pco8 B— (¥ co8a + 2 COS B CO8y) Cosecy, pCO8Yy +z8iny.

[It may readily be verified that these formuls give, e.g., as the equation
to the section of 23 + y3+ 282 —12 = 0, Y= +22—124+p2 = 0.]

Solution by W. J. CurRrAN SHARP, MLA.

Ina paper ¢ On the Plane Sections of Surfaces, &c.,”” read before the
,I"ﬂdon Mathematical Society, in Dccember, 1883, I have shown that,
@ 41, 2), (@ Y2 %), (¥» ¥s 23) be any three points, and if
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"—“l:T"”;'*L", &c. be substituted for 2, &c. in the equation to a-surface,
mt+y

the resulting equation in Au» is the equation, in areal coordinates, to the
section of the surface by the plane through (z,, y,, 2,), (@2, ¥, 23), (3, ¥s, 23),
these being the vertices of the triangle of reference. Mr. WALKER’S
origin of plane coordinates (A) is the point (p cosa, p cos 8, pcosy), and

his axes are the lines —2— = _!/__?-"COS:ZEP,

cosa cosf sin?y
peosa—m _y—pcosf _ g—pcosy .
cosa 0 !

cos
and let the two pointaBB and C, which with A determine the plane, be
chosen in these lines, in the negative direction, so that for B p =r,
and for C 0 =s. Then AB = (r—p) tany and AC = ssin+y, also A, u, »
being the areal, and 5 and { the rectangular coordinates of any point in
the plane, A : pu: » = 24ABC+AB.7+AC.(:—AC.(:—AB.9
=(r—p) stanysin y + (r—p)tan y.n + ssiny.{: —ssiny.{: — (r—p)tany.n
= (r—p)asiny+(r—p) n+cosy.{:—s008y. (i ~(r—p) 7.
Therefore the points (21, ¥1, £1), (%2 Y3, %) (s ¥sy 25) Deing
(pcosa, pcosB, pcosy), (rcosa, rcosB, psiny—rtanysiny),
and (pcosa—scosB, pcosB+scosa, pCos8Yy),
Z=(AZ) + p2y+ v2g) + (A + p + ) = | [(r—p)ssiny + (r—p)n + scos. (] pcosa
—s(cosy .7 cosa—(r—p) n (p cosa—scos B) } +(r—p) ssiny

= p cos a+ (7 cos B— {cos a CO8 ) cosecy,
Y= (A +pya+vy)+(A+pt)

= {[(r—p) #8in 7 + (r—p) n +s( cosy] p cos B—s{ cosy . 7 cos B

—(r—p)n (pcosB+scosa)}+(r—p)ssiny

= p cos B— (n cos a+ {cos B cosy) cosec 7y,
8 = (As; +psg+vzg) +(A+p+y)

= {[(r—p) e8iny + (r—p) n + s{cos ] p cosy —s{cos y(psiny—ytanysin )

—(r-p)n.pcosy}+(r—p)ssiny

=pcosy+(siny;
and the metrical properties of the sections of surfaces may be investigated
by means of this transformation, as I have attempted, in the paper above

mentioned, to study the projective properties by the help of the transfor-
mation from which I have derived this.

A solution may be effected by Quaternions as follows : —

£ i, j, ¥ be unit-vectors in the directions of the axes of z, y, z respec-
tively, and ¢, 7 # others in those of p and the plane-axes of —2’ and —y/,
as taken in the question, then

f=cosa.f+cosB.s+co8y. k% k= cosy.i'—siny.s,
therefore ;"= cosecy (cosacos+y . i +cos B cosy . j—sin?y . &),
therefore & = ¢’j’ = cosec y [ —cos y (cos? a+ cos? B—sin?y)
+ (—cos B5in? y —cos B cos? ) i + (co8 a co8? 7 + co8 o 8in? 4) 5
+ (co8 a cos B cos y— cos a co8 B8 cos ) k]
= —C08 B coseC 7 . ¢ +COB a COSEC Y . .
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Now, if p be the vector from the original origin to any point on the
given plane, we have
p=2i+y+ok = pi'—~df —y'¥
= [ p cosa+ (y' cos B—2’ cos a cos 7) cosec y] ¢
+ [ pcos B—(y’ cos a+ 3’ cos B cos y) cosec y]/
+[pcosy+#siny]l k;
whence the relations in the question follow at once.]

7619, (By M. Jewxms, M.A.)—Prove that the coefficient of 2* in
o=y * HP+RUMIL+E )] + B (6-R G,

where E ( %) is the integral quotient, and R ( %) the remainder, when

n is divided by p.

Solution by the PROPOSER.

The required coefficient is the number of indefinite partitions of » into

3 parts, say ,P3; and by dividing these into groups whose least element
is 0, 1, 2, ... respectively, or by dividing the expansion of

by 1—a synthetically, it may be shown that
wP3 = aPg+n-3Pg+u_s Pg+... &c.
Now P = 1+ E (in),
o wPg=[1+E (in)]+[1+E{ (n—3)] +... repeated 1 + E (}n) times
=14+E (4n) +[E (in) + E}(n—6) + E} (n—12) to 1 + E (3n) terms]
+[Ei(#-3)+E{(n—-9)+... to 1+ E } (n—3) terms];
whence, writing ¢ for E (3), r for R (3n), .
wPy3=1+2¢+E#r)+[3¢+E(ir)+3(¢-1)+E (ir)+...3(0) +E(ir)]
+[B(¢-1)+E4(r+3)+3(¢—2)+E4(r+3)+...3(0)+E}(r+3)
+E$ (r—3), the last term being taken only if r > 3, whence it
may be denoted by E} (r +1)],
cowPy=1+20+E(#r)+33¢(g+1)+(1+q)E (i) +34¢(¢—1)
+¢E}(r+3)+E} (r+1)
=142¢+3¢3+¢[E(ir)+E}(r+3)]+E{@r)+E@")+E3(r+1).
Now E (}7)+E§ (r+3) = r+1; and, by trial of all cases from r = 0 to
r =5, we may substitute r + E} (6—7) for 1+ E () +E(4r) +E} (r+1),
therefore zPg = 2¢+3¢3+¢q(r+ 1]%+r+E§ 6-r)
=(3g+r)(1+g)+E}(6-71),
which proves the theorem, since 3¢+ = § (6¢+27) = {[n+R (}n)].

1
T=5(1=7)

7508. (By S. Tzrav, B.A.)—Find (1) the form of & when 2+ 4 and
22— q are rational squares; also (2) deduce the simple values

z=—=01+48, a =8l (k—3]) (B-P);
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- in-1
circles is 4a(l+-lT”log -ii:), 4a ((l—c’)‘+ 28"'7‘) ...... (a, B).
2. Circles are drawn with their centres on the arc of a given cycloid,
and touching (a) the base, (8) the tangent at the vertex ; prove that the
curve envelope of these circles is (a) an involute of the cycloid which is
the envelope of that diameter of the generating circle of the given cycloid
‘which passes through the generating point; (8) a cycloid generated by
a circle of radius }a rolling on the straight line which is the locus of the
centre of the generating circle (radius «) of the given cycloid.

3. Circles are drawn with centres on a given curve and touching the
axis of z; prove that the arc of their curve envelope is z—ZIydo, where

7, y are the coordinates of the centre of the circle, and % = tané.

Solution by A. H. Curtis, LL.D., D.Sc. ; Professor Rau, M.A.; and others.

The curve, envelope of circles described as in each of the cases included
in this question, is by Quetelet’s construction (see SaLmon’s Higher
Curves) an involute of the caustic by reflexion of the curve due to rays
perpendicular to the fixed line which the moving circle touches. In (1), -
(a) and (B), it i8 required to find the length of a certain involute of the
curve which is the caustic of the ellipse due to rays

llel to an axis. ¢
-1. Let the figure represent the ellipse, let DE be
any incident ray codirectional with the ordinate y,
EF the normal and EG the reflected ray, making
respectively with the axis major the angles ¢ and 6,
and G be the corresponding point on the caustic ;
if, then, DC be perpendicular to the tangent at E,
C is a point on the envelope sought; denoting EG by #/, the radius of
curvature of the ellipse by y, and the chord of curvature along EG, or
ED, by ¢, by the figure,
¢+ ¢—0 = }, therefore }»+ 6 = 2¢, and therefore do = 2dp,

while, from the formula —:— + :7 = %, a8 r = o, 7 = }¢, therefore, with

. . b3 py’ b3
the usual notation 7= }¢ = }ysing = 2a3 3 _2_%'.
Now, if ds be the element of the locus of C, we have

ds = CGdo = (¥ +y)db, and s = sj"(/+y')do=sj" (£+1) o do,
0

or, as SO ¥ ’
’ p b’,
ir b,2+2’)’ . i agb’ 20’ .
s§=28 ————B8ingdp = 4 (——-i-—)sm
-'o 2p L L »? p ¢ dp
4 ji- a?b?sin ¢ dop +8 Jh

o (a? 008’¢+b’sin?¢)§ °
= 4azbsj*' dtante) oo (4 doos &
o (a%+ 4% tan3 ¢)d o [62+ (a2—0%) cos? o]}
4l 1-¢ 1—_,__0 )
= 4a (a)+4a( 5 )log(l_c), by the formula

VOL. XLI. o

5% 6in ¢ do
(a?cos? ¢ + 52 sin? )}
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on aalors : — b= P A+ 20302 4 2% 4 26263 =‘%‘3,
. a%h2c32 a
ou 45%28in? A = -—R'T, ou SiTA = 2R,
formule connue, donc (1) est vérifiée.
eosA+ . _GCO8A+..._ acos A+bcosB+ccnnC -1
esinB T 24 a.RcosA+b.RcosB+¢c.RcosC R°

7602. (By Professor HupsoN, M.A.)—A ray proceeding from a point
P, and incident on a plane surface at O, is partly reflected to Q and
partly refracted to R : if the angles POQ, POR, QOR be in arithmetical

Progression, show that the angle of incidence is cot-! (“L;%) .

Solution by C. MorgaN, B.A. ; J. A. Owen, B.Sc.; and others.

Let a, a’ be the angles of incidence and refraction ;
then POQ=2a, POR = x—a+d, QOR = x—a—d, ’
and, since these angles are in arithmetical progression,
we have 2¢'= 3a—a'—=, and a—a’= }». But, if u be
the index of refraction, sin a= . 8in a’=pu sin (a—60°),
whence the stated result follows. R

4904 & 6884. (By Dr. Harr.)—Find the equation of the Cayleyan
of the cubic 2% +y% + 32+ 2mayz = 0, and compute the invariants of

this cubic.

Solution by W. J. CurRrAN Suarp, M.A.

For this form of the equation to a cubic, the Hessian, the discriminant

of the polar conic
y3+eyi v 222+ 2 (mz+y) Y7 +2 (my +2) 50’ +2 (ms+2) 2’y =0
is m? (2% + Y% + 232 + 2mayz] — (2P + Y5+ P~ 32yz) = O,
and therefore, when this meets the curve,
@+y+2) (e +yP+B—yzs—zz—2ay) = 0,

an equation which represents one set of inflexional axes, of which one is
real and the other two imaginary, and, since the discriminant
}(32—6m + 4m*)3 of the binary cubic determining the real inflexions is
positive, the cubic cannot be cuspidal. In other cases the reduction to
this form may be effected by identifying the inflexional axes with the above

lines, and the curve is referred to such axes that (y, 2), (s, 2), (2, y) le
upon the curve, and each is the tangential of the one after it in cycli
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and, therefore, F (z,#) is the coefficient of y* in the expansion of
(1 —ay+y%)-! in ascending powers of y. Let o = 2cosd and ”—'—“ = a,
then (1—2c086, y+4y%)~! = (x —ye*) -1 (1 —ye—%)-!

::c(:‘_.:)-(;v).;:;;(&l -y;:e_‘:)v) sxTo [sin 6 + 2 8in 20 + 228in 30 +...],

v Flam = ‘1‘{11:—0‘)_‘ = 2%8in (0+ ) sin (9 + 20) ... 'sin(0+na)...(2).

But gin (6 + ) 8in (6 + #a) = sin (8 + a) sin (a—06)
= gin3a—8in?0 = cos?d—cos®a = (cos O — cos a)(Co8 6— OB na),
and so on. Therefore
F (z, n) = 2" (cos 0—cos a) (o8 §— cos 2a) ... (cO8 6§ — o8 na)
= (*—2 cosa)(z—2cos 2a) ... (z—2 cos na).
Itn=2r+1, then cos(r+1)a=cosir =0,
and (z—2cosa)(z—2co8%a) = (#?—4 cos?a) = (22—2—2 co8 2a),
<. F(z, 2r+1) = 2 (23— 2—2 cos 2a)(23—2—2 cos 4a) ...

=z (z’ —2—2co8 —+—l) (z‘—z —2co8 %:l o= 2F (232, 7).
Again, from (1),
F(z,2r+1)—2F (2, 2r)+ F (z, 2r-1) = 0,
< 2F(2,2r)=F{z,2r+1) +F (2, 2r—1) =2 F (2*— 2, r) + 2 F (- 2,7 1),
therefore F (o, 2r) = F (#2-2, r) + F (22—2, r-1). .

7410. (By W. J. C. Snm, M.A)—If N :D be a fraction in its
lowest terms, and D = 2h.6%. 4. 6m.¢8,.,, where a, b, ¢, &c. are prime
numbers, the equivalent decimal will eonsut of 4 or k non-recurring figures
(according as A or % is greatest), and of a recurring period, the number of
figures in which is & measure of a'-! (a—1) . bm-1(5—1) .1 (¢—1) ...

Solution by Georee HerrrL, M.A.

Let the equivalent decimal have p non-recumng and g recurring
figures. Then N : D = K : 2#.57.10¢-1. Hence, obviously, » must be
equal to the hlghest index of either 2 or § in the factors of D.  Also, sup-
posing D to have but one other prime factor 4, then, from FrRMAT'S
theorem, the maximum value q can have is a—1. If g has any smaller
value, then, since in actual division we have remainder 0 after every q
nines used, and we have remainder 0 after using (a — 1) nines, therefore
g measures a—1. Now, if D contains a factor a’, suppose that the result-

period i8 one of ¢ digits, and let 10° = C. Then ! measures C—1,
therefore it also measures the following :
(a—1) (¢e—=1)+a or (a—1)C+1,
(a—2) (C*~C)+(a—1)C+1 or (a—2)C*+C+1,
(6-3)(*-C)+(a—2)C*+C+1 or (¢=3)C+C241C+1.
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Solutions by the Prorosenr.
Lot am?, 2am, &c., be the coordinates of P, Q, R, §; then equa-
tion to PQ is p
(m+my) y— 2z = 26mym,......(1),
with condition
(1=m?) (1=mg®) + dmmg = 0...(2).

The equation to PR is F
(m+my) y—22 = 2amym, ...... (3),
and it is afocal chord, ... mymy = —1,
0 s

timilarly mamy = —1 ......... (4);

(1) 2y = a (my + mg+ my+m,), 4z = aZms,
and ZI(Mem,) = —6 e, (6).
therefore 4y? = 4a (z—3a), thatis, y? = g (2—34);

hence locus of mean centres is & parabola whose latus rectum = }L.
(2) The equation to circle round PFQ is
Bty2—a (mB+mgd) z—2a (m) +mg) y + a3mmg (4 + mymy) = 0,
therefore abscisea of P = am,m, (4 +m,m,;) and FP' = a (m2+ms?) by (2);
therefore. 2 (FP') +2L = 23 [4 + 2m?] = 22 (FP).
(3) The equation to the normal through any point (z, y) is
amd+ (26—2) m—y = 0, therefore 2 (m) =0 for P, Q, R,
ad L a(l) =31 v 1 6 s (6)m—24L-3,
2 % y % Y% Yt w0 AL
Or, (1) thus :—The equation to PR is y = k (z—a),
therefore z,+z,-2a(l+%), y,+y,=fkf.
Similarly zy+zy =20 (1—-25%), y+y,=—4ak,
themfore 4;-2y=4‘(%—k),5.’., ;“a(—,l"—k),
z=a (l+k’+ -,%) 5
th Popel g7
erefore o B+ 7 2 P 3,

f.e., Y? = a (z—3a).
[This is also the locus of the intersection of two orthogonal normals
(se0 Suxr’s Comics, p. 104).]

7658, (By 8. ConsrasLe.)—The vertex of a triangle is fixed, the
vertical angle given, and the base angles move on two parallel straight
lines ; construct the triangle when the base passes through a fixed point.






7666, (By Professor Haverron, F R.8.)—Prove the following formula
for finding the Moon’s parallax in altitude in terms of her true zemith
distance, viz., sinp = gin P gin ¢ + § sin? P sin 25+ § sin® P sin 3z + &c.

Solution by D. Epwarpes; J. A. OwrN, B.Sc. ; and others.

If Z be the observed zenith distance,
sinpg =sinPsinZ or sinp = sin Psin (z+p),
1—gin Pe-ss
therefore M-m.

Taking the logarithms, and expanding the right-hand member, we have
2 = sinPsin z + § sin® P sin 2z + § sin® P sin 32 + &c.
Now, if p be very small, sinp = p approximately.

7564. (By D. Enwarpgs.)—If the sides, taken in order, of a quadri-
teral inscribed in one circle, and circumscribed about another, are a, b,

6 d; prove that the angle between its diagonals is cos-! :: : z:

Solution by J. A. Owen, B.Sc.; R. KNowLes, B.A. ; and others.

Let 4, % be the diagonals, A the angle between 5 and ¢, and ¢ the
'e'l'llred angle; then the area of the quadrilateral is }kising =

Hod+b¢ . =““+b‘ Bid-al—dl,
(0d+8c) sin A, .*. 8in@ MsmA but cos A = 2Gorad)
bence, remembering that ¢+ = b +d, we have
A o _debed = {1 dabed Vi g c~bd
(ad+bc)2’ hence cos @ {l (ac+bd)’} , Co80 Tod

7575. (By Professor WorsrenmoLME, M.A., Sc.D.)—Two normals
at right angles to each other are drawn respectlvely to the two (confocal)
parabolas 42 = 44 (o +a), Y3 = 45 (z+8); prove that the locus of their
common pomt is the quartic
= (ab +b4) [x—2 (ad)i]} + (a} — B1) [z + 2 (ad)i Y,
which may be constructed as follows :—draw the two parabolas
93 = (a+b)z—4ab x 2 (ad)t (zr—a-1),
and let & common ordinate perpendicular to the axis meet these parabola,s
inP,p,Q,gq, respectively, then the quartxc bisects PQ, Pg, pQ, pg. Also
the area included bewecen the quartic and its one real bitangent is
$a%m® (m + 1) (m —1)3, where @ = bm¢, and @ > 5. These results will only

VOL. XLI. P
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be real when ab is positive, or when the two confocals have their con-
cavities in the same sense, but in all cases the rational equation of the
quartic is (y?—az + 2ab) (y2— bz + 2ab) + ab(a —b)* = 0.

[The quartic is unicursal, but has only one node at a finite distance
(z=a+b5, y=0); there is singularity at o, equivalent to two cusps. The
clmnnmber]isdr,and the deficiency 0, 80 that 25+3x = 8, 3+x = 3, or
$=1,x=2.

Solution by B. H. Rav, M.A.; Professor Nasu, M.A. ; and others.

The equations to the normals to the confocal parabolas y*=4s (5 + a),
y2=4b (z + 1), are respectively

y=mz—a(m3+m), y=mz—d(m3+m)............... 1, 2).
Ifthesematrightangleatoeachother,m,=——},mdtbemfm(2)
==z (L1
becomes y= ~+b(.3+“) ........................... (3.

- 2\ w2 1\_23 1Yo
From (1)-(3), z(m+”) an(m+") “’(ﬂ«b.) 0;
therefore an’+i=z;
md

therefore abm + % = [0+2(ab)\}, snd aim— % = [z—2(ab)i B.

Eliminating z from (1) and (3), we have y = % —~am,
ce 2y =2 (% —mn) = (ab + 5t) [z —2 (aB)i ]} + (ot — 84) [z + 2 (@d)P]4,
since the radicals may be taken with either the positive or negative sign.

The quartic may be constructed with the help of the curves

y=(ah+8) [2—2 (@p] and g = (al—b}) [z+2 (D) ]Y,
which are the parabolas given by the equation
92 = (¢ +b)x—4ab & 2 (ab}} (z—a—b).

Squaring the equation to the quartic, we have
4y2=(a + b+ 241 08) (2 — 204 A) + (a + b — 2ad BA) (2 + 241 BR) + 2(a — B) (22 —4ab)};
or [292— (6 +8) z + 4ab]2 = 4 (a—b)? 23— 16ab (a—b),
or (y>—ax + 2ab) (y>*— bz + 2ad) + ab (a—b)* = 0,
which is the rational equation to the quartic.

7287 & 7353, (By ProfessorWoLsTENHOLME, M.A ., D.Sc.)—(7278.) Two
circles have radii a, b, the distance between their centres isc,and a>b+¢;
prove that, (1) if any straight line be drawn cutting both circles, the
r:;.io of the squares of the segments made by the circles has the minimum
value

a{[(a+07~cT+[(@-8p2- P} : b {[(a 487N~ [(@a—8)*— T} ;
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and (ﬂlthe distances of the straight line corresponding to this minimum
from the centres of the two circles will be in the same ratio.
(7353.) Prove that the maximum and minimum values of
a3 —22
¥ —(z—ccos 6)¥
where z, @ are both variable, 4, 8, ¢ are given positive constants, and
&> b+c¢ are the roots of the quadratic 433~ « (42 + 62— ¢3) +4? = 0.

u=

Solution by D. EDWARDES.
(1353.) The conditions :—;‘, =0, :_: =0 lead to z = u(z—ccosd),
. d*u du a®u \3 .

s <o £ ()

0(z—ccos8) =0 A]sothemgnofdz,‘w Iz de is the same
asthat of wcos 2. If z—ccos@ = 0, then x =0, ¢ = odd multiple of
i, and % is positive, so that this solution must be rejected. We have
then 6ing = 0 and » = L:H. Either sign gives the same quadratic for

. x
%, by the elimination of z, viz., 5%%— u (a®+ b¢—¢2) + 4% = 0.

Moreover, both roots of this equation are positive, so that they are

Al mazimum and minimum values, since % cos 26 is then positive. The
minimum value is

a?+ 5 —c—[{(a +8)>—c*}{(a—b)’— 2} ]}
26

o a [@+8) ] _[(a—p)2—2)}

b [(@+8)~cP+[(a—bp—a]
(1278.) The foregoing value solves this Question, a, b being the radii of
circles, and # the perpendicular from the centre of the larger circle
upon the cutting line.. And 4 = —Z — or —Z— when % is a minimum

x—0co80 z—c

by the above work, 0 being the inclination of the cutting line to the line

joining the centres. But —~ is the ratio of the perpendiculars in the
Qustion. z—coond

7446, (By R. Knowies, B.A., L.C.P.)—(Suggested by Question
7385.)—In an equilateral triangle ABC a circleis inscribed, and a tangent
to the circle meets the sides CB, CA in the points A’, B’; the line join-
Ing the orthocentre of the triangle A’B'C with the centre of its circum-
sribing circle meets BC or AC in D; prove that, in either case, as A'B’
varies, the maximum and minimum values of DC are respectively two-
ninths and two-thirds of 4 side of the equilateral triangle.

Solution by G. HeppEL, M.A. ; G. B. Marurws, B.A. ; and others.
Let 4 = side of triangle; CA’=z; CB'=y; A'B'=u.
Then W= (a-z—y)t = Bmay + 7
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be real when &b is positive, or when the two confocals have their con-
aﬂhesmtbemwme.butmdlmthenhonﬂethonofﬂ\e
quartic is (y?— arx + 2ab) (y*— bx + 2ab) + @b (a —b)* = 0.

[The quartic is unicursal, but has only one node at a finite distance
(r=a+35, y=0); there is singularity at =, equivalent to two cusps. The
;.launumba']ui , and the deficiency 0, s0 that 25 +3x = 8, 3+x = 3, or

=1, x=2.

Solution by B. H. Rav, M.A.; Professor Nasn, M.A. ; and others.

The equations to the normals to the confocal parabolas y*=4s (z+a),
¥*=45 (z +)), are respectively

y=mr—a(m+m), y=mz—b(m3+m). ............. (, 2).
I these are at right angles to each other, m, = — —:T,and therefore (2)
becomes y-—%+5(—:—3+% ........................... 3
om0 < (o 22 1) - 2)
therefore am®+ £=z;

therefore aim + % = [2+2(ad)\}}, and aim— % = [z—2(asi].
Eliminating z from (1) and (3), we have y = %—u,
. ooy =2 (% -—mn) = (@ + ) [5—2 (aBP]b + (ab — B4) [ +2 (aB)i]4,
since the radicals may be taken with either the positive or negative sign.

The quartic may be constructed with the help of the curves

y=(al +})[z—2(aB)i]} and y = (sl —B8}) [z +2 (ad)i]},
which are the parabolas given by the equation
y: = (a+b)z—4ab + 2 (ab}} (z—a—1).

Squaring the equation to the quartic, we have
497 = (a +5 + 204 B1) (2 — 204 0A) + (a + b— 2084 ) (z + 24k Bh) + 2(a — B) (22— 4ab)};
or [242— (a4 8) 2 + 4ab]2 = 4 (a—b)2 22— 16ab (a—b)3,
or (y*—ax +2ad) (y*— bz + 2ad) + ab (a—b)* = 0,
which is the rational equation to the quartic.

7287&7353. (ByProfessorWox.smnom,M A.,D.Sc.)—(7278.) Two
circles have radii a, 4, the distance between their centres isc,and a>b+¢;
prove that, (1) if any straight line be drawn cutting both circles, the
ra;.io of the squares of the segments made by the circles has the minimum
value

a{[(@+07=cP + [(@- 82—} : 8 {[(a 40— c—[(a—8)?—eT'};
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7734. (ByJ. Crocxer.)—IfA and B are fixed points ; find, on a fixed
circle, a point P such that AP + PB is a minimum.

