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The structure of generic subintegrality
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Abstract. In order to give an elementwise characterization of a subintegral extension of

Q-algebras, a family of generic Q-algebras was introduced in [3]. This family is parametrized

by two integral parameters p ^ 0, N ^ 1, the member corresponding to p, N being the

subalgebra R = Q [ { yn \

n ^ N } ] of the polynomial algebra Q[x l9 ...,xpt z]mp + l variables,

Jx.z""'.
This is graded by weight (z)

=
1, weight (x )

=
i, and it is

shown in [2] to be finitely generated. So these algebras provide examples of geometric

objects. In this paper we study the structure of these algebras. It is shown first that the ideal

of relations among all the y^s is generated by quadratic relations. This is used to determine

an explicit monomial basis for each homogeneous co'mponent of JR, thereby obtaining an

expression for the Poincare series of R. It is then proved that R has Krull dimension p + 1

and embedding dimension N + 2p, and that in a presentation ofR as a graded quotient of the

polynomial algebra in N + 2p variables the ideal of relations is generated minimally by

1 elements. Such a minimal presentation is found explicitly. As corollaries, it is shown

that R is always Cohen-Macaulay and that it is Gorenstein if and only if it is a complete

intersection if and only if N + p ^ 2. It is also shown that R is Hilbertian in the sense that

for every n ^ the value of its Hilbert function at n coincides with the value of the Hilbert

polynomial corresponding to the congruence class of n.

Keywords. Subintegral extensions; subrings of polynomial rings.

Introduction

Let A B be an extension of commutative rings containing the rational numbers Q.

In [3] an element beB is defined to be subintegral over A if there exist integers p > 0,

N ^ 1 and c l9 . . .
,
c
p
eB such that gn := b

n
-f f= l

(

"

)c
f
b
w ~ eA for all integers n ^ N.

With this definition the extension A B is subintegral in the sense of Swan [7] if

and only if every element of B is subintegral over A [3, 4].

In [3] the tuple (0, p, N; 1, c l9
. . .

,
c
p)

with the above properties was called a system
of subintegrality for b over A. There was an extra parameter 5 which we can take to

be in the present discussion, and the 1 represents c . In [3] we assumed that

1
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N ^ s + p. Here (as in [4]) we adopt the conventions that for any element b in a ring,

b = 1 and
(

n

}b
n ~ l: = if i > n. Then it suffices to assume that JV > 1. By [3, proofW

of (4.2) <iv)=>(i)] (note also [4, (1.1)]) if b has a system of subintegrality for some

N ^ 1, then b has a system of subintegrality with N = 1. Systems with N > 1 are still

of interest, however, since freedom in the choice of N may result in a simpler system

of subintegrality.

Let x j,..., Xp,
z be independent indeterminates over Q, and let x = 1. For n ^ let

and let R:=QlVn\*>N]S:=Qlx l ,...jc 9 z]. Then z is

subintegral over R (N) with system of subintegrality (0, p, AT; 1, x l9 . . .
,
x
p).

Furthermore

this setup is universal for subintegral elements together with their systems of

subintegrality, in the sense that given any extension of commutative Q-algebras A B
with beB having a system of subintegrality (0,p,N; I,c l9 ...,cp), the homomorphism

(p:S->B given by <p(x f)
= c

{

. and <p(z)
= b satisfies (p(y^

= gn and cp(R
(N))^A. Such

universal extensions played a crucial role in [3].

The rings R(N} have an interesting algebraic structure, which we discuss in the

present paper. First of all R(N} and S are graded by weight (x f)
=

f, weight (z)
=

1,

which imply that weight (yn)
= n. In 1 we find relations (1.2) of degree two (but not

necessarily homogeneous) among the yn9 where degree means deg(yn)
= 1 for all n ^ 1,

and is to be distinguished from weight. We show in (2.2) that these quadratic relations

generate the ideal of all relations. These quadratic relations include those used in [2]

to prove that R(N]
is a Q-algebra of finite type, although in [2] we did not find a

complete set of relations. In (2.1) we use the quadratic relations to obtain an explicit

monomial basis for R (

"\ the weight k part of R(N
\ from which we obtain in (2.8) the

Poincare series of R(N} for arbitrary p and N (generalizing both [4, (4.4)], which

handles the case N =
1, and [4, (4.7)], which is the case p = 1, N arbitrary).

In 3 we use the quadratic relations to eliminate all but a finite number of the yn,

obtaining thereby our main result (3.2) which gives a minimal presentation of K(N)

as a graded Q-algebra of finite type. Of course, after eliminating these variables, the

relations among the remaining variables are no longer all quadratic. From (3.2) we

derive several corollaries ((3.3)-(3.7)) on the nature of R(N)
: (3.5) says that R(N)

is

always Cohen-Macaulay, which was a surprise to us; (3.6) says that R(N)
is Gorenstein

if and only if it is a complete intersection if and only if N + p ^ 2.

In 4 we give an alternative proof of the linear independence of our basis for Rf }
.

This method is more complicated but also more precise than the argument of 2.

We conclude the paper by studying in 5 the Hilbert function of R(N\ We find the

minimal number d of Hilbert polynomials needed to express the Hilbert function of

R(N
\ and show that if p ^ 2 then R(N]

is Hilbertian, meaning that the value of its

Hilbert function at n coincides with the value of the Hilbert polynomial corresponding
to the congruence class of n modulo d, for every n ^ (rather than just for n 0).

The non-negative integers are denoted by Z +
,
and \_a\ is the integral part of the

real number a (i.e. the largest integer ^ a).

1. The quadratic relations

Let R (N} S be the universal extension as defined above. Let T be an indeterminate
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over S, and let F(T)= H-f=1
( p z~' (so that yn

= z
n
F(n)). Then we have the

following (generalizing [2, (1.2)]).

Theorem 1.1. Let k be an integer > 2p, and let < d
l
< d2 < < d

p + r ^ fc/2 be any

p + 1 distinct integers. Let d be any integer < d ^ /c/2, distinct from the d
t
. Then

P+I

jdJk-d^ E fliW*-d O-2)

/=i

/or some rational numbers a
t

.

Proof. Note that we have d
t
< k - d

t (1 ^ i ^ p), d
p + j ^ k - dp+ 19 and the p + 1 pairs

(dfrk di) are distinct (as unordered pairs). First consider the case d
p + 1

<k d
p + l

so that each pair (d f ,
fc~d

)
consists of two distinct integers. Let / = {d l9 ...,dp+1 ,

k dp+ !,..., /c di}. For p + 2<i<2p-f-2 define d
i

= k d2p + 3 ^ i ,
so that / =

Wi<i^2/+2- The set / contains 2p + 2 distinct integers. For 1 ^ i ^ 2p + 2 let
TT,-

be

the interpolating polynomial of degree 2p+ 1, which is 1 at d
f
and at the remaining

elements of /. Let G(x) = Ĵf^
2 n

i(x)F(di)F(k-d i )
and H(x) = F(x)F(k-x). Then

G(c) = H(c) for all ce/. The polynomial G(x) is of degree < 2p+ 1 in x, whereas H(x)
is of degree 2p in x. These two polynomials (with coefficients in the integral domain

Q [x !,..., x^z"
1

]) agree at 2p + 2 values of x, hence are equal. Setting x==d,

a
{

=
Ki(d) + K2p+i-i(d) (K i < p+ 1) and multiplying by z

k

yields (1.2). .

Now consider the case dp+l =k dp+l . Let / = {d l ,...,dp+1,k d
p,... 9

k d
1 }.

For p + 2<f<2p+l define d
i ^k-d2p + 2 , h so that / = {d^^^zp + i- The set ^

contains 2p 4- 1 distinct integers. For 1 ^ i < 2p 4- 1 let n
L
be the interpolating

polynomial of degree 2p, which is 1 at d
t
and at the remaining elements of /. Let

G(x) = Hf^
1 n

i(x)F(d i)F(k
-

d^) and H(x) = F(x)F(k-x). Then G(c) = H(c) for all eel.

The polynomials G(x) and H(x) are both of degree < 2p in x. These two polynomials

(with coefficients in the integral domain Q[x 1,...,xp,z~
1

]) agree at 2p+ 1 values of

x, hence are equal. Setting x = d, a = n
t(d) + n2p+2 -i{d ) C- < l

'

< P) ap+i
= n

P + i(d\
and multiplying by z

k
yields (1.2). 1

COROLLARY 1.3.

(a) Ifk^Ip then the monomials of degree <2 and weight k in the y t span a vector

space V
kt2 of dimension p-f-1, and any set o/p-f 1 distinct monomials of degree ^2 is

a basis for this vector space.

(b) If k^2p+l then any set of distinct monomials of degree ^ 2 and weight k is

linearly independent.

(c) In any relation (1.2) all the a
t
are uniquely determined and nonzero.

Proof. The monomials yh 7i7k _ 1? . . .
, ydyk - d (d

=
min(|_fc/2J, p) are linearly independent

by [4, proof of (4.1)] from which (b) follows. It also follows that if fc ^ 2p then V
kt2

is of dimension ^p+1, and by "(1.2) any p+1 elements span. Thus (for k^2p)
dim Vk ^ 2

= p + 1, and (a) and (c) follow. (Note that (c) is vacuous unless k^2p + 2.)

Examples 1.4. Here are a few examples of the quadratic relations (obtained using
a computer program that we wrote):
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forp=l:

(1.4.1) 74 = 47^3- 37^
-

(1.4.2) 7 5
= 37 174~27 27 3

(1.4.3) 7i7 5
= 47274 -37*

and for p = 2:

(1.4.4) 7s = 207 276
-

647 37s + 457^

(1A5) 797i
= 207377

-
647476 + 457^

(1.4.6) 7io = (63/5)727 8
-

(128/5)7 37 7

These examples illustrate the following.

Theorem 1.5. (1) The quadratic relations are translation-invariant, i.e. if

p+i

jdjk-d^ Z *fW*-di
t=l

then also

for any integer j^O (with the same a
t). (Homogenize by putting in y if necessary.)

(2) If the di are consecutive integers, then the coefficients a
t
in (1.2) are integers.

Proof. (1) In (1.1) replace d
t by d\

= d
t
+ j (1 < i ^ p + 1), d by d -f ; and k by fc + 2j.

Then also d
t

is replaced by d;
= d +; (p + 2<i<2p + 2 or p-|-2<i<2p+l

respectively in the two parts of the proof of (1.1)). Formula (1.2) becomes

where < = 7r;(d+j) + ^'2p+3 _.(d-f 7) for l^Kp + 1 (respectively aJ
=

7r
2P +2-i(^+^) for K^'<P and a

p-fi
= 7Cp+i(^+;)X < being the interpolating

polynomial of degree 2p 4- 1 (respectively degree 2p) which is 1 at d'., and at the

remaining d'y Obviously n'^c +j) = n
t(c) for all real numbers c, from which it follows

that a\
= a. for all f, proving (1).

(2) If the d
t (1 <i^2p + 2, resp. l<i^2p-l-l in the two cases) are consecutive

integers, then the Lagrange formula for the n
t (when evaluated at any integer) is (up

to sign) the product of two binomial coefficients. Thus the n
t(d) are integers, hence

also the ah proving (2). B

Example (1.4.6) shows that in general the a
{
need not be integers. We can arrange

to have the d
t
consecutive by taking c = [_k/2\ and {ycyk - c, yc -iyk - e+l9 . . .

, 7c - P7fc-c+ P}

as the set of quadratic monomials on the right-hand side of (1.2).

2. The Poincare series of

Determining the Poincare series of R(N)
is essentially the same as determining the

dimension of the Q-vector space R (

f\ the weight k part of R(N
\ for every k. In fact,
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we do more. Namely, using a basis interchange technique, we find in the following

theorem an explicit monomial basis for

Theorem 2.1. R[
N) has Q-basis

if

Proof. If p= the result is trivial. For then y t

= z
l

for all i and R (N] = Q|V |

i ^ AT).

lik^N then JRjf
has basis y fc

and J^ >Jt
contains only y fc ,

since we must have d= 1.

If /c = then R (

<f
} has basis y

= 1 and &NtQ contains only the empty product 1 since

we must have d = 0. If < A; < AT then JRj^
= and ^Njk is empty. Hence assume

p^ 1. First consider the case N= 1. In [4, (4.1)] a basis {z*GJ(fc)| te^jj for jR 1J
(there

denoted simply as Rk) is obtained. The definition of this basis is quite technical, so we

will not recall its definition completely. It suffices to note that 3~k is a set of integers

indexing all sequences of the form a
t
=

(a l9 a2,...,ak) with ^a t ^ ^ak ^ p,

afc _ 1
= a

fc ,
and IX- ^- Also, in the proof of [4, (4.1)] the above basis is put in

one-to-one correspondence with another basis of R(
1] that consists of monomials in

the y's. Under this bijection, z
k
G'

l(k\ for a
t
=

(a 1? a2 ,
. . .

,
ak), corresponds to yai yak _ j^,

where /? fc ^ a^ is chosen so as to make the weight o^-f ^ a*- 1 + /?fc

= /c (remember
that some of the a's can be 0, and that y =l). But (omitting the y 's, renumbering
the remaining y's and noting that N +pl=p) this is just the basis ^

1>k
claimed for

.

N = 1 in the statement of the theorem.

Now, for general AT, if y^j is a factor of a monomial in the y's of weight /c, with i

and ; both ^ AT + p, then the quadratic relations (1.2) can be used to replace y^- by
a linear combination of

}';+j> JNyi+j-NiyN+lJi +j-N-l'' '-^yN + p-iyi+j-N-p+l

(note that z+j N p-fl^N-fp l^N) from which it follows that ^^ spans
R (

^\ Thus it suffices to prove the linear independence of &N>k
. This we prove by

induction on N. The idea is to produce a basis forR^
~

1 } that contains @N ^k
as a subset.

Hence suppose that N^2 and $N - ltk
is a basis for R^ -1)

. We have

*N-i ffc={yj 1 y J2 ---7iJAf-l<^<---<^-i<^id-i<^ + P--l if </ >!,=!'; = /:}.

Let % = &N,k r( &N-i,k (
= those elements of ^-i.fc that do not contain any y^^'s).

Let (f be the set of those elements of 38N - ltk
which contain a certain number of

y^-i's, say e^l of them, and which have the largest subscript id satisfying

id ep^N + pl. Let $ be obtained (elementwise) from <^ by replacing each yN _ 1

by yN + p
_ j

and decreasing the highest subscript accordingly. The theorem follows from

(2.1.1) Claim

(2.1.2)^ = ^11*?

(2.1.3) (&N - ltk
- )v<f is a basis for R (

k

N ~ 1}
.

Proofof (2.1.2). Obviously # ^N^ and ^ c JfN fc
. Furthermore, any element

that contains e > 1 y^+p-i's (or one yN + p _i and one y with subscript >N + p 1) is

obtained uniquely by the above transformation from an element of <?
,
and any

element of @N that contains at most one y#+ P -i and has all other subscripts
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-l is in #. Thus ^Nk ^^^jS. It is obvious that #n<^ = 0, which proves

(2.1.2).

Proof of (2.1.3). Let

and let <?' be the set of those elements of Sf which contain a certain number of

y/v-i's, say e^l of them, and which have the largest subscript id satisfying

id -ep^N + p-1. Then JVijc^N,* c #' and g ro . Let p: <T II N tk ->'oUO!Ntk

be the map which is identity on ^
N>fc

and is defined on <f' as follows: if ye<f
'

then

write y = yN ~i8yc with c^ N -\-2p- 1 and <5 a monomial in y^-i, )>#,..., y^H-p-i, and

define p(y)==5
i

yN+p _
1 y c _.

p
. Further, for such a y

= yN-i<5yce<f

Put ^ = ^ II#, and for z^l let ^ =
{p(y)\yeS! i

. 1 }.
Then each

f
is a subset of

, p is a bijection from 2
i
onto ^i_ l5 and ^11^ = ^- for f0. Let

Q.j {yt<$ i \yN _. l appears exactly to power; in y}.

Then Q
i

=
11^ f</>

and for i, j ^ 1 we have p( _ u) ^
fj
_

t
with equality if; ^ 2.

Let ye y with; ^ 1. We claim that S(y) ^j-i. This is clear for i = 0. If i^l then

y = p(j8) with j?6^^ 1J+1 , and clearly S(y)= {p(a)|aeS(j8)}. So the claim follows by
induction on i. Now, the set (y,p(y)}uS{y) has p + 2 elements, and by (1.1) and

(1.3) (c) any p -f 1 of these elements form a basis for the vector space spanned by this set.

So, as S(y)^^iJ _ 1 , the sets {y}^& ltj
^

i
and {p(y)}^j^ij, 1 span the same vector

space. Therefore, since 2
{
can be obtained from S

i
_ 1 in stages by changing

u))u^
starting with the highest h, it follows that each spans the same space. In particular,

^ U^ and <^II# = &Ntk span the same space. The former being a part of a basis for

#*-!,*, (2.1.3) is proved. B

COROLLARY 2.2.

The idea/ o/a// relations among the y's is generated by the quadratic relations (1.2).

Proo/. Only the relations (1.2) were used to reduce the set of all monomials of weight
k in the y's to the basis 39Ntk . H

COROLLARY 2.3.

Let V
ktd

be the subspace of R (* }

spanned by monomials of \veight k and degree ^d in

the y t (deg y t

- = 1 for all i ^ 1) as in [4, 2]. Then V
k%d

has Q-basis of those monomials
in &N ^k of degree ^d.

Proof. The indicated elements are linearly independent since they are part of the

basis &Ntk . Therefore it suffices to prove that they span KM . To do this we may assume
that p ^ L If

yflj is a factor of a monomial in the y's of weight /c, and degree ^d
with i and; both >N + p, then as in the proof of (2.1) the quadratic relations (1.2)
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can be used to replace y^- by a linear combination of ? +^7^ +./-#,

yN+1 yi+j . N , l9 ... 9 yN+p ^ 1 yi+j^ ff .p+1 (note that i+j- N -p+ l^N + p-l^N
and that the quadratic replacement does not increase degree), from which it follows

that the claimed elements span FM .

COROLLARY 2A (cf. [4, (2.1)])

We have dim Vk d
=

{ } for k 0. More precisely, dim Vkd { } if'

\ P /
'

V p )
and only if k^m, where m is defined as follows: (1) if p^l and d^2 then

m = (N 4- p l)d; (2) ifd = then m = 1; (3) in all other cases m = N or m = accordingly

as N> 1 or N = 1.

Froo/. Case (2) is trivial. For, if d = then =0, and the only product of
\ P /

degree zero is the empty product which is 1. So assume that d^l. Then if the y of

highest weight is removed from each element of the basis of Vkd described in (2.3),

this basis is put in one-to-one correspondence with a subset of the monomials of

degree less than or equal to d 1 in the p variables yN9 yN+ 19 . . . , yN + p ~ ^ If k is large

enough we obtain in this manner all monomials of degree less than or equal to

d1 in yN,yN+i 9
.'.

9 yN+ p -i. Since there are
(

1 such monomials, the first

\ P /

part is proved. Assume now that we are in case (1), i.e. p ^ 1 and d ^ 2. Then a

monomial M of degree ^d 1 inyN9 yN+1L9 ... 9 yN+p ^-L corresponds to an element of

our basis if and only if fc wt(M) is bigger than or equal to any subscript occurring in

M. The most critical case is y^Vp- 1
which requires k (d l)(N + p l)^ N+ p 1,

or k^(N +pl)d = m, proving case (1). The proof of case (3) is an easy and

straightforward verification. H

Example 2.5. Here is an example to illustrate the algorithm in the proof of (2.1).

Let N = p = 2. Then dimQR (v = 31 9 dimQ^ = 10. Monomials in the /s will be

represented by listing the subscripts, thus (1,1,2,7) represents y^y?- ^e ^ave

* =
{(1, 10), (1,1,9), (1,2,8), (1,1,2,7), (1,2,2,6)} and # = {(11), (2,9), (2,2,7),

(2,2,2,5), (2,2,2,2,3)}. To understand the example it is not necessary to list the

elements of #
1(11

- S>

explicitly. We have ^ = f UV =
00U001 II002 with

00
=

{(11), (2, 9), (2, 2, 7), (2, 2, 2, 5), (2, 2, 2, 2, 3)},

^01
=

{(1,10), (1,2,8), (1,2,2,6)} and 02
=

{(1, 1,9), (1,1,2,7)}.

The following table shows how the transformation proceeds using the linear relation

among y,p(y) and S(y):

y = Replaced by p(y)
= Using 5(y) =

(1,1,9) (1,3,7) (1,10), (1,2, 8)

(1,1,2,7) (1,2,3,5) (1,2, 8), (1,2, 2, 6)

(1,10) (3,8) (11), (2, 9)

(1,2,8) (2,3,6) (2, 9), (2, 2, 7)
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(1,2,2,6) (2,2,3,4) (2, 2, 7), (2, 2, 2, 5)

(1,3,7) (3,3,5) (3, 8), (2, 3, 6)

(1,2,3,5) (2,3,3,3) (2, 3, 6), (2, 2, 3, 4)

The first two rows show how ^02 is transformed into p(@Q2) an(* the next three rows

show how @01 is transformed into p( i)- This Sives ^i=-iou^ii with

^n =p(S02 )
= {(l,3,7),(l^

(11), (2,9), (2,2,7), (2,2,2,5), (2,2,2,2,3)}. Finally, the last two rows show how Sn
is transformed into p(Q^\ giving 2

= 20 = p(^ i)U 10
=

{ (3, 3, 5), (2, 3, 3, 3), (3, 8),

(2, 3, 6), (2, 2, 3, 4), (1 1), (2, 9), (2, 2, 7), (2, 2, 2, 5), (2, 2, 2, 2, 3)}
= tUV = #

2il ^ Note that

for fixed i, j the order in which elements of 2
tj

are transformed into those of

is immaterial.

The basis of K3ill given by (2.3) is {(11), (2,9), (3,8), (2,2,7), (2,3,6), (3,3,5)}.

The calculation of the Poincare series is now just a matter of counting #Ntk . The

number of partitions of k as sums of integers each ^N and ^N -f p 1 is the coefficient

of t
k
in

1

77- (2-6)

Allowing one integer > N -f- p 1 is the same as finding the partitions of the integers

from to k N p as sums of integers each ^ N and ^ N -f p 1 (adding one more

integer, which will be greater than N +p1, to each partition to bring the sum up
to k), and the number of such partitions is the coefficient of t

k
in

^ (2-7)

Adding (2.6) and (2.7) yields

Theorem 2.8. Let P(t) be the Poincare series for the ring R(N
\ i.e.

where H(k) = dimQ R(
N
\ Then

By a similar argument, using x to keep track of the number of terms added, we

obtain that dim FM is the coefficient of xd
t
k
in

1 + i v+N + p

^ (2-9)

3. Relations ideal and the structure of

In this section we determine the structure of R(N)
by finding a minimal presentation

for it as a graded Q-algebra. We show that R(N) has Krull dimension p + 1 and
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embedding dimension N + 2p9 and that in a presentation of R(N) as a graded quotient

of the polynomial algebra in N + 2p variables the ideal of relations is generated

minimally by f
)

elements. As corollaries, we show that R(N)
is always

Cohen-Macaulay; that R(N}
is Gorenstein if and only if it is a complete intersection

if and only if N +p^2 (which happehs exactly in the three cases p = 0, N"= 1; p = 0,

N= 2; p=l = JV); and that R(N)
is regular if and only if p = 0, N=l.

Let B=Q[TN9 TN + i9 ... 9
T2N + 2p-i] ^e the polynomial ring in N + 2p variables

graded by weight (Tt)
=

i, and let cp: B-+R (N) be the Q-algebra homomorphism given

by (p(Tt)
=

y t
for all L Let A = Q[T^ TN + l9 ...

9
TN + P] 9

let M be the 4-submodule of

B generated by l,rAr+p+1 ,...,r2Ar +2p-i an(* *et M' = <p(M). Then M' is the ^-sub-

module ofR (N}
generated by 1, yN+p + 19 ...

i y 2N+ ZP- 1
where ^' = Q[y^ 7* + 1>

(We will see later that M' =

Lemma 3.1. W7e /iat;e y^M' and yf/^eM' /or a// i, / ^ N.

Proof. We prove the first part by induction on f. Clearly we have y f
eM' for

N^i^2N + 2p-L Let i^2N + 2p. Then i-N-p^N +psoby (1.2) y (

- belongs

totheQ-spanofyNy _jV,yN+1 y f JV l9 ,..,7JV + py I
.. Ar

^
p

. Now 7 i
. JV,y l

.. jV _ 1 ,... 9 y l
.. w . peM

/

by induction, since i>i N^i N p'^N. Therefore y^-eM', and the first part is

proved. Now, if at least one of f and j is < N 4- p then y^eM' by the first part. On
the other hand, if both z and 7 are > N } p then z +7 N p 4- 1 > N + p 1 so by

(1.2) ytfj belongs to the Q-span of y i +j 9 yNyi+J - N9 ...
9 yN + p

_ 1 yi+j , N _ p + 1 (just yi+j if

p = 0) and these p+ 1 monomials belong to M' by the first part. So y

By the Lemma we can write, for i9j^N + p+ 1, y -yj
= a'

a\p'h eA'. We may assume that a',/^ are homogeneous of appropriate weight so that

the expression is homogeneous of weight i +j. Lift a', p'h to homogeneous elements

a, ph of A of the same weight and let

2N + 2p-l

P
tj
=T

tTj-tt- X ftTA .

Then Py is homogeneous of weight z + j.

Theorem 3.2. T/ie graded Q-algebra R(N) has Krull dimension p-f 1 anJ embedding

dimension N 4- 2p, flm/ /i^5 <2 minimal presentation with N -f 2p generators and I

relations. M^^ precisely, the Q-algebra homomorphism (p:B-*R
(N}

is surjective and

the ideal ker(cp) of B is generated minimally by the I 1 elements P^

Proof. By [2, (1.4)], or by (3.1) above, R (N)
is generated by y

This means that cp is surjective, and R (N)
is a Q-algebra of finite type. Now, since the

quotient field of R (N)
is Q(x 1 ,...,xp,z) by [4, (5.2)], we get dim(R

(A
)
= p+ 1. (That

dim(J^
(N)

)
= p+ 1 also follows independently from (3.3) below.)

We show next that the set {P^N 4- p + 1 < i ^ j ^ 2N + 2p
-

1} generates ker(<p)

minimally. To do this, let / be the ideal of B generated by this set.
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Minimality. Since the P
tJ
are homogeneous, it is enough to show that no P

tj belong

to the ideal generated by the remaining ones. Suppose for some ij we ha\

Pgj
= Z(r S)#a jyfrs

P
rs
with /rs ejB - We may assume that each /rs

is homogeneous wit

weight (/) = i+j r s (negative weight means the element is zero). L<

frs(TrTs

Since AT + p + 1 ^ i, j ^ 2N + 2p 1 and Q tj
is of degree at most one i

TJV +P+ i ?2N+2p- 1
the term T

i
T
j

is present on the left hand side. Let us look fc

this term on the right hand side. First of all, Ti
T

j
cannot appear in any of the tern

frsTrTs because (r,s) ^(,7) is an unordered pair. It follows that T
i
T

j
must come froi

one of the terms /rsQrs
. Since N 4- p + 1 < z, j< 2N + 2p 1 and Q rs is of degree at mo;

one in TN + p+l9 ...
9
T2N + 2p - 1 ,

m order for T
i
T
j
to appear in the term frsQrs

it

necessary for/rs to contain a term which is a nonzero rational times T
t
or T} or 7^7

Accordingly, we would get i +j r s weight (/rs) = i or j or i+j whence r + s =

or i or 0. This is a contradiction, since r -f 5^ 2N 4- 2p + 2. This proves the minimalil

of the generators.

Generation. By construction, we have / ker(</>). So we have the surjective ma

\I/\B/I -+R(N} induced by cp. We have to show that
\l/

is an isomorphism. Note th;

M is a free ^-module of rank N + /?, with basis T := l
9
TN+p+l9 ... 9 T2N+2p .

1
. 11

module M is graded by weight (T )
= i. Let (: M -

B// be the restriction of the natur;

map B-+B/I to M. Given any polynomial in B, we can reduce it modulo / to a

element of M. This means that is surjective. Now, let <r = \l/. Then <r: M -> JR ( ^V)

an y4-linear map which is homogeneous of degree zero and is surjective. Now, denotir

by PL(t) the Poincare series of a graded ^.-module L and writing R = R(N
\ it is enou^

to prove that PR(t)
= PM(t). For, since a is surjective, this would show that a is a

isomorphism whence also
\f/

is an isomorphism. Now, by (2.8) we have

On the other hand, since A is the polynomial ring Q[TN,TN+1 ,... 9
TN+P~]

with weig]

.)
=

i, we have

p (A _XU

Therefore, since M is A-free with basis 1, TN + p+l ,... 9
T2N+2p _ l

and weight (T.)
=

we get

l * . .N + p+ 1

Now, it is checked readily that PR(r)
= PM(t). This completes the proof of the equali

Finally, we show that the embedding dimension of R(N}
is N + 2p. Recall that f

a finitely generated graded ring C = @ k ^ QCk
with C a field its embedding dimensic

emdim(C) is the minimal number of homogeneous C -algebra generators of C,

equivalently the minimal number of homogeneous generators of the ide

C+ =
*^iCfc. ^n our situation we have R(N) = B/I with / generated by the P
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AT + p + 1 < i <; < 2N + 2p 1. For such f, 7 we have i+j^2N + 2p + 2. Therefore

in the expression Pij=TtTj-ai-xlp
p

~
+\fiHTh we have aeX + and each pheA + .

This shows that /s^ Therefore by (graded) Nakayama the minimal number of

homogeneous generators of the ideal R (

+
} of R(N)

is the same as that of the ideal B+
of B, which is AT -f 2p, since B is the polynomial ring in N + 2p variables. This proves

COROLLARY 3.3.

The ring A' *=Q[yN,yN+l9 ...,yN+p] is the polynomial ring in p + 1 variables over

and R(N)
is a finite free A'-module with basis

Proof. The restriction of the isomorphism <r.M-+R(N) to A is a Q-algebra

isomorphism of A onto A', sending T
t
to y t (N ^ i ^ N + p). This implies the first

part. The second part follows since (T(Tt-)
=

y f (i
= or AT + p + 1 < i < 2AT -h 2p 1).

H

COROLLARY 3.4.

A Q~basisfor R(N) in terms of monomials in y^

Consequently, a Q-basisfor R (^ is

which can also be written, for comparison with (2.1), as

j=l

Proof. Immediate from (3.3). H

COROLLARY 3.5.

The sequence yN,yN +i,...,yN+p is R(N}
-regular, and the ring R (N)

is Cohen-Macaulay.

Proof. The regularity of the sequence is immediate from (3.3). Therefore the

localization of R(N) at the irrelevant maximal ideal R (*) of R(N}
is Cohen-Macaulay.

It is well known that this implies that R(N)
is Cohen-Macaulay (e.g. [1, (33.27)]).

COROLLARY 3.6.

The following three conditions are equivalent:

(1) R (N)
is Gorenstein; (2) R (N)

is a complete intersection; (3) A/ + p<2.
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Note that, since N ^ 1, (3) occurs in exactly the following three cases: p = 0, N =
1;

Proof. (l)o(3): Since R(N)
is graded, it is well known that R(N)

is Gorenstein if and

only if its localization at the irrelevant maximal ideal R is Gorenstein (e.g.

[1, (33.27)]). Let C denote this localization and put D = C/(yN, yN + 19 . . .
, yN+p). Then,

since C is Cohen-Macaulay and yN9 yN+l9 ...,yN+ P
is a regular C-sequence by (3.5),

C is Gorenstein if and only if D is Gorenstein. Let m be the maximal ideal of D.

Then, since dim(D) = 0, D is Gorenstein if and only if ann(m), the annihilator of m,

is a 1-dimensional space over D/m. Now, it follows from (3.2) that m is generated

minimally by SN+p+19
... 9 82N + 2p . 19

where 8
i
denotes the natural image of y, in D.

Consider two cases:

Case 1: m=0. In this case D is Gorenstein, and this case occurs <=>

Case 2: m ^ 0. Then ann(m) c m. IfN + p + Ki,j<2A/' + 2p-l then, as noted

in the proof of (3.2), we have Py = T^T,-
- a - Zj^iJJ^i^Th with aeA 2

+ and each

Ph
eA + . It follows that m2 = 0. Thus m^ann(m) whence ann(m) = m. So D is

Gorenstein om is generated by one element o2N + 2p-l = iV-fjp+l<>iV-fp = 2.

(2)o(3): Since dim(JR
w

)
=

p-f-l and R(N} = B/I with / minimally generated by

homogeneous elements, R{N)
is a complete intersection if and only if

fN+p\
JV+2p=p-j-l-H 1. The solutions of this equation with integers p ^ 0, N ^ 1

are exactly those given by N + p ^ 2.

COROLLARY 3.7.

The ring R(N)
is regular if and only i/p= 0, JV= 1.

Proof. R(N}
is regular oemdim(K(JV)

)
= dim(R

(JV)

)<*>N + 2p = p+ 1 oJV + p= 1op = 0,

Example 3.8. We illustrate the structure theorem (3.2) by computing P
lV explicitly

in the cases p=l = JV andp = l, ]V=2.

First, let p= 1 = JV. In this case B = Q[Tl5 T2 , T3], A = Q[Tl5 T2], 4' = Q[y ls y2],
M' is the ^'-module generated by I,y 3 , and there is only one relation P33 . To find
it we have to express yl as an A'-linear combination of 1, y 3 . We da this by eliminating
?4,y 5 among the relations (1.4.1), (1.4.2), (1A3) obtaining

3 1'2 '2 *1'3 *1'2'3

as the desired linear combination. So P33
=
T\
-
3T^T^ + 47^ 4- 4T^T 6T T T

A similar computation for the case p= 1, JV=2 gives

R(2) s Q[T2 ,
T

3f T4, T5]/(P44, P45 , P55)
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4. The independence of 3$Nyk

In this section we give a new proof of the linear independence of &Ntk ,
which does

not depend upon the proof of (2,1). The matrix approach used here gives additional

insight into the nature of .jR
(N)

. In particular, we obtain a sharpening of the

independence part of (2.1), in that we prove that a specific minor of a certain matrix

is nonzero. Our matrix theoretic techniques are perhaps of interest in their own right.

Before stating our result precisely (Theorem (4.1)) we would like to describe more

carefully the relationship between the two bases ^
1>fc

and <&k:= {z
k
G'

t(k)\te3~k } of JRj^.

In 2 we noted that yk is a set of integers indexing (as t ranges over ^k) all sequences

of the form a
t
=

(a ls a 2 ,
. . .

,
a

fc)
with ^ o^ < a2 ^ - ^ a

fc ^ p, ak _ L
= ak, J> < k. In

[4, 3] we also introduced monomials b
t
= x

ail
x

OL2
"-x

Xk (with x =
l). If we wish to

write an element M of ^
1>fc (or more generally, any monomial M of

weight k in the y t)
as a linear combination of &k we just expand M in terms of

monomials b
t
. Then the coefficient of z

k
G'

t(k) in M is the rational coefficient of b
t

(ignoring the power of z). See [4, (3.7) (5)], and for some explicit examples [4, (4.3)].

We shall think of the basis element z
k
G'

t(k) as also being indexed by the monomial b
t
.

Put ^ ifc

= W^-xJ'IO^Kp, a
q ^2, Z?=1 (z + N-l)a f </c}. Then ^ has

the same cardinality as 3BNtk . An explicit bijection between 3S'N k
and 3&Ntk is given

by x?
1

x5
a

-xj^yj r%a

+1
--y^_ 2y^-i^ where e^JV + ^-'l is chosen to yield

weight k. Give the set {x^x^
2 -xa

q
q \Q^q^p,aq '2z2} the reverse lexicographic order

and let 8'N k
have the induced order. Let &Nk be given the order corresponding to .

that of &'N k under the above-mentioned bijection between &Ntk and &'
Ntk

. This done,

let C be the matrix over Q whose ij entry is the coefficient of the jth element of &k

in the expression of the ith element of &Ntk written as a Q-linear combination of ^k .

The linear independence of 38Ntk follows immediately from the following theorem.

Theorem 4.1. Let p ^ and let be the matrix (with entries in Q) defined above. Let

r\
be the submatrix o/( consisting ofthe columns corresponding to 3^'N^ Then det(^) ^ 0.

Our first attempt to prove the linear independence of the ^
Njfc

was by proving

(4.1), but this turned out to be somewhat elusive. So we ended up proving (2.1) using
the basis interchange technique given in 2. However, we were still intrigued

by the equality card(#Ntk)
= card(&'N k),

and we were finally able to prove (4.1), showing
that this equality is not a coincidence. This gives an independent, but more difficult,

proof of (the linear independence part of) (2.1). In the proof of [4, (4.1)] (the case

N =
l)'the matrix (

=
r\

in this case) was triangular with nonzero entries down the

diagonal so non-singularity was easy to establish. We have not been able to find

such a simple argument in the case N > 1.

The following example will help explain the meaning of (4. 1), as well as illustrate (2.3).

Example 42. Let JV= p = 2, fc=10. Then J"
2>10

= {l^x^x^XpX^x^xJx^x!}
and in the corresponding order #

2tlo
=

{y 10 , y2ys , y^y6, y|y4, y*, y 3y7 , y2y3y 5 , y\y\> y^yj.
Then K1(U has basis {y 10 },

F10>2/F10 ,i
has basis {y2y^y^i}, ^10,3/^10,2 has basis

fe'Wa^?^}' "10.4/^10,3
has basis (vly^ylyli and "io, 5/"io,4 has basis {yf}-

The complete list of monomials corresponding to &k is {l,XpXpXpXpXpxJ,xJ,x^,
1 * 2* X^X-2? X^X*2^ X^X^i X]X>2i X-^X^ X-^X^ X^ X^X^t X-^X^ X-^jC^ Xr-^X,^ 2* 12' 12' 2 /

so the matrix is 9 by 26. Monomials of degree greater than 5 can be omitted since

all entries in their columns will be 0. This leaves l.xxxxxxxxxxx
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X2 x
i
xi x i

xl
x2

x
i
x

2>
x2} so ^e non-trivial part of f is 9 by 15. We shall not write

this matrix down, but the possibly nonzero entries by degree considerations (a row

of degree d can have nonzero entries only in a column of degree ^d) are indicated

by *'s, and only the subscript digits are indicated for the row indices (x being 10).

The column indices of ^'
2tlo (i.e. the columns of rf) are underlined.
2tlo

*

*

*

*

* *

* * * * * * *

Theorem (4.1) in this case is sharper than (2.1) in that there are several other

maximal minors that could be nonzero.

The proof of (4.1) will now occupy the rest of this section. The various constructions

involved are illustrated by Example (4. 12) below, to which the reader might refer

while working through the proof. Suppose p = 0. Then ^ =
{z

fe

}
and ^i^ = {l}-

Further, ^N , fc

= if 0<k<N and &Nik
=

{yk} otherwise. So ( is either the Oxl

empty matrix or the 1x1 identity matrix, and (4.1) holds trivially in either case.

Similarly, (4.1) is trivial in case /c = 0. Assume therefore that p^ 1 and k^ 1. The

integers p, k and N ^ 1 are fixed in what follows. Let d = \_(k/N)]. In the notation of

[4, (3.5)] let s/' = {(a l5 . . .,ad)eZ
d

1 <!< ad _! = ad < p}. For i > 1 let a
t
be the

number of times i occurs in (a l9 ...,ad). Then the correspondence (a !,..., ad)
<-+

(a !,..., ap) identifies s#' with the following subset U of (Z
+

)
p

:

d, 3; with a^ 2 and a
i

=

For a = (a l9
. . . , a f define the

Define K =
of a to be wt(a)

=
=

{(0,...,0)} and
f- 1 (W + *

-
l)flj. Let

for 1</<P define

. Put ^ =
We use the reverse lexicographic order on U. Namely, (a l9 . . .

, ap) < (b^ . . .
, bp) (or

(a l9 ...,ap) "precedes" (b l9 ...
9 bp)) if the last nonzero entry of (a l5 ... 9 ap) (b l9

... 9 bp)

is negative. Let Fand P^have the induced order. This order is such that the elements

of V
j
, l (resp. Wj-t) precede those of V

j (resp.

Let S = Q[x l5 ...,xp,T] and let

the ith element of W define

F (T) =

i (where x =
l). If (a l9 ... 9

ap)i&

-

JF(N + p -

Note that JF(n)
=

(7n)r = i, and that F
t(k) is the fth element of a

Ntk (with z set equal to

1). The reason for decreasing the last index in defining the elements of W is to take
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into account the adjustment of the last index to obtain weight k when defining the

elements of Ntk . If (b lt ...
9 bp) is the ;th element of V then x* l

x^
2

---xj*
is the jth

element of S8'Nk (where the latter has the same order as before). Let

r = card(F) = card(H
/

).
Let M(T) be the rxr matrix (Afy(r))1<jJ<r with

M;;(r)eQ[r] the coefficient of x^x*
2

--^ in F (T), where (b l9 ... 9 b'J is" the jth

element of V. (Note that the rows ofM are indexed by W and that the columns are

indexed by V.) By the discussion preceding Theorem (4.1), M -(/c) is the coefficient of

z
k
G'

t(k) (t corresponding to the jth element of S8'N k)
in the expansion of the z'th element

of &Ntk
. Therefore ?/

= M(fe), so (4.1) is equivalent to M(/c) being invertible. If p=l
then M(k) is lower triangular with nonzero entries down the diagonal, hence trivially

invertible. The argument that follows is needed only for p ^ 2.

Note that if j corresponds to an element of Vh then

degrAfy(TXfc. (4.3)

Therefore

degT det(M(T))<<5:= /rcard(Fft)= /i-card(^). (4.4)
/=! A=l

Our intention is to show that M(k) is invertible by finding S roots for det(M(T)),
each less than fc, and then showing that the coefficient of T8

in det(M(T)) is not

identically zero. The d roots will be found by obtaining coincidences of the rows of

the matrix M(s\ as s ranges between N and k 1.

We begin by proving a few lemmas.

Lemma 4.5, Let M(T) be an rxr matrix with entries in Q[T]. Let peQ. Let ^ be

the set of rows of M(T) and let f be the set of all nonempty subsets of %,. Suppose
there exists a subset S of f such that

(1) The sets in S are disjoint.

(2) For each Ee<?, all the rows in E coincide when T is specialized to
\JL.

Lei c = c(S) = Z e,(card(E)
_

i). Then (T- tf divides det(M(T)).

Proof. It is clear that rank(M(/z)) < r c. By elementary row and column operations
over Q[T] the matrix M(T) can be reduced to a diagonal matrix D(T) with diagonal
entries {/i(T),...,/r(T)}. (This is well known, and easily proved using that Q[T] is

an Euclidean domain.) Then (since the same operations can be carried out with T
set equal to

ILL)
we have rank(5(ju)) = rank(M(/x)) < r c. Thus (T ^) divides at least

c of the'/r Since (up to a nonzero scalar) det(M(T)) = det(D(T)) = U\= l /., the lemma
follows. M

Before stating the next lemma we introduce some notation. For a=(a l9 . . . , ap)e(Z
+

)
p

put / =
yj

l

yy+1 -7ji

v p . 1
. Then @N ,k

=
{y

a
yk - wt(a} \aeW}. Since the rows of M(T)

correspond to &Ntk , those of M(s) correspond to &N ,k(s):= {y
a
ys - wt(a)\

aeW}. Here the

elements y
a
ys - wt(a)

are treated as symbolic monomials with s wt(a) allowed to be

negative. Given symbolic monomials y
a
yt, y

b
yu with a,be(Z

+
)
p and t, weZ, we say

they are formally equal if at least one of the following two conditions holds: (1)

(a, t)
=

(b, u); (2) both t and u belong to the set {0} u [AT, N + p- 1] and /y f
and /y tt

coincide as formal monomials in 7N,...,7N+p _ 1 on replacing y by 1. We say that a

row R of M(s) is labeled by a symbolic monomial y
fl

y, if the symbolic monomial in
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@Ntk(s) corresponding to R formally equals y
a
y t

. Clearly two rows of M(s) labeled by

the same symbolic monomial are equal.

Let 2;= {(b l9
... 9 bj9

Q
9

. . .
, 0)e(Z

+H^O}. For beQj put E(6)= Wn{fr-*,|0<
i < j} where eQ

=
(0, . . .

, 0) and for 1< i < p, e = (0, . . .
, 1, . . .

, 0) is the standard basis

vector with 1 in the ith place.

Lemma 4.6. Let beQj. Then the rows of M(wt(b)) wWc/i are labeled by /( = /y )

are precisely those indexed by E(b). Moreover, ifb, ceQj with b^c and wt(b) = wt(c)

thenE(b)r\E(c) = 0.

Proof. It is clear that the rows of M(wt(b)) indexed by E(b) are labeled by y
b

. Let R
be a row of M(wt(b)) which is labeled by y

b
. Let a be the element of W corresponding

to R. Then the symbolic monomial of &Ntk(wt(b)) corresponding to is y
a
ywt(b)- wt(ay

Comparing the subscripts and exponents of this symbolic monomial with those of

y
b we conclude that aeE(b). This proves the first part. Now, let 6, ceQ/ with

wt(fc)
=

wf(c) = s, say. Suppose E(b) and E(c) have a common element, say a. Let R
be the row of M(s) indexed by a. Then jR is labeled by y

b
as well as by y

c whence

we get b = c. H

Lemma 4.7. For an element b of Qj the following three conditions are equivalent:

(1) card(E(b)) ^ 2; (2) b-e^W for some i, Q^i< j; (3) b - epWandb- e
t
eW for

some i, < i<j-

Moreover, if any of these conditions holds then wt(b) < k.

Proof. Assume (2). Then b e^Qh for some fc, i^h^j. Since b eieWj we have

\vt(b
-

ej)
< wt(b

-
ed ^ k - (N +j - 1)< k ~ (N+ h- 1) whence b-e^Wh. This proves

(2)=>(3). Also, the inequality wt(b-ej)<k-(N+j-l) gives \vt(b)<k. The

implications (1)=>(2) and (3)=>(1) are trivial.

Put Q = {beU'^Qj\caid(E(b)) ^ 2}.

Lemma 4.8. The product UbQ (T- w^fc))
"^^" 1

divides det(M(T)).

Proof. Writing Q(s) = {beQ\ wt(b) = s}, it is enough to prove that U
bfeQ(s)

(T-w^fr))
6"^5"" 1

divides det(M(T)) for every s. But this is immediate from (46)
and (4.5), since rows labeled by the same symbolic monomial are equal.

\

Lemma 4.9. %beQ (card(E(&))-l) = <5.

Proof. For fceQ n Q,. put E'(b) = { (ft, b
- e

t) \ ^ f < ;, b - e,e W}. It follows from (4.7)

that card(F(fc)) = card((fe))
- 1. Let <$ =U beQE'(b). The second projection induces a

map rj:^^W. Let ae W} and let i be an integer with ^ i <j. Then a + e eQ by (4.7).

It follows that //~ V) = {(a+ e* a)|0 < i <j}. Thus there are exactly j elements in the

fibre of r\ over each element of Wj. Therefore we get ^beQ (csird(E(b)) 1)
=

)
= card(^) = J, , 7 card(^.)

= 5.

Now, since degr det(M(T)) ^6 by (4.4), and since (4.7)-(4.9) taken together exhibit 8

roots of det(M(T)) each less than /c, it remains only to show that det(M(T)) is not
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identically zero. We do this by showing that the coefficient of T* is not zero. Let a
tj

be the coefficient in M {T) of Th
if j corresponds to an index in Vh (by (4.3) h is

highest power of T with a potentially nonzero coefficient in M
i}{T)). It then suffices

to show that det((0- -))^0. For l^i, j^r (where as before M is rxr) let

H
t(T) = F(T)

ai
F(T + If

2 - F(T + p - l)
fl

*, where (a l9 ..., ap) is the fth element of W,

and let ry be the coefficient of x^x^
2

---*^ in HN), where (fe^...,^) is the jth

element of W. Let h be the index for which (b l9 ... 9 bp)eWh . Then, since

(fc l5 ...,l +bh, 0,...,0) is the corresponding element of Vh and since FT) =
Hi(N)F(Tc) for some integer c, we get <ry

=
(l/fc!)Ty . So it suffices to prove that

det(i) ^ (where t = (ry)). Rearrange the rows and columns of i by reordering W by

degree (where degree (a l9 . . .
, ap)

= IX-). Then T is lower-block triangular with degree

blocks down the diagonal. It suffices to show that each of these blocks has a nonzero

determinant. Therefore for u (Q^u^d I) let Su be the submatrix of t with rows

and columns indexed by elements of W and V of degree u. It suffices to show that

The matrix Su is obtained as follows: Let W(u) be the elements of W of degree u,

and let r(u)
= card( W(w)). For 1 ^ i, j ^ r(u) let (a l9 ... 9 ap)be the fth element of W(ii)

and let (b !,..., bp) be the jth element of W(u). Define an ru x ru matrix LU(T) by setting

the (i, ;') entry to be the coefficient of x*'x*2

xj*
in H

t(T). Then Su
= LM(AT). Thus it

suffices to show that W is not a root of det(LM(T)). Since we are now dealing with

the homogeneous case we can replace F(T) by F(T) = ^?= A lx and H^T) by

Hi(T) = F(T)
ai
F(T + l)

fla
- F(T + p - l)

ap without changing LU(T). We now note that

H-(T) is divisible by T l

(T + l)
a2 - - - (T 4- p - l)

flp
,
or equivalently, the ith row of Lu is

divisible by Tfll

(T-h l)
fl2

(T + p
-

l)
ap

. Factoring out these entries from the rows of

LU(T) we obtain a matrix KU(T) which can be defined directly as follows: let

/T-l\
G(T) = f=1 (l /f) )x, (so that TG(T) = F(T)) and define L

t(T) = G(T)
fll

G(T +

-
l)
ap

. Then the (i9 j) entry of XU(T) is the coefficient of x^x^ xj*
in Li(T). Noting that the roots of the factors (T+ i)

flf are all <0, it suffices to prove
that N is not a root of det^R^T)). In fact, det(Ku(T)) is a nonzero constant, as we
show next.

For a = (a l9 ... 9 aj9
Q

9
...

9 Q)eQj define aw(a), the augmented weight of (2, to be

N +7 - 1 + Zf= t (N + i
-

l)fl . Also define aw(0) = 0. If aeW then aw(a) is the weight
of the corresponding element of V, and aw(a)^k for all a^W. Now, order the

elements of W(u) by augmented weight with small weights coming first, and order

elements of the same weight by reverse lexicographic order as was done previously.

This ordering is such that

(4.10) if for j < i we decrease a
t by one and increase a

j by one then we get an earlier

element in the ordering.

Furthermore W(u) is a leading segment in the set W(u) of all elements of degree u

in (Z
+

)
p
(where W(u) is ordered in the same manner). The matrix KU(T) can be

constructed with W(u) ordered in this way without changing the value ofdet(XM(T)).

Now we shall work with W(u). Let r(u)
= czrd(W(u)) and let KU(T) be the fu x fu

matrix whose (i, 7) entry is the coefficient of x^x*
2 - xb

p
p in L

t(T):= G(T)
ai
G(T -h I)"

2

G( T + p l)
ap where (a l9 ... 9 ap ) and (b l9 ... 9 bp ) are respectively the fth and the jth
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elements of W(u) (for convenience of notation we are changing the'meaning of L

rather than introducing a new symbol). Let u = 1. If we take out the factors l/i from

the columns then K^T) is reduced to the matrix J=
( J

. If we

subtract each row of J from the next (performing the operations in the order replace

pth row by pth (p l)st, replace (p l)st by (p l)st (p 2)nd etc.) and use the

.
1 tj .. /T-H-A /T+i-2\

r
binomial identities 1

(

= then J row reduces to

V j-i ; V j-i / V j-2 ;

) where J' = I )
- (Performing row operations in this

J'J LV j-1 /JKI^P-I
manner was suggested to us by Sue Geller.) Continued row reduction of thisjype

(subtracting from a row Q-linear combinations of previous rows) will reduce K X(T)

to an upper triangular matrix with ones down the diagonal. We conclude that

det(J) = 1 whence det(K 1(7'))= 1/p!, a nonzero constant. Now, let E = (Etj ) by any

p x p matrix with entries in Q[T]. If R
t
is the ith row of E let us identify R t

with

the element E ilx i +E i2x 2 + -- + E
ip
xp of Q[T,x l5 ...,xp]. Let /() be the fu x ru

matrix whose (i, j) entry is the coefficient of x^x^ x^ in R^Rf -'Ra

p
p

,
where as

before (a l9 . . .
,
ap) and (& 19 . . .

,
b
p)

are respectively the tth and the jth elements of W(u).

This construction is such that fu(K 1 (T)) = Ku(T). Furthermore if we change E into

a matrix E' by row operations of the above type (i.e. subtracting from a row Q-linear

combinations of previous rows) then because of (4.10) fu(E) is changed into /(')
by row operations of the same type. We have that / of an upper triangular matrix

is upper triangular, so KU(T) can be converted to an upper triangular matrix with

nonzero constant entries down the diagonal by a succession of row operations in

which from a given row we subtract a Q-linear combination of previous rows. These

row operations leave invariant the subspaces spanned by the first i rows (1 ^ i ^ fJ.

Since W(u) is an initial segment of W(u) we conclude that detX M(T) is a nonzero

constant, completing the proof of (4.1). H

Exampfe4.il. If JV = 3, p = 4, then in reverse lexicographic order we have

(1, 0, 2, 0) < (0, 1, 2, 0) < (0, 0, 3, 0) < (2, 0, 0, 1) with augmented weights respectively 18,

19, 20, 18. Therefore if we order reverse lexicographically instead of by augmented
weights the argument above will fail for k = 18 since then W(3) will not be an initial

segment of W(3).

Example 4.12. Let us return to (4.2), where N = p = 2, /c = 10. Here we have

K =
{(0,0)}, ^ =

{(2,0), (3,0), (4,0), (5,0)}, V2
=

{(09 2\ (1,2), (2,2), (0,3)}, W* =

{(0,0)}, Wl
=

{(1,0), (2,0), (3,0), (4,0)} and W2
=

{(0, 1), (1, 1), (2, 1), (0,2)}. The rows
of M(10) are indexed by the monomials #

2flo

ylyl^ly^} as noted in (4 -2
)- Thus the rows of M(s) are indexed by

j

{y& v 2^-2' 72^-^ rive* y^s-s^ y^y s -3^ y2yiys - 5 > yly*ys-v ylys -6}- The polynomial
det(M(T)) is of degree card(7x ) + 2card(F2) = 4 + 2-4= 12, and we have Q = {(1,0),

(2,0), (3,0), (4,0), (0,1), (1,1), (2,1), (3,1), (0,2), (1,2)}. Taking 6 = (1,0) we get

(&)= {(0,0), (1,0)}. This corresponds to the pair ys>y 2ys . 2 , indexing the first two

rows, which become equal when we set s = 2. The complete set of row coincidences is

obtained similarly and is given by the following table:
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By direct computation det(M(T)) turns out to be

2
4
3
5
(r-9)(T-8)

2
(r~7)

2
(T-6)

2
(T-5)

2
(T-4)(r-3)(T--2),

which is in agreement with the roots (together with multiplicities) obtained from the

above table. We have that det(M(T)) does not vanish at T= 10, as claimed.

Now we shall illustrate some features of the last part of the proof. Here

G(T) = xj + ((T
-

l)/2)x 2 ,
and G(T + 1)

= x t + (T/2)x 2 , so K^T) = K^T) =
(I (T- l)/2\v "

. We have W(3) = { (3, 0), (2,1)} and W(3) = {(3,0), (2,1), (1,2), (0,3)}.
\1 (T/2) J
The respective augmented weights of the elements of W(3) are 8 (

= 4-2),

10 (
= 2-2 + 2-3), 11 (= 1-2 + 3-3) and 12

(
=

4-3). The last two have weights greater

than 10 and so are not included in W(3). lip = 2 the reverse lexicographic ordering is

also an ordering by weight, but this need not be the case for larger p, as we saw in

(4.11). Set R l
= G(T) and R 2

= G(T+ 1). Then the matrix K 3 has rows {jRj, .R
2

2 ,

jRjjR
2

, ^2)9 (or more precisely the 4x4 matrix obtained by taking the coefficients of

{xpX
2x

2,x 1
x2

,X2} in these polynomials). The rows of K 3 will be denoted as

{r 1 ,r2,r3,r4}.
The row operation that reduces K^T) to upper triangular form is to

replace {Ri 9 R 2 } by {R 1,R2 R
1 }. Then /3({^i,^ 2 ~^i}) has row corresponding

tr\ /Z?3 l?2/n p \ n fn n \2 / p p \3\ fp3 D2p p3 p p2 0/?2p _iLO
|r\.^ y i\^^/\ 2 ^iJ> ^-ll^2 -*^1/ 1^2 -*^1/ J 1 1> 12 *^l> ^1^2 ^1^2 '

^i ^2
~

3-^1-^2 "^" ^^ 1^2
~
^?} so the row operation to reduce K 3 to upper triangular

form (with nonzero diagonal entries) replaces {r 1? r2 ,
r3 ,

r4} by (r l9 r2 r
l9

r3 2r2 +
r
1? r4 3r3 H-3r2 + r

x }.
The matrix K 3 is the upper left 2x2 submatrix of K 3 , to

which these row operations restrict, so det K 3 is also a nonzero constant. If we had

used weight 11 rather than 10, then K 3 would have been the upper left 3x3 block

of K 3 , which also has determinant a nonzero constant, for the same reason.

5. Hilberty polynomials

The graded ring R(N) has Hilbert function H given by H(n) = dimQ /?Jf. We consider

the problem of expressing H(n) as one or more polynomials in n. The Hilbert function
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of a graded ring which is standard (i.e. finitely generated over a field by elements of

weight 1) is given for n by its Hilbert polynomial. Our ring R(N)
is finitely generated

but is not standard except in the trivial case p= 0,.JV= 1. For such a ring there exist,

by [5, Corollary 2], a positive integer d and polynomials H , H ly . . . , Hd _ t
such that

H(n) = Jfj(n) if n and n == i (mod d
). (*)

In general, it is of interest to quantify precisely the condition "w 0". In particular,

in the standard case, if the Hilbert function coincides with the Hilbert polynomial
for all n ^ then the ring is called a Hilbertian ring. So we may call a general finitely

generated graded ring Hilbertian if (*) holds for all n ^0. In our first result (5.1) we
show that R(N}

is Hilbertian if p ^ 2, and determine the minimal d satisfying (*).

If p = then H(n) =1 if n = or n ^ N9 so in this case (*) holds with d= 1, H =
1,

and R(N)
is Hilbertian if and only if W= 1.

Now, in general, to say that R(N)
is Hilbertian is the same as saying that its Hilbert

function H is a quasi-polynomial in the language of [6, (4.4)]. The integer d appearing
in (*) is then a quasi-period of H .

Theorem 5.1. Let d = lcm(JV,AT+l,...,Ar + p--l). // p>2 then H is a quasi-

polynomial with minimum quasi-period d, and in particular R(N)
is Hilbertian. If p = 1

then the function H given by fl(n)
= H(n) for n^l and fi(0)

= H(0)- 1=0 is a

quasi-polynomial with minimum quasi-period d.

Proof. Let P(t)
=^ H(n)t

n and P(t) = n%H(n)
n

, where we put H = H if p ^ 2.

Then by (2.8) we have

and P(t) = P(t)
- 1 = t

N
/((l

-
r)(l

-
r*)) if p = 1. In either case write P(t) =

with f(t\ g(t) polynomials without a common factor. Then deg f(t) < deg#(t) and the

zeros of g(t) are the dih roots of 1. So by [6, (4.4.1)] H is a quasi-polynomial with quasi-

period d.

To prove the minimality of d, we claim first that d is the 1cm of the orders of the

roots of unity which occur as zeros of g(t). This is clear if p= 1. Hence assume that

p ^ 2. If 1 is a root of unity as well as a zero of 1 t + t
N+p then 1,

- 1 and JL
N+P are

three roots of unity whose sum is zero. This is the case if and only if (1, -/I, 1
N+P

}

are the three cube roots of unity. Thus A is a primitive cube root of unity, so >L is

a primitive sixth root of unity and 1N+ p = (- 1)
2

is the other primitive cube root of

unity, whence N + p = 2 (mod 6). Obviously 1 - 1 + t
N+p has no repeated factors, so

if N 4- p s 2 (mod 6) then we can cancel the cyclotomic polynomial 1 - 1 + 1
2 of

primitive sixth roots of unity once, otherwise there is no cancellation. The cancellation

still leaves us with roots of unity of order 2 and 3 as zeros ofg(t\ proving our claim.

_ Now let D be the minimum quasi-period. Then we can write P(t) in the form

P(t)
=
^~o^oHj(j + Di)t

j+Di for some polynomials #,, Multiplying by l~tD

amounts to differencing the coefficients (except in low degrees) so (l-t
D

)

e
P(t) is a

polynomial in t for some positive integer e. Therefore the roots of unity that occur
as zeros of g(t) must have orders which divide D. Thus d divides D, proving the

minimality of d.
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Theorem 5.2. The polynomials H t
in (5.1) are all of degree p.

Proof. This is seen by examining the partial fraction expansion of P(t). We have that

1 is a root of the denominator of P(t) of multiplicity p-f 1, and that all other roots

are of smaller multiplicity. Setting X = AT in the well-known expansion

xn
(in which the coefficient of Xn

is a polynomial in n of

degree r 1), we see that a root k of multiplicity m of the denominator contributes

a polynomial of degree m 1 to each of the Hj. Thus 1 contributes degree p to each

Hj and the other roots contribute a lower degree, so the highest degree terms cannot

cancel leaving all the Hj of degree p. M

Now, we give an example to show that the various Hj need not be distinct.

Consider the case N = 2, p = 3, where our Poincare series

l-t + t
5

has partial fraction expansion

a b 1/8 2/9

with a of degree 3 and b of degree 1 which need not be stated explicitly. The power
series expansions of l/(l +

2
) and l/(l+t-K

2
) are

of periods 4 and 3 respectively, with coefficients in each period being 1,0, 1,0 and

1, 1,0 respectively. The "non-polynomial" contribution to the various H(i) are given

by the following table (with rows corresponding to t
l

for i= 0,1,2,... and columns

corresponding respectively to the roots of order 1,2,4,3):

The polynomials coincide if and only if the rows are the same. By inspection of the

table we see that the period is indeed 12, as given by (5.1), and that H l
= # 7 , H3

= H9 ,
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and # 5
= H 11 ,

with the polynomials Hj (0<j<ll) being otherwise distinct. Tl

equality of the /f/s here comes from the O's in the power series expansion of tl

cyclotomic polynomial of primitive fourth roots of unity. Note that the possibility

are determined only by the columns corresponding to roots oforder 4 and 3. Obvious

the first column plays no role in deciding on the cases, and the second does not eith<

since whenever entries in columns three and four are equal, so are the entries

column two.

t t
2

t
3 19

By explicit computation we obtain H (t)
= 1 H 1 1 ,

H
1
= H 1

=
D T-O InrT" J.H'T1

5t t
2

t
3

I j. etc. with the polynomials all of degree 3 as claimed by our theorem, ar
48 48 144

F

with polynomials equal and distinct as claimed above. The coefficients of t
2 and

are the same in all polynomials, which can be explained by the fact that only tl

root 1 has multiplicity greater than two, and the coefficient of t is periodic with peric

2 since only the root 1 has multiplicity 2.

In another example that we have worked out, equality of the various Hj arose

a seemingly accidental way from primitive roots of unity of order other than powe
of two. The general situation seems to be quite complicated.
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Abstract. A geometric invariant is associated to the space of flat connections on a G-bundle

over a compact Riemann surface and is related to the energy of harmonic functions.
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Introduction

This work grew out of an attempt to generalize the construction of Chern-Simons

invariants. In this paper, we associate a geometric invariant to the space of flat

connection on a S[/(2)-bundle on a compact Riemann surface and relate it to the

energy of harmonic functions on the surface.

Our set up is as follows. Let G = Sl/(2) and M be a compact Riemann surface and

->M be the trivial G-bundle. (Any Sl/(2)-bundle over M is topologically trivial).

Let # be the space of all connections and J^ the subspace of all flat connections on

this G-bundle. We endow on # the Frechet topology and the subspace topology on 3?.

Given a loop tr.S
1

-#", we can extend a to the closed unit disc <r:Z)
2 -># since <g

is contractible. On the trivial G-bundle E x D 2 -*M x D 2 we define a tautological

connection form 9" as follows

Clearly restriction of $* to the bundle E x {t}-+M x {t} is 5(t)VteD
2

. Let K(&*) be

the curvature form of S*. Evaluation of the second Chern polynomial on this curvature

form K(&
ff

) gives a closed 4-form on M x D 2
,
which when integrated along D2

yields

a 2-form on M. This 2-form is closed since dimM = 2 and thus defines an element

in H2
(M,R)&R. It is seen that this class is independent of the extension of a. We

thus have a map

where !(#") is the loop-space of #".

We assume that the genus of M^2. The energy E(f) of any smooth function

/:M-G is defined using the Poincare metric on M and the bi-invariant metric on

G = SU(2) given by the Killing form.

23
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Any smooth function f:M-+G defines a flat connection &>/
= /* (A*) on the trivial

bundle M x G- M, where ju is the Maurer-Cartan form on G. By a result of Hitchin

([H]), the loop in V is given by

Gf (t)
= -(of -f (cos t)o)f + (sin t)(*o)f)) for te[0, ITT],

where *;A 1

(M,^)->A
1

(M,
(

^) is the Hodge star operator, is actually a loop in OF if

and only if / is harmonic. (9 is the Lie-Algebra of G).

The main result of this paper is

Theorem ///:M~G is a harmonic map, then

1. Construction of the basic geometric invariant

In this paper we suppose M is a compact Riemann surface of genus

with Lie algebra # = su(2) and n:E-+M is the trivial G-bundle on M. V is the space

of connections and ^ is the subspace of all flat connections on E-*M. D 2
is the

closed unit disc in R 2 and dD 2 = S 1
is the unit circle. O(J?

')
= Map(5

1

,J5
')

is the

loop-space of J5
". Given a loop crrS

1 -* J* we extend cr to <r:Z)
2-# (# is contractible).

On the trivial bundle x D 2 - M x D 2
,
let 9" be the tautological connection defined

in the introduction. Let K($
ff

) be the curvature 2-form of the connection 9ff

. Let C 2

be the second Chern polynomial on ^. For the Lie algebra 9 = su(2\ C2 is essentially

the determinant. More particularly C 2 (A)= ~(l/47i
2
)det(A) for Aesu(2) (cf. [KN],

Chap. XII). Now an easy computation shows that

C 2 (A) = -^trace(,4
2

) for

Evaluation of C 2 on K(9
ff

) gives a closed 4-form C2 (K(9
ff

)) on x D 2 which projects

to a closed 4-form C 2 (K(
ff

)) on M x D2
. Integrating C2 (K(S

ff

)) along D
2

yields a

closed 2-form on M(dimM = 2) and thus defines a cohomology class in H2
(M, R) i.e.

R.

D 2 J

We outline the proof of the following lemma (cf. [G], 1 and [GS], 2,3).

Lemma LI.
JD2C 2(K(&

<r

)) is independent of the extension of cr.S
1 -^ to d:D2 :-^^.

Proof. Let a
l ^&2 be two extensions of a with corresponding connection forms 9^, &2

and curvature forms (&*), ($*) on the bundle E x D2-M x D 2
. On x Z)

2 we
have
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where TC2 ($l), TC2 ($
a
2 ) are the Chern-Simons secondary forms with respect to

SJ, 2 respectively (cf. [CS, 3]). We can easily check that C2 (K(&*))
- C2 (K(9*)) is an

exact form on E (cf. [G, 1]). Since n*:H2
(M,R)-+H

2
(E,R) is an isomorphism it

follows that {C2 (K ($*))}
= {C 2 (K (<[))}eH

2
(M,R) and this proves the lemma.

We thus have a map

1)2

where Q^) is the loop-space of 3F. It is easy to check that %(G &')

where crcr' is the composite of two loops in 3F. We call this map % the geometric
invariant.

2. Energy of functions and a class of special loops

We recall the definition ofenergy of a function. Let X and Y be Riemannian manifolds.

Given a smooth map /:X-> Y, the energy density of / is a function e(f):X-+R
defined by

where ||d/(x)|| denotes the Hilbert-Schmidt norm of the differential d/(x)e T*(x)
T

/(JC)
( Y). If A" is compact and oriented, the energy of/, denoted by E(f) is given by

Qy/2(/)(x)dx)
M /

where dx is the volume form ofX with respect to its Riemannian metric. / is harmonic

if it is a critical point of the energy functional.

Using the Poincare metric on the compact Riemann surface of genus ^ 2 and the

bi-invariant metric on G = 517(2) given by the Killing form, we can define the energy

(/) of a smooth functionf:M-+G by the above formula.

Any smooth function f:M^G defines a flat connection cof
= /*(//) on the trivial

bundle E ->M where

is the Maurer-Cartan form on G. In the case of the trivial bundle E-+M, clearly the

space of all connections # can be identified with the space A 1

(M,^) of all ^-valued

1-forms on M. For any smooth functipn /:M-G, consider the loop in ^ given

by af (t)
=

(cof + (cos t)a>f + (sin t)(*cof)) for te[Q, 2n], where *:A 1

(M, #) -*A 1

(M, 9)
is the Hodge star operator. By a result of Hitchin ([H]), we know that af([Q, 2ri]) cJ5

"

iff/is harmonic, i.e. dy is a loop in ^" iff/is harmonic.
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3. Relation between the geometric invariant and the energy of harmonic maps

We prove the following result

Theorem 3.1. // f:M>G is a harmonic map, then x(a r)
--

(/)
4n

Proof. At the outset we show that the closed 2-form which represents i(af)eH
2
(M, R)

is (*&>! AcOi + *co 2 Aco2 -f *o> 3 Aco 3 ) where
2n

We extend the loop <7y
in J^ to a map df:D

2 -^^ in an obvious way. We drop the

suffix / and simply use a and S in the computations that follow.

Let (s, r) be the polar coordinates on D 2 =
{(s, f), ^ s ^ 1, < t ^ 27i}.

Set <r(s,t)
=

scr(t). We now compute the curvature K(
ff

)
of the connection form dff

on the bundle x D 2 ->M x D2
.

A

where K(v(s> f) is the curvature of <r(s, f)) and dE and ^3 are respectively the exterior

differentials on E and D2
.

If we set

as a form on M for each feS 1

, then after a straightforward calculation (see [G],
Lemma 4.1), it follows that JD2C2 (K(S'

1

)) is cohomologous to the form

Now

so that

iL a(t) A

CL>2

(t) A

(co 2

i(co 3 4- cos to>3 -hsint*co 3 )

+ cos ta>2 -f sin t*o>2 ) -f i(co 1 + cos tco
a -f- sin t*co 2 )

+ costo3 -f
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.e.

Now

oi(t)
=

(co 1 + cos to!

=
(o>2 -f cos tco2 + sin t*o>2 )

=
(o> 3 + cos to> 3 + si

+cost*co 1 )A(a> 1
-

>! 4- cos
2
t*(D Aco 1

= *<y
1 Aa> 1

.

Similarly

d

at

It follows that f^C2((3*)) is cohomologous to the form

1

= *G> 3 Aco 3 .

A c^ 4- *G>2 A co2 4- *co 3 A co 3 )dt
S i

=
(*&>! A a?! 4- *o> 2 A co2 4- *o> 3 A co 3 ).

27T

Thus the closed 2-form on M representing %(of)H2
(M,R) is (*o> 1

A co
x 4-

2;r

*co 2 A co2 4- *ct) 3 A o> 3 ).

To prove that %(G f )
= --E(f\ w^ check using local coordinates that the forms

471

2n dt
A ~y(t) A

dt

and -- g(/)(w)dw (dm is the volume form on M) are equal at any arbitrary point.
471

Since any left translation in G is an isometry, for any weM, ||d/(m)||
=

||d(L/(wrl o/)(m)|| where L
/(wrl

:G->G is left translation by /(m)"
1

. We can therefore

assume that / maps some point weM to the identity element in G, i.e. /(m) = 1.

Since we intend to use local coordinates to prove the equality of forms, we can go
to the universal cover D 2

of M with Poincare metric and assume /:D
2-G and

/(m) = 1 for some fixed meD 2
. Since there exist an isometry of D2 which maps the

origin to m, we can assume /(O) = 1 and check equality of forms at the origin.

At the origin we have

dx'dx dy'dy
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and

where
,

are the usual coordinate vector fields. Let dx and dj; be the dual 1-forms
ox dy

Clearly at the origin *dx = dy and *dj; = dx. Since dm = dx A dy we have

dy

, 4-*co 2 Ao>2 -f *co3 Ao> 3 ) ,
1= -- e(f)(m).

dx dy) 4n

We prove that

2n

If
o)j
=
djdx 4- bjdy (1 <; < 3, a

j5
b
}
are functions on D 2

) then
*(0j

=
cijdy.

-
bjd*

for 1< j ^ 3 so that *co
j
A

co,-
= -

(aj
4- b*)dx A dy for 1 < j < 3

=* r-Mi A a*! H- *co2 A o)2 + *o) 3 A co 3 )
= --

(aj + &J + a
2
-h ^ + a^ 4- bl)dx A dj;

271 2n

For/:D
2
-^SC/(2) with /(O) = 1

2

dx

By definition of Maurer-Cartan form

?x ;

i.J
dM\

-^1
V \ dx J ^\ dx J -\ dx ) !

The pairing (A, B)h-trace(/lJ3) for A, Besu(2) gives the Killing form on su(2) so that

dx 1 dx

Similarly

dx
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Noting that f*fij
=

a>j(l ^j < 3) we have

29

Now

Therefore

Similarly

Thus

Therefore we have

( (*a>! A a>
1 + *a>2 A o>2 + *o>3

In other words

A dy.

( (*co 1
A co 1 + *co2 A o)2 + *o>3 A co3 )

J

= e(f)(m)dm

Consequently x(<r f )
= E(f) and the theorem follows.

4n
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Abstract. We give a version of Frobenius Theorem for fibred manifolds whose proof is

shorter than the "short proofs'* of the classical Frobenius Theorem. In fact, what shortens

the proof is the fibred form of the statement, since it permits an inductive process which is

not possible from the standard statement.

Keyword. Frobenius theorem

Theorem. Let n:M ->N be a submersion, dimN = n, dimM = m, + n, and let E c V(n)

be an involutive sub-bundle of rank r of the vertical bundle V(n) of K. Given a point

y eM and any coordinate system (x ly ...
9
xn) on a neighbourhood of x = n(y \ there

exist functions (yi,.-.,ym) on M such that:

(i) (x 1 K 9 ... 9 xn n t

9 y l9 ...
9 ym)isa coordinate system on an open neighbourhood U ofy ,

(ii)

Proof. By induction on r. For r = 1 there exists an open neighbourhood UQ of y
and a non-singular vector field Y such that r(l/ ,) = < Y>. Since n is a submersion,

given (x l5 ...,xw) there exist functions (y'v . * .
<> y'm)

on M satisfying (i) and, since Y is

vertical, we have Y=^l

=1fi(d/dy'l). As Y is non-singular, we can apply the theorem

of reduction of vector fields to normal form (see [1, Lemma 2]) by considering

(x !,..., xn) as parameters, thus obtaining a system (x 1 TT, . . . , xn n; y 1 ,
. . .

, ym) such that

Assume r> 1. There is an open neighbourhood 17 of y on which E admits a

basis: r(/ ,E) = <Y 1 ,..., 7r >. Applying the above case to Yl9 we obtain a system

(*! TC, - . .
,
xn ir, j/1? . . .

, y'J such that Y1
= d/dy'v Let

so that Y'2 ,
. . .

,
Y'

r span an involutive sub-bundle E f c E of rank r 1. In fact, as E
is involutive, we have for 2 ^ j, j < r:

[y;,y"j]= i f\?k
= E
k=2

As 7^;) = 0, one has [FJ, Y;] (j/J
= 0. Hence /y = 0.

Let Tt'iM-^JV x [R be the submersion 7r' = (7c,/1 ).
Since Y/

j(y\) 9 we have

E c ^(Tr'). Let xn+ !
:N x IR -> [R be the projection onto the second factor, which makes

(x l9 ...,xn,xn+l ) a coordinate system on N x (R. By the induction hypothesis, there

31
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exist functions 0>2>-->JC) satisfying conditions (i) and (ii) with respect to E1

.

Consequently, there exists an open neighbourhood U of y such that

HI^^Y!, 3/3/2,... ,3/dj/'>, and from xn+iri^y'v we deduce Y1
=

d/dy\ +^ 2fi(d/dy
f

f). Substituting Y\ =d/dy\ + !?-,+ 1/^3/8??) for Yl9 we also have

T(U, E) = < FI , 3/3/2, - > 3/3y, >, and since E is involutive for every 2 <;* < r, we have:

Applying both sides to y\ we conclude ^!=0. Hence 3/ +r/3jJ
= 0; that is,

(/r + 1 /J depend only on (x x TT, . . . , xn TT; y\ ,^+ 1 ,
. . . , /^). Consequently, there

exists a change of coordinates

which reduces Y\ to Y^ d/dy^ Now, writing 3>j
=

yJ, 2^j^r, we have

F(17, )
= <3/3y 1 , a/3);2 , . . . , d/3)>r >, thus finishing the proof.
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Abstract. The conformal theory of Finsler spaces was initiated by Knebelman in 1929 and

lately Kikuchi [7] gave the conditions for a Finsler space to be conformal to a Minkowski

space. However under the fc-condition, the third author [4] obtained the conditions for a

Finsler space to be /i-conformal to a Minkowski space.

The purpose of the paper is to investigate the infinitesimal fc-conformal motions of Finsler

metric and its application to an H-recurrent Finsler space. We obtain the following results.

A. Theorem 2. 1 . Ifan HR-FB space is a Landsberg space, then the tensor Fl

hjk
is recurrent.

B. Proposition 3.3. An infinitesimal Ji-conformal motion satisfies

LxG
l

jk
-
PJ

C. Proposition 3.6. An infinitesimal /i-conformal motion satisfies LxP
l

jk
= pCl

jk
.

D. Theorem 3.7. In order that an infinitesimal /i-conformal motion preserves Landsberg

spaces, it is necessary and sufficient that the transformation be an infinitesimal homothetic

motion.

E. Theorem 3.8. An infinitesimal /i-conformal motion preserves *P-Finsler spaces.

F. Theorem 3.10. An infinitesimal /2-conforma3 motion preserves /i-conformally flat Finsler

spaces.

G. Theorem 4.1. An infinitesimal homothetic motion preserves H-recurrent Finsler spaces.

H. Theorem 4.2. If an H-recurrent Finsler space admits an infinitesimal homothetic motion,

then Lie derivatives of the tensor F! ,. and all its successive covariant derivatives by xl
or

nJK

y
l

vanish.

Keywords. Infinitesimal h-conformal motion; h-conformal tensor; infinitesimal homothetic

motion.

1. Preliminaries

1.1 Berwald connection

Let Fn be an n-dimensional Finsler space with the Finsler metric F(x,y). The metric

and angular metric tensors are given by y:= didjF
2
/2 and hif^g^ lil^

where

33
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We use the following:

+ 8jgkh
- dhgjk) 9

djG\ G<:=iy' fc//. (1.1

Two types of covariant derivatives for a vector X' are given by

(a) X'
k
:= dkX l + G l

hkX\ dk := dk
- G"dm ,

(b) X l

]k
:=dkX\ dk :=-

Jt'

and the Cartan tensor is defined by C
l

hk
:= ^g

imdkgmh . This connection is known as th

Berwald connection, which is not metrial, that is,

',
= 2PW. (cf. [2]) (1.2

When a Finsler space satisfies the condition P l
.

k
= 0, the space is called a Landsben

space.

The curvature tensor H^.fc
is defined by

H^-d^ + G-G^-M, (1.3

where j |

/c means the interchange of indices/ and k in the foregoing terms. We see

LJI ._ Lri Tji ._ pi JJT ._ fji~ ~- n
hj

. n
hji

,

where the index means the transvection by y.

The Ricci identities are denoted by

/Q \ Hpi nri rrt T"m TH* 7m JL/m npi
{a.j A

h' i'k h'k'i mik h m hik ifc h\m y

In the theory of conformal transformation, the h-conformal tensor F^ -

k
is define^

by ([4], (4.15))

1 __

hjHmkg
im
~j\ k) + H(ghj5[

-
ghkfy

.2 Lie derivative

We consider an infinitesimal extended point transformation in a Finsler spac

generated by the vector X =
u*(x)3 f ,

i.e.

J x'^x' + u'dt, ^^y + ^/Vdt. (Li

The well-known commutation formulae ([1], [5], [6], [8-10], etc.) involving L:
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and covariant derivatives are given by

(a) Lx T,k
-

'

HJk

where

(b) LxH'HJk = Ai,j:k
+ AfG

l

hkm -J\k,
(L7)

In the usual way we raise or lower indices by means of the metric tensors g
ij or g^.

2. An HR-Fn space

A Finsler space Fn is said to be an H-recurrent Finsler space (denoted by an HR-FW

space), if the Berwald curvature tensor H l

hjk
satisfies the relation

#<*.,
= * HU ffU*. (2-1)

where Km is a nonzero vector. As y
l

k
= 0, we have

H l

j:k
= KkHj, H

ij:k
= KkHij

and from (1.5) we obtain

*!*.
= ^U +-(P-jAg* - 9hJHtkP -j\k)

-Af'PaJ-jl*}. (2.2)

Thus we have

Theorem 2.1. Ifan HR-Fn space is a Landsberg space, then the tensor F l

h
.

fc
is recurrent.

3. An infinitesimal A-conformal motion

3.1 An i.c.m.

The condition for an infinitesimal transformation (1.6) to be an infinitesimal

conformal motion (denoted by an i.c.m.) is that there exists a function
<f)
ofx such that

1||

Lxgjk -2</)(x)gjk , Lxgjk = -
2ct>(x)g

jk
. (cf. [1], [5], etc.) (3.1) $]

If the function
(j>

is a constant, the i.c.m. (3.1) is called an infinitesimal homothetic

motion (denoted by an i.h.m.) and when = 0, the (3.1) called an infinitesimal isometric

motion (denoted by an i.i.m.).

It is well known that an i.c.m. (3. 1) satisfies LxCjk
= and Lxy

l = 0. We can easily see 1 1

(c) Lxf = -
4>l\ Lxlj

=
</,, (d) Lxh] = 0, Lx(g

ih

gjk)
= 0. (3.2)
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Since the Lie derivative is commutative with dk or dk , we see from (1.1) (a) and (3.1)

Transvecting the above equation by /'/ we have

LxG
L = Bih

<t>h ,
FA

:=//~iFV". (3 -3)

Differentiating (3.3) by y
j and /, we get

(a) LXG] = Bf < Bf := djB
ih =

d}y
h + <5*/

-

Using (3.2) we have

PROPOSITION 3.1.

An infinitesimal conformal motion satisfies the following:

Loth __ f\ . T "Dih - f\ j T D^ ...u-r f\
y_J sss \J 4~r JL/yJj " \ J 4r-r LJy fj .. ==:: \J.

3.2 An i.a.m.

If an infinitesimal transformation (1.6) satisfies LxG\k = 0, then the transformation is

called an infinitesimal affine motion (denoted by an La.m.).

First, we shall show

Theorem 3.2 ([1], (VII), Theorem 5.1). In order for an infinitesimal transformation

be homothetic, it is necessary and sufficient that the transformation be conformal and

affine motion at the same time.

Proof. We see from (3.4)

= y'y^L^G^ = B l

Q (j)h
= 2B ih

(t>h
= F2

(2fl
h

g
ih

)(j>h .

Transvecting the above equation with 2/
f
/
fc g ik , we have F2

(j)k
= 0. Q.E.D.

Remark., This theorem was first proved by Takano (Japanese, 1952).

3.3 An i.h-c.m.

If we impose the Ji-condition on the vector
<,-,

i.e.

FCh

u (j)h
= #!&, 4> 1

:= ^ . (cf. [4], 3) (3.5)
n~ 1

the transformation is called an infinitesimal h-conformal motion (denoted by an

i./2-c.m.).

Because the function $>i(x) is proved to be a function of x only (see [4], Lemma 3.2),

we get
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(a)F5t/r}=-V-*&
(b) F2

(dk C?)<t>h
= F

= FdMtf)
- Wfr = -WJ +

h(lj
+ Ajy. (3.6)

Using the above calculations, we obtain

A',,
= LxG}k

=
Pj6'k + PkS'}

- gjkp
l -

fayj,

A}
= LXG] = pSfj

+ 4>3y ~ yjP\ (3.7)

FCh
l '

I

Hence we have

PROPOSITION 3.3.

An infinitesimal h-conformal motion satisfies

LxG'jk = PjSfk + p.d'j
-

p'gjk
-

The vector PJ is called an associated vector with a vector
4>j

and satisfies the

conditions:

(a) FC
h

jkph
=

(t>ihjk , (/i-condition)

(b) pj\ k-dkPj -C
h

jkp,
= Q.

