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Abstract. This is an expository article on the theory of algebraic stacks. After

introducing the general theory, we concentrate in the example of the moduli stack of

vector bundles, giving a detailed comparison with the moduli scheme obtained via

geometric invariant theory.

Keywords. 2 categories; algebraic stacks; moduli spaces; vector bundles.

1. Introduction

The concept of algebraic stack is a generalization of the concept of scheme, in the same

sense that the concept of scheme is a generalization of the concept of projective variety. In

many moduli problems, the functor that we want to study is not representable by a scheme.

In other words, there is no fine moduli space. Usually this is because the objects that we
want to parametrize have automorphisms. But if we enlarge the category of schemes

(following ideas that go back to Grothendieck and Giraud [Gi], and were developed by

Deligne, Mumford and Artin [DM, Ar2]) and consider algebraic stacks, then we can cons-

truct the 'moduli stack', that captures all the information that we would like in a fine

moduli space. For other sources on stacks, see [E, La, LaM, Vi].

The idea of enlarging the category of algebraic varieties to study moduli problems is

not new. In fact Weil invented the concept of abstract variety to give an algebraic cons-

truction of the Jacobian of a curve.

These notes are an introduction to the theory of algebraic stacks. I have tried to

emphasize ideas and concepts through examples instead of detailed proofs (I give

references where these can be found). In particular, 3 is a detailed comparison between

the moduli scheme and the moduli stack of vector bundles.

First I will give a quick introduction in subsection 1.1, just to give some motivations

and get a flavor of the theory of algebraic stacks.

Section 2 has a more detailed exposition. There are mainly two ways of introducing

stacks. We can think of them as 2-functors (I learnt this approach from Nitsure and

Sorger, cf. subsection 2.1), or as categories fibered on groupoids. (This is the approach
used in the references, cf. subsection 2.2.) From the first point of view it is easier to see in

which sense stacks are generalizations of schemes, and the definition looks more natural,

so conceptually it seems more satisfactory. But since the references use categories fibered

on groupoids, after we present both points of view, we will mainly use the second.

The concept of stack is merely a categorical concept. To do geometry we have to

add some conditions, and then we get the concept of algebraic stack. This is done in

subsection 2.3.

1



2 Tomds L Gomez

In subsection 2.4 we introduce a third point of view to understand stacks: as groupoid

spaces.

In subsection 2.5 we define for algebraic stacks many of the geometric properties that

are defined for schemes (smoothness, irreducibility, separatedness, properness, etc. . .) In

subsection 2.6 we introduce the concept of point and dimension of an algebraic stack, and

in subsection 2.7 we define sheaves on algebraic stacks.

In 3 we study in detail the example of the moduli of vector bundles on a scheme X,

comparing the moduli stack with the moduli scheme.

Prerequisites. In the examples, I assume that the reader has some familiarity with the

theory of moduli spaces of vector bundles. A good source for this material is [HL]. The

necessary background on Grothendieck topologies, sheaves and algebraic spaces is in

Appendix A, and the notions related to the theory of 2-categories are explained in

Appendix B.

1.1 Quick introduction to algebraic stacks

We will start with an example: vector bundles (with fixed prescribed Chern classes and

rank) on a projective scheme X over an algebraically closed field k. What is the moduli

stack MX of vector bundles on X? I do not know a short answer to this, but instead it is

easy to define what is a morphism from a scheme B to the moduli stack MX- It is just a

family of vector bundles parametrized by B. More precisely, it is a vector bundle V on

B x X (hence flat over B) such that the restriction to the slices b x X have prescribed

Chern classes and rank. In other words, MX has the property that we expect from a fine

moduli space: the set of morphisms Hom(B,Aix) is equal to the set of families

parametrized by B.

We will say that a diagram

(1)

is commutative if the vector bundle V on B x X corresponding to g is isomorphic to the

vector bundle (/ x id*)*V, where V is the vector bundle corresponding to g
f

. Note that

in general, if L is a line bundle on B, then V and V p*BL won't be isomorphic, and then

the corresponding morphisms from B to MX will be different, as opposed to what

happens with moduli schemes.

A fc-point in the stack MX is a morphism u : Spec k * MX, in other words, it is a

vector bundle V on X, and we say that two points are isomorphic if they correspond to

isomorphic vector bundles. But we should not think of MX just as a set of points, it

should be thought of as a-category. The objects ofMX are points
1

, i.e. vector bundles on
X, and a morphism in MX is an isomorphism of vector bundles. This is the main
difference between a scheme and an algebraic stack: the points of a scheme form a set,

whereas the points of a stack form a category, in fact a groupoid (i.e. a category in which
all morphisms are isomorphisms). Each point comes with a group of automorphisms.
Roughly speaking, a scheme (or more generally, an algebraic space [Arl, K]) can be

lfro be precise, we should consider also B-valued points, for any scheme 5, but we will only
consider fc-valued points for the moment.
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thought of as an algebraic stack in which these groups of automorphisms are all trivial.

If p is the -point in MX corresponding to a vector bundle V on X, then the group
of automorphisms associated to p is the group of vector bundle automorphisms of V. This

is why algebraic stacks are well suited to serve as moduli of objects that have

automorphisms.

An algebraic stack has an atlas. This is a scheme U and a (representable) surjective

morphism u : U MX (with some other properties). As we have seen, such a morphism
u is equivalent to a family of vector bundles parametrized by U. The precise definition of

representable surjective morphism of stacks will be given in 2. In this situation it implies

that for every vector bundle V over X there is at least one point in U whose corresponding

vector bundle is isomorphic to V. The existence of an atlas for an algebraic stack is the

analog of the fact that for a scheme B there is always an affine scheme U and a surjective

morphism U > B (if {/, > B} is a covering ofB by affine subschemes, take U to be the

disjoint union J //). Many local properties (smooth, normal, reduced. . .) can be studied

by looking at the atlas U. It is true that in some sense an algebraic stack looks, locally,

like a scheme, but we shouldn't take this too far. For instance the atlas of the classifying

stack EG (parametrizing principal G-bundles, cf. Example 2.18) is just a single point. The

dimension of an algebraic stack MX will be defined as the dimension of U minus the

relative dimension of the morphism u. The dimension of an algebraic stack can be

negative (for instance, dim(J9G) = -dim(G)).
We will see that many geometric concepts that appear in the theory of schemes have an

analog in the theory of algebraic stacks. For instance, one can define coherent sheaves on

them. We will give a precise definition in 2, but the idea is that a coherent sheaf L on an

algebraic stack MX is a functor that, for each morphism g : B MX, gives a coherent

sheaf LB on J5, and for each commutative diagram like (1), gives an isomorphism between

/*L#' and LB. The coherent sheaf LB should be thought of as the pullback 'g*L' ofL under

g (the compatibility condition for commutative diagrams is just the condition that

(g
1

f)*L should be isomorphic to f*g'*L).

Let's look at another example: the moduli quotient (Example 2.18). Let G be an affine

algebraic group acting on X. For simplicity, assume that there is a normal subgroup H of

G that acts trivially on X, and that G = G/H is an affine group acting freely on X and

furthermore there is a quotient by this action X B and this quotient is a principal G-

bundle. We call B = X/G the quotient scheme. Each point corresponds to a G-orbit of

the action. But note that B is also equal to the quotient X/G, because H acts trivially and

then G-orbits are the same thing as G-orbits. We can say that the quotient scheme

'forgets' H.

One can also define the quotient stack [X/G]. Roughly speaking, a point p of [X/G]

again corresponds to a G-orbit of the action, but now each point comes with an

automorphism group: given a point p in [X/G], choose a point x G X in the orbit

corresponding to p. The automorphism group attached to p is the stabilizer Gx of x. With

the assumptions that we have made on the action of G, the automorphism group of any

point is always H. Then the quotient stack [X/G] is not a scheme, since the automorphism

groups are not trivial. The action of H is trivial, but the moduli stack still 'remembers'

that there was an action by H. Observe that the stack [X/G] is not isomorphic to the stack

[X/G] (as opposed to what happens with the quotient schemes). Since the action of G is

free on X, the automorphism group corresponding to each point of [X/G] is trivial, and it

can be shown that, with the assumptions that we made, [X/G] is represented by the

scheme B (this terminology will be made precise in 2).
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2. Stacks

2.1 Stacks as 2-functors: Sheaves of sets

Given a scheme M over a base scheme S, we define its (contravariant) functor of points

Homs(- 3 M)

Hom5(-,M) : (Sch/S) (Sets)

5 F > Homs(,M)

where (Sch/5) is the category of S-schemes, 5 is an S-scheme, and Homs(#, M) is the set

of 5-scheme morphisms. If we give (Sch/5) the Zariski (or etale, or fppf) topology,

M = Hom5(-,M) is a sheaf (see Appendix A for the definition of topologies and sheaves

on categories). Furthermore, given schemes M and N there is a bijection (given by

Yoneda Lemma) between the set of morphisms of schemes Hom5 (M, N) and the set of

natural transformations between the associated functors M and N, hence the category of

schemes is a full subcategory of the category of sheaves on (Sch/5).

A sheaf of sets on (Sch/5) with a given topology is called a space
2 with respect to that

topology (this is the definition given in ([La], 0)).

Then schemes can be thought of as sheaves of sets. Moduli problems can usually be

described by functors. We say that a sheaf of sets F is representable by a schemeM ifF is

isomorphic to the functor of points Hom5(-,M). The scheme M is then called the fine

moduli scheme. Roughly speaking, this means that there is a one to one correspondence

between families of objects parametrized by a scheme B and morphisms from B to M .

Example 2.1 (Vector bundles). LetX be a projective scheme over an algebraically closed

field k. We define the moduli functor M^ of vector bundles of fixed r$nk r and Chern

classes c/ by sending the scheme B to the set M^(#) of isomorphism classes of vector

bundles on B x X (hence flat over B) with rank r and whose restriction to the slices

{b} x X have Chern classes c/. These vector bundles should be thought of as families

of vector bundles parametrized by B. A morphism / : Bf
> B is sent to frfx (f)

=
/* : MX(#) ~^ MX(^') tne maP f sets induced by the pullback. Usually we will also fix a

polarization H in X and restrict our attention to stable or semistable vector bundles with

respect to this polarization (see [HL] for definitions), and then we consider the

corresponding functors M and M s
.

Example 2.2 (Curves). The moduli functor M
g
of smooth curves of genus g over a

Noetherian base 5 is the functor that sends each scheme B to the set Mg (B) of

isomorphism classes of smooth and proper morphisms C B (where C is an S-scheme)
whose fibers are geometrically connected curves of genus g. Each morphism / : Bf

* B
is sent to the map of sets induced by the pullback /*.

None of these examples are sheaves (then none of these are representable), because of

the presence of automorphisms. They are just presheaves (= functors). For instance, given
a curve C over S with nontrivial automorphisms, it is possible to construct a family

f :C-+B such that every fiber of / is isomorphic to C, but C is not isomorphic to B x C
(see [E]). This implies that M

g does not satisfy the monopresheaf axiom.

v -Note that the concept of space is just a categorical concept. To do geometry we need to add some
N algebraic and technical conditions (existence of an atlas, quasi-separatedness,. . .). After we add

these conditions (see Definitions 4.3 or 4.4), we have an algebraic space.
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This can be solved by taking the sheaf associated to the presheaf (sheafification). In the

examples, this amounts to change isomorphism classes of families to equivalence classes

of families, declaring two families to be equivalent if they are locally (using the etale

topology over the parametrizing scheme B) isomorphic. In the case of vector bundles, this

is the reason why one usually considers two vector bundles V and V' on X x B equivalent

if V = V <8> p^L for some line bundle L on B. The functor obtained with this equivalence
relation is denoted M_x (and analogously for M?x and M).

Note that if two families V and V' are equivalent in this sense, then they are locally

isomorphic. The converse is only true if the vector bundles are simple (only automor-

phisms are scalar multiplications). This will happen, for instance, if we are considering

the functor M^ of stable vector bundles, since stable vector bundles are simple. In general,

if we want the functor to be a sheaf, we have to use a weaker notion of equivalence, but

this is not done because for other reasons there is only hope of obtaining a fine moduli

space if we restrict our attention to stable vector bundles.

Once this modification is made, there are some situations in which these examples are

representable (for instance, stable vector bundles on curves with coprime rank and

degree), but in general they will still not be representable, because in general we do not

have a universal family:

DEFINITION 2.3 (Universal family)

Let F be a representable functor, and let <p : F * Horns ( ,X) be the isomorphism. The

object of F(X) corresponding to the element idx of Horns(X,X) is called the universal

family.

Example 2.4 (Vector bundles). If V is a universal vector bundle (overM x X, where M is

the fine moduli space), it has the property that for any family W of vector bundles (i.e. W
is a vector bundle over B x X for some parameter scheme B) there exists a morphism

/ : B M such that (/ x idj)*V is equivalent to W.

In other words, the functor M% is represented by the scheme M iff there exists a

universal vector bundle on M x X.

When a moduli functor F is not representable and then there is no scheme X whose

functor of points is isomorphic to F, one can still try to find a scheme X whose functor of

points is an approximation to F in some sense. There are two different notions:

DEFINITION 2:5 (Corepresents) ([S], p. 60), ([HL], Definition 2.2.1)

We say that a scheme M corepresents the functor F if there is a natural transformation of

functors
(f>

: F > Horns(,M) such that

Given another scheme N and a natural transformation i/j
: F > Homs( , N), there is a

unique natural transformation 77 : Homs( ,M) > Homs( , N) with ^ = 77
o

<p.

F,^̂
>

Hom5(-,M)

This characterizes M up to unique isomorphism. Let (Sch/S)
r

be the functor category,

whose objects are contravariant functors from (Sch/S) to (Sets) and whose morphisms
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are natural transformation of functors. Then M represents F iff Horns ( 7, M) =
Hom

(Sch/iSy(y,F)
for all schemes 7, where y is the functor represented by Y. On the

other hand, one can check thatM corepresents F iff Hom$(M, Y)
=

Horri(Sch/5y (F, y)
for

all schemes Y. IfM represents F, then it corepresents it, but the converse is not true. From

now on we will denote a scheme and the functor that it represents by the same letter.

DEFINITION 2.6 (Coarse moduli)

A scheme M is called a coarse moduli scheme if it corepresents F and furthermore

for any algebraically closed field fc, the map $(fc) : F(Specfc) Hom$(SpecA:,M) is

bijective.

If M corepresents F (in particular, ifM is a coarse moduli space), given a family of

objects parametrized by B we get a morphism from B to M, but we don't require the

converse to be true, i.e. not all morphisms are induced by families.

Example 2.7 (Vector bundles). There is a scheme Afff that corepresents Mf (see [HL]). It

fails to be a coarse moduli scheme because its closed points are in one to one

correspondence with ^-equivalence classes of vector bundles, and not with isomorphism
classes of vector bundles. Of course, this can be solved 'by hand' by modifying the

functor and considering two vector bundles equivalent if they are S-equivalent. Once this

modification is done, M is a coarse moduli space.

But in general Mf doesn't represent the moduli functor Mf . The reason for this is that

vector bundles have always nontrivial automorphisms (multiplication by scalar), but the

moduli functor does not record information about automorphisms: recall that to a scheme

B it associates just the set of equivalence classes of vector bundles. To record the

automorphisms of these vector bundles, we define

MX : (Sch/5) (groupoids)
B . > MX (B),

where Mx(B) is the category whose objects are vector bundles V on B x X of rank r

and with fixed Chern classes (note that the objects are vector bundles, not isomor-

phism classes of vector bundles), and whose morphisms are vector bundle isomorphisms

(note that we use isomorphisms of vector bundles, not 5-equivalence nor equivalence
classes as before). This defines a 2-functor between the 2-category associated to (Sch/5)
and the 2-category (groupoids) (for the definition of 2-categories and 2-functors, see

Appendix B).

DEFINITION 2.8

Let (groupoids) be the 2-category whose objects are groupoids, 1-morphisms are functors

between groupoids, and 2-morphisms are natural transformation between these functors.

A presheaf in groupoids (also called quasi-functor) is a contravariant 2-functor F from

(Sch/5) to (groupoids). For each scheme B we have a groupoid F(B) and for each

morphism / : B f -+ B we have a functor JF(/) : F(S) -> F(ff) that is denoted by /*

(usually it is actually defined by a pull-back).

Example 2.9 (Vector bundles) ([La], 1.3.4). MX is a presheaf. For each object B of

(Sch/5) it gives the groupoid MX (B) defined in Example 2.7. For each 1-morphism
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f : Bf -> B it gives the functor F(f) = /* : MX (B) -> MX (B') given by pull-back, and

for every diagram

Bff^ Bf-^B (2)

it gives a natural transformation of functors (a 2-isomorphism) cgj : g* o /* (fog)*.
This is the only subtle point. First recall that the pullback /*V of a vector bundle (or more

generally, any fiber product) is not uniquely defined: it is only defined up to unique

isomorphism. First choose once and for all a pullback f*V for each / and V. Then, given
a diagram like 2, in principle g*(f*V) and (/ o g)* V are not the same, but (because both

solve the same universal problem) there is a canonical isomorphism (the unique

isomorphism of the universal problem) g*(f*V) (f o g)*V between them, and this

defines the natural transformation of functors egj : g* o /* > (/ o #)*. By a slight abuse

of language, usually we will not write explicitly these isomorphisms e^/, and we will

write g* o f* = (f o g)*. Since they are uniquely defined this will cause no ambiguity.

Example 2.10 (Stable curves) ([DM], Definition 1.1). Let B be an S-scheme. Let g > 2.

A stable curve of genus g over B is a proper and flat morphism TT : C * B whose

geometric fibers are reduced, connected and one-dimensional schemes Q, such that

1. The only singularities of Q, are ordinary double points.

2. If E is a non-singular rational component of Q,, then E meets the other components of

Cb in at least 3 points.

3.

Condition 2 is imposed so that the automorphism group of Q, is finite. A stable curve

over B should be thought of as a family of stable curves (over 5) parametrized by B.

For each object B of (Sch/S), let Mg (B) be the groupoid whose objects are stable

curves over B and whose (iso)morphisms are Cartesian diagrams

W ^~ JTL.

\ \B~B
For_each mjorphism / : B' - B of (Sch/S), we define the pullback functor

/* : Mg (B)
-> Mg (B')> sending an object X -> B to f*X -* Bf

(and a morphism
(p : X\ - X2 of curves over B to f*(p '-f*Xi >/*X2). A 1 finally* for each diagram

we have to give a natural transformation of functors (i.e. a 2-isomorphism in (groupoids))

%/ :

*
/* "> (/ #)* As in the case of vector bundles, this is defined by first choosing

once an for all a pullback f*X for each curve X and morphism /, and then egj is given by
the canonical isomorphism between g*(/*X) and (fog)*X. Since this isomorphism is

canonical, by a slight abuse of language we usually write g* o /* = (fog)*.
Now we will define the concept of stack. First we have to choose a Grothendieck

topology on (Sch/S), either the etale or the fppf topology. Later on, when we define

algebraic stack, the etale topology will lead to the definition of a Deligne-Mumford stack

([DM, Vi, E]), and the fppf to an Artin stack ([La]). For the moment we will give a unified

description.
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In the following definition, to simplify notation we denote by XI; the pullback f*X
where ff

: Ui
- U and X is an object of F(U), and by X/

tj
the pullback /^X/ where

ftj,i
'. Ut Xu Uj

>
/i andX; is an object of J-(Ui). We will also use the obvious variations

of this convention, and will simplify the notation using Remark 5.3.

DEFINITION 2. 1 1 (Stack)

A stack is a sheaf of groupoids, i.e. a 2-functor (= presheaf) that satisfies the following

sheaf axioms. Let {// -+ U}ieJ
be a covering of U in the site (Sch/5). Then

1. Glueing of morphisms. If X and Y are two objects of f(U) 9 and & : X\ t
> Y\ t

are

morphisms such that
(pi\^

=
c^/l^-,

then there exists a morphism 77
: X - 7 such that

'nli
=

<#

2. Monopresheaf. If X and F are two objects of f(U) 9 and (p : X > F, -0 : X F are

morphisms such that
(p\ t

=
^\- 9 then (p ?/>.

3. Glueing of objects. If X; are objects of F(Ui) and
</?//

: X
;-|^-

> X/L are morphisms

satisfying the cocycle condition
vfy'li./* ^lo*

=
^*lo'k ' t^ien ^ere exists an object X

of /"(/) and c^j : X| z

- -^X/ such that
</?#

o ^|. . =
<p;

-

tj
.

At first sight this might seem very complicated, but if we check in a particular example
we will see that it is a very natural definition:

Example 2.12 (Stable curves). It is easy to check that the presheafMg defined in 2.10 is

a stack (all properties hold because of descent theory). We take the etale topology on

(Sch/5
1

) (we will see that the reason for this is that the automorphism group of a stable

curve is finite). Let {[//
-+ U}iJ be a cover of U. Item 1 says that if we have two curves

X and Y over U, and we have isomorphisms <# : X|- ->
Y\ t

on the restriction for each /,-,

then these isomorphisms glue to give an isomorphism 77
: X > Y over U if the restrictions

to the intersections
y?;| 2

.. and <p7-|.
. coincide.

Item 2 says that two morphisms of curves over U coincide if the restrictions to all I/,-

coincide.

Finally, item 3 says that if we have curves Xi over Ui and we are given isomorphisms

iptj
over the intersections U^ then we can glue the curves to get a curve over U if the

isomorphisms satisfy the cocycle condition.

Example 2.13 (Vector bundles). It is also easy to check that the presheaf of vector

bundles MX is a sheaf. In this case we take the fppf topology on (Sch/S) (we will see that

the reason for this choice is that the automorphism group of a vector bundle is not finite,

because it includes multiplication by scalars).

Let us stop for a moment and look at how we have enlarged the category of schemes by
defining the category of stacks. We can draw the following diagram

Algebraic Stacks ^Stacks Presheaves of groupoids

/ T T T

Sch/5 *Algebraic Spaces ^Spaces ^Presheaves of sets

where A - B means that the category A is a subcategory B. Recall that a presheaf of sets

is just a functor from (Sch/5) to the category (Sets), a presheaf of groupoids is just a 2-

functor to the 2-category (groupoids). A sheaf (for example a space or a stack) is a
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presheaf that satisfies the sheaf axioms (these axioms are slightly different in the context

of categories or 2-categories), and if this sheaf satisfies some geometric conditions (that

we have not yet specified), we will have an algebraic stack or algebraic space.

2.2 Stacks as categories: Groupoids

There is an alternative way of defining a stack. From this point of view a stack will be a

category, instead of a functor.

DEFINITION 2.14

A category over (Sch/5) is a category T and a covariant functor p-p : T > (Sch/5)

(called the structure functor). If X is an object (resp. is a morphism) of T, and

pf(X) = B (resp. pp((t>)
=

/), then we say that X lies over B (resp. <j>
lies over /).

DEFINITION 2.15 (Groupoid)

A category f over (Sch/5) is called a category fibered on groupoids (or just groupoid) if

1. For every / : Bf
> B in (Sch/5) and every object X with p?(X) = B 9 there exists at

least one object X
e and a morphism </>

: X' > X such that p^(X
r

)
= Bf and p^((f>)

= /.

Xurw *

2. For every diagram

(where p^(Xi] = #/, pr(</>)
= /,

with
i/j
=

<f)
o

y? and PF(V) = f.

= / o /'), there exists a unique <

Condition 2 implies that the object Xf whose existence is asserted in condition 1 is

unique up to canonical isomorphism. For each X and / we choose once and for all such

an X' and call it f*X. Another consequence of condition 2 is that
</>

is an isomorphism if

and only if p?((j))
= / is an isomorphism.

Let B be an object of (Sch/5). We define F(B), the fiber off over B, to be the sub-

category ofF whose objects lie over B and whose morphisms lie over id#. It is a groupoid.
The association B > ^(B) in fact defines a presheaf of groupoids (note that the 2-

isomorphisms e/^ required in the definition of presheaf of groupoids are well defined

thanks to condition 2). Conversely, given a presheaf of groupoids Q on (Sch/5), we can

define the category T whose objects are pairs (B, X) where B is an object of (Sch/5) and
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X is an object of Q(B), and whose morphisms (ff,X*)
-

(B,X) are pairs (/, a) where

/ : Bf
> B is a morphism in (Sch/5) and a : f*X > Xf

is an isomorphism, where

f* = <?(/) This gives the relationship between both points of view. Since we have a

canonical one-to-one relationship between presheaves of groupoids and groupoids over 5,

by a slight abuse of language, we denote both by the same letter.

Example 2.16 (Vector bundles). The groupoid of vector bundles MX on a scheme X is

the category whose objects are vector bundles over B x X (for B a scheme), and whose

morphisms are isomorphisms

where V (resp. V) is a vector bundle over B x X (resp. B' x X) and f : B' -> B is a

morphism of schemes. The structure functor sends a vector bundle over B x X to the

scheme B, and a morphism <p to the corresponding morphism of schemes /.

Example 2.17 (Stable curves) ([DM], Definition 1.1). We define Alg , the groupoid over S

whose objects are stable curves over B of genus g (see Definition 2.10), and whose

morphisms are Cartesian diagrams

v/ ^ V

Ui
The structure functor sends a curve over B to the scheme B, and a morphism as in (3) to /.

Example 2.18 (Quotient by group action) ([La], 1,3.2), ([DM], Example 4.8), ([E],

Example 2.2). Let X be an S-scheme (assume all schemes are Noetherian), and G an

affme flat group 5-scheme acting on the right on X. We define the groupoid [X/G] whose

objects are principal G-bundles TT : E * B together with a G-equivariant morphism

/:> X. A morphism is Cartesian diagram

E *> E

"I
.

*1
(4)

such that /op=/'.
The structure functor sends an object (TT : E > #,/ : E -

X) to the scheme B, and a

morphism as in (4) to g.

DEFINITION 2.19 (Stack)

A stack is a groupoid that satisfies

1. (Prestack). For all scheme B and pair of objects X, Y of T over jB, the contravariant

functor

Iso*(X,F): (Sch/B) (Sets)

is a sheaf on the site (Sch/B).
2. Descent data is effective (this is just condition 3 in the Definition 2.11 of sheaf).
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Example 2.20. If G is smooth and affine, the groupoidJX/G] is a stack ([La], 2.4.2), ;

([Vi], Example 7.17), ([E], Proposition 2.2). Then alsoMg (cf. Example 2.17) is a stack,
;

because it is isomorphic to a quotient stack of a subscheme of a Hilbert scheme by j

PGL(N) ([E], Theorem 3.2), [DM]. The groupoid MX defined in Example 2.16 is also a I

stack ([La], 2.4.4). [f

From now on we will mainly use this approach. Now we will give some definitions for
p

,

stacks. !,

Morphisms of stacks. A morphism of stacks / : F > Q is a functor between the cate-

gories, such that pg o / = pp. A commutative diagram of stacks is a diagram

such that a : g o / > h is an isomorphism of functors. If / is an equivalence of cate-

gories, then we say that the stacks F and Q are isomorphic. We denote by Horns (.T
7

, Q)
the category whose objects are morphisms of stacks and whose morphisms are natural

transformations .

Stack associated to a scheme. Given a scheme U over 5, consider the category (Sch/U).
Define the functorpv : (Sch/U) -> (Sch/S) which sends the (/-scheme / : B - U to the

composition B > U > 5, and sends the /-morphism (B
f

17)
> (B

-
U) to the 5-

morphism (B
f

> 5) -> (B
-

5). Then (Sch/U) becomes a stack. Usually we denote this

stack also by U. From the point of view of 2-functors, the stack associated to U is the 2-

functor that for each scheme B gives the category whose objects are the elements of the

set Hom$(#, U), and whose only morphisms are identities.

We say that a stack is represented by a scheme U when it is isomorphic to the stack

associated to U. We have the following very useful lemmas:

Lemma 2.21. If a stack has an object with an automorphism other that the identity, then

the stack cannot be represented by a scheme.

Proof. In the definition of stack associated with a scheme we see that the only auto-

morphisms are identities. D

Lemma 2.22 ([Vi], 7.10). Let F be a stack and U a scheme. The functor

that sends a morphism of stacks f : U > J- to f(idu) is an equivalence of categories.

Proof. Follows from Yoneda lemma. D

This useful observation that we will use very often means that an object of .F'that lies

over U is equivalent to a morphism (of stacks) from U to T.

Fiber product. Given two morphisms f\ : f\ -
Q, /2 : ^"2 -+ G, we define a new stack

f\^Q^2 (with projections to T\ and J"2) a& follows. The objects are triples (Xi,X2 , a)
where X\ and X2 are objects of 'T\ and TI that lie over the same scheme U, and

a :fi(Xi) -+fi(X2) is an isomorphism in G (equivalently, pg(a) = id^/). A morphism

R
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from (Xi ,X2 ,a) to (Y\ ,
Y2 , 0) is a pair (<i , <fe) of morphisms </ : X,- -> ft that lie over

the same morphism of schemes f : U * V, and such that /? o /i(0i) =/2(</>2) # The

fiber product satisfies the usual universal property.

Representability. A stack X is said to be representable by an algebraic space (resp.

scheme) if there is an algebraic space (resp. scheme) X such that the stack associated to X
is isomorphic to X. If T' is a property of algebraic spaces (resp. schemes) and X is a

representable stack, we will say that X has 'P' iff X has 'P'.

A morphism of stacks / : T 7 is said to be representable if for all objects U in

(Sch/S) and morphisms U -* 5, the fiber product stack U XgF is representable by an

algebraic space. Let P be a property of morphisms of schemes that is local in nature on the

target for the topology chosen on (Sch/S) (etale or fppf), and it is stable under arbitrary

base change. For instance: separated, quasi-compact, unramified, flat, smooth, etale, sur-

jective, finite type, locally of finite type,____ Then, for a representable morphism /, we say

that / has P if for every 7 -> ft the puUback U x g f -+ U has P ([La], p. 17, [DM], p. 98).

Diagonal. Let Ajr : f > f x s T be the obvious diagonal morphism. A morphism from

a scheme U to f x s T is equivalent to two objects X\, Xi of F(U). Taking the fiber

product of these we have

-

hence the group of automorphisms of an object is encoded in the diagonal morphism.

PROPOSITION 2.23 ([La], Corollary 2.12), ([Vi], Proposition 7.13)

The following are equivalent

1. The morphism Ajr is representable.

2. The stack Isoj/pfi,^) is representable for all U, X\ and X^.

3. For all scheme U, every morphism U -+ f is representable.

4. For all schemes U, V and morphisms U - T and V > T, the fiber product U x?V
is representable.

Proof. The implications 1 <> 2 and 3 <S> 4 follow easily from the definitions.

(1 =^ 4) Assume that A^ is representable. We have to show that U XJT V is representable
for any / : U - J7 and ^ : V -> J7

. Check that the following diagram is Cartesian

Then [/ x^ V is representable.

(1 4= 4) First note that the Cartesian diagram defined by h: U -+ F x s F and
factors as follows:
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The outer (big) rectangle and the right square are Cartesian, so the left square is also

Cartesian. By hypothesis U x^ U is representable, then U XFX SF f is also

representable. D

2.3 Algebraic stacks

Now we will define the notion of algebraic stack. As we have said, first we have to choose

a topology on (Sch/S). Depending of whether we choose the etale or fppf topology, we

get different notions.

DEFINITION 2.24 (Deligne-Mumford stack)

Let (Sch/5) be the category of S-schemes with the etale topology. Let f be a stack. Assume

1. Quasi-separatedness. The diagonal A^- is representable, quasi-compact and separated.

2. There exists a scheme U (called atlas) and an etale surjective morphism u : U > T .

Then we say that T is a Deligne-Mumford stack.

The morphism of stacks u is representable because of Proposition 2.23 and the fact that

the diagonal A^ is representable. Then the notion of etale is well defined for u. In [DM]
this was called an algebraic stack. In the literature, algebraic stack usually refers to Artin

stack (that we will define later). To avoid confusion, we will use 'algebraic stack' only

when we refer in general to both notions, and we will use 'Deligne-Mumford' or 'Artin'

stack when we want to be specific.

Note that the definition of Deligne-Mumford stack is the same as the definition of

algebraic space, but in the context of stacks instead of spaces. Following the terminology

used in scheme theory, a stack such that the diagonal A^- is quasi-compact and separated

is called quasi-separated. We always assume this technical condition, as it is usually done

both with schemes and algebraic spaces.

Sometimes it is difficult to find explicitly an etale atlas, and the following proposition

is useful.

PROPOSITION 2.25 ([DM], Theorem 4.21), [E]

Let jF be a stack over the etale site (Sch/S). Assume

1 . The diagonal A^- is representable, quasi-compact, separated and unramified.

2. There exists a scheme U of finite type over S and a smooth surjective morphism
u-.U-^F.

Then T is a Deligne-Mumford stack.

Now we define the analog for the fppf topology [Ar2].

DEFINITION 2.26 (Artin stack)

Let (Sch/S) be the category of 5-schemes with the fppf topology. Let T be a stack.

Assume

1. Quasi-separatedness. The diagonal A^ is representable, quasi-compact and separated.

2. There exists a scheme U (called atlas) and a smooth (hence locally of finite type) and

surjective morphism u : U > F.

Then we say that T is an Artin stack.
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For propositions analogous to proposition 2.25, see [La, 4].

PROPOSITION 2.27 ([Vi], Proposition 7.15), ([La], Lemma 3.3)

If jF is a Deligne-Mumford (resp. Artin) stack, then the diagonal A^- is unramified (resp.

finite type).

Recall that Ajr is unramified (resp. finite type) if for every scheme B and objects X9 Y

of F(B), the morphism Iso5 (X, Y) > B is unramified (resp. finite type). If B = Spec S

and X = F, then this means that the automorphism group ofX is discrete and reduced for

a Deligne-Mumford stack, and it is of finite type for an Artin stack.

Example 2.28 (Vector bundles). The stack MX is an Artin stack, locally of finite type

([La], 4.14.2.1). The atlas is constructed as follows: Let P^c .
be the Hilbert polynomial

corresponding to locally free sheaves on X with rank r and Chern classes c,-. Let Quot

(O(-m)
N
,pHc .)

be the Quot scheme parametrizing quotients of sheaves on X,

0(-mf
N -* V, (5)

where V is a coherent sheaf on X with Hilbert polynomial P^c .. Let RN
^
m be the sub-

scheme corresponding to quotients (5) such that V is a vector bundle with Hp
(V(m)) =

for p > and the morphism (5) induces an isomorphism on global sections

The scheme RN^ has a universal vector bundle, induced from the universal bundle of the

Quot scheme, and then there is a morphism M#jm : /?#j/n
> MX- Since // is ample, for

every vector bundle V, there exist integers N and m such that /?Ar>m has a point whose

corresponding quotient is V, and then if we take the infinite disjoint union of these

morphisms we get a surjective morphism

It can be shown that this morphism is smooth, and then it gives an atlas. Each scheme

RNim is of finite type, so the union is locally of finite type, which in turn implies that the

stack MX is locally of finite type.

Example 2.29 (Quotient by group action). The stack [X/G] is an Artin stack ([La],

4.14.1.1). If G is smooth, an atlas is defined as follows (for more general G, see ([La],

4.14.1.1)): Take the trivial principal G-bundle X x G over X, and let the map
/ : X x G > X be the action of the group. This defines an object of [X/G](X) 9 and by
Lemma 2.22, it defines a morphism u : X -* [X/G]. It is representable, because if B is a

scheme and g : B > [X/G] is the morphism corresponding to a principal G-bundle E over

B with an equivariant morphism / : E -~+ X, then B
X[X/G]

X is isomorphic to the scheme

E, and in fact we have a Cartesian diagram

The morphism u is surjective and smooth because TT is surjective and smooth for every g
(if G is not smooth, but only separated, flat and of finite presentation, then u is not an
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atlas, but if we apply Artin's theorem ([Ar2], Theorem 6.1), ([La], Theorem 4.1), we
conclude that there is a smooth atlas).

If either G is etale over S ([DM], Example 4.8) or the stabilizers of the geometric

points ofX are finite and reduced ([VI], Example 7.17), then [X/G] is a Deligne-Mumford
stack.

Note that if the action is not free, then [X/G] is not representable by Lemma 2.21. On
the other hand, if there is a scheme Y such that X > Y is a principal G-bundle, then [X/G]
is represented by Y.

Let G be a reductive group acting on X. Let H be an ample line bundle on X, and

assume that the action is polarized. Let Xs and Xss be the subschemes of stable and

semistable points. Let Y = X//G be the GIT quotient. Recall that there is a good quotient

Xss
* 7, and that the restriction to the stable part Xs

> Y is a principal bundle. There is a

natural morphism [X
SS

/G] > XSS
//G. By the previous remark, the restriction [X*/G]

F is an isomorphism of stacks.

If X = 5 (with trivial action of G on 5), then [S/G] is denoted BG, the classifying

groupoid of principal G-bundles.

Example 2.30 (Stable curves). The stack ^Mg is a Deligne-Mumford stack ([DM],

Proposition 5.1), [E]. The idea of the proof is to show that Mg
is the quotient stack

\Hg/PGL(N)} of a scheme H8 by a smooth group PGL(N). This gives a smooth atlas.

Then one shows that the diagonal is unramified, and finally we apply Proposition 2.25.

2.4 Algebraic stacks as groupoid spaces

We will introduce a third equivalent definition of stack. First consider a category C. Let U
be the set of objects and R the set of morphisms. The axioms of a category give us four

maps of sets

R=tU-^R Rx s^tR-^R,

where 5- and t give the source and target for each morphism, e gives the identity mor-

phism, and m is composition of morphisms. If the category is a groupoid then we have a

fifth morphism

that gives the inverse. These maps satisfy

. soe = to e = t

2. Associativity, m o (m x id/?)
= m o

(id/? x m).

3. Identity. Both compositions

idRxe
R = R x v U=UXujR t R X

Uit
R-3i+R

exidR

are equal to the identity map on R.

4. Inverse. mo(ix id/?)
= e o s, m o

(id/? x i)
= e o f .

DEFINITION 2.31 (Groupoid space) ([La], 1.3.3), ([DM], pp. 668-669)

A groupoid space is a pair of spaces (sheaves of sets) U, R, with five morphisms 5, f, e, m,
i with the same properties as above.
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DEFINITION 2.32 ([La], 1.3.3).

Given a groupoid space, define the groupoid over (Sch/5) as the category [P, U}' over

(Sch/5) whose objects over the scheme B are elements of the set U(B) and whose

morphisms over B are elements of the set R(B). Given / : B1
> B we define a functor

/* : [R, U]'(B) ->
[R, U]'(ff) using the maps U(B) -> U(B

f

)
and R(B)

- #(')
The groupoid [R,U]

f

is in general only a prestack. We denote by [ft, 17]
the associated

stack. The stack
[/?, C7] can be thought of as the sheaf associated to the presheaf of

groupoids B*-+[R, U]'(B) ([La], 2.4.3).

Example 2.33 (Quotient by group action). Let X be a scheme and G an affine group

scheme. We denote by the same letters the associated spaces (functors of points). We take

U = X and R = X x G. Using the group action we can define the five morphisms (t is the

action of the group, s = p\, m is the product in the group, e is defined with the identity of

G, and i with the inverse).

The objects of [X x G,X}
f

(B) are morphisms / : B X. Equivalently, they are trivial

principal G-bundles B x G over B and a map B x G > X defined as the composition of

the action of G and /. The stack [X x G,X] is isomorphic to [X/G],

Example 2.34 (Algebraic stacks'). Let R, U be a groupoid space such that R and U are

algebraic spaces, locally of finite presentation (equivalently locally of finite type if S is

noetherian). Assume that the morphisms s, t are fiat, and that S =
(.s

1

, t)
: R > U x s U is

separated and quasi-compact. Then [R, U] is an Artin stack, locally of finite type ([La],

Corollary 4.7).

In fact, any Artin stack F can be defined in this fashion. The algebraic space U will be

the atlas of F, and we set R = U x jr U. The morphisms s and t are the two projections, i

exchanges the factors, e is the diagonal, and m is defined by projection to the first and

third factor.

Let S : R -+ U x 5 7 be an equivalence relation in the category of spaces. One can define

a groupoid space, and
[/?, U] is to be thought of as the stack-theoretic quotient of this

equivalence relation, as opposed to the quotient space, used for instance to define algebraic

spaces (for more details and the definition of equivalence relation see appendix A).

2.5 Properties of algebraic stacks

So far we have only defined scheme-theoretic properties for representable stacks and

morphisms. We can define some properties for arbitrary algebraic stacks (and morphisms
among them) using the atlas.

Let P be a property of schemes, local in nature for the smooth (resp. etale) topology.
For example: regular, normal, reduced, of characteristic /?,... Then we say that an Artin

(resp. Deligne-Mumford) stack has P iff the atlas has P ([La], p. 25), ([DM], p. 100).

Let P be a property of morphisms of schemes, local on source and target for the smooth

(resp. etale) topology, i.e. for any commutative diagram

X t tY'xyX^^X

with p and g smooth (resp. etale) and surjective, / has P iff /" has P. For example: flat,

smooth, locally of finite type, For the etale topology we also have: etale,
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unramified,. . .. Then if / : X > y is a morphism of Artin (resp. Deligne-Mumford)

stacks, we say that / has P iff for one (and then for all) commutative diagram of stacks

where X', Y' are schemes and p, g are smooth (resp. etale) and surjective, f" has P ([La],

pp. 27-29).

For Deligne-Mumford stacks it is enough to find a commutative diagram

where p and g are etale and surjective and /" has P. Then it follows that / has P ([DM],

p. 100).

Other notions are defined as follows.

DEFINITION 2.35 (Substack) ([La], Definition 2.5), ([DM], p. 102).

A stack is a substack of T if it is a full subcategory of T and

1. If an object X of J- is in ,
then all isomorphic objects are also in .

2. For all morphisms of schemes / : U -> V, if X is in (V), then f*X is in (U).

3. Let {Ui -> U} be a cover of U in the site (Sch/S). Then X is in iff X\ t
is in for all L

DEFINITION 2.36 ([La], Definition 2.13)

A substack of f is called open (resp. closed, resp. locally closed) if the inclusion

morphism > f is, representable and it is an open immersion (resp. closed immersion,

resp. locally closed immersion).

DEFINITION 2.37 (Irreducibility) ([La], Definition 3.10), ([DM], p. 102)

An algebraic stack T is irreducible if it is not the union of two distinct and nonempty

proper closed substacks.

DEFINITION 2.38 (Separatedness) ([La], Definition 3.17), ([DM], Definition 4.7)

An algebraic stack T is separated, if the (representable) diagonal morphism A^ is uni-

versally closed (and hence proper, because it is automatically separated and of finite

type).

A morphism / : F > Q of algebraic stacks is separated if for all U > Q with U affine,

U XQ f is a separated (algebraic) stack.

For Deligne-Mumford stacks, A^ is universally closed iff it is finite. There is a valuative

criterion of separatedness, similar to the criterion for schemes. Recall that by Yoneda

lemma (Lemma 2.22), a morphism / : U - f between a scheme and a stack is equivalent

to an object in ^(U). Then we will say that a is an isomorphism between two morphisms

/i 5/2 - U T when a is an isomorphism between the corresponding objects of
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PROPOSITION 2.39 (Valuative criterion of separatedness (stacks)) ([La], Proposition

3.19), ([DM], Theorem 4.18)

An algebraic stack f is separated (over 5) if and only if the following holds. Let A be a

valuation ring with fraction field K. Let g\ : Spec A -* f and g2 : Spec A > T be two

morphisms such that:

1- fpr8l = fpr82>
2. There exists an isomorphism a : gi|spec

~~*

SpecK-

then there exists an isomorphism (infact unique) a : gi >g2 that extends a, i.e.
<5| Specj^

= a.

Remark 2.40. It is enough to consider complete valuation rings A with algebraically

closed residue field ([La], 3.20.1). If furthermore S is locally Noetherian and T is locally

of finite type, it is enough to consider discrete valuation rings A ([La], 3.20.2).

Example 2.41 . The stack BG will not be separated if G is not proper over S ([La], 3.20.3),

and since we assumed G to be affine, this will not happen if it is not finite.

In general the moduli stack of vector bundles MX is not separated. It is easy to find

families of vector bundles that contradict the criterion.

The stack of stable curves Mg
is separated ([DM], Proposition 5.1).

The criterion for morphisms is more involved because we are working with stacks and

we have to keep track of the isomorphisms.

PROPOSITION 2.42 (Valuative criterion of separatedness (morphisms)) ([La], Proposi-

tion 3.19)

A morphism of algebraic stacks f : f * Q is separated if and only if the following

holds. Let A be a valuation ring with fraction field K. Let gi : Spec A > T and

g2 : Spec A > T be two morphisms such that:

1. There exists an isomorphism :f o gi >/ o g2 *

2. There exists an isomorphism a :
(

3. f(a) =

Then there exists an isomorphism (in fact unique) a : gi
-

g2 that extends a, i.e.

/(a) = /?.

Remark 2.40 is also true in this case.

DEFINITION 2.43 ([La], Definition 3.21), ([DM], Definition 4.11)

An algebraic stack T is proper (over 5) if it is separated and of finite type, and if there is a

scheme X proper over S and a (representable) surjective morphism X f.
A morphism T Q is proper if for any affine scheme U and morphism U -> Q, the

fiber product U Xg T is proper over U.

For properness we only have a satisfactory criterion for stacks (see ([La], Proposition
3.23 and Conjecture 3.25) for a generalization for morphisms).



Algebraic stacks 19

PROPOSITION 2.44 (Vaiuative criterion of properness) ([La], Proposition 3.23), ([DM],

Theorem 4.19)

Let T be a separated algebraic stack (over S). It is proper (over S) if and only if the

following condition holds. Let A be a valuation ring with fraction field K. For any
commutative diagram

Spec K-+-*- Spec A

there exists a finitefield extension K' ofK such that g extends to Spec (A'), where A' is the

integral closure ofA in K1

.

Example 2.45 (Stable curves). The Deligne-Mumford stack of stable curves Mg is

proper ([DM], Theorem 5.2).

2.6 Points and dimension

We will introduce the concept of point of an algebraic stack and dimension of a stack at a

point. The reference for this is ([La], Chapter 5).

DEFINITION 2.46

Let JF be an algebraic stack over 5. The set of points ofT is the set of equivalence classes

of pairs (,*), with K a field over S (i.e. a field with a morphism of schemes SpecAT > S)

and x : SpzcK > T a morphism of stacks over S. Two pairs (K^x
f

)
and (K",x"} are

equivalent if there is a field K extension of Kr and K" and a commutative diagram

Spectf

Given a morphism f Q of algebraic stacks and a point of f^ we define the image of

that point in Q by composition.

Every point of an algebraic stack is the image of a point of an atlas. To see this, given a

point represented by Specjfif T and an atlas X T, take any point SpedT *

X XJT Spec^C. The image of this point in X maps to the given point.

To define the concept of dimension, recall that if X and Y are locally Noetherian

schemes and / : X > Y is flat, then for any point x G X we have

with dimjc(/)
=

dim^X/^)), where X
y is the fiber of / over y.
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DEFINITION 2.47

Let / : F Q be a representable morphism, locally of finite type, between two algebraic

spaces. Let be a point of f'. Let Y be an atlas of Q. Take a point jc in the algebraic space

Y XgF that maps to f,

Y-*5

and define the dimension of the morphism / at the point as

It can be shown that this definition is independent of the choices made.

DEFINITION 2.48

Let f be a locally Noetherian algebraic stack and a point of JF. Let w : X > J" be an

atlas, and x a point of X mapping to . We define the dimension of J* at the point as

The dimension of T is defined as

Again, this is independent of the choices made.

Example 2.49 (Quotient by group action). Let X be a smooth scheme of dimension

dim(X) and G a smooth group of dimension dim(G) acting on X. Let [X/G] be the

quotient stack defined in Example 2.18. Using the atlas defined in Example 2.29, we
see that

dimpf/G] = dim(X)
-
dim(G).

Note that we have not made any assumption on the action. In particular, the action could

be trivial. The dimension of an algebraic stack can then be negative. For instance, the

dimension of the classifying stack BG defined in Example 2.18 has dimension

dim(BG) = -dim(G).

2.7 Quasi-coherent sheaves on stacks

DEFINITION 2.50 ([Vi], Definition 7.18), ([La], Definition 6.11, Proposition 6.16). A
quasi-coherent sheaf S on an algebraic stack T is the following set of data:

1. For each morphism X -+ tF where X is a scheme, a quasi-coherent sheaf Sx on X.

2. For each commutative diagram
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/v

an isomorphism y>/
: Sx-^/**?*', satisfying the cocycle condition, i.e. for any com-

mutative diagram

(6)

we have ^ /
=

y?/
o f*<pg .

We say that <5 is coherent (resp. finite type, finite presentation, locally free) if Sx is

coherent (resp. finite type, finite presentation, locally free) for all X.

A morphism of quasi-coherent sheaves h : S * S' is a collection of morphisms of

sheaves hx : Sx S'x compatible with the isomorphisms <p

Remark 2.51. Since a sheaf on a scheme can be obtained by glueing the restriction to an

affme cover, it is enough to consider affine schemes.

Example 2.52 (Structure sheaf). Let T be an algebraic stack. The structure sheaf O? is

defined by taking (O?)x Ox-

Example 2.53 (Sheaf of differentials). Let T be a Deligne-Mumford stack. To define the

sheaf of differentials V, if U > jF is an etale morphism we set (fl^) v = fit/, the sheaf

of differentials of the scheme U. If V > T is another etale morphism and we have a

commutative diagram

then / has to be etale, there is a canonical isomorphism (pf
: QU/S

~>
/*fiy/5 a^d these

canonical isomorphisms satisfy the cocycle condition.

Once we have defined (JV)^ for etale morphisms U > F, we can extend the defi-

nition for any morphism X > F with X an arbitrary scheme as follows: take an (etale)

atlas U = U Ui;

> J7
. Consider the composition morphism

and define (tor)Xxfu
=== ^2^^- The cocycle condition for

Jlj/, and etale descent implies
that (Qf)xxrU descends to give a sheaf (V)X on X. It is easy to check that this doesn't

depend on the atlas U used, and that given a commutative diagram like (6), there are

canonical isomorphisms (p satisfying the cocycle condition.

Example 2.54 (Universal vector bundle). Let MX be the moduli stack of vector bundles

on a scheme X defined in 2.9. The universal vector bundle V on MX x X is defined as

follows:

Let U be a scheme and / = (/1,/a) : U -+ A4* x X a morphism. By Lemma 2.22, the

morphism fi : U - .M* is equivalent to a vector bundle W on [/ x X. We define Vfy as

/V, where / = (id^, f2 )
: U ~+ U x X. Let

U'
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be a commutative diagram. Recall that this means that there is an isomorphism a : f o g

>/', and looking at the projection to MX we have an isomorphism ai :f\ og -/{.

Using Lemma 2.22, f\og and /{ correspond respectively to the vector bundles

(g x id#)*W and Wf on Uf x X, and (again by Lemma 2.22) a\ gives an isomorphism

between them. It is easy to check that these isomorphisms satisfy the cocycle condition

for diagrams of the form (6).

3. Vector bundles: Moduli stack vs. moduli scheme

In this section we will compare, in the context of vector bundles, the new approach of

stacks versus the standard approach of moduli schemes via geometric invariant theory

(GIT) (for background on moduli schemes of vector bundles, see [HL]).

Fix a scheme X over , a positive integer r and classes a H2i

(X). All vector bundles

over X in this section will have rank r and Chern classes c*. We will also consider vector

bundles on products B x X where B is a scheme. We will always assume that these vector

bundles are flat over 5, and that the restriction to the slices {p} x X are vector bundles

with rank r and Chern classes c/. Fix also a polarization on X. All references to stability or

semistability of vector bundles will mean Gieseker stability with respect to this fixed

polarization.

Recall that the functor Mfx (resp. Mf ) is the functor from (Sch/5) to (Sets) that for

each scheme B gives the set of equivalence classes of vector bundles over B x X, flat over

B and such that the restrictions V\ b to the slices p x X are stable (resp. semistable) vector

bundles with fixed rank and Chern classes, where two vector bundles V and V f on B x X
are considered equivalent if there is a line bundle L on B such that V is isomorphic to

V'p*BL.

Theorem 3.1. There are schemes Ms

x and Mx , called moduli schemes, corepresenting

the functors Ms

x and M?x .

The moduli schemeMx is constructed using the Quot schemes introduced in Example
2.28 (for a detailed exposition of the construction, see [HL]). Since the set of semistable

vector bundles is bounded, we can choose once and for all N and m (depending only on

the Chern classes and rank) with the property that for any semistable vector bundle V
there is a point in R = RN

,
m whose corresponding quotient is isomorphic to V.

The scheme R parametrizes vector bundles V on X together with a basis of H(V(m)}
(up to multiplication by scalar). Recall that N =

ft(V(m)). There is an action of GL(N)
on R, corresponding to change of basis but since two basis that only differ by a scalar give
the same point on R, this GL(N) action factors through PGL(N). Then the moduli scheme

Mf is defined as the GIT quotient R//PGL(N).
The closed points ofMx correspond to S-equivalence classes of vector bundles, so if

there is a strictly semistable vector bundle, the functor M_x is not representable.
Now we will compare this scheme with the moduli stack MX defined on Example 2.9.

We will also consider the moduli stack Mx defined in the same way, but with the extra

requirement that the vector bundles should be stable. The moduli stackMx is a substack

(Definition 2.35) of MX- The following are some of the differences between the moduli
scheme and the moduli stack:

1. The stack MX parametrizes all vector bundles, but the scheme Mx only parametrizes
semistable vector bundles.
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2. From the point of view of the scheme Mx ,
we identify two vector bundles on X

(i.e. they give the same closed point on Ms

x ) if they are S-equivalent. On the other

hand, from the point of view of the moduli stack, two vector bundles are identified

(i.e. give isomorphic objects on jWx(Spec k)) only if they are isomorphic as vector

bundles.

3. Let V and Vr

be two families of vector bundles parametrized by a scheme B, i.e. two

vector bundles (flat over B) on B x X. If there is a line bundle L on B such that V is

isomorphic to V (g) p$L, then from the point of view of the moduli scheme, V and V
are identified as being the same family. On the other hand, from the point of view of

the moduli stack, V and V are identified only if they are isomorphic as vector bundles

on B x X.

4. The subscheme Mx corresponding to stable vector bundles is sometimes represen-

table by a scheme, but the moduli stack Mx is never representable by a scheme. To

see this, note that any vector bundle has automorphisms different from the identity

(multiplication by scalars) and apply Lemma 2.21.

Now we will restrict our attention to stable bundles, i.e. to the schemeMx and the stack

Mx . For stable bundles the notions of S-equivalence and isomorphism coincide, so the

points ofMx correspond to isomorphism classes of vector bundles. Consider Rs C R, the

subscheme corresponding to stable bundles. There is a map TT : Rs
> Mx = RS

/PGL(N),
and TT is in fact a principal PGL(N)-bundle (this is a consequence of Luna's etale slice

theorem).

Remark 3.2 (Universal bundle on moduli scheme). The scheme Mx represents the

functor M* if there is a universal family. Recall that a universal family for this functor is a

vector bundle E onMx x X such that the isomorphism class of E\pxX is the isomorphism
class corresponding to the point/? E Mx , and for any family of vector bundles V on B x X
there is a morphism / : B - Mx and a line bundle L on B such that V p*BL is

isomorphic to (/ x idx)*E. Note that if E is a universal family, then Ep*M, L will also

be a universal family for any line bundle L on Mx .

The universal bundle for the Quot scheme gives a universal family V on Rs x X, but

this family does not always descend to give a universal family on the quotient M^.
Let XA Y be a principal G-bundle. A vector bundle V on X descends to Y if the action

of G on X can be lifted to V. In our case, if certain numerical criterion involving r and c/

is satisfied (ifX is a smooth curve this criterion is gcd(r, c\) 1), then we can find a line

bundle L on Rs such that the PGL(N) action on Rs can be lifted to V p^L, and then this

vector bundle descends to give a universal family onMx x X. But in general the best that

we can get is a universal family on an etale cover ofMx .

Recall from Example 2.29 that there is a morphism [R?*lPGL(N)] -> Ms

x , and that the

morphism \R?lPGL(N}] > Mx is an isomorphism of stacks.

PROPOSITION 3.3

There is a commutative diagram of stacks

[R*/GL(N)} !
[R*/PGL(N)]

*\*



24 Tomas L Gomez

where g and h are isomorphisms of stacks, but q and
</?

are not. If we change 'stable' by

'semistable' we still have a commutative diagram, but the corresponding morphism hss
is

not an isomorphism of stacks.

Proof. The morphism (p is the composition of the natural morphismMs

x
-

M?x (sending

each category to the set of isomorphism classes of objects) and the morphism MX * Ms

x

given by the fact that the scheme Ms

x = RS

//PGL(N) corepresents the functor MJ.
The morphism h was constructed in Example 2.18.

The key ingredient needed to define g is the fact that the GL(N) action on the Quot

scheme lifts to the universal bundle, i.e. the universal bundle on the Quot scheme has a

GL(N)-linearization. Let

B
be an object of [R

SS

/GL(N)]. Since Rss
is a subscheme of a Quot scheme, by restriction we

have a universal bundle on Rss x X, and this universal bundle has a GL(N) -linearization.

Let E be the vector bundle on B x X defined by the pullback of this universal bundle.

Since / is GL(A/
r

)-equivariant, E is also GL(N] -linearized. Since 5xX #xXisa
principal bundle, the vector bundle E descends to give a vector bundle E on B x X, i.e. an

object of MX- Let

/

--B

be a morphism in [R
SS

/GL(N)]. Consider the vector bundles E and E
7

defined as before.

Since /' o
<j) f, we get an isomorphism of E with (0 x id)*#'. Furthermore this

isomorphism is GL(Af)-equivariant, and then it descends to give an isomorphism of the

vector bundles E and E1 on B x X, and we get a morphism in M%.
To prove that this gives an equivalence of categories, we construct a functor g from

MX to [R
SS

/GL(N)}. Given a vector bundle E on B x X, let q : B -* B be the GL(N)-

principal bundle associated with the vector bundle ps*E on B. Let E = (q x id)* be the

pullback of E to B x X. It has a canonical GL(N) -linearization because it is defined as a

pullback by a principal GL(N)-bundle. The vector bundle p^JE is canonically isomorphic
to the trivial bundle O%, and this isomorphism is GL(N)-equivariant, so we get an

equivariant morphism B Rss
, and hence an object of [R

SS

/GL(N)].
If we have an isomorphism between two vector bundles E and E' on B x X, it is easy to

check that it induces an isomorphism between the associated objects of [R
SS

/GL(N)].
It is easy to check that there are natural isomorphisms of functors g o g ^ id and

g o g ^ id, and then g is an equivalence of categories.

The morphism q is defined using the following lemma, with G = GL(N), H the

subgroup consisting of scalar multiples of the identity, G = PGL(N) and Y=R*5
. D

Lemma 3.4. Let Y be an S~scheme and G an affine flat group S-scheme, acting on Y on

the right. Let H be a normal closed subgroup of G. Assume that G = G/H is affine. IfH
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acts trivially on Y, then there is a morphism of stacks

[Y/G] -> (Y/G}.

IfH is nontrivial, then this morphism is not faithful, so it is not an isomorphism.

Proof. Let

B

be an object of [Y/G]. There is a scheme E/H such that TT factors

To construct E/H, note that there is a local etale cover // of B and isomorphisms

(f>i
: 7r~

l

(Ui) > Ui x G, with transition functions
i/>o

=
</>/ 0/"

1
- Since these isomorph-

isms are G-equivariant, they descend to give isomorphisms ^,7 Uj x G/H Ut
x G//f ,

and using these transition functions we get E/H. This construction shows that TT' is a

principal G-bundle. Furthermore, # is also a principal //-bundle ([HL], Example 4.2.4),

and in particular it is a categorical quotient.

Since / is //-invariant, there is a morphism/ : E/H > F, and this gives an object of

(Yffl.

If we have a morphism in [Y/G] 9 given by a morphism g \ E -* E' of principal G-

bundles over B, it 15 easy to see that it descends (since g is equivariant) to a morphism

g : E/H - E'IE, giving a morphism in [Y/G].

This morphism is not faithful, since the automorphism E-^ E given by multiplication

on the right by a nontrivial element z H is sent to the identity automorphism

E/H -+ E/H, and then Hom(, E) -> Hom(E/#, /#)
is not injective. D

IfX is a smooth curve, then it can be shown that MX is a smooth stack of dimension

1), where r is the rank and g is the genus of X. In particular, the open substack

is also smooth of dimension ^(g 1), but the moduli scheme M is of dimension

1) -h 1 and might not be smooth. Proposition 3.3 explains the difference in the

dimensions (at least on the smooth part): we obtain the moduli stack by taking the

quotient by the group GL(N), of dimension N2
, but the moduli scheme is obtained by a

quotient by the group PGL(N) 9 of dimension N2 - 1. The moduli scheme M is not

smooth in general because in the strictly semistable part of Rss
the action of PGL(N) is

not free. On the other hand, the smoothness of a stack quotient doesn't depend on the

freeness of the action of the group.

Appendix A: Grothendieck topologies, sheaves and algebraic spaces

The standard reference for Grothendieck topologies is SGA (Seminaire de Geometric

Algebrique). For an introduction see [T] or [MM]. For algebraic spaces, see [K] or

[Arl].

An open cover in a topological space U can be seen as family of morphisms in the

category of topological spaces ft : Ui > U, with the property that ft is an open inclusion
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and the union of their images is 7, Le we are choosing a class of morphisms (open

inclusions) in the category of topological spaces. A Grothendieck topology on an arbi-

trary category is basically a choice of a class of morphisms, that play the role of 'open

sets'. A morphism / : V - U in this class is to be thought of as an 'open set' in the object

U. The concept of intersection of open sets is replaced by the fiber product: the

'intersection' of f\ : U\ > U and /2 : Ui > U is fa : U\ Xu Ui > U.

A category with a Grothendieck topology is called a site. We will consider two

topologies on (Sch/5).

Jppf topology. Let U be a scheme. Then a cover of U is a finite collection of morphisms

{ft
"

Ut > U} iel
such that each ff is a finitely presented flat morphism (for Noetherian

schemes, this is equivalent to flat and finite type), and U is the (set theoretic) union of the

images of /-. In other words, U [/; > U is 'fidelement plat de presentation finie* .

Etale topology. Same definition, but substituting flat by etale.

DEFINITION 4.1 (Presheaf of sets)

A presheaf of sets on (Sch/5) is a contravariant functor F from (Sch/5) to (Sets).

As usual, we will use the following notation: if X 6 F(U) and // : Ui > U is a

morphism, then X| f
is the element of F(Ui) given by F(fi)(X), and we will call X| f

the 'restriction of X to //', even if ft is not an inclusion. If X; G F(Ui), then X/| /;

.

is the element of F(L^) given by F(/-7-,-)(Xf)
where /-;

-

f
: t/ x v Uj

-+ U
t
is the pullback

ofJJ-

DEFINITION 4.2 (Sheaf of sets)

Choose a topology on (Sch/5). We say that F is a sheaf (or an 5-space) with respect to

that topology if for every cover {ff : Ui U}il in the topology the following two

axioms are satisfied:

1. Mono. Let X and Y be two elements of F(U). If X| f

=
Y\ t

for all /, then X=Y.
2. Glueing. LetX; be an object of F(J7,-) for each i such that X^7 = Xj| f -, then there exists

X G F(J7) such that X\ t

= X
f
for each z.

We define morphisms of S-spaces as morphisms of sheaves (i.e. natural transforma-

tions of functors). Note that a scheme M can be viewed as an 5-space via its functor of

points Horns ( ,M), and a morphism between two such S-spaces is equivalent to a

scheme morphism between the schemes (by the Yoneda embedding lemma), then the

category of 5-schemes is a full subcategory of the category of 5-spaces.

Equivalence relation and quotient space. An equivalence relation in the category of S-

spaces consists of two 5-spaces R and U and a monomorphism of 5-spaces

6:R-+Ux sU

such that for all 5-scheme B, the map S(B) : R(B] -* U(B) x U(B) is the graph of an

equivalence relation between sets. A quotient 5-space for such an equivalence relation is

by definition the sheaf cokernel of the diagram
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DEFINITION 4.3 (Algebraic space) ([La], 0).

An S-space F is called an algebraic space if it is the quotient S-space for an equivalence

relation such that R and U are S-schemes, pi 06, pi o 6 are etale (morphisms of S-

schemes), and S is a quasi-compact morphism (of 5-schemes).

Roughly speaking, an algebraic space is a quotient of a scheme by an etale equivalence

relation. The following is an equivalent definition.

DEFINITION 4.4 ([K], Definition 1.1)

An S-space F is called an algebraic space if there exists a scheme U (atlas) and a

morphism of ^-spaces u : U F such that

1. The morphism u is etale. For any 5-scheme V and morphism V > F, the (sheaf) fiber

product U Xp V is representable by a scheme, and the map U x? V V is an etale

morphism of schemes.

2. Quasi-separatedness. The morphism U x? U * U x$ U is quasi-compact.

We recover the first definition by taking R = U X F U. Then roughly speaking, we can

also think of an algebraic space as 'something' that looks locally in the etale topology
like an affine scheme, in the same sense that a scheme is something that looks locally in

the Zariski topology like an affine scheme.

Algebraic spaces are used, for instance, to give algebraic structure to certain complex
manifolds (for instance Moishezon manifolds) that are not schemes, but can be realized as

algebraic spaces. All smooth algebraic spaces of dimension 1 and 2 are actually schemes.

An example of a smooth algebraic space of dimension 3 that is not a scheme can be found

in [H].

But etale topology is useful even if we are only interested in schemes. The idea is that

the etale topology is finer than the Zariski topology, and in many situations it is 'fine

enough' to do the analog of the manipulations that can be done with the analytic topology
of complex manifolds. As an example, consider the affine complex line Spec(C[jt]), and

take a (closed) point XQ different from 0. Assume that we want to define the function ^/x,

in a neighborhood of JCQ. In the analytic topology we only need to take a neighborhood
small enough so that it does not contain a loop that goes around the origin, then we
choose one of the branches (a sign) of the square root. In the Zariski topology this cannot

be done, because all open sets are too large (have loops going around the origin, so the

sign of the square root will change, and ^/x will be multivaluated). But take the 2:1 etale

map V = Spec(C^y,*,*"
1

] /(y jc
2
))

> Spec(C[jt]). The function v/* cai* certainly be

defined on V, it is just equal to the function y, so it is in this sense that we say that

the etale topology is finer: V is a 'small enough open subset' because the square root can

be defined on it.

Appendix B: 2-categories

In this section we recall the notions of 2-category and 2-ftmctor. A 2-category C consists

of the following data [Hak]:

(i) A class of objects ob C.

(ii) For each pair X, Y G ob C, a category Hom(X, 7).
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(iii) Horizontal composition of 1-morphisms and 2-morphisms. For each triple X, 7,

Z obC, a functor

, 7) x Hom(7,Z) -> Hom(X,Z)

with the following conditions

(O Identity 1-morphism. For each object X 6 obC, there exists an object id* Horn

X,X such that

where idHom(x,K) is the identity functor on the category Hom(X, Y).

(ii

j

) Associativity of horizontal compositions. For each quadruple X, 7, Z, T E obC,

^x,z,r (MX,F,Z x idHom(z,r))
=

^x,r,r (idHom(x,y)
x Mr,z,r)-

The example to keep in mind is the 2-category Cat of categories. The objects of Cat

are categories, and for each pair X, Y of categories, Hom(X, 7) is the category of functors

between X and Y.

Note that the main difference between a 1-category (a usual category) and a 2-category

is that Hom(X, 7), instead of being a set, is a category.

Given a 2-category, an object / of the category Hom(X, 7) is called a 1-morphism of

C, and is represented with a diagram

and a morphism a of the category Hom(X, 7) is called a 2-morphisms of C, and is

represented as

Now we will rewrite the axioms of a 2-category using diagrams.

1. Composition of 1-morphisms. Given a diagram

X
f
Y

9
Z X 9f Z

^ ___^ , there exist ^-^

(this is (iii) applied to objects) and this composition is associative: (h o g) o / =
A (# /) (this is (ii') applied to objects).

2. Identity for l-morphisms. For each object X there is a 1-morphism id* such that

/ o idr = idx o / = / (this is (i')).

3. Vertical composition of 2-morphisms. Given a diagram

h

and this composition is associative (7 o
/3)

o a = 7 o
(/3

o a).
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4. Horizontal composition of 2-morphisms. Given a diagram
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(7)

(this is (iii) applied to morphisms) and it is associative (7 *
/?)

* a = 7 *
(/?

* a) (this

is (ii') applied to morphisms).
5. Identityfor 2-morphisms. For every 1-morphism / there is a 2-morphism id/ such that

a o id
g
=

id/
o a = a (this and item are (ii)). We have id^ *

id/
= idgo/ (this means

that //x,y,z respects the identity).

6. Compatibility between horizontal and vertical composition of 2-morphisms. Given a

diagram

9"

then (ft o
(3)

* (a' o a) = (/3'
* a') o

(/?
* a) (this is (iii) applied to morphisms).

Two objects X and Y of a 2-category are called equivalent if there exist two 1-morphisms

f :X 7, g : Y > X and two 2-isomorphisms (invertible 2-morphism) a : g o / id#

and :fo g -+ idY .

A commutative diagram of 1-morphisms in a 2-category is a diagram

y

such that a:go/ >/iisa 2-isomorphisms.

Remark 5.1 Note that we do not require g o / = h to say that the diagram is commu-

tative, but just require that there is a 2-isomorphisms between them. This is the reason

why 2-categories are used to describe stacks.

On the other hand, a diagram of 2-morphisms will be called commutative only if the

compositions are actually equal. Now we will define the concept of covariant 2-functor (a

contravariant 2-functor is defined in a similar way).
A covariant 2-functor F between two 2-categories C and Cr

is a law that for each object
X in C gives an object F(X) in C'. For each 1-morphism / : X > Y in C gives a

1-morphism F(f) : F(X)
-

F(Y) in C', and for each 2-morphism a :/ =*> g in C gives a
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2-morphism F(a) : JF(/) => F(g) in C', such that

1. Respects identity 1-morphism. F(idx)
=

idp(x)

2. Respects identity 2-morphism. F(idy)
=

id/?(/).

3. Respects composition of 1-morphism up to a 2-isomorphism. For every diagram

X f Y g Z
e __i_n -!+

there exists a 2-isomorphism eg j-
: F(g) o F(/) -+ F(g o /)

F(Y)

F(x]- W) '*(*)

(a) e/,idx
=eidK/

= id
F(/)-

(b) 6 w associative. The following diagram is commutative

F(f)

F(h)oF(gof)

4. Respects vertical composition of 2-morphisms. For every pair of 2-morphisms a :

f~>g,/3:g->h,we have F(/3 o a) = F(/3) o F(a).
5. Respects horizontal composition of 2-morphisms. For every pair of 2-morphisms

a :/ >/
/

, /3 : g -+ g
1

as in (7) the following diagram commutes

F(9)oF(})

By a slight abuse of language, condition 5 is usually written as F(/3) * F(a) = F(/3 * a).

Note that strictly speaking this equality doesn't make sense, because the sources (and the

targets) do not coincide, but if we chose once and for all the 2-isomorphisms e of con-

dition 3, then there is a unique way of making sense of this equality.

Remark 5.2. Since 2-functors only respect composition of 1-functors up to a 2-isomor-

phism (condition 3), sometimes they are called pseudofunctors or lax functors.

Remark 5.3. In the applications to stacks, the isomorphism eg/ of item 3 is canonically

defined, and by abuse of language we will say that F(g) oF(f) = F(g o /), instead of

saying that they are isomorphic.

Given a 1-category C (a usual category), we can define a 2-category: we just have to

make the set Hom(X, Y) into a category, and we do this just by defining the unit

morphisms for each element.

On the other hand, given a 2-category C there are two ways of defining a 1-category.

We have to make each category Hom(X, Y) into a set. The naive way is just to take the set

of objects of Hom(X, 7), and then we obtain what is called the underlying category of C
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(see [Hak]). This has the problem that a 2-functor F : C > C' is not in general a functor

of the underlying categories (because in item 3 we only require the composition of l-

morphisms to be respected up to 2-isomorphism).

The best way of constructing a 1 -category from a 2-category is to define the set of

morphisms between the objects X and Y as the set of isomorphism classes of objects of

Hom(Jf, 7): two objects / and g of Hom(X, y) are isomorphic if there exists a 2-

isomorphism a :f => g between them. We call the category obtained in this way the

1 -category associated to C. Note that a 2-functor between 2-categories then becomes a

functor between the associated 1 -categories.
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for the generators.
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1. Introduction

In this paper we make a contribution to the problem of understanding the uniformizing

Fuchsian groups for a family of plane algebraic curves by determining explicit first

variational formulae for the generators of the Fuchsian groups, say G>, associated to a t-

parameter family of compact Riemann surfaces Xt , where the Xt are the Riemann

surfaces for the complex algebraic curves arising from a ^-parameter family of irreducible

polynomials. The main idea of our work is to utilize explicit quasiconformal mappings
between algebraic curves, calculate the Beltrami coefficients, and hence utilize the

Ahlfors-Bers variational formulae when applied to quasiconformal conjugates of Fuchsian

groups.

We start with a compact Riemann surface XQ, corresponding to the plane algebraic

curve P(x,y) = X^Zl^i'XV = 0, having genus say g > 1. Let us assume also that

XQ = U/GQ where GO (i.e. the holomorphic deck-transformation group) is known. Then

we consider the parametrized family of compact Riemann surfaces Xt corresponding to

the polynomial equation Pt (x, y)
= where Pt (x, y)

=
]T} ]C aO'W^V' sucn tnat a

ij(
f
}
are

holomorphic functions of t (t in a small disk around the origin) with additional restriction

that dij(G)
=

aij.
For such Xt we determine first variational formula for 7, Gt where

Xt
= U/Gt (Gt is the uniformizing Fuchsian group corresponding to Xt)

where 7 is an element of GO (and 7, 7* are as in eq. (16)).

Remark. Although we have dealt with compact Riemann surfaces and the torsion-free

parabolic-free Fuchsian uniformizing group in the introduction above, the theory of

Teichmuller spaces works exactly the same for Riemann surfaces of finite coriformal type

Dr. Dakshini Bhattacharyya tragically passed away in March 2000. The referee had indicated

certain minor changes in the paper as submitted for which the editor could not obtain the author's

approval due to her demise. These changes have been incorporated in the final version.
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- namely we can allow distinguished points or punctures on the compact Riemann

surfaces and correspondingly allow elliptic or parabolic elements in the Fuchsian

groups under scrutiny. Those results are exactly parallel and nothing new needs to be

said.

2. Invariance of sheet monodromy over families of curves

Monodromy Invariance Lemma. To solve our problems we have to find a correspondence

between the ramification (branch) points of Pt (x,y)
= lying on the x-sphere for

different values of t. Also we will need to make a correspondence between the algebraic

functions yt (x)
=

y(x, t) satisfying Pr (jt, y(x, t))
= for different values of f, so that the

monodromy remains invariant at the corresponding branch points. That will guarantee

that the topological structure of the branched covering is kept invariant as t changes.

In order to do this we assume certain restrictions on Pt (x,y):

Assume degP(jt,y,f)
= D for all t. Assume also that there exists r, 5- such that

r + s = D where < r < m, < ,s < N and an (0) ^ i.e degree Po(x,y) = D.

Assume

(1) Po(x,y) is irreducible in the polynomial ring C[x,y].

(2) If degree P
t (x,y)

= D, then degree PO (JC, y)
= D; that is if we substitute t = in

Pt(x,y) degree of the polynomial remains the same.

(3) Suppose Pt is of degree TV in the y variable for all small t:

where

-

Let D(t) denote the discriminant of PN (x,t). Then assume that D(0) ^ and
ak (0) ^ 0.

Let D(x, t) be the discriminant of Pt (x, y)
= 0. Then D(JC, t)

= PN (x, r)Q(jc, t) where

We assume that Qo(0) ^ and D(0) ^ 0, where b(t) = discriminant of Q(jc,f).

(5) The resultant of Q(jc, t) and PN (x, t) does not vanish at t = 0.

Assume

is an irreducible polynomial such that x = and x = oo are ordinary points, and the

set of ramification points on the jc-plane are say located at:

Then it is not hard to demonstrate that:

(i) For all t sufficiently close to 0, the polynomial Pt(x,y) is irreducible and 0, oo are

ordinary points.

(ii) The ramification points on the ^-sphere for Pr (jc, y) are holomorphically dependent
on t and are given by k holomorphic functions: {&(*)> >&(')} such

0(0) = (j
for < j < k and (r) + CyW fo^ i ^ j and all t small enough.
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(iii) Assume N is the degree of Pt in the y variable (this follows from the stability

conditions mentioned above.) Then there exists holomorphic function germs

{y\ 0, t),..., yN (x, t)} around (*, /)
=

(0, 0) G C2
such that

for all (x, t) sufficiently close to (0,0) and such that N roots of the y equation

P(x,y, t)
= are given by yj(x, t).

(iv) Analytic continuation of yi(x, t) for every fixed t,
|

t \< e in the ^-sphere along
the same route (avoiding the branch points) produces the same permutation of

{y\ (x, f), . . .
, 3>Ar(jc, t)}

-
i.e., the monodromy permutations are independent of t.

Idea of the proof for (iv): Follow the construction, as in Siegel [S], for each /(0) we
consider a circle C/ with center at /(0) such that any two of them does not intersect and

we join the origin to 0(0) by a simple curve
/,-
so that if we cut CP 1

along these curves it

remains simply connected. Since /'s are holomorphic function of t we can find a

neighborhood of t = say, N =
{t :\

t \< e} such that CiC^O, . . .
, CtW lies inside

C\ ,
. . .

, C* respectively and each W is an Pen connected subset lying in the interior of

Q 1 < i < n. Now for each point XQ on d, 1 < z < n we can find mutually disjoint

neighborhood WI(XQ), . . .
,
WN (xQ )

of 0;(jc , 0), 1 < i < N (where P(JCO , </>/Oo, 0), 0)
=

and 0,-(;c, 0) is an analytic function of x I < i <N) and an open disc U(XQ) of XQ and an

open disc V(XQ) of t = such that \fx G t/(jc ), Vr G V(XQ), </>i(x,t) G W(x )
and the

function germs are analytic on U(XQ) and U(XQ) Pi &(N) = (p for all z. Again since the

points on Q 1 < z < n form a compact set D = Uf=1 Cj, the open cover {U(x) : x G D}
has a finite subcover where D C UjLj /(*,-). Set V = n"=1 V(jc,-) flTV. Note that

</>/(jc,0) =yX*o,0) for somey, 1 <j<N. Let us consider the monodromy permutation
around 1 (0). For simplicity let y\ (jc, 0) V2(jc, 0) 373 (jc, 0) > yi (x, 0). We shall prove
that for each r G V yi(x, r)

-
y2 (^, -> ^s(^, -> yi(^ 0-

Let C/(XQ) is a neighborhood of JCQ such that U(XQ) = f/i(zo) U f/2(^o)- Then

V^ G U2 (xo), Vt G V, y3(*, G

as )>3 (^, 0) >y i (jc, 0) in the neighborhood of x =

and

By construction we can find finite number of points jco,...,** on C\ and their

neighborhood /(xb), . . .
, t/(jcjt) and disjoint open set W\ (jc,-),

. . .
,
WN (XI) for each fixed i,

< i < * around ^(jc/,0), l<j<N such that Vjc G l/(^), f G V, #(*,*) W/(jcf )

1 < 7 < ^V- Since yi (jc, 0) analytically continues to j2 (jc, 0), Wi (jt*) (i.e the neighborhood
of yi(jct,0)) intersects W2 (jc ) (which is the neighborhood
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Choose

x G Ufa) n U2 (XQ)

=>yi(x,t) G W2 (x )
for f small (by continuity of y\ in t)

as only 2 (x, G W2 (* )
V* G V

=^2 (x,
=

3>i (*, for t small

=^2 (jc, f)
=

y\(x, t) V? G V (as y\ and
</>2 are analytic function of t)

=>yi (i, G W2 (;to) Vf G V, VJc G /2 (* )
n Ufa)

=*yi (*, G W2 (* )
Vf G V, ;c G U2 (xo)

(as for f fixed y { (jc, r)
=

(&>(*, r) Vjc G f/2 (j ) n Ufa)

=^yi (jc, r)
=

cj)2 (x, t) \/x G U2(xo) by analyticity in ^).

So if we continue y\(x,t) along l\ we get 2 (:c,r). Again only J2 (^,0 G

V^: G U\(XQ). Let us fix t G V. If we continue y\(x,t) across /i the function we get say

y(x, t) which is a solution of P(JC, y, r)
= (for fixed t) and hence belong to either

or W2 (jc ) or

Since

and

W2 (x ) n Wi (x )
=

<p, W2 (* ) n

So

=y(^, =
y2(^, v* G Ui (XQ )

as only y2 (jc, ?) G W2 (^ )
Vx G t/i (JCQ )

V? G V.

Since t G V is arbitrary yifo*) continues to 3^^,^) and thus monodromy remains

invariant. D

3. Construction of quasiconformal marking maps

3.1 Construction of a piecewise-affine mapping cj)t
: CP 1 -+ CP 1

which carries ramifi-

cation points of P()(x,y) to the ramification points ofPt (x,y)

Recall that the ramification points on the Riemann sphere for the covering surface Xt ,

(i.e., the critical value set for the branched covering map xt on Xt ), are assumed to be

located at precisely K points (for each t):

(Ci(0, ,&)
Let g denote the genus of each of the Riemann surfaces Xt .

The aim now is to consider XQ as the base point for the Teichmiiller space T(XQ) = T
g9

and consequently realise each Xt as a point of the Teichmiiller space by constructing an

explicit quasiconformal (q.c) marking homeomorphism from XQ onto Xt :

We shall have <J)Q as the identity mapping. For these see Nag [N].
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Thus the equivalence class of the triple [Xo, $t,Xt ]
is a point of the Teichmiiller space

T(Xo). In fact we shall construct a holomorphic 'classifying map' (as the coefficients of

Pt vary holomorphically with t):

mapping the t disc {\t\ < e} into T
g

.

Using the Bers projection

: Bel(X )
-> T(X )

we will have a lifting of the 'classifying map' rj to a map

The marking homeomorphism between the compact Riemann surfaces XQ and Xt will

be obtained by lifting a mapping <t>t
between the Riemann spheres that carries corres-

ponding ramification points to ramification points. Construction of
</>t

: P 1
* P 1

is

detailed below.

Recall that oo was set up as an ordinary point for the meromorphic function x on each

Xt . Hence all the ramification points, 0(0 1 < i < k lie in the finite jc-plane. Restrict the

parameter tin a relatively compact sub-disc around t = 0: t e A e
=

{t :\
t \< e}. (To save

on notation we still call the radius of the sub-disc as 6.)

Since the functions are analytic in t, we can find a rectangle R containing in its

interior all of the points S = {0(0 :!<*<,* A e }. Outside R we will define
cj>t

to

be the identity mapping.
To define

</>t
inside R we take the first (domain) copy of CP 1 and triangulate R as

follows: we divide R into non-degenerate triangular regions such that each of the points

0(0) are used as vertices. Thus the triangulation utilizes a set of vertices containing all

the K points 0(0), as weU as some extra points s for some index set s = K+
1, . . .

,
K + L. (The four vertices of the rectangle jR are certainly included amongst these

last L vertices. Also note that each triangle utilized is, by requirement, non-degenerate
-

namely the vertices are always three non-collinear points.)

Now consider another copy of CP 1

(which will serve as the range of the map 0,) and

divide the region inside the rectangle R in this second copy into triangular regions in the

natural 'corresponding' fashion, as detailed next: namely the vertices of the triangles of

this second copy ofR consist of the new ramification points 0(0' s m place of me 0(0),
1 < i < K, -

together with the same extra set of points (f r index set s K+
1, . . .

, -h L) that were used before. Note: these last L vertices are left undisturbed. Of

course, the edges of the two triangulations correspond exactly since the vertices have the

above correspondence. That is, if (0(0),0(0) 5 0t(0)) form vertices of a triangle in the

first copy then (0(0? 0(0 ? Ot(0) form vertices of the corresponding triangle in the second

copy; similarly, if (0(0)jC/C0) are vertices of a triangle in the first copy then (0(0>

C/ C$) will t>e the vertices of the corresponding in the second copy, etc.

Remark. Since the initial triangulation is non-degenerate, namely the vertices of any

triangle that was utilized were non-collinear, then, by continuity of the functions (/(f),

that non-degeneracy of the corresponding triangulation (on the range copy) remains valid

for all small values of / near t = 0.

Affine mapping of one triangle onto another: If (1,22,23) are any three non-collinear

points in the plane, then recall that their closed convex hull, (smallest closed convex set in
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the plane containing these points), is precisely the triangle T (includes the interior and the

edges) with the given points as vertices. From elementary linear geometry one knows that

every point of T has a unique representation as a convex combination of the vertex

vectors; namely, each point of T is representable as \Z[ 4- ^11 4- ^zs, where A, fj,
and i/ are

real numbers in the closed unit interval [0, 1]
such that A 4 f^ 4 ^ = 1.

Clearly then, given any other set of three non-collinear vertices (wi,W2,ws) for a

second triangle 7
1

', there is a natural affine mapping of the first triangle onto the

second which simply sends the point Xz\ 4- 1*12 4- z'Zs of T to the point Xw\ 4- ^2 4- 1^3

of T'.

DEFINITION OF &
We therefore define the desired homeomorphism (j)t

inside the rectangle R by taking the

triangles of the first triangulation, by the above affine mappings, onto the corresponding

triangles of the second triangulation. Notice that if two triangles share a common edge,

then the affine mappings defined on the two abutting triangles will coincide in their

definition along the common edge. That is crucial. Consequently we clearly get a well

defined homeomorphism (j>t
of the rectangle R on itself, and outside R we simply extend

0, by the identity map to the whole Riemann sphere.

It is clear that <pt is a C-diffeoniorphism when restricted to the interiors of the

triangles used in triangulating R, and also, of course, on the exterior of R.

Lemma.
<j)r

is quasiconformalfor each t in the t disc. The Beltrami coefficient of
'

4>t>
is a

complex constant (of modulus less than unity) when restricted to the interior of each

triangle in the initial triangulation of the rectangle R. Of course, the Beltrami coefficient

is identically zero in the exterior of R.

3.2 Lifting of<t>t : CP 1 ^CP 1
to 0, : XQ X,

Consider the following diagram of Riemann surfaces with the vertical arrows being, as

we know, holomorphic branched coverings:

XQ ^ Xt

np 1 <P*
^ cp 1

PROPOSITION

There exists a quasiconformal, orientation preserving homeomorphism:

lifting the map <j)t
: CP 1 - CP1 and making the above diagram commute. (Note that

is the identity.)
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*roof. In fact, in order to deal with unbranched covering spaces, we define the following

>unctured Riemann surfaces:

ind

X' ^x' l

{CP
l

-all critical values ofx}

X[
= Jt^CP

1 - all critical values of xt }.

lestricted to X' and Xf

r the vertical mappings are now smooth (=unbranched) covering

>rojections. Observe that the
<j) t

was designed so as to map the critical values of x onto

hose of xt . Now we can apply the standard lifting criterion for maps from the theory of

covering spaces to demonstrate that
<f>t

lifts. Consequently, at the level of fundamental

groups we need to look at the image of the action on TTI of
(<f>t

o x) as compared with that

)f xt . (See, for instance, Theorem 5.1, p. 128, of Massey [M] for the statement of the

isual lifting criterion.)

Since the monodromy permutation at any critical point say Cm(0) is the same as that

iround the perturbed critical point CmM> anc^ since <MCm(0)) = CmW we see *at:

TTi (<t>t
O X)wi (X

f

Q,
W

)
=

TTi (*,)7Ti (Xj, /3 ) ,

where WQ Xf and JC(WG)
= Zo and $> -Xj

such that xt (/3o)
=

(f>t (zo))-

Clearly then the lifting criterion is satisfied, and hence the homeomorphism (f>t
lifts to a

lomeomorphism <j>t , as desired. Certainly the lift is quasiconformal since the vertical

nappings are holomorphic. This completes the proof of the proposition. In this connec-

ion recall the following result,

Cheorem. If U and V are open subsets of compact surfaces X and Y respectively with

mite complements, then any homeomorphism from of U onto V extends uniquely to one

rfX onto Y. D

Finally then, for our applications to the variation of Fuchsian groups we may lift all the

vay to the universal covering upper half-planes and obtain the quasiconformal homeo-

norphism $ r (z)
=

$(z, t) from U to U, obtained by lifting the mapping to 4>t
: XQ >Xt .

Thus we have determined $ r (z) so that the following diagram commutes:

u
= *OM)

u

.
Xt = U/Gt

x CP 1
.
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4. Variational formulae for the Fuchsian groups of varying curve

4.1 The fundamental variational term

Let p,t (z) denote a one-parameter family of Beltrami coefficients on the upper half-plane

depending real or complex analytically on the (real or complex) parameter t near t = 0.

Suppose also that ^o(z) = 0. We come now to the main formula that we shall apply. If

JJLQ
=

0, and if for small t the Beltrami coefficient is given by

^(z) = tfi(z) + o(r), where e L(U), (2)

then one has an important integral formula expressing the solutions of the family of

Beltrami equations, as a perturbation of the identity homeomorphism

H-0(0,ze U.

Indeed, the crucial first variation term, w\ = w, for real t is given by

This perturbation formula (see Ahlfors [A], or section 1.2.13, 1.2.14, as well as page

175, eq. (1.21) of Nag [N]), will be fundamental for us. We shall apply it to the family of

quasiconformal mappings $ t (3) standing for the family w^r
.

Since in our set up ris a complex parameter we may as well deduce the form of the

variational terms for general t complex - which follows by simply applying the real t

formula above appropriately. We show this:

If t is complex, write in polar form: t = \t\e
ia

then put r = e~ia
t =

t\.
Then it is

straight forward to see that

where a = arg (t). But re~
2te

is the conjugate of t. Therefore, this last formula says that

for complex t we have the final important formulae:

Wto(z)=z + tw\(z)+tw\(z)+o(t\ zeU (3)

where

Equation (4) will be manipulated to produce the chief formulae of 4.

Let F = GO C PSL(2, R) denote the uniformizmg Fuchsian group acting as deck

transformations for the covering TT. Then there is a biholomorphic equivalence:

x =
I//GO. (5)

It follows from the standard Ahlfors-Bers deformation theory of Fuchsian groups (see

Nag [N]) that the quasiconformal homeomorphism 3> r is compatible with the Fuchsian

group GO, in the sense that gt
= $ r

o g o
t

~
l

is again a Mobius transformation in
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5

SL(2, R) for every g G GO, and the new Fuchsian group (which evidently remains

.bstractly isomorphic to GO) is the Fuchsian group:

Gr
= $r oG o$ r

-
1

- (6)

Tils is the group of deck transformations for the covering TT,, so that Xt is biholo-

norphically equivalent to U/Gt . We shall write

gt
= $ t ogo<f>-

1

eG, (7)

or any fixed g GO = F.

In this notation, the central problem of our work is to determine explicit and applicable

ormulae for the variation of gt
-

or, equivalently, to compute the ^-derivative: gt at t = 0.

^s g varies over any generating set of elements for the group GO, we shall then obtain, up
o first order approximation, a corresponding set of generating elements for the deformed

groups Gr .

r.2 The Beltrami coefficient /x, of $ r

Rotational set up. Let us, for notational convenience, denote as jc* the meromorphic
unction on U given by x o ?r

, (this is, of course, a holomorphic branched covering of the

liemann sphere by the upper half plane). Clearly, Jt* is automorphic with respect to the

nichsian group F, since x* descends onto the surface XQ as the meromorphic function x

hereon. In particular, let us note the well-known fact that this function, jc*, can be

ixpressed in terms of the standard Poincare theta-series on U with respect to the group F.

Now recall from the previous section that the mapping <pt was, by our very definition, a

>iecewise affine quasiconformal mapping. So the Beltrami coefficient of
c/>t

was a

:omplex constant on each triangle of the triangulation of the domain rectangle R. (The
ieltrami coefficient need only be specified almost everywhere - therefore we will ignore

t on the edges and vertices of the triangulation.)

Moreover we know that the vertices of the triangulation (in the image plane) depend

lolomorphically on t - since the ramification points (/(/)
were holomorphic functions of

. Here is the main proposition we require.

rhe Beltrami coefficient of$ t is

M,(z)
=

ri>(z) + o(t),z e 17, v(z)

vhere

w CP 1
. (8)

lere the Beltrami coefficient for the piecewise-affine mappings <j)t
on the Riemann w-

iphere has been expanded up to first order in t as below:

Further note that i/(w) is a constant on each triangle of the first (domain) triangulation

)f R, and it is zero for all w outside R.
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Note. The F invariant Beltrami coefficient v above, represents the tangent vector to the

one parameter family of Beltrami coefficients
fj,t

which arise from the one parameter

family of quasiconformal mappings $ f .

Proof. From the above commutative diagram for the liftings we have

(xt o?rr )
o $ f

=
</>t

o (XOTT). (10)

Taking the d and d derivatives in (10), and remembering that all the vertical maps are

holomorphic coverings (possibly branched as we know), we obtain the Beltrami

coefficient of $ t on U:

Clearly then the statements in the Proposition follow because the r (w) are a family of

piecewise affine quasiconformal homeomorphisms on the w-sphere which vary

holomorphically in t. Thus, remembering that 0o is the identity, we see that the Beltrami

coefficients of the family r indeed must have an expression as in (9) with z/(w) being

piecewise-constant. D

Remark. Note that the Beltrami coefficient of
<j>t

is a holomorphic function of the

parameter t in the neighborhood of t = 0. The map

takes values in the complex Banach space /^(CP
1

),
- and the holomorphy is as a map

into this Banach space.

Beltrami coefficients automorphic with respect to T. We must remember from the

general theory (see 1.3.3 of Nag [N]) one further fundamental fact. Since the

quasiconformal maps 3> r are compatible with F their Beltrami coefficients are (1,1)
forms on U with respect to F. (We called them F-invariant Beltrami coefficients.)

Indeed, if
jj,

is the complex dilatation of a quasiconformal mapping that conjugates F
into any group of Mobius transformations, then

(/*<>)(?/*') = /*,*-, fr aU F. (12)

We denote the Banach space of complex valued L functions on U that satisfy equation

(12) for every g e F, by the notation: L(Z/, F). See p. 49 of [N]. Thus, /x, belongs to the

open unit ball of this Banach space for all small t , and also therefore belongs to this

Banach space of automorphic objects.

4.3 The variational formula for $,

We come to the chief application of the perturbation formula (eq. (4)) in our specific

context of varying algebraic curves.

Let F denote a closed fundamental domain, with boundary of two-dimensional

measure zero, for the action of F on C7; (for instance, we may choose F as any standard

Dirichlet fundamental polygon for the Fuchsian group F). Thus TT maps F onto XQ, and TT

is one-to-one when restricted to the interior of F.
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Recall that jc was itself a meromorphic function of degree N on the compact Riemann

surface Xo, (see 2, 3). Consequently, when restricted to the interior of F the mapping x*

is a AMo-1 branched holomorphic covering map onto the Riemann sphere
-
missing only

a set of areal measure zero. Since this is a finite covering space situation (aside from a

measure zero set of branch points which we may discard to start with), we may choose a

decomposition of F into N regions:

(13)

Here the Dj are mutually disjoint domains (except for boundary contact, as usual in

choice of fundamental regions), partitioning F, with the basic property that each Dj maps,
via x*, in a one-to-one fashion onto the entire Riemann sphere (missing atmost a measure

zero subset). (Recall that the compact Riemann surface XQ was described as an N-sheeted

branched cover of the sphere
- by the degree N meromorphic function x.)

A kernel function associated to T. We introduce as an useful matter of notation, the

following function of two variables: z U, r 6 C (not lying on the F orbit of z):

- (">

We are now in a position to state a main result.

Theorem. On variation of $ t - The lifted quasiconformal maps & t on U satisfy the

following first order expansion for small t,

$,(z)=z + tw l (z)+-tw
t

l (z) + o(t),zU, (15)

where

~ l

N r r

k^\J JCP I

Here we have denoted by jc*^ the restriction of the projection x* = x o TT (which is a

meromorphic and T-automorphic function on U), to the region Dk C F, k = 1
,

. . .
,
N.

Here v denotes the function on the w-sphere appearing in formula (9) of the Proposition

in sub-section 4.2 above. (Recall that v is simply a constant assigned on each triangle in

the triangulation ofR, with i/ being identically zero outside R.)

Note furthermore, that since x* is a meromorphicfunction on U, we may replace in the

above formula the derivative of its inverse by the reciprocal of its own derivative, as

shown below:

dx~l , % _ /djt* L. , %

f\ \
wr

J I H7
v y '

r"~^'*v^y? +> >- *^K-

These derivatives can therefore be calculated from the expression for jc* which will be

available in terms of the standard Poincare theta series on U with respect to 7. (Therefore

we see that 1/7 GO then the variational formula for 7,
= 3> r

o 7 o $~ j Gt is

MO, ( 16)
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"where

7 = wi 07-7'^!,

7* = w* o 7 7'wJ.

F0r r/us, see Nag [N].)

During the course of the proof we shall show that all integrals and summations

appearing in sight are absolutely convergent. For facts regarding Poincare theta series and

their utilization in expressing meromorphic functions on U/T, see [Kra, Kr].

Proof. We shall have to manipulate the variational formula (4) which said:

Wl (z)
= -

/ / [>(w}R(w, z) + i>(w)/e(w, z)]dw A dw
2J7TJ y 17

By general theory quoted above, the integrals involved in (4) are necessarily absolutely

convergent.

To obtain the final result for wi and w*, there are several chief ideas which we first

explain in words:

(i) Write each of the two integrals over U as a sum of integrals over all the tiles in the

F-tessellation of U - obtained by decomposing U as the union of the fundamental

domain F and its translates: i.e., U = (J
g^(g(F)).

(ii) Utilizing the F-automorphic nature of the Beltrami coefficient (see eq. (12)

above), and making a change of variables by w = g(z), we can transform the integral

over g(F) to an integral again over F itself.

(iii) Consequently, the original expression for wi becomes simply an integration over F
of a certain expression on F, after interchanging summation and integration. (The

validity of the interchange is guaranteed by the absolute convergence of the result,

together with the dominated convergence theorem. The main details of this critical

interchange of sum and integral are spelled out in the remarks attached at the end of

the proof.)

(iv) Finally we decompose F itself into the N pieces >i, . . .
,
DN (as explained with eq.

(13) above) - and hence we may eliminate z> by replacing it with occurrences of v

itself, and thus express the final result as integrations over the Riemann sphere CP 1

,

as desired.

The first three of the above steps are carried out e.g. in [A]. Let us now get down to the

main business of showing the exact nature of how these transformations come about in

the expression for w\. First of all note:

t f i>M

yy,,(,-i)o,-r)

V^ f f ^(w)= / ^ / / ~~7 ZTv \
^w ^ ^w

'
F = fundamental

region of T in (7.
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Perform a change of variables on g(F) by w = u + iv = g(z)

rdzAdz

For convergence arguments we note that since

71 ifoty

< CXD.

, I

w
||
w l

II
w r

This demonstrates that the series

(17)

is absolutely convergent. Note that, for convenience, we have written tpg here for the

following frequently recurring expression:

We shall show by a measure-theoretic lemma in the remarks appended to the bottom of

this proof, that we are allowed to change summation and integration in the summation

(17). We shall utilize crucially this interchange immediately in what follows. Returning
therefore to the actual expression for the variational term M>I, we now obtain:

l)
rr

TZ y yF

Similarly
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That completes the manipulation of the formula to a point that already has points

interest; we have carried out steps (i), (ii), (iii)
- and now we are integrating over F (i.

over XQ), rather than over U.

The final steps are for carrying out the program outlined in point number (iv) abo1

This goes as detailed below:

Let

(x o 7r)(A)
= and denote x o

TT|D .

=
**,,-

for each i = 1
,

. . .
,
N. Setting (x o

TT) (C)
= w, C U and w e CP 1

, and using the relati

(eq. (8)) between v and i/ 9 we will have

_/_ 1 \

wi(z) = :

2?ri

N r r

S//c, El
|dw/dC|

2

2m

Mxr... ,

tlL
Similarly

dw A dw

dw A dw.

dw Adw

That at last is exactly the expression desired and claimed in the Theorem and we

through.

The interchange of summation and integration above in the series (17), follows f

some straightforward facts of the theory of measure and integration. For instance,

purposes are adequately served by the following result (see Rudin [R]):

Lemma. Suppose {/} is a sequence of complex measurable junctions defined all

everywhere on a complete measure space (X, IJL)
such that

|/n I d/x< co.

Then the series f(x) = Y^Tfn(x) converges absolutely for almost all x, andf L1

moreover, the summation and integration can be interchanged, namely:

= ffndp.
i

JX
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Abstract. On a locally compact group G, if i/
* -+ ^, (kn > oo), for some probabi-

lity measures v n and
JJL

on G, then a sufficient condition is obtained for the set

A = {z/|w < /:} to be relatively compact; this in turn implies the embeddability of a

shift of
IJL.

The condition turns out to be also necessary when G is totally disconnected.

In particular, it is shown that if G is a discrete linear group over R then a shift of the

limit p. is embeddable. It is also shown that any infmitesimally divisible measure on a

connected nilpotent real algebraic group is embeddable.

Keywords. Embeddable measures; triangular systems of measures; infmitesimally
divisible measures; totally disconnected groups; real algebraic groups.

. Introduction

Commutative triangular systems of probability measures on locally compact groups have

>een studied extensively and recently the embedding of the limit
\JL (or a translate xp,,

; G G) have been shown on a large class of groups under certain conditions like infinite-

imality of triangular system and/or 'fullness' of the limit p, (see [S4] for the latest results

md the literature cited therein for earlier results). Generalizing the techniques developed
Q [S3,S4], we extend our earlier result to some particular triangular systems on algebraic

groups. We also discuss special triangular systems of identical measures, i.e. limit

heorems. In particular if zA *
p. on G then we give a sufficient condition for the set

L = {v |

m < kn } to be relatively compact; this in turn would imply the embeddability
>f a shift of the limit //. The condition turns out to be also necessary if G is totally

lisconnected. We hereby generalize our earlier results on limit theorems on Lie groups to

general locally compact groups. We also show the embedding of a shift of the limit
\JL

if G
s a discrete linear group over R.

Let G be a locally compact (Hausdorff) group and let M l

(G) be the topological

;emigroup of probability measures with weak topology and convolution as the semigroup

Deration. Let
\JL,

v be any measures inM l

(G). Let the convolution product of p, and v be

lenoted by //i/. For any compact subgroup H of G let LJH denote the normalized Haar

neasure of H. Let M 1

H(G) = uHM l

(G)o;//, then Af#(G) is a closed subsemigroup of

\i
{

(G) with identity ujj. For any x G G, let 8X denote the Dirac measure at x and let

c/4
= 8xfr (similarly, fjjc

= ^8X). Let /M
= {x G G

\ xp,
=

IJLX} and let I(p]
= {x G G

|

c/z
= px = /4, then /^ (resp. /(/x)) is a closed (resp. compact) subgroup of G. Let J^

=
[A M1

(G) j AJU
=

//A
=

p}. Clearly, JM is a compact semigroup and for any A M l

(G),

\ G
Jp.

if and only if supp A C /(M). Let G(/x) be the smallest closed subgroup of G
:ontaining supp//. Let N(fj) (resp. Z(/x)) be the normalizer (resp. centralizer) of G(/x) in

49
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G. Let p, denote the adjoint of p,, defined by p,(B)
=

p>(B~
l

),
for all Borel subsets B

IJL
is said to be symmetric if p,

=
/L Let G denote the connected component of the idc

in G. For a set A C M 1

(G) and a normal subgroup C C G, we denote A/C = 7r(A), v

TT : G G/C is the natural projection.

A measure p G M 1

(G) is said to be infinitely divisible (resp. weafc/y infinitely divu

if for every n G N, there exists p,n G M 1

(G) such that
/zj|
=

IL (resp. /^jcw
=

/x for

jtrt G G); and it is said to be embeddable if there exists a continuous one-parai

convolution semigroup {//f },> such that JJL\
=

/x. Since we aim to prove the embed

lity of a given measure under various conditions, the reader is referred to [M2], a si

article on the embedding problem of infinitely divisible measures.

Let S be a Hausdorff semigroup with identity e and let s G S. Let Ts denote the s

two sided factors of 5, that is, Ts
=

{r 5
|

tr = rf = s for some r E S}. Elements 5,

are said to be associates if s and t are two sided factors of each other, i.e. s 7

/ E Ts . A subset A of 5 is said to be associatefree if 5
1

,
f G A are associates then s =

element fe in S is said to be an idempotent if /z
2 = h. An element 5 is said to be bald

if e is the only idempotent contained in Ts . For a subset A of 5, a decomposition o

s = s\--sn , for some n E N, where si G A and
SjSj

=
sys/

for all z, 7, is called s

decomposition ofs. An element 5 (in S) is said to be infinitesimally divisible if s has

decomposition for every neighbourhood U of e in 5. A set A =
{s/y

- G 5
|

i G N, 1
;

W,-, Hi > oo as z 00} is said to be a triangular system in 5; we will sometimes

A =
(
5
y)"eNj=i-

A is said to be commutative if for every fixed z, 5,7
commute with

other, it is said to be infinitesimal if as z > oo, sy e uniformly in 7. We say tl

converges to p if
s-,-1 5^ = Si

->
/x.

In 2, we prove a limit theorem for general locally compact groups, (see Theoreir

In 3, we show that if iA -+ ^, (kn -> oo), on a discrete linear group over R, then

embeddable for some x G G (see Theorem 3.1). In 4, we show that any infinitesi

divisible probability measure
JJL
on a connected nilpotent real algebraic group is er

dable, (more generally see Theorem 4.1).

2. Limit theorems on locally compact groups

Theorem 2.1. Let G be a locally compact group and let TT : G > G/G be the m
projection. Let {z/ B} be a relatively compact sequence in Ml

(G) such that for any
point v of it, G(TT(Z/)) is a compact group in G/G and zA -* jj,for some p, G M 1

(C

for some unbounded sequence {kn} C N. Suppose that for some connected nil\

normal subgroup N of G, the closed subgroup generated by supp p, and N contair

Then the setA = {i/^ |

m < kn } is relatively compact and there exists x G 7M such t}

is embeddable.

Remarks. (1) The above theorem generalizes Theorem 1.7(1) of [S4]. (2) If G is t

disconnected then G = {e} and hence the above theorem implies that if iA -*
/x

{vn } is relatively compact and for any limit point v of it, G(z/) is compact thei

relatively compact. Conversely, ifA is relatively compact then so are {z/n} and {z/*"
for any limit point z/ of {z/B }, G(v) is compact as {i/

n
}cA. Thus, for"!

disconnected groups we get a necessary and sufficient condition for the setA as ab
be relatively compact.
We first prove a more general theorem for totally disconnected locally compact g
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Theorem 2.2. Let G be a totally disconnected locally compact group and let {v n } C
M l

(G) be such that v n *v 'where G(y) is compact and v^i/n > J^far some sequence

{i/ } inM l

(G) such that ^ nz^
= v'nv n for all n. Then given any neighbourhood U ofe and

an e > there exists an I such that for all large n, v(G(v)l(n)U) > (1
-

e/, for all

m <kn . In particular A = {is \

m < kn } and {i/n } are relatively compact.

Proof. As G(v) is compact and vm e !TM , for ail ra, suppz^ C xl(fj)
=

I(/~i)x, for all

jc G supp z/ (cf. [S4], Theorem 2.4). Therefore G(z/)/Qu) is a compact group.

Let V be an open compact subgroup of G such that V is normalized by G(z/)/(/i), and

VCU. Since vn
-

v, z/ n (G(i/)/(/x)V) > 1 - e, for all large n. Let V1 = {A | \(G(v)

I(fji)V) > (1
-

6}
l/2

} and let U1 = {A | A(G(z/)/(/x)V) > 1 - 5} for some positive 5 < e.

Then VV C /'. Let J = {A M !

(G) | supp A C G(z/)/(/x)V}. Clearly, J is a compact

semigroup and JVf = V7

. Let X e U' \V. If possible, suppose that A" 7^ for all n, then

by Theorem 2.4 of [S4], supp A C xl(^) = I(iJ,)x9 for all x E supp A. Since A G /',

supp A C G(i/)I(fj)V 9 i. e. A E J C V", a contradiction. Hence for A e T^ n E/' \ V, there

exists n = n(A), such that An ^ TM . By Lemma 2.1 of [S4], T^ n U' \ V" is compact. As in

the proof of Lemma 2.5 in [S4], one can find /, such that for any A G 7^ n U
1

\ V, //

cannot be expressed as ^ = AZ

A', for any A' which commutes with A.

Since v n -* v,v n V, for all large n. Let such a large n be fixed. Then there exists

an > 1, such that v e V, for all m < an and v a
n & V. Therefore, i/J

1 ^ \ ^ C
I/' \ V. Let bn ^kn

- lan if ton < Jfcn , otherwise bn = 0. If ^n = 0, then i/ e (t/')', for

all m < jfcn . Therefore, for all large n, z/(G(z/)/(/z)V) >
(1
-

5)', and hence i/(G(i/)

J(/x)J7) > (1
-

e)

/

for all m < ^, as V C U and 8 < e.

We now show that bn = 0, for all large n. If bn ^ for infinitely many , then

iAi^-^. Since {v*"}cU
r

\V
f

, by Lemma 2.1 of [S4], {i/J} is relatively

compact and it has a limit point (say) A, such that //
= A'A7

, for some A', which is a limit

point of {i/J"z^}, i.e. A e T^ n /' \ V and AY = A'A. This is a contradiction to the

choice of / as above.

Now it is enough to show that A is relatively compact as this would also imply that

{i/n } is relatively compact. Let ^n = v k
jv'n . Then nn ^^ and for each n, v G T^n

for all

m < kn . Let F = G(z/)/(/x)V for V as above. Then F is compact. Let A' = {A G M^G)!
A(F) > (1 c) /2}. Then from above, A C Af

. Since /xn
>

/x, for every 5 > such

that <5 < (1
-

e)

l

/2 9 there exists a compact set Kg such that fJn(Ks) > l-S (cf. [H],

Properties L2.20(2)). Therefore, for every n,m as above, there exists jcn?m such that

v(Ksxnjn) > 1 6. Now since A C A', the above implies that xn
,
m E ^"^ and hence

v(K
r

s ) > 1 - 6, where^ = K^K^
1F which is a compact set. In particularA is relatively

compact (cf. [H], 1.2.20). This completes the proof.

We now prove several results which will be needed to prove Theorem 2.1.

Lemma 2.3. Let G be a locally compact first countable group and let {/^n }> {^} and

{z/ n } be sequences in M l

(G) such that \nv n v n\n = fJ>n
* M for some ^ G M^G).

Then there exists a sequence {xn } such thatxn G N(^n ) for each n and {\nxn } ond {xn\n }
are relatively compact and all its limit points are supported on supp ^.

The proof is quite similar to Proposition 1.2 in [DM] and Theorem 2.2 in ch. Ill of [P].