Solutions by B. H. Rav, M.A. ; Dr. Curtis; and others.
This is another form of Questions 6878,
7422, 7653, for, if P be such that PA and
PB make equal angles with the tangent
to the circle at the point P, and we take y/
any point Q on the circle, and join QA,
QB, the latter meeting the tangent at R,
then we have
AQ+QB>AR+RB>AP+PB,
hence AP+PB is a minimum. [Seo
Reprint, Vol. 39, p. 59, and Vol. 41.] A B

5522, (By Professor Asapr Harn, M.A.)-If a planet be spherical
and ¢ be the angle at the planet between the Earth and the Sun, and a
the radius of the sphere ; prove that the distance of the centroid of the

planet’s apparent disk from its true centre will be %sin’w when the
planet is gibbous, and 585 cos? §¢ when the planet is crescent.

Solution by the Rev. T. C. Smamons, M.A.

Take the case of the planet being gibbous; we
have then to investigate the centroid of a figure con-
sisting of a semicircle radius a4 joined to an ellipse
whose semi-axes are @« and acos ¢. Let O be true
centre of disc, G, and G; the centroids of the semi-

circleand semi-ellipse; thenOG, = ;—:, OG,a‘-‘-“;ﬁ?;
x
therefore if 7 denote distance from O of centroid of

apparent disc
4 wa® _4acos¢p =wa3cos¢
=_3x 2 8x " 2 _48 l-cote _8a. .0

iwa®+iwaicos ¢ - 3x " l+cosp 3= 2
When the planet is crescent, we obtain ’
- 4a l—w"f-slm’_?;.

=

3x 1—cosp 8x 2

7683. (By R. Tucker, M.A.)—LSP and LHL'are a focal chord and
. 8latus rectum respectively of an ellipse, and the circle LL'P cuts the curvo
k 8gain in ° ove that tan? § (¢) = (1+¢)*/ (1—e)>.
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Solution by B. ReyNoLps, M.A.; W. J. GREENRTREET, B.A. ; and others.

Space traversed by train during the interval between the hearings of
the two reports = 48 x 1125 ft. ; hence the velocity of train

= (46 x 1125)+1214 ft. per second = 29-064 miles per hour.

7860. (By R. Knowres, B.A., L.C.P.)—From the angular points of a
triangle ABC, lines are drawn through the centre of the circum-circle to
meet the opposite sides in D, E, F, respectively ; prove that

1 1 1 2
+ =

ADYBETOF R

Solution by W. G. Lax, B.A.; J.8. JenkiNs ; and others.
Let O be the circum-centre ; produce AOD to D,
and join CD’ ; then we have
LBAD = BCD'= {x-C;
_ ¢s8in ABD _ csin B
sin ADB  sin(B +90°-C)
- ¢sin B = 2RsinCsin B,
cos (C—B) cos (C—B) '’
1 _ _cos(C-B) _ 1
AD " 2RemCemB ~ 2§ (1ot B eotC)
1,1 11 1 _2
it BETGF — ’2‘§[3+2(°°th°tC)] —m(3+1) T
[In the solution to Question 7594 (p. 80 of this volume), it is proved that
oD , OE , OF AD-R , BE-R , CF-R
a0 *BE* CF AD T BE T oF !
wherefrom the result immediately follows.]

AD

=1; hence ’

7633. (By Professor Genese, M.A.)—A circle is inscribed in a seg-
ment of a circle containing an angle 8: the point of contact with the base
divides it into segments 4, k. Prove that (1) the radius of the inscribed
circle is :—:‘kcot 16 ; and hence (2) that the inscribed circle of a triangle
touches the nine-point circle.

1. Solution by G. HeppEL, M.A.; J. A. OWEN, B.Sc.; and others.

(1) Let AB be the base of the segment, O and P the centres, and ¢and
r the radii of the original and inscribed circles. Draw PC and OD per-
pendicular to AB, then AC = %, CB =k, AD =¢sing, OD = & ccos¥,
h+k =2¢csin@. Also PO?= (csin 0—A)%+ (r—ccos 6)2 = (c—7)? whence
we obtain the stated result.
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1192, (The Editor.)—1In order to ascertain the heights of two
balloons (Q, M), their angles of elevation as sct forth hereunder are ob-
served, at the same instant, from three stations (A, B, C) on the hori-
sontal plane, whose distances apart are AB = 553, BC = 791, CA = 399
yards, (Q, A) denoting the elevation of Q at A, &c.:—

(Q, A) =81° 10’ 107 | (M, A) = 84° 2’ 50"
(Q, B) = 76° 13’ 46:5” | (M, B) = 75° 57" 17
Q, C)=179° 35" 55| (M, C) =179 22’ 12"

It is also observed that only one of the balloons (Q) is vertically over
the triangle ABC. Show that the heights of the balloons Q, M are
18748, 3339-4, and that their distance apart is 15604......cccceerreeneees 75

1208. (The Editor.) —Show that the values of z, y, 2, from the
equations

23+ 4xy +6y? = 28, 2%+ 422+ 1422 = 60, 3y%+2yz+ 722 = 40...(1, 2, 3),
wegiven by 4= (4/5—1)(£5/2—6)(x4/10—2),
PBm k (£/6+1)(£5,/2—6)(£4/10+2),

B = L (£a/B+1)(£54/2+6)(£4/10=2). cerrenen. . 122
1966. (The late Samuel Bills.)—Find values of #, y that will make
8= (p?+9%)'+ 64 p%2( p*—¢%)? a perfect BquATe....coeeerrieernenes vererere . 80

3826. (J. B. Sanders.)—The heights of the ridge and eaves of a
house are 40 feet and 32 feet respectively, and the roof is inclined at 30°
to the horizon. Find where a sphere rolling down the roof from the ridge
will strike the ground, and also the time of descent from the eaves......116
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then allowed to swing under the action of gravity till it reaches a vertical
ition, when the end A is loosed, and the rod allowed to fall; find the
us traced out by the image of the fixed point A, as seen from any point
by reflection at the rod during the motion of the latter. .................. 61

6672. (Col. Clarke, C.B.,, F.R.8.) —P and Q are two points in a
finite line AB. The parts PA, QB are rotated in opposite directions
round P and Q respectively, until A and B meet in a point R. Supposing
P and Q evenly distributed, determine the law of density of the point R.

.................. 5

6118. (Professor Sylvester, F.R.8.)—A plane or solid reticulation,
rigid but without weight, is formed by the intersections of equi-distant
lines or planes. Ome of these intersections is fixed, and at a certain
mumber of others of them, which are given, forces may be applied.
It is obvious that there are an infinite number of sets of parallel forces
each containing an exact number of pound weights, which, acting at the
given points of application, will balance about the fixed point.

It is required to prove that out of these a limited number may be
selected such that by their due repetition and superposition any other
ba]ancmf set whatever may be formed. In other words, s balancing sets of
parallel forces P, Q... W (i being some finite number) may be found such
that any other balancing set will be made up of m, of the first set or
its opposite, m, of the second set or its opposite, ...... m; of the *» get or
its opposite ; m,, my, ... m; being positive integers..........ccoesuunn. ceneees 61

6218. (Professor Sylvester, F.R.8.)—If E; denote

. d i+ d
"’da‘ + fa, Za % Za + &e,,
a . .. 4 (+1)(E+2) d .
and F; denote a“da;+ (E+1) a'da;.,"' 13 a,d——a“’i-&c.,
(1) express (Fy)* in terms F,, Fy, F;, &c.; and (2) I being an invariant
of the ¢t order of (ay, 4;, 43 ... ) (z, y)", which becomes I’ when every
suffix is increased by unity, show that I = ¢I’, where
L S P T
and A, g, »... 7, 8, ...are any integers satisfying the equation
AP+ US+H U+ oo = fu viviniiiniiiinencsiasesasnnes 30

6261. o Editor(.? — One of the diagonals of a regular quinde-
cagon is drawn at random, and then the process is repeated ; show that
(1) the probabi.lig of the chosen diagonals being such as cross within the

imeter is if the two must be distinct, an f.,‘s if the second may be
1dentical with the first; (2) thelike probabilities for a regular (27 + 1)-gon
are } (2n%— n) divided, in the two cases respectively, by [S)m +1)(n—1)—1]
or ﬁZn +1)(n—1)]; and hence (3) the chance of two random chords meet-
ing within a circle 18 % O J...ccevieriirnniinninnereeeeiennneninne. cerrenenae . 23

6418. (Professor Malet, M.A., F.R.8.) — Prove the following ex-
tension to surfaces of Chasles’ theorem for plane curves :—If to a surface
of the class # any system of # parallel tangent planes be drawn, then the
centre of mean position of their points of contact is fixed........... cnvneee 50

6456. (G. Heppel, M.A.) — If the expansion of sec @ be

l+§§z’+%z‘+&c., and that of 2 sec?z be 2+%z’+%z‘+&c.; prove
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(1) exactly 4 cards with hearts, (2) not more than 4 cards with hearts, are

21417 | _5 .. _ 32
P= oroas 14746 34 nearly, pg = ‘94307 En nearly... 33

7260. (Elizabeth Blackwood.) — A pack of n different cards is laid
face downwards on & table. A person names a certain card. That
and all the cards above it are shown to him, and removed. He names
another ; and the process is repeated until there are no cards left. Find
the chance that, in the course of the operation, a card was named which
was (at the time) at the top of the pack........cccceevirvuririrenuiniernnanenee 68

7292. (Dr. Curtis.)—Two heavy particles P and Q are connected by a
flexible and inextensible cord, which rests on a pulley of infinjtesimal
radius ; P is restricted to the circumference of a smooth circle, whose
centre is vertically under the pulley, or, more generally, of a smooth Car-
tesian oval, one of whose foci coincides with the pulley, and whose axis is
vertical ; it is required to prove that the curve to which Q should be re-
stricted, in order that equilibrium should exist for all possible positions of
Pand Q, is a Cartesian oval.......ccoceevieriiniinieiiiiiniineiineriiinnnenees e 70

7314. SG. Heppel, M.A.) — One side of a railway carriage is covered
with a glass mirror. Show that, while the train is going round a
level curve, the images of reflected objects appear to an observer sitting
opposite to describe hyperbolas on the glass. Supposing the centre of the
railway curve to be 1000 yards from the observer’s eye and 900 yards
from the object, the distance of the eye from the mirror to be 2 yards,
and the height of the object above the eye 10 yards; find the position and
magnitude of the axes of the hyperbola. Also discuss the path of the
image Of & BAT....ccueeiiiiiiiiiiiiiiniiiiriiecriserasenicnannes ceerraeeaniens 40

7326. (Professor Hudson, M.A.)—Provethat, inthecurve r = a + dcos#,
the polar subtangent cannot have a maximum or minimum value for a

finite value of 7, unleBS @ > 8. ..ccceviriruiinieiciiinriienitecscnneanensennenes 108
7341. (A. Martin, B.A.)—Solve the equations
yz(y+z—z) =a, zz(z+a—y) =05, zy(z+y—2) =covreeenn 28

7350. gDr. Curtis.)—If there be circumscribed to a given conic a
polygon of m sides, such that the arcs between the consecutive points of
contact subtend equal angles at & focus, and 2« denote the angle which
the axis of the conic makes with the radius vector drawn to any one of the
points of contact, prove that (1) the product of the squares of the perpen-
diculars from the focus on the sides of the polygon varies inversely as
C—cos 2ma, where C is a constant which becomes unity when the conic is
a parabola ; and (2) any symmetrical function of the positive powers of the
squares of the reciprocals of the perpendiculars of a degree inferior to the
m'k remains constant, however the polygon may change consistently with
the conditions of its construction...........cooceuviiiiiiiinieiiiinenniiennnen. 83
7368. (The Editor.)—A parabola and a semi.ellipse of excentricity
¢ have the same focus and parameter, the parabola being terminated by
the minor axis of the ellipse; prove that, if the two figures revolve
about their common axis,
Volume generated by parabola : Vol. gen. by ellipse =3 (1+2e—¢?)?: 8.
.................. 29
7385. (Professor Wolstenholme, M.A., Sc.D.) —In an equilateral
triangle ABC is inscribed a circle, any tangent to this circle meets the
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7514. (Professor Wolstenholme, M.A. 8c.D.) — Prove that the
centroid of the arc of the curve (%)’*’ (%)’ = 1, included between

2
the positive coordinate axes, if ¢ = (l-%)‘, and a> b, is given by
=_.6 1 _ 3(1—e7)8 l+e

: ———i{(3+c’)(3c’ 1)+_ﬁ__lz‘ log 1—0)}’

168 1 (1-¢7
-_b (- —3)(2¢ 3sin-le
V= 1o 1-(1-5)3{(“’ 3)(2r+1)+’(1_£).}.. ........ S 90

7515. (Professor Wolstenholme, M.A., 8c.D.)—If normals OP, 0Q,
OR be drawn to the ellipse a?y? + 5*2* = 4°4* from the point O Swhoso co-
ordinates are X, Y), and the tangents at P, Q, R form a triangle P'Q'R’;
prove that the ratio k: 1 of the triangles PQR, P'Q'R’ is given by

a?X2+ 5°Y? 3 a?X3 - p7Y3\2
{1,-:4.(;,--*)—.“ } = (}—I:)(———d )
7532. (A. Mukhopadhydy.)—Prove that

L‘:\/{ 1_:/7..18_5 }do = wy/11-2-1] [1_% F(v2- 1)]...121

7546. (B. Reynolds, M.A.)—Prove that, when & and & are very
large compared to their difference,

(ma +nbd )P_l - mad® " 4 np?”!
m+n m+n
7664. (T. Muir, M.A., F.R.8.E.)—Prove that
(C—B)(C—BS)(D — A)(D?— A%) ATD?
+(C—B)(C*— 1%(D— A) (DS — A% B2CH
+ (C3—BY)(C3—BY)(D4— A%(D— A)AD
+ (C'=BY)(C— B)(D*—A%)(D3— A% BC
= (O?—B%)(CS— B¥)(D*— A%) (D*~ AN AD .
: +(C*2B*)(C° - BY)(D?— A%)(Db —AS) BC......67

7563. (Rev. T. C. Simmons, M.A.)—8how that the ratio of the area
of a triangle inscribed in an ellipse to the area of its polar triangle
depends only on 6, ¢, ¥, the differences between the eccentric angles of the
points of contact, and i8 equal to 2 cos 16 cos §¢ cos §¢....cccrvuunnn.e R £

7572. (Professor Wolstenholme, M.A., 8c.D.)—In the limagon whose
equation 18 r=acos@+5, where b>a, O is the origin, A, A’ the
farther and nearer vertices, C a point of maximum curvature, P, P’ two
points of the curve on the same side of the axis as C, such that OC is the
harmonic mean between OP, OP’ (P coinciding with A when P’ coincides
with A’) ; prove that (1) the difference of the angles AOP, A’OP”’ is equal
to the angle gp) which the chord PP’ makes with the axis; the difference
of the arcs AP, A'P’ is 4bsini¢; (2) the difference of the arcs AC, A’Cis
4a; (3) the locus of the intersection of the tangents at P, P’ is a cis-
soid; (4) taking the origin O at the single focus, and the equation
12— 2r (@ + b cos 6) + (6—a)? = 0, the curve is its own inverse with respect
to O, the radius of the circle of inversion being b~ a; (56) if OPP’ be a
chord through O so that P, P’ are inverse points, the locus of the point

... 64

y DEATIY. cooeveniiivrnnnns 59
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7616. (W. J. C. Sharp, M.A.)—If the vertices of the triangle of
reference be joined toa point (a), By, 7)), and a circle bo described through
the three points in which these lines intersect the opposite sides, prove
that (1) the point of concurrence of the other three lines drawn from the
angles to the. intersections of the circle with the opposite sides is
determined by the equations
aa (B, 8in B + 9, 8in C)(Bsin B+ ysin C) = B, B8 (7,8in C +a,8in A)

x (ysin C+asin A) = 3,7 (e, 8in A + 8, sin B)(a 8in A + 8sin B) ;
and (2) if @, = a, B, = B, and v, = v, these equations determine the points
of concurrence of lines drawn from the vertices to the opposite points of
contact of the inscribed and escribed circles...........ccceuvrereee ersesenne 124

7617. (D. Biddle.)—Let a parallelogram ABCD have one side AB
fixed and the other three capable of movement in one plane by hinge-
action ; and within the parallelogram let CE form a given angle with CD;
then, if O be a fixed point in BA produced, and F, %’, &o. the points of
intersection of CE, C'E’ with OD, O'D’, &c.; find the locus of F’...... 98

7629. (Belle Easton.)—A and B throw for a certain stake, A having
a die whose faces are numbered 10, 13, 16, 20, 21, 25; and B a die
whose faces are numbered 5, 10, 15, 20, 25, 30. If the highest throw is
to win, and equal throws go for nothing; prove that the odds are 17 to
16 in favour of A.....cceciierrniiriiiieniiiiniiniiirineniiinissinneseensse LT

7636. (Professor Cochez.) —Inscrire dans un rectangle un pent.
agone ayant les cOtés EZAUX. ...coveverrniiireiinuiniiiniiiireenanne voreetvene 64

7639. (Christine Ladd Franklin, B.A.)—If, in a certain lot of objects,
the a’s are identical with the non-z’s which are 4’s together with
the y’s which are non-4's, and the ¢’s are not identical with the 2’s which
are non-d’s together with the non-y’s which are d’s, what relation exists
between a, b, ¢, d? ...cooveriiniinnnnnn eeerierretteieiashesasraernsrasaans ceeeeee 66

7643. (Rev. H. G. Day, M.A.)—A and B sit down to play for a
shilling per game, the odds being 4:1 ou B ; they have m and » shillings
respectively, and agree to play till one is ruined: find A’s chance of
BUCCEBS. «veveerrens Creeeirseetaiie e ete bt et e et et s e s et b s e e ar et 69

7646. (W. G. Lax, B.A.)—If ABCD be a rectungle; E, G two
%)ints in AB, AD such that EOF, GOH meet each other and the diagonal

D in O, and are parallel respectively to AD, AB; if also AB is taken
to represent the external E. M. F of an electro-motor supplied with a
current at constant E. M. F ; EB that of the motor at a given speed, and
the ratio BA : AD the resistance of the circuit: show from this figure
what are the conditions for (1) the maximum efficiency, (2) the maximum
rate of working ; and (3) find expressions for the electrical energy wasted,
and that used in work, each per unit of time...........ccvieernuiininnnin e 39

7662. (G. Heppel, M.A.)—Show that the square root of
2E = 2 (1 +cosacos B—cosa CO8 y—CO8 & €083 — o8 8 cos8y—cos B cos 3
+ o8y cos §—8in a 8in B sin v sin & + cos a cos B cos 7y cos 3)
is 2co8 4 (a+B) cos } (y—3) ~2cos} (a—B) cos § (y+3)....... . 117

7664. (Asfitosh Mukhopddhydy, M.A.)—A magnetic needle is free
to revolve in a horizontal plane round a fixed point in the line join-
ing its poles; if it is acted on by an indefinitely extending vertical gal-
vanic current : find (1) the positions of equilibrium ; (2) the cases wherein
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7675. g‘ho Editor.) — Draw -a transversal DEF to cut the sides
AB, AC, BO of a triangle ABC in D, E, F respectively, in sachwise that,
if M, N, P, Q be given lines, we shall have (1) BD : DE = M ; N and
CE:EF =P:Q; or(2)thatBD :DE:EC=M:N:P. ..... vevesss 63

7677. (W. E. Johnson, B.A.)—If p and n# be any integers, and
), w;...n-1 8r6 all the #tt roots of unity except unity itself, show that
the remainder, when p is divided by #, is

=”;l. P_on P % @n-1

Flp) =5+ o +e] 1—‘-_,3""-*".-1 [ 10
7682. (H. Fortey, M.A.)—8u three straight lines pass through
the points A, Br’teg respec)tively?p::?l turn about those points in the

lane ABC with the same angular velocity and in the same direction.

ind the locus of the centre of the circle described about the variable tri-
angle thus formed, (1) when the lines through A, B, C are initially
coincident with AB, BC, CA respectively; (2) when they initially coin-
cide with AC, BA, CB; showing that the loci are two equal circles of
radius abe (A—IGA'-')‘[ 1642 (where A = a3+ %% +¢%® and A = area of
ABC), that these circles touch each other at the centre of the circle about
ABC, that (if A = a*—3%3, &c.) the equation to the line joining their
eentres is (2A + B +C) bea+ (2B + C+ A) caB + (2C + A + B) aby = 0, and
that this line touches the Brocard circle......ccoeeeerrinnnnes ceeeres [T 11

7684. (D. Edwardes.)—Given the in-circle and circumcircle of a
triangle, prove that (1) the loci of the orthocentre and ecentroid are
circles of the respective radii, R—2r, §(R—2r), whose centres lie on
the line joining the in-centre and circumcentre, and divide it harmonically ;
(2) the locus of the centroid of the perimeter is a circle whose centre is
collinear with the two former centres, and radius § (R—2r). ........ vee 63

7685. (Rev. H. E. Day, M.A.) —Find the probability of a piece
at Chess being found on any particular square after having been moved at
random an indefinitely long time.........c.coresnn cearaeesrnnniiiens cenverenens 41

7688. (W. J. C. Sharp, M.A.)—Find the curve in which a kite-
string will hang, when acted on by a uniform wind blowing in a direction
inclined to the horizon.........cccvessunierrinssnnreiieniiineeenninenes cerranns 100

7689. (The Editor.)—If the two roots of the equation 23—az +ay = 0
are whole and positive numbers, provethat (1) 445 (1 + @, + @) (1 + 24, + 4ay)
is a whole number decomposable into the sum of a, squares; (2)

? (1 + @, + a5) isa whole number decom%osable into the sum of a, cubes ;
3) ag* (1 + 2a, + 44,) is decomposable into the algebraic sum of 44, squares,
73

csenssee essessesse

7693. (Syama Charan Basu, B.A.) — A heavy rod (weight W,
length 2a) capable of free motion, in a vertical plane, about a hinge at
an extremity, has a small ring sliding on it. To the ring is attached a
string, which passing over a smooth pin, vertically above the hinge at a
distance ¢, supports a weight P, hangingwfreely.‘ Show that in the

L. [ [ ) a\2 P .
position of equilibrium tang = " { [l+(¥;) J _V—V}’ where 0 is
the inclination of the action on the hinge, to the horizon............... e 62

7695. (J. O’Regan.)—Two persons play for a stake, each throwing

two dice, They throw in turn, A commencing. A wins if he throws 6,
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shape of this cubic will be the same for all points O lying on the
lemniscate whose equation (with C origin and CS8 initial line) is
r3gin 2a = ¢3sin 2 (0 + a), where ¢ = CS, and a has the same meaning as
before ; and the foci of these lemniscates lie on the rectangular hyperbola
whose foci are 8, 8’; (4) if any circle be described with centre O, the points
of intersection of common tangents to this circle and any one of the conics
whose foci are 8, 8’ is also this cubic, a remarkable instance of a definite
locus of points, whose position (appearing to depend on two variable para-
meters) would be expected to be arbitrary. ..........cccvuiireriinniiienienn. 81

7718. (C. Leudesdorf, M.A.)—Find the value of the determinant
a 5 b . .| where the leading diagonal consists of @ and zero
5 0 & . . |alternately, and the other constituents are each & ; the
b b a determinant having # TOWS.......cceeeviieiniiiiieeenennens 26

7720. (R. Lachlan, B.A.)—Four circles, having their centres within
the triangle ABC, are drawn to cut the side BC in angles a, 20,
7, B; the side CA in angles 8, 7, 20, «; and the side AB in angles v, a,
B, 2¢ tively : where 20 =a+B8+vy. Let R, R, R; R, be their
radii, and r theradius of the inscribed circle ; also let these five circles cut
any straight line in angles ¢,, ¢y, ¢3, ¢4, 0; then prove that

1 1.1 1 B+ y+a a+B 1
—t bt — =4 Rty -_— -—r, =
R, R,+R3+R4 cos g 08—~ cos 2 Py
and cos B+vy . y+ta a+B8
@) + CO8 5 + COB g + COB ¢, = 4 cO8 2 cos—z—cosz—.coso.
.......... ceeneees 39

7722. (Rev. H. G. Day, M.A.) —If there be m black squares, and
» white ones, find the chance that a + 8 pieces placed at random will cover
ablack And B White.....c.cc.vuveiiiieiiriiirinnieinirereieeeneeenneereneeennseennes 44

7723. (D. Biddle.) —If a small marble be placed at random on a
circular table with raised edge, and then propelled at random in any
horizontal direction ; show that the probability that it will rebound from
the raised edge in a direction forming an obtuse angle with the line of

incidence is L —-L = 1816901 or 2 b1 TX:0 SN 52
2 = 11

7728. (Rev. T. C. Simmons, M.A.)—Given the circumcircle of a
triangle, and any of the four circles touching the sides, show that the loci
of the erthocentre and centroid are circles having the centres of the given
circles as centres of similitnde. .......cccceeviiiiiiennnnniiiiiiin e 53

7729. (B. Reynolds, M.A.)— Show that the number of shortest routes
from one corner of a chess-board to the opposite one, along the edges
of the squares, i8 12870. .......ccccevirruuierirnnnnniiicriiininnnnsisnniesenns veeee 28

7730. (W. J. Greenstreet, B.A.) — Prove that (1) the polar of a
fixed point with regard to a series of circles having the same radical axis
passes through another fixed point; and (2) these two points subtend a
right angle at either limiting point. .......eeeenesiriierinrieninneeeecnsnennenn 37

7732. (W. J. McClelland, M.A.)—On the sides of any quadrilateral
inscribed in a circle, perpendiculars are drawn from the inverse of
the point of intersection of the diagonals with respect to that circle; prove
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7761. (W.J. C. Sharp, M.A.)—A flexible string is suspended slackl
from two fixed points, and acted upon by a uniform horizontal wind,
blowing in a direction making any angle with the horizontal projection
of the line joining the points. Find the curve in which the string
hangs and the tension at any point. .....c..ccceeieiieiiiiiiiniiniiiniein, 100

7766. (R. Tucker, M.A.)—If p, p’,  are the *“T. R.” and Brocard
radii, and Brocard angle respectively of a triangle, prove that (1)
%‘? - (%)’; and (2), if py, p; are the  T. R.” radii in the ambiguous

[ 4
case of triangles, then p, CoB w) = py COB Wg...ueuvrireeriieneniniirernnnininne . 96

7769. (Professor Sylvester, F.R.8.) —Prove algebraically that, if
ABC..., A’'B'C'... are two superposed projective point-series which do not
possess self-conjugate points, then the segment between any two corres-
ponding points, as AA’, BB'..., will subtend the same angle at a point
properly chosen outside the line in which the point-series lie........... . 89

7771. (The late Professor Clifford, F.R.8.) — Find the locus of a
int P which moves so that the length of the resultant of the translations
A, PB, PC is constant—the points A, B, C being fixed.................. 89

7774. (Professor Wolstenholme, M.A., 8c.D.) — The lengths of
the edges OA, OB, OC of a tetrahedron OABC are respectively
9-257824, 8:586, and 8:166; those of the respectively opposite edges
BC, CA, AB are 8-996, 9-687, and 9:997. Prove that the dihedral
angles opposite to OA and BC are equal to each other (each = 7°19’18").
Denoting the lengths by q, 4, ¢, 2, ¥, 2, and the dihedral angles respectively
opposite by A, B, C, X, Y, Z, find what relation must subsist between
a, b, ¢, , y, % in order that A may be equal to X. ........cccevvurirnnnns 117

7780. (Rev. T. R. Terry, M.A.) — Prove that the mean value of
the fourth powers of the distances from the centre of all points inside
an ellipsoid whose axes are 2a, 25, 2¢, is

A=y [(@@+8B+3)3+2(@ + M+ )], 120

7792. (A’?m .)—The tangent at any point of a parabola meets
and t|

the axis in he latus rectum in ¢; prove that T¢ is equal to onc-
fourth of the parallel normal chord. ........ccceoiinuiiiinineniniiinenannes . 120

7794. (J. Brill, B.A.)—Prove that in any triangle
adcos (B—C) +13cos (0—A) +c3cos (A—B) = 3abe......... . 114

7795. (C. E. McVicker, B.A.) — Prove that the distance between
the instantaneous centre of rotation of a movable line and the centre of
curvature of its envelope is, in any position, dr/dw, where o is the dis-
tancelof any carried point on the line from the point of contact, and w the
angle of Totation......cccveveriniiiiiiiiiein e coreesuenes 114

7797. (D. Edwardes.)—If
Va= ]l [log (1 +2)]* dz, prove that V,+nV,_1 = 2 (log, 2)*...111
0

7800. T(E. Buck, B.A.)—Without involving the Integral Calculus,
1 2 1.3 o 1.3.56 o

v in-lz=2+— .-+ . .= +&e.
prove the formula sin-! z AR T TR e i sk aer 7+«':
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7708. (By the late Professor Crirrorp, F.R.8.)—What conditions
must be fulfilled in order that the centre of pressure of a triangle wholly
submerged in water may be at the intersection of perpendiculars ?