(Cartan's covariant derivative by /) (3.8)

A vector which satisfies (3.8) (a) (b) is called an /i-vector.

PROPOSITION 3.4 ([4], Proposition 3.4).

Let VI(K, y) be a vector in a Finsler space. If v
t satisfies the conditions v

t \ k
= and

FC*
k
vh = v

1 hjk , then the function v
l
and the vector *v

l
:=v

i
v

1
l
i
are independent of y.

Here we shall show

Lemma 3.5. We have

Proof. We see

3 _ih is^ih a /^"i p f^ih/^ \ l/01^/^ L ^i^^ /^^ = - 2^fc . ^mS'* d-"'5' C*W = ~" 2CmChjk + 9 OmLhjk ,

and using dmChjk
= dkChjm , (3.6) (a) and '(3.8) (b), we get

)-ChJJk(Fp
m
)}

From (1.7)*(a) we see

LxC}kl
-

(LxC
l

jk),
= A^C"- AC>mk -Ayl -

A?dmC
l

jk
.



38 H G Nagaraja et al

In consideration of LxCJk
= and transvecting the above equation by y

l

,
we have

L^ =LA, =
A'.Ci

-
AJ-CU

-
AlC}m

-W*,
Substituting (3.7) into the above equation, we have

LxP
1

*
=
<Mty* + Wj + hff} + *oCj + F2

p
m
SmC]k

.

Using Lemma 3.5, we obtain

^=Wo+wq*=/>q*- (3 -9)

Thus we have

PROPOSITION 3.6

An infinitesimal h-conformal motion satisfies

Remark. If we denote the deformed tensor (cf. [1]) of Pl

jk
with respect to an i./i-c.m,

(1.6) by Pjfc,
we see

This means that the deformed space of a Landsberg space (P
l

jk
=

0) is not necessarily

a Landsberg space.

However we can state the following.

Theorem 3.7. In order that an infinitesimal h-conformal motion preserves Landsberg

spaces, it is necessary and sufficient that the transformation be an infinitesimal homothetic

motion.

Proof. It is sufficient to show fa = 0. In fact, we have

It is evident that the theorem holds. Q.E.D.

3.4 *P-Finsler space

If the tensor *^:=^jfc -Aqk vanishes, the space is called a *P-Finsler space (cf.

[3]). The *P-condition: P}k
= kC l

jk
is invariant under any fc-conformal change of

Finsler metric.

From (3.9) we have

LxPj = pCs ,
P

;:=Pj,. (3.10)

Using (3.10) we see

Q = Lx(Pj-lCj) = (p-LxX)Cj 9 M =
p. (3.11)

This means Lx*P(k = 0. Hence we have

Theorem 3.8. An infinitesimal h-conformal motion preserves *P-Finsler spaces.
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3.5 An h-conformally flat Finsler space

If a Finsler space is ft-conformal to a Minkowski space, the space is called an

h-conformally flat Finsler space.

An /i-conformally flat Finsler space is proved to be one of *P-Finsler space (cf.

[4], (5.2)). Here we shall show

Lemma 3.9. In a *P-Finsler space an infinitesimal h-conformal motion satisfies

**-& (3J2)

Proof. Differentiating (3.11) w.r.t. y
h we have Lxkh

= ph . Next from (3.2) we see

n

Hence we have Lx*/;
=

( d]
--^-

)p
=

<,, Q.E.D.
\ " V

On the other hand, we know the theorem ([4], Theorem 6.6):

The necessary and sufficient conditions for a Finsler space to be /i-conformally flat are

that dfl
l

jk
= and nj,w = and ^ is an h-vector, where

fl

**hkr
=

^l*Ijik ~^~ *^hk^*ml
'

' ^k
==:

^k Hok^m- (j.lj)

The parameter H(
k
and the tensor nj^ are invariant under an /z-conformal

transformation and these are independent of j;.

We shall show

Theorem 3.10. An infinitesimal h-conformal motion preserves h-conformallyflat Finsler

spaces.

Proof. It is sufficient to prove LxTl
i

jk
= Q. We see LjBjJ

= from Proposition 3.1.

Moreover, we have from (3.4) (b) and (3.12)

Lx^jk
= Lx(G

l

jk
~~

Bfk *^ft)
=

B'jk^H
~ B^h = 0.

It is easy to prove n[kl
= 0. Q.E.D.

4. An infinitesimal homothetic motion in HR-Fn spaces

In this section we shall consider an i.h.m. only, that is,

Lxg Lj
= 2cg Lp Lxgij = 2cg

ij
\ c = constant. (4. 1

)

From Theorem 3.2 and (1.7) (b), we have LxH l

hjk
= 0.

From (1.7) (a) and (2.1) we see

r L/t r / IX" r/i \ / r jy- \ rji r\L
X^hjk.m

- Lx(^m^hjk)
-

(LX&m)H hjk
- U,
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which means

LxKm = and LX(H M̂ - KmH l

hjk}
= 0.

Thus we have

Theorem 4.1. An infinitesimal homothetic motion preserves H-recurrent Finsler spaces

and satisfies LxKm = 0.

An i.h.m. (4.1) satisfies

Lxlj
=

clj,
Lxf=-cf, Lxh] = Q. (4.2)

From Proposition 3.6 we see

LxH=-2cH. (4.3)

.

Moreover we see from (2.2), (4.2) and (4.3)

After some calculations we obtain LxF
l

hjk
= 0.

*U + *-L*FU = 0-

Hence we have

Theorem 4.2. Ifan H-recurrent Finsler space admits an infinitesimal homothetic motion,

then Lie derivatives of the tensor F l

hjk
and all its successive covariant derivatives w.r.t. x

l

or y
l

vanish.
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Abstract. During the last five decades, a number of combinatorial generalizations and

interpretations have occurred for the identities of the Rogers-Ramanujan type. The object

of this paper is to give a most general known analytic auxiliary functional generalization

which can be used to give combinatorial interpretations of generalized ^-identities of the

Rogers-Ramanujan type. The derivation realise the theory of basic hypergeometric series

with two unconnected bases.

Keywords. Auxiliary functions; unibasic hypergeometric series; bibasic hypergeometric series;

< g-hypergeometric identities.

1. Introduction

The two celebrated Rogers-Ramanujan identities

oo nn
2
-f an oo

IT r =n(i-T l
, ll<i. (i)

"=0 (qiq)n =i

n = (a + l)(mod 5)

where a = or 1, were first given by Rogers [12] in 1894 and then rediscovered

(without proof) by Ramanujan in 1911.

In 1916, MacMahon ([11]; 7, Chap. Ill) gave the following combinatorial inter-

pretation of these two identities:

"The number of partitions of n into parts that differ by at least 2 with each part > a

is equal to the number of partitions of n into parts
=

(a + l)(mod 5), where a may
be either or 1".

In 1917, while scanning some old volumes of the Proceedings of the London

Mathematical Society, Ramanujan came across the remarkable papers of Rogers

[12-14] which not only contained analytical proofs of these identities but also

contained other similar identities for the moduli 7, 10, 14, 15, 20 and 21. In 1919, in

a joint paper, Rogers and Ramanujan [15] gave several proofs of these identities

which are based on the general transformation formula:

n = o (l-a)(q;q)n n = o(q;q)n

proved by them.

41
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Later, in 1929, Watson [22] gave an elegant and straightforward proof of these

identities with the help of the following transformation formula connecting a

terminating well-poised 8O7 and a terminating Saalschiitzian 4<S>3 series:

, f^M^^ggl
)n [_aq/c,aq/d,efq

n
/a J(aq/e,aq/f\q)

In 1936, with the help of certain difference-equations, Selberg [17] obtained, besides

a number of other identities, the Rogers-Rarnanujan identities (1) by means of his

auxiliary function

in which

where fe is real and > -
1-

In 1947, Bailey [6,7] outlined a technique of obtaining a large variety of trans-

formations of basic hypergeometric series from which he deduced known as well as

new identities of the Rogers-Ramanujan type on different moduli by specializing the

parameters suitably. Shortly afterwards, Slater [19,20] made a systematic use of

Bailey's technique to give a list of 130 identities of the Rogers-Ramanujan type

involving prime factors 2, 3, 5 and 7 in the moduli.

A generalization of Rogers-Ramanujan type of identities in a different direction

was given by Alder [3] in 1954. He used Selberg's auxiliary function (4) to prove the

following generalizations of the Rogers-Ramanujan identities (1):

(6)

, fc(mod2/c-f 1)

M0,l (mod2fc+l)

where G
k tii

(q\ k^2, are certain polynomials which reduce to q"
2

for k = 2, the Rogers-
Ramanujan case. Singh [18] extended these results of Alder by giving r-generalizations
of the above two identities with the help of a transformation theorem for basic

hypergeometric series given by Sears ([16]; 4).

In 1974, Andrews [4] obtained another analytic generalization of the Rogers-
Ramanujan identities (1) with the help of Selberg's auxiliary function (4) by using the

^-difference equations
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iteratively. Later, he [5] considered the auxiliary function

''-i)/2

n>o (I- a)(q9 aq/b, aq/c; q)n

and showed that it is equal to

(aq/b, aq/c; q)n Ml .....mfc _ , > o (q; q)mi . . . (g; #)mk _
t
\ be

X <2<
/c
~ 1 )mi + ... + 2mk-2 + Wfc-i~mJ-f (raj +m2 }

2 + ... +(m l + ... + mk _ 2 )

2

("9")

In. 1980, Bressoud [8] also obtained an analytic generalization of the Rogers-

Ramanujan identities (1) by considering the following auxiliary function for < r ^ k

with Mi = m + mi+ 1
+ . . . + rn

k _ i
:

-!- zM

(aa/bca) ^M^.-.v *!/ ' *^m>c~i

. c .

(ID

and also gave a combinatorial interpretation of these identities in the following form:

Let <5, r, k be integers satisfying d = or 1, < r < (2fc -I- <5)/2. Let B^ r ^(n) denote the

number of partitions of n such that, if fi
denotes the number of times i appears as a

part in the partition, then / ^ r 1, fi
+ fi+ i

^ k 1 for all z and /s
4- /i+ x

= k 1

implies that ift + (i + l)/i+ x
= r 1 (mod 2 5). Also let Akrd (ri) denote the number

of partitions of n in which no part is = 0, r(mod 2k + <5). Then, for each positive

integer n,

^>) =
**,,>) (12)

In another paper, Bressoud [9] gave a further analytic generalization of the

Rogers-Ramanujan identities by using the following auxiliary function:

H ^ t i
*4> v

^r^); *)'<?)= 7; I

c
- A 4- 1

(13)

He also proved that

?; q)mi ...(q\ q)mtc .
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>/b2k+ , _,; ) }, (14)

and gave a very general combinatorial interpretation of the identities obtained by him.

A close examination of the auxiliary functions (from Rogers-Ramanujan to

Bressoud) stated above raises some very natural questions of the type:

(i) Is it necessary to take a and ar
, simultaneously, in the auxiliary function as has

been done by Bressoud?

(ii) Is it necessary to take two related bases q and q
r
instead oftwo general unconnected

bases q and q^l

Since the general transformation theory for basic hypergeometric series with two

unconnected bases has already been developed in 1967 by Agarwal and Verma [1,2],

the object of the present paper is to establish a general bibasic transformation formula

similar to (14) with a parameter 1 in place of </ and then discuss a few interesting

particular and limiting cases of this transformation.

2. Notation

For |g|<l, let

A generalized multibasic hypergeometric series, whenever it converges, is defined

as

..o (q,b;q)n

t=i(d,;q,)n

where R = r + r
1 + ... + /-mJ S = s + s 1 + ... + sm) a = (a l! ...,ar),fc = (6 1> ...,bs),c

(c .i."-
c,,,M = (4.i.---.O

The superscript (m + 1) in the <l>-symbol denotes the number ofbases in the series.

3.

We shall first prove the following general bibasic transformation formula:
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Theorem. For \q\ < I
9 \q^\ < 1,

[a,b 9 c9 a l9 ...
9
a
2k _ l

: 4ixA
2m + 3 /i / / , /7

L aq/b 9 aq/c, aq/a t ,
. . .

, ag/a 2fc _ x
: ^/A,

-

;q)M^ 2 ..4aq/a2^^

l9 ...
9
b2m;q l )M l(-

-J + (5/2)M, + M2 + ... + Mk _ x (m- l

;<?,4i;

i

(15)

M
(

- = m
f
4- m. + 1

4- . . . + m
k _ 1 , m, r and fc are positive integers.

Proof. By the ^-analogue of Saalshiitz's theorem ([10]; eqn. (1.7.2)), we have

(b9 c,q)H wi
i \ v"1 \ "i *

"
j ^f ' "^ s n^

(a^f/ft, aq/c; q)n \bcj s = o (4, 04/6, a<?/c; <?)5

Using (16) in the left hand side of (15), one can easily write it in the form

(q 9 aq/b 9 aq/c9 q)mh _ i

nn(k-mk - 1) nn(m- 1

l-'-^fc-l^l^

Putting n = m
k _ 1

-h t, the last expression is equal to

l ,
. . .

,
a
2,_ , ; q)mu _ i

(a; q)2mk _
i

, aq/c9 aq/a l , . . .
,

i

!
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f jm-t-t/r-k-mic-i _m-l
) _ * g *1

We now iterate the procedure used in transforming the left hand side of (15) to the

form (17) (such that the parameters b, c are "shifted out" from the <l> series). Then,

after (k
-

2) iterations, we find that the left hand side of (15) can be written in the

following form:

^
i^;^-^,^;^.^^^

-v^k-ytto-i''^-^...**^^^

^

xj

- l + - +m
/a2k _ 3 ,fl^

1
?
Wk - l + - +mi

/a 2Jk. 2 A,

7 fl
mfc -i + ...4-mi . -(l+mk-1+...+mi) 77 ^l+wik- 1 +...'+mi /J"^k-l^ ' ^1 V A'~"^1 V^

-i-...-m 1 -m

Introducing the summatory symbols Mf , it is easy to see that the last expression is

equivalent to the right hand side of (15).
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4. Particular cases

47

We shall now discuss a few interesting particular and limiting cases of the above

transformation (15).

Case I. Let us take /c = 2, w = 0, r=l, A = a and q 1
= q in (15) and make b,c,a l9 a29

a3
-+ oo. Then, with the help of a well-poised 6<X>5 summation formula ([1;0]; eq. (2.7.1))

and some simplification, we get the transformation (2) proved earlier by Rogers and

Ramanujan [15].

Case II. We now consider the following auxiliary function which is a multiple of the

left hand side of (15):

If we first take w = 0, A = fl
r
, q 1 =qr

in (18) and then make b,c,a 1 ,...,a2/c _ 1 ->oo, we

get

which is equivalent to Selberg's auxiliary funption (5).

Case III. If we take m 0, A = a, q 1
=

q, r
= 1 and a

2A _ x
= q~

N
in (15), then the inner

series on the right hand side of it can be summed up by a well-poised 6O 5 summation

formula ([10]; eq. (2.7.1)). We easily get the following identity:

/-/-// /

V a,
-

^/a, aq/b, aq/c9 aq/a^ , . . .
, aq/a2k ^.^

bca 1 ...a2k _ 1

a2k~s a2k -4'> 9)mi

^ti^-^a^^.^^^'--^^
aq/aM)^

(20)

which is seen to be equivalent to the identity ([15]; Theorem 4) due to Andrews.
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Case IV. Again, let us take /I = </, q 1
= q

r

(0 < r ^ k) in (15) and make

The inner series on the right hand side of (15) is then summable by a well-poised

6$5 summation formula ([10]; eq. (2.7.1)) and we get the following transformation:

!

*

a
2fc _ 4 ; )m . (21)k , 52fc _ 4

The transformation (21) is easily seen to be equivalent to Bressoud's transformation

(14).

If, in addition to these changes, we make

in (18), we get the auxiliary function (10) due to Bressoud. However, if we make all

these changes in (15), then, on making use of a well-poised 6O 5 summation formula

([10]; eq. (2.7.1)), we get the transformation (11) due to Bressoud.

Case V(a). Let us take

k = p
-

2, m = 2, r = 1, A = a, q l
=

q,

a
2p-7

= 6
'
a
2p-6

= X ' a2p-5
= ~" X

in (15), and transform the inner series on the right hand side of the resulting trans-

formation by another transformation ([21]; eq. (1.3)). Then, we easily get a general
transformation which is seen to be equivalent to the result ([21]; eq. (4.1)) due to

Verma and Jain.

In (15), let us first replace q by q
2 and then take

k = p
-

2, A = a, q^ = <j

2
, m = 2, r = 1,

We can now transform the resulting inner series in (15) by the transformation formula
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([21]; eq. (1.4)). We thus get a general transformation which is easily seen to be

equivalent to the result ([21]; eq. (4.3)) due to Verma and Jain.

Case V(b). Let us now take

k = p
-

3, m = 3, r = 1, J, = a, q l
=

q,

in (15), and then transform the inner series on the right hand side of the resulting

transformation by another transformation ([21]; eq. (1.5)), we thus get a general

transformation equivalent to the result ([21]; eq. (4.4)) due to Verma and Jain.

Next, we first replace q by q
3
in (15) and set

k = p
-

3, m = 3, r = 1, A = a, q l
= q

3
,

i
= y>b 2

= yq, b 3
= yq

2
,

Then, by using the transformation formula ([21]; eq. (1.6)), we get a general trans-

formation which is also seen to be equivalent to the result ([21]; eq. (4.5)) due to

Verma and Jain.

Case VI. In (15), let us replace q and q 1 by q
2 and q

2N+1
, respectively, where AT is a

positive integer and make

5,c,a 1 ,...,a 2;c _ 1 ->cx),c 1 ,...,c2m ->oo. (22)

Then, on setting a = q
2

, we easily get the following interesting identity which is

believed to be new:

... ,>o

f nm + k/rlAfi+n
>

x (3 + 2Nm + m)n
2 + 2{2M 1 +(2N + l)M lm-N-k+l}n

* L * -lm+klr
q*q-

2N
'

= lim
3 <|)2

a,6-* oo

0,0

/I Km 3 <l>32
^0,0

(23)

where ^* =
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Again, if we replace q and q^ by q
3 and q*, respectively, in (15), take the limits

indicated in (22) and then set a =
<?

3
; we obtain the following interesting identity

which is also believed to be new:

= lim 3<X>2

.0,0

-A lim 3<D32

L
ab

aft

-0,0

(24)

where ^

5. Conclusion

We have not tried to list all the special cases of our general result but have only

drawn attention to the fact that multidimensional transformations of bibasic hyper-

geometric series perhaps provide the best way of unifying the enormous number of

partition
- theoretic analytical identities. We hope to exploit this viewpoint in a future

communication.
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Abstract. In this paper a new theorem which covers many methods ofsummability is proved.

Several results are also deduced.
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1. Introduction

Let Dan be an infinite series with partial sums sn . Let cr
d

n
and q

6

n
denote the nth Cesaro

mean of order <5(<5 > 1) of the sequences {sn }
and {nan }, respectively. The series Lan

is said to be summable (C,<5) with index /c, or simply summable |C,<5| fc , k^ 1, if

or equivalently

z-xik<-
M=l

Let {pn } be a sequence of real or complex constants with

The series Eaw is said to be summable \N,pn \,
if

00

where

tn
= P~ 1

pn - v sv (t_ 1 =0).

We write p = {pn } and

f PnH
M=<p:pn >0 and

Pn Pn

53
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It is known that for peM, (1) holds if and only if (Das [4])

IAJ
I

I
n

I Pn-v < 00.

DEFINITION 1 (Sulaiman [5])

For peM, we say that I,an is summable \N9 pn \ k9 k 3* 1, if

1

< 00.

In the special case in which pn
= Ar

n

x
,
r > 1, where Ar

n
is the coefficient of xn

in

the power series expansion of (1 x)~
r ~ l

for |x| < 1, |N,pJk summability reduces to

|C,r| k summability. _
The series Eaw is said to be summable \N9 ptt \k9 k^ 1, if

where

(Bor[l])

v-0

If we take pn
=

1, then |JV,pB | k summability is equivalent to |C,l|k summability. In

general, these two summabilities are not comparable.
We set

.
= MO

and assume that Pn , L/n , Rn and Wn all tend to oo.

DEFINITION 2 (Sulaiman [6])

Let {prt }, {^fn } be sequences of positive real constants such that qeM. We say that

is summable \N9 pn ,qn \k,k^l,\f

t?=l

< 00.

Clearly \N,pn9 l| k and |7V, l,<?B |k are equivalent to |AT,prt |k and |N,^n |k respectively. We
prove the following:
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Theorem 1. Let [pn } 9 {qn } 9 {un } and {vn } be sequences of positive real constants such

that q,veMy qn
=: 0(vn ), {pJPn

Rk

n _ 1
v
k
n } nonincreasing and that a

n ^ if v
n ^ c. Suppose

{en } is a sequence of constants and write W
n _ 1

G
n L"^ 1

U
r _ i

v
n _ r

a
r

. If
'

f

=7+iPr /?r _ 1 u*_ r _i

w'-i V t

t -^
" "

-i ;-,-i

. \*
5B l*<oo, (3)

oo \fe~l

(4)

\ \Vnn-

k-l

(5)

then the series ~Lan en is summable \N,pa,qa \k , k^l.

2. Lemmas

Lemma 1 (Sulaiman [6]). Let qsM, then forQ<v

V ^L = o(r-
11

)-

,=rner

V ;

Lemma 2. {pJPn
^-

k

n-^
k

n } nonincreasing implies

Froo/ Since

therefore {pJPnR*-^ is nonincreasing. We have

m nlA/7lf 2r m

ZPn l^r^w-ri J V . V J i r *---- = < L + L (
= Ji+J2> say

Z i

=r+l

=

i
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3. Proof of theorem 1

Write
R

"
r=l

then, by Abel's transformation

,

i

\br \

|e,l

In order to prove the theorem, by Minkowski's inequality,
it is therefore sufi

to show that

V _ p"
-f* <co, r = 1,2,3, 4,5, 6,

^J p ok "'r

= l fn
K -l

where k > 1. Applying Holder's inequality,

"

n-1 lc-1

x I |Ar Dn _ r |

r=l
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= 0(1) E -1

fn-
I

l=i

1 n ,, ")fc-lprqn - r -i

n

n / W \ k

^1*10,1* = 0(1).

m+1 n m+1
V _^!_ pk y"^

m + 1

x y ?=

*-l

n m+1 n-1
Pn

pk < y P^ y
Dfc

r n,5^ ^ D n Ls Pr

P \ k ~ 1 ( W \ k

is completes the proof of the theorem.
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4. Applications

Theorem 2. (Bor [1] and [2]). // nun
= 0(Un\ Un

= O(nun\ then the series E0n is

summable |C, l| fc if and only if it is summable |JV,i*J fc , k ^ 1.

Proof.

(=>) follows from theorem 1 by putting pn = 1, qn
=

1, vn = 1, and en
= 1.

(<=) follows from theorem 1 by putting qn
=

1, un
=

1, i7B
=

1, and en
= 1.

Theorem 3. (Bor and Thorpe [3]). Let {pn }, {un } be sequences of positive real

constants. If pn Un
= 0(Pnun ) and_Pnwn

= O(pnUn\ then the series an is summable

|NPnlfc whenever it is summable \N^un \k9 k^l.

Proof. Follows from theorem 1 by putting qn
=

1, vn
= 1 and en

= 1.

Theorem 4. // the sequences {pn }, {qn }, {UB }, {vn }, satisfy the conditions of theorem 1

except (3H5) and if Pn Un
= 0(Pnun ), Pnun

= 0(pB l/J and P^_ A
= 0(vn Un ^ , ), tten the

series SaB is summable \N,pn ,qn \k whenever it is summable \N,un ,vn \k,k^ 1.

Proof. Follows from theorem 1 by putting en
= 1.

COROLLARY 5

Let {qn }, {un } be sequences of positive real constants such that geM, Un
=

0(nu^)
and

nun ~O(Un ). Then the series *Lan is summable \N,qn \k whenever it is summable \N9 un \ k ,

Proof. Follows from theorem 4, by putting pn
=

1, vn
=

1, and making use oflemma 1.

COROLLARY 6

If the sequences {pn }, {<?}, {un }, {vn } satisfy the conditions of theorem 1 except

(3)-(5), and if pnUn
= O(Pnun ) and Pnun = O(pnUn\ then sufficient conditions that Zan sn

is summable \N9 pn9 qn \k whenever it is summable \N9 un,vn \k9 k^ 1 are

Proof. Follows from theorem 1.
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Abstract. A symrnetrizer of a nonsymmetric matrix A is the symmetric matrix X that satisfies

the equation XA = A'X, where t indicates the transpose. A symrnetrizer is useful in converting

a nonsymmetric eigenvalue problem into a symmetric one which is relatively easy to solve

and finds applications in stability problems in control theory and in the study of general

matrices. Three designs based on VLSI parallel processor arrays are presented to compute
a symmetrizer of a lower Hessenberg matrix. Their scope is discussed. The first one is the

Leiserson systolic design while the remaining two, viz., the double pipe design and the fitted

diagonal design are the derived versions of the first design with improved performance.

Keywords. Complexity; equivalent symmetric matrix; Hessenberg matrix; symmetrizer;

systolic array; VLSI processor array.

1. Introduction

A symmetrizer [3, 7, 14, 16, 19, 20] of an n x n nonsymmetric matrix A is the solution

X satisfying the equations XA = A*X and X = X1

. A symmetrizer is used in trans-

forming a nonsymmetric matrix into an equivalent symmetric matrix [14, 20] whose

eigenvalues are the same as those of the nonsymmetric matrix and is useful in many
engineering problems, specifically stability problems in control theory and in the

study of general matrices [14].

Let

'11 '12

'22 '23

(1)

be a lower Hessenberg matrix with b
iti+1

^0 for i = l(l)n
-

1, where i = l(l)n
- 1

denotes i = l,2,...,n- 1. Also, let x
f
be the i-th row of the symmetrizer X for

i = n(~ 1)1. Then, from XB = B'X, we write the serial algorithm [3] as follows

STEP 1: Choose xn 7^0 arbitrarily.
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STEP 2: Compute xM-1 ,xn ^ 2 ,...,x 1 recursively from

1

j = M _l(-l)l

As an illustration, consider

Choose x4 = [1 2 1]. x3 ,x2 , and then x
l are computed following the

foregoing algorithm. Hence the symmetrizer is

It can be seen that the symmetrizer is not unique because if we choose x4 = [1 1 1 1]

then we get a different X.

2. Leiserson systolic design

The single assignment algorithm [10] for computing a symmetrizer of the Hessenberg
matrix B in Equation (1) is as follows.

for f:= 1 to n do for
7":
= to n do read BpJ];

for fc: = 1 to n do read X[n, k];

for i: = n 1 down to 1 do

begin
for j : = 1 to n do Y p,;, 1] :

= 0.0;

for j:= 1 to n do

begin
for k:= 1 to n do YpJ,k+ 1]:= Y[U,k] + Xp + U]*J3[/cJ];

for p:=i+ 1 to n do YpJ. + 1]:= ypj,n + p]
-

i + 1];

write

end

end.

The implementation [6, 15, 17, 18] of this single assignment code a 4 x 4 matrix on
the Leiserson systolic array depicted in figure 1 is straightforward by using the re-

;

ming technique [10]. The allocation of the diagonals of the Hessenberg matrix to the

rocessing cells (Type I) of the linear string of processors is as shown in figure 2. The
nspecified output of PE 5 in figure 1 is ignored while its unspecified input is zero.
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TO SYSTEM BUS /HOST

y\
= x;B

INTERFACE PROCESSOR AND MEMORY

PEL Jl'EJ C M^t

Here X- => elements of
veciorXj|

; so do
Yj

and
Xj_j

a. b .

1 1

BASIC CELLS

OPERATIONS

x. .

TYPE I

x := x.
o i

TYPE II

x := x . + a . b .

o i 11

TYPE III

x := x . / a .

o 1/1
if

x
j=

' 'henx
o
:=-

if a. = . then X
Q
:= x.

if
x .= then *

Q
'^' and yo

-
y. if a.= and b.=. then x := x.

y = y. + a. x.
o 'i 11

Figure 1. Systolic array cells system for a 4 x 4 matrix symmetrization.

Figure 2. Systolic array cell (Type I) allocation for the diagonals of a 4 x 4 Hessenberg
matrix.

Figure 3 displays how the pumping of the row vector xi+l and the matrix B into

Type I cells is done for the matrix-vector multiplication while figure 4 demonstrates

the array consisting of Types II and III cells to generate a symmetrizer row by row.

The pumping will be done elementwise in Types II and III cells. The notations

x"> k^ y|9
in figure 4, each ofwhich has 2n 1 elements including tag bits are given as

.. = [h.. o b
tj

o ... o
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X-

(b) Just after the third time cycle

44

(c) Just after the ninth time cycle

(ci) Just after thirteenth time cycle

Figure 3. 1-D systolic array for vector Hessenberg matrix multiplication.

and
= o _ x

o ... o
y\~\

This notation is used to conserve space.

A lower (or upper) Hessenberg matrix of order n needs n + 1 cells of Type I.

Denoting these cells PE
1 ,
PE2 ,

. . . ,PEn+l following the same notation (and connection)

as in figure 1, the diagonal consisting of only one element b
nl

is positioned appropriately
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'22 x}

*U
32 X" u u

00 U U

-b
43

X* 8 pairs

-b X4 u u of tag bits

~b 44 X4 7 Pairs 7 Pairs
4 of tag bits of tag bits

"34

K
If u

X . => elements of the vectorx so does b: :

l
* J

Figure 4. Systolic array for generating a 4 x 4 symmetrizer row by bow.

to be pumped into PE l ,
the next diagonal (just above the foregoing diagonal) consisting

of the elements b
n _ 1 1 , bn2 is allocated to PE2. The third diagonal with elements

k/i-2 i'^n-i 2'^n3 is assigned to PE 3 and so on. Figure 2 illustrates the allocation of

the diagonals of the 4 x 4 Hessenberg (symbolic) matrix B = [b. .] to different cells.

The generalization to an n x n matrix is immediate. However, the diagonals could

have been allocated in the reverse order, i.e., the diagonal having the elements b 12 ,b23 ,

i>34 , -">bn _ 1 n
could have been allocated to PE^ ,

the principal diagonal to PE~2 , and

so on. Both the allocations are functionally identical. We, however, use the former

allocation.

In a one-dimensional Kung-Leiserson systolic array [4], the elements of the vector

x flow from left to right (figure 3) for row vector-Hessenberg matrix multiplication.

This array consists of Type I cells, viz., inner product step (ips) cells. The matrix

elements flow into the top and the solution elements appear from the left of the cells.

Here half the cells are active at any one time. It is, however, possible to orient the

data flow so that the cells are all active simultaneously [8, 11]. Note that the number
of cells depends on the bandwidth (number of diagonals) of B and not on the size of

B. The summation with a negative sign, viz., the result

of Step 2 of the algorithm ( 1) is computed using Type II cells as shown in figure 4.

The values yn
= xnB,yn _ 1

=xn - 1 B, ...,yi. =\ 1
B to which the results is to be added

are pumped into the cells from the left while the terms of the summation are pumped
into them from the top. The single division by b. i+1 is then carried out in Type III

cell, one of which only is needed to be used irrespective of the size of B. The elements

of the row-vector of the symmetrizer X which are output rhythmically one after the

other by this Type III cell are then fed back as indicated in figure 1. This row-vector

is then used in the computation of the remaining row-vectors of X recursively.
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3. Double pipe and fitted diagonal designs

The Leiserson systolic model [6,9, 12] needs 2n -f 1 cells and 4n + 1 time cycles to

obtain a row of the symmtrizer. Here we discuss two designs
- one called the double

pipe construction method, based on introducing a second pipe while the other, called

the fitted diagonal method, on reducing the number of diagonals of the matrix B.

While mapping the single assignment algorithm in 2, the double pipe design aims

at minimizing the time complexity while the fitted diagonal design the number of

cells.

3.1 Double pipe construction method

This method [18] uses n + 1 cells comprising two pipes
- the first one consisting of

odd labelled cells P 1 ,P 3 ,..., while the second one the cells PE2,PE4 ,..., where

n is the order of B; in addition, it uses one adder and one delay cell (figure 5). It

computes a symmetrizer B in time cycles where f ] indicates the upper

integral part. The double pipe concept increases cell efficiency and removes tag bits.

It minimizes the hardware delay that exists before the start of actual computation.
The data flow and the architecture of the n + 1 cells are illustrated in figures 6 and

8, respectively.

Split the Hessenberg matrix B i.e., write B = Bl 4- B2. Bl contains only odd

diagonals of B, where the first diagonal contains only the element b
ni , the second

the elements b
n _ ll ,bn29 and so on while B2 the even diagonals. The remaining

elements of Bl and B2 are zero. Since x B = y f , we have x (Bl + B2) = y . If we allow

x.Bl = yB1 and x.B2 = yB2 then yB1 + yB2
=

y.. Figure 6 depicts the flow and com-

putation of yB1 and yB2 . The array needs no dummy elements, viz., the tag bits. Pipe 1

cells. Pipe 2 requires (n + 1)
-

ips cells. The time complexity

* u - ^ fw+H 1 f 5n + 3 lto obtain a row is 2n + -f 1, i.e., .

contains

Figure 5. Double pipe array for vector Hessenberg matrix multiplication.
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b32
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Figure 6. Data flow for double pipe method.
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Figure 7. Fitted diagonal method and data flow.
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. . ..
1 1 1J 1

Figure 8. Architecture of ips cells for Leiserson and double pipe methods.

3.2 Fitted diagonal method

This method [15] consists in halving the number of diagonals, and hence the number
of ips cells used is half of that required in the double pipe method. The number of

i -I

diagonals can be reduced to- by fitting two adjacent diagonals into one.

Let dk+ 1
and d

k
be two adjacent diagonals, of JB, oflength k + 1 and k, respectively

A fitted diagonal Af is defined by interleaving the elements of dk+1 and d
k ,

as

where length (d,)
= length(dfc+ x ) + length(dj

= 2k + 1.

Therefore, ifthe bandwidth n -f 1 ofB is even then B is transformed to fitted diagonal
v\ -4- 1

matrix BF with bandwith- . For a 5 x 5 Hessenberg matrix B = [6r],

b2l

Sl

34

'54

55_
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the bandwidth is odd then BF will have
n-

+ 1 fitted diagonals where the

diagonal is fitted with one additional diagonal of - zero elements. For a 4 x 4

enberg matrix B,

BF =

'43

gure 7 illustrates the fitted diagonal method for a 4 x 4 Hessenberg matrix. A
ction in the number of PEs in this method necessitates some minor modifications

e ips cells. Each of the input vectors x. +1 and that of the output vectors x. = y

: be kept in each of the PEs for two time cycles as shown in figure 9.

time complexity is the same as that for Leiserson systolic model but the number

Es is + w, where the last n PEs do the same job as the last n PEs in

:rson systolic model of figure 1. This number is about 75% of those required for

;onventional Leiserson systolic model. If (n -f 1) is odd the diagonal left is fitted

Here all the gates are multi-input gates

Figure 9. Architecture of ips cell for fitted diagonal method.
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Table 1. Time complexity for a row and number ofPEs for the designs.

-*>22
X^

32 X* o o

O 01)

PE6

-b
43

JLJL jM

34

X. => elements of the vectorX
; so does b:

Figure 10. Modified systolic array for generating a 4 x 4 symmetrizer row by row.

with an additional diagonal of null elements. However this reduction in the number
of processors needs some minor modification required for the processing elements.

The first (n + 1) PEs owing to the elements of vectors x and y must be kept in each

processor for two clock cycles. The time complexity is the same as that of Leiserson

systolic model but the number of processors is
n+n
r which is roughly half of

that for conventional Leiserson systolic model.

We present, in table 1, a comparison of time complexity to compute a row of the

symmetrizer and number of PEs for the proposed three designs.
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4. Scheduling and total time complexity

In the Leiserson systolic model, computation of a row of a symmetrizer requires

2/i + Wi time cycles (where w
1 =2n-f 1). Repeating this process for all the rows

independently, the total number of time cycles required is (n l)(2n + w x ).
Even

though this total number of time cycles is O(n
2
\ it is still expensive. After w

1 -fn

time cycles Type I cells (figure 1) are totally idle. A new pumping process is scheduled

every w
x + n time cycles. Therefore, the total number of time cycles to obtain the

symmetrizer is T
l =(n l)(n + w

x ) 4- n which reduces the number of time cycles by
n
2 - 2n.

The same number of time cycles T is required in fitted diagonal method even

though, in this case, number of PEs is reduced by , compared to that in Leiserson

systolic model. Similarly, in the double pipe construction method, the symmetrizer

is computed with the number of time cycles T2 = (n 1)1 4- (n -f 3)

If we use programmable systolic chip, then Types II and III cells are modified as

in figure 10 and the cells architecture is as depicted in figure 11; Type II cells (except

the last) have two output gates. The switch value is always assigned zero. The controller

sets one for particular clock counter values, e.g., for Leiserson model of 4 x 4 matrix

symmetrization, the processor PE6 controller sets the switch value one from 6th time

cycle to 12th time cycle so that the data is pumped to the division cell directly.

Type III cell gets input from any one of the gates. This modification reduces the tag

bits in Type II and III cells. It also reduces the time complexity by (n ~2)(n 3)/2.

5. Conclusions

The systolization procedures, i.e., all the three designs can also be easily extended to

the general serial algorithm [14] to compute a symmetrizer of an arbitrary square
matrix. The bandwidth will, however, be more. We hope that such a systolization

will enormously reduce the complexity of computing an error-free symmetrizer [19,

20]. This error free symmetrizer will produce a more accurate equivalent symmetric
matrix [14, 19] than what an approximate one does. It can be seen that when a real

non-symmetric matrix has one or more pairs of complex eigenvalues then the

equivalent symmetric matrix will be a complex one, Jacobi-like methods [1, 2, 5, 13]

have been developed for computing eigenvalues, some of which are complex, of a

complex symmetric matrix. These methods obviously make use of the "symmetry"

property which results in a significant reduction in computation.
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Abstract. Our main interest in this paper is the resolution of the problem of controllability

of interconnected nonlinear delay systems in function space, from which hopefully the

existence of an optimal control law can be deduced later. We insist that each subsystem be

controlled by its own variables while taking into account the interacting effects. This is the

recent basic insight of [13] on ordinary differential systems. Controllability is deduced

for the composite system from the assumption of controllability of each free subsystem

and a growth condition of the interconnecting structure. Conditions for a free system's

controllability are given. One application is presented. The insight it provides for the growth

of global economy has important policy implications.

Keywords. Large-scale systems; delay equations; decentralized control; growth of capital

stock; depression.

We motivate the problem with a simple economic system derived by Kalecki [24]

and reported in [1]. He argued that the dynamics of capital stock x(t) of a firm is

given by

x(t)
= a x(t) + a^(t - fc) + bu(t\ (1.1)

where ai9
i = 0, 1, are constants, bu(t) is a sum of two terms a constant multiple of

autonomous consumption and a trend term. The crucial assumption for (1.1) is that

the net capital formation x(t) is given by I(t\ the investment function. To obtain (1.1),

Kalecki assumes that the investment decision B is given by

where a, c, k are constants, is a windfall which may be time varying. The income

(or output) is y, x(t) denotes the stock of capital, and e is the trend term. The delay

h represents the time lag between the decision to invest and the deliveries of capital

equipments. One can interpret (1.1) as a system whose growth can be controlled by
autonomous consumption and windfalls. For example one can ask whether it is

possible to grow from a 3% growth rate x(i)
= 3t/100 = <(t) te[ h, 0], to 10% growth

rate, x(t+ T) = Wt/lQQ = \j/(t\ te[-/i,0] in time T, by using u as a control. To
motivate a nonlinear system of the form (1.1) which is interconnected by the so-called

"solidarity" function inspired by [14], [20], [21] we argue as follows. Let Z denote

aggregate demand consisting of consumption (C), investment (I), net exports (X) and

government outlay (G). These differentiable functions are related as follows:

(1.2)

73
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where

(1.3)

and y T is the current after-tax income,

r=r +/1 (y). (1.4)

T >0 is the level of non-income taxes, and f^y) is the income taxes.

,
e

L
>0. (1.5)

the part of income that is spent on other countries' products, X is autonomous
net exports, and R is the real rate of interest. Public expenditure is

G = /3 G>(r-/0) + i;(r), (1.6)

where /3 is public consumption which is dependent on the previous high income,

and v(t) public investment. Investment is autonomous, i.e. it does not depend on

income, but on "animal spirits" of entrepreneurs:

I(r)
=

Io(0- (1-7)

Thus

Z(t) = (Z (t) + f3 (y(t
-

h)) + v(t) + cy(t)
- cTQ (t)

~
cf^y)

- f2 (y(t)} - e, R,

(1.8)

where Z (t)
= I -f X -h C . From the model equations of money demand and supply

[14] we deduce that

"HHA-
since

where fc is a fraction of income, r > is measured in dollars. Here M is the nominal
value of money supply which is controlled by the Central Bank, P is the price level.

The real demand for money is denoted by L/P. The symbol j is autonomous real

money demand. With R in (1.9) we deduce that

/ e k\
Z(t) = Z (t) + y(t)l c -

j

+ f2 (y(t-h))
-

Following Allen [1] we postulate that -dy(t)/dt=
-

X(y(t)-Z(t)\ where /I is a
constant. Thus

.v(r)=-A(l + ^-,

;
-

/r)) + fl I fl _y I + ^(f) + ;iZo (f)
_ lcT (t). (1.10)
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Denote "solidarity functions," by

^ -cT (t) + (
f "o

d "private initiative" by

en the dynamics of income is

( e k \
y(t) = -

A^
1 +

-|-
-

c\y(t) + A(c/i(y(t)) +f2 (y(t)) + Jl/3

' +PW + 0W- (Lll)

[t is an interconnected nonlinear system whose controllability is investigated for
values of p and q. The type of result which we shall prove in Theorem 2.2 when
plied to the special system (1.11) will now be stated.

Suppose

(l.lla)

1 B(t)u(t) = p(t) + <?(0; then the dynamics of gross national product is

e k
1 + _i_ __ c

s possible for national income to be controlled by w, a combination of government
1 private controls. Using this, for example, we can steer a growth rate of 3% i.e.,

[t)
=

3r/100, *[- /z,0], to a growth rate of 10%, \j/2 (t + T) = 10r/100, re[- /i,0],
;ime T provided

B(t) * on [T- *, T], B(t) * 0, re[0, T- *]
(Condition (ii), Theorem 2.2),

< 00,

the combined effect of the coefficient of solidarity and private initiative is "strong",
I nontrivial. This is (iii), Theorem 2.2, the condition of the essential uriforni
mdedness of the generalized inverse of B(t).

Also there is a condition of how big q should be compared with p(t): Theorem 2.4

(ii), see Remark 2.4: "private initiative" should dominate "solidarity".

t is proper to consider x i

(t)
=

(x[(t)9 ...,x
i

n (t))
to be the value of n capital stocks
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with strategy u l =
(u\ ...wj,),

Bw l

'(0 = P;W 1 ^ w}(0 < 1, which is located in an isolated

region S
f

. They are linked to / other such regional systems in the country and the

"interconnection" or "solidarity functions", or government intervention givenby

Here q t
describes the action of the whole system on its fth interconnected subsystem

(St\

x l

(t) -A^x\t - h)
= 4 jc'(t) + A^t ~-h) + Bu l

(t). (S^
Thus

1
x i

(t-h) + B i

u(t) + q i
. (1.12)

Thus formulated we are interested in using the firms strategy u
l and government

interventions q t
to control the growth of capital stock on which the wealth of a nation

depends. Theorems 3.1 and 3.2 can be stated loosely as follows. If a regional economy
is well behaved, carefully weighted government interventions q t

can maintain the

country's economic growth. Even if a regional economy is not controllable the

intervention of solidarity function can render the system controllable. (See Remark 3.1

and Theorem 3.2.) Implications of controllability questions for the control of global

economy are pursued elsewhere in [5], [8]. The issue of optimality is apparent in [8].

1. Introduction

For linear free systems, criteria for W(

2
}

controllability have been provided in [2].

For nonlinear cases a similar investigation was recently carried out in [8]. Recently
Sinha [16] treated controllability in Euclidean space of large scale systems in which
the base is linear. We extend the scope of the treatment in [16] by treating large
scale systems with delay when the state space is W and the base system is not

necessarily linear. We state criteria for controllability of the free subsystem by defining
an L2 control that does the steering both in the linear and nonlinear case. We prove
that such a control exists as a solution of an integral equation in a Banach space.
For this, we use Schauder's fixed point theorem. Assuming that the free subsystem is

controllable and the interaction function has a certain growth condition we prove
the controllability of the interconnected system.
We begin with a simple system. A linear state equation of the z'th subsystem of an

interconnected control system can be described by,

x l

(t)
=
A^x^t) + A 2i

x l

(t
-

h) + A
3iy

l

(t) + A4iy
l

(t -h) + B
t
u

l

(t\ (1.13)

where x l

(t)eE
nt

is the nrdimensional Euclidean state vector of the fth subsystem,
u

t
eEmi

is the control vector and Au A 2i B t
A 3i A4i are time invariant matrices of

appropriate dimensions. Also, y
l

(t) is the supplementary variable of the ith subsystem
and is a function of its own Euclidean -state vector xl

(t) and other subsystem state
vector xj

(t) ;
=

1, ...,/. We express this as follows:

i

y
l

(t)
=
M,,x'() + Z M.jX^t) (1.14)

where Mu , M.. (j = l,2,...,l, j ^ i) are constant matrices.
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By substituting (1.14) into (1.13) we obtain the state equation of the overall

interconnected system,

where

H
i

= A U + A
3i
M

ii>
Gi= A 2l'

i

In (1.15), m f (t) and e
( (t /i) describe the interaction, the effects of other subsystems

on the z'th subsystem. This can be measured locally. The decomposed system (1.1.5)

can be viewed as an interconnection of / isolated subsystems

x'(t
-

h) + B M (t),

with interconnection structure characterized by

which does not depend on the state variables x l

(t).

We now consider the more general free linear subsystem,

and the decomposed large scale system,

xiW =
L.( ) x;) + B i

.u
i

() + ^.(t,-/l),

x = f,J =!,...,/, (/,)

k where

L.(t,xj)= f
J-A

We assume B.(t) is an n. x m. continuous matrix. The linear operator (/>->L.(t, 0) is

described by the integral in the Lebesgue-Stieltjes sense, where (t,0)-f/ (,i?) is an

n. x n. matrix function. It is assumed that ->^(, 0), te, is continuous for each fixed

0e[ /z,0] and O-^ri^O) is of bounded variation on [ /t,0] for each fixed te.
Also, ff (f, 0)

=
0, 9 ^ 0, fy (t, 6)

= ^(r, h\6^h and ->
iy E.(t, 0) is left, continuous

on ( h, 0). It is assumed that

where p.(t) is locally integrable. These conditions also hold for r\ir

Throughout the sequel E
r
is the r-dimensional Euclidean space with norm |-|. The

symbol C denotes the space of continuous functions mapping the interval [ /i,0],
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h > 0, heE into En with the sup norm
|| ||,

defined by || ||

= sup |<(s)
-h^s^O

The controls are square integrable functions tieL2 ([<Mi],JE
w

), t^E, t^xy and

L2 is the space of measurable functions u defined on finite intervals [Mi] for which

\u\
2

is summable. If re[tr, tj, we let xt
eC be defined by x,(s)

= x(t -f s), /i < s < 0.

With L2 as the space of admissible controls, the state space is either En on W(

\ the

Sobolev space of absolutely continuous functions x: [ /i,0]-^" with the property

that t-+x(t)<=L2([-h,0],E
n
). Thus if or, teE and fieW^d-h^lE*), u'eL^Mj,

mi
) there is a unique absolutely continuous function x (% a, (f>\ u

l

)
= x f

:[a h, tj] ~~> F"

which satisfies (L.) or (/.) a-e on [cr,^] and the initial condition x^
= whenever

the earlier conditions in rj., ^ and B
i
are satisfied. Also

xj(', <r, ,u^e^
1 }

([- /i,0],
n
O

forteCMj.

DEFINITION 1.1

The system (L f ) is controllable (respectively Euclidean controllable) on the interval

[Mj if for each </

f

, ^eW^^C- /i,0],E
Wf

) (respectively ^ 6^
(

2
1)
([- /i,0],

w
O), xJeJE"

1

,

there is a controller M
l

"eL
2 ([cr) t 1 ],

mt
) such that x^(% a, ^', w

l

")
=

</>

f and xl^cr^u
1)^^

1

(resp ^(f^tr,^,!^)
=

**!)
If (L.) is controllable on every interval [a,tj, ^ >cr-f-/i,

we say it is controllable. If (L.) is Euclidean controllable on every interval [or, tj],

t
i
> o we say it is Euclidean controllable. For the free subsystem (L.) the following

controllability theorem is available in [2, p. 616].

PROPOSITION 1.1

In (L.) let B*(t) denote the Moore-Penrose generalized inverse of B.(t), teE. Assume

that f-B.+ (t) is essentially bounded on [t^h^t^. Then (L.) is controllable on an

interval [cr, tj] wit/i t
i
>a + h if and only if

rank B.(t)
= n. on [t x fc, 1

1 ].

An easy adaptation ofthe argument in [2] yields the following result on the system (/;).

Theorem 1.1. Consider the interconnected decomposed system (/.) in which Bf(t) is

essentially bounded. Suppose

rank B
t (i)

= n. on [t l
h

9
t
l ].

Then (/f ) is controllable on [cr, tj, t x ><r + h.

Proof. Let ^
f(t,s) be the fundamental matrix solution of

Then

has rank n
i9 so that (7 ) is Euclidean, controllable. Here B* is the algebraic adjoint

ofA This is proved by letting fieW*? = H*
2
1}
([- fc.0], "'), x^eE

11

/, and by defining
a control
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. -*(* (7, 0,0)

pi-*
-1

L l
*
1 ' s0iS' s s

j'

s x l

'(t, <r, </>,0) is the solution of (L ) with u l = 0. Using the variation of parameter
Aerifies that u l indeed transfers 4>

l

to x[ in time ^ h. Thus there is a control

2 ([<r, tj
-

h],
m
') such that x (^

-
fe, <r, 0, u')

=
\I/

L

(- h). We extend u l and xf

to

iterval [a,^] so that

>n [ti
- Mil To do this note that

^(t,a-t)^
Jri-/t

ow define

r+
j tl_^yt

' a

'-+/- * p
1 "*

*

I
i ^ ' *

j t_ A

' ' a

r '

j,,-'
/

''
' a

v r , M i/ t, f
1 '*

/+ X >/y(t, /t)x-'(t h) + \ f/y(, a t)x

jj* \ L J t~~h
"'

+
f

'

Jti-fc

!
h ^ t ^ t l . Because of the smoothness properties of x 1

, xj and \l/\ u
l

is indeed

opriate. Thus the controllability of the composite system can be deduced from

of the subsystems so long as the interconnection is as proposed. We now turn

attention to the nonlinear situation.
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2. Nonlinear systems

Consider the general nonlinear large scale system,

x(t)
=

/(f, xt , u(t}) + B(t, xt )u(t) + g(t, x t , v(t)), (2. 1)

where /: x C x m ->E" is a nonlinear function #:E x C x Em ~+En
is a nonlinear

interconnection and the n x m matrix function B:ExC->EnXm is possibly nonlinear.

Conditions for the existence of a unique solution x(% or, 0, M), when weL2 , 0eC([ h, 0],

") are given in Underwood and Young [18]. It is shown there that
(</>, u)

- x
t ("

o"5 w)eC
is continuously differentiable. These conditions are assumed to prevail here. Indeed

we have,

Lemma 1.1. For t/ze 5ysrem x(t)=f(t9 xt9 u(t)) -f B(r,xt)w(t) assume that

(i) : x C-> nXm
is continuously differentiable.

(ii) TTiere exist integrable functions Nh N t:E-^[0 9 oo), i = 1,2, SMC/I

/or tsE anrf (/>eC([- /i,0],E
n
). Here an<i in t/ie s^ue/ D^( )

is the Frechet

derivative of g with respect to the ith variable.

(in) /(t, v) is continuously differentiable for each t.

(iv) /(, 0,o)) is measurable for each
<j>
and CD.

(v) For each compact set KaEn
there exists an integrable function M f:E-[0, oo),

i = 2, 3 such that

l|D 2/(t,^G))||<M 3 (t) VteE,

Then for each ueL2 there exists a unique solution x to

Remark 1.1 Note that

we have

The system (2.1) may be decomposed as

B
t (t,

x?
t)u

l

(t) + ^y (t, xf, t? (t)), i = 1, . . . , I, (2.2)

where

Let

Z i

= w Z m
i

.
=
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[/(t, x,, )]
T =

[(/, (t, x,
1

, u
1

))
T

,. ..,(f,(t, x
l

, u')
T
],

/

gi(t,x,,v
i

(t))=

81

t, x,, t/) = [01 (t, x,
1

, v
1

(0)
T

, . . .
, te,(r, xj, i>'(

ten we can view (2.1) with decomposition (2.2) as an interconnection of / isolated

bsystems (S; ) described by the equations

( (ts x
lV(tX (S f )

th interconnecting structure characterized by

9i (t, xt , v'(t))
= t g. .(t, x/, D

f

(t)) = gt (t, x,, v'(t)).

mditions for the existence and uniqueness of solutions are assumed. In particular

^^i(t,xt ,v
l

(t)) is assumed integrable.

First we shall state the conditions for controllability of each isolated subsystem
To do this we define a matrix H

t
:

H.= (L)

r each <'eC([- A,0],
n
')
= Cni

. Here B* is the transpose of JJ..

leorem 2.1. In (S^ assume that

i) there is a continuous function N* t (t)
such that ||JJ*(t,^')|| ^ JV*.(t) V^'eC

11

';

i) H t

- in (L) tos a bounded inverse',

i) /zere exist continuous functions G.^C"
1

'

x Em^E + and integrable functions
:E^E +

j = l,...,q such that

r a// (t, (j),u(t))eE x Cnf x mi
, w/zer^ t/ie following growth condition is satisfied:

limsupr-
j=l

hen (Si) is Euclidean controllable on [cr, ^].

emar/c 2.1 Condition (iii) is a growth condition which should be compared to a

liform bound imposed on /by Mirza and Womack [15, Theorem C] when treating

slay equations. Such growth conditions have a long history: see [9, 4, 3, 22]. In

] one sees the consequences of the growth condition.



82 EN Chukwu

Proof. Let fieW(

}\ x\eE
n

'. Then the solution of (S,.) is given by

xty + ffJ-MX te[-fc,0];

i

(s))ds+-fBi(s,xi)u
i

(5)dS, t*a. (2.3)

J <r

Now define a function u* on [cr,^] as follows:

(2.4)

where x'( ) is a solution of (S ) corresponding to u l with initial function
<t>

1

. Such a

solution exists as earlier remarked if w exists as an L2 function. Since t-^BfaQ) is

continuous, w', as defined, is L2 . Introduce the following space

with norm h

IIOMII = li4>ll + iNl2, (<M)eX, ?

where

ati

\l/2

|u(s)|
2
ds

)

.

T /

We show the existence of a positive constant r
, and a subset A(r ) of X such that

where

^i(*i> ro)
= {^[ Mi]-*^ 1

"

continuous = <, ||J ^^relV,^]}, |

42(*ir )
= {t*eL2 (0,t 1 [,E

m
O:(i)ltt(t)|<r a.e. i*1 ^[cr,^] and

fi
(ii) |

tt (t + s) tt(r) \

2
dt -* as s -> uniformly with

t

Jar
H

respect to ueA2 (t 1 ,r )}.

It is obvious that the two conditions for A2 ensures that A2 is a compact convex
subset of the Banach space L2 ([1 1, p. 297]). Define the operator Ton X as follows:

where

I

/(*, X^ M (5))ds + f

'

B (S, Xj)(5)d5,
Jar J<r

^ CT, (2.5)

(2.6)

Obviously the solutions x'(-) and u (-) of (2.3) and (2.4) are fixed points of T; i.e.,

T(x\ u l

)
= (x\ u

l

). Using Schauder's fixed-point theorem we shall prove the existence

of such a fixed point in A. Let

Gy(r)
= sup {Gy(0', W ''): || (<l>\ u

l

) \\ < r},
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where
G^.

are defined in (iii). Because the growth condition of (iii) is valid there exists

a constant r > such that

or

See a recent paper by Do [22, p. 44]. With this r define A(r ) as described above.

To simplify our argument we introduce the following notation:

(t 1 -a), 1},

a =

If (x'.a'Jeyl^oX from (2.5) and (2.6), we have that

j

"

f a/s)Gy(jcJ, u'(s))ds I

f f

"

a.(s)Gy(r )dsl
J*! Jr J

Also
rtl

aj(5)G..(Xs,M(s))ds

< ^o + ^ = 2ro

We now verify that

f

11

- 2

} ff

uniformly with respect to veA 2 (t l ,rQ ). Indeed

f'
1

f'
1

j.

vt * s vt
^L

as

where

I- \'

1

ffax^uWds
j ^
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Because t -> B*(t, xt )
and t - x

t
are continuous, we assert that indeed fc \v(t 4- s) v(t)\

2

dt ->0 as s->0. This proves that i?e/4 2 and we have completed the proof that T maps
A(rQ )

into itself. We next prove that T is a continuous operator. This is obvious if

are continuous since w -*(,) is continuous. To prove continuity in the general

situation we argue as follows. Let (x
l

9
u

l

\ (x
ri

,u
fi

)eA(r ) and T(x
i

9
u

i

)
=

(z(t)9 v(t))9

T(x'
l

",w'')
=

(z'(t),z/(t)), where v(t) is as given in (2.6) corresponding to u l and v'(t) is

also given by (2.6) corresponding to w f

. Also z(t) is given in (2.5) corresponding to u
l

and z'(t) corresponds to w. Then

\v(t)-v'(t)\
2 =

-
Bf(t,

- /i
(Sj x7,w(s))ds

B*(t,xJ") ["
Jff

(2.7)

f

J<T

|/f(s,x7,w(s))|
2 ds

Since m-B*(t,x^) and u->/.(t,x",u) are continuous given >0, there is a fj>0
such that if |u

-
w| < r,

then |B*(t,j
-

B*(t,x;
w

)| < E, and |/.(t5 xj
u

; u) -/.fexj
1

", w)| < e,

tefV.tJ. Divide the interval [ff,tj] into two sets e
x and e2 ; put the points at which

\u(t)-w(t)\<ri to be e! and the remainder e2 . If we write ||u-w|| L2
=

y, then

T
2 = f;l(f)-wW|

2

dt5=Je2 iu(t)-fflWI
2d^^2mese

2
so that mese

2 <y
2
/?7

2
. Consider

the integral

1 =

Then

4v2
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for some R. This last estimate is deduced from the fact that if (x, w), (x', u
f

)eA(r ) this

implies that sup{/t-( )} < K, for some jR.

On using this last estimate in (2.7) we deduce that if \u w| < rj;
then

Thus

!b-'H
2 = ws)-t/(s)|

2 ds

v
2
/?

2
f'

1 1
^- N*(s)ds .

^7 Jcr J

Because y
2 =

||u w||
2 and JV*. is integrable i; and v' can be made as close as

possible if u and w are sufficiently close. We next consider the term |z(t) z'(t)|. We
have

+

||B (s,xJ)-B (s,x'f)|||i;(s)|ds+

Because of this inequality and an argument similar to the above, z, z' can be made
as close as possible in A

i
if u, w are sufficiently close. We have proved that T is

continuous in w. It is easy to see that T is continuous in x, the first argument, and

thus, by a little reasoning based on the continuity hypothesis on /4
and Bh that T(x, u)

is continuous on both arguments.
To be able to use Schauder's fixed point theorem, we need to verify that T(A(r ))

is compact. Since A 2 (t 1 ,r ) is compact we need only verify that if (x,u)eA(r ) and

(z, v)
= T(x, u) then z as defined in (2.5) is equicontinuous for each r . To see this we

observe that for each (x,u)eA(r ) and s 1} s2 e[<M 1 ], s
1
<s 2 , we have

< ftI |s2
-

Sl I
+
I" /s)Gv (r )ds (2.8)

HGy(r )|s2 -sj



86 EN Chukwu

In the above estimate we have used the fact that ft
= max ||fi.(s,0)||, and

It now follows that the right hand of (2.8) does not depend on particular choices of

(x,). Hence, the set of the first components of T(A(r )) is relatively compact. Thus

T(A(rQ )) is compact which by an earlier remark proves that T is a compact operator.

Gathering results we have proved that T:,4(r )-,4(r ) is a continuous compact

operator from a closed convex subset into itself. By Schauder's fixed point theorem

there exists a fixed point (x, u)
= T(x, w), given by (2.3) and (2.4).

r/ (s,xX(5))ds+ r
J <r J <r

Euclidean controllability is proved.
We now consider the criteria for controllability in W\ for the system (SO-

It is well known that with L
2
controls the natural state space of (2.1) is

Conditions on existence and uniqueness of solutions of variants of (2.1) are treated

by Melvin [27, 28] and recently by Chukwu and Simpson [29]. Since the optimal
control of the linear system has been extensively studied in W(^ it seems appropriate
to treat the nonlinear case. The growth rate we desire in economics is a function.

Theorem 2.2. In (S t ) assume

(i) Conditions (i) and (Hi) of Theorem 2.1.

(ii) ranfc[Bf(t,]
= n. on

[t, ~h,tj for each

(iii) The Moore Penrose generalized inverse of ., Bf (t,)-is essentially uniformly
bounded on [t l

h
9
t
l ] 9 for each eC te[t l

h9 t l ]i

(iv) -.+ (,) is continuous.

Then (S^ is controllable on [a, r^, with t^xr + h.

Proof. First we show that (S f ) is Euclidean-controllable on [Mi -ft]- For this we
let ^'eW, x\eE". The solution x(0 of (S ) with x'

ff

= (^ is given by (2.3). Since

hypothesis (ii) is valid, the matrix B
i (t l

-h
9
xi

ti
_ k)Bf(t 1

-h9
t̂i
_ h ) (where B*( ) is the

algebraic adjoint of .( )) has rank nr Since t-.(t,xp is continuous, there exists

some e > such that for each s, ^ s < e, B.(t 1
- h - s,x*

ti
_ h _ s)B*(t l -h-s, x

l

ti
_ h _ s )

has rank nr As a consequence of this

'

B(s,xs)B*(s,xs)ds+ ^
"

B(s,xs)B*(s,xs)ds
Jti-h-e

has rank nh since the last integral is positive definite and H^ -
h) is positive

semidefinite. By Theorem 2.1, (Sf ) is Euclidean controllable on [cr,^
-

ft], t
x
> a 4- h,

so that given any
f

, ^eW there exists a u
i6L2 ([a5 t

1 -/i],
mi

) such that the

solution of (Si) satisfies xl

ff

= 1

", x'(*
;

-
/i, tr, <^

f

, w
f

)
= ^

f

(
-

/i). We conclude the proof
by extending M and x f

(% a, <', u )
= x f

( ) to the interval [<r, fj t
l
>o -f /i so that
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^(t - *! )
=

/,(*, *;',
u

l

(f)) + JB,(t,
x

tV(*X (2.9a)

5. on [t x

'

/i, tj, where X'*(T)
= ^'(T f

j),
f
j

fc < T < f
t
on the right hand side of

.9a). Because of the rank condition (ii) we may define a control function u
l

as follows:

u*(t)
= B+ (t, x;

w
) *lf'(t -t.)- at, x? , u'(t)) , (2.9b)

r

L<fc J

r r
x h^t^ t l . That such a u exists can be proved as follows: We define the

llowing set

A
1 (r )=luL2 ([t l

-h
9
t
l l,Er<):\\u( )\\ L2 <r and with

P - -+ 1

Jti-/i J

follows from [7, p. 297] that A = ^4^^) is compact. Let T be a map on ,4 defined

; follows

here

(2.11)

/e shall prove that there is a constant r such that with

A = A
l (rQ ), T:A-+A, where T is continuous.

ecause of [7, p. 297] and [7, p. 645], T is guaranteed a fixed point, that is

hich implies that (2.9a) and (2.9b) hold. Observe that A is a compact and convex

ibset of the Banach space L2 . Because of a result of Campbell and Meyer [25,

. 225], and hypotheses (i) and (ii) of the theorem, the generalized inverse t - B +
(t, {) is

ontinuous and therefore uniformly bounded on [t 1 h,t 1 ']. Since the growth
ondition (iii) is valid there exists a r > such that

t CjGy(r ) + rf<r ,

;=i

>r some d. With this r define A = A^TQ). Now introduce the following notations

max f" |a,(s)l<U ll,ll, sup

l
Ix'J + I^OUI^H^, sup
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Let weA. Then

where

q 1
I a/t)Gy(x|,u(t))
;=i J

a/*)Gy(r
)"|

j =1 J

Therefore

IMI<0
+

|

ll^il L2
+ llM Gu(

ro) 1^1 Wli2
+ U ajllGy(r )

Therefore

We have proved that T:A-*A 9
if we can verify the second condition. Now

ti-fc

where { (t)
= ^(t-t 1)-/i(t,x|,u(t)).

The function k(t) = B+ (t, x
l

t).(t) is measurable in t, and is in L
2

. We can therefore

choose a sequence {/cn (t)} of continuous functions such that

i:

asn->oo.
Jti-h

Therefore
11/2

1/2

Qti

11

\kn (t + s)-kn (t)\
2
dt

ti-h J

Qti

"11/2

\kH(t)-k(t)\
2 dt\ .

We choose n large so that the last and first integral on the right hand side of this

inequality are less than an arbitrary s > 0. Also s can be made small enough for the

second integral to be less than e > 0. This verifies the first part of the assertion T:A-+.A.

We now turn to the problem of continuity. Let (u\ (u')eA(r ), T(u) = (t?), T(w') = (t/).
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Then

|(t)
-

v'(t)\ < Bt(t,$)W
l

(t
-

!)-/,(*, *T)

- B +
(t, x')

llB+fcxjj-

+
ii B; (t, x;<)

- B.
+

(t, xj) ii i/f (t,

Since M-B
j

'
t

"(t,x") and u(f) -/,(*, xt ,u(t))
is continuous given >0 there exists an

i]
> such that if |(t)

-
u'(t)\ < q then

|/,(t,xj",u(t))-/,(t,x|"',u'(t))|<e VteC^ -fc,^] si.

Divide I into two sets gj and e 2 and put the points at which \u(i) u'(t)\ <r\ to be

ej and the other to be e2 . If we set ||u
'

|| 2
=

y, then

|M(t)- U'()|
2
dt

so that mes e2 ^ y
2
/rj

2
. A simple analysis shows that

|iAll2 + 2^
+

n

+ 2 mese2 {sup|/()|}
2
-f4/?

+2
^sup{|/i()|}

It follows from these estimates that
||
v v'

\\

2 can be made arbitrarily small if
||
M u'

\\

2

is small. This proves that T:A-+A is a continuous mapping of a compact convex

subset of L2 with itself. By Schauder's fixed point theorem [11, p. 645] T has a fixed

point:

With this u in

V

\jf

l

(t
-
rj

=
0.(t, xr , w(t)) + ;(, xr )w(t)

(19a) is satisfied. The proof is complete.

Remark. Condition (iv) can be removed by employing an argument similar to the

earlier proof.
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In Theorem 2.2 we have stated conditions which guarantee the controllability of

each isolated free subsystem (S t ).
Next we assume these conditions and give an

additional condition on the interconnection g i
which will ensure that the composite

system (2.2) is controllable. It should be carefully noted that

g t(t,x t,J(t))= g
tj(t,xi 9 v?(t))

#
is independent of x 1

, the state of the ith subsystem, though it is measured locally in

the (S t ) system.

Theorem 2.3. Consider the interconnected system in (2.2). Assume that

(i) Conditions (i)-(iii) of Theorem 2.1 are valid: Thus each isolated subsystem is

Euclidean controllable on [<M t ].

(ii) For each i, j = 1, . . .
, /, i ^j

tfifc*,, '(*))= I ^M
W

satisfies the following growth condition: There are continuous functions

and L 1

functions /},-:-
+
y
=

1, ..., g such that

y(xX) forall(t,xtt it\

w/iere /or some constants c

limsupfr- c
Jsup{Gy(x,,'(t)):||(xf ,

<

(t))K'-}V +00 -

r-*oo \ j=l /

Then (2.2) is Euclidean controllable on [a, t
x ].

Theorem 2.4. In (2.1) and (2.2), assume that

(i) Conditions (i)
-

(iv) o/ Theorem 2.2 JioW.

(ii) For each i,j= I,...,/, 1=5*7, ^t satisfies the growth condition: there are continuous

functions

and L 1

functions a -: E -+ E"
1

", j = 1, . . . , q such that

/or a// (r, (j>, u\ v
l

\ where
fij
<

a,, and /or some constants c
j9

limsup(r~ J ^suptGy^u
1

): ||(<M )Kr} )

= +00.
r-oo \ j-1

'
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Then (2.2) is controllable on [cr, rj, t
l >a + h.

Remark 2.4 The condition (ii) of Theorem 2.3 and Theorem 2.4 is similar to the

growth condition of Michel and Miller in [23, Theorem 5.8.4 (ii), Theorem 3.3.5 (iii),

Theorem 3.3.2 (iii), Theorem 2.4.20 (iii)]. The condition states that the external

(government intervention g t
on (Sf ) (in forms of taxation, money supply, investment,

etc., i.e. q {
= g t (t9M /P, T, V)) should be dominated by some "power" foPy of the firm,

"power" measured as a function of (I ,C ,X ,y). This condition that gt
is sufficiently

"small" is a nonlinear generalization of the requirement in the linear pursuit game,

that

IntPoQ.

The firm's control set (or initiative) should dominate the government's. This is a

necessary and sufficient condition (on the control sets) for controllability. See Hajek

[10, p. 61] for the genesis of this idea. It settles this century's basic problem: How
much (in comparison to private effort (i.e. autonomous consumption, investment,

export, money holding) should government intervention (i.e. q(M /P , T ,v)) be in

the economy. The nonlinearity of (2.2) has been well motivated in our introduction.

The interconnectedness is natural and essential in the economic application. As a

control action of government, q(t)
= A[(e 1 /r)(M /P )-cT (t) + v(t)'] 9 in (1.10) and

(1.11) is (realistically) not linear in w(0 = (w
1

,w
2
,w

3
,w

4
)
= (M ,Po^o 5 V). We

combine the fiscal and the monetarist views. The modern debate of macroeconomics,

particularly of Lucas critique [12] makes the incorporation of q(t) very reasonable.

(see [17, Macroeconomics in the Global Economy, Chapter 10]. The argument
demands a game theoretic formulation for the.dynamics of income. This is well spelled

out in Mullinex [26, p. 91]. Wt are therefore compelled to insert a nontrivial g{
.

Mathematicians often object to and scoff at the full rank of B, but the economic

insight ofTinbergen in [17, p. 5, 90] shows how essential this "classical non-degeneracy

assumption is in executing monetary and fiscal policies to achieve a target with several

dimensions.

Proof of Theorem 2.3. The proof parallels that ofTheorem 2.1. The integral equation
of (2.2) corresponding to (2.3) is

f

J <r

The control function corresponding to (2.4) is defined by

lt(t)
=

B*(t, XJ)Jf-
*

|"xi

-
< (0)

-
[*/!

(5, X< , t/(s))ds
-

I*'' g

This control steers ft to x( in time ^ . The additional sum fff# (s, x* , i? (s))ds is utilized

in the estimates by using condition (ii), noting that ft < a . Just as in the proofs of

Theorems 2.1 and 2.2 under the conditions ofTheorem 2.3 the system (2.2) is Euclidean
controllable. The operator T is defined as in the proof of Theorem 2.1 with the
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modification that

where

-
j

Just as before we prove that T has a fixed point: T(x
f

,u')
=

(x',w')> so that (2.2) is

Euclidean controllable. To prove this we suppose that

G.. (r)
= sup (Gy(<M): II (<M) II <r}.

Because of the growth condition in (ii), there is some r such that c
f G..(r ) + d ^ r

j=i

for some c
f
, d. With this we deduce the estimate

', |
+ |tf'(0)| _t J"

(/) + j8J
-(s))Gy(r )ds

|
+ |^(0)| +

J^
2
J"

a,(s)Gy(

since
jSj
< a^ by condition (ii). With this,

G,(r ))<l(^+ f C;GjJ.(r )

/ J/C \ ;=1

2r
In the same way, we have ||z|| < -. Thus

T is a continuous operator since (t, </>)
-* J5 (t5 </>), (t, 0, t>) ->/ (t, 0, u) and (t, 0, w) -*-/i(t, </>, w)

are continuous and u ->
x(-, u) is continuous. The general situation follows an argument

that yielded (2.7) and the subsequent inequalities. For equicontinuity the inequality
rs 2 q

(2.8) has an extra term a
j(

s)G -(r )ds due to #.. The reasoning is as before.

J Si J =1

The interconnected system is Euclidean controllable.

Proof of Theorem 2.4. Our proof here parallels that of Theorem 2.2. From Theorem 2.3

we conclude that (2.2) is Euclidean controllable on [V,^ /i], so that given any $*,
(^ there exists a u

leL
2 ( [a, 1

1

~
h] 9 Emi

\ such that the solution x of (2.2) satisfies

=
< and x l

(f-/i,ff,0
i

,u) = ^(~fc).
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The control u and the solution x l

(',a,(l)\u) are extended on the interval

[<r,ti],fi >cr + h so that

*W =
/,(',4 uW) + ^(t, xj, !>'(*)) 4- B. (t) ii(t)

for t
l
-

ft < f ^ t
l9
where x(t)

=
\j/(t

-
t^\ t

1

- h ^ t ^ tr Define a control

(2.12)

The various estimates that lead to the proof of the existence of a fixed point carry

through with
a,- replaced by 2a

7
- (since /?,

<
a,-)

and f (t) defined by

In all the calculations one remembers that once v is chosen and fixed, u is allowed to
q

vary with its constraints. With minor modification caused by adding /^(OGy.fc',
w

l

())
j= i

the rest of the proof is completed as in the case when g i

== 0.

Remark. An economic interpretation may define
/?,-

as a measure of government
intervention while <x is a measure of the firm's reaction. To ensure controllability

3. General nonlinear systems

In (2.2) it is very important that the system is of the form in which some term is

linear in u. Here we consider the more general situation

x(t)=f(t,xt ,u(t)\ (3.1)

where f:ExCxEm -+En
is continuously differentiate in the second and third

arguments, and is continuous, and it also satisfies all the conditions of Lemma 1.1.

Details of the proof of the following is contained in Chukwu [8].

Theorem 3.1. In (3.1) assume that:

(i)/(t,0,0) = O

(ii) The system

(3.2)

is controllable on [a, t
x ], where t^a + h, and where

D2 f(t, 0, 0)zt
=

L(t, zt\ D 3 /(r, 0,0)t;
=

B(t)v.

Then

06lnt^(t,tr), (3.3)

where

is a solution of (3.1) with x
ff

=
0} (3.4)

is the attainable set associated with (3.1).
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Remark. The argument in the proof is as follows. The solution of(3.1) with xff
= is

The mapping

can be demonstrated to be Gateaux differentiable with Gateaux derivative

where z(t,Q,v) is a solution of (3.2). Because F(Q):L2
->W(v

is a surjection because

of Condition (ii), all the requirements of Corollary 15.2 of [19, p. 155] are met.

Therefore F is locally open which implies (3.3).

We shall next investigate the large scale system

*'' =/;(,*;,"') + t gu(t,x>,tf(t)) (3.5)

j

~i

where ft
and gtj

are as defined following (2.2). Thus we investigate the interconnected

system (2.1)

*W =
f(t, xt , u(t)) -f g(t, x t , v(t)) (3.6)

where / and g are identified following (2.2). We state the following result.

Theorem 3.2. Consider the large scale system (3.6) wit/z its decomposition (3.5) where

(ii) fi9 g { satisfy all the requirements of Lemma 1.1.

(iii) Assume that the linear variational system

z
i

(t)
= L.(t> z;)4-B

l

'(t)^(t) (3.7)

of
x i

(t)=/i(t,x>
i

(t))) (3.8)

where

D
2ft(t9 0, 0)zj

=
L.(t, zj),

is controllable on [a, t^ t l > a -f h.

Tfeen t/ie interconnected system (3.5) fs locally null controllable with constraints.

COROLLARY 3.2

Assume

(i) Conditions (i)-(iii) o/ Theorem 3.2.

(ii) TTie system

,0) (3.9)

zs globally exponentially stable.
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Then the composite system is (globally) null controllable with controls in

Proof of Theorem. By Theorem 3.1,

Oelnt^.(f,cr) for t>a + h, (3.10)

where ts/
i

is the attainable set associated with (3.8). Let x be the solution of (3.5),

with x l = 0. Then

,0,"V")W = P/i(s,xX
J. j-i

Thus, if we define the set

ff (tp a) = {xV,0,tt^e^^^

we deduce that

,cr).

Because /.(, 0, 0)
=

y (f, 0, 0)
= and because xl

(t, 0, 0, 0) = is a solution of (3.5),

QeH.(t 19 o). As a result of this and (3.10) we deduce

^cH^,*). (3.11)

There is an open ball B(0,r) center zero, radius r such that

The conclusion

follows at once. Using this one deduces readily that Oelnt^, the interior of the

domain of null controllability of (3.5), proving local null controllability with

constraints.

Proof of Corollary 3.2. One uses the control u l = Oel/j t;' = Oel/
f
to glide along the

system (3.5) and approach an arbitrary neighborhood of the origin in

"'). Note that

Because of stability in hypothesis (ii) of (3.9) every solution with u l = is entrapped
in (9 in time a ^ 0. Since (i) guarantees that all initial states in this neighborhood
can be driven to zero in finite time, the proof is complete.

Remark. Conditions for global stability of hypothesis (ii) are available in Chukwu
[6, Theorem 4.2].



96 EN Chukwu

Remark 3.1. From the condition

OeInt^(t,0-)c:H.(,<7), (3.11)

we deduced that

OeIntH
c (t,a), (3.12)

is of fundamental importance. If the condition

,<7), (3.13)

fails, the isolated system is "not well-behaved" and cannot be controlled (3.12) may
still prevail and the composite system may be locally controllable. To have this

situation we require

OeIntG.(,<7), (3.14)

where

f f r '

G (t,<r)
=

In words, we require a sufficient amount of control impact (i.e., (3.14)) to be brought
to bear on (S f ), which is not an integral part of S . Thus knowing the limitations of

the control uieU
i
a sufficient signal gM> x^ v

l

) is despatched to make (3.14) hold. And

(3.12) will follow.

Remark 3.2. The same type of reasoning yields a result similar to Theorem 3.2 if we

consider the system

^^..^^
1^-^1

^)), (3.15)

where

(^...,xr^o,x;
+
V..^^

Also conditions (ii) and (iii) of Theorem 3.2 are satisfied.

If we consider

(3.16)

instead of (3.5) we can obtain the following result.

Theorem 3.3. In (3.16) assume (i)-(iii) of Theorem 3.2. But in (3.7) L,(t,zj)
and 5'(

ar^ defined as

D
2fs (t, 0, 0)zJ

=
L,(t, zj),

D
3 (/,a, 0, 0) + 9i (t, xt , 0))

=
B'(t).

Then (3.16) fs locally null-controllable with constraints.

The proof is essentially the same as that of Theorem 3.1. We note that the essential
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uirement for (3.16) to be locally null-controllable is the controllability of

x(t)
=

L(t, x, ) + (B, (t) + B2 (t))u(t), (3.17)

ere

he isolated system (3.8) is not "proper" (and this may happen where B^t) does

: have full rank on [0",^], txr + h, the "solidarity function" g t
can be brought

bear to force the full rank of B = B l + B29 from which (3.16) will be "proper"

;ause (3.17) is controllable. Even if B^ has full rank and (3.8) is proper, the large

le system need not be locally null controllable. The function has to be so nice that

-f B 1 has full rank. An adequate "proper" amount of "regulation" is needed in the

m of a "solidarity function" g t
.

.n applications it is important to know something about g i
and to decide its

squacy. It is possible to consider g {
as a control and view

a differential game. Considered in this way the control set for g t
can be described.

the linear case see Chukwu [7].
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ntroduction

5 of the most frequently investigated integral equations in nonlinear functional

lysis is the Hammerstein equation

f
J o

9 s)f(t,x(s))ds e[0,l]. (1)

h an equation has been studied in several papers and monographs [1-6]. Existence

)rems for eq. (1) can be obtained by applying various fixed point principles. In

Banas proved an existence theorem for (1) using the measure of weak non-

ipactness. On the other hand Emmanuele [5] established an existence theorem

the same equation using Schauder's fixed point theorem. In this paper we shall

ve the existence of solutions of the following nonlinear Hammerstein equation

\
J

t,s)f(t9 x(a(s)))ds *6 [0,1] (2)

suitably adopting the technique of [5]. The result generalizes the result of [5].

Existence theorem

>rder to prove existence theorem for (2) we shall first prove the following theorem:

iorem L Assume that

flieJ^fl), 1] and a^^Ofor all fe[0, 1].

/:[0, 1] x R-+R satisfies Caratheodory condition and there exist a 2eL
1

[0, 1] and

b2 > such that

for a.e. te[0, 1] and all xeR.
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100 K Balachandran and S Ilamaran

(iii) /c:[0, 1] x [0, 1] -+R
+

is measurable with respect to both variables and is such that

the integral operator

Kx(t) = k(t,

Jo
s)x(s)ds maps L^O, 1] into itself.

(iv) a: [0,1] ~>[0, 1] is absolutely continuous and there exists a constant M>0 such

that v'(i)^M for all te[0,l].

s.

Then there exists a unique a.e. non-negative function (peL
l

[0 9 1] such that

<p(t)
=^f +

l

f

*

ftfc s) [a2 (s) +
101 l-0iJo

Define a function ^:[0, l]-v,R by

1

k(t s s)a2(s)ds.

Put B =
, 1] :

||
xK r> where r =5 J ii H-. ,

Define an operator FiL^O, ll^L^O, 1] by

Fx(t) =-^ + ~^

From our assumptions for xeBr we have

- f

1

~J

<:j-^Ja 1 (f)d +
y-^-j'

1

f

*

k(t,s)[a2 (s) + l

1 Hf f
1 1

<- Ui() + k(t,s}a2(s)ds dt

l-oJoL Jo J

(l-*i)

(1

+

Thus we have F(Br)
<= Br . If we define B

p

+ = {xeBr :x(r) >0 a.e.} then F(B+) c Br

+
.

Also B* is a complete metric space, since B
r

+
is a closed subset of Ll

[Q, 1].
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Now for any two elements x,j;eBr

+ we have

- Fy
u lJO

1

f
1

k(t,

Jo
At

/i m,.(1-bJM

On applying contraction fixed point theorem we get a fixed point for F. This proves

Theorem 1.

Theorem 2. Assume that

(i) #:[0, 1] x R -+R satisfies Caratheodory conditions and there exist a^L^O, 1] and

b l >Q such that

for a.e. te[0, 1] and for xejR and

\g(t,x(t)-g(s,x(s))\^(o(\t-s\)

where o>(|t s|)-*0 as t-+s.

(ii) /:[0, 1] x R-+R satisfies Caratheodory condition and there exist a 2eL
1

[0, 1] and

b2 >0 such that

for a.e. fe[0, 1] and all xeR.

(iii) fc:[0, 1] x [0, 1]->R
+

satisfies Caratheodory condition and is measurable with

respect to the second variable. Also the integral operator

Kx(t) = f k(t, s)x(s) ds maps L
1

[0, 1] into itself.

Jo

(iv) a: [0, 1] ->[0, 1] is absolutely continuous and there exists a constant M such that

(v) fci +~ < 1.

Then (2) has a solution in L^O, 1].

Proof. Since all the assumptions of Theorem 1 are satisfied, there exists a unique a.e.

non-negative function cp such that

f
Jo

s .

First let us assume cp
=

Ll[0 t]
in L^O, 1]. In this case, if we take
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then

Jo

and so j>(r)
= 0. Therefore <p

=
Ll[01]

is the solution of (2). Now, assume that

<p 96
Ll[0tl]

. Define a set Q in L^O, 1] by

Then clearly Q is nonempty, bounded, closed and convex set in I/fX), 1]. Define an

operator HiL^O, 1] ->/[(), 1] by

f
1

Hx(t)
=

g(t, x(t)) + kit, s)/(, x(cr(s))) ds.