Proof. For any integer r > there exists a compact set Kr C supp p, such that

fJL(Kr ) > 1 4~(r+1 ). Without loss of generality, we may assume that Kr C Kr+\ for all

r. Let {Ur} be a neighbourhood basis of e in G such that each Ur is relatively compact,
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Ur+ i C Ur for all r and C\ rUr
=

{e}. Since ^n ->
//, there exists nr G N, such tl

Vn(KrUr ) > 1 ~ 2~r and ^(UrKr) > I - 2~r
, for all 7i > nr . Let Er

n
= {x G

\

(KrUrx~
l

) > I - 2-'} and let Fn
= n{rk<n}

.

A simple calculation as in Theorem 2.2 of ch. Ill in [P] shows that for n >
v n (G \ E

r

n ]
> 2-(r+2> and hence i/n (G \ Fn )

> 1/4. Similarly, we define Br

n
= {x G

An (>r
* UrKr ) > 1 - 2~ r

} for any r and Cn = n
{r\nr<n}B

r

n
. Then z/ n (G \ CB )

> 1/4.

Therefore i/ n (Fn n CB )
> 1/2. For each n, we pick jcn G Fn n Cn n supp v n as it

nonempty, xn e supp i/ n c N([j,n ). Then for any r > 0, Xnxn(KrUr )
> 1 - 2~r and *,

(UrKr } > 1 2~ r
for all n>nr and hence by tightness criterion, {Xnxn } and {xnAn }

tight. Also, since Kr C supp /x for all r, Anjtn ((supp //) J7r ) > 1 - 2~r
, for all n > nr . Sii

C]rUr
=

{<?}, it easily follows that for any limit point A of {An^}, supp A C supi

Similarly, the limit points of {xn\n } are also supported on supp^t.

Lemma 2.4. Let G be a locally compact group and let
fj,n

->
JJL

in M l

(G). Let B b

subgroup which centralizes an open subgroup H containing supp //.
Then the follow

hold:

1. For any sequence {xn } in B, {x~
l

fj,nxn } is relatively compact and it converges to

2. Let
{j,n
= An z/n = z/An , for all n. Iffor sequences {xn } and {yn } in B, {xn\nyn

.

relatively compact then its limit points belong to T^; in particular if \nan
- A

some {an} C B, then A G T^ and the limit points of{xn\nyn } are of theform zA =
for some z^ G Z(/x).

Proof Let U be any open set contained in H and let K C supp /x be any compact set s

that p(K) > 0. Then given < e < //(), there exists AT such that pn(KU) > ^(K]
- t

all n > N. Since xn centralizes KU, x~ l

nnxn (KU) ==
fj,n(KU) > p(K)

- e. Since thi

true for aU K and U as above, {x~
l

/^.xn } is relatively compact and it converges to p. Le

be a limit point of a relatively compact sequence {AJ,
= xn\nyn }, where ;cn ,yn 5. S:

{^/^n^
1

} converges to /x, {y~
l

^n^n
l

} is relatively compact and there exists a limit p
i/ of it such that AV =

/x. Also, i/A' is a limit point of {v~VnVn}, which converges t

Therefore, z/A
7 = p and hence A' rM . Now suppose Anan -> A, {an } C ^, then f

above A TM . Therefore, A = x/3, for some x G W(p) and ft supported on G(/x) C //. 1
j:"

1 A
rt
an ->

j9. Let IsT' be any compact subset in H such that /3(K') > 0. Then for any c

subset U contained in H, Xnan (xK'U) = zn X'n (xK'U), where zn = xy-
l anx-

lx~ l Z
as B c Z(/x) and x N(p) which normalizes Z(/x). Since this is true for aU n am
compact subsets K' of supp /J it implies that {zw } is relatively compact in Z(/A). Therd
A' = zA, for Ax

as above, where z is a limit point of {z~
l

}. Now since A G TM and z e Z
zA = zr/3 = xz'jS = jc^ = Az

7

, where z
7 = x~ l

vc G

PROPOSITION 2.5

Let G be a locally compact group and let C be a closed normal (real) vector subgroi
G. Suppose that {/xn } c M l

(G) be a sequence such that p,n -> p, the closed subg
(say) H, generated by the centralizer Z(C) of C and supp/x, is open in G. Suppose
there exists a sequence {xn} in C such that {x^fj^Xn} is relatively compact. :

{xn }/(Z(tj} H C) is relatively compact. In particular 7M n C = Z(p) n C

Proof. Suppose C C Z(/x) then there is nothing to prove. Now let V = Z(/x) n C, \*

is a proper closed subgroup of C. Since C is normal in G; for any x G G, ix :C -
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^(c) = xcx~ l

for all c E C, is a continuous homomorphism of C and hence it is a linear

operator in M(d, R), where d is such that C is isomorphic to R^. Now V = Z(//)D

C =
fljtesupp^ ker(/jc) and hence V is a (possibly trivial) vector subspace and C = V x W,

a direct product. Now for each , ;tn = zn -f yn ,
where zn V and yn W. Let \in

=

n> for each n. Since V centralizes G(//) and hence H which is open, by Lemma 2.4,

Now it is enough to show that {vn } is relatively compact. If possible, suppose it has a

subsequence, denote it by {yn } again, which is divergent, i.e. it has no convergent

subsequence. We know that {y^
{

p!nyn
= x~ l

fjinxn } is relatively compact. Passing to a

subsequence if necessary, we get that v/||yn || y in W, where
|| ||

denotes the usual

norm in the vector space C. Since \jln y,, arguing as in Proposition 9 in [Ml], we get

that G(IJL) C Z(y), the centralizer of y in G, a contradiction as y ^Z(p) n C = V, for

y G W and
\\y\\

= 1. Therefore, {yn } is relatively compact. If x e /^ then jc/jjc"
1 =

/z

therefore, (7^ n C)/(Z(/x) n C) is a compact group, but since C and Z(/JL) fl C are both

vector groups so is C/(Z(/x)nC) and hence has no nontrivial compact subgroups.

Therefore, /^ n C = Z(^) H C.

PROPOSITION 2.6

C be as above. Let {vn } be a relatively compact sequence in M l

(G] such that

v k
fj,
and the closed subgroup (say) H, generated by the centralizer Z(C) of C and

supp /A, is open in G. Let A = \y \

m < kn }. IfA/C is relatively compact then so is A.

Proof. Let A/C be relatively compact. If possible, suppose that A is not relatively

compact. That is, there exists a subsequence of {i/ n }, denote it by same notation, such

that {i/n } is divergent, where l(n) < kn for all n. Passing to a subsequence if necessary,

we get that v n i/ (say). Let TT : G G/G be the natural projection. Since {n(v}
n

\

n e N} C ?r(A) which is compact, G(TT(I/)) is compact. Also, since {v
n

|

n G N} C 7^,

by Theorem 2.4 of [S4], suppi/ Cxl(fji) =/(/x)jc, for any x E suppi/. Since A/C is

relatively compact, there exists a sequence {xn ,
m } in C such that {vxn

,
m } is relatively

compact and {xn^} is divergent. Also since zA ^ (resp. z/J
n+1 >

//i/
=

z//x) the

above implies {x^v**-*} (resp. {^>^"
t
" 1 ~m

}) and hence {*~X"*n,m} (resP-

{Jcn,ii
z/

n'

l+l
-l'i,w}) is relatively compact. Now by Proposition 2.5, (;tn ,

m}/(Z(^)nC)

(resp. {jcrtiW }/(Z(/zz/)n C)) is relatively compact. As Z(fj) HZ(//z/)
=

Z(/z) n Z(i/), the

above implies that {jcnjm}/(Z(^) nZ(i/) n C) is relatively compact. Without loss of

generality we may assume that {*n ,
m } C C1 =

Z(/x) n Z(i/) n C, which is a vector group

centralizing G(i/) and // . Therefore, //' = Z(C') contains /Y and hence it is an open

subgroup in G containing supp p, and supp v. We may also assume that xn ^\
= xn^n

= e for

every n as {v n } and {v%} are relatively compact.
Let n G N and let 1 < m < kn . From Theorem 2.2, v(H!

) > S > and hence

vxn
,
m (H'} > S. Since {^xn

,
m } is relatively compact, there exists a compact set L C //',

such that z/xn?m (L) > <5/2. Let < < min{<5/2, 1/4}. There exists a compact set

K C suppjii such that n(K) > 1 - e. Let (7 C H' be such that U is open in G. Then there

exists N, such that for all n > N, zA (KU) > 1 - e. Let n > N and let 1 < m < kn . Then

there exists {yn ,
m } c G, such that i/^y^KU) > I - e. Since e < (5/2, KUy~

{

mr\

Ijc~l ^ 0. That is, y'l e ^^, where K' = (KU^L C //' and hence i/JX^i) >
1 - e and each jc

rt)m
commutes with all the elements of K\ = KUK' C H'. Now for

mj<kn such that m + /< n , we get that i/^'^^^jc^
1

)
>

(1 -c)
2

. Since
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> 1 - and e < 1/4, we get that Kix^+l
nK^K^ 0. Theref.

K\K]~
l H C'. Since C is a vector group, C" is strongly root compact

3.1.12 of [H] and hence by the definition of strong root compactness (see 3.1.10 of [I

there exists a compact subset K" such that xn
,
m E K", for all m, n. This is a contradict:

to the fact that {xn^} is divergent. Therefore A is relatively compact. This completes

proof.

Let A M 1

(G). For some a = (n , /i ,
. . .

, r^/m ), where m N, and r,-, // e N U
-|

fixed, let a(A) = An A
'

. . . \rmX
m

, where A = A = 6e . For any such a, the map A H-> a

on M*(G) is continuous. Also, G(A) = (Ja suppa(A) (over all possible choices of a

above).

Proof of theorem 2.1. Without loss of generality we may assume that {z/ n } is converge

that is i/ n > v (say). From the hypothesis, G(TT(Z/)) is compact, and hence by Theorem ^

?r(A) is relatively compact. It is enough to show that A is relatively compact as

Theorem 3.6 of [SI], there exists x such that xp,
=

pjc is embeddable.

Step 1. Let K be the maximal compact normal subgroup of G, then K is characteristic

G and hence normal in G. Since A is relatively compact if and only if its image on G

is relatively compact, without loss of generality we may assume that G has no nontrr

compact normal subgroups. In particular, G is a Lie group. Let L be any open

protective subgroup of G. LetM be any compact normal subgroup of L such that L/M
Lie group, then GM = G x M, a direct product, as both G and M are normal in L \

G flM = {e}. Moreover H = GM is an open subgroup in G. Since /(//) is comp;

without loss of generality, we may assume that /(/x) normalizes H.

Step 2. Now we prove the assertion by induction on the dimension of the Lie group
Let dim G = 0. Then G is totally disconnected and the assertion follows from abc

Now suppose that for any k > 1, the assertion holds for G such that dim G < k. Now

Step 3. Suppose that there exists a subsequence of {v n }, denote it by {vn } again, s

that
{z/Jj}

is divergent. By Theorem 1.2.21 of [H], there exists a sequence {xn } C G, s

that {!/*} and hence {x~
l v k
j~

ln

} and {x~
l^xn } are relatively compact and we r

assume that {xn } is divergent. Since TT(A) is relatively compact, {n(xn )} is relath

compact in G/G and hence we may choose {;cn } to be in G.
Without loss of generality we may assume that the subgroup N, as in the hypothesi

the nilradical. Suppose that N is trivial. Then G is a connected semisimple grc

Suppose that the center of G is trivial. Then G is an almost algebraic subgrouj
GLn (R). By Propositions 4-6 of [Ml], there exists a proper closed subgroup G

r

of

such that given any relatively compact sequence {zn} C G, the limit points of {xnznx

are contained in G'. Now since G C G((j), there exists an A: e G(/z) n (G \ G'). Si

G\G' is open in_G, there exists a set U which is open in G such that x
U C G \ G and U is compact. Then for some a = (n, /i, . . .

,
rm ,

Zm ),
we have

a(/i)(t/Af)
= 6 > 0, as UM = U x M is open in G, for a compact group M as ab<

Since a(iA)
-

a(/z), a(iA)((7M) > 5/2 for all large n. Now since {x~
l vk

n
nxn

relatively compact, so is {x~
l

a(v%)xn }. Therefore, there exists a compact set K such

(x-
l

a(v
k
n )xn)(K) = a(v

k
n )(xnKx-

1

} > 1-6/4 for all n. From the above equa
UM n xnKx~

l ^ 0, for all large n. Therefore, there exists a sequence {an} C K, such



Triangular systems of measures 55

for all large n, xnanxn
1 = unvn , where un U and vn G M and hence xnanvn

lxn
l = un .

For each n, put zn = ^v" 1

, then since jcn ,
ww G, zn G. Also {zw } C KM is relatively

compact. Therefore the limit points of {xnznx~
l = wn } belong to G'. But {wn } C U and

17 C G \ G', a contradiction. Therefore, A is relatively compact.

Step 4. Now suppose G is a semisimple group with nontrivial center Z. Then Z is a

discrete group normal in G and Z = Zn
, for some n, as we have assumed that G has no

nontrivial compact subgroups normal in G. The action of G on Zn
extends to the action of

G on R/1

. Therefore, we can form a semidirect product GI = G R/1

. Let D =
{(z,z) |

z G Zw
}. Then Z) is normal in GI. Now G can be embedded as a closed subgroup in

G2 = G\/D and G = (G x Rn
)/D. It is easy to see that the center C of G\ is

isomorphic to Rrt

. Also, C is normal in GI and G^/C is a semisimple group with trivial

center. Let ^ : G2 > Ga/C be the natural projection. It is easy to see that G(^(/x))

contains G^/C, the connected component in G2/C, and hence by the above argument,

^(A) is relatively compact. Since H centralizes G in G, #' = H x R" = G x M x R"
is open in GI and hence H'/D is an open subgroup in G2 which centralizes C. Now the

assertion in this case follows from Proposition 2.6.

Step 5. Now suppose the nilradical TV of G is nontrivial. Let C be the center of N. Since

G does not contain any compact subgroups normal in G, C is a vector group, i.e. C is

isomorphic to Rn
, for some n. Since N is normal in G, so is C. Let -0 : G G/C be the

natural projection. Then since dimG/C < k, we have that -0(A) is relatively compact.

Now since C centralizes TV x M, M as above, and supp /z and TV generate a subgroup

containing G, the assertion follows from Proposition 2.6.

Remark. Theorem 2.1 continues to hold if the conditions in it are replaced by the

following: iA >
/x, the closed subgroup generated by supp /^ andN is whole of G (where

N is as in the hypothesis of the theorem), {^n}/G is relatively compact and for any limit

point v of it, G(v) is compact in G/G. For the proof, A/G is relatively compact by
Theorem 2.2 and the first three steps of the proof of the above theorem will apply word

for word. Also, for a normal subgroup C in steps 4 and 5 above, Z(JJL) D C is a central

vector group in G by the above condition and hence by Proposition 2.5, the relative

compactness of A/C implies that of A/(Z(/x) n C). Therefore A is relatively compact by
Lemma 3.2 of [SI]. The above variation of Theorem 2.1 generalizes Theorem 3.1 of [SI].

3. Limit theorems on discrete linear groups over R

Theorem 3.1. Let Gbea discrete linear group over R. Let {v n}bea sequence inM 1

(G)
such that z/*n frfor some ^ G M^G) and some unbounded sequence {kn } in N. Then

there exists x G /M, such that XJJL is embeddable.

Remark. So far, in the limit theorems on discrete groups, one had either the support

condition or the infmitesimality condition imposed (see [S4] and Theorem 2.2 above).

The above theorem gives a generalization of Theorems 1.5, 1.7(1) of [S4] for this special

class of discrete groups. It also generalizes Theorem 1.2 of [DM3]. One cannot get an

embedding of // itself or an element x as above to be infinitely divisible as in

G = GL(1, Z) = {-1, 1}, for x = -1, 8X = <^
n+1

, for all n, but 6X is clearly not infinitely

divisible and hence not embeddable.
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To prove the theorem, we need preliminary results.

Lemma 3.2. Let V be a finite dimensional vector space over R. Let {rn } be a diverg,

sequence in GL(V) such that for some b > 0, |det(rw )|
> b for all n. Then there exist

proper subspace W of V such that the following holds: if {p,n } CM l

(V) is such ti

jjin
-> n and {rn (p>n )} is relatively compact, then supp^ C W.

The proof of the Lemma is exactly same as the proof of Proposition 3.2 in [S2] usi

Proposition 1.4 in [DM1]. We will not repeat it here.

PROPOSITION 3.3

Let G be a discrete linear group over R and let
{fj,n } be a sequence converging to p

M l

(G). Let Xn <G Tnn for each n. Then there exist sequences {zn } and {z'n } in Z(JJL) si

that {XnZn} and {z'nXn } are relatively compact and all their limit points belong to T
t

Proof. There exists a sequence {\
r

n } in M*(G), such that XnX'n
= \'n\n = //

-*
//,

Lemma 2.3, there exists a sequence {xn } in G such that {Xnxn } and {xnXn } are relativ

compact and all its limit points are supported on supp ^L. Therefore, by Theorem 1 .2.21

[H], {jc~
l

A'J, {A^~
1

} and hence {x~
{

fj,nxn } and {xn p,nx~
1

} are all relatively compact

z/ is a limit point of {jc~
]

A^} then there exists a limit point A of {Xnxn } such that Azx =

Since supp A C supp ^ = supp A supp z/, supp v C G(IJL). Therefore all the limit points

{x~
[ Xf

n } and also of {x~
l

jjinxn } are supported on G(/z).

Similarly, the limit points of {xn^nx^
1

} are also supported on G(yu), and {x~
l

a(p,n ).

and {xn a(ij,n)x~
l

} are relatively compact and their limit points are supported on G(p),

any a (where a and a(/xn )
are defined as in 2). Also, for any e > 0, there exist

compact set K such that (x~
l

jj,nxn)(K) > 1 e for all n. Now for any limit point ^

{x~
l

fj,nxn }, i(KD G(fj,)) > 1 - e. Therefore it is easy to see that (jc"
1

p,nxn )(K') > 1
-

for all large n, where Kf K n G(/x).

We know that G C GL(n,R) C Af(n,R). Let V^ be the vector space generated

G(/x) in M(n, R). There exists a finite set {vi, . . . ,;ym } C G(JJL) such that {yi ,...,]

generates VM . Since G(/x)
= U^supp a(/x), where a and a(/x) are as defined in 2, th

exist aj, . . . ,am such that j, G supp a/ (/x),
for each i. Therefore, as G is discrete,

some 6 > 0, a/(/x){y/} > 5 for all i. Since a/(/^n )
-+

a/(/z), there exists /V such 1

<*i(Mn){;y/} > V2 ' f r a^ w > ^ for all i.

Now since {j~
1

a/(/^w )jcM } is relatively compact and all its limit points are supported

G(/x), arguing as above we can get a compact set K\ C G(/x), such that (;c~
l

a/(/^)

(/iTi) > 1 - 6/2 for all f, for all large n. That is, ai(^n )(xnK }
x~ }

) > 1-6/2 for all i,

all large n. Therefore, y,- xnK\x~
l

, or x~
{

yiXn K\ C G(p) C VM, for all large n. Si

Vp is generated by {yb . . . ,ym },
the above implies that x"^^ = VM , for all large j

Let G be the Zariski closure of G in GL(rf,R) and let N(V^ (resp. Z(VM )) be

normaliser (resp. centraliser) of VM in G. Then Z(VAl )
and N(V^) are algebraic subgro

of G and Z(VM )
is normal in N(V^). Now A^(VM )

acts on V
;
, linearly and the r

p : N(V^) -+ GL(VM )
is a rational morphism, as in the proof of Theorem 3.2 in [DN

Therefore, the image of p, lm(p) is closed in GL(V^) and since kerp = Z(1

p' : N(V^)/Z(V^) > Imp is a topological isomorphism.
We know that {xn}cN(V^). Now if possible, suppose that {xn}/Z(V^) is

relatively compact. Going to a subsequence if necessary, without loss of generality,
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may assume that {jtn}/Z(VM )
is divergent; i.e. it has no convergent subsequence, and for

some 6 > 0, either Idetp't^Z^))! = |detp(jcn )| > S or |detp
/

(^~
l

Z(V/I ))|
> 6.

Suppose \d&p
f

(xnZ(V^))\
=

|detp(jtn )| > 6 for all n. By Lemma 3.2, there exists a

proper subspace W of V^ such that suppa(/x) C W for all a, as a(p,n )
> a(/x) and

{(p
/

(jcwZ(V/i )))(ce(/^n )) =^na(^n )jc~
1

} is relatively compact. This implies that G(p) =
Ua suppo:(/i) C W, a contradiction as G(fjb) generates V^ and W is a proper subspace.

Now suppose \detp'(x~
l

Z(V^))\> 8. Now using the fact that for every a,

{(p
/

(^-
I

Z(V//)))(a(M)) -x^
{

a(fjLn)xn } is relatively compact and replacing {xn } by

{x~
1

} in the above argument we arrive at a contradiction. Therefore, {xn }/Z(V^) is

relatively compact.

Clearly, N(V^) n G normalizes Z(V^). Let H = (Af(VM )
n G)Z(V^) and let jc H.

Then jc(VM n G)jT
! = VM n G. Let GM be the closed subgroup generated by V^ n G in G.

Then G(/x) C GM and * normalizes G^. Therefore H is a closed subgroup (in G)

normalizing G^. Since G^ is discrete, the connected component H of //, centralizes GM

and hence ff C Z(VM ) C # as VM is_generated by G(^) and G(p) C GM . Since # is

open in H, it follows that H is open in 77. That, is H = H and /f is a closed subgroup. This
'

implies that ((N(VJ n G)Z(^))/Z(V^) is isomorphic to (N(VJ nG)/(Z(VM ) n G).
/ Therefore {jc,,}/Z(/x) is relatively compact as Z(V^) Pi G = Z(/x). Therefore

f JCn
= zw tfn = ^n4' ^or some relatively compact sequence {an } in G and some sequences

f {zn } and {^} in Z(//). Also, since {An;crt } and {xnXn } are relatively compact, so are

&. {Azn } and {^An }, and all their limit points belong to T^ by Lemma 2.4.

Proof of Theorem 3.1. Since iA *
//, by Proposition 3.3, for any m, there exists a se-

} quence {zm ,
n } C Z(/z) such that {z^zm,n} is relatively compact. Passing to a subsequence

)r if necessary, without loss of generality, we may assume that {^ rtzi,n } is convergent,

a with the limit v. Then v G 7^ by Lemma 2.4. Also, for any m, {^ mjW
= z

3f is relatively compact and its limit points are of the form zv = i/z
7

, for some z, z
f

; (cf. Lemma 2.4).

Suppose for any fixed m, the limit points of {vzm,n} are of the form vmzm for some

Dy zm Z(//). Then combining the above two statements, we get that the limit points of

} {^C^SiH-i,*} have^ form vmZmZv = i/
m+1

zm+ i, for some zm+ \ Z(/z). By induction,

sre for any m, the limit points of {vzm,n} are of the form z/
m
zm , for some zm Z(/u).

"or Moreover, by Lemma 2.4, i/
m G 7^, as it is a limit point of {^^Zm,/!^

1

}, for each m. Also

iat suppi/cAT(/i).
Now by Proposition 3.3, {i/

n
}/Z(^) is relatively compact. Therefore G(i/)Z(//)/Z(/z)

on is compact and hence finite of order (say) s, as G is discrete. Let x G supp i/, then

Xn )

Jc
ff

Z(/x). Let /?
= i/

5
z = Zf

*
for z = x~s G Z(//). Then G supp (3 and /3

n G 7^ for all n.

for Therefore by Theorem 2.4 of [S4], supp/3 C /(//) and, furthermore, /3
n ~*

a;//, where

llce
// = G(/3) C /(/x). Hence supp i/ C xH n Hx. Therefore xp,

=
i/y^

=
/xz/

=
//jc, and hence

t
z G /M , for all jc G supp v.

the
Now we show that /x has a shift which is infinitely divisible. Let / G N be fixed. Let

UpS
an [kn /l] and bn = kn ~ lan . Then for any, m < /, i/j

w
i/J-'

lw
. ^ and hence there

nap
exist sequences {z!m

^
n } in Z(^) such that {v^^mn} are relatively compact. Arguing as

,j2],
above, we get that the limit points of

{vfiz!^}
are of the form A{z, for some z G Z(/x) and

I/^
some limit point A/ of {i^J

1

^}. Let r G N be fixed. Since an -* oo, for large n such that

an > r, z/^z
x

, iW

= v r

nZr,n 'yn, where {7^
= z~^

a
n
n
~r

z^n}
which is relatively compact and

not
hence A/ = v r

^ for some 7. Also z^z^ ,= ^S"~
r

^^i |B
. By Proposition 3.3, there exists

e {yn } in Z(/z) such that {f^"~
r
yn } is relatively compact and hence so is {j^^^z

7

^}
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and all its limit points are of the form zV r
for some z' G Z(p) (cf. Lemma 2.4). 1

is, \i = 7'z/
r

,
for some y and hence for /3

= z/*z = z^
5 defined as above, A/ = /

=
ff'ff for some 0, /3". Since this is true for all r, UH G TV That is, XIUH = u;#A/ =

for all /.

For each n, let zn = (^,n)~
1

- Then the sequence {znv
b
n
n
} is relatively compact. Cles

Z?n < / for all n. Let r < / be such that r = fo
njk

for infinitely many nk . Then clearly

limit points of {znv
b
n
n
} are contained in {gi/

r

\

r < /,g G Z(yu)} and hence if p/ is

such limit point then supp p/ C G(i/)Z(/z) C 7^ and p/o;#
= */u;# (resp. u;#p/

=
u>/

where xj 6 Z(/x), where 5 is the cardinality of G(i>)Z(/x)/Z(/z).

Combining the above we get that ^ = Ajp/
=

AJCJ//P/
=

A'JC/(= x/Aj) for s<

*/ 6 supp p/ C 7/x,
for each /. That is, ^ is weakly infinitely divisible. As A/ G

supp A/ C yiG(jj) for some v/ 6 supp A/ C N(^). Since for each /, ^ = A}JC/
and ;c/ G (

Z(ji4), we get that yj G G(i/)Z(/i)G(/i). Hence (y,)* G G(/i)Z(ju), as G(I/)Z(/Z)/Z(AX)

finite group of order 5. Since TM/Z(jLt), is relatively compact, arguing as in Theorem 3

[DM3], we get that F = 7M/G(jit)Z(^) is finite and it obviously consists of c

measures. Also, the above implies that the image of A/ on G = N(fj,)/G(p)Z(p) is

where yz
=

v/G(/x)Z(^) in G' and J/
5 = e, the identity in G'. Let # = {7 F

\ Y
for some r N}. Since F is finite, so is B and there exists an element of maximal c

in B; let i be the maximal order. Then 7
l! = 6e for all 7 E B. Since the image of >

N(^)/G(/x)Z(/i) belongs to B, we have that supp A? C G(ju)Z(/z), for all /. Now for

m, let j9m = Afjm , where p,
=

Ajj^j, for some x 7M . Then /i
=

/3%x and supp ^m C <

Z(/x). Also, since supp ^m c vG(/x) for some vsupp/3m , v = zy'=yz, for s

y G(M),z G Z(/x). Then^ = z~% = ^z" 1
is supported on G(/x). Also, ^ = /9J

(/yjVoc = (jfli.ry, where jc
7 = z"

1* 7^ n G(/x) as supp/3^ C G(M). That is,

weakly infinitely divisible on G(ju). Moreover, from the above equation, we have

{#i}/z/*
is relatively compact, where ZM = G(/^)nZ(/z) is the center of G(

[DM3], Theorem 2.1). In fact, {/3'mzm} is relatively compact for some sequence {zn
ZM . Let im = /3

f

mzm . Then (im )

m = ( ŵ )

w^ and hence M = (Ym )

m
xm for some .

1^ n G(/j), for all m. Now ify is a limit point of{^ then (7' )

n
G TM for all n and h<

as earlier, supp 7' c x7(/x)
=

7(/z)jc, for some jc G 7M n G(. Since (7M n G(//))/i
finite (cf. [DM3], Theorem 2.1), if a is its cardinality then supp (i)

a C zl(p)
= /(M)

some z G ZM . Therefore limit points of {(7^)*} are supported on zl(p)
=

7(//)z, z <

Let 7m = (yani )

a
. Then //

=
^am,

where jcflm -G 7M n G(/A). Let {7Cm } be a conve:

subsequence of {7^1} converging to 7, Then from above, supp 7 C z7(/x)
=

7(/x).

some z G ZM . Therefore, for each m, replacing %m by 7Cwz~
1

(and using the same :

tion), we get that /z
=
7^ym , ym G 7^ n G(p) and 7Cm 4 7 and 0(7) C 7(/x), whi

compact. Also {ym}/ZM is finite, and hence passing to a subsequence again, we
assume that y = o4 = 4a where ^e7M nG(/i) and 4ZM . Therej

^4 = a V = M^'
1

- Now applying Theorem 2.2, we get that A = {7^ |

n <

and (4} are relatively compact. Now if /? is a limit point of{} then a" 1

]^
=

(3.

some z
7

G Zp. Since for all m, cm = /!, where /m -> oo, any w divides cm for all larj

Also since A is relatively compact, it is easy to see that ft has an n-th root in A, na]

anyjimit of the sequence {^/n
}. Therefore, y/x = /3 is infinitely divisible in the con

set A, where y = (z
7

)
V 1 G 7A n G(/^). Now as in the proof of Theorem 3.1.32 oJ

y^ is rationally embeddable, i.e. there exists a homomorphism/ :

Q^|_
-> M 1

(G) sue!

/(]0, 1[HQ+) C A is relatively compact and /(I)
=

/z. Now since G is discrete

compact connected subgroup of G has to be {e}. Therefore, as in the proof of The
3.5.4 of [H],/ extends to R+ and hence yp, is embeddable.
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4. Infinitesimally divisible measures on algebraic groups

We first recall that an element s, in a Hausdorff semigroup S with identity e, is said to be

infmitesimally divisible if for every neighbourhood U of e in S, s has a ^/-decomposition,

i.e. there exist 5-1, . . . ,sn G U such that s/'s commute and s = s\
- - sn . The following

theorem generalizes Theorem 1.2 of [S3] in a certain sense.

Theorem 4.1. Let G be a real algebraic group and let
fji G M 1

(G) &e infmitesimally

divisible in M*(G). TTz^n f/zere exist a closed semigroup S C M 1

H (G), with identity ujH for

some compact subgroup H of I (IJL),
and an equivalence relation ~, such that

IJL G 5 tm<f /
p : S * S* S/ ~ is the natural map then P(IJL) is bald and infmitesimally divisible in S*,

and
Tpfa)

is compact and associatefree in S*. Moreover, if G is connected and nilpotent

then
IJL

is embeddable.

Before proving the above theorem, we define an equivalence relation on a certain kind

of subsemigroup of M^G), for any locally compact (Hausdorff) group G. For a

/xGM^G), let
Sfj,

be the closed subsemigroup generated by TM in M l

(G). Since

rM C M l

(N(p,)), 5M C M I

(N(IJL)). In fact, for any A E TM, supp A C JcG(/Lt), for some

x G supp A C N(p,). Therefore, it easily follows that for any /3 G 5M, supp /3 C xG(p,) 9 for

any x G supp/3 C N(p). We also know that Z(/x) CT^cS^ andZQu)^ = TMZ(/x) = 3^.

Let us define an equivalence relation
*'

on 5M as follows: for any

/?, A G S^, /3 A if /?
= zA for some z e Z(/x).

For {/?}, {An } C 5M , suppose /3n An ,
i.e. /3n

= zwAw for some zn G Z(/z), for each n.

Now if /3W -^
/3 and An > A, then we have that {zn } is relatively compact and for any

limit point z of it, z G Z(p) and = z\. Therefore, /3 w A.

Now for A G 5^, for any fixed jc G supp A, supp (Ax"
1

) C G(/u). For any z G Z(/x),

z
7 = xzx~

l G Z(ju) as Z(p) is normal in A^(/x) and hence

\z = (\x-
l

)xz
= (A^-

1

)^ = ^(Ax"
1

)^
= z'A.

Similarly, one can also show that z\ = Az", for some z" G Z(^).
Now for f G {1,2}, j9|, A,- G 5M , let/3,- A/, i.e. there exist zz

- G Z(/z), such that fa = ztXt,

Then from the above equation, fa fa = z\X\Z2\2 = ZiZ^i^2 f r some 4 Z(M)- That is,

fafa & Xi\2. Let
ij}

: 5M > S* = 5^7 be the natural projection. Then if)
is a continuous

open homomorphism and it is also easy to show that 5* is Hausdorff.

In case of a real algebraic group G, we define an analogous equivalence relation
'

with respect to Z(/^), the connected component of the identity in Z(/A), i.e. for /?, A G 5M ,

/3

' A if /3
= zA, for some z G Z(^). It is easy to verify as above that this is an

equivalence relation using the fact that Z(/z) is normal in

Proof of Theorem 4.1. Let G be a real algebraic group and let /^ be infinitesimally

divisible in M l

(G). Since G is metrizable, so is M l

(G).

Step 1. Let Sp,
wx

, 5* and ^ : 5M 5* be as above. Clearly, SM and 5* are second

countable and ^(/x) is infinitesimally divisible in 5*.

Since G is algebraic, by Theorem 3.2 of [DM2], rM/Z(^) is relatively compact.

Clearly, ^(rM ) C r^j. Now for any {AB }.C rM, there exists a sequence {zn } C
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such that {XnZn} is relatively compact and hence {i/>(Xn )
=

i/>(Artzw )} is also relatively

compact. Since 7)tZ(^) = 7^, {Xnzn } C T^ and the above implies that ^(T^) is compact

Since /x is infmitesimally divisible so is ?/>(/x)
in 5* . We can choose a neighbourhood

basis {//}/N of 6e in M 1

(G). For any f, there exist /x/i ,
- .

, Mm, I// H TM , such that /^-s

commute and /x
=

/XH -/x^.. Therefore T/J(^)
=

^(/x/i) -i/K^m,) is a ^(f//)-decom-

position of ib(/x) in ^(7^). Let A =
(Mu)?eNj=i

and <KA )
= MttV^Nj-i- Then A

(resp. ^(A)) is a commutative infinitesimal triangular system in SM (resp. in 5*)

converging to p, (resp. ^>(/x)). In fact, IJL
=

HjLifrj
and ^(/x)

=
nji

Step 2.. Since / is open in
7^, one can choose U and W to be neighbourhoods of

I^Jp,

such that U = (i/ e M 1

(G) | i/C/J/^) V) > 6}, for some 6 > 0, U D 7^ =
7J^,

for

some relatively compact neighbourhood V of e in G and WW C /. Now let A S^H
17 \W be such that <0(A'

Z

) 7^) in 5* for all n, then /x
= \nv n = z^A

n
,
for some i/ rt , i^

in 5^ for all n. Then the concentration functions of both A and A do not converge to zero.

Since A commutes with /x, as in the proof of Theorem 2.4 of [S4], supp A C *7(/x)
=

I(n)x9 for some x G supp A C /^ n U. i.e. A 6
/jjj^,

a contradiction as A ^ W. Now as in

the proof of Lemma 2.5 in [S4], there exists n such that for any m >
, ^(/x) cannot be

expressed as ^(^) = ^(Ai) V7(Am)^(^), where -0(A/)s commute with each other and

also with ^&(i/) for any A/ S^ n 17 \ W, for all
jf.

Since /M C 7^, T/;(/M ) is compact. Let ^ =
^(^M)- T116111 ^ is a compact semigroup

and i/>(U n SM)
and ^(W n S^) are neighbourhoods of K in 5* .

Since ip(^) is a limit of a triangular system as above, as in Lemma 2.6 of [S4], given

any neighbourhood U' of K in 5* , one can choose small neighbourhoods U and W as

above such that ip(U n S^) C t/
7 and show that there exists a ^/'-decomposition of ^(/x)

in ^(T^,), namely, ^(^) = ^(/X])
-

"0(/xn ), where each ^(/x,-) /' is a limit of a sub-

system of

3. Let {U'n } be a neighbourhood basis of K in S* such that U'n+l C I/^ for all n and
= ^. Now let ^(M) =7i *7/i he a

/{ -decomposition of ^(/x) in ^&(TM )

obtained as above. Given any t/^-decomposition of ^(/x) as ^(/x)
= i/

1

- i/ r , i//
= n/6ytf

^(^(i)/)' where U/J// = {!,..., %(/)} we get ^+rdecomposition of each i// in such a

way that i//
= i/n

- i/
/n/ , i/ //K C/J+I , where i//m i^w = i/w i//m , for all /,m,p, ^, and all

the i//w are limits of a subsystem of
(^(/^(*+i)(iy)) where {(* + l)(i)} is a subsequence of

{*(/)}. Clearly ?/>(/x)
=

n/,m z//m is a U'k+l
-
decomposition for ^(/x).

For each fc N, let Aft be the subsemigroup of 5* generated by ^-decomposition
obtained in above manner. Then each Mk is abelian, /x M* and M* cM*+i- Let

M = \JkMk and let A:
7 = K nM =

^(I^J^HM. Then Af (resp. ^) is a closed (resp.

compact) abelian semigroup. Also, given any neighbourhood U' ofK' in M, there exists a

neighbourhood 7" of K in 5* , such that U" nM C (/. Hence /x has a ^/'-decomposition
in M for every neighbourhood U1

of #'.

4. We now show that T^ is compact in M . Let 17, \ and V be as in Step 2. Let

i/ G SM be such that ^(i/) 7^) in M . Now /x
= i/i/ = i/V for some i/, i/

7 SM .

Arguing as in Step 2, there exists n (which does not depend on the choice Qfip(iS)

such that for any m > n, t/?(i/) cannot be expressed as $(v) = -0(Ai) ^(Am)^(/3) in

for AJ Sp H 17 \ W, for all 7, and V>(A/)s commute and they also commute with ^(/3).

Here, ^(v) is a limit of a commutative A"'-infinitesimal triangular system in M, i.e.
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^(i/) =lim/- (jon?i 1 V'(^o') for some
j^O' V Again arguing as_in Step 2, ^(*/)

=

^(z/i)
- -

7/>(z/n )
for ^(z/0 G r^) n ^(Z7 \ W). That

is,j&(i/) (^(17 \ W)
n

. Since n does

not depend on the choice of ^(ii) in 7^), 7^) C (^(^ \ W))"- Hence it is easy to show

as in the proof of Lemma 2.1 of [S4] that 7*^) is relatively compact.

Step 5. Let J = ^(J^) n M. Then 7 is a compact semigroup and there exists a maximal

idempotent h\ in 7. Then 7' = Jh\ is a group. Let // = {x G /(^) | ^(x)h\ G 7'}. It is easy

to check that H is a compact group. Let h = UH and let /z* = ^(u;//). Then 7/z* = J'h* =
/** and #" = K'h* = (^) fiM)/i*, which is a compact group. Let M* = Aft*. M* is a

closed abelian semigroup with identity h* and ^" C M* C M. Now if 17 is a neigh-

bourhood of K" in M* then there exists a neighbourhood /' of ^' in M such that

[/'/z* C t/, and hence if V>(M)
= AI An is a ^/'-decomposition of ^(/x) inM , then since

p,=z Hh = nh
n

, il>(fjt)
= AI Xnip(h

n
) and hence t/^/z)

= AI/Z* A,./z* is a /~decom-

position of -0(/i) in M*. Now we define an equivalence relation ~' on M* as follows: For

A, z/ G M*, A ~' i/ if A = kv for some & G K" .

Let S* M^ I
~' and let : Af* S* be the natural projection and let p = (/>

o ^. Then

5* is a Hausdorff abelian semigroup with identity <t>(h*\ p~
l

(S*)=S is a closed

semigroup in M 1

H (G), the relation ~ is defined by p on 5, each p(\) in Tp(^ is inifinite-

simally divisible in 5* and by step 4, J^) is compact. Now if a, b G T
p^ are associates

then = a'b and fc = b'a. Let /?,/?' 5i be such that p(/3)
= b and 'p(/3')

= bf

and

p(7)
= a', then since b = fcVfc, ^(/3)

=
fa/;(/3')'0(7)'0(/3) for some ^ X" and hence

^
^V(/3)

^or^ w - AS in step 2, supp /3
X C Jt/(/3)

=
/(/3)jc, for some x 7M , and since

= fc' is infinitesimally divisible, it is easy to show that x G
/^-

Therefore b' is

identity in 5* and b = 0, i.e. 7^) is associatefree.

Now if /3 G 5M be such that p(/3) G T^,^)
is an idempotent then tjj(/3)

n
G

r^,(M )
for all n

and hence as in step 2, supp/3 C xl(^) = I(^L)X for some x G 7^. Since p(/3) is also in-

finitesimally divisible in S* one can easily show that x G
/^

and /3
=

jco;///
= UH'* for some

//' C /(^) and hence ^(/3) G K" and hence p(/3) is identity in 5*. Therefore P(IJL) is bald.

Step 6. Now let G be connected and nilpotent and let Z be the center of G. Then G/Z is

simply connected and hence so are N(Z(fj))/Z and N(Z(^))/Z(JLL), where 7V(Z(/x)) is the

normaliser of Z(/x), and both of them are connected. Therefore, 7^
=

Z(/i) as 7
/z/Z(/x) is

compact. Hence, in the above equation K" /i* and ~' is a trivial relation, i.e. 5* = M*
and also p = i>.

Now we show that for s G 7^) \ ^(A) in 5*, there exists a continuous 5-norm/5 on Ts

(in 5*) such that fs (s) > 0, (an ^-norm on 7^ (in S*) is a map /5 : Ts * R+ which is

continous at the identity and it is a partial homoporphism, i.e.fs (s\S2) =/?Csi) +^(^2) if

$i, 52, 5i^2 G Ty). This would imply the embedding of
t/>(ju)

in a continuous real one-

parameter semigroup {7r}, R in 5* (cf. [S3], Theorem 2.3 or [S4], Theorem 4.1) and in

particular, /x
= \n

nxn xn G Z(/I)
= Z(/i).

Let A G iS

1

be such that ^(A) = s. If A is not a translate of an idempotent then as in the

proof of Theorem 5.1 in [S3], there exists a continuous A-norm f\ on S such that

/A (A) > 0, (it is easy to see that one does not need the underlying semigroup to be abelian

in that proof). Moreover, if ^(v\) = ^(1/2) then v\ = z/ 2* for some x G Z(/x). Then

v\v\ = v 2V2 and/A(^i) =/\(^2) (see the proof of Theorem 5.1 in [S3]). Therefore, we
can define a .s-norm/j on Ts in S* such that fs (ijj(v)) =/A(/^). Now if A is indeed a

translate of an idempotent, i.e. A = XLUK = UKX for some compact group K C 7(/z) C Z,



62 Riddhi Shah

then clearly ;c G /M
=

Z(p.) and hence s = ^(A) is an idempotent. Now since ^(/x) is bald

s = tp(h) y a contradiction.

The embeddability of ^(fj) in particular implies that T/>(^)
= ^(Xn )

n
y and hence

^ = A%, jcn G Z(/Lt) for all n. Therefore, supp X
n
n C GO)Z(/x). Here, supp Xn C yn G(p.)

for some yn suppAn C N(p,). Therefore, 3^ G G(/z)Z(jLi) C G(//)Z(/x), where G( is

the Zariski closure of G(/x). Since N(fjL)/G(p,)Z(iJ,) is simply connected, yn G G(/x)Z(/x)

for all n. That is, for each n, supp Art C G(/^)Z(/x) and hence An
=

/3nzn for some

zw G Z(p) and supp /? C G(^) and /i
= /34, where 4 =

zjjxn G Z(/x). Now we have that

z'n G C =
G(/z) H Z(ju), which is the center of G(^). Therefore, CZ C Z(p) is an abelian

algebraic subgroup containing the center Z of G. Therefore CZ is connected, and hence it

is divisible. In particular, each z'n is infinitely divisible in CZ, and hence
//,

is infinitely

divisible on G which is a connected nilpotent Lie group, therefore
fj,

is embeddable

(cf. [BM]).

Remark. As remarked in [S4], Theorem 4.1 also holds for p, G M 1

H (G] which is

infinitesimally divisible in Af^(G).
We now state the following theorem for maximally almost periodic groups without a

proof. A locally compact group G is said to be maximally almost periodic if its

irreducible finite dimensional unitary representations separate points of G.

Theorem 4.2. Let G be a maximally almost periodic first countable group. Let A be a

commutative infinitesimal triangular system of probability measures converging to
\i>

in

M 1

(G). Then there exists an x G G such that xp,
=

//jc is embeddable.

If G is as above then there exists a normal vector subgroup V, such that G/V is

compact and V centralises an open subgroup of finite index in G (cf. [RW], Theorems

1, 2]. The above theorem can be proven using the above fact, Proposition 2.5, Lemma
2.4, Proposition 3.3 and Theorem 4.2 of [S4] and the techniques developed above.
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Abstract. Universal C* -algebras C* (A) exist for certain topological
*
-algebras called

algebras with a C* -enveloping algebra. A Frechet
*

-algebra A has a C*-enveloping

algebra if and only if every operator representation of A maps A into bounded

operators. This is proved by showing that every unbounded operator representation TT,

continuous in the uniform topology, of a topological
*

-algebra A, which is an inverse

limit of Banach *
-algebras, is a direct sum of bounded operator representations,

thereby factoring through the enveloping pro-C*-algebra E(A) of A. Given a C*-

dynamical system (G,A,a), any topological *-algebra B containing CC (G,A) as a

dense *-subalgebra and contained in the crossed product C*-algebra C*(G,A,a)
satisfies E(B) = C*(G,A,a). If G = IR, if B is an a-invariant dense Frechet *-

subalgebra of A such that E(B) = A, and if the action a on B is m-tempered, smooth

and by continuous
*

-automorphisms: then the smooth Schwartz crossed product

5(R,B,a) satisfies E(S(U,B,a}} = C*(lR,A,a). When G is a Lie group, the C-
elements C(A), the analytic elements CW (A) as well as the entire analytic elements

CeuJ

(A) carry natural topologies making them algebras with a C* -enveloping algebra.

Given a non-unital C*-algebra A, an inductive system of ideals Ia is constructed

satisfying A = C*-ind lim/a ;
and the locally convex inductive limit ind lim/a is an m-

convex algebra with the C*-enveloping algebraA and containing the Pedersen ideal KA
of A. Given generators G with weakly Banach admissible relations R, we construct

universal topological *-algebra A(G, R) and show that it has a C*-enveloping algebra if

and only if (G,/?) is C* -admissible.

Keywords. Frechet *-algebra; topological *-algebra; C*-enveloping algebra;

unbounded operator representation; O* -algebra; smooth Frechet algebra crossed

product; Pedersen ideal of a C* -algebra; groupoid C* -algebra; universal algebra on

generators with relations.

1. Statements of the results

In [5], a functor E has been considered that associates C*-algebras E(A) with certain topo-

logical *-algebras A, called algebras with a C*-enveloping algebra. By a classic construc-

tion due to Gelfand and Naimark, a Banach *-algebra A admits a C*-enveloping algebra

C*(A) = (A) ([14], 2.7, p. 47). By ([15], Theorem 2.1), a complete locally m-convex
*

-algebra has a C*-enveloping algebra if and only if it admits a greatest continuous C*-

seminorm. The following extrinsic characterization of such algebras has been motivated

by the simple observation that any *-homomorphism from a Banach *-algebra into the
*

-algebra of linear operators on an inner product space maps the algebra into bounded

operators.

65
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Theorem 1.1. Let A be a Frechet
*

-algebra. Then A is an algebra with a C*-enveloping

algebra if and only if every
*

-representation ofA is a bounded operator representation.

The above theorem is false without the assumption that A is metrizable (see

Remark 4.4). By a ""-representation (TT, >(TT),#) of a *-algebra A [37] is meant a homo-

morphism TT from A into linear operators (not necessarily bounded) all defined on a

common dense invariant subspace >(TT) of a Hilbert space H such that for all x in A,

7r(jc*) C TT(*)*. In the general theory of
*

-algebras, following Palmer [24], A is called a

BG* -algebra if every *-homomorphism from A into linear operators on a pre-Hilbert

space maps A into bounded operators. The absence of a complete algebra norm on a non-

Banach *-algebra A indicates that A may contain elements that fail to be bounded in any

natural sense. Hence an appropriate framework for the representation theory of A is that

of unbounded operator representations. However, this natural point of view was

developed rather late, following [30,20]. Prior to (and later, in spite of) this, bounded

operator representations of A have been investigated in detail, especially when A is a

locally w-convex *-algebra, i.e., A = proj limAQ , the inverse limit (also called the

projective limit) of Banach "-algebras [9, 15], (see [16] for a summary of bounded

operator representations of A). In fact, such an A, when *-semisimple, admits sufficiently

many continuous irreducible bounded operator representations [9]. Then the enveloping

pro-C*~algebra (projective limit of C* -algebras) E(A) of A, discussed in [10], [19] and

[15], turns out to be E(A) = proj lim E(Aa ), E(Aa )
= C*(Aa ) being the enveloping C*-

algebra of the Banach *-algebra Aa ([15], Theorem 4.3). Thus A has a C" -enveloping

algebra if E(A) is a C*-algebra. By the construction, E(A) is universal for norm-

continuous bounded operator representations of A. Theorem 1.2, to be used to prove
Theorem 1.1, shows desirably that E(A) is also universal for representations into

unbounded operators. The uniform topology ([37], p. 77, 78) on an unbounded operator

algebra is defined at the end of this section.

Theorem 1.2. Let A be complete locally m-convex *

-algebra. Let (TT, >(?]-), #) be a

closed "-representation of A continuous in the uniform topology on ?r(A). Then there

exists a unique
*

-representation (a,D(o),Hff ) of E(A] such that the following hold.

(1) Ha = H
(2) As a representation of E(A), a is closed and continuous in the uniform topology on

a(E(A}).

(3) a is an 'extension' of TT to E(A) in the sense that for all x in A, (croj)(x)
=

TT(JC),

j : A -> E(A) being the natural map, jf(jc)
= ;c + srad (A), srad (A) denoting the star

radical of A.

(4) On the unbounded operator algebra ?r(A), the uniform topology r (A)
is a (not

necessarily complete) pro-C* -topology which coincides with the relative uniform

topology r ((A))
from a(E(A)).

COROLLARY 1.3

Let TT be a closed irreducible
*

-representation ofa complete locally m-convex
*

-algebra A
continuous in the uniform topology on ?r(A). (In particular, let A be Frechet and IT be

irreducible). Then TT maps A into bounded operators.

AO*-algebras (abstract O*-algebras) [36, 37] provide the unbounded operator algebra
analogues of C*-algebras. Starting with a topological (not necessarily m-convex)
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"-algebra A, one can construct an enveloping A0*-algebra O(A) universal for
*

-representations continuous in the uniform topology, and declare A to have a C*-

enveloping algebra if the uniform topology on O(A) is normable. On the other hand, by

modifying the construction in [15], the pro-C*-algebra E(A) can also be considered as the

universal object for norm-continuous bounded operator
*

-representations of more general

locally convex, non-m-convex, *-algebras A. In general, the completion of O(A) differs

from E(A). For a barrelled A, O(A) is normable implies that E(A) is a C*-algebra, but the

converse does not hold. In the present context, the following shows that both the

approaches are consistent in the metrizable case.

Theorem 1.4. Let A be a Frechet ""-algebra. Then the pro-C* -algebra E(A) is the com-

pletion of the AO* -algebra O(A}. Thus O(A) is normable if and only ifA is an algebra

with a C* -enveloping algebra.

There are several situations in C*-algebra theory in which topological
*

-algebras arise

naturally [27]. Enveloping C* -algebras provide a standard method of constructing C*-

algebras; and frequently, lurking behind such a construction is a topological
*

-algebra B
such that E(B) = A. Let a be a strongly continuous action of a locally compact group G
by

*

-automorphisms of a C* -algebra A. The crossed product C*-algebra C* (G, A, a) is the

enveloping C*-algebra of the Z^-crossed product Banach *-algebra L l

(G,A,ct). If B
is a topological *-algebra such that CC (G,A) C B C C*(G,A,a) and CC (G,A) is dense

in B, then E(B) = C*(G, A, a). Let G be a Lie group. Then the *-subalgebra C(A) of

C-elements of A is a Frechet *-algebra with an appropriate topology such that

(C(A)) = A. The '-algebras CW (A) and Ceu
(A) consisting of analytic elements and

entire elements of A are shown to carry natural topologies making them algebras with

C*-enveloping algebras. We also consider the smooth crossed product [29,34]. For

simplicity, we take G = R, and prove the following.

Theorem 1.5. Let a be a strongly continuous action of R by
*
-automorphisms of a

C*-algebra A. Suppose that B is a dense Frechet *-subalgebra ofA satisfying thefollowing.

(a) A has a bounded approximate identity contained in B and which is a bounded

approximate identity for B.

(b)E(B)=A.
(c) B is a-invariant; and the action a of R on B is smooth, m-tempered and by

continuous
*

-automorphisms of B.

Then the smooth Schwartz crossed product 5(R,B, a) is a Frechet ""-algebra with a

C*-enveloping algebra, and E(S(R, B, a)) = C* (R, A, a). Further, if the action ofRonB
is isometric (see 5), then the L1

-crossed product L
1

(R, B, a) is also a Frechet
*
-algebra

with a C* -enveloping algebra, and E(L
l

(R,B,a)) = C*(R,A,a).

It follows that E(S(R, C(A), a) = C*(R, A, a). In particular, if a is a smooth action

of R on a C -manifold M, then (S(R, C(M), a) = C*(R, C(Af), a), the covariance

C*-algebra of the R-space M.
For a locally compact Hausdorff space X, let 1C be the directed set consisting of all

compact subsets ofX. ForK /C, let CK (X) = {/ CC (X) : supp/ C K} 9 CC (X) denoting
the compactly supported continuous functions on X. It is well known that {C#(X) :

K e JC} forms an inductive system; and Co(X) = C*-ind limC^(X) (C*-inductive limit),

CC (X)
= ind HmC^(X) (locally convex inductive limit). Further, CC (X) with the locally
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convex inductive limit topology is a complete locally w-convex Q-algebra and

E(CC (X))
= Cb(X). The following provides a non-commutative analogue of this. We

refer to the last paragrapgh in this section for the relevant definitions pertaining to

topological algebras.

Theorem 1.6. Let A be a non-unital C* -algebra. Let KA denote its Pedersen ideal For

a G K%, let Ia denote the closed two sided ideal of A generated by aa*. Let Ky =

\]{Ia :aeK%}. Then the following hold.

(1) {Ia : a G K%} forms an inductive system, A = C* - ind lim{/fl
: a G KA }, and

Kn

A
c = ind lim{/a : a E K+}.

(2) Ky with the locally convex inductive limit topology t is a locally m-convex Q-algebra

satisfying E(K
n

A
c
]
= E(KA )

= A.

(3) IfA has a countable bounded approximate identity, then (K, t) is an LFQ-algebra.

In general KA ^ Ky, though KA C Ky. Now KA has been interpreted as a non-

commutative analogue of CC (X). Then Ky may be interpreted as continuous functions on

a non-commutative space vanishing at infinity in 'commutative directions' and having

compact supports in 'non-commutative directions'. This interpretation is suggested by the

remarks preceeding ([28], Theorem 8).

The universal C*-algebra C*(G,R) on a C*-admissible set of generators G with

relations R provides another method of constructing C*-algebras. Motivated by some

problems in C* -algebras, Phillips introduced more general weakly C* -admissible

generators with relations (G,R) leading to the construction of the universal pro-C*-

algebra C*(G,7?) on (G,R} [21]. In 8, we construct a universal topological "-algebra

A(G,jR) on (G,/?) with weakly Banach admissible relations R, and prove the following.

Theorem 1.7. Let (G,R) be weakly Banach admissible.

(1)

(2) A(G,R) has a C* -enveloping algebra if and only if(G,R) is C* -admissible.

The paper is organized as follows. Proofs of Theorems 1.1, 1.2 and 1.4 are presented in

3. The preliminary lemmas and constructions in the locally convex, non-m-convex set

up more general than in [5], are discussed in 2. Section 4 contains a couple of remarks

including some corrections in [5]. The smooth crossed product is discussed in 5

culminating in the proof of Theorem 1.5. Section 6 contains the proof of Theorem 1.6.

This is followed by a brief discussion on the C*-algebra of a groupoid in 7. Universal

C*-algebras on generators with relations are discussed in 8. In what follows, we briefly

recall the relevant ideas in unbounded operator representations.

For the basic theory of unbounded operator
*

-representations (7r,P(7r),#) of a

*-algebra A, we refer to [37, 30]. Let A 1 denote the unitization of A. The graph topology
f7r
=

^(A) on 2>M is defined by seminorms ->
||f|| + |br(x)f||, where x A. The

closure TT of TT is the
*
-representation (TT, /)(??),#), where D(TT)

=
P|{D(TT(JC)) : x G A 1

},

D(ir(x)) being the domain of the closure TT(JC) of
TT(JC) ; and TT(JC)

=
n(x)\D^ for all x inA 1

.

Throughout, ?r is assumed non-degenerate, i.e., the norm closure (ir(A)H)~ = H and the

^-closure (^(A^TT))'* = P(TT). If TT = ?f, then TT is closed. The hermitian adjoint TT* of TT

is the representation (not necessarily a ^representation) (7r*,D(7r*),#), where
D(**)

= fK^M*)* : x e A 1

}, and <K*(X]
= Tr^^.for all jc G A 1

. If TT = TT*, then

TT is self-adjoint. Further, TT is standard if 7r(jt*)*
=

TT(JC) for all x in A 1
. If each TT(JC) is a



C* -enveloping algebras 69

bounded operator, then TT is bounded. If TT is a direct sum of bounded representations, then

TT is weakly unbounded. An O*-algebra is a collection U of linear operators T all defined

on a dense subspace D of a Hilbert space H such that for all T G W, one has TZ) C >, and

r*D C
>; and W is a *-algebra with the pointwise linear operations, composition as

the multiplication, and T > T+ := 7*1^ as the involution. Given a
*

-representation

(7r,D(7r),/f) of a *-algebraA, the wm/flrm topology [20], ([37], p. 77-78) rD =r^ )

) on the

0*-algebra ?r(A) is the locally convex topology defined by the seminorms {qK \ K is a

bounded subset of (D(7r),/7r)}, where

qK (n(x}}
=

sup{|(7r(*),7?)| : &7 in AT}.

A vector in D(TT) is strongly cyclic [30] (called cyclic in [37]) if Z>(TT)
= (7r(A))~

f7r

the closure of (TT(A)) in (Z)(7r), f^). By a cyclic vector, we mean in D(TT) such that the

norm closure (TT(A))~ = //. For topological *-algebras, we refer to [21]. A Q-algebra is

a topological algebra whose quasi-regular elements form an open set. An LFQ-algebra is

a Q-algebra which is an LF-space [41]. The topology of a locally convex (respectively

locally m-convex)
*

-algebras A is determined by the family K(A) (respectively KS (A)), or

a separating subfamily P thereof, consisting of continuous *-seminorms (repsectively

continuous submultiplicative *-seminorms) p. If A has a bounded approximate identity

(ei), then it is assumed that p(ei) < 1 for all i and all p. A pro-C* -algebra is a complete

locally m-convex *
-algebra whose topology is determined by a family of C*-seminorms.

A Frechet
*

-algebra (respectively locally convex F*-algebra) is a complete metrizable

locally m-convex (respectively locally convex)
*

-algebra. A cr-C* -algebra means a Frechet

pro-C* -algebra. For pro-C*-algebras, we refer to [26,27].

2. Preliminary constructions and lemmas

Let A be a *
-algebra, not necessarily having an identity element. Let / be a positive

linear functional on A. Then / is representable if there exists a closed strongly cyclic
*

-representation (7r,D(7r),#) of A having a strongly cyclic vector E Z)(TT) such that

f(x) = {TT(.X), )
for all x A. If TT can be chosen to be a bounded operator representation,

then / is boundedly representable. The first half of the following is an unbounded

representation theoretic analogue of ([39], Theorem 1), whereas the remaining half

improves a part of ([39], Theorem 1) even in the bounded case. The proof exhibits the

unbounded analogue of the GNS construction in the case of non-unital algebras. This

provides a useful supplement to ([37], 8.6). It is well-known that a representable

functional is boundedly representable if and only if it is admissible in the sense that for

each* A, there exists k > such that/^Vjcy) < kf(y*y) for all y E A. In the following,

Lemma 2.1(3) is very close to ([39], Theorem 1) in which a C*-seminorm p is taken.

Lemma 2.1. Let f be a positive linear functional on a *

-algebra A. The following are

equivalent.

(1) / is representable.

(2) There exists m > such that \f(x)\
2 < mf(jfx) for all x E A.

Further,f is boundedly representable ifand only iff satisfies (2) above and thefollowing.

(3) There exists a submultiplicative *-seminorm p on A and M > such that

\f(x)\<Mp(x}forallxeA.

When A is a Banach *-algebra, Lemma 2.1 is given in ([7], Theorem 37.11, p. 199). In

the framework of unbounded representation theory, it is discussed in [2]. There is a gap in
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the proof in ([7], Theorem 37.11) in that hermiticity of/ has been implicitly used.

Regrettably it remained unnoticed in [2]. This was rectified in [39] in the formalism of

bounded representations. The following proof provides an analogous correction in the

context of unbounded representations.

Proof. Suppose (1) holds with/(jc)
=

(TT(JC)^, f)
for all x G A. Then for all x in A.

as 9r(A)
C Z>(TT)

= D(x(x)) = D(TT(JC*)) and TT(JC*)
C

TT(JC)*. Thus

for all jc A, giving (2).

Conversely, assume (2). We adopt the GNS construction. Let N/ = {x G A : f(jfx) = 0}.

By the Cauchy-Schwarz inequality, Nf is a left ideal ofA. Let X/ = A/TV/, and A/ : A > Xf
be A/(JC)

= x + Nf. Then (A/(;c), A/(y)}
= /(/X) defines an inner product on Xf. Let Hf be

the Hilbert space obtained by completing Xf. Let (p : Xf > C be <p(A/(;t))
=

/(*), a linear

functional. Then for all jc G A,

MA/)|
2 = |/M|

2 < mf(x**) = m(\f (
X),Xf (

X)) = m\\Xf (x)\\
2

.

Thus (p extends uniquely to Hf as a bounded linear functional; and by Riesz theorem,

there exists a G #/ such that for all x G A,/(JC)
=

<p(Xf(x))
=

(A/(jc), f}. Further, if m is

the minimum possible constant in the assumed inequality, then ||||
= m 1 /2

. The idea of

using Riesz theorem at this stage is borrowed from [39]. Define a
*

-representation

(7ro,Z)(7To),#/) ofA by: D(TTQ}
=

Xf, and for any x in A, 7ro(*)A/(y)
=

A/(*y) for all >? in

A. Let TT be the closure of TTQ. Then for all x, y in A,

Assertion 1. X/
=

Let jc G A. For all y e A,

showing that the linear functional A/(y)
->

(7r (^)A/(y),f) on D(TTO ) is
|| ||

-continuous.

Hence ^ G D(KQ (X)*) for all ^ e A. It follows, by the definition ofDfa), that G >K).
Now (i) becomes (A/ (x) , A/ (y) )

=
(A/ (jc) ,

TTO (y* )*0 for all x G A. Since Xf is dense in #/,
we obtain \f (y)

= 7T (y*)*C
=

-tf>(y)
for all y in A. Thus Xf = 7rJ$(A).

Assertion 2. G >(TT).

Since TTO (X)
= TTO (X) **, we show that G D(7r (*)**) for all jc G A, i.e., for all x, the

functional on D(TTO (x)*) given by 77
>

{TTO (x)*?;, g) is
1 1 1 1

-continuous. Fix an ;<: G A. Now
C G

D(fl{;), hence g G D(TTO (X*)*) so that the functional g on D(7r (x*))
= Xf defined by

^( 7
?)
=

(^o(^)?,0 is
|| 1 1

-continuous, and extends continuously to #/. Now let

^
G Z>(TTO(X)*). Let (77^) be a sequence in X/ such that rjk

-> ^ in
|| |[.

Then ^ G ^(TrJ)
implies that for any x G A,
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showing that V * {^oMVj?) is
II | (-continuous on D(TTO(JC)*). This proves the

assertion 2.

Now by the proof of assertions 1 and 2 above, it follows that for any x A,

Clearly is a strongly cyclic vector for TT. Thus (2) implies (1).

Now assume (2) and (3). Let Np
= {x e A : /?(*)

=
0}, a *-ideal in A. Let Ap be the

Banach *-algebra obtained by completing A/Np 'in the norm \\xp \\

= p(x) where

xp
= x H- Wp. By (3), F(xp )

= /(*) gives a well-defined continuous positive functional on

Ap. By standard Banach "-algebra theory, for all x, y in A,

>
= /(yV*y) = F(y*pX;Xpyp )

Since 7r(A) is dense in H/, TT is a bounded operator representation.

COROLLARY 2.2

L?A &e a *

-algebra.

(1) A positivefunctional/ on A is representable ifand only iff is extendable as a positive

functional on the unitization A 1

of A.

(2) A representable positive functional on A satisfies f(x*) =/(jc)~ for all x in A.

(3) Let A be a topologicdl
*

-algebra having a bounded approximate identity. Then every

continuous positive functional on A is representable.

COROLLARY 2.3

Let A be a complete locally m-convex
*
-algebra with a bounded approximate identity (e^)

satisfying p(e^) < 1 for all p in a defining family of seminorms.

(1) Letf be a continuous positive functional on A. Thenf is boundedly representable and

there exists p G KS (A) such that \f(x)\ < (lim sup /(e7
*

))/?(*) for all x E A.

(2) Let
(TT, D(TT),#) be a *

-representation ofA. Then each ir(e^) is a bounded operator

and ||7r(e7 )||
< 1 for all 7. Further, if it is strongly continuous (in particular, if -K is

continuous in the unifrom topology, which is the case ifA is locally convex F* ([37],

Theorem 3.6.8, p. 99)), then \\n(ej
-

\\
-> for each .

Proof. (1) By continuity, there exist p G KS (A) and m > such that \f(x)\ < mp(x) for

all x G A. Now Lemma 2.1 applies by Corollary 2.2(3). Let / = lim sup /(e7e* ), which is

finite. Let c sup{|/(jc)| : p(x)
=

1}. Choose a sequence (jcn ) in A such that f(xn )
-^ c

andp(^:n )
= 1 for all n. Then, by the Cauchy-Schwarz inequality,

\f(xn ) |

2 = lim \f(e,xn } |

2 < (lim sup/(^;))/(*>) < /c,

as p(x^Xn) < p(xn )

2 = 1. Hence c2 < /c, i.e. c < /, and the assertion follows.

(2) Let P= (pa )
be a cofinal subset of KS (A) determining the topology of A. Let

Ap = {x A : supapa (x) < oo}. Then Ap is a *-subalgebra ofA containing each e

is complete, Ap is a Banach "-algebra with norm p(x) = suppa (jc).
For any G
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consider the positive functional ^(x) = (ir(x)^ ^) on A. Then for all .xGA,

|^M|
2 <

||||

2

u$(x*x). By Lemma 2.1, o;^
is representable, hence extends as a positive

functional uj on the unitization A 1 of A. In view of the inclusion map (A^)
1 A 1

,
LJ is a

positive functional on (Ap )

1

. By ([7], Corollary 37.9, p. 198), cj is continuous in the norm

of (Ap)
1

. It follows that
0;$

restricted to Ap is continuous in the norm of Ap and

IM^)||
2 =w^

showing that ||7r(^7 )||
< 1. Now suppose that TT is strongly continuous. Let 77 G D(TT) and

e > 0. There exists x G A and 77' G >(TT) such that HTT^)?/ rj\\
< e/3. Since e^x *,

there exists 70 such that for all 7 > 70,

I to
-

*-(*yMI < I to
-

*(*)*/! I

+ IkW -
fl-

showing that ^(e^}r]
-^

77 for each 77 G >(TT). This completes the proof of Corollary 2.3.

The enveloping pro-C* -algebra E(A)

We construct the enveloping pro-C*-algebra E(A) for a locally convex *-algebra A with

jointly continuous multiplication. This extends the consideration in [10, 15, 19] in which

A is additionally assumed m-convex. The added generality will include several

constructions relevant in C*-algebra theory (like the C*-algebra of a groupoid). Let

R(A) denote the set of all continuous bounded operator
*
-representations TT : A > B(H^}

ofA into the C*-algebras B(H^} of all bounded linear operators on Hilbert spaces Hn . Let

Rf(A)
=

{?r G R(A) : TT is topologicaUy irreducible}. For p G K(A), let

Rp (A) = {TT G jR(A) : for some k > 0, ||7r(jc)||
< kp(x) for all jc},

and R f

p (A)
= Rp (A) n R'(A). Then .

2.4. Lef A i?e a5 a^ove, p G ^(A). Then rp ( )
w a continuous C*-seminorm on A

ft'sfrfhg rp (x)
< p(**x)

l/2
. Ifp G KS (A), then rp (x}

=
sup{||<j:)|| : TT G /^(A))

< p(x)

for all ;c G A.

/ Let 5p (x)
=p^)12

. Let A = A* G A and TT G ^(A). Then \\7r(h
n
)\\
< Ap(A

n
)
for

all n G N. By standard Banach algebra arguments, the spectral radius satisfies

=
liminf||7r(^)||

1/w =inf ||TT(^)||
I/W < Mp(h

n
)

l/n < p(h).

Hence, for any x G A,

so that rp (x)
< sp (x). We use the joint continuity of multiplication to conclude the

continuity of the C*-seminorm x -> rp (x). Now suppose p e ATf(A). Then
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Further, let Np = {x G A : p(x) = 0}, a closed *-ideal in A. Let Ap be the Banach
*
-algebra obtained by completing A/NP in the norm \\x + Np \\p =p(x). Then RP (A)

(respectively Rp (A)) can be identified with R(AP ) (respectively R'(AP )). The assertion

follows from the fact that for all z G Ap ,

([14], 2.7, p. 47). This completes the proof of the lemma.

Define the star radical to be

srad (A)
= {x G A : rp (x)

= for all p G K(A)}

=
{x G A :

TT(JC)
= for all TT G R(A)}.

For each p G AT (A), ^(jc 4- srad (A))
= rp (jc) defines a continuous C*-seminorm on the

quotient locally convex *-algebra A/srad (A) with the quotient topology. Let r be the

Hausdorff topology on A/srad (A) defined by {qp : p G K(A)}. The enveloping pro-C*-

algebra E(A) of A is the completion of (A/srad (A), r). When A is metrizable, E(A) is

metrizable. In view of Corollary 2.2, when A is m-convex, this coincides with the

enveloping l.m.c.
*

-algebra defined in [10, 19, 15].

Lemma 2.5. Let A be a locally convex
*

-algebra with jointly continuous multiplication.

(a) Let A be the completion of A. Then E(A) = E(A).

(b)

Proof. Since A has jointly continuous multiplication, A is a complete locally convex

*-algebra. The map i : A/srad (A) > A/srad (A), where i(x 4- srad (A))
= x 4- srad (A), is

a well defined ^isomorphism into E(A). Note that for any p G K(A\ Rp (A) = RP (A) via

the restriction (in fact, also K(A) = K(A)) 9 hence srad (A)
= A n srad (A). For any

p G K(A), let p G K(A) be the unique extension of p. Then, for any x G A,

qp (x + srad(A))
= rp (x) =qp(x + srad(A));

and for any p G K(A\ qp (x + srad(A))
= qp\A(x 4- srad(A)). Thus / is a homeomorphism

for the respective pro-C* -topologies. On the other hand, i has dense range in A/srad(A).

Indeed, let z G A. Choose a net (*/) in A such that *, > z in the topology t of A. Then

qp (xt
- z 4- srad(A))

= rp (xt
-

z)
=

sup{||7r(xz

- -
z) \

: TT G

< tp(^.
-

z)
-+

for all p G (A). Thus "(A), which is the completion of A/srad(A), coincides with the

completion E(A) of A/srad(A). This completes the proof of (a). We omit the proof of (b).

A representation (TT, D(TT),//) of A is countably dominated if there exists a countable

subset B of A such that for any x G A, there exists b G B and a scalar k > such that

IK^H < *||7r(i)|| for all >(TT) ([22], p. 419).

Lemma 2.6. (a) LetA be a locally convex
*

-algebra. Letj : A E(A) 9 j(x)
= x 4- srad(A).

(1) T/V : A B(H) is a continuous bounded operator
*

-representation, then there exists

a unique continuous
*

-representation a : E(A) > #(//) swc/z t/ia^ TT = a o
j. Further,

TT is irreducible if and only if a is irreducible.
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(2) Let (7r,2?(7r),//)
be a closed

*

-representation of A continuous in the unifor?

topology. Let TT be weakly unbounded. Then there exists a closed weakly unboune*

*

-representation (a,T>(<j),H) of E(A) such that TT = croj and D(cr) is dense in th

locally convex space (P(7r),rff ).

(3) Let A be unital and symmetric. Assume that A is separable or nuclear (as a locall

convex space). Let (TT, D(TT),//) be a separably acting, countably dominate

*

-representation ofA continuous in the uniform topology. Then there exists a close

*

-representation (<7,P(a),/?) of E(A) such that TT = aoj.

(b) (1) There exists a unital, locally convex, non-m-convex, F*-algebra A such that ,

admits a faithful family of unbounded operator
*
-representations, but admits n

non-zero bounded operator
*
-representation.

(2) There exists a unital non-locally-convex F* -algebra that admits no non-zer
*

-representation.

Proof, (a) (1) follows by the definition of E(A).

(2) Let TT = 7Tf, where each TTJ is a norm continuous bounded operator *-representatio

TT/ : A -
B(Ht) on a Hilbert space ft. We take D(TIV)

= ft . Let Et
: H -> ft be th

orthogonal projection. By (1), there exist continuous *-homomorphisms <r/ : E(A)
-

B(Hi)j &i oj = 7T/. Let a = cr
z

- on the Hilbert direct sum ft = H having the domaii

V(a) = {77
= E

z-7?
H :

||<7f (z);T?||
2 < oo for all z E(A)}

C P(TT)
=

{??
=

;?? # : T}\\Xi(x)Eiri\\

2 < oo for all x G 4}.

On >(cr),
the <j-graph topology ^((A)) is finer than the relativized 7r-graph topolog

txlvfoy Being closed and weakly unbounded, both a and TT are standard representation

Hence, for all h = h* in A, the operators &(j(h)) having domain I>(cr) and TT(/Z) wil

domain P(TT) are essentially self-adjoint. Since self-adjoint operators are maximal]

symmetric, D(o) is dense in P(TT(/I)) for the graph topology defined by g ||||-

||7r(/i)^||.
Thus T>(d) is dense in the locally convex space P(TT)

=
n{Z>(7r(A)) : h = /

in A}.

(3) By ([22], Theorem 3.2 and remark on p. 422) and ([37], Theorem 12.3.5, p. 343

there exists a compact Hausdorff Z with a positive measure /x such that

TT= / 7rAdM (A), Z>(TT)= / D(7TA)dM(A), H = I
Jz Jz Jz

and each n\ is irreducible. Since A is symmetric, each TT and TTA are standard ([37

Corollary 9.1.4, p. 237) (the commutativity assumption in this reference is not require
as the arguments in ([2], Theorem 3.5) shows); and by [3], each KX is a bounded operat

representaion, being irreducible. Then we can proceed as in (2).

(b) (1) Take A = Lw [0, 1]
=

fl LP [> 1] (*e Arens algebra) with pointwise operation
!</?<oo

complex conjugation, and the topology of //-convergence for each p, 1 < p < oo. Tl

algebra A is a unital, symmetric, locally convex ^-algebra, admitting a faithful standa

'-representation (7r,P(7r),#) such that ?r(A) is an extended C*-algebra with a commc
dense domain [13]. However, there exists no non-zero bounded operator representation

A, as A admits no non-zero multiplicative linear functional; and hence no non-ze

submultiplicative *-seminorm. Thus srad (A)
= A and E(A) = (0). (2) Take A = M [OJ

the algebra of all Lebesgue measurable functions on [0,1] with the topology
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convergence in measure. It admits no non-zero positive linear functional, and hence no

non-zero *
-representation.

Remark. 2.7. We call a
*
-representation (TT, T>(-K\H) of a *-algebra A boundedly

decomposable if it can be disintegrated as TT = fz 7TAd/z(A) with each TT\ a bounded

operator
*
-representation. One may show that E(A) is universal for all closed boundedly

decomposable
*
-representations of a locally convex F*-algebra A. We do not know

whether in (2) and (3) of Corollary (2.4) (a), a is continuous in the uniform topology.

The bounded vectors [4] for a
*
-representation TT of a

*

-algebra A are B(-K)
=

ri{/?(7r(jc)) : x G A}, where, for an operator T, the bounded vectors for T are

B(T) = { V(T) : there exists a > 0, c> such that

<acn
for all ne N.

The following is motivated by [35]. It shows that unbounded representations of locally ra-

convex *
-algebras cannot be wildly unbounded,

Lemma 2.8. Let (TT, P(TT), H) &e a closed
*
-representation ofa complete locally m-convex

*
-algebra A continuous in the uniform topology on 7r(A). TTierc the following hold.

(1) >(TT)
=

#(TT); awd TT is a direct sum of norm-continuous cyclic bounded operator
* -
representations. _

(2) TT is standard. For commuting normal elements x, y ofA, the normal operators TT(X)

and TT(V) have mutually commuting spectral projections.

(3) The uniform topology TV on 7r(A) is a pro-C* -topology, i.e., it is determined by a

family of C*-seminorms.

(4) IfA is Frechet, then TV is metrizable and TT is direct sum of a countable number of

cyclic bounded-operator
*

-representations.

Proof. Let ^(^r). Let
LO^

on A be the positive functional w$(x)
=

(Tr(jt)f , }
for x A.

By Lemma 2.1, 0;$
is representable and admissible. Hence the closed GNS representation

(7rWf , P(7rW ), //u ) associated with u> is a cyclic, norm-continuous bounded operator

^representation with 2>(7rW| )
=

AT^. Let w denote the cyclic vector for TTW . Let

P(Tr^)
=

(7r(A)^)~
r7r and //^

=
[7r(A)]~. Since TT is closed, T>(^) C D(TT). The TT-

invariant subspace P(TT^) defines a closed subrepresentation (^^V(TT^)^H^ of TT as

TT^OC)
=

TT^)!^^.
Since (^(jc)^,^} =

w^(jc)
= (^(xJ^O for all * e A, it follows

that TT^ and
TT^

are unitarily equivalent. Thus TT^
is a bounded operator representation, and

>(7re )
= H C B(TT). This also implies that ^ is reducing in the sense of ([37], 8.3).

Thus the following is established.

Assertion I. For any f in X>(TT), [7r(A)]~
r7r =

[TT(A)]~ C B(TT).

It follows that 7r(A)P(7r) C B(TT), hence 5(?r) is dense in (^(TT), rT ) and norm dense in

H. Since B(TT) forms a set of common analytic vectors for TT(A), the conclusion (2)

follows, using ([40], Theorem 2). Also, a standard Zorn's lemma argument gives

TT = 07T,-, with each TT,- a cyclic, continuous, bounded operator representation.

Assertion II. For each bounded subset M of (P(?r), r^), there exists p 6 j(A) such that

IM*MI <
IWIPW f r aU jc A, ry 6 M.
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By continuity, given M as above, there is k > and p G ^(A) such that

ftp (A:) for all x G A. Hence, for each 77 M and x G A, ||7r(jc)r7|f
< kp(x*x] < kp(xf. ]

Corollary 2.3, ||7r(z)77||

2 < /p(*)
2

, where / = limsup w^**) <
||r?||

2
. Hence ||7r(jt)7}||

||ry||p(jc) for all x G A, all
77 G M.

Now let G X>(TT). By (II) above, there exists p KS (A) such that for all n M,

showing that G B(TT(*)). Thus X>(TT)
=

B(TT) proving (1).

The proof of (3) is based on arguments in ([35], Theorem 1). Let T be the collection

all subspaces (linear manifolds) K of D(TT) such that K is 7r-invariant, and
-K\K is

bounded operator "-representation. For K G T, let SK be the C*-serninorm

SK (TT(X))
=

sup{||7r(*)r?|| :
rj G AT, |M| < 1}.

Let n be the topology on ?r(A) defined by {SK : K G JT}. We show that TX> = n- Clea

n < rp. Let M be a bounded subset of (>(TT), rff ). Choose Jk and p as in assertion (

above. By Corollary 2.3, \u^(x)\
< \\\\p(x) for all x e A, all ^ M. Thus

M C Vp := {77 G D(TT) : \(n(x}ri,r])\ < \\rj\\

2
p(x} for all x inA}.

Then Dp G ^; ||7r(jc)r?||
< ||??||VW

2
for all 77 e Xy, and, as TT is closed, ([35], Lemma

implies that Vp is
|| |j-closed. Let S = {^ G X>p : ||f ||

< 1}. As M is also
|| ||

bound

||r?||
< r for all 77 G M; and M C rS. Then, for all x G A, qM (n(x)) < r2

:

^(TT(JC))
. Tl

TX> < r. This gives (3). Finally (4) is consequence of the fact that the topology o

metrizable A is determined by a countable cofmal subfamily ofKS (A). This completes

proof of Lemma 2.8.

Now let A be commutative. Let M(A) be the Gelfand space consisting of all non-z<

continuous multiplicative linear functionals on A. Let M*(A) = {(p G M(A] : (p
=

y

and (>*(*)
=

<p(x*). For each x G A, let x : M*(A) > C be the map x(tp)
=

<p(x). 1

following, which incorporates the spectral theorem for unbounded normal operate

describes all unbounded ^representations of A. The proof can be constructed us

Lemma 2.8 and ([9], Theorem 7.3), in which all bounded "-representations of A hi

been realized.

COROLLARY 2.9

Let A be a commutative complete locally m-convex ""-algebra. Let (7r,>(7r),#) h

closed
*

-representation of A continuous in the uniform topology. Then there exis

positive regular Borel measure p, on M* (A) and a spectral measure E on the Borel set

M*(A) with values in B(H) such that the following hold.

(1) TT is a unitarily equivalent to the representation (a, T>(a] ,
Ha ) by multiplical

operators in H^ = L2
(Ai*(A), /x) with domain

>(<j)
= {/ G Ha : (p

->
;c(c/?)/(c>)is inHff for all x G A}

defined as (cr(x)f) (tp)
=

(2) For each x G A, TT(*)
=

We say that a locally convex *-algebra A is an algebra with a C*-enveloping algebr

the pro-C* -algebra E(A) is a C*-algebra. In view of Lemma 2.5, we do not neec

assume A to be complete or unital. In [5], A is further assumed to be m-convex.
'
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following extends the main results in ([5], 2) to the present more general set up, and can

be proved as in [5]. A is called an sQ-algebra if for some k > 0, p E K(A) 9 the spectral

radius r satisfies r(x*x)
1 /2 < kp(x) for all x E A; A is *-sb if r(x*x) < oo for each x,

equivalently, r(h) < oo for all h = A*. Thus g => sQ => *-*&.

Lemma 2.10. Lef A fee a complete locally convex
*

-algebra with jointly continuous

multiplication.

(1) A is an algebra with a C* -enveloping algebra if and only if A admits greatest

continuous C*-seminorm.

(2) IfA is sQ, then A admits a greatest C*-seminorm, which is also continuous.

(3) Let A be an F* -algebra. IfA is *-sb, then A has a C* -enveloping algebra; but the

converse does not hold (see ([5], Example 2.4)).

The enveloping AO* -algebra O(A)

For a locally convex *-algebra (A, f) (t denoting the topology of A), let Pc (A,i)

(respectively PCa(A, t]) be the set of all continuous (respectively continuous admissible)

representable positive functional on A. For each/ in PC (A, t), let
(TT/, >(TT/), H/) denote

the strongly cyclic GNS representation defined by/ as in Lemma 2.1. Let / = n{ker TT/
:

/ E PCfl(A, 0} and J = H{ker TT/ :/ E PC (A, t)}. Then / and J are closed *-ideal of A,

J C /, and I = srad (A) in view of the cyclic decomposability of any TT E R(A). The

universal representation of (A, t) is TTM
=

{TT/
: / E PC (A, t)}. This is a slight variation of

([37], p. 228). Then o-u (x + J)
= TTU (X) define a one-one *-homomorphism of A/J into

the maximal 0*-algebra
+
(X>(TTM )). Let au (t) be the topology on A/J induced by the

uniform topology on ?rM (A); viz. cru (t) is determined by the seminorms {qM : M is a

bounded subset of (X?(TTM ), ^J} where ^A/ (-^ + /)
=

sup{|(7rM (;c), 77)!
: ^, rj in M}. Then

(A/J, au (f)) is an AO*-algebra [36] in the sense that it is algebraically and topologically

*-isomorphic to an 0*-algebra with uniform topology [37]. We call (A/7, au (i) the

enveloping AO*-algebra of A, denoted by O(A).

Lemma 2.11. Let A be as above.

(1) Every
*

-representation ofA which is continuous in the uniform topology and which is

a direct sum ofstrongly cyclic representationsfactors through O(A). When A is either

complete and m-convex, or is countably dominated, every
*

-representation of A
continuous in the uniform topology factors through O(A).

(2) Let A be barrelled. Then au (t) is coarser than the quotient topology t
q on A/J.

(3) There exists a continuous
*
-homomorphismfrom O(A) into the pro-C* -algebra E(A).

(4) The following are equivalent.

(i) cru (t) is normable.

(ii) cru (t) is C* -normable.

(iii) There exists a linear norm on A/J defining a topology finer than au (t).

When any of these conditions hold, and if A is barrelled, then A has a C* -enveloping

algebra; but the converse does not hold.

Proof. (1) follows from the construction of O(A) and Lemma 2.8. (2) Let A be barrelled.

Since / is closed. (A//, t
q )

is barrelled ([32], ch. II, 7, Corollary 1, p. 61). Further, au is
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weakly continuous. Hence, au is continuous in the uniform topology ([20j, Th

(3) Since J C sradA, the map

: A/J -> A/sradA -> E(A), r/>(.i* 4- 7) - .v f srad.4

is a well defined *-homomorphism. Now, as E(A) is a pro- ('* -algebra, /:*i.4 \ k

C*~algebra for any p K(A), denoted by 7,(A),
with the norm

| j- * kcr
</,,

(A)
=

proj lim
;,(A),

inverse limit of C* -algebras [26|. Let /,,
: /A At * i

(pp (z) sz + ker^. For the continuity of : (O(A), <TM (/))
* (A'fAL ri. it is suf

show the continuity of the *-homomorphism ;
,
-

^, o <;> : <V(A )

> Kr (A 't. N^*vt

-0 :-4 ~-A/srad(A) -> E(A) ->
;,(A),i;iv)

-
(,v I sradf/iil * *"* -

is a continuous bounded operator ""-representation; and // c>
/(

< *

/u , ;w ( .1 ) i !

/;
is continuous for each /; AT(A).

(4) (i) if and only if (ii) if and only if (iii) follows from (
[ 2()|, Theorems * 2. 3 *

barrelled. Let
j

be a norm on A/J determining <rM (r). Since t
tj

-
<7 M (; h /> .

*

defines a continuous C*-seminorm on A. Let /; be any continuous C'Vseitunoif

A
p be the completion of A/ker/? in the C*-norm

|.v 1 ker />| i>(.\). Then .

7Tp(jc)
= jc-H kerp defines a continuous bounded operator *-represcntalion. Hv

exists a continuous *-homomorphism crp such that o
/}

.

>/K n
/t

. Since tK*-

topology on A
/;

is the
| [^-topology,

and since <rM (0 is determined by I . it t'olU ^

some fc > 0, 0^(2)1
<

/:|z|
for all z A/J. Thus ;>(.v)

'

kp ^ (A); ami sv> />'
x '

"

all j E A, both being C*-seminorms. Thus p,x ,

is the greatest continuous (
'*

%*** i :

A. By Lemma 2.8, E(A) is a C"*-algebra. That the converse does not hukl is til ,

Arens* algebra A =
L^[0, 1],

wherein (A)
=

(/>}, O(A) A topt)logica!l> a- v

3. Proofs of theorems 1.1, 1.2 and 1.4

Proof of Theorem 1.2. First we prove the following.

Assertion L Given a bounded subset Af of (P(7r),/ ff ), there exists />
f- A\b4

such that ^M(TT(JC)) < ^rp (j) for all x A.

By the continuity of TT, given M, there exists A- > and p i, K % {A

<!M(K(X)) < kp(x) for ail jc e A. Let f M. Then

^W| =
|(7r(j)eOI < ^(TrW) < kp(jc)

for all ^. Since
o;^

is representable, it is extendable to A 1

. The arguments in fit

Corollary 2.3(1) applied to the extension of
cj^

to A 1

give

for all x in A. Thus
||7rwe (*)f||

<
\\$\\p(x): and by the definition of rr . n

l^llrpW for all x in A. Since M is
|| ||-bounded, there exists / > C) such thai 1

M, all x in A,

It follows that for all x in A, and all f, 77 in Af
,

IW^^I^IWk^) 1 /2 ^/
2

^
Thus

<?M (TT(*)) < /
2
rp (jc) for all jc in A.
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Now, by Lemma 2.8, TT = TT/, with each TT, : A #(///) norm continuous. By Lemma
2.6, there exists a closed representation (V, D(V) 3 #) </ = <j/ of (A), with each

<ji : E(A) B(Hi) norm continuous, cr/ ojf
=

?r/ for all /. We shall eventually show

On the other hand, consider the
*

-representation (cr, U(a),H) of A/srad(A) having

domain T>(d)
=

P(TT), and given by cr(j(x))
=

TT(JC) for all x A. By ([37], Proposition

2.2.3, p. 39), on P(TT), ^ =
^+(p(w))

which is the graph topology on D(TT) due to the

maximal O*-algebra
+
(>(TT)). Hence, on TT(A), the uniform topology r^ = TD

ITT(A)

= ri (sa)0> which, by lemma 2.8, is a pro-C*-topology. By ([37], Proposition 3.3.20,

p. 85), <j(A/srad (A)) is contained in a r^
+(v(7r}}

-complete *-subalgebra of
+
(P(TT)); and

a can be extended as a continuous *-homomorphism a(E(A),r) *
[

+
(D(7r)), rP

^

]

giving a closed
*

-representation cr of (A) on // with domain D(cr)
=

D(TT). Next we

prove the following.

Assertion II. As representations of E(A), cr = d .

This, we do, in the following steps.

(a) a is an extension of cr
7

.

Clearly, >(</) C P(TT)
= V(a). We show o-(z)'|p(c/)

=
</(z) for all z B(A). Fix z

E(A). Let
7] e C(?r). Choose a net

(jcr )
in A such that for all p G ^(A),

qp (j(xr ) z) > 0. Choose an appropriate p by (I) above. Then

<*/> (*,--*,/)

= *4,(jW r)-;(^))^0.

Hence 7r(A:r )77 is norm Cauchy in T>(TT); and similarly, 7r(jc)7r(xr )r7 is norm Cauchy in T>(K)

for all jc G A. Thus 7r(xr)rj is Cauchy in (P(TT), r^-),
which is complete as TT is closed. Thus

there exists D(TT) such that lim(;cr )77
= in ^. This defines cr(z) as cr(z)ry

=
, which

gives cr

(b) cr is a closed representation of E(A).

Indeed, as TT is closed.

hence V(cr)
= D(o

y

)
. This also follows from the fact that TT is closed: on T>(a)

=
T>(K),

tv ?+(X>(TT))
=

^<r(((A)
l

))
as we^ as 7r(^) c ^(^(A)) C

+
(X>(7r)). This further implies

rp L(E(A))
= TS ; which, in turn gives the following.

(c) a1
is continuous in the uniform topology as a

*

-representation of ("(A),r).

Now, by (c), Lemma 2.8 implies that the closed representation a1
is standard; hence

self-adjoint, and so maximal hermitian ([31], (I), Lemma 4.2). Then (a) gives d =
cr,

thereby verifying (II). This completes the proof of Theorem 1.2.
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If TT is irreducible, then <j is irreducible, hence is a bounded operator representation by

[3], ([6], Theorem 4.7). This gives Corollary 1.3.

Proof of Theorem LI. Let A be Frechet. Then A = proj limAn , an inverse limit of a

sequence of Banach *
-algebras An . Assume that each

*

-representation (and hence the

universal representation TTM) ofA is a bounded operator representation. Since A is Frechet,

TTW is continuous. Let a be the representation of E(A) defined by Theorem 1.2

corresponding to TTM . Then <r is also a bounded operator
*

-representation. Further, as A is

Frechet, E(A) = proj limC*(Aw )
is also Frechet. Thus a is continuous and there exists a

continuous C*-seminorm qQ on E(A) such that
\\cr(z)\\

< q (z) for all z E(A). Now the

bounded part of E(A)

b(E(A)) = {z G E(A) : q(z) < oo for all continuous C*-seminorm q}

is a C*-algebra with the norm

: q is a continuous C*-seminorm on E(A)}

Since a is one-one, the restriction c/ = <r
b@(A))

is a
*

-isomorphism of the C*-algebra

b(E(A)) into B(Hff ). Hence, for all z e

It foUows that b(E(A)) = E(A). As E(A) is Frechet, the continuous inclusion map
)
is a homeomorphism. The converse follows from Theorem 1.2.

Proof of Theorem L4. By Corollary 2.3, I = J = srad (A) in the notations of Lemma 2.9.

Let K=A/J, a Frechet *-algebra in the quotient topology from A. By Lemma 2.8, the

uniform topology TX> on ?rw (A) is a cr-C* -topology; and the topology au (t) on # is

determined by the (continuous) C*-seminorms {SG(-)
' G J7

}, where ^ is the collection

of all subspaces T> of X>(TTM )
such that V is 7ru-invariant and iru

\v is a bounded operator

^-representation; and ^G (z)
=

||7rM |G (jc)||
for all i = jc + J, jc A. Thus crw (r)

< r where r
is the relative topology from E(A) defined by all C*-seminorms on E(A). To show that

r < su (t), let zn = Jn + / , zn -* in crM (f). Let ^ be any C*-seminorm on A. There
exists 7TE#(A) such that q(x)

=
||7r(jc)||, and TT = e{7r/|/ Fj for a suitable

F7r cPc (A,/). Now fl; = f^f
Hf C D(7rB ),

HT ^, and |Wjcn )||
= SH,^) -* 0.

Hence zn -* in r. Thus r = <7M (f), and F(A) = (0(A),att (0), the completion. The
remaining assertion follows from Lemma 2.11.

4. Remarks

PROPOSITION 4.1

Let A be a *-sb Frechet
*

-algebra. IfA is hermitian, then A is a Q-algebra.

Proof We can assume that A is unital. Let P be a sequence of submultiplicative
*-seminorms defining the topology of A. Let A =

proj UmA^ be the Arens-Michael
decomposition expressing A as- an inverse limit of a sequence of Banach *

-algebras;
where, for q ?, Aq is the Banach *-algebra obtained by completing A/ ker q in the norm
||* + ker #||

=
q(x).

Let 7r
q

: A - A
q be 7r

q(x)= x



Case 1. Assume that A is commutative. By herrniticity, spA (h)
=

{<p(/z)
: G -M(A)} C

R for all A = A* A. Note that since A is hermitian. M(A) = M (A). Using ([23],

Proposition 7.5), it follows that for each q, M(Aq )
= M*(Aq )\

hence by ([7], Theorem

35.3, p. 188), each Aq
is hermitian. Now by ([17], Lemma 41.2, p. 225), for each z G Aq ,

the spectral radius satisfies

I I denoting the Gelfand-Naimark pseudonorm on A
q . Then m^(jc)

=
\nq (x)\ q

defines a

continuous C*-seminorm on A. By Lemma 2.10, there exists a greatest continuous C*-

seminorm p^ )
on A. By ([23], Corollary 5.3), for each x G A,

rA (x)
= sup{rAf) (7rq (x)}}

< sup{mq(x)} <poo(x).

By the continuity of p^, there exists a p G ATy(A) and fe > such that for all x in A,

K*) <Poo(x) < kp(x). It follows from ([23], Proposition 13.5) that A is a Q-algebra.

Case 2. Let A be non-commutative. Let M be a maximal commutative *-subalgebra ofA

containing the identity of A. Since M is spectrally invariant in A, M is also hermitian. By
*

-spectral boundedness and herrniticity, each positive functional on M can be extended to

a positive functional on A ([17], Theorem 9.3, p. 49). It follows from ([15], Corollary 2.8)

and the continuity of positive functionals on unital Frechet *-algebras, that for all z G M,

Poo(z) =/^W < rM (z?z)
i/2

, p%> being the greatest C*-seminorm on M and rM (-)

denoting the spectral radius in M. Thus M is a commutative hermitian algebra with a C*-

enveloping algebra. By case 1, M is a Q-algebra. Further, M being hermitian, the Ptak's

function jc > rM (x*x)
/2

is a C*-seminorm on M ([17], Corollary 8.3, p. 38; Theorem

8.17, p. 45).

Now let ;c G A, and take M to be the maximal commutative *-subalgebra containing

x*x. Let rK (-) denote the spectral radius in an algebra K. Then by Ptak's inequality in

hennitian Frechet *-algebras ([17], Theorem 8.17, p. 45)

rA (x)
< rA (x*x)

[/2 = rM (x*x)
l/2 = p(x*x)

l/2 = Poc(x*x)
l/2 < q(x),

q being a *-algebra seminorm on A depending on p^ only. It follows from ([23],

Proposition 13.5) that A is a

(4.2) (i) It is claimed in ([5], Corollary 2.4) that a complete hermitian m-convex *-algebra

with a C*-enveloping algebra is a Q-algebra. Regrettably, there is a gap in the proof. The

author sincerely thanks Prof. M Fragoulopoulou for pointing out this. It is implicitely

used in the 'proof therein that the completion of a hermitian normed algebra is

hennitian. By Gelfand theory, this is certainly true in the commutative case, but is not

true in non-commutative case (see ([17], p. 18)). Thus ([15], Corollary 2.4) remains valid

in commutative case; and the above proposition partially repairs the gap in the non-

commutative case. Consequently ([15], Lemma 2.15, Theorem 2.14) remains valid for

Frechet algebras. Is a hermitian Frechet algebra with a C*-enveloping algebra a

Q-algebra? (ii) The algebra C(R) of continuous functions on IR exhibits that the condition

*-sb can not be omitted from the above proposition. It also follows from above that a *-sb

a-C*-algebra is a C*-algebra.

(4.3) In Theorem 1.2, the assumption that TT is closed can not be omitted. Let A = C^~ ( R).

the Frechet *-algebra of C functions on R, with pointwise operations and the topology
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of uniform convergence on compact subsets of R of functions as well as their derivatives.

Then E(A) = C(R), the algebra of continuous functions on R with the compact open

topology. On the Hilbert space /? = L2
(R), the "-representation TT of A with

P(TT)
= C(R), 7r(a)f

= Qf, cannot be extended to a
*

-representation of C(R) with

the same domain ([10], Example 4.7).

(4.4) Theorem 1.1 means that a Fechet *-algebra has a C*-enveloping algebra if and only

if it is a BG*-algebra [24]. In the non-metrizable case, it follows from Theorem 1.2 that if

A is a complete topological w-convex "-algebra with a C*-enveloping algebra, then every
*

-representation ofA which is continuous in the uniform topology is a bounded operator

representation. However, the converse does not hold. This is exhibited by the BG*-algebra

C[0, 1]
of continuous functions on [0,1] with the pro-C*-topology r of uniform

convergence on all countable compact subsets of [0,1]. Thus Theorem 1.1 is false without

the assumption that A is Frechet. It would be of interest to find an example of a

topological algebra with a C*-enveloping algebra which is not a J?G*-algebra. i

(4.5) Yood [42] has shown that a *-algebra A admits a greatest C*-seminorm if and only if
!

sup \f(x)\ < oo for each *, where the sup is taken over all admissible states 5; and by
Lemma 2.10, this happens for a Frechet A if and only ifA has a C*-enveloping algebra.

Yood's result is an algebraic version of ([5], Corollary 2.9) that states that a complete
m-convex algebra has a C*-enveloping algebra if and only if S is equicontinuous.

(4.6) (i) Let TT be a
*

-representation of a complete locally m-convex *

-algebra A with a

bounded approximate identity. LetA have a C*-enveloping algebra. Is TT continuous in the

uniform topology? In particular, let TT be a bounded operator "-representation. Is TT norm-

continuous?

(ii) Let A be a pro-C*-algebra (more generally, a complete m-convex *-algebra with a

bounded approximate identity). Let / be a representable, not necessarily continuous,

positive functional on A. Is the GNS representation TT/
a bounded operator representation?

Is every ""-representation of A weakly unbounded?

These are motivated by the point of view ([5], Remark 2.1 1, p. 207) that a topological \

*

-algebras with a C*-enveloping algebra provide a hermitian analogue of a commutative

Q-algebra. It is easy to see that a
*

-representation TT of a locally convex j2-al?<sbra is a 4"

bounded operator representation and is norm continuous. i

j .

5. Crossed product constructions *

i

We recall the crossed product of a C*-dynamical system (G, A, a). Let a be a strongly
*

continuous action of a locally compact group G by
*

-automorphisms of a C*-algebra A.

Let CC (G,A) be the vector space of all continuous A-valued functions with compact
supports. It is a *-algebra with twisted convolution

'

=
/ x(h)ah (y(h-

l

g))dh
JG

and the involution x^(g) = A(g)~
lag (x(g-

l

))\ The Banach "-algebra L l

(G,A) is the

completion of CC(G,A) in the norm
\\x\\ 1

= /G ||jc(A)||dA; and the crossed product C"-

algebra C*(G,A,a) is the completion of L l

(G,A) in its Gelfand-Naimark pseudonorm
\\x\\

=
wip{\\ir(x)\\:ireR(L

l

(G,A))}, which is, in fact, a norm. Thus it is the

enveloping C*-algebra of the Banach "-algebra L
l

(G,A). The C*-algebra C*(G,A,a)



can also be realized as the enveloping C*-algebra of non-normed topological
*
-algebras

smaller than L J

(G, A).

Let 3C be the collection of all compact, symmetric neighbourhoods of the identity in G.

For K e Jf, let CK (G,A) = {/ CC (G, A) : supp/ C K}, a Banach space with the norm

H/ll
=

sup{||/(jc)|| : x G K}. The inductive limit topology r on Q(G,A) is the finest

locally convex topology on CC (G,A) making each of the embeddings Q;(G,A) ->

CC (G, A), for all AT G JT, continuous. Then CC (G, A) is a locally convex, non- w-convex,

topological
*
-algebra with jointly continuous multiplication and continuous involution.

From ([18], p. 203), (CC (G, A)) = C*(G, A, a). This immediately leads to the following.

PROPOSITION 5.1

Let (G,A,a) be a C*-dynamical system. Let B be any topological ""-algebra containing

CC(G,A) as a dense *-subalgebra and satisfying CC(G,A) C B C C*(G,A,a). Then

For 1 <p < oo,letA^(G,A) = L l

(G,A) nif(G,A), aBanach *

-algebra with the norm

\

X
\P
=

I Wli + \\x\\p-
The above applies to B = (~}{A

P
(G,A) : 1 < p < ex)}, a locally m-

convex Q-Frechet "-algebra with the topology of
| [^-convergence

for each p.

Smooth elements of a Lie group action

Let A be a unital C*-algebra and G be a Lie group acting on A. Let A denote the

infinitesimal generators of actions of 1-parameter subgroups of G on A, viz.,

is a continuous homomorphism of R into G}.

Then A consists of derivations and it is a finite dimensional vector space ([11], p. 40)

hawing basis, say <5i , #2, , &d- Then Cn
-elements (1 < n < oo) and C -elements ofA for

the action a are defined as follows.

C"(A) ={jcA :^Dom(^,^2 ...<5/n ) for all n-tuples {<5/n . . .
, <5,n } in A}

By ([11], Proposition 2.2.1), each C"(A) and C(A) are dense *-subalgebras of A; and

Cn
(A) is a Banach *-algebra with the norm

iwin
= iwi+E E iift,fe...4(*)ii/-

'

k=l i\,i2 ,...jk=l

Then C(A) =
proj HmCn

(A) is a Frechet *-algebra with the topology defined by the

norms {|| ||n :n= 1,2,,...}.

Lemma 5.2. C(A) has a C* -enveloping algebra and E(C(A)) = A.

Proof. It is well known that Cn
(A) and C(A) are spectrally invariant in A. Hence

(C
n
(A), || ||)

and (C(A), || ||)
are Q-algebras in the norm

|| ||
from the C*-algebra A.

Since
|| ||

<
|| ||;, (C

00
(A),r) is also a Q-algebra. By Lemma 2.10, (C(A),r) is an

algebra with a C*-enveloping algebra. Let TT : B > B(H), where B = Cn
(A) or C(A), be
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a bounded operator "-representation on a Hilbert space H. Then for all x e B9

2< rB (
x
*
x

)
< |W|

2
.

Hence TT is
|| | [-continuous; and by the density of C(A) in A, TT extends uniquely to a

*
-representation of A on #. It follows that JE(C(A)) = C*(C

n
(A)) = A for all n.

An element x E A is analytic if * C(A) and there exists a scalar / > such that

E(
*=0

whereas x is e/ztfre if x G C(A) and for all t > 0, it holds that

Let CW (A) (respectively C^(A)) denote the set of all analytic (respectively entire)

elements of A. Then each of CW (A) and Ceu
(A] is a *-subalgebra of A and

Ce
"(A) C CW (A) C C(A). For each / > and x G Cn

(A\ define

Then
|| \\ n and/( )

are equivalent norms. Hence P* = (pfn ( ))andp = (|| HJ define

the same C-topology r on C(A). Let A, = {jc G C(A) : pf(x) = sup*p(jt) < oo}, a

*-subalgebra of C(A), which is a Banach "-algebra with norm p?( ), and which
consists of elements of C(A) whose numerical ranges defined with respect to P* are

bounded. For / < s9 the inclusion A^ > At is norm decreasing. Thus

C"(A) = f|{A f : t > 0} = f) An = proj limAn ,

n=l

a Frechet m-convex, *-algebra with the topology reuj defined by the family of norms

{/?<( ) :*GN} (setting p( )
=

|| ||). Further,

C"(A) = UAr
= A

1/n
= ind limA

1/n

with the linear inductive limit topology r^ By ([21], Corollary 10.2, Lemma 10.2, p. 317)
and ([32], Proposition 6.6, p. 59), (C

tJ

(A), rw) is a complete m-com ex *-algebra which is

a g-algebra. Thus Ca;

(A) is an algebra with a C*-enveloping algebra. Further if each A, is

dense and spectrally invariant in C(A), then Ce(JJ

(A) is an algebra with a C*-enveloping

algebra and ^(C^A)) = ^(C^A)) = A.

The smooth crossed product

We recall the smooth Frechet algebra crossed product [29]. Let B be a Frechet *-algebra.
Let (pn ) be a sequence of submultiplicative *-seminorms defining the topology of B. Let

(3 be a strongly continuous action of R by continuous "-automorphisms of B. Then is

called m-tempered (respectively isometric) if for each m N, there exists a polynomial



P(X) such that pm (pr (x)) < P(r)pm (x) for all jc B, r < R (respectively for each m N,

Pm(Pr(x)) = />(*) for all * #, all r E R). Let 5(R) be the Schwartz space consisting of

the rapidly decreasing C-functions on R. It is a Frechet space with the Schwartz

topology. The completed projective tensor product 5(R) B = 5(R,5) consists of

B-valued Schwartz functions on R. If j3 is m-tempered, then 5(R,5) becomes an m-

convex Frechet algebra with twisted convolution

(/**)(') =

This Frechet algebra is called the smooth Schwartz crossed product of B by the action /?

of R, and is denoted by S(R, #,/?). In general, S(R,5,/3) need not be a "-algebra ([34],

4). If /? is isometric, then the completed projective tensor product

= {/ : R > # measurable function : / pm (/(r))dr < oo for all /w G N}
JR

is a Frechet
*

-algebra with twisted convolution and the involution /* (r)
=

/?r (/(-/*)*),

denoted by L^R,!?,/?). One has S(R,B,/3) C L !

(R, #,/?).

The following is closely related with ([29], Lemma 1.1.9).

Lemma 5.3. LetA be a dense Frechet *~subalgebra ofa Frechet
*

-algebra B. Assume that

A and B can be expressed as inverse limits ofBanach
*

-algebras An and Bn respectively,

where An is dense in Bn for all n; the inclusions A > An , B > Bn have dense rangesfor

all n; and each An is spectrally invariant in Bn . Then A is spectrally invariant in B and

Proof. By ([15], Theorem 4.3), E(A) = proj lim^A,,) and E(Bn )
=

proj ]imE(Bn ).

Since An > Bn is spectrally invariant with dense range, An is a <2-normed algebra in the

nonxi of Bn . Hence every C*-seminorm on An is continuous in the norm of En \
and

extends uniquely to Bn . Thus An and Bn have the same collection of C*-seminorms. It

follows that E(An )
= E(Bn ) for all /i; and so E(A) = E(B).

PROPOSmON 5.4

Let a be an m- tempered strongly continuous action 0/R by continuous
*

-automorphisms

of a Frechet
*
-algebra B contained as a dense *-subalgebra of a C* -algebra A such that

E(B)=A. ThenE(C(B))=A.

Proof. Let
\\ \\

denote the C*-norm on A. Let (pn ) be an increasing sequence of

submultiplicative *-seminorms defining the topology of B. In view of the continuity of the

inclusion B * A, the increasing sequence qn ( )
= pn ( ) + \\ \\

of norms also deter-

mines the topology of B. Let Bn = (B, qn )
be the completion, which is a Banach *-algebra.

Then B = proj. lim n = {}Bn . Now, for any n N, r R, and x B,

=
\\ar (x)\\

=
I Wl + Poly (r)pn(x)

= pol/ (r)qn (x)

for some polynomial poly'( ). It follows that a is m-tempered for (qn ( )) also; and it

induces an action a^ of R by continuous "-automorphisms ofBn . Let Bn
,
m be the Banach
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*-a!gebra consisting of all Cm-vectors in Bn for a(n)
. By ([33], Theorem 2.2), #n

,
m -+ Bn

are spectrally invariant embeddings with dense ranges. Also, C(B) =
proj limn?m

Bn,m
= prj limn Brtin

. Now Lemma 5.2 implies that C(B) is spectrally invariant in B

and(C(J9))=A'.

PROPOSITION 5.5

Let a be a strongly continuous action of R by
*
-automorphisms of a C* -algebra A. The

following hold.

(a) The Frechet algebras S(R,A, a) and S(R, C(A), a) are Q-algebras.

(b) 77*e embeddings S(R, C(A), a) -+ S(R, A, a)
-

C*(R, A, a) are continuous, spec-

trally invariant and have dense ranges.

(c) The Frechet algebra 5(R,C(A),a) is *~algebra and (S(R,C(A),a) =

C*(R,A,a).