Solution by ArtHUR Hrur Curtis, LL.D., D.Sec.

‘When the vertices A, B, C of a triangle are sunk in a homogeneous
liquid to depth A, As, A, respectlvely, then z, y, 3, the coordinates of the
centre of pressure of the triangle referred to the sides as axes, are given by
the equations :—

=2 _"l_ =0
4 {1+h,+h +h. { h,+b,+h,
=7 _h_.__
=3 { 1+ h1+h,+h3}
(see Messenger of Mathematics, No. 8, 1864) ; but the coordinates of the
intersection of the perpendiculars p,, p,, ps are

beos A cos A
TEATEB ”"(l‘sinBsinc J

' _cosA
l’m“h‘""(l smB s C 4( h,+h,+h.)

.
o’e

Ay =g__4c8A o 4cos(B+C) -
Wthth o S BemGC ot smBsmo — teotBeotO-1L
and two similar equations;

o By thygihgiitcot BeotC—1:4cotAcotC—~1: 4cot AcotB-1.

[For a discussion of this problem, and several other applications of the
above formule for z,y, z, see Messenger of Mathematics, New Series,
No. 12, 1872, where it is shown that, if the vertices of a triangle be sunk
to depths 4,, h,, kg, and therefore the mid-points of the sides to depths
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7709. (By Professor MINcHIN, M.A.}—A cylindrical bar of isotropic
material is subject to uniform intensity of pressure over its curved surface ;
rove that, if ]& denote the ‘“ modulus of cylindric squeeze,’’ while 4 and
enote the resistances to cubical squeeze and to distortion, then
M= e
3k+4p

Solution by J. BriLr, B.A. ; Prof. Marz, M.A.; and others.

Taking the axis of z along the axis of the cylinder, measuring z from
the middle point of the axis, and assuming u=—az, v=—ay, w=cz, we

have N, = N; = (k—3%u) (c—2a) — 2ua,
Nj = (k - §n) (c—24a) + 2ue.
Since there is no force on the ends of the bar, we must have N; = 0,
therefore 0 = (k—§u) (c—2a) +2u0; therefore ¢ = 2a oK =2k,
3k+4p
. - [E=ae—ta)=nua) _ g (1 Sh=2e)
.. M 2 (k—%w) (1 +

3k +4p
3%k —2u)2 ok,
1ty (BF-2 }_ “_
*{ b kv au 3k + 4

6251. (By the Epiror.)—One of the diagonals of a regular quin-
decagon is drawn at random, and then the process is repeated ; show that
(1) the probability of the chosen diagonals being such as cross within the
perimeter is tf,‘, if the two must be distinct, amf )15 if the second may be
identical with the first ; (2) the like probabilities for a regular (2n + 1)-gon
are } (2n?— n) divided, in the two cases respectively, by [(2n + 1)(n—1)—1]
or &% +1)(n—1)]; and hence (3) the chance of two random chords meet-
ing within a circle 18 % or }.

Solution by D. BipDLE, and the PrRoPOSER.

1. From each of the 15 angles there are 12 diagonals, or in all
180 + 2 = 90. The 6 which cross one-half of the figure are similar to the
other 6. Taking the one 6 in order, we find that they are crossed by
diagonals as follows: — I. by 12; IL. by (12—1)x2 = 22; IIL by
92—2) x3=230; IV. by (12-3)x4 =36; V. by (12—4)x5 =40;

I. by (12—5) x 6 = 42. There are accordingly 6 differently circum-
stanced sets of diagonals, and the probability as to which of these is
selected in the first diagonal drawn is . For the second, there are 89 to
choose from if the two must be distinct, 90 if the choice may be identical ;
and of these a particular number, as specified above, cross the first, but
the rest do not. Hence the total probability that the chosen diagonals
will cross within the perimeter is (12 + 22+ 30 + 36 + 40 +42), or 182,
divided by 6 .89 or 6.90 in the two cases respectively, which give the
stated results.

2. For a regular (25 + 1)-gon, there are (n— 1) differcnt cases, all equally
probable, since the first diagonal may cut off 1, 2, 3, ..., (r—1) corners of
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whence r = —y—3a and 2 = y—}a are asymptotes, having ‘the curves
situated on the sides shown in the figure ; also y = X a are asymptotes.

Near the origin y
y*+ax? = 0 approximately ;
also
dy _ _ 2%z +2ay3—2a%
dz  4y3—2yx® + 3ay?—4ay2 4 "
= 0 at intersection of (1) \x/ﬁ ®
with y2z + ey —atz = 0, -

which is the same as the
intersection of zy=a? with

yl*—az+ay =0, /:
'ﬂving z=44a, y=4{a nearly.

h eam*l:e of z shows that y* + ay® must be > ady, so that y cannot lie between
and a.

At the points (0, —a), (a, @), dy : dz is —2 and 2 respectively. To find
approximately the contour of the curve towards the left, putting y = 2a,
® becomes — s nearly and dy : dzr = —§; and putting y =—2a, z be-
comes — 3¢ nearly and dy : dz = —4 ; hence the figure is as annexed.

[As to the latter part of the question, writing the equation in the form
¥ + ayd— (23 + 2az) y* + a*2? = 0, we see that, by DrscarTEs’ rule of signs,
when 23+ 24z is positive, there cannot be more than two positive nor more
than two negative values of ¥ ; and that, when z* + 24z is negative, that is,
when z lies between 0 and — 2a, there cannot be any such positive values,
and not more than two negative ones.]

7710. (By Professor CocuEz.)—Parmi les courbes planes uniforme-
ment pesantes de méme longueur, passant par deux points fixes, quelle
est celle dont le centre de gravité est le plus bas ?

Solution by ArraUR Hivy Curris, LL.D., D.Sc.

When any system of heavy particles ave in equilibrium under the action
of gravity alone, the position of stable eonilibrium is such that the centre
of gravity of the system is the lowest possible ; as a particular case, a string
of constant or variable density throughout will assume, as its position of
equilibrium, the curve which satisfies this condition ; the curve required
in the question is consequently the catenary.

Tas SYMMEDIAN-PoINT Ax18 oF A SysTEM oF TRIANGLES,
By R. Tucker, M.A.

Through the angular points of the triangle ABC straight lines are
drawn parallel to the opposite sides forming the triangle A’B’C’: the pro-
cess is repeated indefinitely. This is the system herein considered.
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7667. (By Professor WoLsTeNROLME, M.A., Sc.D.)—Prove that, if n
be a positive integer,

1+iam’0+;2m‘0+ L :3.6.. 2" )sm’*o

246

p GO0 L n(n-1) costg _ n(n— 1!(::—)1,0550 1)n SO 0
- 3 t 2! 5 ot (- )2n+1

L@y + (33) +"-*( '23.'3.'5..2.”2;“)’

T a1 1.3 T35 a1

I=n-78% "2r "2.4.5 7.4.6.. 20 @2n+1)
~3.5...02n+1)
2.4.6..2n"

Solution by G. Heerer, M.A. ; E. Buck, M.A.; and others.
Of the three memhers of the identity to be established, call the first

%, the second —:T’ and the third p; then we have
h  —hcosd PISin’”"OdO

k —kcosf J‘sina(l—cos’o)”do

. J"'psinﬂ'”‘do
also —_— rm 0 - p
m j sin 8 (1—cos® 6)" do
[}

7654. (By AstTosHE MukmoPipHYAY, M.A.)—A magnetlc needle is
free to revolve in.a horizontal plane round a fixed point in the line join-
ing its poles; if it is acted on by an indefinitely extending vertical gal-
vanic current : find (1) the positions of equilibrium ; (2) the cases wherein
there is no position of equilibrium ; and (3) when the positions of stable
and unstable equilibrium are dn'ectly opposed.

Note by the EpiToR.
A full discussion of this Question, with the results sought—too long for
our pages—is to be found in Dr. CurTIs’s paper, published in The Ozford,
Cambridge, and Dublin Messenger of Mathematics (No. 8, 1864).

7604. gBy Rev. T. P. Kirkman, M.A,, F.R.8.) —If a, be the
number of the p-aces on a {riangular-faced n-edron, prove that
#~8, (p—4) a, is a cube.
Solution by Epwarp Buck, M.A.
In any polyedron, if f, be the number of p-gons (faces with p-sides),
¢ = total number of edges =1 [3fs + 4/ + 5fs + &c.]=1 [3a; + 4a, + 665+ &c.]
=3B (am+fy) +4(w+f)+&e],
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Solutions by (1) E. L. Rayxoxp, M.A. ; (2) D. Bropis.

1. Let a be the chance of two heads turning up in the first two tosses;
B the chance of two heads turning up in the second and third tosses (and
not before) ; p the chance that two heads turn up in the (r—1) and ytt
tosses (and not before) ; then the chance of turning up two heads running

in r tosses is L L R R U UPRRRNON (A).

Now the chance of turning up a head in the third throw is, of course } ;
hence }a is the chance of the first three throws being all heads ; 48 is the
chance of the second, third, and fourth throws being all heads; 3p is the
chance of the (r —1)th, #tb, and (r+ 1)t tosses being all heads; and thus
the chance of turning up three heads running in (r + 1) tosses is

F@+B4 .o p) corrrrnnniiniiiniiienienens (B),
and, of course, the chance of three tails being turned up running in (r+ 1)
tosses is F@HBcHp) e (C).
Hence the chance of a run of three (heads or tails) in (r + 1) tosses is

which agrees with (A).

2. This proposition postulates two things which themselves require
roof, viz., (1) that at every toss of a coin, there is an equal chance as to
ead or tail turning up, and (2) that all the ible results of r tosses are

equally probable. But if Aead have already been turned up twice, it
seems only reasonable to assign a greater probability to tail for the third,
and as the average results must needs be equal for head and tail, in the
long run, if a fair coin be fairly tossed, it seems only reasonable to con-
sider the series of events, however short, which approximates to this
average, as more probable than one which consists (for instance) of one
sort only. The possible ways in which the events may occur double with
every increase in the number (r), as may be -

seen in the adjoining diagram, in which x 1 { :;' : : :
and 0 represent the only possible results of 2 * 0lx|x
the first toss; x x, 0x, x0, and 00, of 0 ofx|x
the second ; and so on. Consequently, if 8 x % 0]x
we consider the probability to be equal as 0 x 0]x
to head or tail at the third toss, no matter x 0 0|x
what the other two may have yielded, then 0 0 0]x
x x x or 0 0 0 will one or other turn up as 4 1 X X X 0
the sum of the results once in four times, as 0 x x 0
x x is supposed to have done when » was x 0 x 0
2; and as § has been the probability of x x 00x0
occurring together when r is 3, f = § is x x 00
the probability of x x x or 0 0 0 occurring 0 x 00
when r is 4. But the matteris open to grave x 000
doubt. How do we know that x 0 and 0 x - 0 000

are not twice as probable as x x and 00?
and x x 0 or 0 0x four times as probableas x x x or000?

Let us suppose such to be the case. The probability of head turning
up in the first toss will then be, as before, 3 ; but of x x in two, only §,
and of x x x in three, only 4%, or of x x x or 000 (one or other), .
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in form with that for the potential of the propagation of sound in a uni-
form medium of indefinite extent, and leading of course to the same con-
sequences 80 familiar in that case.

For plane waves advancing in any common direction in the substance :
since then zcosa+ycosB+zcosy =p, where a, B,y are the direction
angles of propagation and p the distance of any wave plane from the origins,

and since consequently % + :—;;t +‘%’: - %, therefore the equation for

the determination of ¢ assumes the simplified form %:—? = a’:;f, the

complete integral of which in finite terms, viz., ¢ = k.f(p + at), where
kisa small constant representing the absolute amplitude of the vibrations,
and f any arbitrary periodic function oscillating within finite limits as in
vibratory motion generally, represents two systems of waves advancing in
opposite directions with the common velocity 4; the amplitudes of
vibration undergoing no change for either system with its progress
through the substance, and no wave of either system giving rise to a
wave of the opposite system in its passage through any portion of the
mass external to the region of the original disturbance giving rise to the
motion.

For spherical waves diverging from any common centre in the sub-
stance : since then #2+y®+ 2% = r3, where r is the radius of any wave
sphere of the system ; and since consequently

Ty 9 o _d'g 2 do

dz?  dy:  dz? dr?  r ar
therefore the equation for the determination of ¢ assumes again the
L ¢ _ o (Do, 2 do . .
simplified form 7 B (— + = , or, in consequence of the entire

a3 r adr

independence of r and ¢, the equivalent form d’—-)‘g:? = gt d2__d(;¢)

plete integral of which in finite terms, viz., r¢ = k. f(r £ at), where &
and f are a8 before, represents again two systems of waves diverging in
opposite directions from the common centre with the common velocity a,
the amplitudes of vibration varying at considerable distances from the
oentre inversely as the distance for each, and no wave of either system
giving rise to & wave of the opposite system in its passage through any
portion of the mass external to the region of the original disturbance giving
rise to the motion.

; the com-

7170. (By the Eprror.)—If 10 cards are taken at random from a
pack, show that the respective probabilities (2, ;) that they will contain
(1) exactly 4 cards with hearts, (2) not more than 4 cards with hearts, are

27417

5 near 32
= ="14746 = — 1 _ 07 = 9% ly.
71 = {85932 14746 34 DAY Pa 94307 34 nearly

Solution by D. BIDDLE.

1. The following considerations will enable us to build up the required
fraction :—52 ! = possible permutations of the wholepack ; 10! 42!=ways
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method to verily the value of u,, found another process) in
Dz MoreaN’s Differential Calculus, tool’w 50521. by

Solution by the Rev. T. C. Smumons, M. A,
Differentiating twice with respect to # the identity
secz =1+ 3’—- LA

we have 4!
2:""2' = coefficient of 22*-3 in the expansion of sec » (2 sec? z—1)

= same coefficient in (l+ “‘z‘ )(l+—33-’+'—”—£-‘ )

Yan-3 | Yoy 93 Vs 9y
T =21 2n—41" 2! " 2n—6! 4!

whence follows the first required relation.

Again, -};%-weﬁicientofz‘“in}m’z

= same coefficient in 1 (1+'ﬁ—+-4—+ )(1+’£:%’+'i44'£+...)

than , Un-3 than -4
2n'+2n 21" ﬁz+2» 4!’ 4' ot
with the reservation stated in the question.
Now put-» successively equal to 2, 3, 4, 5; then, observing that 4, and
ngeach = 1, wefind u;, =05, ov,=232, wuz=061, o05=>544,
g = 61 + 300 + 480+ 644 = 1385, vg = 4 (1385+1708 +875) = 16872,
%o = 13856 + 6832 + 11200 + 16232 + 16872 = 50521.

733. (By H. J. Rmap, M.A)— Transform j (‘1+s_:>:o)7|’ by
means of the geometry of the ellipse.

Solutions by (1) D. EpwarpEs ; (2) H. L. Orcuarp, B.Sc., M.A.
1. Let P be any point on an ellipse, Q an adjacent point, P’, Q' corres-

Q£
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10 minutes occupied in clearing the level crossing. 10— ff_;%-(;: = time
during which a collision can occur when train B starts as much as
6m . 2.6m . . . .
7600 before or after train A. 60y = time during which the chance is
curtailed owing to limitation in the time of starting of the two trains, and

when the average factor is reduced from 2 to § (2+1). Consequently,
1 {(l 2.6m) 2.6m  2.6m 3.6m

10 ~ 17600/ 17600 ~ 1760v " 2.1760

} = chance required

-l ( 20— 8m \ 6m
10 1760y | 1760v
Thus, let m = 200, and v = 35, then the chance of a collision
= v (20 ~137) 3¢ = 03891, or rather more than ;%.

The distance n of each train from the level crossing does not appear to
affect the probability of a collision, under the other specified conditions.
And the moral to be drawn is, that in such cases, the higher the speed and
the shorter the train, the less the chance of disaster.

7730. (By W. J. GreexsTREET, B,A.)—Prove that (1) the polar of a
fixed point with regard to a series of circles having the same radical axis
passes through another fixed point; and (2) these two points subtend a
right angle at either limiting point.

Solution by A. H. Curmis, LL.D., D.Sc.; T.BriLL, B.A.; and others.
Lemma. The line joining a
point A to any point B, situated P
on the polar of A with respect to
any circle, (1) is equal fo the sum of
the tangents to the circles from A ]
and B, and (2) is equal to the
double of the tangent drawn from H
its middle point H.
Let C be the centre of the circle
and ¢ its radius.
(1) AB? = AD?*+DB.BE
= AD?+BF3.
(2) 4AH? = AB? = AD? + BF?
= AC?+BC?*—242 = 2CH?+ 2AH?— 243,
therefore AH? = CH?—4? = square of tangent from H, therefore AB=the
double of such tangent.

.. Let now the polars of A taken with respect to any two circles meet in
B, bisect AB in H, then the tangents from H to the two circles are each
= AH, therefore equal to each other ; therefore H is on the radical axis of
the circles, and, as AH=BH, A and B are equidistant from it; if we find
then on DE a point B, whose distance from the radical axis = the distance

VOL. XLII. E
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if » be greater than unity, and is infinite if » be equal to unity or less
than unity. But the definite integral and the given series are both finite
orhl;:th infinite. Hence the series is convergent when a> 1 and divergent
when a< 1.

7720. (By R. Lacmrax, B.A.)—Four circles, having their centres
within the triangle ABC, are drawn to cut the side BC in angles a, 20,
v, B; the side CA in angles B, v, 20, a; and the side AB in angles v, a,
B, 2¢ tively : where 2¢ = a+8+~y. Let R,, R, R,;, R, be their
radii, and r theradius of the inscribed circle ; also let these five circles cut
any straight line in angles ¢,, ¢q, ¢3, ¢4, 0 ; then prove that

1 1 1 1 B+ +a a+B 1

e b b —— == 4 c08 2 Y cos L1E . —

R1+R,+B,+R4 cos =Y cos o= cos == -
y+a a+B

and 08 @, + CO8 P + COB Py + CO8 b, = 400!3—;1005 08—, 0086

Solution by B. H. Rav, M.A.; Rev. T. C. Smumons, M.A. ; and others.

Let z, y, 2 be the trilinear coordinates of the centre of the circle (R,)
which cuts the sides BC, CA, AB in angles a, 8, y; then z = R,cos a,
y=R,co88, s = R cosy, 24 =ax+ by +ecz,

- 24
acosa+bcosB+ccosy

o . 24
Similarl: - “a d .
o B acos2ar4-lbcos-y+wosa’m 80 on;

therefore R,

1 1.1 1 a+b+e
therefore — + —+ —+ — = ——— (co8a+ CO8 B 4 COS y + CO8 20).
RRTRTRT 2 7+ 00s20)
=£. Cco8 .ﬁ_ﬂmg MMM.
r 2 2 2
If Iz + my 4+ nz = 0 be the equation to any straight line, then

R, cos ¢, _ perp. from centre of R _ IRy cosa+m Ry cos B+n R cosy,
- ?

rcos @ perp. from centre of r Ir+mr +nr
therefore cosg,glcos¢+mcosa+ncos'y.
cos @ l+m+n
Similarly cosg,aloos2c'+mcoa-y+ncos¢, and so on,
: cos § l+m+n
cos ¢
therefore zm=cosa+oos3+cos-,+cos2c,

therefore  Zcos¢ = 4 cos§ (B+7)cos i (y+a)cosi (a+B).cosd.

7646. (By W. G. Lax, B.A.)—If ABCD be a rectangle; E, G two
points in AB, AD-such that EOF, GOH meet each other and the diagonal
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verse axis is 3°(0’ 22”; and the semi-axes are 34926 and 1:77. In
the case of a star, if a be the altitude, / and % are both infinite, and

%= tana; the hyperbola then becomes y3 = (27 + ) tan?a.

[Mr. BropLe remarks that ¢ there are two arrangements by which the
specified conditions can be met. The observer can be sitting with his back
to the centre of the curve, the mirror being on the other side of the (saloon)
carriage and tangential to the curve (A); or he may be facing a mirror
whose plane contains the centre of the curve (B).

¢« The object, being nearer to the centre of the curve than the carriage,
must lie within the circle of which the railway curve forms part; and it
is immaterial whether the circular motion be effected by the carriage (with
observer and mirror inside) or by the ofject, provided the centre of revo-
lution be the same: the path of the image on the glass will be identical.
Moreover, a circular ring representing the object in all possible positions
at the same moment of time will, produce an image representing the path
required, and this image will be identical with that which would be
produced if the observer were looking through the glass at a similar circle
on the other side; and, if he were to trace the outline in the manner
recommended by Mr. Ruskin (in his treatise on Perspective), he would
find the curve to be elliptical, NoT an hyperbola.

“ In fact, anyone who will take the trouble to draw a circle on the ceil-
ing of his drawing-room, and look at it as reflected in the pier-glass
(whether in the position A or B), will have an exemplification in miniature
of the same thing.

““The path of the image of a star differs but slightly in principle from
the foregoing. The star being outside the circle and at an infinite dis-
tance, so to speak, as compared with the diameter of the railway curve,
would produce an image crossing the glass almost in a straight line. In
reality, it would be a portion of an ellipse with comparatively small minor
axis. In position (B) the mirror cannot reflect more than half any ring
concentric with the railway curve at any one time.”

[The ProPosER ‘‘ regrets that his question was not so clearly worded as
to show without doubt that ¢side’ meant the partition against which the
seats are placed, and not where the doors are. Adopting the method and
illustration in the remarks, it may be stated that the curve on the glass is
certainly an ellipse in case A, but this was not the case meant. In case B
the effect would be the same as if an observer looked in the glass at the
reflection of a circle on the ceiling, the centre of which was in the line of
intersection of the wall and ceiling. If a cone be imagined, defined by
such a circle and by the observer’s eye as vertex, it is clear that, if the dis-
tance of the eye from the glass were less than the radius of the circle, the
wall would cut the cone on both sides of the vertex, and the section would
be a hyperbola ; if equal, a parabola ; and if greater, an ellipse. Return-
ing from the illustration to the thing illustrated, it will be found that this
is equivalent to considering whether the distance of the eye from the glass
is less or greater than that of the object horizontally from the centre of the
curve; and practically it is always less.’’]

7685. (By Rev. H. E. Day, M.A.)—Find the probability of a piece
at Chess being found on any particular square after having been moved at
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2. The optical requirements, in theabove series of cases, are (1) that the
eye and the objeet shall invariably be in front of the mirror, and the
image behind it; and (2) that the reflecting surface, whilst placed
directly between the eye and the image, shall occupy a plane which bi-
sects at right angles the line joining the image and the object. This
secures the needed equality of the angles of incidence and reflexion, and
also res the apparent equality which subsists between the perpen-
dicular distance of the object in front and of the image behind from the
plane of the mirror.