Jo

Then according to our assumptions H is continuous and for xeQ, we have

\Hx(t)\^a 1 (t) + b
i \x(t)\+ /c(t,s)[a2 (s) + b2 |x

Jo

f

1

Jo
t>S ^

Therefore H(Q)c:Q. Now we shall prove that H(Q) is relatively compact. Using
Lusin's and Scorza-Dragoni's theorems [see 5] for each positive integer n there exists

a closed set An
c [0, 1] such that m(A

c

n) <(l/n) and a^^cpl^kUnX[0 ,i]
are uniformly

continuous. Now let (yk) be a sequence in Q. For t',t"eAn we have

- Hyk(f)\ ^ \g(f, yk(t'))
-

g(t",yk(t")\

+
[

1

|/c(^s)~^,
Jo

This proves that (Hyk) is a sequence of equicontinuous functions on An . Also for

every teAn we have

f
1

\Hyk (t)\ ^ a,(t) -f 6 lV(r) 4- fc(t,s)[a2 (s) + h2 <p(cr(s))] ds.

Jo

Because of the continuity of a
l and cp on the compact set An and fe on the compact

set An x [0, 1] the sequence (Hyk) is equibounded on An . By applying the Ascoli-Arzela
theorem we get for each n there exists a subsequence (ym ) of Cyfc) such that (Hy^
is a Cauchy sequence in the space C(An) of all equicontinuous and equibounded
functions on A

tt
. Now, given >0, there exists ^>0 such that

$A (p(s) ds < (e/4)

whenever m(A) < 5. Choose a positive integer N such that (I/AT) < 3. Then m(^) < 5.

Therefore

J
<p(t)dt<-.
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Also

for sufficiently large h' and /i" since (Hyk) is a Cauchy sequence in C(AN).
Hence

')

- Hy-) || Ll[0>1]
= \Hyk(h

.

} (t)
-

fl>
J

<

for sufficiently large h
f and /z". Therefore (Hyk(h))

is a convergent subsequence of the

sequence (Hyk) in L^O, 1]. This proves the relative compactness of H(Q). Applying
the Schauder fixed theorem we get a fixed point for H. This proves our theorem.
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Abstract. A study is made of over-reflection of acoustic-gravity waves incident upon a

magnetic shear layer in an isothermal compressible electrically conducting fluid in the

presence of an external magnetic field. The reflection and transmission coefficients of

hydromagnetic acoustic-gravity waves incident upon magnetic shear layer are calculated.

The invariance of wave-action flux is used to investigate the properties of reflection,

transmission and absorption of the waves incident upon the shear layer, and then to discuss

how these properties depend on the wavelength, length scale of the shear layers, and the

ratio of the flow speed and phase speed of the waves. Special attention is given to the

relationship between the wave-amplification and critical-level behaviour. It is shown that

there exists a critical level within the shear layer and the wave incident upon the shear layer

is over-reflected, that is, more energy is reflected back towards the source than was originally

emitted. The mechanism of the over-reflection (or wave amplification) is due to the fact that

the excess reflected energy is extracted by the wave from the external magnetic field. It is

also found that the absence of critical level within the shear layer leads to non-amplification

of waves. For the case of very large vertical wavelength of waves, the coefficients of incident,

reflected and transmitted energy are calculated. In this limiting situation, the wave is neither

amplified nor absorbed by the shear layer. Finally, it is shown that resonance occurs at a

particular value of the phase velocity of the wave.

Keywords. Over-reflection; gravity waves; magnetic shear layer.

I. Introduction

During the last decade, considerable attention has been given to the phenomenon of

over-reflection (wave amplification) of a hydrodynamic or hydromagnetic gravity

wave incident upon a shear layer in an incompressible homogenous or stratified

fluid. It has been known that the reflection coefficient for waves of one kind or another

incident upon a shear layer can be greater than unity. This implies that more energy
is reflected back towards the source than was originally emitted. This phenomenon
known as over-reflection (wave amplification) occurs in various hydrodynamic and

hydromagnetic fluid models under different conditions.

Several authors including Booker and Bretherton [3], Jones [7], Breeding [4],

Jones and Houghton [8], Acheson [1,2], McKenzie [9], Eltayeb and McKenzie [6]

and Kandaswamy and Palaniswamy [10] have studied various aspects of the critical

layer for internal gravity waves in a shear flow, critical layer for internal gravity

waves in a shear flow, critical-level behaviour and over-reflection of a hydrodynamic
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or hydromagnetic gravity wave incident upon a shear layer in an incompressible

homogenous or stratified fluid. The over-reflection of internal gravity waves by a finite

layer of constant shear separated by two uniform streams of incompressible fluid has

been investigated analytically by Eltayeb and McKenzie [8] and numerically by Jones

[7] and Breeding [4]. Mckenzie [8] has studied the reflection and refraction of a

plane acoustic-gravity wave at an interface separating two fluids in relative motion.

He predicted the phenomenon of over-reflection for pure acoustic waves provided
the shear flow speed exceeds the horizontal phase speed of the incident gravity wave.

A discussion of this result implies that the gravity waves can extract energy and

momentum from the mean flow along with the idea of a critical layer at which the

energy and momentum of gravity waves are absorbed into the mean flow. Acheson

[2] has investigated the phenomenon of over-reflection for a variety of different

systems involving waves propagating towards a shear layer. He studied the reflection

of hydromagnetic internal gravity waves travelling in an incompressible fluid towards

a vortex-current sheet with special attention to the relationship between

over-reflection and critical layer absorption. Recently, the over-reflection of

hydromagnetic gravity waves in a compressible stratified fluid was considered by

Kandaswamy and Palaniswamy [10]. In spite of these works, attention is hardly

given to the phenomenon of over-reflection ofhydromagnetic waves in a compressible
fluid.

The main objective of this paper is to study the phenomenon of over-reflection of

acoustic-gravity waves incident upon a magnetic shear layer in an isothermal

compressible electrically conducting fluid in the presence of an external magnetic
fluid. The invariance of the wave-action flux is used to investigate the properties of

reflection, transmission, and absorption of the acoustic-gravity waves incident upon
the magnetic shear layer, and then to discuss how these properties depend on the

wavelength, length scale of the shear layer, and the ratio of the flow speed and the

phase speed of the waves. Special attention is given to the relationship between the

wave amplification and critical-level behaviour. The over-reflection is due to the fact

that the excess reflected energy is extracted by the wave from the external magnetic
field. For the case of very large vertical wavelength, the coefficients of the incident,

reflected and transmitted energy are calculated. In this limiting situation, the

hydromagnetic acoustic-gravity wave is neither amplified nor absorbed by the

magnetic shear layer. It is also shown that resonance occurs at a particular value of

the phase velocity of the wave.

2. Basic equations

The basic hydromagnetic equations governing the unsteady motion of an isothermal

compressible electrically conducting fluid in the presence of an external magnetic field

H are in standard notation (Chandrasekhar [5]):

Du
[(VxH)xH] (2.1)

Dp
~J

+ p(V-ii) = (2.2)

Dp 2 Dp= c
2

(23)
Dt Dt ( }
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= (H-V)u-H(V-u) (2.4)

V-H = (2.5)

where

where u is the Eulerian velocity vector, p the fluid density, g the acceleration due to

gravity, n the magnetic permeability, p the hydrodynamic pressure, and c the constant

speed of sound.

The equilibrium configuration is given by u = (0,0,0), H =
(/f (z),0,0), p = p ,

p = PO and g = (0,0,
-

g) where H05 p ,p represent the basic magnetic field, density

and the pressure respectively. In view of these results, the basic equations yield

_5po =0 = apo
(27ab)

dx dy

(2.8)
dz

whence it follows that

Po = P(4 Po = PoW and - 1 = (2.9abc)
Po Sz

On the above equilibrium configuration, we superimpose a small disturbance of

the form

u = (w, u, w), H = (HQ (z) + ftx ,
h
y ,
hz \ p = p + p', p = p + P'-

(2.10abcd)

We assume that the disturbances are small enough compared to the initial state so

that higher-order terms in perturbed quantities can be neglected. We then substitute

(2.10abcd) in (2.1)-(2-5) and invoke linearization so that the resulting equations reduce

to a set of linear partial differential equations. This system admits plane-wave solutions

in which all perturbed quantities /may be written as

/(x, y, z, t)
= /(z)exp [i(foc + ly

-
cot)], (2. 1 1)

where (fc, /) and co are constants, and the former represents the wavenumber and the

latter denotes the frequency of the wave.

Elimination of all perturbed variables but w leads to the equation

-/?+
(a>

2 -A 2 k2
)(Q-co*)dz Q dz

, (2.12)

Q
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where

Q = (co
2 -A 2

k
2
)(a)

2 -<x2
c
2
)-l

2
(o

2 A 2
, t (2.13)

with the Alfven velocity A, the wavenumber a and the Brunt-Vaisala frequency N
being given by

Po

Invoking the transformation w =
</> exp I

J,
(2.12) assumes the form

d?
+

[(co
2 - A 2 k2 )(Q

- co
4

) dz Q J dz"

^ /? Q d (co
2 -A 2 k2

)(Q-(o*)

4 2(co
2 -A 2 k2

)(Q-a>
4
)dz Q

V2

(2.14abc)

or

- - (2 ' 15)
dz

In the next section we calculate the reflection and transmission coefficients for a

hydromagnetic gravity wave incident upon a magnetic shear layer.

3. Reflection and transmission of hydromagnetic waves by a magnetic shear layer

We consider the problem of a hydromagnetic gravity wave incident upon a magnetic
shear layer specified by

A\^ z<0 (region I)

A 2 =
A\z, A\-=-A\, 0<z^L (regionll) (3.1abc)

it

A\, z ^ L (region III)

A gravity wave from region I incident upon the magnetic shear layer (region II) gives
rise to a reflected wave in region I, a transmitted wave in region III, and two waves,
one moving upward and the other moving downward going in region II.

In region I, (2.15) reduces to the form

O, (3.2)

and the corresponding solution has the form

0(z) = /exp(iari )z + Kexp(- iza
2l ), (3.3)
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where / is the amplitude of the incident wave and R that of the reflected wave, and
<x
zi

is given by

+ lcoAN, (3.4)

with

Q, = (co
2 -

Alk
2
)(cD

2 - aV) -
l
2
co

2

Al (3.5)

If we take a
zi

as the positive root of (3.4), the choice of the signs in (3.3) ensures
that the incident wave transports wave energy upwards (towards the magnetic shear
layer) and the reflected wave carries wave energy downwards (away from the magnetic
shear layer).

In region II, (2.15) takes the following form

*2
+ j ^

,

62 Q'2iw
dz2

L (o
2 -zA 2

2
k
2

Q 2 -co
4

Q 2 ]dz

2 (a>
2 -zA 2

2
k 2

)

(3.6)

where Q2 represents the expression (2.13) with A 2
replaced with zA 2

2
.

Making use of the transformation $ = ^Q
1

2
'2
(Q2

- co
4
)~

1/2
, (3.6) becomes

z
-^ -I

_ + _l_i^ i_i ^ _. Q ,3 j,
dz2

z 7 ^ I - ^ I
^ ^

(3.8abc)

4a2

+~&^ { Qz + "2C2(N2 ~ 92/ 2) +^ 2
^'2/e 2 )}. (3.10)

Using the transformations

Z = ri(z-zci ), (lllab)
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(3.7) can be transformed into the confluent hypergeometric equation

- a

This admits two independent solutions in the form

-+..., (3.13)

(3 - 14)
|

where

Si=-lB*Z*, Bt
= -^

7 4A (3.15ab) i

k = 1 j f 1 . \ \

i

Ht
*ll(l2-- +n~^Tl)'

(3 ' 16)

Thus, the solution of (3.7) can be written as

W2 (Z) (3.17)

where

-+r^M
(I!)

2

i

(3.18)

(2I)
2

+ s;
2 + 4; t

- z2 + ...
(3.19)

and D! and D 2 are amplitude constants.

Using the transformation 4>
=

\l/Q
l

2
/2

(co
2 -

A\zk
2
)~

112
, (3.6) reduces to

(3 .20)
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where

z =
lf> C2= 2^ , (3-21ab)

,--ra &
i

2|_e2 <a
2 -A 2

2
zk2 j

Q2 (a>
2 -k2

c
2
)(o>

2 -A 2
2
zk2 )

( }

Q2
c>

2 -A 2

2
k2z

i 2| x>2 v*2 7

162 (o)
2

Alk
2
z

Invoking the transformation

j
^ (Z\ 2 = 72(2- z

C2 )> (3.24ab)

(3.20) assumes the form

Z^ + (l-ztf-(~J2Wo. (3.25)

This gives two independent solutions in the form

'1 .\ /I . V3 .

-h]
(3.26)

(3.27)

where

(3.28ab)
-

,

wl-/,

(3.29)

Therefore, the solution of (3.20) can be written as

V4(Z) (3.30)
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where

e,-[,

'1

2~ 72

(I!)
2

3

+ v

(y '*+
\

<

22 -
l- A 2

2
zk2

)

f V2 / Y2 A2 / "1

*[
i+Vz+ zi+

-]'
8Z

(3.32)

and D 3 and Z)4 are amplitude constants.

The transformation ^=-\l/(Q 2
~o}4r 1/2

(^
2 ~ A 2

2
zk

2 )-
1/2 reduces (3.6) to the

following form:

J: ^ j_ ( J3?3 _ Vs \ j, _ n n 33)
V,-' *'*'/

where

z
ej
= ^, c

2 = l
~ ac '

(3.34ab)C3 A 2 ' 3
a
2
(co

2 -k2
c
2
)

l

p -If-JliiK3
~2Lc,

2 -^

(3.35)

+^-y-^- (3.36)

yt-p-wi -^-.--^^ 1-2!
(^:

2

;2^2)2+^ ]

4a2
'

-,+a2
C
2(N 2 -^r

i

u 2 ' 5?
IJL

2 J (i o'7\

(co
2 -A2

zk2
)(02 -co

4
)

'

Equation (3.33) can be transformed to the following form

-0 (3.38)

by means of the transformation
\ji
= e~ (Z}2)

\j/(Z\Z = y 3 (zC3 -z\ which has two
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independent solutions

where

where

= ~z/2 - 4 - 1/22 -
2

WS (Z) = e~z/2
(Q2

- co
4
)-

1/2
(o>

2 - A 2

2
zk 2

)-
1

W6 (Z) = e~ z/2
(Q 2

- co
4
)-

1/2
(ro

2 - A2
2
zk 2

)-
112

.

(I!)
2

(2!)
2 '

=
(l/s logZ + S3 , (3.40)

,= BkZ\ Bk
= - \ . (3.41)

Therefore, the solution of (3.33) can be written as

W6 (Z) (3.43)

I
.

+7
2
+y

'

3
2
+7

(144)

feZ-l 3/2 + 4/3-- )Z2 + ...
, (3.45)

and D 5 and D6 are amplitude constants.

For region III, (3.15) takes the following form

d2
^ J fi

2
a2

f / / 2\\

-f /
2
o)

2^ 2
AT

2 U =
(3.46)

and has the solution of the form

0= Texp(fea,3 ), (3.47)



114 P Kandaswamy

where T is the amplitude of the transmitted wave and <x,
3

is given by

g
i = I

2

4 co
2 -fc2 ~co4

>
2 - A 2

2
k 2

) Q3 + a2
c
2 N2 - + /

2
a>

2^ 2N2
. (3.48)

Again the choice of the sign of a
r3

ensures that the transmitted wave transports wave

energy upwards.
To simplify the calculations in the following discussion, we shall consider the low-

frequency approximation, so that the dispersion equations (3.4) and (3.48) appropriate
to region I and region III are approximated by

By using the boundary conditions at z = and z = L, namely the continuity of the

vertical component of velocity and continuity of pressure, we determine the amplitudes
of the reflected and transmitted waves. Since the vertical component of velocity w is

continuous, and from the relation w =
<jf>e

(/*/2)ir
, </>

is also continuous.

It follows from the equations of motion that the pressure pt
can be obtained in

the form

.

J
. (3.50)

dz

we put w = cf)e
(P/2)s to transform (3.50) into the form

"I (0 -~
ft)
4
)! 1 <t>

L
W V 2*a2

Therefore, the boundary conditions are equivalent to

atz = 0,L (3.52)

where the square bracket denotes thejump in the quantity inside the square bracket.

Utilizing the boundary conditions (3.52), and when A\ < c\ yields [$] 0)Z,

= which

implies

/ + R = D l W^G) + D2W2 (ty> (3.53)

Texp(fLaZ3 )
= D, W,(L) 4- D 2^2 (L), (3.54)

fd^l
and the condition =0 leads to

2
W'

2 (Q). (3.55)

a
sj Texp(iLaZ3 )

=
?1D 1 W^(L) + 7lD2 W"2 (D- (3.56)



Over-reflection of acoustic-gravity waves 1 1 5

m the above equations we obtain

R =
D l JX, ^(0)

-
7l ^(0)] + P 2 rx, W2 (Q)

-
7l W'2m

I 0^x^(0) +y^m +D^W^ + ^W'^rf

DI i*,W2 (L)- yiW2 (L)=
-, 1.3.JO)

D2 i^W,(L)- 7l W\(L)

rexp(ia,tL) = D l W,(L) + D 2
W

2(L)
'

I + R D^V\

the case A\ > c\, the above expressions can be written as

D2

(3.60)

rexp(ia23 L) _ DI W,(-L) + D2
W

2(-L)

the above results can be written in the compact form

K =Mi 4,

2(L)

A\<c\, and

^ =Mi^ (3.64)
/ M,l+ d

,2

TexP (ia,t L) = ^ W,(- L) + W2(- L)

I + R 5^(0)+ W2 (0)

A\> c\,
where

dh
= i

z ,
^.(0)

-
V i
W'

m (Q\ d
rn
= ia

zi
W

n (0) + y ,
W'

n (Q),
n = 1, 2 (3.66)

^."yx^W-fa^^D (3.68)

^^Vi^- 1-)- ^.(-L) (3.69)

i the following notations were used:

(3.71)

(3.72)
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4 Wave amplification and critical-level behaviour

We investigate the properties of reflection, transmission and
absorption of hydro-

magnetic acoustic-gravity waves incident upon a magnetic shear
layer, and discuss

how these properties depend on the wavelength, the length scale of the shear layer,

and the ratio of the flow speed and the phase speed of the waves. We use the invariance

of the wave action flux to prove some general properties.

The wave energy flux is

____
| j

E = Mz = -(P f*9s
+ PJ*) =

-
Re(A<?*), (4.1)

where the asterisk denotes the complex conjugate and Re stands for the real part.

Using (2.15), the expression for becomes

where I

pc
= p</

z
- (4.4abc)

We next define the wave action flux M as the ratio of the wave energy flux and

the local relative frequency by

,4.5,
-co 2

It turns out that

^ = forz/zcr,r=l,2,3. (4.6)
dz

This means that M is independent of z except at the critical levels where it is

discontinuous. The invariance of M is closely linked to the invariance of both the

vertical component of the total energy flux and of the horizontal component of

momentum.

If

A\<cl and A\<c*A\>c\ and A\ >c\,A\* and A\<c\

(4.7abc)

and

there is no critical level inside the magnetic shear layer. In view of the invariance of

M over the whole domain, it turns out that

M =g^ (/4
'"" c

'
)(^" C

lJ
[ |/|

2
-|R|

2
] in region I (4.9)

2co
2
a
2

c
2 -A

i
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M z*

^

3 _1
1

?__
| y|2 jn regjon in (4.10)

These results combined with the invariance ofM give --
LI ' IJ - m -

(4.11)

Since a
2i
and a,

3
are positive and terms within the square bracket are either positive

or negative, the amplification of wave is impossible.

On the other hand, if

A\>c\ and Al<cl,A\<c\ and A\>c\,A\<c\ and A\>c
(4.12abc)

there exists a critical level inside the magnetic shear layer. We use the following

approximate solution near z = z
ci

:

+ 2; 1 7,(z-zci )}, z<z
ci (4.13a)

z
tl -z)] + D 2 {[1 +; 1 y 1 (ztl -^jlogCy^z^ -z) + m]

-2/iyi (zCl -z)}, z>z
ci

. (4.13b)

We then calculate the values Mb of M below the critical level and the value Ma

ofM above the critical level. These values are

We obtain a
zi

from (4.7) and (4.11), and a
Z3

from (4.8) and (4.12abc) so that they
are given by

(c
2 A 2

\(A 2 r 2 \ (r2 r2 \C22 - ( *
(4.16)

(4.17)

The results combined with (4.10) give the total energy flux in the shear layer:
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The term on the left-side of (4.18) represents the total energy flux into the shear layer

whereas the first two terms on the right-side denote the total energy flux out of the

layers. The term on the right side of (4.18) is negative whenever the critical level exists.

Thus, if the critical layer exists, the wave is amplified.

The solution near the critical level z = z
C2

is given by

2/ 2 y 2(z-zC2 )},
z<z

C2 , (4.19a)

-2j 2 y 2(z~zC2 )}>
z>z

C2
. (4.19b)

The value Mb ofM below the critical level and the value Ma ofM above the critical

level are

(4 -20)

We obtain a
zi
from (49) and (4.20) and a

Z3
from (4.10) and (4.21) in the form

--
(4.22)

2>

(A
2

c^)( c
2 + A 2

} (c
2

c
2

)

These relations combined with (4.19) yield the total energy flux

a*'

The term on the left hand side of (4.24) represents the total energy flux into the shear

layer whereas the first two terms in the right hand side denote the total energy flux

out of the layer and the last term on the right hand side of (4.24) is negative whenever
the critical layer exists. Thus the conclusion is that if the critical layer exists, the wave
is amplified.

Finally, at the critical level z = z
C3 , the equation for the total energy flux is found

to be

This implies that the total energy flux into the shear layer is equal to the total energy
flux out of the shear layer. So, the wave is not amplified in this case.
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5. Reflection coefficient for large vertical wavelength
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A large vertical wavelength normalized by the thickness of the shear layer

corresponds to y l
L 1. The approximate solution can be obtained from (4.13). The

following results can be found from (3.62)-(3.65):

where

R

1 )

2
z
Cl (zCl

^

1 y 1 )

2
z
ci (zci

-
L)]

= a
2l; 1 y 1 (; 1 ); 1

z
ci
+ 1)4-

z
Cl

4- IJ-

z
Cl
-L z

ci

inj\y 1

--

z
ci

l^ z
ci

tl / X 2 \" 1
1

Ari-7
-

+Ji7i(
1 f +(;iri)

2^
-^~ z

ci \ c
i / J

[i / ^1
2\" 1 1

JiVi.- +7i7iM --
1 +(/i7 1 )

2
2c,^~ Z

Cl \ C
l / J
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z3 te/i7i(/iyi(-
L

-
Zci

)j
+ C/ 1 y 1 )

2
(L

Also, we find

, * vl^ v *

+s2 (l
-^-lAy^-L)

J

for^<c*. (5.2a)

cl ))]-si

= iaz l

tilogf^-lj + iTt-^y^L-zJ-lAy^,L \ ^i / J

t2 . (5.2c)

^S 7i7i"^0 *e results (5.1) and (5.2) reduces to the form

/ ^2\ / A2\

a,3
a
Zl(L-zCl )log( 1

j-
+ ia

Z3
( 1 ---f + ia

zi

\ C
l / \ C

l J /r o\

a
S3
a
Zl(L

- z
ci )logfl

-
-f

J

- ia
Z3

f 1 - -|
J
+ ia

zi

and
'T 1

-r^r (5 -4)

In the limit L~ z
ci ->0, we obtain

R a,, -|-a? ,(l 04?/c?)) ,. -x

7
=

a -a fl-UVJn*
and
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view of results (5.5) and (5.6), we conclude that the wave is neither amplified nor

sorbed by the layer. Expressing the reflection and transmission co-efficients for the

:al energy flux as a function of A 2 and c\ we obtain

T
2 =

'

(5.7)

(5.8)

(5.9)

;re i
2

is the ratio of the transmitted energy flux to the incident flux in the moving
id. Also we choose the sign of <x

zi
and a

Z3
so

It follows from (5.7) that |R//|->oo provided

id. Also we choose the sign of <x
zi
and a

Z3
so that the above result is positive.

42 A2

is result reveals that resonance occurs (that is |JR/T|

n of the square root of (5.10) is taken.

oo) only when the negative

Discussion and conclusion

is clear from the above analysis that if (4.7abc) and (4.8abc) are satisfied, there is

critical level within the magnetic shear layer. Consequently, the amplification of

dromagnetic wave is impossible.

On the other hand, if the condition (4.12abc) is satisfied, there exists a critical level

thin the magnetic shear layer. The wave action flux is found to be invariant

erywhere in the fluid medium except at the critical level. In view of (4.12abc), the

ive incident upon the shear layer is over-reflexed, that is, more energy is reflected

ck towards the source than was originally emitted. In the present hydromagnetic

alysis, the mechanism of the over-reflection is due to the fact that the excess reflected

ergy is extracted by the wave from the external magnetic field.

When the vertical wavelength is very large, y 1
Ll the incident energy /, the

lected energy R and the transmitted energy T satisfy results (5.5) and (5.6). It is

ident from these results that the wave is neither amplified nor absorbed by the

agnetic shear layer.

Finally, result (5.7) reveals that \R/T\ -> oo provided the phase velocity of the wave

negative and given by

l/2

ius resonance occurs at this value of c^ . And this quantity c x can be expressed as

(6.2ab)
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where

(63ab)

2c
2
^)) (6.4) f

(6-5)

fc,
= -

(A*X'c*)/(/l> + 2cM4
),

(6-6)
j.

a2 = -[(co
4
/a
4 + c

4 - 2a 2
c
2
/a>

2
)Al

-
(A\ + 2Al)c*

J\

-Al(ca
4
/a.

4 + A*-2Al(o
2
/a

2
) + 2c

2
(Al + Al)-\. (6-7)

b2 = -[2c*AlA
2
3
+ Alc*-2c

2
AlAll (6-8)

X.

X = 2co
2
(c

2 - A2
3 )/x

2 + A* - 2c
2

(6.10)

and c is the constant speed of sound.
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Abstract. It is known that the p-adic integers that are badly approximable by rationals

form a null set with respect to Haar measure. We define a [0, l]-valued dimension

function on the p-adic integers analogous to Hausdorff dimension in R and show that

with respect to this function the dimension of the set of badly approximable p-adic integers

isl.

Keywords. Diophantine approximation; p-adic numbers; Hausdorff dimension.

Introduction

A real number x is called badly approximable if, roughly speaking, there are no

rationals p/q such that x p/q is small compared with q~
2
.lt is well known (see [5])

that the set of badly approximable real numbers has Lebesgue measure zero and

Hausdorff dimension 1. As might be expected, we can in an analogous way define the

set of badly approximable p-adic integers. It is known (see [6]) that this set is a null set

with respect to Haar measure on the group Zp
of all p-adic integers. In this paper we

describe a natural analog of Hausdorff dimension applicable to the space of p-adic

integers and we show that with respect to this dimension the dimension of the set of

badly approximable p-adic integers is 1.

The proof of this result makes use of an approximation scheme for p-adic numbers

developed by Mahler in [7], the essential features of which are recalled in the course of

3 below. We also exploit a method initiated by Billingsley in [2], and further

developed by the author in [1], for comparing Hausdorff-like dimension functions

defined with respect to arbitrary non-atomic measures. The basic facts about this

method are explained in 4. With the aid of Mahler's scheme we construct a measure

with respect to which the set of badly approximable numbers has measure 1. We then

apply Billingsley's method to complete the proof.

1. Notation and preliminary remarks

We denote by N the set of strictly positive integers ajid write N = Nu{0}. For

a natural number N we denote by [AT] the set
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If z is a complex number we shall always write x = Re(z), y = Im(z). For any real j;

we denote by U>10
the set

We denote by T the modular group SL 2 (Z), and by I the identity of T. As usual, we let

F act on the upper half-plane U in the following way. For

in F and z in U we put

az

We denote by R the standard fundamental region for this action of T given by |
R =RuR 2 where

and

It is easy to check that for any f in R the expression

is a positive definite quadratic form in r and s. We may therefore define a positive-
valued function $,* oji R x R by setting

For a fixed prime p, we denote by Z
p
the ring of p-adic integers with the usual

valuation
| |p

. Thus a typical element p ofZ
p

is a sequence (pJneN ,
where each pn is an

element of the additive group Z/p
n
Z, and for each n the natural homomorphism

Z/p"+
1 Z -+ Z/p"Z sends pn+ 1

to pn . Given p = (p n )neNo , p'
=

(p;)neNo in Z
p
we define

and

We define |p|p
= p

v where v = v(p) is the least integer in N such that pv+l is

different from zero.

We say that p, p' are congruent modulo p*, and write p = p' (modpO, $

We equip Zp with the topology induced by the metric d(p, p' )
=

IP
- PV The space

Z
p is homeomorphic to the topological product [p]<, where [p] is equipped with the

discrete topology. Therefore Z
p is compact.
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e put

set 53 is a basis for Z
p consisting of closed open sets. An element of 93 will be called

kere. The reader will observe that the sphere Bh (p) is the set of all p' in Z
p
with

ph
. In sections 4-5 below we shall persistently abuse notation by writing p h

in

50fBh (p).

;t (Zp , ^,$ be a probability space on Z
p ,
where ^ is the <r-algebra generated by 23.

^ be any probability measure on Z
p
that is non-atomic, i.e. /^({p})

= for all

p
. Suppose y > 0. For 9 > and M c Z

p ,
write

: the infimum is taken over all coverings of M by subsets of S of the form

;p
(0
):ieN} such that n(Bh .(p

(i}

)) < d for all ieN. The (not necessarily finite) limit

s for all M. For a simple proof the / as thus defined is an outer measure see [2],

36, 141. It can be shown ([2], pp. 136-137, 141) that for each M c Z
p
there exists a

ue real number A = A
M(M) such that / = oo for all y < A and ^ = for all y > A.

e define ^:23(Z;7)->R by ?/(^(a))
= p"'

1

for all aeZ
p ,

/ieN . Then by the

itheodory-Hopf extension theorem ([4], 13, Theorem A), rj can be extended to

lability measure on Z
p ,

also denoted by rj.
The measure

r\
is clearly translation-

riant and therefore by the Haar uniqueness theorem ([3], pp. 309-310) it coincides

Haar measure on Z
p

. We call \(M) the Hausdorff dimension of M. This

imology is appropriate because, as is proved in [2], p. 140, Hausdorff dimension

can be defined by the same procedure with Lebesgue measure in place of
Y\.

tatement of the result

each positive real number i let us say that a p-adic integer p is badly approximate
nd write peJ(r) if for all a, b in Z we have

us say that p is badly approximate if it is badly approximate (t) for some T > 0.

denote the set of badly approximate p-adic integers by J. Thus

J= U 'to-
T>0

is well known (see for example [6], Th. 4.23) that r\(J)
= 0. Thus it is of interest to

rmine A^(J). Our purpose in this paper is to prove the following:

oremll. We have A(J) = 1.
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We first recast this result in a more convenient form. For in R and t > let

denote the set of p such that

for all a, b in Z, and write

J,= |J J (T).

T>0

Since (^)
2

is positive definite, a simple computation shows that J is identical with J^

for each Therefore Theorem 2.1 is a consequence of the following result, which,

though more detailed than Theorem 2.1, appears to be no harder to prove.

Theorem 2.2. There is a constant C depending only on p such that for any % in R and any

K in N we have

\(jf(P
- K - c))>i-~.

Theorem 2.2 is analogous to the following result on Dio'phantine approximation in

R. Call r in R badly approximate if there is a constant T such that \a + br\^tb~
l
for

all a, b in Z. Then we have:

Theorem 23. The Hausdorff dimension of the set of badly approximable real numbers is 1.

This was established by V Jarnik in [5], a pioneering paper in which dimension theory

was applied for the first time in the study of Diophantine approximation. The proof of

Theorem 2.3 depends on a special feature of R, namely the availability of an appropriate
continued fraction algorithm. It turns out that badly approximable real numbers are

those whose simple continued fractions have bounded partial denominators.

To prove Theorem 2.2 we shall use an approximation scheme for p-adic integers

developed by K Mahler in [7]. As Mahler points out, his scheme is a working substitute

for a continued fraction algorithm in the sense that it yields all "good" approximations to

a p-adic integer p, that is all potential counterexamples to (2.1). Lemma 3.2 below is

a more precise statement of this fact. As we shall see, the badly approximable p-adic

integers can be nicely characterized in the language of Mahler's scheme.
In the early days of research on Hausdorff dimension it was notoriously difficult to

find sharp lower bounds for the dimension of sets like J(i). It is now, in many cases,

much easier, thanks to a method developed by P Billingsley which we review briefly in

section 4 before applying it to the present problem.

3. Mahler's approximation scheme

Given a p-adic integer p we define, for each n in N
, an integer En

= En (p) by means of

the relations
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\En~P\p** P
n

3 easy to check that exactly one integer En satisfies these two relations.

7i\ in R, and for each n in N define a complex number Zn
= Zn (p) by setting

rther for each n in N let

zn = zn (p)
= x

n + tyn
= xn (p) -f r>n (p)

the unique element of R that is equivalent to Zn under the action of F on U .

luppose that

tie element of F satisfying

I write

o for each n in N write

i for each n in N write

Q T-l T** -1 -l *n'

> can now state the fundamental results due to Mahler on which our proof of

^orem 2.2 will be based.

nma 3.1. ([7], p. 12). For any p in Z
p
and any n in N we have

nma 3.2. ([7], p. 51 (Theorem 18)). Let a,binZ satisfy

en
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Lemma 3.3. ([7], p. 15). The subset M(p) of GL 2 (Zp ) defined by

is a finite set and the determinant of each element of M(p) is p. Moreover a matrix Q is

in M(p) if and only if pQ~
1

is in M(p).

Note. It turns out that M(p) is independent of the choice of . However we do not

require this fact.

Lemma 3.4. ([7], p. 14). For each n in N we have

Lemma 3.5. ([7], p. 14). For each n in N the integers an and bn are relatively prime.

We now derive some consequences of the preceding lemmas.

Lemma 3.6. The set of badly approximate p-adic integers coincides with the set of |
those p such that yn (p) remains bounded as n goes to infinity. More precisely, for each

T > we have

Proof. It suffices to prove the second statement. Suppose p is in J
5 (r).

Then by the

definition of J
5 (r)

we have for each n in N that

\^n + bn p\ p ^x(^(an9 bn)r
2

. (3.1)

By the definition of an , bn we have

P~
n
^\an + bn p\ p

.
(3.2)

By Lemma 3.1 we have

(s(an^n)r
2 = yn(p)p~

n
. (3.3)

Combining (3.1), (3.2) and (33) we have

which proves that J^t) is included in the set of those p such that yn (p) never exceeds

To prove the reverse inclusion, suppose that p satisfies yn (p) ^ i~ 1
for all n in N .

Let a, b be any integers and define h = h(a, b) by the relation

Then using Lemmas 3.1 and 3.2 we have

>A))
2
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t p is in J
s*(r)

as required.

2 3.7. There exists a constant C depending only on p such that for any p in Z
p ,

ver yn (p) > p
c we have

yn+i=p iyn (3.4)

n ^ 1 we have

yn _ v
= p -^yn

. (3.5)

By Lemmas 3.3 and 3.4 we have for any p in Z^ and any n in N that

Q is in M(p). We write

'a a'

a fixed complex number z, the subset Y(z) of [0, 2n) defined by

= {|argQz|:QGAf(p)}

:e, by Lemma 3.3. Now suppose z is in R. We see easily that when y is large

h we have |arg^z| < \ for all Q satisfying a/? ^ 0. Moreover if a = we see that

whenever y is sufficiently large. Thus there is a constant C such that for z in R,

,
and Q in M (p) we have flz in R only when /J

= 0.

then, since by Lemma 3.3 we have det 1 = p, we find that either a = p or p =
p.

establishes (3.4), and if n ^ 1 the same argument with z
n _ x

in place of zn

shes (3.5).

2 3.8. Suppose that for some, n in N we have

yn(p)>yn+ i(p)>p
c

>

C is the same constant as in Lemma 3.7. Then we have

In view of Lemma 3.7 we need only show that yn + 2 ^ Pyn + i
We know, using

ia 3.7, that yn
= pyn+l . Therefore by Lemma 3.4 we can write

iven zn+1 in R there is just one choice of a' such that zn
= QM+1 zn+1 is in R.

fore the relation yn+2 = pyn+ x
would imply
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so that

and then each component of Tn+2 would be divisible by p, which contradicts
Lemma 3.5. We conclude that yn+2 *pyn+1 as claimed.

4. Billingsley's lower bound for the dimension of a set

A version of the following lemma, relating to subsets of [0, 1], is proved in [2],

pp. 144-145, and the proof carries over to the present setting without significant
alteration. Recall that we agreed to abuse notation by writing pj

in place of
Bj(p).

Lemma 4.1. For any non-atomic Barel measures A, fj,
on Z

p
and for any S^OJf

Note: if either of the real numbers a, b is either or 1, then log a/log b is defined

equal to 0, 1 or oo according as a > b, a = b or a < b. The logarithms can be taken
to any positive base except 1, and in what follows we shall take all logarithms to the

base p.

In order to apply Lemma 4.1 to the problem at hand we need to construct
a measure v on Z

p such that

and such that

The construction of such a measure is made possible by the following result, which is

a special case of Lemma 5.2 in [1]. If is any sphere, we denote by a(u) the set of
maximal proper subspheres of u.

Lemma 4.2. Suppose that u':<B\{Zp }
->

[0, 1] satisfies

y '()
_

i

for all u in 93. Then there is a unique Borel probability measure ji on Zp

f*(u)n'(v) = fi(v)
I

for all u, v in 93 with v in a(u).
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5. Proof of Theorem 2.2

Let K be a fixed integer greater than 0, and let C be the constant whose existence is

guaranteed by Lemma 3.7. For p in Z
p
write

One checks easily that yn (p') is actually determined by p'n .

We show that if

then

#(*n(p))>l. (5.1)

Suppose the contrary. Then for every maximal subsphere p'n of pn _ 1
we have

logyn(p')>K + C.

But there are at least two maximal subspheres p'n contained in pn (in fact there are p of

them) and therefore there are at least two (I in M(p) satisfying

As in the proof of Lemma 3.8 any Q, satisfying

must be of the form

and there is just one choice of a'eZ such that Qzn _ x (p) is in R. Thus we have arrived at

a contradiction and must conclude that (5.1) holds as claimed.

We may therefore define a function v' = v'K on 93\{Zp }
with values in [0,1] as

follows.

Case(i). If

K-l + C

and log yn (p) > K + C, we set

Case(ii). If

K-l

and log yn (p) ^ K -h C, we set
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Case (iii). If log yn _ x (p) lies in the complement of the interval (K
- 1 -h C, K + C], we set

One checks easily (using the definition of t
n (p)) that v' satisfies the hypotheses of

Lemma 4.2, and so there is a probability measure v on Z
p satisfying (4.1).

To check that v is non-atomic, choose p in Z
p , so that

P=C\Pn-
rieNo

We must show that v(p n ) goes to as n goes to oo. By (4.1) and straightforward

induction we have

V(P)= n v(pj.
Kj^n

Now by Lemma 3.7 we cannot have both

and

Hence for infinitely many n case (ii) of the definition of v' does not apply and for such

n we have

Therefore v(pn )-0 as required, so v is non-atomic.

We now verify that v(J(p~*-
c
))
= 1. If p is in the complement of J(p'

K " c
) then by

Lemma 3.6 for some n in N we have logyn (p) > K + C. Choose N to be the least

integer with this property. Then by Lemma 3.7 we have v

Therefore case (i) of the definition of v' gives v'(pN )
= 0, so also v(pN )

= 0. Thus the

complement of J(p"
x ~ c

) is covered by elements of 93 each of which has measure zero

with respect to v. Since is countable we have v(J(p"
K ~ c

))
= 1 as claimed. Our

next objective is to show that for all p in J(p~
K ~ c

) we have

l-L (5 .2)
2K'

( }

For p in J(p~
K ~ c

) let H = H(p) be the subset ofN consisting of those n for which

Let p be in J (p
" K ~ c

), and choose n in H (p). By the choice of p we have logyn ^ K + C,
and also by Lemma 3.6 we have log yn + x ^ K + C. Thus by Lemma 3.7 and the fact

that K 1 4- C < logyn we have
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2 we then have log yn+ 1
> C, and since log >> > logyn+ 1

Lemma 3.8 implies that

n + 2
= - 2 + logy,, > K - 3 + C

ming in this way we find that

h h = 0, . . .
, K. A further application of Lemma 3.7 shows that

s the difference between consecutive elements of H(p) is at least IK, so we

JV-l-^ (5.3)ZA

if p is in J(p~
K ~ c

\ we have for each n in N either

AMnN .

is in ff (p\ or

ise. Therefore for each N in N we have

e clearly have

log?/(pN)= -AT,

using (5.3) and the fact that tn (p) ^ 1 we have

logv(pj 11
N 2X*

ore letting N go to oo we have (5.2).

e v(J(p~
K ~ c

))
=

1, we certainly have

>w an appeal to Lemma 4.1 with A = v, jn
=

rj,
and <5 = 1 - (1/2-K) completes the
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Abstract. There are several ways of formulating the uncertainty principle for the Fourier

transform on R*. Roughly speaking, the uncertainty principle says that if a function / is

'concentrated' then its Fourier transform / cannot be 'concentrated' unless / is identically

zero. Of course, in the above, we should be precise about.what we mean by 'concentration'.

There are several ways of measuring 'concentration' and depending on the definition we get

a host of uncertainty principles. As several authors have shown, some of these uncertainty

principles seeni to be a general feature of harmonic analysis on connected locally compact

groups. In this paper, we show how various uncertainty principles take form in the case of

some locally compact groups including (FT, the Heisenberg group, the reduced Heisenberg

group and the Euclidean motion group of the plane.

Keywords. Fourier transform; Heisenberg group; motion group; uncertainty principle.

reduction

i are several ways of formulating the uncertainty principle for the Fourier

brm on Rw
. Roughly speaking, the uncertainty principle says that if a function

'concentrated' then its Fourier transform / cannot be concentrated unless

lentically zero. Of course, in the above, we should be precise about what we

by 'concentration'. There are several ways of measuring 'concentration' and

iding on the definition we get a host of uncertainty principles. As has been

i in [1], [2], [4], [9], [12], [13], [17] etc, some of these uncertainty principles

to be a general feature of harmonic analysis on connected locally compact
>s. We continue these investigations in this paper to see how various uncertainty

iples take form in the case of some locally compact groups including R", the

nberg group, the reduced Heisenberg group and the Euclidean motion group
\ plane. In a forthcoming paper [14] we consider semi-simple Lie groups and

[nore general eigenfunction expansions on a manifold with respect to some
c operator.

e way of measuring concentration is by considering the decay of the function at

ty. In this context, a theorem of Hardy for the Fourier transform on R says the

/ing:

*em 1. (Hardy) Suppose f is a measurable function on R such that

(1.1)

135
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where a, /? are positive constants. If a/? > r/ien / = a.e. //' a/? < r/iere are infinitely

many linearly independent functions satisfying (1.1) and if %[}
= then f(x) = O~ a*2

.

For a proof of the above theorem see [3]. A more general theorem due to Beurling,

from which Hardy's theorem can be deduced, can be found in [10]. In this paper we

establish an analogue of the above theorem for the Heisenberg group 3?n (see 2 for

the precise formulation). We also prove Hardy's theorem in the case of Rn
,
n ^ 2 and

show that though the exact analogue for the reduced Heisenberg group fails, a slightly

modified version continues to hold. In the final section we prove an analogue of

Hardy's theorem for the Euclidean motion group of the plane.

Another natural way of measuring 'concentration' is in terms of the supports of the

function / and its Fourier transform /. If / is non-trivial and compactly supported

then / extends to an entire function, and so / cannot have compact support.

A non-trivial extension of this result due to Benedicks [1] says: If /eL^R") is such

that m{x:f(x) ^ 0} < oo and m {:/() ^ 0} < oo then / = a.e. Here m stands for the

Lebesgue measure on RB
. This result of Benedicks has been extended in [2], [12], [4]

etc. to a wide variety of locally compact groups. In particular, one has the following

result for the Heisenberg group:

Theorem 2. (Price-Sitaram) Let /eL
1 nL2

(Jf ). Suppose that m{tEU:f(z, t) ^ 0} < oo

for a.e. zeC" and m{AeR*:/(A) ^ 0} < oo. Then f = a.e.

In the above /(A) stands for the group Fourier transform on &n and R* means

M\{0}. Roughly speaking, the above theorem says that if /eL
2
pfJ is concentrated

in the t direction then /(A) cannot be concentrated. It is the concentration in the

t direction, not that in the z direction, which forces the spreading out of the Fourier

transform. In fact, as was shown by Thangavelu in [17], we can have L2
functions

with compact support in the z variable for which / is also compactly supported.
The special role played by the t variable in the above theorem (as well as in our

Hardy's theorem in 2) should not come as a surprise. The Fourier transform on jf

is more or less the Euclidean Fourier transform as far as the t variable is concerned.

If one goes through the proof of the above theorem, one observes that it is a con-

sequence of the corresponding theorem for the Euclidean Fourier transform in the

t variable.

In view of the preceding remarks one would like to have an analogue of the above

theorem which respects the z variable. We formulate and prove such a theorem in 3.

We will show that when / has compact support in the z variable then /(A) (as an

operator) cannot have 'compact support'. We will give a precise meaning to this

statement in 3.

We now turn our attention towards quantitative versions of the uncertainty

principle, namely uncertainty inequalities. The classical Heisenberg-Pauli-Weyl
uncertainty inequality for the Fourier transform on RB

says that

H/!l2^Cn (J|x|
2
|/(x)|

2

dx)(J|^|
2
|7(ai

2
da. (1-2)

For a proof of (1.2) with the precise value of Cn we refer to [6]. A version of the

above inequality for the Heisenberg group was established by Thangavelu in [17].

Here we are concerned with local versions of the above inequality for the Heisenberg

group.
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For the Fourier transform on Rn one has the following local uncertainty inequality:

For any measurable E c Rn
, and < 6 < |,

C
em(E)

2d

J/(x)|
2
|x|

2
"'dx. (1.3)

An analogue of the above inequality is known on the Heisenberg group. The following

result is proved in [13].

Theorem 3. (Price-Sitaram) Let 0e[0,|). Then, for each feL^L2
(3fn ) and

measurable E c R*, one has

r

(1.4)

(In the above tr stands for the canonical semifinite trace and dju is the Plancherel

measure on $tn see 2.) Again we observe that the t variable plays a special role. As

in the case of the Euclidean Fourier transform one would like to have an inequality

which is more symmetric in all the variables. In 4 we formulate and prove a local

uncertainty inequality with the right hand side being

(1.5)

where |w|
4 =

|z|
4 + t

2 and Q = (2n + 2) is the homogeneous dimension of 3tfn . From
the local uncertainty inequality we will also deduce a global inequality similar to the

classical Heisenberg-Pauli-Weyl uncertainty inequality.

Finally, for various facts about the Heisenberg group we refer to the monographs of

Folland [6] and Thangavelu [19]. We closely follow the notations of the latter which

differ from the former by a factor of 2n.

2. Analogues of Hardy's theorem for R" and Jf

Before we prove Hardy's theorem for the Heisenberg group, consider the case of R",

n > 2. The proof of Hardy's theorem (for n = 1) depends heavily on complex analysis.

As we have not found a reference in the literature for the higher dimensional case of

Hardy's theorem we take this opportunity to present a proofwhich follows easily from

the one-dimensional case via the Radon transform.

Theorem 4. Let f be a measurable function on Un and a,/? two positive constants.

Further assume that

\f(x)\ ^ Ce~^\ |/({)| ^ Ce~\ x, { 6 R. (2.1)

// #/?>;, then / = a.e. If a/?<, there are infinitely many linearly independent

solutions for (2.1) and if a/?
=

, / is a constant multiple of e~ a|x|2
.

Proof. As mentioned above, we will use theorem 1 . So, assume that n ^ 2. We use the

Radon transform to reduce the problem to the one-dimensional case. Recall that the
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Radon transform Rg of an integrable function g on R" is a function of two variables

(co, s) where coeSn ~ 1 and se(R and is given by

I

g(x)dx. (2.2)
[

) = S
j

where dx is the Euclidean measure on the hyperplane x.a> = s. Actually, for each fixed
I

co, the above makes sense for almost all selR which may depend on co. However for
\

functions with sufficient rapid decay at infinity it makes sense for all 5. For various

properties of the Radon transform we refer to [5] and [8].

Our definition of the Fourier transform of a function / on Rn
is

:

(2.3)

Then it can be easily seen that

where seSR, coeS
M ~~ 1 and (Rf)~ stands for the Fourier transform of Rf in the s-variable

alone. From the definition of the Radon transform Rf and the relation (2.4), the

conditions on / and / translate into conditions on Rf and OR/)~. For each fixed co, we

therefore get

\Rf((D,r)\^Ce~*
r

\ reU (2.5)

(2.6)

By appealing to Hardy's theorem for R we conclude that for a/? > , Rf(co, .)
= 0, for

almost all CD. In view, of the inversion theorem for the Radon transform this implies/
=

a.e. When a/J
=

, (K/T(a>, s)
=

f(sa>)
=
A(^)e~^ where A is a measurable function on

the unit sphere Sn ~ l
. Because /eL

1

(U
n
\ f is continuous at zero and by taking s -* we \

obtain A(a) = /(O). Hence /(<*)
= f(G)e~^

2

so that /(x) = Ce~ a|x|2 for some constant C. f
If aj? < |, the n-dimensional suitably scaled Hermite functions

>^ satisfy (2.1).

We now consider the case of the Heisenberg group tfn
= C" x R. The

multiplication law of the group 3fn is given by
?

(z9 t)(w, 5)
=

(z + w, t + 5 + ^lm(z.w)), (2.7)

where z,weC
n
, t,s6R. Then ^f

rt
becomes a step-two nilpotent Lie group with Haar

measure dzdt. In order to define the group Fourier transform we need to recall some f

facts about the representations of the Heisenberg group. For each AeR*, there is an I

irreducible unitary representation TCA of jffn realised on L2
(IR

n
) and is given by ]

MZ, t)0)({)
=e^e^+^W + y\ (2.8)

where z = x -f 13; and </>eL
2
(lR

rl

). A theorem of Stone-von Neumann says that all the

infinite dimensional irreducible unitary representations of^ are given by TI A , AeIR*,
|

(up to unitary equivalence). The Plancherel measure dfi
= |A|"dA is supported on R*.

\

(There is another family of one-dimensional representations of 3tf.n which do not play ,

a role in the Plancherel theorem.)
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Given a function /, say in L l

(3^n\ its group Fourier transform / is defined to be the

operator valued function

-I.
/(A)= /(z,t)7t i (z,t)dzdt. (2.9)

J Jt'n

(The above integral being interpreted suitably). For each AeR*, /(A) is a bounded

operator on L2
(R

W
). A simple calculation shows that /(A) is an integral operator with

kernel }(, 77) given by

(2.10)

where we have written /(z, t)
= /(x, y, t) and ^ 13/ stands for the Fourier transform of

/ in the first and the third set of variables. For / in L 1 nL2
(Jfn ) a simple calculation

shows that

|^ 3 /(z,A)|
2
dz, (2.11)

(for a suitable constant C) where \\-\\ HS is the Hilbert-Schmidt norm. From this and

the Euclidean-Plancherel theorem, the Plancherel theorem for the Heisenberg group
follows:

11/111
= CJ ||/W||Js dAi(A), (2.12)

JR*

where d^u(A)
=

|A|
ndA and Cn is a constant depending only on the dimension.

We now state and prove the following analogue of Hardy's theorem for j^n .

Theorem 5. Suppose f is a measurable function on 3tfn satisfying the estimates

\f(z,t)\^g(z)e-^\ zeC", reR,
^

(2.13)

\\fW\\Hs <*-**> te*>
'

(2 - 14)

where geL
1 n L2

(C
M
) and a, /? are positive constants. Then, if a/? > , / = a.e.; z/ a/? < J

are infinitely many linearly independent functions satisfying the above estimates.

Proof. For a function / on Jtfn define /* to be the function /*(z, r)
= /(z,

~
t) and let

/*3/* stand for the convolution of / and /* in the t-variable. Then, a simple
calculation shows that

f -1 f
(/* 3/*)(z,ry'dzdt = .

J Jfn J C

-f.i
Jc

n
(2.15)
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which, in view of (2.11), equals C~^n/(A)||
2
s . Define a function ft on R by

= (f**f*)(z,t)dz.
c"

Then one has

Now the conditions (2.13) and (2.14) on / and / translate into the conditions

(2.18)

where /?' can be chosen so that a/?' > J or < according as a/? > or < |. If a/J > i
then a/?' > J, so that Hardy's theorem for R implies that A = a.e. This means

|| f(X) \\

2
HS
= for all AeK* and consequently / = a.e. by the Plancherel theorem for

2tfn . If aj? <i then any function of the form g(z)hk (t) where hk is a suitably scaled

Hermite function satisfies the hypothesis of the theorem.

The following is the exact analogue of Hardy's theorem for 3tfn .

COROLLARY 6

Suppose f is a measurable L 1

-function on J^n and

i/(z,t)|<Ce-
a(!*|2+ltl2)

, zeC", teR (2.19)

\\fW\\Hs <Ce-*\ AeR* (2.20)

for some positive constants a and /?. If a/? > J, then f = a.e. // ajJ < |, t^en r/i^r^ are

infinitely many such linearly independent functions.

We shall now consider the case of the reduced Heisenberg group <#^
ed = C" x S .

The multiplication law is as in (2.7) except for the understanding that t is a real

number modulo 1. The reduced Heisenberg group J^T

n

Qd
is also a step two nilpotent

Lie group with Haar measure dzdt where dt denotes the normalized Lebesgue

measure on S 1
. For each meZ* = Z\{0}> there is an irreducible unitary representation

7cm of Jfr

n
ed

realized on L2
(R

n
) and is defined exactly as in (2.8). As in the case of <#* ,

we

get (up to unitary equivalence) that all the infinite dimensional irreducible unitary

representations of jf^* are given by 7rm , meZ*. Apart from this there is a class of one

dimensional representations, n0tb9 a, beR
n
given by

n
afb(z,t)

= e
2*i(ax+by) for (z,t)e

d
. (2.21)

The dual&T*d can be thought of as the disjoint union of Z* and R2n
. The Plancherel

measure is the counting measure on Z* with a weight function C\m\
n
(for a suitable

constant C) and the Lebesgue measure on R2
". (This is in sharp contrast to the case of

Heisenberg group.)

Given / in L 1

(tf
*ed

), we can write

/(z,t)= Vk(z)e
ik<

(2.22)-
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as a Fourier series in the central variable t. (Here / can be thought of as the LMimit of

the Cesaro means of the right hand side of (2.22).) Hence, as in the case of 3 n ,
if we

compute the group Fourier transform /(m), meZ* we see that it is an integral

operator with kernel K(, Y\) given by 4

(2.23)

where ^^ _ m stands for the Fourier transform of xF_ m in the first set of variables.

Therefore, for /eL
1 nL2(^ed

),
a simple calculation shows that

||/(m)|||s
= |m -"Il^-J^c-,, meZ*. (2.24)

Remark 7. We will now show by an example that the exact analogue of Hardy's

theorem on J^J
ed

is not valid. Since t varies over a compact set in this case, one might
be tempted to consider the following analogue of Hardy's theorem:

Suppose / is a measurable L 1
-function on Jf^

ed and / satisfies the following

estimates:

\f(z,t)\^Ce~^\ \\f(m)\\ HS ^Ce-^\ zeC",meZ*,
. (2.25)

for positive constants a, ft. Then if ajS > , / = a.e.

However, the following demonstrates that this is 'not the case.

Observe that as / satisfies (2.25), / belongs to L 1 nL2(^ed
) and the series in (2.22)

converges to / in L2
-sense. Now take /(z, t)

= e"~
aNVkr

,
for some /ceZ*. Using (2.24)

one can see that / is a non-trivial function satisfying the conditions (2.25).

However the following, which can be viewed as a "sort of" uncertainty principle still

holds:

Suppose / is a measurable L^function on Jf ed
satisfying

|/(z,r)|<a(z)/f(t), zeCVeS 1

(2.26)

(2.27)

where a is any function with reasonably rapid decay at infinity, /? is any function

that vanishes to infinite order at some point tQ^S
1 and y is a positive constant. Then

/ = a.e.

. Remark 8. Since S 1
is compact the point r can be "viewed" as the point at infinity and

therefore condition (2.26) can be thought of as the analogue of the decay of the

function at infinity.

3. An uncertainty principle for the Heisenberg group

In this section we formulate and prove an uncertainty principle for the Fourier

transform on the Heisenberg group. In the uncertainty principle stated in theorem 2 as

well as in the analogue of Hardy's theorem the Fourier transform has been considered

as a function of the continuous parameter L The properties of the given function / as

a function of the t variable are reflected in /(A) as a function of L But if we want to
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investigate how the properties of / as a function of z are affecting /(A) one has to view

the Fourier transform as a function of two parameters, one continuous and the other

discrete. ^

To justify the above claim let us write down the formula for /(A) when / is a radial

function. In what follows, by a radial function we mean a function which is radial in

the z variable. In order to state the formula we need to introduce some more notation.

For each multi index aefoT let <Da (x) stand for the normalized Hermite functions on

W. For AeR* we let <&(x) = |A|
n/4O

a(W
1/2

*) and define P
k (X) to be the projection of

L2
(U

n
) onto the eigenspace -spanned by {:|a| = /c}. By <p(r) we denote the scaled

Laguerre function

^W^Lr^iWr2
)^*

1 '
4^, (3-1)

L\~
1

(t) being the fcth Laguerre polynomial of type (n
-

1).

Now let /(z, t) be a radial function and write /(r, t) in place of /(z, t) when |z|
= r.

Then we have the following formula for the Fourier transform of /:

(3-2)

where the coefficients jR
fe (A,/) are given by

KW-Mr. . (3.3)
-\-n

In the above /(r, 1) stands for the Fourier transform of /(r, t) in the t-variable and Cn \

is a constant. From the above formula it follows that we can identify /(A) with the

sequence of functions {JRk (A,/)}. The support properties of / as a function of t are

reflected on the properties of Rk(hf) as a function of A. Likewise, one expects that the

z support of / will influence the properties of Rk(A,/) as a function of k. We will show
{

that this is indeed the case. \

More generally we consider the Fourier transform /(A) as a family of linear
;

functional F(A,a) on L2
(IR

n
) indexed by (A,a)eR* x M". For each (A, a) the linear

j

functional F(A, a) is given by |

F(A,a)cp = ((p,/(A)cD^ ^> 6L
2
(R-). (3.4) 1

With the above notations the uncertainty principle stated in theorem 2 can be restated r

as follows. Ifm {t:/(z, t) 0} < oo for a.e. z and m{A:F(A, a) ^ 0} < oo then / = 0. Now
|

to state our uncertainty principle let
[

(3.5)

and

B(A)={a:F(A,a)^0}. (3.6)

Then we have the following result.

Theorem 9. Suppose /eL 1 nL2
(jfJ is swcfe tto m(yl(A)) < oo and B(X) is finite for a.e.
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Before going into the proof of the theorem we make the following remarks

concerning the statement of the theorem. If there exists a compact set K c C"

such that /(z, f)
= whenever z$K and re(R then it follows that A (A) is compact

for each /I and hence m(A(%))< oo is satisfied. The condition B(A) is finite simply
means that /(1)<I>^0 only for finitely many a and consequently there is a

k = k(X) such that/(A)P;-(A)
= for all j>/c. Let Sj* be the span of {<D*:|a =k}.

Then it has been observed by Geller in [7] that Sk are the analogues of the spheres

\x\
= r in Rn

. In other words we can think of S as a sphere in L 2
(U

n
) of radius

(2k + n)|A|. This view has turned out to be fruitful in other problems also as can be

seen from [18].

Thus we can let Bk to be the span of {3>:|a| ^ ^} which is the analogue of a ball in

Rn and the condition f(X)Pj(X)
= for j>k simply means that /(1) = in the

orthogonal complement of Bk in L2
(tR"). Let us say that /(/I) has compact support in

B
k when the above holds. With this definition we can restate the above theorem in the

following form.

Theorem 10. Let /6L
1 nL 2

(Jfn ). Suppose for each X the Fourier transform f(X)

is compactly supported. Then /(., X) cannot have compact support for each A unless

/=o.

We now come to the proof of theorem 9. We need to use some facts about the

special Hermite expansions for which we refer the reader to [19]. If/eL
2
(C") then we

have the expansion

f = (2n)-" Z/x^v (3.7)

In the above <^(z)
= LpHiM 2

)e~
(1/4)|z|2 and / x (pk

stands for the twisted

convolution

(/ x <ph )(z)
=

f f(z
- w)<p>)^

2><^>dw. (3.8)

Jc
n

The functions <p k are eigenfunctions of the operator

(3.9)

with eigenvalues (2k + n) and /-/x <pk is the projection of L2
(C

W
) onto the /c-th

eigenspace of the operator L. We also have for any m

Lm (f x q>k )
= (2k + n)

m
f x (pk (3.10)

and in view of the orthogonality the relation

\\L
m
f\\

2
2
= (2nr

2n
(2k-+n)

2M
\\fx<pk \\

2
2 . (3.11)

fc =

We need the following proposition in order to prove theorems 9 and 10.
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PROPOSITION 11

Suppose /GL 2
(C") is such that \\f x cp k \\ 2 ^ Ce~*(2k+n)

for some a >0. Then f is real

analytic.

Proof. By the Sobolev's embedding theorem it is easy to see that / is in C(C n

).
We

want to apply an elliptic regularity theorem of Kotake-Narasimhan to prove the

proposition (see [1 1], theorem 3.8.9). In view of their theorem it suffices to show that

for any positive integer m

||L
m
/|| 2 <Mm+1

(2w)! (3.12)

holds with some constant M. Under the assumption on /, the relation (3.1 1) gives

n

I (2k + n)
2m

e~ 2 *(2k+n)
. (3.13)

* = o

The series can be estimated by

which gives the estimate

||L
m
/||

2 ^C2m+1
(2m)l (3.15)

which is more than what we need.

Now we can give proofs of theorems 9 and 10. Define a radial function Gj(z, t) by

i(z)\l\
ndL (3.16)

:

it follows from (3.2) that \

G/AHC,,*-'
1 ^ (3.17) ;

Cn is some constant which we do not bother to calculate. Setting #,.
= /* G;

and !-

taking the (group) Fourier transform we get \

djW =/(A)Gj(A)
= C

ne-f(X)P.()i\ (3.18)

Now fix L Then under the hypothesis of the theorem we have g^X)
= for ; > k which

in view of (2. 1 1 ) means that for a.e. z in
C"gj(z)

= forj > k where we have set
gj(z)

to

stand for g.(z> A) the Fourier transform of g. in the t-variable.

Recalling the definition of the convolution gj
= f* Gj

on tfn and taking the Fourier
transform in the f-variable we get with the same notation as above

where the A-twisted convolution is given by

f**,Gj(z)=\ f^z-^GjMe'W^dv. (3.20)
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Let /j[(z) =f\2~
1

\l\'
(i/2)

z). Then it follows from the definition of G
j
that

/Jx^O(4 (3-21)

Under the hypothesis of either of the theorems we have (f\ x
<pj)(z)

= for j > k. This

means that f\ satisfies the conditions of proposition 1 1 and consequently /(z, /) is real

analytic for a.e. X as a function of (x 9 y). But then the set {z:/(z,A) ^0} cannot have

finite measure unless /(z, A)
= for a.e. z. This implies / = and hence theorem 9

follows. It is clear that the hypothesis of theorem 10 implies that of theorem 9. Hence

both theorems are proved.

4. Some uncertainty inequalities for the Heisenberg group

In this section we establish a local uncertainty inequality for the Fourier transform on

JfB and deduce a global inequality too. As we have remarked in the previoussection

we consider the Fourier transform f(X) as a family of linear functional F(/i, a) indexed

by (A,a)eR* x M". From the definition of f(A,a) it follows that

tr(/w*/a))=z ii/w<i>iii!
= z iifou)ii

2
, (4.1)

a a

where ||F(A,a)|| is the norm of the linear functional F(A.,ct). In this notation the

uncertainty inequality of theorem 3 can be written as

[ ||F(A,a)||
2
d/i(A)<Cem(^)

w
f \f(z,

J A J Jfn

,t)\
2

\t\

2
dzdt. (4.2)

a A

In the next theorem we will prove an inequality which is more symmetric in both

variables.

Let v be the counting measure on F^" and let a =
\JL
x v on R* x I\T. We now prove

the following inequality. We let Q = (2n 4- 2) and |w|
4 =

|z|
4 + t

2
for w = (z, r)e#V

Theorem 12. Gzi?en 0e[0,), /or eacfe /eL
1 nL2

(^fJ and c R* x N" wft/i (j() < oo

one has

(4.3)

Ce depends only on 6 and Q.

Proof. Let r > be a positive number to be chqsen later. We write f = g + h where

0(w) =/(w) when |w| < r and #(w) = otherwise. We then have

[
JE

\\m\\ n*iii 2
=

(4.4)

.E
Since
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where \\$(X)\\ is the operator norm of g(l) on L 2
(r) and as \\(X)\\ ^ H^ we obtain

(4.6)

where we have applied Cauchy-Schwarz to get the second inequalityOn the other hand by the Plancherel theorem

= C. |/j(w)|
2dw

J J#n

f= CJ l/i(w)|
2
|w|-

I J^'
/ Jr n

(4.7)

Therefore, we have proved the inequality :

jfn

(4.8)

Minimizing the right hand side by a judicious choice of r we get the inequality

(49)

This completes the proof of the theorem.

' CaSe K"
e D W deduCe a global ^certainty inequality from the

We need some more n tation Let S> be

ct v
HeiSenber8 8rouP and letW) be the Hermite operator whose

spectral decomposition is given by

(410)
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For the definition of & we refer to [16] and we remark that when /= 1, H(A) =

A 4- x 2 on Un
. The relation between < and H(X) is given by

(J?/HA) = /(A)H(A), . (4.11)

for any reasonable function / on $Fn . We can define any fractional power J^ v
by the

equation

)^ (4.12)

where (ff (A))
y

is given by the decomposition

k(4 (4.13)
fc
=

We can now prove the following global uncertainty inequality for jfn .

Theorem 13. For f in L2
(JfJ, < y < Q/2 one has

|/(w)|
2
|w|

2

Mw)( f |JSf
y/2

/(w)|
2 dw

)
(4.14)

.tfn / \J.#n /

where K is a constant.

Before going into the proof of the above inequality the following remarks are in

order. When y = 1 the above inequality reduces to

l/(w)|
2
|w|

2dwVf |^ 1/2
/(w)|

2

dw) (4.15)

/ \ J.^n /

and this is the analogue of the classical uncertainty inequality for the Fourier transform

on 1R". The analogy can be seen clearly if we write the inequality (1.2) in the form

\f(x)\
2
\x\

2 dx ( |(-A)^
2
/(jc)|

2 dx I. (4.16)

/ \ J /

The inequality (4.15) is valid even if we replace |w| by |z| as was shown in [17] and then

a precise value for K can also be obtained.

Now we prove theorem 13. As in the case of the previous theorem the proof is

modelled after the proof in the Euclidean case. Let E
r
denote the set

Er ={(A,a):(2|a| + n)U|^r
2
}. (4.17)

We claim that a(Er ) ^ CrQ . To see this we first note that

r= U U {A:(2|a| + n)|A|<r?}-x{a} (4.18)

and therefore

lk + n)\2.\^r
2
}. (4.19)
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Since /i{A:(2fc + n)W sr
2
} < CrQ (2/c + n)-"-

1 and Sw=k l < C(2k + n)"~
l we get

<r(Er ) < Oe
(2/c + n)

- 2
$ Crc (4.20)

fc=o

and this proves the claim.

Let E'
r
stand for the complement of E

r
and write

= C, f ||/(A)||f,s dAi(A) (4.21)

JR

= C. W,a)|| 2 da

F
r r

!

Applying the local uncertainty inequality to the first integral with 9 = y/Q < j and ^

making use of the claim we obtain I

*

|/(w)|
2
|w|

2Mw. (4.22)

For the second integral one has the following chain of inequalities:

|tdff (4.23)
f ll/*illidcr<r-

J > f

J F J

)f

jfn

Thus we have obtained the inequality

H/lli<CJr
2y

||/(w)|

2
|w|

2Mw + r- 2y

[|^
/2
/(w)|

2

dw|.
(4.24)

v. J J J

Minimizing the right hand side we obtain

ll/ll!W
fl/!

2M 2MwV
[|jS^/

2
/(w)|

2dw\ (4.25)
V J / \ J /

which proves the theorem.

5. The Euclidean motion group

In this section we shall state and prove an analogue of Hardy's theorem for the

Euclidean motion group, M(2). The group G = M(2) is the semidirect product of
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S0(2)(
~ S 1

) and R 2
(
~

C). A typical element of G is denoted by (z, a) and this element

acts on (R
2

as r(z)r(a) where r(z) is the translation by zeC(~[R
2

) and r(a) is the

rotation by an angle a, ^ a ^ 2n. The multiplication law is given by the composition
of such maps. Haar measure on G is dzda where dz is Lebesgue measure on C(~ [R

2
)

and da is the normalized Haar measure on SO(2)(cS
1

). For any unexplained

terminology and notation in this section see [15].

For aelR
4"

=(0, oo), we have the unitary irreducible representation Ua
of G as

operators in ^ (L
2
(S

1

) ) defined by

(U(z, a)0)(0) =e^^W -
a), (5.1)

where (j>eL
2
(S

l

\ 0^9^2n and <.,.> is the inner product on R2
. Here one is

identifying ae!R
+
with (0,a)eC. The Plancherel measure

fj,
on G is supported on this

family of representations parametrized by IR
+

, and is given by a da, where da is

Lebesgue measure on IR
4
".

The Fourier transform / of feL
1

(G) is a function on IR
4"

taking values in
1

)), and is defined by

f(a) = U(f) = [ l/(z, a)/(z, a)dzda (5.2)

J M(2)

(the integral interpreted suitably) and therefore we have

(5.3)
C S0(2)

The following is an analogue of Hardy's theorem for the Euclidean motion

groupM(2):

Theorem 14. Suppose f is a measurable function on G satisfying the following

conditions for some positive constants a, /? and C:

^Ce~^\ . (z,0)eG, (5.4)

\\f(a}\\ HS <Ce~^\ aeU +
. (5.5)

// aj? > , then f = a.e.

Remark 15. Since functions on [R
2 can be thought of as functions on G invariant under

right action by SO (2), Hardy's theorem for IR
2 shows that is the best possible constant.

Proof. For neZ, define %n on SO(2) as %n (Q)
= e

in$
. It is enough to show that if

^n */*7m = for all n,m. This is because if / is a L^function (or more generally

a distribution) and xn *f*Xm ^s zero f r a^ w meZ, then / is itself zero. A simple

calculation shows that if/ satisfies (5.4) and (5.5) then for all n, m, %n*f*xm also satisfy

(5.4) and (5.5). For n,meZ, define

. r(0),
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Observe that if h = Xn*f*xm then h belongs to L* m (G). Therefore it is enough to prove
the theorem for a function h in L* m (G). It is easy to check that if heL l

nm (G) then h(a)

maps xm^L
2
(S

1

) to a multiple of xn and is zero on the orthogonal complement of xm .

In fact,

Therefore

Using the transformation property of h, it can be shown that

for a.e. 9 and y in [0, 2n) where J^/z denotes the Euclidean Fourier transform of h in

the C( ~ R 2
)-variable z. Thus from (5.5) and (5.6) it will follow that:

l&M&yn^Ce-* (5.7)

for eC(~ R2
) and a.e. y in [0,24 But h also satisfies (5.4). Using the analogue of

Hardy's theorem for R 2
(~C) we conclude that h(. 9 y)

= Q for a.e. y in [0,24 This

implies that h a.e.
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In a recent investigation of the support behaviour of certain Gauss measures on a

connected semisimple Lie group (see [KM]), we encountered the following

question.

Let G be a connected semisimple Lie group with Lie algebra g having a Cartan

decomposition g = t + p (in the usual notation of Helgason [He]), and let K be the

analytic subgroup corresponding to t. Can one classify the subsemigroups S of G
such that K^Sl Here "subsemigroup" means only a subset of G which is closed

under the group multiplication. In this note we show that this problem has a very

simple answer.

To describe this, we let

be the decomposition of g into its simple ideals g7-, 1 ^j ^ n, and we recall that

[9i? 9;]
= for all 1 < i <j < n, and g^ and g7

- are orthogonal w.r.t. the Killing form

on g. If QJ
=

tj
+ PJ is a Cartan decomposition for

g^,
then g has a Cartan decomposition

g = t + p, where t = t!+ 12 + +! andp = p 1 4-p2 + " + ?

Let N be a subset of {1, 2, . . . , n} and form QN := t 4-
/etfPj.

It is easy to see that gN
is a reductive subalgebra containing t, and if GN is the corresponding analytic

subgroup, then GN = (YljeNGj)(Ylj^NKj\ where G
j9 Kj are the analytic subgroups

determined by g^ and t
j9 respectively.

Our question raised above is now answered by the following result.

Theorem. Let G be a connected semisimple Lie group and let S be any subsemigroup

of G bi-invariant under K. Then S = GN for some subset N of { 1, 2, . . . , n}.

In the special case when G is simple (and noncompact) this theorem tells us that

K is a maximal proper subsemigroup of G. This special case therefore implies the

observation of Hilgert and Hofmann that SO(2) is a maximal proper subsemigroup
of SL(2, R) ([Hi H], Corollary 4.20, p. 49) and extends the theorem of Brun (see [B] or

[He], Exercise A.3, p. 275) that K is a maximal proper subgroup of G, in the simple case.

153
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PROPOSITION 1

Any subgroup of a connected semisimple Lie group G which contains K is of the form

Proof, (i) Let xeG\K and let Hx denote the subgroup of G generated by K and x. We

may write x = x 1x2 ...xn , where XjeGj for 1 <y ^ rc, and set Nx *={l^j^ n: x^Kj}.
Since x determines Xj up to translation by a central element, and the centre of G

lies inside K, x determines Nx uniquely.

For each j<=NX , Hx r\Gj
contains Kj and XjKjXT

1
. As G

7
is simple, Brun's theorem

implies that the normaliser ofK
j
in Gj is Kp hence Hxn Gj ^ Kp so by Brun's theorem

again, Hx r\Gj
=

Gj. It follows that Hx contains GNx . As GNx clearly contains K and

x, we conclude that Hx = GNx .

(ii) Now letH be an arbitrary subgroup ofG containing K and with H^K. Then

H=\jGNx ~GN ,

xeH .

where N =
[jxeHNx . D

Given semisimple g with Cartan decomposition g = t + p, we choose a maximal

abelian subspace a
p
of p and denote by the set of all roots of g relative to a

p (see

[He], p. 263, and note that we follow the notation there except that a
p replaces t) po

and the subscript on g and the subspaces of g is dropped). We write NK(a p)
for the

normaliser of a
p
in X.

PROPOSITION 2

There exists fceNx(a p), and some m^ 1, such that for all Xea
p ,

Proof. For each aeE, let ra :a p
->a

p
denote the reflection in the hyperplane

(YEap
: a(Y) = 0} w.r.t. the restriction to o

p
of the Killing form on g. We choose a

basis of simple roots (a l9 . . . , a z} from S, and set

s = r
i
ora2 or

>

which is a Coxeter element of the Weyl group W of (g, ap).
Since a

x , . . . , a z
are linearly

independent in a*, we have 5(7) = Y for Yea
p

if and only if ra .( Y) = Y for all 1 <; < /

(c.f. [Ca], Proposition 10.5.6, p. 165). Hence s(Y) = Y if and only if a/ Y)
= for all

1 <j < /, which is equivalent to Y=0 since a^..,,^ span a*. Hence the linear map
/ - s: a

p
-* a

p is invertible.

Let the order of s be m, then from the identity

(/ + s + - + s
m ~ l

) (I
-

5)
= I - s

m =

and the invertibility of / - 5, it follows that on a
p ,

Because W can also be realised as NK(ap)/CK(a^ where CK(ap) is the centraliser

of a
p
in J, we can find keNK(aJ such that s = Adfc| a". Then (1) gives that for all

}

\
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X + M(k)(X) + M(k2
)(X) 4- - + Ad(/c

w ~
^(X) = 0,

gives the result. D

3LLARY 1

exists keNK(a p) and m^ 1 such that for each aeA = expa p ,

a- 1

=(fca)
M "

1
fc"

III + 1
. D

DLLARY 2

; connected semisimple Lie group G, any K-bi-invariant subsemigroup of G is a

>up containing K.

Let S be a K-bi-invariant subsemigroup and let xeS, then x = /qa^ for some

ind k lt k2 eK. Hence x" 1

=/cJ
1
(3~

1
/c~

1 eS by Corollary 1. Also leS and so

D

roof of the theorem stated earlier is now immediate by Propositions 1 and 2,

lary 2.

-fc. We note the following consequence of the theorem. If G is a connected

mple Lie group and C is any K-bi-invariant subset of G, then there is some

;uch that Cr
is a neighbourhood of the identity in G(C), the subgroup of G

ited by C.

, by the theorem above,

G(C)= \JC\
s=l

- is Haar measure on G(C), there exists neN such that A(C") >0. But we may
C = KDK for D^A, and by Proposition 2, Corollary 2,

j result now follows because CnC~ n
is a neighbourhood of the identity in G(C),

/], bottom of page 50.
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Abstract. Unitary representations of compact quantum groups have been described as

isometric comodules. The notion of an induced representation for compact quantum groups
has been introduced and an analogue of the Frobenius reciprocity theorem is established.
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Quantum groups, like their classical counterparts, have a very rich representation

theory. In the representation theory of classical groups, induced representation plays
a very important role. Among other things, for example, one can obtain families of

irreducible unitary representations ofmany locally compact groups as representations

induced by one-dimensional representations of appropriate subgroups. Therefore, it is

natural to try and see how far this notion can be developed and exploited in the case of

quantum groups. As a first step, we do it here for compact quantum groups. First we

give an alternative description of a unitary representation as an isometric comodule

map. This is trivial in the finite-dimensional case, but requires a little bit of work if the

comodule is infinite-dimensional. Using the comodule description, the notion of an

induced representation is defined. We then go on to prove that an exact analogue of

the Frobenius reciprocity theorem holds for compact quantum groups. As an

application of this theorem, an alternative way of decomposing the action of SU
q (2)

on the Podles sphere S^ is given.

Notations. 3tf,3C etc, with or without subscripts, will denote complex separable

Hilbert spaces. 08(3?) and ^Opf) denote respectively the space of bounded operators

and the space of compact operators on 3? . sf, J1

,
# etc denote C*-algebras. All the

C*-algebras used in this article have been assumed to act nondegenerately on Hilbert

spaces. More specifically, given any C*-algebra s#, it is assumed that there is a Hilbert

space Jf such that j^^(JT) and for weJT, a(u) = for all asjtf implies u = 0.

Tensor product of C*-algebras will always mean their spatial tensor product. The

identity operator on Hilbert spaces is denoted by /, and on C*-algebras by id. For two

vector spaces X and Y9 X (x)
alg
Y denote their algebraic tensor product.

Let sf be a C*-algebra acting on Jf. The subalgebras {ae^(Jf):
and {aE^(^C)\ab,bae^^bE^} of J'(jr) are called respectively the left multiplier

algebra and the multiplier algebra of j/. We denote them by LM(<$/) and M(j/)

respectively. A good reference for multiplier algebras and other topics in C*-algebra

theory is [4], See [9] for another equivalent description of multiplier algebras that is

often very useful.
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1. Preliminaries

1.1 Let si be a unital C*-algebra. A vector space X having a right j^-module
j

structure is called a Hilbert ^-module if it is equipped with an j^-valued inner product f
that satisfies i

(i) <x,y>* = <y,x>,
I

(ii) <x,x0,
(iii) <x,x> = 0=>x = 0,

(iv) <x,yb> ==
<x,;y>f? for

and if ||x|| :
=

|| <x, x> ||

1/2 makes X a Banach space.

Details on Hilbert C*-modules can be found in [1], [2] and [3]. We shall need a few

specific examples that are listed below.

Examples, (a) Any Hilbert space Jf with its usual inner product is a Hilbert C-

module.

(b) Any unital C*-algebra j/ with <a,&> = a* b is a Hilbert ^-module." /
(c) Jf J3/, the 'external tensor product' of 2tf and ja/ 9 is a Hilbert ^-module.

(d) #(jf, Jf ), with <5, T> = S* T is a Hilbert (jf)-module. j

1.2 We have seen above that& #(jf) and #(Jf , Jf jf) both are Hilbert

modules. It is easy to see that the map SiZu^ a^Zi^ a
f (-)

from Jf a^PO to

#~) extends to an isometric module map from ^<g>#(Jf)' to

, Jf JT), i.e. 9 obeys

Thus & embeds J?(jf) in ^(jf,^ jf). Observe two things here: first, if

^ = C, 9 is just the identity map. And, & is onto if and only if 2ff is finite-dimensional. \
The following lemma, the proof of which is fairly straightforward, gives a very useful

*

property of 8.

i

Lemma. Let O
f
be the map $ constructed above with ^ replacing Jf,z= 1,2. Let

jff2 ) and xeJ^ l (jf). T/ien &2 ((S fd)x) = (S I)^(x).

1.3 For an operator Te@(J{f jf), and a vector we^f, let T
tt
denote the operator

I;M> T(w v) from jf to jf jf . It is not too difficult to show that Tu ^(^f ^ (Jf))

if Te LAf( (^) ^W). Define a map (T) from ^f to

S" L

(Tu ). Then Y is the unique linear injective contraction from
to J^,^JW) for which 9(^(T)(u))(i;)

= T(ut?) Vwe^^eJT, Te
(^) (Jf)). Here are a few interesting properties of this

PROPOSITION

Let W:LM(a (je)aW)^0(je,jea(jr)) be the map described above. Then

we have the following:

(i) *maps isometries in LM(^ (^) ^f(jf)) onto tte isometries in
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(ii) For any Te

(iii) Ifjtf is any C*-subalgebra of &(&) containing its identity, then Te LM(^? pf) .a/)

if and only if range ^(T)^

Proof, (i) Suppose T6LAf(# pH#PO) is an isometry. By 1.2, <(!>, (7 =

<9"
1

(TJ,d"
1

(rj> = < Tu , ?;>= <M,i7>7 for M,i;eJf. Thus (T) is an isometry.

Conversely, take an isometry 7i:Jf -> J"f ^pf) and define an operator T on the

product vectors in ^f JJT by T(uv) =
S(7i(w))(i?),& being the map constructed in

1.2. It is clear that T is an isometry. It is enough, therefore, to show that T(|w><i;|S)6
# Pn &(&) whenever SeJ'pf) and u,v are unit vectors in Jf such that <w,u> =
or 1.

Choose an orthonormal basis {e t }
for Jf such that ^ = M, er

= where

O if <u, i;>
= 0,

if <ii, !;>=!.

Let 7c . = e
f |^)7i(^). Then T(|M><i?|S) = S|e I.)<er|7c I

.

1
S where the right-

hand side converges strongly. Since TufcJeJf ^(Jf), it follows that S 7ra *?!;,.!

converges in norm. Consequently the right-hand side above converges in norm, which

means T(|w>

(ii) Straightforward.

(iii) Take T= |w><u|(g)a,w,i;e^f,aej3f. For any
Since *F is a contraction, and the norm closure of all linear combinations of such T's is

> we have ranSe ^CT) ^ 3e ^ for all

Assume next that' TeLM(^ (^f) ja^). Then T(|w><u|/)e^ pf)^ for all

Hence ^F(r(|M><tt|/))(M)eJf jtf, which means, by part (ii), that

f j/ for all uetf. Thus^ range ( T) e -jf ^.
To prove the converse, it is enough to show that T(\u)^v\a)G^Q(^) $0

whenever aestf and u,veJ4f are such that <w, i?>
= or 1. Rest of the proof goes along

the same lines as the proof of the last part of (i).
H

1.4 Let jf 19 jf 2 be two Hilbert spaces, <$/ being a C*-subalgebra of J'pf f )
contain-

ing its identity. Suppose <p is a unital *-homomorphism from s4
1
to j/2 . Then id(j)\

Sa\-+S<l)(a) extends to a *-homomorphism from ^ (^f) 6s/
1
to ^ (J^) j/2 .

Moreover {((W0)(a))fc:^eJ
>

(Jf')j/ 1 ,fc6^ (Jf)^2 } is total in ^ (Jf)j/ 2 .

Therefore id extends to an algebra homomorphism by the following prescription:

for all fl

PROPOSITION

Let
(j>

be as above, and }

i
be the map T constructed earlier with JT replacing Cfr. Then
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Proof. It is enough to prove that

(<w|iW<)^TO)) = (^

Rest now is a careful application of 1.2.

1.5 Consider the homomorphic embeddings 12 :

and 13 :^ (^f)(g)^2 ->^ (^
?

)(g)^ 1 ja/2 given on the product elements by

respectively. Each of their ranges contains an approximate identity for

j*i j/2 , so that their extensions respectively to LM(^ (JH ^i) and

j/ 2 )
are also homomorphic embeddings.