By ([34], Theorem A.2), a: leaves C(A) invariant. In ([34], Corollary 4.9), taking

the scale a to be the weight w(r) = 1 + r\ on G = R = H, it follows that 5(R, C

(A), a), is a Frechet '-algebra. Now &s (f)(r)
=

oij(/(r)) defines an action a of R on the

Frechet algebra 5(R,A,a) for which, by ([29], p. 189), C(S(R,A,a)) =5(R,

C(A),a) homeomorphically. Note that the embeddings

S(R,C(A),aO -
S(R,A,a) -Ll

(R,A,a) -> C*(R,A,a)

are continuous; S(R,C(A),a) is dense in 5(R,A,a) by ([34], Theorem A.2); and

S(R,A,a) is dense in L^RjAja); which, in turn, is dense in C*(R,A,a).
Now let (| | rt } be an increasing sequence of submultiplicative seminorms defining the

topology of 5(R,A,a). Let (Brt , | |n )
be the Hausdorff completion of 5(R,A,a) in

| |n .

Then Bn is a Banach algebra and 5(R,A,a) = proj.limBn . Since ||ar (jc)||
=

||jc||,
the

action d of R on 5(R,A,Q:) extends to a strongly continuous action o:^ of R by

automorphisms of Bn . Let Cm(Bn ) be the Banach algebra of all Cm-vectors in Bn fo/ the

action of fiW. As noted in ([29], p. 189), Cn
(Bn )

is dense and spectrally invariant in Bn \

and 5(R, C(A), a) = proj lim Cn
(Bn ). Let x E S(R, C(A), a), x = (xn ) being a cohe-

rent sequence with xn G Cn
(Bn ) for all n G M. Now

sps(R,c*(AM(x)
=
\Jspcn (Bll)(xn)

=
\JspBn (xn )

= sp5(M^) W-'
n n

Thus 5(R,C(A),a) is spectrally invariant in 5(R,A,a); which in turn is spectrally

invariant in C*(R,A,a) by '([33], Corollary 7.16). Thus each of S(R,C(A),a) and

S(R,A,a) are Q-normed algebras in the C*-norm of C*(R,A,o.j; and hence are Q-

algebras in their respective Frechet topologies. Using Lemma 2.10, (5(R, C

Proof of Theorem 1.5. Since C(B) = B, the Frechet m-convex algebra 5(R,B,a) is a

*-algebra by ([34], Corollary 4.9). Since B is Frechet and sits in the C*-algebra A, B is

*-semisimple. Similarly, since the inclusion S(U,B,a) > C*(R,A,a) is continuous and

one-one, 5(R, B, a) is also *-semisimple. To prove that (5(R, B, a)) = C*(R, A, a), it is

sufficient to prove that any "-representation cr : 5(R,B,a) ^ B(Ha ) extends to a

^representation (or)
: C*(R,A,a) -* B(Ha ). This would imply that the C*-norm on

5(R, B, a) induced by the C*-algebra norm on CB

*(R, A, a) is the greatest (automatically
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continuous) C*-seminorm on S(R, J5, a). This is shown below by arguments analogous to

those in ([25], Proposition 7.6.4, p. 255).

Let (x\) be a bounded approximate identity for A contained in B and which is also a

bounded approximate identity for B. For each n G M, let fn G C(R) be such that

<fn < !,/(*) = 1 for all x G [-,], and supp/n C [-
-

l,n 4- 1]. Then (/) is a

bounded approximate identity for S(R) (pointwise multiplication) contained in C(R).
The inverse Fourier transforms gn of / constitute a bounded approximate identity for

5(R) with convolution. Thus v
n?A
= gn x\ constitute a bounded approximate identity

for S(R,jE?,a). Given a
*

-representation cr : S(R, /?,<*)
-^ B(Hcr ) automatically contin-

uous, let It(Ho) be the group of all unitary operators on E . Define TT : B B(Ha )
and

U : R -> Z/(/fff ) by

(n,A)

The limits are taken in the weak sense; and they exist. As in ([25], 7.6, p. 256), it is

verified that TT is a *

-representation of B; U is a unitary representation of R;

Utn(x)U; = 7r(a,(jt)) for all t G R, all x G B; and for all y G S(R,5, a), a(y) = /7r(v(?))

/,df. Now, since E(B) = A, TT extends to a
*
-representation TT : A ^(/f^) so that

(TT , t/, /fa )
is a covariant representation of the C*-dynamical system (R,A,a). Then

a(j)
=

/7f(v(r))t//dr defines a non-degenerate
*

-representation of the Banach *-algebra

L^RjJ?, a); and hence extends uniquely to a
*

-representation <j of C*(R,, a). This <j is

the desired extension of <j. This shows that E(S(R,B,a)) = C*(R,A,a).

Further, suppose that the action a of R on B is isometric. Then by [29], L
1

(R, 5, a) is a

*-algebra, which is a Frechet m-convex *-algebra; and

S(R,B,a)-+L
l

(R,B,a)^>L
l

(R,A,a) -* C*(R,A,a)

are continuous embeddings with dense ranges. It follows that E(L
l

(R,B,a) =

C*(R, A, a). This completes the proof of the theorem.

Actions on topological spaces

(a) LetM be a locally compact Hausdorff space. Let a : M *
[0, oo) be a Borel function,

&(m) > 1 for all m M. Assume that a is bounded on compact subsets of M. Following

([34], 5), let

Ca
(M) = {f G C (M) :

I (a
4
/) I

< oo for all d G N},

called the algebra of continuous functions on M vanishing at infinity cr-rapidly. It is

shown in [34] that Cff

(M} is a Frechet m-convex "-algebra with the topology defined by
seminorms

Ho
4
/)!

=
sup{|(cr(jt))

rf

/(jc)| : jc G Af}, d G N;

and that CC(M) > Ca(M) CQ(M) are continuous embeddings with dense ranges. Thus
^

E(C
a
(M)) = C (M). In fact, Ca

(M) is an ideal in C (M); hence inverse closed in C (M);
and so is a g-algebra.

(b) Let G be a Lie group acting on M. Iff G Ca
(M), define ag (f)(m) =f(g-

l

m). By
([34], 5), if a is uniformly G-translationally equivalent (in the sense that for every
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compact K C G, there exists / G M and C > such that cr(gm) < Ccr(m)
1

for all g G,

m G M), then g -^ otg defines a strongly continuous action of G by continuous

'-automorphisms of Cff

(M). Then the space C(Cff

(M)) consisting of C-vectors for the

action a of G on Ca(M) is an m-convex Frechet
*
-algebra with a C*-enveloping algebra

and (C(Ca
(M)) = C (Af).

(c) In particular, let G = R, M be a compact C -manifold, and let the action of R on M
be smooth. Then the induced action a on C(M) is smooth, so that ar(C(M)) C C(M)
for all r R. It follows from Theorem 5.1 that (S(R, C(M), a) = C*(R, C(M), a) the

covariance C*-algebra.

6. The Pedersen ideal of a C* -algebra

Let A be a non-unital C*-algebra. Let KA be its Pedersen ideal. It is a hereditary, minimal

dense *-ideal of A. For a G A, let La = (Aa)~ 9
Ra = (oA)~ , la be the closed *-ideal of A

generated by aa*. Since a G Lfl f|jRa , aa* G 7
fl . Let JSj

= KA P|A
+ be the positive part of

&A endowed with the order relation induced from that of A+ . Let K =
\J{Ia - a G K%}.

Lemma 6.1. jKJ
c w a dense

*
-ideal ofA containing KA,' andA C*-ind lim {Ia : a KA }-

Proof. Let a G Kf. Then a2 = aa* G la \ and 7a being a C* -algebra, a = (a
2

}

{/2 G 7a .

Thus ^ C . Observe that for any x = x* KA , x Ix . Indeed, ;t
2

K+\ hence

;t
2 Ix and

bc| G 4. But than taking the Jordan decomposition x = x+ - x~~ in A,

(x+)
2 =

(*+)* + jc+^- = jc
+

|x| e Ix \ so that ^+ Ix , x~ 4, and x Ix . In particular,

x2 G 42 and \x G 7^. By repeating this argument, x G 7^2 C K for any jc = jc* G KA . It

follows that A:A c Kl
c

. Now, by ([28], Lemma 1), < a < b in A implies La C L^,,

^ C Rb and 7a C 7^; and KA = (J{La : a G K+} = \J{Ra : a G K%}. The family {Ia :

fl G K%} forms an inductive system of C*-algebras; and C*-ind lim{7a : a G K%} =

(\J{Ia - a G KA }}~
= A, ( )" denoting the norm closure. This proves the lemma.

Let t\ (respectively ti) be the finest locally convex linear topology (respectively finest

locally m-convex topology) on Kf making continuous the embeddings Ia > A^
c

, where

a e K%. Then (A^Vi) (respectively (^,r2 )) is the linear topological inductive limit

(respectively topological algebraic inductive limit) of {Ia : a G K%} ([21], ch. IV).

Proof of Theorem 1.6. In the present set up, ([21], p. 115, 118, 125) implies that t\
=

fe,

equal to r say, and (K, r) is a complete m-barrelled locally m-convex *-algebra; and the

|| 1 1-topology on Kff is coarser than r. Since K% is an ideal, it is inverse closed in its

1 1 j j-completion A, and hence (7^
c

, 1 1 1 1)
and (KA , 1 1 1 1)

are Q-algebras. This implies that

any *-homomorphism from K% into B(H) for a Hilbert space H is
|| | (-continuous and

extends uniquely to A. Thus
1 1 1 1

is the greatest C*-seminorm on K%. To show that
1 1 1 1

is

the greatest r-continuous C*-seminorm on K c so that E(K%) = A, it is sufficient to show
that (7^

c
, r) is a g-algebra. To that end, in view of ([23], Lemma E.2), we show that is

a r-interior point of the set (Kf)^ of quasiregular elements of K%. Note that, by ([21],

p. 114), basic r-neighbourhoods of in K.% are precisely of the form V = \co\

{\J(Ua : a G
Jfjf")},.

where \co\ denotes the absolutely convex hull and Ua denotes a

convex balanced neighbourhood of in (/fl , || ||). For any a G K%, (7flJ || ||)
is a Q-

algebra, and being an ideal in A, (Ia )_i
= A^i f]Ia . Hence, for the zero neighbourhood

Ua
=

{x la :

\\x\\ <l} in (Ia ,\\ ||),
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ua c (/<,)_,
= (*r)-i f> c (^)-i; ^

/a : a #)} =
{* K~ :

||x||
< l = U (say)

is a zero neighbourhood in (A^
c
,r) contained in (K)_ {

. It follows that (K,r) and

(KA,T) are >-algebras. Now, as in the proof of ([28], Theorem 4), K c = U{/eJ, (e\)

being a bounded approximate identity for A contained in A^. Thus if A has countable

bounded approximate identity, then K is an LFQ-algebra; and r is the finest (unique)

locally convex topology on K such that for each A, r| 7
is the norm topology.

7. The groupoid C*-algebra

We follow the terminology and notations of [31]. Let G be a locally compact groupoid,

i.e., a locally compact space G with a specified subset G2 C G x G so that two conti-

nuous maps G > G, * ^jc"
1

, and G2
> G, (*,}>) *y are defined satisfying

(,ry)z
=

x(yz), x~~
l

(xy)=y and (zx)jc"
1 = z. The unit space of G is G = {xx~

l

:

x e G} = {x~
lx : x G G}. Let r(jc)

= xx~ l and d(x)
= x~ l

x. Assume that there exists a

left Haar system {\
u

: u G } on G, i.e., a family of measures A" on G such that

supp A" = r
-1

(u); for each/ C Q(G), u > //dA
M

is continuous; and for all jc G and

/CC (G), //(jcy)dA
d
W(y) = //Cv)dA

r

W(y). Let a be a continuous 2-cocycle in

Z2
(G, T). Let ? denote the usual inductive limit topology on CC (G). Then (CC (G), r) is a

topological
*
-algebra with jointly continuous multiplication

and the involution/*^) = (f(x'
l

)a(x,x-
l

)}~ ([31], Proposition II.l.l, p. 48). The 7-

norm on Cc (G,cr) is ||/|| 7
=

max(||/|| /ir , ||/|| 7>/ ),
where

\\f\kr
=
sup{|

|/|dA" : u G
j,

||/|| A/
=
supjj

|/|dAtt
: u (

AM
= (A")'

1

being the image of A" by the inverse map x - x" 1

([31], p. 50). Then || || 7

is a submultiplicative *-norm on Cc (G,<j). The L 1

-algebra of (G, a) is the completion

A = (CC (G, a) , 1 1 1 1 7 ),
a Banach *-algebra. For/ in CC (G, cr), define

1 1/| |

= sup{ | |TT(/) 1 1 },

TT running over all weakly continuous, non-degenerate ^representations TT : (CC (G, cr),

t)
-

5(7^^) satisfying -| |TT(/) 1 1

<
1 1/| |7

for all/. Then 1 1 1 1

defines a C*-norm on Cc (G, cr) ;

and the groupoid C*-algebra of (G, cr) is C*(G, a)
= (CC (G, cr), || ||)~, the completion.

The following can be proved using cyclic decomposition and ([31], Corollary II. 1.22,

p. 72).

PROPOSITION 7.1

Let G be second countable having sufficiently many non-singular G-Borel sets. Then

8. The universal
*

-algebra on generators with relations

Let G be any set. Let F(G) be the free associative *-algebra on generators G, viz., the

*-algebra of all polynomials in non-commuting variables G]JG* where G* =

{x* : x G}. Let R be a collection of statements about elements of G, called relations
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on G, assumed throughout to be such that they make sense for elements of a locally

m-convex *-algebra. A Banach (respectively C*-) representation of (G,R) is a function p

from G to a Banach *-algebra (respectively a C* -algebra) p : G > A such that

{p(&) : 8 G} satisfies the relations R in A. Let RepB (G,#) (respectively Rep(G,#))

be the set of all Banach representations (respectively C*-representations) of (G,R).

Motivated by ([27], Definition 1.3.4), it is assumed that R satisfies the following.

(i) The function p : G {0} is a Banach representation of (G,/?).

(ii) Let p : G > A be a representation of (G, R) in a Banach *-algebra A. Let B be a

closed *-subalgebra of A containing p(G). Then p is a representation of (G, R) in B.

(iii) Let p be a representation of (G,/?) in a complete locally m-convex *
-algebra A. Let

<f>
: A > B be a continuous *-homomorphism into a Banach *-algebra B. Then

</)
o p is

a representation of (G, /?) in J3.

(iv) Let A be a complete locally m-convex *-algebra expressed as an inverse limit of

Banach *-algebras viz. A = proj. HmAp . Let TTP : A > Ap be the natural maps. Let

p : G A be a function such that for all p, irp
o p is a representation of (G, R). Then

p is a representation of (G,jR).

DEFINITION 8.1

(a) (Blackadar) (G,./?) is C*-bounded if for each g in G, there exists a scalar M(g) such

that \\p(g)\\
< M(g) for all p G Rep (G,R).

(b) (Blackadar) (G, R) is C*-admissible if it is C*-bounded and the following holds.

(bC*) If (pa )
is a family of representations pa : G (Ha )

of (G, R) on Hilbert spaces

#a, then PQ, : G > B(Ha ) is a representation of (G,/?).

(c) (G, ) is weakly Banach admissible if given finitely many representations pi : G A;

(1 < / < n) of G into Banach *-algebras, the map g > p\(g) P2(g) - - Pn(g) is a

representation of (G,/?) in A,. (G,R) is vmzfc/y C*-admissible [27] if this holds with

Banach algebras replaced by C*-algebras.

The class of relations making sense for elements of a Banach *-algebra is smaller than

the class of relations making sense for elements of a C*-algebra. The usual algebraic

relations involving the four elementary arithmetic operations on elements of G and G* do

make sense for Banach *-algebras; but relations like jc
+ > x~ for x = x* in G, or like

x\
>

\y\
for elements jc, y in G, which make sense for C*-algebras, fail to make sense for

Banach *-algebras. We refer to [27] for relations satisfying (i)-(iv) except (ii). The

relation (suggested by the referee). "The elements a, b and c generate A" fails to satisfy

Definition 8.1(c). Our definition of weakly Banach admissible relations is very much
ad hoc aimed at exploring a method of constructing non-abelian locally m-convex
*

-algebras.

Lemma 8.2. (a) Let (G,R) be weakly Banach admissible. Then there exists a complete
m-convex *

-algebra A(G,R) and a representation p : G > A(G,R) such that given any

representation a : G B into a complete m-convex *

-algebra B, there exists a

continuous
*
-homomorphism $ : A(G,R) > B satisfying <j>

o p a.

(b) ([27], Proposition 1.3.6). Let (G,R) be weakly C* -admissible. Then there exists a pro-
C*-algebra C*(G,J?) and a representation p^ : G > C* (G, R) such that given any

representation a : G - B of G into a pro-C* -algebra B, there exists a continuous
*

-homomorphism <j>
: C*(G,R) + B such that

<j>
o p^ = a.
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Proof, (a) Let K = K(F(G)) be the set of all submultiplicative *-seminorms p on F(G) of

the form/?(jt)
=

||CT(JC)||,
a running through all Banach representations of G. For/? G AT,

let Np = {x F(G) : p(x) = 0} and Na
= r}{Np :p G K} a "-ideal of F(G). Let

B = F(G)/Na . Take K* + #a )
=

p(*). Let t be the Hausdorff topology defined by

{pipeK}. Let A(G,R) be the completion of (B,t). Let p:G-*A(G,R) be

Cto'w 7. p is a representation of G in A(G, J?).

Let g be any f-continuous submultiplicative *-seminorm on A(G,/?). Let A
9
be the

Banach *-algebra obtained by the Hausdorff completion of (A(G, R),q). By (iv) above, it

is sufficient to prove that
TT^

o p : G > A
q

is a representation of (G, R). Since q is t-

continuous, there exists p\,p2, - ,Pk in K such that q(x) < c max /?,-(*) for all x G F(G)\
and each pt is of form /7,(jt)

=
||<jj(jc)||, cr/ : G > A(/) being a representation into some

Banach algebra A(/). By (c) of Definition 8.1, there exists a Banach "-algebra B and a

representation a : G > # such that #(*) < ||<T(JC)|| for all x G F(G). In view of (ii), we
assume that B is generated by <r(G). Let <f>:B>Aq be 0(<r(x))

=
(x + Nfl )-h

ker^ = 7rq (p(x)). Then is well defined, continuous and 0o a = Kq o p. By the

assumption (iii) above, o a is a representation of G.

Claim 2. Given any representation <7 : G > C into a complete m-convex *

-algebra C,

there exists a unique continuous *-homomorphism $ : A(G,R) > C such that o p = a.

Let C = proj. lim Cai an inverse limit of Banach *-algebras CQ,, 7ra : C Ca being the

projection maps. By (iii) of above, TTOCT is a Banach representation of (G,/?). By the

construction of A(G,/?), there exist continuous *-homomorphisms </>a :A(G,R) > Ca
such that

<j)a o p = na o a. Hence by the definition of an inverse limit, there exists a

continuous *-homomorphism : A(G, /?) C such that o p = a.

(b) We only outline the (needed) construction of C*(G,R) from [27]. Let S be the set of

all C*-seminorms on F(G) of form q(x)
=

||p~(^)||, & running over all representations of

G into C*-algebras. Let Nq
= {x G F(G) : q(x)

= 0} and Af = n{A^ : q G 5}. Let r be

the pro-C*-topology on F(G)/N defined by ^(^: + A/
r

)
= q(x\ q G 5. Then C*(G,/?) is

the completion of (F(G)/Af,r). The map p^ : G -
C*(G,/?) where p^ (jc)

= ^ -f- A^ is

the canonical representation.

The following brings out the essential point in arguments in claim 1 above.

Lemma 8.3. TTzere exists a natural one-to-one correspondence between RepB (G,/?)

(respectively Rep(G,/?)) <2d t-continuous Banach ""-representations (respectively C*-

algebra representations) ofA(G,R).

Lemma 8.4. srad (A(G, R)) ^](F(Cf)/Na )
= srad (F(G)/Na )

= {x + Na :xeN}.

Proof. Let C = F(G)/Na . Let Jc + ATa G CfjsradA. Then 7r(jc + JV
fl)=0 for all

continuous *-homomorphisms TT : A > B(HV ). By Lemma 8.3, /?(*)
= for all p G 5.

Hence jc G N9 and A: 4- Na G srad (F(G)/Na ). Conversely, let xeN. Then ^(jc)
= for all

q E S. Again by Lemma 8.3,
| |TT(JC -fNa ) \ \

= for all TT G R(A), hence x + Na G sradA.

Proof of Theorem 1.7. (1) Let A = A(G,R). Let : (F(G)/Na ,t)
-

(F(G)/A/
r

fl ,r) be

Then is a well defined, continuous *-homomorphism; hence
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extends as a continuous surjective *-homomorphism : A > C*(G,/?). The universal

property of C*(G,#), Lemma 8.3 and weak Banach admissibility of R imply the follow-

ing whose proof we omit.

Assertion 1. Given any continuous *-homomorphism TT : A(G,/?) > # to a pro-C*-

algebra #, there exists a continuous *-homomorphism TT : C*(G,R) > # such that

7T = 7T O
<^>.

C*(G , R)

By applying the above to the maps <J>
and j : A > E(A)J(x) =x + srad (A), it follows

that there exist continuous *-homomorphisms : E(A) C*(G,J?) and j : C*(G,/?) >

E(A) such that the following diagrams commute.

A
4>

7
E(A) ^-1 C (G,R)

j

Assertion 2. The maps <^ and j are inverse of each other.

Indeed, j is one-one on F(G)/N. For given ;t F(G),

which implies (jc +Na ) + srad (A)
= and

(jc + A â )
srad (A). Hence x e N by

Lemma 8.4, so that x + N = 0. Similarly is one-one on F(G)/N. Also,

which implies that == j-
1 on F(G)/Na ; and ] = 0-

1 on F(G)/Na + sradA. By
continuity and density, < establishes a homeomorphic *-isomorphism ^ : (A) -> C*

(G,J?) withf"
1

=].

(2) Let (G,) be C*-admissible. Then sup{||cr(jc)|| : a G Rep(G,#)} < oo; and TT =
(a : a- E Rep (G,R)} Rep (G, J?). Thus q(x) = ||TT(JC)|| defines the greatest member

of 5(F(G)j, ^ is a C*-norm, and it is the greatest f-continuous C*-seminorm on F(G)/N.
Thus the topology r on C*(G, R) is determined by #. Conversely suppose that C*(G, R) is

a C*-algebra so that
\\Z\\QQ

=
sup{q(z) : q is a continuous C*-seminorm on

C*(G,)} < oo for all z C*(G,/J), and r is determined by the C*-norm
|| 1^. Let

Poo (x)
=

1 1* + N\ |M = sup{^(jc) : 4 e 5} for all x F(G). Thenp^ 6 S and kerp^ = N.

There exists a (^-representation a : G -+ C such thatpoo(g) = ||flr(g)||
for all g 6 G; and

this defines a continuous C*-representation a : C*(G,/?) ~> C. It is clear that R is C*-

bounded. We verify (bC*) of Definition 8.1. Let {pa } C Rep (G,fi) with pa :G-> B(Ha )
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for some Hilbert space Ha . Let H = HQ . For x G F(G), let A(JC)
= pa (x). By the C*-

boundedness of (G,fl), A(x) 6 #(#). This defines a *-homornorphism A : F(G) -> S(/f)

satisfying ||A(jc)||
= sup||pa (jt)|| <p<x>(x) for all x E F(G). Since ker^ = Af, A factors

to a "-representation X: F(G)/N -* B(H) satisfying ||A(z)||
< HZ^. As

|| (^ is r-

continuous, so is A. By lemma 8.3, (A(g) : g G] satisfies the relations R in B(H). Thus

(G,# is C*-admissible.
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Abstract. We prove an equisummability result for the Fourier expansions and

Hermite expansions as well as special Hermite expansions. We also prove the uniform

boundedness of the Bochner-Riesz means associated to the Hermite expansions for

polyradial functions.

Keywords. Hermite functions; special Hermite expansions; equisummability.

1. Introduction

This paper is concerned with a comparative study of the Bochner-Riesz means associated

to the Hermite and Fourier expansions. Recall that the Bochner-Riesz means associated to

the Fourier transform on (R
rt

are defined by

Sf/W = (27T)-"/
2

where

is the Fourier transform on Rn
. Let 3>a ,

a Nn be the n-dimensional Hermite functions

which are eigenfunctions of the Hermite operator H = A + |;c|

2
with the eigenvalue

(2|a| + n) where |a|
= ai H h cnn . Let P* be the orthogonal projection of L 2

(1R
/I

)

onto the kih eigenspace spanned by $a , |a|
= k. More precisely,

Then the Bochner-Riesz means associated to the Hermite expansions are defined by

For the properties of Hermite functions and related results, see [6].

In our study of the Bochner-Riesz means associated to Hermite and special Hermite

expansions we make use of a transplantation theorem of Kenig-Stanton-Tomas [2]. Let us

95
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briefly recall their result. Let P be a differential operator acting on C^(U
n

) C L 2
((R")

which is self adjoint. Let

/y = XdEx

be the spectral resolution of P. Let m be a bounded function on R and define

Let AT be a subset of R" with positive measure and define the projection operator Qk on

L 2
(r) by

where XAT(*) is the characteristic function of K. Let />(*, f) be the principal symbol of P.

Since P is symmetric p is real valued. Then we have the following theorem.

Theorem 1.1. Assume 1 < p < oo anJ that there is a set of positive measure KQ for

which the operators QKQ^R(P}QKO
cire uniformly bounded on Lp(R

n
). If XQ in KQ is any

point of density, then m(p(jto,f)) w a Fourier multiplier ofLp
(R

n
).

Let B be any compact set in Rn
containing origin as a point of density and let XB be the

operator

XBf(x) =X* (*)/(*)

Then from Theorem 1.1 it follows that the uniform boundedness of XB^RXB on Lp
(U

n
)

implies the uniform boundedness of Sf on Lp
(R

n
). Thus once we have the local

summability theorem for Hermite expansions then a global result is true for the Fourier

transform. At this point a natural question arises, to what extend the converse is true? In

this paper we answer this question in the affirmative in dimensions one and two and

partially in higher dimensions. We also study the equisummability of the special Hermite

expansions, namely the eigenfunction expansion associated to the operator

on C". In this case we show that the local uniform boundedness of the Bochner-Riesz

means for the special Hermite operator is equivalent to the uniform boundedness of Sf on

IR
2
". Using a recent result of Stempak and Zienkiewicz [4], on the restriction theorem we

study the Bochner-Riesz means associated to the Hermite expansions on R
2n

for functions

having some homogeneity. We also prove a weighted version for the Hermite expansions
which slightly improves the local estimates proved in [5]. Eigenfunction expansions
associated to special Hermite operator L has been studied by Thangavelu [6].

2. Hermite expansions on Rn

The Hermite functions hk on R are defined by
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In the higher dimensions the Hermite functions are defined by taking tensor products:

Given / G L P
((R) consider the Hermite expansion

/W =

Let Sfff(x}
=

X)f=o(/' nk)hk(x) be the partial sums associated to the above series. In

1965, Askey-Wainger [1] proved the following celebrated theorem.

Theorem 2.1. S^f > / in the Lp norm iff |
< p < 4.

Let St be the partial sum operator associated to the Fourier transform on R. Then it is

well known that Stf / in L p norm for all 1 < p < oo. In this section we show that on a

subclass of LP
(R) the same is true for the Hermite expansions.

In the higher dimensions it is convenient to work with Cesaro means rather than Riesz

means. These are defined by

1 W

where A{ are the binomial coefficients defined by Ai = r^iitrl/^A- It is well known that
f C L ~"~ / I ' /

<TN are uniformly bounded on Lp
(R

n
)

iff SR are uniformly bounded. We have the

following equisummability result. Let E stand for the operator Ef(x) = e~sM f(x).

Theorem 2.2. Ea6
NE are uniformly bounded on L p

(R
n
) iff S

6

t
are uniformly bounded,

provided 6 > max{0,| 1}.

As a corollary we have the following.

COROLLARY 2.3

Let 1 < p < oo. Then for the partial sum operators associated to the one dimensional

Hermite expansion we have the uniform estimate

-/
Thus forf G Lp

(e^
2

dv), 1 < p < oo the partial sums converge to fin Lp
(t~

For a general weighted norm inequality for Hermite expansions, see Muckenhoupt's

paper [3].

The celebrated theorem of Carleson-Sjolin for the Fourier expansion on R2
says that if

S > 2
(p

~"
2)
~

2
* - P <

3
^Gn S

t
are uniformly bounded on L /7

(R
2
). As a corollary to

this we obtain the following result for the Cesaro means o-
6

N on R2
.

COROLLARY 2.4

;
=

2, 1 < p < | and S > 2(
-

i)
-

\. Then for f LP
(U

2
)

<
CJ
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It is an interesting and more difficult problem to establish the above without the

exponential factors.

We now proceed to prove Theorem 2.2. It is a trivial matter to see that uniform

boundedness of Ecr^E implies the same for XB^XB for any compact subset B of IR
n

. In

fact, if Ecr
6
NE are uniformly bounded then

\XBcr
6

NXBf\
P&c

<C
f^E

which proves the one way implication, by the transplantation theorem [2]. To prove the

converse we proceed as follows. Let

be the kernel of the projection operator Pk . Then the kernel o^ (*,)>) of the Cesaro means

is given by

"/v *=0

We first obtain a usable expression for this kernel in terms of certain Laguerre functions.

Let L%(t] be the Laguerre polynomials of the type a. > 1 defined by

e~
r
f
a
L(f) = (-1)*T7T"E (e~'**

+a
)> l > 0-

We have the following expression.

PROPOSITION 2.5

4(^)=^|>^

Proof. The generating function identity for the projection kernels $*(jc,y) reads

Since
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the generating function for cr(;t,y) is given by

The right hand side of the above expression can be written as

(1
_ r)-H-e-ifcl*->l'(i + r)-f e-^l*<

Now the generating function for the Laguerre polynomials L% is

Therefore, we have

Equating the coefficients of r* on both sides we obtain the proposition.

The Laguerre functions Lf are expressible in terms of Bessel functions Ja . More

precisely, we have the formula

Using this, the kernel e~iW a6
N (x,y) e~iM of the operator Eo*NE is given by.

eHW^yJeHW
1

=

(r- ,f~~C /-
/- (r- ,f 6 ,

JH(x^l^ - y|) JH i (V5| + y|)

4/0 7o ~^!~
r

(V2t
\

X -y\)^ (v^|. + y|)^
1

'

where C depends only on <5. Now the kernel of the Bochner-Riesz means Sf on Rn
is

given by

When n = 1,

H W
and hence

= cos t
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where

7*f(x) =

and C an absolute constant.

By Minkowski's integral inequality we get

\\E<SNEf\\f < C

< ell/11

since

/.

which proves the theorem in one dimension.

When n > 2 we have the Bessel functions J_i inside the integral. If d/j, is the surfa

measure on the unit circle
\x\
= 1 in Rn

then we have

where C is an absolute constant. If we use this in the above we get Ecr
8
NEf(x) equals

As before, using Minkowski's inequality we get

\\Ea
s
NEf\\<

since

/*oo /oo

/ / e-'e-'Ir-jV^dftfc
Jo Jo

< /e- f

/f Te^^-^-F f
JQ \JQ Jt

<C f" e-'fVdf + T
fAT + J) /

7o V 2/ 7

provided 8 > %
- 1. This completes the proof.
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3. Special Hermite expansions

Let
$Q,/3, a, (3 Nn

, be the special Hermite functions on Cn
which form an orthonormal

basis for L 2
(C

rt

).
The special Hermite expansion of a function/ in L p

(C
n
)

is given by

The functions $a/3
are the eigenfunctions of the operator L with eigenvalues (2|/3| -f- n).

Let

be the projection onto the Ath eigenspace. Then we have

x

where <#k(z) =L2"
1

(5|z|

2

)e"i'
z

l are the Laguerre functions and / x g is the twisted

convolution

cn

The special Hermite expansion then takes the compact form

Jt=0

The Cesaro means are then defined by

In this section we prove the following theorem.

Let 5f be the Bochner-Riesz means for the Fourier transform on IR
2rt = Cn

.

Theorem 3.1. Let B be any compact subset of C
n
containing the origin. Then ;

are uniformly bounded on Lp
, 1 < p < oo ifand only ifS^ are uniformly bounded on the

same Lp .

Proof. The kernel 0#(z) of &6
N is given by

Using the formula

we have
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As in the previous section we can express the Laguerre function in terms of the Bessel

functions, thus getting

J
.

(V2t\z\)
s+n

Now, a^f = / x o^ so that

where

Writing |z
-

w\
2 =

\z\

2 + \w\
2 + 2Rez w we have

|w

where (z w)
a = (ziw,)"

1

(znwn )

a
". Therefore,

where

If we assume that Sf are uniformly bounded we get

when B is contained in the ball {z :
\z\
< R}> Using this in the above equation we get

\\XBONXBf\\p
<

Call/Up-

The converse is the transplantation theorem of Kenig-Stanton-Tomas.

In [5], Thangavelu has established the following local estimates for the Cesai

means.

Theorem 3.2. Let ^-^ < p < oo and S > S(p]
= ln(

l- -
i)
- then for any compa

subset B of C
n
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Recently Stempak and Zienkiewicz have proved the global estimate

\a
6

Nf(z)\
pdz<C \f(z}\

p
dz

cn

for the above range. The key point is the restriction theorem namely, the estimate

which they established in the range 1 < p < 2{

%^. In the next section we use this

restriction theorem in order to prove a positive result for the Hermite expansions on [R
2n

.

4. Hermite expansions on R2n

In this section we consider the operator -A + 1 \z\

2
rather than the operator

-A -f \z

2
. If

$n(x,y),iJ, e N2n
are the eigenfunctions of the operator -A + |z|

2
then vj>M (z)

=
$M(^ , -4) are the eigenfunctions of -A + \ \z\

2
with eigenvalues (|/x| -f n). The operator

-A -f |]z has another family of eigenfunctions namely the special Hermite functions.

In fact, $a/3 are eigenfunctions of the operator A + ||z|
with eigenvalue (|a|+

In this section we study the expansion in terms of ^ for functions having some

homogeneity. The torus T(n) = {(e
1'* 1

,
e''^

2
,

. . .
,
e1

'*")
: Rn

} acts on functions on C" by

ref(z)
=

/(e'*z) where ewz = (e^zi,e^
2z2 ,

. . . ,e^zn ). We say that a function is m-

homogeneous if ref(z) = tim 'e
f(z), here meZn and m.O = m\.6i-\

-----h mn -0n . It is a

fact that $a/3
is (fi a) homogeneous. 0-homogeneous functions are also called

polyradial.

The operator A + \ \z\

2
commutes with re for all 0, therefore P^rof = roPkf which

shows that P^f is m-homogeneous if / is . In particular, Pkf is polyradial if / is.

Therefore, for such functions L(Pkf) = (-A + \ \z\

2
}Pkf = (k + n)Pkf. This shows that

P^/ is an eigenfunction of L with eigenvalue k + n. But the spectrum of L is

{2^ + n : k = 0, 1, . .
.} which forces />*/ = when k is odd.

PROPOSITION 4.1

Letf be polyradial on Cn
. Then Pijt+i/ = and P2kf = f x

</?*.

/ We show that when/ is polyradial the operators ?ikf and/ x ipk have the same

kernel. Let

be the kernel of Pk . Then by Mehler's formula

]TY#fc(z, w) = 7r~
n
(l
- *

2
)~

n
e

so that

00

Jt=0
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Let W
y
=

My + ivy
=

rye**.
When / is polyradiai /(w) = /o(n,r2 ,

. . . ,rn ) and so we
have

where s = (51, 52 ,
. . .

, J), y
=

|zy|
and * is given by

*(*, r)
=

(1
- rT*

Now Re
zy Wj

=
rjSjCQ$(0j

-
(pj)

where
z/
=

J/e
1

^, wy
=

rye'*. Consider the integral

*

which equals, if we recall the definition of the Bessel functions, ./oCiir^fyty)- Thus we
have proved

*(,, r)
=

(1
- O-

On the other hand when/ is polyradiai / x tpk reduces to the finite sum

where we have written

as it is polyradiai. Then / x ^ is given by the integral operator

/oo /o

f*Vk(z)=
J J

i, . . .
,
rn )ri, . . .

,
rBdri, . . . ,drn .

We have the formula (see [6])

Recalling the generating function identity for the Laguerre polynomials of type 0,
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we get, if S*(r, s) is the kernel for / x <pk

(r,s)
-

(1 -rpe

105

Comparing the two generating functions we see that

from which follows \J>2/t(r,.s)
= Sk (r,s) and this proves the proposition.

Consider now the Bochner-Riesz means associated to the expansions in terms of^
defined by

pi
' H-

For these means we have the following result.

Theorem 4.2. Let \<p<
polyradial. Then

, S > 6(p]
= / L*(C

n
)

where C is independent off and R.

The key ingredient in proving the above theorem is the Lp - L 2
estimates

which now follows from the corresponding estimates for / x (pk . We omit the details.

We conclude this section with the following remarks. As we have observed, P^f
is m-homogeneous whenever/ is and so Pkf can be obtained in terms of/ x <pk when

/ is m-homogeneous. So an analogue of the above theorem is true for all m-homo-

geneous functions. More generally, let us call a function/ of type N if it has the Fourier

expansion

where

Note that/m is m-homogeneous. We can show that when / is of type Af then

under the conditions of the above theorem on p and S where now C# depends on N. We
leave the details to the interested reader. It is an interesting problem to see if the theorem

is true for all functions.
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Abstract. In this paper we study second order scalar differential equations with

Sturm-Liouville and periodic boundary conditions. The vector field f(t,x,y) is

Caratheodory and in some instances the continuity condition on x or y is replaced by a

monotonicity type hypothesis. Using the method of upper and lower solutions as well

as truncation and penalization techniques, we show the existence of solutions and

extremal solutions in the order interval determined by the upper and lower solutions.

Also we establish some properties of the solutions and of the set they form.

Keywords. Upper solution; lower solution; order interval; truncation map; penalty

function; Caratheodory function; Sobolev space; compact embedding; Dunford-

Pettis theorem; Arzela-Ascoli theorem; extremal solution; periodic problem; Sturm-

Liouville boundary conditions.

1. Introduction

The method of upper and lower solutions offers a powerful tool to establish the existence

of multiple solutions for initial and boundary value problems of the first and second order.

This method generates solutions of the problem, located in an order interval with the

upper and lower solutions serving as bounds. In fact the method is often coupled with a

monotone iterative technique which provides a constructive way (amenable to numerical

treatment) to generate the extremal solutions within the order interval determined by the

upper and lower solutions.

In this paper we employ this technique to study scalar nonlinear periodic and boundary
value problems. The overwhelming majority of the works in this direction, assume that

the vector field is continuous in all variables and they look for solutions in the space
C2

(0,&). We refer to the books by Bernfeld-Lakshmikantham [2] and Gaines-Mawhin

[6] and the references therein. The corresponding theory for discontinuous (at least in the

time variable t) nonlinear differential equations is lagging behind. It is the aim of this

paper to contribute in the development of the theory in this direction. Dealing with

discontinuous problems, leads to Caratheodory or monotonicity conditions and to

Sobolev spaces of functions of one variable. It is within such a framework that we will

conduct our investigation in this paper. We should mention that an analogous study for

first order problems can be found in Nkashama [18].

107
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2. Sturm-Liouville problems

Let T= [0,6]. We start by considering the following second order boundary value

problem:

/-^(0 = /(rXO
\ (Box)(0)

= ID, (B

Here (#oJc)(0)
= a ;c(0)

-
coJc'(O) and (Bijc)(6)

=
ai*(6) -f c\x!(b\ with a ,c ,ai ;

ci > and a$(a\b + c\) + CQ^I 7^ 0. Note that if c = c\ = z^o
= ^i = 0, then we have

the Dirichlet (or Picard in the terminology of Gaines-Mawhin [6]) problem. The vectoi

field/(f , jc, y) is not continuous, but only a Caratheodory function; i.e. it is measurable in

t G T and continuous in
(jc, y) G (R x R (later the continuity in y will be replaced by a

monotonicity condition). Hence jc"(-) is not continuous, but only an L 1

(r)-function.

Recently Nieto-Cabada [17] considered a special case of (1) with/ independent of y.

Also there is the work of Oman [19] where/ is continuous.

We will be using the Sobolev spaces W 1
'
1

^) and W2
'
!

(r). It is well known (see for

example Brezis [3], p. 125), that W lfl
(T) is the space of absolutely continuous functions

and W2
^(T) is the space of absolutely continuous function whose derivative is absolutely

continuous too.

DEFINITION

A function ty W2
*
l

(T) is said to be a 'lower solution' for problem (1) if

</^ ". ^ T
\
\'

A function
(f>
G W2

'
1

(T) is said to be an 'upper, solution' for problem (1) if the inequalities

in (2) are reversed.

For the first existence theorem we will need the following hypotheses:

H(f)j: /:TxRx(R->[Risa function such that

(i) for every x,y 6 R, t /(f,*,3>) is measurable;

(ii) for every t T, (x,y) /(?,#, y) is continuous;

(iii) for every r > there exists jr L J

(r) such that '\f(t,x,y)\ < jr (t) a.e. on T for all

x,y (R with |jc|,|y|
< r.

HQ: There exists an upper solution
<f>

and a lower solution ^ such that ^(r) < </>(t)
foi

every r e r and there exists h G C(R+, (0, oo)) such that |/(r, jc,y)|
<

A(|y|) for all r G 7

and all jc,y G [R with ^(f) < x <
<f>(i) and J?rrT > max,6r 0(r)

- minr r^(f), with

> _ max[|V>(0)-^(fc)|,|^(f>)-0(0)n
u

A ~
b

Remark. The second part of hypothesis HO (the growth condition on /), is known as the

'Nagumo growth condition' and guarantees an a priori L -bound for jc'(-). More

precisely, if H holds, then there exists N\ > (depending only on
</>, ?/>, h) such that foi

every x G W2
>
l

(T) solution of -*"(*) = f(t,x(t),xf(t)) a.e. on T with ^(0 < ^(0 < </>(t)

for all f G T, we have
\x! (t) \

< NI for all r G T (the proof of this, is the same (with minoi

modifications) with that of Lemma 1.4.1, p. 26 of Bernfeld-Lakshmikantham [2]).
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We introduce the order interval K = [^, 0]
= {x e W l

>
2
(T) : ^(t) < x(t) < 0(0 for all

t T} and we want to know if there exists a solution of (1) within the order interval K.

Also we are interested on the existence of the least and the greatest solutions of (1) within

K ('extremal solutions'). The next two theorems solve these problems. In theorem 1 we

prove the existence of a solution in K and in theorem 2 we prove the existence of

extremal solutions within K. Although the hypotheses in both theorems are the same, we
decided to present them separately for reasons of clarity, since otherwise the proof would

have been too long.

Theorem 1. If hypotheses H(f) 1
and HO hold, then problem (1) has a solution x W2

>
1

(T) within the order interval K =
[0, </>].

Proof. As we already mentioned in a previous remark, the Nagumo growth condition (see

HO) implies the existence of N\ > (depending only on -0, 0, h) such that 1^(01 < M for

all / 6 T, for every x W2
'
l

(T) solution of (1) belonging in K. Set N = 1 4- max

{M, Halloo* Halloo}- Also define the truncation operator r: W l
>
l

(T] -> W l
>
l

(T) by

(0(0 if 0<*(0
r(x)(t}={ x(t) if <KO<*(0<0(0-

[V(0 if x(t)<^(t)

The fact that r(x) W l
>
l

(T) can be found in Gilbarg-Trudinger [8] (p. 145) and we
know that

f

(t) if #0<*
(0 if ^(0<*(0<*W-
(0 if *(0<^W

Also we define the truncation at N function q# G C(R) by

and the penalty function u : T x R > R by

0(0 if

if

if

Then we consider the following Sturm-Liouville problem

f -y(r) = /(r,T(x)(0,v(rW
;

(r))).- (^(0) a-e. on T
\

vi y
Denote by S the solution set of (3).

Claim #7. 5 C K = [^, 0]. Let x 5. Then we have

-^(0 =
/(f, r(x)(i),qN (r(x)\t)}}

-
ii(r, *(0) a.e. on T. (4)
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Also since j> e W2
>
l

(T) is a lower solution of (1), we have

/(f) > -/(*, V>W, ^(0) a -e - on r -

Adding (4) and (5), we obtain

'W)
-

(*>*(*))
a -e - on r -

Multiplying with (i/>
-
*)+(0 and integrating over T = [0, ft],

we have

/'V(0-A
JO

> f

b

Jo

From the integration by parts formula (Green's identity), we have

[Vw-A
JO

- ^'
JO

Using the boundary conditions for x and i/>
at ( = 0, we have

< "o =

If Co = 0, then and so (tf-*)+()
= - Therefore -(^-

- ^ (0))
< - *

(0) < _ a
(^(o)

-
x(0))(^

-
*)+ (0). Thus if (</>(0)

-
x(0)) > 0, we have -(V -

-*< and if W0)-x(0))<0, we have (^-*)+ (0)
= and so

= 0. Therefore we always have

From the boundary condition at t = fo, we have

<v\ = aix(b)

Then arguing as above, we infer that
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Finally recall that

-*)'W if

if

(see Gilbarg-Trudinger [8], p. 145). Hence it follows that

/V -
*')(</<

-
*)'+ (0<fc

=
"

[(V-
- *)']

2
<fc > o. (10)

JO

Using (8), (9), (10) in (7), we deduce that

*)+ <fc<o. (ii)

Also note that

(f(t,r(x)(t),qN (r(x)'(f)-))
-

f(t^(i)^'(t))}(^
-

x)+ (t}&
o

=
f (f(t,r(x)(t},qN (T(x}'(t)})

-/M, </>')]> -*)(*)&
J{x<^}

=
f [/(', ^(0,^(0) -/M(0^(0)](tf-*)* = o (12)
*<v

since on the set {> e T :

jt(f)
< ^(f)}. we have r(jc)(f)

=
i/>(t)

and r(jc)'(f)
=

^/(f). Using

(11) and (12) in (6), we have that

0<
/"

i

JO

(recall the definition of M(?,JC)). So ^(^) < jc(f) for all f T. In a similar way we show

that
jc(f)

<
</>(t)

for all/ G T. Therefore 5 C K as claimed.

Claim #2. S is nonempty. This will be proved by means of Schauder's fixed point

theorem. To this end let D =
{x W"2)1 (r) : (fio*)(0)

=
z/o, (^i^)(*)

=
^1} and let

L : D C L1

(T) ~> L1

(J) be defined by Lx = -jc
77
for every x D. First note that for every

h ^(r) the boundary value problem

.c.anTl

4)
=

i/i J\

has a unique solution jc G W^2)1 (r). Indeed uniqueness of the solution is clear. For the

existence, note that if h G C(T), then it follows from corollary 3.1 of Monch [15]. In the

general case, let h e L 1

(r) and take hn e C(T) such that hn -~> h in L 1

(T) as n -+ oo. For

each hn , n > 1, the solution *() of (13) is given by xn (t)
=

u(t) + $G(t,s)(xn (s)-

hn(s))As, where M e C2
(T) is the unique solution of jc"(r) =0 r e T, (Bo*)(0)

= ^o,

(BIJC)(&)
=

1/1 and G(f,j) is the Green's function for the problem x" = g(t} teT,
(Bo*)(0) = 0, (BiJc)(fc)

= for g E C(r) given. From the proof of corollary 3.1 (b) of

Monch [15], we know that sup,^ H^H^ < sup^ Halloo, where rjn C2
(T] is the

unique solution ofrf'(t)
= ~hn (t) t T, (B<w)(0) = |^o|, (*i ??)(*)

=
|i/i|.

We know that
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r;n (r)
==

u(t)
-

Jo G(r, s)hn (s)ds and so it follows that supn>j H^IL < oo. Hence {*}>!
is bounded in C(T). Since -xf^t) =hn (t) -xn (t), t e T, it follows that {*}>! is

uniformly integrable. From Brezis [3] (p. 132) we know that the norm
|| ||W2,i(r\ is

equivalent to the norm
||jc||

=
\\x\\ l

+ H^'lli- Therefore {^}n>i is Bounded in W2
^(T).

Since W2
'
1

(r) embeds continuously in C 1

(r) and compactly in L l

(T) and by the Dunford-

Pettis compactness criterion, by passing to a subsequence if necessary, we may assume that

xn ^ x in C 1

(T) (hence xfn (t}
- xf (t) for all t <G T\ xn -* x in L l

(T) and < -^ y in L 1

(7)

as oo. Evidently )>
= Jt". So in the limit as n * oo, we have xf'(t) 4- x(t)

=
h(t) a.e.

on I, (Bo*)(0)
= "o, (#!*)() = vi. Therefore we have proved that R(I + L) = L {

(T).

Next let x\ , X2 /> and ^ = jci #2- Define

r+ = {t e T : jc(f) > 0} and T_ = {t T : jc(0 < 0}

both open sets in T. For A > we have

jc(r)-A*
f/

(0|dr+ / \x(t)-Xx"(t)\dt
T+ 7r_

c(f)df- f x(t)dt-X f x"(t)dt + \ I x"(t)dt
T+ JT, JT+ JT.

= / \x(t)\dt-X\[ x"(t)dt- f x"(t)di\.
Jo UT+ JT, J

Let (a, c) be a connected component of r+. Then x(a)
=

*(c)
= and jc(r) > for all

te (a,c). Thus xf(a) > and x/

(c) < and from this it follows that /flV(0<fr
=

xf(c) -x?(a) < 0. Therefore we deduce that /r x"(/)df < 0. Similarly we show that

/r_ x?'(t)dt
> 0. So finally we have -A[/r+ x?'(t)dt

-
JT_ xf

f

(t)dt]
> and thus we obtain

\x(t)-Xx"(t)\dt>

"

x(t)\dt
o o

=
l^i +AI*! -

(jc2 4-

This last inequality together with the fact that R(I -f L) = L1

(r), implies that (7 + L)"
1

:

L1

(r) > Z) C L 1

(r) is well-defined and nonexpansive (is the resolvent of the m-accretive

operator L; see Vrabie [21], Lemma 1.1.5, p. 20). For k > consider the set

Recalling that IWIj + 11^11! is an equivalent norm on W2
'
1

^) see Brezis [3], p. 132), it

follows that rk is bounded in W2
>
1

(T) and since the latter embeds compactly in L 1

(r), we
conclude that Tk is relatively compact in L1

(T). So from Vrabie [21] (Proposition 2.2.1, p.

56), we have that (/ + L)"
1

is a compact operator. If C C L1

(r) is bounded and u e C, let

x = (7 -h L)~~ (u). Then -x!
1 +x= u and from what we proved we have

IWIi <
II

- *" +*||i < supOHl! : u e C]
=

|C| < oo.

So
| |x"| | !

< 2|C| and thus we conclude that (/ -f- L)"
1

(C) is bounded in W2
'
1

(T). Since
the latter embeds compactly in WU (T), we infer that (/ + L)

-1
(C) is relatively compact

in W 1
'
1

^). Moreover, if un ~~> u in Ll

(T) as n -* oo and xn = (I + Lr\Un), then
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xn -+ x = (/ + L)"
1

(
M) in L 1

(7) as n -> oo (recall that (/ + L)"
1

is continuous on L 1

(T))

and {*}>! is bounded in W2
'
l

(T). Exploiting the compact embedding of W2
'
l

(T) in

W 1
'
1

(7), we have that xn
- * in W 1

'
1

(7), i.e. (7 + L)""
1

: L 1

(7) -> Z> C W 1
'
1

(7) is conti-

nuous, hence a compact operator.

Now let H : W l
>
l

(T)
- L l

(T) be defined by

We will show that //() is bounded and continuous. Boundedness is a straightforward

consequence of hypothesis H(f) 1 (iii) and of the definition of the penalty function u(t,x).

So we need to show that H(-) is continuous. To this end let xn * x in W 1
'
1

(T) as n > oo.

By passing to a subsequence if necessary, we may assume that xn (t)
>
x(t) and

x!
n (t)

>
xf(t) a.e. on T as n * oo. Hence we have r(xn )(t) >

r(;c)(r) for every r G 7 and

#AKT(*n)'(0) "* ^(TW /

(0) a -e - on 7 as ft > oo. Note that {xn }n>i is bounded in C(7)

(since W li!
(7) embeds continuously in C(7)) and so by virtue of hypotheses H(f) {

, the

continuity of w(f , )
and the dominated convergence theorem, we have that H(xn )

-> /f (jt)

in L*(7) as n - oo and so we have proved the continuity of H : W 1
'
1

(7) > L [

(7).

Then consider the operator (I + L)~
1H : W l

*
l

(T) -> WM (7). Evidently this operator

is continuous (in fact compact), (/ + L)~
1

H(D) C D and (I + L)~
1

H(D) is compact in

W l
>
l

(T) (since for every x W l
*
l

(T), \\H(x)\\ {
< If with ** =

l

Halloo) and r = maxdl^H^, ll^iL^})- since D ^ ljl
(7) is closed, convex, we can

apply Schauder's fixed point theorem (see Gilbarg-Trudinger [8], Corollary 10.2, p. 222),

to obtain x = (/ + L)"
1

^). Then -jc
77

-j- x = H(JC), jc G D; i.e. x G W2
'
1

(7) is a solution

of (3). This proves the nonemptiness of S.

To conclude the proof of the theorem, note that if x G S, then from claim # 1 we have

$(t) <x(t) <
<j)(t)

for all f 7. So we have r(x)(t) =*(0. r(x)'(t) =xf(t) and w(?,

x(t))
= 0. Also recalling that ^(/Jl < A^ for all t G 7, we also have that qi^(x

f

(t)) =x
f

(t).

Therefore finally

r-AO=/(',*y) a.e.on7\
\ (Box)(0) = i^), (Bi*)(*)

=
1/1 J

i.e., x G W2
'
l

(T) solves problem (1) and x G
[?/>, </>].

Now we will improve the conclusion of theorem 1, by showing that problem (1) has
I

extremal solutions in the order interval K
[?/>, </>];

i.e. there exist a least solution x* G K
and a greatest solution jc* G K of (1), such that if jc G W2)1

(7) is any other solution of (1)

in K, we have x*(t) < x(t) < jc*(r) for all t G 7.

Theorem 2. Ifhypotheses H(f) t
<?nd HO fto/d, then problem (1) /z<2s extremal solutions in

the order interval K =
[?/>, </>].

Let S\ be the set of solutions of (1) contained in the order interval K =
[?/>, (/>].

From theorem 1 we have that S\ ^ (p. First we will show that S\ is a directed set (i.e. if

*i,*2 S\, then there exists jc G Si such that xi(t) < x(t) and X2(t) < x(t) for all t G 7).

To this end let xi,xi G Si and let x^ = max{^i,jc2 }. Since xi,X2 G W2il
(7), we have that

;c3 G W l
>
l

(T) (see Gilbarg-Trudinger [8], Lemma 7.6, p. 145). Let rk : W 1
'
1

(7) -*

W 1
'
1

(7) be defined by

if

if '* (0 < XO < 0(0 * = i, 2, 3 .

if jc<^
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Also we introduce the penalty function u3 : T x R - R and the truncation function

qN : R -* R (N = 1+ max{M, IhA'lL' 110'lloJ) defined bY

-
<j>(t)

if

=
{ if *3 (0 <*< 0(0

k

x-*3 (0 if Jt<*3 (0

and

{#

if #<;c
x if -N<x<N.
-N if *<-#

Then we consider the following boundary value problem:

2

-f(t,T3 (x}(t),qN(T3 (x)'(t)})\- 3 (r,*(0) a.e. on T

[ (Bo*)(0) - n>, (Bi*)(&)
=

1/1

(14)

Arguing as in the proof of theorem 1, we establish that problem (14) has a nonempty

solution set. We will show that this solution set is in the order interval [*3,0]. So let

x W2il
(T) be a solution of (14). We have

(0,

- w3 (r,jc(r)) a.e on T.

Multiply with (x\ x)+ (t) and then integrate over T = [0, fc]. Using the definition of the

truncation functions rk(k= 1,2, 3), ## a&d boundary conditions, we obtain

rb

= / (jci jc)i(r)df
=

(recall the definition of MS)
JQ

^xi(t)<x(t) foraUrer. a.e. on /.

In a similar way we show that x2 (t)
< x(t) and x(f) < (j)(t)

for all t G T. Therefore we
conclude that every solution jc(-) W2

'
1

(J) of (14) is located in the order interval [xs, ^].

Hence r
fe (x)(r)

=
jc(0 and ^(^'(r) = xf(t) for aU reT and all jfc {1,2,3} and

u3 (t,x(t)) =0. Thus

a.e. on

As we already mentioned the Nagumo growth condition (see (Ho)) guarantees that

\xf(t)\
< N for all t T and so ## (j</(f))

=
x'(f). Therefore x G Si and we have proved

that Si is a directed set.
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Now let C be a chain in Si . Then since C C L 1

(r), according to Dunford-Schwartz [5]

(Corollary IV.IL7, p. 336), we can find {xn }n^ C C such that sup C = sup^ xn . Then by
the monotone convergence theorem, we have that xn > x in L l

(T) as n - oo and so

^(t) < x(t) < (j)(t) a.e. on T. For every n > I we know that H-x^l^ < max-dl^H^,

Halloo}
= ro and supn>! H^'JI^ < N\. So if r max{r , N\}, by virtue of hypothesis

H(f) { (iv) we have that |K(OII < 7r(0 a.e. on T. Thus {*}>! is bounded in W2
>
l

(T)

and {^
/

}n> 1
is uniformly integrable. So as before exploiting the compact embedding of

W2
'
{

(T] in W lsl
(r), the continuous embedding of W2

^(T) in C l

(T) and invoking the

Dunford-Pettis theorem, we may assume that xn x in W ljl
(r), xn (t)

>
jc(f), jc^(r)

*'(r) for all t T and ^ -^ v in L !

(r) as n > oo. It is easy to see that y x" and

(Box)(Q)
=

r/o, (BiJt)(fe)
=

i/i. Also from the dominated convergence theorem, we have

that -x"(-)=f(.,x(-),x'(-)) in L 1

^). Hence ~x"(t) = f(t,x(t),xf(t)) a.e. on. T,

(5o^)(0) = VQ, (B\x)(b) = z/i. Thus .x = supC Si. Using Zorn's lemma, we infer that

Si has a maximal element x* & S\. Since Si is directed, it follows that x* is unique and is

the greatest element of Si in
[?/?, </>]. Similarly we can prove the existence of a least

solution #* of (1) in
[-0, (/>].

Therefore (1) has extremal solutions in K =
[-0, 0],

3. Periodic problems

In this section, we focus our attention on the 'periodic problem':

f -x"(t] = f(t,x(t),x?(i)) a.e. on T )

This problem was studied using the method of upper and lower solutions by Gaines-

Mawhin [6], Leela [14], Lakshmikantham-Leela [13], Nieto [16], Cabada-Nieto [4],

Omari-Trombetta [20] and Gao-Wang [7]. From these works only Gaines-Mawhin,

Cabada-Nieto, Omari-Trombetta and Gao-Wang had a vector field depending also

on x
1

and moreover, among these papers only Cabada-Nieto and Gao-Wang used

Caratheodory type conditions on/(f,jc,y) with Lipschitz continuity in the y-variable in

Cabada-Nieto (see Theorem 2.2 in Cabada-Nieto [4]). Theorem 3 below extends

all these results. A similar result using a different method of proof, was obtained by

Gao-Wang [7].

DEFINITION

A function ^ W2}1
(r) is said to be a 'lower solution' of (18) if

a.e. on T

A function
</>

W2
'
l

(T) is said to be an 'upper solution' of (18) if it satisfies the

reverse inequalities.

Theorem 3. If hypotheses H(f) 1
and HO hold, then problem (18) has a solution

x e W2
>
l

(T) within the order interval K =
ty>, $.

w
Proof. The proof is the same as that of theorem 1, with some minor modifications. Note ||
that in this case D = {x G W2

'
l

(T] : Jt(0)
=

x(b),xf(Q)
=

xf(b)} and L : D C L l

(T) ->

L1

(r) is defined by Lx = xf/

for all x G D. The rest of the proof is identical and only in
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the applications of the integration by parts formula (Green's identity), we use the periodic

conditions instead of the Sturm-Liouville boundary conditions.

Next we look for the extremal solutions in the order interval [fa 0] of the periodic

problem (18). For this we introduce a different set of hypotheses on the vector field

f(*,x,y).

H(f) 2 : /:rxRxR-+[Risa function such that

(i) for every x,y <E R, t ->f(t,x,y] is measurable;

(ii) there exists M>0 such that for almost all tT and all y[-N,N], x->

f(t,x,y}+Mx is strictly increasing (recall that N=l+ max{M, H^ILi Halloo});

(iii) there exists k E Ll

(T) such that \f(t,x,yi)
-

f(t,x,y2 ) \ <k(t)\yi -y2
|

a.e. on Tfor

aUjc,yi,)?2eR;

(iv) for every r > 0, there exists 7, E Ll

(T} such that \f(t,x,y)\
< 7r (f) a.e. on T for all

*,yeR,|x|, |y|<r.

Remark. Hypothesis H(f) 2 (ii) allows for jump discontinuities (countably many) in the x-

variable. However note that for every x : T - R measurable, t -+f(t,x(i),y) is

measurable. This is an immediate consequence of Theorem 1.9, p. 32 of Appell-

Zabrejko [1]. Moreover since (t,y) -*f(t,x(t),y) is a Caratheodory function, is jointly

measurable and so in particular superpositionally measurable; if y : T > R is measurable,

Theorem 4. If hypotheses H(f)2 and HO hold, then problem (18) has extremal solutions

in the order interval K =
[fa </>].

Proof. Without any loss of generality, we may assume thatM > 1. Then for any z K =
[fa <], we consider the following periodic problem

*"W =
f(t,z(t),qN(r(x)'(t))}

-
u(t,x(i)) +M(z(t) -x(t)) a.e. on T 1

o)=*(6),y(o)=y(fe) J*

(16)

We will establish the existence of solutions for problem (18). So let D = {x e W2
'
1

(r)^(0)=x(6),y(0)=^(6)} and let L : D C Ll

(T) -> Ll

(T) be defined by Lx =

-J^'
+ (M - l)x. As in the proof of theorem 1, we can check that L is invertible and

L :L
ii^

~~* D ~ wM (
r

) is a compact, linear operator. Also as before we define

TMs map is bounded and continuous. Note that x e D solves (19) if and only if

x - L H(x). As in the proof of theorem 1, the existence of a fixed point of L' 1 // is

mighed by corollary 10.2, p. 222 of Gilbarg-Trudinger [8], since L~ l (D}CD and
L~H(D) is compact in W l

> l

(T). So problem (19) has solutions.
Now we will show that any solution of (19) is within K = [fa $. Indeed we have:

a.e. on T
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Multiplying the above inequality with (^
-

x)+ (t) and integrating over T = [0, b] as in

the proof of theorem 2, using the definitions of r, q^ and the boundary conditions for ip

and jt, we obtain that

0< / (,,

Jo

= - / [(^-
Jo

=
V>(0 < *W for all r G T.

In a similar fashion, we show that
jc(f)

< 0(r) for all r T. Therefore every solution

x G W^(T) of (19) is located in K = [^, </>].
Thus recalling the definitions of T(JC),^ and

M, we see that -*"(*) ==
/(*,*(/), x'(f)) + M(x(t) -x(i)) a.e. on T, jc(0)

= x(b\ ^(0) =
xf(b). Now we will show that this solution is unique. To this end, on L 1

(r) we consider an

equivalent norm | \ l given by

f
b

( f
l

\
|*| i

=
/ exp -A / k(s}ds \x(t}\dt, A > 0.

Jo V Jo /

Similarly on W2)l
(r) we consider the equivalent norm given by

W 2 ,i

= Wi + Mi + Mi-

Suppose that JCi,jC2 6 W2il
(r) are two solutions of (19). Then

) and x2 = L^
lH (xi),

where L^
1 = (MI 4- L)"

1

with Lx = -/' for all jc D = {x W2
'
1

(r) : ;c(0)
=

x(b),

and ffoW(-)=/(-,z(0^(r(jc)
/

(-))). Recall that Z^
is linear compact. So L^

1
: (L

l

(T], \ (IV
2

'
1

(r), | 2|1
is linear contin-

|

uous. Moreover, using hypotheses H(f) 2
we can easily check as before that HQ :

(W^
l

(T), | | 2jl )
-* (L

l

(T), | h) is continuous. Then we have

exp -A r
Jo

<
||L^|| TexpfJo V

exp-A

Tll^
1

llA Jo

<Til^MlL /A Jo

l 2l'

So if A > IIL

all r T, with
II^,

we infer that xf{(t)
=

x%(t) a.e. on r. Hence ^(t)
- xf

2 (t)
= d for

G R. Since ^(0) = xf^b) and 4(0) =4(fc), from the mean value
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theorem, we deduce that there exists G (0, b) such that x\ (f)
= 4()- Therefore c\ =

and so x
f

l (t)
= j(0 for all t G T, which implies that x\ (t)

- x2 (t)
= c2 for all t G T, with

c2 R. But for almost all f T, we have

-*i (0) = /(',z(

a.e. on T; i.e. c2 = and so #1 = x2 .=> *i =

Then define /? :
[?/>, </>]

>
[V

7
, </>]

where /?(z)(-) is the unique solution of (19). We claim

that R(-) is increasing. Indeed let zi,z2 [&<t>]i Zi ^ *2, Zi 7^ Zi and set jci
=

#(zi),

jc2
=

/?(z2 ).
We have

a.e. on

and

*2(0) . on 7.

Suppose that maxrej[zi (?) JC2(0]
= ^ > and suppose that this maximum is attained

at to G T. First we assume that < fy < b. Then we have j^ (to)
=

2̂ (^o)
= ^o and we can

find <5 > such that for every t G T^ = [?o, fe 4- ^]
we have *2 (f) < ^i (r). So we obtain

a.e. on r5 ,
with w(t)

= z2 (0
-

and

a.e. on

Since ^(^o)
=

^(fy)
=

z/o froni a well-known differential inequality (see for example
Hale [9], theorem 6.1, p. 31), we obtain that < xf

l (t)
- 4(0 for a11 r ^ TS- So after

integration we see that x\ (r )
- *2 (r )

< ^i (0
~
*2(0 for everY f ^ T6- Since ? G T is the

point at which (x\
-

^c2)(*) attains its maximum on T, we have that jci (0 = ^(0 + ^ for

every t 7> and so xf

l (t)
= xf

2 (t) for every t 7$. Thus we have

4- Af (jci (0
-

JC2 (0) > a.e. on Ts ,

a contradiction.

Next assume f = 0. Then ==
^i(O)

-
;c2 (0)

> xi(h)-x2 (h) for all h e [0,5] and
e = x\(b) -x2 (b) > xi(h) ~x2 (h) for all h[b-6,b]. From the first inequality we
infer that (x\ -x2 )

f

(0) < while from the second we have (*i -x2 )'(b) > and so

(*i
- ^2)'(0) > 0. Therefore xf

l (0)
= xf

2 (0)
= z/ and so we can proceed as in the previous

case and derive a contradiction. Similarly we treat the case to
= b. Therefore x\ < x2 and

so R(-) is increasing as claimed.

Now let {yn}n>i be an increasing sequence in [^,0]. Set xn =R(yn ),
n>l. The

sequence {xn }n^ l
C

[t/j, 0] is increasing. From the monotone convergence theorem, we
have that yn ~> y and * -> x in L\T) as n -* oo. Also by hypothesis H(f)2 (iii),

K(OI < 7r(0 a.e. on T with r - max{^, H^, 1^1^}, with 7r G L l

(T). So {jc^}^! is

bounded in W2
>
1

(T) and {X,'}n>i is uniformly integrable. From the compact embedding of
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W2
'
1

(r) in W l
>
1

(T) and the Dunford-Pettis theorem, we have that xn -> x in W 1
'
1

(J) and

at least for a subsequence we have xf -^ g in L 1

(r) as /i > oo. Clearly jc" = g and so for

the original sequence we have
jc^
^xff

in L^T) as n oo. So finally * -^>;t in W2)1
(r).

Invoking theorem 3.1 of Heikkila-Lakshmikantham-Sun [10], we deduce that /?() has

extremal fixed points in K =
[-0, <]. But note these extremal fixed points of jR(-), are the

extremal solutions in K =
[T/;, (/>]

of the periodic problem (19).

Next we consider the situation where the vector field/ is independent of V. This is the

case studied by Nieto [16]. However here we are more general than Nieto, since the

dependence of/ on x can be splitted into a continuous and a discontinuous part. So we
will be studying the following periodic problem:

x'(0)=x'(*)

HQ: There exist ip G W2)1
(r) a lower solution and G W2

'
1

^) an upper solution such

that
i/)(t)

< 4(t) for all t T.

H(f) 3
: / :TxIRx[R-Risa function such that

(i) for every ;y G W2
>
l

(T) and every x G R, f ^/(^,Jt,XO) is measurable;

(ii) for almost all t G T and all y G R, x >f(t,x,y) is continuous;

(iii) there exists M G L !

(
r)+ such that for almogt all t G T and all x G W>(f)><KO]

3^ *f(t,x,y) +M(t)y is increasing;

(iv) for every r > there exists 7r G L^J) such that if \f(t,x,y)\ < 7r (r) a.e. on T for

all^yG Rwith \x\,\y\
< r.

Remark. The superpositional measurability hypothesis H(f) 3 (i) is satisfied, if for every

x G K, there exists gx :T xU*U a Borel measurable function such that gx (t,y) =

f(t,x,y) for almost all te T and all y G R. This follows from the monotonicity

hypothesis H(f) 3 (iii) and theorem 1.9 of Appell-Zabrejko [1].

Theorem 5. If hypotheses HQ and H(f) 3 hold, then problem (23) has a solution

x G Wz >
1

(T) in the order interval K =
[^, <f>].

Proof. Let y G K =
ty>, 0]

=
{y G W2

^(T] : ^(f) < y(t) < <f>(t)
for all t G T} and

consider the following periodic problem

x t a.e.onr

Problem (24) has at least one solution in K (see Nieto [16]). By S(y) we denote the

solutions of (24) in K. Let yi,)>2 G K, y\ < y%, x\ G S(y\) and y\ <x\. Consider the

following problem:

-ui(t,x(t}) a.e. on T \. (19)

(the truncation function) is defined by

if <(/).
< x

x if jci(r)<jc

i (0 if x<xi(0



120 Nikolaos S Papageorgiou and Francesca Papalini

and MI : T x R -+ R (the penalty function) is defined by

*-0(0 if 0(0 <*
if *i(0<*<0(0-

*-jci(0 if *<*i(0

Both are Caratheodory functions. As before we let D = {x W2
>
l

(T) : x(0) = x(b),

xf(0)
= Jc

7

^)} and define L : D C L l

(T) ~>
L^J) by Lx = ~x" for all x G D. Again we

can check that L= (7 + L) is invertible and L" 1 :L l

(T}-+DC W l
^
l

(T) is compact,

Also H : W l
>
l

(T)
~> L l

(T) is given by

#(jc)(0=/M(^j^

This map is continuous and there exists fc* > such that H//MH! < &* for all x G IV
1

'
1

(r). So L~ 1

H(D) is relatively compact in W 1
'
1

^) and thus we can apply corollary 10.2

p. 222, of Gilbarg-Trudinger [8] and obtain x 6 D such that x = L~ {H (x). Therefore

problem (25) has a solution.

Note that by virtue of hypothesis H(f) 3 (iii) and the fact that n(t,x\(t))
=

xi(t) anc

Mi(r,jci(0) =0, we have

a -e - on

So ^i G W2?1
(r) is a lower solution of (25). Similarly since y2 < 0, we have

a.e. on

and so we see that
<f>

W2
>
l

(T) is an upper solution of (25).

Now we will show that the solutions of (25) are within the order interval j
=

[jcj , <f>]

Indeed we have

J[(t) -x"(t) =f(t,Tl (t,x(t)),y2 (t)) +M(t)y2 (t)-f(t, Xl (t), yi (t))

-M(t}yi (t) +M(t)(Xl (t) -n(t,x(t))) -ui(t,x(t))

a.e. on T.

Multiply the above equation with (x\
-

Jt)+ (-) and then integrate over T =
[0,fc]. As ii

previous proofs we obtain

fb
I

JQ

-
/ [(xi

-
x},(t)}

2
dt > 0; i.e. xi(t) < x(t) for all t G T.

JQ

Similarly we show that x(t) < <t>(t)
for all f G T. Therefore every solution of (25) is ii

the order interval K\ = [jti, </>].
Because of this fact, equation (25) becomes

-x!'(t)
=

f(t,x(t),y2(t)) + M(t}(y2 (t]
-

*(*)) a.e. on T

x(0)=x(b),

and so jc G S(y2 )
and x\ < x.
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Next we will show that for every 3; K = [^, </>],
the set S(y) is compact in L l

(T). To

this end let x G S(y). Then
\\x\\,,

< max{| |</>|Uh/>| L} = r. Hence ||*"(f)j|
<

7r (f) -f 2M(t)r a.e. on 7
1

. Hence 5(y) is bounded in W2)1
(r) and since the latter embeds

compactly in L l

(T), we have that S(y) is relatively compact in Ll

(T). Then let

{*n}>i 5(y) and assume that xn -+ x in L l

(T) as rc > oo. Since (X[}n> 1
is uniformly

integrable, by passing to a subsequence if necessary we may assume that
jc^'

> g in L l

(T)

as n oo. Because W2
'^!") embeds continuously in C l

(r), {^}n>! is bounded in C(T)
and for all < s < t < b and all n > 1, ^(r)

- xfn (s)\
< (7r(r) + 2M(r)r)dr from

which it follows that {xfn }n>i is equicontinuous. So by the Arzela-Ascoli theorem we
have that xfn

> xf

in C(T) as - oo and so g = jc". Then via the dominated convergence

theorem, as before, we can check that

-x"(0 = f(t,x(t),y(t))+M(t)(y(t) -*(r)) a.e. on r

Hence x 5(y) and this proves that S(y] is closed, hence compact in L l

(T). Since the

positive cone L
l

(T}+
= {x L l

(T) : x(t) > a.e. on T} is regular (in fact fully regular;

see Krasnoselskii [12]), from proposition 2 of Heikkila-Hu [11], we infer that S(-) has a

fixed point in K; i.e. there exists x K =
[ip, <p]

such that x S(x). Therefore

a.e. on

and so problem (23) has a solution in K =
fyb, </>}.

4. Properties of the solutions

For problems linear in jc
7

,
we can say something about the structure of the solution set of

the periodic problem. Our result extends theorem 4.2 of Nieto [16].

The problem under consideration is the following:

a.e. on T

Our hypotheses on the vector field f(t,x) are the following:

H(f)4 : /:TxlR-^Risa function such that

(i) for every x G R, t >
/(r, jc)

is measurable;

(ii) for almost all t T, x >f(t,x) is continuous and decreasing;

(iii) for every r > there exists 7r G L(r) such that \f(t,x)\ < jr (t) a.e. on T for all

Jc R, |*|
< r.

Remark. Under these hypotheses the Nagumo growth condition is automatically satisfied

since for k = maxflMI^, ||^| L}, we have |/(f,x) 4- My| < ^(r) 4- M\y\ a.e. on T for all

x e [ip(t), </>(t)],
and so if h(r)

=
Halloo +Mr, we have for all

roc
r

r

>0
A W)

dr
'Jx

Theorem 6. If hypotheses HQ a^/ H(f)4 to/J anJM > 0, then the solution set S of (30)

in K =
[?/>, <^>]

w nonempty, w-compact and convex in W2
'
1

(T).
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Proof. From theorem 1 we know that S ^ (/>.
Let x S and define x(t)

=
x(t)

-
\ jj x(t)dt

t T. Let TO = {x R : i + c S}. Note that 7b ^ </>,
since c = jj x(t)dt T . We

claim that TQ is an interval. Indeed let ci,c2 e TO, c\ < ci and take c (ci,c2 ).
Set

y = x -f c. We have

=
/(*, (* + c2)(0) + M(* + <*)'(') a.e. on T.

By hypothesis H(f)4 (ii), we have

2 a.e. on T

-y"(t) = f(t,y(t)) + My' (r) a.e. on T.

Also it is clear that y(0) = y(fc) and y(0) = y'(b). Therefore y 5 and so c 6 TO,

which proves that TO is an interval.

Next we will show that S={.x + c:c7b}. Indeed if v, x S, then we have

=
(/(/, z/(0) +MZ/(O - /MO) -

M*'(0)WO -
i/(0)

- (f(*XO) -/MO))WO - KO) + M(i/(r) -^(0)WO - K
> M(z/(0

-
^(0)WO -

^(0) a -e " n ^

Integrating over T = [0, ft],
we obtain

rb
fb

Jo Jo

>M

=> xf

(t)
=

i/(t) for every t T
=> (x

-
z/)(-)

= constant.

So indeed S = {i + c : c E7b} and since as we saw earlier TO is an interval, we deduce

that S is convex.

Finally we will prove that S is w-compact in W2
'
1

(T). To this end, let v G 5. Then there

exists k e TO such that y = -f k, hence
||y|| 2 i

=
I |i + *|| 2 1-

Since y K =
[-0, 0], we

have
|*|
< max{||^|| 00 -I- 1^1^,H^ + H^f^} = 77. Therefore

||y||21 < \\x\\ l
-f b\k\

+ll^lli + ll^lli
<

||*|| 2,i
+ ^ and so S is bounded in W2

^(T). We will show that S is

closed in W^ l

(T}. Let {yn}n> l
C 5 and assume that vn -* y in W^\T). We have

-^(0 = /fcynW) +^nW a.e. on r, n > 1. (21)

Since W2
'
1

(r) embeds continuously in C 1

(r), by passing to a subsequence if necessary,
we may assume that y(t) -> f(t] a.e. on T, ^(r) -> y (r) and yn (r) -*

y(t) for all r G T.

nW) -*/(f>y(0) a-e - on I. Thus passing to the limit as n -> oo in (31), we obtain

-/W = /(',?) +M/W a.e. on r, y(0)
=

y(b), y
1

(0)
= y (i)
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So 5 is closed, hence weakly closed since it is convex. To show that S is weakly

compact in W2
'
l

(T), we need to show that given {xn }n>l C 5, we can find a weakly

convergent subsequence. Since {xn } n> {
is bounded in W2

*
l

(T) and the latter embeds

compactly in W 1
'
1

^), by passing to a subsequence if necessary, we may assume that

* -> jcin W l
>
l

(T) as n -> oo. Also<' = Sf' and so \\^(t)\\
=

||jt"(r)|| a.e. on T. Therefore

by the Dunford-Pettis theorem, we may assume that J^'-^g in L l

(T) and g =xff
. So

A: W2
'
1

(r) and jcn -^ z in W2
'
1

(7). Since 5 is weakly closed in W2
'
1

(r), x S and so 5 is

weakly compact in W2
>
l

(T).

In general if the vector field/ is decreasing in the x-variable, then the upper and lower

solutions of the problem, as well as the solutions exhibit some interesting properties.

First we consider the general periodic problem (18), with the following hypotheses on

the vector field /(f, *, v).

H(f) 5
: /:TxlRxR->[Risa function such that

(i) for every x,y R, t -*f(t,x,y) is measurable;

(ii) for almost all t T and all 3; E R, x >/(*,*, y) is strictly decreasing;

(iii) for all x, v,/ ER |/(f, jc,y)
-

/(*,*, y)| < k(t}\y
-

y'| a.e. on T with jfc L l

(T)\

(iv) for every r > there exists 7r L^r) such that |/(r,jc,y)| < 7r (f) a.e. on T for all

PROPOSITION 7

Jjf H(f) 5 /zoZA, W2il
(r) w fl wpper solution and ip W2)1

(r) a /ow^r solution for

problem (18), then for all t r, V<0 <
(f>(t).

Proof. Suppose not. Let tQ T be such that maxteT (ip
-

</>)(t)
= (^

-
(t>}(to)

= > 0.

First assume that < f<> < b. Then ^/(/o)
= ^

x

(*o)
= ^o and we can find S > such that

for all* TS = [*o, ^o -h <5],
we have 0(?) < ip(t}. Then we have

a.e. on

and - 0"r >/r, ^r, ^
;

r a.e. on T.

Consider the following initial value problem

/ =
f(t, 0(0y(0) a -e - o , .

(22)

Because of hypothesis H(f) 5 (iii), problem (32) has a unique solution y W
Moreover, from the definitions of upper and lower solutions and a well-known differential

inequality (see Hale [9], p. 31), we infer that <'(?) < y(t) < ^
f

(t) for all t e Ts and so

(V?
-

cj))(t)
> for all t 6 T6 . Integrating, we have (-0

-
^)(r )

< (^
-

<t>)(t) for all

^ TS. Recalling the choice of to, we see that (-0 0)(f)
= constant for all E T^, hence

7//(f)
= x

(r) for all / TS. Thus for almost all t 6 TS, we have

W) < ~^W,
a contradiction to the fact that

(T/>
-

</>)"(0
= f r all t eTg.

If fo=0, then since (-0- 0)(0) = (^
-

<t>)(b) 9 we can find ^>0 such that

(^
-

0)(0) > (V
-

0)(/) > for all f G [0, (5]
and < (</;

-
0)(f) < (^

-
^)(fc)

for all

t [i 8,b]. From the first inequality we have that
(T/; <)'(0) < 0, while from the
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second it follows that (^ </>)'(&)
> 0. But from the definitions of the upper and lower

solutions we have
(i/j

-
</>)'(0)

> C0
~

4>}'(b]
> therefore we conclude that ?//(0)

=

0'(0)
=

i/o and we can proceed as in the previous case.

The case tQ
= b is treated in a similar fashion.

Our second observation concerning 0, -0, refers to problem (30) where the vector field

depends linearly in xf
.

PROPOSITION 8

4f H(f)4 holds, $ W2
>
l

(T) is an upper solution of (30), ^ W2
'
1

^) w lower solution

of (30) and/or all teT </)(i)
< ^(r), tfien (-0

-
<)() w constant.

Proof. By definition we have

+W(r) a.e. on

M<t>'(t) a.e. on

Hence we have

^W - / >/(',^W) - /(f^W) +M(^'(r)
-
V'(0) a.e. on T.

Multiplying with (V>
-

^)(r) and then integrating over T [0,b], we obtain

t
JO t)

+M [ (^'-^)(0(^-^)(0dr. (23)
Jo

By Green's formula, we have

y-^XOpfc (24)
o Jo

Also from hypothesis H(f)4 (ii) it follows that

b

Finally note that

f
b

(
b

^o Jo

_ f
b

= M I (*0 0)(?)d
r

('0 0)(f)
= M(ip 4>)(^} -\~ M(ib ^)(0) =:: 0.

Jo

(26)

Using (34), (35) and (36) in (33), we obtain

o

^/(r)
= ^

7

(r) for all t G T and so (V>
-

^)(-) is constant.
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An immediate consequence of proposition 8, is the following result:

COROLLARY 9

If H(f)4 holds andxi,x2 W2
*
l

(T) are two solutions of (30) such that x\(t) < x2 (t) for
all t T, then (x\ #2)(-) is constant.
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Abstract. Sufficient conditions for boundary controllability of integrodifferential

systems in Banach spaces are established. The results are obtained by using the

strongly continuous semigroup theory and the Banach contraction principle. Examples
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1. Introduction

Controllability of nonlinear systems represented by ordinary differential equations in

Banach spaces has been extensively studied by several authors. Balachandran et al [1]

studied the controllability of nonlinear integrodifferential systems whereas in [2] they have

investigated the local null controllability of nonlinear functional differential systems in

Banach spaces by using the Schauder fixed point theorem. Controllability of nonlinear func-

tional integrodifferential systems in Banach spaces has been studied by Park and Han [10].

Several abstract settings have been developed to describe the distributed control sys-

tems on a domain fi in which the control is acted through the boundary T. But in these

approaches one can encounter the difficulty for the existence of sufficiently regular

solution to state space system, the control must be taken in a space of sufficiently smooth

functions. Balakrishnan [3] showed that the solution of a parabolic boundary control equa-
tion with L2

controls can be expressed as a mild solution to an operator equation. Fattorini

[6] discussed the general theory of boundary control systems. Barbu and Precupanu [4]

studied a class of convex control problems governed by linear evolution systems covering
the principal boundary control systems of parabolic type. In [5] Barbu investigated a class

of boundary-distributed linear control systems in Banach spaces. Lasiecka [8] established

the regularity of optimal boundary controls for parabolic equations with quadratic cost

criterion. Recently Han and Park [7] derived a set of sufficient conditions for the

boundary controllability of a semilinear system with a nonlocal condition. The purpose of

this paper is to study the boundary controllability of nonlinear integrodifferential systems
in Banach spaces by using the Banach fixed point theorem.

2. Preliminaries

Let E and U be a pair of real Banach spaces with norms
1 1 1 1

and
| |, respectively. Let a

be a linear closed and densely defined operator with D(a) C E and let r be a linear

operator with D(r) C E and R(r) C X, a Banach space.

127
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f u is continuously differentiate on [0, b], then z can be defined as a mild solution to the

I!auchy problem

z(t) =Az(t)+<rBu(t)-Bit(t) +f(t,x(t), f g(t,s,x(s))As\
V jo /

z(0)
= jc

-
fiii(O)

ind the solution of (1) is given by

x(t)
=

T(t)[x -Bu(Q)]+Bu(t)

\ JQ
'

/J

Since the differentiability of the control u represents an unrealistic and severe require-

nent, it is necessary to extend the concept of the solution for the general inputs u G L 1

/, U). Integrating (3) by parts, we get

x(t)
=

T(t)xo + f [T(t
-

s)a
-
AT(t

-
s)]Bu(s)ds

JQ

r ( r \+ / T(t s)fls,x(s), I g(s, T,x(r))dT \ds. (4)
Jo \ Jo )

rhus (4) is well defined and it is called a mild solution of the system (1).

DEFINITION

Fhe system (1) is said to be controllable on the interval / if for every XQ^XI G E, there

exists a control u L2
(J, U) such that the solution jc(.) of (1) satisfies x(b) = x\.

iVe further consider the following additional conditions:

(vii) There exists a constant K\ > such that J v(t)dt < K\.

yiii) The linear operator W from L2
(7, U) into E defined by

Wu
f=
/
Jo

induces an invertible operator W defined on L2
(J, f/)/kerW and there exists a

positive constant KI > such that
||
W"" 1

)!

< K^ The construction of the bounded

inverse operator W in general Banach space is outlined in the Remark.

(ix) M||jt ||
+ \bM\\aB\\ + ft] K2 [\\x { \\ +M||jc || +tf\+N<r, where N = bM[M{ [r+

+ ft) be such that 0<q<l.(x) Let q =

5. Main result

Fheorem. If the hypotheses (i)-(x) are satisfied, then the boundary control integro-

iifferential system (1) is controllable on J.
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Proof. Using the hypothesis (viii), for an arbitrary function jc(.) define the control

u(t]
= W~ l L -

T(b-s]f(s, X(s), \ g(s,r,x(r))dr)ds (r).

'0 Jo J

(5)

Let Y = C(y,J?r ). Using this control, we shall show that the operator $ defined by

= T(t)xQ + f [T(t
-

s)a
-
AT(t

-
s)}BW~

l

[x {

-
Jo

r
) / g(siQ>'
JO

has a fixed point. First we show that $ maps Y into itself. For x F,

V(r - J)o-
-
AF(r

-
s)]BW'

1

\Xl
-

T(b)x

(s)ds
- I T(b-T)f(r,x(T), /%(r,,J

JO JO
'

T(t
-

s)f(s,x(s), [* g(s,d,
Jo

+

f

b

\\T(b^r)\\\\f(r tx(r)J
T

g(T^
Jo LI Jo

drlds

iKiin^oii

/(r,x(r),

r

/'

i:
\\T(t-s)

10

S
, 0,0) ||

M\\xo\\ + bM\\trB\\K2 \\\x l \\
+ M\\XO\\

+ bM(Ml (r + b(Lir + L^)} + Af2 ]

+ bM[Mi [r + b(Li r + L2)}+M2]

M\\x \\
+ [bM\\aB\\ +^1 ]Ar2 [||jc 1 || +M\\xo\\ +N}+N
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Thus * maps Y into itself. Now, for *,, jc2 6 Y we have

131

,
r g (

T,e,
JQ

/r S(r,0,

/>/

yo w-*)ii /(*,*,(

/*

J

-/(J^2(J), / ^(j,fl,o:2
/

dr

contraction

-
X2 (s)\\+bL l \\x l (e)

-

hence there exists a unique fixed'

4. Applications

Consider the boundary control integrodifferential system,

n Y=

y(t, 0) = u
(t, 0), on S = (0, &) x T, / e [0, b],

y(0,x)= yo (x) ! for j: n
>

'

where L2 (E), yo
2
(fi), M 2

(y)^ ^ g y

2
~

( ^' '
= 7' ** ldentlt oerator aand

(Here fl*(fl), J5P(T) and ^(0) are usual Sobolev spaces on a P.)
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Let us assume that the nonlinear functions // and 77 satisfy the following Lipschitz

condition:

<Ki[\\Vi -V2 \\
+ \\Wl -Wi||],

< K2 \\v l
- v2 \\,

where K\, K2 > 0, v\, v2 G Br and wi, w2 G fi.

Define the linear operator : L2
(T) -> L2

(fi) by Bu = ww where WM is the unique
solution to the Dirichlet boundary value problem,

AwM
= in fl,

vvu = u in F.

In other words (see [9])

= I u^-&c, for all ^ H^fl) UJ 2
(fi), (7)

7r ^w

where d^/dn denotes the outward normal derivative of
if)

which is well defined as an

element of H^(T}. From (7), it follows that,

K|| L2 (n)
<
CilHI^py

for all

and

lK|| /, 1(Q)
<C2 ||

Wy (r)5
for all

where Q, / = 1, 2 are positive constants independent of u.

From the above estimates it follows by an interpolation argument [12] that

)

< C*~> f rall r>0 with i/(r)
= c.

Further assume that the bounded invertible operator W" exists. Choose b and other

constants such that the conditions (ix) and (x) are satisfied. Hence, we see that all the

conditions stated in the theorem are satisfied and so the system (6) is controllable on

Example 2. Consider the boundary control system,

dy(t x] f
l

,x)=f(t,y(t,x),J
g(t,s,y(s,x))ds in

in (0,fe)xr, re[0,fc], (8)

where j> G L2
(ft),/ G L2

(Q), g G Q and u G L2
(T). Here /3 is a nonnegative constant.

Let us assume that the nonlinear functions / and g satisfy the Lipschitz condition: ii

^

\\g(t,S,Vi)-g(t,S,V2)\\<M2 \\Vi-V2\\,

where MI, Af2 > 0, ^i, v2 G 5r and wi, w2 G J7.
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Take = L2
(ft), U = X = L2

(T), BI = /, cry
= A?, ry = py + (9y/dn) and

(aH/f
2
(tt).

The operator A is given by

Now the problem (8) becomes an abstract formulation of (1).

Define the linear operator B : L2
(F)

- L2
(fi) by J5w = zu where zu G H l

(ty is the

unique solution to the Neumann boundary value problem,

zu
- Azu =0 in Q,

^+^ = in T.
9/2

Consider on the product space H l

(Cl) x H^fl), the bilinear functional

h (y, ^) = / W -1- grady grad V>)d*
-

/ ("
-

$>0^da-, (9)
Jn Jr

where w #~2(F) (here Jr w^ da is the value of w at ^ E H^ (F). Since /z is coercive, there

is a ZM H l

(1) satisfying h(zu^) = for all ^ 6 H 1

(fi). Hence zw = 5w is the solution

to (8). From (9) we see that

Since the operator A is self-adjoint and positive, we have

2 2

/'Jo
\\AT(t)yo \\

2

Ll(n)
dt < C\\y \\

2

D((
_A^

for all y D((-A)i) = H l

(12).

(10)

Let <5 be the scalar function defined by

S(t)
= Km inf ||AW7(0 || I(//1 (n)itf (n)) ,

t [0, ft] ,

where Aw = A(7 -f n"^)"
1

for n = 1, 2, . . .. Obviously,

<5W for te(Q,b]. (11)

Also we find that (10) implies that

f
b

/ \\AnT(t)yG \\l(H
i

(^L2mdt<C for all n.

Jo

Therefore by Fatou's lemma it follows that 6 L2
(0, 6) and hence from (10) and (11)

we have

\\AT(t)Bu\\ Lt<fl}
< C6(t)\\ U \\ L2(T) ,

forall (0,ft), u L2
(F)

with i/(r)
=

C(5(r) eL2
(0,&). Further assume that the bounded invertible operator W

exists. Choose b and other constants in such a way that the conditions (ix) and (x) are

satisfied. Thus we find that all the conditions stated in the theorem are satisfied. Hence

the system (8) is controllable on [0,ft].
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Remark (see also [11]). Construction ofW~
l

.

Let Y = L2
[/, 7] /ker W. Since ker W is closed, Y is a Banach space under the norm

II Wily = mf
\\u\\ L2^ u}

=
jnfjlw

-f

where
[w]

are the equivalence classes of u.

Define W : Y -> X by

W[u] = Wu, u(u}.

Now W is one-to-one and

We claim that V = Range W is a Banach space with the norm

\v\\ v
= \\W~

l

v\\ Y .

This norm is equivalent to the graph norm on D(W~
l

)
= Range W, W is bounded and

since D(W) = Y is closed, W'"
1
is closed and so the above norm makes Range W = V, a

Banach space.

Moreover,

=
||M ||= inf. ||||

< INI,
[]

SO

Since L2 |/, 17]
is reflexive and ker W is weakly closed, so that the infimum is actually

attained. For any v V, we can therefore choose a control wGL2
[J, U] such that

u = W~ l
v.
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Errata

Steady-state response of a micropolar generalized thermoelastic half-

space to the moving mechanical/thermal loads

RAJNEESH KUMAR and SUNITA DESWAL

(Proc. Indian Acad. Sci. (Math. Sci.), Vol. 110, No. 4, pp. 449-465, November 2000)

1. On page 451, in eq. (13) following two expressions have been left out and should be

included:

2. On page 454, a typographical error has been found out in eq. (48). The expression for

AO should read as:

All the analytical expressions and numerical results do not change due to these errors.
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Abstract. We propound a descent principle by which previously constructed equa-
tions over GF(q

n
)(X) may be deformed to have incarnations over GF(g)(X) without

changing their Galois groups. Currently this is achieved by starting with a vectorial

(= additive) g-polynomial of ^-degreem with Galois group GL(m, q) and then, under

suitable conditions, enlarging its Galois group to GL(m, q
n
) by forming its general-

ized iterate relative to an auxiliary irreducible polynomial of degree rc. Elsewhere

this was proved under certain conditions by using the classification of finite simple

groups, and under some other conditions by using Kantor's classification of linear

groups containing a Singer cycle. Now under different conditions we prove it by

using Cameron-Kantor's classification of two-transitive linear groups.

Keywords. Galois group; iteration; transitivity.

1. Introduction

In this paper we make some progress towards understanding which finite groups are Galois

groups of coverings of the affine line over a ground field of characteristic p 0, having
at most one branch point other than the point at infinity. We are specially interested in the

case when the ground field is not algebraically closed. In particular we realize some of the

matrix groups GL(m, q
n
), where q = p

u > 1 is a power of p and m > and n > are

integers, over smaller fields of characteristic p than had previously been accomplished. For

a tie-up with the geometric case of an algebraically closed ground field and the arithmetic

case of a finite ground field see Remark 5.1 at the end of the paper. Likewise, for a tie-up

with Drinfeld module theory see Remark 5.2 at the end of the paper.

To describe the contents of the paper in greater detail, henceforth let q = p
u > 1 be a

power of a prime p, let m > and n > be integers, and let GF(<?) C kg C K C Q be

fields where 2 is an algebraic closure of K\ note that there are no assumptions on the field

.kq other than for it to contain GF(#). Also let E = E(Y) be a monic separable vectorial

^-polynomial of ^-degree m in Y over K, i.e.,

m

E = E(Y) = Yqm + T XiYqm
~

l

with X; K and Xm + 0, (1.1)

where the elements X\, . . .
,
Xm need not be algebraically independent over kq . When

we want to assume that, for a subset 7* of {1, . . .
, m}, the elements {Xi ://*} are

algebraically independent over kq and K = kq ({Xi : i e 7*}) with Xi = for all i 7*,

we may express this by saying that we are in the generic case of type 7*, and we may
indicate it by writing E* for E and K* for K. When 7* is the singleton 7 b = {m}
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we may say that we are in the binomial case. When J* is the pair 7
;{
= {m -

JJL, m]

with 1 <
/z < m we may say that we are in the [L-lrinomial case. When J* is the set

y^rrfm v:v = 0ori=a divisor of m}, we may say that we are in the divisorial case.

NotethattheF-derivativeof(y)is Xm andhenceifra 6 7* then in the generic case of type

/*, the equation E(Y) = gives a covering of the affine line over k
q ({X/ : m ^ i e /*})

having Xm = as the only possible branch point other than the point at infinity.

In the general (= not necessarily generic) case, let V be the set of all roots of E in

Q, and note that then V is an m-dimensional GF(g)-vector-subspace of fi. Moreover,

since GF(#) is assumed to be a subfield of kq and hence of K, every #-automorphism

of the splitting field K(V) of E over K induces a GF(#)-linear transformation of V.

Consequently Gal(, K) < GL(V), i.e., the Galois group of E over K may be regarded

as a subgroup of GL( V) (see [Ab3]). If we do not assume GF(g) c k
q then we only get

Gal(E, K) < FL(V), where FL(V) is the group of all semilinear transformations of V

(see [Ab6]). By fixing a basis of V we may identify GL(V) with GL(wz, q\ and FL(V)

with FL(m, q). If // C J* then in the generic case of type /*, as shown in [Ab2] to

[Ab4], we have Gal(*^, K*) = GL(m, q) but over GF(p), as shown in [Ab6], we have

Gal(^, GF(/>)({*/ :/ e J*})) = TL(/n, q)\ for applications of these results see [Abl]

and [Ab5]. To mitigate this bloating we take recourse to generalized iteration as defined

in Remark 3.30 of [Ab7] and repeated below. Here bloating refers to the fact that a more

direct approach would give a Galois group which is larger than desired, when working over

a smaller ground field, and the goal is to modify the covering in order to shrink the group

from semilineai to general linear.

DEFINITION 1.2

For every nonnegative integer j we inductively define the yth iterate E^^ of E by

putting E = E^(Y) = F,
! - E(Y) = E(Y ), and E^ = E^(Y) =

([[;-!]] (y)) for all j > 1. Next we define the generalized rth iterate E [r] of E for any

r = r (T) = JT nT &[T] with n G S2 (and n = for all except a finite number of i\
where T is an indeterminate, by putting E [r] = E [r]

(Y) = r,-E
[ll

'

]J
(y). Note that, for

the F-derivative E [

y
]

(Y) of E^(Y) we clearly have

and hence if r(Xm ) ^ then E^ is a separable vectorial ^-polynomial over Q whose q-

degree in 7 equals m times the T-degree of r . Also note that the definition of M remains

valid for any vectorial E without assuming it to be monic or separable. Moreover, in such

a general set-up, this makes the additive group of all vectorial ^-polynomials E = E(Y)
in Y over 2 into a ti[T]-premodule having all the properties of a module except the left

distributive law and the associativity of multiplication, i.e., for all r, r' e Q[T] we have

E [r+r>] == M + [r']
? butforall, E' over & we need not have ( + [r] = E [r] +E f[r\

and in general E [rr>] need not be equal to (
M

)
[r

'

]
. Reverting to the fixed monic separable

vectorial E exhibited in (1.1), the said premodule structure makes Q into a GF(q)[T]-
module when for every r G GP(q)[T] and z Q we define the 'product' of r and z to be

E [r]
(z)', we denote this GFO?)[r]-module by QE . Now let us fix

s = s(T) zR = GF($)|T] of 7-degree n with s(Xm ) + (1.2.2)

and note that then E^ is a separable vectorial ^-polynomial of ^-degree mn in Y over K,
and the coefficient of its highest degree term equals the coefficient of the highest degree
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of s(T). Let V ls] be the set of all roots of E [s] in ft, and note that then V [s] is an (mri)-

dimensional GF(<7)-vector-subspace of 2. Let GF(#, 5) = /?//? where sR is the ideal

generated by s in R = GF(q)[T], and let o> : ^ > GF(g, s) be the canonical epimoiphism.
Now V^ is a submodule of 2# and as such it is annihilated by sR and hence we may
regard it as a GF(<7, .sO-module; note that then, for every r 6 R and z 2, the 'product' of

o>(r)andzisgivenby<y(r)z = E [r] U) = I>/E [/1
(z), and for every e Gal((V [jl

), #)
we have g(to(r)z) = ](>"/ )El

/J
(g(z)) = (&>(>"))g(z); also note that for all r e /? and

Z 2 we have r- = <y(r)z = E^Cz) = 0(r, z) with 0(r, z) e (GF($)[Xi, .... Xm ])U].

It follows that, in a natural manner,

Gal( M
, A:) <GL(V [S]

), (1.2.3)

where GL(V^) is the group of all GF(#, s)-linear automorphisms of V^, by which we
mean all additive isomorphisms <r : V^ -> V^ such that for all

77 GF(/y,5)andz 6 V'^ 1

we have a(rjz) = rjcr(z). Note that

s irreducible in R = GL(V [s]
)
* GL(m, q

n
), (1-2.4)

where ^ denotes isomorphism. Also note that the F-derivative of E^(Y) is s(Xm ) and

hence if m e J* and s is irreducible in /? then in the generic case of type J*, the equation

[s](Y) = gives a covering of the affine line over k
q ([Xi : m ^ i e J*}) having

s(Xm ) = as the only possible branch point other than the point at infinity; this branch

point is rational if and only if n 1 .

Now part of what was proved in [Ab7] can be stated as follows:

TrinomialLemma 1.3. IfJj C J *
then in the generic case oftype J

* we have Gal (E^ q ,
K *

)

= GL(m,q).

In Note 3.37 of [Ab7] the following problem about generalized iterations was posed.

Problem. Show that if J* = (1, 2, . . . , m) then in the generic case of type J* we have

, ^*) = GL(V^).

In [AS1] this was proved when s = Tn and in Theorem 3.25 of [Ab7] that result was

semilinearized. Likewise in [AS2] it was proved under the assumptions that s is irreducible

and m is a square-free integer with GCD(m, n) = 1 arid GCD(mnu, 2p) = 1, where we
recall that u is the exponent of p in q, i.e., u is the positive integer defined by q = p

u
.

Actually, what was proved in ( 1 . 1 8) of [AS2] was the following slightly more general result.

Weak divisorial Theorem 1.4. Assume that s is irreducible in R, and J* C /*. Also

assume that m is a square-free integer with GCD(m, n) = 1, and GCD(mnu, 2p) = 1.

Then in the generic case of type /* we have Gal(E$$, K*) = GL(V [5j
) GL(m, q

n
).

Now CPT (= the classification of projectively transitive permutation groups, i.e., sub-

groups of GL acting transitively on nonzero vectors) is a remarkable consequence of CT
(= the classification theorem of finite simple groups). The implication CT =$ CPT was

mostly proved by Hering [Hel, He2]; it is also discussed by Cameron [Cam], Kantor [Ka2],

and Liebeck [Lie]. The proof of (L4) given in [AS2] makes essential use of the follow-

ing weaker version of CPT, which follows by scanning the list of projectively transitive

permutation groups given in [Ka2] or [Lie].

Weak CPT 1.5. Let d be an odd positive integer, and let G < GL(d, p) be transitive on

the nonzero vectors GF(/?)^ \ {0}. Then there exist positive integers b, c with be d and

a group GO with SL(i, p
c
) < GQ < TL(6, p

c
) such that G GO.
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The m = I case of (1.4), without the hypothesis GCD(mnw, 2p) = 1, was proved by
Carlitz [Car] (also see Hayes [Hay]) in connection with his explicit class field theory. In

our proof of (1 .4) we used the following variation of Carlitz's result which we reproved as

Theorem 1.20 in [AS2]; recall that a univariate polynomial F(Y) = YlfLv FI Y
l of positive

degree N in Y is said to be Eisenstein relative (/?, M), where M is a prime ideal in a ring

, if FN R \ M, Fi e M for 1 < i < N ~
1, and FQ e M \ M2

.

Carlitz irreducibility lemma 1.6. Assume that s is irreducible in R, and J b C /*. Let

s*(T) be a nonconstant irreducible factor of s(T) in kq [T], and let M* be the ideal in

R* = k
q [{Xi : i e /*}] generated by {X t

: i J* \ /
b
} U (s*(Xm )}. Then, form = 1,

in the generic case of type /* we have that M* = s*(Xm )R* is a maximal ideal in

R* = kq [Xm ], Y~
l

El
[s

q

]

(Y) is Eisenstein relative to (/?*, M*), F" 1

E^
s

q

]

(Y) is irreducible

in K*[Y], and Gzl(E q̂
\ K*) = GL(V [j]

) GL(l,q
n

). Moreover, without assuming

m = 1, but assuming GCD(m, n) 1, m f/i generic case of type J* we have that M*
is a maximal ideal in R*, Y~ 1

E^(Y) is Eisenstein relative to (/?*, M*), Y~ 1

E$$(Y) is

irreducible in K*[Y], and Gal(*
[

^
]

, K*) has an element oforder q
mn - 1.

In proving (1.4), in addition to items (1.5) and (1.6), we also used the first part of the

following well-known versatile lemma which was initiated by Singer in [Sin] and which

was stated as Lemma 1.23 in [AS 2]; for an elementary proof of a supplemented version of

this see Lemma 5.13 and 6 of [Ab8].

Singer cycle lemma 1.7. Let A e GL(m, q) have order e = q
m

1. Then det(A) has

order = q 1, and A acts transitively on the nonzero vectors GF(#)
m

\ {0}, i.e., it is an

e-cycle in the symmetric group Se (and as such it is called a Singer cycle). Moreover, in

GL(m, q) all subgroups generated by such elements, i.e., all cyclic subgroups of order e,

form a nonempty complete set ofconjugates.

Now the last assertion of (1.6) says that if s is irreducible in R and 7 b C J* with

GCD(m, n) = 1 then Gal(^fJ, K), as a subgroup of GL(w, q
n
), contains a Singer cycle.

In his 1980 paper [Kal], without using CT, Kantor proved the following variation (1.8) of

( 1 .5) by replacing the hypothesis ofG acting transitively on nonzero vectors by the stronger

hypothesis that G contains a Singer cycle.

Kantor's Singer cycle theorem 1.8. If G < GL(m, q
n
) contains an element of order

q
mn - 1 thenforsome divisorm 1

ofm we have GL(m', q
nm/m>)<G, where GL(m', q

nm fm
')

is regarded as a subgroup ofGL(m, q) in a natural manner.

As a consequence of (1.6) and (1.8), but without using (1.5), and hence without using

CT, in (5.18) of [Ab8] we proved the following stronger version (1.9) of (1.4) in which the

assumption GCD(mnu, 2p) = 1 is replaced by the weaker assumption GCD(m, p) = 1.

Strong divisorial theorem 1.9. Assume that s is irreducible in R, and 7* C 7*. Also

assume that m is a square-free integer with GCD(m, n) = 1, and GCD(m, p) = 1. Then

in the generic case oftype 7* we have Gal(^
3

, K*) = GL(V [s]
)
^ GL(m, q

n
).

In ( 1 . 14) of [Ab9] we settled another case of the above Problem by proving the following
Theorem without using the above results (1.4) to (1.9).
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Two step theorem 1.10. Assume thats is irreducible in R, and J^ J*. Also assume that

C

^,
= n = 2. Then in the generic case of type /* we have Gal(* C

^, #*) = GL(V [s]
)

GL(m,q
n
).

The proof of (1 . 10) was based on the following lemma which was stated as Lemma 1.16

in [Ab9] and established in 3 of that paper.

Packet throwing lemma 1.11. Let M be the maximal ideal in a regular local domain R

of dimension d > with quotient field K . Let F(Y) = ^o<i<N F^ 1 be a polynomial

of degree N > in Y which is Eisenstein relative to (R, M). [Note that then for some
elements FI, . . .

, Fd in R we have (F<3, FI, . . .
, Fd)R =_M.] Let K K(rj) where

rj
is

an element in an overfield of K with
FJj))^== 0, and let R = R[n] and M ~ nR + MR.

Then R is the integral closure of R in K, R is a d dimensional regular local domain with

maximal ideal M, M O R = M, andfor any rf K with F(r) = and any 2, . . .
, Fd

in R with (Fo, F^, . . .
, Fd)R = M we have (rf, F^, . . . , Fd)R = M, and hence for any

rf e K with F(5J) = we have 'rf M \ M2
. Moreover, iffor some positive integer

D < N - 1 we have FD < M2 + F R and Ft eJi
D+2^ + F^R for 1 < i < D -

1,

and r?i, . . .
, T]D are pairwise distinct elements in K with F(T]J)

= Qfor 1 < j < D, then

F(Y) = F(Y) Y\I<J<D(
Y ~ nj) where F(Y) is a polynomial ofdegree N - D in Y which

is Eisenstein relative to (R, M).

In proving (1.10), the following consequence of (1.11) was implicitly used; in 2 we
shall explicitly deduce it from (1.11).

Two transitivity lemma 1.12. Assume that s is irreducible in R, and we are in the generic
case of type J* with J b c J* and m > 1. [Note that by (1.2) we know that then

Gal(*$, K*) < GL(V [S]
)
& GL(m, q

n
) and hence we may regard Gal(*$, K*) to be

acting on the (m 1) -dimensional projective space P(m 1, q
n

) over GF(q
n
) (where the

action is not faithful unless q
n = 2).] Let N = q

mn -
1 and F(7) = Y~ l

E$i(Y) =

Z!o</<JV Ftf
1
with Ft e R* = kq [{Xj : j J*}]. Assume that the localization of R* at

some nonzero prime ideal in it is a regular local domain R with maximal ideal M such that

F(7) is Eisenstein relative to (R, M). Let D = q
n

1 and assume that Frj M2
-f F$R

and FI M z>+2~ / + F Rfor 1 < i < D -
1. Then Gal(^

]

, K*) is two transitive on

the (m I)-dimensional projective space P(m 1, q
n
) over

In Theorem I of [CKa], Cameron-Kantor proved the following:

Cameron-Kantor's two transitivity theorem 1.13. Ifm > 2 and G < FL(m, q) is two

transitive on the projective space P(m l,q), then either SL(w, q) < G or G = the

alternating group Aj inside SL(4, 2).

As a consequence of (1.6), (1.7), (1.12), (1.13), and the coefficient computations of

3, but without using (1.5) or (L8) to (1.10), in 4 we shall prove the following theorem.

With an eye on further applications, the computations of 3 are more extensive than what

we need here.

Main theorem 1.14. Assume that s is irreducible in R, and n < m with GCD(m, n) = 1

and /J c J*. Then in the generic case of type J* we have Gal(^
]

, X"*) = GL(V [s]
)

GL(m, q
n
).