If the lines joining the three points form an equilateral triangle, it is
impossible that the desired optical effect can be produced, unless the
position of the eye be allowed to coincide with the plane of the mirror ;
and in no other case can the entire series of permutations, six in number,
be accomplished. If the lines joining the three points form an isosceles
triangle (not equilateral), there are two arrangements possible : for, if the
angle at the apex be less than 60°, the points at the base may be those in-

ifferently of the eye or the object ; and, if the angle be greater than 60°,
the points at the base may be those indifferently of the eye or the image.
‘When the lines joining the three points form a scalene triangle, three
arrangements are possible, the eye taking each of the three positions in
turn, and the image the more distant of the two remaining. A diagram
is scarcely needed to make this clear,

6553, (By the late G. F. WaLkEer, M.A.)—Solve the equations
By+s)mad, YPz+z) =8, 2(r+y) =3

Solution by the Rev. T. C. SrMmons, M. A,

[lAs the final equations in the solution of this question given on p. 86 of
Vol. xxxv. of our Reprints, are evidently not three ordinary equations for
finding z, y, £, but only their ratios, the following method is suggested.]

Putting zys = —p, the equations are
a8 1

oty +_:. =0, &Cerrrrrerrerrerrrnee ), @), 8)
=0, or 2p3=(a®+83+ ) p2+ 3332 = 0. Let any
root of this equation be —%, then, solving (1), (2),
1 | (8), we obtain @ = mz, y = nz, hence mns® =%,

therefore s, and consequently # and y, are deter-

2 | mined.

»

is method at once solves the more general equation 22 (y +Az) = a3,

9 (54 p2) = B, 23 (z+wy) = ¢, or, what is the same thing, the equations
2% (ay + bz) = y3(cz + dz) = 23 (ex + fy) = 1, which can only be solved with
t difficulty by the ordinary methods. A similar remark applies to
ﬁrSnnmns’s solution of Quest. 7341 (p. 29 of this volume), in the form

yz(az+ by +cz) = d, 2 ((x+¥y+dz) =d, xy(a"z+b'y+'z) =d",

whence 1

b 'g'z
- 'QlT —

—
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7583. (By MorGAN JENKINS, M.A.)—Provo GERGONNE'S construction
for describing a circle to touch three given circles without introducing, in
the proof, two tangent circles.

Solution by the PROPOSER.

Let A, B, C be the centres of the three given circles, O of the ortho-
gonal circle, T of one of the required circles; and lct the circlos, for
brevity, be named by their centres. Let 4, ¥ be the points of contact
of the circle T with the circles A and B respectively ; Oa, Od’
tangents from O to the circle A; OB, OB’ to the circle B. Let aa’
meet the common tangent at A to the circles A and T in H; and
BB’ meet the common tangent at £ in K, and HA, Kk mect in ¢.
Then, because Hk is the radical axis of the circles T and A, and Haa’ of
the circles O and A, therefore H is on the radical axis of the circles O and
T. Similarly K is on the same radical axis. Therefore HK is the radical
axis of the circles O and T, and is perpendicular to the line OT. Again,
since ¢h and 7k are tangents to the circles A and B, A% passes through a
centre of similitude of these two circles. For the same reason, af and o'g’
pass through one centre of similitude of the circles A and B, a8’ and a'8
through the other centre of similitude. Of the two ccntres of similitude,
one, say tho former, must be that through which 24 passes; lct it be de-
noted by S: then, since rect. Sa.Sg=rcct. Sk . Sk, Sis on the 1adical axis
of the circles O and T, that is, HK passcs through 8. Similarly, if v, 7/, ¢,
L be points corresponding, for the circle C, to the points a, a’, 4, H, then
HL is perpendicular to OT, that is, coincident with HK; and HKL passes
through a centre of similitude of the circles A and C, and through a centre
of similitude of the circles A and B. Thercforc the radical axis of the
circles O and T is an axis of similitude of the circles A, B, and C.

Again, since 4 is the pole of HA, O of aa’ with regard to tho circlo A,
therefore O# is the polar of H, therefore the pole of HKL lics in Ok,
therefore 4 may be determined by joining O to the pole, with regard to
the circle A, of an axis of similitude of the three circles.

[If the three circles A, B, C cut one another two and two, the point
0, the intersection of common chords, is inside cach of the circles; the
orthogonal circle and the six points a, a’, 8, 8, 7, 9 are imaginary ; the
lines aa’, BB’, and 99’ are the polars of O with regard to the three circles
respectively. If the circles A and B cut each other in ¢, ¢/, and if SAB cut
¢¢ in n, rect. Sh.Sk = S¢? = Sn?+ ng? = 8a2+ On?+ 0g.0¢’

= 802+ rect. Og.0¢’ = SO2?—squaro of radius of the
imaginary circle, with centre O, cutting the three circles orthogonally.
Therefore, as before, S is on the radical axis of the circles O and T, and
the remaining part of the proof holds good.]

5672. (By Col. Crarke, C.B., F.R.8.)—P and Q are two points ina
finite line AB. The parts PA, QB are rotated in opposite directions
round P and Q respectively, until A and B meet in a point R. Supposing
P and Q evenly distributed, determine the law of density of the points R.
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# and v receive increments du and dv, R becomes one of the four corners
of 2 small parallelogram whose coordinates are

z Yy
d dy
z+ n du y+ 2 du
d dy
o4 = = d
+dvd" y+dv v
dx dz dy dy
pd — A ~Z di
z+dudu+ dvdv y+dud“+dv v,
- {dz dy dxdy
f which =24y _°229
the area of which is (dvdu 7 dv) du dv,
and the reciprocal of this is a measure of the density of distribution of the
; roadily %2 _dsdy _ gy 1
points.  We find Iy dvdu dudv w+v 1—nu—v
But, since 2% = 1—2— Y and 20 = l+z— Lﬂ-,
l+x l-2

. . y(1—21—9")
the expresu@ for the density becomes T

7572. (By Professor WoLsTeNHOLME, M.A., Sc.D.)—In the limagon
whose equation is r = acos 8 + b, where b> a, O is the origin, A, A’ the
farther and nearer vertices, C a point of maximum curvature, P, P/ two
points of the curve on the same side of the axis as C, such that OC is the
harmonic mean between OP, OP’ (P coinciding with A when P coincides
with A’) ; prove that (1) the difference of the angles AOP, A’OF” is equal
to the angle (¢) which the chord PP’ makes with the axis; the difference
of the arcs AP, A'P” is 4bsin4¢; (2) the difference of the arcs AC, A’Cis
4a; (3) the locus of the intersection of the tangents at P, P is a cissoid ;
(4) taking the origin O at the single focus, and the equation
r—2r é;z + 6 cos 6) + (b—a)? = 0, the curve is its own inverse with respect
to O, the radius of the circle of inversion being 6~ a; (5) if OPP’ be a
chord through O so that P, P’ are inverse points, the locus of the point
of intersection of the tangents at P, P’ is the cissoid y®(r+b—a) =
(3a—b—=x)3; (6) if we have a family of limagons having a given single
focus O and a given node 8, OS=56—a =¢, then the locus of the centres
of curvature at the points of maximum curvature is the cissoid y2 (3c—2) =
(z—c)3; and the envelope of the tangents at the points of inflexion is
another cissoid y° (y¢—2) = (r—¢)?, the origin in all these cases being at
0, and the axis of # along OS.

Solution by Professor NasH, M.A.; Sarau MaRrKks; and others.
It can easily be shown that the radius of curvature is given by

p= ::::;:):, where ¢2 = $2—42, and thus that at the point of maximum
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of inversion, the inverse of the limagon is an ellipse whose axes are 26,
2. The point of maximum curvature is the inverse of the extremity of
the minor axis, and the line PP is parallel to the major axis.

(1) ASP—A’SP'=ASP—- AS’P =8P§".
Inverse of line PP is circle SPP'S’, and
the angle at which this cuts 88 is
equal to the angle in the segment SPS’. 4

(2) Inverse of element of arc 3s is "‘%’,
= —arc AP’ i 1__1 .
therefore % = arc AP arcAP'mc’J.{ 3 (2b_r),}daoverarcAP
Now, if SPS'= ¢, cos}p =— sinSPy = m = (B),
and sin }¢ = cos SPy = % .............................. ©).

Differentiating (B), and therefrom, by (C), we have
'}sin}qp-dis ¢(b—1) , i _ 2c$b—r2’
dr A @Qb-r)¥ ds .rf (26—9)t
¢ 4) !b—r! ¢ - .
therefore = cﬁjo 3 (%_r),da = 26.[0 cos ¢ dp = 4b sin }¢.

When P, P’ coincide, sin ¢ = -%, “therefore u = 4a.

33) The tangents at P, P’ invert into circles touching the ellipse at P, P’
and passing through the focus. These circles intersect in the point Q on
PP’ where SQ bisects the angle PSP’. Drawing the ordinates
PN, QM, P'N’, we have, successively,

MN _MN'_ 20M _CN. ., _C8 _ CA
SP SP SP-SP CA’ §P—SP ~ 20N’
c8 _Ca? _ CS CA* _CB' BSM_QMm

CM ~ CN® CS—CM ~CA*-CN! PN¥ CS OBY
therefore the locus of Q is a parabola whose vertex is S and latus rectum
(CB)2 / CS, therefore the inverse is a cissoid.

(4) Inverting the equation SP+S'P=AA’= 2}, we get for the limagon
258P—2a0P = ¢3, therefore the equation referred to the single focus is

4a%?—4ar (6 +6%c0o820) +¢* = 0 ..ooovnnniiiiiinnnnns (D),

and the curve is its own inverse with respect to O, the radius of inversion
being ¢3/ 2a.

(6) Inverting OPP’, we get a circle through S'PP’S, so that the locus
is the same cissoid as in (3). Its equation referred to S is y? (s —g) = 28,

and referred to O it is y? (a—-;%—x) - (x+‘_ ..................... (E).

It we put a = 24, g = ¥, and therefore ;—: = ¥~d, 80 that (D) takes

the form given in the question, (E) becomes y2(3a—b—2) = (z+b—a)3,
and not y2 (z + b—a) = (3a—b—2)3, as stated.
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(the equation to a point), the sum of these ratios is zero; let p, p’, p”, &c.
be the perpendiculars upon (a, B, ¥, 3), and p,, »’;, p”, those upon

(a1s Bry 71 By), then 3 ;fl =0, and, if (a, By, 71, &) be the planc in-

)

finity, 2,, 1, "), &c. are equal and 3 (p = 0); in this case also the tan-
gent planes are all parallel. So that the sum of the perpendiculars from the
points of contact on any plane through the point (1) is zero, and thereforo
that point is the mean centre of the points of contact.

5636. (By C. Leubesporr, M.A.)—A polished uniform straight metal
rod is held in a horizontal position with one end fixed at a point A, and is
then allowed to swing under the action of gravity till it reaches a vertical
position, when the end A is loosed, and the rod allowed to fall; find the
locus traced out by the image of the fixed point A, as scen from any point
by reflection at the rod during the motion of the latter.

Solution by the Rev. T. C. Smamons, M.A.

‘When the rod becomes vertical, it will have an angular velocity w,
which will afterwards remain constant ; also its centre of gravity G will
fall in a vertical line with acceleration ¢.

At any time ¢ let 0 be the angle the rod
makes with the vertical, which will also
be the angle which the perpendicular AP
on its direction makes with the initial
position AB, then AG = {u+ 3gt3, 0=wt,
or, taking r, 6 for the polar coordinates of
the position of the image,

r = 2AP = 2AG sin 0 = (a+£‘_:_’)sino.

w'

Now w?=3g ] a, sothat g¢* or g6?[w?=}a6?,
and we have for the equation of the locus
r = (1+106? asin 6, consisting of a series of closed curves always return-
ing through A and touching AB. They rapidly increase in size, and
tend ultimately to assume the form of circles with centres lying vertically
below A. The figure gives the outline of the first two branches from
0=0 to § =2, in accordance with the following table of numerical
values :—

Oli‘r'if'%w §n 3r ir

‘8

—; 18 ‘ 2:0 | 44 | 84 | 72

It may be interesting to note that the result depends only on a, the
length of the rod, and i8 wholly independent of g. Thus the same curve
would be described on the sun, or on any of the planets. The rate of
description, however, increases with the force of gravitation.
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7684. (By D. Epwarpzs.)—Given the in-circle and circumcircle
of a triangle, prove that (1) the loci of the orthocentre and centroid
are circles of the respective radii, R—2r, § (R—2r), whose centres lie on
the line joining the in-centre and circumcentre, and divide it harmonically ;
(2) the locus of the centroid of the perimeter is a circle whose centre is
collinear with the two former centres, and radius § (R—2r).

7728. (By Rev. T. C. Siumons, M.A.)—Given the circumcircle of a
triangle, and any of the four circles touching the sides, show that the loci
of the orthocentre and centroid are circles having the centres of the given
circles as centres of similitude.

Solution by Rev. T. C. Smamons, M.A.; J. BriLy, B.A.; and others.
Let C be circumcentre, G centroid, N nine-point ¢
centre, O orthocentre, E the centre of thetangentcircle,
then, EN being constant, locus of N is a circle centre
E. But CG = §CN, CO = 2CN, therefore loci of G
and O are circles having, in common with the locus of
N, C for one centre of similitude, Let S,, S; be
centres of these circles, then [CS;ES,]1=[CGNO], that
is to say [CS,ES,] is harmonic. But C is one centre s
of similitude, therefore E is the other. !
Again, if A’, B’,C’ be the mid-points of the sides of the '
triangle, the centroid of its perimeter is the in-centre of ¥
A'B'C’.  Also G is the common centroid, and likewise
the centre of similitude of both triangles ; whence, con-
sidering E originally the in-centre, and O, I’ orthocentre
and in-centre of A’B'C’, GO’ = }GO, GI’ = }GE, and O’
coincides with C, the original circumcentre: whence
EI'’= 3I'G, so that the locus of I’ is similar and simi- £
larly situated tothe locus of G, E being centre of simili-
tude. Therefore the locus of I' is a circle whose centre lies on EC and
whose radius = § x § (R—2p) =} (R—2p).

7655. y W. J. McCLELLAND, B.A.)—Show that the sum of the co-
tangents of the intercepts made by the internal and external bisectors of
the angles of & spherical triangle on the opposite sides is equal to zero.

Solution by B. H. Rav, B.A.; the PROPOSER ; and others.
Cot CDsin b

= cot A sinC + cos b cos O 4
=1 +cosA)m,—n—g +cosbcos C;

sing
cotCD_cosmsinb+t«xin0 (3

~ " sinasind
. —at B

001;()E=¢~Josa'smb' smc; & D

8in a 8in &
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Again, GH = {a, therefore GF = (z2—4a%)i;
therefore b = AF+FG = [22—} (a—2z)3]} + («3— Ja?)},

or 83+ 23— }a3—25 (22— }a%) = 23— } (a—2)2,

or 3% —1az + 5 = 25 (23 —}a?)l,

or Yeri—ard+ (302 + 13- 409) 23 —abl 2+ M+ a2 = 0,
a biquadratic for z.

7682. (By H. ForTey, M.A.)—Suppose three straight lines
through the points A, B, C respectively, and turn about those pointspai?:
the plane ABC with the same angular velocity and in the same direction.
Fing the locus of the centre of the circle described about the variable tri-
angle thus formed, %) when the lines through A, B, C are initially
coincident with AB, BC, CA respectively ; (2) when they initially coin-
cide with AC, BA, CB; showing that the loci are two equal circles of
radius abde (A-lﬁA'l):c{ 16A3 (where A = a3+ 5%+ c%a® and A = area of
ABC), that these circles touch each other at the centre of the circle about
ABC, that (if A = a*—3%3, &c.) the equation to the line joining their
centres is (2A+ B +C) dea+ (2B+C+A)cap+ (2C+ A+ B) aby = 0, and
that this line touches the Brocard circle.

Solution by the PROPOSER.
Taking the first case ; let
LBAB, = CBC, = ACA, =,
and let P be the centre of the circle about A,B,C,.
Draw PN, PD perpendicular to BC, BC, and
DE, DF perpendicular to BC, PN. Let BN =z,
PN =y, also let
B+hl+et=k a+¥+ct=yv.
Now, we have

BG,-a"i.ﬂ.g:.Q=a(cos0—Msin0) aa(coso—ﬂ’sino);
sin C A

sin C 4
; sind  ac3ging,
o BBi=cmB™ 2a
. - cos@ k—4e® . - cosf_ &k .
-. BD a( 5~ 8a sin ), B,D a(—-—2 8Asm0),
PDEB,DOOtAaBlD.k._—z_a’gM)(.co_”_isino),
4A 4A 2 8a

2 = BN = BE~FD = BD cos —PD sin 6,

y = PN = DE+PF = BDsin 6 + PDcos 6.
Substituting for BD and PD their values, and reducing, we get
A=A 22 B o0 a%—y

16a° 4 42 Teas %26
Yy _2-a B¢ alk—y .
. vy 12 €08 20 + 1643 sin20.
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the circle is the inscribed circle of the triangle; (5) when they lie on the
branch of which C is the interior focus and between the radii drawn from
0 el to the asymptotes, the circle is the escribed circle oppomte C;

(6) for the remam of that branch the circle is one of the escribed
cucles opposite A’ or B’.

Solution by R. KNowLes, B.A. ; SARAH MARKkS; and others.

1. Let AC = a, CB’'= ¢/, CA’= 2/, then the coordinates of A’, B/, the
centre of per %endlculan and of the circum- .

centre, of 'C, are respectively y A
o (% 220), (£.%5%),
(5 %55) .

and A’B? = d2+ (& — 4P = (a—2 —¥)%
hence, substituting the values of the centres OIS
a8 above, the equation of the locus of each € |0 aD

is 2+ 3=} (6 —4/3y—32) ......(a). ,’
2. This locus is an hyperbola of which C is a focus, and as the axis
is perpendicular to 3z + /3y = 4, and passes through C, its equation is
YT rveriinininiein S ()
From (a), (8) we find for the vertices z = }a and {a ; hence the centre of
the circle is the farther vertex, and from (a)
1 623—6az+a®_ _ 1

an asymptote at right angles to AC; and 6z = 24 gives another at right
angles to BC.
Z+y

3. Theequation y +,/3z = —3 Dasses through the centre of per-

pendxculars and of the cxrcumscnbed circle, and is perpendicular to
y =—~/—:-3w, the transverse axis.
4. When they lie on the branch of which the centre is the vertex, A/, B’

lie (in CB, CA produced, and the circle is the inscribed circle of the tri-
angle,

6. The circle will be the escribed circle opposite C, when the line join-
ing the two centres is within the triangle CED’, CD’= }a; that is, when

they lie on the branch between 2 = 0 and y =— -ﬁx
6. When A’, B’ lie on BC, AC produced, the circle is the escribed
circle opposite AorP.

7732, (By W.J. McCLerLaND, M.A.)—On the sides of any quadri-
lateral inscribed in a circle, perpendiculars are drawn from the inverse of
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7548. (By B. Rex~oLps, M.A.)—Prove that, when @ and b aro very
large compared to their difference,

(u+nb ! - ma® " np?”
"+n mEn

, nearly.

Solution by F. C. GARNER, M.A.; G. B. MaTHEWS, B.A. ; and others.
Draw BB’, AA’ perpendicular to any straight

. ; p A

ety Yot gt BT X ot P =
BY:BB=¥":3

and XA AA =" a;

then,lincethediﬁmeebetweenaan-dibis vi-2l—Ix

ver{ small, the difference between ¢ and ¢ A o

57" is 80 small that it may be neglected, so
that we may consider B'Y = A’X very nearly. Now take P in AB so
that BP : PA = m : »; draw PP’ perpendic to A’B’ and meeting XY
in Z ; then, since PP — BB’ is very small, we may consider

PPy = (BB)"" very nearly ;
hence we may consider ZP’= (PP)*"" very nearly. But

PP'= m.AA +9 . BB’ _ ma+nd

?

m+n m+n
, -1 -1
and Zp = M AX+n . BY _ md +nd ; thorefore, &o.
m+n m+n
[Otherwise :—

(M-&-M "'- (a_'_» b—a ),-l-ap-l(l.,.” (b—a?)l"l
m+n m+n (m+n)a
-a'"(u-l. b—a )toﬁrstorder

? (m+n)a
! 1 b—a
m+n{m+”(l+;'_a—)}

-1

-l -1 -1
-i—{m+n(l+u) }toﬁrstordor-u.
m+n a m+n

As a special case, we have, when 4 is very nearly = J,
{4 @a+o)}t = ga'+ 300

7739, (By W. G. Lax, B.A.)—If z, y; r, 8 bo the rectangular and
polar coordinates of a point respectively, and if (z—f) and (%) be the
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5481. (By Professor Burnsipe, M.A.)—Trace the relation between the
characteristics of a curve of the mth degree having the maximum number
of double points, and the curve enveloped by the line

(20, @y @3, ... Gm) (6, 1)™ = O,
where aq, @), Gy, ... 6, are linear functions of the coordinates, and 6 a
variable parameter.

Solution by W. J. C. Searp, M.A.
If the given equation (ag, @), ... an) (6, 1) = 0 be identical with
ar+By+9z =0,
then Aa = (po, Py - Pm) (6, 1)™, AB = (g0 @1y --- gm) (6, 1)™,
Ay = (ro, 1y ooe Tm) (6, 1)™,
where p,, p1, &c. ... r, are constant, and the envelope, the tangential
equation of which is the eliminant of these three equations, will be a
unicursal curve of the mth order if a, B, ¥ be looked upon as ordinary
coordinates. And therefore, when they are tangential coordinates,
i+1 =% (m—1) (m—2), as in the case of a unicursal curve k+3 =
$(m—1) (m~2), and, using accented letters for the unicursal curve, and
unaccented for the envelope,
i=kk=t,r=¥,8=r,man,n=mw.

In fact, from the considerations above, it appears that every envelozpe of the
class here given is the polar reciprocal, with respect to 23+ y3+:2 =0
of the unicursal curve
AZ = (9o, D1y ... Pm) (6, )™, Ay = (o) 1y .- qm) (6, 1)™,
Az = (rg, 73 ... Tm) (6, 1),

where Gy = PnZ+ qnY +7n2.

%7675. (By the Epiror.)—Draw a transversal DEF to cut the sides
AB, AC, BC of a triangle ABC in D, E, F respectively, in suchwise that,
it M, N, P, Q be given lines, we shall have (1) BD : DE = M : N and
CE:EF=P:Q; or(2)that BD:DE:EC=M:N:P.

Solution by W. G. Lax, B.A.; Saran MARks ; and others.

1. Let (Fig. 1) a circle with centre A, and
radius AH, such that CA : AH =P : Q, be
drawn cutting BC produced in H ; join AH;
take ARsothat BA : AR =M : N; join BR
cutting AC in E; and draw DEF parallel to
AH; then BD: DE=BA:AR=M:N,
and CE:EF=CA:AH =D:Q.
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Thus (1) may be written s
aXooup—bYainnp-c’(lg-rg—x—;—-W) ................. 3).
From (2) and (3), by multiplication, —a XY = ¢4 ksin pcos ¢ ......... (4),

also, squaring (2) and (3), we get, by addition,
#X2 + $3Y?—4ab XY singcos ¢ = ,,4ginﬁq,co‘:¢+d(k+a9xi‘:.bwﬁ)2.

Substituting from (4), we have, after a little reduction, the stated result.

[Since four normals can be drawn from (X, Y), there are four values of

k; and, if these be &), &y, %3, k4, the equation proves that
1 1 1 1
PN
kPl +kld+ k3 +k3—2 (Kokg+...) +2 (ky+ ko + ks+kg) = 0.

When 4?X3 = §3Y3, the four points P, Q, R, 8 may be taken so that PQ,
RS are parallel to each other and to one of the equal conjugate diameters ;
in which case the triangles PQR, PQS will be equal to each other, and
s0 also PQ'R’, P'Q’S’; PRS, QRS ; P'R'S’, Q'R'S'.

The equation will also have equal roots when (X, Y) lies on the evo-
lute. 'When ¥ is positive, it is of course < }; and, since

k=—2co8}(B-7)cos}(y—ca)cos}(a—B),

its real negative values must be > —2, or, more exactly, its value for real
triangles > —2; which is the value at the centres of maximum and mini-
mum curvature.

It may easily be proved, from the quartic in k, that any positive value
of k <ut(l—ut); and any positive value of —k < ui (1—ul), u being
always <1 for real triangles, limits which are closer than } and 2.]

7484, (By Professor Mavrer, F.R.8.)—If two solutions of the linear

Gorontial oquation ¥ +@, ¥ +Q,% 4 Qu =
differential equation ) +Q, dx2+Q’ s + Qs =0.ceuervrerrrennne (A)

are the solutions of the equation @y +P, dy +Pyy = 0; prove that (1
dz? dx

=P, (B ,P,—-q) =P, (s )
PRy (P—Q) = Py (T +Pi-Q ) = P (L2 -@);
and (2) the complete solution of (A) is the solution of
- Ig-' dz,
Py

@y ,p W =
dz’+P'dz+P’y CP,e

Solution by R. LacHLAN, B.A.; NILKANTA SARKAR, B.A.; and others.

If U, V,W be any particular solutions of (A), the general solution of A
is of the form y = C,U + C,V + C3W; hence, differentiating and eliminat-
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As b(1—=d) and (1-—-8)d are mutually exclusive, (7) and (10) can by
addition be combined into the equivalent equation
b(1-d)+(1-8)d)(a+v =1—ec+w) ...coceeennnnne. (11).
Of the 4’s which are not @ or the non-4's which are d, those which are
aare not identical with those which are not c.

7554, (By T. Muir, M.A., F.R.8.E.)—Prove that
(C—B) (C*—B¢) (D—A) (D?—A?) AD3
+(C—B) (C*—B?) (D—-A) (D*—A?f) BX?
+ (C*—B*) (C3—B?*) (D4— A4 (D—A) AD
+ (C*—B#¥) (C—B) (D*—A¥) (D3-A3) BC

= (C1—B?) (C6—B¥) (D?—A?) (D3— A%) AD
@-; )(]3(08-.)139))20- (D2— A?) (D5 - AS) BC.