PROPOSITION

Let XF
1 ,

XF 2 ^ as *n ^e previous proposition, and let be the map* with

replacing d. Let Se LM(^ pf) s/J, Te LM(^ (^f) s/2 ). Then

Proof. Observe that for M
1 ,...,ull6^f,(Y 1 (S)(u l ),*i(S)("j)

Therefore XF
1(S)W is a well-defined bounded operator from jf j/ 2

to

3df sf
i

st2 - Ta5ce an orthonormal basis {ej for ^f. Define Sj/s and T
f/s as

follows:

This converges to ^ 12 (S)^> 13 (T)(e i w) as n--oo. On the other hand,

which implies lim^^acCPJS) W)(P,, W)V2(T)(,)) = ^((T
Therefore

Let Pw:=I?=1 |e ><^|. Then CF^S) id)(Pn zW)^F 2(T)(^)
= CF 1 (S) W)(Z7<II^

Ty Hence for i?6Jf I9 wejf 2 ,
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2. Representations of compact quantum groups

2.1 We start by recalling a few facts from [6] on compact quantum groups.

DEFINITION

Let jtfbea separable unital C*-algebra, and u:<$/-+jtf<s/bea unital *-homomorphism.
We call G = (X, /u) a compact quantum group if the following two conditions are

satisfied:

(i) (id IJL)IJL
= (n id)^ and

(ii) {(a I)n(b):a 9 bej/} and {(/ a)^(b):a,be^} both are total in

\JL
is called the comultiplication map associated with G. We shall very often denote the

underlying C*-algebra s$ by C(G) and the map /x by UG .

A representation of a compact quantum group G acting on a Hilbert space 3 is an

element n of the multiplier algebra M(# p?) C(G)) that obeys 7C 12 7T 13
= (id}ji)n,

where 7c 12 and 7i 13 are the images of TC in the space M(^ pf) C(G) C(G)) under

the homomorphisms </> 12 and 13 which are given on the product elements by:

A representation TC is called a unitary representation if THT* = / = n*n. One also has

the notions of irreducibility, direct sum and tensor product of representations. As in

the case of classical groups, any unitary representation decomposes into a direct sum
of finite-dimensional irreducible unitary representations. Let A(G) be the unital

*-subalgebra of C(G) generated by the matrix entries of finite-dimensional unitary

representations of G. Then one has the following result (see [8]).

Theorem. ([8]) Suppose G is a compact quantum group. Let A(G) be as above. Then we
have the following:

(a) A(G) is a dense unital *-subalgebra of C(G) and n(A(G)) A(G) alg A(G).

(b) There is a complex homomorphism &:A(G)-+C such that

(B id)iJL
= id = (id

(c) There exists a linear antimultiplicative map K: A(G) -* A(G) obeying

m(idK)n(a) = s(a)I = m(jc id)n(a), and /c(/c(a*)*)
= a

for all aeA(G\ where m is the operator that sends abto ab.

The maps B and K in the above theorem are called the counit and coinverse

respectively of the quantum group G.

2.2 Let G = (C(G),/iG ) and H = (C(H\uH ) be two compact quantum groups. A C*-

homomorphism from C(G) to C(H) is called a quantum group homomorphism
from G to H if it obeys (0 (f))uG = /^0.
One can show that if G, H are compact quantum groups, then H is a subgroup of

G if and only if there is a homomorphism from G to H that maps C(G) onto C(H).
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2.3 Let G = (jtf , /i) be a compact quantum group. From now onward we shall assume

that st acts nondegenerately on a Hilbert space Jf* , i.e. j/ is a C*-subalgebra of J^pf)

containing its identity. We call a map TT from J-f to 3tfsf an isometry if

<7c(M),7c(i?)>
= <M,i;>/ for all u,i?e^f. If TC:^ -+Jf <s/ is an isometry, then 7izW:

u ah->7t (w) a extends to a bounded map from tf j^ to Jf ^ s/. n is called

an isometric comodule map if it is an isometry, and satisfies (7izW)7r = (/^)TL The

pair (Jf , TC) is called an isometric comodule. We shall often just say n is a comodule,

omitting the 3? .

The following theorem says that for a compact quantum group isometric

comodules are nothing but the unitary representations.

Theorem. Let n be an isometric comodule map acting on jjf. Then *P~ ^TC) is a unitary

representation acting on $?. Conversely, if TC is a unitary representation of G on Jf , then

(Stf, *(&)) is an isometric comodule.

We need the following lemma for proving the theorem.

Lemma. Let (Jtf, n) be an isometric comodule. Then Jf decomposes into a direct sum of

finite dimensional subspaces 2 = @3tfa
such that each Jfa is n-invariant and TT| #I is an

irreducible isometric comodule.

Proof. By 1.3, there is an isometry n in LM(^ (^) jtf) such that *F(A}= n. Using
1.4 and 1.5, we get rt 12 rt 13

= (M/)A where 7c 12
= ^ 12 (7i), 7T 13

=
< 13 (A), 12 and

13 being as in 1.5 with s^
l
= stf 2

= <$/.

Let </ = {aej/:h(a*a) = 0}, From the properties of the haar state, J is an ideal in

jaf. For any unit vector u in ^f, let Q(M) = (M/i)(rt(|tt><tt|/)A*). Then

6(")* = G(")eo(^)- If 6() = 0, then |A(|u><u|/)**|
1/2 * (^)^ Therefore

A(|w><|/)A*e (J?)^. It follows then that |w><w|/eJ
>

( e^?)Jzr
. This

forces u to be zero. Thus for a nonzero w, )(w) 7^ 0. Choose and fix any nonzero u. Then

Thus A(j2()/) = (Q(w)/)A. If P is any finite-dimensional spectral projection of

Q(u\ then (P I)
= (P I)rtt which means, by an application of part (ii) of 1.3, that

nP (Pid)n. Standard arguments now tell us that n can be decomposed into
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ect sum of finite-dimensional isometric comodules. Finite-dimensional comodules,

rn, can easily be shown to decompose into a direct sum of irreducible isometric

adules. The proof is thus complete. H

'oofof the theorem: Let rt be a unitary representation. By 1.3, *(ft) is an isometry

J^toJjf C(G\ Using 1.4 and 1.5, we conclude that *(n) is an isometric comodule.

>r the converse, take an isometric comodule n. If n is finite-dimensional, it is easy

ee that V
~ I

(TI) is a unitary representation. So, assume that n is infinite-

insional. By the lemma above, there is a family {Pa }
of finite-dimensional

actions in $(#?) satisfying

P*Pf
=

8*pP*> I,P*
=

I> nP* = (Pa id)n Va (2.1)

that n\ Pyje
= 7cPa is an irreducible isometric comodule. n\ Pt^ is finite-dimensional,

fore
~
ifa |p2jf )

is a unitary element ofLM(^ (Pa^f) ,o/f= ^(PaJf)^. Let us

'te
*~ 1

(n) by n. Then the above implies that in the bigger space S&(tf Jf),

(rt(Pa /))*(7i(Pa /))
= Pa / = (7i(Pa 7))(7r(Pa /))*.

second equality implies that 7i(Pa /)TI*
= P

a / for all a, so that TUT* = /. We
tdy know by 1.3 that 71*71 = / and by 1.4 and 1.5 that n i2 n l3 =(id]Li)n. Thus it

lins only to show that neM(^ (J^)^). It is enough to show that for any
and aes/, (Sa)7te^ (J^)^. Now from (2.1) and 1.3, A(Pa /)

=

for all a. Therefore (S^)^/)* = (5a)7i(Pa /)6J
>

(^f) j</. Since

a)n is the norm limit of finite sums of such terms, (S a)7ce^ (J
(f

) ^. Thus TT is

itary representation acting on Jf .

Sfext we introduce the right regular comodule. Denote by L 2 (G) the GNS space

ciated with the haar state h on G. Then stf is a dense subspace of L 2 (G). One can

see that $#$tf can be regarded as a subspace of L2 (G)stf. Consider the

= (hid)iJL(a*b) = fc(a*h)7

11 a, feej/. Therefore ja extends to an isometry from L2 (G) into L2 (G) j^. Denote

y M. The maps (/^)5R and (Wfd)5R both are isometries from L2 (G) to

?) s ^/ and they coincide on sf. Hence (/ /x)9?
=

(91 id)SR. Thus 51 is an

letric comodule map. We call it the right-regular comodule of G. By theorem 2.3,

(9?) is a unitary representation acting on L2 (G). This is the right-regular represen-

>n introduced by Woronowicz ( [8] ).

inally let us state here a small lemma which is a direct consequence of the

T-Weyl theorem for compact quantum groups.

Lemma. {ueL2 (G)\yi(u)eL2 (G) alg C(G)}
= A(G).

iduced representations

lis section we shall introduce the concept of an induced representation and show

Frobenius reciprocity theorem holds for compact quantum groups. Throughout
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this section G = (C(G), UG ) will denote a compact quantum group and H = (C(H), HH\

a subgroup of G. We start with a lemma concerning the boundedness of the left

convolution operator.

3.1 Lemma. Let G = (c/,^) be a compact quantum group. Then the map L
p
:<$&-+jtf

given by Lp (a)
= (p id)^(a) extends to a bounded operator from L2 (G) into itself.

Proof. The proof follows from the following inequality: for any two states p and p 2 \

on stf, we have

Pi((p2* fl)*(P2*a)) < P2*Pi(a
* a) Vaej/, I

i

where p f
* a: = (p id)fi(a).

*
|

I

3.2 Let 7i be a unitary representation ofH acting on the space Jti? .n: = *(ft) is then an

isometric comodule map from tf to Jf C(H). Consider the following map from

J? L2 (G) to ^ L2 (G) C(G): J

where 91
G

is the right-regular comodule of G. It is easy to see that this is an isometric

comodule map acting on ^f L2 (G).

Let p be the homomorphism from G to H (cf. 2.2). Let ^ = {ue^f L2 (G):

(7 L, )u-(id p)nl}u for all continuous linear functional p on C(H)}. Then

/9r keeps 2tf invariant; the restriction of /SRG
to 2f is therefore an isometric

comodule, so that XF~ l

((/ 9^)1^) is a unitary representation of G acting on #*. We
call this the representation induced by n, and denote it by ind ,;!

or simply by indTt

when there is no ambiguity about G and H.

Let 7i
t and 7t2 be two unitary representations of H. Then clearly we have i

(i) ind A
x
and ind n2 are equivalent whenever ft^ and A2 are equivalent, and

(ii) md(n 1
n2 ) and ind n

{ ind n2 are equivalent. ;?

Before going to the Frobenius reciprocity theorem, let us briefly describe what we f
mean by restriction of a representation to a subgroup. Let T!

G be a unitary representa-
tion of G acting on a Hilbert space tf . We call (uip)7t

G the restriction of TT
G

to

H and denote it by 7i
G|fr

. To see that it is indeed a unitary representation, observe that
x

F((idp)7i
G

)
= (/p) v

F(7t
G

) whicft is clearly an isometric comodule. Therefore by

2.3, TI
G|H

is a unitary representation of H acting on 3tfQ . Denote *(n
G

) by TI
G and

'
f
)by7i

G
'
H

.

3.3 Theorem. Let nG and nH be irreducible unitary representations ofG and H respec-

tively. Then the multiplicity of H
G

in indG 7t
H

is the same as that of nH in nGlH[
.

Proof. Let /(7r
G|H

,7i
H

) (respectively ,/(7t
G

, ind7t
H
)) denote the space of intertwiners

between TT
G|* and nH (respectively T!

G and ind i!
H

).
Assume that 7t

G and rt
H

act on Jf
and Jtfo respectively. Jf C(G) can be regarded as a subspace of Jf L2(G) and
hence TT

G
as a map from tf into jf L2 (G). Since TE

G = V(fi
G

) is unitary, we have
for
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Thus 7r
G:Jf -Jf L2 (G) is an isometry. Let S:Jf -Jf be an element of

/(A
C|H

,
TI
H

). (S /)TT
G

is then a bounded map from Jf into J^ L2 (G). Denote it by

f(S). It is not too difficult to see that f(S) actually maps Jf into Jf , and intertwines

TT
G and ind nH . /:S(->/(S) is thus a linear map from </(TT

G|H
,
nH ) to /(7i

G
,
ind A").

We shall now show that / is invertible by exhibiting the inverse of / Take a

T: Jf -> jf that intertwines TT
G and ind TT

H
. For any we^f , T": = w| /) T is a map

from jf to L2(G) intertwining TI
G and the right regular representation SR

G
of G, i.e.

<R
G Tu = (T

u
<S)id)n

G
. Now, TT

G
is finite-dimensional, so that 7t

G
(Jf )c jf

fl/0 A(G).

Hence 9*
G Tu

(Jf )
c L2 (G) fl^(G). By 2.5, rw

(jf )
c X(G). Since this is true for all

ueJf , T(jf ) ^oflZff^(^)'- Therefore (7 eG ) T is a bounded operator from 3C

to ^ . Denote it by 0(T).

For a comodule TI and a linear functional p, denote (id p)n by 7i
p

. Let p be a linear

functional on C(/f). Then n*g( T) = rf(I eG ) T = (/ fiG)(7r^ id) T=(l BG )

(/ L
p .p ) T = (/pjp)T. On the other hand, since T intertwines nG and ind7T

H
,
we

have g(T)(7t
GlH

)p
= ^(T)(/ P)TT

G|H = ^(T)(/ p)(I P)TT
G =

(/ eG ) TnG
p
=

(/ eG )

U9l^ |,)T
= (/pop)7: Thus n*g(T) = g(T)(n

GlH
)p

for all continuous linear

functional p on C(ff),' which implies 0(T)e/(#
G|H

,7i
H

).
The map T\-^g(T) is the

inverse of/. Therefore /(TC
G|H ' nH ) ^ J(ft

G
,
ind TT

H
), which proves the theorem. H

COROLLARY 1.

For any unitary representation nG of G and nH of H, the spaces J(fi
G{H

,n
H

) and

,
ind nH ) are isomorphic.

COROLLARY!

Let H be a subgroup of G and K be a subgroup of H. Suppose TC is a unitary representa-

tion of K. Then ind^tf and ind^indf A) are equivalent.

3.4 Action ofSU
q (2)

on the sphere S^ has been decomposed by Podles (see [5] ). Here

we give an alternative way of doing it using the Frobenius reciprocity theorem.

Let us start with a few observations. Let u be the function z\ >z, zeS
1

, where S l
is

the unit circle in the complex plane. Then u is unitary, and generates the C*-algebra

C(S
1

) of continuous functions on S 1
. Let a and /? be the two elements that generate the

algebra C(SUq (2))
and obey the following relations:

The map p:ai->u, /?i >0 extends to a C*-homomorphism from C(SUq (2))
onto

It is in fact a quantum group homomorphism. By 2.2, S
1

is a subgroup of SU
q (2).

For any ne{0, 1/2, 1, 3/2, . .
.},

if we restrict the right-regular comodule 91 of SU
q (2)

to the subspace tf of L2 (SUq (2)) spanned by

{a*'^""':,-
=

0,l,...,2n}, (3.1)

then we get an irreducible isometric comodule. Denote it by u(n\ It is a well-known

fact ([6], [7]) that these constitute all the irreducible comodules of SU
q (2).

Ifwe take
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the basis of3 n to be (3.1) with proper normalization, the matrix entries of u (n} turn out

to be

2n-)A /-\ /

(__ nr r(2i-r

where

(fc) _,:= 1 + 4-2 + ,-*.+ . .. +

Since w(;i)

|

sl =
(J p)u

(

"\ matrix entries of (n)
|

s '

are given by

Therefore if n is an integer then the trivial representation occurs in u(n)
\

sl with

multiplicity 1, and does not occur otherwise.

Consider now the action of SU
q (2)

on S2

q0
. Recall ([5]) that C(S,? )

= {aeC(SUq (2)):

(pid)n(a) = Ia} and the action is the restriction of ju to C(S| ). From the above

description, C(S^ ) can easily be shown to be equal to {aeC(5^ ): Lp
.p (a)

= p(l)a for

all continuous linear functionals p on C(S
1

)}. Therefore when we take the closure of

C(S^ ) with respect to the invariant inner product that it carries and extend the action

there as an isometry, what we get is the restriction of the right-regular comodule SR of

SU
q(2)

to the subspace tff = {ue L2 (SUq (2)):
L
p

.

p (u)
= p(I)u for all continuous linear

functionals p on CCS
1

)}, which is nothing but the representation n of SU
q (2)

induced

by the trivial representation of S l on C. Hence the multiplicity of u(n) in n is same as

that of the trivial representation of S 1
in u(n)

\

si which is, from (3.2), 1 if n is an integer

and if n is not. Thus the action splits into a direct sum of all the integer-spin

representations.
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Abstract Let M(z) = z
n
H ,N(z) = z"-\ be analytic in the unit disc A and let A(z) =

N(z)/zN'(z). The classical result of Sakaguchi-Libera shows that Re(M'(z)/JV'(z)) > implies

Re(M(z)/JV(z))>0 in A whenever Re(A(z))>0 in A. This can be expressed in terms of

differential subordination as follows: for any p analytic in A, with p(0) = 1,

l.+ z 1+z
p(z) + J.(z)zp'(z)X implies p(z) -< , for Re/l(z) > 0, zeA.

1 z 1 z

In this paper we determine different type of general conditions on A(z), h(z) and $(z) for

which one has

p(z) + l(z)zp'(zK/i(z) implies p(z)<^(z)<h(z\ zeA.

Then we apply the above implication to obtain new theorems for some classes of normalized

analytic functions. In particular we give a sufficient condition for an analytic function to be

starlike in A.

Keywords. ^Differential subordination; univalent; starlike and convex functions.

1. Introduction

Let / and g be analytic in the unit disc A. The function / is subordinate to 0, written

f<g,or f(z)< Q(Z\ if g is univalent, /(O) = 0(0) and /(A) c g(A). Defined=
{/: /(O)=

/'(O)
- 1 = 0}, j/k

=
{/: /(z)

= z +*ak+ iz
k+l + }, and s/' = {/: /(O) = 1}. Let A(z) be

a function defined on A with ReA(z) >rj > 0, zeA and let pe sf'. Then a recent paper

[8, Theorem 1] establishes the following:

Re[p(z) + A(z)zp'(z)] > p implies Rep(z) > , for zeA. (1)

Let /i and A satisfy |
Im /z(z) |

< Re>l(z), zeA and let ped'. Then a result of Miller and

Mocanu [5, Theorem 8] shows that

Re[>(z)p(z)+ ;i(z)zp'(*)] > implies Rep(z) > 0, for zeA. (2)

(2) is equivalent to (1) if we take /*(z)
= 1 in (2) and /?

=
r\
= in (1).

169
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LetM and N be analytic in A, with M'(0)/AP(0) = 1 and let /? be real. IfN maps A onto a

multisheeted starlike domain with respect to the origin, then from [4, Theorem 10] we get

Re < 8 (or > B resp.) implies Re 7 < p (or > /? resp.), for zeA.
*

N (z) N(z)

(3)

A well-known condition for a function pe,o/ subordinate to q is that [6]

under some conditions on q(z). Suppose we let p(z)
=

z/'(z)//(z) and q(z)
= 2(l+z)/(2z\

then we get

I

-
2

r ^ . <T> forzeA.

Similarly it follows from a result of Mocanu et al [7] that for
,

Re[p(z) + zp'(z)] > implies | argp(z) |

< < n/3, for zeA,

where lies between 0.911621904 and 0.911621907. This improves the relation (2)

whenever jj,(z)
=

A(z)
= 1 for zeA.

However the example M(z) = z/'(z), N(z) = /(z) and = 3/2 [or M(z) = zf\z\ N(z) = z

and ]S
=

resp.] in (3) suggests that there may exist some conditions onM and N so that

forzeA (4)

for some h
t (/
=

1, 2) to be specified.

Thus it is interesting to ask whether there exist such conditions for our implication. V

By writing (4) in terms of differential subordination, in this article we determine some /
new sufficient conditions on A(z), /?

. and h
t(z\ (i= 1,2) for Re[p(z) + l(z)zp'(z)] > Pi to

imply p(z) is subordinate to h&z). Some interesting applications of this are given. In

particular they improve the previous works of different authors [1, 8, 9, 12].

All of the inequalities in this article involving functions of z, such as (2), hold

uniformly in the unit disc A. So the condition Tor zeA' will be omitted in. the

remaining part of the paper.

2. Preliminaries

Let /e,c/ and S* = {/es/: /(A) is starlike}. Then for y > and ft < 1, we say /e(y, j?)

if, and only if, there exists geS* such that

where all powers are chosen as principal ones.
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Denote by S^y,/?), the subclass consisting of those functions in B(y,/?) for which

geS* can be taken as the identity map on A. As usual we let J3
1 (l,j8)

=
/?(jS) and

BjCO, /?)
= S*(0). From (1), for < /? < 1, y > and for /efi^y,A we easily have

In Lemma 1 of section 3 below, we obtain a more general result which improves the

above inequality. Lemma 1 has been used in [9] to obtain new sufficient conditions

for starlikeness.

We use the following two lemmas in our proofs.

Lemma A. [5] Let F be analytic in A and let G be analytic and univalent on A, with

F(0) = G(0). IfF is not subordinate to G, then there exist points z eA and Co e ^A, and

m^lfor which F(\z\ < |z |)
c G( z < z |), F(z )

= G(C ), and z F(z )
= mC G'(Co).

Lemma B. [5, 6] Let 0. c: C and /ef
^f fc^? analytic and univalent on A except for those

CedA/0r w/zzc/i Ltz^^(z)
= oo. Suppose that

\l/:
C 2 x A-~C satisfies the condition

'A(4(C),mC<?'(0;z)^ (6)

w/zen <gr(z) is ,/imte, m^k^l and
\ C |

= 1. // p an^? g are analytic in A, p(z) = p(0) -f

p fc
z
k + -, p(0) = ^f(O), andfurther if

then p(z) < q(z) in A.

Suppose that pe^
f

with p(z)
= 1 +pk z*H , and ^(z)

= (l+z)/(l z). Then the

condition (6) reduces to

\l/(ix,yiz)tn (7)

when x is real and
3; ^ -

k(\ + x2
)/2. Except for Theorems 5 and 6, we, in our results,

consider the situations where k = 1.

3. Main results

We now state and prove our main results.

Lemma 1. Let pej/' , aeC with Rea ^ (a & 0), /? < 1 be such that

(8)

l], (9)

where

d <5(Rea) is an increasing function of Rea with (1 +Rea)/(l + 2Rea) ^ <5 < 1.

estimate cannot be improved in general.
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Proof. We use the well-known result of Hallenbeck an Ruscheweyh [2], namely,

1 f
2

p(z) + azp'(z)X h(z) implies p(z)<- z~ 1/a
h(t)t

lf*~ 1
dt (11)

a Jo

"
and h a convex(univalent) function with h(0) .

1. If we let

2p l |

2(1 -]8)

1 z

then h is convex and univalent on A, h(Q) = 1 and Re h(z) > p. For this choice of h, the

condition that (8) implies
- in fact is equivalent to -

Therefore from a straightforward calculation, Inequality (8) implies

p(fK2-l +2(1-*
where

(j> defined by

(12)

\ = 1 4 V =
n = !na + l Jo l~

;, zeA

is convex in A.

Let

so that

Then, for |z|
= r and < t < 1, we have

.Re a

This implies that

and so

W-
l-r2

t
2

rt
Rea

l-r2

+ rt*
t ,*Rea'

(Note that if Rea < 0, rt
Rca need not be less than one and the above will not work.)

Therefore, we have

1

Jol+rt
Re" for|z| = r,
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Observe that the series K(r) is absolutely convergent for 0<r<l. Suitably

rearranging the pairs of terms in K(r) it can be shown that 1/2 < K(r) < 1.

In particular for r -> 1
~
the above inequality reduces to

Re 0(z) ^ K(r) >K(1) = <5(Re a),

where 6 is as in (10).

Next we show that 5 satisfies the inequality (1 + Rea)/(l + 2Rea)^ 5 < 1. Since

2/J 1 4-2(1 f$)<t>(z) is the best dominant for (8), we obtain taking A(z)
= a, with

Rea >
YI
in (1),

}> 2ft- 1+2(1 -

21 -,
-f- rj

Thus making rj
-Rea +

,
we get

Kn\-MK 1 + Rea

^2 + Rea'

This from (12) proves (9).

To complete the proof we need only to show that the bound in (9) cannot be

improved in general. For this we let

=
2j8
- 1 + 2(1

-
/

Then q is the best dominant for (8), because it satisfies the differential equation

q(z) + xzq'(z)
-

2/J
- 1 +^^ h(z).

Therefore the function q(z) shows that the bound in (9) cannot be improved. Q D

Remark. In fact the second assertion, namely,

1 + Rea
~ '

can be seen directly. If Re a > 1, then

Rea 1

1+Rea 2(l + 2Rea)

1 + Rea
:

2 + Rea'
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Similarly if < Re a < 1, then

Re a (Re a)
2

1

2 4(1 +Rea) 4(1 + Rea)(l + 2Rea)

1 Re a l+Rea

2(2 -f

Using Lemma 1 in particular for Re a -* 0, a ^ 0, /?
= 0, one has

Re{p(z) + azp'(z)} > implies Rep(z) > 0.

In the next result we improve this relation by showing that the same conclusion

may be obtained under a weaker hypothesis on p.

Theorem 1. Let a be a purely imaginary number, i.e., a = za2 , a2 real. Let Q be the unique-

function that maps A onto the complement of the ray {it: t^2~
1

(a2

~ 1 a2)} whenever

a2 >0({ft: t^2~
1

(a2

" 1 a
2)} whenever a 2 <0). Ifpejtf' satisfies

then Rep(z) > 0.

Proof. If we let i/^(r, s)
= r + as, then

subordination becomes

is analytic in A and the above

The conclusion of the theorem will follow from Lemma B and (7) if we can show
that \l/(ix, jO2(A) when y ^ -

(1 +x
2
)/2 and x-real. Suppose that a = ia2 ,

with a2 > 0,

then i/^'x, y)
=

i(x + <x2y) and

x -h x - a2 (l + x2
)/2

for all x-real.

This shows that for a2 >0,
a2 < 0. Hence the theorem.

. A similar conclusion holds for the case

D

However the special case of the following lemma improves the conclusion of Lemma 1

further at least for aeC such that
|
Im a

|
^ ^(Re a -

Y\) for a suitable fixed r\
> 0.

Lemma 2. Let X be afunction defined on A satisfying

(13)



Differential subordination and Bazilevic functions 175

such that

and let

zeA

/ffo)
-(

+ ' +

2V ) L

9 -2
>/9+lSiy

2

10

6e such that 2p
f

(rj) + 77 ^ 0. Ifpes/' satisfies

(14)

(15)

(16)

:|argp(z)|<7r/3.

Proo/. Note that /?'()?) < if, and only if, r\ ^ ,/3/2. Now using (1), (16) implies

Rep(z)>:

Since 2jS
/

(^) + rj ^ 0, this Inequality further implies Rep(z) > in A.

If we let fll = {coeCiReco > j8'(^)} and q(z)
=

[(1 + z)/(l
-

z)]
2/3

s then ^(A) equals

:
| arg co

|

< Tr/3}. Then for \l/(r, s; z)
= r + >l(z)s, (16) can be rewritten as

So to prove the lemma we need only to show that p -< q.

If p is not subordinate to q, then by Lemma A there exist points z eA and Co

and m ^ 1 such that

p( |

z
|

<
|

z
1 )
c 4(A), p(z )

=
(C ) and z p'(zQ)

= mCo9
;

(C )-

We first discuss the case p(z ) 7^ which corresponds to a point on one of the rays

on the sector #(A). Since p(z ) ^ 0, ( ^ 1. Next by letting X and 7 be the real and

imaginary parts of A(z ), respectively, from (13) and (14), we find that

X- .(17)

Further if we set ix = (1 + Co)/(l Co) and use the above observations, we obtain

For x ^0,

ReiA(p(z ),zoP'(z );z )
=

|2/3 ^r-upo^ it;(<o
3|x|
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2, if x >

.
,, ifx<0 .

Therefore, for x ^ 0, since A(z )
satisfies (17) and m ^ 1, we obtain

where

withtHx|

Since

is the maximum for f(t\ we have

This implies that ^(P^oX ^oP'fcofc^o) ljes outside fl>, contradicting (16). Hence we
must have p^q when p(z ) ^ 0.

Now consider the case p(z )
= which corresponds to the corner of the sector q(A).

Observe that the sector angle of ^(A) is 2n/3 and so p(\z\ = |z |) cannot pass through
such a corner without itself having a corner and hence the case p(z )

= cannot occur
for the present form of our lemma. This completes the proof. D

Lemmas 1 and 2 yield improvements on most of the results of [8]. As an equivalent
form of Lemma 2 we state

Theorem 2. Let /Ffo) be as defined by (15) so that 2p'(rj) + rj^Q. Let M(z) = z" -f - - - and
= z"+:.be analytic in A and such thatfor some aeC, N satisfies

Im
odV(z)

zN'(z)

Then

arg

Proo/. Consider the function p{z) = M(z)/N(z) and let A(z) = aJV(Z)/zAT'(z). Then by
hypothesis, pe^' and all the conditions of Lemma 2 are satisfied. Now it is

elementary to show that

and hence Theorem 2 follows from Lemma 2.
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COROLLARY 1.

jjj ;.

fa-L Ifpej/' and if k is afunction defined on A such that
^

then

Re{p(z) 4- A(z)zp'(z)} > implies |argp(z)| < n/3.

Proof. If we let ^ = ^/3/2 then in this case fi'(ri)
= Q in (15) and the corollary now

follows from Lemma 2. D

COROLLARY 2.

Let feB^y, 0). Then we have

(i) Re/^Y> 2$(l/y) -1, /
V z I

(ii) <7t/3,

For thefunction F defined by Fy
(z)
= - f~ l

f y
(t) dt, we have

z Jo

(iii) ReF(z)( )
> 2<5(l/(y 4- c))

-
1, for y and c real with 0<y + c.

\ z J

(iv) argF'(z)( j
<7r/3, /or y and c 5wch that < 7 -f c ^ 2/^/3.

Proo/. Proofs of the above inequalities follow from Lemma 1 and Lemma 2 using the

techniques of [8].
^

Theorem 3. Let r\>Qbe such that

where /J'fa) is as defined in (15). Let pes/' andv.^r\. Suppose

r , . ..

Re[p(Z) + aZp'(z)]

Then we have

Re[p(z) + fpp'(z)] > /P(iX |argp(z)| < 7i/3

IW Rep(z)>2(l-

Proof. Observe that

'(z)
= 1 -- ]p(z) + -[

a a
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Now Lemmas 1 and (19) yield

(20)

Taking /(z)
=

ff
in Lemma 2 and a =

77
in Lemma 1, respectively, the theorem

follows.

D

We note that, using Lemma 1 and Theorem 2, we can construct several new

examples. The result even for the special case a ^ y/3/2 where (3'(^/3/2)
= could not

be found in the literature.

'

and aeC with
| Ima|< ^(Rea -

v/3/2), we have

Re{/'(z) + oz/"(z)}>0

implies

| arg /'(z) |

< 7T/3 and Re f'(z) > 2<5(Re a)
- 1.

We can use Corollary 1 to improve the result obtained by Yoshikawa and Yoshikai

in [12, Theorem 4] concerning the transformation

)
= /(z)exp-z-' , for (21)

of the well-known y-spiral-like functions. His result proves that for
| y \

< n/2,

From Corollary 1, with A(z)
=

1/c, we see that we can improve the above implication
to

zf'to l-

implies

arg
zF'(z)

F(z)

< 7T/3 whenever <n/3;

or, equivalently, if

1

arg
-- < Tt/3, then

3/2

c 2
, ,

,v z/'(z) e*-e-^z . rzF(z)l
e v ----< implies eiy --

f(z) l+z *
[_ F(z) J i-t-z

We next prove the following lemma and then apply this to derive Theorem 4.

Lemma 3. Let a* 0.407 - - be t/ze root of the equation

a* = tan[(27i-37ra*)/6] (22)
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and 6 = a*7i/2. Suppose that /? is the smallest positive root of the cubic equation

Further let F(z) be a complex function that satisfies

|argf(z)|<a*7r/2. (23)

J/pec/' satisfies

Hh (1 -flzp'(z)
-

(]S + (1
-

j8)p(z))]} >0 (24)

Rep(z) > m A.

Proof. First, we write

and F(z) = X + iY = ReF(z) + ilm F(z). Let us now apply Lemma B. Then for all

x, y reals and zeA, we have

From this it is easily verified that

Rei^(ix, 37; z) < - (Kx
2 + Sx + T)

for all x real, j> < (1 +x2
)/2 and all zeA, where

Therefore Re^(ix, 3;; z)< if, as usual, Rx
2 + Sx + T ^ for all real x. The second

inequality holds if and only if S2 ^4RT. By performing further algebraic

simplifications, it can be easily seen that this is indeed equivalent to

7
1
< (tan (a*7u/2))AT, i.e., | argF(z) |

< a*n/2,

where the required identity to claim this is .
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Since this automatically follows from the hypothesis, the desired conclusion now

follows from Lemma B with Q={coeC: Reo)>0} and (7). Therefore the proof is

complete. D
\.

Theorem 4. Letfestf and /? be as stated in Lemma 3. Suppose that for a ^ ^73/2,

-. (26)

This implies feS*(0).

Proof. Suppose that / satisfies (26). Then taking p(z)
= f(z) and rj

=
*Jl/2 in

Theorem 3, we obtain

Re {/'(z) + (j3/2)zf'(z) }
> (27)

and
| arg /'(z) |

< n/3. Thus from [6, Theorem 5] we get

arg

where a* is as in (22).

Now we need only to show that (27) implies /eS*(/?). For this we let

Then by performing differentiation and some algebraic simplifications, (27) deduces to

where

The theorem now follows from Lemma 3.

Taking a= 1 in the above theorem we obtain the following.

COROLLARY 3.

Let fi be as in Lemma 3. Ifges/ satisfies

-
2-(2-73)(21n2-l)

then the Alexander Operator I(g) defined by

o

is in S*(j8), where j8 is as in Lemma 3.
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Observe that a little computation shows that /? is slightly bigger than the value

btained in [9, Corollary 3]. Further the above corollary favours the existence of

family of analytic functions, containing non-univalent functions, mapping onto

'*(/?)
c 5* under the Alexander Operator.

"heorem 5. Let a be a real number with a < 2/kd. Let M(z) = z
n + a

n + kz
n + k + and

J(z)
= z

n + be analytic in A (n ^ 1, k ^ 1) and let N satisfy

<5, (0 < <5 < 1/n). (28)

A

2

Voo/. If we let Q = {coeC: Re co <
)8}, j5 x

= 2$ + fc<5a/2 + k(5a, A(z)
= N(z)/zN'(z) and

(z)
= (l-/? 1 )"

1

(M(z)/N(z))-jS 1 ), then p(z)= l+pkz
k + is analytic in A and the

ondition (29) implies

iA(p(z),zp'(z);z)eQ

/here i//:C
2 x A->C is ^(r,s;z)

=
jSi +(l~)8 1 )[r-faA(z)s].

Since N satisfies (28), we have Re /l(z) > & in A. If X is real and y ^ -
fc(l + x 2

)/2 then

Dr this ^ we have

ince a < 0, i.e. i^(z'x, j;;z)^Q. Hence (7) is satisfied and Lemma B leads to Rep(z) > 0.

liis shows the first part of (30). Since l-a>0, this proves (1 -a)Re(M(z)/N(z)) >
I a)/?!. Moreover, from this and (29) we easily have the second inequality of (30).

lence the theorem. D

:OROLLARY 4.

^t|A|<l andfes/k .(i)If

Re{(l 4- Az)[(l .+ aAz)/'(z) + a(l + Azjz/^z)] } < j? (31)

'



182 S Ponnusamy

thenfor fax + 2(1 + |1|)<0,

p ->-ri\Ree /(2)

Proo/. For the proof of (i) we choose M(z) = z/'(z) and N(z) = z/(l + /z). Then

and

M'(z)
+ a =

Since /GJ^ satisfies (31), we have

n M(z) 2/3-h

2 4-

whenever (5 < 1
- A .

But ^ can be chosen as close to 1 |A| as we please and so we can allow 6 - 1
|

X
|

from

below. Thus making (5->l 11| we establish our claim. The proof for the case (ii)

follows on similar lines taking M(z) = z/'(z) and N(z) = ze
A
~. D

Similar arguments used in Theorem 5 would help us to prove the following more

general result.

Theorem 6. Let a be a complex number with Rea< 2n/k6. Let M(z) = z" +
an+kz

n+k
H and N(z) = z

n
-\ be analytic in A (n ^ 1, k ^ 1) and let N satisfy

Re(aN(z)/zJV'(z)) < (5, (Rea/n < 5 < -
2/fc).

,

/5 mplies

COROLLARY 5.

Let aeC be such that Rea < 2m/fe, w/iere m is a positive integer and let (i> 1.

satis/};

Proof. The corollary follows from Theorem 6 taking M(z) = (/(z))
m and N(z) = z

m
.

D

In the following theorem we generalize the concept of a-close-to-convexity [1]

when a is a complex number.
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rheorem 7. Let M(z) = z" 4- and N(z) = z" 4- be analytic in A and suppose that

V satisfies

Re(JV(z)/zJV'(z))x5, (Q<6<l/n). (33)

Further let k be a complex number satisfying

\lmk\^^/DS, 0<D<:(<S"f 2Rek). (34)

Then

mplies

n M(z),
(35)

-j^i) and define

{36)

hen pe j/'. From (36) and (35), we obtain, as before, Re ^(p(z), zp'(z); z) > 0, where

iA(r, 5; z)
= -

/J + kft + (1
-

jSJ [kr +

If we can show that Re \l/(ix, y, z) ^ when y^ (l+x
2
)/2 and x any real, the

equired conclusion is immediate from Lemma B and (7). But for this
\l/
we obtain

iy (34), we deduce that Rei/^ix, 3;; z) < and so the proof is complete. D

Examples. Let M(z) = z" + and N(z) = z
n
H be analytic in A. Then for k eC with

Im k
|
< J&(S + 2ft), and Re(AT(z)/zAT

/

(z)) > <5 > 0, Theorem 7 shows

As a special case of Theorem 7, let /eja/ and keC with
|

Imfe
|
< ^/D < v/l+2Rek.

n this case, Theorem 7 leads to

Re(k/'(z) + z/"(z)) > implies Re f'(z) >
l+2Refc-D'
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In particular, this yields

Re(fc/'(z) 4- zf"(z)) > ft implies Re f'(z) > (ft < Re fc)

provided |

Im fc
|
< jl+2fi. This simple fact for /}

= has been used in [9, Theorem 3]

to obtain an affirmative answer to a problem of Mocanu (for details see [9]).

Problems

Suppose that pe^', ft<\,p = /? + (! ~^)[2^(Rea)-vl ] and H be defined by

r i

-p)
(l-a)^ ;

Now by setting | z|
=

1, i.e., z = e
ie and H(|z| = 1)

= U + iV, we easily obtain

This, upon simplification for the case a real, yields the parabola

T/2 _-2(l-p)r .a(l-p)"| -4(l-__ +__,_

and so for real a, the function H maps the unit disc \z\<\ into the convex domain, say

>, bounded by the above parabola. Observe that the domain D contains {coeC:

Rcaj!+ ((a + 2)5(a) -( + !))} for ]8<1.
Also from the sharp subordination relation (11) and a little manipulation we have

the following implication

'

and p(z) + azp'(z) X H(z) implies p(z) -<

provided Re a > 0. From this, it is interesting to note that the same bound in Lemma 1

may be obtained under weaker hypothesis, though the images of A under p, respectively
under the stated conditions on h and H, are different. Here h is as in the proof of

Lemma 1 and H as above.

Problem L Find a (convenient) function G(z) such that G(A) c Jff(A) for which

/ej/and/'(z) + az/"(z)xG(z) implies /eS*? D

For a < -
2, let

: Re(/'(z) + az/"(z)) < /?}, (/? > 1).
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For fetf, a < - 2 and Re
]

(1
-

a) + a/'(z) I < /?, by Theorem 5, we have
(

z \

z 2 + a
"' v '

2 + a
'

However, for aeC, Re a < 2, Theorem 6 yields

fejtf and Re (/'(z) + az/'(z)) < jB implies Re /'(z) > .

2 + Rea

In particular for a < 2 and /? ^ a/2,

/eP(a, /?) implies Re/'(z) >

and further it is easy to show that

Although a function fejtf such that Re/'(z) > in A is univalent, Krzyz [3] showed

that such a function need not be starlike in A. As pointed out in [10] there are

functions, say / in jtf satisfying the condition \f'(z) 1
1

< 1 in A, but they are not in

general starlike in A. However the natural problem is the following:

Problem 2. Find certain subsets Q of the left half plane, such that /eS*, whenever

/'(z) 4- az/"(z) belongs to Q for all zeA and a< 2. In particular, under what

conditions on /? and a, z(F*G)'(z) is starlike in A whenever F and G belong to P(a, /?).

Here * between two functions denotes Hadamard convolution. D

For (5^0, define a ^-neighborhood of /(z) = z + a2z
2
4- ej/ by

k\ak -bk \<S
/c
= 2

^-neighborhoods were introduced by Ruscheweyh [11], who used this to generalize

the result that N
x (z)

c 5*. Now forO 0, let

U(a) = {fes/: R(f'(z) + xzf'W > 0, zeA}.

It is known [9] that, R (a) c 5* at least when a ^ 0.4269 . Using Lemma 1, it is seen

that if /ejR(l) then Re/
/

(z)>21n2- 1 and hence proceeding as in [11], it is not

difficult to show that A^ina-iW 1 )) c R ()-

Interestingly Ruscheweyh proved that if/ is in S*(/3) then there is no value of 5 >
such that N6(S*(P)) c S* for any < j8 < 1.

In spite of this, it seems reasonable to ask the following:

Problem 3. Do there exist some conditions on a and <5 such that Nd(R(a)) c 5*? If so,

what is the best possible d for a suitable fixed a? D
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Abstract. In this paper we first solve a convolution integral equation involving product of

the general class of polynomials and the H-function of several variables. Due to general

nature of the general class of polynomials and the H-function of several variables which

occur as kernels in our main convolution integral equation, we can obtain from it solutions

of a large number of convolution integral equations involving products of several useful

polynomials and special functions as its special cases. We record here only one such special

case which involves the product of general class of polynomials and Appell's function

F3 . We also give exact references of two results recently obtained by Srivastava et al [10]

and Rashmi Jain [3] which follow as special cases of our main result.

Keywords. The convolution integral equation; multivariable H-function; general class of

polynomials; Laplace transform.

1. Introduction

On account of the usefulness of convolution integral equations, a large number of

authors, notably Srivastava [5], Kalla [4], Buschman et al [1], Srivastava and

Buschman [8], Srivastava et al [10] and Rashmi Jain [3], have done significant

work on this topic. In the present paper we develop generalizations of results of the

last two papers referred to above. Also, Srivastava and Buschman [7, pp. 34-42 and

4.3] have discussed extensively such family of convolution integral equations as those

considered here and in the works cited above.

We start by giving the following definitions and results which will be required later

on.

(i) A general class of polynomials [6, p. 1, eq. (1)]

SM TY! = V - N 'k Y fc N 019 n 1^W L-^J /j .
*

>
n u, i, z, . . .

(.i'*-)

whereM is an arbitrary positive integer and the coefficient ANtk (N, k ^ 0) are arbitrary

constants real or complex. On suitably specializing the coefficient ANtky S^ [x] yields

a number of known polynomials as its special cases. These include, among others,

Laguerre polynomials, Hermite polynomials and several others [12, pp. 158-161].

(ii) A special case of the ./f-function of r variables [11, p. 271, eq. (4.1)]

187
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rHh
2,

, i), ..,;
- - - ; (o, D, (

Or equivalently [10, p. 64, eq. (1.3)]

H

(1.2)

(1.3)

lt,,...,fcr=0

where

nm-cf+7'%
i=l,...,r) (1.4)

= = = 1=

For the convergence, existence conditions and other details of the multivariable

H-function refer the book [9, pp. 251-253, eqs. (C.2)-(C8)].

(iii) The following property of the Laplace transform [2, p. 131]

J-' u vv> "j " j \"j \^*W

holds provided that /(0
(0)
= 0, i = 0, 1

, 2, . . .
,
n - 1, n being a positive integer, where

L{/(x);s}
=

I

V s
*/Mdx=/(5). (1-7)

Jo

(iv) The well-known convolution theorem for Laplace transform

L
j [V(x

-
tt)0() du; s

j
=

L{/(x); s}L{g(x); s} (1.8)

Uo J

holds provided that the various Laplace transforms occurring in (1.8) exist.

2. Main result

The convolution integral equation

_zr(x~u)_

(2.1)
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has the solution given by

189

= r^x-
Jo

where Re(J
- p - //) > 0, Re(p) >

g
(i)

(0)
=

(i
= 0, 1, . . .

, / 1), / being a positive integer and Ej is given by the recurrence

relation

or by

and ^ is least J? for which AB ^

where

M + 2 + 1

oo... o

o ... o

=i ;=! 1=1

= r(l
- -

yf fe
()

and

AT

'N

(2.3)

(2.4)

(2.5)

(2.6)

-i

(2.7)

-1

(2.8)

(2.9)

Proof. To solve the convolution integral equation (2.1) we first take the Laplace

transform of its both sides. We easily obtain by the definition of Laplace transform

and its convolution property stated in (1.8), the following result

zrx

dx f(s)
=

g(s). (2.10)
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Now expressing the
Sjjf [( zr+ t )x] and H involved in (2.10) in series using (1.1)

and (1.3), changing the order of series and integration and evaluating the x-integral,

we obtain

/(S) = (2.11)

where A(fc l9 . . .
,
kr+ x ) is defined by (2.6). Now making use of the known formula [10,

p. 67, eq. (2.3)], we easily obtain from (2.11)

(2.12)

where 1B is defined by (2.5).

Again, (2.12) is equivalent to

B=O
(2.13)

If /i denotes the least B for which kB ^ 0, the series given by (2.13) can be reciprocated.

Writing

(2 - 14)

B=O J j=o

eq. (2.13) takes the following form:

f(s)
= s>-

l

+*ZEjS-Wg(sn. (2.15)
J=o

(2.15) can be written as

L{f(X);s} = LJ Ej*"'^
1

^\L{^(X)i3} (2.16)
u-o ro + /-Ai-p) J

[on using (1.6)].

Now using the convolution theerem in the RHS of (2.16) we get

(2.17)
oj=o

Finally, on taking the inverse of the Laplace transform of both sides of (2.17) we
arrive at the desired result (2.2).

3. Special cases

If we put r = 2 in (2.1) and reduce the H-function of two variables thus obtained to

Appell's function F3 [9, p. 89, eq. (6.4.6)] we find after a little simplification that the

convolution equation given by
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(3.1)

r(l)\p/r(2h

has the solution

(3.2)

where Re(/
- p - /*) > 0, Re(p)>0, Z^X-M)^!, |z 2(x-w)|<l,

(0
(0)
=

(i
= 0, 1,...,/ 1), / being a positive integer and E

7
- are given by recurrence relation

(2.9) or (2.4) and
\JL

is least B for which AB ^

where in (3.3)

(3.3)

and

o,

N'

.M.

'N"

M

(3.5)

will reduce to A 0t0 which canIn the main result if we take N = (the polynomial
be taken to be unity without loss of generality), we arrive at a result given by Srivastava

etal [10, p. 64, eq. (1.1)].

Again, if we put r = 1
, p = q = 0, z2

= 1 in the main result, and further reduce

the Fox's //-function thus obtained to exp( zj [9, p. 18, eq. (2.6.2)] and let z
1 -*0,

the Fox's H-function reduces to unity and we arrive at a result which in essence is

the same as that given by Rashmi Jain [3, pp. 102-103, eqs (3.5), (3.6)].
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1. Introduction

It is well known that if a trigonometric series converges in L1
to a function /eL

1

,

then it is the Fourier series of the function /. Riesz [1, Vol. II, Ch. VIII 22] gave a

counter example showing that in a metric space L we cannot expect the converse of

the abovesaid result to hold true. This motivated the various authors to study

L1

-convergence of trigonometric series. During their investigations some authors

introduced modified trigonometric sums as these sums approximate their limits better

than the classical trigonometric series in the sense that they converge in L1
-metric

to the sum of the trigonometric series whereas the classical series itself may not.

Let the partial sums of the complex trigonometric series

be denoted by

SH(C,t)= Z ckJ
\k\*n

If the trigonometric series is the Fourier series of some /eL
1

,
we shall write cn = f(n)

for all n and SH(C9 t)
= SH(f, t)

= Sn(f).

If ak = o(l) as fc-oo, and ^ =̂1 k2
\A

2
(ak/k)\< 60, then we say that the series

] =1ak <!>fc(x), where k(x) is cos fcx or sin foe, belongs to the class R. Kano [2] proved
that if ZfcLi flfc*k(x)' belongs to the class IR, then it is a Fourier series or equivalently,

it represents an integrable function. Ram and Kumari [3] introduced modified cosine

and sine sums as

and

*.(*)=
7/
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and studied their L1

-convergence. The aim of this paper is to study the //-convergence

of the complex form of the above sums.

Let

-

sin ~
t

2

^ m=l ~
2sm-

2

cos cos n + -
\t

2 V 2;

2sin-

and

4sin
2-
2

sin(n+

denote the Dirichlet's kernel, the conjugate Dirichlefs kernel, and the conjugate

Fejer's kernel respectively. Let En(0 :=: Z!Uo eik'- Then the first differentials D'
n (t)

and

D'
n(t)

of DH(t) and Dn(t) can be written as

where E'
n(t)

denotes the first differential of En(t). The complex form of th^e above

modified sums is

gn(C, t)
- Sn(C, t) -f n n

_ M . n
.

We introduce here a new class R* of sequence as follows:

Definition. A. null sequence <ca > of complex numbers belongs to the class #* if

/clogfc< oo,

k=l
< 00.

(1.1)

(1.2)

2. Lemmas. The proofofour result is based upon thefollowing lemmas, ofwhich thefirst

three are due to Sheng [4]:

Lemma L \\D
f

n(t)\\, =4/7r(nlogn) + o(n)

Lemma 2.
\\
D'

n(t) \\ t
= o(n log n).

Lemma 3. For each non-negative integer n, there holds
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||cn ;W + c_ M

/

_ n (0|| 1 =o(l), n-oo

if and only ifncn log\n =o(l), |n|->oo, where <cn > is a complex sequence.

Lemma 4. (i) There exist positive constants a and /? such that

1 aOognXII^WH^

(ii) ||
K'

n (t)\\i
= o(4

Proof. The existence of ft follows from the fact that
|| /)() II i

=
o(logrc). Further, we

have

2n\\Kn (t)\\ 1 ^ p n(r)dr
Jo

i
n
r

*
"i- rZ Zd-cosM7n+ lfc =oU=o J

for some constant M, the last step being the consequence of the relation
"
= 1 logi;

=
logrc!. Using Sterling's asymptotic formula n\ ~^/2nnn

n e~ n
,
we then

have

This completes the proof of (i). To prove (ii) we have,

\D'n(t)\
= kcoskt

and so

This implies that

\K'n (t)\dt
=

o(n).

/n

DiiBferentiating ^n (t) we get

W^Zi-W-Z
where

ln (t)
=

{cos t - cos(n + l)t} ( 4sin 2~\
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( t

3n(0
= {2sinrsin(w+ l)f}/(w 4-1)1 2 sin- 1

Obviously, \Ljn (t)\
= o(\t\'

2
) for 7

= 1,2, and (n + l)|S 3ll (t)|
= o(|f|~

3
). Using these

estimates, we get

Combining the above estimates, we infer that
||XJ,00||i

=
o(n).

Lemma 5. Let n ^ 1 and < e < n. Then there exists A &
> such thatfor alls^\t\^n

(i) \E'n(t)\^Aen/\t\,

(ii) |E'_ B(t)|<48/i/|t|,

(iii) \D'n(t)\^2Atn/\t

(iv) |^(t)|^^ n/|t|.

Proo/ We have

Since
| M(OI < AJ\t\ for some constant ^4

e , we have

Since

L n (t)
=
(-i)E:(-t),

we obtain \E'_ n(t)\^A en/\t\. The other two inequalities follow from D'(i)
=

E'(t} +
E'_ n(t) and 2i5;(t)

=
;(t)

-
'.().

3. Main theorem

We prove the following result.

Theorem. Let cneR*. Then there exists f(t) such that

lim gn(C9 1) =f(t)for allQ<\t\^ n, (3.1)
-*oo

v '

f(t)eU(T) and
\\ gn(C, t) -f(t) \\ , ='o(l) as n -* oo, (3.2)

II
Sn(f, t) -/(t) || j

=
o(l) as n -> oo ifand only iff(n) log |

n
\

=
o(l) as |

n \-> oo.

(3.3)
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Proof. We have, by using Abel's transformation,

n(C,r)
= Sn(C,)4 -[cn+1 J

n + 1

- c _ (n+ !,_

= 2

By Lemma 5, we get

I
k=l

and

fc=3

where y4i_ is a suitable constant. These imply that

*=i

exists and thus (3.1) follows.

Further, for t ^ 0, we have

f(t)-gn(C,t) = 2
;

= 2
'

Thus

=l

C-*~ C*W)

< 00,

sW

\K'(t)\dt

n +
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But, by Lemma 4,

Also

+ E \E'_ k(t)\dt.

by the hypothesis of the theorem. Lemma 1 and Lemma 2 imply that

Therefore,

A2

T +0(1)

^V-^ fclog/c

=
o(l), by the hypothesis of the theorem.

Since gn(C, t) is a polynomial, it follows that /eL^T), which proves the assertion (3.2).

We notice further that

n+1

and

-(/(n+i);w-/(- =
II fc,(C, t) -$.(/) || 1

/-,

Since ||/-?.(C,t)|| = o(l), n->oo, by (3.2), and by Lemma 3, B

/(-n)'_ n(t)|| 1
=

o(n), n->oo if and only if J(n)log|n| = o(l), |n|-*oo, the assertion

(3.3) follows.
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1. Introduction

By uJJ
and

tJJ
we denote, respectively, the Cesaro means of order a (a > 1) of the

sequences (sn ) and (rj, where (sn ) is the partial sums of the series Ex
n
and rn

= nxn . The
series Exn is then called absolutely summable (C, a) with index k, or simply summable

|C,a| fc,k>l,if

(1)
n= 1

Since t^
=

n(u^ u <

^_ l ), [3], condition (1) can be written in the form

Z n- l

\?H \

k <ao. (2)

n=l

Let A =(anv ) be a normal matrix, i.e., lower-semi matrix with non-zero diagonal

entries. By ( TJ we denote the ^-transform of the sequence (sn ), i.e.,

We say that the series xn is summable \A\ k , k ^ 1, if

i^-^r.-T.^l^oo. (3)

M=l

Given a normal matrix A = (anv ), we associate two lower-semi matrices A (dnv )

and A = (d) as follows:

201



202 C Orhan and M A Sarigdl

&nv
=
"nv-an-l.v for H= 1,2,...

If A is a normal matrix, then A' (a'nv ) will denote the inverse of A. Clearly, if A is

normal then A =
(dnv ) is normal and it has two-sided inverse A' (a'nv \ which is also

normal (see [2] ).

Note that, if A is normal then

n n 'n n

T
n
= Z flmA = Z Z ^m*. = Z **

y = w = i = r t'
=

and

&T
n^ = T

n
~ T

a^= Z (<^~^-i, tX = Z V. K-i. =
0),

y=0 y=0

which implies

*= I CAT,., (r_ 1= 0). (4)
y =

In connection with the absolute summability we have the following theorem.

Theorem A. Suppose that, for k ^ 1,

X (1/^)1^1 =0(l/n) and \&J
v-1 n = v

then ifl<xn is summable C, 1
| fc , it is also summable

\

A
| fc ,

whereMnv
= dnv d

n v+ 1 [4].

Furthermore it is shown in [4] that the conditions of Theorem A are satisfied

whenever A is (C,a), a>l. This deduces that |C, l| fc summability implies |C,a| fc ,

k ^ 1, a ^ 1, summability which is a well-known result.

We may now ask what conditions should be imposed on A = (anv )
so that the

converse implication holds in Theorem A. It is the object of this paper to answer this

question,

2. The main result

Theorem B. Let A = (anv ) be a normal matrix such that

(i) l=0(vaJ9

(iii) Z ( + 2)| tfw+2i |

= 0(i + l). (5)
v = i

If I,xn is summable \A\ k , then it is also summable |C, 1
| k ,fc ^ 1.
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Proof. By Tn and tn we denote the A-transform and (C, l)-mean of the series I,xn and

the sequence (nxj, respectively. Then it follows from (3) that

(n+l)-
1

i)=l

n v-2

Zv1

I

y=0 r=0

By considering the equality

n

Z ^nk^ = ^t; 5

/c = u

where <5
Ml)

is the Kronecker delta, we have

vd'vv + (v + l)4; +lfi;
=

i;/fl ui;
+ (t; + 1)(- &v+ i tV/avv

av+

+ltU+l -av + ltV/avv av+ltV+l ']-' l/avv

and so

n(n+l)-
1

(l/OATn _ 1
+a'10AT_ 1 (n+l)

*

which implies, by virtue of (5i), (5ii) and (5iii), that

-1

To prove the theorem, it is enough to show that

oo

Z n
"

1

l

wnilk< for z=l, 2, 3.
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Now it follows from Holder's inequality that

m+l f+l ( n ~ l

B
?2

n
""*" 1

{ l,?1

C
m m+l

= i^

(. t = 1

and

Finally,

Z "-'W-O
=l

Hence the proof of the theorem is completed.

3. Applications

Let (pn ) be a sequence of positive real numbers such that P
n
= p + P! H-----hpw ,

P_
1 =p_ 1

=0. The Riesz (weighted mean) matrix is defined by anv
= pv/Pn

for

< v ^ n and <2ny
= for v > n. From now on, we suppose that A = (anu )

is a weighted

mean matrix with Pn -+co and n - oo. Hence if no confusion is likely to arise, we say

that Ex
rt

is summable |/?,pj k ,fc > 1, if (3) holds.

With this notation we have

COROLLARY 1

Let (pn ) be a sequence of positive real numbers such that Pn
= 0(npn ).

Then if Sx rt
is

summable \R,pn \ k9 it is also summable |C, l| k ,fc > 1.

Proof. Applying Theorem B with A = (anv ), a weighted mean matrix, we see that (5ii)

clearly holds and (5i) is reduced to the condition P
n
= 0(npn \ On the other hand,

a small calculation reveals that

and

if V=n
otherwise.
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Thus we get

v-i

and so the proof is completed.

COROLLARY 2

Let (pn ) be a sequence of positive real numbers with npn
= 0(Pn ). Then if Sxn is

summable |C, l| k , it is also summable \R,pn \ k , (k ^ 1).

Proof. Apply Theorem A.

Now the next result which appears in [5] is a consequence of Corollaries 1 and 2.

COROLLARY 3

Suppose that (pn ) is a sequence ofpositive real numbers such that

npn = 0(Pn )
and Pn

= (nPn ).

Then the summability |C, l| fc
is equivalent to the summability \R 9 pn \ k,k^ 1.
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Abstract. In this paper we study a special case of the initial value problem for a 2 x 2 system
of nonstrictly hyperbolic conservation laws studied by Lefloch, whose solution does not

belong to the class of L functions always but may contain ^-measures as well. Lefloch's

theory leaves open the possibility of nonuniqueness for some initial data. We give here a

uniqueness criteria to select the entropy solution for the Riemann problem. We write the

system in a matrix form and use a finite difference scheme of Lax to the initial value problem
and obtain an explicit formula for the approximate solution. Then the solution of initial

value problem is obtained as the limit of this approximate solution.

Keywords. System of conservation laws; delta waves; explicit formula

1. Introduction

The standard theory of hyperbolic systems of conservation laws assumes usually the

systems to be strictly hyperbolic with genuinely nonlinear or linearly degenerate

characteristic fields, see Lax [6] and Glimm [1]. But many of the hyperbolic systems

which come in applications do not satisfy these assumptions and such cases were

studied by many authors [3, 5, 8]. In all these papers solutions are found in the sense

of distributions, say in the class of L functions. In a very interesting paper, Lefloch

[7] considered a system of conservation laws, namely

dv d- + (a(u)v)
= ^

dt dx

with initial conditions

M(X, 0)
= MO(X), i?(x, 0)

= v (x\ (1.2)

where a(u)
=

f'(u) and /: R -> R is a strictly convex function. For systems of this type

generally there is neither existence nor uniqueness in the class of entropy weak
solutions in the sense of distributions. He has shown that when uQ L1

(R)r\BV(R)
and v eLco

(R)^L
l

(R) (1.1) and (1.2) has at least one solution (u, v)eL*(R+,BV(R)) x

given by
207
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u(x,t)
=

(/*)' |

where 3;
= y (x, minimizes

min
[
P ,,

-oo<y.<ooLJ-co

and /* is the convex dual of f(u) and M(R) is the space of bounced borel measures

on R. Further he proved that if w satisfies

(1-3)

dx

in the sense of distributions for some K , then the problem (1.1) and (1.2) has one

and only one entropy solution. If we take

(UL ifx<0
-, A

[UR ifx>0

then (1.3) is equivalent to saying

R\ <P ^

and this will be true for some KQ and for all <peCJ(#), q> ^ 0, iff UL ^ w^. In fact for

the Riemann problem, i.e., when the initial data for (1.1) is of the form

(1.4)
UR,VR ix>,

Lefloch [7] has given an infinite number of solution for the case UL < UR .

In this paper we study a criteria to choose the correct entropy solution. Classically,

vanishing viscosity method or proper numerical approximations are used to choose

the correct entropy solution. Following Hopf [2], vanishing viscosity method was

used by Joseph [4] to pick up the unique solution for the Riemann problem when

f(u) = w2
/2 in (1.1). It was shown that in the case, UL < UR ,

which is the case of non-

uniqueness, the v component of the vanishing viscosity solution is

!i?

L ,
ifx < uLt

0, ifuLt <x<uRt

VR, ifx > uR t.

In other words in the rarefaction fan region ofu component, the v component is zero.

In the present paper, we consider the special case f(u) = log [ae
u + be'"'], a + b = 1,

a > 0, b > are constants in (1.1). Then we have

(1.5)

ae
u -be~ u- v =0,u ~ u
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and study the unique choice of solution. Here we use a numerical approximation of

Lax [6], which he used to pick the correct entropy solution for a scalar conservation

law. For the Riemann problem, we show that in the rarefaction fan region of M, the

v component is zero, see Theorem 1. These examples suggest a uniqueness criteria at

least for the Riemann problem.

Before stating our main results let us introduce the difference approximation. To
do this first we note that (1.5) can be written in the matrix form

+ fre-^)] x
=

0, (1.6)

where

A
u

Am

Let Ax and A be spatial and time mesh sizes and let

An

k ~A(k&x,n&t) 9
fc = 0, 1, 2,..., n = 0,l,2,... (1.8)

and following Lax [6], define the difference approximation

where the numerical flux g(A 9 B) is given by

g(A 9 B) = log[ae
A + be-*]. (1.10)

Here we can take At = Ax = A, since the characteristic speed of the eigenvalues

ae
u

.\)Q~
U

A! = A2
=-- of (1.5) which are less than one in modulus. Then we note that (1.9)

ae
u + be

"

and (1.10) become

^ = ^-\4-log [a^ : i + ^-<"
1

]~log[^^
1

+^-^^] (1.11)

with initial conditipn

When

o

(1.11) is nothing but the Lax scheme for the scalar equation u
t
4- (log[ae

u + be~ u
~})x

= 0.

With the notations

5 = (log|>
u*

4- be~ UR
]
- loglX^ + &e~ Ul

-])/K - UL) (1.13)

and

x , x
of* -be~ u* ae^-be^

R(UL> UR, VL, VR)
= S(VR

" VL)
--

UR ^ , _ UR ^ + ^ .

. -^^ (1-14)
a^ R

-f fce
* a^ L

-f oe i-

we shall prove the following results.
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Theorem 1. Let (W
A
(X, t),v\x, t)) be the approximate solution o/(l.l) defined by (1.11)

and (1.12) with Riemann initial data (1.4), then

lim (U
A
(X, t), t;

A
(x, t))

=
(u(x, t), i;(x, t))

m /z sense of distributions and (u(x,t\v(x,t)) is given by the following explicit

formula:

(i) When UL > UR ,
then

(u(x, t), v(x, t))
=

{UL + (UR
- uL)H(x

-
st), VL + (VR

- vL)H(x
-

st)

where H(x) is the Heaviside function.

(ii) When UL < UR , then

v2
-

\a t-x

K, *>*)

(iii) P^/ien UL = MR = u, then

.,
if X >

aeUR -be~ UR

Theorem 2. Let t/ie im'fia/ data u(x) and i;(x)eL
00

(R)nL
1

( JR). T/ien (w
A
(x,r)X(x,r))

defined by (1.11) and (1.12) tends to (w(x,r),z;(x,t)) m the sense of distributions and is

given by

t + x- y (x, t)

a t - x + yQ(x 9 1)

d f
t?x,t=-

3;
=

j; (x, t) maximizes

max

Here /*(A) is the convex dual of f(u) = \og[_ae
u + be~ u

~]
and is given by

2. Proof of Theorem 1

As a first step in the proof ofTheorem 1, we obtain (W
A
(X, t), ^

A

to do this we recall from (1.11), (1.12) and (1.4),

, 0) explicitly. In order
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for n= 1,2,3,. ..,/c = 0,l, 2,..., with

'11.

if*< ..

Let us set

then, (2.1) becomes

Let

Taking summation in (2.4) from k to oo, we have

211

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

Following Lax [6], we use the nonlinear transformation,

D = log

in (2.6), and obtain

log E = log
-

* + log [0e
x*(E^

(2.6)

(2.7)

Simplifying this we get .

k k

where

a = aeAR (ae
A*

-\-be~
AR

)~~
l and /?

=

We note that a + /?
= /. It can be easily seen that the solution El of (2.8) is given by

?-iC
From (2.2), (2.3), (2.5) and (2.7) we get

'1
s

1

(2.8)

(2.9)

(2.10)

(2.11)
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Using (2. 11) in (2. 10) we get

where

(2.13)

and

<=
>^^^

, (2-14)

Here we used the notation S(n,k,q)
= ^n + k-2q-\n+k-2q\). Now

o o

(2-15)

By the transformations (2.3), (2.5) and (2.7) we get,

Componentwise this becomes

By using Stirling's fonnula,

n!f-Y(27cii)
1/2

,

we get

n n
-, asn,<j,n-<?-o.

Let t = nA, x = kA, y = (n + k - 2$)A be fixed, then
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t+x-y ^
qA = , (2q

-
n)A = x - y.

.

213

(2.19)

We have,

lim A log 0J
= max Alog

(

H

]
+ Aq loga + A(n - <?)logft

A-+0 0<(r + ;c-y)/2<f L \#/

Also as A ->0 in the above fashion, we have

,
-.UR)

- 1 \og(ae
UR + be' UR

)

(2.20)

(2.21)

and hence from (2.19)-(2.21), we get

, lim A log 9
n

k
= max L-l/2(y-\y\)(uL -uR)

A-*0 x-t^y^x + t

+ (x-y)uR -tlog(ae
u*

-loga + -log 6

log . (2.22)

Let y (x, t) be the value of j; for which maximum is attained on the RHS of (2.22).

An easy calculation shows that the following is true.

Lemma. Let y (x,t) be a point where maximum is attained on the RHS of (2.22), then

y (x,t) is given by the following:

(i) Let UL > UR, then

x a(uL)t, ifx < st

x a(uR)t, ifx > st.

Let UL < UR, then

)x

-
a(uL)t, ifx < a(uL)t

0, ifa(uL)t<x<a(uR)t

x - a(uR)t, ifx > a(uR)t,

where

a(u)~f(u) = (ae
u -bt

and s is given by (1.13).
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From the above lemma and (2.22) we have if UL >UR ,
then limA^ Alog0J|

^x, t), where

- (x-a(uL)t)(uL-uR) + uRa(uL)t
-
Hog(ae"

'1

A
1(x,t)

=

2

if * < st

a(uR)tuR
-

t log(ae
UR + be" UR

) +

1~*K)

flog a

2 J ~(V 2

If UL < UR, then limA^ Alog&jJ
== A

2 (x, t)> where

(x a(uL) t)(uL M

A2(x,t}
=

if x < a(uL)t,

t -\- X t _ X
XUR - 1 log [ae"

R
4- be~MR) -I-

- log a 4-- log fc + t log t

(t-hx) (t-x). /t-x

uRa(uR)t - 1 log ( t log a

Again from (2.13), (2.14) and (2.19), we get

limA^ = -

A-0 ffi
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no-

where ,y (x, t) maximizes the RHS of (2.22). Using the lemma we have the following: If

UL > UK , then

A-0

where

If UL < UR , then

where

(x-a(uL)t(vL -vR))

vR \_ae
UR
(a(uL )

-
l)r + be' u

*(\

-(x-a(uL)t)(vL-vR)

+M^

vRbe
~ UR

(t -h x) + i^

Now it follows that, if UL > UR

roo

Km (u*(y,t)-uR)dy=Ai(x,t\
A-*0 J x

f*
lim (i;

A
(y,r)

A-^Ojjc

and if WL < UR

lim
I

(M
A
(y,t)-M

A->Oj;c

lim
I

(*\y,t)-
A-^O J*

Hence

be~"*(l +a(u
, ux>st.

, if x < ^(

,
ifx > a(uR)t.
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~ 3Xv
> if UL < UR

dx

dB 2

ox

in the sense of distribution as A-+0. An easy calculation shows that

dA,_\uL,

UR
-

dx

dx UR ,
ifx > st,

dA 2

dB

1, fbt+ xl
-log --

,

* L^ t~xj

,-~vR)ll-H(x-st)l

ifx < a(uL)t

tfa(uL)t<x<a(uR)t

ifx>a(uR)t,

t?L , ifx<a(uL)t

0, ifa(uL)t<x<a(uR)t

VR ,
ifx > a(uR)t.

Proof of (iii) is similar. The proof of Theorem 1 is complete.

3. Proof of Theorem 2

To prove Theorem 2, we first note that the approximate solutions are defined by

Al = Al~
l

+log[ae
j4 - 1 + be~ A*

] log[ae^ +be~^+ 1

]> (3.1)

with

/ t ,o n \

(3.2)

where u = w(fcA)5 v%
== v(kA). Following Lax [6], let us introduce

and use the nonlinear transformation

We get as before

n + 1 ___

k

whose solution is
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^= z

In terms of the original variable An

k ,
we have

Carrying out the explicit calculations as before, we get

n / \ r oo

Q ya<b"-'expj_ 2

217

"2
= log ZoWJ

Z
n =
j
~~

Now let x = fcA, t = nA, 3;
=

(n + k 2<?)A be fixed and let A -* 0. Lax has shown that

2

where y = )> (x, t) maximizes

max (3.3)

where

Again the same analysis of Lax [6] gives

Too oo /

lim U
A
(X, r)dy = lim A

0J
= i? (z)dz.

Here again 3;
= y (x,t) maximizes (3.3). Since $v*(y,t)dy is a sequence of bounded

function converging to J* (jct)
t; dx for a.e. (x,-t), it follows that ^x,?) converges to

3 f
00

^x I

in distribution. The proof of Theorem 2 is complete.
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Abstract. Consider the odd-order functional differential equation

(x(t)
-

ax(t
-

T))
(W) + p(t)f(x(t

-
a))

= 0, (*)

where 0<a<l, T, ae(0,oo), peC([0,oo), (0,oo)), f<=C
l

(R,R) such that / is increasing,

xf(x) > for x ^ and / satisfies a generalized linear condition

liminf
,-.0 IVdx

Here we prove that every solution of (*) oscillates if

liminf a"-"
1

p(s)d5>-(l -a)(n- !)!(
-?

]
\

- J t
-

ffm e \n-ij

This result generalizes a recent result of Gopalsamy et al [6].

Keywords. Functional differential equations; oscillation of all solutions.

1. Introduction

In a remarkable result Ladas [4] proved that every solution of the first-order delay
differential equation

(j)
=

0, (1)

where p,cre(0, oo) oscillates (i.e., every solution has an unbounded set of zeros in

(0, oo)) if and only if

P<r>. (2)
e

The result was extended by authors in [5] for general odd-order differential equation

x(n
\t) + px(t-a) = 9 (3)

replacing (2) by

The first result was further improved (see [7]) for equations with variable coefficients

with the statement that

219
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P 1

liminf p(s)ds>-,
I />

t--oo Jt-ff **

and

limsup I p(s)ds>-
t-OO Jt tr &L

are respectively sufficient and necessary conditions for every solution of

where peC([0, oo),(0, oo)), to be oscillatory. But a similar extension for

has not been proved yet.

Recently, Gopalsamy et al [6] proved that

iminff (t-s)--
t-oo >-

(6)

implies that every solution of the odd-order differential equation

(x(t)
-

ax(t
-

r))
(n) + p(t)x(t

-
a)
= (7)

oscillates, where ^ a < 1. Indeed, for a = and p(t)
= pe(0, oo), (6) reduces to

pa" > n!,

that is,

n n

which is the sufficient condition for oscillation of (3). In view of the condition given

in (4), the lower bound of p
l/n

(<r/n) in (8) is comparatively larger than that of (1/4

In this paper we prove a result, a particular case of which shows that all solutions

of (7) are oscillatory if

f
r

1 f n I"" 1

lim inf (f
1
' l

p(s) ds > -(1
-

a)(n
-

1)! < > . (9)

When p(t)
= p(0, oo) and a = 0, the above condition reduces to

'(n!)
1
/". (10)

In view of the known inequality

i/



Functional differential equation

1/n

__ i

221

(11)

where C(nl,r) is the (r+l)th binomial coefficient in the expansion of

(1 + l/(n I))""
1

, our condition is weaker than that of (8). We give examples to

support our claim.

2. Main results

Consider the odd-order nonlinear functional differential equation

WO x(t
~

T))
(n) + P(t)f(x(t

-
(7))

= 0, (E)

with the assumptions that

p 6C(R
+
,R

+
\fe C(R, R) such that / is increasing,

x/(x) > for x + 0, |/(x)|
- oo as (x|

-
oo, ^ a < 1, (H)

n > 1 is an odd integer and T, <re(0, oo).

Let <5 = max{t, a] and <^eC([jT <5, T],R). By a solution of (E) in [T, oo), we mean
a function xeC([T, oo), R) such that x(0 = ^(0 T-d^t^T, (x(t)

-
ox(t

-
t))e

C(n)
([T, oo

), R) and x(0 satisfies (E) for t^T.
As usual, a solution x(t) of (E) is called oscillatory if it has zeros for arbitrarily

large t and nonoscillatory, otherwise.

We say (E) is generalized sublinear if / satisfies

lim inf

*-o

superlinear if

lim inf

,-o

and linear if

lim inf

dx

dx

dx

<1 (12)

(13)

which includes the cases f(x) x*, < a < 1, l<a<oo and a = 1, respectively.

In what follows, we list the following two results for our use in sequel.

Theorem 1 ([3], Lemma 1). Suppose that 0eC(n)
([T, oo),(0, oo)) such that g

(i)

(t) has no

zeros in [T, oo) (i
= 1,2, . . .(n

-
1)) and g

(n
\t) ^Ofart^T. If fie(09 oo) then

(n-1)!
"

Theorem 2 ([7], Theorem 2.1.1). //]8e(0, oo), QeC([T, oo),(0, oo)), T>0 and

f
r

lim inf

f-oo Jf-

lim inf Q(s)ds>-,
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then the first-order differential inequality

has no eventually positive solutions.

Our main theorem is as follows.

Theorems. Suppose that (H) holds and f satisfies (13). Then (9) implies that every

solution of(E) oscillates.

Proof. Since (9) holds, there exists < e < 1 such that

(l-e)
2

liminf| <r
n - 1

'- Ji-a/ii

(14)

To the contrary, assume that x(t) is a nonoscillatory solution of (E). Let x(t) > for

t ^ t . (The case for x(t) <Q9 t^tQ may be treated similarly.) Setting

z(t)
= x(r)-ax(t-t), (15)

from (E) it may be observed that z(n
\t) < for f > t -f <r. Consequently, there exists

7> r + o- such that z(i)

(r) (i
=

0, 1, 2, 3. . . (n
-

1)), has no zeros in [T, oo).

Suppose that z(t)<0, t^T. Since n is odd, z(n)
(r)<0, f^T implies that

z'(t) < 0, > T. On the other hand, let

If n = oo, there exists a sequence of real numbers <O?L i
such that tn

-
oo, x(rw) -+ oo

as n -* oo and x(s) < x(tn) for s < *. From (15) we see that

-
ax(tn

-
T) > (1

-
a)x(O,

which further gives

lim z(tn)
= oo,

n-*oo

a contradiction to the fact that z(t) < 0, r> T. In case /i is finite, there exists a sequence

O*>*i such that tB -^oo, x(tJ->/i as n-^oo. Since <x(tll -T)>*s:1 is a bounded

sequence of real numbers, it admits a convergent subsequence. Let <sn >*=1 be the

subsequence for which <x(sw -t)>J . 1 converges to a real number A. Clearly A< ji.

Again x(sw) -+ ^ as n ~> oo. Now

lim zfa.)
= lim (x(sn)

-
ox(sn

-
T)) > (1

-
a)A,

n-^oo n-*oo

that is,

which is a contradiction to the fact that z(t) is negative and decreasing function. Hence f
z(t) < 0, t ^ T is impossible.

Let z(t) > 0, t > T. Clearly, it follows that z'(t) < 0, t > T. Indeed, otherwise, z'(0 > 0,

t ^ T implies that lim infz(t) > and consequently
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lim infx(t) = lim inf(z(t) + ax(t
-

T)) > 0.

t-*QO t-+00

Integrating (E) from T to t and using the above observation along with the fact that (9)

implies

r p(s)ds=oo,

we see that z(w 1)
(r)-> oo as t-+co. Consequently, z(f)-+ oo as ~ao, a

contradiction. Further z(n
\t) < implies that

Consequently,

and

lim z(t)

r-*oo

If k > 0, then repeating the argument applied earlier we lead to a contradiction. Hence

k = 0. From (13) it follows that

lim infiminff )
= 1.

y-o \dyj

Taking yCO = z<n
~

1)
(0> and from the definition of limit infimum it follows that for

every e > there exists a large positive number M such that

>(l-e) fortttM. (16)

AyJ

From (15) we see that

t), t^T. (17)

The repeated application of (17) on it, as per the idea in the paper of Gopalsamy
et al [6] results in

^ =

From the above inequality it follows that there exists M^T+Ni such that

(18),

(1-a)

In Theorem 1, replacing g(t) by z(t
-

a/n) and ft by (

- \a we get
\ n /

or. (19)
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Using (19) in the inequality obtained by replacing t by t a in (18) we get

x(t
-

(r) > Kz(n
-"(t-a/n\ t ^ maxfMj + <r, T+ 3d} = T

,

where

(20)

Since / is increasing,

f(x(t-v))^f(Kz
(n
- l

\t-(r/n)), t^ T . (21)

From (E) and (21) it follows that

z(n
\t) + p(t)f(Kz

(n
~

l

\t
- aIn)) < 0, t ^ T . (22)

Multiplying both sides of (22) by

(f(y)\ where y = z(n
~ l

\t),

we obtain

(f(y(t))) -H
(
P(t) }f(Ky(t

aIn)) ^0, t^ T . (23)

Set

Now z{n
"

1]
(t) > 0, t ^ T implies that H(t) > 0, t^ T . From (23) and (16) it follows that

dt

Hence H(t) is an eventually positive solution of the differential inequality given in

Theorem 2, where

and

=<7/n.

But, by (14),

lim inf Q(s) ds = lim inf
)

K(l
-

e)p(s) ds > -,
J-*oo Jt <r/n t-*cb Jt-fffn &

a contradiction to Theorem 2. Hence (E) cannot have a nonoscillatory solution.

This completes the proof of this theorem.

Example. Consider the equation

Since (6) fails to hold, Theorem 4.1 of Gopalsamy et al [6] is not applicable, but

(9) holds and hpnce Theorem 3 shows that every solution of it oscillates.
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Remark. In view of the inequality

n

n\e\n-lj J 2

it follows from (10) that

(24)

,nj 2V n

or in particular,

(25)
3

implies that every solution of eq. (3) oscillates. Indeed, n > 1 and odd gives that

Since the arithmetic mean exceeds the geometric mean r(n r) < I
-

I for every r

and hence

2

Consequently, using Binomial theorem we get

d -d/))

(26)
n \ 2) 2\ nj 2\ n

Now (24) follows from (11) and (26). Since n ^ 3, (25) follows from (26).
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lurface waves due to blasts on and above inviscid liquids of finite depth
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Abstract. For the problem of waves due to an explosion above the surface of a homogeneous
ocean of finite depth, asymptotic expressions of the velocity potential and the surface

displacement are determined for large times and distances from the pressure area produced

by the incident shock. It is shown that the first item in Sakurai's approximation scheme for

the pressure field inside the blast wave as well as the results of Taylor's point blast theory

can be used to yield realistic expressions of surface displacement. Some interesting features

of the wave motion in general are described. Finally some numerical calculations for the

surface elevation were performed and included as a particular case.

Keywords. Surface waves; inviscid liquid; asymptotic expansion; blast theory; surface

elevation.

. Introduction

'he problem of surface waves caused by the interaction of a blast-generated shock

/ave with an ideal incompressible fluid has been analysed by Rumiantsev [9], Kisler

4] and Sen [11], mainly when the fluid is infinitely deep. The problem of waves

iroduced by explosions above the surface of a shallow liquid has also been touched

ipon by Kranzer and Keller [5] as an application of the asymptotic Caucny-Poisson
yave theory for fluids of finite depth. This treatment, however, did not include the

fleets of the time variation of the pressure distribution on the surface. Choudhuri

1] and Wen [14] considered the case where the disturbance is over any arbitrary

egion of the free surface and the water is of uniform finite depth by the method of

aultiple Fourier transforms. In both the cases the method of stationary phase was

ipplied to obtain the approximate expression for the potential function and surface

levation for large values of time and distance. Mondal and Mukherjee [8] considered

he corresponding problem by Hankel transform method and finally the approximate

xpressions for the potential function and inertial surface elevation were obtained

or large distances and times by the method of stationary phase.
The basic simplifying assumption in this problem is that the large difference between

he densities of the gas and the fluid make the fluid displacements too small to affect

he motion of the gas, which is supposed to be known. Here we present the three-

limensional problem of the generation of waves due to explosions above the surface

>f a fluid of constant finite depth due to the incident shock and of the area on which
t acts. After deriving the formal solution of the problem in terms of infinite integrals

n the usual manner, we use the known asymptotic expansions of the Bessel function

ind Kummer's confluent hypergeometric function alongwith the method of stationary

227



228 C R Mondal

phase to find approximate expressions of the velocity potential and the surface

displacement (= ) integrals of large times and distances from the pressure area. For

the pressure field inside the blast wave, we first make use of an expression closely &+
resembling the first term of Sakurai's [10] approximation scheme. It is also easy to

see that the expressions of ( in the form of infinite series may be obtained by the

same methods as used by Sen [11], but these will not be deduced here. Instead, we

describe the more tractable features of the asymptotic wave motion in its general

form as well as special forms which use the results of the Taylor point blast theory,

and then place our results on a more realistic footing.

2. Formulation of the problem

We assume that surface waves are excited when the spherical shock wave due to a

point blast in the gas interacts with the fluid surface. An expanding circular region

of pressure is formed on the free surface as a consequence. Using cylindrical X
coordinates (r, 6, z), we write the governing equations as follows: f"

For t > 0,

(1)

(2)

.dt

dt
2

dz dt'

<p(r,0,0) = 0, <p,(r,0,0)
=

, (5)

= on*--*. (6)
dz

The conditions (5) are equivalent to the conditions

(p
= 0, C = at t = 0,

since p is finite and r-Oast-0-K

3. Formal solution

We assume a solution of (2) of the form

f
00

'

q>
= A(k, t)J (kr)coshk(z -h Wscch Jkfcdfc

Jo

so that (6) is satisfied.
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Substituting for (p in (4), we obtain the following differential equation for A(k,t):

d f
ro(0

kp-
1

a/
St J Q

here

'he solution of this equation is

g fro(5)A A Q (k)cos(crtQ

o

f
r

si

Jo

An integration by parts then gives

A =
(k/p) Pcos|>(r - s)]ds

|

r <S)

o/(a,s)J (fox)da. (7)

Jo Jo

le velocity potential is therefore

f coshfc(z-Hh) f
r

f
ro(s)

<p
= p~

1 kJ (kr) dk cos<r(t-s)ds oc/(a,s)J (/ca)da.