In 5 we shall make some motivational and philosophical remarks.
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2. Proof of two transitivity lemma

To continue with the discussion of ( 1 .2), for a moment assume that ,v is irreducible in R

s (Xm ) ^ and m> 1. Then by (1.2.3) and (1.2.4) we have GaS(/: iv|
, K) < GL(V {

*

GL(m, q
n

) and hence we may regard Gal(/: IiVl
, K ) to be acting on the (m - 1 )-dimensi

projective space P(m 1 , q" ) over GF(q
!l

) (where the action is not faithful unless q
n =

Let N = q
mn -

1 and F(Y) = Y' {

E^(Y). Then F(Y) K\Y\ is of K -degree A/.

a moment assume that FjT) is irreducible in K[Y\ and let K = K(n) where
// is a

of F(Y) in 2. Then [AT : tf| = A/ and GaKE 1
*

1

, A') is transitive on P(m ~
1,

Let /?o be the set of all nonzero members of R of /'-degree less than /;. Then, ir

notation of (1.2), (o>(r)r)) r K
(]
are all the distinct 'nonzero scalar multiples

1

of
rj

ir

(R/s)-vector space
tV

', and clearly /fy is the set of all oro -f a\ T -f + uv~i 7
V'~" !

(a , ai, . .
,
an ~\) GFU/)" \ (((), 0, . . u ())}. This gives us /) distinct roots of F(Y)

where D = q
n - 1. Therefore F(K) = F*(X) n/-eV

K ~ w{r)/^ where ^*^) 6 ^

is of F-degree N - D = q
mn -

q
il > 1 . Now (w(r )//) re /? {)

is the inverse image of a
f

in P(m -
1,0") under the natural surjection GF(/")

/;i

\ {0} -* P(m -
1, q") obta

by jdentifying
V [s] with GF(^

/7

)

/w
via a basis. It follows that if F*(Y) is irredu<

in K then Gal(
[>vl

, K) is two transitive on ptni -
!,</"). It is also clear that if F(\

F(Y)Yl\<i<D(Y
~~

JH) where/?], . .., /;/> are distinct roots of F(K) in /C and F(Y) /

is irreducible then we must have F*(K) = F(Y). Therefore we get the following:

Projective action lemma 2.1. /// the situation of (1.2) assume that s is irreducible

with s(Xm ) ^ and m > 1. Let F(Y) = K""
1 E l

'vl
(y) aJ ore f/?af r/z^/z F( X) 6 K[

of Y-degree N = q
mn -

1. Aww/?^ rta/ F(K) is irreducible in K\Y\ ami let K = i

where
r\

is a root of F(Y) in S2. Then [K : K] = N and Gal(E |A

J, K) is transits

P(m-l,q
n

). Moreover, ifupon letting D = q
n -\ wehave F(Y) = F(Y) Yli<j<i)(Y

where r)\, . . .
, r\D are distinct roots of F(Y) in K and F(Y) K[Y\ is irreducible

Gal(
[5]

, K) is two transitive on P(m ~
1 , q

n
}.

Since Eisenstein polynomials are irreducible, upon taking E = Efn
(]

with F = F

K = K* = Jf in (2.1), by (1.11) we get (1.12).

3. Coefficient computations

Let R* = GF($)[Xi ,
. . .

, Xm ]. Then clearly for every v > we have

mv

E [[V]]
(Y) = Y"

.....

+ D^Y"
..... -'

with D,,,. R*.

/=!

Also

and hence for every integer v > 1 we have

/ mvm

w=l
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m mv~m

v\ w=l

and therefore, for any positive integer /, upon letting

the set of all pairs of integers (u, it;)

Q(i) = \
with 1 < v < m and 1 < w < mv m
such that v + w = i

E
we get

and

By induction we shall show that for every v > we have

n _ yv*-/v,mv ^m

if

and

and

if/ is an integer with 1 < / < m
such that Xi whenever m I < i < m
then Dyj = whenever mv I < i < mv

and D ,
- Y / Y^ 1 vana ^y my_/ Am -/ A^

if j is an integer with 1 < j < m
such that Xt = whenever 1 < i < j

then for 1 < i < min(m, 2j 1) we have

n . _ V^ 1 Y*
W*

^vv 2U.=0 A /

which we know to be zero if 1 < / < j.

mvvw

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

By (3.2), this is obvious for v = 1. So let v > 1 and assume true for v 1. Then clearly

2(mv) = {(m, mv m)}, and hence by (3.4) and the v 1 version of (3.6) we get

Y Y-Am .A
V-l

Likewise, if / is an integer with 1 < / < m such that

then, by (3.4) we get

= whenever m / < / < m,

if mv / < i < mv

, _ if my / = /
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and hence by the v - 1 versions of (3.6) and (3.7) we get

Dy z
= if mv I < i < mv

and

V Y y(
^-m-/ / ^

A
A.=0

Similarly, if j is an integer with 1 < ; < m such that X/ = whenever 1 < / < 7, then

for all z, v, u; with I <i <2j -I and (v, iy) Q(0 we have either V<JOTW< j, and

hence by (3.5) and the v - 1 version of (3.8) we see that for 1 < i < min(m, 2j
-

1) we

have

4. Proof of main Theorem

To prove the Main Theorem 1.14, assume that s is irreducible in R and n < m with

GCD(m, n) = 1. Also assume that we are in the generic case of type 7* with yj" C J*.

In view of (1.2.3) and (1.2.4), after identifying V [s] with GF(<?")
m

via a basis > we have

Gal(^ , K*) < GL(m, q
n

) and we may regard Gal(*$, *) as acting on P(m - 1
, ^

n
)

(where the action is not faithful unless q
n = 2). We want to show that Gal(^

]

, K*) =

Let N =
<?

mrt - 1 and F(7) = F'^^^F) = EQ<KNW l with f y1
'

R* =

^[{X;
-

: 7 J*}]. Let D = q
n - 1. Note that 5 = 5(7) = Eo<u<n^7

u
with

sv GF(^) and sn i=-
0. Let ^ be an algebraic closure of k

q
in fl, and let f be a root

of s(T) in
3.

Since $(7) is irreducible in R, we get f
*
n ~ 1

j=
1 and s

7

(f ) ^ where

5
x

(r) is the T-derivative ofs(T). Let R be the localization of k
q [Xn ,

Xm ] at the maximal

ideal generated by Xn and Xm - f .JThen ^ is two dimensional regular local domain with

maximal ideal M = (Xn ,
XTO

-
?)#;

For a moment suppose that ^ = kq and jj == J*, and let us write ^ t for
/^^and ^,^

for E*
^.
Now by (1.6) and (1.7) we see that F(Y) is Eisenstein relative to (R, M), and

the determinantal map Gal(, J^ 1

")
-> GF(^

n
) \ {0} is surjective. By (1.2.1) we have

By taking l = nm (3.7) we see that

Fi:

= for 1 < / < D -

and
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where

0<v<

Since f^~
l = 1, we get

and therefore

(y-lHJ^-l) _ v-1
^ '

It follows that

and hence by (1.12) we conclude that Gal("^, AT 1
") is two transitive on P(m -

1, #"). If

n > lthenby(1.13)weseethatSL(m,g
n
) < Gal(^, K t

) and hence, because the deter-

minantalmapGal(^, K*) -+ GFG?")\{0}issurjective, we must have Gal(^3

,
tf 1

")
=

GL(m, <?

n
). If /i = 1 then by (1.3) we get GaKE^, # f

)
= GL(m, <?"). Thus in both the

cases we have Gal(E, K*) = GL(m, q
n
).

Now let us return to the case when the field k
q
need not be algebraically closed. Since

k
q

is an overfield of k
q
and E^q is obtained from E^q by putting Xi = for all i e

7*\./J, in view of the extension principle (cf. p. 93 of [Ab2]) and the specialization

principle (cf. p. 1894 of [AbL]), see that Gal(, # f
) < Gal(*

[

,^

]

, AT*). Therefore

5. Concluding remarks

Let us end with some remarks on motivation and philosophy.

Remark 5.1 (Algebraic fundamental groups). The algebraic fundamental group
of the affine line L& over a field k is defined to be the set of all Galois groups of finite

unramified Galois coverings of the affine line L& over k. Similarly we define 7tA(Lk,t) for

Lk,t
= Lk punctured at t points, and more generally we define TCA (CgiW ) for a nonsingular

projective genus g curve C over k punctured at w + 1 points. Let Q(p) be the set of all

quasi-/? groups, i.e., finite groups G such that G = p(G) where p(G) is the subgroup
of G generated by all of its ^-Sylow subgroups, and more generally let Q t (p) be the set

of all quasi-(p, t) groups, i.e., those G for which G/p(G) is generated by t generators.

In [Abl], as geometric conjectures it was predicted that if k is an algebraically closed

field of characteristic p then JtA(Lk) = Q(p)> and more generally 7tA(Lk,t)
= Qt(p)

and 7TA(Cg jU; )
= Q2g+w(p)- In 1994, these were settled affirmatively by Raynaud [Ray]

and Harbater [Har]. For higher dimensional versions of the geometric conjectures see

[Ab5]. Then, mostly inspired by Fried-Guralnick-Saxl [FGS] and Guramick-Saxl [GuS],

we turned our attention to coverings defined over finite fields. In [Ab6] this led to the

arithmetical question asking whether ^(LoF^)) = Q\(p)* the philosophy behind this

being that dropping from an algebraically closed field to a finite field is somewhat like

adding a branch point. In particular we may ask whether KA (Lk,i) contains Q\ (p) where
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k is an overfield of GF(#). As indicated in the introduction, in doing this arithmetic;

problem, the linear groups got bloated towards their semilinear versions and the attempt t

unbloat them led us to generalized iterations.

Remark 5.2 (Division points and Drinfeld modules}. The generalized iterations memselve

came out of the theory of Drinfeld modules as developed in his paper [Dri]. This work c

Drinfeld seems to have been inspired by Serre's work [Sel] on division points of ellipti

curves which was later generalized by him [Se2] to abelian varieties. In turn, our descriptio

of the module E^J in (\2) is based on the ideas of Drinfeld modules. For a discussion c

Drinfeld modules and their relationship with division points of elliptic curves and abelia

varieties see Goss [Gosj. Very briefly, the roots of the separable vectorial g-polynomii

E of ^-degree 2m exhibited in (1.1) form a 1m dimensional GF(g)-vector-space on whic

the Galois group of E acts. The said Galois group also acts on the roots of E^ discusse

in (1.2) which are the analogues of '^-division points of .' Indeed, we have used th

letter E to remind ourselves of elliptic curves in case of m = 1 and more generally of 2t

dimensional abelian varieties. We hope that the present descent principle can somehow

be 'lifted' to characteristic zero. Before that it should be made to work in the symplecti

situation, the bloated semilinear equations for which can be found in [Ab7]. Prior to tfu

the GL work of this paper should be completed.
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Abstract. In this paper we do phrase the obstruction for realization of a generalized

group character, and then we give a classification of Clifford systems in terms of

suitable low-dirnensional cohomology groups.
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1. Introduction

The problem of Clifford system extensions resides in the classification and the construction

of the manifold of all Clifford systems over a commutative ring k, S =
ae^ Sa , the

type being given group G and with 1-component Si isomorphic to a given fc-algebra R.

Each such G -graded Clifford system extension realizes a generalized collective charac-

ter of G in R, that is a group homomorphism $ : G -> Pic&(#) of G into the group of

isomorphism classes of invertible left R <S>k R -modules, and this leads to a problem of

obstruction. When a generalized collective character is specified, it is possible that no Clif-

ford system extensions realizing the specified homomorphism can exist. The main result

in this paper is to obtain a necessary and sufficient condition for the existence of such a

Clifford system extension, formulated in terms of a certain 3-dimensional group cohomol-

ogy class T(^>), referred to here as the Teichmiiller obstruction of <l>. The construction

of T(<l>) is closely analogous to a construction by Kanzaki [9], for a description of the

Chase-Harrison-Rosenberg seven term exact sequence [2] about the Brauer group. In the

case where a generalized collective character <1> has an extension, the manifold of such

strongly graded extensions is shown as a principal and homogeneous space under a 2nd

cohomology group.

This paper has been strongly influenced by the work on the classification of crossed-

product rings by Hacque in [7,8], where he makes a systematic analysis of the important

phenomenon bound to the existence of obstructions. Clifford systems, also called strongly

graded algebras, are a direct generalization of crossed product algebras and they were

introduced and applied by Dade in several important papers [3, 4], where he develops

Clifford's theory axiomatically, and which can be referred to for general background.
In 2, we state a minimum of needed notation and terminology. Section 3 contains

the main results of the paper, namely the construction of the Teichmiiller obstruction map
and the obstruction theorems. We conclude in 4 by exhibiting a non-realizable collective

character.

2. Clifford system extensions and generalized collective characters

Throughout the paper k is a commutative ring with identity and G is a group.
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A G-gmded Clifford system over k S is a ^-algebra with identity, also denoted by ,

together with a family of &-submodules S
ff ,
a G, such that 5 =

ff
Sff and Sa ST

Sc r for ail cr, r G, where the product 5,j5r consists of all finite sums of ring produc

xy of elements x G Sa and y 5T . Note that the 1 -component S\ is a &-subalgebra of

and each or -component 5a , cr G, is a two-sided Si-submodule of 5.

By a Clifford system extension of a ^-algebra R we mean a Clifford system /:-algebra

whose 1-component Si is isomorphic to R. More precisely, we have the following:

DEFINITION 2.1

Let R be a ^-algebra and G a group. A G -graded Clifford system extension of R is a pa

(5, y'), where S = ae^ ^ *s a G~graded Clifford system fc-algebra and j : R c^ 5 is

^-algebra embedding with j(R) S\.

If (5, 7), (S', /) are two G-graded Clifford system extensions of R, by a morphism b<

tweenthem / : (S, j)
-

(S', /), we mean a grade-preserving ^-algebra homomorphis]

/ : S ~> S 7

that respects the embeddings of R, that is, such that / j = /.
The most striking example is the group algebra #[G], but also crossed products of

and G yield examples of G-graded Clifford system extensions of a ^-algebra R.

From ([4], Corollary 2.10) it follows that any Clifford system extension rnorphisi

/ : (5, /) -> (S", /) is necessarily an isomorphism. Therefore the existence of a mo
phism is an equivalence relation between G-graded Clifford system extensions of R an.

in this case, we usually say that the extensions are equivalent. Then

denotes the set of equivalence classes of G-graded Clifford system extensions of the I

algebra R.

If (5, 7) is a G-graded Clifford system extension of R, then each Saj a e G, is a

invertible R ^ jR-module and, for every cr, r e G, the canonical morphism Sff R Sr
-

San *a XT *~* ^ax i->
is an R ^ J?-isomorphism. Hence, there is a canonical map

X : Cliff*(G, R) > Hom
c/? (G, Pic^/?)), (:

where HomGp (G, Pic^(/?)) is the set of group homomorphisms of G into Pick(R), tit

group of isomorphism classes of invertible R % ^-modules, which carries the class <

a G-graded Clifford system extension (S, j) to the group homomorphism X[S, j]
: G ~

), given by

We have the Baer notion of Kollectivcharakter in mind, and we define a genera
ized collective character of the group G in the ^-algebra R as a group homomorphisi
<t> : G -> Pick(R). Let us recall the exact group sequence ([1], Chapter II, (5.4)),

1 -> InAut(/Z) * Autk(R) -^ Pick(R), (<

in which .8 maps a ^-algebra automorphism of J?, a Autfc(/0, to the class of the invertib]

/?
jt ^-module #a ,

which is the same left R-module as R with right action given b

x-y= xct(y), x, y R. Then, there is a canonical embedding Out*(jR) ^ Pic^(/Z), c

the group of outer automorphisms of the A:-algebra R, Out^(R) = Aut^(^)/InAut(/?), int

the Picard group Pick(R). A group homomorphism * : G -> Out^(^) has been called
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collective character (cf. Hacque [7, 8]); so that collective characters of G in R are those

generalized ones factoring through the embedding Out^(R) *-* Pic^(R). Of course, by
character we understand a group homomorphism G > Aut/t(jR).

Hence Honi^G, Pic^(R)) is the set of generalized collective characters of G in /?, and

the map x associates with each equivalence class of G -graded Clifford system extensions

of R a generalized collective character. We refer to a generalized collective character

<>
: G -+ Picfc (R) as realizable if it is in the image of / , that is, if it is induced as explained

above from a G -graded Clifford system extension of R. The map x produces a partitioning

of the set of equivalence classes of G -graded Clifford system extensions of R,

Cliff^(G, R) = IJ Cliff* (G, tf; O), (5)

<D

where, for any generalized collective character <f> e Hom
/7
(G, Pic^ (/?)), we denote by

Cliff (G, /?;<!>) = x
-1

(3>) the fiber of x over <1> . Thus a generalized collective character

O is realizable if the set Cliff*(G, /?; <J>) is not empty. We refer to Cliff^G, /?; <t>) as the

set of equivalence classes of realizations of the generalized collective character O.

3. The Teichmiiller cocycle and the obstruction theorems

If R is a Jk-algebra, let C(R) = {r e R\rx = jcr, x e R} denote its center. Then C(R) is a

fc-algebra whose group of units we denote by C (/?)*.

We will often use the following elementary fact, which is a consequence of ([1], Chapter

II, (3.5)).

Lemma 3.1. If P, Q are invertible R R a
-modules, then for any two R R -isomor-

phisms a, /3 : P > Q, //x^re exwf5 unique u e C(/?)* swc/z f/zf p = ua = an (i.e.,

fi(x\=ua(x) = a(ux) for all x e P).

Proof. Given a : P -> Q, an R <8>& /? -isomorphism, the map C(R)* -

(P, Q), u H> wa, is bijective since it can be obtained as the composite map of the canonical

group isomorphism C(R)* = Aut/j^ /?=(/?), the group isomorphism <8># F

(/?) = Aut^(g,A /jo(P) and the bijection induced by a, a^ : AutR kR(P) =
C/

5

, fi). a

If P is any invertible R <g> /?-module and u G C(/?)*, since x H> xw is an /? # /?-

automorphism of P, there exists a unique element ctp(u) e C(R)* such that ap(u)x = xu

for all x e P. Clearly ap : C(R)* -> C(R)* is an automorphism and

Pick (R) -1+ Aut(C(/?)*), p([P]) = aP (6)

is a group homomorphism (note that p is the restriction to C(R)* of Bass' homomorphism
h : Pick (R) -> Autjk(C(/?)) ([1], Chap. II, (5.4)). Hence C(/f)* is a Pic^(^

By composition with the homomorphism (6) we have for any group G a map

Hom
G/? (G, Kcfc(*)) -> HomG^(G, Aut(C(/Z)*)) (7)

that to each generalized collective character of G in the ^-algebra jR, <l> : G
associates a character <l>* pO : G -> Aut(C(/?)*) from group G in the abelian group

C(J?)*. Of course, the set of characters HomGp(G, Aut(C(/?)*)) is the set of G-module

structures on C(J?)*. Hence every generalized collective character 4> : G -> Pic^(jR), of
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G in R, determines a G-module structure on C(/?)* for which the corresponding G-action

of an element a e G on an element M e C (R)* is given by
a u = ap(w)forany P e <>(<r).

In particular,

xu = a ux (8)

for any a e G, u e C(/Z)*, * e P and P <&(<r). We will denote by #J(G, C(R)*),

7? > 0, the nth cohomology group of G with coefficients in this G-module.

We will now show how every generalized collective character $ : G -> Pic^P) has a

cohomology class T($) #|>(G, C (/?)*) canonically associated with it, whose construc-

tion has several precedents: the Teichmuller cocycle homomorphism /f(G, Br(R)) ->

#3
(G, /?*) [10,6], defined when R/k is a field Galois extension with group G; the

Eilenberg-Mac Lane obstruction defined by a G -kernel, defined in [5] for the study of

group extensions with a non-abelian kernel; the description by Kanzaki [9] of the homo-

morphism H
l

(G, PicR (R)) -^ H3
(G, 7?*), in the Chase-Harrison-Rosenberg seven term

exact sequence [2], about the Brauer group relative to a Galois extension of commuta-

tive rings R/k; the Teichmuller obstruction associated to a collective character <J> : G -

Out(jR), by Hacque in [7,8] for the study of obstructions to the existence of crossed product

rings.

Let <f> : G -> Pic^(^) be a generalized collective character of a group G in a fc-algebra

R. In each isomorphism class *(or) Pic^R), choose an invertible R * #-module
Pa e *(or); in particular, select PI = R. Since * is a homomorphism, the modules

Pff R ^1 ^^ Pa* Inust be ^
fc ^-isomorphic for each pair a, r e G. Then we can

select R <S> /^-isomorphisms

r*,r : ^ J? Pr ^ Pert (9)

with ro
-

>
i(jc(g)r)=^r and Ti iCr (r x) = rjc, r

For any three elements a, r, y e G, the diagram

(10)-^ p
I <7,T7

need not be commutative but, by Lemma 3.1, there exists a unique element T*
T

e C (R)*
such that

iWdVr PX )
- r^ x (rff

, ry (pa r
Tty )). (ii)

Clearly r r̂ y
= T^ y

= 7^^ = 1 so that the choices of Pa and r
a>T determine a

normalized 3-dimensional cochain of G with coefficients in C(J?)*.

Lemma 3.2. TTze coc/wm r = T : G 3 -> C(R)* is a 3-cocyde ofG with coefficients in

the G-module C(R)*.

Proof. We must prove the identity

7ir,r,x^r,Tx,5 ^^r.y.S
=

^or^^a^-yl (12)

for any (a, r, y, 5) G4
. To see this, we compute the isomorphism

J = (I
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in two ways. On one hand, for all x e Pa , y e PT , z e Py and t e P&, we have

/(* y z * )
= rffr j(rffr (ras(x y)

and on the other hand

y z o = r^y^r^ysorv^c* y) ry ,
5 (z 0)

and comparing the two expressions together with Lemma 3.1 gives (12). D

We now observe the effect of different choices of P and T ^ in the construction of the

3-cocycle T for a given generalized collective character O : G ->

Lemma 3.3. (i) Ifthe choice ofT in (9) is changed, then T is changed to a cohomologous

cocycle. By suitably changing F, T may be changed to any cohomologous cocycle.

(ii) If the choice of the invertible R & R
Q-modules P is changed, then a suitable new

selection ofV leaves cocycle T unaltered.

Proof, (i) By Lemma 3.1, any other choice of ra>r in (9) has the form T^ T
= h

ffiT
r

fftT ,

where h : G 2
->> C(R)* is a normalized 2-cochain of G in C(R)*.

For any a, T, y G we have the following expressions for the isomorphism J = F^ y

(r^ T Py) from Pa R Pr R PY onto Pary :

= WVt/a,r,yra, ry (x r
r>y (>; z))

and

r
Tfy (y z))

(^}

T^ yh^y h I
, YYa^Y(xVr , Y (

and comparing the two expressions together with Lemma 3.1 yield

an identity that asserts that the 3-cocycles T and T f
are cohomologous.

(ii) If P f

a e *(or), CT G, is another selection of invertible R <S)k /?-modules, then we
can select R 0^ /^-isomorphisms <pa : P'a -* P and choose T r

T
: P'a R P f

T
> P^ T ,

the isomorphism making the following diagram commutative:
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T ,-y 1

(14)

"9

1 <r,T~f

for each cr
9
r e G. Thus we have

for all ;c e />, y G P^ and z P.
Hence T'ar^ (F^ r (x y)z) = Ta^ yY

f^Y (x r^ y (y z)) and the 3-cocycle T is

unchanged. D

These lemmas show that each generalized collective character <f> : G -> Pic^C/^) de-

termines in invariant fashion a 3-dimensional cohomology class T(&) = [T] e //|
(G, C(R)*) . We refer to the map O h^ r(O) as the Teichmuller obstruction map (see [8]

for background).
Next we prove the main objective of this paper.

Theorem 3.4. A generalized collective character <$ : G -> Pic^(,R) w realizable if and

only if its Teichmuller obstruction r(O) e ff^(G, C(J?)*) vanishes.

Proof. Suppose first that (5 = (TG Sff , ;) is a realization of <D. Then, in the construction

of the Teichmuller 3-cocycle T of G with coefficients in the G-module C(/?)*, one can

take just the invertible R # j^-modules 5^, a e G, a ^ 1, and the canonical R (% R-
isomorphisms rfftT

: Sa R ST -> Sffr , T^ r (x j) =^ r^i^ r) = ^7 (r) and ri j<r

(r x) = 7 (r)% for each a, r e G. Since multiplication in the ^-algebra 5 is associative

r<rr,x(ra,r
5y )

= F^y^ T
T?y ) for all a, r, / e G, and then T^ y

= 1 in (11).

Therefore, T($>) = [T] is the zero cohomology class.

Conversely, suppose that the generalized collective character O has a vanishing coho-

mology class /(<). Select any invertible R /^-modules P e O(cr), a G, with

PI = /?. By Lemma 3.3(i), there is a choice of R ^""-isomorphisms ra>T : Pa (8)^

A: -* FOT with Fi i(y .and r^i the canonical ones, such that the Teichmuller 3-cocycle
T is identically 1. This means that (10) is commutative for any or, r, x G. Hence,
the family (Pff , ra

,
T ) gives rise to a generalized crossed product algebra in the sense of

Kanzaki [9] A = aG Pa , where the product of elements x e Pa and y e Pr is defined

by xy = rajT (jc y), which is a G -graded Clifford system over fc, extension of # by the

canonical injection j : R = PI ^ A. Since /[A j](^)
= [/Vl = ^(cO, * is realized,

that is, Cliff*(G, /?; <E>) ^ 0.

'

D

Now, to complete the classification ofG -graded Clifford system extensions of a fc-algebra

R, we have the following result.
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Theorem 3.5. If a generalized collective character O : G -* PiCk(R) is realizable,

then the set of isomorphism classes of realizations 0/<f>, Cliff#(G, R', 4>), w a principal

homogeneous space under the abelian group //^(G, C(R)*). In particular, there is a

(non-canonical) bijection

Cliff*(G, /?; *) = #|(G, C(*)*).

Proof. We will describe an action

#|(G, C(*)*) x Cliffy, *; *) > Cliffft(G, *; *) (15)

below.

Let /z : G 2 -> COR)* be a normalized 2-cocycle representative of an element [/z] #<|
(G, C(/?)*) and (5 = aG Sa , j : R = Si) be a G-graded Clifford system extension

of J?, representative of an element [5, j] Cliff(G, R\ O). A new G-graded Clifford

system extension of R, (
h
S, j) is defined by considering the fc-algebra

h S which is the

same G-graded fc-algebra as 5 =
ff Q Sa , where the product of elements x e Sa and

y e Sr is now defined by

x*y = j(h fftT )xy.

Since for any x Sa ,y ST and z e SY we have

/0\
a = j (har,y)j (h

the multiplication is associative and so hS is a /:-algebra. Furthermore, Sff
* ST

= j

(ha,r)SaST = 7 (^O-,T)^OT
=

^(rr ince
^<T,T

is invertible for all a, r G.

Therefore (^5, 7) is actually a G-graded Clifford system over k extension of R, clearly

representing an element [^5, j] Cliff&(G, R; <l>), which we maintain depends only on

[h] and [5, j]. To see this, let us suppose that h' is another representative of [h] and

(S
f

, j') is another representative of [S, j]. Then, there must exist a 1-cochain ifr : G ->

C(R)* such that h f

a T
ff

^T^o- = ^OT^T* ^, r e G, and a grade-preserving isomorphism

/ : 5 -> 5' such that // = /, from which we build the grade-preserving ^-isomorphism

*f: hS-+ h
's' 9 +f(x) = f(j(1rff )x) if ;c Sff

. For each * 5a and y 5T , we have

sothat^/ : (^5, j) ~> (
/z/ 5 /

, 7 is actually an isomorphism of Clifford system extensions

of J?, that is, [*S, 7] = [^'S
7

, /].

Therefore, ([A], [5, 7]) H> [
A
5, 7] is a well-defined action of the abelian group H^

(G, C( JR)*)onCliff^(G, R; <E>), which furthermore is a principal one. In fact, ifwe suppose
that [^5, 7] = [5, 7], there must exist a grade preserving fc-algebra isomorphism / :

^5 -> 5 such that fj = j
1

. For each a G, the restriction f/$a : Sa - 5^ is

a R /?-isomorphism, and, by Lemma 3.1, there exists a unique V/v e C(J?)* such

that f(x) = 7(^cr)-^ for all ^ 5ff
. Thus ^ : G -> C(J?)* is a 1-cochain. Since

/(z * j) = f(x)f(y) 9 for any x S^, ? 5T , a, r 6 G, we have

U ff

fa)xy- Therefore, since 5a 5T = 5aT , Lemma 3.1 implies that

^ T
= ^ a

T/rT , that is, /i = 8(VO represents the zero class in H^(G, COR)*).
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Finally, we observe that action (15) is transitive. Let (S, j),(S', /) be any two G-

graded Clifford system extensions of R representing elements in Cliff^(G, R-, <l>). Since

Sff9 S'a O(jc) for any a G, there must exist R & R -isomorphisms fa : Sa -> S,
a e G, with /i = /y""

1
. For each pair cr, r G, the square

ST

where the horizontal arrows represent the canonical isomorphisms x y h-> jry, need

not be commutative. But, by Lemma 3.1, there exists a unique hal e C(R)* such that

fffl (xy) = j'(h fftr)fff (x)My) for all x e Sa ,y e ST . Thus h : G -+ C(R)* is a

normalized 2-cochain. For any x e 5a , y e ST and z e Sy , we have

and analogously,

= /(Vry
flr

Ar,y)/crW

Lemma 3.1 implies that har
, yh^ T

= h^ ry
ffh

TtY , that is, A is a 2-cocycle of G on C (/?)*.

Clearly / =
aeG /^ establishes a G-graded Clifford system extension isomorphism

(5, 7) -> (^iS
17

, /), and so action (15) is transitive. D

To end this section, we shall focus on that class of rings known as crossed-product group

^-algebras. According to ([4], 5) an extension of a k-algebra R by a group G in the

sense of Hacque [8], is the same as G-graded Clifford system extension of R satisfying

the condition that in any component there is at least one unit. As in Hacque's paper [8],

let Ext^(G, R) denote the set of isomorphism classes of extensions of a ^-algebra R by
a group G. Then Ext^(G, R) c Cliff^(G, R), and we shall characterize this subset of

Clifffc(G, R) by means of collective characters as in the following proposition, where we

take into account the canonical group embedding Out^(7?) <-* PiCk(R) induced by the

group exact sequence (4), whose image is ([1], Chap. II, (5.3))

Img((5) = {[P] Pic(#)|P = R as left tf-module}.

PROPOSITION 3.6

For any k-algebra R and group G there is a cartesian square

Ext*(G, R)>
->

Cliff*(G, R)

I* (16)

HomGp (G, Out*(*))> > HomG,(G; Pic

that is, Extfc(G, R) = %~~
l

QIomGp)(G , Outjt(,R)) is- the set of classes of those G-graded

Clifford system extensions ofR which realize collective characters (in the sense of[l, 8]).
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Proof. Let (5 = O^Q Sa , j ) be a G -graded Clifford system extension of R such that for

any a G, there exists ua e S* Pi Sff9 that is, an extension of R by G. Right multiplication

by ua is an isomorphism of left ^-modules R -> Rua = Sa , a G, and therefore the

generalized collective character realized by [5, 7], X[S,/]
: G -* Pic&(/?), X[S,j](&)

=
[S ] factors through Outfc(#). Conversely, suppose (S = 0^^^, j) is a G-graded
Clifford system extension of R such that X[S, j]

=^ f r some <f> : G -> Out^(j?). Then,

if we choose any ^-automorphism /(a) e <$(a) for each o e G, there must exist an

R k /^-isomorphism cp : R/(a )
= Sa . If u

ff
= ^(1), then Sa = /?<j = W CT ^. From

SffSa -i = /?!$ = S
ff -iSff, it follows thatua Rua -i = RI$ = ua-\Rua . Then there exist

a,b e R such that 1 = ua aua -\ u ~\bua so that WQ. e 5* fl Sa and therefore (5, 7)

represents an extension of R by G. D

From the general results about Clifford system extensions of algebras, we deduce the

following group cohomology classification of extensions of an algebra by a group, which

was proved by Hacque in [8].

COROLLARY 3.7

Let G be a group and R be a k-algebra.

(i) Each collective character of G in R, $ : G - Outk(R) determines in an invariant

fashion a three-dimensional cohomology class r(4>) e //^(G, C (/?)*) <?/ G wif/z

coefficients in the G-module (via O) o/a// umto m ?/z^ center of R.

(ii) T/z^r^ w ^2 canonical partition ofthe set ofequivalence classes ofextensions ofRbyG,

Ext*(G, /?) = Ext(G, Ri *),

<E>

where, for any collective character <2> : G -
Outjt(jR), Ext&(G, /^;

<J>
) w fA^ set of

equivalence classes ofthose extensions realizing <>.

(iii) A collective character <
: G > Out^(/?) w realizable, that is, Ext^(G, /?; 4>) ^ /

an^ on/y i//^ obstruction vanishes.

(iv) Tff/ze obstruction of a collective character <l> : G ~> Out^(/^) vanishes, then Ext/,

(G, /?; $) w principal homogeneous space under H^(G, C(jR)*). / particular,

there is a bijection

Ext*(G, /J; *) = F2
(G, COR)*). (17)

4. An obstructed collective character

It is very easy to find unobstructed generalized collective characters. Of course any Clifford

system yields one of them. In this example we shall exhibit a non-realizable collective

character, that is, a group homomorphism <I> : G -+ Pic]c (R), for particular group G and

fc-algebra jR, such that there is no G-graded Clifford system extension of R, (S = a
Sa , j : R = Si) such that <&(<r) = [Sa ], o e G.

For example consider G = 2 = (t]t
2 = 1 ), the cyclic group of order two, k = FS,

the Galois field with five elements and R = Fs[Z>io], the group Fs-algebra of the dihedral

group DIG = (r, s; r
10 = 1 = s

2
,
srs = r~ l

}.

Let /? : FS[DIO] > ^S[D\Q] be the algebra automorphism defined by fl(r) = r
1 and

f}(s) = r
5
s. Since ^6

2
(r) = r" 1 = srs and /8

2
(.s)

= 5r
5
(r

5
)
7 = s, the automorphism ^

2
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is simply conjugation by s. Therefore, the equations 3>(1) = 1 and <(r) = [ft] determine

a homomorphism

<D : C2 > Out (F5 [Dio]) c Pic (F5 [Diol) (18)

of the cyclic group C? into the Picard group of Fs[Z)io], that is, a collective character of

C2 inF5 [Z>ioL

PROPOSITION 4.1

The Teichmuller obstruction T($>) e #|(C2 , C(F5 [>i ])*) is non-zero.

Proof. First, let us observe that in this case, a (normalized) n-cochain h : 2 x x

C2 > C(F5[Z>io])* is determined by a single constant A(r, . . .
, f) = h C(Fs[Z>io])*,

whose coboundary is given by Sh = f$(h)h~~
l

if n is even or Sh = ft(h)h if n is odd.

Since we easily see that the Teichmuller 3-cocycle is T = r
5

, the proof of the proposition

amounts to checking that there is no unit h in the center of FsfDio] such that ft(h) = r
5
h.

The center of Fs[Dio] can be described as the 8-dimensional space over FS generated by
the elements

y, eg = (c2 -f- 04

with multiplication given by

2 __ i^
s\ ___ I

i

Cf\ c3 ~i -^ ^2^3 *~~ ^2 ~i ^4 C^C4 *- C3 ~t~ ^5

C'jCn 2cs C9Cs *~~ 2^7 C ~~~
/"*c I 2

C3 C7 = 2<77 C3 Cg = 2cg C^
= C5 + 2

C4C7 = 2cg C4Cg = 2C7 C$
= C3 -h 2 C5C6 = i

= 2C7 C5Cg = 2cg c^
= 1

Let CQ be the F5-subalgebra generated by c2 ; that is, the span of ci, . . .
, 05 and note

that the minimal polynomial of c2 is '(t + 2)
3
(r
-

2)
3

. Then C(F5 [Di ])
= Co F5c7

F5cg with multiplication given by c^
= C7Cg = c|

= and c2c7 = 2cg, c2cg = 2c7 and
we see that there is a homomorphism <p : C(Fs[Dio]) -> F5 mapping c2 to -2 and cj, eg
to 0. Hence, <p(c3 )

= 2, <p(c4)
= -2, <p(c5 ) = 2 and <p(c6 )

= -1. Since /3(c2 )
= c4 ,

^3(c7 )
= eg and y3(cg) = C7, this homomorphism <p satisfies that <p(fi(h)) = ft(h) for all

h e C (F5 [Z>io]). Therefore, if h C(F5 [Di ]) is such that 0(h) = r
5
h, then comparing

the image of each side under <p yields <p(h) = <p(h), whence <p(h) = 0, and it follows

that h is not invertible. D

Remark 4.2. Proposition 4.1 is an effect of inseparability. If we consider the Galois field

F3 instead of F5 , the resulting collective character (18), * : C2 -+ Pic(F3 [Di ]) defined

similarly by * (t) = [ft], where ft is the corresponding algebra automorphism determined
by ft(r) = r

1 and fi(s) = r
5
^, is unobstructed. In this case the Teichmuller cocycle T =

r
5 = 3 (h), is the coboundary ofthe order 4 element h = c4 4-C5+ c7 4-2cg e C (F3 [Z>i ])*,

and therefore T(9) = 0.
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Abstract. Let X be an integral projective curve and L e Pic
a
(X), M Pic^(X)

with h l

(X, L) = h ]

(X, M) = and L, M general. Here we study the rank of the

multiplication map HL ,M : HQ
(X, L)H(X, M) - HQ

(X, L(g>M). We also study
the same problem when L and M are rank 1 torsion free sheaves on X. Most of our

results are for X with only nodes as singularities.

Keywords. Singular projective curve; rank 1 torsion free sheaf; nodal curve;

cuspidal curve; line bundle; special divisor.

1. Introduction

Let X be a smooth projective curve of genus g > and L
,
M Pic(X) with L

,
M spanned.

Call hL : X -> P(#(X, L)) and hM : X -+ P(#(X, M)) the associated morphisms.
Denote with /XL,M : H(X, L)<8>#(X, M) -> #(X, L M) the multiplication map and

iL ,M : P(H(X,' L)) xP(#(X, M)) - P(#(X, L)(g>#(X, M)) the Segre embedding.
Let hLM : X -* P(ff (X, L)) x P(# (X, M)) be the morphism induced by h L and /ZM
on the two factors. Call /L,M

" X -^ P(/:/ (X, L M)) the morphism obtained from

hi,M and the multiplication map ML,M- The surjectivity of ML,M means that /L,M(X) is

linearly normal in its linear span and dim(Ker(/u-L,M)) is the codimension of its linear span.

For any L, M the surjectivity of H>L,M has several important geometric consequences (see

e.g. [7]) and very good criteria for the surjectivity of /ZL,M are known (see [10], Th. 4.a.l,

and [7], p. 514).

In 2 we will give a proof the following result, proved also in [3].

Theorem 1.1. Fix integers m, n and g with m > 1, n > 1 and g > 0. Let X be a general
smooth projective curve ofgenus g. Take a generalpair (L , M) Pic^+m (X) x Pic5

"
1""

(X).

Then the multiplication map \JLLM ' #(X, L) (g) #(X, M) -> H(X, L M) /^
maximal rank, i.e. it is injective ifg> mn and it is surjective ifg< mn.

Remark 1.2. In the set-up of 1.1 since deg(L) >
g, deg(M) > g and both L and M are

general, we have h l

(X, L) = h l

(X, M) = 0. Hence by Riemann-Roch we have /*(X, L)
= m + 1 and /i(X, M) = n + 1. We explain the numerology in the statement of 1.1 with

the following example. Fix positive integers m and n. Let C be a smooth projective curve

of genus mn and A G Picm+mrt (C), B Pic"
+mw

(C) with /^(C, A) = ft^C, )
= 0.

Wehave/i(C, A) = m+ 1, A(C, B) = n+ 1, deg(A) = n-fm+ 2mn, fc!(

= and/i(C, A).fc(C, B) = (m + l)(n + 1) = n + m + 1.+ mn = fc(C, A (

At the end of 2 we will prove the following result.
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Theorem 1.3. Fix integers m, n, g and q with g>q>Q,m>l,n>l and g > 3. Let

n : Y -* C be a birational morphism with Y general curve ofgenus q and C general nodal

curve with g q nodes and Y as normalization, i.e. assume that n l

(Sing(C)) isformed by

2g-2q general points ofY. Take a general pair (L, M) e Picg+m (C) x Pic8+n
(C). Then

the multiplication map [AL,M
' #(C, L) #(C, M) - #(C, L (g) M) has maximal

rank, i.e. it is injective ifg > mn and it is surjective ifg <mn.

In 3 we will use the classical Brill-Noether theory of special divisors to study the

multiplication map for line bundles on nodal or cuspidal curves. In 4 we will use 1.3 to

study some problems related to the multiplication map for rank 1 torsion free sheaves on

nodal curves.

2. Proofs of 1.1 and 1.3

We work over an algebraically closed field K with char(K) = 0; for the case char(K) > 0,

see Remark 3.4. For all positive integers m and n set ]\(m,n) := Pm xPn
. Call n\ (m,ri) :

n(w n) -+ Pm and ni(m, n) : [~[(m >
n ) -* Pn

(or just n\ and 112) the projections. We
have Pic(H(m, n)) = Ze2 and we will take 7Ti*(0pm (1)) and jr2*(0p (1)) as generators

ofPic(Y[(m, n)). Sometimes we will write f] instead of Y[(m, n). Set O := On and call

0(1, 0) and 0(0, 1) the two choosen generators of Pied"])- Every one-dimensional cycle

T of H has a bidegree (a, b) with a := 7\0(1, 0) and b := T.0(0, 1). If T is effective

and irreducible we have a = deg(jri |r)deg(jri(r)) and b = deg(7r2|7
T

)deg(7r2 (r)). The

tangent bundle, T Y[(m, n), of H(m, n) is isomorphic to 7ii*(rP
m

) 7r2*(TP
n
). Notice

that rPm (-l) and TPn
(-l) are spanned (e.g. by the Euler sequence of TPS

,
s = m or n).

Hence for every integral curve X C I~I f tvPe (&)> tne vector bundle T Y[(m,n)\X is

the direct sum of a rank m vector bundle which is the quotient ofm 4- 1 copies ofOx ( 1
, 0)

(and hence the quotient of line bundles of degree a) and a rank n vector bundle which is a

quotient of n 4- 1 copies ofOx (0, 1) (and hence a quotient of 72 -f- 1 line bundles of degree

b). For any locally complete intersection curve X C H(m >
n )> let N

X]/J[(m,n)
be its normal

bundle. If X is smooth, then the normal bundle Nx/Y[(m,n) of X in Y[(m '
n ) is a quotient

of T fl(m > n)\X. To prove Theorem 1.1 we introduce the following statement:

ff(m,n),m > l,n > 1: There exists a smooth connected curve X[/n, n] C ]\(m,ri)
such that pa(X[m, n]) = mn, X[m, n] has bidegree (mn + m,mn + n), the embedding of

X[m, n] in H(m, n) is induced by a pair of line bundles (L, M) with ft
1

(X[m, n], L) =
/^(Xtm, n], M) = 0, X[m, n] spans p+m+ and ft^Xfrn, n],^[m)/l]/n(m , n) )

= 0.

Since/i^Xtm.nLL) = A^Xtm, /i], M) = A^Xt/n./i], L M) = 0, the condition

that X[m , n] spans p
mn+m+n

in the statement ofH (m , n) is equivalent to the condition that

the two maps X[m, n] -> Pm and X[m, ?i] -> Pn
induced the inclusion of X[m, n] into

H(^, n) are given by a complete linear system (i.e. by Riemann-Roch, that they are non-

degenerate) and that the multiplication map fMLtM : HQ
(X[m, n], L)HQ

(X[m, n], M) -^

HQ
(X[m, n], L (g) M) is bijective.

Remark 2.2. H(l, 1) is true because a smooth quadric surface H(l> 1) C P3
contains a

smooth non-degenerate elliptic curve ofbidegree (2, 2) and such curve has as normal bundle
a degree 4 line bundle.

PROPOSITION 2.2

Fix an integer m > 1. IfH(m, m) is true, then H(m + 1, m + 1) is true.
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Proof. See P
2+2

as a codimension 2m + 3 linear subspace, A, of p>
2+4m+3 Take

a solution X[m,m] c f](m m ) f r H(m 9 m) and see ]~l(m '
m ) as a linear section of

Yl(m + 1, m + 1) c P
2+4 +3

. Fix 5 C X[m, m] with card(S) = 2m -f 2 and 5 spanning

a linear subspace (S) ofp
2+2m with dim((S = 2m+ 1 . Let C be a smooth rational curve

and consider the pair (R, R) e Pic(C) xPic(C) withdeg(/?) = 2m + 2. The multiplication

map M^ : ff(C, J?) #(C, fl) -> //(C, T?
2
) is surjective and tf

2 embeds C into

a (4m + 4)-dimensional projective space W as a rational normal curve; call D C W its

image. Hence D may be seen both as a smooth rational curve of degree 4m H- 4 in W
and a curve of bidegree (2m -f 2, 2m + 2) in f](r

>
f r anv r > 2m 4- 1 . We may take

W C Pm +4m+3 in such a way that W n A contains 5; here we use that A has codimension

2m + 3 = dim(W) - (2m + 1) in P
2+4w+3 and that card(S) < dim(W). The group

Aut((5)) acts transitively on the set of ordered (2m + 2)-ples of points in linear general in

(S) . Any such (2m +2)-pie is contained in a codimension 2m +3 linear section of a rational

normal curve of W. Hence we may assume that D D A = 5. Set Y := X[m, m] U D. Y
has bidegree ((m + l)(m -I- 2), (m + l)(m -f- 2)), the same bidegree of X[m + 1, m -f- 1].

Claim. We may find such D with D C Yl(m + 1, m + 1), i.e. with F C fl(m + 1, w + 1)

andF fl A = X[m,m].

Proof of the Claim. First we will check that Pic(7) is an extension of Pic(X[m, m]) x

Pic(D) = Pic(X[m, m]) x Z by a multiplicative group isomorphic to (K*)
e(2m+1)

. More

precisely, every E e Pic(7) is uniquely determined by E\X[m, m], E\D and by the gluing

data at each of the 2m + 2 points of 5; since D = P 1

, E\D is uniquely determined

by the integer deg(|Z)); each of these gluing data is uniquely determined by a non-

zero scalar (and vice versa, each non-zero scalar induces a gluing datum at one point of

5); however, since for any E' e Pic(X[m,m]) and E" e Pic(D) we have Aut(") =
Aut('

//

) = Aut(") = K*, we may multiply all these gluing data by a common non-

zero scalar and obtain an isomorphic line bundle on Y. Hence Pic(F) is an extension

of Pic(X[m,m]) x Pic(D) by (K*)^2m+1 >. Take any L' e Pic(F), M' Pic(7) with

Z/|X[m; m] = L, M'|X[m, m] = M and deg(Z/|D) = deg(M
;

|D) = 2m + 1. Consider

the Mayer-Vietoris exact sequence for Z/,

-> L' -> Z/|X[m, m] L f

\D -> L'|S -> (1)

and the corresponding Mayer-Vietoris exact sequence for M''. Since card(S) = 2m+ 2 and

deg(L'\D) = deg(M
/

|Z)) = 2m + 1, the restriction maps H(D, L f

\D) -> //(5, L
f

\S)

and #(Z), M'\D) -> //(5, M'15) are surjective. Hence by the Mayer-Vietoris exact se-

quences we obtain /z (7, L') = m+ 1, /z(F, MO = m+ 1, h
l

(Yt L'} = Oand/z l

(7, M x

)
=

0. Similarly, we obtain that L' and M 7

are spanned and (for general gluing data) induce an

embedding of Y into f~[(m + l,m-|-l), proving the Claim.

The variety H(m > m ) is me complete intersection of two Cartier divisors of Yl(m +
l,m + 1), one of type (1,0) and one of type (0, 1). Hence NX [m ,m\/ ri(m+i,w+i)

=

^X[m,ni]/n(w,m)
M. Thus /z

1

(X[m, m],^m5m]/n(m+1 ,m+1) )
= 0. By con-

struction D fi X[m, m] = 5 and D intersects quasi-transversally X[m, m]. Hence F
is a connected nodal curve with pa (Y) = m2 + 2m H- 1. Since A n W = (S) and

dim({S' + dim(W) = codim(A), Y spans p
m2+4 +3

. Hence by semicontinuity it is

sufficient to prove that Y is smoothable and that h l

(Y, A/V/[](m+i,m -i-i))
= 0. Since

D has bidegree (2m + 1, 2m + 1) in Yl(m H- 1, m + 1), its normal bundle is a quo-
tient of a direct sum of line bundles of degree 2m -f- 1. Since every vector bundle on

D = P 1
is a direct sum of line bundles, we obtain that every line bundle appearing in
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a decomposition of ND/Y[(m+\, m+i) nas degree at least 2m 4- 1. By [11], Cor. 3.2 and

Prop. 3.3, or [13], NY/H(m+i, m+\)\X[m, m] (resp. #y/r](m+i, m+\)\D)
is obtained from

tf*[m,m]/no+i, m+1 > (resp - ^/nfa+i. "H-n) making 2 + 2 positive elementary trans-

formations. Hence h l

(X[m, m], NY/i\(m+i, m+i)I^IX m ])
= and every line bundle

appearing in a decomposition of NY/Y[(m+i, m+i)l^ has degree at least 2m -f 1. The last

remark implies the surjectivity of the restriction map p : /f(Z), Afy/ r](m+i, m+ i)|>)
~*

#(.S, Ny/[](m-t-i, m+i)|5). By the Mayer-Vietoris exact sequence

~>
Afy/non+l, m+ i)

-
Wy/nc/n+i, m+i)|X[m, m] %/r](m+i, m+i)lD

* 0, (2)

we obtain /z
1

(7, A^y/j-j^+i^ m+i)) =0. Furthermore, as in [11], Th. 4.1, or [13] we obtain

also that Y is smoothable. Notice that we may apply the semicontinuity theorem for the

dimension of the kernel of the multiplication map for a flat family of pairs of non-special

line bundles on a flat family of curves, because the non-speciality condition implies that

the corresponding cohomology groups have constant dimension. By semicontinuity we

obtain the result for a general triple (Z, L", M") with Z of genus (m + I)
2 and (L", M"}

a general pair of line bundles on Z with degree (m-f-l)
2
-|-m-hl.

PROPOSITION 2.3

Fix integers m, n with n > m > 1. Assume that H(m,n) is true. Then H(m, n + 1) is true.

Proof. We will show how to modify the proof of 2.2. Notice that pa (X[m, n -f 1]) =
pa (X[m, n]) 4- m. We start with (X[m, n], L, M) satisfying H(m, n). Hence L, M
Pic(X[w, n]), deg(L) = pa (X[m, n]) -f- m = mn -f- n and deg(M) = mn + n. We take

S C X[m, n] C A := (Il(m, n)) with card(S) = m -f 1 and dim((S = m. Now D is

a smooth rational curve and it is embedded into Yl(x,y),x > m,y > m + 1, by a pair

(R\, #2) with deg(jRi) = m and deg(7?2) = m 4- 1, i.e. of bidegree (m, m + 1). Hence

degCKi<8>#2) =2m+l. SetF :=X[m,n]UD. Since A(D, /?/) = deg(^/)+ l > card(5)

for i = 1, 2, every part of the proof of 2.2 works in our new set-up, proving 2.3.

Proof of 1. 1. (i) Here we will cover the case < g < mn, i.e. when we need to prove
that for a general triple (X, L, M) the multiplication map \J(,LM is surjective. Since the

case g < I is well-known and trivial, we assume g > 2 and hence n > 2. Since H(m,ri)
is true, we know the case g = mn. Hence we may assume 2 < g < mn. We start with

X[1 9 1] satisfying H(l, 1) and then we follow the proofs of 2.2 and 2.3 made to obtain

a proof of H(m, n). However, at each step of the proof we take D intersecting the other

curve in a subset, S f

, of S. For instance if n > m and mn m I < g < mn, we take

card(S') = g
- mn + n. Call Y f

the curve X[m, n - 1] U D with D n X[m, n - 1] = Sf

.

The proofs of 2.2 and 2.3 and semicontinuity proves 1.1 for this triple (m, n, g).

(ii) Now we assume g > mn. By induction on g for a fixed pair (m, n) and the case

g' = mn (the bijective case) proved in part (i) we may assume the result for the triple

(m, n,g - 1). Let (C, A, B) a general triple satisfying the statement of 1.1 for the triple

(m, n, g
-

1). Fix two general points {P, Q] of C and let 7 be the nodal curve CUD
with D = P 1 and C n D = {P, g}. By semistable reduction F is the flat limit of

a flat family of smooth connected curves of genus g. Take any L, M G Pic(F) with

L\C = A, Af|C = B and deg(L|D) = deg(M |Z>) = 1. We saw.in the proof of 2.2 that

the set of all such L (resp. M) is not empty and parametrized by an extension of Pic(C)
by K*. Since the restriction maps H(D, L\D) ~>

0{/>,0} and H(D, M\D) -> 0{p,)
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are surjective, as in the proof of 2.2 a Mayer-Vietoris exact sequence similar to (1) shows

that /z(F, L) = m + 1, /z(F, M) = m + 1 and /z
1

(F, L) = /z
1

(F, M) = 0. Furthermore,

the same exact sequence induces an isomorphism of //(C, A) (resp. //(C, 5)) with

H(F, L) (resp. #(F, M)) and a surjection of #(C, A 5) onto #(F, L M ). Hence

the injectivity of H,A,B implies the injectivity of ^LM- By semicontinuity we conclude as

in the last part of the proof of 2.2.

Proof of'1.3. Look again to the proof of 1 .1 and in particular to the proof of 2.2. Now we
take as X[l, 1] a rational curve with an ordinary node as only singularity. As in the proof
of 2.2 we obtain the result in the case m = n = 1. Now we consider the inductive step in

the proofs of 2.2 and 2.3. Just to fix the notation we assume the case (m, m) and prove the

case (m + 1
,
m + 1). Now X[m,m] is the general rational curve with mn ordinary nodes as

only singularities. Set Y := X[m, m] U D. We need to deform Y inside Y[(m + 1, wi + 1)

to an irreducible rational curve with only nodes as singularities. Hence it is sufficient to

prove that we may smooth exactly one node (any node we chose) in Y n D keeping singular

the other singular points of Y Pi D and without smoothing the other points and keeping

singular the singular points of X[m, n]. If instead of X[m t n] we would have a smooth

curve, this would be the notion of strong smoothability considered in [11], 1. The part

concerning the nodes in X[m, m] fl D is easy because card(X[m, m] fl D) = 2m + 2 and

every line bundle appearing in a decomposition of Ny/Y[(m+i, m+i)l^ nas degree at least

2m + 1. Hence h l

(D, (A^y/pj(m +i, m+i)l^)("~^)) = and we may apply the proof of

[11], Th. 4.1. We know that h [

(Y, Ny/r^/n+i./w-i-i))
= an<^ hence that Y is a smooth

point of Hilb(H(^ + 1, m + 1)). Furthermore, by induction on m we may assume that

each subset of the set of all nodes of X[m, m] may be smoothing independently, i.e. that

for every subset F of Sing(X[m, m]) the set of curves inf|(m + l,/n + l) near X[m, m] in

which we smooth exactly the nodes in Sing(X[m, m])\F has, near 7, codimension card(F)

in Hilb(n(^ + 1, m + 1)). The same assertion for Y follows from this, card(S) = 2m +
2, that every line bundle appearing in a decomposition of Wy/]-](m+i,m+i)l^

has degree
at least 2m + 1 and a Mayer-Vietoris exact sequence as in the proof of [11], Th. 4.1.

Hence we obtain the case q = of 1.3. If q > we just smooth q nodes and apply

semicontinuity.

3. Line bundles on singular curves

For any triple g, r, d of integers, let p(g, r, d) : g (r + l)(g + r d) be the so-called

Brill-Noether number associated to g, r and d. For any smooth projective curve X, set

Wr

d (X) := {L Pic(X) : h(X, L) > r + 1}. On a general smooth curve X of genus

g > 2 we have Wr

d (X)) ^ if and only if p(g, r, d) > 0; if p(g, r, d) > 0, then WJ(X)
is non-empty, smooth outside Wd

* l

(X) and of pure dimension p(g,r,d)\ Wd (X) is

irreducible if p(g, r, d) > ([1], chs V and VII, and in particular the references [9] and

for the smoothness and irreducibility in arbitrary characteristic). If p(g, r, d) > this

implies that a general L e WJ(X) has no base points and hQ (X, L) = r + 1; here and

in the statements of 3.1, 3.2 and 3.5 if p(g, r, d) = (i.e. if WJ(X) is finite) the word

'general L WJ(X)' means 'every L W^(X)'; if C is singular (i.e. q ^ g) in the

statement of 3.1, 3.2 and 3.3 the word 'general' means only 'general in a smooth component
with the expected dimension p(g, x 1, a) and p(g, y 1, by because we do not claim

any irreducibility result for the schemes WJ(C) when C is a singular curve. In the smooth

case (q = g) when p(g, x 1, b) = to have 'for all L G Wd (Xy we need to use [6]

and hence we need to assume char(K) = 0.
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Theorem 3.1. Fix integers g and q with g > q > and g > 3. Let n : Y -* C

be a birational morphism with Y general curve of genus q and C general nodal curve

with g q nodes and Y as normalization, i.e. assume that jr^CSingCC)) is formed by

2g
-

2q general points of Y. Fix integers a,b,x and y with 2 < x < g 2,2 < y <

g+x-a- l,p(g,*- 1,#) > 0, Q<a<2g-2andg + y-x-l <b<g + y-~l.

Let L e W%~
l

(C) and M e W^~ (X) be general elements. Then the multiplication map

VLM : #(C, L) H(C, M) -* #(C, L <g> M) is injective.

Proof. By [9], Prop. 1.2, there is a nodal curve D with pa (D) = g and exactly g ordinary

nodes such that for every L W%~
l

(D) with /z(D, L) = jc the multiplication map

ML,wD <g)L*
: #(A ) #(A ^D L*) -> //(>, &>>) is injective; we will only use

that this is true just for one L W~ l

(D) with /z(Z), L) = AT. By semicontinuity for a

general nodal curve, C, with p^ (C) = g and with exactly g q nodes as only singularities

there is L Pic(C) with deg(C) =a J h(C,L) x and such that the multiplication map

VL,O>CL* : #(C, L) <g> /f (C, o;c (8) L*) -> # (C, o>c) is injective. By Riemann-Roch

wehave/z !

(C, L) = g+x a 1. By assumption we have g a 1 < y < g-Kxa 1 and

fe > g+v jc 1. LetZ) (resp. ZX) be the union ofg+x a 1 y (resp. fc> g v+x+ 1)

general points of C. Set fl := coc L*(-D) and A := ^(D
7

). Hence deg(J?) =

^ + ^-^ + 1 <^ = deg(A). Since Z) is general, we have A(C, /?) = j. Adding
Z) as a base locus we may see the vector space //(C, R) as a subspace of //(C, &>c

L*). Thus the multiplication map fjLLtR : HQ
(C, L) H(C, /?) -> //(C, L /?) is

injective. By Rieman-Roch we have h l

(C, R) = x. Thus h l

(C, R) > deg(D'). Hence

/z(C, A) = A(C, /?) by the generality of D 7

, i.e. A e Wy
b

~ l

(C) and the complete
linear system associated to A has D r

in its base locus. Thus the multiplication map /z^, A
'

#(C, L)#(C, A) -> /f(C, L0 A) is injective. Hence by semicontinuity for general

M e W/'^C) the multiplication map /XL ,M : H(C, L) /f(C, M) -> H(C, L M)
is injective. Quoting [5] instead of [9] we have the following result.

Theorem 3.2. Fix integers g and q with g > q > and g > 3. Le? TT : Y -> C Z?e

fl birational morphism with Y general curve of genus q and C general cuspidal curve

with g
-

q nodes and Y as normalization, i.e. assume that Tr^SingCC)) is formed by

g
-

q general points of Y. Fix integers a, b, x and y with 2 < x < g ~ 2, 2 < y <

g+x-a-l,p(g,x-l,a) > 0, < a < 2g-2andg +y-x-l <b < g + y-l. Let

L e W%~
l

(C) and M W%~ (X) be general elements. Then the multiplication map
, L) (g) H(C, M) -^ H(C, L (g) M) w in>

Remark 3.3. Theorem 3.2 is true with the same proof for every rational cuspidal curve, not

just the general one ([5]).

4. Rank 1 torsion free sheaves

Let C be an integral protective curve and F and G rank 1 torsion free sheaves on C. The
sheaf F (g) G may have torsion, but the sheaf F G/Tors(F G) is a rank 1 torsion

free sheaf. Call F
,G : #(C, F) H(C, G) -> #(C, F (g) G/Tors(F (g) G)) the

composition of the multiplication map IJLF,G H(C, F) (g) HQ
(C, G) ->- H(C, F (g) G)

with the map //(C, F G) - /f(C, F G/Tors(F (g) G)) induced by the quotient map
F <g> G -> F (g> G/Tors(F (g) G). We believe that the linear map PF,G is more significant
and has better behaviour than the plain multiplication map /ZF,G- In this section we study

^d MF,G in the case of nodal curves. The general set-up works for curves with only
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ordinary nodes and ordinary cusps as singularities (see (4.1)). The restriction to nodal

curves come from the use of 1.3. In many interesting cases the map $/7 G is induced from a

multiplication map for line bundles on a partial normalization of C (see (4.2)). Here is the

general set-up. Let/ : Y -> C be a birational morphism between integral projective curves.

Set<5 := pa(Y) pa (C). We have <5 > Oand<5 = if and only if / is an isomorphism. For

every rank 1 torsion free sheafA on 7 the coherent sheaf /* (A) is a rank 1 torsion free sheaf

onC. If A = f*(B) for some rank 1 torsion free sheaf B on C, then/* (A) = # /*(0y)

(projection formula) and hence deg(/*(A)) = deg(A) + <5. By the very definition of

the direct image functor we have /i(C, /*(A)) = /i(F, A). Since / is finite, we have

h l

(C, /*(A)) = h l

(Y, A). It is easy to check that for every rank 1 torsion free sheaf B
on C the natural map fB

*
: HQ

(C, B) - HQ
(Y, /*(B)/Tors(/*())) is injective. Let

L, M be rank 1 torsion free sheaves on Y. Since #(7, L) = /f (C, /*()), //(F, M) =
#(C, /*(M)), the multiplication map /ZL ,M : H(Y, L) <g> HQ

(Y, M) -> //(r, L M)
induces a morphism L ,M : #(^ L) H(Y, M) -> /f(y, L M/Tors(L M)),
a morphism LfAft/ : /f(C, /*(L)) H(C, /*(M)) -> /f(C, /*(L M)) and a

morphism <xLtMtf : #(C, /*(L)) #(C, /*(M))
- #(C, /*(L M)/Tors(/*(L

M))). A section of a torsion free sheaf on a reduced curve is uniquely determined by its

restriction to a Zariski open dense subset of the curve. Hence if \JLL,M is injective, then

L,M,/ is injective.

(4. 1 ) Let R be the local ring either of an ordinary node (i.e. of an A i singularity), P, of an

irreducible curve or of an ordinary cusp (i.e. of an A2 singularity). Let m be the maximal

ideal of R. If R is an ordinary node will say that a coherent sheaf on Spec(/?) is torsion

free near P if its completion has no nonzero element killed by an element of R which is

not a zero-divisor of R', this is the definition used in [4], With this convention every finitely

generated torsion free R-module M (up to a completion) is of the form R a m b
for

some integers > 0, b > 0, a +b > 0, with a+b = rank(M) ([4], Th. 2.4.2 and Remark 1

after that, or [14], Prop. 2 at p. 162). The same is true if R is an ordinary cusp. We will

need only the case rank(M) = 1; hence either M = R or M = m. It is easy to check that

m contains a rank 1 submodule M with M = R and m/M == K; obviously m is contained

in the rank 1 free module R and jR/m = K.

For any coherent sheaf F on an integral projective curve X with pure rank r the degree

deg(F) of F is defined by the Riemann-Roch formula deg(F) := x(F) 4- r(g 1). If F
is a torsion free sheaf on X, set Sing(F) := {P e X : F is not locally free at P] = {P

Sing(X) : F is not locally free at X}.

(4.2) Let C be an integral projective curve whose only singularities are ordinary nodes

and ordinary cusps. Let F be a rank 1 torsion free sheaf on C. Set S := Sing(F) =
{P G C : F is not locally free at P}. Hence by 4.1 for every P e Sing(F) near P the

sheaf F is formally equivalent to the maximal ideal of OC,P- Set 5 := card(S). Let

TT : Y > C be the partial normalization of C in which we normalize only the points

of S. We have pa (C) = pa (Y) + 8. Set L := 7T*(F)/Tors(jr*(F)). By 4.1 we have

L Pic(C), F = ;r*(L) and deg(F) = deg(L) + S. Let M(C; x, S) be the set of all rank 1

torsion free sheaves, G, on C with deg(G) = x and Sing(G) = S. Now we will use the

following observation.

Remark 4.3. Let C be an integral projective curve whose only singularities are ordinary
nodes and ordinary cusps. Fix 5 C Sing(C)andlet7r : Y - C be the partial normalization

of C in which we normalize only the points of S. Pic(F) is a g -dimensional algebraic

group, q : pa (C) card(S) = pa (Y), which is an extension of an abelian variety of
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dimension pa (C) card(Sing(C)) by a connected affine group G; G is the product of

some copies of the additive group (the number of copies being the number of cusps of 7,

i.e. of the cusps in Sing(C)\S) and some copies of the multiplicative group (the number

of copies being the number of nodes of Y). In particular Pic(F) is an irreducible q-

dimensional variety. Hence for every integer .x the set M(C\ x, S) has a natural structure of

g -dimensional irreducible algebraic variety. Hence we are allowed to consider the general

element of M(C; *, S).

Take another rank 1 torsion free sheaf G with 5 = Sing(G). Set M := jr*(G)/Tors(7T*

(G)). HenceG = ;r*(M)anddeg(G) = deg(M)+<5. By(4.1)wehaveF(g>G/Tors(F<g>G)
= jr*(L M). Since #(C, F) ~ HQ

(Y, L), #(C, G) ~ HQ
(Y, M) and H(Y, L M)

= #(C, n*(L <8> M)), the linear maps ^L,M and ULM^ nave kernel and cokernel with

the same dimension. In particular AIL.M is surjective (resp. injective) if and only ifai,Mj
is surjective (resp. injective). Hence by Theorem 1.3 for the integer q := g 8 we obtain

the following result.

PROPOSITION 4.4

Let C be an integral projective curve whose only singularities are ordinary nodes. Fix a

set S C Sing(C) and set g := pa (C) and 8 := card(S). Let n : Y -> C be the partial

normalization ofC in which we normalize only the points ofS. Fix integers a, b with a > g

and b > g. Then for general element jr*(L) 6 M(C\ a, S) and n*(M) M (C; b, S) the

map CL,M,TT has maximal rank.

Remark 4.5. Let C be an integral projective curve whose only singularities are ordinary

nodes or ordinary cusps. Set g := pa (C). Fix S c Sing(C) and set s := card(S). Let

TT : Y ~> C be the partial normalization of C in which we normalize the set S. For every

L e Pic(C) we have jr^L) M(C; x, S) with* = deg(L)+s = deg(L)+/?fl (C)- />fl (F)

and /i(F, L) = /i(C, jr*(L)), /z
!

(F, L) = /^(C, jr*(L)). Hence taking a general L e

Pic*~
5
(7) we obtain that for every integer x > g 1 a general F M (C; jc, 5) has

/i^C, F) = 0, i.e. A(C, F) - deg(F) + 1 - g.

(4.6) Let C be an integral projective curve whose only singularities are ordinary nodes

and ordinary cusps. Let F and G be rank 1 torsion free sheaves on C with Sing(F) n

Sing(G) = 0. This condition is equivalent to the torsion freeness of F G. We have

deg(F G) = deg(F) 4- deg(G) and Sing(F G) = Sing(F) U Sing(G). Since F G
has no torsion, here we will consider the usual multiplication map /XF,G For the injectivity

of /^F,G it is usually not restrictive to assume F spanned (otherwise we reduce to the study
of the subsheaf F' of F spanned by #(C, F), although Smg(F

x

) ^ Sing(F) in general),

Usually we will consider a range in which F (g) G is spanned and hence to obtain the

surjectivity of IJLF,G it is necessary to assume that F and G are spanned.

(4.7) Let C be an integral projective curve whose only singularities are ordinary nodes and

ordinary cusps. Let F be a rank 1 spanned torsion free sheaf on C and n : Y -> C the

partial normalization of C in which we normalize exactly the points of Sing(F). Set L :=

;r*(F)/Tors(7r*(F)). By 4.1 we have L G Pic(C), F = ;r*(L) and deg(F) = deg(L) + 8

and /*(F, L) = /z(C, F). Since F is spanned, jr*(L) is spanned and hence L is spanned.

Remark 4.8. Let U be a quasi-projective one-dimensional scheme with a unique singular

point, P, which is either an ordinary node or an ordinary cusp. Let F and G be rank 1

*orsion free sheaves on U such that F is not locally free at P, while G is locally free at
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P, i.e. with G 6 Pic(U). Let K/> be the skyscraper sheaf on U supported by P and with

length /. By the last part of (4.1) there exist rank 1 torsion free sheaves F 7

,
F"', G 1

', G" on

U with F 7 C F c F", G 7 C G C G", F/F
7

F"/F = G/G' = G 77

/G
7 = KP and

such that F' and F" are locally free, while G' and G" are not locally free at P.

Remark 4.9. Let C be an integral projective curve whose only singularities are ordi-

nary nodes and ordinary cusps. Take S c Sing(C) and any spanned R e Pic(C) with

h l

(C,R) = 0. By 4.8 we obtain the existence of F e M(C; jc, S),x = deg(/?) + card(S),

such that /? is a subsheaf of F and F/R = O$. Since Os is a skyscraper sheaf and

h l

(C, R) = 0, we obtain A 1

(C\F) = 0. Hence A(C, F) = A(C, fl) + card(S). Since R
is spanned, this implies the spannedness of F.

PROPOSITION 4. 10

Fix non-negative integers g, q, s, s
1

', a, & vwY/z g > s + s
7

4- <?, <3 >: g + s,b > g -{- s and

(a-\-l g s)(b + l g s
f

)
> a -\-b-\- 1 g s s'. Let C be a general integral nodal

curve with pa (C) = g and normalization ofgenus q. Fix S c Sing(C) and S f C Sing(C)
with card(S) = s, card(S

7

)
= s' and S H S

7 = 0. Thenfor a general F e M(C; a, 5) and

a general G e M (C; fr, S
7

) the multiplication map fJip,G is surjective.

Proof. By Remark 4.9 for general F and G we have h l

(C, F) = ft
1

(C, G) = h l

(C, F (g)

G) = 0. Take general L e Pic(C) and M e Pic(C). By 1.3 and the assumptions on

g, a, b, s and s
f

the linear map HL,M is surjective. Take as Ff

(resp. G
1

) any element of

M(C\ a, S) (resp.M (C; 6, 5') containing L (resp. M) and with F'/ = Os (resp. G
r

/M =
Os) (Remark 4.8). By Remark 4.9 we have h l

(C, F') = A 1 ^, G ;

)
= 0, 7z(C, F

;

)
=

A(C, L) + J, A(C, GO = A(C, M) + j' and both F 1

and G' are spanned. See L M
as a subsheaf of F' (g) G 7

with F' (g) G'/ Af = Osus'- Since both ^ x

and C1
' ^e

spanned Im^f^G') spans F'^G'. Hence dim(Im^/r/^O) > dim^m^z^M))^^-!-^
7 =

a + b s s
f + 1 g + s -i- s' = A(C, F 7

GO- Hence AI/T',G' is surjective and we
conclude by semicontinuity.

PROPOSITION4.il

Fix non-negative integers g, q, s, s
f

, a, b with g > s + s' + q, a > g, b > g-f and

(a -f / g + s)(b + 1 g + s') <a-f-i> + / g + 5' + 5
/

. Lf C be a general integral nodal

curve with pa (C) = g and normalization ofgenus q. Fix S C Sing(C) and S
f C Sing(C)

wiYA card(5') = j, card(S') = s' and S H 5X = 0. Thenfor a general F e M(C; a, S)

a general G M(C\ b, S') the multiplication map IAF,G is infective.

Proof. Since (<*+/-# + j)(i + / - g -f .y

7

') <^ + Z? + /-
(?-l-54-^

/

, Theorem 1.3

shows that for a general L e Pica+s (C) and a general M e Pic^"
1

"5
(C) the multiplication

map HL,M is injective. By Remark 4.9 there is F 7

e Af(C; a, 5) and G 7 e M(C\ b, 5
7

)

with F 7 C L, G 7 C M, L/F
7 = O,s and M/G 7 = O$' . Since F 7

is a subsheaf of L and G 7

is a subsheaf of M the map i^p f

,G
f is injective. Since h^(C, F

f G 7

)
= 0, we conclude

using semicontinuity.

There is a geometrically important case in which iterations of the multiplication maps do

occur. Let X be a smooth projective curve of genus q and L e Pic
k
(X) with h(X, L) = 2

and L spanned. The ordered sequence of integers {fe(X, L
r

)}r>o uniquely determines

the so-called scrollar invariants of the pencil L (see e.g. [12], 2). If 2k < q and X is a

general &-gonal curve of genus q we have A(X, L') = f + lifO<f< [#/(&
-

1)],
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while fe(X, L0 = M + 1 - q (i.e. A^X, L r

)
= 0) if t > [q/(k

-
1)] ([2]). Fix an

integer with 2 < a < g. The equalities A(X, L r

)
= r 4-1 if < t < a are equivalent to

the surjectivity of all multiplication maps ^L b L
with 1 < b < a. On singular curve when

L is not locally free the sheaf L <g> L has always torsion and hence it is more interesting to

consider the associated map <XL,LJ and its iterations.

PROPOSITION 4. 12

Fix integers g, q and k with g > q > 2k > 4. Let C be an integral projective curve

with pa (C) = g and whose only singularities are ordinary nodes and ordinary cusps and

f : X -> C its normalization. Assume that X is a general k-gonal curve ofgenus q and

call L its degree k pencil. For every integer t > 1 set Ft := /(L
r

). For every integer

t < [q/(k
-

1)] we have fc(C, Fr )
= t + 1 andfor every integer a < [q/(k

-
1)] the map

otFa ,F\,f is surjective.

Proposition 4. 12 follows at once from the next observation which also explain the mean-

ing of the sheaves involved in the statement of 4. 12.

Remark 4.13. By 4.2 each Ft is a rank 1 torsion free sheaf on X with deg(Fr )
=

andSing(Fr )
= Sing(C). Since A(C, Ft )

= /z(X, L0r
), the first assertion of 4. 12 follows

from [2]. If t > 2 we have Ft
= Ft-i Fi/Tors(Fr_i FI) = Ff

r

/Tors(Ff
r

) (4.1 and

induction on t). Hence we obtain the last assertion of 4.12 from the first assertion of 4.12.
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Abstract. We give some conditions under which the periods of a self map of an

algebraic variety are bounded.

Keyword. Periodic points.

Let X be an algebraic variety over a field K and let / : X -> X be a morphism. A point

P in X(K) is /-periodic if fl

(P) = P for some n > 0, and the smallest such n is called

the period of P. We shall prove that if X and / satisfy certain hypotheses, then the set of

possible periods is finite.

Our results may be viewed as an analogue of the finiteness of the torsion of abelian

varieties over finitely generated fields. It is then natural to ask for an analogue of the

full Mordell-Weil theorem. We believe that the following conjecture is the appropriate

generalization.

Conjecture 1. Let X be a proper algebraic variety over a finitely generated field K of

characteristic zero and / : X -> X a morphism. Suppose there exists a subset 5 of X(K)
which is Zariski dense in X and such that / induces a bijection of 5 onto itself. Then / is

an automorphism.

This can be easily checked for X = Pn or X an abelian variety using heights and the

Mordell-Weil theorem respectively.

1. Finitely generated fields

Theorem 1. Let X be a proper variety over afield K which is finitely generated over the

primefield and let f : X - X be a morphism.

(i) Ifchar(K) = then the set ofperiods of allf-periodic points in X(K) is finite.

(ii) If char(K) = p ^ then the prime to p parts of the set ofperiods is finite i.e. there

exists n > such that all the fn
-periodic points in X(K) have periods which are

powers of p.

Many special cases of this result have been known for a long time, the first such being
the theorem of Northcott ([5], Theorem 3), proving the finiteness of the number of periodic

points in certain cases. We refer the reader to [4] for a more detailed list of references.

Remark. We do not know whether the periods can really be unbounded if char(J^) > 0.
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The theorem is obvious if AT is a finite field and we will reduce the general case to this

one by a specialization argument. A little thought shows, that the following proposition

suffices to prove the theorem.

PROPOSITION 1

Let R be a discrete valuation ring with quotient field K and residue field k. Let X be a

proper scheme offinite type over Spec(/?) and f : X > X an R-morphism. Assume that

the conclusions of the theorem holdfor f restricted to the special fibre, and thatfor each

n > there are only finitely many roots of unity contained in all extensions ofk ofdegree
< n. Then the same holdsfor f restricted to the generic fibre, except possibly in the case

char(^) = and char(fc) = p > 0, when the result holds modulo powers of p.

Proof. Let p = 1 if char(fc) = . The hypotheses imply that by replacing / with a suitable

power we may assume that all the /-periodic points in X(k) have period a power of p. Let

P be a /-periodic point in X(K). By replacing / by f?" , for some n which may depend on

P, we may assume that the specialization of P in X(k) (which exists since X is proper) is

a fixed point of / restricted to the special fibre. Let Z be the Zariski closure (with reduced

scheme structure) of the /-orbit of P. Z is finite over Spec(P) with a unique closed point,

hence is equal to Spec(A) where A is a finite, local P-algebra (with rank equal to the period
of P) which, since A is reduced, is torsion free as an P-module.

The key observation of the proof is that / restricted to Z induces an automorphism of

finite order of A (which we also denote by /): Since / preserves the orbit of P and Z is

reduced, it follows that / induces a map from Z to itself, hence an endomorphism of A.

/" is the identity on the orbit of P for some n > 0, hence /" is the identity on A /? K.

Since A is torsion free, it follows that f
n

is the identity on A as well.

Letm be the maximal ideal of A. Since Z is a closed subscheme of X, it follows that the

dimension of m/m2
is bounded independently of P. By the hypothesis on roots of unity,

we may replace / by some power, independently of P, so that the endomorphism ofm/m2

induced by / is the identity. Thus, / is a unipotent map with respect to the (exhaustive)

filtration of A induced by powers of m. This implies that the order of /, hence the period
of P, is a power of p. D

Remarks. (1) For any explicitly given example, the proof furnishes an effective method for

computing a bound for the periods. (2) In the non-proper case one can prove the following
result by the methods of this paper: Let S be a flat, separated, integral scheme of finite

type over Z, let X be a separated scheme of finite type over S and let / : X -> X be an

S-morphism. If one defines the notion of /-periodic points and periods for elements of

X(S) in the obvious way, then the set of periods is again bounded. (3) One may also ask

whether Theorem 1 itself holds without the assumption of properness, for example when
X is arbitrary but / is finite. The results of Flynn-Poonen-Schaefer [1] may be viewed as

some positive evidence, however, aside from this we do not have many other examples. If

true, this would imply the uniform boundedness of torsion of abelian varieties and other

similar conjectures.

In general the set of periodic points is of course not finite. However, one can often

use some geometric arguments to deduce finiteness of the number of periodic points from
Theorem 1 as in the following:

Lemma 1. Let X be a proper variety over afinitely generatedfield K ofcharacteristic zero

and f : X - X a morphism. Suppose that there does not exist any positive dimensional
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subvariety Y of X such that f induces an automorphism offinite order of Y. Then the

number off-periodic points in X(K) is finite.

Proof. Theorem 1 implies that / induces an automorphism of finite order on the closure

of the set of /-periodic points in X (K). D
The following gives a useful method for checking the hypothesis of the previous lemma.

-Lemma 2. Let X be a projective variety over afield K and f : X - X a morphism.

Suppose there exists a line bundle C on X such that f*(L) L~ l

is ample. Then there is

no positive dimensional subvariety YofX such that f induces an automorphism offinite
order of Y.

Proof. By replacing X by f
n
(X) for some large n, we may assume that / is a finite

morphism. Suppose there exists a K as above and assume that fm \Y is the identity of Y.

Then

f
m
(L) >

By assumption /*(L) (g) L l

is ample so f
m
(L) L *, being a tensor product of am-

ple bundles, is also ample. But f
m
(L) L~ l

\y is trivial, so it follows that Y must be

0-dimensional. D

In case C is also ample, finiteness can also be proved using heights, see for example

[2]. One advantage of our method is that it applies also when / is an automorphism, in

which case an ample C as above can never exist. Using this, one can for example extend

the finiteness results of Silverman [6] to apply to all automorphisms of infinite order of

projective algebraic surfaces X with H l

(X, O%) = = HQ
(X, TX) and the Picard rank

p=2.
The following proposition gives a simple class of examples for which boundedness of

the periods holds for non-proper varieties.

PROPOSITION 2

Let K be a finitely generated extension ofQ and let G be a linear algebraic group over K.

Then there exists an integer M(G) such thatfor all varieties X over K with a G action and

for all g in G(K), the set ofperiods ofg-periodic points in X is bounded above by M(G).

Proof. The G orbit of any x X (K) is isomorphic to G/H , where H is a closed subgroup
of G, hence we may restrict ourselves to the case where X = G/H. By Weil restriction

of scalars we may assume that K Q(t\ , ^, . . .
,
tr ) for some r > 0, and since any linear

algebraic group can be embedded in GL n , we may also assume that G = GL n for some

integer n .

Assume K = Q. Let GZ = GLn ^z and let HZ be the Zariski closure of H in GZ- We
may also form the quotient Gz/Hz on which there is a natural action of GZ extending the

action of G on G/H. Let x be a ^-periodic point of G/H with period equal to /. There

exists a finite set of primes S such that g extends to an element of Gz(R) and x extends to

an element of GZ///Z(#), where R is the ring of S-integers. For a prime number p not in

S, let Gp ,
H
p , Gp/Hp, gp , xp denote the reductions mod p of the corresponding objects

defined above and let lp denote the gp-period of xp . It is clear that lp divides the order of
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Gp (fp)
= GLn ( p ) for all p S and for p 0, lp

= /. By Lemma 1 below, it follows

that / < M for some constant M independent of H, g and x.

Now let K = Q(/i, *2, */) with r > 0. We repeat the arguments of the above

paragraph, replacing Z with Q[r i , ti, . . . , rr ]. Since the rational points are dense in Spec(Q

[fj. , *2, *r]) ^ follows that the same constant M bounds the periods. D

Lemma 3. For each positive integer n, there exists an integerMn such that ifI is any integer

which divides \GLn ( p)\for all p Q, then I < Mn .

Proof. Let TV be an integer such that for all a > N, (Z/aZ)* contains an element of order

greater than n. Let q be a prime and assume that q
b divides \GLn ( p )\

= p
n (n~^l2 (p

n -

l)(p
n~ l -

1)
- - -

(p
-

1) for all p 0. If #
c > #, then by Dirichlet's theorem on

primes in arithmetic progressions there exist infinitely many primes p such that the order

of p mod q
c

is greater than n. This bounds the powers of q that can divide each of

p
n -

1, p
n~ l

1, ...,/?- 1 and hence bounds b. It is clear that if q > N then b = 0, so

we obtain a bound for / by multiplying together the bounds for each prime q < TV. O

Remark. Note that Proposition 2 applies to all automorphisms of affine space, where in

many cases finiteness of the number of periodic points is also known; see for example the

paper [3] of Marcello.

2. /7-Adic fields

Proposition 1 shows that one also has boundedness ofperiods for p-adic fields, up to powers
of /?, as long as the variety and the morphism extend to the ring of integers. We now show
that in fact we can bound the extra powers of p.

Theorem 2. Let O be the ring of integers in K, a finite extension ofQp , and let X be a

proper scheme offinite type over Spec(O). Then there exist a constant M > such that

for any O-morphism f : X -^ X, the periods of the f-periodic points ofX(K) are all

less than M.

If X is any variety over a finite field k then it is clear that a statement analogous to the

theorem holds for X(k): since this is a finite set the periods are bounded above by \X(k)\,

and hence are bounded independently of the morphism. To bound the powers of p that

occur, one sees from the proof of Proposition 1 that it is enough to prove the following:

PROPOSITION 3

Let O be the ring of integers in K, a discrete valuation ring of characteristic zero with

residuefield k ofcharacteristic p. Let (A, rri) be a local sub-O-algebra ofOP" ofrank p
n

which is preserved by the automorphism a given by cyclic permutation of the coordinates.

Furthermore, assume that or acts trivially on m/m2
. Then n < r = v(p) if p > 2 and

n<rifp = 2, where v is the normalized valuation on K.

Proof. Assume that n > r if p > 2 and n > r if p = 2. Since a acts trivially on m/m2
,
it

follows that a?* acts trivially on m/mt+2 for all t > 0. Thus, by replacing A by a quotient

algebra corresponding to the Zariski closure in Spec(A) of the aP
n ~~

l

orbit of any O valued

point, we obtain a local rank p subalgebra of OP which is stable under (the new) a and
such that a acts trivially on m/mr+l (m/mr+2 if p = 2).
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For a in A we denote by v(a) the minimum of the valuations of the coordinates. Let

U(m) = {a 6 m\v(ai) ^ v(dj) for some/, j]

and let

P(m) = {a<E U(m)\v(a) < v(fe)forallfc /(m)}.

Suppose v(a) = 1 for a P(m). Since P(m) C t/(ra), it follows that v(cr
s
(a)

-
a) = I

for some s, which in turn implies that a s
(a)

~ a m2
. This is a contradiction, hence

v(fl) > 1 for all a P(m). Also, one easily sees that any element of m can be written as

a = x + b with :c n O and b e U(m) U {0}, where n in O is a uniformizing parameter.

Now let a e P(m) and consider a (a) a. Letting r = r+lif/?>2 and f = r + 2 if

p = 2, we see that

7= 1

with xij
n - O and fyj e U(m) U {0}. Expanding the products and using the fact that

v(fefj)
> 1, we see that

a (a) -a = mod TT
v^

withx, z^67r
?
~

1
-(9 and^/jfc G P(m). Further, using the fact that a is in t/(m), one sees that

= v(cr(a) a) = v(a). Thus, we get

= - a = -
a) = p x

Now the <4's are also in P(m\ so we have

o-(4) -dk
= wk mod jr

1

with u;^ in TT
? O. This implies that

mod 7r
v <fl>+r

. (1)

<-

(4) = / 4

Substituting this in eq. (1) (using that the z^'s are in n O) we get

= mod "<">".

We have v(jc) = v(c) = v(^) = ^(^), v(zjk)
> t 1 and v(p) = r. By the choice of

t it follows that the only term in the above equation with valuation less than or equal to

v(a) + r is p x. This is a contradiction since t > r. D

Remark. The assumption of properness is used only to guarantee the existence of spe-

cializations. If we consider an arbitrary separated scheme X of finite type over Spec(O),
then we obtain boundedness of the periods for the set of periodic points in X(O). One
can also construct examples for which the set of periods of the periodic points in X(K) is

unbounded.
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Abstract In this paper we consider some Anderson type models, with free parts

having long range tails and with the random perturbations decaying at different rates

in different directions and prove that there is a.c. spectrum in the model which is

pure. In addition, we show that there is pure point spectrum outside some interval.

Our models include potentials decaying in all directions in which case absence of

singular continuous spectrum is also shown.

Keywords. Anderson model; absolutely continuous spectrum; mobility edge;

decaying randomness.

L. Introduction

fhere have been but few models in higher dimensional random operators of the Anderson

nodel type in which presence of absolutely continuous spectrum is exhibited. We present

lere one family of models with such behaviour.

The results here extend those of Krishna [10] and part of those in Kirsch-Krishna-

Dbermeit [9], Krishna-Obermeit [12] while making use of wave operators to show the

existence of absolutely continuous spectrum, the results of Jaksic-Last [14] to show its

>urity and those of Aizenman [1] for exhibiting pure point spectrum.

The new results in this paper allow for long range free parts, have models with com-

>act spectrum (in dimensions 2 and more) which contains both absolutely continuous and

lense pure point spectrum. Our models include the independent randomness on a surface

considered by Jaksic-Molchanov [15, 16] and Jaksic-Last [14, 13], while allowing for the

andomness to extend into the bulk of the material.

The literature on the scattering theoretic and commutator methods for discrete Laplacian
ncludes those of Boutet de Monvel-Sahbani [4, 5] who study deterministic operators on

he lattice.

The scattering theoretic method that we use is applicable even when the free operator is

lot the discrete Laplacian but has long range off diagonal parts. We impose conditions on

he free part in terms of the structure it has in its spectral representation.

I. Main results

Fhe models we consider in this paper are related to the discrete Laplacian (Aw)(n) =

|i|=i
u (n + on ^

2
(^

v
)- We denote by T

v
the v dimensional torus Rv

/27rZ
v and a the

invariant probability measure on it. We use the coordinate chart {# : # = (9\ 9
. . .

,
#v )> <

3i < 2n] and the representation a = nr=i(d#//2jr) on the torus for calculations
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below without further explanation. Then A is unitarily equivalent to multiplication by

22^=1 cos(0/) acting on L 2
(T

v
,o-), written in the above coordinates. We consider a

bounded self adjoint operator HQ which commutes with A and which is given by, on

L2
(T

U
, dcr), an operator of multiplication by a function /z(#) there with h satisfying the

assumptions below.

Hypothesis 2.1. Let h be a real valued C3H
"3
(T

U
) function satisfying

1. h is separable, i.e. h(&) = ^=1 ^y(0/)-

2. The sets

are finite for each j = 1
,

. . .
,
v. Let

C(hj) = T x . . . x T x C(hj) x T . . . x T,

where the set C(/zy) occurs in the y'th position. We denote by

C =
U]f=1 C(A 7-)

and note that this is a closed set of measure zero in "P.

We consider random perturbations of bounded self adjoint operators coming from func-

tions as in the above hypothesis. We assume the following on the distribution of the

randomness.

Hypothesis 2.2. Let //, be a positive probability measure on R satisfying:

1. \L has finite variance a2 = f x2
d/z(x).

2. /x is absolutely continuous.

Finally we consider some sequences of numbers an indexed by the lattice Zv
or Z+

+1 =
Z+ x Zv and assume the following on them.

Hypothesis 2.3. (1) an is a bounded sequence of non-negative numbers indexed by Zv

which is non-zero on an infinite subset of Zv
.

(2)Letg(J?) =0nX{nZy
:|n / |>*, vi<i<v). Then e L 1

^!, oo)).

(10 an is a bounded sequence of non-negative numbers which are non-zero on an infinite

subset of
Zl{.

+1
.

(20

Remark 1. In the case of Zv
our hypothesis on the sequence an allows for the following

type of sequences

an = (l + |n|)
a

,
a < -1.

an = (1 -h |f|)
a

,
for some z, a < 1.

= riLid + |n,-|)" , a,-
< with E / < -1-
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Therefore in the theorems, on the existence of absolutely continuous spectrum, we can

allow the potentials to be stationary along all but one direction in dimensions v > 2.

2. In the case of Z+
+1

,
we can allow the sequence to be of the type

an = 0, n\ > N and an = 1, for n\ < N, for some Q < N < oo.

= [DUO + I"/ 1)"
1

'. /
< with ELi /

< -1-

Thus allowing for models with randomness on a the boundary of a half space.

For the purposes of determining the spectra of the models we are going to consider here

in this paper we recall a definition given in Kirsch-Krishna-Obermeit [9], namely,

DEFINITION 2.4

Let an be a non-negative sequence, indexed by Z
y
or Z^

+1
. Let /x be a positive probability

measure on IR. Then the a-supp(/x) is defined as

1. In the case of Z u
,

a-supp(/z) = x : V<(an
l

(x - *, * + e)) = oo, V 6 > 1 .

2. InthecaseofZ^
1

,

a-supp(^) = lj.(a-
L (x-,x + )) = oo

9 Ve>0
nzkl^

1

Remark. \. In the sums occurring in the above definition we set fJi(an
1

(x e, x + e)) = 0,

for those n for which an = 0. This notation is to allow for sequences an that are everywhere
zero except on an axis for example.
2. We note that when an is a constant sequence an = X ^ 0,

a-supp(/x) = A supp(/x).

3. When an converge to zero as \n\ goes to oo, the a-supp(/x) is trivial if fju has compact

support. It could be trivial even for some class of JJL of infinite support depending upon the

sequence an .

4. If an is bounded below by a positive number on an infinite subset along the directions

of the axes in Zu
(respectively ZlJ.

+1
), then the a-supp(/x) could be non-trivial even for

compactly supported //,.

We consider the operator (for u G 2
(Z
+

)),

i(n + l)+u(n -
1), n > 0,

Below we use either A+ or its extension by A+ (8) / to
2
(Z!j_

+1
) by the same symbol, the

correct operator is understood from the context. Given a real valued continuous function on

the torus Tv
, we consider the bounded self adjoint operators HQ on t2 (Z

v
) which is unitarily
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equivalent to multiplication by h on 2
(T

y
, a). We also denote the extension / <g) HQ of

HQ to -

2
(Z+

+1
) by the symbol HQ and L2

(T
y

, a) as simply L
2
(T

y
) in the sequel.

We then consider the random operators

on
2
(Z

y
),

#! = #0+ + V", yw = ^^w
(/2)Pn ,//o+ = A+ + //o, on *(Z;

+
), (1)

/

where Pn is the orthogonal projection onto the one dimensional subspace generated by &n

when [Sn ] is the standard basis for 1
2
(I) (/ = Zu

or Z+
+1

). {(f(n)} are independent and

identically distributed real valued random variables with distribution //. The operator HQ
is some bounded self adjoint operator to be specified in the theorems later.

Then our main theorems are the following. First we state a general theorem on the

spectrum of HQ in such models. For this we consider the operator HQ to denote a bounded

self adjoint operator on
2
(Z

y
) coming from a function h satisfying the Hypothesis 2.1 and

A+ defined as before.

Theorem 2.5. Let HQ and HQ+ be the operators defined as in eq. ( 1 ), comingfromfunctions
h satisfying the hypothesis 2.1(1)(2). Let

V

sup hi(6), _ =y inf hj(6).

Then, the spectra ofboth HQ and HQ+ are purely absolutely continuous and

= [_,+], and a(HQ+ )
= [-2 + JEL, 2 + +].

Part of the essential spectra of the operators /z
w and H are determined via Weyl se-

quences constructed from rank one perturbations of the free operators HQ and //Q+ respec-

tively. The proof of this theorem is done essentially on the line of the proof of Theorerr

2.4 in [9].

Theorem 2.6. Let the indexing set I be Zy or Z^
+1 and consider the operator HQ coming

from afunction h satisfying the conditions ofhypothesis 2.1(1) in the case of I = Zv am
consider the associated HQ+ in the case of I = Z+

+1
. Suppose q^(n), n e I are Li.c

random variables with the distribution JJL satisfying the hypothesis 2.2(1). Let an be c

sequence indexed by I satisfying the hypothesis 2.3(1) (or (I
7

) as the case may be). Assum*

also that 6 a-supp()a), then

a(HQ + A.Po) C cress(#
w

) almost every a>

A. e a-supp(/x)

and

[J <r(/fo+ + APo) C creSs(Hp almost every to.

k e a-supp(/i)

Remark 1. When JJL has compact support and an goes to zero at infinity, or when /z ha

infinite support but an has appropriate decay at infinity, there is no essential spectrur
outside that of HQ for H^ almost every a). So the point of this theorem is to show that ther

is essential spectrum outside that of HQ based on the properties of the pairs ({an }, /z).
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2. In Kirsch-Krishna-Obermeit [9] some examples of random potentials which have

essential spectrum outside a (Ho) even when an goes to zero at oo were given. The examples

presented there had a-supp(/z) as a half axis or the whole axis, this is because of the decay
of the sequences an . Here however, since we allow for an to be constant along some

directions, our examples include cases where the spectra of H* are compact with some

essential spectrum outside CT(HQ).

We let E be as in Theorem 2.5.. We also set Ji^.n to be the cyclic subspace generated

by &n and H">.

Theorem 2.7. Consider a bounded self adjoint operator HQ coming from a function h

satisfying the conditions of hypothesis 2.1(1), (2). Suppose q^ are Lid random variables

with the distribution /JL satisfying the hypothesis 2.2(1).

1. Let I = Zy andan be a sequence satisfying the hypothesis 2.3(1), (2). Then,

aac (ff
a}

) D [-, +] almost every a>.

Further when p. satisfies the hypothesis 2.3(2), an = on Z y
, 7ia> >w , Ha),m not mutually

orthogonalfor any n, m in Z y
for almost all a) and E as in theorem 2.5., we also have

C R\(E_, +) almost every co.

2. Let I = Z^
+ and an be a sequence satisfying the hypothesis 2.3(10, (2')- Then,

<?ac(H+) D [-2 + _, 2 + +] almost every CD.

Further when IJL satisfies the hypothesis 2.3(2), an ^Qona subset ofl^
1

that contains

the surface {(0, h) : n Z y
}, the subspaces 7iw,, Ww,m are not mutually orthogonal

almost every CDform, n in {(0, k) : k e Z v
}, we also have

OjC/O c R \ (~2, +_, 2 H- +) a/matf every o>.

Remark 1. When
/u, is absolutely continuous the theorem says that the spectrum of H

in (_, +) (respectively in (-2 + E_, 2 + +) for the Z+"
1

"
1

case) is purely absolutely

continuous, this is a consequence of a remarkable theorem of Jaksic-Last [14] who showed

that in such models with independent randomness, with the randomness non-zero a.e. on a

sufficiently big set (H$ can be any bounded self adjoint operator in their theorem, provided
the set of points where the randomness lives gives a cyclic family for the operators H),
whenever there is an interval of a.c. spectrum it is pure almost every a> . Their proof is based

on considering spectral measures associated with rank one perturbations and comparing
the spectral measures of different vectors (which give rise to the rank one perturbations).

2. Our theorem extends the models of surface randomness considered by Jaksic-Last

[13], to allow for thick surfaces where the randomness is located in a strip beyond the

surface into the bulk of the material. Such models (which are obtained by taking an =
0, n\ > N, an = 1, n\ < TV for some finite N) have purely absolutely continuous

spectrum in ( 2v 2, 2v -f 2). The purity of the a.c. spectrum is again a consequence of

a theorem of Jaksic-Last [14].

Finally we have the following theorem on the purity of a part of the pure point spectrum.
We denote

e+ = sup<r(#o+), - = inf<r (#b+) and e$ = max(|e_|, \e+\). (2)
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Theorem 2.8. Consider a bounded self adjoint operator HQ coming from a function h

satisfying the conditions of'hypothesis 2.1. Let I be the indexing set and suppose q^ty), n

/ are Lid random variables with the distribution fj, satisfying the hypothesis 2.2(1), (2).

Assumefurther that the density f(x) = d/x(jc)/dx isbounded. Seta\ = f djj,(x)\x\. Then,

1. Letl iy and let an be a sequence satisfying the hypothesis 2.3(1), (2). Then there is

a critical energy E(JJL) > EQ depending upon the measure /z such that

(TcCH^) C (-(M)> (M)) almost every a).

2. Let I = Z+
+1 and let an be a sequence satisfying the hypothesis 2.3(10, (20- Then

there is a critical energy e(ii) > e$ such that

+) C (e(iJi),e(fji)) almost every a>.

Remark 1. The E(^) and efa), while finite may fall outside the spectra of the operators

H and H+, for some pairs (an , JJL) when /z is of compact support, so for such pairs this

theorem is vacuous. However since the numbers E(fjC) (respectively e(^)) depend only
on the operators HQ (respectively HQ+) and the measure \JL we can still choose sequences
an and JJL of large support such that the theorem is non-trivial for such cases. Of course

for fji of infinite support, the theorem says that there is always a region where pure point

spectrum is present.

2. Since we allow for potentials with an not vanishing at oo in all directions, we could not

make use ofthe technique ofAizenman-Molchanov [3], for exhibiting pure point spectrum.
3. When //, has compact support, comparing the smallness of a moment near the edges of

support one exhibits pure point spectrum there by using the Lemma 5. 1 proved by Aizenman

[1], comparing the decay rate in energy of the sums of low powers of the integral kernels of

the free operators with some uniform bounds of low moments of the measure JJL weighted
with singular but integrable factors occurring to the same power.
As in Kirsch-Krishna-Obermeit [9], Jaksic-Last [14] we also have examples of cases

when there is pure a.c. spectrum in an interval and pure point spectrum outside. The part
about a.c. spectrum follows as a corollary of theorem 2.6., while the pure point part is

proven as in [9] (following the proof of their theorem 2.3, where A can be replaced by
any bounded self adjoint operator on l

2
(Z

d
) and work through the details, as is done in

Krishna-Obermeit [12], Lemma 2.1). Further when HQ = A, the Jaksic-Last condition

on the mutual non-orthogonality of the subspaces H^n, H^^m is valid since given any
n, m we can find a k so that (5n , A^<5m >

> (reason, take k = \n
- m\ = ^=1 |n,- m,- 1,

then

with Ti denoting the bilateral shift in the zth direction and c a strictly positive constant

coming from the multinomial expansion). We see that we can add any operator diagonal
in the basis {Bn } to A without altering the conclusion.

COROLLARY 2.9

Let an be a sequence as in Hypothesis 2.3 and
JJL as in Hypothesis 2.2. Let HO = A. Assume

further that an ^ 0, n Zv
goes to zero at oo and a-supp(/z) = R. Then we have, for

almost all co,
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)
= [-2v,2v].

3. asc (H^) = 0.

The h given in the corollary below is a smooth 27rZy
periodic function, so it satisfies

the conditions of the Hypothesis 2.1. It is also not hard to verify that, because of the term

S/=i cos (#/) occurring in its expression, the cyclic subspaces generated by the associated

HQ on any pair of [8n , 8m ] are mutually non-orthogonal.

COROLLARY 2. 10

Let an be a sequence as in Hypothesis 2.3 and IJL as in Hypothesis 2.2. Let HQ be a bounded

self adjoint operator coming from the function h given by h($) = ^=i ]QkLi cos(0/)-
Assume that an / 0, n e Z v

goes to zero at oo and a-supp(^) = R. Then we have, for

almost all CD,

1. aac(H<) = [-,+].
2.

3.

3. Proofs

In this section we present the proofs of the theorems stated in the previous section.

Proofof Theorem 2.5. The statement about the spectrum of HQ follows from the Hypothesis

2.1(1) on the function h. Each of the functions hi is a real valued continuous 2n periodic

function, hence has compact range. By the intermediate value theorem, we see that the

range of (0, 2n) under A/ is also an interval. Since the spectrum of 77o is the algebraic

sum of the intervals 7,-,
- if HQJ denotes the operator associated with hj on 2

(T), then

7/o = T/oi 7 + 7 77o2 1 H h 7 <8> 77ov hence this fact - the statement follows.

We note that -

2
(Z
+

) is unitarily equivalent to the Hardy space H
2
(T) of functions on T

whose negative Fourier coefficients vanish. Under this unitary transformation, the operator

A+ is unitarily equivalent to the operator of multiplication by the function 2 cos(#) acting on

H2
(T), which can be seen by the definitions of A+, IH]

2
(T) and the unitary isomorphism U

that takes H2
(I) to 1

2
(I+) (explicitly this is 2n(Uf)(n) = fj*" d<9 e~ine

f(0)). Therefore

the spectrum ofA+ is [2, 2] and is purely absolutely continuous (there are no eigenvalues).

Therefore the spectrum of 7/o+ is also purely a.c. and equals cr (A+ ) + [_, +], with E
as above. Hence the theorem follows.

Proof of Theorem 2.6. We prove the theorem for the case H the proof for the case 77+

proceeds along essentially the same lines and we give a sketch of the proof for that case.

We consider any A, a-supp (//,), which means that we have

/i(a~
1

(A.-6,A,H-6)) = oo, V& G Z+ ,& ^ 0, and all > 0.

v+l

We consider the distance function \n\
= max|n;|, i = 1, . . .

,
v on Zu

. We consider the

events, with > 0, m e ZV
,

Ak,m ,

= {& : cimq^(m} &-, A. + ), \an q*(n)\ <
,
VO < \n

- m\ < * - 1}
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(/i)| < 6, VO <
|/z
- m\ < k - 1},

where the index w in the definition of the above sets varies in Z y
. Then each of the events

Ak,m ,

are mutually independent for fixed k and as m varies in &Zy
, since the random

variable defining them live in disjoint regions in Zy
. Similarly B^m^ is a collection of

mutually independent events for fixed k and e as m varies in &Z y
. Further these events have

a positive probability of occurrence, the probability having a lower bound given by

and

Prob(^,<) > Gu(-c 6, c O) (*~ 1)W+l
,

where we have taken c = inf^g^v a~
l > 0. The definition of c implies that

(-c , c 6) C ^(-e, ), V m e Zy
.

Therefore the assumption that A. a-supp(^t) implies that Vk e Z+ \ {0},

and similarly

]T Prob(ftfm . )
= oo, V& Z+ \ {0}.

Then Borel-Cantelli lemma implies that for all 6 > 0, (setting R = (X 6, A. + 6) and

S = (-6, 6) and A*(m) = [n Zv
:

< \n
- m| < k - 1}), the events

^ : ^^(^) * fl ^
W

(n ) e S
,
Vn e Ak (m) \ {m}}

me/cZy

#/=oo

have full measure. Therefore the event

= n

has full measure, being a countable intersection of sets of full measure. Similarly the sets

{a>:an q>(n)eS , Vrc

#/=oo

have full measure. Therefore the events

UeZ+\{0}

have full measure.

We take
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and note that it has full measure. We use this set for further analysis. We denote H(k)

HQ -h IPo- Then suppose E e a(H (X)), then there is a Weyl sequence ^/ of compact

support, V/ t
2
(T) such that

|| V/||
= 1 and

y.

Suppose the support of V/7 is contained in a cube of side r(/), centered at 0. Denote by

AjkCx) a cube of side /: centered at x in Z y
. We denote Vw (n) = anq^(n), for ease of

writing. We then find cubes A r (/)(a/) centered at the points a/ such that

, V* e

Now consider $/(*) = V"/U ~
#/) Then by the translation invariance of //o we have for

any a> 2o>

, + 0,Li
Clearly since fy is just a translate of i/r/, ||0/ 1|

= 1 for each /. We now have to show that the

sequence <pi goes to zero weakly. This is ensured by taking successively a^ large so that

UjlJsuppO^/)
H A r (*)(ajk)

= 0, and supp(^) C A r (*)(ote).

This is always possible for each a) in QQ by its definition, thus showing that the point E is

in the spectrum of H
, concluding the proof of the theorem.

Proofof Theorem 2.7. We first consider the part (1) of the theorem and address the proof
of (2) later. The set C below is as in Hypothesis 2.1. We consider the set

V =
{(j> e

2
(Z

U
) : supp(0) C Ty

\ C and smooth}, (4)

where we denote by <p the function in -

2
(T

V
) obtained by taking the Fourier series of (/).

Since the set C is of measure zero, such functions form a dense subset of 2
(Z

V
). We also

note that the set C is closed in Tu
, thus its complement is open (in fact it is a finite union of

open rectangles) and each in V has compact support in Tv
\ C.

We first consider the case when JJL has compact support. The general case is addressed

at the end of the proof.

If we show that the sequence W(t,cx)) = QltHO)Q~ltHo is strongly Cauchy for any a> 9 then

standard scattering theory implies that o-flC (J
!/ 6>

) D crac (Ho) for that co. We will show below

this Cauchy property for a set co of full measure.

To this end we consider the quantity

E{||(W(f,a))-W(r,a)))0||}, 0eD (5)

and show that this quantity goes to zero as t and r go to +00. Then the integrand being

uniformly bounded by an integrable function ||0|| and since comes from a dense set,

Lebesgue dominated convergence theorem implies that W(t,co) is strongly Cauchy for

every a> in a set of full measure 2(/) that depends on / in
2
(Z

V
). Since

2
(Z

y
) is

separable, we take the countable dense set T>\ and consider
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which also has full measure being a countable intersection of sets of full measure. For

each a> e ^3, W(t, to) is a family of isometries such that W(t , &>)/ is a strongly Cauchy

sequence for each / e X>i, therefore this property also extends by density of T>\ to all of

12 (Z
V
) point wise in ^3. Thus it is enough to show that the quantity in (5) goes to zero as

t and r go to +00.

We have the following inequality coming out of Cauchy-Schwarz and Fubini, for an

arbitrary but fixed
(j>
e T>. In the inequality below we denote, for convenience the operator

of multiplication by the sequence an as A and in the first step we write the left hand side

as the integral of the derivative to obtain the right hand side

mW(t,a>)4>-W(r9

a))4>\\}<E\\\ f ds
I Jr

< I ds E{||VV-"%||}
Jr

/t
ds (6)

The required statement on the limit follows ifwe now show that the quantity in the integrand
of the last line is integrable in s. To do this we define the number

= mfmf{\h
f

j(0j)\
: # e supp0), # = V ). (7)

We note that since the support of
<j>

is compact in ~P \ C, hj ', j = 1, . . .
,
v (which are

continuous by assumption), have non-zero infima there, so v^ is strictly positive. Then
consider the inequalities

\\<rAF(\nj\ > v+ s/4 Vj )e'
isH

+ \\aAF(\nj\
<

v<f> s/4 for some

(8)for some

where we have used the notation that F(S) denotes the orthogonal projection (in

given by the indicator function of the set S and used the function g as in the Hypothesis
2.3(2) which is integrable in s, so the first term is integrable in s. We concentrate on the

remaining term.

\\F(\nj\
<

v0 5/4, for some j)e"
/sH

VI|. (9)

To estimate the term we go to the spectral representation of HQ and do the computation
there as follows. Since

\rij\
<

v^ s/4 for some j, we may without loss of generality
set 7 = 1 and proceed with the calculation. Let us denote the set S\(s) = (n : \n\ \

<

V(f)S/4, HJ e Z, 7 ^ 1}. In the steps below we pass to L2
(T

V
) via the Fourier series,

(where the normalized measure on Tv
is denoted by dcr (tf )).

f
JT>

1/2
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f f[
/P- 1

-

/"
->T

2)1/2

(10)

We define the function J(9, s,n\) = n\9 +sh\(0). When & is in the support of 0, we have

that 1*1(61)!
>

ity, by eq. (7). This in turn implies that when # = (0i, . . .
, P ) supp0,

= \ni + 5 &i(0i)|
> when i

<
v<f> s/4.

We use this fact and do integration by parts twice with respect to the variable 0\ to obtain

= f
JT-I

j=2

We note that the quantity

3 1

'(Oi,ni,s)

dcr(0i)

2 1 1/2

(ID

(70 (/O6

a ~

(/')
' 3 (12)

is in I2
(T

V
).

The assumptions on the lower bound on J' (when \n\ \

< v^s/4) and the boundedness

of its higher derivatives by Cs (which is straightforward to verify by the assumption on hj)

together now yield the bound

T ~ m + "

which gives the required integrability.