Solution by G. B. Matuews, B.A.; Prof. Matz, M.A.; and others.
Dividing both sides by (C—B) (C?*—B?) (D—A) (D?— A?), the equation
becomes (Ct+ C*B? + BY) A?D?+ (D* + D2A%+ A4) BC?

+(C2+BY) (C? + CB + B) (D*+ A?) AD
+(C*+B?) (D*+ DA + A?) (D?+A?) BC

=(C*+CB + C?B2+ CB3+ BY) (D?+ DA + A% AD
+(D*+ DA + DA + DA3 + AY) (C2+CB + B%) BC...(A).

Observing that C*+C?B?+B* = (C*—~CB +B?) (C*+CB + B?),
the left-hand side may be written

AD (D? +DA +A?) (C*+ C?B%+ B%) + AD.CB (C? + CB + B?) (D% + A%)

+BC (C*+CB + B?) (D*+ D?A?+ D?) + BC.AD (D?+ DA + A3 (C:+ B?)
and this, by adding diagonally, becomes

AD (D% + DA + A?) [Ct + C?B?+ B¢+ BC (C* + B%)]
+BC (C?+ CB+ B?) [D!+D?A?+ A4+ AD (D? + AY)]
= right-hand side of (A).

5501, (By Professor Bary, LL.D., F.R.8.)—If in an equation z be
nged into %+ 2’-1, show that any semi-invariant of the transformed

will be a covariant in 4 of the original equation.

Solution by W. J. C. SHawvp, M.A.
i {e (2) = (ag, 9,...a5) (2, 1)* = 0 be the given equation, the transformed

z"'f(k+ -:7) Sf(R) 2 +f (k)21 + -ll2—f (k) a3 + &, = 0,
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Pi=1, P;=14, Py=§, P, = £ But, counting from the top of the pack,
the probabilities attaching to the several positions are as follows : —
1, Pu_sy Pu_sy Pay... Py, 05

and P.. - ;[1+P,.-,+P..-;+P..-¢+&c.],
butsimilarly  Pa-1 = —o[14Pus+ Pagtbel],
N . L[(n-n)r,_.w,.-,]. But this resolves itgelf into

P, = —[(”—l) P34 Pacs]; .. Pucg—Py_zg = (1=1) (Pu-2—Py.y),

which shows that the probabilities are alternately greater and less, but

that the differences between them rapidly become infinitesimal as » in-

creages. Above Pyo the probabilities are alike to six places of decimals,

viz., -633388, or rather more than 4§, each probability being rosolvable,
to the foregoing statements, into » terms of the series

6740, (By Professor Asapn Hair, M.A.)—Given
2 = asin (¢ +a)+bsin (y + B),
reduce s to the form z = Dsin(z+a+y+B+3).

Solution by AstTosH MUKHOPADHYAY.
We have s = asin (s +a)+bsin (y+8); put a =p+gq, b = p—g, then
= p[sin (z +a)+8in (y + 8)] + ¢ [8in (2 +a)—sin (y + B)]
= 2psing (r+a+y+B)cos i (z+a—y—8)
+2g9co8} (z+a+y+B)sin} (z+a—y—B).
It we determine 6, D, so that
2pcos } (#+a—y—B) = Dcos 40, 2gsin} (z-+a—y—B) = Dsin §6,
wohave Z =Dsing (z+a+y+B8+6). Finally, if wo determine & from
d=}0—}(x+a+y+8), weget Z =Dsin(x+a+y+B+3),
which is the form required.

7643. (By Rev. H. G. Day, M.A.)—A and B sit down to play
for a shilling per game, the odds being %:1 on B; they have m and #
:l;xlhngn respectively, and agree to play till onc is ruined: find A’s chance

success.

Solution by the PROPOSER.
Let u, be A’s chance when he is r games ahead ; then his probability
of scoring the next game is 1—1-’;, and of losing it %Z; but in these cases
+ :

VOL. XLI. b
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his chances become #,,) and u,., respectively; hence

(¢ +k) ty = Up o1+ Kthr_1.
Solving this equation, %, = Ck* + C, ; but 4y =1 and #., = 0; therefore
kr—k=m  frim_] m—1
el e & and A’s chance #y = o

If k is unity, the solution becomes %, = Cr+C,; but 1 = Cn+C,, and

0=—-Cm+C ') therefore Uy = —’ and Uy = L H
1
n+m n+m

that is, the players’ chances are directly as the sums they risk.

Uy =

7677. (By W. E. Jonnsox, B.A.)—If p and » be any integers, and
@), @g ... wy_1 are all the nth roots of unity except unity itself, show that
the remainder, when p is divided by #, is

-1 “wp -
F(p)= ”_2 +aof l_l_ia, +ah lﬂ——o{" R l——:';:_l.

Solution by B. HanuMANTA Ravu, M.A.; E. RUTTER ; and others.
1. If p = mn, the expression becomes
n=l ., o . @ _®n-1
7t i + T +...+ Tmen

If now y= -I-—x—x, where 2" = 1, we have z = ﬁ—;, coyh =14y
Corresponding to z = 1, we have y = o ; the remaining values of y are
givenby 2y*-1+in(n —1) y*-2+...=0; thus thesum of roots = —§(n—1);
and hence, when p = mn, the given expression vanishes.

2. F(p)—F (p-1) =— (s} t @ +...+w]_). This equals 1, unless
» =mn, in which case it equals —(»—1). Hence the proposition is
completely proved.

7292. (By Dr. Curtis.)—Two heavy particles P and Q are connected
by a flexible and inextensible cord, which rests on a pulley of infinite-
simalradius ; P is restricted to the circumference of a smooth circle, whose
centre is vertically under the pulley, or, more generally, of a smooth Car-
tesian oval, one of whose foci coincides with the pulley, and whose axis is
vertical ; it is required to prove that the curve to which Q should be re-
stricted, in order that equilibrium should exist for all possible positions of
P and Q, is a Cartesian oval.
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finity, the orbit is u = (24)" sec (0—w), where A% = £ ......... D).
Exprmingthttheputof:—:'hichuimﬁuthemiaﬁmoﬂhem-
stants vanishes, we have m(o--)‘-‘“.ec (o--)“_: =0.....2

Also "'= (24)- 1:’—;,\('.‘—% whence

d's _ 1+sin}(0—w !( _) sin (0~w) ds

d@ 2ascoe’(0-w) do 242 coe® (0 — ) &0’
md,nneeforthedutuﬂ)edorblt,—«tt ";: %;—,ﬂnsgwuby(i)
o .
2a cos® (0—w) 40’

20 that eooec(o-v)s - uee(o—.)%' -:'{,Zeu‘ (0—w).

— 32 fooet(0—w) =

But %’=w-$({li)'.ec'(o-.);

eosec(o-'):—: = — asec(0—w) "77 =4f¢3(%—)'eoa’(0—').

7498. (By A. MARTIN, B.A.)—If a straight line be drawn from the
focus of an ellipse to make a given angle a with the tangent, show that
the locus of its intersection with the tangent will be a circle which touches
or falls entirely without the ellipse according as cos a is less or greater
than the excentricity of the ellipse.

Solution by Rev. J. L. Krrcuin, M.A. ; J. O'REGAN ; and others.

The equations of the tangent and of a line through the positive focus at
angle a with tangent are

y=mz+(m*a2+ %)}, y = l"'_':f:‘: (z—ae) .........(1, 2),
therefore ",‘;—ﬁl;", putting % for tan a.
_ay—~kfrackz _ ( o (y—kz+a¢lc)* L)
Henee, by (1), 9 ~220t% = { o (St ) s i,

or [kz(z—ae)+y (ky—ae)]? = a? (y—kz +ack)? + (a*—a%%) (ky + z—ae)?,
which becomes 42 (22 + y?) —2ae ky + a’c’ =a2(1+4) ccounrrrnrinnnne (3).
For intersection of this circle with i + F =1, we get

az,:ya_}my# » =0=(¢_c!+ 6):.

b2 k k@ b k
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Solution by the ProposER.

Let O, the centre of the pulley, be taken as origin, the axis of y being
vertical ; then, by the principle of virtual velocities, if y, ' be the co-
ordinates of P and Q. Py+Qy’ = const., or y+Ay’ = A ; also, r and »

ing the radii vectores of P and Q, »+# = const. = B; but, as P is
restricted as defined in the question,

© 3-2Lr+My =N, or (B—r)*-2L(B-»)+M (A-Ay) =N,
which establishes a linear relation betwcen y’ and »/, and therefore
represents a Cartesian oval as defined.

7615. (By W. Nicorws, B.A.)—If %, + u;+ u; = ¢ represent a surface
of revolution, the origin being the centre of revolution, and u,, w,, u; con-
taining respectively all the terms of the first, second, and third degrees
in z, y, z; prove that «, is perpendicular to the axis of revolution and a
factor of u;.

Solution by J. P. JorxsToN, B.A.; EL1ZABETH BLACKWOOD ; and others.

Considering the equation of the cubic surface in cylindrical coordinates
(z, r, 6) as an equation for », and taking the axis of z as the axis of
revolution, it is evident that it can only contain even powers of » since all
sections perpendicular to the axis are circles. Therefore the equation is
of the form z [22 + 2 £, (0)] + az3 +73f; (6)+ bz + ¢ = 0, where £, (0) and f (0)
are quadratic functions of cos 0 and sin§. Hence it appears that if his
be put in the form wz+ wy+u, = ¢, %, is perpendicular to the axis of
revolution and a factor of u;.

[Mr. Nicorrs’ theorem may be slightly generalised thus:—All cubics
of revolution can be written in the form LC +C’ + L = 0, where C and ¢’
are cones and L a plane perpendicular to the axis of revolution.]

7445. (By C. Leupesporr, M.A.)—A particle, describing a circular
orbit about a centre of attractive force u (distance) -3 tending to & point
on the circumference, is disturbed by a small force f tending to the same
point ; prove that the variations of the diameter (2a) and of the inclination
toa fixed straight line in the plane (w) of that diameter which passes
through the centre of force are given by the equations

—cosec (0—w) Z—‘: = asec (o—')%r = 4fad (—?‘.-)i

Solution by D. EpwArpES ; MArGARET T. MEYER ; and others.
If the attraction be uD-%and the velocity of projection that from in-
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Solution by MarGARET T. Mever ; Professor Nasu, M.A.; and others.

The points of contact are a cos a, b sin a, @ cos B, bsin B, a cos v, b siny,
where (a, 8, 7) are the eccentric angles; and the equations of the tangents
are 2 cosa+-Lsina =1, &ec.

a [
acosa, bgina, 1
acosB, bsing, 1
acosy, bsiney, 1
= §ab[sin (a—B) + sin (B—7) +8in (y—a) .

Area of triangle contained by the three tangents is

Area of triangle in the ellipse = §

loosa, —l—aina, 1
a b 1 1 .
1 -; cos a, -b—sma - | &e. &ec.
e 1 cos, Tsina,l + 1 * 1 &e. I * | &e. |
é . -;-cosB, —b—sinB
—;—cos'y, —b-sin'y, 1
_h,b[sin(a—ﬂ)+sin(ﬂ—7)+sin(1—%)1*.
- - b

sin (a—B) 8in (B—7) sin (y—a)
sin (a—B)sin (B —v)sin (y—a)
sin (a— B) +sin (8—7) +sin(y—a)

— __sin (a—p) sin (B—9)sin (y=a)
sin (a—B) + 28in} (B—a)cos[{ (a +B)—17]
- 8in (a— B) sin (8—9) sin (y—a)
2sin (a—B){cos § (a—B) —cos[} (a+B)—7]}
- __sin (a—8) sin (8—1) sin (y —a)
48in § (a—B) 8in 4 (8—7) sin§ (y—a)
= 2co8} (a—B) cos§ (B—1y) cos § (y—a) = 2cosi6 cos }¢ cos §y.

therefore the ratio is

7698. (By R. Lacuuan, B.A.)—Show that (1) four circles can be

wn cutting the sides of a triangle in angles a, B, < respectively;
(2) if their radii be p, pi, ps, ps, and they cut any other straight line in
angles ¢, ¢y, ¢y @3, then

11,1, —1—, COB ¢ = COB ¢; + CO8 ¢ + CO8 3.

P P1 P2 P3

Solution by Rev. T, C. Simmoxs, M.A.; B. HANuMANTA Rav, M.A.; and
others. .

Consider first the circle whose centre lies within the triangle; let
d,, dy, dy denote the distances of its centre from the sides, and p its
radius ; then

dy=pcosa, dy=pcCo8p, dy=pcosy; but ad) +bdy+cds =24,
1 acosa+bcosB+ecosy
. o8 .

whence
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Hence the locus is a circle which intersects the ellipse in two coincident
points, i.e., touches the ellipse; but, since "—:1 + % = 0 can only be true,
asregards the ellipse, as long as y = or < —¥&; hence the circle touches or

falls without the ellipseawordingasa—ck< or >4, oras% <or > %

b’
co8 ae
oras 222 < or > 2 oras
sing b

cos ae ( _ ae
(sin’¢+c:s’a)i <or> [b’+ a’!a’—b’)]l 175 = ; i
a3

i.e., according as cos & < Or > e.

7689, (By N’ImporTE.)—Ifthetwo rootsoftheequation 22—a,z +a,=0
are whole and positive numbers, prove that (1) s (1+4, + a5)(1 + 22, + 44,)
is a whole number decomposable into the sum of a, squares; (2)
g4y’ Sl + @, + a,)?is a whole number decomposable into the sum of @, cubes ;
(3) ag* (1 + 24, + 4a,) is decomposable into the algebraic sum of 4a, squares.

Solution by B. HanumanTA Rav, M.A.; R. KNowLes, B.A.; and others.
Let m, n be the roots of the equation 22 ~a;z+a, = 0, then a;, = m+n
and @y = mn.
1. 89 (1 +ay+ ag) (1 + 2a; + 4ag) = ggmn (1 +m)(1 +n)(1 + 2m)(1 + 2n)
=im(m+1)(2m+1).4n(n+1)(2n+1)
=[13+22+ ... +m?][13+ 22+ ... + n?] = sum of mn squares.
2. 14057 (1+ 6, +a3)% = Jgm*i3(1 + m)¥(1 + 2)2=[4m (m + 1) 2. [dn(n + 1)]2
= [13+23+...+m3] [13+ 2%+ ... + #¥] = sum of mn cubes.
3. The expression m"n®[1+2 (m+n)+4mn] =m? (2m+1) .02 (2n+1);
now m?(2m+1) = 2x3[2m (2m+1)(4m+1)]—4 [3m(m +1)(2m+1)]
=2.1242%42.32+... 2(2m—1)%+(2m)? = algebraic sum of 2m squares.

Thus  @ay? (1 + 2a, + 4a5) = (sum of 2m squares) x (sum of 2n squares)
= algebraic sum of 4mn or 4a, squares.

7563. (By Rev. T. C. Simmons, M.A.)—Show that the ratio of the
area of a triangle inscribed in an ellipse to the area of its polar triangle
depends only on 6, ¢, y, the differences between the eccentric angles of the
points of contact, and is equal to 2 cos 40 cos §¢ cos §y.
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8o, if p; be the radius of that circle whose centre lics beyond the side a,
1 __ acosa+bcosB+ccosy
[ 2a

3
with similar expressions for 1 and —l-, hence 1. l—+ 1 + -l-;
Ps Ps 4 A P2 P3

and, since the expressions always give real values for tho four radii, four
circles can always be drawn.

Again, let the equation to the new line referred to the given triangle as
triangle of reference be A+ puy+vz =0,
and let the perpendiculars on it from the four centres be respectively
9, 21y p3 p3; then

p= Ad) + pd, + vy or ? =
some denominator D’ 3
Similarly 21 = ZACOSa+RCOSB+vCOBY g . . P _P1 P2 Ps,
D P PP P

that is, CO8 ¢ = COB ¢, + CO8 g + CO8 P3.

AcCOSa+puco8B+vCOBYy,
’

{ 7 (By J. O’REcaN, )—Two persons play for a stake, cach throw-

odice. They throw in turn, A commencing. A wins if he throws 6,
B if he throws 7: the game ceasing as soon as either event happens.
Show that A’s chance is to B’s us 30 to 31.

Solution by D. BivpLe ; W. J. GREENSTREET, B.A.; and others.

Out of 36 ways of throwing two dice, 6 may be turned up in 6 ways,
viz., 145, 2+4, 3+3, 4+2, 6+1; and 7 may be turned up in 6 ways,
Viz., 146, 2+5,3+4, 4+ 3, 5+2, 6+1. There are therefore 31 chances
agamst tlu-owmg 6, but only 30 against throwing 7. The probability
that B will have a throw after A is accordingly 3} ; but that A will throw
again after B, only 3g.

1192. (By the Eprtor.)—In order to ascertain the heights of two
balloons (Q, M), their angles of elevation as sct forth hereunder arc ob-
served, at the same instant, from three stations (A, B, C) on the hori-
zontal plane, whose distances apart arc AB = 553, BC =791, CA = 399
yards, (Q, A) denoting the elevation 6f Q at A, &e. :

(Q, A)=84°10" 107 | (M, A)= 84° 2’ 50"
Q, B) = 76° 13’ 465" | (M, B) = 75° 67 1”
Q,C) =179 35 65| (M, C)="79 22 12"

It is also observed that only one of the balloons (Q) is vertlcally over
the triangle ABC. Show that the helghts of the balloons Q, M
18748, 3339-4, and that their distance apart is 15660°4.






i 3s o AF _AM sing 2
By lcgurithmic differentiation, ¥=3- :‘%OM,,, :2"_11‘_: Ad, a
formula different from, but equivalent to, that of Biot.
Bior’s Formula is easily obtained from the same source. For,

F = Mcosdtan¢cosy and sin@cos ¢ = cos §sin¢cosy,

therefore €083 ¢ —cos? ¢ cos® 6 = cos? 0 cos? y (1 —cos? ¢),
therefore cos? @ cos?y = cos® ¢ (1 —cos? 0 sin® y),
therefore OOBT?B?Y = (1—cos? 95in? Y)i,

therefore F = M sin ¢ (1—cos®0sin?y)i. Taking the logarithmic differ-
ential, wo have AF — AM oot g ap4j. D208V o hih s

? F M 1—cos®gsin?y
Bior’s Formula.

2. When the needle is counterpoised by means of a brass weight so as
to remain in equilibrium in a given position, we have only to substitute, in
the statical equation, F—u for F, where u is a constant moment, therefore
F=u+Mcosdtangcosy. When the position is accurately horizontal,
¢ = 0, therefore F = u or Msin 6 = u; and therefore, when the needle
deviates from horizontality by a very small angle A¢, we have nearly

F=pu+pucotcosy Ap and li;—“ = cot cosy A¢.

To make this formula available, it e?ippears that the difficulty is to
estimate , and this may be accomplished as follows :—Let the needle be
slightly moved in the vertical plane; then the vertical component called
into action will be F—g, or ucot 8cosy Ag; or, since A¢ is the arc de-
scribed, the pendulum force will be ucot @cosy, and let T be the time
of vibration. Afterwards, let the needle be so adjusted as to vibrate in a
horizontal plane under the action only of the horizontal component M cos 6,
and let T, be the time of vibration. Then we have, by the Theory of

T _mcotfcosy _ . AF _Tp
Pendulums, T ——# pyve cos ¥ ; hence F ™ cot 8 A¢.
The utility of this last formula is thus explained. If we could place
needle 8o as to vibrate exactly in the magnetic meridian, so much the
better ; in this case, T, = T, and we have simply AF /F = cot 6 A¢.
But, since we can never be sure of this, the deviation may be estimated
from the ratio (TV:T)3%.

7711, (By Professor WoLsTENHOLME, M.A., Sc.D.)—Prove that (1) the
locus of the points of contact of tangents drawn from a given point O toa
series of confocal parabolasisa circular cubic, whose equation with Oas origin
is r = 2a 8in 6 cosd / &in (@ +a), where @ = OS, and 2a is the acute angle
which 8O makes with the common axis ; 8 is the common focus, and the
initial line is parallel to the straight line bisecting the acute angle
between SO and the axis; (2) if, instead of a series of paraholas, we have
a system of central conics with given foci S, S, and centre C, the locus of
the point of contact of tangents from a given point O is exactly the same,
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but it is geometrically evident that
(¢ +1)cos e = OCcosa, (#—7) sine = OCsin q,

%’.inmso = 20C (cos a sin 6+ in a cos 6) = 20C sin (6.+a),

W' sin @cos @ _ 2asin @ cosd
theref = — = .
ore "= 0GC sin (6+a) sin(6+a)

3. The shape is invariable, though the magnitude of the curve varies
with a, so long as a is constant, and we must find the locus of the vertex
of a triangle the base of which is given and the bisector of whose vertical
angle makes a constant angle a with the line drawn from the vertex to
the mid-point of the base : by figure,

£__co __Cco _Co CO

¢ C8.C8 CD.CE CD CE

. 6in(8+a) cos (6+a) _ 8in2 (6 +a)
cosa sina sin 2a
or r2sin 2a = ¢?8in 2 (0 + a), or, taking for line
of reference X a line through C inclined to 88’ &
at }w, we have § = }x +¢, and the equation of

thelocus becomes 7% = —% — cos 2 (¢ +a), the
sin 2a

&
(Fig. 8.)
lemniscata required, the polar coordinates of a focus of whick being f and

4 L

2= _C % __ theref i
a, we have f1 SenZe = Isnacoss herefore the locus of the foci,
when a varies, referred to X and a line through C perpendicular to it is,
zy = 3% an equilateral hyperbola whose foci are S and §'.

Again, it may be remarked that, as a tangent from any point to a conic is,
at the point of contact, normal to a confocal conic, the same circular cubic
will be the locus of the extremities of all normals drawn from a given point
0 to a system of confocals.

The equation of this cubic may also be obtained by combining the
equation of the pair of tangents to a conic from a point, referred to
elliptic coordinates, with the equation of the polar of the point similarly
referred.

7350. (By Dr. Curtis.)—If there be circumscribed to a given conic a
polygon of m sides, such that the arcs between the consecutive points of
contact subtend equal angles at a focus, and 2a denote the angle which
the axis of the conic makes with the radius vector drawn to any one of the
points of contact, prove that (1) the product of the squares of the perpen-
diculars from the focus on the sides of the polygon varies inversely as
C—cos 2ma, where C is a constant which becomes unity when the conic is
a parabols ; and (2) any symmetrical function of the positive powers of the
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7804. (By Professor CayLey, F.R.8.)—1. If (4, b, ¢, f, g, hz are the
sixcoordinates of a generating line of the quadric surface 22 + y* + 2* + w3 =0,
then a=f, b=y, ¢c=h,or else g = —f, b= —g,c= — h, according as the line
belongs to the one or the other system of generating lines.

2. If a plane meet the quadriquadric curve, Az®+ By?+C:z2+Diw? = 0,
A7+ B'y?+ C's24+ D'w? = 0 in four points, and if (a, b, ¢, f, g, &) are the
coordinates of the line through two of them, (4, &, ¢, f, ¢’, #) of the
line through the other two of them, then :

of +af=m 0, by +¥g =0, ok +c'h = 0.

Solution by W. J. C. Suarre, M.A.

Let c-;aw =Y -bﬂw - z_:w be the equation to the line whose coor-
dinates are a, b, ¢, f, g, A, 80 that f= cB—By, g = ay—ca, h = ba—aB,
and af + g +¢h = 0,and let a : B : y : 1 be a point, the surface

al+B3+93+1 =m0,
and, if the line be a generator, z=aw’ +ap, y=Bw’ +bp, z = yw' +¢p, and
w = w’ will satisfy the equation to the quadric for all values of ' and p,
and therefore, since a2+ B2+ 9*+ 1 =0, aa+ 68 + cy=0; and a3+ 53+ 3=0,
af+bg +ch = 0; also
(@482 + 6N (a?+ B2+ oY) —(f14 g*+ 1) = (aa+ 8B+ 7)* = 0,

therefore f2+g°+ A% = 0, therefore (axf)?+ (b+g)3+(ch)? =0

(all the double signs to be read alike), or a=f, 6=g, ¢=h, or a=—~f,

=—g, 6= —

Also two lines of the same system cannot meet, for if )
cy—bz+aw =0, az—cr+bw = 0 meet dy—¥z+aw =0,

and @z—cz+b'w =0,
-¢ 0, a b| =0, or (ad—a'c)®+(bcd—0b¢c)2m 0,
0, ¢, =b, a a b _ ¢
-, 0, &,V TTTYT
0,d, =¥, a

and the lines are identical. If ,
ZT—aw Yy—Bw _ z—~yw z—dw y—B'w =7
. - = and 7 ¥ 7
be thelines g, &, ¢, £, g, hand o, ¥, ¢, f, g', ¥, then, if these arecoplanar,
1, a B, y| =0, or af +alf+bg' +¥g+ch’+c'h = 0.
0, a & ¢
Ld,8,7
o,d, ¥, ¢
Now, if these lines bo those in part (2) of the question, and a, B, 3, L
a, B’y 7', 1 be two of the points on the quadriquadric curve,
Aa®* +BB2+Cy? +D =0, A’a? +B'62 +C'2+D' =0
Aa?+BE3+Cy2+ D=0, A'W?+Bp?+Cy2+D' =0,
and 2 (Ada +BbB +Cey) pro+ (Aa? + B8 +C?) p* = 0,
2 (A'aa +B'LB + Cley) pw + (A'a® + B'8: + C'c?) p* = 0,
YOL. XLII. L
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and it appears by differentiating Newton’s formuls that the system (D) is
equivalent to the system SB), and U is a function of the power-sums of
Y1 ¥3... ¥i, from the second to the ¢t inclusive.

4390. (By the Epitor.)—Two gamesters, A and B, play together,
A having the power to fix the stakes. Whenever A loses a game, he
increases the last stake by a shilling for the next game, and diminishes it
by a shilling after every gain. When they leave off playing, A has
gained £13; and, had each won the same number of es, A would
still, by following the above principle in regulating his stakes, have
gained 10s. If the first stake be 30s., show that A won 15 and lost §
games.