Jo coshkh J J

(8)

"he surface displacement is then determined by (3):

C= -(gpr
1 r*kJ (kr)dk f sma(t~s)ds f^ a/(a, 5)J (/ca)da. (9)

Jo Jo Jo

. Asymptotic representation of cp and ^ for a uniformly expanding pressure area

Ve adopt the following model for f(r,t) because it closely resembles the first term

>f Sakurai's [8] approximation scheme for the determination of the pressure field

aside the blast wave

/(r, =
(t + t

ir
n

F(r/r (t))9
r < r (t) (10)

^here n(> 1) is non-integral, and r
x

is the time taken (from the moment of the

xplosion) by the shock front to just reach the surface. Also, at high pressures,

l(t 4- tj = the radius of the shock front at time (t + t t ) cc(t + t^
215 Ref. [6]

From this result, one can obtain the expression for r (t):
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Here, however, we assume, alongwith the model (10), that

r (t)
=

ut, u = constant, (11)

for convenience of analysis.

Then, from (8)

f
1

f
00

(p
= p~

1

af(a)da kJ
Q (k

Jo Jo

x
rl(s)(t l

+ s)~
n
co$0(t-s)JQ (kotrQ (s))ds. (12)

Jo

To evaluate (12) asymptotically for large r and t, we first replace J (/car (s)) by its

integral representation,

f* irfi

J (/car (s))
=

(2/7r) cos (/caws sin 0)d0, (13)

Jo

and J (fcr) by the first term of its asymptotic expansion for large fcr,

JQ (kr)
-

(2/nkr)
1 '2

cos(fcr
-

n/4). (14)

The resulting s-integral is expressed in terms of a function Tn (ia,t,ti) defined as

follows:

)
= eiflfl

s
2
(t,+s)-

n
e
ias

ds

Jo

s

$
I (

f

t

l

+tl)
. (15)

Here

sin0}, 7 =1,2. (16)

and ifi denotes Kummer's confluent hypergeometric function.

In place of (12), we have now

'

fl f
1/2 Re F(a)da

Jo J o

x [exp{irP.(fe)} + exp{i>Q.(fc)}]dk, (17)

where

Q/k)
= a(t -f t

t )r"
' + (- iykiiat 1

r"
1

sin[0 + k - (ir/4r)]

and K > is such that Kr 1, and the stationary point(s), if any, lies in (K, oc).
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The function Qj(k) has no stationary point for ;
= 2 in < k < oo, and none either

in the same interval for; = 1, since ut
l

r. Therefore, the part of the fe-integral arising

from Qxp{irQj(k)} in (17) is O^"
1

), as r- oo. The function
P;(fc),

on the other hand,

has one and only one stationary point, k =
kj (say), when

5
+
5'" ('

where (5
yi

is Kronecker's delta function. To show this, we note that

(i) Pj(k)
is continuous in < fe < oo,

(ii) Pj(k)
is strictly monotone decreasing in < k < oo, since

PJ(/c)
< therein,

(iii) P'.(k)-*2i 1 + ( I)
j
uctt

1
r~'

l sm0 = a
1 (say) as /c->0 +

Pj(k)-+( I)
juat

1
r~ 1

sind 1 =a
2 (say),

as fc-*oo,

< for both 7, since ut^ r~
l

1.

These conditions make P'.(k) vanish once and only once in < k < oo, when

(
fl i)min > 0> that is, when T > - H - S

Jl9
as stated above.

A similar argument shows that the equation [Pj(/c)]M=0
= has one and only one

non-negative real root fe = kQ (say), independent of j, when t > 1/2 and hence, under

the condition (19) as well.

Since ut
1
r~

l

1, an approximate value of kj may be obtained by putting

kj
= kQ + ej (20)

in the equation P^.(/c)
= 0, whence

e.^( l)-
/+1 uat

1
r~

1

sin0/PJ(fe ). (21)

Applying the method of stationary phase to evaluate the fe-integral of (17), we obtain

i:

x
coshfc^

2 '

x Re X TJjafal t, I, )expi{rP;(fe;)
-

7t/4}

j

(22)

(npu-
2
/2)q>

- aF(a)da
o o

The asymptotic expansions of the functions ^ for large arguments [Erdelyi, [2]

I, 6.13.1 (2)] show that

(t + tj-^^x.+.o, (23)

where we suppose n < 2, a restriction required for the Taylor point blast theory.
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Using the approximations (20) and (23), we get for (22), the expression

-7 P f*'
2 2

(npu
2
/2)(p~\ jp(a)da d<9

Jo Joo

x cosh [fe (z + ft)] sech fc ft

.

(24)
j

By [Erdelyi, [2], I, 7.12. (45)], we have

|**/2

(2/7t) sin{k r + (- I)
jk utasme}d9

Jo

=
sin(fe r)J (fe ua) + (- iy(2/)cos(/c r) s

0(0 (fc itfa) (25)

when T > 1/2 +~ so that both ^ and fc2 exist, the Lommel function sM (k utx)

cancels out in thej-sum of(24). The asymptotic expression for <p thus finally becomes

F (fe uOsin(/c r),

(26)
where

(27)
)=

|

Joo

The result (26) holds under the conditions

rr (r)r (t 1 ), k rl, *>- + (28)

A similar process applied to (9) gives for the surface displacement the asymptotic
expression

U2 t
2

(29)

under the same conditions (28).

If F(x) = D, < x < 1, the limiting value of C, as ft-, oo, equals the corresponding
value of C for the case of infinite depth [Sen [1 1], eqn. (69)].

4.1 An illustrative case

When a concentrated explosion of constant total energy E takes place in a still

atmosphere ofdensity Po , Taylor's formula for the maximum pressure (which happens
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to be on the shock front) is

^ax = 0- 14HVo(' + 'l)~
6
}
1/5

(30)

when the ratio of specific heats of air is about 1.4.

If we adopt this law of pressure for an approximation in the present case while

retaining the hypothesis r (t)
= ut for a relatively small spread of the pressure area,

we have

n = 6/5, and F(R) = 0-141 (E
2

po)
1/5 for all R

so that

Equation (29) then gives

(E2 o 3
}
1/5 ut-' 141 -

'IW-^-M*.*)"*^) (31)

subject to the conditions (28).

5. Wave elevation due to a Taylor point blast above the fluid surface

At the outset, we transform the general expression (9) for C as follows:

Writing

f
00

_(0p)-itlm vkJ tyr)e
iff(st+ti)dk

Jo

x f r
2

Q (st)'(t 1 +str
n e- ia(st+tl)

F(kr (st))ds. (32)

Jo

j'Jo
(33)

We follow the same procedure as shown in 4, it being assumed that the function

F(krQ (st)) is sufficiently well behaved, and it does not make Tn strongly oscillatory

or singular for large t. The latter is a pre-requisite for the applicability of the method
of stationary phase [Stoker, [12], 6.8]. Then

asr' = (r/7z)->oo . (34)

where

P(k) = (t + tjr- ^(gktanhkh)
112 - k + 7i/4r,

P"(fc)
=

PJ(jfc)
as obtained from (18), and k = fc

is the non-negative real root of P'(k) = 0.
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This approximation holds under the conditions

(t + tj^/ghr'^l, rr (t), fc rl. (35)

For large t, T^fco^i) approximates to

). (36)

Therefore

C^^prr^VI^Mr 1 '2^ (37)

This result is used below to determine the wave height caused by a Taylor point
blast above the fluid surface.

5.1 Pressure inside a blast wave: Taylor's formula

For an intense explosion of constant total energy E occurring at a point 0' at a height
H above the ground, the pressure p(r,z,t) inside the expanding spherical blast wave
and the radius R(t) of the shock wave at time t from the moment of the explosion
are given by the following formulae due to Taylor [13]:

(38)

(39)
,, * 2y Py+1 ^-i"|
/ifoH-fr

---~
y + li_ 7 7 J

(40)

(41)

Here n = (7y
-

l)/(y
2 -

1), y = ratio of specific heats of air ~ 1.4.

z = depth of a point vertically downwards from 0'.

r = distance of a point P from the perpendicular O'O on the surface.

The surface pressure distribution in the present problem may therefore be taken as

(42)
, r>r f

where

r^t)
=

JR2
(t + t

1)~ JR2
(t 1 ) (43)

and t
1
= time taken by the shock to reach the surface.

5.2 Adjustment of Taylors formula to the wave problem

The pressure model (10) without the one for r (t) results from the above when H = 0.

The same model may be retained when H is small compared with r (t) or R. To this

purpose, a Lagrange expansion (MacRobert [7], 54) of pQ (r,t) is useful.
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Writing

(44)

/i(\/w=/2(AO
we get

and

f ( \ f i v * fH\
2m

d"
1
"

1

i m! \r y dju""
1 020- v )

Also

^ 2 -#2X - m

Consequently,

m=i/=o m!/!

x (tj(t + t
1 )}

4(m+1)/5Fm (^L ) L when ^ < 1;

Po (r,
=

0, when jU > 1
, (47)

since

R(t + tj = (W26r 2l5
(E/p )

1/5
(t + r,)

2 / 5

Here
'

(49)

(50)

5.3 Asymptotic wave height

Subject to the validity of the linearised wave theory, the asymptotic expression for
C under the conditions (35) is

C * -
0-129(E*pV

s
/gpr){k /\P"(k )\}

l >2
(t + 1,)-

6'5

m=i /=o ml II
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where

/(aV(fc)da. (52)

The last result shows that a good approximation to ( for small H is obtained if

only the first term /
!

2 (fco roW) *n the square bracket is retained. Further evaluation

of C can be accomplished, it seems, only by numerical methods.

6. Some characteristics of the motion

In both the expressions (29) and (51) for the wave elevation ,
fc rl. The factor

cosk r in both therefore changes its sign rapidly so that we may regard fc r as the

phase and the co-factor of cosfc r as the amplitude of ( in either expression. The

phase is not directly affected by the velocity parameter u in (29) or by r (t) in (29)

and (51).

Since dfc /dt is positive as per (18), the degree of oscillation of level at any point

becomes more rapid with time. Since (t
2

kQ h) at first diminishes with t (up to

dt

the value given by the equation 2T
2

PJ(fc )
=

/i) and then increases with it, the

oscillation at any point in shallow water is somewhat more rapid at first and less

rapid thereafter than what would happen if the sea were deep.

Denoting t^/gh/(2r) by T O , we have for

* - K(TO ), P;(k )[or P"(/c )]
~

(TO /T)[P;(IC)
or

(say) and equation (PJ(fc))l|SBO
=

0) may be written as t/^(K) = 1, where

[X/c)]-
1

=(7^i/2r)[{tanhfe/i/^}
1/2 + {fcVtanhfcfc}

1/2 sech
2
fcfc]. (53)

The amplitude of C in (29) then varies as

From (53), it appears that kh = 0(t
2
) and P"(K) = O(K~

l

) when Kh(or T) 1. As n is

usually > 1, one finds that the amplitude ->0 as t- oo when F(x) is 0(x~
i

)
or of a

higher order of smallness as x -> oo.

The times of maximum amplitude at any point are given by

2r (an tanhan )
1/2

^ = -7=...^. . . ....,, > n=l,2,3,...,

where

satisfy the equation
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Therefore, the points of maximum amplitude at a distance r travel outwards with

the corresponding constant velocities

tanh an + an sech
2
an

The amplitude at any point becomes nearly zero at times

2r

fcn sech
2
bn

where

* = >, n=l,2,3,...

satisfy the equation F(KUIJ/(K))
= Q. These points of minimum amplitude travel

outwards with the corresponding constant velocities

tanh bn -h bn sech
2 bn

The values of an and bn increase with n. Hence, the outer rings spread out faster than

the inner ones. A similar discussion may be given for (51).

7. A particular case

Let

Therefore

F(k ut)-fW
Jo

- rk ut Jo

D .

k^ut

Then (29) gives

= ut, k rl.

(54)

By (18), we have

a 112 It + t 1
"

[4feMtanh^)(sech
2
kh)(l + k tanh kh)A,, .rz

4r(fetanhfc/i)
3

. (55)
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Figure 1. Variation of C
1 with r. u = 0-05, n = 1, g = 32, r,

= 0-5, t = 2, h = 1.

Now let us take

2 V/2 / 3
,cos [k ut--n .

nk utj \ 4

Using (55) and (56) in (54), we get

r~/i \ 1 /2 "1 r~

*-! r I
Vul-^i 1 V^o ut)

C = | -777T II ,
,

. ,

-
t + tj JL'*

(56)

D
*

L rk%
2
J L (t + 1 ! )

n
J Lr(fc tanh k,

x [(4fc /itanhfc /zsech
2

/c /i)(l

(tanh fc ft -f fc ^ sech
2 k

ft)

2
]
~
1/2

x cos(k r)cos(fc u 37i/4), r > wt.

-1/2

(57)

The variation of

_
D

t

with r as shown in figure 1.
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Generation and propagation of 577-type waves due to stress

discontinuity in a linear viscoelastic layered medium
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Abstract. In this paper the generation and propagation of S/f-type waves due to stress

discontinuity in a linear viscoelastic layered medium is studied. Using Fourier transforms

and complex contour integration technique, the displacement is evaluated at the free surface

in closed form for two special types of stress discontinuity created at the interface. The

numerical result for displacement component is evaluated for different values of non-

dimensional station (distance) and is shown graphically. Graphs are compared with the

corresponding graph of classical elastic case.

Keywords. SH-type waves; stress discontinuity;

1. Introduction

The usefulness of surface waves and its investigations in isotropic elastic medium
have been well recognised in the study of earthquake waves, seismology and geo-

physics. Wave propagation in a layered medium has been studied extensively by

many people, especially in the last two decades. Various approximate theories have

been proposed to predict the dynamic response of layered medium and one of them is

due to Sun et al [10]. Nag and Pal [7] have considered the disturbance of SH-type
waves due to shearing stress discontinuity in an isotropic elastic medium. In another

paper, Pal and Debnath [8] have considered the propagation of SH-type waves due to

uniformly moving stress discontinuity at the interface of anisotropic elastic layered

media.

Due to the effect of viscosity, gravity plays an important role in the propagation of

surface waves (Love, Rayleigh, etc.). The viscoelastic behaviour of the material is

described by the mechanical behaviour of solid materials with small voids. The linear

viscoelasticity generally displayed by linear elastic materials is termed as 'standard

linear solid', if elastic materials are having voids.

Kanai [5] has discussed the Love-type waves propagating in a singly stratified

viscoelastic layer residing on the semi-infinite viscoelastic body under the conditions

of the surface of discontinuity. Sarkar [9] considered the effect of body forces and

stress discontinuity on the motion of SH-type waves in a semi-infinite viscoelastic

medium. The propagation of Sff-waves in nonhomogeneous viscoelastic layer over

a semi-infinite voigt medium due to irregularity in the crustal layer has been discussed

by Chattopadhyay [1]. He has followed the perturbation technique as indicated by
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Eringen and Samuels [4]. The viscoelastic behaviour of linear elastic materials with

voids has been considered by Cowin [2].

The present paper considers the generation and propagation of SH-type wave due ^
to shearing stress discontinuity at the interface of two homogeneous viscoelastic

media. Fourier transform method combined with complex contour integration

technique is used to evaluate the displacement function at the free surface for two

different types of stress discontinuity. Numerical results are obtained for a case only

with the aid of viscoelastic model as considered by Martineck [6]. Results are shown

graphically and are found to be in good agreement with classical elastic case.

Since the material of the earth is viscoelastic of a standard linear type, certain seismic

observations and calculations may be explained on this basis. Thus the problem
considered here is of interest in the theory of seismology.

2. Formulation of the problem and basic equations

Let us consider a viscoelastic layer of standard linear type (I) of thickness h lying over

a viscoelastic half-space (II). The origin of the rectangular co-ordinate system is taken

at the interface. The wave-generating mechanism is a shearing stress discontinuity

which is assured to be created suddenly at the interface. The geometry of the problem
is depicted in figure 1. As the SH-typt of motion is being considered /here, we have

u = w = and v = v(x,z,t). The displacement v is also assumed to be continuous,

bounded and independent of y. The only equation of motion in two-layered
viscoelastic media in terms of stress components is given by

where

fit
are related to shear moduli and n't to viscoelastic parameters. Substituting (2.2) in

(2.1), the resulting equations of motion become

Assuming that the stress functions are harmonic and decrease with time, we have

r-

and correspondingly

where co is the frequency parameter.

i
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'
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Figure 1. Standard linear viscoelastic layered model.

With the help of (2.5), (2.3) becomes

o^K-W |

d2V
\**

.

aj
(dx

2 +
dz

2

)'
sre

G
]
= ^ ^j(

. J=12.
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(2.6)

Method of solution

us define the Fourier transform V(^ z) of V(x, z) by

refore

(3.1)

(3.2)

pplying the above transformation into (2.6), it is found that V(,z) satisfies the
ition

d2 v



244 P C Pal and Lalan Kumar

where
' ^2 +

^>
/-1.2. (3 '3)

Thus for the layers (I) and (II) we have

)e'
4xd (3.4)=^-\

211 J

(3.5)

The boundary conditions of the problem under consideration are

(i) stress component must vanish on the free surface i.e.

(Tyz ) 1
=0atz=-h forallt>0 (3-6)

(ii) displacements must be continuous at the interface i.e.

V
1
= V2 at z = for t > (3.7)

(iii) stress components (shearing) must be discontinuous at the interface z = i.e.

(V)i
=

(Ty*)2
= SM*' *

at z = 0, for all x and t, (3.8)

where S(x) is some continuous function of x to be chosen later.

The above boundary conditions determine the unknown constants A 19 A 2 and B2 .

After simplifying we have at the free surface (z
=

h)

ni

(3.9)

where U() is an unknown function related to S(x) by

r r / \
I CV \ ( "& \A C\ 1 C\\

and

which is associated with the reflection coefficient in the two media.

4. Determination of unknown function

We now consider two different forms of the function S(x) to determine U(Q. ^

Case I. Let

S(x) = P, |x|^a
;

= 0, elsewhere.
. (4.1)
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This case implies that the stress discontinuity is created in the region a ^ x ^ a.

Hence

exp(-ic)cbc (4.2)

Pi

From (3.9) and (4.2) we have

n foo / pi$xi ^pi&2\
(x9

- h)
= -r-im (f

-f- \

lpi Jo V nit J

(x x
= x - a, x 2

= x 4- 0). (4.3)

Here we wish to evaluate the integral for a few values of m, say m = 0, 1, 2 only. So

we have

where

= /01 + /02 ;(say) (4-5)

p x2 /sinjxi _sin^1\ .

Jo V ^i ^i /

= /n +/ 12 ;(say)
(4-6)

/a
. rvf^i-^V' 9

"^2

Jo V ^i ^1 /
~'

p K3 /sin|x1 _sin^1\ _i
lljl)ld^

Jo V ^i &li J

= /21 +/22 ;(say).
(4 -7)

To evaluate /02 . / ii.-ir i2' J2i' /22. we use the method of contour integration and

/01 is directly evaluated from the Table of Integral Transforms by Eradelyi [3].

Thus, we have

v=
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where K (0) is a modified Bessel's function of argument 9 and of order zero.

/ =2 I

w*"*-*-!
~ SJn X 2 )

f -u/2)[(a>ih
2
/0

2
)-Z

2

where X
A
= (xjh\ x2

=
(x2 //i) and wft/crj > co/i/cr2

r _
12

_
02
--

where

where

-Ri

Figure Z Complex contour integration in 4-plane.

(49)

(4.10)

(4.11)

(4.12)
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The integrals in J l5 /02 ^i 1^12^-- ^ave branch points at f = coh/<r l9 coh/ff2

and a simple pole at = 0. The path of the contour integration is shown in figure 2.

Hence

Case II. Let

S(x) = P/i(5(x), -oo^x<oo. (4.14)

Factor ft is multiplied on the right side because both sides should maintain the

dimension of stress.

Now

(4.15,

Therefore, in this case, we have

Ph f

1 (x,-fc) = 5 Re
noiPi J

f

J

Ph
_

(4.16)

In this case also, we evaluate the integral on the right-hand side of (4.16) for a few

values ofm only, say m = 0, 1, 2. Hence

V
l (x,

-
h)
= -4 [/o + *i + 7 2 + -1 (4 - ! 7)

J = [1-f Ke~'"'
I

]d
Jo >7i

= /01 +/02 (say) (4.18)

'

cos^xe~
nih

_
2rjih 2 -3,,^-.,^

o ^7i

= /n +/ 12 (say) (4.19)

J o *7i

= /21 +/22 (say). (4.20)

Just like case I, we can evaluate /01 ,'o2^n>^.i2--- as foU ws:

(4.21)

'-fJ c
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etc.

'02= -4

/u =-4
0>/t/<72

e-t*e~ 7

+ -

or

O)

'? J

(4.22)

(4.23)

(4.24)

by

The integrals in (4.22), (4.23), (4.24) are valid only when (oh/a, > coh/a2 .

Hence, m this case the displacement component on the free surface z = - h is given

e~'Ph
(4.25)

h = 37-5 Km

I
- 0-2

II - 0-5
III - 0-7

IY - 2-0

0-1

0-1

0-1

1-0

VISCO -ELASTIC ANALOGY

*5 2 2-5 3 3-5 4 4*5 5 5-5 6 6-5 7 7-5

Figure 3. Variation of displacement with distance from the source.
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Numerical results and discussion

umerical calculations are performed here for case II only using Gauss quadrature
rmula and the table of integral transforms (Eradelyi [3]). The values of Kv

1
x 10~

2
,

here K = nalp^e^/P are tabulated for different values of x and Q.^ =a)/2/<7 1
and

jeping 12 <z>h/(j2 constant. The values of non-dimensional parameters f!
1
and f!2

e taken from a viscoelastic model considered by Martineck [6]. For comparison

graph corresponding to isotropic case is drawn (figure 3) and is found to be in good
;reement with viscoelastic analogy up to a certain value of x. From the curves so

awn, it is inferred that the displacement v
l
decreases as x increases and the rate of

:crease slows down after a certain distance.
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Abstract. The present paper on the linear instability of nonviscous homogeneous parallel

shear flows mathematically demonstrates the correctness of Howard's [4] prediction, for

a class of velocity distributions specified by a monotone function U of the altitude y and

a single point of inflexion in the domain of flow, by showing not only the existence of a critical

wave number kc > but also deriving an explicit expression for it, beyond which for all wave

numbers the manifesting perturbations attain stability. An exciting conclusion to which the

above result leads to is that the necessary instability criterion of Fjortoft has the seeds of its

own destruction in the entire range of wave numbers k > k c
a result which is not at all

evident either from the criterion itself or from its derivation and has thus remained

undiscovered ever since Fjortoft enunciated [3].

Keywords. Shear flows;

Introduction

tie point of inflexion theorem of Rayleigh [5] and the semicircle theorem of Howard

>] impose necessary restrictions on the basic velocity field U(y) and the complex
ave velocity field c = c

r -h ic
t
which are accessible to an arbitrary unstable (c f

> 0)

ave in the linear instability of nonviscous homogeneous parallel shear flows and it is
'

interest to have a similar restriction on the growth rate kc
t possible for such an

istable wave, fe being the wave number and y being the altitude. In his pioneering

>ntribution (1961; henceforth referred to as Ho), Howard established one' such

timate in the form

Max ~, (1)

Flow domain \^ /

id considering its inability to provide the correct qualitative result for the case of

ane Couette flow with dU/dy constant, which is known to be neutrally stable with

:

f

- as k -> oo remarked "This estimate is not usually sharp for example, the

ouette flow with dU/dy constant, is known to be neutrally stable but in most cases

will probably give the correct order of magnitude of the maximum growth rate. It is

ifficient to show that c
t
must approach zero as wavelength decreases to zero given

e boundedness of dU/dy, but there is likelihood that infact kc
t
.~0 as fc- oo, and

ith sufficient assumptions the still stronger statement that all waves shorter than
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some critical wavelength are stable is probably true, as illustrated by the examples of

Drazin and Holmboe cited in I".

A rigorous mathematical proof of the first part of this conjectural assertion of

Howard, namely that kc
t
-> as k -> oo, was given in an earlier paper by Banerjee et al

[1] under the restriction of the boundedness of d 2
U/dy

2
in the concerned domain of

flow and the present paper which is in continuation to the earlier one mathematically

demonstrates the correctness of the latter part of this assertion, namely that all

waves shorter than some critical wavelength are stable, that is c
{

= when k>k c

where fc
c is some critical value of k for the class of velocity distributions specified by

a monotone function 17 of the altitude y and having a single point of inflexion in the

domain of flow [2].

An exciting conclusion to which this latter part of Howard's assertion leads to

is that the basic assumption c
t
^ in Fjortoffs derivation of his necessary instability

criterion breaks down, for the class of velocity distributions as specified in the

preceding paragraph, in the wave number range k>k c where k
c
has the same

meaning as given in the abstract, thus rendering the derivation of the criterion

invalid. This invalidity assumes striking proportions for the wave with wave length

zero, that is fc~oo, in which case Fjortoffs necessary criterion of instability is

actually a sufficient criterion of stability as will be shown later. What is really

surprising is that it has taken such a long time to discover this wave number

dependence of Fjortoffs necessary instability criterion but it may, possibly, be

expected on the ground that neither the Fjortoffs discriminant (d
2
U/dy

2
) (U - U

s )

which is to be negative somewhere in the domain of flow for any general velocity

distribution U(y) and negative everywhere in the domain of flow except being zero

at the point of inflexion of U(y) in the present context, involves any wave number

implicitly or explicitly nor the derivation of the criterion itself shows any restrictivity

with respect to some wave number in the set of all admissible wave numbers k >
where U

s =U(ys ), yi<ys <y2 and d2
l//dy

2 = at y = ys with 17 being twice

continuously differentiable in y 1 < j; ^ y2 .

Proof of Howard's Conjecture. To facilitate reference to Ho, we shall make use of the

same notation here and denote the basic velocity field by U(y) while the Rayleigh

stability equation that governs the linear instability of nonviscous homogeneous
parallel shear flows is

(Ho; equation (5.1) with /?
= and n = 1)

^L- k^H V^2

/ Q n)
dy2

k H
iTTT--

- (2)

The boundary conditions are that H must vanish on the rigid walls which may recede

to oo in the limiting cases and thus

H(y l )
= H(y2 )

= Q. (3)

Multiplying equation (2) by H* (the complex conjugate of H) throughout and

integrating the resulting equation over the vertical range of y with the help of the
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boundary conditions (3), we derive

k
2
\H\

2
)dy + - -

dy = 0, (4)
C

yi

where D stands for d/dz.

Equating the real and the imaginary parts of both sides of equation (4), we obtain

I

V2
2 i 1,2 I L/|2\

J.VI

and

(|DH|
2 + F|H|

2

)dy+J
X

(U _ C)
2 + C

2
dy = Q > (5)

-c
r )

2 (6)

Rayleigh's theorem, which states that a necessary criterion of instability (c t
> 0) is that

the velocity distribution U(y) must have at least one point of inflexion at some y = ys

where y l <ys <y2 and U
s
= U(ys ) follows from equation (6) while Fjortoft's more

stronger theorem, which states that a necessary criterion of instability is that

(U U
s )
< at some point y = yq ^ ys (obviously)

k "^

where y l
< yq

< y2 and Ua
= U(ys ) 9 (7)

follows from equation

r

Jyi
2
-

dj;
= 0, (8)

yi \
~ Cr) + C

i

which is obtained by multiplying equation (6) throughout by the constant factor

(cr U
s )

after cancelling c
i
> from both sides of it and then adding the resulting

equation to equation (5).

Further multiplying equation (2) by d2
H*/dy

2
throughout, we get

U-c ,9,

and substituting for d2
H*/dy

2 from equation (2) in the last term of equation (9), we

derive upon integrating this latter resulting equation over the range of y with the help

of the boundary conditions (3)

f2
r
ya

(\D
2
H\

2 + k2
\DH\

2
)dy-k

2

\

Jyi Jyi
C
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Equating the real part of both sides of equation (10), it follows that

J,,

)Wy
(, . ,dy-0. (ID

2
L ) ~T" c

and adding to equation (11), the equation

which follows from equation (6) since c
t
> 0, we obtain

-7T-A dy-

U
s being the value of 17 at y = ys where y 1

< ys
< yz . Writing equation (13) in the form

(\D
2
H\

2 + k2
\DH\

2
)dy-

we deriv^ that a necessary criterion of instability is that

/d2
l/\

2

/d2
l/\ \d7j~"

^s) + ,2 > at some point y = yp ^ ys (obviously)
~ ~"

s ,2
=

p s

if*
where y 1 <yp <y2 . (15) f

The necessary instability criterion expressed by inequality (15) imposes another

independent restriction, one being imposed by Fjortoft on Fjortoft's discriminant

(d
2
U/dy

2
)(U

- Us\ and is valid for any general velocity distribution U(y).
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We shall presently show the importance of this necessary instability criterion

inestablishing the conjecture of Howard for a specific class of velocity distributions.

Consider the class of velocity distributions specified by a monotone function U of

the altitude y and a single point of inflexion in the domain of flow j^ ^y ^y2 . If

instability is to manifest in such flows then Rayleigh's criterion implies that

yi<ys
< y2 and Fjortoft's more stronger criterion implies that

d2 U

dy
2 (U - Us ) ^ everywhere in y l ^ y < y29 (16)

with equality only where y = ys [2]. It may be noted that for a U(y) belonging to this

class (d
2
Ufdy

2
)(U U

s )
can either be < or > everywhere in the domain of flow

with equality only where y = ys ,
and it is Fjortoft's criterion which shows that only

those flows can possibly be unstable for which (d
2
U/dy

2
)(U ~US)^0 everywhere in

the domain of flow with equality only where y = ys
. Thus, a necessary criterion of

instability can be derived from inequalities (15) and (16) in the form

d2 U

dy
2 It/ -17,

d2 U

dy
2

k
2

>0 at some point y
-

y ^ ys (obviously)

where y 1 <yp <y2 -

Hence, if

fc
2 >/c 2 = Max

y( & 3>s)eFlow Domain

d2 u

(17)

(18)

then the basic assumption c
t
> is not tenable and we must have c

t

= which implies

stability since Rayleigh's equation (2) and boundary conditions (3) are invariant under

complex conjugation.

It is clear from the above mathematical analysis that the conjecture of Howard

remains valid even for a larger class of velocity distributions U(y) which have a single

point of inflexion at some y =* ys where y 1
< ys

< y2 and for which (d
2
U/dy

2
)(U L/s)<

everywhere iny l ^ 3; < y2 with equality only where y = ys .

The following two theorems are, thus true:

Theorem 1. All nonviscous homogeneous parallel shear flows, with velocity distributions

specified by a monotone function U of the altitude y and a single point of inflexion in the

domain of flow, are stable against all infinitesimally smalt perturbations in the wave

number range

k>k= Max
Domain
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Theorem 2. All nonviscous homogeneous parallel shear flows with velocity distributions

U(y) specified by a single point of inflexion in the domain of flow and the constraint

(d
2
U/dy

2
)(U U

s ) ^ everywhere in y l ^ y ^ y2 with equality only where y ys
are

stable against all infinitesimally small perturbations in the wave number range

fe > fc c
= Max

domain

An Example. Consider a sinusoidal flow with U(y) = siny(y 1 ^y ^y2 ) such that

J>i <0<}?

2- Rayleigh's necessary instability criterion is thus satisfied and hence we

cannot draw any conclusion regarding stability or otherwise of the flow.

Now, let y2
-
y l
< n. Then, since

(

-p- }(U-US)=- smy(smy - sinO) = - sin
2

}; ^

everywhere in y l ^ y ^ y2 , with equality only where y = ys
= (origin being the only

point of inflexion in the flow domain) Fjortoft's necessary instability criterion, in

addition to Rayleigh's, is also satisfied and hence we cannot draw any conclusion,

regarding stability or otherwise of the flow, as before.

Further, since according to the present criterion

d2 U

k
2

must be greater than zero at some point, other than the point of inflexion obviously, as

a necessary criterion of instability, we see that it is satisfied only for fc
2 < 1. Hence, for

k2 > 1 the flow must be stable. This simple counter-example to Rayleigh's necessary

instability criterion was given by Tollmien [6] and incidentally it also serves the

purpose of a counter-example to Fjortoft's necessary instability criterion in the light of

our present work.

For velocity distributions U(y) belonging to the class for which Theorem 1 is valid,

we obtain a necessary criterion of instability for the wave with wave length zero (that

is k -> oo ) from inequality (15) as

(U Us ) > at some point y = yp ^ ys (obviously)

where y l <yp <y2 > (
19)

dy
2

and hence if

d2 U

dy
2 (V U

s ) ^ everywhere in y a < y ^ y2 with

equality only where y = ys , (20)
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then we must have c- = which implies stability. It is to be noted that Fjortoft's

necessary criterion of instability, which is given by

(U Us ) < everywhere in j^ < y ^ y 2 with

equality only where y = ys , (21)

in the present context, has actually become a sufficient criterion of stability for the

wave with k ~> oo and this is in accordance with Banerjee et a/'s [1] theorem on the

rate of growth of an arbitrary unstable perturbation. We state this result in the form of

a mathematical theorem as follows:

Theorem 3. Fjortoft's necessary criterion of instability, for all nonviscous homogeneous

parallel shear flows with velocity distributions specified by a monotone U function U of

the altitude y and a single point of inflexion in the domain of flow, is actually a sufficient

. condition of stability for the wave with k-+ao and this result is in accordance with the
*

prediction of Howard [4] and its subsequent confirmation by Banerjee et al [1].
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Abstract. Representations ofD* /fc* for a quaternion division algebra Dk
over a local field k are

orthogonal representations. In this note we investigate when these orthogonal representations
can be lifted to the corresponding spin group. The results are expressed in terms of local root

number of the representation.

Keywords. Orthogonal representations; spin groups; local root numbers.

Let D be a quaternion division algebra over a local field k. Then Df/k* is a compact

topological group, and all its irreducible representations are finite dimensional. It can

be seen that, in fact, all the irreducible representations are orthogonal, i.e. for any
irreducible representation V ofD/fc*, there exists a quadratic form q on V such that the

representation takes values in 0(V). Using the natural embedding ofO(V) in SO(V C)

given by Q\->(0,det0), we get a homomorphism of D/k* into 5O(KC). In this note

we investigate when this can be lifted to the spin group of the quadratic space V C.

The results are expressed in terms of the local root number ofthe representation V, or of

the corresponding two dimensional symplectic representation of the Weil-Deligne

group. We recall that by a theorem of Deligne [Dl] the local root number of an

orthogonal representation of the Weil-Deligne group W'k of a local field fe is expressed
in terms ofthe second Stiefel-Whitney number of the representation, or equivalently in

terms of the obstruction to lifting the orthogonal representation to the spin group. In

our case we have a symplectic two dimensional representation of the Weil-Deligne

group and its root number is being related to the lifting problem for the orthogonal

representation of the quaternion division algebra. The formulation of Deligne's

theorem is very elegant and has important global consequences. We, however, have not

succeeded in making such an elegant formulation of our results and have neither

succeeded in any global application.

As the problem is trivial in the case ofan archimedean field, we will confine ourselves

to the non-archimedean case only. We have been able to treat the case of only those

non-archimedean fields with odd residue characteristic; we will tacitly assume this to be

the case all through, and let q denote the cardinality of the residue field of fc, and a) the

unique non-trivial quadratic character of F*.

Lemma 1. Any finite dimensional irreducible representation of D%/k* is orthogonal.

Proof. Ifxi-x denote the canonical anti-automorphism of DJ such that x-x = Nrd(x)
where Nrd(x) is the reduced norm of x, then as an element of Df/k* 9

x = x~ l
. By the

259
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Skolem-Noether theorem, ,x and x are conjugate, and therefore x is conjugate to x
~

1
in

DjJV/c*. By character theory, this implies that every representation of D%/k* is self-dual.

Now it can be proved that for any irreducible representation V of DJ/k*, there exists

a quadratic extension L of k such that the trivial character of L* appears in V\ see

Lemma 2 below for precise statement. Since every character of L* appears with

multiplicity ^ 1 in any irreducible representation of Djf, cf. Remark 3.5 in [P], the

eigenspace corresponding to the trivial character of L* is one-dimensional. The unique

non-degenerate bilinear form on V must be non-zero on this one-dimensional sub-

space, and therefore the bilinear form must be symmetric.
The following Lemma follows easily from the construction of representations ofD;

it can also be proved using the theorem of Tunnell [Tu].

Lemma 2. Let n be an irreducible representation of D%/k* associated to a character of

a quadratic extension K of k. Let L be the quadratic unramified extension of k if K is

ramified, and one of quadratic ramified extensions if K is unramified. Then the trivial

representation of L* appears in n. The trivial representation of K* appears in n if and

only if K/k is a ramified extension of k, and q
= 3 mod (4).

The proof of Lemma 1 shows more generally that a self-dual irreducible representa-
tion V of a group G must be orthogonal if we can find a subgroup H such that the

restriction of K to H is completely reducible and contains the trivial representation of

H with multiplicity one. From this remark, one gets the following Proposition.

PROPOSITION 1

Every irreducible, admissible, self-dual, generic representation V of GL(n,k), k non-

archimedean, is orthogonal for any n^l.

Indeed, the theory of new vectors for generic representations of GL(n,fc) (cf.

[J-PS-S]) gives the existence of an open compact subgroup C such that the space of

C-invariant vectors in V is one-dimensional.

According to a program begun by Carayol in [C] for the GL(2) case, representations
of D* where D is a division algebra over a non-archimedean field, together with

corresponding representations of GL(n) (assumed to be supercuspidal) and Wk are

expected to appear in the middle dimension cohomology (H""
1

) of a certain rigid

analytic space. Considerations with Poincare duality suggest the following conjecture

generalising lemma L

Conjecture. Let D* be the multiplicative group of a division algebra central over

a non-archimedean local field k. Let an be the representation of W'k associated by the

local Langlands correspondence to n. Then whenever an is self-dual, symplectic, and
trivial on the SL(2, C) factor ofW

h,n}& orthogonal.

The following Proposition calculates the determinant of a representation of D*/k*,
and implies in particular that the determinant is never trivial; this was the reason why
we have to consider the representation K C of D*/k* instead ofjust V.

PROPOSITION 2

Let n be an irreducible representation of D*fk* associated to a character of a quadratic
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extension K of k. Then

where L K if K is the quadratic unramified extension of k or if K is ramified with

q~\ mod (4); if K is ramified with q = 3 mod (4), then L is the other ramified quadratic

extension.

Proof. Since the kernel of the reduced norm map is the commutator subgroup of Djf,

we can write det(Tc) as ju Nrd for a character ju of k*. As n is self-dual, its determinant is

of order < 2, and by class field theory, \JL
is either trivial or is co

/fc
, for a quadratic

extension E of fe. For any quadratic extension M of fc, write the decomposition of n as

M*-module as

*= Z M I ju'^a-ieb-v (i)

Me* MS*

where a and h are integers ^ a, b ^ 1, v is the unique character of M*//c* of order 2,

and X is a finite set of characters of M*/fc* of order ^ 3. Since the dimension of n is

known to be even, a = b.

It follows that the determinant of TI restricted to M*/k* is trivial if and only if the

trivial representation ofM* does not appear in n in which case ^ is trivial on the norm

subgroup Nrd(M*). Lemma 2 now easily completes the proof.

Remark 1. It should be noted that self-dual representations n of/)* not factoring

through D*/fc* need not be orthogonal. For instance, for fe = R, n = p(g)det(p)~
1/2

,

where p is the standard two-dimensional representation of D*, is a symplectic rep-

resentation of D*. It will be interesting to characterize self-dual representations of

Djf which are orthogonal.

Lemma 3. Let SO(2nH-l, C) correspond to the quadratic form q = x
1
x2 + ...+

X2n- 1
X 2n + X2n + 1 >

an^ ^^ associated maximal torus. For characters Oh, . . . , &,) o/fln

abelian group G, /et TT be the representation of G with values in SO (In -f 1, C) given by

x*~+(Xi (x), Xi
l

(x), 12 (x\ X2
l

(x), "-,Xn (
x

)> Xn
*

(x), V- Then the representation nofG lifts

to Spin (2n+l 9 C) if and only if U"= l Xi
= V

2
for some character p of G, i.e. if and only if

Il"=1 Xi is trivial on the subgroup G[2] = {geG\2g=l}.

Proof. The proof is a trivial consequence of the fact that the spin covering ofSO(2n + 1, C)

when restricted to the maximal torus T = {(z 1 ,
z

1

,
z2 , z^

l
,

. . . ,
zn ,

z
n

"
1

, l)|z.eC*} is the

two-fold cover of T obtained by attaching v/TL^.

Lemma 4. A homomorphism n:D%/k* -*SO(n) can be lifted to the corresponding spin

group if and only if n restricted to K*/7e* can be lifted for any quadratic extensionK of k.

Proof. As the two sheeted coverings of a group G are classified byH2
(G, Z/2), one needs

to prove that an element of H2
(D*/k*,Z/2) is trivial if and only if its restriction to

#2
(K*//c*, Z/2) is trivial for all quadratic extensions K of k. Let D* be the image in

D/k* of the first congruence subgroup ofD under the standard filtration. Then since
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the residue characteristic of k is odd, //'(*, Z/2) = if i>0. It follows that

H 2
(D*//c*, Z/2) = H 2

(D*//c*D*, Z/2). Now D*//c*D* is the dihedral group:

- F* /F* - D*//c* /)? -t Z/2 - 0,

where F
fl

is the residue field of k. Dividing Df/k* D* by the maximal subgroup H'ofodd

order of F*2 /F*, we again get the dihedral group D
r
= D*/k*D*H

f

with

H 2
(D*/fc*, Z/2) s ff

2
(D* //c* D*H', Z/2):

-+Z/2
r

->>,- Z/2 -+0.

Clearly Z/2 Z/2 c Dr , and it can be seen from the explicit description of cohomology

of dihedral groups, cf. [Sn, page 24], that H2
(Dr,Z/2) injects into H2

(Z/2@Z/2,

Z/2) H 2
(Z/2

r

, Z/2) under restriction. An element ofH 2
(Z/2 Z/2, Z/2) is zero if and

only if its restriction to all the three Z/2's in Z/2 Z/2 is zero. These three Z/2's come

from the three quadratic extensions; also, Z/2
r comes from the quadratic unramified

extension, proving the proposition.

The following Lemma summarizes the information we need about the characters of

irreducible representations n of D*/k*, for k non-archimedean, cf. [Si, pages 50-51]

where he calculates the characters of representations of ?GL(2, k).

Lemma 5. For K a quadratic extension of k, let n = n
x
be the representation of D*/k*

attached to a character % of K*. Then we have the following table

Let L be any quadratic extension of k, and x the unique element of L*/k* of order 2.

Denote by &n the character of n. Then we have:

2. // L = X and K/k unramified,

3. // L = K and K/k ramified,

where

We now begin analysing the lifting of orthogonal representations of D*/fc* to spin

groups.

PROPOSITION 3 s.
Jf?

Let K be an irreducible representation of DJ/fe* with values in 0(V) associated to f

a quadratic extension K of k. Then the associated representation with values in

SO(VQ lifts to the spin group, Spin(V C), when restricted to L*//c* for L a quadratic
extension of k different from K if and only if co(

-
2)
= - 1 if K is a ramified extension,
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and co( I/"
1 = 1 if K is the unramified extension where 2f is the conductor of the

representation n. (We recall that a> is the unique non-trivial quadratic character of F*.)

Proof. Let L = fc(.x ) with x^efc*. Clearly x is the unique element of L*/&* of order 2.

As n is self-dual, whenever a character
\JL

of L* appears in n, so does /x~
1

. Let us now
write the decomposition of n as L*-module as

n= Z /* Z A^+fl-l+fc-v (i)

Me* /*e*

where a and ft are integers ^ a, fe ^ 1, v is the unique character ofL*/k* of order 2, and

Jf is a finite set of characters of L*/&* of order ^ 3. Since the dimension of n is even,

a = b. Note that v(x )
= 1 except in the case when L is a quadratic unramified

extension of k with q
= 3 mod (4) in which case v(x )

= 1.

By Lemma 3, the representation n of L*/k* with values in S0( V@C) lifts to the spin

group, Spin (7C), if and only if

As XQ has order 2 in L*/k*, all the characters of L*/fc* take the value 1 on x . Let r be

the number of characters
IJL
from X such that /J(XQ )

=
1, and let 5 be the number of

characters u, from Z such that /i(x )
= 1. From Lemma 5, the character of TT at x is

zero. Assuming that L is not the quadratic unramified extension with q
= 3 mod(4), so

that v(x )
=

1, we have from the decomposition of n as in (i)

dim (TT)
= 2(r + s) + 2a (ii)

7t(x )
= 2(r- 5)

= 0, (iii)

From (ii) and (iii),

dim(Tr) = 4s -f 2a. (iv)

Also,

From (iv) and (v), and using Lemma 5 for the dimension of TT, it follows that if K is

a ramified extension of fc, and L is not the quadratic unramified extension of k with

q
= 3 mod (4), the representation n restricted to L*//c* lifts to the spin group ifand only

if q
== 5 mod (8) or q = 1 mod (8). Similarly, when K is the quadratic unramified

extension of /c, the representation n restricted to L*/fc* lifts to the spin group ifand only

if q
= 3 mod (4) and/ even. Finally, ifL is the quadratic unramified extension of k with

q
= 3 mod (4), then the representation n restricted to L*/k* lifts to the spin group if and

only ifq
= 1 mod (8) as follows from a similar analysis. All these conclusions combine to

prove the proposition.

We next consider the lifting of a representation n of DJ//c* associated to a quadratic

field K when restricted to K*/k*. In this case the obstruction to lifting is related to the

epsilon factor of n. We will assume that the reader is familiar with the basic properties of

the epsilon factor for which we refer to [T]. We, however, do want to state two theorems

about epsilon factors which will be crucial to our calculations; the first due to Deligne
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[D2, Lemma 4.L6] describes how epsilon factor changes under twisting by a character

of small conductor, and the second is a theorem of Frohlich and Queyrut [F-Q,

Theorem 3].

Lemma 6. Let a and /? be two multiplicative characters of a local field K such that

cond(a) ^ 2 cond(j8). For an additive character
if/ of K, let y be an element of K such that

a(l +x) = *l/(xy) for all xeK with val(x)^ cond(a) if conductor of a is positive; if

conductor of a is 0, let y = 7r~
cond(^ where n

k is a uniformising parameter of k. Then

Lemma 7. Let Kbea separable quadratic extension of a local field k, and \j/
an additive

character of k. Let
\I/K be the additive character of K defined by \l/K (x)

-
i//(tr x). Then for

any character i of K* which is trivial on k*, and any x eK* with tr(x )
=

In the next proposition we analyse the lifting of a representation n of D$/k*
associated to a quadratic field K when restricted to K*/k*.

PROPOSITION 4

Let n be an irreducible representation of D%/k* with values in 0(V) associated to

a character x of K* for a quadratic extension K of k. Then the associated representation
with values in SO(VC) lifts to the spin group, Spin(VC), when restricted to K*//c* if

and only if B(K) = -
co(2) if K is ramified, and o>(

-
l)
f

(n)
= 1 if K is unramified and the

conductor of n is 2f.

Proof. The proof of this proposition is very similar to that of Proposition 3. Since the

proof is essentially the same in the case when K is unramified or ramified, and in fact

since the unramified case is much simpler, we will assume in the rest of the proof that

K is ramified.

Since k has odd residue characteristic, K*/k* has exactly one character of order

2 which is an unramified character of K* taking the value 1 on a uniformising

parameter nK of K; denote this character by v. We fix nK such that nk
= n2

K belongs to

k so that K =
/c(y/7cj. Clearly % is the unique element of K*/fc* of order 2.

Let us now write the decomposition of n as *-module as in Proposition 1:

*= Z ^ Z H'^a'lQb'v (i)

where a and b are integers ^ a, b ^ 1, and X is a finite set of characters of K*/k* of order

^ 3. Since the dimension of n is (q + l)q
f ~

\ it is in particular even. Therefore a = b.

By Lemma 3, the representation n of K*//c* with values in S0( F C) lifts to the spin

group Spin(F C) if and only if

As nK has order 2 in K*/k*, all the characters ofK*//c* take the value 1 on nK . Let r be
the number of characters u from X such that u(nK )

=
1, and let s be the number of
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characters /z from X such that n(itK )
= - 1. Therefore from the decomposition ofn as in

(i) we get,

dim(Tr) = 2(r -f s) + 2a (ii)

2(r-s), (iii)

- 1^*- (iv)

/

From (ii) and (iii),

dim(Ti)
- Qn(nK )

= 4s + 2a. (v)

Using Lemma 5 for the character of n at nK we get

and as dim(Tr) = (q + l)q
f ~

*, we get from (v) that

(q + 1)*/'
* + 2G/ o)(2)x(7EK)

= 4s + 2a. (vi)

We next calculate the epsilon factor &(n). As the associated representation of the Weil

group is induced from the character % of K*.

Here ^ fc
is any additive character of fc, and \//K is the additive character ofK obtained

from
\l/ k using the trace map from K to k.

We now use the theorem of Frohlich and Queyrut to calculate e(%, \I/K ).
As the

restriction of % to k* is a)
K/k

and not the trivial character, we cannot directly apply this

theorem. However, a slight modification works. For this observe that as k has odd

residue characteristic, the quadratic character co
K/fc

of /c* is trivial on 1 -I- nk (9k where &k

(respectively (9K ) is the maximal compact subring of k (respectively K). Also, since K is

a ramified extension,

Use this isomorphism to extend <o
K/k

from to <P and then extend this characterof

0-k* to K* in one of the two possible ways. Denote this extension of co
x/k

to K* by a>.

As the conductor of o> is 1, by Lemma 6,

e(7t)
= e(r &-co~

x
, il/

where j; is the element of K* with the property that

%&(! + x) = i/^xy) for all x with val(x) ^ fcond ^,

therefore y = n^
(2f+1)a (x) + higher order terms. It follows that
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From the definition of epsilon factors,

x =

and therefore,

Comparing with the definition of G
x , we get

G
x
^o)

Klk (a (x)'nk )'e(o)Klk9 \l/k ).

Using (vii),

Finally, we can use (vi) to give the value of s as follows:

4s + 4a = (g + !)</"
1
4- 2a + 26(n).

We note that by Tunnell's theorem, the trivial character ofX* appears in n ifand only if

e(7c)-e(7rcu jc/fc
)= ~o>

K/k(- 1).

But since TI s TC <8> &>*/*
and (TI)

=
1, the trivial character ofX* appears in TT, i.e. a = 1,

if and only if co
x/k ( 1)

= 1. Now the proposition can be deduced by a case-by-case

analysis depending on the values of co(2) and a>(-~ 1).

Propositions 3 and 4 can now be combined using Lemma 4 to give the following

theorem.

Theorem 1. Let n be an irreducible representation of DJ/fc* wif/i values in 0(V)

associated to a character i of K* for a quadratic extension K of k. Then the associated

representation wi'rfi values in SO(V C) lifts to the spin group, Spin(VC), if and only if

co(-2)= - I and &(n) = a)(- 1} if K is ramified, and a>(- Vf~
l = lande(K)= I if

K is unramified and the conductor of n is 2f.

Remark 2. We do not know when an orthogonal representation of a connected

compact Lie group can be lifted to the spin group, say in terms of the highest weight of

the representation. The question is interesting for finite groups too, for instance the

symmetric group all whose representations are known to be orthogonal, or for finite

groups of Lie type.
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Abstract A given n x n matrix of rational numbers acts on C" and on Q". We assume that its

characteristic polynomial is irreducible and compare a basis of eigenvectors for C" with the

standard basis for Q". Subject to a hypothesis on the Galois group we prove that vectors from

these two bases are as independent of each other as possible.

Keywords. Irrationality; Galois group; eigenvectors.

A square matrix AeGL(n, Q) can be considered as acting on Q" and on Q" C = C".

The action on Cn
is best understood in terms of eigenvectors and that on Q" in terms of

the standard basis e
l ,

. . .
,
e
n where e

{

=
(<5 fj )]

= l
. We shall study the possibility of linear

dependence (over C) between vectors from these two bases.

An eigenvector corresponding to an irrational eigenvalue clearly cannot lie in Q".

But can it lie in K C where V is some codimension one subspace ofQ"? How many of

the coordinates of an eigenvector can be rational? And could a non-zero C-linear

combination of r eigenvectors lie in V C where V is some codimension r subspace of

Q rt

? Because we can work with A conjugated by a change of basis matrix in GL(n, Q) it

is sufficient to consider these questions for subspaces spanned by vectors of the

standard basis of Q".

To avoid rational eigenvalues let us assume that the characteristic polynomial %(A) is

irreducible over Q. Since x(A) is separable there are n distinct eigenvalues and A is

diagonalizable. Moreover, there is no ^-invariant subspace of Q". Now if there was an

^-invariant subspace U then eigenvectors in U C would be linearly dependent over

C on vectors that form a Q-basis for U, and we have avoided this type of possibility of

linear dependence by the hypothesis that %(A) is irreducible.

Let F denote the splitting field extension of #(,4) over Q and F denote the Galois

group of this extension. Then F acts on the set of roots ot%(A). This action is transitive

[1, p. 66]. When 1 ^ r < n we call the action r-homogeneous if, for any two subsets

consisting of r roots, there is an element of F that takes the elements of the first set to

those of the second. Certainly the action ofF is 1-homogeneous. It is r-homogeneous if

and only if it is (n
-
r)-homogeneous. If F is the symmetric or alternating group on

n symbols then the action is r-homogeneous for each r.

Theorem. Suppose that the characteristic polynomial %(A) of AeGL(n, Q) is irreducible,

so that the eigenvalues a
l ,

. . .
,
an of A are distinct. Consider a matrix BeGL(n, C) whose

i-th row is a left eigenvector of A corresponding to the eigenvalue a,-, l^i^n. Let

T denote the Galois group of the splitting field extension F:Qof %(A), and fix 1"^ r < n.

If, for each q with 1 ^ q ^ r, the action of F on {a t ,
. . .

,
aB }

is q-homogeneous then every

r x r minor of B has non-zero determinant.

269
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Remark L The determinant of an r x r minor of B is equal (at least up to sign) to the

determinant of a matrix obtained from B by replacing the n r rows not in that minor

by the n - r vectors of the standard basis that do not correspond to any of the r columns

in the minor. Thus the theorem asserts that any set of r eigenvectors and n r vectors ^
from the standard basis is independent. (Independence over F is equivalent to

independence over C since both are equivalent to the vanishing of the determinant.)

Two corollaries follow immediately.

COROLLARY 1

// F is the symmetric or alternating group on n symbols then any set of n vectors taken

from among the standard basis vectors and eigenvectors corresponding to different

eigenvalues is independent over C.

COROLLARY 2

An eigenvector of A cannot lie in F C when V is a codimension one subspace o/Q
n

.

"Si

Remark 2. Ifx = (x l , . . . , xJeC" has x
l ,

. . .
,
xr+ teQ then x = fl

+ I] =r + 2xj
e
j

v c
for the codimension r subspace V of Q" spanned by fi,er + 2 ,...,en

where
\

/1
:
=
Z^iJxj

e
JeQ

n
. Thus Corollary 2 implies that no eigenvector can have two \.

coordinates rational; the conclusion of the Theorem implies that a C-linear combina-

tion of r eigenvectors can never have r + 1 coordinates rational. However, the precise

number of coordinates that are rational can change if we change the basis of Q".

Remark 3. If

'0 -1\

A =
100
010 1

\0 1 0]

then i(A) = x4 x 2
-f 1 is irreducible and A has eigenvalues a, a" 1

for a a square

root of (1 4- z\/3)/2. Then Galois group of %(A) is the Klein four group, which is not

2-homogeneous. So this case does not satisfy the hypotheses of the theorem if r = 2.

A has left eigenvectors v
l
=

(1, a, a
2

,
a3

) and v2
=

(1,
-

a, a
2

, a3
) corresponding to the

eigenvalues a. But then v
l
+ v2

= 2e
l + 2a2

e3 so that these four vectors are linearly

dependent and the conclusion of the theorem is not satisfied. Thus some hypothesis on
the Galois group is needed.

Remark 4. The theorem arose from work on hyperbolic total automorphisms. Here
A is assumed to have only integer entries and det(,4)

= 1. Then A induces an

automorphism A of the quotient group R
W
/Z", which is the n-dimensional torus T".

A vector subspace of R" that has a basis in Q" or Z" corresponds to a lower-dimensional

torus in Tn
, If A has no eigenvalue of modulus 1 the toral automorphism A is called

hyperbolic. A hyperbolic^ has elaborate dynamical properties: on the one hand, for

some xe T" the orbit {A
k

x:keZ} is dense in T", on the other hand the periodic (i.e.

finite) orbits are the orbits of rational points (i.e. points ofQn
/Z

n
) and these form a dense

subset of Tn
. (See Theorems 3.3 and 6.2 of [2] or 1.1 1 of [3].) Study of these dynamical
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properties uses R" = ES EU where Es = {veR":A
k v-+Q as fe->oo} and Eu = {veR":

A kv-+Q as fc- oo
}.

Our theorem gives algebraic conditions under which the

projections of Es and Eu
to Tn

are in general position with respect to the lower-

dimensional tori. Let %r
denote the characteristic polynomial of the automorphism

induced by A on the homology group Hr(T"). Then the roots of %r
are products of

r distinct roots of %(A). If xr
is irreducible then the action of F is r-homogeneous, which

helps in checking the hypothesis of the theorem.

Proof of Theorem. We work in F" where (A OL
1 I)...(A~ zn l)

= and each A a,-/

has nullity one. For each), choose a left eigenvector VjF" corresponding to
a,-.

Any element a of the Galois group F is a field isomorphism a:F-+F that leaves

Q fixed pointwise. <r induces a permutation of {a 1? ...,an }
and we shall write

*fy)
=

**(,,<;>

Now <j induces a Q-linear map <j:F"->F
n

. Up to multiplication by constants,

<j permutes the eigenvectors ofA because d(v^A
=

d(VjA)
=

fffajVj)
=

(7(ctj)a(Vj)
so that

9(vj)
=

c(<?J)v n(ff)(j)
for some non-zero c(<rJ)eF.

Now suppose, if possible, that r vectors from {v i9 ...,vn }
and n rfrom {e i9 ...

9
en }

in Fn
are linearly dependent over F and that r is the least number for which this is

true. By Remark 1 it suffices to find a contradiction to the existence of such vectors. By

renumbering if necessary we can assume that the vectors are v 19 ..., vr9 er + l9 ...
9 en .

By the dependence there are /? t , . . . , /?weF, not all zero, with

Since r is the least possible, /?,.
^ for 1 ^j ^ r.

Since the Galois group F is r-homogeneous we can, for k = 0, 1, . . . ,
n r, find c^eF

for which the permutation n(ak ) maps { 1, . . .
, r} to {k + 1, . . .

,
k -j- r}. Apply each ak to

(1). This gives

j=l j=r+l

The n r + 1 vectors on the left hand sides of (2) all lie in the (n
-

r)-dimensional

subspace of F" spanned by e
r + 1 ,

. . . , en so they are linearly dependent over F. Thus, for

some fc^n r, 2r

j= 1
Gk (f}j)c((rkJ)v1t(ffk)(j)

is a linear combination of I*
r

j=1 ffm (fij)

CKJ K(<rw)u)> ^ m < fe. Now ffk(vj)
= c(akJ)vn(ffk)U)

= c(akj)vr+k when; = (n(ak))'
1

(r + fe). For this value of7 it is ak (^j)c(ak ,j') that is the (non-zero) coefficient of vr+k and

so v
r +k is a linear combination of v

1 , . . .
,
vr+k _ x , which contradicts the independence of

the eigenvectors, and so completes the proof.
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Abstract. Some very precise results (see Theorems 4 and 5) are proved about the a-values of

the /th derivative of a class of generalized Dirichlet series, for / ^ / = I (a) (1Q being a large

constant). In particular for the precise results on the zeros of C
(/)

(s)
- a (a any complex constant

and / ^ / ) see Theorems 1 and 2 of the introduction.
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1. Introduction

The object of this paper is to prove the following two theorems.

Theorem 1. Let 5 =
( log f } } ( log- 1 . There exists an effective constant e >0
V V lo8 2/A 2 /

such that if & is any constant satisfying < e ^ e , then the rectangle

1 / 3

^t^(2k + 2)n I log-

contains precisely one zero of C
(0

(s)> provided I exceeds a constant 1 = I (z) depending

only on e. This zero is a simple zero. Moreover this zero does not lie on the boundary of this

rectangle and further lies in

+ s).

Here as usual s = a 4- it and k is any integer., positive negative or zero.

Theorem 2. Let S = (loglog 15) (log 15)"
1 and a any non-zero complex constant. There

exists an effective constant & >Q such that if e is any constant satisfying < ^ e ,
then

the rectangle

^t^ T +

where T =(Im log + 7E/ + 2fc7r)(log 15)" S contains precisely one zero of

provided I exceeds an effective constant 1 = I (a, s) depending only on a and e. This zero is

a simple zero. Moreover this zero does not lie on the boundary of this rectangle and

further lies in

<r^l(S + e).

* Dedicated to Prof, Paul Erdos on his eighty-first birthday
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Here k is any integer, positive negative or zero.

Remark. In [1] we dealt with slightly different questions on the zeros in <r>^ of

(0
(s) a where a is any complex constant and / is any fixed positive integer. Interested

reader may consult this paper. However the results of the present paper deal with large

/ and are more precise.

The main ingredient ofthe proof ofTheorems 1 and 2 (and the more general results to

be stated and proved in 3 and 4) is the following theorem (see Theorem 3.42 on page
116 on [2]).

Theorem 3. (Rouche's Theorem). // /(z) and g(z) are analytic inside and on a closed

contour C, and \g(z)\ < \f(z)\ on C then /(z) and /(z) -f g(z) have the same number of

zeros inside C.

Remark 1. In what follows we use s in place of z.

Remark 2. It is somewhat surprising that we can prove (with the help of Theorem 3)

Theorems 4 and 5, which are much more general than Theorems 1 and 2. These will be

stated in 3 and 4 respectively.

Remark 3. Theorems 4 and 5 can be generalized to include derivatives of C

L functions and also of C function of ray classes ofany algebraic number field and so on

But we have not done so.

2. Notation

{ln }(n = 1, 2, 3, . .
.) will denote any sequence of real numbers with A

x
= 1 and^ An+ 1

-
An ^A where A(^ 1) is any fixed constant. {an } (n

=
1, 2, 3, . . .)

will denote any sequence
ofcomplex numbers with ^ = 1 and \an \ ^ nA . k will be any integer, positive negative or

zero. Sn(n ^ 2) will denote (loglog AB )(log ln)~
l

3. A generalization of Theorem 1

Theorem4 Let w

-l

^

V V toSAio //

log-
1

)
. Also let An+ !

< Xl for alln>l. There exists an effective constant
A
no /

such that if e is any constant satisfying < e ^ 6 , then the rectangle

where T = ( Im log I -^ ] J

1 log-^
)

, contains precisely one zero of the analytic
\ V o / / \ ^no /

function
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provided I exceeds an effective positive constant / = lQ(A,s,n ) depending only on the

parameters indicated. This zero is a simple zero. Moreover this zero does not lie on the

boundary of this rectangle and further lies in

a^l(d + e).

Remark. Theorem 1 follows by taking n = 2, An
= n and a n

= 1 for all n.

The following lemma will be used in this section and also while applying Theorem 5

of 4 to deduce Theorem 2.

Lemma 1. For any (5>0 the function (logx)x'* (of x in x^ 1) is increasing for

1 <x^exp(5
-1

) and decreasing for x^exp^"
1

).
It has precisely one maximum at

x = exp(<5~
1

).

Remark. The maximum value is (ed)~
1

- The proof of this lemma is trivial and will be left

as an exercise.

To prove Theorem 4 we apply Theorem 3 to

and

where Jn = a
n (a^)~

l
. It suffices to prove that f(s) + g(s) has its zeros as claimed in

Theorem 4.

Lemma 2. The zeros of f(s) are all simple and are given by S = SQ where

for all possible values of log( a'no+1 ). If s = <TO 4- itQ then

( **n +'

i HO '

i

log-r
log/Bo

and

Also

/ An+1 \-

-<+i))(log-f I

V 2
no /

Proo/ The proof is trivial.

Lemma 3. For a ^ 200 >4, w

/I
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where

Proof. The proof follows from

Y i 'if
logM

JrJ "

and the fact that

'

A.

Remark. Hereafter we write a = 5 Q l and

Also we remark that the condition cr ^ /(<5
-

e) is the same as a ^ 1(6 e) with a change

of s.

Lemma 4. Let S = S(a). Then for <j^l(d s) we have,

provided / > J = 1 (A, ,
n

), which is effective.

To prove this lemma it suffices to prove that

This will be done in two stages. We have (by Lemma 3)

-)- z w^
In Lemma 5 we prove that exp(6~

1

)< Ano+1 and so by Lemma 1 it follows that

(log AH)An

~*
is decreasing for n ^ n + 2. Hence it suffices to prove that

This will be done in Lemma 6. This would complete the proof of Lemma 4 since for all

large n

( logA ; \-5+e
n \l

An
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is less than a negative constant power of /ln .

Lemma 5. We have

Proof. Since for < x < 1 we have -
log(l

-
x) > x, it follows that

5 = ( log ( 1 I 1 :

j-^
2-

1 11 (
log-y^

A+.V

This proves the lemma.

Lemma 6. We have

-}(T^}'
<I -

t- 1 / \
A
n + 2/

Proof. We have l
no + 2 < l*Q+l and also for < x < 1 we have log(l + x) < x. Using

these we obtain

and so

and since (log Ano + 1 )

~
l < 5, we obtain Lemma 6. Lemmas 2 and 4 complete the proof of

Theorem 4.

4. A generalization of Theorem 2

Theorem 5. Let d
ni

be the maximum of 6 n taken over all n for which a
n ^Q and n>l.

Suppose that for all n^ 1, n 1
we have 6

ni

- dn ^ A" 1 and also k
ni
-e^A~ l

. Wefurther

suppose that \ani \^A~
l and put d ni

= d. There exists an effective constant such that for

all e satisfying Q<s^e ,the rectangle

{a ^ 1(5
~
el T -n(\oglJ-^t^ T + n(\ogAJ-

l

}

where T = (Im log( fl
Bl ) + 2/c7i)(log>lni )~ ^ contains precisely one zero of the analytic

function

Z ^
n=2

provided I exceeds an effective constant / = 1 (A, e, n x ) depending only on the parameters

indicated. This zero is a simple zero. Moreover this zero does not lie on the boundary of
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this rectangle and further lies in

Remark. Theorem 2 follows by taking Xn
= n and a

n
=

(
-

1)
/+ 1 a' 1

for all n > 2. Note

that the maximum of d n occurs when n = 15. It is necessary to check that <5 15 > <5 16 . In

fact we have

*
e = 15-21. ...logjo^V =0434357... and log^jfe

1
=0434455...,

by using tables.

To prove Theorem 5 we apply Theorem 3 to

and

where the asterisk denotes the restrictions n ^ 1, n l
.

Lemma 1. The zeros of f(s) are all simple and are given by s = s where

s = (log(- a
ni ) + HoglogAjaog A

Wi )-
1

/or a// possible values of log(
- a

ni ). // s = <TO 4- zt05

<TO

and

t

Also

Remark. We write <r = <5 / and ^^'"Mlogla^lXlogA^)"
1 + 5. The condition

<r ^ /(^o e) is the same as o- ^ /(5
-

fi) with a change of e.

Proof. The proof is trivial.

Lemma 2. For a^l(d s\ we have

Proo/. LHS is trivially not more than

for all a ^ 200 A. This proves the lemma.

Lemma 3. We have for ^^1(8 e),
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Proof. Using log hn
= Un )

6n we obtain, by Lemma 2,

By the hypothesis ofTheorem 5 we see that 6 dn ^ A
~

*

(note also that A
Wi

so that <5 ^ - --
r-j

if kn i
^ e

e
) and so Lemma 3 is proved.

Lemmas 1 and 3 complete the proof of Theorem 5.

Open questions

1) How much can one generalize Theorems 1 and 2?

2) Whatever the integer constant / ^ 1 and whatever the complex constant a, prove

that C
(0

(s) a has infinity of simple zeros in a > |, (more precisely T simple zeros

in (cr ^ | + (5, T ^ r ^ 27) for some absolute constant 6 > 0).
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Given a locally compact abelian group G, a subset A of the dual group X is called

a topological Sidon set if any be/ 00

(A, namely any bounded complex-valued functions

on A, is the restriction to A of the Fourier transform of a complex bounded Radon
measure on G. These sets play an important role in harmonic analysis ([LR], [M]).
When G is compact, X is discrete and the notion of topological Sidon sets coincides

with that of Sidon sets. ([LR], [M].)
For any topological Sidon set A as above there exist c ^ 1 and a compact subset K of

G such that any be/ 00

(A) is the Fourier transform of a measure which is supported on
K and has norm at most c

\\
b

\\ ^ . When this condition holds for a c ^ 1 and a compact
subset K, A is called a (c, K) topological Sidon set.

Sidon sets are known to be 'thin' set
( [LR], [M], [P] ). Further, estimates are known

for the number of elements in intersections of Sidon sets with finite subsets (see

Theorem 3). The purpose of this note is to give the similar estimate for the number of

elements in intersections of topological Sidon sets in Rm
with compact convex subsets.

Let / denote the Lebesgue measure on Rm . For a set E we denote by |

E
\

the cardinality of

E. Then our result shows in particular the following.

Theorem 1. Let weN. Then for any compact set K c= Rm and c ^ 1, there exist ad>0
and a neighbourhood UofQeR such thatfor any (c, K) topological Sidon setA ofR

m and

any convex subset A of Rm we have

We deduce from the theorem the following criterion for orbits of linear transform-

ations to be topological Sidon sets.

COROLLARY

Let A:Rmh->Rm be a linear transformation and veRm . Then {A"(v)\neN} is an infinite

topological Sidon set if and only if v is not contained in any A-invariant subspace ofR
m
on

which all the eigenvalues are of absolute value at most 1.

281
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While the estimate as in the theorem is adequate for the above corollary, it seems

worthwhile to note that our argument below gives not just existence of a neighbour-

hood (/, but a concrete way of choosing such a neighbourhood. This is of some interest

since the right hand side would typically be big when U is small and so for getting

a better estimate one would be interested in choosing U as big as may be allowable. We
shall prove the following stronger version of theorem 1.

Theorem 2. Let raeN. Then for any c ^ 1 there exists a d > such that the following

holds: for any compact set K of R
m

, any(c, K) topological Sidon set A of R
m and any convex

subset A of R
m we have

\

A n4| <dlog(/(X + 3 U)/l(U)), where U = {AeR
m
|supX6KuB

|I?L ! AfXjl < l/47ic}, B being any basis of R".

We shall now recall a result from [LR], on which our proof of Theorem 2 is based,

prove some preparatory results and then proceed to prove the theorem.

A finite subset A of a discrete topological group X is said to be a test set of order M,

where M ^ 1, if \A
2 A' 1

1
^ M\A\.

Theorem 3 [LR]. If E^X is a Sidon set with Sidon constant K ^ 1, then \A r\E\ ^
2>c

2eM log |
A

| for test sets of order M such that \A\^2.

The following proposition signifies that any countable set close to a topological

Sidon set is again a topological Sidon set. It is just a higher dimensional version of

Lemma 3 of Ch. VI of [M] and is deduced analogously, as indicated below.

PROPOSITION 1

Let A = {ln }%L !
be a (c, K) topological Sidon set in Rm and p>lbe given. Let e be such

that (1
-

ec)~
1 = p and let < 6 < & and W = {A6R

m
|supX6X |f= l x^l < 6/4n}. For each

n let X
nEAn + W. Then A' = {^} =̂1 is a topological Sidon set and further any function

b in /(A') is the restriction to A' of the Fourier transform of a measure jueM(R
m

)
wit/i

Proof. SinCe A is a topological Sidon set, A is a coherent set of frequencies, (cf : [M],
Theorem I of Ch. VI for a proof in the case m = 1. The proof actually holds in general)

We now argue as in the proof of the assertion (a)=>(c) in Theorem X of Ch. IV of [M]:
The argument there shows that for the set W as above {^n -h W}^L l

are mutually

disjoint and if. H:A -f VT-*A x W is the (well-defined) map such that

H(An + w)
=

(in , u\ for all neN, we W, then for each geB(\ x W), gHeB(A + W) and

_ Let bel*(A') be given. Let/(An + u)
= b(Xn\ Vn, Vwe Wand let/ be the restriction of

/to A. Since A is a (c, K) topological Sidon set, there exists a measure /ieM(R
m

) such

that u = 'f on A and \\u\\ ^cll/H^. Then /z
x d yields an element of B(A x ^; we

denote it by g and put v = gHeB(h + W). Then

Hencethereexistsameasurev6M(R
m
)suchthat ||v|| <pc||/|i 00

andv =
particular \\v\\ < pcll&H^ and v = b on A7

.

Let {x i , . . . , xm } be any linearly independent set in Rm with m elements. Then any
translate of the set {=1^10 <*<!} is called a parallelopiped in Rm

;
further if

{xj , . . .
,
xm }

is an orthogonal set, then such a parallelopiped is called a box.
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PROPOSITION 2

Let A be a compact, convex subset of Rm with nonempty interior. Then A contains

a parallelopiped P such that l(A) ^ (2m)
m
/(P).

Proof. By a suitable translation, we can assume that OeA We define an orthogonal set

{*!,..., xm } in Rm and a linearly independent subset {j>i,...,>'m } of A by induction as

follows. Let x
l
= y^eA be an element of maximum norm. Assume that for some

fc < m 1
,
an orthogonal set {x 1 ,

. . .
,
xk } and a linearly independent subset {y 1 , . . . , yk }

are chosen. Let P
fc
:Rw -~><x 1 ,...,xk >

1
be the orthogonal projection map onto the

subspace of Rm
orthogonal to {x t ,

. . .
,
xk }.

Choose xk + 1
to be an element of maximum

norm in Pk (A)\ since A has nonempty interior xk+1 ^0. Let yk+l eA be such that

PfcOWi) ***!- Clearly {x 19
...

9
xk+i } is an orthogonal set and {^,...,^+1} are

linearly independent. By induction this yields the sets {x i9 ...,xm }
and {y l , . . .

, ym }
as

desired.

Let / be the box generated by {i 19 ...,xm },
i.e. / = {ZJ"asl f

i
x |0<fI

.< 1}. Let

J = {I?L !
f

f
x

t

.

I

- 1 < r < 1}. Then l(J)
= 2

m
/(/). If -ae.4 and (a l , . . .

, aj are the coordi-

nates of a with respect to the vectors x
ls ...,xm ,

then |a.| < ||x (.||
Vi and hence aeJ.

Therefore ^4^J and consequently l(A) ^ /(J)
= 2

m
/(/). Let P be the parallelopiped

generated by {y 1 /m, . . .
, ym/m}, i.e. P = {IJ"= j

t
f^/m|0 < t ^ 1}. Since A is convex and

OeA it follows that P c 4. The matrix of the transformation x <-)>; is lower triangular

with diagonal entries equal to 1. Therefore /(P) = m
m

/(/). Hence we get l(A) ^ (2m)
m
/(P).

Proof of Theorem 2. Write A = {Art } rt
= 1

. Let B be any basis of Rm . Let Oe(Q, l/c) be

arbitrary and let ee(0, l/c). Let I7a
= {A6R

m
|supJce^uB|Zr.i^l< e/4

^};
We aPPty

Proposition 1 to p = (1 -ec)'
1 and e, and Ue as above. Clearly, Ue is a convex,

compact and symmetric neighbourhood of 0. Applying Proposition 2 to Ue , we get

a parallelopiped P^I7e such that l(Ue)^(2m)
m
l(P). Let {z 1 ,...,zm }

be such that

P is a translate of {Z^-zJO^ t^ 1}. Let L be the lattice generated by {z 1? ...,zm }.

If we choose ^e(An -h Ue)r\L, then A' = {^}^ =1 is a coherent set of frequencies with

respect to (1,F), where F is a fundamental domain of the annihilator L of L. By
Proposition 1, A' is a topological Sidon set and any fceL(A') is the restriction to

A' of the Fourier transform of a measure ueM(R
m

) with || \JL ||
^ pc ||

b
|| w . This implies

that A' is a (pc, F) topological Sidon set ([M] ). Since L = R
m
/L and F is a fundamental

domain for L in Rm, this is equivalent to saying that A' is a Sidon set in L with Sidon

constant pc.

Now let A be a compact, convex subset of Rm
. Put A -h Ue

= B and B + Ue
= C. We

shall prove that CnL is a test set with associated constant (18m)"
1

. We have

I7a ) + (C + l/e )
-
(C +

C 4- U is a convex, compact subset ofRm
with nonempty interior. Applying Proposi-

tion 2 we get a parallelopiped P l
c C + I7e such that

/((C 4- I7e ) + (C + Ue )
- (C + 17,)) ^ (6mr /(Pi).

Then

(6mr/(P 1 ) ^ (6m)
m
/(C + 17.)

= (6m)
m
/(B + L7 + Ue ) ^ (6m)

m
3
m
/(B),

because B contains a translate of Ue . These inequalities and the fact that Ue contains
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P yields that

This proves that C n L is a test set as claimed. By applying Theorem 3 to C n L we now

get that

|An A| ^ IAn(4 4- U9 )\ ^ |A' n(A + 2l7a )| ^ d, log|Ln(4 + 2U9 )\ 9

where d
l
= 2e(pc)

2
(18m)

m
. Then

|An A\ ^ d, log(l(A + 2Ue + Ue )fl(P)) ^ d\og(l(A + 3U9)/l(U9 ))

where d is a constant depending on c, e and m. By letting -* 1/c we get the required

result.

The following theorem is analogous to Theorem II in Ch. VI of [M].

Theorem 4. // {An }^ = l
is a sequence in Rm such that for some a > 1 we have for all large

n
> IUii + 1 II ^ a

ii
^n II

then {An }J = t
zs a topological Sidon set.

This can be deduced from the following lemma in the same way as Theorem II in

Ch. VI of [M] from the analogous lemma there.

Lemma. If {^n}^ l
is a sequence in Rm

such that UH + 1 \\
> 6||AJ|, Vn, and if {bn }*=i

is any sequence in T, then there exists a point seRm such that \\s\\ ^ 1/HAj ||
and

Proof. Let 1 = (a 1 , . . . 9 am ) be a nonzero element in Rm . Let jB be a ball in Rm with radius

I/ 1|
A

||
and centre at x . Let jS

=
(a 1 /||A||

2
,...,am/||A||

2
). Then the points x are

contained in the boundary ofB and each ofthe two line segments joining x to x jJ is

mapped onto T by the map x-><x,A>. Therefore given any feeT we can find a point

yeB such that <jU> = b and B(y, 1/2||A||)
c B. By induction we choose balls and

points yneBn such that Bn+1 c B(j;w , l/6||An || )
c Bn , Vn as follows: Let B, be the ball

with centre at and radius = 1/UAJ. Let y l
eB

l
be such that <y 1^ 1 >

= b 1
and

^OJi.l/fiPilD^Bi. Suppose Bn and yn have been chosen satisfying the above

conditions. Let Bn+1 be the ball with centre at yn and radius = 1/IUW+1 ||.
Then

Bn+l ^B(yn,l/6Un \\)^Bn . Choose yn+1 eBn+1 such that <yll+1 ,All+1 > = i
ll + 1

and

(yn+i>V6|K +1 ||)c: M+1 . Let 5 be the point of intersection of {#}. Then
56 n

J B(yn ,1/6 ||/y ) also. Then for all n, ||
s - yu \\ ^ 1/6 |UJ| and hence KS,^ >- bn \

=

>
- OnUn > I ^ 1; which proves the lemma.

Proof of the Corollary. There exists a unique largest ^-invariant subspace V of Rm

such that all eigenvalues ofA on V are of absolute value at most 1 . Suppose ve V. Using
Jordan decomposition it is easy to see that there exists a c>0 such that

II
An

(v) || ^ cn
m ~ L

for all n. Let r
n
= cn

m ~ 1 and Bn the ball with centre at and radius rn . If

{A
n

(v)}^ l
= A is an infinite topological Sidon set then An

(v\ neN, are all distinct and
hence by Theorem 2 above, we have, n^|Bn nA| ^ dlog(/(Bn + 3U)/l(U)) for some
compact neighbourhood U of 0. Therefore there exists a constant D such that

n^Dlogrn for all n. Since rn
= cnm

~
1
this implies that n/logrc is bounded which is

a contradiction.
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Now suppose that v$V. Using Jordan decomposition one can see that there exists

a c> 1 and an integer k ^ 1 such that \\A
n+k

(v) \\^c\\ A
n

(v) \\,
for all large n. It follows

from Theorem 4 that A is a finite union of topological Sidon sets. Since A is uniformly

discrete it is a topological Sidon set.
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Abstract For distinct points x
! , x2 , . . .

, xn in & (the reals), let / [x l , x 2 ,
. . . , xn ] denote the

divided difference of/ In this paper, we determine the general solution f,g: &-+ of the

functional equation

for distinct x^ ,x2 , . . .
, xn in $ without any regularity assumptions on the unknown functions.

Keywords. Characterization of polynomials; divided difference; distinct points; unknown
functions.

Let^ be the set of all real numbers. It is well-known that for quadratic polynomials the

Mean Value Theorem takes the form

Conversely, if /satisfies the above functional-differential equation, then/(x) = ax2 +
bx + c (see [1] and [4] ). A cubic polynomial satisfies the following functional equation

+ y +
(1)

where/ [x, y, z] denotes the divided difference of/. Recently, Bailey [2] has shown that

if the above functional-differential equation holds, then / is a cubic polynomial. For
distinct points x

x , x2 ,
. . . , xn in ^, the divided difference of / is defined as

ffx x ~l

* = -

where

c
1 ,x2 ,...,xn;/]

]x 1 ,x2 ,...,xn]

Lx 1 ,x2 ,...,xn ;/ J

1 x

1 xl

1 Y

n-2

v.n 2

/(*!>

/(x.) .

and

1 X, X?

287
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This definition of the divided difference is the same as the one given in [2]. In explicit

! > *] can be written as

1=1 j*i \j~ i 1

Bailey, generalizing a result of Aczel [1], has shown in [2] that if /: 9* -+5R is
j

a differentiable function satisfying the functional equation L

/[x,y,z] = M* + y + 4 (2)
j

(which is a generalization of functional-differential eq. (1)), then / is a polynomial of
\

degree at most three. In Bailey's proof the differentiability of/ plays a crucial role. In I

[2], Bailey wrote "One is also led to wonder if fl_x l , x2 , . . . , xn ]
= h(Xi + x2 H-----h *)

;

andf continuous (or perhaps differentiable) mil imply thatf is a polynomial of degree no
\

more than n. At this point we have no answer" In this paper, we provide an answer to this
j

problem. Our method is simple and direct. Further, we do not impose any regularity

conditions like continuity, differentiability or boundedness on/ etc. For characteriz- \

ation of polynomials with mean value property, the interested reader should refer to

M> [2], [3], [4] and [5] and references therein.

i

Lemma. Let S be a finite subset of SR symmetric about zero (that is, S = S) and let
j

/, g : 9t -> 5R be functions satisfying the functional equation I

f(x)-f(y) = (x-y)g(x + y) for all x,>;e5R\5. (3) \

Then

f(x) = ax2 + bx + c and ()>)
= ay + b (4)

for xeSR\S and ye 91, where a, b, c are some constants.

Proof. Putting y = x in (3), we obtain f

/(*) -/(-*) = 2x0(0), forxe<R\S. (5)

I

Changing y into y in (3), we get

which after subtracting (3) from it and using (5) gives,

(x + y)fo(x
-

y)
-

^(O))
=

(x
-

y)(g(x + y)~ g(0)\ for x, ye<R\S. (6)

Fix a nonzero ue$R. Let t?e9l such that (uv)/2$S and put x = (w-ht;)/2 and

y = (w
-

o)/2. Then x + y = u and x - y = v and by (6) to get

(^W~^(0)) = %(W)~0(0)), forp6^\(2Sw), (7)

where 2S u denotes the set {2s + u\seS} u {2s
-

u\seS}.
For each fixed w, (7) shows that g is linear in u, that is of the form av 4- b, except on the J\

finite set 2S w. To conclude that g is linear on % (reals), one has to note that, if one f
takes two suitable different values of w, which is now treated as a parameter, the 1.

exceptional sets involved are disjoint and so g(v) = av + b for all real v with the same
constants everywhere. \
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Substituting this for g in (3) yields

f(x)
- ax 2 - bx = f(y)

-
ay

2 -
by, for x, yeW\S. (8)

Choosing any ye9?\S in (8) yields that f(x) = ax 2
-f bx + c for X6SR\F, for some

constant c, which is the required form of/ in (4). This completes the proof of the lemma.

Theorem. Let /, g:$l
- 9? satisfy the functional equation

/[x 1 ,x 2 ,...,x ll]=0(x 1
+x 2 + -"+x

ll ), (FE)

/or distinct x
1 ,
x2 ,

. . . , xn , tfzar is, /or x t
^ x

7-(i
^ j, ij = 1, 2, . . . , n). Thenf is a polynomial

of degree at most n and g is linear, that is, a polynomial of first degree.