We proved the case (1) of the theorem assuming that JJL has compact support. The case

when
IJL has infinite support requires only a comment on the function Q~~lsHQ

</> being in

the domain on V * almost everywhere, when s is finite and for fixed e T>. Once this is

ensured the remaining calculations are the same. To see the stated domain condition we first

note that for each fixed 5, the sequence (e~~
lsH

<p) (n) decays faster than any polynomial, (in

|n|). The reason being that, by assumption, is smooth and of compact support in Tv
\ C,

10 (n) |

< \n\~
N

for any N > 0, as \n\ -> oo. On the other hand for \n m\ > ,$||/fo||, we
have

1

,- v"'"-
\
n - m \N

These two estimates together imply that

, for any N > 0.

V. (13)
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We now consider the events

An = {co: \q(n)\ > \n\
2v+ 1

}

and they satisfy the condition

Prob(An ) < oo,

by a simple application of Cauchy-Schwarz and the finiteness of the second moment

jit. Hence, by an application of Borel-Cantelli lemma, only finitely many events An occ

with full measure. Therefore on a set of full measure all but finitely many q(n) satisi

\q*(n)\ <
|/i|

2v+1
. Let the set of full measure be denoted by QI. Then for each CD e&i\

have a finite set S(co) such that e~lsH
c/)

is in the domain ofthe operator V = V^ (I PS(CO]

where PS (a) is tne orthogonal projection onto the subspace i
2
(S(co)), in view of the e

(13). Then the proof that the a.c. spectrum of the operator

H? = Ho + V?, V<w 2i D ^o

goes through as before. Since for each co fii fl 2o, H^ differs from H by a fin:

rank operator, its absolutely continuous spectrum is unaffected (by trace class theory

scattering) and the theorem is proved.

The statement on the singular part of the spectrum of H^, is a direct corollary of t

Theorem 5.2. We note firstly that since {<5n ,
n e Zv

} is an orthonormal basis for
2
(Z

V
}

is automatically a cyclic family for H for every co.

Secondly, by assumption, the subspaces H^n and H<y,m are not mutually orthogon
so the conditions of Theorem 5.2 are satisfied. Therefore, since the a.c. spectrum of /

contains the interval (E_, +) almost every CD the result follows.

(2) We now turn to the proof of part 2 of the theorem. The essential case to consic

again as in (1) is when /x has compact support, the general case goes through as befo

The proof is again similar to the one in (1), but we need to choose a dense set T)\ in 1

place of V properly.

The operator A+ is self adjoint on 2
(Z
+

) and its restriction A+i to -

2
(Z
+

\ {0})

unitarily equivalent to multiplication by 2 cos(<9) acting on the image of t2 (Z
+

\ {0}) unc

the Fourier series map. We now consider the operator

-f HO

in the place of #0+ and show the existence of the Wave operators

almost every co.

We take the set D as in eq. (4), T>i as in Lemma 3.1 and define

i T-, e , e 2 , C

We then define the minimal velocities for
</> e D+ with w^ defined as in Lemma 3.1
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inf
k

=
infinfinf{\h'j(0j)\

:

v0
=

min{iui,0, u>2,0}-

Calculating the limits, as in eq. (5)

= /"

Jr

ds IKe^^CV^ - F A+ + -A+PO + PoA+P )e~
/f//0+1

0||, (16)

where PQ is the operator po /, with /?o being the orthogonal projection onto the one

dimensional subspace spanned by the vector <$o in -

2
(Z
+

). We note that by the definition

of A+, the term PQA+ PQ is zero. The estimates proceed as in the proof of (1), after taking

averages over the randomness and taking P+. As in that proof it is sufficient to show

the integrability in s of the functions

\\aAe-
isH

W(t>\\, \\\Si }( S
| 0^-^+1011, \\\&Q)(&i\Ie-isHM 4>\\,

respectively. By the definition of X>+, any there is a finite sum of terms of the form

<pj(0\)\lsj(02,
. . .

, v+i), so it is enough to show the integrability when is just one such

product, say = 0i ^i- Therefore we show the integrability in s of the functions

H, \\\8i ){So|/

for ^ large we are done. We have

F(\ni\ >
v<i>s/4)8i

= 0, * = 0, 1 and ||crAF(|n/| > v
0ly/4, V/)ll G L^l, oo),

by the Hypothesis 2.3(2
X

) on the sequence an . Therefore it is enough to show the integra-

bility of the norms

for each y = l,...,y+l. When 7 = 2, . . .
,
v +1 , the proof is as in the previous theorem,

while for j 1, the proof is given in the Lemma 3.1 below.

The statement on the absence of singular part of the spectrum of H^-}- in (E- 2.E+ +
2), is as before a direct corollary of the Theorem 5.2, since the set of vectors [8n ,

n

(0, m), m e 2V
] is a cyclic family for H+, for almost all co and Ti^n and Ti^m are not

mutually orthogonal for almost all co when m, n are in {(0, n) : n e Zv
}, and the fact that

the a.c. spectrum of H contains the interval (2 + _, 2 H- E+) almost every ox

The lemma below is as in Jaksic-Last [13](Lemma 3.11) and the enlarging of the space
in the proof is necessary since there are no non-trivial functions in ^

2
(Z
+

) whose Fourier

series has compact support in (0, 2n) (all of them being boundary values of functions

analytic in the disk).

Lemma 3. 1. Consider the operator A+i on 2
(Z
+

). Then there is a set T>2 dense in i
2
(Z
+

)

and a number w^ such thatfor s > 1,

C|5|~, V0

with the constant C independent ofs.
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Proof. We first consider the unitary map W from HQ to a subspace S of {/ e

/(0) = 0}, given by

(W/X/i) = (17)
(
~
n) '

n < "

Then the range ofW is a closed subspace of I
2
(I.) and consists of functions

S = {/
2
(Z) : /(n) = -/(-n)}.

Under the Fourier series map this subspace goes to

so that the functions here have mean zero. Then under the map from 2
(Z"

1

"

\ {0}) to S ob-

tained by composingW and the Fourier series map, the operator AI+ goes to multiplication

by 2 cos(#). We now choose a set

and define the number

W(
f,

= inf{|2sin(6>)| : e supp(0)},

for each e T>\ . We denote by T>2 all those functions whose images under the composition
ofW and the Fourier series lies in V\ . The density of >

2 in
2
(Z
+

\ {0}) is then clear. We
shall simply denote by fa elements in T>2 whose images in T>\ is 0. Given a e T>\ and a

w we see that

f
JJ

2

<C\S\

by a simple integration by parts, done twice, using the condition that \\n\ + 2s sin(0)l >
w^s/4 in the support of 6.

Proof of Theorem 2.8. The proof of this theorem is based on a technique of Aizenman

[1]. We break up the proof into a few lemmas. First we show that the free operators HO
and #0+ have resolvent kernels .with some summability properties, for energies in their

resolvent set.

Lemma 3.2. Considerafunction h satisfying the Hypothesis 2. 1 and consider the associated

operators HO or HQ+. Thenfor all s > v/(3v + 3),

sup y~^ | { 8n , (#o E)~
l
8m ) \

s < C(E),

and C(E) -> 0, \E\ > oo. Similarly we also havefor all s > v/(3v + 3),

sup V^ | { 5,

Proof. We will prove the statement for HO, the proof for # + is similar. We write the

expression for the resolvent kernel in the Fourier transformed representation (we write
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the Fourier series of an 2
(Z

y
) function as ii(&) = ^2neZ v e

m
'^(/z)), use the Hypothesis

2.1(1), and integrate by parts 3v + 3 times with respect to the variable Oj (recall that

& = (#1 ,
. . .

, #)), to get the inequalities

/

JT U

((m-n);)^
3

-E)- 1

, (18)

where we have chosen the index j such that |(m w)y|
> \m n\/v and assumed that

m 7^ n (when m n the quantity is just bounded). Let us set

CQ() = max
\ sup

a3v+3

It is easy to see that since the function h is of compact range and all its 3v + 3 partial

derivatives are bounded, by hypothesis CQ() goes to zero as \E\ goes to oo. We then get

the bound for any s > v/(3v + 3),

3v+3

m-n
Given this estimate we have

sup

where C(s) is finite since \m\
J (3v+3 D

,
m ^ is a summable function in 2V when s(3v -f-

3) > v.

Proof of Corollary 2.9. We prove the theorem only for the case Hta
the proof of the other

case is similar.

By the Hypothesis 2.3(2) on the fmiteness of the second moment of /x we see that

/ d/x(x) |jc|
< oo, so that we can set r = 1 in the Lemma 5.1. Since the assumption in the

theorem ensures the boundedness of the density of \JL
we can also set q = oo in the Lemma

5.1 with then Q 1 / 14"^ = ||d/i/dx||oo- Then in the Lemma 5.1 the constant C is given by

* \
1

2/cQ
-, oo I = 1 +'

l-2/c' 7 l-/c

The condition on the constant K becomes

K < 1/3.

Below we choose a s satisfying (3^3)
< -s < 1/3, and consider the expression
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where we take z = E -f- i with 6 > 0. Then by the resolvent equation we have

G(co 9 z,n,m) = G(Q,z,n,m)- G(a>, z, n, /)V"(/)G(0, z, /, m). (2

/ZM
We denote by

where P/ is the orthogonal projection onto the subspace generated by <$/. Then using t

rank one formula

whose proof is again by resolvent equation, we see that eq. (20) can be rewritten as

G(a>, z, n, m) G(0, z, n, m)

+ (2

Raising both the sides to power 5- (noting that s < I so the inequalities are valid), we ge

(2

Now observing that G; is independent of the random variable V^C/), we see that

|G(0,z,/,m)|
s

.

This then becomes, integrating with respect to the variable q*> (I) , remembering that V" (/)

= |G((U,/i,m)|
ff

)Gt(a>,z,l,t)

which when estimated using the Lemma 5.1 yields

?(a>,z,n f Z)

,z,U)

1
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where Ks is the constant appearing in Lemma 5.1 with K set equal to s. We take K =
^ \an \

s
)KS9 and rewrite the above equation to obtain

, z, w, m)|
5
)
= |G(0, z, /i, m)|* + ^ #E(|(G(a>, z, n, /)T|G(0, z, /, m)|

J
. (26)

>
We now sum both the sides over m, set

and obtain the inequality

|G(0, z, /i, m)|
J

4- sup T AT/|G(0, z,

Therefore when there is an interval (a, b) in which

Ksup Y |G(0,z,/,m)|* < 1, (*,*), (27)

>
we obtain that

E(|G(<w, E + fO, n, m)|
5
) < oo,

by an application of Fatou's lemma implying that for almost all E e (a, b) and almost all

CD, we have the finiteness of

+ /0,/2,m)|
2 < oo,

satisfying the Simon-Wolff [19] criterion. This shows that (the proof follows as in Theo-

rems II.5, II.6 [18]) the measures

fit

are pure point in (a, b) almost every CD. This happens for all n, hence the total spectral

measure of H *
itself is pure point in (a, b) for almost all &>.

There are two different ways to fix the critical energy (AO now- Firstly if K is large,

then in view of the Lemma 3.2 (by which Co() -> 0, \E\ -> oo) and the fact that K is

finite (by Lemma 5.1)

K sup |G(0, z, /, m)\
s < KCo(E)

s
C(s) < 1, \E\ -> oo. (28)

Therefore there is a large enough E(IJL) such that for all intervals (a, b) in ( oo, 1

? (E(jjL), oo), the condition in eq. (25) is satisfied.

On the other hand if the moment B = f \x\ d/x(jc) is very small, then we can choose

i by the condition,

KC (E)CS < 1,

even when C$(E) > 1, since it is finite for E in the resolvent set of HQ by Lemma 3.2.
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4. Examples

In this section we present some examples of the operators H$ considered in the theorems.

We only give the functions h stated in the Hypothesis 2.1.

Examples of operators HQ

1. h($) = 7=1 2cos(0|), corresponds to the usual discrete Schrodinger operator and

it is obvious that the Hypothesis 2.1 are satisfied. The Jaksic-Last condition 5.2 on

mutual non-orthogonality of the subspaces generated by HQ and 8n for different n in

jy are also satisfied, by an elementary calculation taking powers of HQ depending

upon a pair of vectors 3n and <5m , since the operator HQ is given by T -f- T~ l

, with T

being the bilateral shift on 1
2
(Z).

2. fc(tf)
= E,LiAi(ftO,Ai(i) = EcosOWj), N(i) < co. Clearly each A/ is a

smooth function in R v and each hi and all its derivatives are 2n periodic. Hence the

Hypothesis 2.3 is satisfied. Further each of /i/ is a trigonometric polynomial, and its

derivative is also a trigonometric polynomial and hence has only finitely many zeros

on the circle.

The condition in Jaksic-Last condition Theorem 5.2 on mutual non-orthogonality

is again elementary to verify in this case.

3. Consider the functions

hi(0i) = 0?
v+4

(2jr
-

0;)
3v+4

,
< Ot

< 2n, i = 1, . . . ,
v

and take h = XllLi hiW extended to the whole of Rv
periodically. Clearly these are

in C3u+3
(T

v
), by construction.

Examples ofpairs (an , /z)

We give next some examples of sequences an satisfying the Hypothesis 2.2 such that

= a-suppO).

We consider v >2 and the sequence an = (1 + |i |)

a
,
a < -1. Then we have that

kiy n {(0, n) : n e Z^ 1

}
= {(0, n) : n kZv" 1

}

and a^Ca, b) = (a, b) for any interval (a, b) and any n e 1v~ l
. Therefore for any

positive integer k, we have

whenever (Ji((a, b)) > 0.

Examples ofmeasures y, with small moment

We next give an example of an absolutely continuous measure of compact support sucri

that the Aizenman condition (in Lemma 5. 1 is satisfied. We use the notation used in that

lemma for the example.

We consider numbers < 6, 8 < 1, R and let p be given by
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*. 8 < jc < R (29^D ? )
^--. .A, _^ J.\

j \^*^ )

0, otherwise.

Then /z is an absolutely continuous probability measure and

* -
5 jR-5

We take T = 1
,
then the moment B is bounded by

B < (1
-

6)5 + (/? H- 5)6/2.

Now if we fix /? large and choose = l/R
3 and 5 = I//?

2
, we obtain an estimate

B* < and j^g
1"2*

Taking /c = s in the lemma and noting that s < 1/3 implies 2 6s < so that both the

terms above go to zero as R goes to oo. We see that by taking IJL with large support but

small moment, we can make the constant K in the Lemma 5. 1 as small as we want. This

in particular means that in the Theorem 2.8. given a energy E$ outside the spectrum of

HQ we can find a measure ^ which is absolutely continuous of small moment such that

^ is smaller than Co(o)
5C5 in the proof of Theorem2.8. andhence (/x) < \EQ\. We

can use such measures to give examples of operators with compact spectrum with both

a.c. spectrum and pure point spectrum present but in disjoint regions.

Example when Jaksic-Last condition is violated

We finally give examples where Jaksic-Last condition is violated and yet the conclusion

of their theorem is valid.

Consider v = 1, for simplicity, and let h(0) = 2 cos(20). Then the associated HQ has

purely a.c. spectrum in [-2, 2] and we see that the operator HQ T2 + 7"~
2

if T is the

bilateral shift acting on 12 (Z). Then if we consider the operators H> = HQ + Vw
, and

the cyclic subspaces HU, i , Ha),2 generated by the H and the vectors <$i , 2 respectively,

such an operator satisfies

Wo,
f
i C 1

2
({1} + 2Z), Ha>,2 C 1

2
({1 + 1)4- 2Z), almost every CD.

We then have

Wo,,! C I
2
({2n + l,/i /}), W<y,2 C -

2
(2Z), almost every co.

The subspaces I
2
({n : n odd}) and 2

(2Z) are generated by the families {<$&, k odd} and

{<$, k even} respectively. (We could have taken any odd integer k in the place of 1 to do

the above)

These two are invariant subspaces of H which are mutually orthogonal, a.e. co.

Therefore the Jaksic-Last theorem is not directly valid. However, by considering the

restrictions of H to these two subspaces, one can go through their proof in these

subspaces to again obtain the purity of a.c. spectrum for such operators when they exist.

We consider two examples to illustrate the point, for which we let #
w
(n) denote a

collection of i.i.d. random variables with an absolutely continuous distribution /x of

compact support in R, its support containing 0.
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1. If V^(n) = anq
w
(n), with < an < (1 H- |n|)~~

a
,
a > 0, we see that there is pui

a.c. spectrum in [-2, 2], a.e. &> by applying trace class theory of scattering.

2. On the other hand if, with < an < (1 + N)~a
,
a > 1,

(n), n odd

), n even,

then there is dense pure point spectrum embedded in the a.c. spectrum in [-2, 2"

We can give similar, but non trivial, examples in higher dimensions but we leave it to tl

reader.

5. Appendix

In this appendix we collect two theorems we use in this paper. One is a lemma ofAizenm;

[1] and another a theorem of Jaksic-Last [14].

The first lemma and its proof are those of Aizenman [1](Lemma A.I) which reprodu
below (with some modifications in the form we need), with a slight change in notation (\

in particular call the number s in Aizenman's lemma as /c),

Lemma 5.1 (Aizenman). Let IJL be an absolutely continuous probability measure who

density f satisfies J^&x\f(x)\
l+q = Q < ooforsomeq > 0. LetO < r < 1 andsuppo

B = fR dii(x) \x\
r < co. Thenfor any

r 2 n- 1

*<!+-+-
L r q\

we have

JC

for all a 6 C,
\x-a\ K

JR \x-a\

with KK given by

KK = fl (2
+ ^

+4) 5 1- + B C(fi,
,I=2 < 00.

Remark. We see from the explicit form of the constant KK that the moment B can
made sufficiently small by the choice of

IJL even when its support is large. This will ensi

that in some models of random operators, the region where the Simon-Wolff criterion

valid extends to the region in the spectrum. This is the reason for our writing KK in ti

form.

Proof. The strategy employed in proving the lemma is to consider the ratio

and obtain upper bounds for the numerator and lower bounds for the denominator.

Note first that B finite and K < r implies that |jc
-

a\
K

is integrable even if a is pur
real and we have

rb
i

f(x)dx</Ja
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by Holder inequality. Hence

f i r
00

i

I dfji(x) < 1 +
/

dr IJL({X : >
r})

J \x-a\ K
Ji \x-a\ K

K

(31)

where the integral is estimated using the estimate in eq. (30).

Consider the region \ot\ > (25) r
: We then estimate for fixed a the contributions from the

regions \x\
<

\ot\/2 and \x\ > \ot\/2 to obtain

\x\"

r-rr \ I a^x) \x
- +

/ a/j,(x) ]
*
K

\a\
K
\J J \x-a\K

)

(32)

/

with K chosen so that K/(\ IK/T) < q/(\ + q). (Here we have explicitly calculated

the p occurring in the lemma of Aizenman in terms of K. and r). For a fixed T and q this

condition is satisfied whenever K satisfies the inequality stated in the lemma.

The lower bounds on /d/x(x) l/\x a
\

K
is obtained first by noting that 5 < oc implies

VL({X : \x\
r > (25)}) < i.

Since \a\ > (25)^, we have the trivial estimate

;

/,J\x\

*L

-f
, IJ

\x-a\

\x- ct\
K

(33)

2(M + (2B)ry

Putting the inequalities in (32) and (33) together we obtain, (remembering that |a

(25)b,

(34)

We now consider the region \a\ < (25) r; Estimating as in eq. (32) but now splitting

the region as \x\
< (25)^ and \x\ > (25) r

, we obtain the analogue of the estimate in

/ eq. (32), in this region of a as

^ < -i-r f f-a\K
(2fl)r \J x-a

(35)
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Similarly the estimate for the denominator term is done as in eq. (33),

I
J

- Ot

> I ,

JU|<(2J5)r

2((2B)r + (2B)r)

(3

4(2 JB)

Using the above two inequalities we obtain the estimate,

when
| |

< (2B)
*

. Using the inequalities (34) and (36) obtained for these two regions

values of a we finally get

C(Gt

for any a e R.

We next state a theorem (Corollary 1.1.3) of Jaksic-Last [14] without proof, its proo

as in Corollary 1.1.3 of Jaksic-Last [14]. We state it in the form we use in this paper.

Theorem 5.2 [Jaksic-Lasi\. Suppose H is a separable Hilbert space and A a boun

self adjoint operator. Suppose {</>} are normalized vectors and let Pn denote the orth

onal projection on to the one dimensional subspace generated by each <t>n . Let q (n.

independent random variables with absolutely continuous distributions //,. Consider

A = A + V" q^(n)Pn ,
almost every a).

n

Suppose that the following conditions are valid

1. The family {<} is a cyclicfamilyfor A a.e. a).

2. Let Ha>,n denote the cyclic subspace generated by A and n . Then the cyclic subsp

H^n and H^m, are not orthogonal

Then whenever there is an interval (a, b) in the absolutely continuous spectrum of A

A + Yin <?
co

(n) j?>n> almost all a), we have

o>(A
w
) H (a, b) = 0, almost every a).
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Abstract. In this paper, the author has investigated necessary and sufficient condi-

tions for the absolute Euler summability of the Fourier series with miltipliers. These

conditions are weaker than those obtained earlier by some workers. It is further shown
that the multipliers are best possible in certain sense.
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1. Definitions and notations

Eoo_ wn be a given infinite series and let q be a real or complex number such that

q i=. 1. Then we write

-mwm ; wn =wn . (1.1)

m=0

Following Chandra [2], Y^ wn is said to be absolutely summable by (E, q) means (or

Eoo_ an |, q\ if

CO

} \W\\ < 00. (1.2)

n=0

For q > 0, a reference may be made to Hardy ([9]; p. 237). It may be observed that the

method \E,q\ (q > 0) is absolutely regular.

Let LI-K be the space of all 2n -periodic and Lebesgue-integrable functions over [ TT, re].

Then the Fourier series of f e LI^ at x is given by

* 00 00

-ao + y^(fl/i cos nx + bn sin nx) =^ An (x), (1.3)

n=l n-0

where an and bn are the Fourier coefficients of /.

Throughout the paper, we assume that the constant term arj
= 0. For real x, q > and

<5 > 0, we write

-t)} 9 (1.4)

(1-5)= - I 0(iOd,
t Jo
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cos f)
1/2

, (1.

(1.

r=l

= log-
s
( + l), (1.1

n = dn -dn+ \, (1.1

(1.1

KO = tlog**, (1-1

, (1.1
nt

where < c < n and k is a suitable positive constant taken for the convenience in t

analysis and possibly depending upon 8.

2. Introduction

In 1968, Mohanty and Mohapatra [12] began the study of absolute Euler summability

Fourier series by proving the following:

Theorem A. Let

0(f)log-eBV(0,c), 0<c<l. (2

Then

Among other results the above result was also proved by Kwee [10] independently.
also proved that the condition (2.1) cannot be replaced by the weaker condition

0(0 log
77 - eBV(CU), 0<7j<l, C

in Theorem A. This result of Kwee [10] was further improved by the present author ;

Dikshit [7].

In 1978, the present author [4] proved the following:

Theorem B. Let

Then

n^l 10g(-
n '
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Recently, Ray and Sahoo [15] have not only bridged the gap in between Theorems A and

B but they have also improved Theorem B by proving the following:

Theorem C. Let < 8 < I and let

k

0(01og
l ~5 - BV(0,c), 0<c<l. (2.6)

t

Then

oo
A ( \

-
\E,q\ (q > 0). (2.7)

log" (/i -t- i)

It may be remarked that in Theorem C, 8 has been restricted to be in [0, 1 ] since for 8 > 1 ,

(2.6) implies the absolute convergence of

A reference may be made to Chandra [1]; Theorem 2 on page 6, and hence (2.8) is neces-

sarily summable |, g| (q > 0).

In a different setting, very recently, Dikshit [8] has obtained a few more results concerning
the absolute Euler summability factors for Fourier series.

One of the main objects of the present paper is to improve Theorem C on replacing (2.6)

by the following weaker condition:

(i) P(t)log
l
~s ~ e BV(0,c)

(ii) t- l

P(t)log-** e L(0,c)

(2.9)

where < 8 < 1 and < c < 1. The above claim that (2.9) is weaker than (2.6) has been

settled in Lemma 1 of the present paper.

Secondly, we investigate necessary and sufficient conditions, imposed upon the gener-

ating functions of the Fourier series of / at jc, for the truth of (2.7). Before we give the

statement of the theorem to be proved, we give the following equivalent form of (2.9),

which follows from Lemma 2 of the present paper:

(i) I log- |dg(r)| < oo, < c < 1

t (2.1

Precisely, we prove the following:

(ii) g(0+) =

^
Theorem. Let 8 > and let (2.10) (i) hold. Then in order that (2.7) should hold, it is

necessary and sufficient that (2.10) (ii) must hold. Further, the condition (2.10) (i) is best

possible in the sense that it cannot be replaced by

7T

j log"

*
|dg(r)| < oo (0 < r,

< 1). (2.11)
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3. Estimates

To prove the theorem, we shall require the following estimates for 3 > but proved fo

real 5: uniformly in < t < c,

Hn (t) =

Hn (t)
=

1

' nt

,-2. -2

(3.1

(3.2

(3.2

Proofof (3.1). We have

sin nt-
nt

f sin nu /" sin n
4-

/
-

d*(u)
-

/
J nu J nu

Now, since fc(w) is monotonic increasing therefore

r r

/sin

ww f
db(u) < I db(u) =

^w J
b(t)

and

c n L

C sin nw f
/ db(u) <

/ db(u
J nu J

) +
sn

nu
-db(u)

d
Also w Z?(w) decreases therefore, we have, by the second mean value theorem

dw

r sinnw
f _j d 1 ^ sin nw

_, / _j
/
-

db(u) = w ^K") /
-dw (n

L

J nu I du lu^-iJn-i n

_jL < < c

Collecting the results, we get (3.1).

Proof of (3.2). Since u~ l ~
-b(u) decreases, therefore, by the second mean val

therorem
du

c c'

/sin

nu _i d /*

db(u) = (nt)
l

b(t) / sin JIM dw (t < c
f

nu dt J

Using this estimate in the definition Hn (t), we get (3.2).
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Proof'of'(3.3). We have

n

sn (0 = imaginary part of ]T V* (w ) exp(z Jkr),

=0

where

k=0

n+1
-" E

m=l

n+1

e~"

m=0

(1+^)" (1

+

where/? cos 9 = q + cost, RsinO = sin rand

sin<9= tan

)

Hence imaginary part of

/
, Vk (n ^ e^pO'^0 = (

)
sin[(n + 1)^ t] + ( -

) sin/,

where

Hence

I*. (01 < /(O +

Fhis completes the proof.

f. Lemmas

iVe require the following lemmas for the proof of the theorem:
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Lemma 1. For < 8 < 1,

(2.6) = (2.9) (4.1

but its converse is not true in general.

Proof. It has been observed (Chandra [5]; p. 19) that (2.6) with 8 = 1 holds if and only i

(i) P(0 e B V(0, c), (ii) t~
l Pt 6 L(0, c), (4.2

which is stronger than (2.9) with 8 = 1.

We now consider the case < 5 < 1. In this case, we observe that

(2.6) 0(0 fiV(O.c)

e 1(0, c) (see (4.2) (ii))
r_

*-&
log"

6 - e L(0,c).

Hence (2.9) (ii) holds. Now for the truth of (2.9) (i), we write

t

h(t) = 0(0 log
1"5 - and hi(t) = - / M0 dw.

Then /ii(r) 6 B V(0, c), where

Hence

from which one gets

P(0 Ic

01 (M) log~
d -dw.

Observe that

7 /
t J

BV(0,c) => 0i (0 log"
5 - BV(0,c)
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Hence using these results in (3.3), we get

209

1 "*
P(0 log

To prove that converse is not true in general, let / be even function and x = 0. Then
= f(t) in [0, jr]. We define

log- in (0, c)

elsewhere.

Then (2.6) does not hold.

On the other hand, since 0(0 e B V(0, c), therefore

and hence

/

= -(1 -)- log
-

2 t J u

i/^T
(a
-
3) /2

r
< oo,

d

r

l

log
1'5

(-) /
\t / J

(4.4)

which proves (2.9) (ii). Also from (4.4)

P(0 log
1 "* = (1- S)t~

l

log
1'5

(1
-

t / 2,

Now it may be observed that each of the term on the right above is of bounded variation on

(0, c) and hence

. % P(t)log
l
~s (-\ V(0, c),

which proves (2.9) (i).
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This completes the proof of the lemma.

k
Lemma 2 [11]. If ij

> 0, then necessary and sufficient conditions that (i) h(t) log
-

V(0, ?]) and (ii) t~ l

h(t) e L(0, r?) a

*7

//&\log I
-

j
\log I

-
\dh(t)\ < oo.

o

Lemma 3 [15]. Let, for < c < TT,

7T

2 /
an = I cj)(t)cosnt dr.

TT J
c

Eoon=1 4 |E, 0| (4 >0).

iw w really provedfor < <5 < 1 but the same arguments holdfor 8 > 0.

Lemma 4. L*tf < < JT aJ 5 > 0. T/zew uniformly in < f < j8

ir) = O

f 5 = 1 is dealt with in Lemma 2 of Chandra [4]. The general case may b

obtained similarly.

Lemma 5. For < c < JT andfor all real j$

c

2 f sinnw * k BI
log^ du ^ log^ n .

TT J u u

The case fi
= 1 wif& c = TT wa^ <iea/r wfrA ^3; Mohanty and Ray [13] andfor all real

t

with c = n, references may be made to Ray [14] or Chandra [6]. Since the same argumem
hold ifwe replace n bye in Ray [14] or Chandra [6], therefore one can get the above resu

from either Ray [14] or Chandra [6].

Lemma 6. Uniformly in < f < JT,

m=l

n +-o{dny
i

(o} + o

Proo/. Let N denote the integral part of -- for n>2q. Then we first observe th
1 + q

(n) increases monotonically with m < N and decreases with m > N. And, by Abel
transformation
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n~\
v \

m=l

N

m=l

n-l

V/(n)sinJk/
n=N+l

= ^Sm(t)Mm +dN+iSn (t)
-

m=l
n) sin fa

m=N+l k=m+\

- E
owever, by Abel's lemma

.+E2+E3'

.(01 < V*(n) max
l<m'<m"<m

sin/:? (for m < N)

ence

(4.5)

m=l

m=l

= 0(t~
l

)Adn ,

ice m2Adm is increasing and

(4.6)

m=l

id by (3.3)

lally, once again by applying Abel's lemma in the inner sum ofV , we get,

n-l

m=N+\
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= 0(r l)Mn , (4.8)

Combining (3.5) through (4.8), we get the required result.

Lemma 7. There exists an f e L^ for which (2.10) (i) and (2.11) hold but the series

(2.8) at x = diverges properly for every real 8 and hence not summable by any regular

summability method.

Proof. Let / be even and let x - 0. Then 0(r) = f(t). Define / by periodicity. We first

consider the case 5 = for which we define

I/k\
lOg log

UJ,
Q<t<7T

(49)

0, t =

where k > Tte
2

. Then

*'i
which is of bounded variation and g(0+) = 0. Hence

^

/"rMog"-
2
*-^,

o o

which converges whenever <
rj
< I. Thisprovesthat(2.10)(i)and(2.11)hold. However

7t

2 r= I log log
~ cos nt dt

ft J t

o

2 ? sin nr ^ fc= -
/
-

log
! - dr

7i J nt t

1

log 72

'

oo

by using Lemma 5. Thus ^^ A" (JC ) diverges properly and hence it cannot be summable by

any absolutely regular summability method and, a fortiori, (2.8) with 8 = is not \E, q \

(q > 0) summable.

In the case when 8 is non-zero real number, we define

. (4.10)
0, t=Q
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Then since (j)(t)
= f(t), we have

P(t)

r

= 8~ f
t J

- du
u

213

and hence

= P(t)log~

+ 8(8 -1)

/*"(iJ \u

which shows that g(0+) = and

, 2
r log'

+

and for all real .

t

-
}
du < Mt log

6

where M is a positive constant not necessarily the same at each occurrence and possibly
depending upon 8. Therefore

which converges for <
rj < 1. This proves that (2.10) (i) and (2.11) hold for all real

S ^ 0. But for the function defined by (3.10)

n
O /* / 7 \

= -
/ logM -

)
cos nt dt

K J \t J

o

j*-..
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by Lemma 5 and hence,

An (x)

\og
s
(n + 1) n log(n + l)'

This shows that for every real 5^0, (2.8) is not \E, q\ (q > 0) summable since

1E = oo.
' n log(n + 1)

This completes the proof of the lemma.

5. Proof of the theorem

In view of the inclusion: |, q\ c |, q
f

\ (q
! > q > -1) (see Chandra [2]; Corollary 2]

we assume < q < I for the proof of the theorem, without any loss of generality.

Let (2.10) (i) hold. Then proceeding as in Chandra ([3], p. 388-9), we have for n > 1

n

--[K J

sin nc

/sin nt
dr (5.1

and integrating by parts, we get

n ,
3 /sin nt

tP(t)- 1 dr
at \ nt

/
3 /sin nt

dt\ nt
df

and for < t < c

c

sm

nu
du =

sin nc

nc

sin

nt 7-
sin nu

(5.:

Using (5.3) in (5.2), we get

f n ,
3 /sinwA

/ tP(t) dr
J Bt\ntJ

c

- / Hn (f)
J

nu
(5.
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And using (5.4) in (5.1), we get

IT n

sin nu

=
a/i + pn - yn - 5n , say.

Since AQ = iflo = 0, therefore

n (x)dn e \E,q\ (q > 0)

if and only if

< 00.

However, it follows from Lemma 3 that

n \E,q\ (q > 0)

and since

and

n = <j>(c)sinnc 1

TT
L/i + 1 /i(n + l)J

E sm/zc
< oo.

Therefore, in view of absolute regularity of |, q\ (q > 0) method,

00

^Pndn \E,q\ (q>0)
n=l

if

oo
i x-^ / n \ ... sin nc

m=l
, ,m + 1

oo ..

""^n + 1
n=l

which holds by Lemma 4. Now
00

]P V^(m)^m sinwc < 00,

n=l

215

(5.5)

(5.6)

(5.7)

(5-8)

(5.9)
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if and only if

* (9 m

Clearly

<2<-

and since by (2.10) (i),

/ fc.ii dg(r)| < oo

therefore for the proof of (5.9) it is suffiecient to prove that

oo . n

m=l

uniformly in < t < c.

For T = [k/t], the integral part ofk/t, we write

n<T n>T

By (3.1), we get

= 0(1)4(0I>E V-(") + 0(DE
n=l m=l n=l

r r

uniformly in < t < c, since
^ ^771= 1

< 1. And by (3.2)

Y^ _
2Lr

-

+

< oo.

f-m d,

sinm

(5.10)

(5.11)

m(m H- 1)



Multipliersfor Fourier series 217

where

Now, by using repeatedly the relation:

m -f- 1

+"('-'
*

7) EfrTW^W
log*

- + O It"
1

log*
-

(r), say,

\ ,_m <4,

m(m + 1)

m(m H- 1)

where r and s are integers such that r > s > 0, we get

n + l^\m+\r m
tn=l

m-l
m m+2

(n

n2 (n + 3) m̂=i

however, the function (jc + 2) log"
5 x increases with x > exp(3S), therefore

m=l

m+3

n=T

oo

(5.13)
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n=T

uniformly in < t < c. And, by Lemma 6,

oo ,

n=T m=l
oo A , oo

^7 + 0U>

= 0(1) log

uniformly in < t < c, since

i-s

and

(5.14)

(5.15)

Combining (5.11) through (5.15) we get (5.10). Also in view of (5.5) through (5.9),

^ILi
An^n \

E >4\(4 > ) if and only if

oo

ydn|^| (>0), (5.16)

where

and, by Lemma 5,

'-! HU

2 f sinnu-
/ db(u)

7t J nu

,

n + 1)
- 5 log^^n + 1)]



Multipliersfor Fourier series 219

and hence

c

sinnu 1

db(u) ^ -.
nu n

9

Thus in order that (5.16) should hold it is necessary and sufficient that

Y" i^i (? > )A/ n
tt=l

for which it is necessary and sufficient that (2. 10)(ii) must hold, since V] 1/n diverges

strictly.

The fact that the condition (2.10)(i) cannot be replaced by (2.1 1) follows by Lemma 7.

This proves the theorem completely.

Acknowledgement

2 The author is thankful to the referee for reading the manuscript carefully and giving his

valuable suggestions to improve the presentation of the paper.

References

[1] Chandra P, Absolute summability factors for Fourier series, Rend. Accad. Nazionale dei XL
24-25 (1974) 3-23

[2] Chandra P, On some summability methods, Boll Un. Mat. Ital. (4) 12(3) (1975) 21 1-224

[3] Chandra P, Absolute summability by (, g)-means, Riv. Mat. Univ. Parma (4) 4 (1978) 385-
393

[4] Chandra P, On the absolute Euler summability factors for Fourier series and its conjugate

series, Indian J. Pure Appl. Math. 9 (1978) 1004-1018

[5] Chandra P, On a class of functions of bounded variation, Jnandbha 8 (1978) 17-24

[6] Chandra P, Absolute Euler summability of allied series of the Fourier series, Indian J. Pure

Appl Math. 11 (1980) 215-229

) [7] Chandra P and Dikshit G D, On the \B\ and \E,q\ summability of a Fourier series, its

conjugate series and their derived series, Indian J. Pure Appl. Math. 12 (1981) 1350-1360

[8] Dikshit G D, Absolute Euler summability of Fourier series J. Math. Anal Appl 220 (1998)
268-282

[9] Hardy G H, Divergent Series (Oxford) (1963)

[10] Kwee B, The absolute Euler summability of Fourier series, J. Austra. Math. Soc. 13 (1972)
129-140

[11] Mohanty R, On the absolute Riesz summability of Fourier series and allied series, Proc.

London Math. Soc. 52 (1951) 295-320

[12] Mohanty R and Mohapatra S, On the |, q\ summability of Fourier series and allied series,

/. Indian Math. Soc. 32 (1968) 131-139

[13] Mohanty R and Ray B K, On the convergence factors of a Fourier series and a differentiated

;

Fourier series, Proc. Cambridge Philos. Soc. 65 (1969) 75-85

I [14] Ray B K, On the absolute summability factors of some series related to a Fourier series, Proc.

) Cambridge Philos. Soc. 67 (1970) 29-^45

[15] Ray B K and Sahoo A K, Application of the absolute Euler method to some series related to

Fourier series and its conjugate series, Proc. Indian Acad. Sci. (Math. Sci.) 106 (1996) 13-38





Proc. Indian Acad. Sci. (Math. Sci.), Vol. 1 1 1, No. 2, May 2001, pp. 221-227.

Printed in India

On a Tauberian theorem of Hardy and Littlewood

TPATI

10, Bank Road, Allahabad 21 1002, India

Institute of Mathematics and Applications, Bhubaneswar

MS received 17 April 2000

Abstract. In this paper, we give a simple alternative proof of a Tauberian theorem

of Hardy and Littlewood (Theorem E stated below, [3]).

Keywords. Abel's theorem; Tauberian theorem; Hardy-Littlewood Tauberian

theorem; divergent series.

1. Introduction

Let Y1T=Q an be an infinite series of real terms. Let

< XQ < A.I <,..., Xn -> 00

and let ane~knX be convergent for all jc > 0. If

as x > 0, then we say that ]P an is summable (A, Xn ) to s. When Xn = n, the method

(A, Xn ) reduces to the classical method summability (A), named after Abel.

It is a famous result due to Abel that if an is convergent to s, then an is summable

(A) to s. That the converse is not necessarily true is evident from the example of the

series

1-1 + 1-1---

which is summable (A) to ^ , but not convergent. The question naturally arises as to whether

one can determine a suitable restriction or restrictions on the general term an so that ^ an

will be convergent to s whenever it is summable (A). The first answer to this question was

given by Tauber in 1897 in the form of the following theorem.

Theorem A [7], If^an is summable (A) to s andnan = 0(1), then ^an is convergent

to s.

A generalization of Theorem A to the set-up of summability (A, Xn ) was proved by
Landau [4].

Another significant generalization of Theorem A was obtained by Littlewood in 1910 in

the form of

Theorem B. If^an is summable (A) to s, and nan = 0(1), then ^an is convergent
to s.
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In fact Littlewood proved the following more general theorem.

Theorem C [5]. If^l^n is a series ofpositive terms such that, as n > oo,

^n Ml + M2 H-----h ^ -> 00, tJLn /^n ~> 0,

Y^ an &~~
XnX -> s as x -* 0,

^ an is convergent to s.

Littlewood had stated that Theorem C is true even without the restriction: /zn /A, tt
>-

This result is stated below as Theorem C*. It was proved in 1928 by Ananda-Rau [1].

simple alternative proof was supplied by Bosanquet (see Hardy [2]).

(1.

Theorem C*. If [Ln is a series ofpositive terms such thatXn = A&i-h/^H
-----

\~f^n

as n -> oo, 5Z an Q
"^nX -* s as x > and

then ^2 &n is convergent to s.

Littlewood also conjectured [5] that the following theorem is true.

Theorem D. Ifk\ > 0, Xn+ i/A,n > > I (n = 1, 2, ...), and

CO

n=l

then J^ an converges to s.

The truth of this conjecture was proved by Hardy and Littlewood [3]
l

. Theorems of t

kind are called 'high indices' theorems, as distinguished from 'Tauberian' theorems, sii

in such theorems no restriction is needed to be imposed upon the general term an of

series in question, excepting, of course, that Y^ an^~
XnX

is convergent for every x >
Such a theorem shows that the method (A, A.n ) with the type of A.n involved does not s

any series which is not convergent, and therefore shows the 'ineffectiveness' of the metl

Hardy and Littlewood first established Theorem D in the special case in which

an = 0(1)

and then, by further analysis, derived Theorem D itself. This is an instance of a Taubei

theorem leading to a high indices theorem. Thus Hardy and Littlewood first establisl

the following Tauberian theorem.

Theorem E. Ifk\ > 0, An+i/Xn > > I (n = 1, 2, . . .),

oo

an
~~^nX -> s as x -

0,

1 For a proof of Theorem D due to A E Ingham, see [2], proof of Theorem 114, where too, the result has

obtained via a Tauberian theorem.
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and an = (9(1), then ]T an is convergent to s.

It should be observed that Theorem E is included in the theorem ofAnanda-Rau, in which

no extra restriction is imposed on Xn , in view of the fact that whenever Xn+ i /Xn > > 1,

and an = (9(1), an = O
\

n

~^~
l \ On me omer hand, under the hypotheses of Theorem

C*, (1.1) implies: sn = (9(1), and hence an = (9(1) (see Lemma 2 in the sequel).

The object of the present paper is to give an alternative proof of Theorem E which is

quite straightforward, not requiring Lemmas 1 and 2 of Hardy and Littlewood [3].

2. Lemmas

We shall need the following lemmas.

Lemma I [5]. If, as y > 0, i/s(y) > s, andfor every positive integer r,

thenfor every positive integer r, y
r
ty

(r
\y) = o(l).

Lemma 2 [4].
2

// < k\ < X2 <,..., Xn -> oo, as n -> oo, /(jc) =
O(l)asx -> 0,

then

sn =ai+a2 + ----h an = (9(1).

Lemma 3 [3]. ./jfA.1

> then, for r = 1,2,

3. Proof of Theorem E

We may assume, without loss of generality, that s = 0. Thus /(jc) = o(l) as x > 0. Also,

since aw = 0(1), for r = 1, 2, ...,

n=l

2 As remarked by Ananda-Rau in [1], the argument in Landau [4], pp. 13-14, has only to be slightly modified to

yield the result of Lemma 2.
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by Lemma 3. Hence, by Lemma 1,

Since

11=1

we have

*du
'At I

n=l
JA n=l

= Vr -rVr_i, say.

Hence, by Lemma 1,

Vr = rVr_i+o(l)

= r(r
-

l)(r
-

2) Vr_3 + o(r(r
-

1)) + o(r)

= r\f(x) + o(r(r
-

1) . . . 2) + + o(l),

so that
3

(3.1)

This can be explicitly written as

(3.2)

as x -* 0. If $,! does not converge to zero, there exists a positive constant h such that

\sn \> h for an infinite number of values of n. Let m be any one of these values. We shall

show that, when r exceeds a sufficiently large positive integer ro,

where 8 is a positive constant. This will contradict (3.2), and hence we will conclude that

an converges to zero, which is required to be proved.

3
In Hardy and Littlewood [3], (2.41) should be replaced by our (3.1) -y

= 0(1); line 4 from the top on p. 225

00 00
y

should be replaced by: r\^^snwn = Vr so that /_^^^
= ~- = o(l). For similar alterations needed in the

n=0 n=0

papers [1], [5] and [8], see Pati [6].
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Now, by the hypotheses of Theorem E and Lemma 2, sn = (9(1) and hence

_i J^n

where K is a positive constant. We choose

2r

Then, for fixed r, x -+ iff m -* oo. Since ([5], p. 440)

lim *H

1

m ,- . v

u = r- = r(l + ??),

~r >^m

Xn+l /

^e-^dr <
/

n h

(3.3)

f
r
e~-"dr > /i. (3.4)

We now use the transformation u xt, so that, for t = A,m+ i,

where

J

"""~-^- (3-5)

Thus the second term in (3.3) gives

- wv

(3.6)

The third term in (3.3) gives

iim^^o *r+1 Y! / ^e^dr <
/ w

r
e~"dw, (3.7)

where 77 is as defined in (3.5).

Combining (3.4), (3.6) and (3.7) we have

TT- ...... , _M . . , _,.. ,

^^g)

r 1
u
r
c~

udu . (3.8

r(l+77) J

We show below that

Ii= f u
re~udu < Kir

r6~r
(3.9)

Jo
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and

CO

h
/CO(1+7?)

where the K in each inequality denotes a positive constant, independent of r.

Proof of'(3.9). We have

Jo

Hence

/ (
1

)
u
r
e~

u
du = r

r
(l
-

7})

r
e~r(1

~~
77)

.

Jo v ^ /

Now, since <
r\
< 1, u < r(l r]) implies:

u I t]'

so that

since

e 77 < 1 + n H- rr + - - =

Thus

where

^ A.^+1
- km 91

Proofof (SAG). We have

/CO
M'-VdK.

(1+7?)

Hence

since

w > r(l -F ?y) implies: 1 >
u

we have

n



Tauberian theorem ofHardy and Littlewood 227

so that

72 < AVV",

where

ft _i!_*-iL___*_<.
Xm i - J*L_ - 1

Hence, from (3.8), (3.9) and (3.10), we have

Since by Stirling's theorem,

1

taking r > ro, a sufficiently large positive integer, we have

which contradicts (3.2). Hence our assumption that {$} does not converge to is false.

This completes the proof of Theorem E.
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Abstract. We give a necessary and sufficient condition for proximinality of a closed

subspace of finite codimension in co-direct sum of Banach spaces.

Keywords. Proximinality and strong proximinality.

0. Notation and preliminaries

Let X be a normed linear space and A be a closed subset of X. We say A is proximinal in

X if for each x e X there exists an element a A such that
||;c

a
||

= d(x, A).

We say A is strongly proximinal in X if A is proximinal in X and given > 0, there

exists 8 > such that

a e A, ||*
-a

\\

< d(x, A) + 6 => d(a, PA 00) <
,

where PA(X) = {a e A :

\\x a\
= d(x, A)}.

Proximinal subspaces of finite codimension have been studied by various authors (see

[1-4, 7-10]). In this paper we obtain a necessary and sufficient condition for proximinality

of subspaces of finite codimension in CQ-direct sum ofBanach spaces in terms ofthe proxim-

inality of the corresponding subspaces of finite codimension of the coordinate spaces. We
also give an example to show that similar result does not hold in l\ -direct sum of Banach

spaces.

Let X be a real normed linear space and X* its dual. The closed unit ball ofX is denoted

by BX and the unit sphere by Sx - Let Y be a closed, linear subspace of codimension n in

X. For a set /i, /2, . . .
, /H of linear functionals in the annihilator space Y^, we give the

following definitions from [4]. We have modified the notation used in [4].

{* Bx :fi(x) =
\\fi\\]

Jx(fl, /2, . -
, ft) = {Jx(fl, - -

, fi-l)
' fiW =

sup,, eJx (fi^..,fi-i)

for/ =2,3, ...,/i.

Similarly we set
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for i = 2, 3 . . . n. Since 71 is finite dimensional, the above n sets are nonempty. We als

set

||/i||
= N(fi)

M(/i, ...,./}) = sup{/K*) : * Jx (fi, . . . , /i-i)}

and

# (/i, ...,/i) = max{<J>(/i) : d> % r (/i, ., .
, ^-i)}.

We also need the following Theorem from [4].

Theorem A. Let X be a normed linear space and Y be a subspace ofcodimension n in J

Then Y is proximinal in X ifand only iffor every basis f\,...,fn ofY
L we have

--,fi) forl<i<n.

2.

We shall first show that condition 2 of the above theorem can be reformulated wi

conditions only involving the normed linear space X. This is easily done using the weal

density of BX in BX** and in a manner similar to that of Vlasov [10]. For this purpose \

make the following definitions for > and any finite subset f\ ,
. . .

, fn of Y .

=
\\fi\\,

,) = [xeBx : fi(x) > ||/i||-},

N(fi, ...,/i,)= sup{/iW : jc Jx (/i, . . .
, //-i, )},

and

1. Proximinality of subspaces of finite codimension

We begin with the following proposition.

PROPOSITION 1.1

Let X be a normed linear space and Y be a closed subspace of codimension n.

every finite subset /i, ...,/ ofY^ we have

Proof. By induction. The case i = I is trivial. Assume

..,/*) = N(fi,...,fk) for l<t<i-l.

Select any O 6 %)*(/i, /2 -..//) Since B^ is weak* dense in BX**, there exists a

(jca ) in BX that weak* converges to <1>. In particular,

lim /jk(jca )
== O(/fc) for 1 < k < n.
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Thus, given > 0, 3 ao such that

fk(xa ) > #(/i,..., /*)-*Va > ao and 1 <k <n.

This together with the induction hypothesis implies that

(xa ) /*(/!, .,.#-1.0 V a > a .

and so

To prove the other inequality, for each positive integer n, select an element (xn ) in

Jx(/i,...,/i,). Then

Let T/OZ
=

-Xfliy
1"

for each n. Then T^W is in B
( yj.^*.

Since F-
1

is finite dimensional,

w.l.o.g we assume (\l/n ) converges to ^ in B^^y - Note for 1 < A: < /,

Again by induction hypothesis ^ e
/(yj_)*(/i, /2, . . .

, //-i) and

Hence
I

and this completes the induction and the proof.

The above Proposition, along with theorem A, implies as follows:

COROLLARY 1.2

Let Y be a closed subspace offinite codimension n in a normed linear space X. Then Y is

proximinal in X ifand only iffar every basis fi ,
. . .

, fn ofY
1-

the sets

j

EBX : fox) = N(fi,... 9 fi)}?!aforl<j<n.

Remark 1.3. If f\, ...,/ is a finite subset of X* and /BI , . . . , fnk is a maximal linearly

independent subset of f\ ,...,/ satisfying n\ < HI < ... < rik then fl/=i (x e &x '

MX) = Wi,.. .,/)} ?4 forl < 7 <nifand only ifnjLi{JtBx : /,(*) =

#(/..,/,,)} 5*0 for 1 <m<k.
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We now recall some known proximinality results that are needed in the sequel. For an]

normed linear space X, letNA(X) denote the set ofnorm attaining elements of X*. Garkav

[1] has characterized proximinal subspaces of finite codimension in general normed linea

spaces and the following is an easy corollary of his result.

Lemma B [5]. Let X be a normed linear space and Y be a closed subspace offinit

codimension in X. Then Y is proximinal in X ifand only if every closed subspace Z J2 ]

is proximinal in X.

Now, if / 6 X* and H is the kernel of /, it is well-known that the hyperplane H i

proximinal in X if and only if / NA(X). Thus from Lemma B we have the following

Remark 1.4. If Y is a proximinal subspace of finite codimension in X, then Y 1- c NA(X]
However F1 c NA is only a necessary but not a sufficient condition for proximinalit

of a subspace Y of finite codimension. (See the example of Phelps in [7], p. 309.) Bi

the behaviour of the space coCO in the above respect is rather special.The following fa<

is well known, see for instance [6].

Lemma C. Let Y be a closed subspace offinite codimension in co(F) and f\ ,...,/ be

basis ofY
1

-. Then Y is proximinal ifand only if fi e NA(co(r))for 1 < / < n.

Finally we quote a characterization of strongly proximinal subspaces of finite codimei

sion from [3], which is needed in the proof of our main result.

Theorem B. Let X be a normed linear space and Y be a proximinal subspace ofcodime
sion n in X. Then Y is strongly proximinal in X ifand only if thefallowing holdfor eve

basis fi,...,fn of Y-L.

Given > there exists 8 > such that for each i,l < i < n and for each x

.

2. Direct sum spaces

We now consider proximinality in co-direct sum spaces. Let A be an index set and J

be a Banach space for each X e A. Let X =
Co Xx- Then X* = 0/j XJ. Furtlr

F = (A)xeA is in NA(X) if and only if /x = but for finite number of indices a

/x NA(Xx) whenever /x ^ 0. Also, in this case

Jx(F) = {(*x)eX: ||*x|
= 1 and/x(*x) = ||A||VXA}^ 0. i

For X defined as above, we have the following Proposition.

PROPOSITION 2.1

Let Ft 6 X* and FI = (/^) for 1 < i < n. Assume further that for each i, 1 < i

H. jfoi
= butforfinite indices X. Then

Remark. Observe that the above sum has only finite number of nonzero entries. Also,
condition of the above proposition is satisfied if F/ e NA(X) for 1 < i < n.
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Proofof the Proposition. Let

A = U?=1UA: /U^O}. (2)

Then card A = / < oo. Set

a() = max max [N(fa, . . .
, fa, 6)

- N(fa, . . .
, fa)].

A.6A

For > 0, let

$! = e, e/ = /<7(e/_i) 4- e/_i for 2 <i<n. (3)

Then ei < 62 <
- . .

< n . Clearly, a(e) and therefore /, 1 <i<n tend to as 6 -* 0.

Further,

and

x 6 /jr(Fi, ) *> (x = (JCA) 6 (4)

= (x = (xx ) fix : /u(*x) > (/u) -
(5)

A.

Using (4) and (5) and the fact that /uOx) < N(fu.) we get

5x : Ex
- V

and

Inductively assume that for some i
,
2 < z < n we have

for

^x(/u, - - -
, fi-u,

y)
c yx (Fi, . . .

, F/-I, )^Y[ Jxi(fa, , //-u, f -i).

AeA XA
Now, observing that the summation below, over A, involves only finite number ofnonzero

terms, we have

< inf >0 sup {^x fafa) : /xx (/u, - - -
, ^-u, ^_i) VX A}

= infe>0 ^x sup{/^(^) : Jx^(fa, , /^-u, ^-i) VX A}

= inf6>0 E

,
. - , jfix) for ,-_! -> as 6 -> 0.
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Similarly using the other inclusion we conclude

Hence

=
{jc
= (*x) 6 Jx (Fi, ..., FI-I, e) : Ft (x) > N(Fi, . . -

, F/)
-

We have

a: = (*x) e A- =* /a(^i) <

< Wu,.-.,/a) + crfe_i)VX. (6)

Further

X

Let j = fo) e A- If for some A.0> /l-x (^x ) < ^(/ix , - -
, ^x )

-
e,- then using (6),

= Ex

which contradicts (7) as orfe_i) + ,-_i > e. Thus * = (*x ) 6 , implies

/i(*x) > JV(/u, , /a) - / VX. (8)

Now ,-_i < e,- and so

JW/ix, , //-ix, <i-i) c JXl (/ix, , /i-ix, ,-)
V A.. (9)

Since D,- c {x = (jcx ) e f]x /^(/ix, . . - , /i-ix, e/-i), using (8) and (9) we conclude

e f] /Xi (/u ,
. . .

, /f_u , 6j) v A }.

XA
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But Jx (F\ ,
. . .

, FI , e) c Di and therefore

JX (F{ ,
. . .

, ft, 6) c {* - (*A ) /^(/u, . . -
, //A, /)} (10)

A.A

On the other hand
59

Jx(Fi,...,F/,) = [x =

This completes the induction and we have

/x(Fi,...,F/,O D

-f v

7)-

for 1 < i < n. This completes the proof of the proposition.We now prove our main result.

Theorem 2.2. Let Xx be a normed linear spacefor each X in an index set A and X be the

CQ-directsum ofthe spaces X^forX A. Let Y be a closed subspace offinite codimension

n in X. Then Y is (strongly) proximinal in X if and only if the following two conditions

holdfor every basis {F/ : 1 < z < n} ofY
L

, where F/ = (fix)keA>far 1 < i < n.

1. For each /, 1 < i < n, //A. is nonzero onlyforfinite number of indices X.

2. YX = Pi{Ker fix : 1 < i < n} is (strongly) proximinal in X^for each A e A.

Proof. Necessity. First we observe that by remark 1.4, F/ NA(X) for any basis {F/ :

1 < i < n} of F-1 . This, in particular, implies condition 1 above. Hence FX is a proper

subspace of X\ only for finite number of indices X.

To prove 2, for each X such that 7^ is a proper subspace of XA., choose any basis

gu, - . .
, gnx of (FA )

X
. If d = (gix) for I < i < n then GI, . . . , Gn is a basis of

F1-. Since F is proximinal in X,we can, by Corollary 1, get an element x = (xx) X
satisfying G/(JC) = W(Gi, . . .

, Gj) for 1 <i <n. In particular,

A A.

We have
||jc||

=
| supx ||jcx|

< 1 and so the above inequality implies gufe) =

|gu I
for all X. Assume inductively,

for 1 < fc < i
- 1 and V X.



236 V Indumathi

Now again by Remark 1.4, G/ NA(X) for 1 < i < n. Hence by Proposition 2.

have,

Gi (x) = gixto)
A. A.

Also by induction hypothesis, x^ A/Xgu, . . .
, g/_u, e) for every > and so we

gttfo) < #(gu, . . .
, gtt) VA.

This with (11) implies

and completes the process of induction. Hence for all X, JCA. e X^ satisfies

,
- - -

, ga) V l<i<n.

By Corollary 1.2, Y\ is proximinal in X^ for each A..

If 7 is strongly proximinal in X, then given 6 > there exists 8 > such that fc

d(G,Jx(G\,... t Gi)) < V 1 <f <n.

It is easy to verify using (11) and (12) that

and

Jx(Gi,...,Gi,8) D

for 1 < z < n. Now using (13) and (14) we conclude that for any A. and hi in Jx^ (gi.

g/x, f) we have

for 1 < z < w. Hence FX is strongly proximinal in X^. for each X.

Sufficiency. If GI ,
. . . , Gn is any basis of 71 and G/ = (ga)ieA then by conditioi

each /, 1 < z < n, g^ = except for finite number of indices X. So, Proposition *

be applied to the basis {G; : 1 < i < n} of F1-.

Since 7^ is proximinal for each X, by Remark 1.3 and Corollary 1.2, there

X), e B(xk ) satisfying for each A,,

= A(gu, - - , gix) V 1 < i < n.

Now let x = (JCA.)AA- Clearly jc e ^x and Proposition 2.1 implies

i' - - - G ) for 1 -
A. A

The conclusion now follows from C9rollary 1.2.
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Assume now F^ strongly proximinal in Xx for each A.. Let 6 > be given. Since

5 set A given by (2) is finite we can get 8 > such that for each A. A and hi in

..,/x,<5)) wehave

d(h it Jxx (gix, . - -
, ft*)) < 6 for 1 < i < /i. (15)

)w choose ?7
> small enough so that YH is given by

m =
*?> m = Mm-i) + ty-i for2 </ <w

in (3), is less than 6. We have from (10)

...^,*). (16)

Clearly (14), (15) and (16) imply that ifx = Oa) e /x(Gi, . . .
, G/, ?/) then

d this completes the proof.

We now give an alternate shorter proof for the proximinality of Y when conditions (1)

d (2) of Theorem 2.2 are satisfied. This proof avoids the use of Proposition 2. 1 and uses

immaB.
Let [Xj : I < j <

1}
= {Xx : A e A}, where the set A is given by (2). We set

G = X\ 0oo X2 oo . - - oo Xi

r 1 ^7 < I- We have Zj to be proximinal subspace of finite codimension in Xj for

<j<l, by (2) of Theorem 2.2. Further if

_ *7 .,
/r\ "7^ /T\ /TS '7,

-^1 tfoo ^2 vPoo vfoo ^/

en Z is a proximinal subspace of finite codimension in G. Set

len FI is a subspace of G, Z c Fj c G. Now we use Lemma B to conclude FI is

oximinal in G. It is easily verified that this, in turn, implies proximinality of F in X.

zmark 2.1. It is easy to see that the above proof goes through when X is taken as a finite

-direct sum of normed linear spaces and condition (2) of Theorem 2.2 is satisfied. The

:ample below shows that this is no longer the case when X is an infinite l\ -direct sum.

emark 2.2. We observe here that the necessity of Theorem 2.2 does not hold even for

lite /i -direct sums. For instance, let X be a non-reflexive Banach space and pick / and g
( the unit sphere of X* such that there exists x e X with

||

x
\\

= 1 = f(x) and g does not

tain its norm on X. Now 1 = max{ | / 1|
,

||
g

\\
}
=

\\
(/, g)

\\

= I = /(*). Hence (/, g)

tains its norm at (jc, 0) and Z = {(x, y) : f(x) + g(y) = 0} is a proximinal subspace but

er(g) is not proximinal in X.
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3. Example

Theorem 2.2 is not true if we replace the co-direct sum by, for instance, the l\ direct sum
as the following example shows.

Example. Let X =
e/, Xn where Xn = c for H = 1, 2, . . .. Then X* = 0/^X*. Select

for each positive integer n, // e/! with||//n |

< 1 and fin e NA(c<j). Further set

/12 = /21=0,

ll/ii II

=
I/all

= 1.

/in = /2 forn > 3,

|/m |

< Iforn > 3, i = 1,2

and

.HSj/'-l- 1 -

Define F/ eX*,i = 1,2, as

Let Y = n{Ker F/ : i = 1, 2} and 7n = n{Ker // : i = 1, 2} for n = 1, 2, . . .. Since

// 6 NA(CQ) for / = 1,2 and for all n, ^ is proximinal in Xn = Co for all rc.We will

now show that Y is not proximinal in X.

Choose */ e C
,

/ = 1, 2 such that
||jc/ 1

= 1 for i = 1, 2 and /n (xi) = /22(*2> = 1-

Consider A: = (^ ,
jc2 , 0, 0, . . .) in X. Then

||

jc
||

= 2. Further Ft A^A(X) as

So, ^U, 7) = JCJF-L
I
> I.We now show that d(x, Y) = 1.

To see this, select for n > 3, xn C satisfying j^O^) = -1 for / = 1, 2 and

limn-^oo ^xn ||

= 1. Define a sequence (j;0&>3 X by

otherwise.

Then F/(>'^) = /H Ui) + fx(xk )
= for / = 1, 2 and so yk e Y for all k. Further

lk-^1 = xk
\\

-> las/: -^ oo.

Hence d(x, Y) = 1.

We recall that a nearest element to x from Y exists if and only if there exists 3> in X
satisfying

Ft(y) = F
f (Jc) = 1 for i = 1,2 |y[

= d(x, Y) = 1.

However |y|
= 1 = FI(>>) implies y = (yi , 0, 0. . .) where fn (yi )

= 1,
||
yi

||

= 1. But,m this case, F2 (y) = ^ F2 (jc) and the above equality can not hold. Therefore, Y is not
proximinal in X.
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Abstract. The purpose of this paper is to prove a common fixed point theorem,

from the class of compatible continuous maps to a larger class of maps having weakly

compatible maps without appeal to continuity, which generalizes the results of Jungck
[3], Fisher [1], Kang and Kim [8], Jachymski [2], and Rhoades [9].
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1. Introduction

In 1976, Jungck [4] proved acommon fixed point theorem for commuting maps generalizing

the Banach's fixed point theorem, which states that, 'let (X, d) be a complete metric space.

If T satisfies d(Tx, Ty) < kd(x, y) for each jc, y e X where < k < 1, then T has a

unique fixed point in X\ This theorem has many applications, but suffers from one draw-

back - the definition requires that T be continuous throughout X. There then follows a

flood of papers involving contractive definition that do not require the continuity of T. This

result was further generalized and extended in various ways by many authors. On the other

hand Sessa [11] defined weak commutativity and proved common fixed point theorem for

weakly commuting maps. Further Jungck [5] introduced more generalized commutativity,

the so-called compatibility, which is more general than that of weak commutativity. Since

then various fixed point theorems, for compatible mappings satisfying contractive type

conditions and assuming continuity of at least one of the mappings, have been obtained by

many authors.

It has been known from the paper of Kannan [7] that there exists maps that have a

discontinuity in the domain but which have fixed points, moreover, the maps involved in

every case were continuous at the fixed point. In 1998, Jungck and Rhoades [6] introduced

the notion of weakly compatible and showed that compatible maps are weakly compatible
but converse need not be true. In this paper, we prove a fixed point theorem for weakly

compatible maps without appeal to continuity, which generalizes the result of Fisher [1],

Jachymski [2], Kang and Kim [8] and Rhoades et al [9].

2. Preliminaries

DEFINITION 2.1 [6]

A pair of maps A and S is called weakly compatible pair if they commute at coincidence

points.

Example 2.1. Let X = [0, 3] be equipped with the usual metric space d(x, y) \x y\.
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Define /, g : [0, 3] -> [0, 3] by

x if jc 6 [0,1)

3 if* [1,3]

and g(x) =
3 - jc if x e [0, 1)

3 if x e [1,3]

Then for any x G [1,3], fgx = gfx, showing that /, g are weakly compatible maps or

[0, 3].

Example 2.2. Let X = R and define f,g:R->Rbyfx = x/3, x e R and gx =

jc
2

, x R. Here and 1/3 are two coincidence points for the maps / and g. Note tha

/ and g commute at 0, i.e. /g(0) = g/(0) = 0, but /g(l/3) = /(1/9) = 1/27 anc

g/(l/3) = g(l/9) = 1/81 and so / and g are not weakly compatible maps on R.

Remark 2.1. Weakly compatible maps need not be compatible. Let X = [2, 20] and t

be the usual metric on X. Define mappings B, T : X -> X by Bx = x if x = 2 o

> 5, Bx = 6 if 2 < jc < 5, TJC = x if x = 2, Tx = 12 if 2 < jc < 5, Tx = % -
:

if jc > 5. The mappings B and T are non-compatible since sequence {xn }
defined b;

xn = 5 + (1/n), n > 1. Then Tz,z

-
2, Bzn = 2, T5jcn = 2 and 5T;cn = 6. But the

are weakly compatible since they commute at coincidence point at x = 2.

3. Fixed point theorem

Let R+ denote the set of non-negative real numbers and F a family of all mappings </>

(R
+

)
5 -> /?

+ such that <p is upper semi-continuous, non-decreasing in each coordinal

variable and, for any t > 0,

<p(t, t, 0, at, 0) < 0r, 0(r, f, 0, 0, at) <
/3r,

where ft
= 1 for of = 2 and ^ < 1 for a < 2,

y(0 = 0(/,r,air,a2^a30 < r,

where y : T?
4"

-> jR
+

is a mapping and i 4- 0^2 4- ^3 = 4.

Lemma 3.1 [12]. For every r > 0, y (f) < t if and only z/lim^oo y
n
(t) = 0, w/zere >

denotes the n times composition ofy.

Let A, B, S and T be mappings from a metric space (X, d) into itself satisfying ti

following conditions :

A(X) c 7XX) and B(X) C S(X), (3.

, By) < 0(J(Sjc, Ty), d(Ax, S:c), J(J5y, Ty), d(Ajc, Ty), ^(jBy, 5;c)) (3.

for all x, y e X, where F. Then for arbitrary point JCQ in X, by (3.1), we choose

point x\ such that Tx\ = AXQ and for this point jci, there exists a point X2 in X such tt

5*2 = Bx\ and so on. Continuing in this manner, we can define a sequence {yn } in X su
that

72 = Ax2n = ^2/7+1 and y^+i = Bx2n+i = Sx2n+2, n = 0, 1, 2, 3, ____ (3

Lemma 3.2 lim^oo d(yn , yn+\) = 0, where [yn ] is the sequence in X defined by (3.3),
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D
roof Let dn = d(yn , 3>n+i) n = 0, 1, 2, Now, we shall prove the sequence [dn ] is

ion-increasing in R+ , that is, dn < <4-i for n = 1, 2, 3, . . .. From (3.2), we have

< <l>(d(y2n-\ ,

, ^2n-l, ^2n, 0, J2rc + ^2n-l). (3.4)

Suppose that dn ~.\ < dn for some n. Then, for some a < 2, d^-i + <4 = ^<^n- Since is

ion-increasing in each variable and ft < I for some a. < 2. From (3.4), we have

,
d2n , 0,

Similarly, we have 6?2n+i < ^2n+i- Hence, for every n,t/n < j6dn < <s?n , which is a

contradiction. Therefore, [dn ] is a non-increasing sequence in J?"
1

". Now, again by (3.2),

ve have

, >
J

o),

[n general, we have dn < y
n
(d), which implies that, if d > 0, by Lemma 3.1,

lim dn < lim y
n
(dQ )

= 0.
->oo .-H>-OO

Fherefore, we have lim dn = 0. For JQ = 0, since {Jrt } is non-increasing, we have
AZ-OO

lim dn = 0. This completes the proof.
1-+00

Lemma 3.3. The sequence {yn } defined by (3.3) is a Cauchy in X.

Proof. By virtue of Lemma 3.2, it is a Cauchy sequence in X. Suppose that {y2n} is not a

Cauchy sequence. Then there is an > such that for each even integer 2k, there exist

even integers 2m(k) and 2n(k) with 2m (k) > 2n(k) > 2k such that

For each even integer 2&, let 2;n(/:) be the least even integer exceeding 2n(k) satisfying

(3.5), that is,

)
< and ^(3^^), y2m()) > . (3.6)

Then for each even integer 2k, we have

<d(y2n(k),y2m(k))
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By Lemma 3.2 and (3.6), it follows that

d(y2n(k), J2m(k]}
- as * - oo.

(3.7)

By the triangle inequality, we have

\d(y2n(k], y2m(k}~\) d(y2n(K), J2m(k})\
<

and

From Lemma 3.2 and eq. (3.7), as k -> oo,

d(y2n(k}, y2m(k}~\) -> and d(y2n (k)+\> y2m(k}~\) -> c. (3.8)

Therefore, by (3.2) and (3.3), we have

Since is upper semi continuous, as fc -> oo as in (3.8), by Lemma 3.2, eqs (3.7), (3.8)

and (3.9) we have

which is a contradiction. Therefore, [y2n ] is a Cauchy sequence in X and so is {jn }. This

completes the proof.

TheoremS.L Let(A, S)and(B, T) be weakly compatiblepairs ofself'maps ofa complete
metric space (X, d) satisfying (3.1) and (3.2). Then A, B, S and T have a unique common
fixedpoint in X.

Proof. By Lemma 3.3, {yn } is a Cauchy sequence in X. Since X is complete there exists a

point z in X such that lim yn = z. lim Ax2n = Km rx2w+i = z and lim Bx2n+i =-oo n-oo /i-*oo /i-voo
lim 5^2/1+2 = z i.e.,
n-^oo

lim Ax2n = lim T^n+i = lim #*2n+i = lim Sx2n+2 = 2-
n->oo n->oo n-oo ->oo

Since B(X) c S(X), there exists a point u e X such that z = 5w. Then, using (3.2),

d(Au,z) <d(Au,

d(Au, Tx2n-i)d(Bx2n-i, Su)).
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king the limit as n - oo yields

d(Au, z) < 0(0, d(Au, Su), 0, d(Au, z), d(z, Su))

= 0(0, d(Au, z), 0, d(Aw, z), 0) < d(Aw, z),

lere ft < 1. Therefore z = Aw = Sw.

Since A(X) C T(X), there exists a point i; X such that z = TV. Then, again using

2),

z, Bv) = d(Aw, Bu) < <p(d(Su, TV), d(Au, Su), d(Bv, TV), d(Au, Tv),d(Bv, Su))

= 0(0, 0, d(Bv, z), 0, d(Bv, z)) < 0(f , t, t, t, t) < t,

lere r = d(z, Bu). Therefore z = fiu = TV. Thus Aw = Su = #u = Tu = z. Since

ir of maps A and 5 are weakly compatible, then ASu = SAu i.e, Az = Sz. Now we

ow that z is a fixed point of A. If Az ^ z, then by (3.2),

d(Az, z) = d(Az, Bv) < </>(d(Sz, TV), d(Az, Sz), d(Bv, TV),

d(Az,Tv),d(Bv,Sz))

= 0(J(Az, z), 0, 0, d(Az, z), d(Az, z))

<
<p(t, t, t, t, t) < t, where t = d(Az, z).

lerefore, Az = z. Hence Az = Sz = z.

Similarly, pair of maps B and T are weakly compatible, we have Bz = Tz = z, since

d(z, Bz) = d(Az 9 Bz) < 4>(d(Sz, Tz), d(Az, Sz),

d(Bz, Tz), d(Az, Tz), d(Bz, Sz))

= 4>(d(z, Tz), 0, 0, d(z, Tz), d(z, Tz))

< 4(t, t, t, t, t) < t, where r = d(z, Tz) = d(z, Bz).

ms z = Az = Bz = Sz = Tz, and z is a common fixed point of A, B, S and T.

Finally, in order to prove the uniqueness of z, suppose that z and w, z ^ w , are common

ced points of A, B, S and T. Then by (3.2), we obtain

(z, w) = d(Az, Bw) < 0(J(Sz, Tw), d(Az, Sz), d(Bw, Tw), d(Az, Tw), d(Bw, Sz))

= 4>(d(z, w), 0, 0, d(z, w), d(z, w))

<
c/)(t, t, t, t, t) < t, where t = d(z, w).

tierefore, z = w. The following corollaries follow immediately from Theorem 3.1.

OROLLARY 3.1

et (A, S) and (B, T) be weakly compatible pairs ofselfmaps ofa complete metric space

t, d) satisfying (3.1), (3.3) and (3.10)

d(Ax, By) < hM(x, y),Q<h<l,x,y X, where

f (jc, y) = max [d(Sx, Ty), d(Ax, Sx), d(By, Ty), [d(Ax, Ty) + d(By, Sx)]/2}.

(3.10)



246 Renu Chugh and Sanjay Kumar

Then A, B, S and T have a unique common faced point in X.

Proof. We consider the function : [0, oo)
5 ~> [0, oo) defined by

2,*3,*4,*5) = A max {*i,*2,*3

Since F, we can apply Theorem 3.1 and deduce the Corollary.

COROLLARY 3.2

Let (A, S) and (B, 7") be weakly compatible pairs ofselfmaps ofa complete metric spat

(X, d) satisfying (3.1), (3.3) and (3.1 1).

d(Ax 9 By) < h max {d(Ax, Sx), d(By, 7, l

/2d(Ax, Ty),
l

/2d(By, Sx),d(Sx, Ty)}forallx, y in X, where < h < 1. (3.1

Then A, 5, S and T have a unique commonfixed point in X.

Proof. We consider the function
</>

: [0, oo)
5 -

[0, oo) defined by <p(x\ , *2, *3, *4, *s)

/z max {x\,X2, *3> */2 *4
l

/2 x$}. Since 6 T7 , we can apply Theorem 3.1 to obtain tt

Corollary.

Remark 3.2. Theorem 3.1 generalizes the result of Jungck [3] by using weakly compatit

maps without continuity at 5 and T. Theorem 3.1 and Corollary 3.2 also generalize t

result of Fisher [1] by employing weakly compatible maps instead of commutativity

maps. Further the results of Jachymski [2], Kang and Kim [8], Rhoades et al [9] are al

generalized by using weakly compatible maps.
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Abstract. Let v(n) be the number of positive numbers up to a large limit n that are

expressible in essentially more than one way by a binary form / that is a product of

t > 2 distinct linear factors with integral coefficients. We prove that

= o\

where

l/.
2

, if = 3,

-1), if > J,

thus demonstrating in particular that it is exceptional for a number represented by /
to have essentially more than one representation.

Keyword. Binary forms.

1. Introduction

In this publication and its sequel we shall fulfil the undertaking given in our earlier paper

[3] to resolve the following problems for binary forms / of degree t > 2 that are totally

reducible as a product of t (disjoint) linear factors with integral coefficients:

(i) to find an asymptotic formula for the number T(/i) = T^(n) of positive integers that

are expressible by / and do not exceed n, each such integer being counted just once

regardless of multiplicity of representations (no generality is lost by debarring negative

numbers because they can be treated by changing the sign of one of the linear factors

in/);

(ii) to find an upperbound for the number v(n) = i^(n) ofsuch integers that are represented

in essentially more than one way.

We thus shall extend to a special class of binary forms of arbitrary degree the results

obtained for cubics and certain other binary forms in former papers and, in particular, [3],

to the last of which the reader is referred for a history of the problem and the relevant

citations.

In interpreting the second quest, on which the first will be seen to depend, we must

anticipate a later discussion by saying that representations of a number by the form are

regarded as being inherently distinct if they be not associated with each other in an obvious

way through an automorphic of the form. With this appreciation, we shall shew here that

v(n) = O n-Vt+t
, (1)

040
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where

if t = 3,

t~ 1), if* > 3,

from which it will be easily demonstrated that it is extremely rare for a number representable

by / to be represented in essentially more than one way.

The derivation from this result of an asymptotic formula for T(n) principally depends
on the properties of the automorphics of the form. We therefore reserve the treatment of

item (i) for a second paper, especially as an exhaustive treatment of the structure of the

automorphics occupies some space, is in itself an interesting study, and involves ideas that

are somewhat alien to those used in the present work. Suffice it then for the time being to

say that we shall ultimately obtain an asymptotic formula of the type

T(n) - A(/)n
2
/*, (A(/) > 0)

with a remainder term similar to the right-hand side of (1).

We should mention that the advantage of our present methods - in contrast with those

often used in problems of this type
- is that they are also applicable to an inhomogeneous

situation in which the subject of study is a completely reducible polynomial of degree I

consisting of factors of the type hx +ky 4- q . It is hoped to give an account of this extensior

to our work in due course.

2. Notation and conventions

As is often the case in the algebra of substitutions as applied to forms or quantics, eacl

symbol for a variable therein will denote an indeterminate on some occasions and a special
ization of this on other occasions. With this agreement, when not denoting indeterminates

r, s, p, or are integers and m, /x with or without distinguishing marks are non-zero inte

gers; p, m are positive prime numbers. The letters A p A2 , . . . denote suitable positiv
constants depending at most on the form / under consideration; is an arbitrarily smai

positive number that is not necessarily the same at each occurrence; the constants irnplie

by the O -notation are of type A. save when they may also depend on .

Since negative integers may frequently occur, we should mention that they may b
moduli in congruences. The terms size, magnitude, modulus are used as synonyms fc

absolute value when applied to real numbers. The notation (/z, &) indicates the positiv

highest common factor (when defined) of integers h, k save when it designates a point wit

coordinates ft, k\ d(m) is the number of positive divisors of m, while dr (m) is the numb*
of ways expressing |m| as a product of r positive factors.

3. Prolegomena

Being totally reducible over the rationals with no repeated factors, the binary form / -

f(x,y) of degree t > 3 under consideration is expressed as

n (h.x+k.y)= U I/(jr,y), say, (:

where the coefficients of the linear forms L.(JC, y) are integers and where, even apart fro
order, there is a slight but acceptable ambiguity in their definitions when / is imprimiti\
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Of the invariants of the form, the only one that will be needed is the discriminant

/ \ 2

D = D(f) = n
(hikj

~ h
j

k
i)

> 0, (3)

which has the familiar property that, if / (x , >) be transformed into F(X, Y) by a substitu-

tion of modulus M, then

D(F) = M^ Z>(/). (4)

Also, since our investigation only concerns the representations of numbers by / without

regard to the size of the variables in /, we may equally well work with any form /'

equivalent to / through a rational integral substitution

(5)

with modulus

erf-yj8=l. (6)

This means, in particular, that we may certainly assume that

/i
1
,/i 2 ,...,/i ^0 (7)

because
1

,
in the opposite instance, having chosen relatively prime numbers a, y and then

/?, 8 to satisfy /(a, y) ^ and (6), we find through (5) a form with non-zero leading

coefficient /(a, y) that is equivalent to /.

Closely associated with our study of the representations by / (x , y) of positive numbers

up to a large limit n, the curve C = C(n) defined by the equation

/(*,>') = " (8)

will be encountered together with its asymptotes

I
1 (jc,;y)

=
0,...,Ij(*,;y)

= 0, (9)

which both here and in our second paper will play a not unimportant role in the elucidation

of lattice point problems involving regions bounded by C(n) . Forming 2 semi-infinite rays

emanating from the origin, these asymptotes divide the plane into 2t semi-infinite domains,

in each of which f(x, y) has a constant sign opposite to that pertaining to its neighbours.

Moreover, from an examination of the configuration formed by (8) and (9), it would be

foreseen that the major influence on our situation would be exerted by those x and y having

absolute values not substantially larger than n { /i
,
which expectation prompts us at once to

write

N = n [^ (10)

for notational convenience. Next, elaborating on this line of thought analytically (a geo-

metrical approach is more intuitive but harder to describe), we note by linear relationships

that, if

max := Q> (11)

1 With a little more effort we can shew that we may suppose, in addition, that fcp . . . , kt ^ 0.
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for integer values of x and y, then we always have

\x\,\y\<A {
Q. (12)

Also, more significantly, if here

Q > A
2
N (13)

for a sufficiently large positive constantA2
and / (x , y) obey the usually assumed inequality

< /(jc, y) < n, we see first that at least one form Lv (x, y) for v ^ it has magnitude not

less than 1 and not greater than

(n/fi)
W-l> < A~ 1/("- 1} W < A-</(

-
1} Q (14)

and then deduce from linear relationships and (11) that this form L v (x, y) is unique, all

other forms L.(x, y) having magnitudes greater then A
3 Q. Hence A^~

l Q^ } < n so that

2<A4
n 1

/(^D, (15)

while also the bound (14) is improved to

Some amplification of an introductory remark about the automorphics of the form is

needed at once even though a full examination of their structure will be delayed until our

second paper. Let now

x = otX + pY, y = yX 4- SY (17)

be a rational automorphic of /, namely, a substitution with rational coefficients a, p,y,8
with the property that /(*, >')

= /(X, Y) and, as we confirm from (4), the consequencial

property that its modulus otS - yfi is equal to 1. Points (x, y), (X, Y) with integral

coordinates that are connected by means of an automorphic of type (17) will be said to

be associated, the property of association being denoted by (x, y) ~ (X, 7). Then, since

associated points give rise to linearly connected representations of the same number, we

shall agree that representations of a number as/ (x, y) and/0*:
7

, y
f

) are deemed essentially

different if (x, y)
~

(#', y). Thus an unmistakable meaning has been attached to v(n) , to

whose estimation we now attend.

4. The sum T(n) and the equationm F(m, s) = MG(^ r
)

The treatment depends on an analysis of the sum

Hit) = 1, (18)

t)</(r,jr)s=/(/j,<T)<n

(/-.*)?(/.*)

through which v(n) is bounded by the obvious inequality

v(n) < T(n). (19)
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First, to dissect the sum into parts that can be appropriately assessed, let T, (n) be that

portion of T(n) that is yielded by values of/-, s, p, a in the conditions of summation for

which a linear factor of maximal size in the constituents of the equation

f(r,s)= [I L.(r,s)= fl >. a) = , a)

occurs on the left. Then, allowing 7^ (/? , M) to denote the contribution to
7^ (n) correspond-

ing to values of r, j, p, a for which the size of this maximal linear factor lies between M
inclusive and 2M exclusive, we have

T(n) <2T,(n)

and complete the first phase of the calculations by deducing that

T(n) <2][]rl
(/i, Af,),

in which

is less than

{

= 2
1

'

(i
> 0)

(20)

(21)

(22)

by (15).

In further preparation for the estimation of T(n) we examine the solutions of the inde-

terminate equation

f(r,s) = f(p,a)

that are constrained by the conditions

L
u (r, s) = m, L

v (p, or) = /t

(23)

(24)

for given subscripts M, i> and non-zero integers m, /i. For this purpose, recalling (7), we

employ the substitutions
2

m = h
u
r 4- ku s, s = s, (25)

(26)

to transform (23) into

which equation for brevity we express as either

or

(28)

(29)

2 Remember the remaiks in 2 about entities appearing in linear transformations. We should also comment that

it would be pendantic and unhelpful here to introduce symbols 5', a' to substitute for s t
a in (27) and in the left

sides of the right hand members of (25) and (26).
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where F(m,s) = Fu (m,s) and G(/z,<r) = G
y (/z,a)(= F

y (^,cr)) are, respectively, of

exact degree 1 in 5 and cr.

Needing to know when the curve defined by (27) for given non-zero integer values ofm
and

IJL
is irreducible over Q, we set

5 = ms', a = i^cr
1

',
X = (m/^ ^

to form the equivalent curve

A.jF(l,j
/

)~G(l 1
cr

/

)
= 0, (30)

which is certainly irreducible (indeed absolutely irreducible) when its projective completion

is non-singular and hence when the simultaneous equations

3s'
'

acr'
'

3z dz

have no non-zero solution. But, ifz = 0, the firsttwo equations only hold when s
f = a' = 0, f

whereas otherwise, since jp(z, 5*0 and G(z, a
x

) are each products of real distinct factors,

they are only satisfied when s' /z, a
f

/z each take t 2 real values, each combination of

which determines A. through the last equation because neither both 3F/ds
f

, dF/dz nor

both 3G/da\ 3G/dz can (non-trivially) simultaneously vanish. Thus reducible curves of

type (30) answer to at most (t 2)
2
values of X, and we therefore infer that (29) can only

be reducible if .

m = C/z (31)
;

for one of 0(1) sets of relatively prime (bounded) non-zero integers B = B
UjU ,

C = C
w v

.

Of special importance is the case where the left side of (29) has a rational linear factor

in s, cr, in which event for some pair B, C the left side of the corresponding equation (30) }

with A. = (C/B)
1
contains a linear factor s' = Da' + E with rational coefficients D ^ f

and E that do not depend on m and fji.
In this situation, we deduce from (31) that (28) f

holds identically whenever r

i

Bs = Ems' = C/x/ = CDvia + CE^ = CDa -f CE/ji \

and hence that the rational substitution

!

Bs = CDa + CE\i, Em = C/x-

transforms mF(m, s) into ^GG-i, a). Therefore, compounding this substitution with (26)

and the inverse of (25) in the obvious order, we are provided with a rational automorphic

of / that takes r, s into p ,
a

,
whence any solutions of (29) arising in this way flow from /

associated points (r, s), (p, a) and are of a type not counted in T(ri) and its constituent \

parts.

In combination with the special features just identified, the main instrument in our treat-

ment of equation (29) is an important theorem due to Bombieri and Pila [1] that we state

here as follows.
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Lemma 1. Let ^C^, n) be an irreducible polynomial ofdegree 8 with rational coefficients.

Then the number ofsolutions ofty(%, r?)
= in integers ofsize not exceeding z is

O z+< (z > 1),

where the constants implied by the O -notation are independent of the coefficients o

Proved by Bombieri and Pila when the condition of absolute irreducibility is imposed,

the result of the lemma.remains true if *!>( , 77) be irreducible but not absolutely irreducible

because then any integer solution is a zero of an absolutely irreducible factor of ^(^, rj) of

the form

?) + + *>
ff^, 17) (^(, >?)Q B, >?]),

where <y
j

,
. . .

,
co

e
is a basis of the field of degree e > 1 over which the factor is defined.

In fact the zeros of this are the common zeros of the system

which belong to a variety of dimension zero and limited degree since clearly ^ , . . . , ^
have no common factor. This confirms our extension of the Bombieri-Pila theorem in the

context of the present work.

For the case t = 3 we shall need to augment our armoury with an elementary estimate

that is sharper than Lemma 1 when *!>(, if) is a special type of quadratic. This is as follows.

Lemma 2. Let

be an irreducible quadratic polynomial with rational coefficients having bounded denomi-

nators and size not exceeding zAl . Then the number ofzeros ofW(i-, rj) ofsize notexceeding

Supposing first that *!>(?, 77) is absolutely irreducible and noting that we may restrict

attention to the case where it has integer coefficients, multiply it by 4a
}
a
2

to transform it

into

a2 (20 ,f + b
{ )

2 + a
{ (2a2 rj + b2)

2 -
(a2

b

with the implication that a
2b\ + a

}
b
2
-
4a^2

c ^ 0. Hence, since the solutions of

])
= are contained in those of an equation of the type

a
3
X + a4Y = a

2
b + a\b

- 4a
l
a2c t

we deduce that the solutions to be counted have cardinality

O
|
d
(a2b\

+ afil
-

cj Iog2^:|
= O

(z )

by a familiar application of the theory of quadratic forms as used for example in our paper

[2].

The case where ^ is irreducible but not absolutely irreducible is catered for by the

argument in the proof ofLemma 1 or, alternatively, is easily handled a priori in the present

framework by obvious reasoning.
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5. Estimation of T(n) and the first theorem

In treating the sum T(n) in (17), which we now rejoin, we shall first primarily address the

case where i > 3 and shall delay until later a modified argument for t = 3 that largely

depends on Lemma 2 instead of Lemma 1, although it should be stressed that nothing in

the earlier stages of the reasoning is actually invalid for the latter case.

Having indicated the sphere of operation, we first suppose that

M < A2N (32)

in the notation of (13) and consider the contribution to T\(n, M) due to those values of

r, s, p, a meeting its conditions of summation for which

max |L.(r,j)|
=

|LM (r,j)|andL M (r,j)=7n (33)
i i M

for some specified integer m of a size between M inclusive and 2M exclusive. In these

surroundings the requirement that < /(r, s) = /(/>, a) implies that

m = < O (Lu (r,s), L .(p, a))
i</<* V 7 /

so that at least one factor (LM (r, 5), L v (p, a)) on the right above is not less that

(34)

the value IJL of L y (p, or) being governed by the condition <
|/z|

<
|m| < 2M through

the definition of T[(ri). Hence, since
|s|, \a\

< 2A
{
M A^M by (12), we deduce that /

Ti(n,M)< r
B|U (n f M;m f /i), (35)

1<W ,U<^ 0<|m|,|/|<2Af

(m./x)^
1 /*

where rw v (n, M; m, /x is the number of solutions of (29) in integers s, a of size not ex-

ceeding A 6
M that do not appertain via (25) and (26) to the association (r, s) ^ (p, or).

Let us first depose of the contribution T* (n , M) to the right-hand side of (35) that relates

to values of w, v, m, /z for which the polynomial mF(m,^)/AG(/z, or) is reducible. In this

case, by (31), m and /x are connected by an equation Bu y
m = Cu v /z for one of a finite set

of pairs of coprime non-zero integers Bu v ,
CM y

. Also, the zeros ofmF(m,s) /xG(/x, cr)

are distributed among all its irreducible factors with rational coefficients, each such factor

of degree 2 or more having O (M^ \ zeros in the chosen domain of s and a by Lemma 1.

On the other hand, the zeros of any linear factors are inadmissible because we have shewn

earlier that they would not meet the stipulation that (r, s) jk (p, a). Consequently

r,*(n,M) = o(M^) (36)

by (35).

If we write

m = dm', n.
= dn', where(m', /i')

= 1 and3 d > M 1 /*-
(37)

3 When rf > 2A/ all our subsequent calculations are true but trivial, the underlying sums being of course empty.
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in the conditions of summation for the remaining portion 7^ (n, M) of the sum in the right

of (35), equation (28) takes the form

0, (38)

which with (27) and (37) implies both the congruences

<$>(m, s) = n [h^n + (h u
k

i hfi^ s\
== 0, mod /z", (39)

and

F(/x, CT)
= n \h:iji+ (h^k: h:k.\ a\ ==

0, mod m" (40)
y^ I

' \ 7 J / J

for certain coprime moduli

m" = m'/0, A*-"
= At'/a

derived from the division of w' and //, respectively, by certain (small) positive divisors

a and or of (m
;

, h^~
l

)
and

(/u/, /zf,'"

1

)-
Even though 4>(m, j

1

) and f(/z, a) are products

of rational linear factors, a full discussion of these congruences for general composite

moduli having repeated prime factors entails the same sort of difficulties that attend the

general theory ofpolynomial congruencies in one variable as expounded by Nagell ([4], ch.

Ill); these difficulties at the present juncture would in fact involve the prime divisors of the

discriminants of <I>(w, s) and F(/z, a) qua polynomials ins and a and, therefore, ultimately

and especially those of the number d. However, at the expense of a balancing slight

lengthening in procedure, we are able here to circumvent these congruential entanglements

by reducing our situation to one where the moduli are square-free.

Accordingly, for integers m" and \JL" in (40) and (39) whose expressions in terms of

prime factors are stated as

m" = n p
h

, n" = n ur ft
, say,

p w

we shall first use the positive square-free numbers

while later we shall need numbers W4, /Z4, that similarly originate from m', \jt!
and bear no

relation to a and a; finally, for each given number of type m$ or /Z4, we let m$ = ms(m^)
or ju<5

= ^5(^4) denote positive numbers whose prime factors are divisors of 77x4 and /X4,

respectively. Then, the procedure being amply illustrated by reference to the congruence

(40), all solutions of this in a satisfy the corresponding congruence taken to the modulus

m3, the number of incongruent solutions of which we denote by /c(m^). Since K(m^) is

multiplicative, it suffices to consider K (p) when p / D because in the contrary instance we

are content with the trivial estimate *:(/?)
< p. Thus we may assume that the coefficient

of a in each factor of F(/z, a) in (40) is indivisible by p and deduce that each such factor

is divisible by p when a belongs to just one residue class, mod p. Consequently, we see

that tc(p) does not exceed p or t \ according as p\D or p / D and conclude both that

=
(
-

I)
w(m3) = (m 3 ) (41)
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and that a similar result holds for the other congruence (39).

In the current circumstances the solutions of (38) in s, a have been shewn to be distributed

into O(M ) sets, each of which consists of pairs of numbers of the type

s=sQ +s { iJL 39
a=a

Q + a
{
m

3 (42)

for certain positive numbers $
,
a
Q
not exceeding iv m 3 respectively. The relevant con-

tribution to T
UtV (n, M; m, /x) corresponding to each set is then obtained by substituting

(42) in (38) to obtain an irreducible equation is s
{

,
cr

{
of degree I 1, of which, being

constrained by the inequalities

< <
/x3 /i3

the number of qualifying pairs of zeros is

O M max
,

= O

<
m m

/ 1 1 N

( , )

V/^3 m3/
max

/ 1 1 xVtf-iA
( , ) )

\M4 m4/ /

by Lemma 1. Therefore, taking stock after this, (41), (35), and (37), we conclude that

max
, (43)

/ i 1 \

(JL,JL)
\m4 ^4/

from which the estimate for 7^(n, Af) will flow by the way of the simple

Lemma 3. Let q denote any positive integer composed entirely ofprime factors (possibly

repeated) that divide a given positive number (possibly I) not exceeding z. Then the number

ofq not exceeding z is O (z
f
).

This is a special case of the Lemma 4 in [3]. Evidently the inner sum in (43) does not

exceed

2 E
Q<m',ii'<2M/d 0<m'<2M/d

0<m4<2M/d

-i/C^-D+A

-i/(^-D )

with the implication that
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wherefore on taking this with (36) we have

(44)

for M < A
2
N as in (32).

Similar principles are successful for the estimation of T
{
(n, M) in the complementary

range A^N < M < A
4
n 1 /^~" 1) but are less straightforward to apply. Now, by the definition

of T\(n, M) and (16), we first modify (33) by using the (unique) subscript u for which

Lu (r, s) equals a non-zero number m whose size does not exceed

MI = A
5n/M

t- 1 < M, (45)

even though the previously used inequalities for s, a are still valid. Next, following previous

thinking, we find there is a subscript v for which the number JJL
= L

y (/>, a) possesses the

properties

m\
l/t and \fi\<2M. (46)

This clears the way for a reconsideration of T^(n t M) because the assessment

(47)
\ /

is a corollary of (3 1).

The new surroundings affect the sums bounding Z^(n, M) more in regard to the condi-

tions of summation than the summands therein. In the former we still have the first parts

of (37) but replace the last part by d >
\m\

{fi
with the result that

0<in'<Mf /d, 0<m f <di~ i

1 0<^<2M/d.