Solutions by (1) D. BippLE ; (2) the PrOPOSER.

1. A formula for solving questions of this sort is the following : —
(=9 [a—1b (2-y—1)] +by = ¢,

where # = games won by A, y = games won by B, & = original stake,
b = difference between successive stakes, ¢ = total amount won by A.
In the present instance, a = 30, 4 = 1, and, when z and y are equal, ¢=10,
Such being the case, the first term of the equation == 0, and by = ¢; hence
y =10, and z +y =20.

Now, substituting 20— for y, and 260 for ¢, the equation becomes

(22—20) [30—} (22—21)] + 20—z = 260,

whence 22— 50z = — 526, and z = 15 ; thus A has won 15 games, and
B 5. The construction of the equation may readily be elucidated by
taking the stakes won by A in one order, and those lost in the reverse
order, turning about at each change of sign. We can arrange those won
and lost, in any way : the result will be the same.

2)-31 3) + 32 (12) +25
1)—30 | (4)+31 gm) +24
— 1 14) +23
(5) +30 ’
(6) +29 (16)+22 | (18)—21 || (19)+22
(1) +28 (16)+21 | (17)-20 | | (20) +21
(9) + 26
(10)+25 | (11)—24
—-61 +228 ~24 +1156 -41 +43

= 386126 = 260.
For here 30+ 29 +28+...+21 = 30+ (30—1) +(30—2) +... +(30—9)
= 10[30—~4 (10—1)] = (z—y) [a—}* (z—y—1)];
and (32—31) + (31 —30) + (25—24) + (22—21) + (21 ~20) = 5 x 1 = by.
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any one of which is easily deduced from the other {wo, e.g., from (1) and (2)
[(aA®+ 8) (3u® + ¢) —acA®] »* = 0. Therefore aA?u?+but+c = 0, °
and the system of equations (1), (2), (3) admits of an infinite number of
solutions.
The converse follows at once by reciprocation.

7771, (By thelate Professor CLirrorp, F.R.S.)—Find the locus of a
goint P which moves so that the length of the resultant of the translations
A, PB, PC is constant—the points A, B, C being fixed.

Solution by B. HANUMANTA Rav, ML A, ; N. Sarxar, B.A. ; and others.

Bisect BA at D and take [+
@, so that CG = 2GD, -
then the resultant of PA,
PB, PC = result. of 2PD
and PC = 3PG =constant ; B
and, since- G is fixed,
being the centroid of
ABC, the locus of P is a P
sphere whose centre is the
centroid of A, B, C, and
radius one-third of the A
given resultant.

[If p, a, B, ¥ be the vectors drawn to P, A, B, C from any origin,
a—p+ B—p+vy—p will be the vector representing the resultant, and by

the question T (3p—a—B~—v) =3¢ or T[p—3(a+B+7)] =¢,
whence the stated result follows.

7769, (By Professor SyLvester, F.R.8.)—Prove algebraically that, if

BC..., A’B’C... are two superposed projective point-series which do not
possess self-conjugate points, then the segment between any two corres-
ponding points, as AA’, BB'..., will subtend the same angle at a point
properly chosen outside the line in which the point-series lie.

Solution by the PROPOSER.

Let the given line and any line perpendicular to it be assumed as axes.
Call a, 3, ¢, @, ¥/, ¢, A, A’ the distances from the origin of A, B, C, A/,
B, ¢, and of the wmbra in each series (respectively) of the infinite point
in tae other.

Then (A—a)(N'—a’) = (A=8)(A'=¥) = (A—¢c)(A'—=¢), say = — w, and,
if there are self-conjugate points, (A—e)(A'—¢) =— % must give real
values for e. Hence,ifthere are not self-conjugate points, > [§ (A—A")]%,
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hence e~2[1—(1—en1]Z =3 J"co.‘.p sin ¢ (a?cos”¢ + 52 sin? )} dp
(]

- 3]11‘[6’4- (0°=8%) o dz = — Ba-8e-3 r(l-ﬁ ‘-"‘-"’%(-—’)-M—: ? d
0

1s
(where z= ""z.)
2aes
—— fa-tes [(z«-b")(zuz:)iz‘-w:-wbq + 48 log :]"""”
X .
Xllxich gives the result stated on the Question.
80

a1 [1-(1~Y}]y = 35 5" sin® ¢ co8 ¢ (a? cos? ¢ + 42 sin? ¢)! dp
(1)

-1
- Subjlz' (1—eth)idz = 3ab¢'5j'h * sin® 0 cos? 0.0
(1] 1]

= 3abs-5 [g(o-}ainw)-i sin’0cos0+}sin"000!0—§.[sin‘Odo].h-l‘
0

£-3)(23+1)
48

i
= 3abe-5 [ﬁ,ﬁn-x..,.‘(l"" G ], whence the result.

5200. (By S. Tesay, B.A.)—A small marble is thrown at random
on a square table having an elevated rim. If it be struck at random
in any direction, determine the probability that it impinges (1) on two
opposite sides ; (2) on two adjacent sides, and one opposite ; (3) on three
consecutive sides ; (4) on the four sides in succession.

Solution by D. BippLe.

The probability in each of the four cases is the ratio borne by the
average sum of eight variable angles to 360°. The eight angles (two for
each side of the square, since the marble can be sent from any given posi-
tion against any one side in either of two directions, that is, on either
side of the perpendicular) represent the limits withinr which the particular
event specified can occur, .according to the law of the equality of the
angles of incidence and reflection. Let us see what the eight angles are,
in each case, when the marble is originally placed in the centre of the square.

Here the eight angles for each case are equal A I £
and symmetrically placed. Each of them for
case (1) = EOF'; for case (2) = zero, since this
case requires that the marble shall strike the
first side at a less angle than 45°, which is at )
present impossible; for case (3) = FOG; and
for case (4= DOG. Now (taking AD=1) 4,
EF : DF= OE: AD =4} :1.".EF = {ED,and
DF =} = tan /EOF = tan 18°26". Similarly,

BI = 2EG = §$= tan EOG = tan (FOG + EOF)
=tan 3059/, ... , FOG = 12°32". AndZDOG 0 GF € [
= 45°— (FOG + EOF) = 14°2’. Consequently, (Fr6. 1.)
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tangents, we are virtually in possession of the angles belonging to them,
and can readily arrive at the component parts by successive subtractions.
The same must be true of the mean tangents, and from these we can deduce
the mean angles ; and, if we take the mean sum of the eight angles apper-
taining to each of the four cases, we have the several numerators of the
probabilities required. Now 4 and 4 in the equations last given can be
transposed, and, not only 80, (1 —a) can take the place of @ and (1—5) of

b, or 1—a of 4 and (1-—8) of a.

In the following table are given the eight

tangents for the four cases :—
I. II.
Perpendicular ... a a
Portion of Side... b 1-%
b 1 1-% 1
M < (-1 (-
b 1-3
) 3 -
b. 2b—a 1-% 2—2b—a
@) 7(1 2 +ab T(l—(l—b)(2+a))
[ b—a 1-% 1-b—a
“ —a'(l b+ab T(l_(l—b)(l+a))
III. IV.
Perpendicular ... b ]
Portion of Side... a l—a
a 1 ’ l—a 1
g 7 (-m) (1)
a l—a
@ T T
a 20 -5 l—a 2—2a-%
@) b (1_2a+ab 5 (l (1—a)(2+6))
@ a—b l1—a l—a-b
® i G ) (1 (l—a)(l+b))
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fulfil the requirements of case g), it must have been placed to the
right of the line DE (joining and the mid-point of AB). Thus,
in only 4 of the possible positions is case (4) practicable, and in
only } is case (2). Now the average- positions for the fulfilment of the
several requirements are the mathematical centres of the spaces in which
they are possible. For case (1) and case (3), the centre of the table is the
average position, and the mean value of 4 and & is } each. For case (2),
the centre of the triangle is the average position, and within the said
limits the mean value of a is 3, of 4 §. For case (4), the centre of the
trapezoid is the average position, and the mean value of 4 is 4, of 5, {}.
Under these circumstances, and since the second terms within brackets
in the equations for (4) and (3) are governed by (2) agd (4) respec-

tively, the average value of b:ﬁ%), in the equation for case (4), in those
instances in which the term counts at all, will be A= _ $; andof

1(1+3)
22: -::b’ in the equation for case (3), will be -ﬁfﬁ = $S&. Butwemust
multiply these by the factors denoting their proportionate occurrence, to
find their mean values, namely, for case (4), § x § =+ ; and, for case (3),
x § =182,

en the mean tangents of the compound angles will be as follows :—
1-000000, -912500, -609504, and of the angle for case (1), *333333. The
angles corresponding to these tangents are 45°, 42° 22’ 493", 31°21’ 456",
and 18°26’ 0?” . Consequently, the mean angles for each separate case are,
(1) 18° 26708, (2) 2°37 10§37, (3) 12°56’ 443", (4) 11°1' 4§”. And these
reyesent the following probabilities :—(1) ‘4096, (2) -0682, (3) ‘2873,
(4) -2449.

7607. (By T. Murr, M.A., F.R.8.E.)—Prove that [see Quest. 7674]
B (a-—z (5¢)* cos ”-—-:—_—1) (a-2 (bc)‘cos-21-)

e, a,b ... B+l
.66 .. t nx
-..(a-—2(bc) cos”_._l):
e e By b
« + « w06 G|, orwhatisequally general,
bad .. %), = [ a—2 (=)} cos —F— —2(—-p) _”.‘!.)
K (a6 ... a)n (a 2 (=) cos”+l)...(a 2 (=2}t oos 22

Solution by B. HanumaNTA Rav, M.A. ; SarAE MARKS; and others.
Let @ = (b¢)}z, and let D, represent the given determinant; then
D, = aDp-1—b6Dy_3 or Dy—(2c)}2Dy_1+8¢D,_3 = 0,
therefore D,, is the coefficient of y» in the expansion of
[1—(8¢)} 2y +bey?] -1 or (be)}" x coefficient of &» in (1—az + £%)-1,
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where a, p, p’ are given, and B is variable; hence their common chord and
its envelope are

¢z co8 B +#ysin f—[¢p +¢ (s cosa+y sina—p)] = 0,
2 (22+y?) = [P +¢(vcosa+ysina—p) 2,

= i ! i —_— —_— i 4
or r ‘,(zcosa+ysma (p ap )},
a conic confocal with the other two, whose eccentricity is ¢ / ¢’ and whose
directrix is parallel to that of the fixed conic, at a distance from it = ¢/p’fs,
and nearer to the focus.

To construct this conic, let us
suppose 8 = a, then G, G’, the
points of intersection of the
conics, will lie on a line parallel
to the common direction of DD/,
dd’, the directrices of the fixed H
and of the movable conic, re-
spectively, cutting FH’H, the
¥erpendicnlar from the common O

ocus F on the directrices, in

L, so that HL: H'L::¢ :e.

Again, suppose 8 = x +a, then the directrix of the movable conic will be
llel to DD’ and at a distance FH, from F, where 'H, = FH’ ; find

y 8o that HL, : H|L, :: ¢ : ¢, then it is plain that L and L, will be the
extremities of the axis major of the required conic, and, as one of its foci
F is known, it is thus fully determined.

2. Dr. Currs’s solution, admirable in other respects, leaves out of sight
the other chord of intersection, with respect to which, as is seen below,
the theorem also holds. In fact, as r is really a surd quantity in # and y,
;q;aéﬁms (1) and (2) ought perhaps in strictness to be squared before sub-

g.

Let A be the fixed, B the movable conic, and
let them be reciprocated with respect to the com-
mon focus F into two circles @ and 4 ; then a is
fixed and the centre of 4 revolves in a circle
centre F'; and, since the centre of & is the pole
of the directrix of B, if we take this as the
reciprocating circle, the directrix of B will
always touch it.

Now, since p, the intersection of the common
tangents of a and 4, always divides the line joining the centres of 4 and
in the same ratio, the locus of p is a circle which in conjunction with C
has the centre of @ for one centre of similitude. That is to say, the com-
mon tangents of ¢ and 4 intersect in a circle whose common tangents with
the circle C intersect in the centre of a.

Hence in the original figure the chord of intersection of A and B touches
a conic with the same focus, and whose intersection with the circular locus
of the foot of the directrix of B lies or the directrix of A. We have, then,
two points on the enveloping conic dependin%mon]y on the positions of the
directrices of A and B; andsince, as shown above, its vertex depends only
on the ratio of the eccentricities of A and B, and its focus is known, it 18
completely determined, and the required result follows. It will also be

a,
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therefore DG.OP _ py, 4nd BL = P&-OP _pg.

IK+FP IK +FP
. - (p— ( —bltana.z
i.e., ccos 0 = (r—a)+ stanaty '
- (a—b)tana.y )32 _ (e=b)tana.2) %7,
and ¢ {y+ ztana+y } +{(z a)+ rtana +y }]

7148, (By Professor Genese, M.A.)—AB, AC are two tangents to a
circle, and DE bisects them ; show (1) that DE cannot meet the circle;
and hence prove (2) that for acute angles §—sin 6 < tan 6—6.

Solution by B. Rey~oLps, M.A. ; Professor Nasu, M.A. ; and others.

ON = OM + {MA = rcos0 +}BAsin @
= r(cos 6 + } tan 0 sin 6)
2 cos? 9 +sin? @
- 2cos 8
r<l+cos’o (1—cos6)?+2cos 6
= = 7 = )
2 cos6 2cos @
mr{1s0ocm0t)
2cos 0

and is thus greater than r, 8 being always acute. Hence DNE cannot
cut the circle.

Again, BD + DE + EC > arc BRC, or BA + BM > arc BRC,
or rtan 0+ 8in 0 > 2r9, whence 6—sin § <tan 6 —90.

[DE is the radical axis of the circle and a point-circle at A, and cannot
therefore meet the circle. ]

T752. y AsPARAGUS.)—From a point on one of the common chords
perpendicular to the transverse axis of two confocal conics are drawn tan-
gents OP, 0Q, OF’, OQ’ to the two conics : prove that the straight lines
PP, PQ/, P'Q, P’Q’ each pass through one o? the common foci.

Solution by Dr. Curtis; Professor Nasm, M.A. ; and others.

It is plain that, if through the intersection of a centre of similitude of
two non-intersecting circles a straight line be drawn intersecting them,
the tangents at each pair of corresponding points are parallel ; and, if we
reciprocate this theorem with regard to any circle whose centre is at one
of the limiting points of the two circles, we obtain the proposed theorem.

[A dsrect proof of this theorem is not difficult, and may readily t:e found.]
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%7836, (By Professor SyLvesTer, F.R.8.)—If p, ¢ be two matrices (to
fix the ideas, suppose of the third order), which have one latent root in
common, and let A’, A”; u’, u” be the other latent roots of p, ¢; prove
that the product (»—A’) (p—A") X (¢— ') (¢—n”) (where X is an arbi-
trary matrix) is of invariable form, the only effect of the intermediate
arbitrary matrix being to alter the value of each term of the product in a
constant ratio ; .c., in the nomenclature of the New Algebra,

(p—2) (=) X (g—K) (¢—#")
i8 constant to a scalar multiple prés.

For the benefit of the learner, I recall that

ifp=a b c the roots of the algebraical | o p_p ¢

:1’ , zﬁ ; :’l' equation & W A
are called the latent roots of p, the equation itself being called the latent
equation, and the function equated to 2-ea the latent function.

a=A b ¢
=0

Solution by the ProPosER.

To show that, if p, ¢ (two ternary matrices) have the latent roots A = u
in common, and A’, A" ; «/, u” are the other two latent roots of p, ¢ re-
spectively, (p—A’) (p—A") X (¢g— ') (g—u”) is constant to a scalar factor
prés.  Let u be the matrix above written, then (p—A) % = 0, u (¢—x) = 0,
hence pu—ug = 0. If, then, we write out the constituents of p, ¢, and
of u, we shall obtain from the above equation 9 homogeneous linear equa-
tions for determining the last-named 9, and the resultant of these equa-
tions will be identical with the resultant of the latent functions of » and
¢; the ratios of the 9 constituents of » will be determined from sclecting
any 8 out of the 9 equations which are perfectly independent of X ; hence
% i8 known to a scalar factor prés in terms of the elements of p and gq.

Of course, the same reasoning applies to matrices of any order w; the
corresponding u, it should be noticed, will always have w—1 degrees of
nullity, ¢.e., all the minor determinants to » of the second order will be
equal to zero. We may write # = ¢(p—A’) (p—A") (¢q—u') (g —n"), and
obtain an identical equation to %, of which the coefficients will be rational
integer functions of the coefficients to the identical equations to p and ¢
respectively.

7838, (By the late Professor Crirrorn, F.R.S.)—Prove that a string
will rest in the form of a circle if it be repelled from a point in the cir-
cumference with a force inversely as the cube of the distance.

Solution by Astrosr Muxmoripayiy.

Suppose that the string has assumed the form of a circle of radius a,
under the action of a repulsive central force at any point O on the cir-
cumference ; and, since the osculating plane at every point contains the
centre of force, and since two consecutive osculating planes have a tan-
gent line to the string common, it easily follows that the string lies wholly
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I. Solution by HaxuMaNTA Rav, M.A.; G. G. STORR, B.A.; and others.

Let A'B'C’ be the triangle formed by the tangents. Then P is the
point of intersection of AA’, BB, CC’. Taking ABC as the triangle of

¢
reference, the equations to B'C’, C’A’, A’'B’; AA’, BB’, CC’ are
BLY o Xil=0 LI
T 0, °+a ,a.nda+1> 0.
Y_8_9 2_%_o 2_8 _
¢c b O v e =% T3 =0
hence the coordinates of P are given by
&_B_y_ 28
a b ¢ a+i¥+c?
and P is thus seen to be the point de Grebe of the triangle.
If DEF be drawn through P parallel to A’C’, then
- A, 2 24.C - _ abe -
PD = o PDB =~ émC ~ ém C (@+03+c?) a3+ b+t PE.
Similarly, the other internal points of intersection are at the same dis-
tance from P ; also /EDF = {EPF = } (x—B’) = CBA,
. LDE'F =}D'PF' =} (x—B’) = CBA,
and so on ; hence the triangles EDF, D’E’F’ are similar to ABC, and, since
they are inscribed in the same circle, they are equal.

This is obvious from the fact that any two diameters of a circle deter-
mine an inscribed rectangle. [See Question 7747 and its soluticn.]
The equation to DE'F, which passes through P (4, 6, ¢) and is parallel

toc’A'(%"'%-O),ia &% B =0
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Putting 8 = 0, the equation to BF becomes
(= -2) s (=2 -2) 4 =0,
e a ¢ ¢
acos A ycosC
a ¢ a? +T-o°
Similarly the lines CG and AH are represented by
acosA BeosB 4 4pq BosB y0sC_,
at » ’ ” a :
The points F, G, H therefore lie on the straight line
acos A amsB+1oosC=o.

e & [ -

IL. Solwtion by J. BriLr, B.A.; NiLxaxtA Sargar, M.A. ; and others.

V
D
1. Draw OL, OM, ON perpendicular to the sides ; then

LABD = 180°—ABF = 180°~C, similarly 2 ACD .. 180°~B;
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AD _sinABD _ sinC_. . AD _4inACD _ sinB_
BD &nBAD smBAD' ~ CD  #inCAD _ siu CAD'

ow BD = CD, therefore o = an B’

But OM = OA sin CAD, and ON = OA sin BAD,
OM _ sin CAD _snB _ %

OL a

ﬂl f —_— = — —_— = — imi -

erofore O ~ snBAD — smnC — o Smilarly oy =3
theretoreOL _ OM _ ON _ a.0L+5.0M+c.ON _ _ 24

a ] ¢ ad+ 624 o3 a4 0403
. 20A abe sin A

Hence we have 0L=a’+bf+c’ =a’+b*+c=' ‘

Now £0QL = £CBD = A, -theroforo OQsin A = OL = ¢80 A

a3+ 0348

s 0Q= —2 _ _ 0Q =OP=0PF = OR = OR’ (from symmetry).

at+ b+ e®

2. We have Igroved that P, Q, R, P, Q, R’ all lie on a circle having its
centre at O. ow PP’ is a diameter of this circle, therefore / PRP is a
right angle. Similarly it may be proved that the angles QPQ’ and RQR’
are right angles, therefore the sides of the triangle PQR are respectively
perpgn@ni:ru]ar to those of the triangle ABC, therefore the two triangles
are similar.

In like manner it can be proved that the triangle P‘Q'R’ is also similar
to the triangle ABC.

Moreover OP = OPF’ and 0Q = 0Q/, also £P0OQ = £P'0OQ/, therefore
PQ = P'Q’; similarly it may be proved that QR = Q’R’, and RP = R'P’.
Thus we have two equal triangles PQR and P’Q’R’, each of them
similar to the triangle ABC.

3. Since POP’ and QOQ’ bisect each other, they are the diagonals of a
parallelogram, therefore PQP'Q’ is a parallelogram. But the angles
PQP’, QP'Q/, P'Q’P, Q'PQ are right angles, being angles in semicircles,
therefore PQP'Q’ is a rectangle. Similarly, QRQ'R’ and RPR'P’ are
rectangles, thercfore the points P, Q, R, P/, Q/, R’ are the vertices of
three rectangles inscribed in ABC, and having a common circumcircle.

4. We have LBPX = LAPP' = /PAF =C;
therefore £BPP'+ £BCP' = £BPP'+ £ BPX = 2 right angles;
therefore circle passes round BPP'C; therefore BX.CX = PX.P’X,
Therefore X is a point on the radical axis of the two circles. Similarly it
may be shown that Y and Z lie on the radical axis; t.c., X, Y, Z are
collinear.

(The circle PQRP'Q’'R’ makes intercepts on the sides proportional to
the cosines of the angles, whence Professor Casey (in the 3rd edition of
his Sequel to Euclid) proposes to call this circle the ¢¢ Cosine-Circle.”]

7849. (By the Rev. T. C. Smumons, M.A.)—If from a random point
within an equilateral triangle perpendiculars are drawn on the sides, show
that the respective chances that they can form (1) any triangle, (2) an
acute-angled triangle, are g, = %, p; = 31logs 2—2 = '07944 = 5 nearly.
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mid-points of its sides, and P a point placed so that PQ3+PS* = PR3,
Itis easily seen that PS : PW = PR : PT = PQ (= CO) : CT (= NT).
But PW+PT+NT = WN = BC =1. Consequently the problem re-
solves itself into dividing a given line into three portions, so as to form a
right-angled triangle, or rather a series of right-angled triangles with one
side increasing arithmetically from 0 to § (represented by NI, between 0,
at G, and 4, at RK). Now WP? = PT?’-NT* and PT = 1-WP-NT,
therefore WP = ;_?;,i: I#, then, we produce CB to H, and on BH
describe BGH = ABC; and if we join GC, cutting AB in its mid-point
F, and draw KI through F parallel to CH, we are able to find P for any
given height (less than half that of the triangle) above BC. Thus, by
drawing NM at the given height parallel to CH, and drawing FP parallel
to GW, we cut NM in the point required. For, NV=2NT, MV =2-2NT,
WV = 1-2NT, and IF = 1. Therefore
XF(= WP): WV (=1-2NT) = IF (= 1) : MV (= 2—2NT).

The curve DPF is indicated by a series of similar intersections. To find
the area of the space cut off by it, we must find the mean length of the
lines represented by WP, when N'T varies from 0 to §. Let NT =1,

then ;:§:= 3 (1=r=13=y5_pi_...—¢®), which, by giving the mean
values of the several powers of », when r varies from 0 to 4, becomes

1 1 L 1
1}(1 2.2°1.3 8.4 16.5 &c')’ -

or, to six places of decimals, } (1 —-386294) = 306853, which is also the

proportionate area of the space as compared with the whole triangle. The

proportionate area of the three spaces = *920558, leaving 079442 for the

space within which P must lie in order that acute-angled triangles may

be formed according to clause (2). Hence p; = ‘07944, or about .

{Mr. Bopre’s solution, effected as it is without the use of either
Analytical Geometry or the Integral Calculus, is of much interest. The
following solution, by their aid, while regarding the question from the same
ppintl of view, has been sent by Mr. Siumoxs, as being perhaps somewhat
simpler :—

After proving as above, that », =1, take any point B
P on the curve a2+ 8! =% and let PM drawn
parallel to BC =y, CM = 2. Then a = sin 60°,
y=Fsin 60°. Whence, since

a?+ B = (a sin 60°—a—pB)? . o
wohave 2%+y?= (a—z—y)ory= %,
80 that the area of CDPE is ¢ M FE A
{a
2 sin60° | 2225 = 2% (o_alog2) = A (1-1og 2);
°

and the whole space within ABC for which an acute-angled triangle is
impossible is 3a (1—1log 2) ; hence the chance of un acute-angled triangle
is [aA—3A(1—log2)] /A or 3log2—2.

Mr. Siumons states that he was not aware, hefure seeing Mr. McCoLr’s
solution, that the question had been previously proposed by him as
Question 3342.]
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triangle, and every asymmetric edge is taken to be in two; and
2.680+64+7 = 1231 is our number of these edges, which is to be
diminished by one asymmetric edge for every monozone triangle. This
gives 1231 —64 = 1167 = 3.389, proving that there are 389 asymmetric
triangles. The sum of these and tho 68 symmetric vnes gives us 457 48
the complete number of different triangles upon the 50 9-acral 14-edra.
All this, and much more, is deduced and registered by the method of the
Theory, before any attempt at construction by lines.

On any one p of the triangles upon any given one P of the 50
solids, the remaining 13 faces of P can be projected. The 13
triangles may by their shapes and unequal areas be varied in ways
innumerable, while all the different figures will alike be the projection of
the same P on this one face of it, p, taken for bagse. And can there be a
reason why the 13 partitions should not all be of equal area, whether p be
equilateral or not; so that 457 is the correct answer to both (1) and (2) in
the question ?