Proof. It is easy to see that if/ is a solution of(FE), so also/(x) + ZJ[ I Q akx
k

. So, we can

assume without loss of generality that /(O) = = f(y^ =-'=f(yn _ 2 )
for 3^ , y2 ,..., yn _ 2

distinct and difTerent from zero. Obviously there are plenty of choices for 0, j; l ,
. . .

, yn _ 2 .

Putting in (FE),(x,0,y 1 ,...,^ II
_ 2 )

and (x,0,^y 1 ,...,yn _ 3 ) for (x 1 ,x 2 ,...,xj, we get

(9)

V k=i /

and

(10)

respectively for x =
0, y i

- - yn _ 2 and y ^ x.

Now (10) can be rewritten as

f(x)
where /(x)':

=-^--- for x, y + 0, y t ,
. . . , yn _ 3 . Then by Lemma and the

x(y 1 -x)--(yn _ 3 ~-x)

arbitrary choice of 0, y^ ,
. . . , yn _ 3 we get that g is linear and /(x) is quadratic. Hence by

(9) / is a polynomial of degree at most n. This proves the theorem.

Remark. The same conclusion can be obtained without using the Lemma as follows.

Subtracting (10) from (9), we have

3^ .Vn-2

f(x)
where L(x) = -^--, for x,y =

0, y l9 y2 ,
. .. 9 yn . 2 . Interchanging x and

x(y l x)--(yn _2 x)

y in (11) and adding the resulting equation to (11), we get

/ n-3 \ / if-2

(x-y)g[x + y+ X yk )^(x-yn-2)9(x+ Z
\ k=l / V k=l

/ n-2 \

-(y-y*-2)9\y+ I ^
V k=i /
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y rt
_ 2 intheabove,we

obtain

(x-y)G(x + y)
= xG(x)-yG(y) (W ~.

where f
G(x) = g(x + yi + -~+yn^ + 2yn _ 2 )

l

forx,)^0,-;y._ 2 ,(j^-;y._ 2),/.^ \

for x*Q9 yH . 29 (yi-yn . 2 ) 9
... 9 (yH . 3 -yn _ 2 ). Replace); by -y in (12) and

subtract the resultant equation from (12) and use (13) to get

(x -I- y)(G(x
-

y)
-

G(0)) = (x
-
y)(G(x + y)

-
G(0)) (14)

(yn - 3
- yn - 2 ). As in the Lemma, it can be shown that G is linear so that g is also linear,

g(x) = C& + b. This g in (9) shows that / is a polynomial of degree at most n.
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Abstract. A theorem concerning a product of a general class of polynomials and the

H-function of several complex variables is given. Using this theorem certain integrals and

expansion formula have been obtained. This general theorem is capable of giving a number of

new, interesting and useful integrals, expansion formulae as its special cases.

Keywords. H-function of several complex variables; general class of polynomials; expansion

formulae; integrals.

1. Introduction and the main result

Srivastava [3, p, 1, eq. (1)] introduced the general class of polynomials

[/] / _ yj\

S:M= I
( *.*, n=o,u,... (i)

a' = a '

where m is an arbitrary positive integer and the coefficients Ana,(n, a' ^ 0) are arbitrary

constants, real or complex. By suitably specializing the coefficients A
nt0l,,

the poly-

nomials S[x] can be reduced to the well-known classical orthogonal polynomials

such as Jacobi, Hermite, Legendre, Laguerre polynomials, etc.

For the H-function of several complex variables defined by Srivastava and Panda

[4; see also 6, p. 25 1], we derive the following theorem:

The main theorem

v

(l-yr
+ "-"

2F 1 (2a,2^;27;y)= aky
k

(2)

k=

then

fi / i \ / 1 \

2F, (a,/3;y:f-;}> 2F! y-a,y-/?;y + 5;y
Jo \ L J \ /

(3)

291
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where

h
(
> 0, Re

(
1+ ]T hid^/fi

^

arbitrary positive integer and the coefficients A naL,(n,
a' ^ 0) are arbitrary constants, real

or complex.

2. Proof of the main theorem

To prove the main theorem, we have (2, p. 75)

(4)

where a
fc

is given by (2).

Now, multiply both sides of (4) by S[y
h
]H(z 1 y

h
\...,zry

hr
) and integrate with

respect to y between the limits and 1, we have

f
1

Jo

1 1

= Z
O fc

= O
(5)

Express the H-function of several complex variables using [6, p. 251] and a general
class of polynomials by [3, p. 1, eq. (1)] on the right of (5), then interchange the order of

integration and summation which is permissible under the conditions mentioned in (3)

and evaluating with the following result

f j

Jo

[lJ/Wl] ( _-\

Z\
*^ /.'

,

~
F-A.,1

a' = a

(6)

where /z
; >0, Re(r + 1 + ZJ= : ^w/^)) > , |arg(z,.)| < T

t n/2, T,>0,i = l,...,r,

7 = 1,..., w<0 and m is an arbitrary positive integer and the coefficients ,4B a,(n, a' > 0) are

arbitrary constants, real or complex. We arrive at the required result.
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3. Applications

If we put a = y in the main theorem, the value of ak in (2) comes out to be equal to (f!)k

and the result (3) yields the following interesting integral

i:

'

V" V (~ n) -

A MM
/ /

^^
,/T. /

^ ^

\_-k-~ ha' :h
l ,...,hr ~\,

\_-k-hu! - I:*!,...,/!,],

(7)

where h, > 0, Re(jS) < 1/2, Re(l + ZJ x hffl/Sf) > 0, |arg(zj)| < T
f 7c/2, T > 0,

i= l,...,r; j= l,...,u
(I) and m is an arbitrary positive integer and the coefficients

An a,(n, a' > 0) are arbitrary constants, real or complex.
Take /?

= a + 1/2 and a = e (e is a non-negative integer) in (7), we have

[\F (-e;
Jo

i

(8)

where h
f >0, Re(l + EJ=1Mf/f)>0, |arg(z )| < 7^/2, T >0, i = l,...,r;

7 = 1,...., w
(l) and m is an arbitrary positive integer and the coefficients A n(t,(n^ y! ^ 0) are

arbitrary constants, real or complex.
Now evaluating the integral on the left of (8) with the help of (6), we establish the

following interesting expansion formula
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[(a): 9', . . .
,0] :

= !> + te' + l)
( ")mg

\
*' = o a'!

/(U+l:<ii',t'');...;<ii<'V'-')

provided that both sides exist.

4. Special cases

(i) On taking m = 2 and A^, = (- If in (3); we have

Theorem 1 (a).

//

n/2 oo

valid under the same conditions as obtainable from (3).

(ii) When m= land

Theorem l(b).

1 + !) .

in (3), we have

/? \ ^"^
' ' > ^/ ^ "fc

fc =

(9)

(10)

1
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then

p 1-,

Jo"
' ^ ' 7 2 ''

" * f n + u\ /'n + u + v + a'\ (Aa*

=.L?O<- "'(-*)(

valid under the same conditions as obtainable from (3).

" + "

(iii) Letting m = 1 and A^. =

Theorem l(c).

in (3), we get

(11)

2f!(,/; y + ijyJaF^y- 0,7 -fty + ^

a

(12)

valid under the same conditions as obtainable from (3).

(iv) Letting n->0, the theorem given by (3) reduces to a known theorem recently

obtained by Chaurasia [1, eq. (1.2), p. 193].

(v) For n = 0, the results in (6), (7), (8) and (9) reduce to the known results obtained by

Chaurasia [1, eqs (2.3), p. 194, (3.1) and (3.2), p. 195 and (3.3), p. 195].
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The importance of our results lies in its manifold generality. In view of the generality of i

the polynomials S [x], on suitably specializing the coefficients An^. , and making a free

use of the special cases of S*[x] listed by .Srivastava and Singh [5], our results can be /
reduced to a large number of theorems, integrals and expansion formulas etc. involving [

generalized Hermite polynomials, Hermite polynomials, Jacobi polynomials and its
\

various special cases, Laguerre polynomials, Bessel polynomials, Gould-Hopper \

polynomials, Brafman polynomials and their various combinations. i

Secondly, by specializing the various parameters and variables in the H-function of
|

several complex variables, we can obtain, from our theorems, integrals and expansion
j

formulae etc. involving a remarkably wide variety of useful functions (or products of
j

several such functions) which are expressible in terms of , F, G and H functions of one
j

and several variables. Thus, the results presented in this paper would at once yield
j

a very large number of results, involving a large variety of polynomials and various
[

special functions occurring in the literature. I;
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Abstract. Recently, we introduced a class ofgeneralized hypergeometric functions 7*[J*} (x, w)

by using a difference operator Ax w ,
where Axvv/(x) = :-

. In this paper an
w

attempt has been made to obtain some bilateral generating relations associated with 7*(x, w).

Each result is followed by its applications to the classical orthogonal polynomials.

Keywords. Generalized hypergeometric functions; difference operator; bilateral generating

relations; classical orthogonal polynomials.

1. Introduction

In the previous paper [2] we introduced a class of generalized hypergeometric

functions I^](x 9 w) defined by using a difference operator as follows:_ A
CY wV(a+n~

n ,

(
x _ ^[^]

A
*,w U* w

'
(a } __ *

(b V wW* 'l* w

(1.1)

where p+lFq
denotes the generalized hypergeometric functions (see, for example,

Srivastava and Manocha [8]). We also derived the following relation:

I***P)( \_ (1+oc)n p-2-i

^ ^ w
'

n,( q ) n j

q.1,0 /i \

where F^(x,j;) is a double hypergeometric function (see Srivastava and Karlsson

[7, p. 27(28)]).

The following definitions and results given by Konhauser [1, p. 303(3)], Srivastava and

Manocha [8, p. 243(1 1)] and Manocha [4, p. 687(1.3)] have been used here in regard to

the bilateral generating relations for the generalized hypergeometric function I*(x, w):

(1.3)

where

a + 1 a + 2 a-h/c
A(k;l + a)

= r , 7 ,..., r~ fc = 1,2,3...);
k k k

(a-+ n + m + 1; 1 + a;
-

x); (1.4)
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y
-

m!

x F
, -m; -a -ft̂ (1.5)

where Fj is an Appell function [6]. We also derived the extended linear generating
relation [3] as follows:

.X

w'

X

w' wt

1-r
, w, w

(1.6)

where F(3)
is Srivastava's general triple hypergeometric series (see, e.g., Srivastava and

Manocha[8, p. 69(39)]).

2. Bilateral generating relations

We have derived the following bilateral generating relations for the generalized
hypergeometric function /*(*, w):

= M _ t\- f J7P + 2:0,0,0,1
V
1 L

! r o + m- i :o,0, 0,0

: U, 1,0], [(a,): 1,0, 1,1],

-
, /Z, W/Z, 1

'

(2.1)

[A(k:l+/0:0,l,l,0]:-;-;--;-;
1~?'

F is a generalized Lauricella hypergeometric function of 4 variables and

" From (2.1), we have

X

In-
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__ Y vv Y i

2:0,0,0,1
1:0,0,0,0

):0, 1,1,0]:-; -;-;-;

wt

1-t , Jl, W/J, W

[using (1.5)].

This completes the proof of (2.1).

Applications

(i) By setting p = q and a
}
=

bj(j
=

1, 2, ... p) in (2.1), we get

5 J 5

- -,,
i r

(2.2)

KvY
t

1 V and J*(x, w) is a modified Jacobi polynomial studied by
kj t 1

Parihar and Patel [5].

(ii) On taking k=l,p = q, (a,.)
=

(fy)
and letting w -* in (2. 1), we get the known result

given by Srivastava and Manocha [8, p. 133(9)].

The following results can also be deduced by using the same technique as followed in

the previous result.

XjF(3)

W W
w, -

wt

-;(&.):-;!

[using (1.4)]. (2.3)
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Applications

(i) By writing p = q and (a; )
=

(bj)
in (2.3), we have

r

.-,- ,-,;
(Z4)

where XF
1

is Humbert's function defined in [7, p. 26(21)] and J"(x,w) is a modified

Jacobi polynomial studied by Parihar and Patel [5].

(ii) Taking limit as w -> in (2.4), we obtain the result given by Srivastava and Manocha

[8, p. 160(70)].

4 + 2:0.0,0,0

Tx "1

[(ap):l,l,0,l],[l +y:l,0, 1,1], I- 1:1,0,
0,1J,

[(&,): l,l,0,l],[l+y:l, 0,0,1],

w, rh;

[using (1.5)]. (2.5)

where h=

The following applications are obvious:

n!

w

where h = {1 +(y + 1

n!

wtfr

(2.6)

(y +
, t/z, xt/z

(2-7)
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o ooii

X X

1+a;-;
(2.8)

Applications

[As usual, we get]

; (2.9)

where F^
}
is a Lauricella hypergeometric function of n variables (see [8, p. 60(1)]).

(2.10)
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Abstract. Regularity properties of Laguerre means are studied in terms of certain Sobolev

spaces defined using Laguerre functions. As an application we prove a localization theorem for

Laguerre expansions.

Keywords. Laguerre means, Laguerre series, Sobolev spaces.

1. Introduction

The Laguerre polynomials L(x), of type a > 1 are defined by the generating function

identity

r)

, |t|<l. (1.1)

o

The associated Laguerre functions are defined by

&i(x)= L*(x)e~
x/2 x*/2

(1.2)

and they are the eigenfunctions of the Laguerre differential operator

/ n \ \
' ~

Moreover the normalized functions ^*(x) = I
-

) <&*(x) form an or-

\ V
' /

thonormal basis for L2
[(0, oo),dx]. Therefore for any fe L

2
(0, oo) we have the eigen-

function expansion

/=IX^M (
L4)

o

with

Three types of Laguerre expansions have been studied in the literature. The first one

is concerned with the Laguerre polynomials LJJ(x), a > -
1, which form an orthonor-

mal basis for L2
[(0, oo),e~*x

a
dx]. The second type is concerned with the Laguerre

functions (1.2) which form an orthogonal family in L2
[(0,oo),dx]. Considering

/ r(+ 1) Y /2

the functions /JJ(x)=
---

1 L*(x)e~
x/2 as an orthonormal family in

L [(0, co), x
a
dx], we get a third type of expansion.

303
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Several authors have studied norm convergence and almost everywhere convergence
of Riesz means of such expansions. Some references are Askey-Wainger [2], Mucken-

houpt [6], Gorlich-Markett [3], Markett [5], Stempak [7], Thangavelu [10]. Various

results can also be seen in [12], [1].

Recently by invoking an equiconvergence theorem of Muckenhoupt for Laguerre

expansion, Stempak [8] has proved the following almost everywhere convergence

result for expansions with respect to f*n (x) as well as /"(x).

(1) Z%(g,<e
c

k )L2(dx)
e (

k(x)->g(x) for almost every xe!R+ as N-oo for f <p<4 if

oc> - , and for pe ( (
1 +-

) ,4 ]
otherwise.

(2) !Q(#, /fc)L 2(xMx) /fc(x)->0(x) for almost every xeR+ as JV-> oo for < p <
2a -f 3

if a > 4, and for 1 < p < oo otherwise.
(Zcf. + 1)

In this paper we study the twisted spherical means associated with the Laguerre

expansions which we will call Laguerre means. We consider expansions with respect to

the system <p(x) = Lj;(x
2
)e~*

2/2
. Then the normalized functions

form an orthonormal basis for L2
[(0, oo),x

2ot+1
dx]. We have the mapping

T: L2
[x

2a + 1

dx] -> L2
[x

a
dx] defined by Tf(x) = -A=/(>/x), which is a unitary map-

pmg which takes t/^(x) to l*
k(x). Therefore the expansion in

\f/l
is equivalent to the

expansion in /.

We prove a localization theorem for Laguerre expansion with respect to ^J without

appealing to the equiconvergence theorem. Clearly a localization theorem follows from

the almost everywhere convergence result of Stempak given above, but this result only

says that if/ = in a neighbourhood of a point ze(0, oo), then SNf(\v)
- for almost

every w in this neighbourhood. But using the method of Laguerre means we could

identify the set on which SN/(w) -* 0.

The twisted spherical mean of a locally integrable function/ on "
is defined to be

=
I

J
(1-6)

where d/ir(w) is the normalized surface measure on the sphere {|w|
=

r} in Cn
. Such

spherical means have been considered by Thangavelu in [11], where its regularity

properties are used to prove a localization theorem for the special Hermite expansion
of L2

functions on <". The special Hermite expansion of a function/ is given by

(L?) A
f

where <p fc (z)
= Ln

k
1

(l|z |

2
)e

1/4|z|2
. Here LJ"

1

(r) stands for the Laguerre polynomial of

type n
- I . Measuring the regularity of/>P (z) using a certain Sobolev space denoted by

H^(R + ), he proved the following localization theorem:
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Theorem 1. (S. Thangavelu) Let f be a compactly supported function vanishing in

a neighbourhood of a point ze(
n

. Further assume thatfur(z)e W"^
2
(R+ ) as a function of

r. Then SNf(z)^Q as N-+ oo.

By assuming certain regularity off^r (z) as a function of r he could also establish an

almost everywhere convergence result for special Hermite expansion. In the study of

y>r (z) a crucial role is played by the following series expansion:

00

) (1.8)
jt
= IA T H AJI

for the twisted spherical means. Here fq>k denotes the twisted convolution of/ and cpk ,

where twisted convolution of two functions / and g on f
n
is defined by

"1 (e
i/2/m(z.H-)dw (19)

Cn

For a radial function / we have

M(z) = (27c)-" JRk(/)(Pk (z), (1.10)

where

Therefore from (1.8) it follows that for a radial function/ the special Hermite expansion
becomes the Laguerre expansion with respect to the family L

n

k

~ l

{j\z\
2
)e~

1/4lz]
*. The

above observation suggests that we can also study the localization problem for

Laguerre expansion with respect to the orthogonal family L(r
2
)e~

l/2r\ a > 1. What
we need is something similar to twisted spherical means. Using the local co-ordinates

on the sphere |z|
= r in $

n
it is easy to see that

(1.11)

for a suitable constant cn .

We define the Laguerre means of order a to be

fVc
Jo2n

(1.12)

(rzsin0)
a ~ 1/2

Then T? is a bounded self adjoint operator on L
2
(R + ,x

2flt+

MX).
We have the interesting formula, see [12]

*.
for oc> ~^,r ^0,z^0. From the series expansion for 7?/(z) in terms of (JP(Z) and
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using the above formula it is easy to see that T*f(z) has the series expansion

r^0,z^0,a> -
3, where <p(r)

= L(r
2
)e~

1/2r\ Here (,)a denotes the inner product in
f

the Hilbert space L
2
[# + ,x

2a+1
]. Using this notion of Laguerre means we establish

j

a localization theorem for Laguerre series expansion for fe L
2
[(R + ,x

2a+1
dx] with

j

respect to the orthogonal family <p(r). Our main result is the following: \

Theorem!. Ler/eL
2
[R + ,x

2a+1
dx],a> - 4 be a function vanishing in a neighbour-

hood Bz of a point zeU + .IfweBz is such that TJ/(w)e W (

f+
1)/2

(iR + ), as afunction of>,
;

then SN/(w)->0 as N-oo.
[

We use the following notation: L*(R + ) stands for the space L
2
[R + ,

x2a+ 1

dx], and
|

the norm and the inner product in this space are denoted by ||
.

|| a and (. , .)a respectively.
j

2. The Sobolev space W'
9(R + )

*

/

The usual Sobolev space H*(R"), for s ^ is defined to be
j

HS

(R") = {fe L
2
(R

M
): (- A + l)

s

/e L2
(R

n

)}

d
2

d
2

using the operator A = j + - - - + T-? - Since we are interested in studying the regular- I

dx
2

dx; \

ity of the function r-> TJ/(z), motivated by the expansion (1.14) we define the Sobolev

space W*(R + ) using the operator La
= -

? + ^2
I which is a positive

|_dx
2 x dx J

definite symmetric operator and the <pj's form the family of eigenfunctions with

(a-h
1\

k + r- 1. Also we have the normalized functions \l/l(z)

forming an orthonormal basis for L 2
(1R + ). We define for 5 ^ L

Ws

a(U + )
= {feL

2
l (R + ):L

sJeL2
(R + )}. (2.1) f

where L^ is defined using the spectral theorem. In other words

30
!

f X""
1

/ I d\ / a

fc =

belongs to W^ if and only if,

2

z < 00.

We now prove the following useful proposition which is needed for the proof of the

main theorem.

PROPOSITION 3

Let a > - 1 and let (pbea smooth function onR + which satisfies the following conditions

(i) cp
= Q near the origin in R +
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A localization theorem for Laguerre expansions 307

1

-.

)
as r - oo /or 7

= 0, 1, 2, 3, . . . , 2m.

TTierc t/te operatorMv:W
S

X
-+ Ws

a+l defined byM9f = <p.f is a bounded operator Vs such

that

The proof of this proposition needs the following lemmas. Before stating the first

lemma we introduce, for each non-negative integer fc, the class Ck , consisting of all

smooth functions on R + , vanishing near and which also satisfies the decay condition,

dV / 1 \
a = O , . . ,

. as r-oo. The class C
fc

satisfies the following properties: (i)

dr/ \^
r*+*+jj

Ck + l
a Ck9 (ii) If (peCk,-<peCk+1 , r<peCk __ 13

for k> 1, (iii) If cpeCk , (p
(J]eCk+j .

Lemma 4. Under the above assumptions on m, cp and a we have L^^^M^
Y

d
-

1 L\
m
with <pk>t

eCk .

Proof. We claim that L^+ j_ M^ can be written as a linear combination of the form

with (pkteCk . (2.2)

r +fc^ \ary
^

First we note the following relations

d n 7^

Qr

L~t- **-*- <>
rdr

Using this relation in the above we get

We also use the relation,

where b^ c
1 ,

c2 , are constants. This can be easily proved by induction on k. We prove

(2.2) by induction on m. (2.2) is clear for m = 1. Assume (2.2) for m =;'. Now,
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In the above computation we have used (2.3). In view of (2.6), the first term of the

above is

k-l /i\i /A k-i

ar

- I Afm-z*, z ;
t + k<j+l Aar / i = r-fk<j\ r / ar

+ I c^riY'V I.c2 (^Y"

2

Ii
t+fc^j

ar ar

Now by induction hypothesis we have cpkteCk . Note that in the second term of the

above the coefficient of I

j

Lt

a is(l/r)
i

cpkr WQhavQ(l/r)
i

cpkteCk+i aCk
c: Ck _ i

for

i > and also rcpkteCk _ 1
. Hence the first term in (2.7) is of the required form. The

/ d Y
second term of (2.7) can be written as -2 t+k<mM- i

I 1 L'a , and <?MeC fc by

induction hypothesis. Therefore ^Jt
_ 1 t

eCk in view of (iii). Hence the second term of

/ d \k

(2.7) is also of the required form. In the third term the coefficient of L; is

\drj

M " _4_2v and <p'k ^ t
H 9k,t ^k+2 c Q by induction hypothesis and in view of

k. t t r V*,r '

Y

(i), (ii) and (iii). Similarly
-

<p'ktt occurring in the fourth term belongs to Ck + 2
c= Ck . Also

-<pk ft occurring in the fifth term Ck + 1
<= Ck . Therefore (2.2) holds for m =7 -h 1 also.

/ d\k

Thus we have Tmf = L + 1
MV L~ m

f =E^^M^ L*~ mf- Which proves the

\ /

first lemma.
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Lemma 5. f

J
Z4:L

2
(R + )-> L^(R + ) is a bounded operator whenever i is a non-

negative integer and i 4- 1 ^

Proof. We prove that L, is a bounded operator on L2
(R + )

for 1 + t < 0. We first

note that

-

This can be seen as follows. We have

+
_ \

Here we have used the relations

(i) ^(r)=-L^}

and,
/::\ ra+1 _ ra+l_ r aW H ^-i H

Now (2.9) follows from the definition of i/^. Let /e L
2
(IR + ). By definition

L'J(r)
= 4'

ar

and using (2.9) we get

^rS/^) (2.10)

where

and
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Therefore,

d

dr
a \\rSj\r

(2.13)

Now using the expansion (2.11) we calculate,

l|rr/(r)||
2 =

o

Jo

=
|T/(r)|

2
r
2 +3 dr

!o

2 ' +1

Using (2.14) and (2.15) in (2.13) we see that

one can show that
,

dr

Z42 '

=
II/L

2
(2-14)

since 1 + 1 ^ 0. Similarly one can see that

(2.15)

: 2
1|/ 1| a for 1-hf^O. Similarly

^ c
II/ II a f r some constant c, whenever j + 1 < 0, which

*

proves the second lemma.

Proof of proposition 3. We have by definition Ws

a
= L~ S

(L*(R + )). Therefore it is

enough to prove that

J4+iAfv L~ S

:L^((R + )-* Lj+1 (R + ) (2.16)

is a bounded operator. Put

where !+ 1
and L~* are defined using spectral theorem. Then clearly,

(2.18)

for some constant c independent of/. We will also prove that, for any positive integerm

Hr
m
/L +1 <c 1 ll/iU (2.19)

for some constant c
t independent of/.

V,
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Assuming (2.19) for a moment choose fl eLl(R + )
and ge L* +l (U+) to be finite

linear combinations of i/^'s and \l/%

+ 1

's, respectively. Consider the function h which is

holomorphic in the region < Re(z) < m and continuous in ^ Re(z) ^ m, defined by:

h(z)
= (T'fl9 g l )n+1 =(L: +l oM^L-'fl9 g l )a+l

'

(2.20)

Then by (2. 18) we have,

where 7i
= L~ i);

/i > and g l
=

L~.ft # x
. Therefore,

<^o HAIL llsi IUi

and since both L~ iy and L^ are unitary operators, we get

Similarly by using (2.19) we get

Thus we have

IM^Kcoll/JIJI^H^! . (2.21)

IMm + ^KcJ/JJI^IUi
'

(2-22)

Since /i is a bounded function we have by three lines theorem

for < t < m. In particular,

IfcWKcS-^v^llAil.ll^lL^,
that is,

KT7i^i)l<4~ r/m4/m
ll/ilUl^ill a+ i- (2.23)

Now taking supremum over all such g^L^+1 with ||0ill a+i^* we get

H T'fi II + 1 < cj~
r/m c

r

/
m

|| /! || a . Therefore T r
is a bounded operator on a dense subset of

L^. Therefore it has a norm preserving extension to L*. Thus we have

H^/ll a+ i^^ll/LV/eLa
2
(R + ),

forO<t<m (2.24)

which proves (2. 16).

To prove (2.19) we proceed as follows. By Lemma (4) we have Tm/ = I>t+k*mM(pktt

(dr)
L^~

m
' And by Lemma (5)' (j")

La'
m

is a bounded operator on Lf(R+),

whenever fe -h (t m)< 0. Also note that since q>ktt
satisfies the conditions (1) and (2) of
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the Proposition 3 for; = 0, M^ (

maps L2
(IR + )- Ll + 1 ((R + ) boundedly. Thus we get

||T
m
/|| a+1 ^Cill/lla. This completes the proof of the proposition.

3. Regularity of r
r

a
/(z)

In this section we prove that the Laguerre means T"/(z) are slightly more regular than

/, for z ^ 0. To prove this fact we use the series expansion (1.14) for T*
r f(z). Let/e Ws

a
.

Then '>
converges in L(R + ). We also use the following asymptotic estimates, (see [4] or [9])

(3.2)

. =
-$ .,. 0.3,

i/^(0) /c
a/2 as /c -> oo (3.4)

From (1.14) we have

r ,
..

* = o * V^ T -h ij

for z =

0, in view of (3.2) and (3.3). Also

2
forz = (3.6)fJo

in view of (3.2) and (3.4). Comparing (3.1) and (3.5) we see that /e W^r-* T*f(z)e
^s +(a/2)-f ( i/4)

comparing (3.1) and (3.6) we see that/e W5

a
if and only if T*f(z)e W^.

Thus we have proved the following:

Lemma 6. (i) /e W*=>r- T*/(z)e j^+</2)+(i/4)jZ ^ 0.

(w) /e ^ i/ and on/y i/ r -* TJ/(0)e W^.
Now we prove some properties of Laguerre means

Lemma 1. (i) Iff is supported in z^b, then T"/(z) as a function of r is supported in

r^b + z.

(ii) If f vanishes in a neighbourhood of z then T*f(z) as a function of r vanishes in

a neighbourhood of origin inU + .

Proof, (i) If / is supported in z^b then the integral (1.12) vanishes unless

(r
2 + z

2
-h2rzcos0)

1/2 s:b. This implies (r~z)
2O 2

. Therefore the integral (1.12)

vanishes unless |r~z|^feorr^b + z.

(ii) Again if/ vanishes in a neighbourhood {| y
-

z\ < a], a > of z, the above integral

(1.12) is zero if |(r
2 + z

2 + 2rzcos 0)
1/2 - z\^ a. Since z is fixed this says that the above
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inequality holds for r in a neighbourhood of 0. Now consider the continuous function

g(r) = |(r
2 + z

2 + 2rz cos 0)
1/2 -

z|
-

a,

defined on R + . We have 0(0)= a<0. Therefore #<0 in a neighbourhood of

as well. This means that for r in some neighbourhood of we have

|(
r
2 + z

2
4- 2rz cos 0)

l/2
z| < a. Thus T?/(z)

= in that neighbourhood.

4. A localization theorem for Laguerre expansions

Now we are in a position to prove Theorem (2) stated in the Introduction. From (1.14)

using the orthogonality of
i/rJ we get

T*f(z)(p*k (r)r
2* + x dr = T(a + 1"

o

Again from (1.14) we get,

fc
=

T
r f(z) ^(r)r

2" + Mr
o

1))-
2

r?/(z)< Hr)r
2a+ Mr. (4.2)

o

Here we have used the relation g LJ(x)
= L"N

+1
(x). We use the above representation

for S'Nf(z) to prove Theorem (2). The proof uses the following fact: If ge L, (R + ), then

the Fourier-Laguerre coefficients to,^)a -0 as k-oo. Recalling the definition of

\l/l
this means that

Jo

fJo

1

Also if ge W^(R+) then,

_ s+a/2 /44)

I o

From (4.2) we get

Ta
f (Z) xl /N 9*+^J ^451J^~- m* +1 (r)r

2
dr. ^-J '

!o r

Let h be a smooth function on (R + ) such that h(r) * 1 on the support of T*,f(z) and

h(r) = in a neighbourhood of the origin in R + . Put h(r)
=
-^-

. Thus we get

SJ/W = (T( + I))'
2

f

"

Mr) T?/(z)< Hr)r dr (
4-6)

Jo

Now if T}f(z)e W (* + 1)/2
, we have by Proposition 3 fc(r) rj/(z)e ^+ 1
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by (4.3),

as N - oo. Therefore S/(z) -*0 as N -* oo, which proves the theorem.

In view of Lemma 6, if/e H^
1/2

,
then T*

r f(z)e W (

f
+ 1)/2

,
for z ^ 0. Thus we have the

following corollary to the above theorem.

COROLLARY 8

If fe W 1

J
2
then the conclusion of Theorem 2 holds at points z^O.
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Abstract. Degree of approximation of functions by the (e, c) means of its Fourier series in the

Holder metric is studied.

Keywords. Fourier series; Holder metric; Banach space.

1. Definitions and notations

Let/ be a periodic function with period 2n and integrable in the sense of Lebesgue over

[ TC, TI]. Let the Fourier series of/ at t = x be

1

-a + (akcoskx + bk sinkx). (1)
^ k=i

Let

**W = *{/(* + ') + f(x - ~
2/(x)}. (2)

Let St(/; x) be the fcth partial sum of the Fourier series (1). Then it is easily seen that (see

C9], p. 50)

'

,. (3)

Let C2K denote the Banach space of all 27r-periodic and continuous functions defined on

[ 7i, TT] under the sup-norm. For < a < 1 and some positive constant K, the function

space Ha is given by the following:

K\x-yr.. (4)

The space Ha is a Banach space [7] with the norm ||- || a defined by

where

||/|| c
= sup |/(x)| (6)

-7C*$X^Jl

and

,7,

We shall use the convention that A/(x, y)
= 0. The metric induced by the norm (5) on

Ha is called a Holder metric. It can be seen that
||/||, ^ (2n)'~

f
||/|| for < ft

< a < 1.

315
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Thus (Ha , ||-|| a ) is a family of Banach space which decreases as a increases, i.e.

C
2;t 2 Hp 3 Ha for (K J8

< a < 1.

DEFINITION

An infinite series 2*^ cw with partial sums {} is said to be summable (e,c)(c > 0) to

sum 5, if

where it is understood that C
n + k

= when n + k < 0.

The (e,c) summability method which is a regular method of summation was

introduced by Hardy and Littlewood [4] (cf. also [5] )
as an auxiliary method to prove

Tauberian theorem for Borel summability.

It is known [6] that, if cn
= 0(1) and

c-i
k -i + q

(9)C
"~2

a
~2(l-/c)~ 2q

U

then summability of Ecn by any one of the methods (e, c), Borel exponential method

(JB, a), Borel integral method (', a), a > 0, Euler method (E, q)(q > 0) and circle method

(y, k)(0 < fe < 1) implies its summability to the same sum by any of the others.

2. Introduction

Alexits [1] studied the degree ofapproximation offunction ofHa by the Cesaro mean of

their Fourier series in the sup-norm. Since C
27C 3 Ha 2 H^ for ^ j? < a < 1, Prosdorff

[7] obtained an estimate for \\(rn (f)
-

/||^ for/e/fa ,
where <rn (/) is the Fejer means of

the Fourier series of/. Precisely he proved the following:

Theorem A ([7], Theorem 2). Let /eHa(0 < a ^ 1) and ^ ft < a. Then

nOogny-
1 (a l) '

The case j?
= ofTheorem A is that of Alexits referred to earlier. Recently Chandra

has studied the degree ofapproximation offunctions in Holder metric by Borel's means

[3] and by Euler's means [2]. Precisely, he proved

Theorem B [3]. Let ^ < a ^ 1 and let /eHa . Then

where Bn(f) is the Borel exponential mean of 5n(/; x).

Theorem C [2]. Let ^ ft < a ^ 1 and let /effa . Then

where Eq
n(f) is the Euler (E, q)9 q > mean of Sn(f; x).
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The object of this paper is to find the degree of approximation of functions by the

(e, c)-mean of its Fourier series in the Holder metric. Denoting the (e, c)-mean of (/; x)

(10)*(/,*) = <(/;x) = exp-Sn+fc (/;x),

where Sn+x(f; x) = 0, n + k < 0, we prove the following theorems:

Theorem 1. Let Q< oi ^ I and ^ ^ x. Let feHx . Then

) -/!!,
= 0(1)

logn

Theorem 2. Let Q x ^ I and Q ^ ft <a and let feHx . Further, if

*'tlogn/""
2

<

then
2jc/2n

II .(/)-//,
= 0(1)

(lognp

3. Additional notations and estimates

We use the following additional notations:

c " ck2 \
Kn (t)= h+2 Y exp (.- Icosfct

- P

-r t

e=6(n)= - ck2

exp(
-

'/='/() =
2n+l

Ttlogn
N=AT(n) =

n '

i

l
~^c

F(t)=<Dx(r)-*(t)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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Estimates. We need the following estimates:

If/sHa,0<a<l,then

(20)

y|
a

) (21)

and

exp(- nA(r + >7)

2
)
- exp(- nit

2
)
= 0(t + *?)exp(- nit

2
) (23)

K n (t)
= exp(-nAf

2
) + iMtt), where ^(n)

= 0(e~^), c><5>0 (24)

L
rt(r)=0(re-^), (c>5>0) (

25 )

If there is no confusion, we shall write throughout S as a suitably chosen positive

constant not necessarily the same at each occurrence.
^

Proof of the estimates. Estimates (20) and (21) follow immediately from the definition

of<3>x(r)and#a . Now

and

Hence (22) follows at once.

Proof of (23). We put g(x) = exp(
- nix2

). By mean value theorem for some < < 1

exp(- nA(t + ??)

2
) -exp(- nAt

2
)
=

g(t + 1?)
- ^W = w'(t 4- ^),

from which (23) follows at once.

Proof of (24) is contained in (Siddiqui [8], p. 122), and proof (26) can be found in

(Hardy [6], p. 205).

Proof of (25). We have

ck2

exp -i-sin n

00

X /cexp
-

xexpf-
n-fl V
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Proof of Theorem 1. From (3), (10) and (15), we get taking Sn+t(/;x) = 0, when k< -n

2 c
"

/ c/c
2 \ .

/ 1\ \
exp
-- sin\n+k+- }t dt

-. V / \ 2 / /

We have

C/C
2 \

.(')-./- 1 exp|-v sm.n + fc+ -) t

'

[7r
"

( ck
2
\ . /

,
1\=

/ E exp
-- sin [n + k+-]t

^nnl k ^_ n

P
V / V 2;

+
exp(-^-)sin(

+ k +
^)t*=+i V n / V 2/ J

/ cfc2Ny
\ / A

2yexp -- coskt sin\n + -
}t

k- 1 \ / ./ V 2 ;

/ c^2 \ .
/

,
1\ 1+ I exp -Isin + * +
-)*=+! \ " / V 2/ J

using (13) and (14).

From (27), (28) and (24), we get

Let

Then using (12) and (19), we obtain

'(*) = /.(y)
=
^ p 2^n%

e (t)dr + (0(n)
~

1)(/(x)
~

/0;)) - (27)

(28)

2
+ (0(n)

-
l)(/(x)

-
/(y)) (29)

n J
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L
- (r)dr

Using (20), (21) and (24), we get

L, say.

Using (31) and (32)

J = Ji -/

and

using (26), we get

Similarly (argue as in J)

We write

Using (20), we get

= 0(1) f
Jo

(30)

(31)

(32)

(33)

(34)

(35)

(36)
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Using (21), we get

f*

**0(l)\x-y\*n\ dt = 0(\x-y\
a
). (37)

Jo

Using (20), we get

= 0(1)
a " 1 e"";ua

dt

JN

= 0(l)e~
nAJV2

f
a ~ Mr (as e~"

At2
is decreasing)

J N

= 0(l)(e"
A1 8n

) (A > however large)

Using (21), we get

pc.e
-A*>

-yn dt

JN l

= O(|x - yD( -T
) (A > however large) (39)

\ n J

as in (38).

Now

_H r *.,,.(. +
'

J,2sinft V 2

2 fF(t) . . / 1\ .= - ^e"** sin n + -tdt

+ F(t) ..e-^sin +
TrJ,

w
L2sm^ tj V

= /
2ll
+ /

2>2 ,say.
(40)
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Using (20) and the fact that

we get

"~KL * w
l2sinif f

v 1J L_ *

= 0(1) rVv 1*'

J 1J

- 1
) f t

a
~(e~

;int2

)dt
J rj

dt

=
(n

~ x " a
) (integrating by parts).

Next, we write

= fVW
)n\ t

F
"' -

f
. \

\ 2

( 1

"

(n +
l

-)tdt
\

(since sin(n + %)(t -f jy)
= sin(n + ^)

2

= M! 4- M2 -fM3 + M4 +M 5 , say. (
42)
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Using (22), we have

fw e
-*>

f"dt rt /logn\ ....

M, = O(^) ^- dt=o(^) 7
= (--- (43)

J 1\ J tj

Using (20) and (23)

pN
(r + i/)

a ~ l e~
Al" a

(t

J ?

r-*
a

dt

= O(n~
a
) (integrating by parts). (44)

Using (20), we get

and

f2ri

4
= 0(l) t

a - 1 e-
A"|1

dt =
J >;

pN +
r,

5
= 0(l) f^'^dt

JN

fN
+

r,

= O(l)e"
A"Jva f'Mt

JN

(A however large)

(46)

Now, we write

2M2
=

aN
[N+n pn [N

+ n

,

+ L +
J, -L

x sm
^
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,.
Using (20) and the fact that

it can be proved employing the argument used in proving (45) and (46) that

(48) I

j

(49)
[,

By formal
computation, we get

'

j

i

As

we obtain using (20)

p2
= od) r^(

,.
Using (22), we get

l ;

\

'M

/
(51) f

Lastly using (20) and (23), we get

-
1

df = Q/f!s^A
(53)

(52) v
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Collecting the results of (42)-(53), we get

7 -
^.i^

From (40), (41) and (54), we have

325

(54)

(55)

Using (21), we also get

= 0(|x-3>|
a
)

|

N

y
= (56)

Writing

/ = /l-/3/ar0/a (fc
_ 1 7 ^i

fc
J

fc
J

fc yc 1,Z,, JJ

and using the estimates (36), (37) for I 19 (55), (56) for I2 and (38), (39) for / 3 we get

-yl^-j, A>0, however large.

From (35), (57), (58) and (59), we get

(57)

(58)

(59)

(60)

Using (25), we get

'

^;W>*

From (61), we get (writing K=K l -^K?1

*)

Collecting the results of (30), (33), (34), (52) and (62) we get

Hence

-L,
V"

(61)

(62)

(63)
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Again /eHI =><J> x (r)
= 0(|rn and so proceeding as above, we get

log" A ,

U= sup |

Tt^.X^Tt

(64)

Theorem 1 is completely proved by combining (63) and (64).

Proof of Theorem 2. We proceed as in the proof of Theorem 1 and retain all the

estimates of J, K and JL As regards 7, we retain all the estimates of the components of

/ except the one given in (43) for M^ which contributes the estimation 0(log n/n*). By

(11) of the hypothesis of Theorem 2

sin
i A- rdr
*-

= 0(1) dr

Using (65) instead of (43), it can be proved that

Now using (56) and (66)

(65)

(66)

P*it-\ (67)

Proceeding as in Theorem 1 and using (67) and the estimates of I and / 3 from (57),

we obtain

(68)

Arguing as in Theorem 1 and using (11) as employed above in the estimation of /2 ,
it

can be shown that

(69)

Now Theorem 2 follows at once from (68) and (69).
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Abstract. Let I = {xeR: 0<x< oc} be the locally compact semigroup with addition as

binary operation and the usual interval topology. The purpose of this note is to study the

algebra Ap(I)
of elements in Lj (/) whose Gelfand transforms belong to L

p (I),
where / denotes

maximal ideal space of Lj(7). The multipliers of A
p(I)

have also been identified.

Keywords. Binary operation; interval topology; Gelfand transforms, maximal ideal space.

1. Introduction

Let G be a locally compact HausdorffAbelian group and G denote the dual group of G.

The algebra Ap(G\ l^p^ao, ofelements in L
1 (G) whose Fourier transforms belong to

L
p(G),

and the multipliers for these algebras have been studied by various authors

including Larsen, Liu and Wong [8], Reiter [10], Figa-Talamanca and Gaudry [3],

and Martin and Yap [9]. The algebra ^4
p((0, oo)) with order convolution, in short, Ap(I)

of elements in L
t (7) whose Gelfand transforms belong to Lp(I) and the multipliers for

these algebras, where / is the locally compact idempotent commutative topological

semigroup consisting of the open interval (0, oo) of real numbers from to oo equipped
with the usual topology and max. multiplication and 7 is the maximal ideal space of

L! (/), have been studied by Kalra, Singh and Vasudeva [6]. The purpose of this note is

to study the algebras Ap (I)
of elements in LJ7) whose Gelfand transforms belong to

L
p (I)

and the multipliers for these algebras, where / = {xeR: ^ x < 00} is the locally

compact semigroup with addition as binary operation and the usual interval topology
and /is the maximal ideal space of 1^(7). Whereas the algebras Ap((Q, oo)) with order

convolution studied in [6] are dissimilar to the order convolution algebra L 1 ((0, oo)),

the algebra Ap(I) proposed to be studied in this note show similarities to the algebra

7^(7). In particular we shall see that the maximal ideal space j\(Ap(I)) of A
p(I)

is the

same as that of 7^(7). The situation is thus akin to the group algebras Lj(G) and its

subalgebras Ap (G) studied by Larsen, Liu and Wong [8]. It turns out that the algebras

A
p (I)

are not regular, whereas the algebras Ap(G) [8] and Ap ((Q, oo)) with order

Convolution [6] are regular. Moreover, the algebras of multipliers ofA
p(I)

contain the

"algebras of multipliers of L^(I). We establish below our notations and then proceed to

describe the results.

Let 7 = {xeR:0<x<oo}bethe locally compact semigroup with addition as binary

operation and the usual interval topology. Let E = {zeC: Rez > 0} and E denote the

closure ofE. The measure associated with E or E shall be the usual planar measure. The

Fourier transform of a measureable function /, whenever it is meaningful, shall be

denoted by/ Cc (7) (resp. C*(I)) shall denote the space of continuous complex-valued
functions (resp. infinitely differentiable functions) with compact support in 7. The

329
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index conjugate to p, 1 ^p*$ oo, shall be denoted by p', i.e., p and p' are positive

numbers greater than or equal to 1 such that - +
r

= 1. Let M(I) denote the Banach
P P

algebra of all finite regular Borel measures on / under convolution product * and total

variation norm. Then the Banach space L (I) of all continuous measures in M(7) which

are absolutely continuous with respect to Lebesgue measure on 7 becomes a com-

mutative semisimple Banach algebra in the inherited product *. More specifically, for

=
[*f(x-y)g(y)dy, 11/11!= [ l/W|dx
Jo Jo

satisfy \\f*g\\ < \\f\\t \\g\\ lf The maximal ideal space 7 of 7^(7) can be identified [4]

with Z and the Gelfand transform of an/e 7^(7) is its Laplace transform, i.e.,

The function/ is analytic in S. It, therefore, follows that LJ7) is not regular, a fortiori,

no subalgebra of L
t (7) under any norm with the same maximal ideal space can be

regular. Clearly, for x ^ 0, the function y.
- f(x -f iy) is ^/2nfx ,

wherefx L
l (R) is given

by fx (t)
= f(t)Q~

tx
for te7 and in JR /. For these and other results that may be used

in the sequel, the reader is referred to [4], [12].

Let l^p^oo. The algebras A
p (I)

consist of all those feL^I) whose Gelfand

transforms /belong to L
p (I).

A
p (I)

form an ascending chain of ideals in 7^(7). Ap(I)

equipped with suitable norms become Banach algebras. These algebras do not have

bounded approximate identity nor are these algebras regular. However, these algebras

are semisimple. The maximal ideal space A(v4p(7)) can be identified with Z. The above

and other related results are contained in 2.

A mapping T on a commutative Banach algebra A to itself is called a multiplier if

T(xy) = ( Tx)y for x, yeA For results on multipliers, we refer to Larsen [7] rather than

original sources. As A
p (I)

is semisimple, every multiplier of A
p(I)

is bounded and we

may define a multiplier of
,4^(7)

to be a bounced continuous function on 2 such that

(j>fAp(I), wheneverfeAp(l\ where AP (I)
= (f:feAp (I)} is the Banach algebra under

pointwise operations and norm ||/|
=

||/Hi + ||/|| p
. In 3, we prove an analogue of

Paley-Wiener theorem. This, in turn, helps us provide a set of sufficient conditions and
a set of necessary conditions on

<f)
such that (t>feAp (I) whenever feAp (I).

2. The Banach algebras Af(I)

As the Gelfand transform of a function in L
1 (7) belongs to C (7), it is evident that

,4^(7)= L t (7) and each A
p (I)

is an ideal in 7^(7). Moreover, Ap(I)^A r (I) if p<r.
Indeed, iffAp (I)

and p < r < op, then

The case r = oo is trivially true. For each p, 1 < p < oo, we define

I/lllp
=

11/11 1 + 11/11,, feAp(I).
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It can be verified as in Larsen, Liu and Wong [8] that
||| ||| p

defines a norm on A
p (I) and

that A
p (I)

is a commutative Banach algebra under convolution. As observed earlier the

algebras LJ/) and A^(l) are identical. Since

n/ii,^ u/iii + H/II oo
=

ni/iiicc <2ii/n 19

for feA^(I\ it follows that
|| || l

and
||| HJ^ are equivalent norms on A X (I).

The mapping :A
p(I)-> L t (/)

x L
p (I)

defined by *(/) = (/,/), feA p (I)
is clearly

an isometry of A
p (I)

into the Banach space L
1 (/)xLp (f)

with the norm

II (/0) II

=
11/11 1 + H0lljr

Thus A
p (I) may be regarded as a closed subspace of

L
x (/)

x L
p (I).

For each p, 1 <p< oo, the dual A*(I) ofA
p (I)

is isometricallyisomorphic

to L 00 (/) x L
p,(/)/Ker<]>*,

where <3>* is the adjoint of the map <X> and p' is such that

- + = 1 [see Theorem 2 [8]].
P P

PROPOSITION 1

Proof. Let, for neN,un
be the function n%[Q jl/B)

. Then \\un \\

= 1. Also for zeE and
r ^ ^i

,un (z)
= (e-

zln
-\)/(-z/n) = u

1 (z/n)znd therefore. \un (z)\ ^min]-^, 1
[.
Further

for Rez^n, \un (z)\^n( \--\z\. Observe that uneAp (I)
for p>2 and MB

Indeed for p > 2,

I |y|*l

r

T*,

L.L
where

'
f f sSLjJ0<x^l J|y|>l V^ "^i J

and

|y|<l

Thus i/ne L (/), p > 2, and consequently uneAp (I).
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We next show that un$A 2 (I). Indeed,

,_ r
A 2

r

!

n
i

,112= |
i<wr<fc>

| '(i-^IK

= n
2/

/

1 _lVf l|tan
-l

(j;/X"

V e ) J X
al1

= 7t/J
2
fl--Y f -dx=00.
V e J Jx>.*

Again un*u,iA 1 (l). Indeed, MU.(Z) = (A(z))
2 and JRe2 ^ol( n (z))

2
|dz = JRez ^

|(uM (z))|
2dz ^ oo, as shown above.

Also n*un6^p (7)
for p>l. Indeed, u^wn(z)

= (un (z))
2 and

jRez>0 l("n (z))
2

l

Pdz =

JRe^ol(^(z))l2pdz
=

|Reopl( n(z))l'dz, where ^ = 2p>2 and the right hand side is

finite as shown above. It is also a consequence of above that un *un *uneA l (I). So for

Now, let 1 < p < r < oo. Let, if possible, Ap(I)
= ^4

r (^)- Then there exists K > such

that |||/|||p < Kill/ III for/6Xp (J). For neN and l<s<oo, IK*uJ||s
= ]]* ||,

+ H

2
|l s =ll n*Jl 1 +n2/s

||

2
|l s =l+ 2/ip 2

|| s
. Consequently, n 2

/"-^||u
2

|| p ^
K(n

2/r + ||i2

2
|| r ). On letting n-> oo, the left hand side of the preceeding inequality tends

to infinity whereas the right hand side tends to a finite limit. This contradiction

completes the proof in this case.

Now, let 1 < p < oo. Since A
p (I)

c A
2p(I)

c ^^(7), we cannot have A
p (I)

= AX (I).

PROPOSITION 2

Let/ be a function defined on [0, oo) such thatf, f" exists and satisfies/(O) = /'(O) =

/"(O) and = lira /'(x)
= lim /"(x). Further suppose t/iat f,f',f"e L t (/). Then

x-*oo x-c

(&)feAp(I)forp>l,

j (/) i//" = on (0, c) for some c> 0,

^T) if/"' ^xisto an^ is in L^/),/"'^) = and/"'(x)^0 as x-> oo.

r

/>) =
Jo

Froo/. Observe that for zel, z ^ 0,

-rz _ ! ^
^

using/(t) ->0 as t-> cc and |e~
tz

|

= e~u -^0 as t -> oo. On applying the above argument

to/' and in case (c) also to/", one obtains respectively, /(z) = -7/"(z) and in case (c)

(a)l/(^l =
^inz)l^ll/l,
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Now,

where

i|"dxdy+ |/(x + iy)|dxdy

and

Thus/6XP (/)
for p>

o

-JL^ e
HP

The proof from now onwards is the same as in case (a).

If we write II/IU
= T

x H- T2 + T3 as above, then

and

^3 < 2
1| /|| j , as above. This completes the proof.

Theorem 3. A
p (I) is

\\ \\ rdense ideal in L^I).

Proof. A
p (I) is an ideal in L

x (/) was observed in the beginning paragraph of 2. That it

is dense in 1^(7) follows from Proposition 1 on noting that C
c (/) is dense in

DEFINITION 4 [BURNHAM]
Let (A, || D be a Banach algebra. The subalgebra B ofA is an 4-Segal algebra in case
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(i) B is a dense left ideal of A,

(ii) B is a Banach space with respect to norm
|| || B ,

(iii) There exists C > such that ||/|| A < C ||/|| B for all feB, and

(iv) There exists K>0 such that \\fg\\ B <K\\f\\Jg\\ B foT&geB.

Remark 5. (i) It is clear from the foregoing that A
p(I)

is an L^-Segal algebra. The

above proofs have been included in view of their intrinsic value even though Burnham

([2], ex. 19) cites an example of a Segal algebra which includes the one studied in this

note.

(ii) In view of the fact that for 1 < p < oo, Ap (l)
is an L^/J-Segal algebra, the following

results follow from the general theory of ,4-Segal algebras [2]. Let 1 ^ p < oo. (a) The

maximal ideal space A(/4p (/))
ofA

p (I)
is homeomorphic to

, (b) Ap (I)
has no bounded

approximate identity.

(iii) It follows from (ii) (a) that for each p, 1< p < oo, Ap(I)
is a semisimple commutative

Banach algebra.

Our next result provides a characterization of A2 (I).

Theorem 6. Let /e L^I). Then feA2 (I) iff t-+f(t)/yft is in L2 (l\

Proof.

^~ T r |/(x + OOI
2
d*dy = f [" l7(y)

27C JO J-oo JO J-oo

/*QO /*00

JO J -o

2

dt,

using Plancherel Theorem.

Our next result shows that C
C (I) is contained in A

p (I)9 p > 2.

PROPOSITION 7

Suppose 2<p<cc and p' is such that - -f = 1. Choose u and u' such that 1 < u' < p/p
f

P P

and - + - = !. Then L^/Jn Lp(/)n Lup,(I)
c A

p (I). So LJ/Jn 1^(1) is contained in

A
p (I) for p > 2. In particular, CC(I) is contained in A

p(I),p> 2.

Proof. Suppose /eL^/Jn Lp.(I)n Lup,(I).
Let xel. Since feLp.(I), fxeLp.(R).

So

\\7x\\p < ll/xllp' 5 using Hausdorff-Young inequality. Moreover, \\fx \\ p
, < ||/|| p

,. Also

\\fx \\

p
p
'=

\f(t)\
p'e- txp'dt

1/M
'

p
o

a
00 Nl/U/ / \

|/(t)r'dt e-<*"'>'dr

o / \Jo /

Consequently,
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Hence

(2n)-
pl2

\\f\\
p
p
=

11?.+

This completes the proof.

Remark 8. Though Ap (I)
does not possess a bounded approximate identity, yet it does

always have an approximate identity as the following theorem shows.

Theorem 9. The sequences {un },{un
* un } and {

un * un
* un },

where un denotes the function

n
#[o,i/)>

act as approximate identities for A
p (I) with 2<p^oo, l<p^oo and

l^p^oo, respectively. In particular each A
p (I) possesses an approximate identity

present in A ^(I).

Proof. It is well-known that {un } is an approximate identity for L^I). We shall show

that vn
= un*un *un,n=l,2 9

... is an approximate identity for A^I). It has been

observed that {vn }
is contained in A^(I) [Proposition 1]. Suppose feA^I). Then

So \\f*vn /Hj-^Oas n-^oo.

There exists a compact set K c Z such that H/l^cll ^
< e/4.

Now,

where /^(X) denotes the planar measure of K. Also,

Choose n so large that ||/*i?n /Id </6/^(X). Consequently, for this n,

H/*!?,, /Id < e. This completes the proofin the case p = 1. The prooffor the casep> 1

is similar and is, therefore, not included.

Remark 10. (a) It follows from Theorem 9 above that for 1 ^ p ^ oo, A^^A^I) is

dense in A
p (I).

Since A^I) is an ideal in L^I) this gives that A^I) is dense in Ap(I)

which, in turn, gives that for 1 ^ r <p ^ oo, Ar (I) is dense in A
p (I).

(b) It follows from Theorem 9 that Li(I)*Ap (I)
is dense in A

p (I). This observation

together with ([5], 32.22) implies that L t (/)*Ap(I)
= A

p (I). Now ([5], 32.33 (a)) implies

that {ea } is an approximate identity in L
t (/) which is present in A

P(I\ then it is an

approximate identity for A
p (I)

as well.
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Finally, we state without proof the following result regarding ideals in A
p (I). The

prooffollows from the fact that A
P(I)

is an L^TJ-Segal algebra and Burnham ([12], Th. 13)

result on ideal theory of Segal algebras.

Theorem 11. For each p, 1 ^ p < oo, the following statements hold:

(i) // J l
is a closed ideal in L

t (7), then J = J
1
nA

p (I) is a closed ideal in A
p (I).

(ii) // J is a closed ideal in A
p(I)

and J
1

is the closure of J in L
1 (/), then Jj is a closed

ideal in L
x (7) and J J

L
n A(I).

3. Multipliers of A
p(I)

In this section we attempt to identify the multipliers ofA
p (I). In view of ([7], 1.2.2) and

results proved in 2 above, every multiplier T ofAp (I)
is bounded and corresponds to

a bounded continuous function
(j>
on Z. It follows from the analyticity off,feAp (I), that

is analytic on Z. Since for feAp (I) and-0 bounded and continuous on Z, \j/
= 0/is in

L
p(Z)

with
\\il/\\ p ^ ll^llooll/llp, the_problem reduces to that of identifying those <'s

which are bounded continuous on Z and analytic on Z such that for each/e,4p (7), </>/is

h for some he 7^(7). Remark 10(b) further reduces it to requiring 0/to be ft for some

jueM([0, oo)). Thus a multiplier on Ap(I)
into M([0, oo)) is in fact a multiplier of A

p (I)

and keeping in view 10(a), we have that for 1 ^ p < r ^ oo, a non-zero multiplier ofAr (I)

induces a non-zero multiplier of ^(7) via restriction. The following analogue of

Paley-Wiener Theorem ([11], Th. 19.2) helps us in expressing, foifeAp (I)
and certain

0's, 0/and h for some he L
t (7).

Theorem 12 (Paley-Wiener). Let l^r^2 and r' be the number given by -
4- -= 1.

Let \l/e Lr(Z) be analytic on Z. Then there exists a ge 7,^(7) such that
\j/ =^ on Z.

T/iis gfeL 1 (7) ij^* a=ess lim infL^L < oo and then */2n\\g\\ 1
=a and if b =

X-+04-

j

ess lim inf|| :c ^|| r <oo then geLr,(I) with \\g\\ r,^=b 9 where, for xe7,
x -"

x\l/(y)
=

\

Proof. We shall modify the detailed proofgiven in ( [1 1], Th. 19.2). We fix x, jc' in 7 with

x< x' and write J = [x,x
r

-]. For ae7, let Ta be the rectangular path with vertices at

x + ia, x ia, x' - ia and x' + ia. It follows from Cauchy theorem that Jr i/^(z)e
rz
dz =

for teR. For a,jSeR, let
x

F(t,j?)
= fXM + i)3)e

t(u+w
du, AOJ) = fJ|^(uV ift|

r
dti and

Ix'-x^^'maxle^e^'} with the convention that r = l for r>0. Then

)| ^ A(j?)
1/r

M(r). Now, by Tonelli's theorem

I
A(j?)djS= f

( {
JR JJ\JR

./Mdi*=IM|;<oo.

So A(/J) -f A( /?) is not bounded below away from zero as P -* oo and, therefore, there is

a sequence {a,-}
in 7 such that

a,.
-* oo and A(a;) + A( a,-)

-+ andj -> oo . We note that
{a,.}

is independent of t and for reJR, ^(^a^-^O and *(t, a^-^O as 7-^00. Now since

^e Lr (Z), u\l/e Lr (R) for almost all ue7, say, in a set S with m(7 - S) = 0. Then for ueS,
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tt^X[-aj^}^u^ in LrW and therefore, by HausdorflF-Young inequality,

(u\l/r in
J

L
r.(R). So for x,x'eS, there exists a strictly increasing sequence {,-} in N with

(>*[- , ]r-(*^r and (>Jt[- vflgr^(*^r almost everywhere in R. But for

each n;GJVand reK,^(^-^iT (- Oe" and^(^[-cc^r (- *)e'*' are

the integrals of \l/(z)t
tz

along the vertical lines of r^ and therefore for each

X[-v^
r)e

lx =
(x.^r(--t)e'

x '

for almost all tejR. We take as the function

)-(_ t) e
tx which is independent of xeS.

If r = 1, then for each xeS, (^eC W and J2n ||(>r L < ||> II i- Since for each

as x~0+ in S. we have 2^11011^ ^b = ess lim infllj^llj. and
x-*0 +

'* /T-.. .... /T-r -,v, i, = ess lim jn .

Now, for ae/, t<0

27cjo

So letting a - oo, we obtain that g(t)
= for t < 0. By continuity of 0, 0(0)

= 0. Thus

ge Ll (1\ Further \g(t)\ ^ f IIAII i
for te/. Thus for xe5,(^ e L

X (R) and as > is also

in L^Rl iA(x + r
= ^(v) = (^(~j) = J"^We"

xfe-^dt. Since iA as well as the

function z = x + ty
-^

J^0(r)e-
rr
dr = 0(z), ([12], Th. 6.3) are both continuous on L, we

conclude that ^ = g on Z.

If r > 1, then, on using Hausdorff-Young inequality, we get

f
oo / r

'

foo
/ r

y/''

(2;rr
2

e-^|0(t)r'dO
r/r'dx= IU)^(-Ol

r
dt dx

Jo \JR JO VJl? /

f^
Jo

X '
*~~ '

*

So the function x ->
JR e

" r/xr

1 0(t) |

r
'

dt is not bounded below away from zero as x -> oo . So

there is a sequence {x^} in / with x,->oo and $Rc-
r

'

tx
>\g(t)\

r'dt-+0 as;~>oo. Since

f-oJ^Wr'dt ^ j- oc
e~

r
'

fxj
|0(t)r dr for each;, we conclude that = a.e. on ( oc,0).

Now, for ae/,xeS,

72^ f"| ff(t)|dt= f
Jo Jo

<||^|| ra
1/r S"<oo.'

So ^e L,
1

,,^/). Since I-2S = 2(I- S) has measure zero, we have that m(J Sn 2S) =
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as well. For xeSn2S,

^ -

2n J2n

Since x/2eS, (x/2^r = L
r,(R) and therefore f -> gx (t)

=
-j=(x\J/r(

-
1) is in L

1 (I). Since

V/27C

m(J-Sn2S) = 0, Sn2S is dense in /. So g^eLJI) for all xe/. Consequently is

defined on E and is given by

= f

Jo

which for xeS is

271 JO

since x^e Lr (.R) and (xil/)~~e L^R) ([11], Th. 9.11). Because ^ and # are both continu-

ous, we conclude that
\l/
= g on I.

Further ge L^]^) iff a = ess lim inf
|| (xi/0" || i

< oo and then ^/2n \\g\\ i
= a simply

JC-fO +

because for any sequence {xj} in 5 with Xj-^0,

\Jo

= lim
I

j-* oo J-* oo

We note that in this case g is defined on Z and extends ^ to a bounded continuous

function on . Finally, for any sequence {x^-}
in S, x^O, we have, by Monotone

Convergence Theorem,

/
"

oo
J

./- oo j-* oo

and, therefore, vll^llr' ^ b = ess lim inf
|| x

COROLLARY 13

Let 1 ^p < oo,$ a bounded continuous function on E, which is analytic on and

). Then / = K for some /ie ^(J) if 1 ^ p ^ 2 or p > 2 and $e L2 , 2 (S). This

ess lim inf^0+ Jo JK
iy)e

iyt
dy\dt < oo.

f. We take r = pifl^p^2 and r = 2 if p > 2 so that </e Lr(I) under the stated

^conditions and then apply Theorem 12 above.

Theorem 14. Let 1 ^ p < oo and
</>

be a bounded continuous function on which is

analytic on Z.
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(i) (f)
induces a multiplier of Ap (I) if (a) I ^p^2 or p>2 together with 06 L2plp

_ 2 (L)

and (b) ess lim infJ* | J^(x + iy)f(x -f iy)e
iyt
dy |dr < oo for all feAJI).p

(ii) (j)
induces a multiplier of A p (I) only if

ess lim inf
I

Jo x+iy
eiyt

dy dt< oo

/or each'neN, where s = 2if p 2,1 if p>2 and 3 if p<2.

Proof. We apply the above corollary and use the fact that u*
seA

p (I)
for each n, where

un
=

X(o,i/n]
and *s denote the sth convolution power.

Remark 15. Even though Ap(I)
is not regular, it contains functions/ with/ vanishing

nowhere on S, for instance, w*
s
in the proof above. Such /are bounded below away

from zero on compact subsets of and thus the strict topology T on M(/4p(/)) (i.e.,

strong topology on a subalgebra ofthe algebra B(Ap(I)) ofbounded linear operators on
A
p (I)

to itself) is stronger than the topology of uniform convergence on compact
subsets of I. By ([7], 1.1.6) and Theorem 9 above Ap(I)

is dense in (M(Ap (I), TS )), where

geAp (I)
is identical with the multiplication operator Mg given by Mg(f)

= #*/and,
/N /\

a fortiori, (Ap (I)) is dense in (M(Ap (I)'), topology of compact convergence on ).
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Abstract. The paper deals with overall reflection and transmission response of seismic

P-waves in a multilayered medium where the whole medium is assumed to be dissipative and
under uniform compressive initial stress. The layers are assumed to be homogeneous, each

having different material properties. Using Biot's theory ofincremental deformation, analyti-

cal solutions are obtained by matrix method. Numerical results for a stack of four layers
-

modelling earth's upper layers, show a decreasing trend in both the Reflection Coefficients

R and R of the reflected P and S-waves.

Keywords. Reflection; P-wave; S-wave; dissipative; homogeneous layers; Biot's theory;

matrix method; reflection coefficients.

1. Introduction

The study of reflection and transmission of seismic body waves through multilayered

media is an important part of seismic sounding techniques. It is recognized that these

studies provide a very convenient method ofinvestigating the earth's interior. Although
other approximations are possible, the simplest representation of the system of rocks

beneath the earth's surface might be supposed to consist of a series of plane, parallel

layers, each having its own characteristic - but constant within the layer
-
parameters

of velocity and density [12]. Observation of propagation of stress waves in solids (or

fluids) show that dissipation of strain energy occurs even when the waves have small

amplitude. This dissipation results from imperfection in elasticity, loss by radiation, by

geometrical spreading and scattering [5, 7-1 1, 13, 14]. A convenient measure ofattenu-

ation in waves is the dimensionless loss factor (or specific dissipation constant) Q~ *. It

is related to the rate at which the mechanical energy of vibration is converted

irreversibly into heat energy and does not depend on the detailed mechanism by which

energy is dissipated. For P-waves Q"
1

is given by [12].

^ i
2u

ar =7
where V and v are the real and imaginary parts of the complex P-wave velocity. It is

also known that, surprisingly, Q~
1
is independent of frequency, pressure and tempera-

ture [5].

In the focal region, prior to an earthquake, considerable tectonic thrust builds up as

a uniaxial stress system. It is of some interest to investigate reflection characteristics,

through a theoretical model of a stack of layers under uniaxial compressive prestress.

Biot [2] has provided a detailed theory of incremental deformation of a medium in

a state of prestress brought about by even arbitrary finite deformation. Later, Dahlen

[3], in a limited context of initial elastic deformation arrives at identical set of equations,

excepting the constitutive equations for the incremental stresses. If restricted to

341
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two-dimensions, Dahlerfs equations fail to reduce to the equations for incompressible

medium derived elaborately by Biot. Secondly, the elastic moduli in the transverse

direction also change due to the uniaxial prestress. Consequently, we adhere com-

pletely to Biot's theory.

For treatment of the equations for a stack of layers, we adopt a simple matrix method

based on Kennett [6]. In this paper we restrict to two-dimensional propagation.

2. Formulation of the problem

Consider an initially stressed, dissipative medium consisting of 'n' parallel homogene-
ous layers overlying a half-space. The interfaces are ordered as Z

1 , Z2 , . . . , Zn where the

origin Z = < Z
t

is on a hypothetical free surface from which P-wave originate and

travel downwards, ultimately as plane waves. The reflected waves are received at the

same surface. To keep the analysis simple in the first instance, as is often done, we

disregard stress-free condition on Z = 0, that is to say, regard the top layer Z < Z^ as

semi-infinite. The topmost layer is layer number 1 and the bottom layer n + 1 and

thicknesses of the intermediate layers are designated as H2 ,
//

3 , ...,// (figure 1). The

physical quantities associated with layer number 'm' will be denoted by symbols with

suffix m.

In general, if we have an isotropic elastic solid under uniform initial horizontal

compression Sn (tensile Sn <0) parallel to x-axis, which undergoes additional

infinitesimal deformation, then according to Biot [2], the incremental stresses consist

of two parts: one part due to additional deformation and the other due to infinitesimal

rotation o>2 acting to rotate the initial stress system:

33' (1)

ir

Z

"m-i

m

Figure 1. Geometry and schematic of the problem.
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where s
tj
are incremental stresses referred to axes which rotate with the medium (Biot

[2], eq. (4.13)) and

For infinitesimal incremental strain e
tj

, the incremental stress s
tj

will be linear

functions of e
tj

. Assuming these to be orthotropic in nature we can write

du

dw
e**= (3>

v du

< -dz

Also, after careful consideration of existence of strain-energy,

(Biot [2], eq. (6.2)). The elastic constants Bu , . . .
, Q in general may depend on the initial

stress S
l ^

. Biot ([2], eq. (8.3 le)) after analysis of an incompressible medium, selects for an

original isotropic compressible medium (Lame constants A,^), relations equivalent to

*3i=^ B3 3
= * + 2* Q = n. (5)

A salient feature of these relations is that the moduli in the x-direction (the direction of

initial stress) increases due to the initial compressive stress while those in the transverse

z-direction remain unchanged. To account for dissipation in the medium A
1

and p. are to

be regarded complex: A = A
r 4- U

f , \JL
=

jur -f i^i .

The two-dimensional dynamical equations of motion as obtained by Biot [2] are

dx dz
u

dz
~

dt
2

For time-harmonic plane wave propagation of frequency/ = co/2n, we may assume a

factor exp [i(cot /ex)]. Insertion of (3) with (5) in (6) results in two O.D.E's for u and w, the

displacement components. However, for developing a matrix methodwe introduce stresses

T 13
= s13 -S 11 o2 (7)

and the quantities [6]

TI/ rr T o /Q\
W=iw, U =

u, T = n33 , S = T 13 . (8)

Constructing the stress-displacement vector
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eq. (6), with the aid of (7) and (3) can be written as a first order system. For subseq

computational purpose we nondimensionalize all quantities: the displacements b

(thickness traversed by the waves in the top layer) and stresses by ^ lr , the real pa
shear modulus of the top layer. Denoting the respective nondimensional quantitie

superscript *, the first order system can be written as

dz*
" -

where

JJ > 1 J.

-

-kz

Q'-o-ss* ,

p

Mi? Pi

\j
j

j
__ _ ._ __ I

fc g fag \j

is the coefficient matrix, p = k/co is the wave slowness (reciprocal of phase velocit

propagation in the x-direction) and p l
= (^Jp^)

112
is the shear wave velocity in

topmost layer. For reflection and transmission ofbody waves, p remains constant ii

the layers. Finally, S* x
= S ll /fjL lr .

The incremental boundary forces have also been carefully examined by Biot ( [2],

17.56)). In our case, where the boundaries are z = const., the components turn out t(

T 13 and T33 , so that at an interface z = zmb* is a continuous vector when per

bonding is assumed.

3. Propagation in the stack

In an intermediate mih layer, the solution of (10) is

where b*_ 1
is the stress-displacement vector at the interface z* = z* _ 1

. Hence at z* =

b* =e^b_, ,

where H* = z*~z*_ l
is the nondimensional thickness of the mth layer. Hei

recursively

b* = e^We^-^-s . . . ,e^b* Eb*. ,

All the exponentials involved above are 4 x 4 matrix exponentials.
For b* we note that it consists of the down going incident P type wave and reflec

up going P and S type waves (figure 1). We construct the contributions from eacl
these separately and superpose. Suppressing the time harmonic term, we can write
the down going incident wave
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where the predominant z-component of the amplitude has been taken to be unity
Inserting m the equations of motion (6) with (3) and (5) and assuming

so that 6 is the angle of incidence, we get

(16)

(17)

and the velocity of propagation co/k is given by a quadratic equation whose roots are

a2
1

where

If Sn is neglected, the positive sign in (18) yields P-waves and the negative sign,
S-waves. In the presence of S

l 1 , the velocities are p, that is, direction dependent and the

waves are not pure, in the sense that P-waves are accompanied by some transverse

component and S-waves by some longitudinal component [4]. Stresses corresponding
to (15) can be readily calculated from (3) and (5). We thus obtain

(20)
ID'

Kzi [A Afsin -f (AJ + 2/iJ)cos 0}

-
iJKz! {^(ji*

-
O-SSJJcos 6 -h (/it 4- 05SfJsin

p
- the constant for all the layers

- in (17), can be computed from the equation

l/2

(21)

which is arrived at from (16) and (18). Here 6 is given so (pjSJ is to be obtained by

solving the above nonlinear equation.

For up going reflected P type wave, we have to use the representations

u* = ^2 e^
(z
-

Zl)e"^, w* = B2 e
i*(*-** )e" to . . (22)

Analysis similar to the above leads to

(23)

.(^
_

Q-5S*! )cos
B2

*
)cos e

? + 0-5S*, )sin
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where A 2 /B2
= - A

1
is obtained from ( 1 7). For up going reflected S type wave we again

use representation of the type (22) with amplitudes A 39 B3 instead ofA 2,B2 . We thus

obtain b* similar to (23) with A 2/B2 replaced by A 3 /B3
= -A

l
and 9 replaced by 9s

given by

(24)

appropriate for S type waves. Here Re means real part of. The total stress-displacement

vector in the top layer is thus

b*. (25)

Finally, for the bottom most (n + l)th layer, only down going P and S type waves are

sustained. For the former we take

As in the case ofb^ we obtain

n+ 1

-'*M IT +Wf+1 n+1

(27)

where

(28)

Rf+ 1
and S*+ 1

are quantities identical to RJ and SJ (cf. eq. (19)), save that^ and /^ are

to be replaced An + 1
and nn +i- Similarly AJB4 is given by an expression like that ofA

l

(eq. 1 7)) save for A
x , /z x , 6 we have to write ^ + 1 , /* + 1 > ^+ 1

F r ^e down going S type
waves we get in a similar manner b* ^D with a form similar to (27) except that A49 B4

are to be replaced by similar amplitudes A 5 ,
B5 and (%+ x replaced by 0+ 1 given by

and A$/B5 given by right hand side of (17) with ^,^,0 replaced by Aw+1 ,

Thus,

(29)

+ r

D- (30)

The expressions for b* and b*+ 1
from (25) and (30) can now be inserted in (14). If we

denote the successive vectors [ ] in the expressions for b*, b*, b*, b*^ D ,
b** ID by

v
i * V2 >

V
3 > V4 and V s , we get the system of equations

(31)



Reflection of P-waves in a prestressed dissipative layered crust 347

Solving these equations we get "reflection coefficients", R = B2 , R = B
3
and "trans-

mission coefficients", T P = B4 , T]^ = B
5

.

4. Numerical calculations for model crust

In general the earth's continental crust consists of three layers: granitic, basaltic and

a thin sedimentary layer at the top. For computations of reflection (and transmission)

coefficients we consider the earth's crust beneath the Indo-Gangetic plain, which lies

between the Himalayas and the Peninsula. Surface wave dispersion across this region

has been investigated by several investigators [1]. Inversion of these data gives the

crastal and upper mantle structure of the region. Such a model of crust is given by

Bhattacharya [1] and is given below:

Region

1. Sedimentary
2. Granitic

3. Basaltic

4. Upper Mantle

ia40 20JDO

4JX) 5.60 720

Figure 2. Amplitudes of reflection coefficients |l| and |R| for near vertical propagation:

6 = 1.
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0.79

QJ2

0.65

038

051

0.44

037

030

100

(c)

330 4.00 430 5.00 530

f
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Figure 3 (Continued). Amplitudes of reflection coefficients \R\ and \R\ for wide angle

propagation: (a)
= 2 (b) 9 = 5 (c) 6 = 10.

The above yield the real part of Lame constants ofeach layer. For the imaginary parts,

the loss factors Q
~ 1

of P-waves as given in Waters [12]

<2a(granite)
= 311, ea(basalt)

= 561

Qa for sedimentary rocks is highly disperse, so, as an example we take old red sandstone

for which Qa
= 93 - a figure nearing the mean ofdispersal ofthe values. Since the role of

dissipation is small, the computed values are not expected to change very much on

account of actual deviation. For the upper mantle we take Qa
= 849 from data

discussed in Ewing et al ([5], p. 278). Further data on imaginary part ofshear modulus

are provided by loss factor Qp
1
of S-waves:

which is obtained from the often used assumption ofzero dilatational viscosity [12, 5].

For initial stress-free basalt rock, strength ^ 11,000 atmospheres and if we consider

hydrostatic pressure at a depth of 40 km to be present, the approximate range of the

compressive initial stress f == SJ X
could be (0, 0-3). We therefore consider the

parametric values = 0,0-1,0-3 and 0-5, over a slightly enhanced range.

For selecting suitable frequency range, we consider the cases of seismic prospecting

method of weight-dropping devices in which near vertical propagation takes place and
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explosion seismology technique where it is wide angle propagation. In the former case,

/ is taken within the range of 4-20 Hz [12] with 9 = 1. In the second case the range
chosen is 3-8 Hz ( [5], p. 202) with ranging from 2 to 10.

In the numerical treatment of (31) we use Gauss's method for matrix inversion.

The computation of the matrix exponentials in E (eq. (14)) is performed using the

Cayley-Hamilton theorem. The latter requires the eigenvalues of matrices like A* (eq.

(11)), which is a simple task, because of the fact that the characteristic equation for the

eigenvalues A of A* reduces to a quadratic in A 2
. The solution of (21) is performed by

Mullet's method.

We restrict presentation of the results to R and R only. In figures 2 and 3, we

present the variation ofthe amplitudes of these quantities with frequency/, for different

values of initial stress parameter In figure 2, the results for near vertical propagation
are presented. There is a general trend of diminution in the reflection coefficients for

increasing , which becomes significant towards the higher frequencies in the band. The
results for wide angle propagation for = 2, 5 and 10 are presented in figures 3 (a), (b)

and (c) respectively. Here too, is a general trend of diminution in the reflection

coefficients for increasing . The trend of diminution increases with increasing 0.

It may be mentioned here that when P-waves propagate vertically in an unbounded

initially stressed homogeneous medium, there is no effect of initial stress on the velocity

of propagation [4]. This fact can be verified from (18), (19), with k = p = for the

case. For reflections from the stack, there are no up going S-waves, A l
=

(verifiable by
the limit 0->0 in (17)), A z

= A4
= and the reflection and transmission coefficients

B2 ,
J54 are given by a pair of equations similar to (31).

5. Conclusion

The focal regions at plate boundaries of the earth prior to earthquakes are at

considerable thrust due to tectonic movement. For understanding the reflection and
transmission characteristics of body waves in such regions appropriate mathematical

model studies are required. Herein, is considered; a stack of dissipative layers under
uniaxial thrust to which the theory of incremental deformation given by Biot [2] is

applicable. The governing equations can be compactly treated by matrix method, as in

the case of initial stress free case, for the reflection and transmission of body waves.

A numerical model study of a stack of four layers
-
sedimentary, granitic, basaltic and

upper mantle, for near vertical as well as wide angle reflections, shows significant
diminution in the magnitudes of both P and S waves.
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Abstract. The problem of injection (suction) of a viscous incompressible fluid through a

rotating porous disc onto a rotating co-axial disc is studied using computer extended series.

The universal coefficients in the low Reynolds number perturbation expansion are generated

by delegating the routine complex algebra to computer. Various cases leading to specific types
of flows are studied. Analytic continuation of the series solution yields results which agree

favourably with pure numerical findings up to moderately large Reynolds number. The precise

variation of lift as a function of R is established in each case.

Keywords. Series solution; Pade' approximants; reversion of series; Euler transformation;

analytic continuation; Brown's method.

1. Introduction

Flows driven by rotating discs have constituted a major field ofstudy in fluid mechanics

for the later part of this century. These flows have technical applications in many areas,

such as rotating machinery, lubrication, viscometry, computer storage devices and

crystal growth processes. However, they are of special theoretical interest, because they

represent one of the few examples for which there is an exact solution to the

Navier-Stokes equations. This problem was first discussed by Batchelor [1] who

generalized the solution ofvon Karman [2] and Bodewadt [3] for the flow over a single

infinite rotating disc. Further this problem was discussed by Stewartson [4] who
obtained approximate perturbation solution for the small Reynolds number. Later,

Hoffman [5] has studied this problem using computer extended series. The numerical

solutions for this problem have been obtained by Lance and Rogers [6], Mellor el a\

[7] and Brady and Durlofsky [8]. Flow between rotating and a stationary disk has

been studied by Phan-Thein and Bush [9]. The problem of injection of a viscous

incompressible fluid through a rotating porous disc onto a rotating co-axial disc was

studied by Wang and Watson [10]. Through this span of a period of half a century,

since the Batchelor-Stewartson contributions, the interaction* between physically

based conjectures, numerical calculations, formal asymptotic expansions and rigorous

mathematical treatment has been quite intensive. In the present paper we have used

semi-analytical numerical technique to understand the effect of both injection and

suction separately. For simple geometries the semi-analytical numerical method

proposed here provides accurate results and have advantages over pure numerical

methods like finite differences, finite elements, etc. In numerical methods a separate

scheme is to be developed for calculating derived quantities. If the computation of

derivatives are required the numerical scheme to be used will be very sensitive to the

grid/step size. This itself will be an elaborate numerical scheme. However, this difficulty

is not there in the case of series solution method. A single computer run yields the

solution for a large range of the expansion quantity rather than a solution for a single

353
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value. In addition the method reveals an analytical structure of the solution which is

absent in numerical solution. Van Dyke [11] and his associates have successfully used

these series methods in unveiling important features of various types of fluid flows.

Recently, in the analysis of thrust bearings, Bujurke and Naduvinamani [12] have used

series analysis satisfactorily.

The physical problem considered in this paper is of great importance in lubrication

theory. So calculation of lift is of interest in all these cases. The present analysis is

primarily concerned with possible extension of Wang's [10] low Reynolds number

perturbation series by computer and its analysis. The forms of the few manually
calculated functions in low Reynolds number perturbation solution of two point

boundary value problem allows to propose the generation of universal functions in

compact form which are solutions of infinite sequence of linear problems^ Using these

universal coefficient functions we obtain series solution and calculate various physical

parameters of interest. The present series, which is expected to be limited in conver-

gence by the presence of a singularity, may be extended to moderately high Reynolds
number by analytic continuation.

The aims of the present work are two folds. First, to calculate enough terms of the

low-Reynolds number perturbation series by computer so that the nature and location

of the nearest singularity (which limits the convergence) can be determined accurately,

second, to show that the analytic continuation can be used effectively to extend the

validity of perturbation series to moderately high Reynolds number.

2. Formulation

As shown in figure 1 we denote the spacing between the discs by 'd', the angular velocity
ofbottom disc by Q! , and that of the upper disc by Q2 . Let the injection (or suction) at

the lower disc be W( - W for suction) and let M,I?, w be the velocity components in the
direction r, 0, z respectively (figure 1). The governing equations of the problem are

r P

uv (, v
\vvz -\

= vl V 2
v -

(1)

(2)

w
I

Figure 1. Schematic diagram of the problem.
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uw
r + ww2

= - + v V 2 w (3)
P

(ru)r + nv
z
=

(4)

where

V2 = -r-^H
----

I-T^T, subscripts denote p.d.e. w.r. to the variable, p is the pressure,
dr

2
r dr dz

2

p the density and v is the kinematic viscosity.

The boundary conditions are

u = 0, i;
= r^ ,

w = + W at z = 0, (5)

u = 0, i>
= rQ2 ,

w = 0. atz = d. (6)

For similarity solution, the boundary conditions and the continuity equation suggest

the transformations [10]

W W
-r, v = rg(ri), W=-2f(ri)W (7)
a a

W2

where Y\
= z/d and A is a constant to be determined. With these transformations the

equations of motion reduce to

r (9)

or after differentiation, we have

2R(f'g-fg') = g" (11)

/ f\
P(tl)

= -
pi

- 2/
2 H^2 - 2v + P

Here R = ( Wd/v) is the cross flow Reynolds number. The constant P is determined by

the pressure at the edge of the discs. The boundary conditions take the forms

= a, (13)

(14)

In order to investigate the mutual interaction of rotation and injection (suction), we

shall assume a and j3 to be of order of unity. This includes many interesting cases where

both rotation and injection (suction) are not minor perturbations. Differential eqs (10)

and (11) are solved usually by direct integration which frequently involves more than

One integration process because of the two point nature of the boundary conditions.