Hence, emulating the derivation of (43), we have

/

r/(n,M) = O

= O (*~ 1)+

J' say, (48)

V d
d
l

and then go on to treat^ for the two cases d > M\
I<L and d < M\

ft
. In the earlier

instance, by Lemma 3 and then (45), we get

1Ed
-

2Mj

~~~d~
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= O

and in the latter instance similarly obtain

after replacing M//d by d
~3

as a limit for yu/ in the summation. Therefore equation (48)

can be developed into

Af) = O

which in combination with (47) furnishes us with the estimate

r,(n, Af) = O

(49)

(50)

that is the complement of (44) for the range A2
N < M < A

4n
ly/(

~" l\

The first part of our initial theorem follows at once because the exponent ofM in (50) is

negative when t > 3. Indeed, by embodying (44) and (50) in (20) and then recalling (10),

we deduce at once that

or

T(n) = O

= o

T(n) =

Q

and so estimate v(n) because of (19).

When t = 3 it is only the last part of the analysis leading to (50) that fails to be effective.

Yet, ifwe take the opportunity that arises here to use Lemma 2 instead ofLemma 1 , we can

not only produce a workable alternative to (50) but find all the relevant revised estimates

in the work combine to yield the board

7 = O (52)

that is better than what would be got by formally putting - = 3in(51). Moreover, although
the general structure ofthe previous method is retained, there is the important simplification
that all references to the congruences (39) and (40) and to Lemma 3 are avoided.
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To indicate briefly what is to be done, we note that revisions are only needed when the

polynomial m'F(m, s) //GO, a) in 5-, a is irreducible and hence when it has O (M6
)

zeros of size not exceeding 2A
{
M by Lemma 2. Hence we can improve (43) to

= Me

t/>A/V 0<m',ii'<2M/d

and thus (44) to

Similarly (48) is replaced by

= o
()<m e

<Mf/d,cl
e- 1

which leads to the counterpart

!*(, M) = o

of (49). The exponent ofM in this being ~, we then sum overM as before to obtain (52)

in place of (5 1 ) for t = 3 and thus complete the proof of

Theorem 1. Let f(x, y) be a totally reducible binaryform ofdegree t with integral coef-

ficients and non-zero discriminant. Then, if\)(n) be the number ofpositive integers up to

a large number n that have essentially more than one representation by /, we have

v(n) == O

where

l/^
2

, if I = 3,

(I
-

2)/t
2
(t
-

1), // t > 3.

6. The second theorem

To shew it is exceptional for a number to be represented by /(jc, y) in essentially more than

one way we must foreshadow a simple aspect of our following paper by defining r (m) to

be the number of ways of expressing the positive number m by /(*, y), where of course

r(m) = O {dt (m)}
= O (m

6

)
. (53)

Let us now take one of the semi-infinite triangular regions described in 3 in which /(jc, y)

is positive and consider points (x , y ) within having integral coordinates for which
|

x
\
,

|
y

|

<
A

8
n l/ for a suitably small positive constantA 8

. ThenO < /(*, y) < n for all these points,

the cardinality ofwhich exceeds A9
n2^ by a standard lattice point argument. Consequently

r(m) > A
8
n2/*
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and thus, by (53),

T(n) > A(0/r T r(m)

whence, on comparing this with Theorem 1, we gain the following.

Theorem 2. Almost all the positive numbers represented by theform /(;c, y) in Theorem

1 are represented thus in essentially only one way.

References

[1] Bombieri E and Pila J, The number of integral points on arcs and ovals, Duke Math. J. 59

(1989)337-357

[2] Hooley C, On the representation of a number as the sum of a square and a product, Math.

Zeitschr. 69 (1958) 21 1-227

[3] Hooley C, On binary cubic forms: II, J. ReineAngew. Math. 521 (2000) 185-240

[4] Nagell T, Introduction to Number Theory (Stockholm: Almquist and Wiksell) (1951)



Proc. Indian Acad. Sci. (Math. Sci.), Vol. Ill, No. 3, August 2001, pp. 263-269.

Printed in India

Stability of Picard bundle over moduli space of stable vector

bundles of rank two over a curve

INDRANIL BISWAS and TOMAS L GOMEZ

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,
Mumbai 400 005, India

E-mail: indranil@math.tifr.res.in; tomas@math.tifr.res.in

MS received 14 September 2000

Abstract Answering a question of [BV] it is proved that the Picard bundle on the

moduli space of stable vector bundles of rank two, on a Riemann surface of genus at

least three, with fixed determinant of odd degree is stable.

Keywords. Picard bundle; Hecke lines.

0. Introduction

Let X be a compact connected Riemann surface of genus g, with g > 3. Let be a

holomorphic line bundle over X of odd degree d, with d > 4g 3. Let M denote the

moduli space of stable vector bundles E over X of rank two and f\"E = . Take a

universal vector bundle E on X x M. Let p : X x M > M be the projection. The

vector bundle P := p^ on M is called the Picard bundlefor M. In [BV] it was proved

that the Picard bundleP is simple, and a question was asked whether it is stable. In [BHM]
a differential geometric criterion for the stability ofP was given. But there is no evidence

for this criterion to be valid.

In Theorem 3.1 we prove that the Picard bundle P overM is stable.

1. Preliminaries

In this section we prove some lemmas that will be needed.

A vector bundle E of rank two and degree d is called superstate if for every subline

bundle L of E the inequality

deg(L) < - - I

is valid. Clearly, a superstable bundle is stable. The first lemma ensures existence of

superstable bundles.

Lemma 1.1. There is a nonempty open subset U ofM corresponding to superstable

bundles.

Proof. Here we need g > 3. Let T be the subset of M of vector bundles that are not

superstable, i.e., E T if and only if there exists a subline bundle L such that deg(L) >
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(d
-

l)/2. Since E is stable, deg(L) < d/2, and since d is odd, deg(L) = (d
-

l)/2.

There is a short exact sequence

_* L * * f (g) L" 1 * 0.

Note that the quotient is torsion free (hence a line bundle) because E is stable and L has

degree (d- l)/2.

Therefore, all vector bundles in 7 can be constructed by choosing a line bundle L

of degree (d l)/2 together with an extension class in Ext J

(f <8> L" 1

, L). It follows

immediately that T is a closed subset ofM with dimension

dim(T) < g + h [(r {

<8> L 2
)
- 1 = - x(r l L2

)
-

1

= 2g
-

I < 3g
- 3 = dim(M),

and hence the complement U := M\T is open and nonempty. D

Lemma 1.2. Choose m distinct points {x\, ...
t
xm ] C X, with m > d/2. Let E M

be a vector bundle and ^ s 7/(E) a nontrivial section. Then s cannot simultaneously

vanish at all the chosen points {*!,...,*,}.

Proof. If s vanishes at all chosen points x\ ,
. . .

, ;c,n , then 5- : O > E factors as

s : O > (-!>)
<-

,

where D is the divisor D x\ H-----h */rt
. Since deg E(D) = d 2m < 0, the stability

condition of E forces s to be the zero section. D

2. Hecke lines

Let U C M be the open subset of superstable vector bundles (Lemma 1.1). Take a point

x e X. Let E e U and / C Ex a line in the fiber of E at x (equivalently, / e f(Ex )).

Define the vector bundle W by

* W(-jc) > * EJC// > 0.

The vector bundle W(x) is called the Hecke transform of with respect to x and /. The

exact sequence implies A
2^ = ? >(*). The vector bundle W is stable. Indeed, a

line subbundle L of W is realized as a subline bundle of E(x) using the homomorphism
W > (*): Now the superstability condition of E says

In other words, W is stable.

We can reconstruct back E from W by doing another Hecke transform, and E is given

as the middle row of the following commutative diagram:
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T t
* Ex /l -+ Wx > C,

T t I

* E * W -^V Cx ^ (1)

T T
W(-jc) = W(-x)

T T
o o

Here Cx is the skyscraper sheaf at x with stalk C. Instead of /o : W > Cx we may
consider an arbitrary nontrivial homomorphism

/ e Hom(W,C^) = Hom(Wx ,Cx ) = W*

and define Ef as the kernel

Q+ Ef W-+Cx -+.0. (2)

This way we obtain a family of vector bundles parametrized by the projective line P(W^),
with EfQ

= E. More precisely, there is a short exact sequence on X x P(W/),

o^-> *jw -4
0^,^(1)

-* o,

where TTX : X x P(W^) >- X is the projection to X. It has the property that if / e W^
and we restrict the exact sequence to the subvariety X x [/] = X of X x P(W^), then a

sequence isomorphic to (2) is obtained.

For every / e W^ 9 the vector bundle Ef is stable. Indeed, if L is a subline bundle of

Ef, then by composition with the homomorphism Ef > W in (2) it is a subline bundle

of W. The stability condition for W says that deg(L) < (d + l)/2. Since d is odd this is

equivalent to

Note that if is stable but not superstable, then W is semistable but not necessarily stable.

The semistability condition is not enough to ensure the stability of Ef for each /.

The universal property of the moduli space M gives a morphism <p : P(W^) >_ M
for the family E.

DEFINITION 2.1

The data consisting of the pair (P(W^), <p) is called the Hecke line associated to the triple

(,*,/)

Since <p is determined by W and P(W^), the projective line P(W^) will also be called a

Hecke line. The Hecke line P(W/) will also be denoted by PE % *, / or simply by P ifthe rest

of the data is clear from the context. Note that there is a distinguished point [/o] E P(W^)
that maps to E e M.

For any / e P(W^), let // denote the kernel of the homomorphism (/)* > Wx of

fibers in (2). Clearly, the images ofthe two Hecke lines Pg f Xy / and P /> Xi if
inM coincide.
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Therefore, for each E e M , there is a three parameter family of Hecke lines whose image

contains E. On the other hand, if we identify two Hecke lines if their images in M coincide,

then through each point ofM there is a two parameter family of rational curves defined by

Hecke lines.

Since the morphism (p is given by the universal property of the moduli space, the pullback

of the universal bundle 8 on X x M to X x P by the map idx x <p is isomorphic (up to a

twist by a line bundle coming from P) to E. In other words, there is an integer k such that

(idx x<p)* > Wm0p (k) + OXXP (k+l) > (3)

is an exact sequence of sheaves on X x P; Op (I) is the tautological line bundle on

p = P(W^). Applying (7rp )*, where np is the projection of X x P to P, the following

sequence

> p*P * ff(1V) ?/>(*) />( + 1) (4)

on P is obtained, where P is the Picard bundle. Since d > 4g 3, the stability condition

ensures that H l

(X, E'} vanishes for every E' e M. -*

Let W denote the rank of P. The following proposition describes the pullback (p*P.
|

PROPOSITION 2.2 1

The pullback (p*P of the Picard bundle P to the P = PE , Xj / satisfies
'

<p*P ^ P (k)
N~ l Op (Jk

-
1). (5)

'

Hence (p*P has a canonical subbundle

P (k)
N~ l ^ V <-> <p*P.

LetV C HQ
(X, E) be thefiber of this subbundle over the distinguished point [fo] e P.

Thens e Vifandonlyifs(x) el. If

Proof. Grothendieck's theorem [Gr] says that a vector bundle on P 1

is holomorphically i

isomorphic to a direct sum of line bundles. Hence

(p*P ^ P (a {)"-0P (aN ).

The sequence (4) gives A(W) = 1 + N, 5Z ai
= Nk 1 and a/ < A: for all i . Combining f

these, (5) is obtained immediately.

Now we are going to identify the subbundle V. From (3) the following commutative

diagram is obtained

f
* (idx x?>)* > W0p (k) * Oxxp(k+l) +

*

T T

T T
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applying (JT^)* we obtain the following commutative diagram on P:

* <P*P > HQ(W)Op (k) > Op (k+l) >

T T

T T

SSnce <p*P = CM*)"- 1 OP (A:
-

1), we deduce that

V = H*(W(-x))0P (K) C ^*P.

Let V denote the fiber of V at the point [/ ] P. So, V c #(). Now, s e V if and

if j e //(W(-jc)) C #(). Finally, taking global sections for the diagram (2) it is

ey to see that this is equivalent to the condition that s(x) e I. This completes the proof
o:flfthe proposition. D

Proposition 2.2 has the following corollary.

OOOROLLARY 2.3

TWe morphism <p is a nonconstant one.

Indeed, if (p were a constant map, then the vector bundle (p*P would be trivial.

3, Main theorem

In ; this section we will prove the main theorem of this paper.

.1. LetP be the Picard bundle on the moduli spaceM ofstable bundles ofrank

IMB andfixed determinant ofodd degree d with d > 4g 3. Then P is stable.

fwxof. Since P is a vector bundle, to check stability it is enough to consider reflexive

subosheaves of P. Let

le^areflexive subsheaf ofrankr < N = rankCP). Fix m distinct points x\, ... ,xm in X,
ifiCHim > d/2.

We need the following lemma for the proof of the theorem,

\s.mma 3.2. There is a nonempty open set ofM such that ifE is a vector bundle corre-

to a point ofthat open set, then E has thefollowingfour properties:

(i)
E is superstable\

(ii)
? is locallyfree at E\

(iii) TE -* PE is an injection',

(nr) Letxi be one ofthefixedpoints andl any line on E
Xi

. LetP = PE, Xi , / be the associated

Hecke line. Then T is locallyfree at all points of the image of<p:P > M.
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**, m k satisfied is open and nonempty by Lemma

Proof. Tne subset U ofM^^^^l satisfied and U" C U> the subset

1 T. Let U' C U be the subset where^PW**^ .

g a nonempty open subset ofM .

where furthermore property (in) is sausn . ^^^^^ since ^ ig reflexive>

s c M denote me subvanety^wn^^ ofaiiHeckei
.

nesp ^ ;)WhenEruns

codimSj > 3 - 1

Finally consider the union

From the fixed set

section s does not
;

vamsh at . The

Let Z C Ex/ be a line such that s (x,)

with this data.

^

by 1-2

p =^ defined

free on all points of the image of

.

g

(B
"-' - V c

Propo

By Grothendieck's theorem

j>O.Now,
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Abstract. Let G be a connected semisimple affine algebraic group defined over

C. We study the relation between stable, semistable G-bundles on a nodal curve Y
and representations of the fundamental group of Y. This study is done by extending
the notion of (generalized) parabolic vector bundles to principal G-bundles on the

desingularization C of Y and using the correspondence between them and principal

G-bundles on Y. We give an isomorphism of the stack of generalized parabolic
bundles on C with a quotient stack associated to loop groups. We show that if G is

simple and simply connected then the Picard group of the stack of principal G-bundles

on Y is isomorphic to m Z, m being the number of components of Y.

Keywords. Principal bundles; loop groups; parabolic bundles.

0. Introduction

Let G be a connected semisimple affine algebraic group defined over C. Let Y be a reduced

curve with only singularities ordinary nodes yj , j = 1, ...,/. Let Yit i = 1, . . .
,
/ be the

irreducible components of Y and C/ the desingularization of F/ . Let C denote the disjoint

union of all C,-. We introduce the notions of stability and semistability for principal G-

bundles on Y (2). If Y is reducible these notions depend on parameters a = (a\, . . . , a/).

The study of G-bundles on Y is done by extending the notion of (generalized) parabolic

vector bundles [Ul ] to generalized parabolic principal G -bundles (called GPGs in short) on

the curve C and using the correspondence between them and principal G -bundles on Y (2.4,

2. 1 1). We study the relation between stable, semistable G-bundles and representations of

the fundamental group of Y . Let p : n\(Y) -> G be a representation of the fundamental

group jr^F) of F in G. For i = 1, ...,/, let // : ^i(F/) -> JTx(F) be the natural maps,

Theorem 1. (I) IfY is irreducible andp \ it\ (C) is unitary (resp. irreducible unitary) then

the principal G -bundle on Y associated to p is semistable (resp. stable). The converse is

not true.

(II) IfY is reducible then there exist infinitely many I-tuples ofpositive rational numbers

a\, . . .
,
a i with Y^ a

i
= 1 depending only on the graph of Y and g(Cj) such that for

a = (a\ ,
. . . , a/) thefollowing statements are true.

(1) IfPd == Pi I ^iCQ) ore unitary representationsfor all i, then the principal G-bundle

T on Y associated to p is a -semistable.
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(2) Ifpci are irreducible unitary representationsfor all i, then the principal G -bundle jP <

associated to p is a -stable.
:

Let Aff/k be the flat affine site over the base field k = C, i.e. the category of

fc-algebras equipped with fppf topology. Let R denote a ^-algebra, C^ R := C {
x spec R

and C* = C*x spec R. For each i, fix a point /?/ 6 C
;

- such that /?/ maps to a smooth *
I

point of Y. Let q\ be a local parameter at the point Pi,i = 1, ...,/. Let LG,; denote I

the fc-group defined by associating to R the group G(tf(0/)). Let L+
f (resp. L') be

the &-group defined by associating to R the group G(#[[^]]) (resp. G('r (C?^, Oc^))).
Define LG = n^W-^ = UtLc.r

LG = H4' - Let

f[G(C). !

The indgroup L acts on G^. Let L^\Q^^ be the quotient stack. Let Bun^P^ denote

the stack of GPGs on C (this is isomorphic to the stack of principal G -bundles on F.)

Theorem 2. There exists a canonical isomorphism ofstacks

Moreover the projection map Q^^ ~~^ Bun^^ w locally trivialfor etale topology.

Theorem 3.I/G is a simple, connected and simply connected affine algebraic group then

(1)

Pic(Bun^) e/ Z.

(2) IfY is irreducible and C has genus > 2, then

ss
Z,

where ss
denotes semistable points.

The moduli spaces of principal G -bundles on singular curves are not complete. In case ^ -

G = GL(n) (resp. G = O(ri) t Sp(2n)) the compactifications of these moduli spaces IT

were constructed as moduli spaces of torsionfree sheaves (resp. orthogonal or symplectic

sheaves) on Y . For a general reductive group G neither the moduli spaces nor the compacti-

fications have been constructed on Y yet. One way to construct (normal) compactifications

of these moduli spaces is to use GPGs on C
,
for this one needs a good compactification of

[

G. IncaseG isGL(n), SL(n), 0(n) or Sp(2n) we use a compactification F of G obtained !

by using the natural representation and construct the normal compactifications of moduli
J

spaces ([Ul, U2, U4]). In case G is of adjoint type we use the good compactification F of

G defined by Deconcini and Procesi. We define 'a compactification' Bun^P" of Bun^
using F and show that it is isomorphic to the quotient stack L^\QG c x

]~]
. F. We prove

that if further G is simple and simply connected then Pic Bung*" 0;Z ;
-Pic F ^

(Theorem 4).

'

f

1. Quasiparabolic bundles

1.1. Notations. Let the base field be C (or an algebraically closed field of characteristic

0). Let /, / be natural numbers. Let F be a connected reduced (projective) curve with
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ordinary nodes as singularities. LetF/, / = !,..., 7 be the irreducible components of Y. Let

y' = y - {singular set of Y }, Y! ~ Y ! O Y-
t
for all i. Let C be the partial desingularization

of Y obtained by blowing up nodes
}'y

, j = 1, . . .
, J. Assume that C =

[]{C; (a disjoint

union). Let C( = C/ sing(C/). Fix an orientation of the (dual) graph of Y. In the graph
of Y,

>'y corresponds to an edge. The initial and terminal points of the edge correspond to

curves F/Q-)
and Yt^ respectively, one has /(;')

= t(j) if the edge is a loop. Let*/ 6 C
/(y)

andzy 6 Q (y)
be the two points ofC mapping to

y>j
e Y and Dj = Xj +Zj t j = 1, ...,/.

For each j, Dj is an effective Cartier divisor on C supported outside the singular set of C,

We remark that the parabolic structure we shall define in 1.2, 1.4 depends only on these

divisors and not on the choice of orientation. Let G denote an affine connected semisimple

algebraic group over C (or an algebraically closed field of characteristic zero). Let g denote

the Lie algebra of G ,
n = dim g. A principal G-bundle E on C is an /-tuple (Z^)> E\ being

a principal G-bundle on C
r

.

DEFINITION 1.2

A quasiparabolic structure GJ on E over the divisor Dj consists of a G -isomorphism
a
j

: E
i(n,xj

-* E
t(j),Zj

where E/ iJC
denotes the fibre ofE{ at*. Let or be the ./-tuple (ay)y,

then (J5, a) is called a quasiparabolic G-bundle, called a QPG in short.

Remark 1.3. A family (, (cry)) of QPGs consists of a family of principal G -bundles ->

C x T together with an isomorphism of G -bundles oy :
\Xj xT~* \zjxT

for each

j =
1, . . .

, J. Given a family of QPGs (5, (ay))
- C x r and a representation p :

G ~> GL(V) one can associate to it a family ((V), F/(V))
- C x T of generalized

parabolic vector bundles [Ul] as follows. (V) = x
p V is a family of vector bundles.

For each 7, or,-
induces OT

V|I/
: (V) | ^ x T -> f(V) |

zy
x T. Let F

;-(V)
= graph

j in f(V) I xj
x T e f(V) | zj

x T. Then F/(V) and (2j(V)
= (f(V) I ^ x T

zy
x T)/Fj(V) are vector bundles on T of rank = dim V.

1.4. Let a be a real number, < a < 1. Taking p the adjoint representation of G we

get the associated vector bundle (g). Then (g) is the adjoint bundle of E and we often

denote it byAd. The isomorphism GJ gives an isomorphism E(g)Xj
> E(g)z . and hence

determines an n-dimensional subspace of E(g)Xj E(g)Zj
= g g again denoted by or,-.

Let tj Endc(g g) such that T
;

- acts on cr
;

-

by ot.Id and ty restricted to a complement

of
cry

in g g is zero. With respect to a suitable basis, TJ
= f

n
n

n j
,
In being the unit

matrix of rank n. We fix a conjugacy class of ty . (This is an analogue of weights in case of

(generalized) parabolic vector bundles, the weights in this case being (0, or) for the vector

bundle E(g) with induced (generalized) parabolic structure).

We want to define the notions of stability and semistability for QPGs. Since the def-

initions are rather complicated in the general case, we first define these notions on an

irreducible smooth curve C (1.5, 1.6) and later extend these notions to the general case

(1.7,1.8,1.9).

Assume that C is a nonsingular irreducible curve. Let P be a maximum parabolic

subgroup of G and p its Lie algebra. Let E/P = E(G/P) be the associated fibre bundle

with fibres isomorphic to G/P. Let s : C -+ E/P be a section i.e. a reduction of

the structure group to the maximum parabolic subgroup P. Let Qj be the stabilizer in
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GL(g e g) of the subspace E(p)Xj E(p)Zj =ppCgg= E(g)x . E(g)Zj
. Let

Hi denote the determinant of the action of Qy on g/p g/p. Let
Jtj

be the form on the

Lie algebra L(gy) of gy corresponding to My. LetTy be a conjugate of Ty inL(G/)-

DEFINITION 1.5

A QPG (E, (cr,-))
is a-stable (resp. a-semistable) if for every maximum parabolic P of G

and every reduction s : C -
/P, one has

. >)7. ranks*r(G/P).

Here r(G/P) is the tangent bundle along the fibres of /P - C .

i

Lemma 1.6. Wfr/z f&e <2&0v notations, the condition (*1) w equivalent to thefollowing

par deg E(p) < (resp. <)aJ. rank (p), (*2)
)

where par deg (p) denotes theparabolic degree ofthe subbundle E (p) ofthe (generalized) I

parabolic vectorbundle (E(g), (a)) with weights (0, a), <2C/z weight being ofmultiplicity n. f

I

Proo/. One has s*T(G/P) = E(g/p), EyFyOr/)
= parabolic weight of the quotient )

bundle (g/p) of ((g), (0y)). Thus (*1) can be restated as par deg(g/p) > (resp. I

>) aJ rank(g/p). Since G is semisimple, deg^(g) = ([Rl], Remark2.2) and hence par ;

deg^(g) = otJ rank E(g). The result now follows from the exact sequence -* E(p)
- r

E(g) -> E(g/p) -> using the additivity of parabolic degrees for exact sequences.
<

1.7. Semistdble QPGs on reducible curves. Let the notation be as in 1.1. We consider

QPGs (E, (cry))
on C with parabolic structure over Dj

=
Xj + Zj, j =

1, . . .
,
J. Let

{tf/l, {Ty}, a, a be as in 1.4. For i = 1, . . .
,
7 let P/ denote either a maximum parabolic

subgroup of G or the trivial group e or the group G itself. We need to consider the

cases P = {e} or G also, because a sub-object N = (fy) of E = (*/) may have the

property that for some i, NI =
/ or N/ is trivial. For an /-tuple P = (Pi, . . .

, P/), let

ri
= dim p/, n/

= dim g/p/ for all z. For j = !,...,/ denote by 2y the stabilizer in

GL(g0 g) of the subspace p/(y) pt^ C g g. Let
/xy

be the determinant of the action of

Qj on g/p/ (y) g/pf (y-)
and

/Iy
the form on the Lie algebra L(Qj) of 2 / corresponding to

Aty. Letfy be a conjugate of
ty in L(Qj). LetC

f

' =
C/-sing(C/),^ : C[

-* (G/P/) | C|

any section, 5- = (j lt . . .
, j/). Let S^ = the largest subsheaf of Ad E

\
C

f such that

S
Si I q =

^(BCpf)) I C/.LetS,
= (5Jl ,...,5,/ ) f x(SJ ) = ^.x(^),x(Ad)=

(Ad
*

| C/). Let Q
iV/

be the (smallest) torsion free quotient sheaf of Ad E
\
C

t with

c = j*((g/P/ )) I
. Let G, = (gj )

DEFINITION 1.8.

A QPG (, (o-y)) is (a, oO-semistable (resp. (a, a)-stable) if for every reduction s of the

structure group to P such that P/ ^ G for all i and P/ ^ {2} for all i one has
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;/*,> (>>X(AdE)//i-a.7. (*!')

Lemma 1.9. (a) The condition (*!') <at&0ve w equivalent to thefollowing condition

(*20z/r/
< (<)x(Ad )/n

-
J,

(b) /fC is irreducible and smooth, then (*2
7

) is same as (#2).

Proof, (a) The quotient Q s of E(g) has induced parabolic structure overDy, 7 = 1, . . .
,
J

given by (*)*; (Q s ) Zj
D Fj(Qs ) D with weights (0,a), where Fj(Q s ) is the

image of then-dimensional subspaceo/ of (E(g)Xj E(g) Zj ) in ((Qs )Xj (Q.v)zy
-)- Let

fj(Qs )
= dim Fj(Qs ). By definition, the parabolic weight of ^ = or .fj(Qs)- Define

Qj(Qs} = /(j) + n
^(/)

~~
fj(Qs), it is additive for exact sequences. Then one has

parabolic weight of Q f
= a(n/ (y) 4- n /(y)

-

- n

Note that since Q s
& E(g/p) outside sing(C) and all Dj avoid sing(C), one has parabolic

weight of Qs the parabolic weight of (g/p) = /"^ .//(*./) Hence, VJ J!J(TJ)

^2 .a(n/(y) H-n r (y))
= a^ .qj(Ss )

- a/n. Using this equality and 0,-r/
= w ^ fli-n;

the first part of the Lemma follows.

(b) IfC is a smooth irrreducibie curve then one has/ = 1, 5^ =
= nX(-Sj) =deg(J5(p))-fri(l g),y"^ a0/(S y )

= Y^ c
^

'y
z

'./

parabolic weight (&) . Hence the left hand side of (*2') becomes equal to par deg (p)/rank

E(p) - 2a / + (1
~

g). The right hand side of (*2
7

)
= (1

-
g)
- aJ. Hence the result

follows.

2. Principal G-bundles on a singular curve F

2. 1 . We want to introduce the notions of stability and semistability for principal G-bundles

on singular curves. On a smooth curve there are different definitions of stability and

semistability of a principal G-bundle, but they all coincide [Rl]. The problem is that

this is not true on a singular curve. The choice of a representation of G used to define

semistability does not matter on a smooth curve essentially because the associated bundles

(tensor products etc.) of semistable vector bundles (in characteristic 0) are semistable.

This fails if the curve has singularities. For example, if F\ is the semistable vector bundle

of rank 2, degree (on an irreducible nodal curve 7) constructed in Proposition 2.7 of
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[U3] then F\ F\ and S2F\ are not semistabie [U5]. This is seen by checking that the

corresponding generalized parabolic vector bundles on C are not semistabie. Similarly one

can show that if F2 is the stable vector bundle of rank 2m constructed in Proposition 2.9,

[U3] then FI <g> FI is not semistabie for all m > 2 [U5].

We give here a notion of sernistability for principal G-bundles on singular curves (see

Definitions 2.2, 2.3, 2.9, 2.10) which is intrinsic and seems most useful. We first assume

that Y is irreducible (the case of a reducible curve will be dealt with later). Let Y f = Y

{singular set of F}, i : Y' - Y inclusion map. Let G be a connected reductive algebraic

group. Let P be a maximum parabolic subgroup of G and p the Lie algebra of P. Let

f be a principal G-bundle on Y and jF/P = F(G/P) the associated fibre bundle with

fibres isomorphic to G/P. Let s
f

Y' - (F/P) \
Y' be a reduction of the structure

group to P (i.e. a section of F/P restricted to Y 1

). Let T(G/P) denote the tangent

bundle along the fibres off/P -> Y. Let Qs
> be a torsion free quotient of ^(g) such that

Qs
>

|

Y 1 = (s'Y(T(G/P)) |
F' and no further quotient of Qs

> has this property. Let Sj be

the maximum subsheaf off(g) containing (s'^Ffo).

DEFINITION 2.2

F is stable (resp. semistabie) if for every reduction s
f

of the structure group to a maximum

parabolic P (over y'), one has degree Q,y/ > (resp. > 0).

Lemma 2.3. The above definition is equivalent to the following: F is stable (resp. semi-

stable) iffor every s
f

as above, degree Ss f < (resp.
< 0).

Proof. The exact sequence
- p -> g ~> g/p -> gives an exact sequence -*

j'*.F(p) -* AdJ7
|

r - s'*T(G/P) -+ and hence -
S,/

- AdJ^ -> Q5
/ -> 0.

Noting that Ad f has degree zero, the lemma follows.

Wenow assume that Y has only ordinary nodes yi, . . .
, yj as singularities and p : C -+ Y

is the normalization map, Dj = p~
l

(yj)
= Xj+Zj t j = 1, ...,/. Then giving a principal

G-bundle J7 on F is equivalent to giving the principal G-bundle p*J
1
" = on C together

with a G-isomorphism or/
of the fibres E

Xj
and

Z;
. of E for each 7 . The isomorphisms ay-

induce isomorphisms E(g)Xj
-> E(g)ZJ

. We denote the graph of these isomorphisms also

by a/.

PROPOSITION 2.4

(E, (cry ))
M- l-stable (resp. l-semistable) ifand only if the corresponding G-bundle T on

7 w stable (resp. semistabie).

Proof. Suppose that f is stable (resp. semistabie). Let s : C - E/P be a reduction

to a maximum parabolic subgroup P. Since C U/D/ y U/y/, under p and

p*jF, the section s gives a reduction s
1

: Y f = y Uy-yy -> (F/P) |y. One has the

exact sequences -> ^(g) ~> p*s*E(g) -> jQjE(g) -> 0, -> S,/

jQjE(p) -> where 2y(^(g)) = (**&)*,- e**E(g)zy )/ay,

J*(p)Zy)/(a/n(j*:(p)^
free sheaf obtained from ,y*(g/p) with induced parabolic structure (viz. the image of a/
in E(g/p)xj E(g/p)Zy , V/). The second sequence implies that par deg s*E(p) - J rank
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s*E(p) = deg (Ss<). Sincef is stable, deg(5y/) < 0. The result follows from Lemma 1.6.

The converse follows similarly working backwards in the above argument. One has only

to note that if s
f

: Y' - CF/P) \'Y is a reduction to a maximum parabolic P, then s
f

gives a

reduction s : C -> E/P (as G/P is complete). In case of semistability one has to replace

strict inequalities in the above proof by inequalities.

2.5 Bundles associated to representations

The fundamental group n \ (F) of Y is isomorphic to H = n \ (C) *Z * ... * Z, a free product

of TTi (C) and J copies ofZ (3.5, [U3]). To a representation p : H -> G we associate aQPG
(Ep , (a/)) as follows. Ep is the principal G-bundle on C associated to the representation

pc = p \ 7t\(C). If C is the universal covering of C, then Ep
= C x p G. Fixing

suitably points x'j
, z'. of C lying over *y , zy respectively, the fibres (Ep )Xj

and (Ep ) Zj
can

be identified to G. Letgy = p(ly), ly denoting the generator ofthe y'thfactorZ inH, Then

gy gives an isomorphism A'
;

. : ( p )^.
= (Ep ) zy

and hence Ay : (Ep (g)) Xj
= ( p (g))2r

Define ay
= graph of A/. If ,F is the principal G-bundle on Y obtained by identifying

fibres of Ep at
jcy

and zy by gyVy , then one has T =
J^,, the G-bundle associated to the

representation p of 7Ti(F) and Ep
=

/?*^>.

PROPOSITION 2.6

7fpc z^ irreducible unitary (resp. unitary) then Tp is stable (resp. semistable).

Proof. If pc is unitary, so is Ado^c and hence J^Adop
= -^(g) is semistable ([U3],

Proposition 2.5). Therefore jFp is semistable.

Ifpc is irreducible unitary, then by Theorem 7.1 of [Rl] (in our case E(p,c) = Ep ,
c =

Id)Ep is a stable G-bundle. We check below that (Ep , (a, )) is 1-stable, thenTp is stable by

Proposition 2.4. Let 5- be a reduction of the structure group of Ep to a maximum parabolic

subgroup P. The stability of Ep implies that deg (s*Ep (p)) < 0. Note that
cry maps

isomorphically onto( /) ) JC;
, ; = !,...,/. Hence orj(Ep (p))

= crjn(Ep (p)XJ Ep (p)zj)

maps injectively into Ep (p)Xj.
Therefore dim aj(Ep (p)) < rank (J^p (p)) for all y. It

follows that par deg (s*Ep (f)) = deg (s*Ep (p)) + ;
dim ay ( p (p)) < / rank (JEp (p)).

Thus (J?p , (ay)) is 1-stable.

Remark 2.7. There may exist stable principal G-bundles on Y which are not associated to

any representations ofjri(F). For examples in caseG = GL(ri) see [U3], similar examples

can be constructed in case G = O(n), Sp(2ri) also.

Principal G-bundles on a reducible curve Y

Notations 2.8. Let the notation be as in 1.1. Assume further that Y has nodes yy, j =
1, . . . , J as only singularities. Let F be the graph obtained from the (dual) graph of Y by

omitting loops. Let yi, . . . , y# be the nodes of Y such that each yy lies on two different

components of Y. Then K = the number of edges of F, / = the number of vertices of F.

For i = 1, ...,/, let P/ denote either a maximum parabolic subgroup of G or the trivial

group [e] or the group G itself. Let ,F denote a principal G-bundle on 7. For each i,

let*; : Y[
-> F(G/Pi) | r

;
be a section. Let P = (P;)/,/ = O^ be /-tuples. We

call s
f
a reduction of the structure group to P over Yf

. Let T(G/PZ ) denote the tangent
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bundle along the fibres of f(GfPi) \yr If PI = M then s^(T(G/Pi)) ^ Ad JF
| K/. If

Pi = G, then ,F(G/PO |y,^ ^ and the Euler characteristic x(s*(T(G/Pt))) = 0. Let

gj/ be the smallest torsionfree quotient of Ad J7 such that Qs
>

\ Y > s'?(T(GfP}) | y /

for all i. Let p/ denote the Lie algebra of P,- and J^(p/), ^"(g), F(g/pi) the fibre bundles

(with fibres p/, g, g/p/ respectively) associated to the P/ -bundle J7 - f(GjP{) via the

adjoint representation. Thus^'^g) - Ad ^
| K/, J>,F(g/Pi) - s?T(G/Pi). Let S,/ be

the maximum subsheaf of Ad f such that Ss
t

\ Y^ s^f(p). Leta = (ai, . . . , a/), where

{a/ } are positive rational numbers with ]T #/ = 1. Recall that for a vector bundle V on 7,

a-rank V = T*i rank(V |y.).

DEFINITION 2.9

The principal G-bundle J^" on 7 is <2-semistable (resp. <7-stable) if for every reduction s
f

of the structure group to P with P, 7^ {^} for all / and P/ ^ G for all f one has (in the

notations of 2.8)

- rank Qs' >
(resP- >)X (Ad F)/a - rank Ad *:r -

Lemma 2.10. .T
7 w a-semistable (resp. a-stable) iffor every reduction s

1

as above,

s'
<

(resP- <)X (Ad ^)/a ~ rank

/. As in Lemma 2.3, we have the exact sequences -> ^^^"(p) -> Ad J7
| 7/

->

s*T(G/P) -> for all z and so -> Sv
/ -> Ad J7 -> QJ' ^ 0. The lemma follows using

the fact that both the Euler characteristic and a-rank are additive for an exact sequence.

PROPOSITION 2. 11

For i = 1, ...,/, let Q be a partial desingularization of F/ and C JJ Q. Suppose

that C is obtainedby blowing up nodes y\,..., yj', J' < J ofY. Let (E, (<jj)) denote a

QPG with quasi-parabolic structure or/
over Dj, I < j < J'. Then a QPG (E, (cr;0) is

(a, I) -stable (resp. (a, l)-semistable) ifand only if the corresponding principal G-bundle

on Y (obtainedby identifying fibres ofE by ay) is a-stable (resp. a-semistable) .

Proof. The proof is exactly on same lines as that of Proposition 2.4. Starting with f
<2-stable (resp. semistable) and a reduction s

f
to P, one gets an exact sequence -> Ss

> ->

P*SS -> jQj(Ss ) -> 0, with qj(S5 ) = dim Qj(Ss ). Then Lemma 1.9 gives

(a, Instability (resp. semistability) of (, (cr;-)).
The converse is proved by reversing the

argument.

2.12. G-bundles associated to representations

Let p : 7ti(Y) ~> G be a representation of the fundamental group n\(Y) of Y in G. For

i = 1, ...,/, let fi : n\(Yi)
~ ni(Y) be the natural maps, p/ = p o ft. Let f be the

G-bundle on Y associated to p. Let p*F = E = (/)/. Then / is the G-bundle on

YI associated to p/. The principal G-bundle T corresponds to a QPG (E, (cr/)) on [] f
F/

where
{cry}, 7 = 1, . . .

,
K are G-isomorphisms of fibres of E. Finally let C/ denote the
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true

For ,,,e proof of ,he lheoreilli we need

PROPOSITION 2. 13

-,thatfor every I-tule r = r , ,- ,.
' ' ~ [

' ' ' '
'
I WlthE */ = 1

v,=,

'"
<SS>

//"m addition r; = /br^m^ / ^ vfor some ,, ^
,.
r/ ,

Proof. We prove the result by induction on m.

Case m = -
1 : r is a tree in this case. Let a/ =

L.H.s.of(ss) =
Eingi-Ztn-

=
(s-^Engf/g

If 56 ^ and r
f

- = for some i, then r, = and

(
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that for all r and = (q\ ,
. . .

, 5i, . . .
, qj) satisfying the given conditions, one has

L.H.S.of(SS) =
7=1

where &,-
=

[ifi ^ f(),^)and&; = >< + if i = i()orf(). Take a/ =&i/(g+m)for
all /, then (SS) holds. The assertion about strict inequality follows by induction similarly.

Remark2.l4. (1 ) Note that if both a, a
1

satisfy (SS) then for < t < I, a* = ta + (\-t}a
f

also satisfies (SS). Thus the set of solutions a of (SS) is a convex set.

(2) Given /i, 1*2, , 1 < M, *2 < /,takea,
= (& 2)/fe-l)fori

=
z'i, i2 andaj = gi/(g-l)

for i ji\,i ^ i^. Then in case F is a tree (i.e. m = 1) the inequality (SS) holds (though

the strict inequality may not be true eg. for r^
=

r/2
= 0). For K I > 0, the inductive

proof of Proposition 2.13 then gives new o! =
(a[,

. . . , a'j) satisfying the inequality (SS).

It follows that the inequality holds for a 1

,
< t < 1 .

PROPOSITION 2. 15

Theorem I is truefor G = GL(r).

(1) If pi \ 7t\(C{) are unitary representations for all z, then the vector bundle F on Y

associated to p is a-semistable.

(2) If pi \ 7T\(Ci) are irreducible unitaryfor all i, then F is a-stable.

Proof.

(1) As in Propositions 3.9 and 3.7(3) of [U2], it can be seen that the vector bundle F on

Y corresponds to a QPG j = (E, Fj(E)) on JJ F/ and F is a-semistable (resp. a-stable)

if and only if E_ is (a, l)-semistable (resp. (a, l)-stable). Note that E = [JE/ is the

pull-back of F to [J YI - By Theorem 2, [U3], the vector bundles EI on Y-t associated to pi

are semistable for all i . Hence, for any subsheaf A// of Ej ,
one has x W' )

< fi ( 1 / ) n =

(note that degree (/) = 0). Thus

E
where the summation over j is taken for 1 < j < K. For the choice of {a t-}, made in

Proposition 2.13, we get

SN <l-K-Y,Si =
\Y,K(Ei)-rK\ Ir.

Thus (E, Fj(E)) is (a, l)-semistable and hence F is a-semistable.
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(2) We need to consider two cases. With the notations in the proof of (1) if r/ = for some

/ then by Proposition 2. 13, we have SN < / -&" E ft Ifn ^ for all z
, then there exists

an z'o such that ^ r/ () ^ r. Since E-
l(]

is stable by Theorem 2 [U3], we have x W-D )
<

r/ d -
ft ). Therefore, SN < E; r/(l

- #) -
E; *' (#)/ E;^ < / - K - E ft (by

Proposition 2.13). Thus (E, F/(E)) is (a, l)-stable and so F is 0-stable.

Remark 2.16. The proof of Proposition 2.13 shows that there exist curves Ym ,m =
0, . . . , n+ 1 such that (1)7 = F, (2) Yn+

1

is a curve with ordinary nodes such that the dual

graph of F'14
"
1

is a tree after omitting loops (3) Ym+
[

is obtained from Ym by blowing up a

node which lies on two different components. For m = 0, . . .
, n, let (pm = ym+ ! ~> ym

be the natural surjective maps. Let F denote a unitary (resp. irreducible unitary) vector

bundle on Y. The proofs of Propositions 2.13 and 2.15 together show how the 'polariza-

tion' a = (a\ 9
. . .

, a/) for which the vector bundles (p*T
F are a-semistable (resp. ^-stable)

varies as we go down the tower of curves {Y
m

}.

ProofofTheorem 1.

(1) If Pd is unitary, so is Ad o pc-t
= (Ad o p)q . Therefore there exist positive rational

numbers a\, . . .
, <2/ with E #/ = 1 (depending only on P and #/) such that the vector

bundle ^Adop ^ Ad T associated to Ad o p is tf-semistable (Proposition 2.15). Hence

T is a-semistable.

(2) By Proposition 2.6, the principal G-bundles E( on YI associated to pi are stable for

all i. We claim that for the choices of {#/},- as in the proof of (1), the QPG (, (cr/))

corresponding to .T
7

is (a, l)-stable. The result follows from the claim in view of

Proposition 2.1 1. To prove the claim we check that the condition (*2') of Lemma 1.9

is satisfied for any reduction s of the structure group to P. Let r/ be the rank of 5^.
.

Since Ss is a proper subsheaf of (g), E r
; i=-nl. Since E/ are stable, by Lemma 2. 3,

X(Sst)
< n(l gi) and the inequality is strict if < r,-

< n. By Proposition 2.13, for

the choices of {#/} as in (1), one has

if
r/o

= for some IQ and ^ E n If n ^ for all i
,
since E n i^nl, there exists

an z'o such that < r/ < n. Then x(55 ) < ^7/0 ^i) and so

< (I
- K - E ft) ( JW by Proposition 2.13,

This proves the claim.
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3. The Picard group of the stack of QPGs

In this section Y denotes a reduced connected projective curve with ordinary nodes

= 1, . . . ,
J as only singularities. Let [Yi),i = 1, . . .

,
/ be the irreducible components of

Y and Q the desingularization of 7/. Let C =
{J t

- Q be the desingularization of F. For

convenience of notation, we fix an orientation of the dual graph of Y . For I < j < J, let

i (y), (7) denote the initial and terminal points of j in the dual graph. They correspond to

curves C/Q-), Ct (j) intersecting at v
y
-. Let Xj C/(y) and z7

-

C/- (_/)
be the two points of

C mapping to yj Y and Dj =
Xj + Zj, j = 1, ...,/. Let G denote an affine simply

connected simple algebraic group over C (or an algebraically closed field of characteristic

zero). For i = 1, ...,/, fix points /?/ C/, /?/ not mapping to a singular point of Y. Let

C*==C/-{/7i},C*=C-U/p/.
The results of this section were inspired by [LS]. If G is semisimple, then a principal

G-bundle on a smooth curve C is trivial on the complement of a point in C. This no longer

holds ifC is replaced by a nodal curve Y. The results of [LS] cannot be generalized directly

to G-bundles on Y. Hence we work with QPGs on C. Though we closely follow the ideas

in [LS], the generalization to QPGs is not straightforward. All the functors involved have to

be defined carefully to take care of the additional structure (generalized parabolic structure).

Unlike the usual parabolic structure which is supported on isolated points, the generalized

parabolic structure is supported on divisors, so one has the action of G x G rather than G.

3.1 The stack Q*j* and the stack

Let Aff/k be the flat affine site over the base field k = C, i.e. the category of A>algebras

equipped with fppf topology. Let R denote a fc-algebra, C-^R := C/x spec R and

C^ = C*x spec R. Let qi be a local parameter at the point /?/, i = 1, . . .
,
7. Let LGJ

denote the -group defined by associating ioR the group G (/?(#/)). LetLj . (resp. LG')be
the fc-group defined by associating to R the group G(R[[qi]]) (resp. G(r\Cf R9 Oc*

))).

Define LG = ^LG^L* = Ui LG = \\* LG Let

The indgroup L acts on QG,C- For each 7 , the evaluation at Xj and z;
-

gives an evaluation

map ej : LCG -> G x G. G x G acts on G by (#1 , gi)g = g"^
l

gg2- Thus we have a natural

action of L on ficfc- ^et ^G\2c
P
c ^e the quotient stack.

To an object R e Aff/k, associate the groupoid whose objects are families of QPGs
(*, (CT/)) on C parametrized by spec R and whose arrows are isomorphisms of the families

of QPGs i.e. isomorphisms of E which preserve the parabolic structures (a/). For any

morphism R - # ; we have a natural functor between the associated groupoids. Thus we

get a &-stack of (generalized) quasiparabolic G-bundles on C. We denote this stack by

Bung?-

Theorem 2. There exists a canonical isomorphism ofstacks

TT 7 c \r)gpar J
tfpar - LG \QGC ~

The projection 7T
par

: fiffc
"^ ^unG

P

C ^ l caMy trivial in etale topology.
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Proof. QG,C represents the functor which associates to every fc-aigebra R the set of iso-

morphism classes of pairs (, p) where E is a G-bundie over CR and p is a trivialization

of E over C ([LS], Proposition 3.10). Hence Q^ represents the functor PG which
associates to R the isomorphism classes of triples (E, p,s) with (E, p) as above and

s
Y\J G(), s = (5-1, . . .

, Sj), Sj G(R) = Mor (Spec jR, G), G being the jth factor

in
Y\j

G. Such a triple gives a family of QPGs (, (cr/)) parametrized by 5 = Spec R as

follows. Let 5j : S xxj x G -> S x Zj x G be given by J
;

-

(j, jt,- , g) = ($, ^ , .?/ (j))

for 5- S, g e G. Define a; :

fijsx^
-

|Sx Zy by ay
=
pj^. o J

y
- o p{SxXj

. Thus

we get a universal QPG over Q^ x C, giving a map 7rpar : gg*" -* Bung^. Being

L^-invariant, this map induces a morphism of stacks 7f
par : ^ \2cfc -> Bung

3

^.

To define a morphism Bung"
-

L%\Q%%, for each * and ( (V)) filing^ (/?)

we have to give a L -bundle T(R) on Bun^
ar

c (j?) together with an Lg-equivariant map
T(R) -> Qg^GR). Take (^' (^O) e Bxing^(). For any JZ-algebra/f

7

, let Spec /Z
7 = 5'

and T(R') = the set of isomorphism classes of pairs (PR', cr
f

) where PR' is a trivialization

of ER* overC^, anda
7 =

(orj)y, orj
:

|5/ XJCj
.

|s'xz/
is the G-isomorphism which is the

pull back of Oj to /?'. This defines an 7?-space T with the action of the group L (acting on

PR,). It is an Lg-bundle ([DS]; also [LS], Theorem 3.11). As Q*?* represents the functor

PG to every element (p#/ , cr/?/) ofT(R') corresponds an element of Qcfc (^') giving a ^c~
equivariant map T -> GG^C- Hence we get a morphism of stacks Bun|

p ~> IG\GG c
which is clearly the inverse of 7f

par
.

To check the local triviality of 7rpar in etale topology, we have to show that for any

morphism / from a scheme S to Bun^P" the pull back of the fibration 7r
par

to S is etale

locally trivial i.e. admits local sections for the etale topology. Such a morphism corresponds
to a QPG (E, (ay)) over S x C. For s S, we can find an etale neighbourhood U of s

and a trivialization p ofE\u x c* ([DS]). Using p, the G-isomorphism a/ gives a morphism

Sj : U -> G. The triple (E, p, (sj)) defines a morphism /' : U -> Q^c sucri tnat

#par
o /

; = /; i.e. the section over U of the fibration 7T
par

. This completes the proof of

Theorem 2.

PROPOSITION 3.2

One has

(1) Kcfic,c

(2) Kc(fig)

(1) It is known that each QG,C, is an ind-scheme which is an inductive limit of

reduced projective Schubert varieties XJ, MJ , this ind-scheme structure coincides with the

one by Kumar and Mathieu ([LS], Proposition 4.7). One has H l

(XitWt O) = ([KN, M]).

It follows that Pic Qc tc **
/ Pic QG,C/ - It is known that Pic (QG.Q) = Z^Qc.c,. (1) for

all i ([LS], 4.10; [M]; [NRS], 2.3) The first assertion follows.

(2) Since J"J .
G is a simply connected affine algebraic group Pic (FT . G) is trivial The ind-

scheme QG,CI is the inductive limit of integral projective reduced (generalized) Schubert

varieties X^w . with H l

(XijWi , O) = 0. By III, Exer. 12.6 [H] it follows that Pic (Xj^, x

J~J .G) Pic(X"i |lfn ) ([H], III, Exer. 12.6) and therefore by induction on i one sees that
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Y vTT G and the restriction OQCtC . (1) lx;>J
.

**.>,
*

{ ^
ic (Q

S

G
P
C)

a reference.

function
on G is constant.

.

group
Ga are constant functions.. Let

I/ G., this functio

fore,inviewoftheclaim

o ,

- "

***-*^-

3.4. For each i, there are

^morphisrn,

, of

phisms< : Pic(Bunc ,c,.)
- P^jf/lP

WellasitspullbacktoBunG,c,then
L -

the pull back
ofCWD to Qo.c

> Bunr; c- inducing isoi

r^ (Bunc.

([LS, So. IT). Hence rf we di

have ff
.
(L/)

= Ofl<w

. Similar argument
,

BU..C.

we have a commutative diagram

Pic(Buno,c)
^

;
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^) is the set of L -linearizations of the trivial line bundle. Any
such linearization is given by an invertible (regular) function h on LCG x Q^fc satisfying

a cocycle condition. >G,C being an inductive limit of integral projective schemes ([LS],

4.6) has no non constant regular functions. Since G is simple, fj
. G has no invertible

nonconstant regular functions (Lemma 3.3). Hence h is the pull back of an invertible

function on L^. Since it satisfies a cocycle condition, it is in fact a character on L^.
By [LS], Lemma 5.2, h is trivial. Thus the forgetful morphism is injective. Hence the

composite 7r*
par

: Pic(Bun*P) ->
Pic^Cfig^)

-> Pic(Q$%) is injective. Thus^r
p

*
ar

is

an isomorphism. Similarly jr* is an isomorphism and hence <I>* is also an isomorphism.

We have proved the following theorem.

Theorem 3. Let G be a simple simply connected affine algebraic group over C. Then we

have thefollowing isomorphisms.

(1) K

(2)

where Lj and LI are thepullbacks ofthe generator of Pic (Bun^.c/ ) t Buno,c

respectively.

Remark 3.5. For G GL(n), SL(rc), Sp(2n), the moduli stack (resp. moduli space) of

bundles on Y is isomorphic to the moduli stack (resp. moduli space) of QPGs on C ([Ul,

U2, U4]). Hence we have

Pic(BunG,r)
^

/z

for G = GL(rc), SL(n) or Sp(2n).

PROPOSITION 3.6

Assume that C is irreducible and G as in Theorem 3. Let (Bun^)
88 denote the substack

corresponding to ct-semistable QPGs. Then

Pic(Bun*?)
ss w Z.

Proof. We claim that a QPG (E, a) is a-semistable (resp. stable) for any a, < a < 1

if the underlying bundle E is semistable (resp. stable). The semistability (resp. stability)

of E implies that deg(p) <
(resp. <)0. Since ay is an isomorphism, the subspace a,

of E(g)Xj E(g)Zj maps isomorphically onto E(g)Xj under the projection map. Hence

cry
n (E(p)Xj ^(p)^) maps injectively into E(p)Xj and hence has dim.< rank E(p).

It follows that pardeg E(p) <
(resp. <)aJ rank(p). The claim now follows from

Lemma 1.6.

The morphism : Bun^f^ -> BunG,c (forgetting the quasiparabolic structure) is a

surjective morphism with isomorphic fibres. It follows from the claim that (f)~
l

(BuriG,c
-
Bung c )

D Bungc
-
(Bun^)

88
. Hence codim.Bun par (Bung*"

~
(Bunf^)

88
)
>

codim.Bunc,c(^unc/,c Bung c ). Since the latter is > 2 for g > 2 ([L-S], 9.3) the same

is true for the former. The result now follows from Theorem 3.
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3.7. Results in case G = GL(n), SL(ri)
:

In case of vector bundles we have the following results on Picard groups of moduli spaces

([U5, U6]). Let Y denote an irreducible reduced curve over C with at most ordinary nodes

as singularities. Let be a line bundle on F. Let U'Y (n,d) (resp. U'c (n,d)) denote

the moduli space of semistable vector bundles of rank n and degree d (resp. with fixed

determinant C) on F. Let Uy(n, d) (resp. U(n, d)) denote the open subset of U'Y (n 9 d)

(resp. U
f

^(n, d)) consisting ofstable vector bundles. Letgc (resp. gy) denote the geometric

(resp. arithmetic) genus of Y.

I. Assume that gc > 2. Then, except possibly for gc = 2, n = 2, d even, one has

2. Pic U's
(n, d) Pic U'(n, d) Pic J Z, where J denotes the Jacobian of Y.

II. Assume that gy = 2, n = 2. Then

Pic U'c (2,d)&Z.

4. Corapactifications

In general, the moduli spaces MQ of principal G-bundles on a nodal curve F are not

complete. In case G = GL(ri) a compactification of MQ is given by the moduli space of

torsionfree sheaves ofrank n (and fixed degree) on F, this compactification is not normal. A
normal compactification of MG is obtained as the moduli space of (generalized) parabolic

bundles on the desingularization C of F ([Ul, U2]). This can be done for other classical

groups G = O(n), SO(n), Sp(2ri) also, we briefly describe the main result (Theorem 5).

The details will appear elsewhere [U4]. To construct a normal compactification of MG,
one needs a good compactification of G and hence a good representation of G. In case

of classical groups we use their natural representations. For a general group G, a natural

choice is the adjoint representation. Unfortunately it gives a compactification of G only if

G is of adjoint type ([DP], 6; [S]; [D]). Using this compactification we give a more general

definition ofQPGs in case G has trivial centre. For classical groups and adjoint groups we

'compactify' the stack Bun^P ^ and also compute the Picard group of the compactification.

In case of classical groups, the compactifications of moduli spaces obtained are complete

normal varieties (see Theorem 5). We do not prove that the 'compactification' is a proper

stack in case of adjoint groups. It will be useful to know a natural (canonically defined)

compactification of G in the general case.

4.1. Let the notations be as in 3. We further assume that G is a semisimple algebraic

group with trivial centre. Let g denote the Lie algebra ofG,n = dimg. GxGactsong0g
(via adjoint representation) and hence on the Grassmannian Gr(n, g g) of n-dimensional

subspaces of g g. Let AG denote G embedded in G x G diagonally. Since G has trivial

centre the adjoint representation is faithful. Hence G G x G/AG gets embedded in

Gr(n, g g) as G x G-orbit of Ag e Gr(rc, g g). Let F be the closure of the G x G
orbit of Ag in Gr(n, g g).

Given a principal G-bundle E and disjoint divisors Dj = Xj -f Zj on C, define

EJ = E
XJ

x E
ZJ
= G x G, JE'(F) - E* x (GxG) (F), j = 1, . . .

,
J.
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A QPG (quasiparabolic G-bundle) is a pair (, (cry)) where E is a principal G-bundle and

DEFINITION 4.2

QPGs (, (cry))
and (', (a'.)) are isomorphic if there is an isomorphism / : E -> '

of

principal G-bundles which maps ay to (cr'.) i.e. for the isomorphism /ji
: E y (F) - E fJ

'(F)

one has //(cry)
=

aj
.

4.3. A family of QPGs (, (oy))
- C x 7 is a family of G-bundles - C x T together

with a section a/ : T J
'(F).

Remark 4.4. ( 1 ) The following diagram commutes

GxG --V F = Gx G/AG
*2 i I 'l

GL(g)xGL(g) 4 Gr(n,g0g).

Here t\ is inclusion, *2 = product of adjoint representations of G in g, /i2(/i, /2) =

subspace of g g generated by {(/if, /zv), u e g} and t\ o /ii is the map inducing the

Demazure embedding of G (by identifying G with G x G/AG).

(2) Recall that a (generalized) quasiparabolic structure (over Dj =
zy + zy , j = 1

,
. - , /)

on a vector bundle N of rank n is given by an n-dimensional subspace ofNXJ A^
Zj

.

, j e J

i.e. by an element of HyGr(n, NXj A^.) [Ul]. Given a family of QPGs -> C x 7, let

(g) be the family of vector bundles of rank n associated to S via the adjoint representation

of G in g. It follows from the above commutative diagram that a composed with the

injection TljJ(F) -> (n ;
- J

(Gr(n, g g))) gives a quasi parabolic structure on (g).

4.5 77z* 5-tad: fi aAifl? r/ze stack Bung*"

Let the notations be as in 3.1. Let <2c!c
= 2o,c x

Fl;
^- ^e ind-scheme QG,C is ind-

proper, so is <2G
P
c- ^e indgroup L$ acts on Qc.c- For each jf,

the evaluation at Xj and

zy gives an evaluation map ej : LQ -> G x G. G x G acts on F naturally. Thus we have

a natural action of L on "fig^- Let L^YOg/; ^e the quotient stack.

As in 3.1, we define the &-stack of (generalized) quasiparabolic G-bundles on C (with

extended definition of the parabolic structure using F). We denote this stack by

It contains Bung*" as an open substack.

Theorem 4. (1) There exists a canonical isomorphism ofstacks

Moreover the projection map fig^c -> Bung
3"
w locally trivialfor etale topology.

(2) Lef G be a simple, simply connected affine algebraic group over C. Then there exists

an isomorphism
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Pic (Bunf
a

c
r

)
^ 0/ZL/ 0yPicjP,

where LI are line bundles comingfrom BuriG,q-

Proof. The proof is on similar lines as that of Theorem 2 and Theorem 3, we omit some

details to avoid repetition.

(1) QGX; ^presents the functor PC which associates to every ^-algebra R the set of

isomorphism classes of triples (", p, s) where E is a principal G-bundle on C/e, /? is a

trivialization of E over C and s Mor (Spec #, f]; F). Then s = (s\, . . .
, sj), Sj e

Mor (Spec R, F) for all j. We can associate to such a triple a QPG (E, (ay)) on C#.

We only need to define for each 7, morphism cry
: S ~> E-i(F), S = Spec 7?. The

restriction of/)"
1

gives isomorphisms 5 x Xj x G ^ E\sxXj ,
S x Zj x G ^ E\sx Zj

and

hence an isomorphism of G x G-bundles S x G x G == (5 x Xj x G) x$ (S x
zy

x

G) EISXJC/
X 5 |Sxzj

= EJ. Therefore we have an isomorphism of associated fibre

bundles pj(F) : S x F 4- E j
(F). Define a/ by 0j(s)

=
pj(F)(s,Sj(s)). It follows

that Q^Q^C x has a umversal QPG and we have an L^-equivariant morphism of stacks

7rpar
: QQ c "~^ ^unc

P
C*
^^s inc^uces trie morphism jf

par
on the quotient stack.

To define the inverse of jf
par5

let (E, (a/)) 6 Bun^(tf). Let R f

be an ^-algebra, 5
; =

Spec R
f

. Let T(R
f

) be the set of pairs (p/?/, a
1

) where PR> is a trivialization of V, a 7 =

(cr[,
. . .

, o'j)
where

GJ
is a pull back of ayVj. This defines a T-space with an action of

L (via p^/) ^ is an L^-bundle [DS]. We now define a L^-equivariant map T ->
GG^C-

Given (p#, a
1

) e T(R'), we define
jj

: 5 7 -> F by
s'j

=
/7rF o ((PR')J(F))~

[

ocrj.
Then

/, (/)) e PG(^O- Since 2c?
P
c represents the functor PG, this defines a map

-gpar . . _. r . . rr.1 ._ c m
a : T -

2G,c *t 1S ^G-equivanant. The L^-bundle T together with a give a morphism

of stacks from Bun^f^ to the quotient stack L \ GGX; which is easily seen to be the inverse

Of7fpar .

The assertions about local triviality of 7f
par

follow similarly as in Theorem 2.

(2) Using the facts that each <2G,c/ is an inductive limit of reduced projective varieties

XitW with H l

(Xt,w , O) = and F is a projective variety with H l

(F, O) = 0, it can be

proved that Pic "gf?" w /ZO(2GiC.(l) ;
-PicF (similarly as Proposition 3.2). The

injectivity of TT* follows exactly as in Theorem 3. Note that F being a projective variety

j2c,c is an inductive limit of integral projective schemes and hence has no nonconstant

regular functions.

We now check the surjectivity of n*. We have a commutative diagram

Pic(BunG,c) ^>

<P*

Pic(Bun
g
G
pa
c
r

) ^
with ^ the forgetful morphism and the right vertical arrow is the inclusion as direct sum-

mand. Hence one has 7r*
ar (<p*L^)

= OQG c (1), L\ being the pull back of the generator

of Pic (Bunc.c/) to Pic (BunG,c)- Thus for the surjectivity of ^*ar
it suffices to show that

there exist line bundles {Z^ .} on Bun^
p
^ which pullback to the generators of @j Pic F.
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From the construction and results in [S], it follows that Pic F is a lattice of rank r generated

by Lj,
i = 1, . . .

, r, r = rank of G. For each z, there exists a G x O module W
t and

a G x G equivariant embedding F -* P(W/) such that OP ( Wi )(\) restricts to L' on F.
Given a family of QPGs (E, (cr/)) on C x Spec R one has V(F) C E-> (P(W,-)). Let L'

denote the line bundle on E j
(P(W,-)) (and also its restriction to E J

(F)) which restricts to

O/>(W,)0) on each fibre. The pull-back of
L'.j

by cr/: Spec # ->
->'(F) is a line bundle

L; on Spec R. This construction can be done for any R. Hence
{L\

.

R ] define a line

bundle
L'y

on the stack Bung^. By construction, J^^L^j) is the generator of the jth

factor Pic F in Pic

CflStf of classical groups

For the simple and simply connected classical groups SL(n) and Sp(2ri) the compactifi-

cations F of G are defined using natural representations (described below). We claim that

Theorem 4 holds in these cases also. The existence of the isomorphism 7fpar and injectivity

of TT* can be seen exactly as in the proof of the Theorem 4. We only need to check the

surjectivity of 7f*
ar ,

this is done below.

4.6. Case G = SL(n). For G = 5L(n), the compactification F of G using natural

representation of G ([Ul, U4]) can be described as follows. SL(ri) x SL(ji) is embedded

diagonally in SL(2ri) C GL(2n). Let G ~> GL(V) be the natural representation. Let

P c SL(2n) be the stabilizer of the diagonal in V V\ P is a maximum parabolic

subgroup. The Grassmannian Gr = SL(2n)/P is embedded in P(A (V V)) by Pliicker

embedding. Let {P/ t , ...,/} denote the Pliicker coordinates. Let F be the hyperplane sec-

tion of Gr defined by PI, ... )W
=

P/i+i, ,2/1-
Then F can be regarded as a compacti-

fication of SL(n) with SL(n) identified with the subset of F defined by PI, . . .
.,
n ^ 0.

The generator of Pic Gr & Z is the line bundle associated to the character vun on P and its

restriction to F is the generator L' of Pic F ^ Z. F SL(ri) is a divisorD r in F to which L 1

is associated. Given afamily ofQPGs (E, (a/)) on Cx Spec R, one has > (F) C V(Gr).

Let Z/
;

. be the line bundle on F^Gr) associated to the P-bundle E*(SL(2n)) -+ V(Gr)

via the character wn . The pull back of Z/. by a;
-

: Spec R -> 7
(F) C E-i (Gr) is a line

bundle
l!j R on Spec /?, L'. ^ define a line bundle U- on the stalk Bun^F^. By construction,

TTparCLy)
is the generator of the jth factor Pic F in Pic

>G,C-
Hence the niorphism in

Theorem 4(2) is a surjection and thus an isomorphism for G = SL(n) and ^P as above.

4.7. Case G = Sp(2n). In case G = Sp(2n) also one can use the natural representation of

GtodefineF(5,[U4]). LetG ~> GL(V) be the natural representation. We regard Sp(2n)

as the group Sp (q, V) ofautomorphisms of V preserving a symplectic form (nondegenerate

alternating form) q on V. Then F is the variety of maximum isotropic subspaces for

q (-q) on V V. The group Sp(2n) x Sp(2n) = Sp(<?, V) x Sp(-$, V) is embedded

in.Sp(0(-0), V0V) =Sp(4n) diagonally. ThenF Sp(4n)/P,P being themaximum

parabolic subgroup ofSp (4ri) which is the stabilizer ofthe maximum isotropic subspaceA y

of V V
, Pic F = ZL'

,
L' being the line bundle associated to the fundamental weight w2n -

Given a family ofQPGs (F, (cr/)) onC parametrized by 5 = Spec/?, cry
: 5 -* '(F),one

hasF^'(F) = EJ(Sp(4n)/P) andJ(Sp(4n)) -> ^'(F) isaP-bundle. Let^ denote the
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line bundle on E-i(F) associated to this P-bundle via the character W2n> Let L'> R denote

the line bundle on S which is the pullback of this line bundle by a/. This constructior

being valid for any R, it defines a line bundle Z/
;

. on the stack Bun^. Clearly, n*(L'j]
is the generator of Pic F, the j'th factor. It follows that the injection in Theorem 4(2) is ar

isomorphism for G = Sp(2n) with F defined as above.

The following definitions and results are stated for O(n)-bundles, they hold for Sp(2n)-

bundles also with orthogonal replaced by symplectic and n replaced by 2n .

DEFINITION 4.8

An orthogonal bundle (, q) on C is an /-tuple of vector bundles E = (E\, . . .
, /), /

-

a vector bundle on F/ with a nondegenerate quadratic form q-{ and q = (#!,...,#/). W<

assume that rank E\ = n for all /, we call n the rank of E. For a closed point x e C, let qx

denote the induced quadratic form on the fibre Ex .

DEFINITION 4.9

A generalized quasiparabolic orthogonal bundle (orthogonal QPB in short) on C is ar

orthogonal bundle (E, q) of rank n together with n-dimensional vector subspaces Ff(E]
of E

Xj
E

Zj
which are totally isotropic for qx .

( qzj ).

Theorem 5. Assumefurther that Y is irreducible. Then there is a coarse moduli space M
for ct-semistable orthogonal QPBs of rank n, a e (0, 1) being rational. M is normal ant

complete.

Let U be the moduli space of orthogonal sheaves of rank n on 7. Assume that < a <

I
,
a. is close to 1 . Then

(1) there exists a morphism / : M -> U.

(2) Let UK be the subset of U corresponding to stable orthogonal bundles. Then the

restriction of / to f~
l

(^) is an isomorphism onto Ufr
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1. Introduction

As a meta-theorem in harmonic analysis, the uncertainty principles can be summarized as:

A nonzerofunction and its Fourier transform cannot both be sharply localized. When sharp

localization is interpreted as very rapid decay, this meta-theorem becomes the following

theorem due to Hardy ([4]).

Theorem 1.1 (Hardy). Let f : R -> C be measurable andfor allx, y

(0 1/001 < Ce-**
2

,

(") 1/001 < Ct~b
*y\

where C,a,b>O.Ifab>l then f = almost everywhere. Ifab = l then f(x) =
CoTanx . Ifab < I then there exist infinitely many linearly independentfunctions satisfying

(i) and (ii).

Considerable attention has recently been paid to discover analogues ofHardy 's theorem in

the context ofLie groups ([28, 27, 5, 1, 16,25,24, 12,8,22]). Coming back to R, we see that

the decay conditions can be stated as |kfljr/llL(R) < an(* Ik&r /llL(R) < where

e^(x) = e** . So one reasonable question is to ask: what happens if lk<ur/lk/>(R) <
and |kfc;r/lk<?(R) < oo, where 1 < p,q < oo? The answer is given by the following

theorem due to Cowling and Price ([6]).

Theorem 1.2 (Cowling and Price). Let f : R -* C be measurable and

(0 \\e<urf\\LP(R)
< 00,

(ii) |kfcr/||/?(R) <00,
where a, b > andmin(p, q) < oo. Ifab > I then f = almost everywhere. Ifab < 1

then there exist infinitely many linearly independentfunctions satisfying (i) and (ii).

The proof of the above theorem uses the following result (see [6]).

Lemma 1.1. Ifg :C~* Cis an entirefunction andfor 1 < p < oo
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(i) \g(x +
(ii) (fR \g

then g = 0.

The importance ofTheorem 1 .2 is that even ifthepoinrwise decay is replaced by averagt

decay, Hardy's uncertainty principle continues to be true. As expected, the case ab > '.

of Hardy's theorem follows trivially from that of Cowling and Price. Actually, if we droj

the case ab =
1, then, on the real line (more generally on Rn

), the above theorems an

equivalent (see [3]).

The following theorem, which follows as a corollary from a deep theorem of Beurlin^

([14]), also suggests another generalization of Hardy's theorem.

Theorem 1.3. Let f : R - C be measurable andfor allx, y
(i) l/00|<Ce-

fl*W'
f

(ii) l/OOIrSCe-^l'
where C, a, b > 0, p~

l + q~
l =

1, 1 < p,q < oo.If(ap)
l

^(bq)
1^ > 2, thenf = (.

almost everywhere.

In this paper our aim is to get analogues of Theorems 1.2, 1.3 on connected, simpl}

connected, two step nilpotent Lie groups (see [9, 3] for analogues of Theorem 1.2 on othei

groups). We also prove an analogue of Heisenberg's inequality on two step nilpotent Lie

groups which was previously known only in the case of Heisenberg groups (see [29]).

This paper is organized as follows: in 2 we fix notation and describe some backgrounc

material leading to a proof of the Plancherel theorem via the description of the Hilbert-

Schmidt norm of the group Fourier transform, and in 3 we prove the proposed analogue

of Theorem 1.2 and indicate a proof of Theorem 1.3. In 4 we prove an analogue ol

Heisenberg's inequality.

Finally we would like to point out that all the results except Theorem 3.2 are from the

author's 1999 Ph.D. thesis of the Indian Statistical Institute.

2. Notation and background material

For a Lie algebra g (we will always work with Lie algebras over R), we define g
1 = [g, g]

DEFINITION 2.1

A Lie algebra g is called two step nilpotent if g
2 = and g

1 ^ 0. The connected simply

connected Lie group G corresponding to such a g is called a two step nilpotent Lie group.

We find it more convenient to look at a two step nilpotent Lie algebra in another way.

Let B : Rn~m x Rn~m -+ Rm be a nondegenerate, alternating, bilinear map. Let g
=

Rw 0Rn~m
,
we define

where z, z
f Rm and u, i/ R"~m . Then [., .] is a Lie bracket and g is a two step nilpotent

Lie algebra with Rm as the center of g. If on G = Rm Rn~m we define the product

(z, u).(z', v
;

)
= (z + z' + -B(v, i/), v + 1/Y (2-2)i/V
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then G is a connected, simply connected, two step nilpotent Lie group with g as its Lie

algebra and exp : g -> G is the identity diffeomorphism. In this section we will first

describe the effective unitary dual of a connected, simply connected, two step nilpotent Lie

group g following Kirillov theory. Our notations are standard and can be found in [7].

Let g* be the real dual ofg . ThenG acts on g* by the coadjoint action, that is G x g* -
g* ,

(.0 -* 8- 1 is given by

= /(Ad(exp-y)(X)),

= /(e
ad~-v

(X))

Let / G g*. Then we denote O/ = the coadjoint orbit of /. BI = the skew symmetric matrix

corresponding to /, that is, given a basis {Xi ,
. . .

,
XOT ,

Xw+i, . . .
,
Xn ] of g through the

center (that is, X i , . . .
,
Xm span the centre of g, we consider the matrix BI = (Bi (7, /'))

=

(/([X,- ,
X

7-])
. r/ = The radical of the bilinear form /, that is,

r/
= {Xefl:/([X,F])=0 for all 7 eg}.

Clearly r/ is an ideal of g and g(= R/n
) C n. f\ spanR{Xw+ i, . . .

,
Xn ] n r/. /

=

BI |

R/1
~m x R"~w that is restriction of BI on the complement of the center of g.

It follows trivially for two step nilpotent Lie groups that all the coadjoint orbits are

hyperplanes ([17, 23]). In fact we have from the above, the following.

Theorem 2.1. Let /eg*. Then >/=/ + r/-
where

r,

1 = [h 6 g* : h
\ n = 0}.

In particular, /' e O\ if and only if n ~
r// and /

| ri = I
1

\ r//.

Let g be a two step nilpotent Lie algebra such that dim g = n with the basis B =

{Xi, . . .
,
Xm ,

Xm+ i, . . .
,
Xn } through the centre. Then BI is the n x n matrix whose

(z, ;)th entry is /([X/, X/]), 1 <
i, 7 < n. Let B* =

{X?, . . .
, X*} be the dual basis of

g*. This is a Jordan-Holder basis, that is, g^
= spanR{X^, . . .

, X*} is Ad*(G) stable for

I <j <n.

Let / g* and X; B.

DEFINITION 2.2

The term i is called a ;'wm/7 i/wtoc for / if the rank of the i x n submatrix of BI , consisting of

the first i rows, is strictly greater than the rank of the (i
-

1 ) x n submatrix of BI , consisting

of the first (i 1) rows.

Since an alternating bilinear form has even rank the number of jump indices must be

even. The set ofjump indices is denoted by J {ji, . . .
, jik}> Notice that j\>m + 1.

The subset ofB corresponding to J is then {X^ ,
. . . , Xhk }. Notice that if i is ajump index

then rankB/
= rank/~

* + 1, where B\ is the submatrix of BI consisting of first i rows.

Note 2.1. These jump indices depend on / and on the order of the basis as well. But

ultimately we will restrict ourselves to 'generic linear functionals' and they will have the

same jump indices.
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Now we are going to spell out what we mean by generic linearfunctional. This is also

a basis dependent definition. We work with the basis B chosen above. Let R
L (Z) = rank^

and Ri = max{ /,-(/) : / a*}.

DEFINITION 2.3

A linear functional / e Q* is called generic if /?/(/) = /?/ for all i, 1 < z < n.

Let Y = {Z e g* : Z is generic}. Since for any Z G*, we have g.Z | $ = I [3 where

g.l = I o Adg"
1

,
we get #/(/) = #/(#./), 1 < / < n and hence,

(i) Z^ is a G-invariant Zariski open subset of cj*. So Z^ is union of orbits,

(ii) If j is a jump index for some / e U, then j is a jump index for all Z e U.

(iii) Let Z e W, then the number ofjump indices for Z is the same as the dimension of Oi

(as a manifold). For, the rank of the matrix BI is equal to the number ofjump indices

(= 2k, say) and the dimension of the radical r/ is the nullity of the matrix of /, which

is n 2k. Since g/r/ is diffeomorphic to 0/ (see [7]), we have dim #/ = 2k.

(iv) Every orbit in U is of maximum dimension though not every maximum dimensional

orbit may be in U.

Note 2.2. If Z Q* is such that BI is an invertible matrix, then r/ = g and then m + 1
,

. . .
,
n

are all jump indices and moreover

IA = {I
*

: BI is an invertible matrix}.

Clearly, if the codimension of 3 in g is odd then this cannot happen. Following [ 1 8] and [19],

we call, the two step nilpotent Lie algebra aMW algebra, if there exists Z e Q* such that BI

is nondegenerate (or the corresponding matrix is invertible). For example, Heisenberg Lie

algebras and [2/1,2* the free nilpotent Lie algebras of step two areMW algebras (see [2]).

Our aim is to parametrize the orbits in U. We will see that they constitute a set of full

Plancherel measure. We again describe some notation.

W = {!,..., m, ni,..., nr } c {!,..., n}

is the complement of7 in {1, . . .
, n}, V) = .spanR{X/f

. : 1 < i <
2Jfc, jt /}, VN =

spanR{Xi,...,Xw ,Jm : 1 < i < r,n f

-

AT}, Vj = spanR{X*, . . .
, *y, V* =

spanR{Xt, - - -
,
** f X* : n, G TV}, V* -

span^X*,. : 1 < i < r}.

The following theorem shows that there exist a vector subspace of Q* which intersects

almost every orbit contained in U at exactly one point (see [7]). In the two step case one

can easily prove it using Theorem 2.1 (see [23]).

Theorem 2.2. (i) V intersects every orbit in U at a unique point (ii) There exist a

birational homeomorphism W : (V^ n U) x Vj
- U.

Note 2.3. For each coadjoint orbit in U, we choose their representatives from VJJ
flU. Note

that Vff C\U can be identified with the cartesian product of V^ and a Zariski open subset

U1
of 3*, where W' = {Z e 3* : /(/) = /?/,!</< m}.

We begin with a brief discussion of Kirillov theory, for details see [7]. Let G be a

connected, simply connected nilpotent Lie group with Lie algebra g. G acts on g* by the
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coadjoint action. Given any /' <E $* there exist a subalgebra ()// of g which is maximal with

respect to the property

/'(/', I)/'])
= 0- (2.3)

Thus we have a character /// : exp(fy/) -> T given by

Xc(expX) = e
27r"'(X)

, X e fy.

Let ^=ind^p(h//)
x/'. Then

(1) Tii' is an irreducible unitary representation of G.

(2) If fy is another subalgebra maximal with respect to the property /'([I)
7

, 1}'])
= 0, then

(3) JT/J
= 7T/2

if and only if /i and /2 belong to the same coadjoint orbit.

(4) Any irreducible unitary representation n of G is equivalent to jr/ for some / $*.

So we have a map /<: : g*/Ad*(G) > G, which is a bijection. A subalgebra correspond-

ing to / cj*, maximal with respect to (2.3) is called a polarization. It is known that the

maximally of I) with respect to (2.3) is equivalent to the following dimension condition

dim
I)
= -(dim g + dimr/).

Now suppose g is a two step nilpotent Lie algebra and / g*. The following technique for

construction of a polarization corresponding to /, seems to be standard: we consider the

bilinear form #/ on the complement of the center, we restrict J9/ on its nondegenerate sub-

space, then on that subspace we can choose a basis with respect to which BI is the canonical

symplectic form. With a little modification the basis can be chosen to be orthononnal as

well. This is essentially what was done to obtain a canonical polarization in [19, 2, 26, 21 ].

We will set down the basis change explicitly; our main ingredient for that is the following

lemma.

Lemma 2.1. Let B : Rn x R'1 -> R be a nondegeneratef alternating, bilinearform. Then

there exists an orthonormal basis {#/, 7,- : 1 < i < k} ofR
n
such that B(Xi, Yj)

=

Sijkj(B), B(Xi, Xj) = B(Yi, Yj)
= 0, 1 < /, j < k, n = 2k where ikj(B) are the

eigenvalues ofthe matrix ofB.

As a consequence we have the following.

COROLLARY 2.2.1

Let I g*. Then there exist an orthononnal basis

[Xi, . . . ,
Xm , Zi(/), . . .

,
Zr (/), Wi(l), . . .

,
Wk (l), Fi(/), . . .

, y*(/)} (2.4)

o/Q such that

(a) n = spanR {Xi, ...,X

(b) l([Wt (D, Yj(l)])
=

Sij^jd), l<ij<k and

= l([Yi(l), Yj(l)])
= 0, 1 < f, j < k.

(c) spanR{Xi, -
,
Xw , Zi(Z), . . . , Zr (/), Wi(Z), . . .

, Wi(/)} = I) is a polarizationfor L



298 S K Ray

For a proof see [23]. We call the above basis an almost symplectic basis. Given X e ft

and a basis (2.4) we write

m r k k

X =
^XjXj(l) + ^ZjZj(l) + ]T WjWj(l) + ^yjYj(l) = (x t z, u;, v).

./=! 7= 1 7= 1
./
= !

Since we are going to use induced representations we need to describe nice sections of

G/H and a G-invariant measure on G/H. In our situation H will always be a normal

subgroup of G. We identify G and 3 via the exponential map. Let I) be an ideal of ft

containing -5
and H exp I).

We take {X\, . . . ,
Xm ,

Xm +i , . . .
,
Xm +k, . . .

,
Xn } a basis of ft such that

3 = spanR {Xi, . . .
,
Xm }, ()

= spanR {Xi, . . .
, X,n ,

Xm+i, . .
,
Xm+k }.

If L
? (.x)

= g"
1 * and Rg (x)

=
,xg, *, e G, then it is clear from the group multiplication

that the Jacobian matrix for either of the transformations is upper triangular with diagonal

entries 1. Thus we have the following lemma whose proof can be found in [7].

Lemma 2.2. Let ft, I"), {X\ ,
. . .

,
Xm ,

Xm +\ ,
. . .

,
Xm +k, . . .

,
Xn } be as before. Then

(i) dx\ . . . ^A'/2 /$ a left and right invariant measure on G.

(ii) a : G/H > G gfven /ry

H I = exp

is a sectionfor G/H.

(iii) d/A'/H+jk+i . . . dxn is a G-invariant measure on G/H.

Now we come to the construction of representations corresponding to / 6 V^ Pi U. Let

dim i't
= 777. 4- J" and dim 0\ = Ik so m +r +2k = n. We choose an almost symplectic basis

(2.4) of ft corresponding to / and get hold of I)/ as in Corollary 2.2.1, c). On HI = exp(I)/)

we have the character //:///-> T. Let ni = ind^ xi- We do not use the standard model

for the induced representation as given in chapter 2 of [7], rather using the continuous

section a given in Lemma 2.2.2 and computing the unique splitting of a typical group

element

(x, z, w, >')
= (0, 0, 0, y) (x - ~[(0, 0, 0, y), (0, z, w, 0)1 z, w,

j
,

corresponding to cr, the representation TCI is realized on L 2
(R*) and is given by

(TT/CX, z, iu, y)/)(y) / L2
(R*),

for y R*.
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DEFINITION 2.4

For / g* we define

299

called the Pfaffian of/, where (/);,
=

/([*/,., Xjt ]), Xji ,Xjs
e Vj.

Note 2.4. If J is the set of jump indices for /, then B[ is nondegenerate on V> and then

P/(/) is the Pfaffian of B\ (see [15]). It is easy to show that

(a) Aei((B[)is) is always a square of a polynomial and hence Pf(l) is a homogeneous
polynomial in /

| 3.

(b) Pf(l)^OifleU and is Ad*G invariant.

We restrict our attention to the representations TT/ for I e V* n U and, motivated by
the example of the Heisenberg groups ask the following question: suppose / e L l

(G) fl

L 2
(G). What is the relation between /(TT/) and f\f(l \ 5, u)? Here / is the operator

valued group Fourier transform, (z, u) are elements of the group with z e 3 and u

SpanR{Xm +.i, . . .
,
Xn ] and ^"i/(/ | 3, u) means the partial (Euclidean) Fourier transform

of / in the central variables at the point /
| g.

In the case of the Heisenberg groups Hn , with Lie algebra

with the only nontrivial Lie brackets [Wit F/] = Z, 1 < i < n, we have V^ = SpanR {Z},
Vj = SpanR {Wi, . . .

, 7W } and V* n W =
{/ 1^ : /(Z) = A. ^ 0}. Then it can be proved

easily (see [10]), that for / L [

(Hn )C\ L 2
(Hn ) mdl eV*C\U,

(2.6)

To find an analogue of (2.6), the most important thing is to find the Jacobian of a

transformation which we are now going to describe.

Let I e V% = SpanR {X* 1?
. . .

,
X*

r }. Notice that for Hn and /y 2 ,
where n is even,

VN = {0}, so the transformation we are going to describe, appears only for those two step

nilpotent Lie groups whose Lie algebras are not MW. Suppose ln . = l(Xni ), 1 < i < r;

we also have l(X^) = 0, 1 < i < 2k. From BI we have constructed an orthonormal basis

{Zi(0, , Zr (/) f Wi(/), . . .
, Wik(/) f FK/), . . .

, 7^(/)} with respect to which the matrix of

j5/ is of the following form

(2.7)

where the 2k x 2k matrix S is given by

/
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where A./ (/) > 0, 1 < i < k' . Let /(Z/(/)) = /), 1 < z < r. We consider the map

0: V^(=R
r)-r

0(/np...,/n r )
= &,...,). (2.9)

Lemma 2.3. 7/i modulus of the Jacobian determinant of<p is given by

where
J<p

is the Jacobian matrix ofcf).

Proof. First we systematically describe the transformations which gave the almost sym-

plectic basis. We restrict ourselves only to the complement of the center, because it is there

that the change of basis takes place.

A 1 :

A2
'

[Xni ,

A 3 :{Xnit .

where Xn/
= X

n/
- Y=i 4(^)^y* ^ - z ~ r so that each ^/ r/- ^1 is Just a

rearrangement of basis and hence is given by an orthogonal matrix. A.I is clearly given by

a lower triangular matrix with diagonal entries equal to one. The matrix of A^ looks like

(A'
C'\

\ D' )

where A! is a r x r matrix, C' is a r x 2k matrix and D f
is a 2k x 2& matrix, because A 3

is obtained from the following operations:

(i) Gram-Schmidt orthogonalization of {Xn . : 1 < / < r}.

(ii) Finding the orthogonal complement of the span of {Xm : 1 < i < r}.

(iii) Choosing an almost symplectic basis on the nondegenerate subspace of BI.

Notice that for / 6 VN , /(X/.)
= 0, 1 < i < 2fc; thus l(Xnj )

= l(Xni ), I < i < r.

Hence

Since
| detAi.detAi.det A$\ = 1, we have [detAsJ = 1. But

|detA 3 |

=

So
|

det 70 1

=
|
detD f

\~
l

. If we write BI in terms of the basis {Xni ,
. . .

,
Xnr , X/, ,

. . .
, Xy^ }, then the matrix of 5/ looks like

where (B/),^
= l([Xh ,

X
Js ]).

Thus clearly |
det B[\

= \Pf(l)\
2

. Because of A3 the above

matrix changes to

D'B'^DJ
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which is nothing but the matrix in (2.7). So

Thus
|
det 70 1

= - as claimed.

Now we come to the analogue of (2.6). Given / e L l

(G) n L 2
(G) and TT e G the so

called group Fourier transform at n is the bounded linear transformation (realized on the

Hilbert space 7i.n ) given by

We recall, for / V fW, the almost symplectic basis (2.4) and because of the orthonormal

basis change, d*dzdiyd>' is the normalized Haar measure on G we started with, where

m

c,z, w, y) =

The representation TT/ corresponding to / is now given by (2.5). Let dlni .. .dlnr de-

note the usual Lebesgue measure on V (after we identify V with Rr

through the basis

Theorem 2.3. Let f 6 L l

(G) n L 2
(G).

= I \Fif(h,...Jm ,xni ,...,xnr ,u,v)\
LAx

ni
...to (2.10)

Jw+u

for almost every I eV^(~\Uf where

F\f(l\, ...,lm ,xni ,...,xnr ,u,v)

=
[ f(xi,...,xm9 Xn l ,...,xn,,u,v)
Jftm

andl(Xj) =1J9
1 <; < m.

/. Let e L2
(R^). Then from (2.5),

, z, u;, y)(7r/(-^, -z, ~iu, -

, Z, U), y)e
2ff't-;W-/W-E

/ /(jc, z, u;, y
-

55)e
2^ /[

~/w-/(z)
-Sy=i^^^(0-(i/2)Sj.=lWy(v7^

Jf(r+m+2k

X(/>(y)dxdzdwdy (by the change of variable y
r

y -f ;y)
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f(x, z,w,y-
Rr+m+2/t

xcj)(y)dxdzdwdy

X(j>(y)dxdzdwdy.

Let

K/(y, y) = , z, iu, y
-

3?)

Since / e L l

(G) n L2
(G), it follows that K{ e L 2

(R
k x R*) for almost every

Z e Vfi
W. Let Z

| a = (Zi, - - -
,

and /
| spanR {Zi(Z), . . .

,
Zr (Z)}

-
(Z~i, . . .

,
Zr ).

Then

7 r r >i + y*
i n\ y* + yk . n\ -^

l ,
. . .

,
Zm , Zi ,

. . .
,

Zr ,

-
A.i(Z), . . .

,

-
Xjfe(Z), y

-
> ,

2
1V/7 '

2

where ^"123 stands for the partial Fourier (Euclidean) transform in the variables x,z, w.

Thus Or/) is a Hilbert-Schmidt operator on L
2
(R*) with the kernel K . Hence

" ^
= L

y\ +

If we do the change of variables

v/ +
M/ =

,(/),
1 < j <

Jfc,

then the modulus of the Jacobian determinant is |Aj(Z) . . .

reduces to

and the above integral

-l

where M = (MI, . . .
, M*) and i; = (i>i,

theorem in the variable u we get

. .
, VK). By applying the Euclidean Plancherel

If we integrate both sides of the above equation on Vfi
with respect to the usual Lebesgue

measure and use change of variables by the map <p defined in (2.9), we get

Jftr+2k



Uncertainty principles 303

Then by applying the Euclidean Plancherel theorem on the variables (lni ,
. . .

,
lnr ) 6 Rr

we get

\Pfd}\ t \\f(Kl)\\
2
HSdlni ...dlnr

JV

\f(h, , lm,xni ,...,xnr ,u, v)\
2dx

ni
. . . dxnr

This completes the proof.

Theorem 2.4 (Plancherel theorem). For f <= L l

(G) H L 2
(G)

where dl is the standard Lebesgue measure on V^(~ Rw+r ) with respect to the basis

{X*, . . . , X, X*j,
. . .

,
X*

r
}.

/. Regarding V$ OZY as the Cartesian product ofU' andRr
as in Note 2.3, we integrate

both sides of (2. 1 0) with respect to the standard Lebesgue measure on 3* (upon identification

with Rm via the basis {X*, . . .
,
X* }) to get

L

(by (2. 10)

=
/
jR/

by using the Euclidean Plancherel theorem in the outer integral (U
f

is a set of full Lebesgue

measure in 3*). The last integral is, of course, II/II?2/G\
and tne proof is complete.

2.5. The situation is simpler if we consider the case of MW groups. In this case

fl W c g* is Zariski open and for / 6 U c 3*, the representation TT/ is given by

where y R^, / L 2
(R^) and dim $/?$

= 2A;. Then it follows from the calculations done

in theorem (2.3) that

Clearly |li(/) . . .^(/)| = |P/(/)|, since 5/ is nondegenerate. The Plancherel theorem

again follows from integrating both sides on U c 3*. 5*0 ?/z^ change of variables through

the map $ is not neededforMW groups.
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Let g be a two step nilpotent Lie algebra with a basis B as before. Now we consider

elements of g as left invariant differential operators acting on C(G) where the action is

given by

We define

nm
+/ (2.11)

1=1

and as on the Heisenberg groups, call it the sub-Laplacian of G.

Given an irreducible, unitary representation jr of G, we look at the matrix functions of

jr given by

w
: G - C, u, v Hn

<(*) = frfeX"). (2.J2)

Our aim is to find: which matrix functions of representations are joint eigenfunctions of

and {X-L : 1 < i < m}l
Given n e G and Jf E g, we have

r=0
(2.13)

where w, u are C vectors for jr. If A L/(g) then it follows that

A(n(g)u, v] = (7r(g)d7r(A)w, u)

(see [7]). Thus if u is an eigenvector for djr(A) then v is an eigenfunction for A. Since

for 1 <i <m, Xi e 2(Ufa)), the center of the universal enveloping algebra, then dn(Xi)

acts as a scalar (see [7]) and hence
<p^v is an eigenfunction for Xi for any u, v. Thus our

job reduces to finding the eigenfunctions of dn() which are also matrix functions of TT.

Looking at the case of the Heisenberg groups and the group F^,2 (see [26]) it is reasonable

to expect that dir() is closely related to the Hermite operator and, indeed, that is the case.

We use on G the exponential coordinates given by the above chosen basis. Given

x = E?=l *iXi and x/ = E?=l x
i

X
i
denote

where (.,.) is the Euclidean inner product on g for which {X/ : 1 <i < njisanortliononnal

basis. Then it follows that, for 1 < i < m,

= -(x), (2-14)
dxi

and form + 1 < z < n,

+ ^^^- (2 ' 15)
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Now we start with a representation JT/ G such that /
| 3 ^ 0. We get hold of an almost

symplectic basis (2.4) with dimr/ = ra + r and dim O\ = 2&, so n = 2fc -f m -f r.

The representations 717 are realized on L 2
(R*) and are given by (2.5). Using the explicit

description (2.5), it is easy to see that C(7r/) = S(R*), the Schwartz class functions on

R*. By direct calculation we find the effect of applying dir/ on the elements of the almost

symplectic basis, which in turn describes d;r/ () .

Lemma 2.4. For^ e S(R)
(i)

(ii)

(iii)

(iv) djr/()0(?) =

* Because of (iv) now it is easy to describe the eigenfunctions of d7r/(>C). Let

4jr
2

X^=i ^-
Then djr/() = /z (/)-}- L/, and /^(/) > 0. If is an eigenfunction of L/ with

eigenvalue <:(/), then ^ is an eigenfunction of d;r/() with eigenvalue c(l) + /x(/). Again,

if
0y

is an eigenfunction of -^ -|- 4jt
2
Xj(l)

2x 2 on R, then clearly

is an eigenfunction of L/. Since for 5 e N, the 5th normalized Hermite function h s is an

eigenfunction of ^ + x 2 with eigenvalue 2s + 1, it is clear that

is an eigenfunction of JT + 47r
2
Aj(/)

2
jc
2 with eigenvalue 2nXj(l)(2s + 1) and also

||/4 1| 2 = 1. So for (!, . . .*<**) N* we define

htei,...,$k )
= nk

j=l
h l

aj (j),
(2.16)

where

Then

/* \
L'(^) = E 27r^(0(^ + 1) h'u . (2.17)

\^= /

Thus

/ * \
(2.18)

Now we state a mild generalization of Theorem 1.2, which follows from Lemma 2.3 of

[20].
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Theorem 2.5. Suppose f : R" > C be a measurablefunction such that

(i) /Rn e"a3rW|2
|/(.x)i

pd;t <oo,

(ii) /Rn t*teWVOOI? IGOOrdy < oo,

where a, b > 0, Q is a polynomial and r > is any real number. Ifab > 1 then f = 0.

3. Extensions of Hardy's theorem

The principal result in this section is the analogue of the Theorem 1 .2 for two step nilpotent

Lie groups. Along the way we also talk about the analogue of Theorem 1,3. Hardy's

theorem for Heisenberg groups was proved in [28] and its L p
-analogue (Theorem 1.2) and

the analogue of Theorem 1.3 was proved in [3]. An analogue of Hardy's theorem on two

step nilpotent Lie groups was proved in [1].

Remark 3.1. Our treatment in this section tacitly assumes that G is not MW. For the case

of MW groups the treatment needs only obvious modifications using the description of

il/0r/)ll//s given in Note 2.5.

In the case of Heisenberg groups, Hardy's theorem and Cowling-Price theorem actually

reduce to the corresponding problems on the center of the group by an application of

(2.6). Two step nilpotent Lie groups having reasonable analogue of (2.6) in Theorem

2.3, it is expected that the same technique may work here also; and it does, as we shall

show presently. Since we are going to talk about exponential decay of the group Fourier

transform, we need a growth parameter on the dual, where usual exponential makes sense,

but that has been addressed in 1 . In our parametrization the dual is essentially a vector

subspace (actually a Zariski open subset of that subspace) of g*, which is good enough for

us.

Let g be a two step nilpotent Lie algebra with basis B as before. G is the corresponding

connected, simply connected, Lie group. We write elements of g (as well as G) by (;c, v) =

]C/li xiXi + Y!t=\ viXm+i- The set V^ nil serves as the effective dual (that is, it is a

set of full Plancherel measure in G) of G and we put Euclidean norm there such that

{X*, . . .
, X*n , X*. : 1 < i < r} is an orthonormal basis. We write elements of Vfi

as

To prove an analogue of Theorem 1.2, we need the following trivial lemma.

Lemma 3.1. Let G be a two step nilpotent Lie group. Then there exists a constant C such

that

IK*, v)-(*i ^i) II

>
II (*, u)ll II (*i, vi)ll C||(jc, u)||||(xi, i>i)||, (3.1)

for all (;c, D), (jci, ui) G.

Now we come to the proposed analogue of Theorem 1.2.

Theorem 3.1. Letf e L ]

(G) L2
(G) satisfy

(ii\
I pflDTi I! (.A-iY) II || fdr-i ^ II I P /* ^ 1 ^ !H 1 Hi/ ^^ /^^\

' / T/* t<
II y vy^A v/ II we I ./ \ / l^-i'^-vji/

^ ^~?

vv/z^re I < p < oo a/zJ2 < q < oo. T^aZ? > I, f/ien / = almost everywhere.
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"oof. We first prove the case p = oo and later, use this result for the case 1 < p < oo.

ise 1. p = oo. In this case we interpret (i) as

|/(jc,u)| < Ae-fl3r|l(*' w)l12
.

(3.2)

e define

=
/ (

JR-
(3.3)

lere /(*) = /(*, u) and *
is the convolution on Rm . Since f L l

(G) 9 h e L l

(R
m

)

d the Euclidean Fourier transform of h is given by

- f /z

jRm

= f
Jf\n-m

=
\PfW\f_ \\f(^,y)\\HsdY (by (2.10)).

JVH
(3.4)

3W writing e* =

h(x)\ <

f
JR

< A exp(~7r[2||i;||
2

(3.5)

lere a' < a with a'b > i (the integral in the last line but one being a polynomial in ||* || ).

loosing b' < b such that a'b' > 1 we have, on the other hand,

(^ exp
(|2^|| X

||

2

)

1A/2

(by Holder's inequality, where 2/q + I/a = 1)
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x{exp((*
7 - b)n ||(A., y)||

2
)|P/(A.)|^

/2
}dXdy < oo (by (ii)). (3.6) .

Since (a
f

/2)2b' = a'b' > 1, by 3.5, 3.6 and Theorem 1.2 for the case p = oo and q/2

(which is > las g > 2) we get that A = almost everywhere. Thus ||/(X, y )!!//
= for

almost every (A, y) and hence / = almost everywhere by the Plancherel theorem.

Case 2. p < oo. Let **(*, u) = e* ll(*' u)l12 for k e R+ . Suppose g e CC (G) is such

that supp g C {(-xi, i>0 : ||(;ci, v\)\\
< ~}, where m N. We choose (^, v) e G with

H(JC,V)|| > 1. Thus, if (;q, ui) 6 supp^ we have \\(x\, v\)\\
<

\\(x, v)\\/m and hence by

Lemma 3.1,

||(*, v)(x } , u,)-
1

!!

>
||(jc, u)|| 1

- -
, (3.7)

V m J

where c? = 1 + C. Thus for (jc, v) e G with ||(jc, u)|| > 1 we have

= I
Jsuppg

By (i) we have that ean \ f\ is a Lp function (p < oo)onGand# Cc (G),thus<?fl7r |/|*||
is a continuous function vanishing at infinity. Thus from (3.8) we have that

K/ * 8)(x, v)\ < j
8e"fljr(

for all (x,v) e G with Euclidean norm greater than 1 . By continuity of / * g we have

!(/**)(*, u)l
< ^e-^^-^^ 211 ^'^!'

2

, (3.9)

for all (*, v) e G (possibly with a different constant). Since

from (ii) we get that

< oo. (3.10)

We choose m so large that ab(\
-

(d/m))
2 > 1. Then by (3.9) and (3.10) we are reduced

to case 1. Hence / * g = almost everywhere. Now by choosing g from an approximate

identity we get / = almost everywhere. This completes the proof.

Note 3.1. For general two step nilpotent Lie groups we are unable to answer the case q < 2.

But if G is a MW group then we have a complete answer, as is shown in the following

theorem.

Theorem 3.2. Let G be a connected, simply connected, two step nilpotent Lie group which

is MW. Let f e L*(G) n L2
(G). Suppose thatfor a, b > andmn(p, q) < oo
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(i) fc ePa**< v
W\f(z,v)\Pdzdv < oo,

(ii) /v^^H/V/JII^I^/COId/ < oo.

Then

(a) Ifq > 2, then f = Oforab > 1.

(b) Ifl <q <2 then f = r/flfr
> 1.

Proof. Part (a) is essentially in Theorem 3.1. So we prove (b). In this case, for /
L 1(G)nL 2

(G)wehave

\\f(*i)\\Hs = \pfwr 1

f
/R2"

(see Note 2.5). Starting from (ii) we have

= f e
b* n2

(\Pf(l)\-
1 f

JVJ, V ./R2"

=
f (f g(l,v)l
Jv* \JR^

|P/(/)|d/

(where g(l, v) =

\
g \

\ *
\

)\ dv I

/ J

g(l, v)dfji(l) I dv I (by Minkowski's inequality).

' I

Thus for almost every u, /v * #(/, u)d/x(/) < oo, that is

/ e9to||/l|2 |^
r
i/(/,i;)^|P/(/)|

(1"i )d/<oo. (3.11)

fy} .

But from (i) it follows that for almost every v,

:oo. (3.12)

Thus for almost every v, the function /(., v) satisfies the condition of Theorem 2.5 and

hence for ab > 1, / = after all.

Going back to connected, simply connected, two step nilpotent Lie groups G, we observe

that the same technique using the functions / and h ,
as in Theorem 3. 1

, yields the following

theorem.

Theorem 3.3. Let f : G -> C be a measurablefunction. Suppose

0) \f(x,

(ii) ii/Vx

where C > 0, p > 2, \fp-\-\jq = I and g, h are nonnegative functions with g 6

L^R""-""
1

) n L2
(R

n~m
) andh e L l

(R
r
) Pi L 2

(R
r
). If(ap)

l/p
(bq)

{fc* > 2, then f =
almost everywhere.
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4. Heisenberg's inequality

The classical inequality of Heisenberg for L 2
functions on R says that

a\ 1/2 / / \ 1/2

W 2
l/WI

2d* I \y\
2
\f(y)\

2

dy) >C||/||
2

, (4.1)
\ / V./R /

where / is defined by

-
fJR

and C is a constant independent of /.

In this section our aim is to extend the version of Heisenberg's inequality proved in

[29] for the Heisenberg groups to all connected, simply connected, step two nilpotent Lie

groups. Two other variants of Heisenberg's inequality on Heisenberg groups are available

in [13] and [28], but since these results use the existence of rotations on Heisenberg groups,

it is not clear how, without the notion of rotation, one should proceed to extend them to a

general two step nilpotent Lie group (see [2]).

We state (4.1) in a slightly different way. Let A =
?=i ^ be the Laplacian

on Rw
. Then (A/)(}>) = 4jr

2
||;y||

2
/(>') for any Schwartz class function on Rn

. We

may relate A to the character yy (x) = Q
2niy-x of R" by dyy (

-^- j
= 2;nv

7-,
and hence

<tyy(A)
= 47T

2
||>'||

2
. Thus we have

Since dy),(A) is a positive, self adjoint operator, it has a (visible) square root, which is

multiplication by 2n \\y\\. Thus we define

- 2x\\y\\f(y) - (d

for all Schwartz class functions on Rn
. Since the Fourier transform is an isomorphism on

Schwartz class functions, the operator (A) 2 is defined completely. Then we can restate

(4.1) as

a^
(4.2)

for all / of Schwartz class on Rn
,
where C is a constant independent of /. It is (4.2) ,

whose

analogue on connected, simply connected, two step nilpotent Lie groups we are looking

for. As in the case of Heisenberg groups, here also the proof, in principle, is close to the

proof on R" (see [11]) having the same basic ingredients, namely, integration by parts,

Cauchy-Schwartz inequality and the Plancherel theorem.

We call afunction f on G a Schwartz classfunction iff o exp is a Schwartz classfunction

on Q. We denote the Schwartz class functions by S(G).

Replacing A 2 by &., the main result of this section is as follows.

Theorem 4.1. Let G be a connected, simply connected, step two nilpotent Lie group and

f S(G). Then
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\i/2

v\\
2
\f(x 9 v)\

2dxdv\

(4.3)

where C is a constant independent off and C = ~
^frf

1^+/
w r/ze sub-Laplacian.

Let us explain the meaning of (5 /)(TT/). We view X G g as a left invariant differential

operator on C (G). Then in view of our definition of the group Fourier transform, we have

for / e S(G)

(Xf)(nt )
= dni(X) o /Or/), (4.4)

where djr/(X) is given by (2.13). We view the universal enveloping algebra U(o() as the

algebra of all left invariant differential operators on C(G). Since dni is a representation

of g, it extends to a representation of ZY(g) realized on C(7r/). By (4.4) we have

as ^(&). In 2 we have seen that the eigenfunctions of dir/() are parametrized by

N* and are given by (2.16). Let {/,-(/) > : / = 0, . . .} be an enumeration of those real

numbers such that there exist a G Nk
with

j + 1), (4.5)

as cc varies over N*. Let /(/) = spanc {/i^ : djr/()(/i^)
=

r/(/)/i
/

a }, that is, /(/) is the

eigenspace corresponding to the eigenvalue ?/(/), which is clearly finite dimensional. If

Pi (I) : L 2
(R

k
)
-

/(/) is the projection, we have

(4.6)

;=o

Thus we define

and

7=0

Analogous to the Euclidean spaces, we define

(*/)(*/) = d7T/()2 o /(*/), (4.9)

for all / e <S(G) and / E V^ n W. Thus the statement in theorem 4.1 makes sense.

It follows from (4.5) that the eigenvalues of d7r/()~~2 are bounded by A,o(/)~ 5 where

A.Q(/) = min{A.7-(/) : 1 < j < k}. As a consequence we get the following Lemma.
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Lemma 4.1. The operator djr/()~5 is bounded on L2
(R

k
).

Let us consider the following elements of gc , the complex! fication of g,

Dj(l)
=

Yj(l)
-

iWj(l), l<j<k, (4.10)

Dj(l)
=

Yj(l) + iWj(l), l<j<k. (4.11)

Because ofLemma 2.4 we have

(4.12)

(4.13)

For hs the 5th normalized hermite function on R, we define /i(x) = c 1/
'4
A.j(c

1/
'2

jc) )
then

Using this with (4. 12) and (4. 13) we get for a e Nk
,

(4.14)

(4.15)

where

Lemma42. The operators cbr/GDy (/)) od7T/()~2 ^/djr/(D7-(Z))od7T/()"~2 arebound-

ed operators on L2
(R^), 1 < ;

< Jt.

/. We consider the orthonormal basis
{/i^ : a N^} of L2

(R*). By (4.8), (4.14) and

(4.15) we have

. -t-1),

and

Since



Uncertainty principles 3 1 3

and

/ 2^(020; V

the operators djr/(D/(/)) o djr/()~2 and djr/(Z)/(/)) o djr/()~5 are bounded operators

on L2
(R*). This completes the proof.

Suppose / S(G) and let / e VjJ
O W be arbitrary but fixed. So we have an almost

symplectic basis (2.4) of Q. Let I
\ 3 = A,. We define

)=: f /O, lOe-^^djc, (4.16)
,/Rm

that is, the partial Fourier transform in the central component. So i; -> Fcf&> v ) is a

Schwartz class function on Rn~m
. On Euclidean spaces, differentiation and multiplication

are intertwined by the Fourier transform. On two step groups, as analogues ofdifferentiation

we consider the operators D\ (I) and Dj (!) and as analogue ofFourier transform we consider

the partial Fourier transform defined in (4.16). We want to find what plays the role of

multiplication?

Let / e S(G) and Xj e B C Q, m + 1 < j < n. By (2. 15) it is clear that Xjf 5(G),
and an easy calculation shows that

.
f v).

Thus using the basis in (2.4) we have

(4.17)

.iw.y) (4.18)

1 < j <k. Thus writing

=
f/-
\dyj

iuy), (4-20)
wj

we have from (4. 17) and (4. 1 8)

.w.y), (4.21)

,w,y). (4-22)

Thus Vj(l) and
V,- (/) play the role of multiplication.

Now we come to the proof of Theorem 4. 1 .
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Proofoftheorem 4.1. Let / <S(G) and /
| 5 = X. Now

f \fcf(X,z,w,y)\
2
dzdwdy

JRn-w

=
f ^/(A-, z, u), y)Fcffr, z, w, y)dzdwdy.
jRn-m

Since

a a

we have from the above equality

f \fcf(k,z,w,y)
jRrc-m

,, z, u,

o2

(
d

\

If. . .( d B \

~2j -m
(-V;

' + '
IU;

'

) IF~ ~'ar/
, 2, W, >')

, z, w;, j)dzdw;dy (by integration by parts)

cf(X t z , w, y)dzdwdy

~\ I (yj + iwjWjW + xlj(l)(yj
-
iwj))Fcf(^ z, ti;,

/ jR/l-m

.,z, w;, >')dzdw;d>; (by (4. 19) and (4.20))

1 / _
~o / (>y + iwj)Fc (Dj(l)f)(^ z, w, y}Fcf(^ z, , y)dzdwdy
L Jftn-m

(by (4.21) and (4.22)). (4.23)

Let us recall, if/ varies over
VJJ

C\U then /
| g = A. varies over the Zariski open subset^'

of a* (see Note 2.3). Hence
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(I \f(x,v)\
2dx6v =

f I \Fc f(X,v)\
2dXdv

JzJRn-m JU' Jftn-m

JU'

(by Fubinfs theorem and the orthogonal basis change on Rn~m
by 7} : spanR {Xm+ i,

, z t
w

t y)dzdwdy
U'

(by (4.23))

f (-4
JU' \ 2

I T
t

- l

(yj 4- i

2 jRH-m

+

(by change of variables)

f -i >

/ \Ti (vy -f JW/)|~KC/(^
7 JR/J-W

i i f f -
2

I ( / / | ĉ (D ;-(/)/)(X,u)|
2
du(

[
VJw JR-W

f f 2 \
WR- 7 '

/

(by Cauchy-Schwartz inequality and nonnegativity

of the integral)

li'

f
JR"-^1

\\v\\

2
\f(x,v)\

2

dxdv)

/W JR"-m

/ |J"c (Dy(/)/)(A., f)|
2dudA ) [ . (4.24)

JU 1 JR"-^

by the Euclidean Plancherel theorem on g.
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By Theorem (2.3) we have

c f(^, V)\
2
dv,

where/
| 8
= A. and/

|

VN = y = (/,, . . . , /n r ). Thus

(If \Fc(D(Dn(^v)\
2dvdk

<'

x\Pf(l)\dlnlni ...dlnrdX)

x\Pf(l)\dlni ...dlnrdX)

i

IIGC'/)(jr/)lll P/Wld/n, - - - d/Br d/i . . . d/m
r%

(by Lemma 4.2J.

Similarly as above we can show that

II IFc&j
Uf JW-"1

'

Htf/X^lll^/COId/n, - - -d/nr d/i . . .d/m
f'Jv

Thus from (4.24) we have

l/(*,i

< C

where C is a constant independent of /. This completes the proof.
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Abstract. The geometry of Calderon-Lozanowskii spaces, which are strongly con-

nected with the interpolation theory, was essentially developing during the last few

years (see [4, 9, 10, 12, 13, 17]). On the other hand many authors investigated prop-

erty (ft) in Banach spaces (see [7, 19, 20, 21, 25, 26]). The first aim of this paper is

to study property (ft) in Banach function lattices. Namely a criterion for property (ft)

in Banach function lattice is presented. In particular we get that in Banach function

lattice property (ft) implies uniform monotonicity. Moreover, property (ft) in gener-

alized Calderon-Lozanowskii function spaces is studied. Finally, it is shown that in

Orlicz-Lorentz function spaces property (ft) and uniform convexity coincide.

Keywords. Banach lattice; Calderon-Lozanowskii space; Orlicz-Lorentz space;

property (ft).

1. Introduction

Let(X, 11-11) be a real Banach space, andletB(X), S(X) be the closed unit ball, unit sphere

of X, respectively. For any subset A of X, we denote by conv(A) the convex hull of A.

We denote by QW the characteristic ofconvexity and by $x ( ) iht modulus ofconvexity

of the space X, i.e.

$x (s) = i

We say thai X is uniformly convex (X e (UC) for short) if SQ (*) = (see [22]).

Define for any x i B(X) the drop D (x, B(X)) determined by x by D (x, B(X)) =

conv({;c}U.(X)).

Recall that for any subset C of X, the Kuratowski measure ofnon-compactness of C is

the infimum a(C) of those > for which there is a covering of C by a finite number of

sets of diameter less than .

Rolewicz in [25] has proved that X e (UC) iff for any s > there exists 8 > such that

1 < ||*||
< 1 + 8 implies diam (D (x, B(X)) \ B(X)) < e. In connection with this he has

introduced in [26] the following property.

A Banach space X has the property (ft) (X e (ft) for short) if for any > there exists

8 > such that a (D (x, B(X)) \ B(X)) < s whenever 1 < ||jc||
< 1 + 3.

We say that a sequence [xn ] c X is e-separated for some > if sep{*M }
=
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The following characterization of the property (ft) is very useful (see [20]).

A Banach space X has property (ft) if and only if for every > there exists <5 > such

that for each element* 6 B(X) and each sequence (xn ) in B(X) with sep{*, z }
> there is

an index k for which

A Banach space is nearly uniformly convex (X E (NUC)) if for every > there

exists <$ (0, 1) such that for every sequence {xn }
c B(X) with sep{xn }

> e, we have

conv({A"rt }) n (1 S)B(X) ^ 0. Rolewicz proved the following implications (UC) =>

(ft)
= (NUC) (see [26]). Moreover, the class of Banach spaces with an equivalent norm

with property (ft) coincides neither with that of super-reflexive spaces ([21]) nor with the

class of nearly uniformly convexifiable spaces ([19]).

A Banach space X is said to have the Kadec-Klee property (X e (H) for short) if every

weakly convergent sequence on the unit sphere is convergent in norm. The Banach space

X is called to have uniformly Kadec-Klee property (X e (UKK) for short) if for every

s > there exists <$ e (0, 1) such that ||jc|| x < \
- 8 whenever (xn ) c B(X), xn -^ x

and stp[xn }x > e. For any Banach space we have (NUC) =(UKK) =(KK). Moreover

X e (NUC) iff X e (UKK) and X is reflexive ([15]).

Denote by TV", 71 and 7 + the sets of natural, real and non-negative real numbers, respec-

tively. Let (r, E, IJL) be a measure space with a or -finite, complete, non-atomic measure ju..

By L = L(T) we denote the set of all ^-equivalence classes of real valued measurable

functions defined on T.

Let E = (E, <, ||.|| ) be a function Banach lattice over the measure space (7", S, /z),

where < is the usual semi-order relation in the space L and (E ,
|| || E ) is a Banach function

space (i.e. E is a linear subspace of L and norm ||-|| is complete in E). Let E satisfy

two conditions:

(i) if x e E, y e L, |j|
<

|*| ^-a.e., then > e E and \\y\\ E <
\\x\\ E ,

(ii) there exists function x in E that is positive on whole T (see [18] and [22]).

Denote by +, L^J.
the positive cone of E, L respectively, i.e.

L?j_
= {x e L : x > 0}.

Recall that E satisfies the Fatou property (E e (FP)) if x e L and (xm ) e E are such

thatO < xm / x and supm \\xm \\ E < oo, then* e E and \\x\\ E = lim^oo \\

xm\\E (see

[18] and [22]).

We say that Banach lattice E is uniformly monotone (E e (UM)) if for every q e (0, 1)

there exists p e (0, 1) such that for all < y < x satisfying \\x\\ E < 1 and \\y\\ E > %

we have \\x
-

y\\ E < 1 - p. Then the modulus p () of the uniform monotonicity of E is

defined as follows:

p (q) = inf
{1
-

||*
-

y\\ E : \\x\\ E < 1, \\y\\ E >q,0<y<x}.

A Banach lattice E is called order continuous (E e (OQ) if for every x e E and every