2. I cannot find nor recall my solution of (2), but I believe the answer to
be 457 —N, where N is the number of different triangles on those 9-acral
14-edra which have fewer than two triaces. Sce a simpler question on
this matter, which, I hope, will soon appear, and deserve discussion.

[That the preceding will be quite intelligible to our readers, Mr.
KirgMaN cannot flatter himself, limited as he is here in space. A clearer
view of the subject may be obtained from a Memoir in the Proceedings
of the Literary and Philosophical Socicty of Liverpool, Vol. XXXI!I.,
1877178, of which Memoir the title is ¢ Z'h¢ Enumeration and Construction
of the 9-acral 9-edra.” ] |

5218. (By the Ep1Tor.)—A circular target revolves uniformly around
a vertical axis, lying in its plane and passing through its centre; and a
shot is fired at the target in (1) a given or (2{ a random direction : find,
in the first case, the chance that the shot will hit the target, and show
therefrom that, in the second case, the chance is 2 /.

Solution by D. BInDLE.

1. Let P be the point which the bullet would hit if
the target were stationary and fully fronting the
marksman, and g, 4 its coordinates. Then it is evi-
dent that, as the target revolves, the bullet, if it

strikes the face at all, must hit it in the line PQ,
and therefore during that portion of the revolution r
which, if  be the radius of the target, is represented

-1 a .
by 2cos (——r?—b‘l‘) ;
back or front be allowed, then the angle is doubled, and this,
divided by 2w, gives 2 cos-1 ( =

w

and, if hitting the target

(r2— 82 )i
2. If an infinite number of horizontal lines be drawn on the target, a ran-
dom shot may hit any one of those lines, and any point on that particular
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line, supposing the target to be stationary as before. C:
revolution tukes place, the probability that the bullet

proportion borne by the mean apparent area of the t
area, and this is the ratio besween mean cosine and rad

6960, (By Dr.MacAvrisTer.)—Show from first princ.
motion of a particle the tangential force be measurec
second at which momentum is sncreased, the normal force
units be measured by therate per second at which mom:

Solution by Asdrosn Muxmoripayiy.

Consider the motion of a particle of given mass unc
given forces ; then, the motion is completely defined as
two essentially distinct circumstances about it—viz., t
path described, and the curvature of the path at any poir
as soon a8 we know the equation connecting the intrin:
(s) and the angle of deflection (¢p) measured from ax
defined origins.

Regarding a curve as the limit of a polygon, it f
definition of a tangcnt as the line forming two cor
that the length of the arc depends on the tangential force
that is, its curvature, depends on the normal force; ant
force is independent of the tangential force and vice ver:
once that, if we define the tangential force as the time +
magnitude (‘‘increase’’) of the momentum, the other forc
independent of this one, viz., the normal force, must be
effect, that is, the normal force is the time variation of th
flection *’) of the momentum. This is identically the sa
that the length and the form (curvature) are the two dis
gendent elements which are necessary and sufficient to ¢

t follows that this i the statement of the analytical theo

equation M s _d (Mv), is identically true, we have

e a
v (%) 9 _ Mo Pe
M M(dt) 2 = M) g

where the equation to the curve s = f(¢) does not involv:
elements, but only the intrinsic elements s, ¢.

[The Proroser remarks that he does not understand wk:
the ¢ time variation of the position of the momentum.” If
the momentum at any moment increases the position of t.
demurs to the proposition ; if it does not mean that, then a litt

is wanted. Again, if the reasoning is so clear and direct as _ L
the above, ought it not to be possible to derive Mo from fire -

little more inevitably ?] P .
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7803. (By the Enrror.)—Trace the curve y?(z—a) = 23—23.

Solution by the R wv. T. C. Stumons, M.A. ; N. Sarkar, M.A. ; andothers.
The asymptotes are 4y = z+}e¢ and z = a. Developing further, we
soe that, when « is positive, the curve lies above the first asymptote, and

below when z ie negative, also that it meets it when 2 = -a . Now

342
dy 223 —3ax2 + b3
L/ W"_a)’ = o at (b, 0) and at (a, 0),

) 2y
also :I:(4a3 at {O,i(a)}.
At (b, 0) the curve is of the form 72 = ;—3"—1 &. Moreover, it is symmetrical

with respect to Or, and when 4 and 4 are unequal there is no real value
of r intermediate to a and A,

The two figures are for (i.) & > a, (ii.) & positive and <a. When b=a,
the curve becomes the line z = ¢ and a rectangular hyperbola. When
b = 0, there is a cusp at the origin.

Fig. (i) Fig. (ii.)

N4
/ N

7
/TN
3

7797. (By D. EpwarpEs.)—If
Vo= Jl [log (1 + z)]* dz, prove that V, + nV,_; = 2 (log, 2)".
]

Solution by G. G. Storr, B.A.; W. T. MrrcueLy, M.A.; and others.
Put 142z =y, then V,= Jz (log y)* dy, hence we have
1

-
Vu= : (log )"y }:—- Jin (log y)*-ldy = 2 (log 2)"=nV,_1.
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The symmetry of the result shows that the three lines thus drawn are equal,
each pair being the diagonals of one of the three rectangles referred to in
the question.

7758. (ByJ BriLn, B.A.)—If ABC be any triangle, and O a point
within it ; prove that
OA .BC - 0B.AC _ OC.AB
sin (BOC—BAC)  sin (COA—CBA) ~ sin (AOB—ACB)’

Solution by R. LacuraN, B.A.; R. KnowLEs, B.A.; and others.
Let the circles AOC, AOB cut AB, AC in E
and D; and let CE, BD meet in P; then
LPBC = AOB—ACB, /PCB = AOC—ABC,
therefore £LBPC = BOC-BAC.

Again, £PBO = 0AC,

also £0DB = 0AB = OCP;

therefore P, O, C, D are concyclic, therefore
£BPO = OCA ;

hence the triangles PBO, CAO are similar,
- OB . OA OA.BC _OB.AC _ OC.AB
therefore BP ~ AC therefore BC  — PB 0’
by symmetry, whence follows the result in the question.

[IfOA=2 OB=y, OC=12 (BOC =a, £COA =8, LAOB =+,

wehave @2 =yl+4+¢5—2yzco8a, &3 =g'+2?—2zzco8B

G =234 Y3 —2ZYCOBY virrnerrnnrininiininiines
besinA = casinB = absin C = yzsina+zrsin B+ 2y siny...... (4),
(2) +(3)—(1) gives bdeccos A = 23—ay cosy—22Cc08B+yzc08a......... (5).

Eliminating yz from (4), (5), we have, since a + B+7 = 2w,
besin (a— A) = z?sin a—zy sin (a+7) — 22 sin (a +B)
=gz (rsina+ysinB+z8iny),

. az abe _ by _ (2]
" Sin(a—A) asinatysinp+zsiny sin(8-B) sin(y-C)
by symmetry.

Geometrically, if AO, BO, CO cut the circum-

circle in D, E, F ; then, from the triangles OEF, ] ‘

OBC, we have ' E
EF_EO _E0.0B,
BC OC B.OC’

hne _EF__ _FD _ DE . .

A0.BC BO.CA CO.AB’ 8 /
also /ECF = BOC—-CEB, when follows the '
result in the question. /

This theorem enables us to find the distances o
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7801, (By B. Hanumanta Rav, M.A.)—Inscribe a regular hexagon
in a rectangle whose sides are ¢ and 4; and find the ratio of @ to 4 in
or(ler7 t.hat] the polygon may be also equiangular. [Suggested by Ques-
tion 7636.

Solution by Axtrur Hiry Curris, LL.D., D.Se.

Let ABCD be the given rectangle, in which AB = q,
BC = &, and, suppose 6>a; let E, F, G, H be the 4A__E B8
middle points of the sides; on EF as base construct a
triangle, EKF, whose vertex shall be on BC, and such Pe
that EK = 2KF; take NH = HM = LF = FK, and
EKLGMN will be an eguilateral hexagon ; it will more- H 3
over be a regular hexagon if £ EKB = 4=, orif "

KB = {KE = KF, L
and therefore AF is parallel to EK, therefore

_=.—=tan§1-=-3ll, or 2a = 343,

NoTE oN THE SOLUTIONS oF QUESTION 5672.
(See pp. 46—47 of this Volume.)

Mr. BiopLe’s result, 1/k*? cosec §, may be thus translated into terms of
coordinates of R in respect of centre of

circle: —In the figure, we have AE = £, 0 £
BD=/, tZDCE=PRQ=6, CM =2, RM =y,
AC = F; but R
AE = cos A .AB, BD = cos B. AB,
therefore k = 2cosA, != 2cosB.
A P CM Q B

Also  sinA =y /[[(1+2)+y7],
sin B =y/[(1=2)3+5], cosA = (1+2)/[(1+2)3+y3]>
cos B = (1-2) [ [(1—2)2+ 9"}
Morcover, cosec = 1 /sin 6 = 1 /sin (180°—6) = 1/ sin (RPQ + RQP)
=1/8in2(A+B)=1/2sin(A+B)cos(A+B)
= 1/[2sin A cos A (cos? B—sin?B) + 2 sin B cos B (cos? A —sin? A)]
o (=segir 2 (1eat)y?

4y (1—a’~y?)
moreover, k22 cosecd = 16 cos? A cos? B cosec § = M,
4 (1-2*—y)
1 y(1=2"—9%
and =
" Klcosec§ 4 (1—22)%

which, to the constant 4 prés, agrees with Colonel CLARKE’s result.
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9-257824, 8:586, and 8:166; those of the respectively opposite edges
BC, CA, AB are 8:996, 9-5687, and 9-997. Prove that the dihedral
angles opposite to O\ and BC are equal to each other (each = 7°19'18"),
Denoting the lengths by a, 4, ¢, #, y, £, and the dihedral angles respectively
opposite by A, B, C, X, Y, Z, find what relation must subsist between
8, b, ¢, x, y, 3 in order that A may be equal to X.

Solution by W. H. BLyrae, M.A.

1. Wehave £ BAC =54°38’ 32", CAO =51°19'17"-6, BAO = 52°47/ 37”4 ;
and if we denote the dihedral angle opposite BC by M, and the above
angles by p, ¢, 7, and half their sum by s, then

4tan} M = 10+ 4 [Lsin (s—¢) + L sin (s—7)]—4 [Lisin s+ L sin (s —p)] ;
hence we obtain the stated result for M.

By a similar process, we find the dihedral opposite OA, from the

values OBA = 69°10’49”:8, OBC = 55°17/24"-3, CBA = 60°21’ 29”4,
A (3 volume) z s (3 volume) a
2. sin4 2 (area ABC) (area OBC)’ sinX - 2 (area OBA) (area CAO)’
and, if these angles are equal,
a2 (b+o+a)(b+e—2)(b+z—c) (r+ec—b)
x(@Z+y+z)(z+y-2) (s+z—y) (y+2—2x)
=22(a+d+2) (a+b—z) (a+2-~0) (h+z—a)
x(@+c+y)(@a+c—y)(a+y—o)(y+eo—a).

7652. (By G. Hepper, M.A.)—Show that the square root of
2E = 2(1 + COB & €O8 8 — COB a €08 7y —C08 & €08 & — co8 B cosy—cos B co8 §
+ 087y o8 §—s8in a sin B sin vy sin & + cos a cos B cos y cos 3)
is 2cos 4 (a+B8) cos 4 (y-3) ~2cos} (a—p) cos  (y + ).

Solution by B. HANUMANTA Rau, M.A.; SaraH MARKS; and others.
2E = (1 +cosa) (1 +cos B) (1—cosy) (1 - cos 3)
+ (1—cos a) (1 —cos B) (1 + cos ) (1 + cos 3)
= (4 cos }a cos }B sin }y sin §5)2+ (4 sin }a sin §8 cos {y cos §3)?3,
28in a sin B sin y 8in §
= 2.4c08 §a cos 18 sin }vy sin 15 x 4 sin a sin }B cos }vy cos 3,
. (2E)t = 4 (cos {a cos §B sin }y sin §3 ~ sin {a sin 18 cos v cos 33) =&o.

4165. (By J. ConwiLL.)—A fish is floating in a cubical glass tank
filled with water, with its head in one corner, and its tail towards the
one diagonally opposite ; describe the appearance which will be presented
to an eye looking towards the corner in the direction of the length of the
fish, and in the same horizontal plane with it.
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Solution By the Rev. J. L. Krrcamw, M.A.; A. Mavrow, MLA.; and others.

The fish, looked at along the diagonal in which it is placed, will be secr:
by light refracted out of a denser medinm into a rarer. Hence each point
in the two sides will appear shifted from its position from the diagonal, and
the nearer the point the greater will the displacement appear, because it iz
soen under a greater angle. The two sides will then appear to recede from
the diagonal, mdtheappeameeortmumdisthnof two fish united by
their heads at the further corner of the cube.

4737. (By Professor ArrEMas Manrin, M.A., Ph.D.)—Three equal
circles, each 4 inches in diameter, are drawn at random on a circular
slate whose diameter is 12 inches; find the probability that each circle
intersects the other two.

Solution by D. BrpprE.

In order that three complete circles, each 4 inches in diameter, may lie
on a circular slate 12 inches in diameter, the centre of each must be within
the circumference of a circle concentric with the slate and 8 inches in
diameter. Moreover, in order that two of the smaller circles may intersect
each other, their centres must lie within a radius of 4 inches of each other;
and the probability of this occurring is the proportion borne to the entire
area of the 8-inch circle by the mean space cut off by another 8-inch circle
whose centre may be anywhere between the former’s centre and circam-
ference. This mean space is the average for all positions within the
8-inch circle, and is found by taking a eeries of segments from half-
radius to radius in height, doubling each, and multiplying also by the
difference between the height and radius, which difference is half the
distanhce of the centre of the invading circle from the centre of the slate,
and is proportioned to the ring (concentric with the slate) for all parts of
which the particular segment will serve ; and we finally divide the sam of
the several products by the sum of the multipliers above referred to. This
gives 331§ = -57856, as the probability that a 4-inch circle drawn at
random on the slate will cut one of similar size also drawn at random on
the slate. Now, if A, B, C be the three 4-inch circles, the above is the
probability that A will cut B, that B will cat C, that C will cut A. But,
as these events must concur to produce the mutual intersection of all three
circles, therefore (-57856)® is the probability required = -19366, or rather
more than $.

6746. (By Astrosn McxHoPADHYAY.)—A certain number of candi-
dates apply for a situation, to whom the voters attribute every degree of
merit between the limits 0 and ¢; find the mean value of all the candi-
dates’ merita.

Selution by H. Foryxy, M.A.; G. Easrwoon, M.A. ; end ofhers.
Let » be the number of candidates, and ¢), &, # ... ¢, their respective
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merits, ¢, being the merit attributed to the candidate whom the voters
deem most worthy, ¢, the merit ascribed to the next candidate, and ¢, the
merit attributed to the candidate in the rank r.

First, suppose that ¢, may have any positive value comprised between
the limits 0 and y, and that the mean of all such positive values of ¢, is
required. Let w be the whole number of the values, and 3¢, their sum ;

then, if M be the required mean, M = %. Suppose that the values of

¢, receive equal increments A, and that they become 0, A, 24, 3A...¢;
thnw = gAé; in this case M = %t—‘; but, because ¢, is supposed to
receive all values between 0 and ¢, the quantity A may be considered
indefinitely small, and may consequently be represented by d¢,. Henoce

Yt,dt,
M= iv_y

Ya, ¥
&
hence the mean of all thess values is the mean of the two extreme values.
Next suppose ¢,, 7, to be the merits of two candidates according to the
opinion of any voter, ¢, being the merit attributed to the more worthy
candidate, #, therefore being greater than ¢4, Here ¢, may have any values
between 0 and ¢;; and ¢, any values between ¢, = 0 and ¢ = ¢. The
aggrogate of all the values of ¢, contained between ¢ = 0 and ¢y = ¢, is

L)
[ ]‘ dty
0

equal to dt, , and the sum of all the values of ¢ is equal to

[(onf (]

; the number of these values is =% <% . hencethe

dt,d; dt,dt
\dty .ot 19ty
l j b dt,dty
mean value of ¢, is -°—*°l——.
dtydty
0oJo

If 7, be the merit attributed to the candidate in rank r,

¥ rh n-1

[ [ F tydtydty ... dbn
the mean value of # = ~2-0-0 :

v -

oty n-1
j i j [ dtydty .. dtn
09040 o

1 1 1 1

23 p—r1—r+2"” =n-—r+l¢
1 1 1 nel
2 3w "

1 1
'n+l¢”
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Multiplying out the radicals, the values of one triad are
o= 38-20v2+2/6—4V10, g = }(38—20v2—2V5 +4,/10),
& = (38 +20/2—2,/6—4,/10).
A verification may be obtained as follows :—
gy = 2,/60-12, 2z = 2,/10—4, yz = . /5+1;
2% +4ay +6y = (,/60—6)( 2,/60+12) = 28,
2%+ 423 + 1457 = (,/10—2)(10,/10 4 20) = 60,
32+ 25+ 757 = (/6 +1)(10,/6 —10) = 40,
2. Otherwise :—From (1) +(2)—2 (3) we have

23+ 2ry + 228 —2yz = 4 ... RN ()
Let y = mz, s = nz; then equations (1), (2), (4) become
(1 +4m+6m) = 28, 0*(1+4n + 14n?) = 60............(5, 6),
23 (1+2m+2n—2mn) =4 ....oeevunnnns crsrenne (7).
From (6) + (6) and (5) + (7) we have
1+4m+6m3 1+4m+6m?
1+dn+lan® 75 T+2m+2n—2mn T (8, 9).
From (9), # = ‘-*%2’;‘—'137'”3; and, this being substituted in (8), the result
is 36mt—24m3—34mi—4m+1 =0 .......ceeeenns eeens(10).
Assume (10) = (6m? + Am +1)(6m2+Bm +1)
= 36m$+6 (A+B)md+ (AB+12) m*+ (A+B) m+1 .........(11);

then, comparing the coefficients of (10) and (11), we have A+B =~ 4,
AB =— 46; whence A =—2+5,/2and B = —2—5,/2. Hence the four
roots of (10) are those of the two quadratics 6m3—(24+5,/2)m+1 =0;
these roots give, therefore, for 12m, the values
246,/2+20/6+4/10, 2—5,/2+2,/5— /10, 2—5,/2—2,/6+,/10,
245,/2—2,/6—4/10.
Hence putting, for shortness,
6 =10+10/2+,/6+2,/10, b=19+10,/2—,/6-2,/10,
¢=19-10,/2+./6—2/10, d=19-10,/2—./5+2,/10,
the values of 22, y3, 2 are

=2, yr=id, B =P (12),
B=2a yr=1}b 2=jd..niilinnn(13),
2=2b y=1}a, 2=} .cccccinunnn. we(14),
=2, Y=} 2=} .iiiiiiiinnnnns ...(16).

The given equations (in 1208) may be otherwise solved as follows :—
Put 84—-2° = n?; them, from (1), &2), we have 6y =— 2z1in,/2,
14z = — 224#...10 ; and, these values of y, s being substituted in (3), the
resulting reduced equation in z is :
x4—4 (191 ,/5) 23+ 168 (3F 4/5) = 0.
In a similar manner, we find for y and 2 the equations
yi—2(19+2...10) 3+ %P (7£3...10) =0,
2—§ (19£10...2) 23+ 1§ (43+£30...2) = 0.
The values of 22, 37, 2* found from these are the same as those given above.






APPENDIX.

RATIO RATIONIS:

Or that primary faculty of human nature which finds exercise alike in Logic,
in Induction, and in the various processes of Mathematics.

AN Essay BY D. Bropre.

AvL things admit of both comparison and contrast. No two things are
equal in all resg:lcts, for in that case they would be indistinguishable, and
could not be known to be two; nor are any two things in all respects
unequal, for in that case they could not exist together even in thought.
The‘'mind cannot conceive of any two things which have not some qualities
in common, and also some qualities peculiar to each. 0 and «, the in-
finite and the infinitesimal, are very unlike each other, but they agree in
concerning quantity, and in being at the extremes of it.

By the aid of perception and memory, the mind makes a natural classi-
fication (more or less correct) of all things coming within its range ; and
(taking the term in its widest signification) Logic, as a science, deals with
the laws which govern this classification, and, as an art, teaches us to com-
pare and contrast methodically, showing how, by successive steps, intricate
comparisons and contrasts may be rendered more and more simple and
intelligible, and how, on the other hand, upon a few simple facts we may
build a superstructure, apparently far exceeding them in magnitude and
importance, but consisting in reality only of deductions from them.

t which characterises a conscious being is the possession of a power
to feel. 'This sentient power receives, from force transmitted to it, various
impressions, which are agreeable or disagreeable ; and it exerts an influence
in promoting or preventing their recurrence accordingly. It would
appear that a disagreeable impression is produced by anything which in-
terferes with the harmonious exercise ofp the being’s powers, and that all
other impressions are agreeable.

The powers which are in immediate relation with the sentiont power
are the only ones of whose actionsit is ever properly cognizant. Through
them it receives all the force by which it is impressed, and upon them
also it reacts. They communicate with (or form part of) a special or-
ganism, by which force is transformed into what are called ideas, and
which, accordingly, we may term the idea-framing organ. Every impres-
sion which the sentient power receives is communicated to it by the idea-
framing organ. Undisturbed by this organ, it is not conscious, we have
reason to believe, even of its own existence. For self-consciousness is the
result of a complex operation. 'When the sentient power has an idea pre-
sented to it, it instantaneously reacts upon the idea-framing organ, and
gives rise to another idea. This contains a notion of the primary idea,

Q
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rovince, and indeed more than can be taught by any conceivable art.

uch a system of universal knowledge as should instruct us in the full
meaning of every term, and the truth or falsity, certainty or uncertainty,
of every proposition, thus superseding all other studies, it is most un-
ghilosophical to expect or even to imagine. And to find fault with Logic

or not performing this, is as if one should object to the science of optics for
not giving sight to the blind ; or as if (like the man of whom Warburton
tells & story in his ‘Divine Legation ’) one should complain of a reading-
glass for being of no service to a person who had never learned to read.’’

This is perfectly correct, but at the same time, when we leave symbols
and attempt to reduce Logic to practice, we find that a syllogism is only
a link in a chain of argument; and it is a fact never to be forgotten that
a chain is no stronger than its weakest link. Every proposition, every
premise, nay every well-defined perception, is the result of a whole series
of syllogisms. For instance, I cannot truthfully say that ¢¢ This which
I see before me is a red ball,”’ until my mind (by unconscious cerebration, -
it may be) has come to at least as many conclusions as there are words in
the proposition.

Moreover, Logic makes use of universal affirmatives and negatives,
whereas in practice we have to reduce these to strong probabilities at most ;
or, in case we make use of the s IFI:(Lgis‘tlic form, w:h hat;.e to insert the
qualifying ¢‘if.”” Thus, Enoch an ijah are men ; therefore, if all men
are mortal, Enoch and Elijah are morta.{. .

But let us consider the fundamental principle upon which the reason
proceeds. The most intimate faculty of the human mind (next to that of
bare feeling, above referred to) consistsin the detection (however imperfect
and undefined) of similarities and dissimilarities in the various objects of
which it takes cognizance. This in its simplest form is a matter of im-
pression or perception which defies further analysis. For, though we can
perceive the difference between the impressions (f)roduced, for instance, by
two colours such as red and blue, we cannot adequately describe the dif-
ference, much less the impressions themselves ; and, for aught we know,
our impression of red may be totally unlike that produced on another
person, and this without any colour-blindness either on our part or his.
It matters little, provided we can distinguish red from other colours, as
well as our fellows. But it is more than probable that the impression
produced by red is compound. If therefore it is difficult to describe the
compound impression, how impossible must it be to describe the simpler
impressions which compose it !

It is the same with all elementary impressions : we cannot describe them
to other persons. But we can distinguish between them, and we can
select amfe classify objects which produce various combinations of them :
we can also on the same principle classify events.

Now the primary and fundamental axiom, as laid down by Euclid, is,
that ¢¢ things which are equal to the same thing are equal to one another.”
But thisis apt to mislead if taken as indicating thesimplest act of thereason.
For the human mind can, in numberless instances, perceive the equality
of two things without reference to any third thing, and could apparently
recognize that equality, if no third thing of the kind existed. The human
mind starts with a recognized (or at least assumed) equality between
things, and the converse of Euclid’s axiom would more accurately describe
its mode of procedure, viz., that ¢¢things which are equal to one another
are equal to the same thing.” This can be variousl&‘hr:ndered : ¢“The
equality of equals to other things is coextensive;”’ ¢ That which can be
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. The well-known bols AmB=C=D=, &c., fairly represent the
axiom that ‘‘the equality of equals to other things is coextensive.”

There is another faculty of the mind, taken account of in the Differential
and the Integral Calculus, and also to some extent in the Doctrine of
Probabilities, viz., that faculty which gauges similarity where there is not
absolute equality, and is content to ignore infinitesimal inequalities as
making no practical difference in the work'of life. But, when once these
infinitesimal inequalities are discarded, the process is much the same as in
the former case. Moreover, as a rule, such inequalities (relatively infini-
tesimal) can be diminished to any extent, though never entirely eliminated,
except by arbitrary deletion.

To sum up, the mind takes cognizance of equality and of inequality, and
so far gauges similarity as to accept as practically equal, things between
which it perceives or concludes there is in the given respect only an in-
finitesimal inequality. Moreover, the mind can assume these things or
take them for granted, where it cannot directly perceive them. And it
proceeds from the equality or inequality of two things which it perceives,
to the equality or inequality of these with other things, although it cannot
directly compare and contrast them all. And this brings us to the greatest
of all the laws of reason, viz., the Law of Substitution :—

Things which are equal in a given respect are in that respect equivalent,
and may be substituted the one for the other, when the given respect only
is concerned. :

Thus, when it is said, ‘‘ A pound sterling will cover the cost,”” we may
with equal truth substitute for ¢¢ A pound sterling,”’ twenty shillings, or
eight half-crowns.