The use of series solution provides an attractive alternative approach. Not only the

difficulties associated with two point boundary value problems are relieved, but also
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the terms of series method are capable of providing results to any desired degree of

accuracy with minimum time and less storage requirement of computer.

3. Method of solution

We seek the solution of (10) and (11) in power series of jR in the forms

Substituting (15), (16) into (10), (11) and comparing like powers ofR on both sides, we

get

1 _, +^- 1
- r ) (17)

(18)

The relevant boundary conditions are

)
=

0, / (0)=-j /' (1)
=

/:(0)=o, /;,(!) =o, /B(0)=o, /(!)= o (19)

ffo(0)
=

o, g (l)
= P

.(0)
= 0, ^n(l)

=
(20)

n = l,2,3,...

The solutions of above equations are

11
2 13

3
1 4 1

6
1 ."-

I + I

-4
I^ +

20
I

'-70
1
'

-2^ + ,

4

)-^!(2>
,

2 -3^+^) (21)

~
5f74

~
10>?2

"

The slow convergence of the series ((15), (16)) requires large number of terms for

obtaining the approximate sum. As we proceed for higher approximations, the algebra
becomes cumbersome and it is difficult to calculate the terms manually. We propose
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a systematic series expansion scheme with polynomial coefficients so that whole

process can be made automatic using computer. For this purpose, we consider / and gn

to be of the forms

k = 2

= (!-*) Z *W (23)

in (15) and (16) respectively. This expression yields exactly the above calculated terms

f1
and 0! besides this it enables us to find /(

and & for i ^ 2 using computer. We
substitute (22), (23) into (17), (18) and equate various powers of

r\
on both sides and

obtain two recurrence relations for unknowns A^ and B
n(k)

in the forms

A 7A A -4__An) ~ ^n(k+ 1) 1n<*+ 2)
T

X Z 4.- 1 M lk + 2-0P (
k + 2-0 + Z B(,-l

n-2 F 4 nk+i

Z Z Zi ^r(f+l-nfc-)^(-D(-2)
r=l L i = j=l

2 k + i

Z Z ^.--oB(-iK.-3)e*+^- 3)
r

(24)

/r-2 3 nk-l-i "I

+ Z Z Z ^^i-t -oB(-ix.-3)n +-('+l-*-^-3)
r=l i

= j"l -I

K = l,2,...,4n (25)

where

m = n r, l =

1 (fc)
= /c(fe-l)(fe-2),

P3 (fc)
= -

(3fc(k
-

l)(k
-

2)
-

(k + 2)(fc + 1) k),

P4 (k)
=

(2fc(k
-

l)(k
-

2) + 6(k + l)k(k
-

1) + 12),

P 5 (k)
= - (4(k + l)k(k

-
1) + 3(k + 2)(k + l)(fc

-
1) + 24),

P6 (k)=(2(k + 2)(fc+l)k + 12),

P7 (k 1)=-2fc 1 (k 1 -l)(k 1 -2),

P8(k 1 )
= 4(k 1 + IJJk^ki

-
!) + 4k 1 (k 1

-
.l)(fc! -2),
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t + l)M*i - l)-2M*i -0(*i -2X

l)M*i - 1),

<2 2 (k)
= -

2k(fi
-

a) + 2(k + l)a
-
2(0

-
a),

T
1 (/c)=fc, T2 (fc)=-(k+l), T3(k)=-(3fc-6), T4 (/c)

= (5/c-9),

-3k
1 +2), T9 (fc,fc 1 )

= 2(-k + k
1 -l),

T;(fc)
= 2fca, T'2 (k) = 2()3

-
a)fc

-
4(fc + l)a

-
2(0

-
a),

T'3 (fc)
= -

4(j8
-

a)(k + 1) + 2(k + 2)a + 4(j9
-

a),

70 12^
'

30
'

4

"70 60~'
" 14

=
13ff

" 15=
~TQ'

A VF ' A _ 4

^^""TA /en
Ai4~TlA' ^15~"~^:

2 20
12

20

(/S-a)

2 20 /
14

5

or the radial velocity profile/'(j), we have

he constant ,4 in (9) which is proportional to the lift is given by

4w+l
02

oo

X R"
w=l fc=2

(26)

-02

(27)
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Case (1): a = 0, /?
= which corresponds to the case when both discs are stationary and

the flow is due to injection only. In this case the coefficients of the series for/'"(l), which

is used to calculate A, has terms which are all positive after third term (table 1). Using
the computed coefficients we draw Domb-Sykes plot (figure 2) for/'"(l) (series (27)) to

find the nature and location of the nearest singularity which restricts the convergence of

the series. In this case singularity is found to be a square root singularity at R 1 7-9826.

This singularity on the positive real axis is not a real singularity, but an indication of

double valuedness of the function. This artificial restriction on convergence can be

eliminated by reverting the series. This type of reversion was successfully employed
earlier by Richardson [13] and Schwartz [14]. Towards this goal the reversion of the

series (27) for/"'(l) is performed as follows. Consider

Let

/'"(!)=- 6 +

Y =/'"(!) + 6= "n

(28)

Reverting the above series, we have

where

= I Bn Y
n

1

(29)

1
m-2

i=o
fc-t+i

Table 1. The coefficients an ofthe series (27) for /"' ( 1) in the case ofa = 0, ft
= 0.

No No
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0-3

0-2

0-1

0-05 0-1 0-15

1/n

Figure 2. Domb-Sykes plot for series (27) in the case of a = 0, /?
= 0.

0-2

Besides reversion we use Fade
7

approximants for summing the reverted series (29)

which yields analytic continuation. The details about Fade' approximants are given in

Appendix. These results are shown in figure 3.

Case (2): a = 4, j?
=

0, lower disc is rotating and the upper disc is stationary. The
coefficients (an ) of the series (27) for /"'(I) are listed in table 2. They are decreasing in

magnitude and have no regular pattern of sign. We invoke Fade' approximants to

achieve analytic continuation of the series (27) [11] and the corresponding results are

shown in figure 4.

12 numerical [16]

[2/2]Pade' approximants

[2/3]
"

*- - Brown's method

10 20 30 40 50 60

R *

Figure 3. Values of A as a function of R(cx.
= 0, ft

=
0).
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Table 2. The coefficients an of the series (27) for /"' ( 1) in the case ofa = 4, ft
= 0.

No No

Case (3): a = 0, j?
= 0-5 in this case the upper disc is rotating and the lower one is

stationary. The coefficients (an ) of the series (27) for/'"(l) are listed in table 3. They are

decreasing in magnitude but have no regular pattern of sign. So, as in the previous case we
use Fade' approximants to sum the series. The results obtained are shown in figure 5.

Case (4): a = 1, j?
= 1 in this case discs are corotating (with same speed). The coefficients

(an ) ofthe series (27) for /"'(I) are listed in table 4. They are decreasing in magnitude and

alternate in sign after llth term. Using the computed coefficients we draw Domb-

Sykes plot (figure 6) for/'"(l) (series (27)) to find the nature and location of the nearest

singularity which restricts the convergence of the series. In this case singularity is found

to be at R = 2-579849 on the negative real axis. The bilinear Euler transformation will

help in recasting the series into new series whose region of validity is increased

A

-2

numerical [10]

[2/2] Fade' approximants

[2/3]
"

Brown's method

10 20 30

R """*

Figure 4. Values of A as a function of R(ot = 4, /(
=

0).

50 60
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Table 3. The coefficients an of the series (27) for /'"(I) in the case of a = 0,

= 0.5.

No No

compared to the original series (27). Consider the Euler transformation

then R = coR /(l
-

co) and

/'"(i)= -6+
;

n

where

D
1
=

6,

D2
= a2R ,

n=l
(30)

8

6

4

2

-2

numericoinO]

[3/4] Pade' approximates

13/3
"

--- Brown's method

10 20

R -

Figure 5. Values of A as a function of R(a == 0, jft
=

0-5).

30 40
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with

Table 4. The coefficients^ of the series (27) for /'"(I) in the case ofa = !,/?= 1.

3a4

(31)

e
j
= (-R )

j
' 1a

J
.

12
\

I \

I \

' \

I

I

I

I

\

Case 4

- Case 5

nran

0-2 0-6 0-8

1/n

Figure 6. Domb-Sykes plot for series (27) in the case of a = 1,0 = 1 and a = 1, ft
= - 1.
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Brown's method

Eulerised series

Figure 7. Values of A as a function of K(cc
= 1 ,

=
1) and (a

- 1, f - - D-

This transformation maps the dominant singularities to
.

remains fixed Points close to the dominant singularities are mapped far from the origin

aZentoSLunitcircleinth^
shown in figure 7.

Case (5V a = 1 B = - 1 in this case discs are counterotating (with same speed). The

coS L s (a ) of the series (27) for/"' (1) are listed in table 5. They are

decrying
magnitude and alternate in sign after 10th term. Using the computed coeffic ents we

draw Domb-Sykes plot (figure 6) for /'"(D (series (27)) to find the nature and oca ion

of the nearest singularity which restricts the convergence of the series. In this case

Table 5. The coefficients a, of the series (27) for /'"(I) in the case of a - 1,

J3=-l.
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singularity is found to be at R = 2-623517 on the negative real axis. As in the previous

case we have used Euler Transformation to increase the region of validity. So

/'"(D = -6-f f an+l (<DR /(l-co)r= DX" 1

(32)
n 1 n= 1

The variation of A with R is shown in figure 7.

Equations (10)-(14) are also solved by power series method.

4. Power series method

We assume power series solution to (10)-(14) in the forms

00

/= I dn(\-riT
+l

(33)

= /?+Z bm(\-rjf (34)

where

>B + 0=a (35)

=i

and

P"-W-* (36)

2Rpbn+l _2R_
11+3

"
(n + 4)(n + 3)(n -f 2)

+
(n + l)(n + 2)(n + 3)(n + 4)

Expression (35) comes from the boundary conditions at r\
= and (36) and (37) are

obtained from (10) and (1 1) respectively. If b
l ,
d

1
and d2 are known then rest of(bn }

and

{dn } can be found from the recursive relations (36) and (37).

Effectively we have transformed a two point boundary value problem into solving

a system of nonlinear equations. We wish to find b
l ,d 1

and d2 such that conditions (35)

are satisfied. To solve this system of nonlinear equations Brown's method is useful. The

details of this procedure are given in Byrne [18]. It is found that the series (33), (34)

converge much faster and also more accurate solution with very little computer time

can be obtained. It is implemented in analysing all the five cases considered. The first

two coefficients ofthe series and lift at different Reynolds numbers are calculated. All
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these values are accurate to six significant figures. The number of significant figures for

accuracy was determined by increasing the number ofterms in the series from 30 to 350.

The time taken by the computer is also comparatively less whereas other methods

[9, 10, 16] require more computer time and large storage.

5. Discussion of results

Here the problem of injection (suction) of a viscous incompressible fluid through
a rotating porous disc onto a rotating co-axial disc is studied using computer extended

series analysis. The motion of the fluid is governed by a pair of coupled nonlinear

ordinary differential (10) and (11) together with the boundary conditions (13)

and (14). The series expansion scheme with polynomial coefficients ((22), (23)) proposed
enables in obtaining recurrence relations (24) and (25). Using these interactive relations

we generate large number (n = 25) of universal coefficients ((An(k} ,
k = 2, 3, . . .

,
4n + 1),

n = 1, 2, . . .
, 25) and ((J5B(fc)

,
k = 1, 2, . . .

, 4n), n = 1, 2, . . .
, 25). To this order there are

1300 coefficients A
n(k)

and 1300 coefficients B
n(kr

A careful FORTRAN program
consisting of number of DO loops makes it possible in performing complex algebra
involved. Using the universal coefficients of the series ((22), (23)) we obtain series

expansion for A which is directly proportional to the lift. The coefficients an of the

series (27) for A in the case of a = 0, j?
= are listed in table 1. They decrease in

magnitude and have same sign after third term. Figure 2 shows the Domb-Sykes plot

for series (27) in the case of a ==
0, jS

= 0. The slope of the curve indicates square root

singularity corresponding to double valuedness of the solution (by using rational

extrapolation exact position of the singularity is found to be at R = 17-9826 with an

error of order 10
~ 5

). So the region of validity of the series (27) for A in the case of

a = 0, fl
= will be increased by reverting the series (by changing the role of dependent

and independent variables). We use Fade' approximants for summing the reverted

series (29) which accelerates the convergence and yields its analytic continuation.

The results agree most favourably with results of Wang [16] (numerical), Bujurke and
Naduvinamani [12] (semi-numerical) and Phan-Thien ad Bush [9] (power series). It is

of interest to note that [2/2] and [2/3] Fade' approximants bracket [The Fade'

approximants P^(l) and P^l) form upper and lower bounds for the numerical value

of lift force [15]] the Numerical results of Wang [16] (figure 3). Double precision
arithmetic used guarantees the accuracy of Fade' approximants. Also, the round off

errors will be of negligible order as the Fade' approximants bracketing the numerical
results are ofthe form where denominators are polynomials ofdegree ^ 4 [17]. Table 2

contains the list of coefficients an of the series (27) for the case of a = 4, $ = 0. These
coefficients decrease in magnitude but have no regular sign pattern. We invoke Fade'

approximants to achieve analytic continuation of the series (27). The results agree

favourably with earlier numerical findings [10]. Also, we observe that [2/2] and [2/3]
Fade' approximants bracket the numerical results which are given in figure 4. The
coefficients an for the case of a = 0, jS

= 0-5 are listed in table 3. In this case also

coefficients are decreasing in magnitude and have no regular sign pattern. As in the

previous case analytic continuation of the series (27) is achieved by using Fade7

approximants. The [3/4] Fade' approximant is found to be very near to the numerical
results [10] which are shown in figure 5. The coefficients an of the series (27) for A in

he case of a = 1, /?
= 1 are listed in table 4. They decrease in magnitude and have

ilternate sign after llth term. Figure 6, the Domb-Sykes plot for series (27) in the
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Table 6. Comparison of Brown's method with optimization method.

case of a = 1,
= 1 shows the singularity on the negative real axis after extrapolation

at R = 2-579849 with an error of 10~ 4
. The region ofvalidity ofthe series is increased by

Euler Transformation. The results obtained are shown in figure 7. In case 5 the analytic

continuation is achieved exactly in the way like case 4. The results obtained are shown

in figure 7. This problem is also solved by power series in conjunction with Brown's

method for different cases [a = 00 = 0, a = 4)3
=

0, a = 00 = 0-5, a = 10 = l,

a = 1 ft
=

1] and the results obtained are shown in figures (3-5 and 7). Details of case

1 (a
= 0, =

0) (table 6) corresponding to stationary disks with injection shows the

efficiency of Brown's method. The series (26) representing radial velocity profiles in

various cases (a
= 0, = 0; a = 4, =

0; a = 0,
=

0-5) are analysed using Fade'

approximants and these results are shown in figures 8 and 9). It is observed that velocity

attains peak values for a = 0,
= 0-5 and it is much higher than first two cases.

1-5

1

,0.5

-0-5

0-2 0-4 0-6 0-8 1

7?
'

Figure 8. Radial velocity distribution /'(*/) at R = 16.
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1-5

-0-5

0-2 0-4 0-6 0-8 1

7?

Figure 9. Radial velocity distribution f'(r\) at R = 20.

The method proposed here is quite flexible and efficient in implementing on

computer compared with the pure numerical methods. Once the universal coefficients

are generated rest of the analysis can be done at a stretch requiring hardly any

computer time and storage. Whereas other methods [9, 10, 16] require more computer
time and large storage.
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Appendix

Fade' Approximants

The basic idea of Fade' summation is to replace a power series

by a sequence of rational functions of the form

N

where we choose B = 1 without loss of generality. We determine the remaining

(M + N + 1) coefficients A^A^A 2^..AN;B^B 2 ,...BM so that the first (M + N + 1)

terms in the Taylors series expansion of P^-R) match with first (M + N + 1) terms of

the power ECwR
n

. The resulting rational function PM(&) is called a Fade' approximant.
IfECw jR

n
is a power series representation of the function f(R) than in favourable cases
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, pointwise as N,M - oo. There are many methods for the construction of

Fade' approximants. One of the efficient methods for constructing Fade' approximants
is recasting of the series into continued fraction form. A continued fraction is an infinite

sequence of fractions whose (N + l)th member has the form

+ DjjR

l+D2 R

l+DNR

The coefficients Dn are determined by expanding the terminated continued fraction

FN(R) in a Taylor series and comparing with those of the power series to be summed.
An efficient procedure for calculating the coefficients Dn's of the continued fraction (E)

may be derived from the algebraic identities (8.4.2a)~(8.4.2c) [15]. Contrary to repre-

sentations by power series, continued fraction representations may converge in regions

that contain isolated singularities of the function to be represented, and in many cases

convergence is accelerated. Based on these DM
's we get terminated continued fractions

of various order from other algorithms ((8.4.7), (8.4.8a) and (8.4.8b) [15]).

Fade' approximants perform an analytic continuation of the series outside its radius

of convergence. It is clear that it can approximate a pole by zeros of the denominator.

With branch points it extracts a single-valued function by inserting branch cuts, which

it simulates by lines of alternating poles and zeros [19].
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Abstract For smooth projective varieties X over C, the Hodge Conjecture states that every
rational Cohomology class of type (p, p) comes from an algebraic cycle. In this paper, we prove
the Hodge conjecture for some moduli spaces of vector bundles on compact Riemann surfaces

of genus 2 and 3.
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Introduction

For smooth projective varieties X over C, the field of complex numbers, the Hodge
conjecture states that every rational cohomology class of type (p, p) comes from an

algebraic cycle. More precisely, consider the Hodge decomposition

Let CP
(X) denote the Chow group of algebraic cycles ofcodimensionp on X, modulo

rational equivalence. Then one has the 'class map'

tfx : Cp
(X) Q ->H2p

(X, Q) n

Then the Hodge (p,p) conjecture states that Xp
x is surjective.

Let C be an irreducible smooth projective curve if genus g ^ 2, and let M(n, ) be the

moduli space of stable vector bundles V on C, of rank n, det V ^ & a line bundle of

degree d such that (n,d) = 1. The aim of this paper is to prove the Hodge (p,p)

conjecture in the case when g=--2, 77 = 3 (dimM(3,) = 8). In the case when = 2,

g = 2, 3, 4, the Hodge conjecture can be proved by elementary means which we indicate

at the end of the paper.
The case we consider is of interest, as it gives a non-trivial family of examples where

the general method of normal functions is used to prove the conjecture. Geometric

descriptions given in [T] in the rank 2 case lead to elementary proofs, of the Hodge

conjecture. In the rank 3 case, any such description does not give elementary proofs of

the Hodge conjecture, (cf. Remark 4.3, 4.4)

The Poincare-Lefschetz theory of normal functions was generalized and developed

by Griffiths and Zucker and had the proof of the Hodge (p,p) conjecture as a primary

goal In this paper we give a natural construction of a smooth projective variety and

a proper generically finite morphism onto the moduli ofrank n, degree (ng
-

n) bundles

which plays the role ofthe Lefschetz pencil in the context ofnormal functions. From the

remarks of Zucker (cf. [Z-2], pp. 266) all the known examples where normal functions

have been used to prove the Hodge conjecture, more elementary methods have been

371
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successful (cf. [M], [Z-2], and [Sh] for a full survey of the Hodge conjecture); however,

in the present case this seems unlikely.

In 1, we recall some general facts. Section 2, contains a theorem giving a criterion

for a variational Hodge (p, p) conjecture to hold under some stringent conditions. In 3,

we give a pencil type construction in the context of moduli. Section 4, gives the proof of

the conjecture for M(3, ).

Some notations. Let X be a smooth projective variety defined over C the field of

complex numbers. We state at the outset that our base field is C. Let CP
(X) denote the

Chow group of cycles of codimension p modulo rational equivalence and

AP
(X) c: CP

(X) the subgroup of cycle classes algebraically equivalent to zero.

1. Preliminaries

Lemma 1.1. (cf. [2-1] A.2) Let X and Y be smooth projective varieties, f:X-*Y be

a proper genericallyfinite surjection. Ifthe Hodge (p,p) conjecture is truefor X, then it is

true for Y.

Proof. We note that, /*/* = multiplication by d, both on cycles and cohomology,
where d= [k(X):k(Y)']. Therefore, if yeHp *p

(Y9 \ f*yeHp >p
(X,Q); so if f*y is

a rational cycle Z, then

implying y is a rational cycle l/d(f^z) on 7.

Lemma 1.2. Let Ebea vector bundle ofrank r = e+l,andletP = P(E). Letf:P -+Xbe
the associated projective bundle. Then the Hodge (p, p) conjecture is trueforX ifand only

if it is truefor P.

Proof. Let h be the relative ample class 0p(l), and h = c
1 (^P (l)). Then we have the

well-known decompositions of the Chow groups and cohomology groups of P, and we
have the diagram:

c*(p) = f*cp
(x) hf*cp ~ l

(x) .-0 h
e
f*cp

~ e
(X)

m i% ur 1 ur*
H2p

(P) = f*H2p
(X) hf*H2p ~ 2

(X) ... h
e
f*H2p ~ 2e

(X)

From this diagram, the proof follows easily, noting the fact that /* is an injection both
on cycles and cohomology.

Lemma 1.3. Let X be a smooth projective variety, Yc+X a smooth closed subvariety of
codimension r; let U c+ X be X - Y, f (resp.j) the inclusion ofY(resp. U) in X. Then we
have thefolio-wing commutative diagram:

C~ r
(Y) Jl> C(X) > Cq

(U) ->0

>Uy l*x I

H2 ~ 2r
(Y)

Gysin
> H2q

(X) -* H2
(U)

Proof. This follows from the existence of the Gysin map i^ which is functorial with

respect to the class map L (cf. J Milne, Etale Cohomology, Proposition 9.3, Ch. VI).
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DEFINITION 1.4

Let J'(X) be the pth Griffiths-mtemediate
Jacobian of X based on

([G],[Z-2])andlet

cohomology of a proj
we have

to the one induced by (4 Therefore, one has

*
(X) -

Further, one has a similar decomposition
for ,he Chow groups

A>(P) = A'(X>&A'-'W-
A' '

(X) '

Combining h,s ith d. functorialit, of the Abel-J.cobi maps,
we get

is similar.

2. Normal functions

Let f:X -*S be a proper smooth

-singula: ^ for x

[Z-3], [Z-4]).

conditions hold:

issurjectiveVseS.
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Then Hodge (p,p) holdsfor X.

Proof. Consider the Leray filtration {I/} on H*(X) associated to the morphism /.

Since the spectral sequence degenerates (cf. [G]), we have:

L^L^L2
.

We need the following description of the Leray filtration from ([Z-3], pp. 194):

L 1 = ker {H
2p
(X) ->H2p

(Xs)}

L2 = ker [H
2p
(X) -+H2p

(X - Xs)}

= Im {H
2p ~ 2

(Xs)
Gys

'm
> H2p

(X)} (cf. Lemma 1.3)

for any seS, and

We need to handle the (p,p) classes in the rational cohomology of X, which come
from the various parts of the Leray filtration.

The primitive class i.e. the (p, p) classes lying in L 1 can be dealt with as follows:

(i) Observe firstly that L l

/L
2 ~ H l

(S, #2p
~V*Q). Integral (p,p) classes in L^L

2
,
thus

arise as cohomology classes of normal functions i.e. holomorphic sections of the

intermediate Jacobian bundle, JP
(XS)

-S. This is a consequence ofTheorem 2.13 of

[Z-4]. Our assumption (b) then ensures by [Z-l], that this normal function comes

from a relative algebraic cycle on X.

(ii) (p,p) classes which lie in L2
: Note that

L2 = Im {H
2p ~ 2

(Xs)
Gysin

> H2p
(X)}

and by assumption (a) and Lemma 1.3 of 1, since Hodge (p 1, p 1) holds forXs ,

(p, p) classes in L2 come from algebraic cycles.

Now for the remaining classes, in L /^
1

, let 7 be a (p,p) class in H2p
(X\ which

restricts to non-zero classes ys on Xs
for all seS. Let ^d

x/s
denote the Chow variety (or

reduced Hilbert scheme) of relative codimension p cycles of degree d on X. By the

theory of Hilbert schemes, for some d 0, the natural morphism

x/s

is a surjection. Hence for all A ^ 1, ^s
-* S is surjective.

Let V'Ad be the non-empty open subset of S for all A ^ 1, such that

is flat. (Such a non-empty V exists since < a is a proper surjective morphism.) By
a Baire argument, it is easy to see that H^ {

Vu * <; choose an sen ;.> i
^Ad and fix this s.

Consider 7 1 Js
= 7S;

then by (a) of Theorem 2.1, since Hodge (p,p) is true for Xs, express

ys
= oc

s
- p where as and ps

are effective codim p-cycles on Xs of degree / and
m respectively. Since we are interested only in rational cohomology, we may assume,
without loss of generality that / and m are multiples of d.

Therefore, by choice se V ln Fm, and a
s
e<

~ x

(4 Since ^ is flat over V1

, all irreducible

>mponents of $^(V*) dominate V1

(S being a smooth curve). Choose an irreducible
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component of <f>~W which contains a, Then it is easy to see, (bv choosing a cuneC through as and taking its closure in U that we get a curve S' and a finite morphiai -* S, such that (we could assume S' is also smooth without loss of generality bv aoins
to the normalization if need be).

~ . .
- -

I I

S' -* S

and there is a section for
'

over S', which passes through x
s

. That is if

X' JL+X

1 I

S' > S

then, there exists an effective codimension p-cycle a ofdegree / on X', such that 2 v
= x

s
:

where s' -* s. We can similarly get a /? of degm over another finite extension, and \ve can

therefore get T, a smooth curve, with a finite morphism

r-s,

such that

Y JL> X

I I

T > S

and a and /? give codimension p-cycles on Y of degree / and m respectively, s.t.

oc| rt
=a

s, ^| yt
=

/?r

Thus,
e= [>*}>- (a -j3)]

is a cohomology class which (by (*)) lies in

Hence e is a primftie cofcomo/offy class on Y; observe that fibres of V-*
J

are the same as

those ofX -S, and hence thehypothesesofTheoremll.holdforthefibresotlpT-to
well. So by the first part of our proof, e comes from a codimension p-algebraic cycle

, on

Y. i.e.

is algebraic. Since : 7-X is a proper finite surjection, by Lemma 1.1. it follows that

y itself is algebraic.

3. A pencil-type construction for moduli

In the discussion that follows, we describe

moduli spaces of vector bundles. We remark that
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hyperplane section in the moduli space is not very transparent and so the usual theory

of normal functions and Lefschetz pencil cannot be applied in this setting. We begin by

proving a lemma which is essential in the construction.

Lemma 3.1. Let Wbe a stable vector bundle ofrank 2 and degree 3. Let V be a non-split

extension

Then V is semi-stable.

Proof. This is an elementary consequence of Propositions 4.3, 4.4. and 4.6 of [N-S]. To
see this, suppose that V is not semistable, then by Proposition 4.6 there exists an F,

stable of rank ^ 2 such that

and a non-zero element /eHom(F, V). Thus /z(JF) ^ jj.(W). Thus v/eHom(F, W\ If

v o/ is zero, / must factor through & which gives an immediate contradiction. If v of is

non-zero, by Proposition 4.4 of [N-S], if W
1

is the subbundle of W generated by
.

Since W is stable, it implies Wl
^W and vo/ is an isomorphism, which gives

a splitting for v, q.e.d.

Let ML
= M(3, L), be the moduli space of semi-stable bundles of rank 3, deg 3g

-
3,

A n V ^ L, g being the genus of C, i.e. deg (L) = 3#
-

3, # = 2.

Consider the -divisor in ML which is defined as follows:

= {FeML |/i(F)>0}.

More generally, we can define for all eJ(C) ?
the divisor

Let Hr^ be the universal family on C x M(2,L) and consider the bundle of

extensions given by

where p:C x M(2,L)->M(2,L). Observe that, if WeM(2^L\ then the

points of P
5 lying above W are given by non-split extensions

Q^Q^V-*W-+Q.
(1)

By Lemma 3.1, we see that bundles V obtained above are semistable. Thus we can
define a morphism

^ote that since det V ~ L, det(K (
1/3

)*)
= L. Also this map is well-defined since

P$ parameterizes a universal family and M(3,L) has the coarse moduli property.
It is easy to see that Im <^ c (when rj

= 1/3
). Further, by ([S] Theorem IV, 2.1),

the component ofIm 0* in B
n
is ofcodimension at least 2 (in general for rank n it is n - 1)
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and therefore contains a non-empty open subset of 0^, hence by the properness of
<p^

(in fact by [S], ^ is birational).

The above construction of P^ can be globalized as follows:

Let M(2,3) be the moduli space of vector bundles of rank 2 and degree 3. Let

if -> C x Af(2, 3) be the universal family. Define P = P(R
l

p^"*). Then the morphism
</>,, globalizes to give:

(the ambiguity of 'cube roots' can be resolved to by pulling back P by the following

diagram:

(so in fact, (j)
is well-defined as a morphism <p : P' -* M(3, L)). Define Pc by the following

base-change diagram:

P-*?'C

where Cc+Jby mapping a base point x to the fixed degree 3 line bundle L. (Note that

C is in fact connected). Then <p induces a morphism

We claim that is surjective. This is not hard to see since Im <t>
contains the 0-divisor;

further, one can easily get a point inML
- in Im 0. Now surjectivity follows from the

fact that Pc and ML are irreducible and is a proper morphism, such that Im $

properly contains a divisor.

Since

dim Pc
= dim + dim C = dimML ,

gives a generically finite proper surjection.

Remark 3.2. We remark that the above construction can be done for all ranks by using

the construction of desingularization of the 0-divisor in [RV] Our variety P can be

related to their but we would not go into it here.

4. Proof of the Hodge conjecture for M(3, ij)

In this section we complete the proof of the Hodge ( p, p) conjecture for M(3, r\\ where

deg Y\
= 1 or 2, g = 2. The strategy is to relate the geometry ofM(3, 17)

and M(3, L) by the

Hecke correspondence (cf. [B]).
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PROPOSITION 4.1

Let ML
= M(3, L), deg L = 30

~ 3. Let = 2 and consider the moduli space Pc construc-

ted in 3. Then Hodge (p, p) is truefor Pcfor all p.

Proof. By Theorem 2.1, it is enough to prove the properties (a) and (b) in its statement

for n~ l

(y) for all yeC, where

By 3, n~
1

( j;)'s
are the moduli spaces P%.

Since P^ is a projective bundle onM (2, ^ L)

associated to a vector bundle, to prove (a) and (b) ofTheorem 2.1 for P^ it is enough to

check them for M(2, L) because ofLemma 1.2 and Lemma 1.5. Since M(2, L) is

a 3-fold, the Hodge conjecture follows from the Lefschetz (1,1) theorem. That

A 2
(M(2,cL)) has the Abel-Jacobi property follows from ([B-M] pp.78) since

M(2, f L) is a rational 3-fold.

We could also prove the above Proposition for Pc more directly by using the follow-

ing fact:

By Thaddeus [T], (cf. also [N]), we could, consider the variety obtained by blowing

up the curve C embedded in a suitable projective space of extensions. It corresponds to

the variety M l
in [T]. Denote this by Af (2, L). Then, when g = 2, it is easy to see

that

is a birational morphism. Since M'(2,^L) also parameterizes family of vector

bundles (in fact a family of pairs!), we have a varietyP^,
a projective bundle associated to

a vector bundle on M'(2, L) and a birational morphism

Properties (a) and (b) ofTheorem 2.1 are fairly simple for P . Now construct globally
the variety P^ such that

PC -Pc
I I

C - C

Observe that by Theorem 2.1, Hodge (p9 p) is true for P'c . Since P^ -> Pc is a generically
finite surjection, Hodge (p,p) for Pc follows from Hodge (p,p) for P'c , by Lemma 1.1.

Theorem 42. The Hodge (p,p) conjecture is true for M(3,??), where degrj = 1 and 2.

to
=

2).

. We prove it for deg r\
= d = 1. Proof for d = 2 follows along identical lines.

Let P^ be the moduli space of parabolic stable bundles, (7, A), V of rank 3,

deg 3g
- 3 = 3, det V ^ L, with parabolic structure A at xeC given by

F2VX a subspace of dim 1, and weights taken sufficiently small (cf. [B], . . .
). Then, we
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have the Hecke correspondence

ML

where
r\

is a line bundle of deg Y\
= 30 5 = 1. The morphisms \l/

and h are given by

where W is obtained from the following exact sequence.

T being a torsion sheaf of height 2 given by

TJVJF
2 VX at x

[0 elsewhere.

Then it is known that ^ is a projective bundle associated to a vector bundle on M(3, YJ)

(cf. [B]) and the map h (in (*) above) is generically a projective bundle over the stable

points ofML . Therefore by Lemma 1.2, it is enough to prove the theorem for Px .

Now Pc by construction parameterizes a universal family i' -* C x Pc . By the

definition of and h, it is easy to see that Px
^ P>(f *), where V~x is the bundle on Pc

obtained by restriction of V to x x Pc ,
and 1^* its dual. Thus by the coarse moduli

property ofparabolic bundles for P^, we have a morphism $: Px
- Px and the following

commutative diagram:

By Proposition 4.1, Hodge (p,p) is true for Pc and hence by Lemma 1.2, it is true

for Px . Thus by Lemma 1.1, since $ is a generically finite surjection, Hodge (p9 p) is true

for Px for all p, which proves the theorem.

To prove it when deg rj
= 2, we modify the parabolic structure by giving F

2 Vx c Kx ,

as a subspace of dim 2 and the rest of the argument is similar.

Remark 4.3. (The Hodge (p, p) conjecture for rank 2 moduli when = 3, 4).

In these cases when rank is 2, there is a geometrical picture due to Thaddeus (cf. [T]);

in his notation, ifd > 2g
-

2, d being the degree, then the moduli space of stable pairs P ,

z = (d- 1)/2, dominates M (2, ) d() = i Further, when d = 20
-

1, P , z = (d
-

l)/2, has

the property that

is a birational surjection. Thus, in the case when =
3, (resp. 4) d = 5 (resp. 7), the index,

f = 2 (resp. 3).

Now, the variety P2 (resp. P 3 ) is obtained by a sequence of blow-ups and blow-downs

where the centres are smooth and Hodge conjecture is easily verified by using the
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Ibrmule-clef which expresses the Chow ring (resp. cohomology) of the blow-up i:

terms of the Chow ring (resp. cohomology) of the base and the centre of the blow-uj.

Then by Lemma 1.1, using 0, Hodge (p,p) follows for M(2, ). When = 5, the centre

blown-up are projective bundles over S4C, the 4th symmetric power of C and henc

Hodge (p,p) would follow, once it is known for S"C, n ^ 4.

Remark 4.4. In the rank 3 case, even when =
2, the centres ofblow-ups in any attemp

at such descriptions seem much more complicated, vis-a-vis the Hodge conjectur<

Also, it is not clear if the centres are smooth in the first place. Our proof, which i

inductive, uses the simple nature of the geometry of rank 2 moduli spaces.
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a representative M on which there exists an action of S l
with finitely many stationary

points. Thus in the case G = S 1
,
the map is surjective.

The aim of this paper is to consider certain natural (Z2)

n
actions on real Grassmann

and flag manifolds and S l
actions on complex Grassmann manifolds with finite

stationary point sets and generate elements in the kernel of s and &. Group actions

with finite stationary point sets are particularly interesting, as in this case, the

tangential representations of the group G = (Z 2)", at stationary points, completely

determine the equivariant cobordism class of manifolds [3]. In case G = S 1

, although

the tangential representations do not determine the equivariant cobordism class

of a manifold completely, they carry lot of information about the bordism structure

of the manifold. As for example, Atiyah-Singer [1] and Bott [2] have shown that if

S 1
acts on an oriented compact manifold M with a finite stationary point set S,

then the oriented RS^modules {Tx M:xeS} determine the Pontrjagin numbers of M,

(also cf. 2).

For G = Z 2 x Z 2 , Conner and Floyd have described the structure ofZ^(G) completely

(cf. [3]). Stong and Kosniowski [4], have also derived this result from a more general

consideration. They showed that ZJG) is the polynomial algebra over Z2 generated by
the class [^P

2
,<] 2 , where

</>
is given by the generators T

1
and T2 as follows.

Ti([x,y,z]) = [ -x,;y, z] and T2 ([x,j>,z])
=

[x, y,z]. In particular, the kernel of 8 is

trivial in this case. No neat description of Z
J|C (G) for G = (Z 2 )

n
,
n > 2, is known. Our

results show that in general the kernel of & is nontrivial. a cobordism class

[M
d
, <p'] 2eZd ((Z 2 )

n

) is equivariantly decomposable if(M
d

, </>)
is equivariantly cobordant

to a disjoint union of products of lower dimensional manifolds with (Z2 )

w
action with

finite stationary point sets, otherwise it is equivariantly indecomposable. The first step

towards understanding the structure of Z^G) in general, would be to know the

indecomposable elements in Z
Hs (G), which may be considered as the generators.

Unfortunately, there is no indecomposability criterion known in the equivariant case.

Clearly if [M] 2eMO Hc
is indecomposable (in the non-equivariant sense) and M admits

an action of (Z 2)

n
, with finite stationary point set, then [M, </>] 2 is indecomposable. But

there exist some elements in the kernel of & which are indecomposable in Z
:Je
((Z2)"). For

example, it is easy to argue that [RP
3

, 0] 2 is indecomposable in Z^((Z2 )

3
),
where $ is

given by the generators as follows. r
1 ([x,y,z,w]) = [~x,3;,z,w], T2 ([x,y,z,w]) =

[x, -y,z,w] and T3 (|>,y,z, w]) = [x,y 9

-
z,w]. By knowing enough elements in the

kernel, perhaps it would be possible to get an idea about the indecomposable elements

in general. We believe that all the elements in the kernel given by Theorem 1.1 and
Theorem 1.2 are indecomposable. This motivates our study of these actions.

To determine which real flag manifolds bound, in [9] the authors gave a

partial answer to this question. Real Grassmann and flag manifolds come equipped
with certain natural (Z2)

n
actions having finite stationary point sets, to be made precise

later. Although, it seems difficult to determine the unoriented cobordism class of flag

manifolds, the determination of (Z 2)"-cobordism class of flag manifolds is easy. In the

present paper, which real flag manifolds and Grassmann manifolds bound equivariant-
ly, is completely determined. More precisely, we prove

Theorem 1.1. (a) (Gn/c ,$) bounds equivariantly ifn = 2L
CO (Gn^ <t>) does not bound equivariantly ifn ^ 2L

Theorem 1.2. (G(n l3
n2,...,ns),0) bounds equivariantly if and only if n

i
= n

j for some
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Precise definitions ofthe actions <p on Grassmann and flag manifolds are given in the

subsequent sections. Perhaps, by knowing sufficiently many elements in the kernel of

8 it would be possible to determine whether the unoriented (Z2)"-cobordism class offlag
manifolds lie in the kernel of & or not, and that might lead to a complete answer to the

question, which real flag manifolds bound? We also consider certain natural S ^actions
on complex Grassmann manifolds to produce nontrivial elements in the kernel of (cf.

Theorem 3.4). In this case, our result produce an infinitely many nontrivial elements in

the kernel of e. As a consequence, we deduce that for each d > 1, Jr2d(5
1

) is not finitely

generated as abelian group.

2. Representation and cobordism

In this section we briefly recall [3] the relation between tangential representations at

stationary points and cobordism and a result of Stong.

Let G be a finite group. Let R n(G) denote the vector space over the field Z2 , with basis

the set of representation classes of degree n. The elements in R
n (G) are formal sums of

n-dimensional representation classes with coefficients in Z 2 . If R*(G)
= ^Rn(G\ then

RX (G) admits a graded commutative algebra structure with unit over Z 2 . The product is

given as follows. Suppose (Vl9 G), (F2 , G) are representations. We take (^ V2 , G) to be

g(v i9 v2 )
= (gv l9 gv 2 ).

Then the product is (F1,G)-(F2 ,G) = (K1 V2 ,G). The identity

element is the representation class of degree 0. In fact, R*(G) is the graded polynomial

ring over Z2 generated by the set of isomorphism classes of irreducible finite dimen-

sional real representations of G.

Consider now an action (M
n

, </>)
with finite stationary point set S. For each xeS, we

have a real linear representation of G on the tangent space to M" at x. We denote the

resulting representation class by X(x)eRn (G). Since x is an isolated stationary point, it

is clear that X(x) contains no trivial summand. To (M",</>) we assign the element

^xeSX(x)eRn (G). This element is zero in Rn (G) ifand only ifeach tangential representa-

tion class which occurs is present at an even number of stationary points. The

correspondence (M
w

, $) i-^es X(x) induces an algebra homomorphism rj:Z^(G)
-

R+(G)
with image S+(G). Stong [11] showed that for G = (Z2)\Z^(G)^S^(G). In other

words, (M 19 0J and (M2 > <p2 )
are G-cobordant if and only if ^xeSi X(x)

= Sves 2 X(y)>

where^6Sl X(x) and ^5, X(y) correspond to (M l5 ^J and (M2 , <J> 2 ) respectively. In

particular, if xeS JT(x) = for (M
rf

,<), then [M
d
,<] 2

= in Zd((Z2)

n

).
Thus the

unoriented cobordism class [M] 2 of a manifold M on which there exists an action of

(Z2)

M
with finite stationary point set S is determined by the tangential (Z2)"-modules

{Tx M:xeS}.
To deal with the oriented case of S 1

action on complex Grassmann manifolds, we

need an 'oriented' version of representation ring, which is briefly introduced.

Let G be a compact connected Lie group. For our purpose G will be the circle group
S 1

. Let V be a (finite dimensional) oriented real representation space. If dir% V> 0,

then denote by - V the same R G-module but with opposite orientation on it. If V and

W are oriented [RG-modules, then V W is the oriented R G-module where G acts

diagonally and the orientation is the 'direct sum' orientation. We regard the 0-

dimensional vector space as having a unique orientation. Then for any two oriented

[RG-modules V and'W
9 V@W^(-\fmV'*imW

(W V) as oriented PG-modules, and if

dimV and dimW are positive, (~V)W^V@(-W)^-(V@W) as oriented RG-
modules. Note that if dimF is odd, then V^ - V as oriented IRG-modules because
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id: V-+ V is an orientation reversing isomorphism. It is now easy to check that for any
two oriented RG-modules V and W,V@W^W@V.
We now define the graded ring *(G) which is the analogue in the oriented case of

R*(G) defined above. For n^ I denote by Rn(G) the free abelian group on the

isomorphism classes of oriented [RG-modules of (real) dimension n modulo the

subgroup generated by elements of the form [K] + [ K]; [V~\ stands for the isomor-

phism class of the oriented [RG-rnodule V. R (G) is defined to be the free abelian group
on [0], the class of the 0-dimensional RG-module. Let JR*(G)

= Z^o^(G) and define

as before [F]-[W] tobe[K W], where K]/F is given the direct sum orientation and

diagonal G action. It is straightforward to check that this gives rise to a well-defined

multiplication which makes -R^(G) a commutative graded ring with unit [0]. Note that

2x = for all xejRn(G) if n is odd. Let B be the set of all isomorphism classes of

irreducible oriented RG-modules, and let B
{

= {xeB:dimx = i mod2}, i = 0, 1. Then it

can be shown that

the quotient of the polynomial ring over integers Z in the variable B by the ideal

generated by {Ib'.beB^.
Now suppose that (M ", 0), n > 1 is a smooth closed oriented G-manifold with a

finite stationary point set S. Let xeS, then the tangent space TXM at x to M, which

is an oriented vector space, is an RG-module. Since x is an isolated stationary point

TXM does not contain any trivial [RG-submodule other than 0. To (M,0) we
associate the element fj(M, </>)

= ^^[^Mje^fG). For a 0-dimensional manifold X,
the only G-action is the trivial one. We define fj(X, trivial) = \X\'[0]eRQ (G). We now
state a result, which may be well-known to the experts but an explicit reference is not

known and which says that the function
ijf
behaves well with respect to G-cobordism

relation.

PROPOSITION 2.1

Suppose (M, (j>) and (M ',</>') are equivariantly cobordant as oriented G-manifolds with

finite stationary points. Then fj(M, 0) = rj(M\ 0') in R#(G).

The proof of the above result goes along the line of the proof of the corresponding
result in unoriented case, (cf. 32 of [3]). Thus by Proposition 2.1, we obtain

a well-defined map fj: ^(G) -> jR+ (G). It is straightforward to check that the map ??
is

a homomorphism ofgraded rings. Moreover, it can be shown that kernel of fj
consists of

elements having representatives (M, <j>) where G acts without fixed point on M. In fact,

for G = S 1

, kernel of
fj is precisely the inverse image of Torsion (MSO^) under the map

2(cf.[10]).

3. Action on Grassmann manifolds

Let O(n) denote the orthogonal group of n x n matrices. The subgroup of 0(n)

consisting of diagonal matrices can be identified with (Z 2)". Let e^e2,...,en be the

standard basis of {R
M
, and 7} be the involution
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Then there exists an action of (Z 2)
rt on Un

given by the pairwise commuting actions of

T
t
s. This action induces an action of (Z 2 )" on G

n fe,
the real Grassmann manifold of

/c-dimensional subspaces in RB
, and this action has finite stationary point set. A k-plane

X in Rn
is fixed by this action if and only if Jf = <elV e ia,...,e.fc

>=: fle

where

a =: 1 ^ i
l
< i2 < < ik ^ n. Thus there are I I stationary points for this action.

A Grassmann manifold Gnk along with this action of (Z 2 )

n
will be denoted by (Gnjk, 0).

In [8], [12], it was proved that Gnk bounds if and only if v(n)>v(k) where for

a positive integer n, v(n) denotes the integer such that 2 V(W) divides n and 2 V(")+ *
does not

divide n. In this section, the Grassmann manifolds (Gn fc , 0), which bounds equivariant-

ly, that is, [Gnfc ,0] 2 =0 in Z
k(n

^
k) ((1 2 )

n

) is determined completely. We need the

following lemma.

Lemma 3.1. Let G be a compact Lie group, X a closed smooth G-manifold. Let t:X-*X

be a smooth fixed point free involution on X such that gt(x)
= t(gx)for all geG. Then

X bounds equivariantly. Moreover, if X is a smooth closed oriented G-manifold and

t:X-*X is a smooth fixed point free orientation reversing involution on X such that

gt(x) = t(gx)for all geG, then X is an oriented equivariant boundary.

Proof. Let W=X x [- 1, 1]/-, where - is given by (x,s)~(t(x), -5). Then W is

a compact manifold. An element of W is an equivalence class [x,s], xeX, se[ 1, 1].

Define an action of G on W as follows. For #eG, [x, s]e W, g [x, s]
= [#x, s]. Note that

(gt(x), -s) = (t(gx), -s) ~ (gx,s). Thus the above definition makes sense. Hence W is

a smooth compact G-manifold with boundary and dW=X x
{ !,!}/

~ is G-dif-

feomorphic to X by the map [x,s]i->x when s = 1. Moreover, if X is oriented, then

(x,s)h->(t(x), -5) is an orientation preserving fixed point free involution onX x [ 1, 1]

(as t is orientation reversing), hence W becomes an oriented G-manifold. M

Proof of Theorem 1.1. (a) Suppose n = 2k. Then if X is a k-plane in R2
\ X\ the

orthogonal complement is also a k-plane in R 2k
. Thus Xt-+XL

gives a smooth fixed

point free involution on G2kk which is easily seen to commute with each
7},

j = 1, 2, . . .
, n. The result follows by Lemma 3.1.

(b) Suppose k ^ n/2. Let A be any subset of { 1, 2, . . . , n} consisting of k elements, that

is, |A|
= k. We shall write elements of A in increasing order. Let e

}
=

{e^ieA}. Thus for

each such A there correspond a stationary point of Gnk which is the k-plane E- spanned

by the vectors in e-. Let y^k be the canonical k-plane bundle over Gn ,k
. Then the tangent

bundle rGnk has the following description [5], i;Gn^yn , k y^k
. Thus the tangent

space at any point XeGn fc
is X X\ where XL

is the orthogonal complement ofX in

R". Let Ar
;;.= TE.Gnk denote the tangent space at the fixed point corresponding to L

Then the standard basis of the tangent space X
;

is given by fc(n-fc) vectors

[elrj
= e

ir ej}r= It2 fc,
where i

l
<i2

<-~< ik are elements of A andje{l,2, . . . , n}
- L

Note that the action of (Z2 )

n on X^ is given by the pairwise commuting actions of the

involutions Ta ,
a = 1, 2, . . . , n, thus,

Ueirj )
=

These give the representation class X(X) of (Z2 )

w on X>. Let co c { 1, 2, . . . , n} be given by

co =
{ 1, 2, . . . , k}. We claim that the representation class X(co) never occurs at any other
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stationary point; in other words, if A ^ co then the representation of (Z2 )

n
at Xx is not

equivalent to the representation at X^. Suppose, A^O. We can choose aeco such that

aA. Now a basis at X^ is given by {ey},
f e{ 1, 2, . . .

, fc}
and jejfc + 1, . . . , w}, where the

span of e
tj

is a (Z 2)"-module for any i ^ fc and; > fc. Thus the action of Tx on Jf^, has

( l)-eigen space of dimension n fc, whereas the action of Ta on XA has ( l)-eigen

space of dimension k. If there exists a (Z 2)
n
-isomorphism between X^ and ZA, then we

must have fc = n fc, which is impossible as k ^ n/2. Thus X(A) is distinct from X((o), as

claimed. Hence the element ^X(X)eSk(n
_.

k) ((l 2)

n

) is not zero. It follows from 2 that

Remark 3.2 1. The proof of part (b) actually shows that the representation classes X(X)

and Z(jti) are distinct if A ^ ju, A, //
c

(1,2, . . .
, n}, as we have not made any use of the

special choice co.

2. Note that v(n) > v(fc) is a necessary condition for (Gn k , 0) to bound equivariantly.

For if [GM)k , 2 ]
= in Z

k(n
_

k) ((Z2))
then [GBtJ 2

= in MO
k(/J

_
k)

, hence v(n) > v(fc) by
Theorem 1.1 of [8]. Moreover, note that the above theorem produces elements in the

kernel of the homomorphism s, for [Gn>k , <] 2 belongs to kernel of s whenever v(k) < v(n)

and k ^ n/2.

3. In the case (a), that is when n = 2fc, if /,c{l,2,...,n} such that |A|
=

fc, then

A' = {1, 2, ...,} A has cardinality fc. In this case, one can check alternatively, that

X(A) = X(A'), so that each representation class X(A) occurs twice. As a result,

A X(A) = 0. It follows from Stong's theorem that [GM<k , </>] 2
= 0.

Next, we consider certain natural 5
1
action on complex Grassmann manifolds CGn fc

.

For weS 1

,
let <^w : C" -> C" denote the unitary map defined by

< w(z l9
z2 ,

. . .
,
zn )
= (wz l5

w2
z2 ,

. . . , w"zn ).

This induces an action of S 1 on the complex Grassmann manifold CG^ of fc-

dimensional complex subspaces of C n
. Let e

1 ,e2,...,en denote the standard basis

of C". This action of S 1 on CGn tk
has finite stationary point set and the stationary

points are given by {<Xv e
ia ,

. . . ,e
ifc
>: 1 < i\ < i2 < < i

fc
*S n}, where <e^e iz ,

. . ., eik ) is

the space spanned by {e i
,

. . .
,
e

ik} (cf. [9], 4). We denote this action by 0. We now

prove

Theorem 3.3. a) If k or n k is even then (CGn k , 0) does not bound equivariantly.

b) // n is even and k is odd then (CGBtfc , </>) bounds equivariantly.

Proof, (a) In [7] it was proved that if k or n - k is even then the signature of CGn k
is

non-zero and [CGn k ] generates an infinite cyclic group of MS0
2k(n

_ ky
It follows

immediately that [CGn k,0] ^0 in ^(n-*)^
1

)- Alternatively, one can check that

XA X(A)^0 in ^(S
1

), just as in 1.1, "and get the result, as ^^(S 1)-^^ 1

) is

a homomorphism. Here, X(A) denote the oriented representation class at

Xi-TtoCG^.
(b) Let k be odd and first assume that fc = n/2. In this case X\-^X-L gives a smooth

involution ofCGn fc,
without fixed point. This commutes with the given action of S\ as

this action preserves innerproduct. We claim that this involution is orientation

reversing. To see this, note that #2
(CG2kik;Z) is generated by the first Chern class

6
'i(?2/c,/t)

f ^e canonical k-plane bundle over CG2kk . Let 0:f
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jFf*(CG2/ck;Z) denote the isomorphism induced by l:CG2k<k-CG2JU . Note that the

involution J_ is covered by the bundle map which sends y 2fcfe
to y2kk and hence

^(c i(}
J

2fc,/c))

~ ~~ c
i(>'2fc,fc)- Now, c

k

^(y2k ^ k)eH
2kZ

(CG2k ifc
; Z) is a non-zero element, there-

fore there exists a unique aeZ {0} such that cf (y 2k >fc)
=

a-t/, where u is a generator of

# 2fc

~(CG2kfc;Z). But as fc is odd and d(c l (y 2k ^k))= c
l (y 2k ^k ), we have

(cki(y2k,k}) (
~

I) c i

2

(}'2*j;)-
This implies 0(w) = u. Hence the involution 1 is orienta-

tion reversing. The result follows from Lemma 3.1.

Next consider the case k is odd, n is even and k / n/2. Let n = 2m. We regard C" as an

m-dimensional right H-space, where H is the division ring of quaternions. If (z ls
z2 ) is

a pair of complex numbers then it can be considered as a quaternion z
t
+ z2 j. Since

7'z
= f/ for any complex number z, we have; (2 1 H-z2./)

= i2 -hzj. Write elements ofC K

as (z l5
z2 ,

. . .
,
zw ) with respect to the basis e

x , <?2m ,
e2 ,

e2w _ 1?
. . .

,
em , m + 1

and consider C"

as the m-tuple of quaternions H m with basis e
l
+e2m j, e2 + e2m _

l j,...,em
jrem+1 j.

Then we can define a map/ : C 77 -> C" by j (z ls
z2 ,

. . , zn)
=

( z 2 ,
z

l5
. . .

,
zn ,

z
w _ x ). Note

that 7 is conjugate linear and hence ifX is a C-linear subspace of C" then y'PO is again

a C-linear subspace of C". Moreover, we have;
2 = id. Thus j induces an involution

J on CG
Mjt, clearly J is a smooth involution on CG

rt k
. We claim that J is a fixed point

free involution. For suppose, J(X) = X, XeCGnik
. Then X is a left H-space and J

2 =
id,

so dimc X = k must be even, as dimHX =
( 1/2) dimc X\ which is a contradiction as k is

odd by our assumption. Next, we claim that the action on CGnk commutes with J. To
see this, note that for each e

t
and weS 1

, w (e f.)
= w*e

f
. Thus if (z 1 ,z2,...,z2m ) is the

coordinate of a point in Cn
with respect to the basis e^ e2m, e2 ,

. - . , em, em+l , then

Hence the induced maps J and
cf)w on CGW k commutes with each other for each

Next, we show that the involution J is orientation reversing. Since CG
Htk

is path-

connected, it is enough to check it at one point. Note that the orientation of CG
n fc

as

a real manifold is given by the orientation of each /c-plane in C" considered as an

oriented real vector subspace of (R
2w

,
with the standard orientation on IR

2
". The oriented

real basis of O i
,
e
iy?

. . .
,
e
ik > is {etl ,

. . .
,
e
ik, >/-! *,v >V^ ^J> where l^h<h<~'

<ik ^n. Moreover note that j(er)
= en+1 _ r ;

hence Je
ij ,...,ejfc

=

<^M+ i _ IV . . .
, en+ 1

_
fte >.

From this one can show that J is orientation reversing, as k is

odd. The result now follows again by Lemma 3.1.

It is proved in [9] that CGM k is an oriented boundary if n is even and k is odd. Thus

the above action does not give any non-trivial element in the kernel of e. However, we

can perturb the above action of S 1 on CGn k in a suitable way to generate infinitely

many elements in the kernel of I Before we do that, let us have a close look at the

representation class of (CG^,^) in the case n is even and fc is odd. Since
rjf

is

a homomorphism, it is clear from the above theorem that ^([CGn>k ,<^])
= 0. Let us

establish this, alternatively, by analysing the tangential representations at stationary

points. This description will be useful in proving the next theorem. The tangent bundle

of CG
n<k

has the following description [5]: TCG^y^^, where yw<k
is the

canonical fc-plane bundle, y^ k its orthogonal complement and yHffc

= Homc (y lltfc,C)

is its conjugate. Let -I = {r l9
r29 .,.,rjc{l,2,... 9 w} and A

be the stationary point

corresponding to L Let X> be the tangent space at A
. ThenX

;
= < ri ,

. . .
,
e
rk ) <e/j ^ r

1?

r2,--.,rk >, where {eri,.'..,erk}
is a basis of Homc ( ;jC). Note that for each

1

, (/>w (8j)
= wj

j
and the induced action on e

j
is

(j>^(e^
= w"-7

'^.
Note that a natural
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complex basis of Xx is given by e
{

ep zeA, ;<A, written in dictionary ordering with

respect to the subscripts. In fact, {e i
e
j9 ieA,jfA}, forms a basis of eigen vectors for

<j)w:Xx -*X^\veS
1

. Clearly, the complex representation of S 1
at X^ is the sum of

1-dimensional irreducible complex representations of S 1
with corresponding eigen

values wj
'~ r

. Note that since n is even and k is odd, the number of stationary points is

even, moreover if A = {r 15
r2 , . . . ,

rk }, then A' = {n + 1 r
l9

. . . , n 4- 1 rk } is distinct

from L It is now easy to check that, the assignment

extends to a conjugate linear isomorphism between X^ and X^ which preserves the

group action. Since dimcXA is odd, it follows that there is an orientation reversing

S^equivariant isomorphism X^^XX
.. Consequently, according to our definition of

RJG), [XJ + [X^ = 0. Since 1 c
{ 1, . . .

, n} is arbitrary, it follows that fj(CGn^ 0) = 0.

Next, we consider a different action of S 1
as follows. We choose distinct integers

v
t ,

v2 ,
. . . , vn such that |v Vj| ^ |vk

v
z |

for any z ^ j, fe ^ / and {z,j} ^ {/c, /}. For each
1
define

\l/w:C"->C
a
by

^W (z l9
z 2 , . . . , zj = (w

vi
z

l5
wV2

z2 , . . . , w
v
"zn ).

As before, this induces an action ^ of S 1 on CGn fc
. We claim that this action of S 1 has

finite number of stationary points of CG
n k . Since ^w(e )

= wv
''e

?
it is clear that for any

A = {r l5
r2, . . . , rk} c:

{ 1, 2, . . . , n}, Ex
= <eri

. . .
,
e
rk > is a stationary point. We shall show

that these are the only stationary points of this action. Let X be a fe-dimensional

subspace of C" such that i/^PO = X for all weS 1
. Let

{i? ls 2 ,
. . . ,

t?k } be a basis for X.

Write each ^ as a linear combination aiei
. of the canonical basis vectors. Let

A =
{z l9 z'29 . . . , zj c {1, 2, . . . , n} be such that e

fr , i
reA, appears in the representation of Vj

as above for at least one;. Clearly, I = |A| ^ fe. If we show that e
ir belongs to X for each

z
reA, then it will follow that / = k and X =

<g. t ,
. . .

,
e

ifc >.
So let t? = v

t
and t; = r= x

a
r
e

ir ,

we may assume without any loss of generality that a
r ^ for each r = 1, 2, ...,/. Since

^WPO = X for all weS 1 and eX, ilrVf (v)
= 2!r , l

a
r
w vt

'e
ir
eX. We may choose

w
l9
w2? . . .

, v^eS
1
such that det P^^ 0, where W is the / x / matrix, W= (w

v

s
ir

). In fact,

detVT= Vandermonde determinant x a certain Schur function and we can choose

w
ls
w2 ,

. . . , wh algebraically independent over Q (the field of rationals) so that the Schur

function is never zero, (cf. [6]). Set u
j
=

1/^(1;)
= U l

arw]
ife

ir X, 1 < j ^ /. Then we
have an Ixl matrix (ars)

=
(arwj

fr

). Clearly, det(ars)
= a

1
-fl2

r

---a
/
detP^^O. Since

det (ars) 7^0, it is now straightforward to check that for each i,eA, there exist jS l5

/?2 - -
> J?i 5 not all zero, such that e

ir

= ^!jssl fift. Thus e
ir
eX. Therefore, the action \//

on
CGn fc

has finite stationary point set. We now prove with
\j/

as above,

Theorem 3A [CG^, ft = in&m -
k} (S

1

) ifn=2k and k is odd and [CGn k, |
^ m

Proof. If fc orn - fe is even or if n = 2/c and fc is odd, then the proof is same as the

corresponding cases of 3.3. So we assume that n is even, k is odd and k ^ n/2. Since

fj:^(S
1

)
->R^S

1

) is a homomorphism, it is enough to prove that rj(CGntk, \l/) ^ 0. Let

Ac{l,2,...,n} and A be the corresponding stationary point. Then from the discussion

following Theorem 3.3, it is clear that the complex representation atXA is decomposed into

irreducible 1-dimensional complex representations characterized by the corresponding
eigen values wvj

~ v
\ /eAj^A. If A'c{l,2,...,n} is distinct from A then we can always
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choose per, #* such that for every i6A,#A, {p,}*{ij}. By our choice
Ivr vj^-vj. Therefore, unlike the previous action/ there"does not e4t anS -equivanant orientation reversing isomorphism between the RS l

-modules X andA A, As a result, there will be no cancellation. Hence fj(CGn k ,
i

'"

Remark 3.5. By Theorem 3.1(ii) of [9], [CG.J = if n is even and k is odd. Therefore
Theorem 3.4 implies that [CGHjk> <A] belongs to kernel of a whenever n is even k is odd
and k ^ n/2. It is also interesting to note that in the case when n is even, k is odd and
k * n/2, we can choose integers v

l5 v2 , . . . , vn , v;, v'
2 , . . . ,

v'
H ,

in an arbitrary way, satisfying
the mentioned condition so that [CG^,^[CGrtJt,f ], where f is same as ^
replacing v- by vj. Thus we have infinitely many nontrivial elements in the kernel of

For any n ^ 3 we can choose a sequence {v
r

} of finite sequences v
r =

(v
r

15 v;, . . . , v
r

j
of

length n so as to satisfy |vj
-

vj|
* |v*

-
v|, for i *j9 p ^4 and {ij} * {p, 9} and for any

r and s (including the case r = s) and |vj
-

vj|
^ |v?

-
vj|

for any r, s, r ^ s, and ij, f *j.
For instance, choose natural numbers p l9 p2 ,

. . .
, pr,

. . . , Pl > 1, Pr > p_ 1
for r ^ 2, and

set v
r =

(pr, pr

2
, . . . , p;}. Now for fc < n, let

\jjr denote the action of S 1 on CG
nJt

defined by
v
r
as above. We exclude the case when n = 2k and fc is odd. Then for any such choice of

{v
r

}, [CGW fc, iAr] ^ [CGntfc, AS] for r ^ s, as mentioned in the above remark and more-

over, any finite number of these classes [CGn k, ^J, r ^ 1, are linearly independent over

Z. This can be seen easily by applying the homoinorphism rj and comparing the

monomials in Z [B ] (cf. 2 and note that all irreducible real representations of S 1
are

2-dimensional). In particular, we can take k = 1 and d > 1 and considerCGrf+ K1 so that

dimRCGd + ! a = 2d. This yields,

Theorem 3.6. For any d > 1, /Ymfc J2r

2d(S
1

) fs not finite.

4. Action on flag manifolds

Let G(n 1? n2 , . . . , ns), n
= n

l +n2 -\
-----h ns, 5 ^ 3 denote the real flag manifold of all flags

(y4 l5 A 2 , . . . , yls) where yl is a left vector subspace of Rn
, A t

JLAp for z ^7, dimR A {
= w

,

1 < f, 7* < s, G(n l5 2 ,
. . ., s) is a smooth manifold of dimension

, <I<J<S f ^ Alternat-

ively, it can be described as the homogeneous space OW/Ofo) x - x 0(n$).
The group

(Z2)
n
acts on G(n l9

n29 ... 9
n
s) by pairwise commuting involutions Ta, a = l,2,...,n,

having finite stationary point set. This action is induced from the actions of Tas on ST as

described in the last section. The number of stationary points of the action of (Z2f on

l9 n2 , . . . ,
ns) is nl/nj

- * ns
l We denote this action by (G(n l9 2 , . . . , nj, ^)-

ProofofTheorem 1 .2. Suppose n
f

= w
;
for some i +j. In this case there exists an obvious

smooth fixed point free involution which interchanges the ith and thejth component of

each flag in G(n l5
n2 , . . . , ns)

which is easily seen to commute with each Ta . Hence by

Lemma 3.1 [G(n 1 ,n2,...,n5),0] 2 =0.

Next suppose that n
t
* n

j
for i ^j. We may without loss of generality always

wnte n,.

in increasing order.

Let A = (l
1

,A
2
,...,x

s
) be a partition of {1,2... .,n},

where the subset A' has cardinality n
{
.

We shall write elements of A' in increasing order.

(i)
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Let e^
=

{ek :ke)J}. Then the fixed points of G(n l9
n 2 , . . .

,
n

s)
are

{((^i), <gAX > <;.* : for a11 partition A = (/.*, A
2

,
. . . , /1

s

) as stated in (1)},

where < A,>
=

Ai (say) is the space spanned by ;i
. Thus for each X as stated in (1) there

exists a fixed point of (G(n 1 ,n2,...,ns),<^>) and as before, we shall denote by X^ the

tangent space to G(n t , rc2 , . . . n
s )

at the stationary point corresponding to A. Then by [5]

A basis of this is given by {e^, 1 < i <] ^ 5}, where e^ =
{ek e

t
: keA\ lelj

}.
The

representation of (Z2)" on X^ is given by its action on the basis element:

*-*<>"
(3)

otherwise

Let us now consider the partition co = (co
1

, co
2

,
. . . ,-co

s

),
where

co
s =

{H! + n 2 -\
-----\-ns _ l

+ l,...n 1 + h n
s}.

Then

rJEa>
= e Uf<^ s i^ (4)

We claim that if A 7^ co then X(A) is distinct from X(co), where X(A) is the representation

class of (Z 2)
n
at X(X). To see this, suppose A ^ co. Then co ( ^ A

1

'

for some i. Choose aeco
1

such that a^A . Let aeAJ
,

i ^7. Then from (3) and (4) it follows that the action of Ta onX^
has ( l)-eigen space of dimension n

1 H-----\-n
i
_ l + ni+l -{

-----h n
s
= n n

{,
whereas

from (2) and (3) it follows that the action of 7^ onXx has ( l)-eigen space of dimension

n
l ~\

-----\-n
j
_ l + n

j + 1 -\
-----h ns

= n
rij.

If there exist an equivariant linear isomor-

phism Xx Xm9 then we must have n n^n- np that is n
t

=
rij

for i *j9
which is

impossible. Thus the representation class X(co) does not occur at any other stationary

point In other words j^A)eSd((Z2)
n
) is non-zero, where d =YJi^ i<j^ s

n
i
n
j

*s ^
dimension of G(n l5

. . .
,
n
s). Hence [G(n l5

. . .
,
n
s\ 0] 2 ^ 0. This completes the proof.

Remark 4.1. (a) In [9] it was proved (Theorem 2.2(a)) that [G(n x , . . . ,
ns )] 2

= ifn =
nj

for some i ^ j, 1 ^ i, j ^ s, or for some v(nt) < v(n\ where v(n) is as in 3. Thus Theorem
1.2 implies that [G(n l5

n2 ,
. . .

,
n
s), c/>] 2 is a nontrivial element of kernel of s if n

t
^ n

;
for

i 7^7 and v(n f)
< v(n) for some L

(b) To get a complete answer to the question 'Which flag manifolds bound?' it would be

enough to determine whether [G(n l5
. . .

,
n

s\ c/>] 2 belongs to kernel of g or not, in the case

when n is odd and n
f
s are distinct.
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Abstract. Considering a given function /eC
4 and its unique deficient cubic spline interpo-

lant, which match the given function and its derivative at mid point between the successive

mesh point, we have obtained in the present paper asymptotically precise estimate for s' /'.
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1. Introduction

Let P:0 = x < jjq ,
< - < xn

= 1 denote a partition of [0, 1] with equidistant mesh

points so that h = x
t

x _ 1
=

l/n. Let flm be the set of all real algebraic polynomials of

degree not greater than m. For a function s defined over [0, 1] we denote the restriction

of s over [x^^xj by s
t
. The class of periodic deficient cubic splines over [0, 1] with

mesh P is defined by

S(3, P) = {s: 5,en3 ,
seC 1

[0, 1], s^O) = s
(J
\l\ j = 0, 1}.

Considering a nondecreasing function g on [0,1] such that g(x + h)
-

g(x) =
tf(const) = JJ dg, xe[0, 1 - K], Rana and Purohit [4] have proved the following for

deficient cubic splines:

Theorem 1. LetfeC
1
[0, 1]. Then there exists a unique 1-periodic spline seS(3, P) "which

satisfies the following interpolatory conditions,

0, i=l,2,...,n, (1.1)

i
+ *i-i)A i=l,2,..., n.

'

(1.2)

It is interesting to observe that condition (1.1) reduces to different interpolatory

conditions by suitable choice of g(x). Thus, if g is a step function with a singlejump of

one at h/2 then condition (1.1) reduces to the interpolatory condition,

Considering a function /eC
4 and its unique spline interpolant s matching at the

mesh points, Rosenblatt [5] has obtained asymptotically precise estimate for s' /'.

For further results concerning asymptotically precise estimate for cubic spline interpo-

lant reference may be made to Dikshit and Rana [3]. Similar to the result of Rosenblatt

[5], we obtain in the present paper a precise estimate for s
r f concerning the deficient

cubic spline interpolating the given function and its derivative at mid points between

the successive mesh points. It may be worthwhile to mention that Boneva, Kendall and

393
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Stefanov [2] have shown the use of derivative of a cubic spline interpolator for

smoothing of histograms.

Without any loss of generality, we consider for the rest of this paper that the deficient

cubic spline s under consideration satisfies the condition s'(0)
= 0. Thus, we have from

the proof ofTheorem 1 that the system ofequations for determining the first derivative

m . = s'(x.) of the deficient cubic spline interpolant s is written as,

m
I
..

1 )/2
= F

i ,
i= l,2,...,n- 1 (1.4)

where F
i =12{/

2. Estimation of the inverse of the coefficient matrix

Ahlberg, Nilson and Walsh [1] have estimated precisely the inverse of the coefficient

matrix appearing in the studies concerning cubic spline interpolant matching at the

mesh points. Following Ahlberg et al we propose to obtain here a precise estimate for

the inverse of the coefficient matrix in (1.4). It may be mentioned that this method

permits the immediate application to the spline to standard problem of numerical

analysis (see [1], p. 34). For this we introduce the following square matrix of order n.

2b a 0-00
a 2b a

a 2b -

000
000

a 2b a

a 2b

where a and b are given real numbers such that b
2 > a2 . By using the induction

hypothesis it may be seen easily that |DJ satisfies the following difference equation,

with
|

\D.(a,b)\=2b\D lt
_

l (a,b)\-a
2
\D ll

_ 2 (a,b)\

(a,b)| = 0, |D (a, b)\
= 1 and II^M)! = 2b and for a = (b

2 - a
2
)

1 '2
,

2ot\Dn(a,b)\=(b + x)"
+i

-(b-a)"
+l

, b
2 >a2

\Da(a,b)\=(n+l)b", otherwise.

Further, it may be observed that the system of eq. (1.4) may be written as

(2.1)

(2-2)

-F (2.3)

where the coefficient matrix A is a square matrix of order n 1, M and F are the

transposes of the matrices [m 1 ,m2 ,...,mn _ 1 ] and \_F l ,F29 ...,Fn . 1 '] respectively. In

order to determine the inverse of the coefficient matrix A we first observe that for

a = -
1/2,

where - r =

+ r)\Dn (a,b)\ = 2b(l ~r2
")

l = 2[b - (b
2 -

1/4)
1 /2

].

-r2"~ 2
)/2 (2.4)
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Taking 2b = 5 and a = 1/2 in \Dn (a,b)\, we observe that the coefficient matrix

A satisfies the following difference equation,

n _ 2(- 1/2,5/2)1 -\Dn _ 3 (- 1/2, 5/2) |, (2.5)

Thus, using (2.4) in (2.5) we have

(5 -f r)p
2
-"\A\ = (5 + r/2)

2 - r
2"~ 6

(5r + 1/2)
2

. (2.6)

We get the elements a
itj

of ^4~
1 from the cofactors of the transpose matrix. Thus, for

< i^j ^ n - 2 or z =} = (cf. [1, pp. 35-38])

|^KJ
= (/^r </);(- l/2,5/2)ZV 7

._ 2 (- 1/2,5/2) (2.7)

and

\A\aQJ =(p-ryDn -j- 2(- 1/2,5/2) forO<^n-2. (2.8)

Thus, in view of (2.4) and (2.5), we have for < i ^y < n 2

(5 + r/2)(l
- r

2
")aoj

= rj (l
- r

2n ' 2 ~ 2j
),

for <j < n - 2,

and

From the above expression, we observe that A
~ 1

is symmetric. Now considering a fixed

value x such that < x < 1, we see that for fixed > and e < i/n, ;/n < 1 s the

elements a
fj

of A~ l

may be approximated asymptotically by r {j
~

il

/(5 + r).

We thus complete the proof of the following:

Theorem 2. The coefficient matrix A of (2.3) is invertible and if A
~

1 =
(a tj),

then a
tj
can

just be approximated asymptotically by rlj
~~

il

/(5 + r) and the row max norm of its inverse;

that is,

where r = 2x/6 5.

Remark 1. It is worthwhile to mention that the estimate (2.9) is sharper than that

obtained in terms of the infimum of the excess of the positive value of the leading

diagonal element over the sum of the positive values of other elements in each row. For

adopting the latter approach, we observe from (2.3) that \\A~
1

1| < 0.25 whereas (2.9)

shows that the \\A~
l

\\
does not exceed 1/6.

Since A is invertible, it follows from the proof of Theorem 1 or more precisely (2.3),

that there exists a unique spline seS(3, P) satisfying the interpolatory conditions (1.2)

and (1.3).

3. Error bounds

Considering a 1-periodic function /eC
4
in this section of the paper we shall estimate

the precise bounds of the function e' = s'
-

/' where s is the deficient cubic spline
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interpolant of a 1-periodic function/ which satisfies the interpolatory conditions (1.2),

(1.3). Considering the interval [x _ 15 x ], we see that, since sf is quadratic, hence in the

interval [x ls
x ], we may write

h
2
s'(x)

= h(x x
t
_ Jw; + h(Xi

-
x)m._ 1

4- (x x^_ 1 )(x x)c (3.1)

where the constant c
t
is to be determined. Using the interpolatory condition (1.2), we

notice that,

) + c
i

. (3.2)

Now applying (3.2) in (3.1), we get

(3-3)

Thus, replacing now m by e'(xt )
in (3.3), we have

fcV(x) = (x
- x _ J[h - 2(x.

- x)M*<)

+ (x i -x)lh-2(x-x i
. lW(x i

_ l ) + R l(f) (3.4)

where ^-(/) = (x-x^ 1 )lh-2(xi -x)lf'(x i ) + (xi -x)[h-2(x-x t
_ J

Now using the fact that /eC4
, we see by Taylor's theorem that ,.(/) may be

expressed as a linear combination of the values of the fourth derivative/
(4)

of/. Thus,

Kf(/) = fe
2
/'W + /(4)

(x)(x
- x _

x )(x f

-
x)(2x

- x - x _ x )

(3.5)

where x is an appropriate point in (x t
_ 19

x ) which is not necessarily the same at each

occurrence. Rewriting (2.3) as,

A(e>(Xi ))
= (F f )

-
A(/'(x ))

= (H X (3.6)

say, we first estimate (H,-). Thus, applying Taylor's theorem again to the right hand side

of (3.6), we get

(3.7)

Recalling eq. (3.6) and noticing that A~ * =
(aj;), we have

say, where m is a sufficiently large but fixed positive integer. We shall estimate R^ and
jR2 separately. Suppose that x is a fixed point in (0, 1) and let x = [nx]/n where [nx]
denotes the largest integer less than or equal to nx. Then it is clear that as n -* oo, i ^ nx
and n - i s n(l

-
x). Now assuming that/

(4)
is monotonic, we get from Theorem 2

(3.8)

where d
l
is some positive constant.

Next, we see that the points xk for the values of fc occurring in R2 satisfy

(3.9)
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Thus, using the continuity of/(4) and applying the result ofTheorem 2 alongwith (3.7),

we have

(#2)- Z 71 :(- fc3/<4)
(*)/6) =0(/i

3
). (3.10)

|lc-i|<m(
5 + r

)

Combining the estimates of (R l ) and (R 2 ) and noticing that m is arbitrary, we prove the

following:

Theorem 3. Let s eS(3, P) be the deficient cubic spline interpolant of a I -periodicfunction

f satisfying the interpolatory conditions (1.2) and (1.3). Let /<4) exist and be a nonnegative

monotonic continuous function. Then for any fixed point x such that < x < 1,

(3.11)

as n->oo.

Remark 2. It may be interesting to investigate the similar precise estimate for deficient

cubic spline in the case of nonuniform mesh.
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1. Introduction

Let S denote the class offunctions f(z) = z + a2 z
2
H which are regular and univalent

in the unit disc E = {z/ 1

z
|

< 1
} . Denote by S

t
and K the usual subclasses of S consisting

of functions which map E onto starlike (with respect to origin) and convex domains,

respectively. Let St (l/2) c S
t
be the class offunctions which are starlike oforder 1/2. It is

known that KcS
t ( 1/2).

For a given function /(z) = z + Z*= i
an z

n and neN, let s
rt(z,/)

= z-ha2 z
2

4-

n
,

n(n-l) n(n-l)(n-2)...3-2-l ,.n \ 7 T \
~~ 7 i ___________________ ft "7*" _|_ . . . _l_ ___________________-_-__-- n 7vnV">J f

, 1
^ ' / , iw_, , ">\

W2^
~

'

/, i 1\/,- i ''U /O,^ w '

ff.--f) = Z |

(B
~

1)
a z

2 + (^-^i
n n

and

Y2W_ ^ _ , W(W-1). _2 ,
(H-i;

denote, respectively, the nth partial sum, the nth de la Vallee Poussin mean, the nth

Cesaro mean of first order and the nth Cesaro mean of second order of /.

A function / is said to be subordinate to a function F (in symbols /(z)-<JF(z)) in

\z\ < r if F is univalent in |z| < r, /(O) = F(0) and f(\z\ <r)c F(\z\ < r).

For every feK the following results are well-known:

(i) z/2 = s
1 (z,/)/2 = (7

(

1

1)
(z,/)/2 = 42

>(z,/)/2x;/(z)in [2];

(ii) (4/9)s2 (z,/K/(z)inE[10];

(iv) vm(z,f)<f(z)mE.

The fascinating result (iv) is due to Polya and Schoenberg [6] (see also Robertson

[7]).

In the present paper, we establish the analogue ofthe Polya-Schoenberg theorem for

a certain transformation ofthe nth partial sum, sn (z, /), and the nth Cesaro mean of first

order, <r(z 9f) 9
of feK. We also prove that for every feSt(l/2) and for every positive

399
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integer n, Re(i;n(z,/)/crJJ

2)
(z,/))>0, zeE. An alternative and simple proof of a well-

known result of Basgoze, Frank and Keogh [1] pertaining to subordination of the

partial sums of convex functions is also given.

2. Preliminaries

We shall need the following definitions and results.

DEFINITION 2.1

A sequence {&M}f of complex numbers is said to be a subordinating factor sequence if,

whenever /(z) = z -f ^= 2 anz
n

is regular, univalent and convex in , we have

OC

aBbnz"</(z), (a x
=

l)
n=l

in E.

DEFINITION 2.2

A sequence {cn}$ of non-negative numbers is said to be a convex null sequence if cn
-*

as n - oo and

Lemma 2.1. (Wilf [1 1]). A sequence {bn}* ofcomplex numbers is a subordinating factor

sequence if and only if Re[l + 2*= l
\>
nf\ > 0, zeE.

Lemma 22.

Lemma 2.2 is due to Rogosinski and Szego [8].

Lemma 2.3. (Fejer [4]). Let {cn}% be a convex null sequence. Then thefunction

^ n-1

is analytic in E and Re^(z) > 0, zeE

Lemma 2.4. Let

TheiiRegll(z)>Om.

In view of the minimum principle for harmonic functions, we have

z)= min
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= min Re

= mn -
sin(n +

,

2sin 2
(0/2)

+I
4sin2 (0/2)
-

(p3'

Lemma 2.5. Let f and g be starlike of order 1/2. Then for each function F analytic in
E and satisfying

ReF(z)>0 (zeE),
we have

/(z)*F(z)g(z)^e 771 TT~" >0 (zejE)-

f(z)*g(z)

Lemma 2.5 is due to Ruscheweyh and Sheil-Small [9].

3. Theorems and their proofs

Theorem 3.1. Let feK and let sn(z,f\ neN, denote its nth partial sum. Then

Sn(z,/)=4(*

Z

s.(t,f)dt<f(z)
ZJ

in Efor every n = 1, 2, 3 ____

Proof. Let f(z) = z +^2 fl ^ b^ in K. Then

In view of the Definition 2.1, the desired conclusion will follow if and only if the

sequence < 1/2, 1/3, . . .
, l/(n -h 1), 0, . . . > is a subordinating factor sequence. By Lemma

2.1, this will be the case if and only if

, zeE. (3.1)

k=1

Putting z = re
iB

, 0<r<l, n^0^n and making use of the minimum principle for

harmonic functions along with Lemma 2.2, we have

showing that the inequality (3.1) holds and, therefore, the proof of our theorem is

complete.

Taking n = 1, we obtain the following well-known result (also cited in the

Introduction).

COROLLARY 3.1

(l/2)z</(z)m, for all feK.
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Theorem 3.2. For all elementsfofK andfor all positive integers n, we have

in E. This result is sharpfor every n.

Proof. Let f(z) = z + =̂ 2 an z
n
be any element of K. Since

n
,1W ^ n rc 1 , n 2 ,

in the light of Definition 2.1, the assertion (w/(n +1)) a(z 9 /) < /(z) in E will hold ifand

only if the sequence < n/(n -f 1), (n
- 1 )/(n + 1), . . . , l/(n + 1), 0, 0, . . . > is a subordinating

factor sequence. By Lemma 2.1, we see that this is equivalent to

Re

or

Re

1+ -(nz + (n-l)z
2
+(tt-2)z

3 + +") >0,
L n + 1 J

which is true in view of Lemma 2.4. To establish the claim regarding sharpness we

consider the function h(z) = z/(l z) which is a member of K. For any positive real

number p., we have

(n+l) sin
2
[(n+l)g/2] .(n+ I)sin0-sin(n+ 1)0

2~ 2 sin
2
(9/2) 4sin

2
(0/2)

Now let 9 = =
27i/(n -f 1). Then

v > *v ^
2 n

Now, if p > n/(n -h 1), then it follows that Re po^
}

(z 9h)<- 1/2 and hence (since h maps
E onto the right half plane Rew> -

1/2) we conclude that pa
(

n
1}
(z,h) will not be

subordinate to h in E.

Taking n = 2, we obtain the following result of Singh and Singh [10].

COROLLARY 3.2

(2/3)cr
(

2
1)
(z> /)X /(z) in E, /or everyfeK.

In the next theorem we present a simple and interesting proof of a well-known result

which was established by Basgoze, Frank and Keogh [1] in 1970.

Theorem 33. Let f(z) = z + =̂2 anz
neK and let sn (z,f) denote its nth partial sum.

Then

sn(z/2,/)</(z)

in Efor every n = 1, 2, 3, .... The constant 1/2 cannot be replaced by a larger one.
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Proof. Since sn (z/2 ? /) = (l/2)z + (l/2
2
)a 2 z

2 + (!/2
3
)a 3 z

3 + + (l/2
n
)anz\ the con-

clusion s
fl (z/2, /) -< /(z) in E will follow if and only if the sequence < 1/2, 1/2

2
, . . .

, 1/2",

0, 0, . . .> is a subordinating factor sequence. In view ofLemma 2.1, this will be the case if

and only if

"

(3.2)

It is readily seen that the sequence {ck }$ defined by c =
1, ck

=
1/2*, k = 1, 2, 3, . . .

, 77

and c
fc

= if/c = n + l,w-h2,..., is a convex null sequence. Thus using Lemma 2.3

we get

which in turn shows that the inequality (3.2) holds. The function h(z) = zj(l
-
z)eK,

which maps E onto the half plane Re w > -
1/2, shows that the constant 1/2 cannot be

replaced by any larger number. This completes the proof of our theorem.

Egervary [3] has shown that

[(n + l)nz + n(n
-

l)z
2 + (n

-
l)(n

~
2)z

3
4- - - 4- 2- 1

is a member of S
t (l/2). Using this fact and the well-known result of Ruscheweyh and

Sheil-Small (Theorem 3.1, [9]) we conclude that for every /eSt (l/2)

is a member of S
t ( 1/2).