sequence (xm ) e E such that <- xm <
|jc| we have ||JC/M \\ E -> (see [18] and [22]). It

is known that if E (UM), then E e (OC) .

A function $ : T x 7 > [0, oo) is said to be a Musielak-Orlicz function if $(-, )

is measurable for each u e K, <$(t, 0) = and $>(,-) is convex, even, not identically

equal to zero for M-a.e. t e T. We denote (O o x)(t) = <&(t, x(t)). We will write 4> >

if ^(?, ) vanishes only at zero for M - a.e t e T. For every Musielak-Orlicz-function 4>
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we define complementary function in the sense of Young <$* : T x 7 > [0, oo) by the

formula $>*(?, v) = sup{u \v\
-

<t>(r, u)} for every v e U and t e T .

H>0

We say that Musielak-Orlicz function $ satisfies the ^-condition (3> e A^) if there

exist a constant^ > 2, asetA e of measure zero and a measurable non-negative function

ft 6 E such that

for every t e T \ A and every u e 7 (see [11] when E = L l and [10] in general). Then
< A| iff there exist a constant k > 2, a set A e of measure zero and a measurable

non-negative function / L+ such that $> o2f e E and

, 2w) < &<>(?, M)

for every * T \ A and every > /(O (see [10]).

Define on L a convex modular /$ by

oo otherwise.

By thefunction lattice E we mean

#4) = {x L : I$(cx) < oo for somec > 0},

equipped with so called Luxemburg norm defined as follows:

We will assume in the paper that E e (FP), so ($, ||-||<j>)
is a Banach space (see [9]). The

space E (when <!> > 0) is a special case of the Calderon-Lozanowskil construction of the

lattice (see [10]). As for theory of Calderon-Lozanowskil space we refer to [3], [23] and

[24].

If E = L 1

, then E is the Musielak-Orlicz space equipped with the Luxemburg norm.

If E is a Lorentz space Aw ,
then E is the corresponding Musielak-Orlicz-Lorentz

space (A^)^ equipped with the Luxemburg norm (see [12, 16, 17]). If additionally

<b(t , u) = |w| for every f e T, then the space (A^)^ is the Lorentz space A^. Recall

that the function (*) : [0, y) -> R+ with y = /x(J) is said to be the weight function,

if it is strictly positive, nonincreasing and locally integrable function with the respect to

the Lebesgue measure v. Then A^ consists of all functions x : [0, y) > 7 measurable

with respect to v for which ||jc||
= f x*(t)co(t)dt < oo, where ** is the decreasing

rearrangement of x (see [2]). Recall that mx denotes the distribution function of x, i.e.

mx (X) = y
({t [0, y] : \x (r)| > X}) for all A. > 0. The decreasing rearrangement func-

tion of jc is denoted by x* and is defined by jc* (r)
= inf {A > : mx (A) < f }. Denote by

5(r) = /O
r

6>(j)dj. The weight function is called regular if inf,>o 5(20/5(0 > 1 in the

case y = co and info<r<y S(2t)/S(t) > 1 for some yo < y/2 in the case y < oo.

2. Results

It is a natural question whether a geometric property in Banach lattices can be equivalently

considered only for nonnegative elements (see [13, 17]). In order to consider that problem,

in case of property (ft) , let us introduce new notions.
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DEFINITION 1

We say that a Banach lattice E has the property (ft
+

) if for every s > there exists

8 = 8 (s) > such that for each element x e B(E+) and each sequence (xn ) in

with sepfcfl}
> s there is an index k for which

2
||

-^ "'

DEFINITION 2

We say that the Banach lattice (E, \\-\\ E ) is orthogonally uniformly convex (E e (UC
1

)

for short), if for each s > there is 8 = 8 (e) > such that for x, y 6 B(E) the

inequality max \\xXAxy \\ E , ||>'X^-y ||
}

> e implies ||(jr + y) /2||
< 1 -5, where A^ v

=

suppjc-suppy andA-f-J5 = (A \ B) U (J5 \A).

Lemma 1. (Theorem 1 from [13]). L^/
"

Z?e any Banach function lattice. Then E (UM)

rj^/or any (0,1) //z^re r\ (e) > .s-wc/z thatfor any x e E+ with \\x \\ E
~

1 andfor any
A e D McA rto ||^XA HE > fi r/iere /zoW^ |^Xr\A | E

< 1
~

r\ (s).

Lemma2. (Lemma 1.4 w [14]). Letx,y 6 X \ {0} . Denotex= x / \\x\\ x . Ifmm[\\x\\ x ,

,
A A

and x - y >e, then

\\x + y\\x < l
~ i&x (e)) (Ikb + \\y\\x)

-

Obviously if 6 (UC) , then E e (UC
1

)
. It is known that uniformly convex Banach

function lattice is uniformly monotone ([13]). Moreover, we will prove the following:

Lemma 3. Let E be any Banachfunction lattice. IfEe (UC
1
) , then E e (UM) .

Proof. Assume that E (UM) . By Lemma 1 we conclude that there exists s > such

that for every n N there exist xn e + with ||jcj|
= 1 and a set Bn e E such

that
H-x/iXflJs - and

\\

xnXT\Bn \\ E > 1
-

1/n. Let un = A:n and ^ = *nXT\Bn
-

Denote An = suppw ;i ^ suppu^. Then max
{i|^X/\J| , IKjuJ^} > e. Moreover,

since un > vnt so we get ||,2 + vn \\ E > \\2vn \\ E > 2(1 - l//j) . Hence E $ (UC
1

)
.

Remark 1. The converse implication is not true. Let = L 1
. Obviously L 1 e (UM) .

Let*,;y e S (L
1

) andsuppx-Hsuppy = 0. Then max
j||^X^v || L i ,

|bxA,ylLi)
= l and

= l.ThusL 1

^ (UC-
1

)
.

Theorem 1. Ler E fee a function Banach lattice. Then E e (ft) iff E e (fi
+

) and E e

Proof Necessity. Clearly, if e (j8), then E e (fi
+

). Moreover, taking into account that

(NUC) = (H) (see [15]) and (H) => (OC) in any Banach function lattice (see [8]), we

get (ft) => (OC). Moreover, by Lemma 3 we conclude that (UC-
1

)
= (OC) . Hence it is
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enough to prove that if g (UC
1

)
and e (OC),then (/J) . Assume that E g (UC

1
)

andE e (OC) . Then there exists s > such that for every n e N there exist xn ,yn e B (E)

with max
|||^XA.VnVn ||

, i^X/i^ Uj
and II** + >'IU > 2 ~

!/>0 - Denote

A n = Aj^y,,. Divide the set A n into two disjoint subsets A\ = suppjc71 \ suppy,, and

A^ = supp)Vz \ suppj^. We divide the proof into two parts:

1 . Suppose that > s. We claim that for every n e J\f there exists a set Bn c A

of finite measure such that x,iXA l

n \Bn
< /2- Fix n e A/". Since the measure /z is

cr-finite, there exists an increasing sequence of sets of finite measure OS*)^ C A,
1

,

such that UStLi $k = A l

n
. Denote Wk = x

nXA},\sk
- Then Wk I a.e.. Since E is order

continuous, so \\Wk\\E -> 0, what proves the claim. Then ||^/iX^ | E
> /2 for every

n 6 jV. We decompose each set #,2
into the family of sets Bn (7, 2^) for 7 = 1

, 2, . . . , 2^

and/: = 1,2,..., by the following iteration. We divide^ into two disjoint sets Bn (I, 2)

and , z (2, 2) such that IJL (Bn (1 , 2)) = \JL (Bn (2, 2)) . Suppose that for fixed k the sets

Bn (j,
2k

) (1 < 7
< 2*) are already defined. Toobtainsets

(7,
2* +1

) (1 < 7 < 2*+1 )

we divide every set Bn (7, 2*) (1 < 7 < 2*) into two disjoint sets (27
-

1, 2
k+{

]

and
rt (27, 2*+1

)
such that // (/? (27

-
1, 2fc+i

))
=

IJL (Bn (27, 2^
1

)).
Define on the

set 5n the &th Rademacher function by

II

for r e B^ (7, 2*) with odd 7, 1 < 7 < 2*.

-
1 fort e Bn (7, 2^) with even 7, 1 < 7

< 2*,

for f g Brt (7, 2*) .

Let

for every n, /: E A/". We will prove that for every n TV" we have /^ -> as & -> oo in E.

Recall that a A'dY/z^ <afwa/ E' of E is defined by

E =
|/z L :

||
A H-/ = sup] / |/i (/)^(0ld/x : g e E, ||^|| F < 1

[
< oo

[

*
[JT \

It is known that E' is a Banach function lattice. Moreover E* = E iff E (OC) (see

[18] and [22]). Then for fixed n e AT and every A* E* we get

lim A* (/) = lim f //' (f) A (0 d/x = lim /* r (r) xn (0 A (0 d/x =

since xw (f) A (r) is real integrable function. It follows by the fact that the set of sim-

ple functions is dense in L l and for every simple function b defined on Bn there holds
w

lim/^oo fB r% (t) b (t) dfji 0. Therefore for every n e M we have /^ -* as k -> oo

in E. Moreover |/^ |

> s/2 for every n, k e N. Then, applying Hahn-Banach theorem,

it is easy to prove that for every n N there exists a subsequence (k)k=i ^ (fk)k=\
such that sep [g%} E

> e/4. For every n e A/" let

"jt

~ ^ ~t~ -K/iXsuppjCflXBu ,
^ = 1, 2, ....
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Then for every n A/" we get sep [h
n
k } E

> e/4. On the other hand for every n eN

bn + hl\\ E
=

\\yn + xn \\ E >2(l-l/n)

for all k eM.lt means that E $ (p) .

2. If
I yn XA2

II E - s
t^ien ^e Pro f *s analogous.

^

Sufficiency. Takes > 0. Let* 6 (). Take (*)!
j
C B(E) with sep{jcn }

>
. Denote

by jc
+ and *~ the positive and negative part of ;c, respectively. We will show that there

exists a subsequence (ZnJJLj C O/i)^ such that sepfc+} > s/2 or sepfc"} > e/2. For

every n ^ m we have ||*+
- x+

\\ E
> e/2 or |*~ -x~\\ E

> e/2.

1. Consider the element*] and the sequence (xn )%L2 - Then there exists a subsequence

(4) C(*n)^2 SUchthat
V / J7=l

L-J
1

" - *< 1)+ > /2 for every n e A/" or L~ -
jc^

I}
"

II > e/2 for every n 6 Af .

II
|| ||

j,

Denote y{
l) =

jci and
>'^j

= *,
(

/
}

for every n e A/".

2. Consider the element
*j

(1)
and the sequence x . Then there exists a subsequence

C (4 )

00

such that
l \ /n=2

\\E

> s/2 for every n A^ or > fi/2 for every n e

Denote vp
} =

*[
1} and y^ = 42)

for every n e M.
Taking the next steps analogously we conclude that there exists a sequence (jk)^L\

natural numbers and the sequence of subsequences (y^V , k = 1
, 2, . . . such that

and

or

Define zn = y^
n

for every n e N. The sequence (zn ) satisfies the required condition.

Denote still this subsequence (zn ) by (jcn ). Let sep{jc+ }
> e/2. Denote by p () the modulus

of the uniform monotonicity of E, by 8E () the function 8 () given in Definition 1 and by
<$ () the function 8 () given in Definition 2. We denote some constants

> < a < min f^/8, e/144} ,

< fc < a, (52 = 3 (afr) > 0, (1)

0, p2 = p aV/2 > 0.
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For every n ^ m we have \\\xn \ |JC/|||E - ab or IIU/zl
~"

\
xm I II E < b. Hence, analo-

gously as in the previous part of the proof, we may find a subsequence (v,z)^Lj C
such that

\\\yn \-\ym\\\E^ ab fora11 n ^ m or \\lyn\-\ym\\\E *b fora11

Denote still (yn ) by (xn ). We consider two cases:

I. Assume that \\\xn \ Ijc^lll^
> ctb for every n ^ m. Then sep{|^n |}

> ab. Denote

yn = |jcn |
and y \x\ . Hence yn e 5 (E+) and sep {yn }

> ctb. Basing on property

(j8

+
)
we find a number k M such that ||(> + yk) /2\\E ~ * ~"^2, where 82 is defined

in(l). Consequently ||jc 4- xk II E <
lly + ^IU <2(l-^2).

II. Suppose that

II \xn I

-
\xm \\\ E <ab for every ^ m. (2)

For every n^m denote

A [

nm = suppo:+nsuppjc+ and A 2
nm = supp-r+ -s- suppjr+,

where A -f- B = (A \ B) U (B \ A) . Since sep{jc+} > fi/2, then for every n ^ m we get

1 W" -
*,t) XAL II E

> */*
II W" - ^) XxL 11 fi

>
fi/4. Suppose that

|| (jc+
-
x+)

1 /^ ^Or some n ^ m. Then

I]
I I

I
.... I II x.

II \Xn I l^mlllfi
>

which is a contradiction with (2). Hence

Y r 1 Y j > > P /4 for i

*n Am) *-A%m p
-~ & l^ 1U1 '

Decompose the set A 1
nm into two disjoint subsets

Notice that for every t e A~ n̂ we have sgn (xn (t) xm (t))
= 0. First we will show that

(x* x*) XA 21 s/^
~" 2ab for every n ^ m. (4)

Ifmax|||*
n XA22 ||

, \XmXAll IE}
- ab

>
then

I I*"'" '^HU - a^' which is a contra-

diction with (2). Hence max I |U7/xA22 II r , lUmXA^ II r \
< ab - Suppose that (4) is not

[
" ri

/j;
'' tL> " "nm " *->

J

true. Then, in view of (3), for some n ^ m we get

P/4 < ll/r
+ - r+W o < l/

r

jc
+ - x+W,o, II

-

/^
I
(*n ^m J XA2m 5

I
(* *m J XA^ I E

which is a contradiction, so the inequality (4) holds. Decompose the set A m̂ into two

disjoint subsets A^1 = suppjc+ \ supp^ and A^2 = suppjc^ \ supp^. Consequently

ab> \\\Xn \- \Xm \\\E
>
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> max

max

+ - xm ) xA 2i 1

1

,

I
(4 - *

) XA E }

nnm
||

for every n ^ m. By (4) we get max
jp^x^n

> g/8
-

aZ?, then IjCx^ii ^ e /8
" 2ab - If-

II
/ HE

then
JU^XAJJ? I ^ /8

- 2of^- Hence

> */8
- ab. If

> e8 -
aft,

(5)

Denote r A j = min {r, ^} and r v 5 = max {r, 5
1

} for r, 5- K. For every n A/" define

Bn = {t e suppjc : |^(r)| A \xn (t)\
> b (I* (01 v |jrn (OI)} ,

Cn = suppx \ Bw ,

^ = [t e Bn : sgn(^ (t)xn (0) = -1} , ^ = Bn \ 5,[,

C,|
=

{t e Cn : |jc(OI = WO I
A MOD , Cl = Cn \ CA1

and for every k ^ n let

Dnk
=

f?
: MOi A |^(OI > <*b (\xk (t)\ v |^

^ (0) = -1} ,

ILL Suppose that LrxB i
> 8a for some n M. Denote by <5<ft () the modulus of

convexity of 7. Note that &K (2) = 1 . Applying Lemma 2 we get

+ *

Consequently

\X+Xn \ \Xn \

' |JC/||

Hence, applying the uniform monotonicity of E, we get \\(x + Xn) /2\\ E < 1 p\, where

pi is defined in (1).

IL2. Let

xXs l for some n e A/". (6)

Note that if
'

a *en >
l^Xc^l^

>
ia> I- Hence

FXcj < a. (7)

Furthermore JC71 Xc2 < /? < a. Consequently if *&Xc2 ^a f r some k ^ n, then

II l*ii I

~
I** I II >a>ab, but this contradicts (2). Thus

(8)
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Moreover we will show that

*fcXr>2 < 4oeb for every k^n.
II nk II E

Suppose conversely that UA-XD^ - 4aZ? f r some ^ ^ n anc* let

327

(9)

.

If
f
jr*xD 2i > 2ab, then *XD 2i > 2. But * e B () . Hence

* II , II n* I! E

lab. But

nk II E

< ab. Consequently |||^|
-

|.^|||
> ab, which is a contradiction

with (2), so (9) is proved. We divide the proof into two parts:

> a for some k ^ n. Note that for every f E {

k we have

and sgn(;r*

a.

Since SK (2) = 1
, so applying Lemma 2 we get

(* +

Then

Hence, similarly as in case II. 1, we conclude that \\(x

defined in (1).

< 1 p^ where ^2 is

nk II E
a f r everY k ^= n. Then, by (8) and (9), we get

+ for every k ^ n. (10)

Notice that A^ n ^ = for every k ^ n. Furthermore the inequality (5) yields

> /8 2ab for every k ^ n. Consequently, by (1) and (10), we obtain
'nk (I E

S 8

8

~~ 9(* -
16

for every k ^ n. Let z = |jc| X/?2uc2 - Denote 7*
-

suppz -4- suppjt*. Then, by (1 1), we get

||^XrJ|
v I^XT/JE ^ ^/16 for every k e J\f. Since E e (UC

1
) ,

then llzH-^/rlU <
2 (1

-
5i) for every A; A/", where ii is defined in (1). Thus, by (1), (6) and (7), we obtain

9of

Combining all of the cases we get ||(jc +Xk)/2\\E < I ^ for some k A/", where

A = min {#2, /?i, pa. 3^i/8} ,
which finishes the proof. D
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An immediate consequence of Lemma 3 and Theorem I is the following.

COROLLARY 1

Let Ebea Banach function lattice. IfE e (ft) , then E e (UM).

Here we will find some necessary and sufficient conditions for the property (ft) in the

space 0. We will need the following notion. We say that Musielak-Orlicz function $
satisfies the uniform &% -condition (we write O e A2 for short) if there exist a constant

k>2 and a set A e of measure zero such that O(r, 2u) < kQ(t , u) for every t e T \ A

and every u ell.

For t e T the function <(f, ) is strictly convex if $ (t , (u + v) /2) < (<&('. M) + $

(f , u))/2 for all M, u e 7, w ^ u.

Lemma 4. Suppose that $* e Af . 77z<?ft f/zere exfo a number > 1 onrf nonnegative

function f* with $> o 2/* e

t-a.. t eT andu> /*(*).

Proo/. Lemma 4 for = L 1 was proved in [1], the proof in general case is similar.

The proof of the next lemma is similar to the proof of Theorem 7 in [9] .

Lemma 5. IfE e (UC
1

) ,
<t> Af and <J>> 0, ften $ (UC-

1
)

.

Theorem 2. Thefollowing assertions are true:

(i) //< e (/J), tfzen <D e A| .

(ii) Ler (UM), <l> e Af ,
<X> > anJ O* e Af . Den<9?e ^ /* the function from

Lemma 4. ///or fji-a.e. t e T, 0>(r, -) iy rfncrfy convex function on the interval

(iii) Assume that E (UM), <f> e Af , <J> > awd O* A 2 . r/z^n <j> 6 (/*).

(iv) // e (/J), $ Af 0/zd <J> > 0, rAe/i <D e (ft).

Proof (i) If <3> Af ,
then $ contains an order isomorphically isometric copy of/

00
(see

[10]). But QJ) => (OC) (see the proof of necessity of Theorem 1). Because/ 00
(OC),

then Z $ (ft) and so 4, (ft).

(ii) Let s > be arbitrary. Take x,xn eB ($) with sep{jcn }
> 5. There exists an index k

with ||* *jtlU > /2. Denote /i = e/2. Then the definition of Luxemburg norm yields

> 1. (12)

By the assumption that 4>* Af and is strictly convex function on the interval [0, /* (01

for />6-a.e. t e T, applying Lemma 4, it is easy to show that there exist numbers A. (0, 1),
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6 (0, 1) and a nonnegative function f\ with O o
-7/1

<
| such that

cf>

329

(13)

for /x-a.e. f T and M, t> > and satisfying conditions max(w, u) > /i(f) and |w v\

> &l\u + v\ (see [1] and [6]). Moreover, E e (UM), so (OC). Then, by
<I> > 0, so we conclude that, there exist a number k > 2 and nonnegative function /2 with

and*o/2 <

(14)

for/x-a.e. / T and w > /2 (r) (see Lemma 2 in [10]). Define /(O = max{/i(f), /a(OJ-

Then
J

* o ^/ j

<
|-

Denote

A =

Then

Moreover

C = A

-f < l-

/jc jic^A II /2 \
<Do - xr\5 < po I -/

J

V M / E II V^ /

Consequently

^;^c <

<i-f.

By (12) we get <I> o
(
:L-~M Xc > T- Take a natural numbers with ^

< 2m . Applying

the convexity of < and using (14), we obtain

Xc <~~
2

So

(15)

Furthermore 2/(0 <
|jc(/) -^(01 < 2max{|jc(f)l , 1^(011 for every t C. Then the

inequality ( 1 3) yields

< ~(<J>oJc + OojcA)- "(Oo^-f <J>

2, 2*

/j
$0
v
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Denote by p(-) the modulus of uniform monotonicity of the Banach lattice E. From (15)

and (16) we conclude

Finally we get ||(;c + jc*) /2\\ <lq, where q e (0, 1) depends only on p (see Lemma

3 in [10]).

(iii) The proof is analogous as in (ii).

(iv) Since E (ft) , then by Theorem 1 we get E e (UC
1

)
. Furthermore <B Af

and 4> > 0. By Lemma 5 we conclude that E$> e (UC
1
)

. Basing on Theorem 1,

it is enough to show that E$ 6 (/J
+

). Denote by E$ the positive cone of $. Let

s e (0, 1) and x 6 B(E%). Take C*,,)^ C B(E%) such that septa }
> Since 6

(FP), /$() is left continuous. So, by the definition of the Luxemburg norm, we get

II* o X\\E < 1 and ||<I>
o xn \\ E < 1. Moreover (ft)

= (OC) . Hence the assumptions

that E e (OC), < e A| and $> > imply that there exists a number a(s) e (0,1)

such that ||<I> o (xn
- xm )\\ E > cr(e) for every natural n + m (see Lemma 6 in [10]).

The function O is superadditive on 7+, so |<I> o (xn xni )\
<

|4> o xn 4> o xm \ ,

and consequently ||

< o xn 4> o xm \\ E > cr (s) for every n ^ m . By the property (/3)

of we conclude that there exist a number S = 8 (0(e)) > and a number k M
such that

||
$ o jc + $ o jc* || E < 2 (1

-
S) . Furthermore

'I 2 IE

Finally, (see Lemma 3 in [10]), there exists a number y = y(S) (0, 1) such that

Remark 2. The condition E e (ft) is not necessary for Eq> (ft). It is sufficient to take

E = L l
over the finite measure space (T, E , jjt) and the function 3> which does not depend

on the parameter /. Then L e (ft) iff O e Aa and <!> is uniformly convex on the interval

[UQ, oo] for every w > (see [7]). But L 1

(0), because it is an Orlicz space generated

by the function <f>(w) = \u\ which is not uniformly convex.

Now we will assume that <l> does not depend on the parameter t. The function <3> is

strictly convex if 0> ((u + u) /2) < (O(w) + 4>(v))/ 2 for all u,v H, u ^ v. The

function is uniformly convex (uniformly convexfor large arguments), if for any a >
(a > and KO > 0) there exists a(a) > (<5

= 8(a, UQ) > 0) such that $ ((M -I- w)/2)
<

(1-8) ($>(u) -f <b(au))/ 2 holds true for every u > (for every u > o)-

The implication (UC) =
()8) can be reversed in Orlicz function spaces over the finite

measure space. It was shown for both Luxemburg and Orlicz norm ([7]). Here we will

extend this result to the case of Orlicz-Lorentz spaces over the finite and infinite measure

space.

Theorem 3. Let E = Aw with y = oo and assume that <b does not depend on t. Then the

following statements are equivalent:

(a) (AJ* (UC).

0>) (A)* (ft).
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(c) <f> is uniformly convex, <f> satisfies the ^-conditionfor all arguments and thefunction

a) is regular.

Proof The implication (UC) => (/?) holds in any Banach space. It is also true that

(c) < (a) (see [17]). Note that if y oo and w is regular, then /^ a>(t)6t = oo. It is

enough to prove the implication (b) = (c). Assume then that (A^) e (ft). First we will

show that w is regular.

Take any t > 0. Since CD is locally integrable, there exists a number af > such that

<*>(*,) / a>(s)ds = &(at )S(2t) = 1. (17)

Divide the interval [0, 2t] into two intervals G\
= [0, t] and G^ = [t, 2t]. Suppose that

the sequence of intervals

p
1 = [0, 2f/2

w~ 1

], G^"
1 = [2t/2

n
-\2tf2

n~2
]> ..., G^_\

= [2r

n > 2, is already defined. We divide each set Gp
1 =

[(i
-

\)2t/2
n~\ I2t/2

n~ l

l i =

1, 2, ..., 2
n~ l

into two subsets G^j, G^- such that

and

G"
2i
=

[(i
-

l)2r/2
n~ 1 + f/2'

l
~

l

, i2t/2
n~ {

] 9 (i
= 1, 2, ..., 2"~

!

).

In such a way, we obtain a partition (G", GJ, ..-, C^) ,
n = 1, 2, ... of the interval [0, 2t]

such that v(G?) = 2~n+l r, (n = 1, 2, ..., i = 1, 2, ..., 2
n
) and v denotes the Lebesgue

measure. Define

where u = U ^-p 2,
= U G^, (n = 1,2, ...). We get />(*,) =

A:=l A=l

/
2r

o>(5)d5 = 1. Moreover jc*
r
= at X[0,2t]

for every n 6 AT. Consequently /4(jcn ,r)
= 1-

Furthermore (jcrtf(
- jrw , r )*

=
2a;X[0,r]

for everY w, m AT, n ^ m. Hence Iv(xnj
-

jc
OTt/ )

= <I>(2a; ) /J co(5)d^. Taking into account that is convex and <w is nonincreasing

function, in view of (17), we get

ft j f2t
Q(2at ) I a>(s)ds > 2<E>fe);r / Q>(s)ds = 1.

Jo 2 Jo

for every f > 0. Then

inf <D(2a,) f a)(s)ds > 1. (18)
^>o Jo

Thus
I
jcrt

,
r
- jcm , r J

> 1 for every t > and n, w A/\ n ^ m. We have constructed

for every f > an element xt e S(A a) ,<i> ) and a sequence (xn,t)^\ 5(A Cl) ,cD ) with

sepfe,/} > 1. By the property (ft)
of (A<y)cj>, there exists a number 8 = 6(1) > and an

index fc for which
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Notice that (
Xt^'*nJ \ = a t X[Q,t] for every n e A/*. Thus, in view of (19) we get

This shows the regularity of the weight co.

By the assumption (A^)^ e (/?). Then <3> satisfies the suitable A| condition (Theorem

2(i) in the case when O does not depend on the parameter was proved in [12]), i.e. there

exists a number/: > such that for every u e 71 we have <f>(2w) < <I>(w) (see also [16]).

We get in particular that 3> > 0. Moreover, by Theorem 1.13 in [5], for every / > 1 there

exists ki > 1 such that for every u e 7 we have

<D(/M) <ki(u). (20)

Now we will show that $ is uniformly convex. At first we will prove that <l> must be

strictly convex. Suppose conversely that <2> is affine on the interval [M, v]. The weight

function a) is locally integrable, so there exists a number a > such that < Mo =

<I>(iO /Q' <w(0d? < 1. Moreover, if we define ^(A) fA a)(t)dt, then we conclude thai

/L6W is non-atomic. By the Lapunov's theorem {^(A) : A is Lebesgue measurable} =

[0, oo). Consequently for every X > there exists a number y > such that f^ co(t)dt =
i+n

f^* o)(r)dr. Take numbers y, A. > satisfying

(i) MI = 4>(u) /a
x
o)(0dr -f 0(w) /x

x
co(t)dt < 1

- M
,

(ii)

Then we find a number c > i; with 3>(c) f a)(t)dt + MI = 1. Define a partition

(Gp Gj, ..., G^n) ,n
~

1,2, ... of the interval [X, y] in the same way as in the previ-

ous part of the proof. Let

X = CX[Q,a] + VX[aM + X[X,y] and Xn =

2~i 277
" 1

where E lfB
= \J G^_,, E2,n

= U G^, (n = 1, 2, ...). We get 7<i>(jc)
= 1. Moreover

*=1 Jk=l

* M-f V

-^n
= C

X[0,a] + ^ XMX+y)/2] + X[^+x)/2,y]-

Then, by (ii) and the linearity of the function <D on the interval [M, v], we conclude

= 0.

r
-

/A
Furthermore (xn

- xm )* = (v
-

w)/2x[o,(/~A)/2] for every n, ;w e A/",fl 7^ m. But

||(u
-
^O/^xtoxy-x^Oio = ^ for some q > 0. We have defined an element*

Jt),^ ) and a sequence Oc/OJjta ^(A^,^ ) with sep{jc,,}
> ^. On the other hand

V 4
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for every n AT. Applying the fact that $ is affme on the interval [w, u], by (ii), we get

for every n e AT. Hence
||
^^

||

= 1 for every n A/". But this is a contradiction with the

property (ft).

To finish the proof it is enough to show that <J> is uniformly convex. Suppose that this is

not true i.e. there exists a sequence u^ of positive numbers and a constant b (0, 1) such

that

=
f (

M*+m *

)+$buk . Consequently,

applying the convexity of 4>, it is easy to prove that

<J>

and

/^UL -4-h/y/A / 4\ /^ 1 \

(22)

If there is a subsequence of (M*) approaching a number w > 0, then < is affine on the

interval [bu, u] and thus 4> is not strictly convex. Consequently, without loss of generality,

we assume that Uk ~> or uk -> oo. The proof will be done only for the case M* -> 0,

in another case it is analogous. The weight function co is locally integrable, so there exists

a number a > such that < MO = $(u\) f <t)(t)dt < 1/2. Then, similarly as in

the proof of the strict convexity of 4>, for every k N there exist numbers A.* > and

> satisfying

t* r-
I co(t)dt= I fi>(0d;, (23)
Ja Jxk

M <Mk <l- Mo, (24)

where M* = Qfa) f
k
co(t)dt -f &(buk) f^ a>(t)dt. Then take a sequence c* > ut with

Affc
= 1. (25)

Then there exists a number p > such that

-
b) /2) S ((yk

-
A*)/2) > p (26)

for all k e AT. Indeed, suppose conversely that <I> (wjt (1
-

6) /2) -S ((yjk
-

A,^)/2) -> 0.

But O A2- Putting / = -^ in inequality (20) and denoting fa = ^,
u = jz, we get
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-
b)v/2) > ftb$(v) for every v e 72, Thus O (uk ) S ((yk

- Xk)/2) -> 0. Moreover,

by (23) and (24), taking into account that co is nonincreasing and <3> is a convex function

we obtain

r^

I

Jrt

<D (it*) 5 (0* - A,*)/2) + 6d> (m) 25 ((yk
-

A.*) /2) -> 0,

but this is a contradiction, so (26) is true. For every k AT let
(G*'*,

G*'
/z

, ..., G
n = 1, 2, ... be a partition of the interval [kk , yk ] constructed in the same way as in the

previous part of the proof. Define for every k e M an element jc* S(A a>t ^ ) and a

sequence (xfo^ e S(Aa>,<s> ) by

and

where E^ fl

= U^
1

G^ p ^ = U^
1

G%\ (n = 1, 2, ...). Then, by (26), we get

/o (x* - A:* )
> p for every A: 6 A/" and n ^ m. So there is a number q > such that

II

xn
- xm I CD

> ^ for all -A: 6 M and n / m. Moreover, by (21), (22), (23) and (25), we

get /<D ( (x
k + *}/ 2)

> 1
-

4/fc for every n e AT . The Ai-condition implies that there

exists a sequence (ak)f=l c U with lim^oo ak = such that
|| (jc* + **) /2|| ^

> 1
- ^,

n = 1, 2, ... (see [10]). This contradiction shows that the property (ft) implies that <J> is

uniformly convex on the whole real line. D

For y finite one can prove in the similar way as Theorem 3 the following:

Theorem 4. Let E = Aw with y < oo and assume that $ does not depend on t. Then the

following statements are equivalent:

(a) (Aa,)* (UC)

(b) (AJo 08)

(c) <J> is uniformly convex for large arguments, <E> satisfies the ^-condition for large

arguments and thefunction a) is regular.

Taking CD = 1 in Theorems 3 and 4 we get the following characterization for Orlicz

spaces equipped with the Luxemburg norm over finite or infinite measure space (see [7] for

the finite measure space).

COROLLARY 2

Let $ be an Orliczfunction and let L<t> be the Orliczfunction space over thefinite or infinite

measure space. Then thefollowing statements are equivalent:
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(a) Lo> e(UC).

(b) U e(ft).

Using Theorems 3 and 4 for <D(w) = \u\ we get immediately

COROLLARY 3

Let y < oo or y = oo. The Lorentz space A& does not have the property (ft).
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Abstract. Jn this paper, sufficient conditions have been obtained under which every
solution of

[v(0
y(t

-
r)]'

Q(t) G(y(t - a)) = /(r), t > 0,

oscillates or tends to zero or to 00 as t -+ oo. Usually these conditions are stronger
than

oo

j Q(t) dt = co. (*)

An example is given to show that the condition (*) is not enough to arrive at the above

conclusion. Existence of a positive (or negative) solution of

-
y(t

-
*) + 2(0 G(y(t

-
or)) = /(r)

is considered.

Keywords. Oscillation; nonoscillation; neutral equations; asymptotic behaviour.

1. Introduction

In a recent paper [8], the authors have obtained necessary and sufficient conditions so that

every solution of

[y(t) -py(t- r)]' + Q(t) G(y(t
-

or)) = /(O

oscillates or tends to zero as t
- co on various ranges of p, where G 6 C(R, R), Q

C([0, oo), [0, oo)), / 6 C([0, oo), R) t
r > and a > 0. They have studied the similar

problem in [9] for equations of the form

-
P(t) y(t

~
r)] Q(t) G(y (t

- a)) = /(r)

for different ranges of p C([0, oo), R), where /, G, Q, r and a are same as above. In

these results, the primary assumption is

oc

(1)
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However, these results don't hold good for the critical case p(t) = 1 or p(t) = - L In

this paper, an attempt is made to study oscillatory and asymptotic behaviour of solutions

of equations of the form

[y(!) y(t
-

r)]' 2(0 G(y(t
-

a)) = /(r), (2)

where xG(x) > for x ^ and G is nondecreasing. We assume that

CO

/|/(0|dr
< 00.

In most of our results, the assumptions are stronger than (1). It seems that it is possible to

obtain an example of a neutral differential equation in the critical case such that (1) holds

but the equation admits a nonoscillatory solution which does not tend to zero as t -> oo.

A similar example is obtained in the discrete case by Yu and Wang [13].

Several open problems are stated in [2] (see 6.12.9 and 6.12.10, pp. 161) for equations

of the type

[y(t) y(t
-

T)]' + 2(0 y(t
- a) = 0-

In a recent paper [10], Piao has solved one open problem with an extra condition. Indeed,

he showed that every nonoscillatory solution of

0(0 + y(*
-

r)]' + 2(0 y(t
- a) =

tends to zero as t -> oo if (1) holds and Q(t + r/n) < Q(t ) for t e [0, oo) where n is any
fixed positive integer. However, Ladas and Sficas [6] have shown that every solution of

0(0
-

y(*
-

*)]' + 2(0 y(*
- <O = o (3)

oscillates if (1) holds. Chuanxi and Ladas [1] posed the open problem that whether (1) is

a necessary condition for the oscillation of all solutions of (3). In other words, whether

oc

/ 2(0 dt <oo

implies that (3) admits a nonoscillatory solution. Liu et al [7] (see also [11]) gave an

example to show that the open problem is not true. They have shown that a stronger

condition, viz,

oo

/< (2(0 dr <oo

implies that (3) admits a bounded nonoscillatory solution.

By a solution of eq. (2) on [T 9 oo), T > 0, we mean a function y C([T
-

r, oo), R)
such that y(t) y(t

-
T) is continuously differentiable and (2) is satisfied identically for

t > T, where r = max{r , a } and T is depending on y . Such a solution of (2) is said to be

scillatory if it has arbitrarily large zeros; otherwise, it is called nonoscillatory.
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2. Sufficient conditions

In this section we obtain sufficient conditions so that every solution of (2) oscillates or tends

to zero or to oo as t -* oo .

Theorem 2.1. Suppose that

G(x) + GOO > G(JC + y), x > 0, y >

and

GOO + GOO < 0GOc + y), * < 0, y < 0, (Hi)

vv/zere a > ad @ > Qare constants. If

oo, (H2)

w/iere Q*(f )
= min{Q(r), fi(r

-
r)}, r/ie;z every solution of

[y(t) + y('
-

r)]

;

+ 2(0 G(y(t -
a)) = /(r) (4)

oscillates or tends to zero as t - oo.

Proof. Let y(/) be a nonoscillatory solution of (4) on [Ty , oo), Ty > 0. Hence there exists

a r > T
y such that y (0 > or < for r > * . Let y (/) > for r > * . Setting

and

/

(*) dJ, (5)

o

for f > fj > tQ + r, we obtain z(r) > and

^(0 = -Q(t)G(y (t
- a)) < (6)

forf > fi. Hence u;(r) > or < for t > ^ > fj. If ^(0 > for / > ^2, then lim
f >oo

exists. If w(t) < for t > r2 , then < y(0 < z(r) < F(t) implies that y(f) is bounded

and hence u;(0 is bounded. Thus lim w(t) exists. In either case lim z(t) exists. We
f-Kx> r-^-oo

claim that lim z(t) = 0. If not, then z(0 > A. > for r > ^ > *2 . From (4) we obtain,
/~00

forr > r4 > *3 + cr + r,

-f z'a - r) + G(* )0(y (r
- ^)) + C(^

- r)G(y (t
- r - or))

+ z'(t
-

T) -f Q*(r)(G(y (r
-

cr)) + G(y (r
- T - a)))

-h z
x

(r
-

T) -f afi*(OG(y (t
- a) + y(r

- T - a))

-f z
;

(r
-

r) + a

+ z'(r
-

r) + a
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Hence,

z(r) + z(t
-

r) < z(*4 ) + z(r4
-

r)

f(s)dS +
J
/(J-T)dS

'4 '4

implies that z(r) < for large r, a contradiction. Hence the claim holds. Consequently,

lim y(t) = 0. Similarly, when y(t) < for r > r0l we obtain lim j>(0 = 0. Thus the
f->co t >oo

theorem is proved.

Remark. Clearly, (H2) implies (1).

Remark. If G() = wy
,
where y > is a ratio of odd integers, then (Hi) is satisfied due

to well-known inequalities

(\a\+\b\)"<\a\"+\b\
p,0<p<l,

(\a\ + \b\)i><2^(\a\ + \b\),p>l,

where a and b are any two real numbers. If G(M) = \U\Y sgn u, where y > 0, then (Hi) is

also satisfied.

Remark. Clearly, (1) and Q (t + -
j
< g(r) for t 6 [0, oo), where n is any fixed positive

integer, imply (H2) because 2(0 > Q(t + r),t e [0, oo). Hence Theorem 2.1 may be

regarded as an improvement and generalization of the work in [10].

Theorem 2.2. Ifd&i) holds, then every solution of(4) oscillates or tends to zero as t -> oo
,

where (Hs) is stated asfollows:

(Hs) For every sequence (a/> C (0, oo), a/ -> oo ^5- z -> oo; andfor every rj
> 0, .

//iflf r/i^ intervals (a/
-

y, or,- + v), i = 1, 2, . . .
, and nonoverlapping,

'=0

Proof. If y(0 is a nonoscillatory solution of (4) on [Tyt oo), Ty > 0, then y(t) > or <

forr > r > Tv . Lety(r) > 0, r > r . Settingz(r) andu;(r) as in (5) for r > Tj > r + r
3

we obtain (6). Hence w(t) > or < for t > T2 > T
{ . Proceeding as in Theorem 2.1,

we show that lim w(t) and lim z(r) exist. Since y(t) < z(0, then limsupy(0 exists.
r-^oo r-xx) r-oo

We claim that lim sup y (t) = 0. If not, then lim sup y(t) = a, < a < oo. Hence there
r-s^oo r-*oo

exists a sequence (/n ) C [T, oo), T > J2 ,
such that rn -> oo as n -> oo and y(tn )

-> a as

-> oo. Thus, for large N\ > 0, y(tn ) > /? > Oifn > ^^ Since .v(0 is continuous at tn ,

then there exists 8n > such that y (0 > ft for r 6 (/
- 8n ,

tn + 8n ) and lim inf 8n > 0.
n->oo

Hence ^ > ^ > forn > AT2 . Choosing N = max {A^ ,
AT2 }, we obtain
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fQ(t)G(y(t-a))dt
T

oo

j

"~ yv
tn -8n +<r

~ tn+S-Hf

2(0 df

which implies that

T

by (Hy. However, integrating (6) we obtain

Q(s) G(y (s
-

or)) dr = ^(T) -
w(t).

T

Thus

oo

f Q(!)G(y(t-cr))dt <oo,

r

a contradiction. Hence our claim holds. Consequently, lim y(t) = 0. The proof is similar
/ >oo

for.y(f) < 0, t > TO. This completes the proof of the theorem.

Remark. Clearly, (Hs) implies (1). From the following example it is clear that (1) does not

imply

Remark. Theorem 2.2 holds if we assume that

-oo < liminf F(t) < iimsup F(t) < oo

instead of

/ : oo,

o

where F(t ) is given by (5). In the following we give an example to show that the condition

(1) is not enough to arrive at the conclusion of Theorem 2.

Example. Consider

-
I)]' + Q(t)y(t

-
1) = h'(f) + h'(t -!),/> 1,
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where

Q(r) = (e
2 +

<?) [e'+

l

h(t
-

1) + e
2

]"
> 0, t > 1,

and /z C l

([0, oo), [0, oo)) defined by

f 0, f 6 [0, 1]

and extended to oo by the periodicity A(r) = h(t + 2), t > 0. Clearly, y (0 = A(0 +

is a positive solution of the equation with lim sup v(0 = limsupA(0 = . Further,

f-oo *-oo 1

/

oo /.'

Q(Odf>]T J
2(0 dr =

Thus (1) holds but the equation admits a nonoscillatory solution which does not tend to

zero as t -* oo. This suggests that stronger conditions are needed to show that every

nonoscillatory solution of (4) tends to zero as t -> oo .

Example. Consider

[)>(0 + y(t
-

TT)]' + (r
-

7r)"
1/2

>'0
- *) = /(O, r > 2n

where

cosf 2sin^ 2sinr cost sinf

ir(ri^""ir"-(r^^"a
Since

lS (0 = min

then

oo

f Q*(t)At = oo.

27T

From Theorem 2.1 it follows that every solution of the equation oscillates or tends to zero

as t .+ oo. in particular, y(t)
= sin t/t

2
is such a solution of the equation. We may note

that Theorem 2.2 fails to hold for this equation because

oo oo

/ Q(t) dt =
2^[(ai

+ r) -*)'*- (cr; -r,-x)

' + ^
- ^'^ + (cr/

-
1
-

Jr)

'

/2

]

i=0

i=0

< oo
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for a sequence (cr/)
==

(z

4
) C [27T, oo).

Example. Consider

[y(t) + y(t
-

l)]

;

+ y(t
-

l) exp(y(r
-

1)) = /(r), r > 1,

where

Since Q(t) == 1, then (H3) holds trivially. Thus every nonoscillatory solution of the

equation tends to zero as t -+ oo by Theorem 2.2. In particular, y(t) = e~ l
is such a

solution. However, Theorem 2.1 cannot be applied to this equation because

G(u + v) = (u + v)e
u+v > ue

li + ve
v = G(u) + G(v)

for w > and v > and hence (Hi) fails to hold.

Theorem 2.3. Every unbounded solution of(4) oscillates. In other words, every nonoscil-

latory solution of (4) is bounded.

Proof. Let y(t) be an unbounded nonoscillatory solution of (4). Let y(t) > for t >

t$ > 0. The case y(t) < for t > t$ > may be dealt with similarly. Setting z(t) and

w(t) as in (5) we obtain (6). If w(t) > for large f
,
then z(t) is bounded and hence y(t)

is bounded, a contradiction. If w(t) < for large t and is bounded, then z(f) is bounded

and hence y(t) is bounded, a contradiction. Thus w(t) < for large t is unbounded.

Consequently, lim w(t) = oo which implies that z(t) < for large t, a contradiction.
t oo

Hence the theorem is proved.

Theorem 2.4. If (I) holds, then every solution of

[XO - y(t
-

t)]' -f Q(t)G(y(t
-

a)) = (7)

oscillates.

Proof. If possible, let y(t) be a nonoscillatory solution of (7) on [Ty , oo). Without any loss

of generality, we may assume thaty (0 > Oforf >t$ > Ty . Setting z(t) = y(t) y(t r)

for t > t\ > to + r, we obtain

Hence z(t) > or < for t > ti > t\ . lfz(t) > 0, t > *2 then

Q(t)G(y(t-a))dt < z(t2) < oo.

>2

On the other hand, z(f) > for r > ft implies that y(0 > y(t
-

T) and hence lim inf
/ >oo

y(t) > 0. Thus y(t) > a > for t > {3 > fc. Then
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implies that

CO

fi(r)GCy(r-or))d/ = oo,

f3 +cr

a contradiction. Therefore, z(t) < for t > ^2, that is, y(t) < y(t
-

T), r > t2 . Then >'(f)

is bounded and hence lim inf y(f) and lim z(t) exist. From Lemma 1.5.1 of [2] it follows
t-*00 f-00

that lim z(/) = 0, a contradiction because z(0 < and monotonic decreasing. Hence the
f->00

theorem is proved.

Remark. Theorem 2.4 generalizes Theorem 6.4.1 due to Gyori and Ladas [2].

Remark. In [7], an example is given to show that the condition (1) is not necessary for

oscillation of all solutions of (7). They have proved that every bounded solution of (7)

oscillates if and only if

00

/ (H4 )

o

We may note that (1) is stronger than (H4).

Theorem 2.5. //(Hs) holds, then every solution of

[XO
-

y(t
-

r)]' + Q(t)G(y(t
-

cr)) = /(r) (8)

oscillates or tends to zero ast - oo.

Proof. Let v(r) be a solution of (8) on [Ty , oo), Ty > 0. If y(t) oscillates, then there is

nothing to prove. Let y(t) be nonoscillatory. Hence y(t) > or < for t > TQ > Ty . Let

y(t) > Oforf > TO- Setting

and

r

u;(0 = z(/)
-
F(0, F(r) = f /(j) dj,

o

for t > TI > TO -f r, we obtain

If ty(r) > for t > TI > T\ ,
then lim w(t) exists. If w(t) < for r > 72 is unbounded,

f-OO
then lim u;(0 = -oo and hence z(r) < for large r, that is, y(t) < y(r

-
r) for large r.

Thus >(*) is bounded, which implies that u;(f) is bounded, a contradiction. Hence w(t) <

fort > T2 ^ bounded. Then lim w(t) exists. We claim that lim sup y(t) = 0. If not,
/->oo fm>00

then limsupy(0 =
or, < or < oo. There exists a sequence (tn ) C [Ii, oo) such that
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tn -> oo and }>(f/j) -> ct as n -* ex:. Hence y(/) > /3 > Qforn > N\ > 0. Since

is continuous at fn , there exists <$ > such that y(t) > p for t e (? ,
fn -f <$) and

lim inf 5,2 > 0. Then 8n > 8 > for n > Ni > 0. Choosing Af = max {N{ , AT-?} and then
n KX)

proceeding as in the proof of Theorem 2.2, we arrive at a contradiction due to (Hs). Hence

our claim holds. Thus lim y(t) = 0. Similarly, we may show that lim y(t) = when
r >co r -oo

< for r > TQ. This completes the proof of the theorem.

Theorem 2.6. Suppose that (Hi) and (H2) A0/J. //XO a solution of

b(0 + y(*
-

t)]'
-

fi(OG(?(f - or)) = /(o, (9)

f/zen >
?(0 oscillates or tends to zero as t -> oo or lim sup |y (t) \

= -{-oo.

f~>00

Proof. If possible, let y(t) be nonoscillatory. Hence there exists ?o > such that j(r) >
or < for t > fo- Let y(t) > for r > ro. Setting z(0 and w(t) as in (5), we obtain

z(t) > and

for ^ > fi > fo + ^- lfw(t) < for r > ti > t\ ,
then lim w(t) exists and hence lim z(t)

r->oo r-cxD

exists. If w(t) > for t > ^2 is bounded, then lim w(t) and lim z(t) exist. We claim
r-*oo r->oo

that lim z(0 = 0. If not, then z(r) > A > for t >
t<$
> t2 . Using (9) and (HO we may

r-oo

write, for t > U > t$ + r,

/(O + /a -
T) < z

f

(t) + z
f

(t
-

r)
- G*(0(G(X* - ^)) + G(y(r

- r - a)))

< z'(t) + z
r

(t
-

r) -<*Q*(t)G(z(t - a))

This implies, due to (H2), that lim z(t) = oo, a contradiction. Hence our claim holds.
?-00

Sincez(0 > y(0,then lim v(r) = 0. Ifuj(0 > 0, r > ^2* is unbounded, then lim w(t)

+00. Hence v(f) is unbounded. Similarly, if v(f ) < for r > fo> then lim v(f) = or
r-oo

>'(0 is unbounded. Thus lim y(t) = or lim sup !>'(/) I
= -hoc. This completes the proof

f-oo ^oo
of the theorem.

COROLLARY 2.7

7f(Hi) anc( (H2) /io/J, ?/z<?n every bounded solution of (9) oscillates or tends to zero as

t -> oo.

This follow from Theorem 2.6.

Theorem 2.8. Let (Hs) /zo/d. 7jf>'(0 is a solution of (9), then it oscillates or tends to zero

ast -* oo or lim sup \y(t) \

= +00.
/->oo

The proof is similar to that of Theorem 2.2.

COROLLARY 2.9

holds, then every bounded solution of (9) oscillates or tends to zero as t -* oo.
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Theorem 2.10. Suppose that (H?,) holds. Ify(t) is a solution of

[>'(0
-

y(t
-

T)]'
- G(0 G(y(t - a)) = /(/), (10)

then y(t) oscillates or tends to zero or
\y(t)

- +00 as t - oo.

The proof is similar to that of Theorem 2.5.

COROLLARY2.il

holds, then every bounded solution of (10) oscillates or tends to zero as t -> oo.

Remark. Some of our results partially answer the open problems stated in 6.12.9 and

6.12.10 [2].

3. Existence of nonoscillatory solutions

In this section we obtain necessary and sufficient conditions for the existence of a bounded
j

positive/negative solution of the eq. (8). [

Theorem 3.1. Let f(t] > with
\

/(/)dr<oo. (11)

Then eq. (8) admits a bounded negative solution ifand only if

C(/)dr<oo. (H5 )

Proof. Suppose that eq. (8) admits a bounded negative solution y(t) on [7V , oo),
Ty > 0.

Setting z(t) = y(t)-y(t-r) and w(t) = z(t) + F(r), where

for r > ?o > Ty + r, we obtain w(t) > z(0, iu(0 is bounded, F(t) -> as f -> oo and

w ;

(0 = -fi(OG(X^-cr))>0. (12)

Hence iy(/) > or < for t > t\ > tq. If w(t) > for / > t\ 9 then lim u;(0 exists and
/-*oo

hence lim z(t) exists. Since liininf y(0 (or limsupyO) I exists, then lim z(0 = Oby
f->oo r-oo y t-+<x> ) f->0

Lemma 1.5.1 in [2]. Thus lim w(t) = 0, a contradiction to the fact that iy(f) > and
t >00

nondecreasing. Hence iy(/) < Oforf >
fi. Consequently, lim iy(0 exists and z(t) <

>
,

^-^oo
for t >t\. There exists a > such that >?(0 < -a for r > t\. Integrating (12) from 5- to

t (s > t > ti > t\ + a) and then taking limit as s -> co we obtain

oo

<G(-d) I fi()du,
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that is,

y(t-r)> y(t)

CO

-G(-a)j
Q(s)ds.

Putting the values of t successively one may obtain

t "7
y(t-r)> y(t + nr) + ^2 I /($) dy - G(-a) / Q(s)ds.

A=,r . *=0,

Since y(t) is bounded, then using (1 1) we get

7
/ Q(s) As < oo.

From this (H5) follows.

Next we assume that (Hs) holds. It is possible to choose m > sufficiently large such

that

k=m
Q(t)dt<-

1

and

k=m

kr

?

/(Odr<-,

that is,

-1
and

where T = mr. Define

L(0 =

0, < t < T

00 00

-
/ f&ds,

Hence L(0 < for r > 7. Further, define

0, < r < T

Thus w(0 < and w(r)
-

u(t
-

r) = L(t), t > T. For / > T, there exists an integer
k > such that T + kr < t < 7 + (* 4- l)r. Hence r < t - kr < T -j- r and

r - T < / - (Jk + l)r < T. Then



348 N Parhi and R N Rath

M(0 = 1(0 + L(t
-

T) + - + L(t - kr)
00 OO OO OO

Q(s)As-j
/(j)(b + ... + G(-I) ( Q(s)ds- f f(s)ds

i t-kr t-kr

00 00 00

-
/* f(s)ds + --- + G(-l) f Q(s)ds.- f

>

/

T+kr T+kr T T

oo
<*> *>

Let X = BC([T, oo), R), the space of all real-valued, bounded continuous functions

on [T, oo). It is a Banach space with respect to supremum norm. Let K {x X :

x(t) > 0, t > T}. For M, v e X, we define u < v if and only if v u e K. Thus X is a

partially ordered Banach space (see pp, 30, [2]). Define

M = {x X : u(t) < x(t) < 0}.

Clearly, u e M and u = inf M. If <p c A C M, then A = {* 6 M : u(t) < v(f) <

^(0 < w(0 < 0}. Setting wo(t) = sup{u;(0 : jc(0 < w(/) < 0, ,Y e A}, we notice that

w = supA and tu e M. Define S : M ~> X by

00 00

c(f
-

r) -f / 2(^)^(^(5 - cr))d,s
-

/ /(5-)d5-, r > T{
J J
' *

(13)

where TI = T+r andr = max{r, a}. Clearly, Sx is continuous on [T, co) and Sjc(f) <
forf > T. For? >T\,

CO CO

5 x(t) > jc(r
-

r) + G(-l) f Q(s)ds
- f f(s)ds

> u(t
-

T)

ForT <f <7i,

"

T!

Thus 5 : M - Af . Moreover, ;q > jca implies that S ;ci
> S X2- From the Knaster-Tarski

fixed-point theorem (see pp. 30, [2]) it follows that S has a fixed point y M which is a

solution of (8) on [T\ , oo). Since y(T\
-

T) < 0, then from (13) it follows that

-r)-f
< y(Ti -r)- f(s)ds < 0.
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Thus y(t) < for t e [T, Tj]. For f [7i, T\ + T], XO < 0. Consequently, y(0 <
for t > T[ . This completes the proof of the theorem.

Theorem 3.2. Let f(t) <

f(t)dt > ~oo.

Then eq. (8) admits a bounded positive solution ifand only ij

The proof is similar to that of Theorem 3.1.

Remark. Theorems 3.1 and 3.2 hold if f(t)
== 0. Hence, we have the following corollary.

COROLLARY 3.3

Every bounded solution of(l) oscillates ifand only if

' oo ?
T \ / = 00.

Thisfollowsfrom Theorems 3.1 and 3.2.

Remark. We may note that

00 00

I . . I

< OO

and

/
|/(r)|

df < oo implies that /
|/(r)|

dt

00 ?

/ )2(0 df < oo implies that / g(r) df < oo.

=
ikr
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Abstract. In this paper, by proving a new comparison result, we present a result on
the existence of extremal solutions for nonlinear impulsive delay differential equa-
tions.

Keywords. Contraction mapping theorem; extremal solutions; impulsive delay
differential equations.

1. Introduction

In this paper, we discuss the impulsive retarded functional differential equation (IRFDE)

/(',*), te[0,T],tt*k',

/=^ = /*(*(**)), *=l,2,...,m; (1.1)

O,

where $ e PC([~r, 0], R) = {x, x is a mapping from [T, 0] into R, x(t~) = x(t) for all

t e (-T, 0], x(t+) exists for all t e [ T, 0), and x(t+) = x(t) for all but at most a finite

number of points t e [ T, 0)} and M([ T, 0], R) = {x, x is a bounded and measurable

function from [ r,0] into R] with norm ||;c||
=

sup, (_r0]
|;c(r)|, T > 0, *,(#) = x(t 4-

0),0 [-t,0],0 = r < t\ < t2 < < tm < T, J = [0, T], ]' = J - {ti}^. It is

easy to see that FC ([-T, 0], R) c M([-r, 0], /?) and M([-r, 0], J?) is a Banach space.

Now we suppose that / e C(J x M([-T, 0], R), R), lk C(/?, tf)(fc = 1, 2, . . .
, m)

throughout this paper.

In [1] and [2], some existence and uniqueness results were obtained for eq. (1.1) by the

Tonelli's method or fixed point theorems. And it is well-known that the method ofupper and

lower solutions and its associated monotone iteration is powerful technique for establishing

existence-comparison for differential equations (see [4, 5, 6]). But to impulsive differential

equations with delay as eq. (1.1), this method has not been used yet as far as we know. In

this paper, we discuss eq. (1.1) by the method and we can find that the delay and impulses

make the discussions more difficult.

2. Main results

Assume M([-r, T], R) = {x, x is a bounded and measurable function from [ r, T] into

R} with norm \\x \\

= supfe[_ r?:r] |jc(OI, PCo([-t, T], R) = {x,x is a mapping from [r, 0]

into R, *(*-) = jc(r) for all \ e (-r, 0], *(/+) exists for all t e [-r, 0), x(t+) = x(t)
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for all but at most a finite number of points t e [ r, 0), and x(t) is continuous at t

[0, T] - {r/lJLj
left continuous at t = tk , and x(t) exists (k = 1, 2, . . .

, m)}.

DEFINITION 2.1

A function x e PCo([ T, I], /?) is said to be a solution of (1.1) if x satisfies the first

expression of eq. (1.1) for all t e J except on a set of Lebesgue measure zero (the

exceptional points will generally include but may not be limited to impulse times /*) and

satisfies the second one of eq. (1.1) for all t e {**}/[Lp
and x is piecewise absolutely

continuous on [0, T] with *o = <.

DEFINITION 2.2

A function G : M([ r, 0], R) -> R is said to be weakly continuous at 0o G M([r, 0], R)
if for any {<} c M([-r, 0], #) with lim n (y) = 0o(*), a.e. 5 6 [-r, 0], then

tt->+OO

lim
n-+o

And G is said to be weakly continuous on M([ r, 0], /?) if G is weakly continuous at

0forany0eM([-r,0],jR).

Remark 2.1. This condition is more direct than that in [1] and is different from that in [2],

which need that f(t t VO is continuous at each (t, ^o) (0, T] x L 1

([-r, 0], R
n
).

Lemma 2.1. A55wme ?/iaf a function g : J x M([ r, 0], R) -+ R is continuous at evety

t J for eachfixed (j)
e M([ T, 0], #) and is weakly continuous at every $ M([ r, 0],

#)/0r each fixed t e J. Then for every x e PC([-r, T], #), ^(/, ;cf ) w measurable on

[0, T].

Proo/ Choose a continuous function sequence {xn } such that

lim xn (t)=x(t), for all t e [-r, J].
n->-+oo

By Lemma 4 in [3], xnt is continuous at / 6 [0, T]. So g(r, xnt ) is measurable on [0, T].

Since lim ^^(s
1

)
= xt (s), for all 5 e [-r, 0], then

71^+00

rtJj^oo
^ (f ' ^^ = ^ (f ' ^ )j f r a11 r f' r] '

So g(r, ^:r ) is measurable on [0, T]. D

Set J? e M([-r, 0], ^)*. Moreover, suppose that there exists aye L I

([T, 0], /?)

with x(r) > for all most t e [-r, 0] such that

/
for all VT e A/([-T, 0], R) and ||fi||

= / y(r)dr.
J T

Now we list a main lemma.
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Lemma 2.2 (Comparison result). Assume that p e PC([r, T], R) Pi C l

(J', R) satisfies

p
{ < -Mp(t) - Bp t ,

t e J, t ^ tk

(2.1)

vv/zere constants Af > 0, < L* < 1 (fc
=

1, 2, . . .
, m) tf/zdM = / e~

M '

y (f)d/.

supposefurther that

(a) either p(fy < p fa) < 0, ^ [-T, 0] and

(2 '2)

= max{/i, ^2 fi, . . .
,
T - /OT }; or

(b) ;;(0)
> -X, po 6 PC ([-~r, 0], JR)nC

1

(/
/

, R) where I' = [-r, 0]-^}^, {r/JfJ.,
w the set of the discontinuous points of PQ, p'(t) <

(2.3)

inf p(s) = A, <
,ve[-T,0]

n?1

r(i-W
MoA2 -

i + r" n" (i-^)'
(2 '4)

1 ^ 2^j=-r
n
k=j^

1 ^k)

where AI = max{f_r + t, f_r+ ]
fr ,

. . .
, -f_i, fi, ti

-
t\ 9

. . .
,
T -

r,n }. Then p(t) <

fora.e. t e J.

Proof. Now let u(r) = e
Mr

w(r), r [-r, 0]. By the definition of 5, the eq. (2.1) can be

listed as

< - /
Jt-

teJ.t^ tkl

t-r \*"J)

==tk
< -Lk v(tk ), (k= l,2,...,m).

Now we will prove v(t) <0,t e [ r, T].

In fact, if there exists a < f
*
with u(r*) > 0, we might well suppose t* ^ t[ ,

h
,

. . . ,tm

(otherwise, we can choose a t nearing t* enough with v(t) > 0), let

inf v(t) = -&. (2.6)
-c<t<t*

First we consider the case (a).

(A) In case ofb = 0: v(t) > 0, t e [0, r*]. Then t/(0 < 0, t e [0, f*]. So u
;

(r*) < 0.

This is a contradiction.

(B) In case ofb>0: Assume t* (f/, f/+i]. It is clear that there exists a < f* < t*

with v(t*) = -&, where r* in some Jj(j
<

i) or n(rt) = b. We may assume that

ufe) = & (in case of i>(rt) = b, the proof is similar). By mean value theorem, we
have
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On the other hand, for t [0, f*]

Now from (2.1), we get

and

, (* = 1, 2 . . .
, m),

which implies

Moreover,

0+25

{V

(2.7)

(2.8)

which contradicts (2.2).

By virtue of (A) and (B), v(f )
< 0, f 6 J.

Next we consider the case (b).

(A') If b = inf u(r), we can obtain a contraction similarly as (a).

(BO If -fc < inf u(r), then b = X and there exists a f* (f-/-i, t-/] with u(r*)
= ~

re[0,r*]

(or v(t*j_ j)
=

, the proof is similar). So
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u(f*)-u(^) = v
/

(?/)a*-ft),

355

r' < ?, <

(2-9)

By (2.9) and (2.3), one has

which implies

< u(

~bn'k=_j(l
- Lk )

Similarly we get

which contradicts (2.4).

By virtue of (A') and (B
x

), i/(f) < 0, a.e. t 7. And the proof is complete. D

Lemma 2.3. Let a,rj e M([-r, T], R). Then x e PCo([-r, T], #) is a solution of the

equation

x 1

-f MX + #;tr
= cr(/), t /, ? 7^ tk,

&x\t=:tk
= 4(^) ^JtUfe) 7(^)]f (fc

= 1, 2, . . .
, m), (2.10)

ifand only ifx e PCo([-r, T], jR) is a solution of the following integral equation

x(t) = O(0)e""
Mr + / e~M(r

~~'y)
[aCy)

- Bxs ]ds
Jo

- Lk [x(tk )
-

,
t 7, (2.11)

whew xt (s) = jc(f 4- s) = 4>(r + 5
1

) ift + s < 0.



356 Baoqiang Yan andXilin Fu

Proof Assume that x PC ([-T, T] 9 R) is a solution of IRFDE (2.10). Let z(t) =

x(t)e-
Mt

. Then z PC([-T, T], #) and

z
;

(0 = [*(0 - toOle-"
1

,
r 6 [0, 7], t ^ tk (k = 1, 2, . . . , m).

Since (a(r) Bx
t )e~

Mt
is measurable on [0, T], it is easy to establish the following

formula:

I z'

-70

- z(0) + z'(s)ds + [z() -
z(fc)L t [0, T].

And from the second expression of (2. 1 0), we have

z() - 2(4) = Wtfoftk))
- Lk [x(tk )

-

Consequently,

= O(0) + / [a(0 - Bxs ]ds

i

- Lk [x(tk )
-

r](tk)]}z
Mtk

,
r [0, T] 9

i.e., jc(0 satisfies (2. 11).

Conversely, if jc e PC([-r, T]) is a solution of eq. (2.11), by direct differentiation, it

is easy to see the first expression of (2.10) is true for all t e [0, T] - {^IJL-i except on a

set of Lebesgue measure zero and the second one and the third one of (2. 1 0) are true. The

proof is complete. D

Lemma 2.4. Equation (2. 1 1) has a unique solution in PCo([ T, T], R) with XQ = <J>.

Proof For* e C([0, *i], R), let \\x\\
= max{e-

A/
''|jc(0|, t e [0, t

{ ]} and

s, t e J,

wherex(f+,y) = Q(t+s)ift+s < OandAfi = \\B\\+l. Obviously AI : C([0,^i], R)

C"([0, fj], y?) is a continuous operator. For jc, y e C([0, t\], R\

>(0-(Ai>0(OI

= / [(Bxs )
- (By5 )]ds

JQ

[' [* Mr) _ ,

g

JO J-T

r r
f

=
/ / l*Xr)-Mr)|y(r)<fcdr
J-T JO

rO /r

-rJO
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fO ft+r=
I I \x(s)-y(.s)\dsy (r)dr
JT Jr

/O

/f+r

/ |*(5)-y(j)|cfcy(r)dr
-T Jo

< I I \x(s)-y(s)\Asy(r)dr
J-T JO

= I |*(5)-y(j)|<b / y(r)dr
JO J-T

357

\\B\\

So

i.e.,

MI

MI
(2.12)

By contraction mapping theorem, A\ has a unique fixed point X[ e C([0, t\], R). For

Jc C([/i, f2], /?), let ||jc||
= maxfe-^'ijc^)!, / [rj, r2 ]} and

(2.13)r, t e

where jc(r + .9)
= O(f + j) if f + 5 < 0, jc(r + j) = jci(r + s) if f + s (0, fj] and

M2 = H2? || + 1. Similarly, A2 has a unique fixed point JC2 in C([fi, ?z], R)- So forth and

so on, for* 6 C([tn , T], R), let ||jc||
= maxfe-^"^' |*(/)|, t e [tn , T]} and

+ f
Jo

j, r [ft,, T], (2.14)

t+s (fn-^fJan

Similarly An+\ has a unique fixed point xn+\ C([tn , T], R). Let

x*(t) =

*(0,
e (0,

xn+i(t), te(tn ,T].

Then A:* e PC([-r, T], 7?) is a solution. If y* e PC([-r, T], R) is another solution of

equation, by jc*(f) = y*(t)fort e [-r, 0], it is easy to verify jc*(f) = y*(f)forr [0,fi].
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And so on, jc*(0 = y*(t) for t e (t\, fi]. Continuing as before, we get jc*(0 = y*(t) for

t 6 (tn , T]. Therefore jc* = y*. The proof is complete. D

Now we list some independent conditions for convenience.

(Ai) There exist w, v e PC ([-r, T], R) satisfying u(t) < v(t) (t J) and

Aw| r=r,
< Ik (u(tk )), (k = 1, 2, . . .

, 77t),

MO < $.

Moreover, $ wo and DO $ satisfy either the assumption (a) or (b) ofLemma 2.1.

(A2) There exist constants M > such that

/(r, 0)
-

/(r, VO > -Af (0(0)
-

V(0))
-

B((t>
-

VO,

whenever r /, 0, ^ E {xt , u(t) < x(t) < v(f), ^ J} with >
^r.

There exist constants < L^ < 1 (k = 1, 2, . . .
, m) such that

whenever wfe) < v < jc < ufo), (^ = 1,2,..., m).

(A4) f : J x M([-r, 0], #) -> ^ is continuous at every f / for each fixed

M([-r, 0], /?) and is weakly continuous at every M([ T, 0], 7?) for each fixed

te J.

Theorem 2.1. Let the conditions (Ai)-(A4 ) be satisfied and f e C([0, T] x M([-r, 0],

/?), /?) a^ [M, v] c JPCo([-r, 0], J?). 77z^ //zere ^/j/ monotone sequence {w,,}, {v/z } ^
PC'oCt ^ ^]> R) which converge on J to the minimal and maximal solutions x* t

x*

PCQ([-T, T], R) in [M, u] respectively. That is, ifx PCo([-T, T], /?) w any solution

satisfying x e [M, v],

u(t)<u\(t) <... <jc*(0 <jc(0 <Jc*(0 <...

For any 77 6 [w, u], consider the linear eq. (2.10), where

or(0 = /(r, ty) 4- Afiy(0 + 5??,, t J.

By the condition (A4) and Lemma 2.1, one has cr e M([ r, T], R). By Lemma 2.3,

IRFDE (2.10) has a unique solution x e jPCo([-r, 7*], J?) with XQ = 3>. Let

^7. (2.15)

Then A is a continuous operator from [w, v] into PCo([-r, T], JR). Now we show

(a) u < Au, Av < v;

(b) A is nondecreasing in [M, v].
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To prove (a), we set w i
= Au and p = u u

[
. By Lemma 2.3, we have

Bu t ,
t e J,t ^tk ,

AM il*=*
= /*(('*))

- I* [*i ft*)
-

ft*)L A = 1, 2, . . .
, m, (2.16)

So

t=tk
= A| r=,,

- AIM |,=r,
< -Lk p(tk ), (k = 1, 2, . . .

, m) (2.17)

.

= WQ
-

WIG < 0,

which implies by virtue of Lemma 2.2 that p(t) < for t e J, i.e. u < u\ = Au.

Similarly, we can show v\ = Av <v.

To prove (b), for 171,772 e [u, v] with rj[
<

772, let/? = x\
-

*2, where ^i = A?7i, ^2 =
2. From Lemma 2.2, we get

M(?72ft)
-

)
-

7?i ft)) +

Mp Bpt

Mp(t)-Bpt,te J t

- Lk [x\(tk )
-

7lftjfc)]}
-

and

Hence, by Lemma 2.2, pft) < for all t e J, i.e., Arn < Ar?2 ,
and (b) is proved.

Let un = Awn-i , and urt
= Aun_i (n = 1, 2, . . . , m). By (a) and (b), we get

Mft) < tt!ft) < . . . < Wn ft)
<

- - < ^nft) <...<-.< Vlft) < Vft), / J, (2.18)

and wn , vn e PCo([-r, T], /?) with wno = vno = <&, w = 1, 2, . . .. So there exist x* and

jc* such that

x u,,ft) -> j:*ft), r [-r, 7], n -* +00, (2.19)

vn ft) -> ;c*(0, t e [-T, J], n ~> +00. (2.20)

Therefore

ni CO -> JC*r(j), teJ.se [-r, 0], rc -> +00,

> *?(*), teJ.se [-T, 0], n -> -foe.
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So

-> f(t, **r ) 4- M**(0, n - +00.

By the Lebesgue dominated convergence theorem, we get

rt

JQ
e

"*

Jo
C

So

//

;t*(0 = 0(0)e-"' 4- /
z~M(t

~
x}
[f(s, x*s ) 4- Afjt*(5)]dy, t e [0, *i], (2.22)

Jo

where .x*o = <!*. And by virtue of the continuity of 1\ ,
we get

/i(n(*i)) -> /i(Jc*ai)), ~> +00. (2.23)

Similarly, one has

- (Buns
- Bun

(2.21)

T t-s
[f(s, Jc) 4- M;c*(5)]d5, r (r l? /2], (2.24)

where ^*o = <^>
. So forth and so on,

*(/) = [x*(rn ) + /
rt fe(fn ))]e-

M^- r )

+ f eT M(t
-*[f(s, x*,) + Afjc*(5)]<fc, f 6 (rn , T], (2.25)

Jtn

where X*Q = <l>. Then

fc'~ft)
/*(**(**)), ^ e /. (2.26)

By the similar proof, we get

_ (2.27)

where
JCQ
= <I>.

Finally, ifx e PC([-r, T], 7?) is a solution of eq. (1.1) in [u, v], Now let p = M - jc

and use mathematics induction. Obviously u < x. Suppose wn_i < jc. Then

= f(t, Kn_ lf )
- Af(wn (f)

- un-i(t)) - (Bttnf
-
B,!^)

-
f(t,xt )

= -Up -
p,
-

[/(r, x,)
-

/(/, un-it)}

+M(-jc(r) + Mn-i(r)) 4- (~jcr 4- BII^I,)

< -Up - Bpf , t^J, t^tkt
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- Lk [un (tk )
-

K/,-

and

Hence, by Lemma 2.2, p(r) < for all r 6 /, i.e. w n (0 < x(f), r /. So (*) < jc(f ),

f 7, n = 1, 2, .... By the same proof, we can show x(t) < v^(t) t
t 6 J, n = 1, 2, . . ..

Consequently, jc*(f) < ;c(0 < x*(0, t 6 /. The proof is complete. D

3. An example

We consider.

sin
2 ?-

where

1, f [-!,-!),

,r 6(0,1];
(3.1)

Conclusion. IRFDE (3.1) admits minimal and maximal solutions.

Proo/ Let

and

1,

It is easy to see that u, v are not solutions of eq. (3.1) and u(t) < v(t), 1 6 [1 , 1].

Moreover,
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1 1

M'(0=0, r [0,1];

Then

144

.

sin"* - ,
re [0,1].

t 6(0,

1 /I

24

:=ft > ~~ V
\ "Z \ i

L j

i.e. the condition (As) is true.

By mean value theorem, we get

72
y

40
X > ~

8

and

((sin
2

1 x)
3 -

(sin
2

1 y)
3
)

For any $ e Af([-1, 0], R\ let

Then

48J_]

1

*, 0)
-

f(t, if)
> -

for all 0, T/T {;cf , w(0 < x(f) < u(0, ^ e [0, 1]} with
(j>
<

So the condition (A?) is true.

V2/'

1

-
y).
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So the condition (As) is true. So M =
, LI = -, Aj = -, A2 = 1,

24 6 2

Forpi(f) = u(t)
-

0>(t),t [-1,0], we get

L-i = -,A =

and

/^(j)
= < Mo, r -1,-r

)
n

( ,0
L 2/ V 2 J

Moreover,

5 (1-L-OO-^O
Af Ai < =

For p2 = 4>(0 u(0> we g^

= ~~ < p2 (0,

and

And thus it is easy to see that (A4) is true. By Theorem 2.1, eq. (3.1) has a maximal

solution and a minimal solution. The proof is complete. D

Remark. Our result can be extended to impulsive delay differential equations in Banach

spaces.
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Abstract We consider here small flexural vibrations of an Euler-Bernoulli beam
with a lumped mass at one end subject to viscous damping force while the other end is

free and the system is set to motion with initial displacement _y(;c) and initial velocity

y
[

(x) . By investigating the evolution of the motion by Laplace transform, it is proved

(in dimensionless units of length and time) that

f
[

f
l

I ylt d* <
/

Jo Jo
t > t

,

where fy rnay be sufficiently large, provided that {y, y
1

} satisfy very general restric-

tions stated in the concluding theorem. This supplies the restrictions for uniform

exponential energy decay for stabilization of the beam considered in a recent paper.

Keywords. Euler-Bernoulli beam equation; hybrid system; initial conditions; small

deflection; exponential energy decay.

1. Introduction

In a recent paper, Gorain and Bose [2] investigated the possibility of stabilization of trans-

verse vibrations of a hybrid system consisting of an Euler-Bernoulli beam held by a lumped
mass movable hub attached to one of its ends. The beam is assumed to be initially set in

vibration by a displacement y and velocity y
1
in the transverse direction and stabilization

is sought by applying viscous damping force to the moving lumped mass. The system

equations for simplicity can be written in dimensionless form by suitably choosing the

units of length and time. If y (x , t) be the transverse displacement of a point of the beam

distant x from the lumped mass at time /, the equations are [2]

ytt(x, t) + yxxxx (x,t) = 0, < x < 1, t > 0, (1)

along the length of the beam, while at the lumped mass and free ends,

yxxx (0, + <xytt (0, t) + Xy, (0, = 0, yx (0, r )
= 0, t > 0, (2)

3^(1,0=0, 3^(1,0 = 0, r>0, (3)

where a is the dimensionless mass of the lump and similarly A. the damping coefficient.

The system is set to vibration with initial conditions

y(;c,0) = >' (;c), yt (x,0)=y
l

(x) t 0<x<l. (4)
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We note in (l)-(4) that without loss of generality we can assume

y(0)=0. (5)

Such hybrid systems for general y(x) and y
l

(x ) have been investigated in detail in search

of uniform exponential decay of total energy (kinetic and potential) for proving stability

of the process. However Littman and Marcus [5] and Chen and Zhou [1] have found by

calculating the eigenvalues of their hybrid systems that uniform stabilization is not possible

because infinitely large wave number k, during the passage of a wave along the beam are

present in the general case. Rao [6] arrives at the same conclusion by applying semigroup

theory to the evolving system.

In [2] it was noted that eq. (1) is arrived at by assuming that the beam remains ap-

proximately straight during vibration, precluding infinitely large wave numbers. From this

observation, heuristically an additional condition was suggested, which in nondimensional

form is

&d*. *>r
, (6)

where fy may be as large as we please. Subject to this condition, it was proved in [2], that

uniform exponential decay of total energy indeed takes place.

The condition (6) places restrictions on the initial conditions y(x), y
[

(x) from which

the system evolves. It is the purpose of this paper to determine them by investigating the

actual evolution of the system (l)-(5) by Laplace transformation in the complex frequency

domain s and invoking the final value theorem for the system behaviour for t tending to

infinity.

2. System evolution

Let the Laplace transform of y(x , t) be

jc,r)e-
Jf

dr, (7)

then according to the final value theorem, if s be complex (with jc fixed) and Y(x t s) be

analytic in Re{s} > c, c < 0,

lim y(x,t) = UmsY(x,s) (8)
r-oo

,y-+o

and so we would be interested in the transformed quantities as s ~> 0. The transformation

of equations (l)-(4) in the usual way yield

2
Y(x t s) = sy

Q
(x) + y

[

(x), (9)

with boundary conditions, using (5):

Yxxx (Q,s) + as2
Y(Q t s)+teY(Q,s)=ay

l

(Q), YX (Q, s) = 0, (10)

r(l.*) = 0, Yxxx (l.s)=Q. (ID

In order to solve (9)-(l 1), we introduce 'wave number' k by the relation

s = ~ik2
: s

2 = -k4
. (12)
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The general solution of (9) is then

F(JC, ik
2
)
= Qsin&.r + C[ coskx -f C2 sinhkx -f- C3 coshkx

. (13)

For the differentiability of the particular solution of (9) represented by the integral in (13)

we require that }
;000 andy

1 ^) areC 1 smooth. The boundary conditions (10), (11) yield

for the coefficients C , C\, C2 ,
C3 the four equations

CQ = C?,

-k 2
(ak

2 + iX)(Ci -r- C3 ) + 2k
3C2

= ay
l

(Q

C\ cos k -f C2 (sin /: 4- sinh ) H- C3 cosh k =

1

(14a)

(14b)

(I4c)

. (14d)

The exact solution of (14) can be explicitly written down by Cramer's rule. But here we

are interested in the solution for large t, that is to say, for small s or k and so we expand the

determinants formally in powers of k and do the same for the trigonometric and hyperbolic

functions appearing in (13). Thus, restoring s in place of A: defined in eq. (12) we obtain,

1

sin A: 4- C2(cos k + cosh fc) + C3 sinh /: =

1 f
l

~~^H t-^
2
>
;0 (?) +

2/c- ^

O(s 2
)]

-T
ISX~

I
2,

(is^1 +
^^

where

r\
= I [sy(

J n

(15)

(16)

In 4 we shall prove that poles of Yx (x , s) for each x lie in Refa} < c, c < when A > 0.

Hence, by the final value theorem of Laplace transform, we find that since A. ^ 0,

lim , r)
= lim sYx (x,s) 0. (17)
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The limiting operation in (1 5) is essentially justified by expansion in powers ofs therein and

the assumed C l

continuity of y
Q
(x ) and y

l

(x). The limit (17) means that in the presence of

the viscous damping, as t becomes large, the beam approaches its original straight shape.

3. Validity of condition (6)

In order to prove that condition (6) holds for the motion, consider the functions tyxx (x , t)

and t
2
yxt (x,t). The Laplace transforms of the two functions are respectively

a a 2

\Yxx (x t s)] and -=
95

1 ds 2

Hence by the final value theorem,

t

'

J ' Xt i
~ ii; .> i / t r>\

lim /. = bm
S; ^ . (18)

The limit of the numerator in (18), from equations (15), (16) turns out to be

/
!

1

Of
}

/ .t
3

N

JQ A, \ 3

while that of the denominator turns out to be

1 a rx
n
o

y
l

(^)d
- -V(0)(l + x 2)+ / y(?)( ~^c)d

I

dx. (20)
A. J J

If the latter limit vanishes, it follows by differentiating twice that

y(x) = -J/ v
1

(jc)djc-f av
!

(0)l = 0, < :c < 1, (21)

since .v(0) = 0. If this is the case, (19) and (20) respectively become

and [T^rfr^ + iy+ll (22)

Hence the limit in (18) exists finitely even in the case when the initial values jy(*) and

y
l

(x) satisfy (21) together with the provision that v l

(0) ^ 0. This last condition means

that the velocity at the end where viscous damping is applied should not vanish when the

initial displacement is zero. Let the limit in (18) be / > 0. It then follows that given
>

however small, there exists /o such that

f^y^dx i + t i +-~- < < -, for t > tQ.
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Hence for t > tQ > */l + , the condition (6) must hold. Thus we have proved the following

theorem.

Theorem. Let y(x , t) be the solution of the system (l)-(5) corresponding to the initial

conditions {y(x), y*(x)} which are C l

[Q, 1] continuous. Then condition (6) holds, pro-

vided that if y
Q
(x) = on [0, 1] then, either /Q

l

y
l

(x)dx ^ -ay !

(0) or f^ y
[

(x)dx =

-ay
1

(0)5*0.

4. Poles of Fjcfjr, s)

When 5
1

is considered complex, Y(x , s) given by (13) together with (12) has poles at those

of the coefficients C ,
C lf C2 ,

C3 . These are at zeroes of the determinant of the coefficients

on the right hand side of the equations (14b)-(14d), satisfying the equation (in terms of A:),

=0. (23)

When a differentiation of (13) is performed, k = no longer remains a pole of Yx (x t s) as is

reflected in (15). The poles of Yx (x , s) are thus the nonzero zeroes of (23). We investigate

their domain by a method similar to that of Krall [4] as given in Gorain [3].

The zeroes of (23) result from (I4b)-(14d) when the right hand sides are taken zero. In

other words, they crop up from the boundary value problem (9)-(l 1) with the right hand

sides set to zero:

YxxxxW* s) + s
2
Y(x,s) =0, S = U + IVTQ, (24)

, s), 7X (0, s) = 0, (25a)

7^(1,^=0, Yxxx (l,s)=Q. (25b)

If we multiply (24) by the complex conjugate F* and then take its conjugate, we obtain

Y*YXXXX+S*\Y\
2 = and YY*XXX +^2

|F|
2 = 0-

Subtracting one from the other and integrating from to 1, we have

Integrating by parts and applying boundary conditions (25), we obtain from the above after

simplification,

(s
2 - s*2

) I \Y\
2dx = -(s

-
j*) [a (a-

+
5*)

+
A.]

|F(0, s)\
2

.

If now s - s* = 2f v ^ 0, it follows that

< . (26)

)|2

In (26) ^ 0, since otherwise 7(0, s) = and then (24), (25) yield F(x, j) identical to

zero.



370 Sujit K Bose

lfss*=2iv =
0, we have s = u and the boundary value problem (24), (25) becomes

one of real value. Equation (24) then yields

Integrating by parts from to 1 and applying the boundary conditions (25) with u in place

of s, we obtain since 7(0, s) ^ as before,

In (27) M 7^ 0, since otherwise /J T^d*
= 0, which implies that Yxx = 0, that is to say,

}'A-JC
= on < x < 1, t > 0, meaning that the beam is not bent.
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Abstract. In this paper explicit expressions of m + 1 idempotents in the ring R =
F
q [X]/(X

2>n -
1} are given. Cyclic codes of length 2m over the finite field Fq , of

odd characteristic, are defined in terms of their generator polynomials. The exact

minimum distance and the dimension of the codes are obtained.

Keywords. Cyclotomic cosets; generator polynomial; idempotent generator; [n, k,

d] cyclic codes.

1. Introduction

Throughout in this paper we consider Fq to be a field of odd characteristic and the ring

R = F
(j[X]/(X^ 1). The ring/? can be viewed as semi-simple group ring F^Cy where

Com is a cyclic group of order 2"
1

generated by x. It is assumed that reader is familiar

with the properties of cyclic codes based on the theory of idempotents [3]. In 2 of this

paper complete set of equivalence classes (modulo 2'") is given and also the construction

of explicit expressions of idempotents is given. In 3, we completely describe the cyclic

codes of length 2'" in terms of their generator polynomials. In 4 we obtain g-cyclotomic

cosets (modulo 2"
2

) when order of q modulo 2m = 2m
~2

. An example has been given to

illustrate the results.

2. Construction of idempotents

For any positive integer m, consider the set S =
{1, 2, 3, . . .

, 2
m -

1). Divide the set S

into disjoint classes S/ (modulo 2"
7

) as follows:

For 1
< i < m, consider the set

S
t
= {2

1
'-

1

, 2
/
~

1

3, . . .
, 2

/
~

1

(2n /

-
1)}, 1 < n

(

- < 2"
1 "''

Clearly the elements of S/ are incongruent to each other modulo 2m . Note that the elements

of Si are the product of 2 l
~

[ with odd numbers. So these are divisible by 2'~ l

but no higher

power of 2. In the set 5, the number of elements divisible by 2'~
[

but no higher power of

2 are

(2
m -'" +1 -

1)
-

(2
m-/ -

1) = 2
m~i+[ - 2

m~ l = 2
m~ /

(2
-

1) = 2'"~
/

.

Hence the number of elements in the set S/ is

#S
t
= 2"'-''.

371
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Clearly for z ^ j, S/ n Sj
= O and so

y s 1 /7i

#
(
U S; )

= Y>S) = Y(2"
1
-

1

)
= 2

f" - 1.

V= / -t ' tf/=i
/
= !

Hence the sets S-
t ( 1 < z < m) form the partitioning of the set S (modulo 2"').

For 1 < z < m, define the element $/(*) as

Let a be a primitive 2"
z

th root of unity in an extension of the field F
f/

. To prove the main

theorem we require the following facts:

Fact 2.1 For I <i < m,

if 2"'-'' /;

-2m
~

l

if ;
= 2'

w - /

2"'-'' if 2WI - /+1
|

Proof. By definition, for 1 < z < m,

E2'~~'(2/?/
1) j_ Y"^ ,2'~

1

(2/j/ 2) \~^ 2'~ I

(2/?/ 2)
jc -j- / x ./ x/ < / ^

n/=l /
= l

//,-
= !

97 /+! I *)mi

Therefore,

Si(&J) = 2^ (ex
2'

J
)

k ~
V^ or /(-/z/

~~
1\ (1)

Jfc=0 ///=!

Caw 1. If2m
-

/

/y,then2
m- l

/2
/
-

1

; S02'- 1

;
= OCmod^Jhencea

2''' 1

^ ^ 1. Similarly

or'.' ^ 1. Therefore (1) gives that

a 2'" 1

-/ -
1 a2'-/ - 1

(denominator being non-zero). This proves the Case 1 .

Case 2. If; ^ 2m
~

i

, then 2''-
1

; = 27"" 1 and 2l

j = 2m . Since a is a primitive 2m th root

of unity in an extension of F
fjt

so a2'-7

"

= a 2
'" = 1 and a2'" 1

'' = a 2
"7
"

1 = -1. Again (1)
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gives that

*= 7Z/=0

This proves the Case 2.

Case 3. If 2m
~i+{

/j then 2m /2
i
~

[

j implies that or "^ = 1 and also or > = 1. Again
from (1) we have

2'"-' + i_i

A'=0 n/=0

2
m ~i+l 2

m ~ l = 2
m ~*

(2 1) = 2m
~

l

.

This proves the Fact 2.1.

Fact 2.2. For < i < m -
1 ,

, , V --./x_ if WXl
1 + LJ '

Proof. By definition

If 2m
~'

1

/ j then 2m / 2 /:

j implies that a 2
'-1 ^ 1 . Hence the required sum takes the value

zero. Secondly if 2m
~

l

/j, then 2m /2
l

j implies that or' 7 = 1 in the extension field and

hence the required sum takes the value

This proves the Fact 2.2.

Our construction of idempotents is based on the following two facts developed in 2 and

3 of chapter 8 of [3].

Fact 2.3. An expression e(x) in R is an idempotent iff <?(a-
7
)
= or 1.

Fact 2.4. An idempotent ei (jt) is primitive iff

, ,\ 1 if / 6 Yr for some r,
< r < m

e;(ct j ) = j r

otherwise,

where Yr is some #-cyclotomic coset (modulo 2m ) with 7o = {0}.
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Theorem 2.5. The following polynomial expressions are (m + 1) idempotents in the

ring R,

7=0

and for 1 < i < m

1

2/n /'+!
1 + V

/V00/ By Fact 2.2

if 2'"/7

1 if 2m
1 7

if 7 ft

1 if 2m
1 7

'

By Fact 2.4, <?oU) is a primitive idempotent with single non-zero a = 1 . For 1 < i < m,

Facts 2.1 and 2.2 show that

if 2
;"77

1 if 2'"-'' = 7

if 2
/w-/+1

|7

Thus for 1 < ? < m, /(a
J
")
= or 1 and e{(&') = 1 only if 7 = 2m *

or equivalently by

definition only if 7 Sm _;+i. Hence by the Fact 2.3 the expressions e/(;c) are idempotents.

3. Cyclic codes of length 2m

Let for < i < m, / denotes the cyclic code of length 2m with idempotent generator

ei(x). By (Theorem 56, [4]), (Remark 6. 3, [6]) the generator polynomial ^/(jc) of the cyclic

code EI is given by

gi(x) = ),x-
-

1). (2)

Define

and for 1 < i < m,

2
m

\

;=0

Then to show #/(*) (0 < i < m) is the generating polynomial of the cyclic code /. In

view of (2) it is sufficient to prove the following two facts:

Fact 3.1. gi (a-0 = iff <?/ (a>) = 0.
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Fact 3.2. g/W/Jc- 1.

To prove the Fact 3.1, consider for 1 < i < m,

375

'/to =

Thus for 1 < i < m, ei(x) is a constant multiple of gi(x): Also by definition Q(X) is a

constant multiple of go (;c). Hence g/fa-
7
')
= Oiffe/Ca-

7
')
= 0.

To^prove the Fact 3.2, consider for < / < m,

Thus gi(x) is a factor of (1 x 2
'"). Hence the assertion follows.

Theorem 33.
/
w a [2

m
,
2''"

1

,
2m

~ / -f l

] cyclic code over GF(q}.

Proof. By Corollary 3 ([3], p. 218) (generalized to non binary case) for < i < m,

dim/ = #a j such that a (ct
j
)
- 1.

By Theorem 2.5, we have e -(a-
/

')
= 1 only if j e Sm-i+{. So dim/ = #5m _/+i =

2''-
1

.

As shown in [5, 6, 1] it is easy to prove that the repetition code "/ generated by gt(x)

has the minimum distance 2m
~i+{ and d(E$) = 2m = # non-zero terms in gQ (x).

4. -Cyclotomic cosets (modulo 2m ) when order (q)
= 2m

~~2

First note that such a ^ exists due to the following facts [2]. Obviously in this case m > 3.

So throughout this section assume that m > 3.
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Fact 4. 1 . The integer 2
m
has no primitive root.

-)in 2

Fact 4.2. Let a be any odd integer, then it is always true that cr = 1 (mod 2
m

).

Fact 4.3. If ord(fl) = 2 (mod 23
) and a

2
1 (mod 2

4
), then ordfc) = 2/;i

~ 2
(mod 2

m
) for

every m > 3.

Computation of g-cyclotomic cosets (modulo 2
m

) depend upon the following facts:

Fact 4.4. If ord(<?) = 2m
~2

(modulo 2"' ) for every m > 3, (Fact 4.3), then #' ^ -
1 (mod

2m ) for 1 < r <2' ;l
~ 2

.

Proo/ For/ > 2
//J
~2

, we have ^
r
== 1 (mod 2/n

).

If possible let q
1 =

1 (mod 2'") for some non-negative integer t < 2m
~ 2

,t\iQnq
2t ==

1

(mod 2'"). But ord(ry) = 2;//
- 2

implies that 2"'~
2
|2f or 2m

~ 3
|r => r = 2m

~ 3
a, but

/ < 2'"~
2

. So we must have a = 1. So we have

=>q~
m ~* = ~l(inod2'")

=>q
2'"~* = -I(mod2'""

1

). (3)

But we are assuming that ord(^) = 2m
~ 2

for all m > 3. So we have

q
2 ' ' ~ l(mod 2'""

1

). (4)

From (3) and (4)

-1 ~ I(mod2'""
1

) for all m > 3

which is not possible. Hence the result follows.

Fact 4.5. Thus in this case q cyclotomic cosets modulo 2m are given by:

For 1 < / < m,

Remark 4.6. By definition of / it is clear that for 1 < i < m,

Note that integers of the type q = 8X -f 3 (A.
> 0) satisfy the above facts. In particular

we may consider q = 3, then order (3) = 2m
~~ 2

(modulo 2m ) for all m > 3. In this case

observe the following.

Fact 4.7. For 1 < i < m -
2,

or
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Fact 4.8. Since 3 is primitive root of unity modulo 4

3
2 ==

1 (mod 2
2
)
= 2"'-

2
3
2 = 2'"-

2
(modulo 2

/n

).

Fact 4.9. Since 3 == -I (mod 22
),

and

2"'~
2
.3

2 = -2"'- 2
.3(modulo2'").

Fact 4. 1 0.

1 = -I (mod 2),

=2" 1
-

1 s -2'"- '(mod 2'").

Using the facts of 4, the 3-cyclotomic cosets modulo 2m are given as follows:

For 1 < i < m 2,

and

^m-i - X* _!
- {2

m - 2
,
2

/7'- 2
.3} = {-2

m ~ 2
, -2 /;'- 2

.

Example. Consider ^ = 5 and C2s be a cyclic group of order 25
generated by jc. Then the

4-cyclotomic cosets (modulo 25
) are given by

X
{
= {1,5,25,29, 17,21,9, J3},

Xt = {-J, -5, -25, -29, -17, -21, -9, -13}

= {31,27,7,3, 15, 11,23, 19},

X2 = {2,10,18,26},

X^ = {30,22,14,6}

*3 = {4,20},

X; = {28, 12},

^4 -
{8},

X5 = {6} = X;.

By Remark 4.6,

S
{
= {1,3,5,7,9, 11, 13, 15, 17,19,21,23,25,27,29,31},

52 =
{2,6,10,14,18,22,26,30},

53 = {4,12,20,28},

54 = {8, 24},

Ss = {16}.
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The six distinct idempotents in this case can be read as follows:

e\(x) =
(

^-{

^(

~{

The important parameters of the codes EQ, 1, 2, 3, 4, 5 of length 2
5 over the field

GF(5) are listed in the table below.

Code Non-zero Dimension Minimum Generator

K distance, d polynomial, gi(x)_.
a()= i j 1+JC + JC

2 + ... + j.31

,
a 16

1 25
(1 -x){l + 52 + 53 + 54 + 55 }

E2 a 8
, a

24
2 24 (1 -JC 2

){1 + 53 + 54 + 55 }

3 ft
4

, of'
2

, ft
2
^, Of

28 4 2^ (1 ^c
4
){ 1 + Jf^ + x + Jf }

4 a 2
, of

6
, a

10
, a 14

, Of
lx
,a

22
, a

2fi
,o!

?0
8 2 2

(1
- JC

8
){1 + x 16

}

E5 u jjS\ 16 2 (1 -AJfi
)

Example. Consider q = 3 and C? be a cyclic group of order 23 generated by *. Then the

^-cyciotomic cosets (modulo 23 ) are given by

Xj = {1,3},

^T = (5,7),

*2 = {2,6},

X3
=

{4},

^o -
{0}.

The five primitive idempotents in the group algebra GF(3) C3
are given with their non-

zeroes:

Primitive idempotents Non-zeroes

3(Jt)
= ^{(1

- X3 )
- (X, - Xt)}W a-'', ; 6
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Abstract. A question of interest in linear algebra is whether all n x n complex
matrices can be unitarily tridiagonalized. The answer for all n ^ 4 (affirmative or

negative) has been known for a while, whereas the casen = 4 seems to have remained

open. In this paper we settle the n = 4 case in the affirmative. Some machinery from

complex algebraic geometry needs to be used.

Keywords. Unitary tridiagonaiization; 4x4 matrices; line bundle; degree; algebraic
curve.

1. Main Theorem

Let V = C\ and ( , } be the usual euclidean hermitian inner product on V. U(V) = U(ri)

denotes the group of unitary automorphisms of V with respect to { , ). {<?/ }"=1 will denote

the standard orthonormal basis of V. A e M(n t C) will always denote an n x n complex
matrix.

A matrix A =
[#/ ;-]

is said to be tridiagonal if
fl//

= for all 1 <
z, j < n such that

\i
-

j\
> 2. Then we have:

Theorem 1.1. For n <'4, and A G M(n, C), there exists a unitary U e U(ri) such that

UAU* is tridiagonal.

Remark 1.2. The case n = 3, and counterexamples for n >
6, are due to Longstaff, [3].

In the paper [1], Fong and Wu construct counterexamples for n 5, and provide a proof

in certain special cases for n = 4. The article 4 of [1] poses the n' 4 case in general

as an open question. Our main theorem above answers this question in the affirmative. In

passing, we also provide another elementary proof for the n 3 case.

2. Some Lemmas

We need some preliminary lemmas, which we collect in this section. In the sequel, we will

also use the letter A to denote the unique linear transformation determined by the matrix

A =
[au ] (satisfying Aej = ^l

=1 a^e^.

Lemma 2.1. Let A e M(n, C). For all n
t the following are equivalent:

(i) There exists a unitary U U(n) such that UAU* is tridiagonal.

381
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(ii) There exists a flag (= ascending sequence ofC-subspaces) ofV = Cn
:

= W C W, C W2 C . . . C Wn = V

such that dim W/ = z, AW/ C Wm and A* W/ C Wi+ifor all < z < n - 1.

(iii) TTiere ejdsts ajflag m V:

= W C W { C W2 C . . . C Wn = V

such that dim W
t
=

z, AW/ c WiJr[ and A(Wj^ }
) c W^ for all <i <n-l.

Proof, (i)
=

(ii). Set W/ = C-span(/i, /2, . . .
, //), where //

= U*et and */ is the

standard basis of V = C72
. Since the matrix

[6/y] := UAU* is tridiagonal, we have

Aft = bi-ufi-\ + bnfi + Z?/+i, ///+!, for 1 <.i <n

(where Z?//
is understood to be = for z, ;

< or > n + 1). Thus AW/ C W/+i. Since

{// }"=1 is an orthonormal basis for V C/z

, we also have

-A*// =bij-ifi-i +bnfi +bu+\fi+i I <i <n

which shows A*(W,-) c W/ +i for all f as well, and (ii) follows.

(ii)
=

(iii). A*W/ C W/+i implies (A*
1

^/)
1 D W^j for 1 < f < n - 1. But since

(A*^-)-
1 = A-^W;1

), we have A(W^ {
) C Wr1

for 1 < / < n - 1 and (iii) follows.

(iii) => (i). Inductively choose an orthonormal basis // of V = Cn
so that W/ is the

span of {/i,..., //}. Since A(W/) C W/+i, we have

Since / 6 (Wf-i)
1

, and by hypothesis A(Ty^ 1 )
c W^, 2 ,

and W/i2
= C-span(//_i, // ,

, /n) ?
we also have

Aft = ai-\ t ifi- { +aufi H- ----hflm7n (2)

and by comparing the two equations (1), (2) above, it follows that

for all z, and defining the unitary U by U*ei = ./} makes [/At/* tridiagonal, so that (i)

follows.

Lemma 2.2. Letn < 4. /jf f/zere exto a 2-dimensional C-subspace W ofV = Cn
such that

AW cW andA*W c W, then A is unitarily tridiagonalizable.

Proof. If n < 2, there is nothing to prove. For n 3 or 4, the hypothesis implies

that A maps W1
onto itself. Then, in an orthonormal basis {//}"=1 of V which satisfies

W = C-span(/!, /2 ) and WL = C-span(/3 ,
. . .

, /n ) the matrix of A is in (1, 2) (resp.

(2, 2)) block-diagonal form for n = 3 (resp. n = 4), which is clearly tridiagonal.
D

Lemma 2.3. very marra A M(3, C) w unitarily tridiagonalizable.
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Proof. For A e Af (3, C), consider the homogeneous cubic polynomial in v = (v\, vi, 1*3)

given by

F(v\, i2, us) := det(u, Au, A*i>).

Note 11 A Ai> A A*v = F(i>i, u?, ^3)^1 A<?9 A 3. By a standard result in dimension theory

(see [4], p. 74, Theorem 5) each irreducible component of V(F) C PQ is of dimension

> 1, and V(F) is non-empty. Choose some [v\ : v^ : 1^3] V(.F) and let v = (uj, i>2, 1^3)

which is non-zero. Then we have the two cases:

Case 1. u is a common eigenvector for A and A*. Then the 2-dimensional subspace

W = (Cu)-
1"

is an invariant subspace for both A and A*, and applying the Lemma 2.2 to

W yields the result.

Case 2. v is not a common eigenvector for A and A*. Say it is not an eigenvector for A

(otherwise interchange the roles ofA and A*). Set Wj = Cv, W? = C-span(u, Au), W^ =
V ~ C3

. Then dim W/ = z
, for / = 1, 2, 3, and the fact that v A Au A A*u = shows that

A*Wi c W?. Thus, by (ii) of Lemma 2.1, we are done. D

Note. From now on, V = C4
and A e M (4, C).

Lemma 2.4. TfA anJ A* /zav^ <3 common eigenvector, then A is unitarily tridiagonaliiable.

Proof. If v 7^ is a common eigenvector for A and A*, the 3-dimensional subspace

W = (Cu)
1

is invariant under both A and A*, and unitary tridiagonalization of A\w exists

from the n = 3 case of Lemma 2.3 by a U\ U(W) = 17(3). The unitary 7 = 1 U
{
is

the desired unitary in /(4).tridiagonalizing A. D

Lemma 2.5. Tjf f/ze mam. theorem holdsfor all A S, where S is any dense (in the classical

topology) subset ofM(4, C), then it holdsfor all A e M(4, C).

Proof. This is a consequence of the compactness of the unitary group 17(4). Indeed, let T

denote the closed subset of tridiagonal (with respect to the standard basis) matrices.

Let A e M(4, C) be any general element. By the density of 5, there exist A n S such

that An -> A. By hypothesis, there are unitaries Un 17(4) such that UnAn U* = Tn ,

where Tn are tridiagonal. By the compactness of 17(4), and by passing to a subsequence

if necessary, we may assume that Un -+ U e 17(4). Then UnAn U* ~> UAU*. That

is Tn -> UAU*. Since T is closed, and Tn T, we have [7AC/* is in T, viz., is

tridiagonal. D

We shall now construct a suitable dense open subset S C M(4, C), and prove tridiago-

nalizability for a general A 6 S in the remainder of this paper. More precisely:

Lemma 2.6. There is a dense open subset S C M(4, C) such that:

(i) A is nonsingularfor all A S.

(ii) A has distinct eigenvaluesfor all A 6 5.
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(iii) For each A e S, the element (r / + ri A -f ft A*) M(4, C) has rank > 3 for all

(to,t\,t2) ^(0, 0,0) wC 3
.

Proo/. The subset of singular matrices in M(4, C) is the complex algebraic subvariety

of complex codimension one defined by Z\ = {A : det A = 0}. Let Si, (which is just

GL(4, C)) be its complement. Clearly S\ is open and dense in the classical topology (in

fact, also in the Zariski topology).

A matrix A has distinct eigenvalues iff its characteristic polynomial 0/\ has distinct roots.

This happens iff the discriminant polynomial of 0/\, which is a 4th degree homogeneous

polynomial A (A) in the entries of A, is not zero. The zero set Z2 = V(A) is again a

codimension-1 subvariety in M(4, C), so its complement 2 = (V(A))
C>

is open and dense

in both the classical and Zariski topologies.

To enforce (iii), we claim that the set defined by

Z3 := {A M(4, C) : rank(f / + t\ A + M*) < 2 for some (? , *i, ^2)

^(0,0,0) in C 3
}

is a proper real algebraic subset of M(4, C). The proof hinges
1 on the fact that three general

cubic curves in PQ having a point in common imposes an algebraic condition on their

coefficients.

Indeed, saying that rank(fo/ -f t\A + ft A*) < 2 for some (^o,/i,ft) ^ (0,0,0) is

equivalent to saying that the third exterior power /\*(tQl + t\ A + ^A*) is the zero map,

for some (fy, t\, ft) i=- 0. This is equivalent to demanding that there exist a (fo, t\ , ft) ^
such that the determinants of all the 3 x 3-minors of (to! + t\A + ft A*) are zero.

Note that the (determinants of) the (3 x 3)-minors of (/Q/ -f t\ A + ft^*)> denoted as

M//(A, (where the z'th row and y'th column are deleted) are complex valued, complex

algebraic and C-homogeneous of degree 3 in t = (?o, t\ , ^2), with coefficients real algebraic

ofdegree 3 in the variables (A//, A//)(or,equivalenlly, inRe A//, Im A//), whereA
=

[A//].

We know that the space of all homogeneous polynomials of degree 3 with complex

coefficients in (?o, t\, ro) (up to scaling) is parametrized by the projective space PQ (the

Veronese variety, see [4], p. 52). We first consider the complex algebraic variety:

X = {(P, 2, R, [t]) e P x P9

C x P^ x P : P(0 = 2(0 = R(t) = 0},

where [r] := [>o : ?i : fr] and (P, Q, /?) denotes a triple of homogeneous polynomials.

This is just the subset of those (P, 2, R, [r]) in the product P^xP^ xP^xPg such that the

point [/] lies on all three of the plane cubic curves V(P), V(Q). V(R)- Since Z is defined

by multihomogenous degree (1,1,1,3) equations, it is a complex algebraic subvariety of

the quadruple product. Its image under the first projection Y := n\ (X) C PQ x P x P^ is

therefore an algebraic subvariety inside this triple product (see [4], p. 58, Theorem 3). Y is

a proper subvariety because, for example, the cubic polynomials P = t$,Q=tf,R
=

t\

have no common non-zero root.

Denote pairs (z, jf) with 1 < i, j < 4 by capital letters like 7, J, K etc. From the minorial

determinants Af/(A, r), we can define various real algebraic maps:

: M(4, C) -> P x P^ x P^
A H>
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for/, J, K distinct. Clearly, /\
3
(fo7-HiA-K2A*) = Oforsomer = (Jo, '1,^2) ^ (0,0,0)

iff ///c(A) lies in the complex algebraic subvariety Y of P^ x P^ x P^, for all /, J, A:

distinct. Hence the subset Z^ c M(4, C) defined above is the intersection:

where 7, /, 7 runs over all distinct triples of pairs (/, ;), 1 < z, j < 4.

We claim that Z^ is a proper real algebraic subset of M(4, C). Clearly, since each

MI (A, t) is real algebraic in the variables Re A//, Im A// the map 0//# is real algebraic.

Since Y is complex and hence real algebraic, its inverse image Jj K (Y), defined by the

real algebraic equations obtained upon substitution of the components M/ (A, f), My (A, 0,

MK(A, t) in the equations that define F, is also real algebraic. Hence the set Z^ is a real

algebraic subset of M(4, C).

To see that Z^ is a proper subset of M(4, C), we simply consider the matrix (defined

with respect to the standard orthonormal basis {/}_
j

of C4
):

A =

0100
0010
0001
0000

For t = (tQ, t\ ,
r2 ) ^ 0, we see that

tQ t\

/o ^0 ^1

r2 /o ^i

r2 'o

For the above matrix the minorial determinant M4i(A, fj*,
whereas Af]4(A, =

f|.

The only common zeros to these two minorial determinants are points [tQ : : 0]. Setting

t[
= r2 = in the matrix above gives M//(A, r)

=
?Q

for 1 < z < 4. Thus ?o must also

be for all the minorial determinants to vanish. Hence the matrix A above lies outside the

real algebraic set Z^.

It is well-known that a proper real algebraic subset in euclidean space cannot have a non-

empty interior. Thus the complement Z% is dense and open in the classical and real-Zariski

topologies. Take 63 = Z%.

Finally, set

:= 5i H 52 S3 =

which is also open and dense in the classical topology in M (4, C). Hence the lemma. D

Remark2.1. One should note here that for each matrix A 6 M (4, C), there will be at least a

curve of points [t]
= Oo : t\ : t2 ] e P^ (defined by the vanishing of det(^/H-^i A+ ^ A*)),

on which (IQ! 4- 1\ A + tiA*) is singular. Similarly for each A there is at least a curve of

points on which the trace tr ( /\" (t$I + t\ A -f- 2^*)) vanishes, and so a non-empty (and

generally a finite) set on which both these polynomials vanish, by dimension theory ([4],
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Theorem 5, p. 74). Thus for each A e M(4, C), there is at least a non-empty finite set

of points [t] such that (fo/ -h t\ A + ^2^*) has as a repeated eigenvalue. For example,

for the matrix A constructed at the end of the previous lemma, we see that the matrix

(fo/ -f t\ A-hfrA*) is strictly upper-triangular and thus has as an eigenvalue of multiplicity

4 for all (0, t\> 0) ^ 0, but nevertheless has rank 3 for all (r , *i , ^2) 7^ (0, 0, 0).

Indeed, as (iii) of the lemma above shows, for A in the open dense subset 5, the kernel

ker(Yo/ -f riA + foA*) is at most 1 -dimensional for all [t] = [to : t[ : ti] e PQ.

3. The varieties C, T, andD

Notation 3.1. In the light ofLemmas 2.5 and 2.6 above, we shall henceforth assume A e S.

As is easily verified, this implies A* e S as well. We will also henceforth assume, in view

of Lemma 2.4. above, that A and A* have no common eigenvectors. (For example, this

rules out A being normal, in which case we know that the main result for A is true by the

spectral theorem.) Also, in view ofLemma 2.2, we shall assume that A and A* do not have

a common 2-dimensional invariant subspace.

In PQ, the complex projective space of V = C4
,
we denote the equivalence class of

v V \ by [v]. For a [v] 6 PQ, we define W([u]) (or simply W(v) when no confusion

is likely) by

W([u]) := C-span(u, AD, A*u).

Since we are assuming thatA and A* have no common eigenvectors, we have dim W([u]) >

2 for all [u] e P;L

Denote the four distinct points in PQ representing the four linearly independent eigen-

vectors of A (resp. A*) by E (resp. E*). By our assumption above, E fi E* = <p.

Lemma 3.2. Let A e Af(4, C) be as in 3.1 above. Then the closed subset:

C = {[v] e P3

C : v A Av A A*i> = 0}

is a closed projective variety. This variety C is precisely the subset of[v] e PQ for which

the dimension dim W([u]) = dim (C-span {i>, Av, A*v}) is exactly 2.

Proof. That C is a closed projective variety is clear from the fact that it is defined as the set

of common zeros of all the four (3 x 3)-minorial determinants of the (3 x 4)-matrix

A :=

v

Au

A*u

(which are all degree-3 homogeneous polynomials in the components of v with respect to

some basis). Also C is nonempty since it contains E U E*.

Also, since A and A* are nonsingular by the assumptions in 3.1, the wedge product

v A Au A A*v of the three non-zero vectors i>, Au, A*i> vanishes precisely when the space

W([v]) = C-span(v, AD, A*u) is of dimension < 2. Since by 3.1, A, A* have no common

eigenvectors, the dimension dim W([v]) > 2 for all [v] e PQ, so C is precisely the locus

of [v] P for which the space W([v]) is 2-dimensional. D
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Now we shall show that for A as in 3. 1 , the variety C defined above is of pure dimension

one, For this, we need to define some more associated algebraic varieties and regular maps.

DEFINITION 3.3

Let us define the bilinear map:

B : C4 x C3 - C4

We then have the linear maps B(v t -) : C3 - C4
for v C4

and B(-, t) : C4 ~* C3
for

reC3
.

Note that the image Im B(v, ) is the span of (i>, Av, A*v}, which was defined to be

W(v). For a fixed t, denote the kernel

K(t) := ker((-, : C4 -> C4
).

Denoting [/o : t\ : ft] by [f ] and [v\ : V2 : i>3 : ^4] by [u] for brevity, we define

Finally, define the variety D by

D C P := {[*] P : det (-, r) = det (f / + 1\A H- r2A*) = 0}.

Let

JTI : P3

C x P6 -^ P3
,

7T2 : P3

C x P9

5 -* Pc

denote the two projections.

Lemma 3.4. We /zav the following facts:

(i) jri(r) = C,am/7r2 (r) = D.

(ii) TTi : F -> C w 1-1, and the map g defined by

w a regular map so that F is the graph ofg and isomorphic as a variety to C.

(iii) D C PQ is a plane curve, of pure dimension one. The map 7t2 : F ~> D w 1-1,

and the map n\ on^~
{

: D -+ C is the regular inverse of the regular map g defined

above in (ii). Again F is also the graph of this regular inverse g"
1

, and D and F are

isomorphic as varieties. In particular, C and D are isomorphic as varieties, and thus

C is a curve in PQ ofpure dimension one.

(iv) Inside PQ x PQ, each irreducible component of the intersection of the four divisors

DI := (5/(v, = 0) for i = 1, 2, 3,4 (where B/(v, t) is the i-th component of

B(v, t) with respect to afixed basis ofC
4
) occurs with multiplicity 1. (Note that F is

set-theoretically the intersection of thesefour divisors, by definition).
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Proof. It is clear that 7r\(T) = C, because B(v, t) = fyv + fi An + tiA*v = for some

fro : ?i : ft] PQ iff dim W(v) < 2, and since A and A* have no common eigenvectors,

this means dim W(v) = 2. That is, [v] e C.

Clearly [f] e JT2 (F) iff there exists a [v] PQ such that (u, r) = 0. That is, iff

dim ker (-, t)
>

1, that is, iff

G('o,fi,f2) :=det B(-,f) = 0.

Thus D = 7T2(F) and is defined by a single degree 4 homogeneous polynomial G inside

PQ. It is a curve of pure dimension 1 in PQ by standard dimension theory (see [4], p. 74,

Theorem 5) because, for example [1 : : 0] & D so D ^ P|. So ^(F) = D, and this

proves (i).

To see (ii), for a given [v] 6 C. we claim there is exactly one [t] such that ([i>], [t]) e F.

Note that ([i>], [f]) e F iff the linear map:

B(v t -) : C3 -* C4

has a non-trivial kernel containing the line G. That is, dim Im B(v, )
< 2. But the

image Im #(u, -) = W(u), which is of dimension 2 for all v e C by our assumptions.

Thus its kernel must be exactly one dimensional, defined by ker B(v, )
= Ct. Thus

([u], [/]) is the unique point in F lying in n^
l

[v], viz. for each [u] 6 C, the vertical line

[f] x
Pj,

intersects F in a single point, call it ([v], g[v]). Son\ : F -> C is 1-1, and F

is the graph of a map g : C -> D. Since #([>]) =
7T27rj~

l

([u]) for [v] e C, and F is

algebraic, g is a regular map. This proves (ii).

To see (iii), note that for [t] 6 D, by definition, the dimension dim ker B( t t) > 1.

By the fact that A e 5, and (iii) of Lemma 2.6, we know that dim ker B(,/)< 1 for all

fr] P. Thus, denoting tf(r) := ker (-, r) for [r] e D, we have

dim (0 = 1 for all t e D. (3)

Hence we see that the unique projective line [v] corresponding to Cv = K(t) yields the

unique element of C, such that ([v], [/]) 6 F. Thus #2 : F - J9 is 1-1, and the regular

map TT
i
o

jr^"

1

: D - C is the regular inverse to the map g of (ii) above. F is thus also the

graph of g~
]

and, in particular, is isomorphic to D. Since g is an isomorphism of curves,

and D is of pure dimension 1, it follows that C is of pure dimension one. This proves (iii).

To see (iv), we need some more notation.

Note that D c Pg \ {[1; 0; 0]}, (because there exists no [u] P;L
such that Lv = 0!).

Thus there is a regular map:

e\D ->
P<L

fro : t
{

: *2 ] H> [fj : /2 ]. (4)

Let A(f i , ^2) be the discriminant polynomial of the characteristic polynomial <ptl /\+t2A* ^
t\A + tiA*. Clearly A(fi, r2 ) is a homogeneous polynomial of degree 4 in (t\ , ^2), and it is

not the zero polynomial because, for example, A ( 1
, 0) ^ 0, for A ( 1

, 0) is the discriminant

f 0/1, which has distinct roots (=ihe distinct eigenvalues of A) by the assumptions 3.1 on

A. Let S c PQ be the zero locus of A, which is a finite set of points. Note that the fibre

^(U : At]) consists of all [t : 1 : /x] D such that -t is an eigenvalue of A + /M*,
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which are at most four in number. Similarly the fibres 0~ ]

([X : 1]) are also finite. Thus

the subset of D defined by

F :=e~ }

CZ)

is a finite subset of D. F is precisely the set of points [/] = [t$ : t\ : b] such that

#( , t)
= (t$I + t\ A -h /2^*) has as a repeated eigenvalue.

Since 7T2 : F -> D is 1-1, the inverse image:

is a finite subset of F.

We will now prove that for each irreducible component FQ, of F, and each point x =
([]. [&]) i n Fa \ FI, the four equations {Z?/(u, f) = 0}

4
=1 are the generators of the ideal of

the variety Ta in an affine neighbourhood ofx, where #/ (v, are the components of B(v, t)

with respect to a fixed basis of C4
. Since FI is a finite set, this will prove (iv), because

the multiplicity of Fa in the intersection cycle of the four divisors Z>/ = (Z?/ (IF, t) = 0) in

PQ x P is determined by generic points on FQ, , for example all points of ra \F\. We will

prove this by showing that for x = ([a], [b]) Fff \ Fj, the four divisors (/(u, = 0)

intersect transversely at x.

So let Ta be some irreducible component of F, with x = ([#], [>]) eTa \F\.
Fix an e C4

representing [^] e Ctt := jr^Fa), and also fix Z? C3
representing

[b] = ^([fl]) 6 (Cff ). Also fix a 3-dimensional linear complement V\ : 7[rtj(P^) C C4

to <7 and similarly, fix a 2-dimensional linear complement VS = T[^](PQ) C C3
to b. (The

notation comes from the fact that T[ V](P'^)
^ C" +l

/Cv, which we are identifying non-

canonically with these respective complements V/.) These complements also provide local

coordinates in the respective projective spaces as follows. Set coordinate charts around

[a] e P^by [v] <f>(u) := [a -f M] and ^around [Z?] Pgby [t]
= VCO := [b+s], where

u V\
~ C3

, and ^6 VS C 2
. The images 0(Vj) and ^(^2) are affine neighbourhoods

of [a] and [Z?] respectively. These charts are like 'stereographic projection' onto the tangent

space and depend on the initial choice of a (resp. b) representing [a] (resp. [b]), and are not

the standard coordinate systems on projective space, but more convenient for our purposes.

Then the local affine representation of B(v, t) on the affine open V\ x V^ = C3 x C2
,

which we denote by /3, is given by

Note that ker B(a, ~) = C/?
5
where [Z?]

= g([a]), so that 5(a, ) passes to the quotient

as an isomorphism:

(5)

where W(d) is 2-dimensional.

Similarly, since B(, b) has one dimensional kernel Ca = K(b) C C4
, by (3) above,

we also have the other isomorphism:

(-, b):V\-Z=+ Im B(-, b), (6)

where Im (-, ^) is 3-dimensional, therefore.
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Now one can easily calculate the derivative D/J(0, 0) of ft at (u,s) = (0,0). Let

(X, F) e V\ x VS. Then, by bilinearity of 5, we have

) + B(a, Y) H- (X, F).

Now since 5(X, Y) is quadratic, it follows that

Dp(Q, 0) : Vj x V2 -* C4

(X, 7) H* B(X, fc) + 5(a, F). (7)

By eqs (5) and (6) above, we see that the image of D/3(0, 0) is precisely Im B( , Z?)

W(a).

Claim. For ([a], [b]) eroe \Fi, the space Im (-, b) -f W(<3) is all ofC4
.

Proof of Claim. Denote! := (-,/?) for brevity. Clearly a 6 W(tf) by definition of

W(a). Also,<2 kerT = K(b). We claim that a is not in the image of T. For, if a ImT,
we would have a = Tw for some w & K(b) = ker T and if ^ 0. In fact w is not a

multiple of a since Tw = a ^ whereas (7 e ker 7. Thus we would have T2w = 0, and

completing f {
=a = Tw, fa = wj to a basis {//}f=1 of C4

,
the matrix of T with respect

to this basis would be of the form:

1 * *

* *

* *

* *

Thus T = 5( , b) would have as a repeated eigenvalue. But we have stipulated that

(M> [b]) & FI, so that [6] F, and hence (-, 6) does not haveO as a repeated eigenvalue.

Hence the non-zero vectors 6 W(a) is not in Im T. Since Im T is 3-dimensionaI, we have

C4 = Im T -f W(fl), and this proves the claim. d

In conclusion, all the points of Fa \ FI are in fact smooth points of Pa ,
and the local

equations for Fa in a small neighbourhood of such a point are precisely the four equations

ft (M, j) = 0, 1 < / < 4. This proves (iv), and the lemma. a

4. Some algebraic bundles

We construct an algebraic line bundle with a (regular) global section over C. By showing
that this line bundle has positive degree, we will conclude that the section has zeroes in C.

Any zero of this section will yield a flag of the kind required by Lemma 2. 1 . One of the

technical complications is that none of the bundles we define below are allowed to use the

hermitian metric on V, orthogonal complements, orthonormal bases etc., because we wish

to remain in the C-algebraic category. As a general reference for this section and the next,

the reader may consult [2].
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DEFINITION 4.1

For 3= v e V C4
,
we will denote the point [v] e PQ by v, whenever no confusion is

likely, to simplify notation. We have already denoted the vector subspace

C-span(u, An, A*u) C C4
as W(v). Further define W3 (v) := W(v) + AW(v), and

:= W(u) -f A* W(v). Clearly both W3 (u) and W3 (u) contain W(v).

Since A and A* have no common eigenvectors, we have dim W(v) > 2 for all v PQ,
and dim W(v) = 2 for all u 6 C, because of the defining equations A Av A A* v Oof C.

Also, sincedim W(u) = 2 = dim AW(v)forv e C, and since ^ An W(u)HAW(v),
we have dim W3(u) < 3 for all v e C. Similarly dim W^(v) < 3 for all u e C.

If there exists a u e C such that dim W$(v) = 2, then we are done. For, in this case

Wi(v) must equal W(v) since it contains W(v). Then the dimension dim W$(v) = 2 or

= 3. If it is 2, W(u) will be a 2-dimensional invariant space for both A and A*, and the

main theorem will follow by Lemma 2.2. If dim ^3(1;) = 3, then the flag:

= WQ C W[ = Cv C W2 = W(v) CW3
= W3 (v) C W4 = V

satisfies the requirements of (ii) in Lemma 2.1, and we are done. Similarly, if there exists

a v e C with dim W^(v) = 2, we are again done. Hence we may assume that:

dim W3 (v) = dim W$(v) = 3 for all veC. (8)

In the light of the above, we have the following:

Remark 4.2. We are reduced to the situation where the following condition holds: For each

v C, dim W(v) = 2, dim W3 (u) = dim W3 (v) = 3.

Now our main task is to prove that there exists a v e C such that the two 3-dimensional

subspaces W$(v) and W^(v) are the same. In that event, the flag

= W C Wi = Cu C W2 = W(v) CW3 = W(v) + AW(v) = W(v)

+A*W(u) C W4 = V

will meet the requirements of (ii) of the Lemma 2.1. The remainder of this discussion is

aimed at proving this.

DEFINITION 4.3

Denote the trivial rank 4 algebraic bundle on
PjL by O4

3 , with fibre V = C4
at each point

c

(following standard algebraic geometry notation). Similarly, O^ is the trivial bundle on

C. In O4
3 , there is the tautological line-subbundle C?p 3 ( 1), whose fibre at v is Cu. Its

pc c

restriction to the curve C is denoted as W\ :=

There are also the line subbundlesAOp3 (-1) (respectively A*OP3 ( l))ofO4
3 , whose

c c "^c

fibre at v is Av (respectively A*u). Both are isomorphic to OP3 (1) (via the global linear

automorphisms A (resp. A*) of V). Similarly, their restrictions AOc( 1). A*Oc(~l)
both isomorphic to Oc( 1). Note that throughout whatfollows, bundle isomorphism over

any variety X will mean algebraic isomorphism, i.e. isomorphism of the corresponding

sheaves ofalgebraic sections as Ox -modules.
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Denote the rank 2 algebraic bundle with fibre W(v) c V at v e C as W2 . It is an