This law governs most of the operations of Algebra and Geometry,
where the given respect in which things are considered is simple and un-
ambiguous, being generally that of number, extent, figure, and angular
relation.

It also explains nearly all the ‘“axioms” of Euclid. Thus, to take
Axiom I.:—* Things which are equal to the same thing are equal to one
another.” Let A = B, then, if B = C, C can be substituted for B in the
former equation and A = C. ’

Axiom II :—¢1If equals be added to equals, the wholes are equal.”
A +B = A+B being identical, but let A =C, and B = D, then by sub-
stitution A+B=C+D. °

Axiom IIT.:—¢If equals be taken from equals, the remainders are
equal.”” A—B = A—B being identical, but let A =C, and B =D,
then A-B = C-D.

Axiom IV.:—¢If equals be added to unequals, the wholes are unequal.”
Let A+X = B, and C = D; it is required to find the result of adding A
to C and B to D. B+C = B+C being identical, and by substitution.
B+C=B+D=A1+X+C, so that B+D is just so much greater or less
than % +C, as B is greater or less than A, and the difference is represented
by £X.

yAxiom V.:—“If equals be taken from unequals, the remainders are
unequal.” Let A+X = B, and C = D; it is required to find the result
of taking C from A, and D from B. B—C = B—C being identical, and
by substitution B—C = B—D = A+X -C, so that B—D is just so much
greater or less than A—C, as B is greater or less than A, and the difference
i8 represented by +X.

Axiom VI. :—“ Things which are double of the same are equal.” Let
A=B, then A+A=A+A being identical, but by substitution
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portion of that plane, bounded by two impassable straight lines, parallel
to each other, and extended infinitely in both directions, it would take him
a long time to gain his liberty ; in fact, he would be practically shut in,
not to say, ¢‘ enclosed ’: he could never get to the extra-linear portions of
the plane. It is evident, however, that Euclid, in the axiom before us,
alludes to finite space and finite straight lines. But it is singular that he
nowhere definesa ¢ space,” although he defines a figure as ¢‘ that which is
enclosed by one or more boundaries.” We can scarcely regard the two as
is[qmonymous, but a limited space, defined by boundaries, is no doubt a figure.

e simplest figures, bounded by lines alone, are on a plane superficies, and
this is defined as ¢ that in which, any two points being taken, the straight
line between them lies wholly in that superficies.”” But it is of importance
to observe that a line is ‘‘length without breadth,” that a superficies is
‘“ that which hath only length and breadth,”” and that the latter is meant
by Euclid when he says that two straight lines canno$ enclose a ¢ space.”
This is evident from the use he makes of the axiom in Prop. iv., where
he supposes two straight lines to be drawn between the same two points,
and adduces this axiom to prove that the two straight lines must needs
coincide. But (though it is difficult to see how space can be enclosed on a
plane surface) when once we know that the hypothetical ‘¢ space *’ referred
to has finite length and breadth, we neeXg?) distinct axiom to register
the fact that two straight lines could not suffice for its boundaries ; we
simply require a proper definition of éreadth as distinct from length. Let
us suppose the length of a plane figure to be represented by a given straight
line AB, then its breadth, if represented at all, must be represented by a
straight line running in a direction transverse to AB. In this line (CD)
an infinite number of points can be taken, to any one of which (E)
straight lines can be drawn from A and B respectively ; but AE and BE
will not be in the same straight line (or AE produced will not reach B)
unless E be in AB, and the ‘‘ space ” be thus eliminated. Much more is
it clear that, if AC, AD, BC, BD be joined, (which will form the simplest
rectilinear boundaries that can be conceived), more than two straight lines
will result. Hence two straight lines cannot alone bound a figure. But
this is proof, not axiom.

Axiom XI. :—¢ All right angles are equal to one another.” This
again is capable of proof. The feﬁnition of a right angle is as follows:
‘“ When a straight line standing on another straight line makes the
adjacent angles equal to one another, each of these angles is called a right
angle ; and the straight line which stands on the other is called a perpen-
dicular to it.”” Let us then take two sets of such lines and apply one to
the other, so that the feet of the perpendiculars and the perpendiculars
themselves may coincide. We can then prove that the remain-
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ing lines must also coincide, or at least that the angle separating
them is nil. Thus, le¢ CD, AB and GH, EF be straight lines at
right angles with each other. Apply D to H and let DC lie along
HG; it is required to prove that AB will lie along EF, and that
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and IK, LM, in which (Fig. 2) equal angles are formed. Then, if
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GH and LM be made to coincide with CD, as in the figure, £IKO = EFC;
and, if K be now made to approach F and coincide with it, then IK will
coincide with EF, and both will cut AB in N. Let now IK, LM be
withdrawn from this position, along CD, until they regain the position
given in the figure. Is it not evident that every part of IK, LM is
withdrawn from the corresponding part of EF, GH to an equal distance,
and that accordingly ON = KF? And is it not also evident that this
would be true, if FE and KI were produced indefinitely, and AB placed
at any distance from CD? Such being the case, EF and KI, if produced,
wounld never meet, but always maintain the same distance from each
other ; they are therefore parallel. Again, let PF, QK bhe imaginary
perpendiculars to CD. Then IKC = EFC = PFC—PFE, and EFD
= PFD + PFE ; therefore, by addition, EFD +IKC = PFD +PFC, i.e.,
the ‘¢ two interior angles’’ = two right angles.

Let us next consider the case specially referred to in the ¢ axiom,” and
in which the ¢ two interior angles’’ EFD, IKC (Fig. 3) are less than two
right angles. If we apply IK, LM to EF, GH now, IK will not, as
before, coincide with EF, but take up the position indicated by I'F ; that
is £ I'FC will be less than EFC, for I'FC = IKC, and, by the hypothesis,
EFD + IKC are less than two right angles, therefore I'FC + EFD are less
than PFD + PFC, not greater, as they would have to be to place I'F on
the other side of EF. ON, therefore, on AB, is less than OR, which is
the distance Smeasured in a direction parallel to CD) between the parallels
I'F, IK ; and, a8 RN must needs widen, the more remote AB is from CD,
it will gradually encroach upon the constant OR, until ON is reduced to
a point by the meeting of and KT produced.

We have thus considered, in detail, the twelve Axioms of Euclid,
Book 1. The axioms prefixed to some of the succeeding. books are all
ﬁﬂdlg ti) be amenable to the Law of Substitution, without the slightest

ifficulty.

And, steg by step, this Law of Substitution can bring us to the highest

innacles of mathematical knowledge, all that is requisite being a clear
definition and perception of terms, and a careful inspection, lest a step
should be taken for which the law gives no warrant.

But when we leave the domain of mathematics, where the data, being
of an abstract character, can be accurately defined, and where, assuming
that A = B, it is also true that B = A, and when we come down to the
Logic of Common Life, where it is well-nigh impossible to declare the ab-
solute equality of any two things in any one respect, where an element of
doubt clings to all our data, where in consequence of proceeding from par-
ticulars to generals, instead of from generals to particulars, we can mely
arrive at a universal proposition, and where, even granting that *‘all A is

VOL. XLII. R
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B,” we can only deduce therefrom that ¢‘some B is A, —although the
Law of Substitution still holds good, we need additional safeguards
inst error.

8till, as Whately says, *‘the rules of Logic have nothing to do with
the truth or falsity of the premises, but merely teach us to decide (not
whether the premises are fairly laid down, but) whether the conclusion
Jollows fairly from the premises or not. The degree of evidence for any

position we originally assume as a premiss, is not to be learned from

gic, but is the province of whatever science furnishes the subject-
matter of theargument. E.g., from examination of many horned animals,
as sheep, cows, &c., a Naturalist finds that they have cloven feet; now
Mis skill as @ Naturalist is to be shown in judging whether these animals
are likely to resemble in the form of their feet all other horned animals;
and it is the exercise of this judgment, together with the examination of
individuals, that constitutes what is usually meant by the Inductive
Process, which is that by which we gain new truths, and which is not
connected with Logic, being not what is strictly called Reasoning, but
Investigation.” .

It is essential, however, as Whately further says, ‘‘that we should
abstract that portion of any object presented to the mind which is
tmportant to the argument in hand. ere are expressions in common
use which have a reference to this caution ; such as, ¢this is a question,
not as to the nature of the object, but the magnitude of it,” ¢this is a
question of time, or of place, &c.’ ; that is, ¢the subject must be referred
to this or to that category.’ The categories enumerated by Aristotle,
are obola (being, essence), wéoor (how greatf), woiov (of what kind P),
wpds 71 (toward what ?), wod (where?), wére (When?), xeioba: (is lying P),
¥xew (is holding F), woiew (is doing P), xdoxew (is suffering P)—which are
usually rendered, as adequately as perhaps they can be in our language,
Substance, Quantity, Quality, Relation, Place, Time, Situation, Posses-
sion, Action, Suffering, and may all be ultimately referred to the two
heads of Substance and Attridute (or Accident).”

But when care is taken to consider things in one definite respect at a
time, 80 as to compare and contrast properly, much help may be derived
from the following method of classification :—

C,or ABnon Y,
B,or Anon Z
A% Y, or AB non C,

Z,or Anon B
X
W,orXnonZ

Let A be the most comprehensive class or order of things referred to in
the argument, whether as subject or predicate, under one given aspect;
and let A comprise under it two genera only, B and Z, which are mutually
exclusive ; ulso let B comprise under it two species (or individual and
remainder) C and Y, mutually exclusive. Moreover, let Z, which may
contain any number of individuals from one upwards, provided they be
A non B’s, be wholly comprehended under a different order of things,
X, so that the thing or things indicated can be referred to as AXZ or
XAZ, as most convenient ; and let W be the remainder of X. We can
now illustrate the nineteen legitimate forms of Syllogism (including
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twelve different moods), under the four divisions (called figures) defined by
the position of the ¢ middle term.”

1. 1. Barbara.—All B’s are A’s; all C's are B's; .*. all C's are A’s.

I. 2. Celarent.—No B's are Z's ; all Y’s are B’s; ... no Y’s are Z’s.

I. 3. Darii.—All Z’s are X’s; some A’s are Z's; .*. some A’s are X's.

I. 4. Ferio.—NoZ’sare B's; some X’sare Z's; .*. some X’sare not B’s.

N.B.—It is important here to note that B and W are not mutually
exclusive, nor yet co-extensive. .

II. 1. Cesare.—No Z’s are B's; all C’s are B's; .. no C's are Z's.
II. 2. Camestres.—All Y’s are B’s; no Z’s are B's; .*. no Z’sare Y’s.
II. 3. Festino.—NoY is C; some B’s are C; .. some B’s are not Y’s.
IL. 4. Baroko.—All C's are B’s; some A’s are not B’s; ... some A's
are not C’s. )
III. 1. Darapti.—All Z’s are A’s ; all Z’s are X’s; .*. some X’s are A’s.
III. 2. Disamis.—Some B’sare Y ; all B's are A’s ; .*. some A’s are Y.
III. 3. Datisi—All B's are A’s ; some B’s are C's; .. some C’s are A's.

N.B.—This conclusion is particular where it might have been universal.
III. 4. Felapton.—No Z’sare W's; all Z'sare A’s; .*. some A’s are not W’s,

N.B.—This does not assert that no W's are A’s.

III. 6. Bokardo.—Some B’s are not Y’s; all B’s are A’s; .*. some A's
are not Y’s.

III. 6. Feriso—No B’s %x;e Z’s; some B’s are Y’s; .. some Y's are
not Z’s.

N.B.—This again is particular where it might be universal; but the
minor proposition might have been (within the truth) ¢¢some B’s are
A’s” ; and then ‘‘some A's are not Z’s’’ could not have been made
universal.

IV. 1. Bramantip.—All C’sare B’s; all B'sare A’s; .*. some A'sare O's.
IV. 2. Camenes.—All C’s are B’s; no B’s are Z’s; .*. no Z’s are (’s.

IV. 3. Dimaris.—SomeA’s areZ’s; all Z’sare X’s ; .. some X’s are A’s,
1V. 4. Felapo.—NoW’sareZ’s; all Z’sareA’s; .°. someA’s are not W’s.
IV. 5. Fresison.—No Z’s are B’s; someB’sare O’s ; .°. someC’sarenot Z’s.

N.B.—The same remarks apply here as after III. 6.

Before proceeding further, I may observe that the relation of Z to X is
a most important one. Z may be selected from the A’s, not because it
belongs to the X'’s, but on other grounds, such as for the purpose of
experiment, or even by accident ; but having been selected, and possibly
subjected to a particular treatment, it proves to belong to a distinct order
of things, and the class X is founded. Qther A’s being similarly
examined or tested, may or may not uce the same result, but, in any
case, fresh knowledge is acquired, a discovery is made leading to oxg%ri-
ment in various directions, and possibly an invention is origi . ug
are Logic and Induction seen to be very closely related, if not identical
processes.

But, of course, X will equally serve to represent in other instances the
quality, or class of qualities, to which Z’s owe their distinction from B’s,
or any other quality or attribute which Z’'s possess in addition to that
indicated by A. )
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interest, or even of practical wisdom; for there is such a thing as
cultivating prudence to the destruction of the other virtues. Such being
the case, it seems monstrous to consider prudence as the essential virtue
without which no other can exist. A man who has one virtue may have
prudence, but the man (of the A non B’s) who is imprudently brave in a

cause is of a much nobler sort. Now, a well-grounded suspicion
that even one A is not B, or one ABnot C, that is, that a man not devoid
of virtue may be imprudent, or a prudent man not wholly virtuous, is
sufficient to upset an argument of such extremely unstable equilibrium as
that we have considered.

Our next instance shall be taken from Paley’s celebrated disquisition
on a moral sense, its existence in man or otherwise, given in the work on
Moral Philosophy (Book I., Cbap. §). He begins by giving the case
of Caius Toranius, who betrayed his own father to arrest and death ; and,
after depicting the deed in all its malignity, he says, *¢ The question is,
whether, if this story were related to the wild boy caught some years
ago in the woods of Hanover, or to a savage without experience, and
without instruction, cut off in his.infancy from all intercourse with his
species, and, consequently, under no ible influence of example,
authority, education, sympathy, or habit; whether such a one would
feel, upon the rélation, any degree of that sentiment of disapprobation of
Toranius’ conduct which we feel or not ?’’ And that we may be in no
doubt as to what he considers to be the matter in dispute, he further
says, ‘‘ They who maintain the existence of a moral sense; of innate
maxims ; of a natural conscience ; that the love of virtue and the hatred
of vice are instinctive, or the perception of right and wrong intuitive (all
which are only different ways of expressing the same opinion), affirm
that he would. They who deny the existence of a moral sense, &c.,
affirm that he would not.” After saying that ‘‘ what would be the event
can only be judged of from probable reasons,” he proceeds in the most
lucid language to give the various reasons adduced on either side. Thus,
the one party assert that a certain approbation of noble deedsand a corres-
ponding condemnation of vice,are instantaneous and without deliberation ;
and also uniform and universal. But the other side show that nearly
every form of vice has at some time or in some country been countenanced
by public opinion, even by philosophers and others in high position ; that
we ourselves do not perfectly agreo as to what is right and what is wrong ;
and that the general though not universal approval of certain lines of con-
duct may be accounted for in various ways. For instance, ¢ having ex-
perienced at some time, a particular conduct to. be beneficial to our-
selves, or observed that it would be 8o, & sentiment of approbation rises
up in our minds, which sentiment afterwards accompanies the idea or
mention of the same conduct, although the private advantage which first
excited it no longer exist.”” By these means the custom of approving
certain actions commenced : it is kept up by authority, by imitation, by
inculcation, by habit. Besides, say they, none of the so-called innate
mazims are absolutely and universally true, but all bend to circumstances.
Thus, veracity, which seems, if any be, & natural duty, is excused in
many cases towards an enemy, a thief, or a madman; and so with the
obligation to keep a promise. Nothing is so soon made as a maxim:
Aristotle laid down, as a fundamental and self-evident maxim, that nature
intended barbarians to be slaves. ¢ Upon the whole,”’ says Paley, ‘it
seems to me, either that there exist no such instincts as compose what is
called the moral sense, or that they are not now to be distinguished from
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gejudioe- and habits ; on which account they cannot be depended upon
moral reasoning ; that is, it is not a safe way of arguing, to assume
certain principles as 8o many dictates, impulses, and instincts of nature,
and then to draw conclusions from these principles, as to the rectitude or
wrongness of actions, independent of the tendency of such actions, or of
any other considerations whatever’’ ; and he finishes by dismissing the
question as of no concern except to the curious.

But a very different complexion is put upon the matter by a careful
classification of the chief terms. Morals may be divided into our own
and other people’s, and under both these heads we may place on one side
overt acts, halits, &c., and on the other side, what are summed up under
the designation of motives—those secret springs of thought and action
which may be inferred, but cannot be perceived, by outsiders. These
motives act in the higher regions of the being’s nature, in those
which are in immediate relation with the sentient power, and they pro-
duce an impression, agreeable or otherwise, according to their harmony
or discord with what the being himself accepts as right. As the rain-
drops descend upon the sides of a mountain, and, percolating through
the several strata, reach the central reservoir whence the streams receive
their supply, and as the set of the strata determines in great measure
the ;mhculnr side of the mountain on which the spring will appear, so &
man’s deeds are the resultants of the various influences brought to bear
upon him, and, in his reaction upon the outer world, he is able, by his
‘Will, to determine more or less the character of his ‘acts. It is at this
Jjuncture that the conscience comes in, its province being to perceive the
equality or inequality of a nascent act to the being’s accepted standard of
right, that is, to the degree of light he possesses. If, at the critical
moment, temptation prevail, a painful impression is produced, but, if the
temptation be withstood and overcome, the result is pleasing. In these
respects the moral sense is like the other senses, which perceive equality
or inequality in things which concern them, and produce correspondi
impressions. But the conscience or moral sense of one man is not con-
cerned with the overt acts, much less the motives, of another man. The
overt acts of others may be judged of by the Reason, and, if good, followed,
if bad, shunned ; but it must not be forgotten that what is good, or at
least harmless, for one man, may be extremely blameworthy in another.
The rules that suit everybody are broad indeed. Caius Toranius may
have been, and probably was, the greatest blackguard imaginable; but
to reprobate his conduct will not mend matters for me. 'The question for
my consacience is, how far my present conduct tallies with my present light.
Moreover, the moral sense can be blunted and destroyed, or educated and
refined, much as any other. This and various circumstances concur to
produce at different times, and in different localities, habits and customs
which differ greatly on the score ef morality. But to denythe existence ofa
morul sense on this account, is like denying the sense of hearing, because
the accepted music of one nation is discord and confusion to another; or
like denying the sense of sight, because one man beholds beauty where
another sees only so much canvas and paint.

There are cases in which we can so divide any class of things uander
consideration, as to give the exact or approximate proportion borne by the
particular genus or species selected, to the class o? which it forms part.
Scientific observations and the results of experiments often admit of care-
ful division of this sort ; and thus some idex is gained of the rclative im-
portance of cvents. The Method of Clas:ification now advocated is also
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useful in the Calculation of Chances, especially in cases of a mixed cha-
racter. The following instance, by way of illustration, is from Boole’s
¢ Laws of Thought " :—* The chances of two causes A, and A, are ¢, and
ez respectively. The chance that, if the cause A, present itself, an event
E will accompany it, whether as a consequence of the cause A, or not, is
21 ; and the chance that, if the cause A, present itself, the event E will
accompany it, whether as a consequence of it or not, is p,. Moreover,
the event E cannot appear in the absence of both the causes A, and A,
Required the chance of the event E.”” Here we may leave out the things
signified, and merely put the proportions ; and then, taking unity as the
class-total for each cause, un(fer which to put ¢, or ¢;, the probability of
its occurrence, and (1 —¢,) or (1 —¢,), the probability of its non-occurrence ;
and, dividing these probabilities again, according to the question, we
obtain the following scheme :—

(1-¢) (1=c3)

......

1
o (l-p2) (1-p5)cs

in which z = chance that E will occur when A, alone is present, z =
chance when A, alone is present, y = chance when both A, and A, are
present. Let » = total chanco = z +y +32. Now, in the question there
is nothing to show how E is affected by the combination of the two
causes. Consequently, y must be regarded as a variable quantity, and
the other two as varying more or less with it. If E occurs only when
A, and A; are present separately, then y = 0; if one of the causes be in-
operative unless the other be present, then either z = 0, or z = 0, but
this cannot be the case with both, unless¢,p; = ¢;p,. In any case, u+y
= ¢;py+6,p;. If we assume that E is inevitable when both causes are
present, then y = ¢;¢,, and 4 = ¢,p, + e3p3—¢yc3. But if we assume that
the occurrence of E, when both causes are present, simply bears to its
total occurrence the same proportion that their combined occurrence
bears to their total occurrence, then y : 4 = ¢jcq: ¢, +¢3—¢i0y and « =

(e,21 + c35) (1- _‘:'1‘:'2_) If we take ¢, = °1, ¢ = *2, p, = *6, and pg = °T,

+
we shall find that, lunder the former assumption, # = 18, and, under the
latter assumption, % = *18’6’. Professor Buole’s equation for finding the
ezxact value of the required chance {‘based apparently upon the assumption
that A, and A; are independent, but that E is very little more probable
when both are present) is as follows :—

(u=eyp) (u=cap)) _ {1-01s(1—=p)—t} {1—c;(1—p,) —“},
P+ 60—t 1-u
which, translated to suit our present scheme, is as follows :—
2z _ (1= —2) (l—ﬁ—z)
Yy 1-u
showing that the non-occurrences play a prominent part in its formation,
a fact rather difficult to account for. "Giving the above numerical values
to the terms of Professor Boole's equation, we find that 4 = -19068. This
nearly approaches the result obtained by the following abstract ratio:—

’
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Then 2+y2+22—-P—2 =z (w+y+2),
22+y2+22-a*— =y (x+y+2),
. a2+ yt+23—a?—8 =z (2+y +2),
and z(@ty+2)—al=y(z+y+2)—b3=z(z+y+2)—c3.
Let z+y+2z =8, and v = Se—a? = Sy—542 = 8z—¢?; then, by addition,

S-3u= @t iie o andw = S (@H04E)

ure 8 1 (a+Bed_
Therefore r= S ~73 S( 3 a),
y=“+bz-_s__l(‘.‘_2;"_b_g_+_€"‘_ba)

S 3 8 3 !
2=H_°’=§__L(M_’+_c’_ce)

S 3 S 3 ’

and, a% #2, ¢ being constants, S is a variable, and z,y,z vary with it,
forming the coordinates of a curve which is not in one plane. But,
a5

5 and

as 8 increases, z,y,z approximate to equality, fory = x—
al-¢?
5

In conclusion, I cannot do better than advise those who wish to be
carried safely and expeditiously through a long argument, or through
certain calculations such as those preceding Multiple Integration, to use
Mr. Hugh McColl’s System of Notation, which he calls, ¢‘ The Calculus
of Equivalent Statements.”” It is highly ingenious, yet very simple,
and needs only to be gathered under one cover, to be very widely used.
At present, its head, trunk, and limbs lie scattered in different publica-
tions, of which the chief are as follows :—An article on ¢ bolical
Reasoning”’ in Mind (No. 17, Jan. 1880); “ On the growth and use of a
Symbolical Language” in the Memoirs of the Manchester Literary and
Philosophical Society (1880—81); and four papers which have appeared at
various times in the Proceedings of the London Mathematical Society sVol.
ix., Nos. 122, 123, read Nov., 1877 ; No. 135, read June, 1878; Vol. x.,
Nos. 141, 142 ; and Vol. xi., No. 163). But one of the earliest papers
was published in the Educational Times (Vol. xxviii., p. 20). The London
Mathematical Society has other papers under consideration at the present
time from the same hand, and which it is to be hoped will soon be forth-
coming.

z=x-—

.

London: C. F. Hodgson & Son, Printers, Gough Square, Fleet Street, E.C.
s
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Dm0, 0,0,05 1 €\P) + CoPy— Oy P\Caps, WheENCRY = 202, and 4 = *1916,
in which case the two causes might be regarded as totally unhelpful of
each other; for, under the couditions, the chance of E occurring rises the
nearer y approaches to zero, and ¢, p, ¢;p. would represent the lowest as-
signable value of y, unless special circumstances were known to exist
rendering the combination of A, and A, impossible.

Another instance may be taken from the same source (Boole’s ¢ Laws
of Thought ’). ¢¢ The chance that a witness A speaks the truth is p, the
chance that another witness B speaks the truth is ¢, and the chance that
they disagree in a statement is r. What is the chance that, if they agree,
their statement is true ?’’ Here taking A and B to restrict their answers
to Yes or No, or to give what is equivalent to an affirmation or denial of &
::.;Jtement submitted to both alike, we can easily produce the following

eme :—

in which & = chance that A and B will agree truthfully, and y = chance
that they will agree falsely. Therefore t+y = 1—r, and.%y = l—“—r

= chance required. Now z+y = 1—¢, .. 4—2 = g—r, but u+z =p,

St 2%23, and chance required = %2;12:—:; Of -course, if A and B

are wholly independent (which is not assumed in the question), ¥ = pg,
and y = (1-)(1—g), and the chance required = —— 4 __
y=(1-2)(1-9) req =) (=0
If, therefore, we have had an opportunity of gauging p and ¢, before the
present series of questions is put to A and B, we are able to estimate the
degree of suspicion which should attach to their present answers on the
score of collusion, by noting during the series how much (1-r) exceeds
{ra+(1-p)(1-9)}.

A further instance may be taken from the Educational Times for Dec.
1884, Question 7957 (by Rev. T. C. Simmons, M.A.):— ¢ Solve the
equations z2—ys = a3, y3—3sz = 83, ?—zy = ¢3.”” This is simplified as
follows :— P

z(z+y+e){ oy =2t =

¢ ) 2z = y3-42

) 2y =22—c?
ry ] yeryen {v =2

yz = z2—q3

2z = y?—52

z(z+y+2) {yz = z3—-gq?
(4 2 =g
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