Theorem 3.4. Letf(z) = z -f =̂2 an z
n
be any member ofSt (l/2). Thenfor every positive

integer w, we have

. Consider the function Fn defined by

.2,
-

,3

2)(n + 3) (n + 2)(n + 3)(n + 4)

"' v* '__ ' 4 i

n2
(n-l),...,3 1

'" +
(n+l)(n + 2),...,(2n) J'

(3.3)

Obviously Fn is regular in E (in fact it is an entire function), and we can write it in the

form

r, / x
n n / n-f
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.""(^

n* /. n-l\ 3
i 1 i

+ 2)(w + 3) I ~w + 4/

n
2
(n-l)(n~2),...,4

i i

2n

-z".

In view of (3.3) and (3.4) it is now easy to see that in E we have

. ReFn(z)^Fn(|z|)>F(l) = 0.

In Lemma 2.5 taking /(z)
= 0(z,f), g(z)

=
z/(l

-
z) and F(z) = Fn (z) we get

This completes the proof.
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Abstract. Let A e be the algebra obtained by adjoining identity to a non-unital Banach

algebra (A, \\ ||). Unlike the case for a C*-norm on a Banach *-algebra, Ae admits exactly one

uniform norm (not necessarily complete) if so does A. This is used to show that the spectral

extension property carries over from A to A e
. Norms on A

e
that extend the given complete

norm
|| ||

on A are investigated. The operator seminorm |j j| op
on A e defined by ]| ||

is a norm

(resp. a complete norm) iffA has trivial left annihilator (resp. || || op
restricted to A is equivalent

to
I! -||).

Keywords. Adjoining identity to a Banach algebra; unique uniform norm property; spectral

extension property; regular norm; weakly regular Banach algebra.

1. Introduction

Let A e
= A 4- Cl be the algebra obtained by adjoining identity to a non-unital Banach

algebra (A, \\ ||) [8]. There are two natural problems associated with this elementary

unitification construction: (1) which are (all) algebra norms |-|
on Ae that are closely

related with (e.g. extending) ||-|| on Al (2) Which properties of the Banach algebra

(A 9 1| ||) are shared by the normed algebra (A& \ |)? In the present paper, it is shown that

A has unique uniform norm (not necessarily complete) (resp. spectral extension

property [9]) iffA e has the same. This is interesting in view of the fact that for a Banach

* -algebra (A, || ||) with a unique C*-norm, A e can admit more than one C*-norm [1,

Example 4.4, p. 850]. This holds in spite of apparent similarity between the defining

properties ||
x2

1|

=
||x||

2 and ||x*x||
=

||x||

2
ofuniform norms and C*-norms respective-

ly. This main result, together with a couple of corollaries, is formulated and proved in

3. Their proofs require some properties of norms on A that are regular [5]. There are

twostandardconstructsofnormson/4e,viz.the/
1

-norwi||x + Al|| 1
=

||x|| +m and the

operator norm \\x + M || op
=

sup{||xj;-f- Ay||:||y|| < 1, yeA}. In general, Hop need

neither be a norm nor be complete [6, Example 4.2] . Also, in general, ||

-

1| OP\A 9*
|| ||

. It is

easy to see that if p is any algebra seminorm on Ae
such that pn=IHI, then

II
+ xl

||op < p(a + xl) < p(l) ||
a + Al

|| x
. The norm

|| -\\onA is regular (resp. weakly

regular) if the restriction of
|| || op onA\\- \\ OP\A

= H (resp. || || opix is equivalent to
|| ||).

These are essentially non-unital phenomena, for if A is unital (resp. having a bai (e$>

then any norm | -|
on A with

1 1|< 1 (or \e t \ ^ 1) is regular [5]. It is shown in 2 that
|| -Hop

is a norm on Ae iff the left annihilator Ian (A) = {0}; and in this case, || || op is complete iff

II ||
is weakly regular iff

|| || r is equivalent to
|| || op on Ae .

Throughout, A is a non-unital algebra. By a norm on A, we mean an algebra norm; i.e.

a norm satisfying || xy || ^ ||
x

|| || y \\
for all x, y. A uniform norm on A (resp. a C*-norm on

a * -algebra) is a norm satisfying the square property ||x
2

H
=

||x||
2

(resp. the C*~

property ||
x*x

||

=
||
x

||

2
) for all x.

405



406 S J Bhatt and H V Dedania

2. Weakly regular norms

Let (A, \\

-

1| ) be a normed algebra. The following shows that if
|| || op is a norm on A e ,

then

Hop is also a norm on A
e
for all norms |-| on A. The left annihilator of A is Ian (A)

PROPOSITION 2.1

The seminorm
\\ || op is a norm on Ae iff lan(A) = {0}.

Proof. Let ||-|| op be a norm on A e . Let aelanU). Then ax = (xeA), hence

||
a ||op

= sup { ||
ax

i|
: ||x|| ^ 1, xeA} = 0, so that a = 0. Hence Ian (4) = {0}. Conversely,

assume that Ian (A) = {0}. Let
||
a + Al

|| op
= 0. Then ax + AX = for all xeA. Suppose

A 7* 0. Then - )~ l ax = x (xeA). Define L e(x)
= ex (xeA), where e = - A" r

a. Then Le is

an identity operator on A. Then, for xeA, LxL e
= L

e
Lx,

i.e. jcey
= LxL c (;y)

=
LcLx (j;)

= exy (ye A), i.e. (xe-ex)j; = (ye A). Hence, xe = ex = x. Thus A has an

identity which is a contradiction. Thus A = 0. This implies ax = for all xeA, hence

a = 0. This completes the proof.

PROPOSITION 2.2

(a) Let \-\be a uniform norm on A. Then \-\is regular and |-|op is a uniform norm on Ae .

(b) Let A be a * -algebra. Let |-| be a C*-norm on A. Then \- is regular and |-| op is

a C*-norm on A e .

Note that if a Banach algebra admits a uniform norm, then it is commutative and

semisimple. In the above, the proof of (a) is similar to that of (b) in [4, Lemma 19, p. 67].

In the following, the proof of (1) implies (2) is along the lines of [7, Theorem 1]; whereas

that of the remaining part is simple.

PROPOSITION 2.3

Let (A, ||

-

1| ) be a Banach algebra. Then the following are equivalent.

(1) || ||
is weakly regular (so that

\\
a

|| op ^ ||
a

\\ ^ m \\
a

|| op (aeA\for some m > 0).

(2) ||a + Al|| op ^||a4-Al|! 1 ^2(2-f
(3) || ||op is a complete norm on A e .

If || ||
is regular, then m^lso that

\\
a + Al

|| op ^ ||
a + A 1

1| t ^ 6(expl) ||
a + xl

|| op far
all a 4- /AeA e [7, Theorem 1].

3. Uniqueness of uniform norm and unitification

A Banach algebra (A.H) has unique uniform norm property (UUNP) if A admits

exactly one (not necessarily complete) uniform norm. The uniform algebra C(X) has

JUUNP, whereas the disc algebra does not have. In [2] and [3], Banach algebras with
UUNP have been investigated. Such an A is necessarily commutative, semisimple and
the spectral radius r( = rA (-)) is the unique uniform norm. We denote the HausdorfT
completion of (A, r) by U(A). The spectral radius on U(A) is the complete uniform norm
on U(A). A norm |-| on A is functionally continuous (FC) if every multiplicative linear

functional on A is
|

-

(-continuous. A subset F of the Gelfand space of A is a set of

uniqueness for A if ]x| F
= sup {|/(x)|:/eF} defines a norm on A.
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Theorem 3.1. A Banach algebra (A, \\

-

1|)
has UUNP iffAe has UUNP.

We shall need the following. The proofs are straightforward. For details we refer

to [3].

Lemma A. Let
\

-

\
be an FC norm on any commutative algebra A. Let B be the completion

of(A,\-\). Then the Gelfand space A(A) (resp. Silove boundary dA) is homeomorphic to

A(B) (resp. dB).

Lemma B. Let A be a semisimple commutative Banach algebra. Then thefollowing are

equivalent.

(1) A has UUNP.
(2) U(A) has UUNP; and any closed set F in A( U(A)) which is a set ofuniquenessfor A,

is also a set ofuniquenessfor U(A).

(3) U(A) has UUNP; andfor a non-zero closed ideal I ofU(A) with I = k(h(I)) (kernel

of hull of I), Ir\A is non-zero.

Lemma C. Let A be a Banach algebra with UUNP, and I be a closed ideal such that

I = k(h(I)). Then I has UUNP.

Proof of Theorem 3.1. Assume that A has UUNP.

Case 1. Let
|| ||

have the square property. By Proposition 2.2 (a) and Proposition 2.3,

(A* II

'

Hop) is a Banach algebra, || || op has square property and || || op is equivalent to
|| || r

.

Let
|-| be any uniform norm on A& then

1

1 1 \A is a uniform norm on A. Since A has

UUNP, l-lU=|H|.Hence|h|| p^|-|<M| 1 ^6(expl)||-i|opOn^.Thus||-||oP andH
are equivalent uniform norms on A e

. Since equivalent uniform norms are equal,

Ml op
= H on Ae . Thus A e has UUNP.

Case 2. In the general case, note that U(A) is an ideal of U(A e) and, by Lemma A, the

Gelfand space A(U(A e)) is homeomorphic to the one point compactifications ofeach of

AU) and &(U(A)). Define K = {xeU(Ae):xU(A) = {0}}. We prove that K =
{0}. Let

xeK. Then its Gelfand transform :&(U(A e))-+C is continuous. Since xeK, xy =

(ye U(A}). We prove that x is zero on &(U(A e)). Since A (17(4)) is dense in A(l/C4 e)),
it is

enough to prove that x is zero on A(U(A)). Suppose there exists (j>e&(U(A)) such that

<p(x) ^ 0. Since is non-zero, there exists j;
in U(A) such that (f)(y) is non-zero. This

implies j>(xy) ^ 0, hence xy ^ which is a contradiction. Thus K =
{0}. By Lemma B, it

is enough to prove that U(Ae) has UUNP; and for every non-zero closed ideal / of

U(Ae) with / = k(h(I)\ A e r\Iis non-zero. Let I be a non-zero closed ideal of U(A e)
such

that I = k(h(I)). We prove that / nAe {0}. Let J = I n U(A). Then, first, we prove that

J = k(h(J)) in U(A). Clearly J c k(h(J)). Let xe U(A) such that xJ. Then x$I, hence

there exists <t>eh(I)
c A(I7(X e)) such that <j>(x) + 0. Then \j/

=
(j)\u(A) is zero on J and

\l/(x) ^ 0. Thus x$k(h(J))f and so J = k(h(J)\ From K =
{0}, / * {0} and IU(A) J, it

follows that J ^ {0}. Since A has UUNP and J is a non-zero closed ideal of U (A) such

that J = k(h(J)\AnI = A n J ^ {0} by Lemma B. Hence/n,4 e ^ {0}. Finally, we show

that U(Ae) has UUNP. Note that, by Proposition 2.2 (a) and Proposition 2.3, the

operator norm on U(A)e is a complete uniform norm; and is the spectral radius

rv(A). itself. Further, U(A)e , is clearly isometrically isomorphic to U(A e) via the map
T: U(A)e -*U(AJ, T(a + Al) = a +^ where e is the identity of U(Ae). By Lemma C,



408 S J Bhatt and H V Dedania \

U(A) has UUNP, hence by the isomorphism T and by Case 1, U(A e)
has UUNP.

\

Conversely, if A
e have UUNP, then, A being a closed ideal ofA e satisfying A = k(h(A))

in A& A has UUNP by Lemma C. This completes the proof. >

Following [1], a Banach *-algebra B has unique C*-norm (i.e. B has UC*NP) if
(

B admits exactly one C*-norm (not necessarily complete). In spite of the apparent

similarity between the square property and the C*-property of norms the above result

differs from the corresponding situation in B, viz. UC*NP for B need not imply
UC*NP for B

e [1, Example 44, p. 850]. In fact, by [1, Theorem 4.1, p. 849], for

a non-unital B with UC*NP, B
e has UC*NP iff the enveloping C* -algebra C*(B) is

non-unital. Like C*(J5) for J5, the uniform Banach algebra U(A) is universal for A in an

appropriate sense. Unlike the case of B, it happens that A is unital iff U(A) is unital. This

explains why the above result for A differs from the corresponding result for B.

A Banach algebra (A, ||-||) has the spectral extension property (SEP) [9] (i.e.
A is

a permanent Q-algebra [10]), if for every Banach algebra B such that A is algebraically
embedded in J5, rA (x) = rB (x) for all xeA; equivalently, every norm |-| on A satisfies

^(*) < 1*1 for all xeA [9, Proposition 1].

COROLLARY 3.2

Let (A, \\-\\) be a semisimple commutative Banach algebra. Then A has SEP iffAe has SEP.

Proof. Let A have SEP. Then, by [2, Proposition 2. 1] and Theorem 3. 1, A. has UUNP.
By [2, Proposition 2.6], it is enough to prove that A e has (P)-property; i.e. every
non-zero closed ideal / of A e has an element a + Al such that r

x (a + U) > 0, where
rja + Al) = inf

(|
a + Al

|: |-| is a norm on Ae } 9 called the permanent radius of a + Al in
^

e [9]. Let I be a non-zero closed ideal ofAe. Then J = In >4 is a non-zero closed ideal
of A by [8, Theorem 1.1.6, p. 11]. Since A has SEP, by [2, Proposition 2.6], it has

(P)-property, hence there exists aeJ such that the permanent radius, say r2 (a), of a in
A is positive. Then clearly r

l (a)^r2(a)>Q. Thus Ae has (P)-property. Conversely,
assume that Ae has SEP. Let

|-| be any norm on A. Then, since A is semisimple,
Proposition 2.1 implies the operator norm |-|op is a norm on Ae . Since A has SEP,
TAW - rA.(a) ^ IflUp ^ |<z| (aeA). Thus rA (a) ^ \a\ for all a in 4 and for any norm -|

on
A. Hence, 4 has SEP. This completes the proof.

By [9, Corollary 2], a regular Banach algebra has SEP. In understanding the relation
between UUNP and SEP, a weaker notion of regularity has been found useful in [2],
viz. a semisimple commutative Banach algebra U,||-||) is weakly regular if for any
proper closed subset F of the Gelfand space A(4) of A, there exists a non-zero element
a in 4 such that d

|
F = 0.

COROLLARY 3.3

wafcl
l]

r r̂

emisimple commu^ive Banach algebra. Then A is weakly regular iffAe

re^ular- Then> by R Corollary 2.4(11)], A has UUNP and~A ^ f
V boundar^ of A * % Theorem 3.1, X. has UUNP. Note thatMA\ ., . .

lnlr
~
K ^ i^^^ iG AW > and dA * is dosed - ^se imply dAe

= A(^e).
Hence,agamby [2, Corollary 2.4 (II)]^ e is weakly regular. Conversely, assume thatX
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is weakly regular. The proof of Lemma C will work for the following statement; IfA is

weakly regular and / is a closed ideal of A such that / = k(h(I)), then / is also weakly

regular. Since A is a closed ideal of Ae with k(h(A)) = A, A is weakly regular.
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Abstract. We define and study weakly prime sets for a function space and

show that it coincides with the known concept of weakly prime sets for function

algebras and spaces of affine functions.

Keywords. Weakly prime set; function space; function algebra; space of affine

functions.

1. Introduction

A function space A on a compact Hausdorff space X is a closed subspace of the space

C(X) of all continuous, complex-valued functions on X separating points and contain-

ing constants. If A is an algebra, it is called a function algebra. The Bishop and Silov

decompositions play an important role in characterizing function algebras. Later on

these decompositions were studied for function spaces [6]. Ellis [3] defined and studied

these decompositions for the spaces of affine functions on a compact convex set.

For a function algebra, certain decompositions finer than the Bishop and Silov

decompositions have been defined and studied [6]. One such decomposition ofweakly

prime sets, was defined and discussed by Ellis [4] for function algebras as well as for

spaces of affine functions. Here we generalize this concept for a function space, study its

properties and show that it coincides with the corresponding definitions of Ellis.

We also give examples of function spaces whose family ofmaximal weakly prime sets

differ from the corresponding families of its induced algebras.

2. Function space

Let X be a compact Hausdorff space. Throughout this paper we assume that A is

a function space on X. For a closed subset E of X, we define

fgeA\E for allgeA\E }.

For the concepts like peak set, p-set, etc. related to a function space and for the

various properties of a decomposition for a function space, we refer to [2], [5] and [7].

DEFINITION 2.1

A closed subset E of X is called a weakly prime set for A if E = Gu#, with G and

H generalized peak sets for N(A\E ), then either G = E or H = E.

The function space A is called weakly prime ifX is a weakly prime set for A.

Remarks 2.2. (i) If A is an algebra, then N(A\E )
= A\E and hence Definition 2.1

coincides with the definition for a function algebra given by Ellis [4].

411
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(ii) It can be shown that each weakly prime set is contained in a maximal weakly prime
set for A.

The collection of all maximal weakly prime sets for A is denoted by &(A).

(iii) It is easy to check that <P(A) is finer than the Bishop decompositions for A and

hence &(C(X)) = {{x} : xeX}.
(iv) It can be easily verified that A is weakly prime if and only if N(A) is weakly prime.

Further, for a closed subset E of X, N(A)\E <=N(A\E ) and so, &(A) is weaker than

&(N(A)). But, in general, &(A)^&(N(A)) (see Example 2.6(i)).

As in case of a function algebra, we shall show that here also every member of^(A) is

a p-set and &(A) has the (GA)-property [5] for A.

We shall need the following lemma.

Lemma 2.3. // E is a p-set for A and F a E is a generalized peak setfor N(A\E\ then F is

a p-setfor A.

Proof. Let /.ieA
1 and e>0 be given. Then there is an open set U in X such that

|ju|([7
- F) < 8. Clearly, E n U is open in E and F cz E n U. Since F is a generalized peak

set for N(A {E ), there is a peak set T for N(A\E) such that FaTciEnU. LetfeN(A\E ) be

a peaking function for T. Define /Ton E by h = 1 on T and h = on \ T. Then/"

converges pointwise and boundedly to h on E.

Now let g e A. Then

But
j #/

n
dju

= 0, as/^ 1

6 A, and is a p-set for A. Thus JV
Now

Since e is arbitrary, | Jf^d^l
= or F is a p-set for A.

PROPOSITION 2.4

A maximal weakly prime set for A is a p-set for A.

Proof. Let E be a maximal weakly prime set for A and let F denote the smallest p-set for

A which contains E. We shall show that F is a weakly prime set for A.

Let F! and F 2 be generalized peak sets for N(A\F ) with F
1
uF2 =F. Then

E = (F 1 n)u(F2n) and since N(A|f),c N(X|), F x
n and F2 n are generalized

peak sets for N(A [E ). Since is a weakly prime set for A, either F l
nE = E or

F2 n =
, i.e., either E G F

t or E c F 2 . If E c F
x , then c F

x
c F where F is a p-set

for A and F
1

is a generalized peak set for N(^ (F ). So, by Lemma 2.3, F x
is a p-set for

/I and hence F
1
= F. Similarly, if cz F2 , then F2

= F. Thus F is a weakly prime set for

A and by the maximally of , we have = F.

Next, we show that the family &(A) characterizes a function space A in the sense that

it has the (D)-property for A [5.7], i.e. if/eC(X) and/i 6(^, )- for every Ee&(A), then
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/eA. Actually the Bishop's theorem can be restated as "The Bishop decomposition has
the (D)-property for A". In fact the Bishop decomposition has a stronger property than
the (D)-property, namely the (GA)-property.

By (GA)-property for a family ^ of closed subsets ofX for A [7] we mean that for

ch [teb(A
L

)

e
, suppp c F for some FeJ^, where b(A^-)

e
denotes the set of extreme

points of the unit ball of AL
.

.

the (D)-property, namely the (GA)-property.
B

each

oin .

We shall show that &(A) has the (GA)-property for A.

Theorem 2.5. &(A) has the (GA)-propertyfor A.

Proof. Let neb(A
L

}

e
, the set of extreme points of the unit ball in AL and let S = supp/z.

It is enough to show that S is a weakly prime set for A.

Let G and H be generalized peak sets for N(A ]S ) with S = Gu H. Let
/
u

1
=

j/|G
,
5 // 2

=
ju Hi and geA. Since p.

= /^e^
1 and G is a generalized peak set for N(A ]S), by Lemma

2.3, we get JG 0d/*
= 0. Thus ^eX 1 and hence ^e^l

1
. Also, H//H

= 1 = II^JI + ll/^il-

Hence /^ 1
=

\JL
or //2

=
/z, as

jueb(^4
1

)

e
, i.e., G = Sor H = S. Thus 5 is a weakly prime set

for A

Examples 2.6. (i) LetX be the union ofa line segment F and a sequence of disjoint solid

rectangles {Fn; n = 1,2, . . .
} converging to F. Let y4 be the set of all/ in C(X) such that

/|FM
is a polynomial of degree atmost n. Then A is a function space on X and as in [7] it

can be checked that ^(^) = {Fn |weM}u{{x}; xeX}. Note that, here N(A) =

{fe(X):flFn
is constant, for each neM} and hence &(N(A)) = {Fn:neN}u{F}.

Therefore, /(A] * &(N(A)).

(ii) Let T denote the unit circle in C and A(T) denote the disc algebra on T. Let Oe4(T)
be such that <D ^0 on T. Define ,4 = {*"

l

f:feA(T)}. Then /I is a function space on

T and AT(y4) = A(T) [8]. It is clear that N(/l) is weakly prime and hence by Remark
2.2 (iv), A is also weakly prime, i.e., &>(A)= {T}. Since A(T) is a maximal function

algebra on T and 4(T) S X, the algebra generated by A will be C(T). But &(C(T)) =

{{xj: .xeT} by Remark 2.2 (iii) while &>(A) = {T}.

3. Space of affine functions

Let K be a compact convex subset of a locally convex Hausdorff space and let A(K)
denote the Banach space of all real-valued continuous affine functions on K with the

supremum norm. The set of extreme points ofK will be denoted by dK.

Ellis [4] has defined weakly prime sets* for A(K) with the help of concepts of

convexity. Now A(K) can also be looked upon as a function space on K. So we can

discuss &(A(K)) for A(K). But, since the functions in A(K) are determined by their

values on dK, we shall consider the space A(K)ldK
. In fact, weakly prime sets defined by

Ellis, are also subsets ofdK. In this section, we shall prove that &(A(K\dK )
coincides

with the family of maximal weakly prime sets as defined by Ellis.

For the definitions and results regarding compact convex sets and space of affine

functions, we refer to [1] and [2].

Let us recall the definition due to Ellis [4].

DEFINITION 3.1

A subset E ofdK is called a weakly prime setfor A(K) ifE = dG for some closed face G of
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K and if every proper facially closed subset of G has empty interior in the facial

topology of G.

Equivalently, for a closed face G of K, dG is weakly prime if whenever G = Co(H l
uH 2)

for some closed split faces H
1
and H2 of G, then either H

l
= G or H2

= G.

If cK is a weakly prime set, then A(K) is called weakly prime.
We shall denote the family of maximal weakly prime sets for A(K) according to

Definition 3.1 by &E(A(K)\
The following proposition can be easily proved.

PROPOSITION 3.2

where Ce(A(K)) = {feA(K):fg]fKeA(K\pK for every geA(K)}, the centre of A(K\
Since

Ce(y4(K)),^
is the set of facially continuous functions on cK [2, Theorem 1.4,

p. 105], we immediately get the following result.

COROLLARY 3.3

A subset E of oK is a facially closed subset of oK if and only if E is a generalized peak set

for N(A(K)ldK
).

PROPOSITION 3.4

// Ee&(A(K\dK) 9 then Co, the closed convex hull o/, is a closed splitface ofK.

Proof. Let F be the smallest closed split face of K containing CoE. Then

E c Co n dK <=. F n cK = 3F, as F is a face. It is enough to show that dF is a weakly

prime set for A(K)
{

.

Let H! and H 2 be generalized peak sets for N((A(K\K\fF )
with dF = H

l
uH 2 . Then

E = EncF = (H l r^E)u(H 2 r\E) and fi^nE, H2 nE'are generalized peak sets for

N((A(K\rK)
l

). Since is a weakly prime set" for A(K\ ,
either H

1
nE = E or

H2 n =
. Thus, either c H! or c H 2 .

Now, since F is a closed split face ofK 9 (A\K\?K ),CF
=
A(K\.F

=
A(F)^f . So, H^ and H2

are generalized peak sets for N(A(K\.K ) and hence by Corollary 3.3, H x
and H2 are

facially closed subsets of dF, i.e., H l
= 8G

l
andH 2

= 5G 2 for some closed split faces G l

and G 2 of F. Since F is a closed split face of K, G 1
and G2 are closed split faces ofK. Now

Ec:H
1
=>CoE c= CoH

!
= G! . Thus we get Co c G

L
c F and hence G

x
= F, as F is the

smallest closed split face containing Co, i.e.,H l
= dF. Similarly, if c H2 , then we get

H2
= 5F. So cF is a weakly prime set for A(K)^ ,.

If CoH is a closed face of K for H c 3X, then 3(CoH) = H and hence we get the

following result.

COROLLARY 3.5

IfEe&(A(K\ K )9 then E is facially closed.

Now we prove the main result.

Theorem 3.6.

Proof. Let Fe&E(A(K)). We want to show that F is a weakly prime set for A(K)ldK
.
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Let H
1
and H2 be generalized peak sets for N((A(K)

[riK
)
lF

) with H l
(jH2

= F. Since

Fe&E (A(K)) 9 F is facially closed [4], i.e., F = cG for some closed split face G of K.

Hence A(K\G
= A(G) and so (^(&)irK )if

= A (G\-G
> Thus H

!
and H 2 are generalized peak

sets for N(A(G\rc ). So by Corollary 3 .3, H i
and H 2 are facially closed subsets of G. Also,

by definition, F = <3G, where G is a closed face ofK and F = H
1
uH2 . Since F is a weakly

prime set for A(K) 9 either H i
= ForH2

= F. Hence F is a weakly prime set for A(K)
}

. ,.

Conversely, let Fe#(A(K)
}

). Then by Proposition 3.4, CoF is a closed split face of

K. Let CoF = G. Then F = cG and A(G\dG
= (A(K)

lfK \F
. Suppose F = H l

uH2 , where

FT
! and H2 are facially closed in G. Then by Corollary 3.3, H l

and H 2 are generalized

peak sets for N((A(K)\dK )\F ). Since F is a weakly prime set for A(K)^K
< either H

l
=F OY

H2
= F. Hence F is a weakly prime set for A(K). Consequently, &(A(K) {dK

)
= ^(/KK)).

COROLLARY 3.7

A(K) is weakly prime ifand only ifA(K)^ , is weakly prime.
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Abstract. A sufficient condition was obtained for oscillation of all solutions of the odd-order

delay differential equation

where p t (t) are non-negative real valued continuous function in [T^oo] for some T^O and
<7 e(0, oo

) (i
=

1, 2, . . .
, m). In particular, for p t (t)

= p/(0, oo) and n > 1 the result reduces to

i / V (nVHZ (Pi*?)
1 '2

)
>("-2)!^-,

\i=i / e

implies that every solution of (*) oscillates. This result supplements for n > 1 to a similar result

proved by Ladas et al [J. Diff. Equn., 42 (1982) 134-152] which was proved for the case n - 1.

Keywords. Odd order; delay equation; oscillation of all solutions.

1. Introduction

This paper was motivated by certain results of the paper [7] and [8] due to Ladas et al.

In [7] authors proved that all solutions of the odd-order delay differential equation

* (n) + Z P*(t-<r )
= 0, (1)

i=l

oscillates (i.e., every solution x(t) has zeros for arbitrarily large t) if and only if the

associated characteristic equation

*"+ Z p e-*-< = (2)

;=i

has no real roots, where p t
and 0^6(0, oo) for i = 1, 2, . . .

,
m. Further, it was proved that

(2) has no real roots if and only if

In the literature, it was observed that the odd-order differential equations of the form

(T
i )
= 0, (3)

where pf
eC( [ r, oo), (0, oo)), T ^ and <7 e(0, oo), is least studied. In this connection, we

may refer, in particular, to [4], [5], [9] and the references therein. For n = 1, (3) is almost

well-studied. In this case there are several results associated with its characteristic

417
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equation (see [3] and [7]) as well as conditions on coefficients and deviating arguments
which ensures that every solution of (3) oscillates. In [8], authors proved that if

p feC([T, oo),(0,oo)), d f.6(0, oo)(i= l,2,...,m)andw = 1 then

lim inf p t(s)ds > (i
=

1, 2, . . . , m) (4)
r-oc J f ffij2

and

1
m f p \- X lim inf p t.(s)dsm i=l\r-*oc J t- ffl

- /

2
m

[~Y P W P Ml
+ - X lim inf Pl.(s)ds lim inf

Pj(s)ds >- (5)m
*<j L\r-*oo J t-ffj / \t-*oo J f-ffi /J ^

U=i

then every solution of (3) oscillates. If p t (t)
= p f e(0, oo)(f

=
1, 2, . . .

, m) then the above

result becomes

i

implies that every solution of (3) oscillates. In this paper an attempt has been made to

obtain a similar result which shows that every solution of (3) oscillates. Our result fails

to hold when n = 1. Indeed, when p^t)
= p f e(0, oo), the main result of this paper shows

that if

\i=l

then every solution of (3) oscillates. Although our result does not generalize the result of

Ladas et al [8], but certainly supplements for higher order equations.

2. Main results

In the beginning of this section we prove a lemma for its use in the sequel.

Lemma 1. Let feC(n}
(\_T, oo), (0, oo)), 7>0 such thatf

(n
\t) ^ 0, 1 2* T. If n is odd and

(76(0, oo) then there exists T ^ T such that

Proof. Since f(t) ^ and f (n
\t) ^Qfor t^T, there exists T

such that

and

/ (J)W/a+1)
(r)<0 for fc <;<-!.

Expanding /(t) by Taylor's theorem, there exists xe(t
-

a, f) such that

(7)
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Similarly, expanding /<*> by Taylor's theorem we get

Replacing t by t - a in the inequality (7) we get

Further, using (8) in (9) along with the fact that *!(-*- 1)! < (
-

! and setting

TO = 7^ + 2(j we have our proposed inequality.

This completes the proof of the lemma.

Theorem 1. Suppose that PieC([T, oo). (0, oo)X T>0 and er
| (Q,oo) (i= 1,2,3,. .,m).

Further if

liminff p f(s)ds

r-*oo J t-o)ffi

A (1)and /
y,-i

v

1 m 9 "L 1 vi /i . / 1\|V'V

=
J tt UKfj

and
fn-\

then euery so/uion o/ (3) oscillates.

Proof. On the contrary, suppose that x(t) > for t > t . Dividing (3) throughout by

x01
"

1

^) we get

. PV-D^-oxr,) x{"-
"(t)

By Lemma 1, there exists t t > f such that

and the use of this inequality in (12) results

*-> _r-_L

where

=;
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Integrating both sides of (13) from t - a)ak to t we get

/x^0-o^)\ p x'-^s-^)
10g

(- x"- W r^H-.,/^ x'- 1

^)

Setting

and

P
p.k
= lim inf Pi(s)ds i, j = 1, 2, . . .

,
m

t-oo J l-o>fffc

we see that
m

log(a fe)> -X
i=l

Suppose that a
fc
< oo for k = 1, 2, 3, . . . ,m. In this case, dividing both sides of the above

inequality by a
fc
and using the fact that

! foroc^l,

and a
fc
^ 1 (since x

(w
~

1}
(t) is positive decreasing) it follows that

1 <*i

Summing the above inequality for k = 1, 2, . . . ,
m we obtain

^ - V V f a
i

7^ L Z- KiPik-
e fc=l i=l a

/c

that is,

Rearranging the right hand side elements of the above inequality first along the

diagonal then above and below the diagonal respectively, we get

that is,

i,J=l
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Since the arithmetic mean is greater than the geometric mean

a ;

\l/2

In view of ( 1 6), ( 1 5) reduces to

m
e

Putting the value ofK
f
and Kj in the above inequality we obtain

i m 2 m
" -

(16)

which is a contradiction to our assumption.

Next, assume that a = oo for some i = 1, 2, . . .
,
m. That is,

for some i = 1, 2, . . .
,
m. From (3) it follows that

for the value of z for which (17) holds. From the inequality above (13) it follows that

From (17) and (18) it follows that

_
C^T.) ^ 0. (19)

Integrating both sides of(19) from t
-
a>oJ2 to t and using the fact that x(n

~
1}

(t) > and

decreasing we get

< 0. (20)

(n 1)1 J ,-0,^

Dividing both sides of (20) first by x(n
~

1}
(t) and then by x(n

~
1]

(t
-

co^/2) we have the

following inequalities respectively:

and

1
.

(n
-

1)! x<"

In view of (10), (17) and (21) we obtain

p(s)d5<0

(22)

(23)
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Using (23) in (22) along with (10) we see that

l-*co A V wui/^j

Replacing t by 1 4- coa
t/2 in the above inequality we get

lim (-iw \''

1 <
'

t->oo -^ w
which is a contradiction to (23).

This completes the proof of the theorem.

COROLLARY 1.

If p t (t)
= p fe(05 oo) and ^6(0, oo) then

implies that every solution of (3) oscillates.

Proof. In this particular case

n-l

and hence (10) reduces to

that is, (24) holds. Hence the proof follows from Theorem 1.

Example 1. The equation

x(t
_

1} + 6 + x(t
_ 2)

=
0,

satisfies the hypotheses of Theorem 1 and hence every solution of it oscillates. But
Theorem 5.2 of [8] is not applicable to it.

Example 2. Consider the equation

\

By Theorem 5.2 of [8], every solution of it oscillates. But Theorem 1 of this paper is not

applicable to this equation. This is due to the fact that Theorem 1 holds only for n > 1

and is an odd integer.
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Abstract. Suppose Anw
= div ( j

Vw
|

" " 2
Vw) denotes the rc-Laplacian. We prove the existence of

a nontrivial solution for the problem

where /(x, t)
= o(t) as t -> and

| /(.x, t) \
^ C exp(an 1

1
\

nl(n
~

l

')
for some constant C > and for all

'.xeR'VfeIR with an
= naj

l

n

l("~ u
, a>n

= surface measure of Sn ~ l

.

Keywords. Elliptic equation; critical growth; Palais-Smale condition; concentration

compactness; mountain pass lemma.

1. Introduction

Suppose Anu
=

div(| Vu\
n ~ 2

Vu) denotes the n-Laplacian. We look for a solution of the

problem

(-~knu + \ur
2
u~f(x,u)u

n ~ 2
in R"

\ueW
l < tt

(R
tt

)

'

where f(x9 t) =o(t) as f-0 and \f(x 9 t)\ ^ Cexp(aJt|
M/(M

-
1)

)
for some constant C>6

and for all xelR", teR with an
= na)

l

n
l(n

~ l

\ con =surface measure of S
n ~ l

.

In the case where 1 c R" is a bounded smooth domain, and f(x, t)
==

h(x,t)exp(ain \t\
nl(n

~
1}

) with h(x 9 t) a lower order term in t, the problem (1.1) with

Dirichlet boundary condition has been considered by Adimurthi [1] and with

Neumann boundary condition by the author [9]. In case of n = 2, D M Cao [5] has

shown the existence of a nontrivial solution for the problem (1.1). In this paper,

applying the concentration-compactness principle ofP L Lions [6, 7], we show that the

functional associated with (1.1) satisfies (Palais-Smale), (in short (PS)C)
condition for all

ce(0,J) for some J>0 (for definition of J see 3). Then we show the existence of

a nontrivial solution for (1.1) by using Mountain Pass lemma as given in [4] and

constructing a critical point of the functional with critical value in (0, J). The main

difficulty here is to show that whenever a Palais-Smale sequence um > u weakly in

\Vum \

n - 2Vum -^\Vu\"-
2Vu weakly in (L^""

1

^"))
11

We need the following assumptions on the nonlinearity f(x, t)eC(R
n x R):

(/i) l/(x, 01 ^ Cexp(aJ t\n/(n
-

1)) for xeR", teR, where C > is some constant.

(/2 ) /feO^"
1

=/(x, -r)(- tr-^orxe^teRj^^isnondecreasingwith respect

425
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to t, for t > 0;

lim = uniformly with respect to xeU":
f-*0 t

lim
~ = uniformly with respect to xe R".

t-oo ^

(/3) There exists 0e( 0,
-

)
such that

V n J

F(x,t)^9t
n ~ l

f(x,t) for xeRVeR,

where F(x,t) = ^f(x,s)s
n ' 2

ds _
(/4) 3/(t) such that lim

|xhoo /(x, t)
=

f(t) uniformly for t bounded, more precisely,

1
for |x|>R,

where s(R) -+ as -+ oo.

(/5)3p>n such that f(x,t)^f(t)^Cp
t
p-+ 1

>(p/n)S
p
p (l

- n0)
1
~

(p/n)
t
p
~ n+1

for

xeR", te!R
+

, where

S
p
=

wjnf
u^O

For we ^-"(R
11

) let

r _
c- F(u)dx, (1.2)

JR

where F(t) = f /(s)s
w ~ 2

ds. The main results in this paper are as follows.

Theorem 1.1. Suppose /(x, t)
= f(t) does not depend on x and satisfies (/aH/a) and (fs)-

Then (1.1) has a nontrivial solution u . Moreover I(uQ) < (l/n)
- 9.

Theorem 1.2. Suppose/(x, t) satisfies (fj-(f5 ) andf(x9 1) ^ f(t)forfixed t with respect
to xelR". Then (1.1) has a nontrivial solution.

We remark that the (PS) condition is not needed for the proof of Theorem (1. 1).

2. Preliminaries and notations

We shall denote j to mean JRn dx. Define

for ueW l

*(te) (2.1)

t|M for ueLq (U"). (2.2)

The variational functional associated with (1.1) is

where F(x, t)
= f
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Let /() be as in (1.2),

|u||" =["-'/()

/^CXD __
inf {

oo, if M 00 =
<t>,

427

(2.4)

(2.5)

Remark. If f(t) satisfies (/x )
and (/2) then /* > 0.

Prcx?/. Suppose, on the contrary, 1% = 0. Then there exists a sequence {um}
in

such that

Then by (fj, (/2 ) and Lemma 2.3 (to be proved)

where C 1? C2 > are some constants. Thus

and therefore
|
Vwm | n ^ l/2nC2 , a contradiction which proves the remark.

Remark. If /(() satisfies (/jH/a) then C > 0.

Proo/. Suppose M ^ </).
For ueM , using (/3) we get

Q

Since f(t) satisfies (/t)
and (/2) we have
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and therefore as in the above Remark we obtain

for some positive constant C2 . Therefore by above estimate C ^ ((1/n)
- 0)C2 . This

proves the Remark. D

Similar to the imbedding of Moser [8] we have

Lemma 2.1. Suppose ueW^"(U
n
), \Vu\

n
n ^ r < 1, |M| B <M < oo. Then

rr n ~ 2 amM nm/(n
~ ir

i

expfcjur-
1

')- X 51II1.5
- ^ C(M,r), (2.6)

J L - m = m ' J

C(M, r) > is a constant independent ofu.

Proof. As in Moser [8] we use the method ofsymmetrization. Let w* be the symmetriz-
ation of u. Then u* is a radial, nonnegative and nonincreasing function. Further,

111*1'== Mp
, l<p<oo (2.7)

J

G(u)= [G(U*), (2.8)

f f

|Vu*T< |Vu|", (2.9)
J J

where G(u) is the integrand on the l.h.s. of (2.6). We have

f f r

jG(u)= G(*)= G(u*)+\ G(u*) (2.10)

where s > is a number to be determined.

First we estimate the second integral in (2.10). By the radial Lemma A. IV in [3] we
have

/ n \ 1/1.

!*(*)! <() I^LI^r
1

for x^O. . (2.11)
\ n/

Thus

f ^, x aT
1

!"*!!! f / a"
I|*ri A

G(u)=
"

J '+ (

"

,""M

if s>n|u*|B .

(2.12)
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To estimate the first integral in (2. 1 0), let us put ]

x
\

n = s"e~\v (t)
= n (n

'
1 }/" u* (x). Then

|Vu*T, (2.13)

exp(li;(r)r
/(w

~
1)
-f)dr =- exp(ajM*r

/(ll
"

1)
)dx, (2.14)

o V J|*K.s

where v = dv/dt. By Holder inequality we have

0(0) + ( I |(s)|"
r

(2.15)

where x is some unit vector in Rn
. Now

G(u*)<
|.x|<.v

(2.16)

Combining (2.11), (2.12) and (2.16) we have (2.6). D

Lemma 2.2. There exists =
J?(n) > swch t/zat/or all ueW l

-"(R
n

)
with \Vu\

tt

n
< l/aBj8e,

we

where C > is a constant independent ofu.

Proof. By the result of Talenti [10] (or of Aubin [2]) we know that if t, s > 1, t <
.

w and

1/s
=

1/t
-

1/n, then all (pGW^(R
tt

) satisfy

Icpl^K^OIVcpl, (2-17)

with

Let us set <p
= ||

v
, where v = ((n- 1)

2
+nm)/(nm-n + 1), m^2. Then |V<p|

=

v|w|
v ~ 1

1 Vu|. Taking s = (n/(n
-

l))m
-

1, t = n - (n
2
(n
-

!))/((
-

I)
2 + nm) and using
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Holder inequality we get

f ^-D-H,-! ,,<- 1>- iff v-l) ,\

j|u|
^( v

y
u

j

/(B -l)-l
(2.18)

Now

where C(n) is a constant dependent on n. Since r < n we get (f l)/t < (n 1)/n. Also for

all m > 2, n ^ 2 we have ((n
-

I)
2 + nm)/n

2
(n
-

1) < m and v ^ C
t (n), a constant depend-

ent on n. Hence we get (Kv)
Rm/(n

"
l)
~ 1 ^ C(j?m)

w
for some =

fi(n) > and C = C(n) > 0.

Therefore by (118)

f B -l /(-.-lh_ _ ,./(.

J|u|"
(exp(an |

M
| )- -,|u|

2 '

For m > 2 we have m/(n- 1)
- 2> m/(n

-
1). Thus for

| Vu|^
/("~ u < !/ ]8e we have

(

I |u|"-
1

(exp( 11|ur--
1))- 1 -ajul"*'

1
')

where we have used the same C to denote various constants. D

Lemma 2.3. Letf(t) satisfy (/J and (/2). Suppose there exists uQeW l 'n
(R")\{Q} such that

JF(M ) ^ (l/n)f |u |" and |
Vu C < 1. Tten / to actta*d. Moreover /? ^ |

Vii C.

Proo/. Using (/2) and the hypothesis that
fF(u ) ^ ( 1/n) \

u
\

n
n it is easy to see that there

exists t (0,l] such that jF(t u )
=

(l/n)J|t u r Thus /?<J|Vu |

n
. Let {um} be

a minimizing sequence for JJ* . Without loss of generality we can assume that J |
Vum \

n <
r< 1. Denote by w* the symmetrization of um . Then w* is a radial, nonincreasing
function. Furthermore,
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Thus {w*} is still a minimizing sequence of /^. We denote it simply by {um} in what

follows. Without loss of generality we can assume that |wm | B
= 1. Thus {um} is bounded

in W l -n
(R

n
) and so there exists we Wrlt

"(R
11

) such that for a subsequence

ww -*w weakly in HP ^"

um -> w a.e. in [R
w

.

We want to use a compactness lemma of Strauss (see Theorem A.I. of [3]). Set

j

t\
njl(n

~
1} + \t\*.

Then using (/J we get lim,rHoo P(t)/QW = and using (/2),
lim

|fKOP(*)/Q(f)
= 0. Again

by radial lemma A.IV of [3] we get (2.11) and so as |x|
-* oo, Mm(x)-^0 uniformly in m.

Further by Lemma 2.1,

(fi(ii
J

supfi(iiJ<C.
M J

Thus all the conditions of Strauss' lemma are satisfied and we get

lim
m-*oo

Since f F(wm)
=
| we get u ^ 0. Now

-
[N"<- lim inf Lm |

n = lim inf

Wj nm-oo J
m-*oo

f|

J

and so J* is achieved by u. If on the other hand (l/n)J| Vu\
n < fF(w), then there exists

(6(0, 1) such that (1/n) J| tu\*
=

jF(rw). Hence

r r r
I <M I Vw|" < I Vw|

n < lim inf
|

Vum \

n =
/J,

J J
m-oo

J

a contradiction which proves the lemma D

Lemma 2A Suppose {um}
<=. W^n

(U
n
) satisfies \Vum \n <l,\um\*<M and

lim sup (I Vwm |

n
-h |wm |

n
)dx = for some R > 0,

m^y^n
J y+ BR
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where BR = {xeR
n
; \x\ < R}. Then

lim
m-*x

lim
m-+:c

Proof. Let eC%(U
n
) be such that c = l for |x|<R/2;

| Vc| < 4rc/R; Let c v =<;(- y). Then

(2.19)

for 1x1 >R and

(2.20)

In view of (/ t ) and (/2 ), given 8 > there exists C
f
> such that

For m large enough | V( y
um)\"n

< l/anj?e and hence Lemma 2.3 gives

u"dx

We cover R" by balls BR ,2 (x ;) in such a way that any point of R" is contained in at most
k balls BR (.x ;)

of radius R. For large m we have

|F(.x,u
JR" R

Making w- oc and then -+0 + in (2.21) we obtain

lim
m-*x

(2.21)

(2.22)
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Similarly we have

lim
m t-oo

3. Proof of the main results

First we prove the following

Lemma 3.1. Let C* be as in (2.5) and

J = min(C
00

, --6M.
\

'

n )

Supposef(x, t) satisfies (AH/J. Then I(u) satisfies (PS)C
conditionfor ce(0, J).

Proo/. Let {um}
be a (PS)C sequence in W l

'"(R"). That is,

Then

433

(2.23)

D

where o(l) denotes the quantities that tend to as m -> oo and

Taking <p
= wm in (3.2) we obtain

in

From (3.1) and (3.3) we get

C(Y 11 \un
~

l ~F(Y u Y\
(X, Um) Um r (X, Um)J

Thus using (/3 ),

and hence in view of (3.3) {um }
is bounded. Further (3.3) gives

nc

(3.1)

(3.2)

(3-3)

as desired.
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Thus for m large enough

IVuJ^r (3.4)

where re(0,l) is some fixed number, and there exists ueW l 'n
(R") such that for

a subsequence

WM -+M weakly in ^'"(IR")

,->M a.e. in R"

Vum \

n + |Hm |

w

)dx-+d^ in measure

jVuJ"-
2Vum ->T weakly in (L

n/("~ 1)
((R''))'

1

-

Without loss of generality we may assume

Claim 2: />0.

If not, suppose / 0. Then by (/J, (/2 ) and Lemma 2.3

Similarly I jF(x,uJI^O.

So /( m)
=

(l/w)l|tim ir-jF(x,Mm)-^0, which contradicts the fact that

We want to apply concentration-compactness principle of P L Lions [6, 7] to the

sequence {pm } where pm = |VwJ" -f
| wj". Applying Lemma 1.1 of [6] we conclude that

for a subsequence one of the three possibilities holds: (a) vanishing, (b) dischotomy (c)

compactness. We use contradiction argument to show that only (c) compactness
occurs.

Step 1 : Vanishing does not occur.

Suppose instead that

Urn sup
I

(| VuJ" 4- \um \

n
) =0 for all R > 0.

Then Lemma 2.4 yields

This implies, in view of (33), that i|um ||

M

-^0, which is not possible since />0. So

vanishing does not occur.
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Step 2- Dichotomy does not occur.

Suppose dichotomy
occurs. Let Qw (t)

-
sup^

J

function of Pm . Then {ft.}
is a sequence of n

bounded functions on R
+

. As m [6], by ex

there exists Q(t) such that Qm (t)

-^
W

(0, I).
For any > 0, e < l/(2n)"aB0e, we

c > t . Then for m large enough a - (em

exists |ym}cR" such that

435

(x)d.x denote the concentration

nonnegative uniformly

we can assuine that

, fcn_Q(t)
-

^ Q(t) ^ a _ (/4)
rf

tf ^ Furthermore, there

(3.6)

for t ^ t and m large enough.
Also we can find t.

oo such that

(3.7)

By computation we deduce

C
'

Choosing t, large enough we have

(3.8)

<.

With m large enough so that tm > 3t 1; using (f,), (h)

(3.9)

_
if

, _ |<tl0r x-

r f

|V(u u.)l"<2" [|VjJ"

J J
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Hence applying Lemma 2.3 we get

|f?m l'-
1

(exp(.|?m m r
/('- 1))- 1 -

Similarly we have for m large,

Combining (3.6), (3.8) with (3.11) we get

J

"m

Also using (/i) and (/2) we get

<Ce.

L <,

and as in the proof of (3.10) we obtain

r

I [ffa wm)
~~ F(x>

Vm)
~

F(X >
Wm)l

From (3.13), (3.14) and (3.15) we have

(3.11)

(3.12)

(3.13)

(3.14)

(3-15)

-Ce (3.16)

and this proves the claim.

We will now consider two cases, Case 1: {ym} is bounded, and Case 2: {ym} is

unbounded.

Case 1: {ym}
is bounded.
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lim 4: I(wJ Js /(wj -O(e) - 0(1) as e->0+, m-> oo.

iVe have

- [F(x,wJ-F(wJ]

dfor<5>0,

*nl^W'*)- F <w '

(3.17)

lere e(rj->0 as tm ->oo. Here we have used the assumption that {ym }
is bounded,

so when |x| is large enough, for
|wj< V<5,

ms

(/j) and (fs ),
for t > we have

- - uniformly in x and

= 0.

ence by (3.4) and Lemma 2.1

F(x,wJ
F(.x,wJ

. Similarly

F(wJ

(3.18)

(3.19)

(3.20)
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Thus (3. 17)-(3.20) imply

[F(x,wJ-F(wJ] ^0. (3.21)

Therefore we get, as desired

(3.22)

where 0()-0as ~*0and o(l)->0as m-oc.

Cto'm5: /(ww)> C
x
-0(e)- 0(1).

We have

<f(wm), wm> = <I*'(wJ, wm> + [- 7(wJ ~ <- 7(*> vvJ).

Arguing as in the proof of (3.21) we can prove that

wr l

/("j -c 7(*, <a = o(D- (3 -23)

Also by using (3.3), (3.6), (3.11) and (3.12) we can get

OJ, wm> = <J'(uJ,<> +0( )

= o(l) + 0(e).

Hence

</
x
'(wJ,wm> = o(l) + 0( ). (3.24)

With wm (.x)
= wm (trx) we have

=
(1
-

ff -") I*
|VwJ" + a-</-'(wm),

wm>. (3.25)
J

We want to choose <rm close to 1 in such a way that ww6M oc
. First we show that

|
Vwm |^

has a lower bound A > independent of e small enough and independent of m. If not,

then there is a sequence <5
fc -y0 such that

where wm (<5^)
is a subsequence selected by the above process for each Sk . Now, by

dichotomy we have

1*&) > I
- a - &k

. (3.26)

On the other hand using (3.24), (/t), (/2 ) and Lemma 2.3
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Thus |V

Therefore

which contradicts (3.26).

lim |Vw
m-*-oc

I" > A > for & small enough.
i

i
*"''

r" we see from (3.25)
,
which

,

(C , 1 + OW + <-(.

Again, in view of (3,11) we can assume that

therefore }F(w.)
is bounded. Hence

r<(1 + r)/2tors small
enough, an,

|V.I, < U +

Thus, in view of (3.22),
we obtain

and this proves the claim.

Now as in (3.24) we obtain

So, in view of (/3)
we have

" /

Therefore (3.16) and (3.27) imply

(3.27)

(3.28)
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Letting m-oc and then s-+0 we get c> C* + ((l/n) 0)oc, a contradiction. This

completes the case of bounded { vw j.

Case 2: { ym }
is unbounded.

In this case we change the role of
{
vm }

and {
wm ]

and then we can still get a contradiction

as above.

Thus we have ruled out dichotomy and therefore by Lemma 1.1 of [5] there exists

{ym }
in R" such that for any s > 0, there is t = t(s) > such that

(|VuJ
n

+|w !")<. (3.29)

\x-ym\>t

Claim 6: {j;m }
is bounded.

If not, then without loss of generality suppose ym -^ oo. Now

Let
?jm be cut-off functions such that < i\m < 1, i\m

= for \x
-
ym |< t;

-
ym \

^ f + 1,
1 V/?m |

^ 2n. Then for < l/an (4n)"j8e and m large,

(3.30)

= 1 for

Then by Lemma 2.3 and (3.29)

Similarly

0(e).

Again as in the proof of (3.21), using the assumption ym -^ oo we obtain

asm-^oo.

(3.31)

(3.32)

(3.33)

Thus I(um)^I
y
'(um)-O(8)-o(l). Again as earlier we can choose am such that

am = 1 - 0(e) -f o(l), um (.x)
= uw (am .x) is in Mx and

I(um) C 00 ~
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Taking W-+GO and then -0 we obtain c^ C, a contradiction which proves the

claim.

Therefore, for any > 0, there exists t = t(s) > such that

:e. (3.34)

|*|>r

To use Strauss' lemma as in [3] we set P(s) = s
ll
~

1

/(x,s), 2(s)= exp((2an/(l +r))

|

5 |/(- D)
_
Li-o(l/m!)(2a ll/(l + r))

w
|s|"

/(B
"

1} + |s|
B

,
so that lim

|jHao P(5)/fi(5)
= 0. Also

by Lemma 2.1, jQ(wm) ^ C for some constant C > 0. Therefore by Strauss' lemma, for

any bounded Borel set Q

lim

In particular

f f
lim u^"

1

/(.x,Mj= u
n ~ l

f(x,u). (3.35)

Again, as in the proof of (3.21) we obtain

(3.36)

|x|>t

Thus

lim u^
1

/(.x,uj=
"- l

f(x,u). (3.37)
m--oo I I

J J

Claim?: wm ->uin P^ 1 'n
([R

w
).

Since um -^u weakly in ^^"(R") we have by Rellich's lemma um -^u strongly in Ln

(Q)

for any bounded smooth Q. In particular,

f
J\x

Thus using (3.29) we get

(3.38)

As in (3.35), we have for any (peC$(R
n
\

^. (3.39)

Now, for any (peC?(R
n
) we have, by (3.5), (3.38) and (3.39)

0=lim<I'(uJ,p>

(3.40)
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= lim (r(um),um(pym-oc

r r= (pd^-h uT-V(p

= \uT-V(p+ \<pT-Vu + \\u\"(p- \f(x,u)u"-
l

<p. (3.42)

Thus

|uT-V<p= |/(x,u)u"-V-J t/ J

and substituting in (3.41) we get

In view of (3.5) we get J^|ViU"-^f<pr-VM and hence
f,x|<t |VM

implies, using (3.29), ||
Vum \

n

-^JT-Vw. That is,

lim |VuJ"=lim
wi-oc

j
m 'X

Then

lim
m-oc

which implies

r

7um -Vw|
M
=0,

by using an inequality

\a~~b\
p ^2p - l

(\a\
p
~ 2

a-\b\
p
- 2
b)'(a~b)

for any a, beR", p > 2. Therefore wm -^w strongly in ^ Uw
([R

w
) as desired. D

Proof of Theorem 1.1: By the definition of S
pJ

for any e > there exists u eW l 'n
(R")

such that (KH/|tt,| p)<Sp + e. Let i? = ((l -n9)
lln

/\\ue \\)\ue \p
. Then \\vt \\*=l-n09

Claim: $F(v )>(l/n)\vE \

n

n .

Choose e small enough so that C
p >(p/n)(Sp + 2s)

p
(l
- ndY~ (pln\ Now S

p

Ikvll/kvLandso

and this proves the claim.
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Therefore by Lemma 2.2 1% is achieved by some w and /J ^ 1 n6. Then

for some Lagrange multiplier AeR. By (/3 ) we have

_ 1

w
,

Also we know that / >0. Thus A>0. Let W(X)=WO (A~
I/W

X). Then u satisfies (1.1),

fF(tt)
=

(l/H)J|Mr and /(w) = (l//7)J|Vwr
=

(l/n)J|Vwo r <(!/)- 0. This proves the

theorem. D

Proof of Theorem 1.2: By the assumptions we see that f(t) satisfies the conditions of

Theorem 1.1. Thus there exists ueW l 'n
(R

n
) satisfying

~-Anu + \u\
n - 2

u = f(u)u
n ~ 2 inR".

-

(3.43)

Moreover, /
x
(u) <(!/) ~ 9. Let

t"

lwl"]- (rfi).

By (/2 ) and (3.43) we have

ft'(r)^0 forr>l.

Hence /
x

(w)
= max^ /

x
(rw). Further, since J(rw)--oo as r-^co, there exists

t
e(0,oc)_such that /(r u) = max^ /(rw). Now, by (/5 ) and the hypothesis that

/(.x, t)
=

/(f) we have

/(t fi) < /"'(.to*) ^ max /(m) = /*(ii). (3.44)
t^O

We claim that C x = /(M). Clearly C ^I%= /(M). Further, given > 0, we can find

weM x such that /
x
(w) < C x

-f e. Using (/2 ) we can find teR +
such that Jf(x,rw)

=

(l/n)\tu\
n

n . Again as above we can show that /(w) =maxt>0 /
oc

(t4 Thus

I^(u) = !%** I(tu) ^ I*(tu) ^ I(u)<* + ,

which gives the other inequality, since > was arbitrary.

Therefore from (3.44) we get

. I(t u)<r(u)^C<--6. (3-45)

It is easy to see, using (f^ (f2 ) and Lemma 2.3, that there exist p, a > with

I(u) > a for all u satisfying \\u\\
=

p.

Choose t
1
> t sufficiently large so that l(tu) < for t > t^ Let F be the set of all

continuous paths connecting and l^u. Define

c==infsup/(u). (3-46)
"
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Then c> a. Also

c< max /(ru)<
n

By Mountain Pass lemma (see [4]), there exists a sequence {um }
in W lttt

(R
n
) such that

/("J-^ /'(Hj-^0 in (^-"(R"))*.

By Lemma 3.1, for a subsequence um ~^u strongly in W 1 'n
(IR

n
). Thus /(w) = c, /'(M)

= 0,

which implies that u ^ and u is a nontrivial solution of (1.1). This completes the proof
of the theorem. D
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An axisymmetric steady-state thermoelastic problem
of an external circular crack in an isotropic thick plate
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Abstract. A steady state thermoelastic mixed boundary value problem for an isotropic thick

plate is considered in this paper. The faces of an external circular crack situated in the

mid-plane of the plate are opened up by the application of temperature while the bounding
surface of the plate are maintained at a constant zero temperature. Solution valid for large

values of the ratio of the plate thickness to the diameter of the crack has been obtained.

Expressions for various quantities of physical interest are derived by finding iterative solutions

of the equations and the results are shown graphically.

Keywords. Axisymmetric; steady-state; external circular crack; stress-intensity factor.

1. Introduction

The strength of a material with cracks is an interesting problem in fracture as well as

structural mechanics and the knowledge of the elastic stress field is potentially useful

for strength estimation based upon brittle fracture theory.

Several papers have appeared which treat distributions of stress in an infinite solid

due to the application of temperature or normal pressure on the faces of a flat internal

circular crack (Das and Ghosh [2], Lowengrub [5], Bandyopadhyay and Das [1]). The

problem of an infinite body containing an external circular crack covering the outside

of a circle, due to the application of normal pressure has been considered by Uflyand

[12] using toroidal coordinates and by Lowengrub and Sneddon [6] from the dual

integral equation point of view. Lowengrub [7] has also solved the two-dimensional

plane strain problem for an external crack y = 0, | x| > 1 opened up by normal pressure,

using dual trigonometric equations. Distribution of stress in a thick plate containing an

external circular crack opened up by the application ofpressure has been considered by

Dhawan [4].

This paper determines the thermoelastic stress distribution in the vicinity of an

external circular crack situated in the mid-plane of an isotropic elastic plate of finite

thickness and infinite radius. The temperature, the shear component of stress tensor

and the normal component of displacement vector vanish over the plane boundaries

while the crack is opened up by the application of a prescribed axially symmetric

temperature to its faces. The method of solution is to seek suitable representations of

the potential of thermoelastic displacements and the Love function and then to reduce

the problem to the solution of two pairs of dual integral equations. Finally, these dual

integral equations have been further reduced to Fredholm integral equations of the

second kind which are solved in terms of power series. The results are illustrated by

a number of diagrams (figures 2-7).
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2. Basic equations of thermoelasticity

We consider the temperature and displacement fields in an isotropic elastic solid which

is conducting heat. Ifwe assume that there is symmetry about an axis, which we take to

be the z-axis, then the position of a typical point of the solid may conveniently be

expressed by the cylindrical polar, coordinates (r, 0, z) and the displacement vector will

have the components (w rs 0, wj. The non-vanishing components of the stress tensor will

In the absence of body forces or heat sources within the solid, the steady-state

equations of thermoelasticity with symmetry about z-axis are (Sneddon and Berry

[10], p. 125)

2(l-v)f^ +i^-^ + (1
-

2v)^ +^ = 2(1 + v)a^\ dr" r or r" J dz* or 02 or

(1
_

2v)
fe +i^ +2(1 _ v)^ +^f^ +^ =2(1+v)af:
\ or" r dr J dz dz \ or r J oz

(1)

and

V 2 T = 0, (2)

where T = T(r, z) is the deviation of the absolute temperature of the solid from that in

a state of zero stress and strain, a is the co-efficient of linear thermal expansion of the

solid, v is its Poisson ratio and

y2 | |
/3\

dr
2

r dr dz
2

'

3. Boundary conditions

With a suitable choice of our unit oflength we can assume that the faces ofthe crack are

described by the relations z = ,r > 1. The thickness of the plate is assumed to be

<5-times the diameter of the crack. We suppose that there is no external force acting on
the crack-faces and that the face z = 0+,r^lis heated (or cooled) exactly in the same

way as the face z = 0-, r^l. Then following Sneddon [9] we reduce the crack

problem for the thick plate r > 0, |z| ^ 8 to the mixed boundary value problem for the

layer r ^ 0, ^ z ^ <5 for which the thermal and elastic conditions are:

on z = 0:

T(r,0) = /(r), l<r<oo (5)

(^(r, 0)=0, 0<r<oo (6)

ua (r,0)
=

0, 0^r<l (7)

<rsz(r,0)=0, l<r<oo (8)

on z = <5:
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T=0, OJ1Z=0, Uz
=

= f(r)

crrz=o,uz:=o

26

T =
,

C z
=

, Uz =

T = f (r)

Figure 1.

<oo (10)

u,M) = 0, 0<r<oo, (11)

where/(r) is prescribed.

We further assume that the disturbance is localized i.e. the temperature and the

components of stress and displacement all vanish as ^/(r
2

4- z
2
)-* oo. Position of the

crack and the boundary conditions for the plate are indicated in figure L

4. The heat conduction problem

A suitable Hankel integral representation of the temperature field satisfying the

Laplace's equations (2) and (9) and vanishing at infinity is taken in the form

f
)=

J o

(12)

where B() is an unknown function to be determined from the boundary conditions.

Conditions (4) and (5) are fulfilled if the function B({) is a solution of the set of dual

integral equations

where

fJ c

fJ c

= 0, 0<r<l

-=/(r), l<r<oo,

(13)

(14)

To reduce the above equations to a single integral equation, we apply Sneddon's

method [11] and put

/j ^\

where, for the convergence of the integral, we assume that

lim\l/ l (t)
= Q. (^
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Integrating by parts and making use of (17) we rewrite (16) in the form

where the prime (') denotes differentiation.

Substituting from (18) and making use of the result ( [13] p. 405)

J (6-)cos(c;f)dc =
0, r<t

7, r>t

we can show that

0,
= 1

f
r

\l/\(t) ,

H- . , , df. l<r<oo.
-2 - 2

It is clear from (20) that the form (16) satisfies (13). Now, from (14) we have

J 1

Making use of the result [13], p. 405

1

J (cr)sin(ct)dc=

0,

r<t

t<r

we find from (21)

(18)

(19)

(20)

(21)

(22)

Kr<oo.

(23)

If we replace J (cr) by its integral representation,

2

we find that the second term on LHS is equal to

Simplifying and interchanging the order of integrations the second term on LHS
becomes

1 dt
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where

flf(o>)= I* H^cosf^du. (24)
Jo \ /

Then from (23) we have

=
/(r), 1 < r < oo

or,

^[^
=

/(r), l<r<oo,

which on inversion gives

I ^(t\ -

= _2d f
00

rf(r)

or,

2 d
r, KKCO.

(25)

where

KI(U, t)
= H*(t-u)- H*(t + M). (26)

5. The thermoelastic problem

* The potential <D of thermoelastic displacement satisfying the Poisson equation

(Nowacki [8], p. 12) V
2
<& = mT, where m = (1 + v)a/(l

-
v), is

2 o

fr)df. (27)

The Love function satisfying the Inharmonic equation (Nowacki [8], p. 17) V
4xF = 0,

is sought in the form of the Hankel integral

-
z)
-

<5 sinh(^z)cosech(^<5)] J ({r)df (28)

which vanishes at infinity.

Using basic equations, we have

- z
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+ C(f)cosech(5)[2(l
-

v)sinh (5
-

z) + z cosh (d
-

z)
o

(29)

-z) + z sinh (<5
-

z)
o

cosh((?z)cosech(c<5)] J (^)dC (30)

o

B(?)sech(^)sinh {(5
-

z)J^r)^

-2/x
J o

r)d. (31)

Equations (6), (10) and (11) are automatically satisfied. Using boundary conditions (7)

and (8) we get,

1 (32)

= ~
?/(>*), l<r<oo (33)

o

where

Following Lowengrub and Sneddon [6] we put

C()=
I

iA 2(t)cos(^)dt, (35)

where we assume that

lim^ 2 (t)
= 0. (36)

r-*oo

Integrating by parts and making use of (36) we rewrite (35) in the form

, (37)

where the prime (') denotes differentiation. Substituting (35) and making use of the
result (19) we have

0, 0^r<l

(38)

, 1 <r< oo.
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It is clear from (38) that the form (35) satisfies (32). From (33) we have

m
=--/(r), l<r<oo. (39)

z

The first term on the LHS of the above integral equation (39) becomes

Replacing J (r) by its integral representation

2

the second term on the LHS of the above integral equation (39) becomes

2

Interchanging the order of integration and simplifying the above term becomes

1 f
00

dt

where
r /'// -A

?. (40)

Thus (39) becomes

m

or,

]

= -/W> l<r<oo,

which on inversion gives

1 f
00'

* *
m d p r/(r)dr

2t+7^Ji
2t 2 ^

TrdrJ, V(r
2 -r2

)'

l<t<oo. (41)

Assuming that /(r) is continuous differentiate in (1, oo), we integrate (41) between

the limits t to oo and on making use of (36), we obtain the following Fredholm integral
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equation of the second kind

where

K 2 (M,f) =

(42)

(43)

6. Method of solution

Assuming that 6 1, we can write (15) and (34) as

and

Using (24) and (44) we have from (26)

(44)

(45)

3605 6

where
(46)

(47)

To solve the Fredholm integral equation (25) we assume a series solution in the form

(48)

Then from the Fredholm integral equation (25), we have

7i df

; 2j
n (49)

etc.
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Similarly for the Fredholm integral equation (42), we assume a series solution in

the form

and we obtain a set of equations of the form (49).

7. Solution for a particular type of temperature distribution: Quantities of physical interest

In this section we solve the integral equations (25) and (42) for large values of (5, by

giving a particular value of/(r) which is important from the physical point of view.

Let /(r) be defined as

/(r)=-/ H(fl-r), a>\ (51)

where H(t) is the Heaviside unit function.

Then

t<a

(52)

t>a.

Substituting this value in (25) we get

i) For t > a:

It can be shown that its trivial solution is

ii) Forr<a:
In this case integral equation (25) becomes

which on considering terms up to 6
6
gives

., M _ 2/o t

(55)
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+ t

3a4

Substituting the above values for ^(r) we have from (12)

,

,

where

A =^ cos -ii ^
11

2 a

12
~ cos - +

A 12 =~-cos"
1 - +

16 a 48

and

(56)

(57)

(58)

Similarly we get a trivial solution
\j/ 2 (t)

= of the Fredholm integral equation (42),
for t > a.

ii)' For t < a:

In this case

X,

+
HM fa

6 -*6

4 - 4 2

120<5
6

6

where

(59)

(60)
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Using the method used earlier an iterative solution for
i// 2 (r) is obtained in the form

vhere

'

, (61)

'. (62a)

Now we derive expressions for quantities of physical interest.

Using (35) in (29) we have on the crack plane z = 0,

M
s (r,0)

= 2(l- J (cr)cos(a)dc;.

Nfow substituting the value of ^ 2 (0 from (61), we can easily find that

o r r.j
I

' F(/)

l

-N(r)

vhere

H ->

i
1 o -i 1
- = -

a" - -r- | cos
'

r

r 2

a(3r
2 + 2a2

)J(r
2 -a2

) (3r
2

(63)

(64)

(65)

,(66)
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and

E(a/r\ E(j!,fl/r), K(a/r\ F(fra/r) are elliptic integrals.

The normal component of stress on z = is given by

3(a
2
-l)

l)(2a
2 - a - 1)

+3B 12 Q(r)

'11

3
STCO

where

48

The stress intensity factor is given by

N= Urn
r-*l-

(67)

(62b)

(68)

0-2 0-4 0-6 0-8 1-0
-0-5

Figure 2. Variation of T(r,0)/(2/ /7r) with r for a = 1-2, 1-6, 2-0 and 6-5.
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0-2 0-4 0-6 0-8 1-0

Figure 3. Variation of T(r, 0)/(2/ /*) with r for a = 1.2, 1.6, 2.0 and 8 = 7.

0-2 0-4 0-6 0-8 1-0

Figure 4 Variation of <7(r, 0)/(2 mju/o/rc) with r for a = 1.2, 1.6, 2.0 and 8 = 5.

Using (67) we have from (68)

(69)

Quantities of physical interest namely, the temperature and the normal components

of stress and displacement on the crack plane z
= have been calculated for a ==1.2 IA

2.0 and 5 = 5, 7. Variations of T(r, 0), <rZ2 (r, 0) and ,(r, 0) with r are shown graphicallym

figures 2-7 respectively.
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0-2 0-4 0-6 0-8 LO

Figure 5. Variation of a:J(r, 0)/(2 m/*/ /rc) with r for a = 1.2, 1.6, 2.0 and 6-1.

Figure 6. Variation of w,(r,0)/(2(l
- v)m/ /7r) with r for a = 1.2, 1.6, 2.0 and 6 = 5.

8. Conclusions

When (5 -^ oo, the problem reduces to that of an infinite medium containing an external

circular crack which has been solved by Das [3]. It is found that the limiting values as

8 -> oc of the temperature, stress intensity factor and the normal components of stress
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Figure 7. Variation of ws (r, D)/(2(l
- v)m/ /7r) with r for a = 1.2, 1.6, 2.0 and <5 = 7.

and displacement given by (56), (69), (67) and (64) are the same as those obtained by
Das.
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Abstract. The present paper extends the results of Banerjee et al [2] for the hydromagnetic
thermohaline convection problems of Veronis' [9] and Stern's [8] types to include the effect of

a uniform vertical rotation.

Keywords. Hydromagnetic thermohaline convection; uniform vertical rotation.

1. Introduction

The establishment of non-occurrence of any slow oscillatory motions which may be

neutral or unstable imply the validity of the principle of exchange of stabilities (PES).

The validity of PES in a certain class of stability problems eliminates the unsteady
terms from the linearized perturbation equations which results in notable mathemat-

ical simplicity since the transition from stability to instability occurs via a marginal
state which is characterized by the vanishing of both real and imaginary parts of the

complex time eigenvalue associated with the perturbation. Pellew and Southwell [5]

proved the validity of PES for the classical Rayleigh-Benard convection problem

(RBCP). Chandrasekhar [3] in his investigations ofhydromagnetic RBCP conjectured

that ifthe total kinetic energy associated with a perturbation exceeds the total magnetic

energy associated with it, then PES is valid. Sherman and Ostrach [7] established the

above conjecture of Chandrasekhar for a more general problem when the fluid is

confined in an arbitrary region and the uniform magnetic field is applied in an arbitrary

direction. However, the result of Sherman and Ostrach is of limited value since one

cannot a priori be certain when their criterion will be satisfied. Banerjee et al [1]

established that for the hydromagnetic RBCP if Q^ l /n
2 ^ 1, where Q is the Chan-

drasekhar number and <T
I
is the magnetic Prandtl number, then the total kinetic energy

associated with an arbitrary perturbation which may be neutral or unstable is greater

than the total magnetic energy associated with it and consequently PES is valid in this

parameter regime. Banerjee et al [2] further extended these energy considerations to

the hydromagnetic thermohaline convection problems of Veronis' [9] and Stern's [8]

types. The aim of the present paper is to extend the results of Banerjee et al for the

hydromagnetic thermohaline convection problems of Veronis' and Stern's types to

include the effect of a uniform vertical rotation.

2. Basic equations and boundary conditions

The non-dimensional linearized perturbation equations governing thermohaline con-

vection problem in the presence of a uniform vertical rotation and magnetic field are

461



462 Jocjinder Singh Dhiman

given by (cf. Gupta et al [4]).

(D
2 -a 2

)(D
2 -a 2

-p!a)\v = Ra 2 9-R
s
a
2
(j)~QD(D

2 -a 2
)h^ TDZ (1)

(D
2 -fl

2 -p)0=-w (2)

(D
2 ~a 2

-p/i)<p=-w/T (3)

(D
2 -a 2

-pa l /ff)hs
=-Dw (4)

(D
2 - a

2 -
p/<r)Z

= - Dw - QDX (5)

(D
2 -a 2

~paJa}X = -DZ (6)

together with the boundary conditions

w = = =
<
= Dw = Z = DX = h

:
at i = ,1 . (7)

The various symbols occurring in the above equations are defined as follows:

z is real independent variable such that ^ z ^ 1 and stands for vertical coordinate,

D = d/dz denotes the derivatives with respect to z. a
2

is the square of the wave number,

a is the thermal Prandtl number, i is the Lewis number, a
l

is the magnetic Prandtl

number, jR is the thermal Rayleigh number, R
s

is the thermohaline concentration

Rayleigh number, is the Chandrasekhar number, T is the Taylor number and

P = Pr + 'Pi is a complex constant in general representing the complex growth rate.

Further \v, 0, fa Z, X and h
z are complex valued functions of z and stand respectively for

the vertical velocity, temperature, concentration, vertical vorticity, vertical current

density and vertical magnetic field. We note that R>0 and R
s
> for Veronis

1

configuration whereas for Stern's configuration, we have R < and R
s
< 0.

System of eqs (l)-(7), constitute an eigenvalue problem for p for given values of

a
2
,R<Rs ,Q, T, o and a

l
and a given state of the system is stable, neutral or unstable

according to pr
< or pr

= or pr
> 0. Further, if pr

=
implies p f

= for all wave

numbers a
2

, then the principle ofexchange of stabilities (PES) is valid, otherwise we will

have overstability at least when instability sets in certain modes.

3. Mathematical analysis

We prove the following theorems:

Theorem 1. A necessary condition for the existence of a nontrivial solutions

(p, w, 0, fa /!_, X, Z) of eqs (l)-(7) with R > 0, Rs
> and. p = pr -f ip., p. ^ is that

^i<(-/2 + J r

3 + ^) 5 (8)

where

(9)

(10)
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and

J4 =rf
1

|z|
2
dz. (ii)

J

Proof, Multiplying eq. (1) by w* (the complex conjugate of w) integrating the resulting

equation over the range of z, we have

, , , , , f
1

, f
1

^ ~a~)(D~ a~ p/<7)wdz = Ra" w*6dz R
s
a~ w*<pdz

o Jo Jo

pi pi
+ T\ w*DZdz-g w*Z)(Z)

2 -0 2
)/z3 dz. (12)

Jo Jo

Using eqs (2)-(6) and boundary conditions (7), we can write

f
1

f
1

Ra 2 u'*0dz= -/ta 2
0(Z)

2 -fl 2
p*)#*dz, (13)

Jo Jo

pi pi
-R

s
a
2

w*(f)dz = R
s
a 2

<f)(D
2 - a

2
-p*/r)^*dz, (14)

Jo Jo
i ri

Jo
i

o

i
pi pi

w*DZdz=- Dw*Zdz= Z(D
2 -a 2

-p*/a)Z*dz
o Jo Jo

pi pi pi
+ Q ZDX*dz= Z(D 2 -a 2

-p*/v)Z*dz-Q DZX*dz
Jo Jo Jo

1 /!

o o

(16)

It follows from eqs (12)-(16) that

1
pi

vv*( JD 2 -a2
)(D

2 -fl 2
-p/cr)wdz= - Ra 2

6(D
2 -a 2

-p*)0*dz
o Jo

i

r 2_ 2__

Jo
P

1

2 ^,2 1*\V*A^ nj\

Integrating various terms of eq. (17) by parts for an appropriate number of times and

making use of boundary conditions (7), we have

^1+^2+^3 + ^4 + ^5 +^6 = 0> (18)
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where

1

I 2
= - Ra2

I=4
o

/
5
=

and

Equating the imaginary parts of both sides of eq. (18) and cancelling p,.( ^ 0) through-

out, we have

i
pi pi

(|Dw|
2
+<r|w

2
)dz-fRa

2
<7 Iflpdz + QTo-! |*|

2 dz
o Jo Jo

-<Rs
a
2 a

I
|<|

2dz+
J o

(19)

|X|
2 dz = 0. (20)

o o

Equation (20) clearly implies that

This completes the proof of the theorem.

We note that expressions for J
l ,
J2 , J 3 and J4 as given by eqs (8)-(l 1) respectively,

represent the total kinetic energy, magnetic energy, concentration energy and rota-

tional energy. In view of this, Theorem 1 can be restated as follows:

A necessary condition for the existence of oscillatory motion which may be stable,

neutral or unstable for Veronis" thermohaline convection problem in the presence of

a uniform vertical rotation and magnetic field is that the sum total of magnetic,
concentration and rotational energies must exceed the total kinetic energy or, equival-

ently, if the total kinetic energy exceeds the sum total of magnetic, concentration and
rotational energies, then the oscillatory motions are not allowed.

The above result, no doubt yields us a condition in terms of energies ofthe system for

the non-occurrence of oscillatory motions, however, it is of limited value, since one can
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not a priori be certain when this condition will be satisfied as it involves the unknown

eigen functions of the problem. It will therefore be more useful to express this condition

in terms of the parameters of the problem prescribed by the fluid properties. We
PCtaKlieh tVno in tVi<a fr\11r\\x/inrr tt*A/"\rp>mestablish this in the following theorem.

Theorem 2. // (p,w,0,<k/zz ,Jr,Z), p = pr + ipi,Pi>Q, Pr >0, R>0 and R
s
>0 is a

solution of eqs (l)-(7) and ^ + ^ + -7 < 1, then, J l
> (J2 + J 3 + J4 ).

[_
71 2T"7T 7C J

Proof. Multiplying eq. (3) by its complex conjugate, integrating over the range of z by

parts a suitable number of times and making use of boundary conditions (7), we have

Since, pr ^ 0, therefore eq. (21) gives

f
1

1 f
1

la 2
|>0|

2dz< |w|
2 dz

Jo T
~

J o

which upon using Poincare inequality [6]

f
1

'

f
1

7i
2

\

|</>|

2dz^ |D0|
2 dz (since0(0) = 0:

Jo Jo

yields that

f
1

1 f
1

a
2

|</>|

2dz< 7T
2

|w|
2
dz. (22)

Jo 2t~ J

Further, since w(0) = = w(l) also, therefore

|Dw|
2
dz. (23)

IL J

Combining inequalities (22)-(23), we have

|w|
2
)dz. (24)

Multiplying eq. (4) by /z? (the complex conjugate of hs \ integrating the resulting

equation by parts a suitable number of times in the range of z, making use of boundary
conditions (7) and then equating the real parts from both sides of the resulting equation,

we have

ri n
\h,fdz

o
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r P= real part of wDh*dz
LJo

f
1

^
J o

w||D/L|dz

i "li/2 r pi 11/2

|w
2
dz |D/i_|

2
dz

o J LJ o

(by Schwartz inequality).

Since p r ^ 0, therefore inequality (25) implies that

|D/i = |

2dz< |w|
2
dz .

(25)

(26)

Combining inequalities (23), (25) and (26), we get

1
f 1

5 ") i i i ) , . J-

iDw|
2 dz

I o

4,f.n~

Jo
(27)

Now, multiplying eq. (5) by Z* (the complex conjugate of Z\ integrating by parts

a suitable number of times, using boundary conditions (7) and equating the real parts of

the resulting equation, we have

fi

(|DZ|
2 + a

2
|Z|

2 + p>|Z|
2
)dz + Q (|Djq

2 + a
2
|*|

2
-f pr

<

o Jo

= real part of
(

Z*Dwdz
I o

= real part off
- wDZ*dz

wDZ*dz

1/2 r
pi

|DZ|
2
dz

'o J LJo

(by Schwartz inequality)

which by virtue of inequality (23) and the fact that pr ^ gives

|DZ|
2

<-if
1

|Dw|
2
dz

- wDZ*dz
J o

|w||DZ|dz
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|Dw|
2 + a

2
|w|

2
)dz. (28)

Inequality (28) together with the Poincare inequality

\DZ\
2 dz

leads to the inequality

l

\Z\
2dz<\ r(|>wJ

2 + 2
|wi

2
)dz. (29)

il J

Combining inequalities (24), (27) and (29), we have

" <30>

Inequality (30) clearly implies that if

/? T "1

Theorem 2 implies that if ~ + "7" 4 + 4 |

^ U then the total kinetic energy

then

J
1 >(J

r

2 H-J 3 +J4 ).

This completes the proof of the theorem.

L
2l

2
7I
4 '

^?

associated with an arbitrary oscillatory (p f ^ 0) perturbation which may be neutral

(pr
= 0) or unstable (pr

> 0) exceeds the sum total of its magnetic, concentration and

rotational energies. In particular, it follows that, in the parameter regime

rH I-^H- ^ 1, the principle of exchange of stabilities is valid for the

problem under consideration.

Theorem 3. A necessary condition for the existence of a nontrivial solutions

(p, vv, 0, 0, /i., X, Z) of eqs (l)-(7) with R < 0, jR
s
< and p = pr -f iph p t

^ is that

where J
t , J 2 anrf J4 are as a/y^n by egs (8), (9), anJ (11) and

\9\
2
dz. (31)

Proof. Putting R = \R\ and R
s
= \RS \

in eq. (18) and proceeding exactly as in

Theorem 1, we get the desired result. Keeping in view the fact that J 5 represents the

thermal energy, Theorem 3 can be restated as follows:

A necessary condition for the existence of oscillatory motions which may be stable,

neutral or unstable for Stern's thermohaline convection problem in the presence of

a uniform vertical rotation and magnetic field is that the sum total of magnetic, thermal

and rotational energies must exceed that total kinetic energy, or, equivalently, if the
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total kinetic energy exceeds the sum total of magnetic, thermal and rotational energies

then the oscillatory motions are not allowed. Further, Theorem 3 is qualitatively of the ^
same form as Theorem 1 and possesses the same drawback. We remedy this in the ^
following theorem analogous to Theorem 2.

Theorem 4. // (p,w,fl,<,/i_,jr,Z),p== jpr + /p,.,p (.^0,pr ^O,R <0 and R
s
<0 is the

solution of the eqs(l)-(l) and ^ +V~ + , U: 1, then
7T 27T 7T

Proof. Multiplying eq. (2) by its complex conjugate, integrating by parts a suitable

number of times over the range of z, using boundary condition (7) and equating the real

parts of the resulting equation, we have

(\D9\
2

o

f|
Jo

|fl|

2 dz = lwfdz. (32)

o

Since, pr ^ 0, it follows from eq. (32) that

n ri

Jo Jo

which upon using the Poincare inequality

M
6H2d~<lf

l

2

n~

J

and inequality (23) gives

f
1

1 f
1

a
2

|0|
2dz< |Dvv|

2 dz
Jo 27C J o

It follows from inequalities (24), (29) and (33) that

(33)

l (34)

Inequality (34) clearly implies that if

then

J
1 >(J2 +J4 -hJ 5 ).

This completes the proof of the theorem.
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Theorem 4 implies that if =~ + - ~- + -^ < 1, then the total kinetic energy
L TT 2;r it J

associated with an arbitrary oscillatory perturbation which may be neutral or unstable

exceeds the sum total of its magnetic, thermal and rotational energies. In particular it

follows that in the parameter regime ~ H -r- + z ^1, the PES is valid for the

L *- 2* n J

problem under consideration. Theorems 1-4 clearly provide a natural extension of the

results of Banerjee et al [12] as could be easily seen by putting T = 0.
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