algebraic sub-bundle of O^, for its sheaf of sections is the restriction of the subsheaf

Ops (-1) + AOpa (-1) + A*0P3 (-1) C O*
C C C "Q

to the curve C, which is precisely the subvariety of PQ on which the sheaf above is locally

free of rank 2 (=rank 2 algebraic bundle).

Denote the rank 3 algebraic sub-bundle of O% with fibre W^(v) = W(v) + AW(v)

(respectively W$(v) = W(v) + A* W(v)) by Ws (respectively Ws). Both Ws and VVs are

of rank 3 on C because of Remark 4.2 above, and both contain W2 as a sub-bundle. We
denote the line bundles f\

2 Wo by 2 >
and /\

3
VVa (resp. /\

3
$3) by 3 (resp. 3). Then

2 is a line sub-bundle ofA2 #, and 3, 3 are line sub-bundles of /\
3

O^.
Finally, for X any variety, with a bundle on J which is a sub-bundle of a trivial bundle

O'x , the annihilater of is defined as

Ann =
{< E hom^(^, Ox ) : 0(f )

=
0}.

Clearly, by taking homx (- , Ox) of the exact sequence

0-->0' _ O%/-> 0,

the bundle

Ann - homx (^/^, O/) = (O'$/)*,

where * always denotes the (complex) dual bundle.

Lemma 4.4. Denote the bundle W3/W2 (resp. W^/Wi) /?y A (r^p. A). Then we have

thefollowing identities ofbundles on C:

(i)

-^W2 -W3-A-0
-> Wo -+ VV3 ~> A -

-
3 -V AnnW2 -^ A* ->

-> 3 4 AnnW2 A A* -
0,

(ii)

3 1 2 A and 3
~

2 A,

(iii)

(iv)

A ~ A,
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(v)

2
~ A <g> Oc (-\) ^ A

(vi)

homc (3, A*) c
*

(2) A*
2 -

?
3 Oc (-2).

Proof. From the definition of A, we have the exact sequence:

0-*W2 -*W3-A-*0
from which it follows that:

- A ~> O/W2
-

e>c/W3 ->

is exact. Taking homc( , OQ) of this exact sequence yields the exact sequence:

-> AnnW3 -* AnnW2
- A* -> 0.

Now, via the canonical isomorphism /\ V ~ V* which arises from the non-degenerate

pairing

3 4

/\VV->/\V-C,
it is clear that AnnWa A3

Ws =
3.

Thus the first and third exact sequences of (i) follow. The proofs of the second and fourth

are similar. From the first exact sequence in (i), it follows that /\
3
Ws ~

/\
2W2 A.

This implies the first identity of (ii). Similarly the second exact sequence of (i) implies the

other identity of (ii).

Since for every line bundle y , y <8> y* is trivial, we get from the first identity of (ii) that

2
~

3 <8> A*. From third exact sequence in (i) it follows that /\~ AnnWo
~

3 (8) A*,

and this implies (iii).

To see (iv), note that

W2 + AW2 _W2

~
AW2 n>v2

'

The automorphism A~
]

ofV makes the last bundle on the right isomorphic to the line bundle

W2/(W2 PiA~ ! VV2 ) (note all these operations are happening inside the rank 4 trivial bundle

O*c ). Similarly, A is isomorphic (via the global isomorphism A*
~

J of V) to the line bundle

W2/(W2nA*- 1W2 ). Butforeachi; C, W(u)nA~
I

W(v) = Cv = W^nA*- 1

W(v),

from which it follows that the line sub-bundles W2 O A" 1W2 andW2 H A*" 1W2 ofW2

are the same (= Wi ~ Oc( 1))- Thus A ~ A, proving (iv).

To see (v), we need another exact sequence. For each v C, we noted in the proof of

(iv) above that Cv = W(v) O A~~
l

W(u). Thus the sequence of bundles:

Wo
_> Oc(-l) -> W9 ->-~-->

^ J ~

is exact. But, as we noted in the proof of (iv) above, the bundle on the right is isomorphic

to A, so that

i)->W2 -> A-0
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is exact. Hence 2 = A
2
^2 A Oc ( 1). The other identity follows from (iv), thus

proving (v).

To see (vi) note that we have by (ii) C\
~

C\ A*. Thus

home (3, A*) ^ 3
A* c (8) A* A*.

However, since by (iv), A c A, we have home (3, A*) 2
*

<g> A* 2
. Now, substituting

A* = *
<8> 0c( 1) fr m (v) we have the rest of (vi). Hence the lemma. D

We need one more bundle identity:

Lemma 4.5. TTzere is a bundle isomorphism:

Proof. When [t]
= [/o : ^i

'

*2] = ^(M), we saw in (5) that the linear map

B(v, ) : C3
-> C4

acquires a 1-dimensional kernel, which is precisely the line O, which

is the fibre of GD( 1) at [r]. The image of B(v, ) was the 2-dimensional span W
f

(i;) of

v, Av, A*v, as noted there. Thus for v C, B( , ) induces a canonical isomorphism of

vector spaces:

which, being defined by the global map B(, ), gives an isomorphism of bundles:

0c(-08**(02>/0D(-i))
^ vw.

From the short exact sequence:

-> D (-1) -^ O^ O|>/OD(-I) -^ 0,

it follows that /\
2
(O

3

D/OD (-l))
- OD (1). Thus:

This proves the lemma. Q

5. Degree computations

In this section, we compute the degrees ofthe various line bundles introduced in the previous

section.

DEFNITION5.1

Note that an irreducible complex projective curve C, as a topologicai space, is a canon-

ically oriented pseudomanifold of real dimension 2, and has a canonical generator /zc

#2(C, Z) = Z. Indeed, it is the image TT*/^, where n : C -> C is the normalization

map, and /xg-e ^(C, Z) = Z is the canonical orientation class for the smooth connected
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compact complex manifold C, where jr* : H2(C, Z) > //2(C, Z) is an isomorphism for

elementary topological reasons.

If C = (J
r

a=l Ca is a projective curve of pure dimension 1, with the curves Ca as

irreducible components, then since the intersections Ca fl C/j are finite sets of points (or

empty), Hi(C, Z) = a H2(Ca , Z). Letting /ZQT denote the canonical orientation classes

of Ca as above, there is a unique class JJLC
= X^ Ma 6 //2(C, Z). Thinking of C as an

oriented 2-pseudomanifold, //e is just the sum of all the oriented 2-simplices of C.

Iff is a complex line bundle on C, it has a first Chern class c
\ (J-) e H~(X, Z), and the

degree of JF is defined by

It is known that a complex line bundle on a pseudomanifold is topologically trivial iff its

first Chern class is zero. In particular, if an algebraic line bundle on a projective variety

has non-zero degree, then it is topologically (and hence algebraically) non-trivial.

Finally, if z : C <-> PQ is an (algebraic) embedding of a curve in some projective space,

we define the degree of the bundle OcO) = z*Op (1) as the degree of the curve C (in

P). We note that [C] := z*(//c) e //2(Pc, Z) is called tt\e fundamental class of C in

P, and by definition deg C = (ci(0eO)), Mc> = (ci(Op(l)), [C]V Geometrically, one

intersects C with a generic hyperplane, which intersects C away from its singular locus in

a finite set of points, and then counts these points of intersection with their multiplicity.

More generally, a complex projective variety X c PQ of complex dimension m has a

unique orientation class /.JLX H2m (X, Z). Its image in /^(PQ, Z) is denoted [X], and

the degree degX of X is defined as /(c 1(0^(1 )))'", [X]V It is known that if X = V(F)

for a homogeneous polynomial F of degree d, then deg X = d.

We need the following remark later on.

Remark5.2. Iff : C -> > is a regular isomorphism ofcomplex projective curves C and D,

both of pure dimension i,and ifT is a complex line bundle on D, then deg /*JF = degJF.

This is because jf*(/zc) = MD, so that

Now we can compute the degrees of all the line bundles introduced.

Lemma 5.3, The degrees of the various line bundles above are as follows:

(i) degOc (l)

(ii) degOD (l) =

(iii) deg* = 8

(iv) deg home (3, A*) = deg (*
3 Oc (-2))

= 12.

/. We denote the image of orientation class /^r of the curve F (see Definition 3.3 for

the definition of F) in #2(^0 x PQ, Z) by [F]. By the part (iv) ofLemma 3.4, we have that

the homology class [F] is the same as the homology class of the intersection cycle defined
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by the four divisors >/ := (/(u, = 0) inside #2(PC x PC* Z)- By the generalized

Bezout theorem in PjL
x

Pji, the homology class of the last-mentioned intersection cycle

is the homology class Poincare-dual to the cup product

d := d\ U di U d^ U c/4 ,

where d/ is the first Chern class of the the line bundle L\ corresponding to D/, for i =

1,2, 3, 4 (see [4], p. 237, Ex. 2).

Since each 5/(u, f) is separately linear in u, r, the line bundle defined by the divisor

DI is the bundle rc*O^ (1) x^Opz (1), where ;TI, 7r2 are the projections to Pi and
c ** c

P respectively. If we denote the hyperplane classes which are the generators of the

cohomologies //
2
(P^, Z) and //

2

(P^, Z) by jc and y respectively, we have

Then we have, from the cohomology ring structures of PQ and P that ;c U x U jt U x =
' U

>'
U y = 0. Hence the cohomology class in // 8

(Pjl x P, Z) given by the cup-product

is

d := rfi U J2 U d3 Ud4 = (Jrfto 4- TrjOO)
4 - 4^r*U

3
)7r2*(j) + 6jr*(;t

2
)7r2*(>'

2
),

where jc
3 = x U jc U z . . . etc. By part (ii) of Lemma 3.4, the map n\ : F -> C is an

isomorphism, so applying the Remark 5.2 to it, we have

- deg7r*0c (l)

+ 67r*(jc
2
)7r*(y

2

))
, [P

3
, x P2

]

= 6, (9)

where we have used the Poincare duality cap-product relation [F] = [P x P|] fi d

mentioned above, and that TrfOc
3
) U 7r^(j

2
) is the generator of H [0

(P
3

C x P2
, Z), so

evaluates to 1 on the orientation class [P^ x
P^"|,

and ;c
4 = 0. This proves (i).

The proof of (ii) is similar, we just replace C by D, and n\ by 7T2 ,
and n*(x) by <(>') in

the equalities of (9) above, and get 4 (as one should expect, since D is defined by a degree
4 homogeneous polynomial in

P^). This proves (ii).

For (iii), we use the identity of Lemma 4.5 that 2 = Oc (-2) g*e>D (l), and the

Remark 5.2 applied to the isomorphism of curves g : C -> D (part (iii) of Lemma 3.4)

to conclude that deg 2 = deg D -
2deg C = 4 - 1 2 = -8, by (i) and (ii) above, so that

deg* = 8.

For (iv), we have by (vi) of Lemma 4.4 that homc (3, A*)
~ *3

C?c(-2), so that

its degree is 3deg* - 2degC = 24 - 12 = 12 by (i) and (iii) above.

This proves the lemma. D

From (iv) of the lemma above, we have the following.
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COROLLARY 5.4

The line bundle home (3, A*) is a non-trivial line bundle.

6. Proof of the main theorem

Proof of Theorem 1.1. By the third and fourth exact sequences in (i) of Lemma 4.4, we
have a bundle morphism s of line bundles on C defined as the composite:

AnnW3
= 3 -4 AnnW2 -+ A* = AnnW2/AnnVV3

which vanishes at v e C if and only if the fibre AnnH^ is equal to the fibre AnnWa (U

inside AnnW2,u- At such a point i> e C, we will have AnnH^y = AnnVV^, so that

W3 (u) = W3,u'= W(u) + AW(v) = VV3,u = W(v) + A*W(v) = W3 (y).

Now, this morphism s is a global section of the bundle homc(3, A*), which is not a

trivial bundle by Corollary 5.4 of the last section. Thus there does exist a v e C, satisfying

,$(1;)
= 0, and consequently the flag

C W\ := Wi ,

= Cv C W2 := W2 ,u
= W(v) = C-span{i;, Av, A*u}

C W3 := W3 (u) = W(v) + AW(u)

C W4 = V =C4

satisfies the requirements of (ii) of Lemma 2.1, (as noted after Remark 4.2) and the main

theorem 1 . 1 follows. D

Remark 6. 1 . Note that since dim C = 1
,
the set of points v e C such that s(v) = 0, where

s is the section above, will be a finite set. Then the set of flags that satisfy (ii) of Lemma
2.1 which tridiagonalize A of the kind considered above (viz. A satisfying the assumptions

of 3.1), will only be finitely many (at most 12 in number!).
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Abstract. Let M' 1 be a Riemannian n-manifold. Denote by S(p) and Ric(/?) the

Ricci tensor and the maximum Ricci curvature on M", respectively. In this paper
we prove that every C-totally real submanifold of a Sasakian space form M2m+ l

(c)

satisfies 5 <
(

("~ 1)

4
(c
"

l

"
3)

-f
fJ^H

2
)g, where H 2 and g are the square mean curvature

function and metric tensor on M11

, respectively. The equality holds identically if and

only if either M" is totally geodesic submanifold orn = 2 andMn
is totally umbilical

submanifold. Also we show that if a C-totally real submanifold Mn of M2n+]
(c)

satisfies Ric = (/t
~

1)

4
(c

'

+3)
-f '-^-H

2
identically, then it is minimal.

Keywords. Ricci curvature; C-totally real submanifold; Sasakian space form.

1. Introduction

Let M n be a Riemannian rc-manifold isometrically immersed in a Riemannian m-manifold

Mm
(c) of constant sectional curvature c. Denote by g ,

R and h the metric tensor, Riemann

curvature tensor and the second fundamental form of M n
, respectively. Then the mean

curvature vector H of M 72

is given by H = -trace h. The Ricci tensor 5 and the scalar

curvature p at a point p e M n
are given by S(X, Y) =

_| {/?(/, ^^' e'^ anc* ^ ^

5I/=I ^(*/ e/) respectively, where {],..., en ] is an orthonormal basis of the tangent

space TpM n
. A submanifold M" is called totally umbilical if /i, H andg satisfy h(X, Y) =

g(X, Y)H forX, Y tangent to M n
.

The equation of Gauss for the submanifold M n
is given by

)
= c(g(X,W)g(Y,Z)-g(X,Z)g(Y,W))

+ g(h(X 9 W), h(Y, Z))
-

g(h(X, Z), h(Y, W)) 9 (1)

where X, 7, Z, W e TM n
. From (1) we have

p=n(n -
l)c + n 2H 2

-\h\
2

, (2)

where \h\- is the squared norm of the second fundamental form. From (2) we have

P<n(n- l)c + n 2H 2
,

with equality holding identically if and only ifM 77
is totally geodesic.
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Let Ric(p) denote the maximum Ricci curvature function on M n
defined by

= max{S(n, u)\u TM"
, p e M n

],

where T*M n = [v e T
p
M n

\(v, v) = [}.

In [3], Chen proves that there exists a basic inequality on Ricci tensor S for any subman-

ifold M'7

in Af'"(c), i.e.

/ n 2 A
S< l(n -\)c+H 2

\g, (3)

with the equality holding if and only if eitherM n
is a totally geodesic submanifold or n = 2

and M n
is a totally umbilical submanifold. And in [4], Chen proves that every isotropic

submanifold M n
in a complex space form M m

(4c) satisfies Ric < (n
-

l)c + j-#
2

,

and every Lagrangian submanifold of a complex space form satisfying the equality case

identically is a minimal submanifold. In the present paper, we would like to extend the

above results to the C -totally real submanifolds of a Sasakian space form, namely, we

prove that every C -totally real submanifold of a Sasakian space form M 2m+ }

(c) satisfies

S <
(

(/?
"

1)

4
(6'+ 3) + ^#

2
)s, and the equality holds identically if and only if either M n

is

totally geodesic submanifold or n = 2 and M n
is totally umbilical submanifold. Also we

show that if a C -totally real submanifold M n of a Sasakian space form Af 2" +1
(c) satisfies

Ri = (-0(c+3) + njLn
2
identically, then it is minimal.

2. Preliminary

Let M 2"1* 1

be an odd dimensional Riemannian manifold with metric g. Let0 be a (1,1)-

tensor field, a vector field, and r\ a 1-form on M 2/"+ l

, such that

2X = -

(0X, 07) = g(X, Y)
-

ri(X)r)(Y) , rj(X) = g(X, ).

If, in addition, drj(X t Y) = g((/)X, 7), for all vector fields X, Y on M 2in+[
,
then M 2m+{

is said to have a contact metric structure (0, , 77, g), and M 2m+I
is called a contact metric

manifold. If moreover the structure is normal, that is if [0X, 07] +
2
[X, 7] -0[X, 07]

-

0[0X, 7] = -2d77(X, 7), then the contact metric structure is called a Sasakian structure

(normal contact metric structure) and M 2/"+1
is called a Sasakian manifold. For more

details and background, see the standard references [I] and [8].

A plane section a in TpM 2/n+{ of a Sasakian manifold M 2m+ l

is called a ^-section if

it is spanned by X and 0X, where X is a unit tangent vector field orthogonal to . The

sectional curvature K(a) with respect to a 0-section cr is called a 0-sectional curvature.

If a Sasakian manifold M 2m+l has constant 0-sectional curvature c, A/ 2'" 4" !

is called a

Sasakian space form and is denoted by M 2m+l
(c),

The curvature tensor R of a Sasakian space form M 2" 1^ 1

(c) is given by [8]

R(X,Y)Z =
CJl

-
i
1 (Y)rj(Z)X + g(X, Z)r)(Ytf

-
gff,

, Z)0X - (0X, Z)07 - 2^(0X, 7)0Z),
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for any tangent vector fields X, 7, Z to M 2m+ l

(c).

An rc -dimensional submanifold M n of a Sasakian space form M 2;"+1
(c) is called a

C-totally real submanifold of M 2'"~*~ l

(c) if is a normal vector field on A/". A direct

consequence of this definition is that 4>(TM n
] C T^-M n

9 which means that M n
is an

anti-invariant submanifold of M 2m+ !

(c). So we have n < wz.

The Gauss equation implies that

4

+ g(h(X, W), h(Y, Z)) - g(h(X, Z), /z(7, W)), (4)

for all vector fields X, 7, Z, W tangent to M", where /z denotes the second fundamental

form and R the curvature tensor ofM n
.

Let A denote the shape operator on M n
in M 2m+1

(c). Then A is related to the second

fundamental form h by

,7), (5)

where a is a normal vector field on M n
.

For C-totally real submanifold in M 2m+ 1

(c), we also have (for example, see [7])

, 7) = A0X 7, A^
= 0. (6)

g(h(X, 7), 4>Z) = g(h(X, Z), 07). (7)

3. Ricci tensor of C -totally real submanifolds

We will need the following algebraic lemma due to Chen [2].

Lemma 3.1. Lef fl
j , . . . , an ,

c Z?e w + 1 (>i ^ 2J real numbers such that

2

i=l /=l

Then 2a\a^ > c, vwY/z equality holding ifand only ifa\ + ^2 = ^3 = =
/,.

For a C-totally real submanifold M" ofM 2m+l
(c), we have

Theorem 3.1. TfM" is a C-totally real submanifold ofM 2mJr{
(c\ then the Ricci tensor of

M n
satisfies

.

and the equality holds identically ifand only if either M n
is totally geodesic orn = 2 and

M n
is totally umbilical

Proof. From Gauss' equation (4), we have

3) .
o ., ,, l0
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Put* = p - '^^21 _ ^2 Then from ( , 0)

Let L be a linear (n
-

l)-subspace of T
/}M, p e M", and {e {

, . . .
,
e2n

orthonormal basis such that ( 1 ) e
,

, . . .
, en are tangent toAf

"
, (2) '*, ",

.

'

.

~"

if H(p) ^ 0, en+ 1
is in the direction of the mean curvature vector at p

'

Put*/ =
/i^

+1
,

/ = 1, . . .
, n. Then from (11) we get

i +E fl
/

2 + E^?y
+1

)
2 +

01)

= }an

^ and (3)

(12)

r=n+2 i,j=\

Equation (12) is equivalent to

.

By Lemma 3.1 we know that if (V? . 5/)
2 =

ho,d,n8 lf ,nd on,, if,, +^''
^ ,S ' "*

which gives

3)

Using Gauss' equation we have

~ E
2/w+l

2m+ 1

fn-\

+
2^](/z;

2

/7

-
f
-

]

)
2

2"

From (15) and (16) we have

(16)

2m+1

E
i= l

. (17)
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So we have

fo-l)(c + 3) n 2
__o ..

*n) (18)4 4

with equality holding if and only if

for 1 < j < n 1, 1 < i < n and n + 2 < r < 2m + 1 and, since Lemma 3.1 states that

2a\ai c if and only iftfj -f-2 = #3, we also have
/zj},"}"

1 =
]y~{ ^/^

1

- Since en can be

any unit tangent vector ofMn
, then (18) implies inequality (9).

If the equality sign case of (9) holds identically, then we have

n . .

~
(I'^^T2-/'*^^)'

ij
/

h'j
= (1 <

i, 7
< n; n -f 2 < r < 2m + 1),

^/V
1
"

1 ^ X] ^l?*"

1

' XI /?**
=

' (n "*" 2 ~ r - 2m + l )' (2 )

If A,/
=

/zJA

+1
(l < i < n), we find ^/ A^ = A/(l < / < n) and, since the matrix

A^ =
(aff)

with
afj.

= 1 28ij is regular for n ^ 2 and has kernel R(\, 1) for n = 2,

we conclude that Mn
is either totally geodesic orw. = 2 and M" is totally umbilical.

The converse is easy to prove. This completes the proof of Theorem 3. h

4. Minimality of C-totally real submanifojds

Theorem 4.1. IfMn
is an n-dimensional C-totally real submanifold in a Sasakian space

/0rmM
2'z+l

(c), then

Ric <
1

H 2
. (21)

4 4

IfMn
satisfies the equality case of(2\) identically, then Mn

is minimal.

Clearly Theorem 4.1 follows immediately from the following Lemma.

Lemma 4.1. lfM
n

is an n-dimensional totally real submanifold in a Sasakian spaceform
M2m+ !

(c), then we have (21). Ifa C-totally real submanifoldMn
inM2m+ l

(c) satisfies the

equality case of (2 1) at a point p, then the mean curvature vector H at p is perpendicular

tocj>(TpMn
).

Proof. Inequality (21) is an immediate consequence of inequality (9).

Now let us assume thatMn
is a C-totally real submanifold ofM2/n+I

(c) which satisfies

the equality sign of (2 1 ) at a point p Mn
. Without loss of the generality we may choose

an orthonormal basis {e\,...,en } of TpMn
such thatRic(p) = S(en ,e}l ). From the proof

of Theorem 3. 1 , we get
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where h
s

r denote the coefficients of the second fundamental form with respect to the

orthonormal basis {e\, . . . ,
en } and (en+[, . . .

, <?2w-H ?}

If for all tangent vectors M, u and u; at /?, g(h(u, i>), 0u,>) = 0, there is nothing to prove

So we assume that this is not the case. We define a function fp by

fp : r
y

-+R: v^ fp (v) = g(h(v, v), 0v). (23;

Since T lMn
is a compact set, there exists a vector v e T

p
Mn such that fp attains at

absolute maximum at u. Then /y; (i>)
> and g(h(v< v), 0iy) = for all tu perpendicula

tou. So from (5), we know that u is an eigenvector ofA^. Choose a frame {^i, ei, . . -
, ^

ofTpMn
suchthatei = uande/ be an eigenvector ofA0e

,

with eigenvalue A./ . Thefunctioi

//, i > 2, defined by //(r) = /y,(cos r ej 4- sin ? 2) has relative maximum at t = 0, s<

//'(O)
< 0. This will lead to the inequality A] > 2A./. Since A.I > 0, we have

A./ ^A-i, A.I >2A./, / >2. (24

Thus, the eigenspace of A^ei
with eigenvalue A.J is 1 -dimensional.

From (22) we know that ^ is a common eigenvector for all shape operators at p. Oi

the other hand, we have e\ ^ en since otherwise, from (22) and A$ ei
en = ^A^ei e\

-

A0g,e/
= Xi6i.en (i

= 2, ____ ;i), we obtain A./
= 0, * = 2, . . .

, n\ and hence A,
i

= <

by (22), which is a contradiction. Consequently, without loss of generality we may assumi

e[ =e\,...,en = en .

By (6), A^en e\ = A^en = Xn en . Comparing this with (22) we obtain A.n = 0. Thus

by applying (22) once more, we get A i H-----h A.w_ i

= Xn = 0. Therefore, trace A06J
= C

For each i = 2, . . .
, n, we have

h nn'
=

OV/<?;M en )
= ^(A^/; ^, (?/? )

=
/Z^.

Hence, by applying (22) again, we get /iJJ+'
= 0. Combining this with (22) yield

trace A^. = 0. So we have trace A^x = for any X e TpMn
. Therefore, we con

elude that the mean curvature vector at p is perpendicular io(/>(Tp M").

Remark 4.1. From the proof ofLemma 4.1 we know that if M" is a C-totally real subman

ifold ofM2n+ l

(c) satisfying

+ 3)
+

4̂

then M" is minimal and
A<f>v

= for any unit tangent vector satisfying S(v, v) = Ric

Thus, by (6) we have A^xv = 0. Hence, we obtain h(v, X) = for any X tangent ti

M" and any u satisfying S(v, v) = Ric. Conversely, if Afn is a minimal C-totally rea

submanifold ofM 2/i+ !

(c) such that for each p Mn
there exists a unit vector u e T

/;
M J

such that h(v, X) = for all X T^Af", then it satisfies (25) indentically.

For each p M", the kernel of the second fundamental form is defined by

T>(p) = {Y E TpMn
\h(X, Y) = 0, VX e r

/;
M /?

}. (26

From the above discussion, we conclude that Mn
is a minimal C-totally real submanifol<

ofM2m+1
(c) satisfying (25) at p if and only if dim V(p) is at least 1 -dimensional.

Following the same argument as in [4], we can prove

Theorem 4.2. Let Mn be a minimal C-totally real submanifold ofM
2n+ l

(c). Then
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(1) Mn
satisfies (25) at a point p ifand only ifdim'D(p) > 1.

(2) If the dimension ofD(p) is positive constant d, then T> is a completely integral distri-

bution and Mn
is d-ruled, i.e., for each point p e Mn

,
Mn

contains a d-dimensional

totally geodesic submanifold N ofM~n+l (c) passing through p.

(3) A ruled minimal C -totally real submanifold Mn ofM2n+l
(c) satisfies (24) identically

ifand only if, for each ruling N in Mn
, the normal bundle T^~Mn

restricted to N is a

parallel normal subbundle of the normal bundle T^N along N.
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Abstract. Given a smooth function < we prove a result by Berger, Kazhdan and

others that in every conformal class there exists a metric which attains this function as

its Gaussian curvature for a compact Riemann surface of genus g > I. We do so by

minimizing an appropriate functional using elementary analysis. In particular for K
a negative constant, this provides an elementary proof of the uniformization theorem

for compact Riemann surfaces of genus g > 1 .

Keywords. Uniformization theorem; Riemann surfaces; prescribed Gaussian

curvature.

1. Introduction

In this paper we present a variational proof of a result by Berger [2], Kazhdan and Warner

[6] and others, namely given an arbitrary smooth function K < we show that in every

conformal class there exists a metric which attains this function as its Gaussian curvature

for a compact Riemann surface of genus g > 1. In particular, this result includes the

uniformization theorem of Poincare [8] when K is a negative constant. In his proof Berger

considers the critical points of a functional subject to the Gauss-Bonnet condition. He

shows that the functional is bounded from below and uses the Friedrich's inequality to

complete the proof. The functional we choose is positive definite so that it is automatically

bounded from below. Our proof is elementary, using Hodge theory, i.e., the existence of the

Green's operator for the Laplacian. Our proof could be useful for analysing the appropriate

condition on K for a corresponding result for genus g = 1 and g = [6, 10, 3], the two

other cases considered by Berger, Kazdan and Warner. Another variational proof of the

uniformization theorem for genus g > 1 can be found in a gauge-theoretic context in [5]

which uses Uhlenbeck's weak compactness theorem for connections with LP bounds on

curvature [9].

Let M be a compact Riemann surface of genus g > 1 and let ds 2 = hdz dz be a

metric on M normalized such that the total area of M is 1 . Let K < 0. We minimize the

functional

JM

over C(Af , R), where K (a) stands for the Gaussian curvature of the metric e
a
ds 2

,
and

d/i = ^-hdz A dz is the area form for the metric ds2
. Using Sobolev embedding theorem

407
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we show that S(cr) takes its absolute minimum on C(M) which corresponds to a metric

on Af of negative curvature K .

2. The main theorem

2.1

All notations are as in 1.

The functional 5(cr) = fM (K(cr) - #) 2
e2<T dM is non-negative on C(M, R), so that

its infimum

S = inf{S(a), a e C(M, (R)}

exists and is non-negative. Let {^JJJli C C(M, R) be a corresponding minimizing

sequence,

lim S(crn ) = 5 .

n-oo

Our main result is the following

Theorem 2.1 Let M be a compact Riemann surface of genus g > 1. The infimum SQ is

attained at cr e C(M, R), j.e. the minimizing sequence {crn } contains a subsequence that

converges in C(M, R) to cr e C(M, R) and S(cr) = 0. The corresponding metric

e?hdz dl w r/z^ w/t/^w^ metric on M ofnegative curvature K.

2.2 Uniform bounds

Since {crn } is a minimizing sequence, we have the obvious inequality

5(or)= f (Kn ~K) 2
&
2 d^= f

JM JM

for some m > 0, where we denoted by Kn the Gaussian curvature K(an ) of the metric

e?n h and by ^o that of the metric /z, and used that

Note. Here A^ = 4h~ [

(d
2
/3z3z) stands for the Laplacian defined by the metric h on M.

Lemma 2.2. There exist constants C\ and C2 such that, uniformly in n,

(a)

(b)

1

By Minkowski inequality, and using (2.1), we get

1/2
i r ( 1 \"

dM

<
J
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so that

C 2
. (2.2)

/M

Let A'|
=

{
A

/? cr,,
> 0} and A'i = {A /2^ < Q}.

A
/?
cr

/,A:e
a"dM= /*

.M';

> minK (A /z
(j

y? )e
a"

M
max AT

(min K ) /A. (A,^,, )e
ff" dA + (max ^ ) fA ,_

where

= - r
/7 / l^iil^d/A, by Stoke's theorem.
^M

Note that rw < max AT < 0. Thus by (2.2), we get

1
f (A // o-,)

2dM+ / ^V^d/x-T,
/* |azcr,,|V''dA6<C

2
. (23)

^ JM JA/ JM

Since each term is positive, the result follows. D

2.3. Pointwise convergence ofzero mean-value part

Next, for a e C(M) denote by m(a) its mean value,

w(cr) = / crdM,
JM

and by a = a m(j) denote its zero-mean value part. For the minimizing sequence {crn }

we denote the corresponding mean values by m /z
. (Note: We had normalized the volume

Lemma 2.3. The mean-value-zero part {^'//}^=1 o/r/ze minimizing sequence {ffn }%L\ is

uniformly bounded in the Sobolev space W2 '2
(Af).

Proof. By Hodge theory, there exists an operator G such that GA/Z
= / P, where / is

the identity operator in L 2
(M) and P is the orthogonal projection onto kernel of A/j. We

also know A/x : W 2 ' 2 -> L 2
boundedly and G : L 2 -> W^ 2

is a bounded operator.

Now, by Lemma 2.2 {A/2
orn } are bounded uniformly in L2

. Thus, {GA/jCr,2 } are bounded

uniformly in W2 < 2
. But GA fl

an = (I P)an = cfw .

Now we can formulate the main result of this subsection.

PROPOSITION 2.4

The sequence {&in }^ {

contains a subsequence {or/;j }

(

=̂l
with thefollowing properties.
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(a) The sequences {&in }%Li
and {e

07" 4"'"'"
} converge in C(M) topology to continuous

junctions a andu respectively. Moreover, & e W 2 ' 2 (M).

(b) The subsequence {A/z cr/w } converges weakly in L2
to f ==

Ajj
lstr

<j a distribution

Laplacianofv.

(c) Passing to this subsequence {&in }, the following limits exist

}m
Q
S(ala ) = SQ =

where

lim e07""
1""1" = w.

In fact, the convergence in (b) is strong in L 2
.

Proof. Part (a) follows from the Sobolev embedding theorem and Rellich lemma since,

for dim Af = 2, the space W 2 ' 2(M) is compactly embedded into C(M) (see, e.g. [1, 7]).

Therefore the sequence {<J/2 }, which, according to Lemma 2.3, is uniformly bounded in

W 2i2
(Af ), contains a convergent subsequence in C(Af). Passing to this subsequence {o/n }

we can assume that there exists mean-value zero function a e C(M) such that

lim &in
= or.

Since crn 's are uniformly bounded in a Hilbert space W2 < 2(M ), they weakly converge to

s W2 ' 2(M) (after passing to a subsequence if necessary). The uniform limit coincides

with s so that or = s e W2 < 2
(M).

Moreover, since

< /

JM

then by part (b) of Lemma 2.2 the sequence {m n } is bounded above. Passing to a sub-

sequence, if necessary, we obtain that there exists u e C(M) such that in the C(M)
topology lim^oo e?in+

m = u. The function u may be identically zero if mn
- -co.

In order to prove (b), set fa = A/2
or

/n
and observe that, according to part (a) of Lemma

2.2, the sequence {fa} is bounded in L2
. Therefore, passing to a subsequence, if necessary,

there exists / e L2
(M) such that

lim / fag = fg
n-* JM JM

for all g 6 L2
(M)'. In particular, considering g e C(M), this implies / = Af

stra.

In order to prove (c) we use the following lemma.

Lemma 2.5. Ifa sequence [fa] converges to f e L2
in the weak topology, then

^UrnJIV^II
>

ll/ll-

Further linWoo \\fa\\
=

||/|| iff there is strong convergence.
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Proof. The lemma follows from considering the following inequality:

Hm
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D

To continue with the proof of the proposition, suppose lim/z_oo IIV'/ill
>

11/11- Using the

definition of the functional, we have

- K^+m f- I tn (

JM

From parts (a) and (b) it follows that the sequence S(crf} ) converges to SQ and

= Hm S(crn )
/7-OO

= lim L\waf+ \\K -Kuf- I f(K -Ku)dn
n-oo4 JM

- I f(K -
JM

We will show that this inequality contradicts that {crn } was a minimizing sequence, i.e.

we can construct a sequence {r + m !n } e C(M) such that S(r + m/
;j
) gets as close to

Namely, for any > we can construct, by the density of C in W2 - 2
,
a function

r e C(Af) approximating cr e W 2 ' 2 such that
||
AA r - /|| < and ||4(u

-
w)|| < /2

where u =

we have

er+/;t/
. Since

= lim S(r
/?-oo

o
,

Now setting 8 = v^o II T/ + ^o Ku
\\

> $ and choosing < 8/2, and using

V^r <
II

~ T/ + ^o K u
II
+ " we get V37 < V^o f a contradiction, since SQ was

the infimum of the functional.

Thus, lim^-^oo ||A/z
cf

/7 || ||/||, so that, in fact, by Lemma 2.5, the convergence is in the

strong L
2
topology. This proves part (c).

2.4 Convergence and the non-degeneracy

PROPOSITION 2.6

The minimizing sequence {&n}%L\ contains a subsequence that converges in C(Af) to a

function cr e C(M), so that the resulting metric e
a h is non-degenerate.
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Proof. Since <? = a -f- w w , by Proposition 2.4 and Lemma 2.3, it is enough to show that

the sequence [mn ] is bounded below. Supposing the contrary and passing, if necessary, to

a subsequence, we can assume that

lim m n = -co,
J1- >OO

so that, in notations of Proposition 2.4, u = 0. By Proposition 2.4(c) we get

f f
I

distr .\
2

We shall show that this contradicts the fact that 5 is the infimum of the functional S and

that {on } is a minimizing sequence. First we have the following lemma.

Lemma 2.1. Letb = KQ^&^O e L 2
(M), where &n -> a andm n -> ooasn -+ oo.

Then

f
,/A

=
A/

jfor a// yS 6 C(M) aw^/Z? = -L, vv/zere L /j a positive constant.

Proof. Consider Gn (t) = 5(crn -f- /^) - SQ a smooth function off for a fixed ft. Then by

Proposition 2.4(c) we have

G(f) = lim Gn (t)

=
f ^o-^Af^a + ^VdM- /JM \ ^ / J

and G(f) is a smooth function off for fixed ft. Since 5 is the infimum of 5, we have that

G(0 > for all t and G(0) = 0. Therefore it follows that

dG
=

dr r=0

for all ft e C(M). Straightforward computation yields

dG

r=0

Therefore, & satisfies the Laplace equation A/7
& = in a distributional sense and from

elliptic regularity it follows that b is smooth. Thus b is harmonic and therefore is a constant.

Finally, by the Gauss-Bonnet theorem, we have fM bdf^ = 4;r(l
-

g) and recalling that

g > 1
, we conclude that b = 4;r(l #) = -L < 0. D

To complete the proof of the proposition, we get a contradiction as follows. By Lemma
2.7, we have that SQ = /A/ (-L)

2
d/z = L 2

is the infimum of the functional. Since

L > 0, and {mn }
-* -oo, we consider r = a 4- mn and choose n large enough so

that -ATeT < L/2. We have

1- ~
M \ 2

\ 2
/

T
d/x = / (-L -

J JM

Then, since -L -f a < -L - ^er < -L/2, where a > is the infimum of -#er
,
we

have (-L - #er
)
2 < (L - a)

2
so that 5(r) < L2 a contradiction. D
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3. Smoothness and uniqueness

Here we complete the proof of the main Theorem 3.1.

PROPOSITION 3.1

The minimizing function a e C(M) is smooth and corresponds to the unique Kdhler

metric ofnegative curvature K .

Proof. Let b = (AT
-
^A^

istr
cr - ^ea ) e I 2

(M); according to Proposition 2.4(c) and

Proposition 2.6, S = fM b
2
diJi. Set G(0 = S(a + tft)

-
So, where ft e C(M).

Repeating arguments in the proof of Lemma 2.7, we conclude that G(t) for fixed ft is

smooth, G(0) = and G(t) > for all t. Therefore,

dG
dt

A simple calculation yields

dG

Thus b G L 2
(M) satisfies, in a distributional sense, the following equation

-A/,*? - 2Kef
r
b = 0. (3.1)

First, we will show that b = is the only weak L 2
solution to eq. (3.1). Indeed, by

elliptic regularity b is smooth, so that multiplying (3.1) by b and integrating over M using

the Stokes formula, we get

M JM

which implies that b = 0. Thus we have shown that SQ = 0.

Second, equation b = for the minimizing function a e C(M) reads

I

2

Therefore, A/f^'a belongs to V\M) so that cr e W2 '/;

forallp, By the Sobolev embedding

theorem it follows that cr e C It0f (M) for some < a < 1 . Therefore, the right hand side

of eq. (3.2) actually belongs to the space C
1 'a

(M), and therefore a e C3 *a
(Af ) and so on.

This kind of bootstrapping argument shows that a is smooth [7],

The equation b = satisfied by a now translates to K(a) = K, where K(a) is the

Gaussian curvature of the metric Q
a
hdz dz ,

a 6 C(M).
The minimizing function -a is unique: here is the standard argument, which goes back

to Poincare. Let
rj
be another minimizing function, which is smooth and also satisfies eq.

(3.2)
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so that

Multiplying this equation by cr
rj and integrating overM with the help of Stokes formula,

we get

- I df A * df = I -2K(a -
?7)(e

a - e'
?

)dyu,,

JM JM

where we set f = cr -
77. Since -2(a -

rf)(s
a - e 7]

)
> 0, we conclude that d = and,

in fact, = 0.

The proof of Theorem 3. 1 is complete.
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1. Preliminaries

This paper is a survey of the known results on homogeneous operators. A small proportion

of these results are as yet available only in preprint form. A miniscule proportion may even

be new. The paper ends with a list of thirteen open problems suggesting possible directions

for future work in this area. This list is not purported to be exhaustive, of course!

All Hilbert spaces in this paper are separable Hilbert spaces over the field of complex

numbers. All operators are bounded linear operators between Hilbert spaces. If W, /C are

two Hilbert spaces, B(H, /C) will denote the Banach space-of all operators from W to /C,

equipped with the usual operator norm. If H = /C, this will be abridged to B(W- The

group of all unitary operators in B(H) will be denoted by UCH). When equipped with any

of the usual operator topology UCH) becomes a topological group. All these topologies

induce the same Borel structure on U(H). We shall view UCH) as a Borel group with this

structure.

Z, IR and C will denote the integers, the real numbers and the complex numbers, respec-

tively. D and T will denote the open unit disc and the unit circle in C, respectively, and B
will denote the closure of D in C. Mob will denote the Mobius group of all biholomorphic

automorphisms of O. Recall that Mob = {<pa.p
' a ~D~ P e D}, where

~~

eD. (1.1)
1
- pz

For @ e O, (pft
:=

<P-i,/$ is the unique involution (element of order 2) in Mob which

interchanges and ft. Mob is topologized via the obvious identification with T x O. With

this topology, Mob becomes a topological group. Abstractly, it is isomorphic toPSL(2,R)

andtoPSt/(l, 1).

The following definition from [6] has its origin in the papers [21] and [22] by the second

named author.

415
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DEFINITION 1.1

An operator T is called homogeneous if(p(T) is unitarily equivalent to T for all (p in Mob

which are analytic on the spectrum of T.

It was shown in Lemma 2.2 of [6] that

Theorem 1.1. The spectrum ofany homogeneous operator T is eitherT or D. Hence <p(T)

actually makes sense (and is unitarily equivalent to T) for all elements (p ofMob.

Let * denote the involution (i.e. automorphism of order two) of Mob defined by

<p*(z) = ^Ciy, z e O, (p e Mob. (1 .2)

Thus (p* p
=

<PQ
a for (a, P) e T x O. It is known that essentially (i.e. up to multiplication

by arbitrary inner automorphisms), * is the only outer automorphism of Mob. It also

satisfies <p*(z) = (p(z~~
]

)~
{

for z T. It follows that for any operator T whose spectrum

is contained in O, we have

^(r*)^*(7y, <p(T~
l

)
= <p*(Tr

l

, 0.3)

the latter in case T is invertible, of course. It follows immediately from (1.3) that the adjoint

T* ~ as well as the inverse T~ {

in case T is invertible - of a homogeneous operator T is

again homogeneous.

Clearly a direct sum (more generally, direct integral) of homogeneous operators is again

homogeneous.

2. Characteristic functions

Recall that an operator T is called a contraction if ||7*||
< 1, and it is called completely

non-unitary (cnu) if T has no non-trivial invariant subspace M, such that the restriction of

T toM is unitary . T is called a pure contraction if
||
Tx

\\
<

\\x \\
for all non-zero vectors

x. To any cnu contraction T on a Hilbert space, Sz-Nagy and Foias associate in [25] a pure

contraction valued analytic function T on O, called the characteristicfunction of T.

Reading through [25] one may get the impression that the characteristic function is only

contraction valued and its value at is a pure contraction. However, if is a contraction

valued analytic function on ID and the value of at some point is pure, its value at all points

must be pure contractions. This is immediate on applying the strong maximum modulus

principle to the function z -> 0(z)x, where x is an arbitrary but fixed non-zero vector.

Two pure contraction valued analytic functions -

: O #(/C,;, /), i = 1, 2 are said

to coincide if there exist two unitary operators TJ : JC\ -> 2, T2 : >\ -> 2 such that

2 (z)T| = r2 6>
} (z) for all z 0. The theory of Sz-Nagy and Foias shows that (i) two cnu

contractions are unitarily equivalent if and only if their characteristic functions coincide,

(ii) any pure contraction valued analytic function is the characteristic function of some cnu

contraction. In general, the model for the operator associated with a given function is

difficult to describe. However, if is an inner function (i.e., is isometry-valued on the

boundary of D), the description of the Sz-Nagy and Foias model simplifies as follows:

Theorem 2.1. Let : D -> B(/C, ) be a pure contraction valued inner analyticfunction.

LetM denote the invariant subspace of #2
(B) <g> C corresponding to in the sense of
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Beurling's theorem. That is, M = {z M> 6(z)f(z) : f # 2
(D) /C}. 77z*/x 61 coincides

with the characteristic function of the compression of multiplication by z to the subspace

From the general theory of Sz-Nagy and Foias outlined above, it follows that if T is a cnu

contraction with characteristic function then, letting T[fi] denote the cnu contraction with

characteristic function /z0 for < M < 1
, we find that [T[fji] : <

IJL
< 1 } is a continuum

of mutually unitarily inequivalent cnu contractions (provided is not the identically zero

function, of course). In general, it is difficult to describe these operators explicitly in terms

ofT alone. But, in [7], we succeeded in obtaining such a description in case 6 is an inner

function (equivalently, when T is in the class C o, i.e., T*nx > as n.
- oo for every

vector x) - so that T has the description in terms of given in Theorem 2.1 . Namely, for

a suitable Hilbert space ,
T may be identified with the compression ofM to M.-*-, where

M : H^ := // 2
(O) > H is multiplication by the co-ordinate function and M. is the

invariant subspace forM corresponding to the inner function^. LetM I
ll

J
be

the block matrix representation ofM corresponding to the decomposition H^ = M^t&M.
(Thus, in particular, T = M\ \

and M2? is the restriction ofM to A4.) Finally, let JC denote

the co-kernel of Mo2, N : H^ -> H^ be multiplication by the co-ordinate function and let

E : HJ^
~* M be defined by / = /(O) e JC. In terms of these notations, we have

Theorem 2.2. Let T be a cnu contraction in the class C Q with characteristic function 0.

Let }Ji be a scalar in the range < ii < 1 and put 8 = -/I /^
2

. Then, with respect to the

decomposition .M
1 M ^ 0//te domain, the operator T[>] : H

//^ /^
-

//^.

/za^
1

^/ie block matrix representation

In Theorem 2.9 of [6], it was noted that

Theorem 2.3. A pure contraction valued analyticfunction on O is the characteristicfunc-

tion ofa homogeneous cnu contraction ifand only if9 o (p coincides with for every (p in

Mob.

From this theorem, it is immediate that whenever T is a homogeneous cnu contraction,

so are the operators T[IJL] given by Theorem 2.2. Some interesting examples of this phe-

nomenon were worked out in [7]. See 6 for these examples.

As an interesting particular case of Theorem 2.3, one finds that any cnu contraction

with a constant characteristic function is necessarily homogeneous. These operators are

discussed in [1 1] and [6]. Generalizing a result in [6], Kerchy shows in [19] that

Theorem 2.4. Let 9 be the characteristic function of a homogeneous cnu contraction. If

0(0) is a compact operator then must be a constantfunction.

(Actually Kerchy proves the same theorem with the weaker hypothesis that all the points

in the spectrum of (9(0) are isolated from below.)
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Sketch of Proof. Let : -> B(JC, C] be the characteristic function of a homogeneous
operator. Assume C := 0(0) is compact. Replacing 6 by a coincident analytic function if

neceesary, we may assume without loss of generality that JC = C and C > 0. By Theorem
2.3 there exists unitaries Uz ,

V
z such that 0(z) = U

Z
CVZ , z O. Let A.J > A2 > - be

the non-zero eigenvalues of the compact positive operator C. At this point Kerchy shows
that (as a consequence of the maximum modulus principle for Hilbert space valued analytic

functions) the eigenspace K\ corresponding to the eigenvalue A.J is a common reducing

subspace for Uz , K, z e (as well as for C of course) and hence for 0(z), z 0. So we
can write 0(z) = 6

{ (z) 2 (z) where 0j is an analytic function into B(/Ci). Since
{

is a

unitary valued analytic function, it must be a constant. Repeating the same argument with

02, one concludes by induction on n that the eigenspace JCn corresponding to the eigenvalue
^n is reducing for0(z), z 0, and the projection of 9 to each JCn is a constant function.

Since the same is obviously true of the zero eigenvalue, we are done.

3. Representations and multipliers

LetG be a locally compact second countable topological group. Then a measurable function

n : G -+ U(H] is called & protective representation of G on the Hilbert space ft if there

is a function (necessarily Borcl) m : G x G -~> T such that

7T(1) = 7, n(g {g2 ) = m(g { , g2)n(g\)n(g2) (3.1)

for all g\ , #2 in G. (More precisely, such a function n is called a prqjective unitary repre-
sentation of G; however, we shall often drop the adjective unitary since all representations
considered in this paper are unitary.) The projective representation n is called an ordi-

nary representation (and we drop the adjective 'projective') if m is the constant function

1. The function m associated with the projective representation n via (3.1) is called the

multiplierof TT. The ordinary representation n of G which sends every element of G to

the identity operator on a one dimensional Hilbert space is called the identity (or trivial)

representation of G. It is surprising that although projective representations have been with

us for a long time (particularly in the Physics literature), no suitable notion of equivalence
of projective representations seems to be available. In [7], we offered the following:

DEFINITION 3.1

Two projective representations n {
,
7t2 ofG on the Hilbert spacesH \ , HI (respectively) will

be called equivalent if there exists a unitary operator U : U\ -> HI and a function (nec-

essarily Borel) / : G -> T such that n2 ((p)U = f (<p)Un \(<p) for all <p G.

We shall identify two projective representations if they are equivalent. This has the some
what unfortunate consequence that any two one dimensional projective representations are

identified. But this is of no importance if the group G has no ordinary one dimensional

representation other than identity representation (as is the case for all semi-simple Lie

groups G.) In fact, the above notion of equivalence (and the resulting identifications) saves

us from the following disastrous consequence of the above (commonly accepted) notion

of projective representations: Any Borel function from G into T is a (one dimensional)

projective representation of the group ! !
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3. 1 Multipliers and cohomology

Notice that the requirement (3.1) on a projective representation implies that its associated

multiplier m satisfies

m((p t 1) = 1 = m(l, <p), m(<p\, (P2)(<P\<P2' ^3) = m ( (Pl> (P2<P3)m (<P2> ^3) (3.2)

for all elements <p, q>\, $2, 93 of G. Any Borel function m : G x G -> T satisfying (3.2)

is called a multiplier of G. The set of all multipliers on G form an abelian group M(G) y

called the multiplier group of G. If m e M(G), then taking W = L 2
(G) (with respect to

Haar measure on G), define n \ G -> Y(W) by

(3.3)

for<p, V inG,/ inL 2
(G). Then one readily verifies thatn is a projective representation ofG

with associated multiplier m. Thus each element of M(G) actually occurs as the multiplier

associated with a projective representation. A multiplier m e M(G) is called exact if

there is a Borel function / : G -> T such that m(<p lt <p2 )
= (f(9\)f(<P'$)lf(<P\<P'2) for

<Pl, <P2 in G. Equivalently, m is exact if any projective representation with multiplier m
is equivalent to an ordinary representation. The set Mo(G) of all exact multipliers on

G form a subgroup of M(G). Two multipliers raj, w 2 are said to be equivalent if they

belong to the same coset of A/o(G) . In other words, m \
and ni 2 are equivalent if there exist

equivalent projective representations n\ , n2 whose multipliers are m
\
and m 2 respectively.

The quotient M(G) /M (G) is denoted by # 2
(G, T) and is called the second cohomology

group of G with respect to the trivial action of G on T (see [24] for the relevant group

cohomology theory). For m e M(G), [m] e # 2
(G, T) will denote the cohomology class

containing m, i.e., [ ] : Af(G) -> H 2
(G, T) is the canonical homomorphism.

The following theorem from [8] (also see [9]) provides an explicit description ofH2
(G , T)

for any connected semi-simple Lie group G.

Theorem 3.1. Let G be a connectedjemi-simple Lie group. Then H 2
(G, T) is naturally

isomorphic to the Pontryagin dual n l

(G) of thefundamental group n
l

(G) ofG.

Explicitly, if G is the universal cover of G and TT : G -> G is the covering map (so that

the fundamental group n
]

(G) is naturally identified with the kernel Z of n) then choose a

Borel section 5
1

: G - G for the covering map (i.e., s is a Borel function such that n o s is

the identity on G, andj(l) = 1). For x Z, define m x : G x G -> I by

m x (x 9 y) = x(s(yr
[

s(xr
l

s(xy)), x,yeG. (3.4)

Then the main theorem in [8] shows that x ^ tmxl ^s an isomorphism from Z onto

H2
(G, T) and this isomorphism is independent of the choice of the section s.

The following companion theorem from [8] shows that to find all the irreducible projec-

tive representations of a group G satisfying the hypotheses of Theorem 3.1, it suffices to

find the ordinary irreducible representations of its universal cover G. Let Z be the kernel of

the covering map from G onto G. Let ft be an ordinary unitary representation of G. Then

we shall say that ft is ofpure type if there is a character x of Z such that fi(z)
= X (z)I for

all z in Z. If we wish to emphasize the particular character which occurs here, we may also

say that /3 is pure of type x- Notice that, if ft is irreducible then (as Z is central) by Schur's
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Lemma /J is necessarily of pure type. In terms of this definition, the second theorem in [8]

says

Theorem 3.2. Let G be a connected semi-simple Lie group and let G be its universal

cover. Then there is a natural bijection between (the equivalence classes of) projective

unitary representations ofG and (the equivalence classes of) ordinary unitary representa-

tions ofpure type ofG. Under this bijection, for each x the projective representations ofG
with multiplier m x correspond to the representations ofG ofpure type x> and vice versa.

Further, the irreducible projective representations ofG correspond to the irreducible rep-

resentations ofG, and vice versa.

Explicitly, if/? is an ordinary representation of pure type x ofG then define fx : G -> T

by/xM = XO" 1

--TOTTM), x e G. Defined on G by fi(jc) = fx (x)p(x). Then a is a

projective representation ofG which is trivial on Z. Therefore there is a well-defined (and

uniquely determined) projective representation a of G such that a = a o n . The multiplier

associated with ex is m x
. The map ft H> a is the bijection mentioned in Theorem 3.2.

Finally, as was pointed out in [9], any projective representation (say with multiplierw) of a

connected semi-simple Lie group can be written as a direct integral of irreducible projective

representations (all with the same multiplier m) of the group. It follows, of course, that any

multiplier of such a group arises from irreducible projective representations. It also shows

that, in order to have a description of all the projective representations, it is sufficient to

have a list of the irreducible ones and to know when two of them have identical multipliers.

This is where Theorems 3.1 and 3.2 come in handy.

3.2 The multipliers on Mob

Notice that for any element <p of the Mobius group, <p' is a non-vanishing analytic function

on and hence has a continuous logarithm on this closed disc. Let us fix, once for

all, a Borel determination of these logarithms. More precisely, we fix a Borel function

(z, <p) H> log</(z) from D x Mob into C such that logp'fe) = for <p
= id. Now define

) to be the imaginary part of log^'(z).

Define the Borel function n : Mob x Mob -> Z by

n(pj-
!

, <pi

l

)
=

(arg(<p2<?i)
7

(0)
-
arg^(O)

-

For any a eJ r define m^ : Mob x Mob - T by

The following proposition is a special case of Theorem 3.1. Detailed proofs may be

found in [9].

PROPOSITION 3.1

For co T, /n<u is a multiplier ofMob. It is trivial ifand only ifa>= 1. Every multiplier

on Mob is equivalent to m^for a uniquely determined co in T. In other words, 0) h- [m^]

is a group isomorphism between the circle group T and the second cohomology group
#2

(M6b,T).
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3.3 The protective representations of the Mobius group

Every projective representation of a connected semi-simple Lie group is a direct integral

of irreducible projective representations (cf. [9], Theorem 3J). Hence, for our purposes,

it suffices to have a complete list of these irreducible representations of Mob. A complete

list of the (ordinary) irreducible unitary representations of the universal cover of Mob was

obtained by Bargmann (see [29] for instance). Since Mob is a semi-simple and connected

Lie group, one may manufacture all the irreducible projective representations ofMob (with

Bargmann's list as the starting point) via Theorem 3.2. Following [8] and [9], we proceed

to describe the result. (Warning: Our parametrization of these representations differs

somewhat from the one used by Bargmann and Sally. We have changed the parametrization

in order to produce a unified description.)

For n Z, let fn : T -> T be defined by fn (z) = z
n

. In all of the following examples,

the Hilbert space T is spanned by an orthogonal set {//, : n e /}, where / is some subset

of Z. Thus the Hilbert space of functions is specified by the set / and {||//z||, n /}. (In

each case, \\fn \\
behaves at worst like a polynomial in \n\ as n -> oo, so that this really

defines a space of function on T.) For (p Mob and complex parameters A and //,, define

the operator Rx^L ((p~~
{

) on T by

(Rx^(9~
l

)f)(z) = p'(0
A/V(*)r(/(p(z)), z e T, / e F, <p e Mob.

Here one defines <p'(z)
x/2 as exp A./2 log <p'(z) using the previously fixed Borel determina-

tion of these logarithms.

Of course, there is no a priori guarantee that Rx tll ((p~
[

) is a unitary (or even bounded)

operator. But, when it is unitary for every <p in Mob, it is easy to see that R^ IJL
is then a

projective representation ofMob with associated multiplier mw ,
where co = e

i;rA>
. Thus the

description of the representation is complete if we specify /, {\\fn ||~, n e /} and the two

parameters A, JJL. It turns out that almost all the irreducible projective representations of

Mob have this form,

In terms of these notations, here is the complete list of the irreducible projective unitary

representations of Mob. (However, see the concluding remark of this section.)

Principal series representations P^ St
- 1 <"A < 1, s purely imaginary. Here X =

A, fM
=

i^i + s, I =Z, \\fn ||

2 = 1 for all n (so the space is L 2
(T)).

Holomorphic discrete series representations D*: Here A > 0, fj,
= 0, 7 = {n e

Z : n > 0} and ||/n ||

2 = r(

[!^ )

(A')
for n > 0. For each / in the representation

space there is an /, analytic in O, such that / is the non-tangential boundary value

of /. By the identification / > /, the representation space may be identified with

the functional Hilbert' space H (^ of analytic functions on D with reproducing kernel

(I
- zw)~

x
, z, w D.

Anti-holomorphic discrete series representations D^, X. > 0: D^ may be defined as

the composition of D* with the automorphism * of eq. (1.2): D^(<p)
= D*((p*), (p in

Mob. This may be realized on a functional Hilbert space of anti-holomorphic functions

on D, in a natural way.

Complementary series representation CA,<T> ~~1 < X < 1, 0<<J < ^(1 |A|): Here

A. = X, IJL j(l
-

X) + cr, / = Z, and
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- -
=

Jk=0 2
+ 2 + a

where one takes the upper or lower sign according as n is positive or negative.

Remark 3.1. (a) All these projective representation of Mob are irreducible with the sole

exception of P\$ for which we have the decomposition P\$ = D* Z)
[~

. (b) The multiplier

associated with each of these representations is m^ where co = e~ /7T;c
if the representation

is in the anti-holomorphic discrete series, and a) = e/7r^
otherwise. It follows that the

multipliers associated with two representations n\ and TO from this list are either identical

or inequivalent. Further, if neither or both of n\ and Jti are from the anti-holomorphic

discrete series, then their multipliers are identical iff their A, parameters differ by an even

integer. In the contrary case (i.e., if exactly one ofn\ and KI is from the anti-holomorphic

discrete series), then they have identical multipliers iff their A. parameters add to an even

integer. This is Corollary 3.2 from [9], Using this information, one can now describe all

the projective representations of Mob (at least in principle).

4. Projective representations and homogeneous operators

If T is an operator on a Hilbert space 7i then a projective representation it of Mob on H is

said to be associated with T if the spectrum of T is contained in 6 and

<p(T) = n(<p)*Tn(<p) (4.1)

for all elements <p of Mob. Clearly, if T has an associated representation then T is homo-

geneous. In the converse direction, we have

Theorem 4.1. IfT is an irreducible homogeneous operator then T has a projective repre-

sentation ofMob associated with it. This projective representation is unique up to equiva-

lence.

We sketch a proofofTheorem 4.1 below. Thedetailsof the proofmay be found in [9]. The

existence part of this theorem was first proved in [23] using a powerful selection theorem.

This result is the prime reason for our interest in projective unitary representations ofMob. It

is also the basic tool in the classification program for the irreducible homogeneous operators

which is now in progress.

Sketch ofProof. Notice that the scalar unitaries in U(H) form a copy of the circle group T
in U(H). There exist Borel transversals E to this subgroup, i.e., Borel subsets E ofU(H)
which meet every coset of T in a singleton. Fix one such (in the Proof of Theorem 2.2 in

[9], we present an explicit construction of such a transversal). For each element p of Mob,
let Ey denote the set of all unitaries U in U(H) such that U*TU = <p(T). Since T is an

irreducible homogeneous operator, Schur's Lemma implies that each E9 is a coset ofT in

U(H). Defines : Mob -> U(H) by
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It is easy to see that TT, thus defined, is indeed a projective representation associated with T.

Another appeal to Schur's Lemma shows that any representation associated with T must

be equivalent to TT. This completes the proof.

For any projective representation TT ofMob, let TT
#
denote the projective representation of

Mob obtained by composing TT with the automorphism * of Mob (cf. (1.2)). That is,

7r*(<p) := 7r(0>*), <p e Mob. (4.2)

Clearly, if m is the multiplier of TT, then m is the multiplier of TT
#

. Also, from (1.3) it is

more or less immediate that if TT is associated with a homogeneous operator T then TT
#

is

associated with the adjoint T* of T. If, further, T is invertible, then JT
#

is associated with

T~ l

also.

4.1 Classification of irreducible homogeneous operators

Recall that an operator T on a Hilbert space T~L is said to be a block shift if there are non trivial

subspaces Vn (indexed by all integers, all non-negative integers or all non-positive integers

-
accordingly T is called a bilateral, forward unilateral or backward unilateral block shift)

such that H is the orthogonal direct sum of these subspaces and we have T(Vn )
c Vn+\

for each index n (where, in the case of a backward block shift, we take V\ =
{0}). In [9]

we present a proof (due to Ordower) of the somewhat surprising fact that in case T is an

irreducible block shift, these subspaces Vn (which are called the blocks of T) are uniquely

determined by T. This result lends substance to the following theorem.

For any connected semi-simple Lie group G takes a maximal compact subgroup IK of G

(it is unique up to conjugation). Let IK denote, as usual, the set of all irreducible (ordinary)

unitary representation of K (modulo equivalence). Let us say that a projective representa-

tion IT ofG is normalized \fn\^ is an ordinary representation of IK. (IfH 2
(K, J) is trivial,

then it is easy to see that every projective representation of G is equivalent to a normalized

representation). If TT is normalized, then, for any x IK, let Vx denote the subspace ofHn

(the space on which TT acts) given by

Vx = {v e Hn : n(k)v = x(k)v Vk e K}.

Clearly Ti^ is the orthogonal direct sum of the subspaces Vx , x ^. The subspace Vx is

called the K-isotypic subspace of l~in of type x -

In particular, for the group G = Mob, we may take (K to be the copy {(pa ,Q : a 6 T} of the

circle group T. (IK may be identified with T via a H> <pa$-) For n as above and n Z, let

V/i(7r) denote the [K-isotypic subspace corresponding to the character Xn : I ^ z~
n

> z ^ ~^-

With these notations, we have the following theorem from [9].

Theorem 4.2. Any irreducible homogeneous operator is a block shift. Indeed, ifT is such

an operator, and n is a normalized projective representation associated with T then the

blocks ofT are precisely the non-trivial K-isotypic subspaces ofn.

(Note that if T is an irreducible homogeneous operator, then by Theorem 4.1 there is a

representation TT associated with T. Since such a representation is determined only up to

equivalence, we may replace n by a normalized representation equivalent to it. Then the

above theorem applies.)
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A block shift is called a weighted shift if its blocks are one-dimensional. In [9] we define

a simple representation of Mob to be a normalized representation TT such that (i) the set

T(TT) := {n 6 Z : Vn (n) ^ {0}} is connected (in an obvious sense) and (ii) for each

ft e T(JT), Vn (n) is one dimensional. If T is an irreducible homogeneous weighted shift,

then, by the uniqueness of its blocks and by Theorem 4.2, it follows that any normalized

representation TT associated with T is necessarily simple. Using the list of irreducible

projective representations of Mob given in the previous section (along with Remark 3. l(b)

following this list) one can determine all the simple representations of Mob. This is done

in Theorem 3.3 of [9]. Namely, we have

Theorem 4.3. Up to equivalence, the only simple projective unitary representations of Mob
are its irreducible representations along with the representations D ^7-^ < X < 2.

Since the representations associated with irreducible homogeneous shifts are simple, to

complete a classification of these operators, it now suffices to take each of the representa-

tions TT of Theorem 4.3 and determine all the homogeneous operators T associated with

jr. Given that Theorem 4.2 pinpoints the way in which such an operator T must act on

the space of TT, it is now a simple matter to complete the classification of these operators

(at least it is simple in principle
-
finding the optimum path to this goal turns out to be a

challenging task!). To complete a classification of all homogeneous weighted shifts (with

non-zero weights
-
permitting zero weights would introduce uninteresting complications),

one still needs to find the reducible homogeneous shifts. Notice that the technique outlined

here fails in the reducible case since Theorem 4.1 does not apply. However, in Theorem

2.1 of [9], we were able to show that there is a unique reducible homogeneous shift with

non-zero weights, namely the unweighted bilateral shift B. Indeed, if T is a reducible shift

(with non-zero weights) such that the spectral radius of T is = 1
,
then it can be shown that

Tk = Bk
for some positive integer k, and hence Tk

is unitary. But Lemma 2. 1 in [9] shows

that if T is a homogeneous operator such that Tk
is unitary, then T itself must be unitary.

Clearly, B is the only unitary weighted shift. This shows that B is the only reducible ho-

mogeneous weighted shift with non-zero weights. When all this is put together, we have

the main theorem of [9].

Theorem 4.4. Up to unitary equivalence, the only homogeneous weighted shifts are the

known ones (namely, the firstfive series ofexamplesfrom the list in 6).

Yet another link between homogeneous operators and projective representations ofMob
occurs in [10]. Beginning with Theorem 2.3, in [10] we prove a product formula, involv-

ing a pair of projective representations, for the characteristic function of any irreducible

homogeneous contraction. Namely we have

Theorem 4.5. IfT is an irreducible homogeneous contraction then its characteristicfunc-
tion : O -* B(/C, ) is given by

where n and a are two projective representations of Mob (on the Hilbert spaces C and JC

respectively) with a common multiplier. Further, C : JC -> C is a pure contraction which

intertwines a
|^ and n

\ ^.
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Conversely, whenevern, a are projective representations of Mob with a common multi-

plier and C is a purely contractive intertwiner between <?
| ^ and n

\^ such that thefunction

defined by Q(z) n((pz )*Ca((pz ) is analytic on 0, then is the characteristic function

ofa homogeneous cnu contraction (not necessarily irreducible).

(Here tpz is the involution in Mob which interchanges and z. Also, IK =
{cp e

Mob : <>(0) = 0} is the standard maximal compact subgroup of Mob.)

Sketch of Proof. Let 9 be the characteristic function of an irreducible homogeneous cnu

contraction T . For any (p in Mob look at the set

E9 := {(U, V) : U*0(w)V = 0(<p~
l

(w)) Viy e D} C U(C} xU(K).

By Theorem 2.3, E9 is non-empty for each <p. By Theorem 3.4 in [25], for (U, V) e E^
there is a unitary operator r(C7, V) such that (i) r(/7, V)*Tr(U, V) - (p(T) and (ii) the

restriction of r(U, V) to and /C equal U and V respectively. Therefore, irreducibility of

T implies that, for (7, V), (/', V
7

) in E^ r(U', V')M^, V) is a scalar unitary. Hence

EP is a coset of the subgroup S (isomorphic to the torus T2
) of U() x U(JC] consisting

of pairs of scalar unitaries. As in the proof of Theorem 4.1, it follows that there are

projective unitary representations n and a with a common multiplier (on the spaces C and

/C respectively) such that (n((p), cr((p)) e E^ for all (p in Mob. So we have

n(<p)*6(w)a((p) = 0((p~
l

(w)), w e D, <p e Mob. (4.3)

Now, choose (p
=

(pz and evaluate both sides of (4.3) at w = to find the claimed formula

for 9 with C = 0(0). Also, taking w = and cp e K in (4.3), one sees that C intertwines

For the converse, let 0(z) := 7t((pz)*Ca(<pz ) be an analytic function. Since C = 0(0)

is a pure contraction and 0(z) coincides with 0(0) for all z, is pure contraction valued.

Hence is the characteristic function of a cnu contraction T. For <p e Mob and w G 0,

write <pw <p
= k<pz where/: IK and z = (<Pw<P)~

l

(0) = <p~
[

(w). Then we have

7r(k(pz )*Ccr(k(pz )

= 7r(<pz)*n(k)*C

= n((pz )*Ca(<pz )

(Here, for the second and fourth equality we have used the assumption that n and a

are projective representations with a common multiplier. For the penultimate equality,

the assumption that C intertwines cr\^ and n\^ has been used.) Thus satisfies (4.3).

Therefore o
(p coincides with for all cp in Mob. Hence Theorem 2.3 implies that T is

homogeneous.

5. Some constructions of homogeneous operators

Let us say that a projective representation n of Mob is a multiplier representation if it is

concretely realized as follows, n acts on a Hilbert space H of E - valued functions on
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Q, where Q is either D or T and is a Hilbert space. The action of n on H is given by

(n((p)f)(z) = c(<pi z)f((p~
l

z) for z e &, f e K, <P e Mob. Here c is a suitable Borel

function from Mob x Q into the Borel group of invertible operators on E.

Theorem 5.1. Let H be a Hilbert space offunctions on 2 such that the operator T on H
given by

= */(*), xeQ, /,
is bounded. Suppose there is a multiplier representation TC of Mob on T. Then T is homo-

geneous and n is associated with T.

This easy but basic construction is from Proposition 2.3 of [6]. To apply this theorem,

we only need a good supply of what we have called multiplier representations of Mob.

Notice that all the irreducible projective representations of Mob (as concretely presented

in the previous section) are multiplier representations.

A second construction goes as follows. It is contained in Proposition 2.4 of [6].

Theorem 5.2. Let T be a homogeneous operator on a. Hilbert space *H with associated

representation TC. Let JC be a subspace ofH which is invariant or co-invariant under both

T and n. Then the compression ofT to JC is homogeneous. Further, the restriction ofn to

1C is associated with this operator.

A third construction (as yet unreported) goes as follows:

Theorem 5.3. Let n be a projective representation ofMob associated with two homoge-

neous operators T\ and TI on a Hilbert space 7i. Let T denote the operator onJit&'H

given by

/r, T,-r2

Then T is homogeneous with associated representation n jr.

Sketch ofproof. For (p in Mob, one verifies that

Hence it is clear that n n is associated with T.

6. Examples of homogeneous operators

It would be tragic if we built up a huge theory of homogeneous operators only to find at

the end that there are very few of them. Here are some examples to show that this is not

going to happen.

The principal series example. The unweighted bilateral shift B (i.e., the bilateral shift

with weight sequence wn =
1, n = 0, 1, . . .) is homogeneous. To see this, apply

Theorem 5.1 to any of the principal series representations of Mob. By construction, all

the principal series representations are associated with B.
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rhe discrete series examples. For any real number A. > 0, the unilateral shift M^ > with

veight sequence J ^^-, n = 0, 1, 2, ... is homogeneous. To see this, apply Theorem

5.1 to the discrete series representation D .

A, > 1, M^ is a cnu contraction. For A, = 1, its characteristic function is the (constant)

ction - not very interesting! But for A. > 1 we proved the following formula for the

iracteristic function ofM^ (cf. [7]).

eorem 6.1. For A. > 1, the characteristic function ofM^ coincides with the function

%iven by

X (Z )
= (X(A

-
l))"

1/2
Dt-i(^z)*8* +̂ i(^) * D,

ere 8* die adjoint of the differentiation operator 3 : H^"^

is theorem is, of course, an instance of the product formula in Theorem 4.5.

The anti-holomorphic discrete series examples. These are the adjoints M^* of the

operators in the previous family. The associated representation is D^.

vas shown in [22] that

eorem 6.2. Up to unitary equivalence, the operators M^*, A. > are the only homo-

leous operators in the Cowen-Douglas class Z?i(O).

Fhis theorem was independently re-discovered by Wilkins in ([33], Theorem 4. 1 ).

The complementary series examples. For any two real numbers a and b in the open unit

interval (0, 1), the bilateral shift Ka j} with weight sequence Jjjqzf ,
n = 0, 1

, 2,

is homogeneous. To see this in case < a < b < 1, apply Theorem 5.1 to the

complementary series representation C\,a with A. = a -f b 1 and or = (b a.)/2. If

i = b then Kaj = B is homogeneous. If < Z? < <7. < 1 then Ka j7
is the adjoint

inverse of the homogeneous operator Kb, a > anc* hence is homogeneous.

The constant characteristic examples. For any real number A. > 0, the bilateral shift B),

with weight sequence . . .
, 1, 1, 1, A., 1, 1, 1, . . .

, (A. in the zeroth slot, 1 elsewhere) is

homogeneous. Indeed, if < A. < 1 then BA, is a cnu contraction with constant charac-

teristic function A.; hence it is homogeneous. Of course, B\ = B is also homogeneous.
If A. > 1, BX is the inverse of the homogeneous operator BIL

with
ju,
= AT 1

, hence it

is homogeneous. (In [6] we presented an unnecessarily convoluted argument to show

that BX is homogeneous for X > 1 as well.) It was shown in [6] that the representation

Df D]~ is associated with each of the operators BX, A, > 0. (Recall that this is the

only reducible representation in the principal series!)

In [6] we show that apart from the unweighted unilateral shift and its adjoint, the operators

.,
A. > are the only irreducible contractions with a constant characteristic function.

fact,

icorem 6.3. The only cnu contractions with a constant characteristic function are the

-ect integrals of the operators M (1)
, M (l)* and BX, X > 0.
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Since all the constant characteristic examples are associated with a common represen-

tation, one might expect that the construction in Theorem 5.3 could be applied to any

two of them to yield a plethora of new examples of homogeneous operators. Unfortu-

nately, this is not the case. Indeed, it is not difficult to verify that for A. ^ /z, the operator

in"
^

o
'

I
is unitai% equivalent to Ba B& where a and 8 are the eigenvalues of

\ U ^/A /

Notice that the examples of homogeneous operators given so far are all weighted shifts.

By Theorem 4.4, these are the only homogeneous weighted shifts with non-zero weights.

Wilkins was the first to come up with examples of (irreducible) homogeneous operators

which are not scalar shifts.

The generalized Wilkins examples. Recall that for any real number A. > 0, 7i (x) denotes

the Hilbert space of analytic functions on D with reproducing kernel (z, w) H> (1
-

zw)~~
k

. (It is the Hilbert space on which the holomorphic discrete series representation
D* lives.) For any two real numbers X\ > 0, A,2 > 0, and any positive integer ,

view the tensor product 7i (Xl} W (A-2) as a space of analytic functions on the bidisc

D x D. Look at the Hilbert space y^
1 *^) c ft(*i) ft(*i) defined as the ortho-

complement of the subspace consisting of the functions vanishing to order k on the

diagonal A = {(z,z) : z D} c Ox ED. Finally define the generalized Wilkins operator

W^
1 '*2 *

as the compression to y^-**) of the operatorM (x
')<8>7 on W (X i } W (X2)

. The

subspace Vk
!l 2

is co-invariant under the homogeneous operatorM (XI) / as well as

under the associated representation D^ Z). Therefore, by Theorem 5.2, W^
1

'^
is

a homogeneous operator. For k - 1, W^ ^2)
is easily seen to be unitarily equivalent to

M (Xl+X2)
,
see [7] and [14], for instance. But for k > 2, these are new examples.

The operator w Xl ' X2)
may alternatively be described as multiplication by the co-ordinate

function z on the space of C*-valued analytic functions on D with reproducing kernel

(Here 3 and 8 denote differentiation with respect to z and u), respectively.) Indeed (with
the obvious identification of A and D) the map / H> (/, /',..., / (*~ 1}

)| A is easily seen

to be a unitary between y^
1 '^

and this reproducing kernel Hilbert space intertwining

W
k and the multiplication operator on the latter space. (This is a particular instance

of they'** construction discussed in [15].) Using this description, it is not hard to verify that

the adjoint of W
k

l1 2
is an operator in the Cowen-Douglas class B*(D). The following

is (essentially) one of the main results in [34].

Theorem 6.4. Up to unitary equivalence, the only irreducible homogeneous operators In

the Cowen-Douglas class B2(B) are the adjoints ofthe operatorsW^ ] ' X2
\X. i

> 0, A.2 > 0.

This is not the description of these operators given in [34]. But it can be shown that

Wilkin's operator T Q
is unitarily equivalent to the operatorWO

(AI> A>2) with A = A.
i + A.2+ I

,

Q = (A } -f X2 + I)/ (A.2 + I). Indeed, though his reproducing kernel H^Q looks a little

different from the kernel (with k = 2) displayed above, a calculation shows that these

two kernels have the same normalization at the origin (cf. [12]), so that the corresponding
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multiplication operators are unitarily equivalent. However, it is hard to see how Wilkins

arrived at his examples T while the construction of the operators W^
''

given above

has a clear geometric meaning, particularly in view of Theorem 5.2. But, as of now, we

know that the case k = 2 of this construction provides a complete list of the irreducible

homogeneous operators in #2(B) only by comparing them with Wilkins' list- we have no

independent explanation of this phenomenon.
Theorem 6.1 has the following generalization to some of the operators in this series.

(Theorem 6.1 is the special case k = 1 of this theorem.)

Theorem 6.5. For k = 1,2,... and real numbers A. > k, the characteristic func-

tion of the operator W^
1

~
coincides with the inner analytic function 0^ : O ->

:

)) given by

#f
}

(z) = cuD+_k (<pz )*d
k

*D++k (<pz ), z e D.

Here d
k*

is the adjoint of the k-times differentiation operator d
k

: ft^" -> H^+V and

Sketch ofProof. It is easy to check that C := ^9** is a pure contraction intertwining the

restrictions to IK of D +̂k and D*_k
. Since we already know (by Theorem 6. 1) that Q% is

an inner analytic function for k = I
,
the recurrence formula

_
K~T~ I I k I I

(for k > I, X > k 4- I, with the interpretation that 9^ denotes the constant function I)

shows that 9^ is an inner analytic function on D for A. > k, k = 1,2, Hence it is

the characteristic function of a cnu contraction T in the class C.Q. By Theorem 2.1, T

is the compression to ML
of the multiplication operator on H^ H^~k

\ whereM is

the invariant subspace corresponding to this inner function. But one can verify thatM is

the subspace consisting of the functions vanishing to order k on the diagonal. Therefore

T = <-
X-* )

.

Some perturbations of the discrete series examples. Let H be a Hilbert space with

orthonormal basis [fk : k = 0, 1, . . .} U {h k^ k = 0, 1, 2, . . .}. For any three

strictly positive real numbers A, [L and 8, let M (x)
[/z, 8] be the operator on H given by

and

,
for k>

An application of Theorem 2.2 to the operators M (X) in conjunction with an analytic

continuation argument shows that these operators are homogeneous. This was observed

in [7].
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The normal atom. Define the operator TV on L 2
(O) by (Nf)(z) = z/(z), z 0, / G

L2
(0). The discrete series representation D* naturally lifts to a representation of Mob

on L 2
(O). Applying Theorem 5.1 to this representation yields the homogeneity of N.

Using spectral theory, it is easy to see that the operators B and N are the only homogeneous

normal operators of multiplicity one. In consequence, we have

Theorem 6.6. Every normal homogeneous operator is a direct sum of (countably many)

copies of B and N.

Let us define an atomic homogeneous operator to be a homogeneous operator which

can not be written as the direct sum of two homogeneous operators. Trivially, irreducible

homogeneous operators are atomic. As an immediate consequence of Theorem 6.6, we

have

COROLLARY 6.1

B and N are atomic (but reducible) homogeneous operators.

N is a cnu contraction. Its characteristic function was given in [7].

Theorem 6.7. The characteristicfunction ON : O - #(L
2
(B)) ofthe operator N is given

by theformula

(0N (z)f)(w) = -<pw (z)f(w), z, w O, / L 2
(0).

(Here, as before, (pw is the involution in Mob which interchanges and w.)

The usual transition formulabetween cartesian and polar coordinates shows that L 2
(D) =

L 2
(T) L 2

([0, 1], rdr). Since B may be represented as multiplication by the coordinate

function on L2
(T), it follows that the normal atom N is related to the other normal atom

BbyN = BC where C is multiplication by the coordinate function on L 2
([0, 1], rdr).

Clearly C is a positive contraction. Let [fn : n > 0} be the orthonormal basis of

L2
([0, 1], rdr) obtained by Gram-Schmidt orthogonal ization of the sequence {r \-+

r
11

: n >
0}. (Except for scaling, / is given in terms of classical Jacobi polynomi-

als by x H> P
7I

(ai)
(2j - 1), cf. [31].) Then the theory of orthogonal polynomials shows

that (with respect to this orthonormal basis) C is a tri-diagonal operator. Thus we have

Theorem 6.8. Up to unitary equivalence, we have N = B C where the positive con-

traction C is given on a Hilbert space with orthonormal basis {fn : n > 0} by theformula

Cfn = fljj/n-l + bnfn + ;i+l//i+ l, n = 0, 1
, 2, . . .

where. (f-\ = 0) and the constants an ,
bn are given by

2(n+l)
2
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7. Open questions

7.1 Classification

The primary question in this area is, of course, the classification of homogeneous operators

up to unitary equivalence. Theorem 4.4 is a beginning in this direction. We expect that the

same methodology will permit us to classify all the homogeneous operators in the Cowen-

Douglas classes 5jt(O), k 1,2, Work on this project has already begun. More

generally, though there seem to be considerable difficulties involved, it is conceivable that

extension of the same techniques will eventually classify all irreducible homogeneous op-

erators. But, depending as it does on Theorem 4.1, this technique draws a blank when it

comes to classifying reducible homogeneous operators. In particular, we do not know how

to approach the following questions.

Question 1 . Is every homogeneous operator a direct integral of atomic homogeneous

operators?

Question 2. Are B and N the only atomic homogeneous operators which are not irreducible?

We have seen that the homogeneous operator N can be written as N = B C. In this

connection, we can ask:

Question 3. Find all homogeneous operators of the form B X. More generally, find all

homogeneous operators which have a homogeneous operator as a 'tensor factor'.

Another possible approach towards the classification of irreducible homogeneous con-

tractions could be via Theorem 4.5. (Notice that any irreducible operator is automatically

cnu.) Namely, given any two projective representations n and a ofMob having a common

multiplier, we can seek to determine the class C(n, cr) of all operators C : H,a -* Tin such

that (i) C intertwines o~\^ and ;r |^ and (ii) the function z i-> 7r(^)*Ccr(^) is analytic

on D. Clearly C(TT, or) is a subspace of B(?ia ,Hn ), and Theorem 4.5 says that any pure

contraction in this subspace yields a homogeneous operator. Further, this method yields

all irreducible homogeneous contractions as one runs over all n and a. This approach

is almost totally unexplored. We have only observed that, up to multiplication by scalars,

the homogeneous characteristic functions listed in Theorem 6.5 are the only ones in which

both n and a are holomorphic discrete series representations. (But the trivial operation of

multiplying the characteristic function by scalars correspond to a highly non-trivial opera-

tion at the level of the operator. This operation was explored in [7].) So a natural question

is:

Question 4. Determine C(TT, cr) at least for irreducible projective representations n and a

(with a common multiplier).

Note that Theorem 6.5 gives the product formula for the characteristic function of

W^i,x
2 )

for ^^ = j But for w a,A2)
to be a contraction i t i s sufficient (though not

necessary) to have k\ > 1. So on a more modest vein, we may ask:
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Question 5. What is the (explicit) product formula for the characteristic functions of the

operators Wf
J ' AoJ

forA.
}
> 1?

Recall that a cnu contraction T is said to be in the class C\\ if for every nonzero vector

x, linwoo Tnx ^ and linWoo T*nx ^ 0. In [19], Kerchy asks:

Question 6. Does every homogeneous contraction in the class C\ \
have a constant charac-

teristic function?

7.2 Mobius bounded and polynomially bounded operators

Recall from [30] that a Hilbert space operator T is said to be Mobius bounded if the family

{(p(T) : (p e Mob} is uniformly bounded in norm. Clearly homogeneous operators are

Mobius bounded, but the converse is false. In [30], Shields proved:

Theorem 7.1. IfT is a Mobius bounded operator then \\T
m

\\
= O(m) as m * oo.

Sketch ofproof. Say ||^(T)||
< c for (p e Mob. For any (p e Mob, we have an expansion

(p(z)
= Y^m-Q amZ

m
, valid in the closed unit disc. Hence,

r

am T
m =

/ (p(ctT)ct-
m

da,

where the integral is with respect to the normalized Haar measure on T. Therefore we

get the estimate |am |||r'"||
< c for all m. Choosing (p

= p^, we see that for m > 1,

\am \

= (1
- r

2
)r
m~ l where r =

\(t\. The optimal choice r = J(m -
l)/(m 4- 1) gives

\am \

= 0(l/m) and hence ||T
m

||
= 0(m).

On the basis of this Theorem and some examples, we may pose:

Conjecture. For any Mobius bounded operator T, we have
||
Tm

\\ O(m 1/2
) as m -> oo.

In [30], Shields already asked if this is true. This question has remained unanswered

for more than twenty years. One possible reason for its intractability may be the dif-

ficulty involved in finding non-trivial examples of Mobius bounded operators. (Con-

tractions are Mobius bounded by von Neumann's inequality, but these trivially satisfy

Shield's conjecture.) As already mentioned, non-contractive homogeneous operators pro-
vide non-trivial examples. For the homogeneous operator T = M (X) with k < I

,
we

have ||r
n

||

=
y

r(
r

)

(L
(

+X)

1) and hence (by Sterling's formula) ||T
m

|l

~ cm (1-W2 with

c = r(X)
1/2

. Thus the above conjecture, if true, is close to best possible (in the sense that

the exponent 1 /2 in this conjecture cannot be replaced by a smaller constant). An analogous
calculation with the complementary series examples C(a, b) (with < a ^ b < 1) leads

to a similar conclusion. This leads us to ask:

Question 7. Is the conjecture made above true at least for homogeneous operators T1

(It is conceivable that the operators T^s introduced below contain counter examples to

Shield's conjecture in its full generality.)
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Recall that an operator T, whose spectrum is contained in 6, is said to bz polynomially

bounded if there is a constant c > such that ||/?(r)||
< c for all polynomial maps

p : D -> O. (von Neumann's inequality says that this holds with c = 1 iff T is a

contraction.) Clearly, if T is similar to a contraction then T is polynomially bounded.

Halmos asked if the converse is true, i.e., whether every polynomially bounded operator is

similar to a contraction. In [28], Pisier constructed a counter-example to this conjecture.

(Also see [13] for a streamlined version of this counter-example.) However, one may
still hope that the Halmos conjecture is still true of some 'nice' classes of operators. In

particular, we ask

Question 8 . Is every polynomially bounded homogeneous operator similar to a contraction?

For that matter, is there any polynomially bounded (even power bounded) homogeneous op-

erator which is not a contraction?

Notice that the discrete series examples show that homogeneous operators (though

Mb'bius bounded) need not even be power bounded. So certainly they need not be polyno-

mially bounded.

7.3 Invariant subspaces

If T is a homogeneous operator with associated representation TT, then for each invariant

subspace M. of T and each (p e Mob, n(y>)(M) is again T-invariant. Thus Mob acts

on the lattice of T-invariant subspaces via jr. We wonder if this fact can be exploited to

explore the structure of this lattice. Further, if T is a cnu contraction, then the Sz-Nagy-
Foias theory gives a natural correspondence between the invariant subspaces of T and the

'regular factorizations' of its characteristic function (cf. [25]). Since we have nice explicit

formulae for the characteristic functions of the homogeneous contractions M(A.), A. > 1,

may be these formulae can be exploited to shed light on the structure of the corresponding

lattices.

Recall that Beurling's theorem describes the lattice of invariant subspaces of M^ in

terms of inner functions. Recently, it was found ([18] and [1]) that certain partial analogues

of this theorem are valid for the Bergman shift M^ as well. We may ask:

Question 9. Do the theorems of Hedenmalm and Aleman et al generalize to the family

M^, X > 1 of homogeneous unilateral shifts?

7.4 Generalizations ofhomogeneity

In the definition of homogeneous operators, one may replace unitary equivalence by simi-

larity. Formally, we define a weakly homogeneous operator to be an operator T such that

(i) the spectrum of T is contained in 6 and (ii) <p(T) is similar to T for every <p in Mob. Of

course, every operator which is similar to a homogeneous operator is weakly homogeneous.

In [11] it was asked if the converse is true. It is not - as one can see from the following

examples:

Example 1 . Take H = L2
(T) and, for any real number in the range

-
1 < A < 1 and any

complex numbers with lm(s) > 0, define P^ s : Mob -> B(H) by



434 Bhaskar Bagchi and Gadadhar Misra .

For purely imaginary s, these are just the principal series unitary projective representa-

tions discussed earlier. For s outside the imaginary axis, P^ iV
is not unitary valued. But,

formally, it still satisfies the condition (3.1) with m = m^, CD = e/7r\ In consequence,

PX,.V is an invertible operator valued function on Mob.

For X and s as above, let T^ tS
denote the bilateral shift on L 2

(T) with weight sequence

n e 2.

When s is purely imaginary, these weights are unimodular and hence 7X,.V is unitarily

equivalent to the unweighted bilateral shift B. In [9] it is shown that, in this case the

principal series representation P\ tS
is associated with T^ tS

as well as to B. That is, we have

<p(Ti. s )
= PiAvr

l

T^Pi, s (<p) (7.1)

for purely imaginary s. By analytic continuation, it follows that eq. (7.1) holds for all

complex numbers s. Thus T^ s is weakly homogeneous for lm(s) > 0. It is easy to see

that H7-&H
>

lir^/oll
>

IrKJrSii
where = + *)/2 + s, 6 = (I + A.)/2

- J and

/o is the constant function 1. Hence by Sterling's formula, we get

IIO > cm 2Re(j)

for all large m (and some constant c > 0). If T^ x were similar to a homogeneous operator,

it would be Mobius bounded and hence by Theorem 7.1 we would get \\T"\\\
= O(m)

which contradicts the above estimate when Re(s) > 1/2. Therefore we have

Theorem 7.2. The operators T^ s is weakly homogeneousfor all A., s as above. However,

for Re(sO > 1/2, Ms operator is not Mobius bounded and hence is not similar to any

homogeneous operator.

Example 2 (due to Ordower). For any homogeneous operator T, say on the Hilbert space

(T I\
H, let T denote the operator I

J

. For any cp in a sufficiently small neighbourhood

of the identity, <p(f) makes sense and one verifies that <p(f) = ( ^ ^
L? V If U is

\ <p(T) J
a unitary on H such that <p(T) = 17*717 then an easy computation shows that the operator

L = U(p'(T)
1/2 e/V(?T 1/2 satisfies LfL" 1 = ^(7). Thus<Xf) is similar to f for all

<p in a small neighbourhood. Therefore an obvious extension of Theorem 1.1 shows that

f is weakly homogeneous. Since \\<p(f )||
> 11^(7) ||

and since the family (p' t (p Mob
is not uniformly bounded on the spectrum of T, it follows that f is not Mobius bounded.

Therefore we have

Theorem 7.3. For any homogeneous operator T, the operator f is weakly homoge-
neous but not Mobius bounded. Therefore this operator is not similar to any homoge-
neous operator.

These two classes of examples indicate that the right question to ask is
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Question 10. Is it true that every Mobius bounded weakly homogeneous operator is similar

to a homogeneous operator?

For purely imaginary s
9
the homogeneous operators T^ s and B share the common as-

sociated representation P^y ; hence one may apply the construction in Theorem 5.3 to this

pair. We now ask

Question 11. Is the resulting homogeneous operator atomic? Is it irreducible? More

generally, are there instances where Theorem 5.3 lead to atomic homogeneous operators?

Another direction of generalization is to replace the group Mob by some subgroup G.

For any such G, one might say that an operator T is G-homogeneous if (p(T) is unitarily

equivalent to T for all 'sufficiently small' (p in G. (If G is connected, the analogue of

Theorem 1.1 holds.) The case G = IK has been studied under the name of 'circularly sym-
metric operators'. See, for instance, [17] and [3]. Notice that if 5 is a circularly symmetric

operator then so is 5 T for any operator T - showing that this is a rather weak notion

and no satisfactory classification can be expected when the group G is so small. A more

interesting possibility is to take G to be a Fuchsian group. (Recall that a closed subgroup
of Mob is said to be Fuchsian if it acts discontinuously on D.) Fuchsian homogeneity was

briefly studied by Wilkins in [33]. He examines the nature of the representations (if any)

associated with such an operator.

Another interesting generalization is to introduce a notion ofhomogeneity for commuting

tuples of operators. Recall that a bounded domain fil in Cd
is said to be a boundedsymmetric

domain if, for each co e 2, there is a bi-holomorphic involution of Q which has a) as

an isolated fixed point. Such a domain is called irreducible if it cannot be written as the

cartesian product of two bounded symmetric domains. The irreducible bounded symmetric

domains are completely classified modulo biholomorphic equivalence (see [2] or [16] for

instance) -
they include the unit ball Imjl in the Banach space of all m x n matrices

(with operator norm). Let G^ denote the connected component of the identity in the

group of all bi-holomorphic automorphisms of an irreducible bounded symmetric domain

2. If T =
(!Ti, . . .

, TO) is a commuting d-tuple of operators then one may say that T is

homogeneous if, for all 'sufficiently small* <p GQ, <p(T) is (jointly) unitarily equivalent

to T. (Of course, this notion depends on the choice of 2 - for most values of d there are

several choices - so, to be precise, one ought to speak of ^-homogeneity). Theorem 1.1

generalizes to show that, in this setting, the Taylor spectrum ofT is contained in & (and is a

G^-invariant closed subset thereof). Also, if T is an irreducible homogeneous tuple (in the

sense that its components have no common non-trivial reducing subspace), then Theorem

4.1 generalizes to yield a projective representation of G^ associated with it. Therefore,

many of the techniques employed in the single variable case have their several variable

counterparts. But these are yet to be systematically investigated. One difficulty is that for

d > 2, the (projective) representation theory of G^ (which is a semi-simple Lie group)

is not as well understood as in the case ft = D. But this also has the potential advantage

that when (and if) this theory of homogeneous operator tuples is investigated in depth, the

operator theory is likely to have significant impact on the representation theory.

With each domain ft as above is associated a kernel BQ (called the Bergman kernel)

which is the reproducing kernel of the Hilbert space of all square integrable (with respect

to Lebesgue measure) analytic functions on ft. The Wallach set W = WQ of & is the set
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of all X > such that B^
8

is (a non-negative definite kernel and hence) the reproducing

kernel of a Hilbert space W^(2). (Here g is an invariant of the domain 2 called its genus,

cf. [2].) It is well-known that the Wallach set W can be written as a disjoint union Wj U Wc

where the 'discrete' part Wj is a finite set (consisting of r points, where the 'rank' r of Q
is the number of orbits into which the topological boundary of 2 is broken by the action

of GQ) and the 'continuous' part Wc is a semi- infinite interval.

The constant functions are always in H^ (2) but, for A e Wj, H^ (2) does not contain

all the analytic polynomial functions on 2. It follows that for A e W(i multiplication by

the co-ordinate functions do not define bounded operators on 7i (x)
(2). However, it was

conjectured in [4] that for A e Wc ,
the d-tupleM^ of multiplication by the d co-ordinates

is bounded. (In [5], this conjecture was proved in the cases 2 = /m , /7
. In general, it is

known that for sufficiently large A the norm on H^(Q) is defined by a finite measure

on 2, so that this tuple is certainly bounded in these cases.) Assuming this conjecture,

the operator tuples M^, A e Wc , constitute examples of homogeneous tuples
- this is in

consequence of the obvious extension of Theorem 5.1 to tuples. In [4] it was shown that

the Taylor spectrum of this tuple is 2 and

Theorem 7.4. Up to unitary equivalence, the adjoints of the tuples M^, A. Wc , are the

only homogeneous tuples in the Cowen-Douglas class B\ (Q).

For what values of A e Wc is the tupleMw sub-normal? This is equivalent to asking for

the values ofA for which the norm on 7i (A>)
(2) is defined by a measure. In [4] we conjecture

a precise answer. Again, the special case 2 = /,, of this conjecture was proved in [5].

Regarding homogeneous tuples, an obvious meta-question to be asked is

Question 12. Formulate appropriate generalizations to tuples of all the questions we asked

before of single homogeneous operators
- and answer them!

A tff-tuple T on the Hilbert space H is said to be completely contractive with respect to

2 if for every polynomial map P : 2 -* /mjl , P(T) is contractive when viewed as an

operator from U % Cn
to H <g> Cm . T is called contractive with respect to & if this holds

in the case m = n = 1 . In general one may ask whether contractivity implies complete

contractivity. In general the answer is 'no' for all d > 5 [27]. However one has a positive

answer in the case 2 = D. But an affirmative answer (for special classes of tuples) would

be interesting because complete contractivity is tantamount to existence of nice dilations

which make the tuple in question tractable. For instance, we have an affirmative answer

for subnormal tuples. We ask

Question 13. Is every contractive homogeneous tuple completely contractive?
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Abstract. The orthonormal basis generated by a wavelet of L2
((R) has poor fre-

quency localization. To overcome this disadvantage Coifman, Meyer, and Wicker-
hauser constructed wavelet packets. We extend this concept to the higher dimensions
where we consider arbitrary dilation matrices. The resulting basis ofL2

(U
d
) is called

the multiwavelet packet basis. The concept of wavelet frame packet is also general-
ized to this setting. Further, we show how to construct various orthonormal bases of

L2
(IR

J
) from the multiwavelet packets.

Keywords. Wavelet; wavelet packets; frame packets; dilation matrix.

Introduction

>nsider an orthonormal wavelet of L 2
(IR). At the ;th resolution level, the orthonormal

sis {fyjk j> & Z} generated by the wavelet has a frequency localization proportional

2-'. For example, if the wavelet ^ is band-limited (i.e., $ is compactly supported), then

3 measure of the support of (^ /&)
A

is 2; times the measure of the support of $, since

.

~, ;, * e Z,

lere

> when j is large, the wavelet bases have poor frequency localization. Better frequency

calization can be achieved by a suitable construction starting from anMRA wavelet basis.

Let [Vj : j Z} be an MRA of L 2
(R) with corresponding scaling function <p and

ivelet V<\ Let Wj be the corresponding wavelet subspaces: Wj = W{i^jk : k e 1}. In

e construction of a wavelet from an MRA, essentially the space V\ was split into two

thogonal components V and WQ. Note that V\ is the closure of the linear span of the

nctions {2^(2 - k) : k e Z}, whereas V and WQ are respectively the closure of the

an of {<p(. -k) : k] and {^(- - *) : *}. Since (p(2
. -*) = 9 (2(-

-
|)),

we see that

e above procedure splits the half-integer translates of a function into integer translates of

ro functions.

In fact, the splitting is not confined to V\ alone: we can choose to split
W

jt
which is the

an of {Vr(2->'
- -k) : k} = {^ (l

j
(>
-
^))

: *}, to get two functions whose 2~ (j
~

l]k

mslates will span the same space Wj. Repeating the splitting procedure ; times, we get

439
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2>i functions whose integer translates alone span the space W/ . If we apply this to each

Wj, then the resulting basis of L 2
(R), which will consist of integer translates of a count-

able number of functions (instead of all dilations and translations of the wavelet V0> will

give us a better frequency localization. This basis is called 'wavelet packet basis'. The

concept of wavelet packet was introduced by Coifman, Meyer and Wickerhauser [6, 7].

For a nice exposition of wavelet packets of L-(R) with dilation 2, see [11].

The concept of wavelet packet was subsequently generalized to Ud
by taking tensor prod-

ucts [5]. The non-tensor product version is due to Shen [16]. Other notable generalizations

are the biorthogonal wavelet packets [4], non-orthogonal version of wavelet packets [3],

the wavelet frame packets [2] on R for dilation 2, and the orthogonal, biorthogonal and

frame packets on Ud
by Long and Chen [13] for the dyadic dilation.

In this article we generalize these concepts to R^ for arbitrary dilation matrices and we

will not restrict ourselves to one scaling function: we consider the case of those MRAs for

which the central space is generated by several scaling functions.

DEFINITION 1.1

A d x d matrix A is said to be a dilation matrix for Rd
if

(i) A(1d ) c 1d and

(ii) all eigenvalues A. of A satisfy |A,|
> 1.

Property (i) implies that A has integer entries and hence |
det A| is an integer, and (ii) says

that
|
det A

|

is greater than 1 . Let B = A 1

, the transpose of A and a =
|

det A
|

=
|

det B
\

.

Considering J.
d

as an additive group, we see that A~Ld is a normal subgroup ofZ
d

. So

we can form the cosets of A1d
in TL

d
. It is a well-known fact that the number of distinct

cosets of A1d
in Hd is equal to a =

\

det A| ([10, 17]). A subset of Id which consists of

exactly one element from each of the a cosets of AZJ
in Hd will be called a set of digits

for the dilation matrix A. Therefore, if K^ is a set of digits for A, then we can write

where {AZ
d +M : JJL e KA ] are pairwise disjoint. A set of digits for A need not be a set of

digits for its transpose. For example, for the dilation matrix M = (
)
of R2

,
the set

is a set of digits for M but not forM l
. It is easy to see that if K is a set of

|

f
n

) , 1

digits for A, then so is K /x, where //, K. Therefore, we can assume, without loss of

generality, that e K.

The notion of a multiresolution analysis can be extended to L 2
(R

d
) by replacing the

dyadic dilation by a dilation matrix and allowing the resolution spaces to be spanned by

more than one scaling function.

DEFINITION 1.2

A sequence {Vj : j e Z} of closed subspaces of L 2
(R

J
) will be called a multiresolution

analysis (MRA) of L 2
(R

J
) of multiplicity L associated with the dilation matrix A if the

following conditions are satisfied:
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Ml) Vj c Vj+{ for all j eZ
M2) Uf Z V) is dense in L 2

([R
J

) and
r\,- 2 V/

= {0}

M3) / V/ if and only if /(A-) e V/+1

M4) there exist L functions {<Pi , <P2> <?L} in VQ, called the scalingfunctions, such that

the system of functions {<>/( A') : 1 < / < L, & e 2d
} forms an orthononnal basis

for V .

'he concept of multiplicity was introduced by Herve [12] in his Ph.D. thesis.

Since {<?/( k) : 1 < I < L, k e Zd ] is an orthononnal basis of V
,

it follows from

roperty (M3) that [aJ/
2
<pi(AJ -k) : 1 < / < L, & e Z^} is an orthononnal basis of V/.

)bserve that if / E L 2
((R

J
), then

The Fourier transform of a function / e L J

(R^) is defined by

b define the Fourier transform for functions of L 2
(R^), the operator J

7
is extended from

-
1 H L 2^), which is dense in L 2

(R
J
) in the L 2

-norm, to the whole of L2
(R

a
). For this

efmition of the Fourier transform, Plancherel theorem takes the form

First of all we will prove a lemma, the splitting lemma (see [8]), which is essential for the

onstruction of wavelet packets. We need the following facts for the proof of the splitting

a) Let T^ = [-JT, n]
d and / L l

(R
d
). Since Rd = U^/OP

7
-f 2for), we can write

/(*)d*= f \ E /(Jc + 2A;r)W (1)

JJd 1
A- 6

3) Let [sk : k Zd
] e l

{

(1
d

) and KB be a set of digits for the dilation matrix B. As Zd

can be decomposed as Zd = (J
t^KB (^^-

d + M) we can W1"ite

E ^ = E E -fy+5*. (2)

^ 2^ l^KB ke1d

c) Let ^5 be a set of digits for B. Define

Since ^B is a set of digits for 5, the set go satisfies U^e2j(<2 4- 2te) = Rrf
. This

fact, together with |2ol = (2^)^, implies that {2o -f Ikn : k e 1d } is a pairwise

disjoint collection (see Lemma 1 of [10]). Therefore,

E /(^ + 2te)d^, for/eL
1

). (3)

function / is said to be 2nZd-periodic if f(x + 2kn) = /(jc) for all k e Zd and for

.e. ;c e Rd .
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2. The splitting lemma

Let [<pi : 1 < / < L} be functions in L 2
((R

J
) such that {<p/(-

-
k) : 1 < / < L, k Zd

]

is an orthonormal system. Let V Tp{a
l /2

<pi(A
- ~k) : /,&}. For 1 <

/, y < L and
< r < 1, suppose that there exist sequences {h

r

rk : k e Z.
d

] e /
2
(Z^). Define

//'(*)
= E EV 1/2^*-*>- (4)

Taking Fourier transform of both sides

L

E//'()
= E

L

where

A
//f)

= E a~ l/2h
r

ljk
e~ l(^ k}

,
1 < /, ; < L, < r < a - 1, (6)

and
h\.

is 2jrZ
J
-periodic and is in L 2

(J
d
). Now, for < r < a - 1, define the L x L.

matrices

By denoting

0(*) = (^iW,...,^U))
r

(8)

*(?) - (^i),...,^))
r

, (9)

we can write (5) as

Fr (ft = Hr (B-
l

ftQ(B-
[

ft, 0<r<a-l
9 (10)

where Fr (x) = (/[, /{W, . . .
, /L

r
(^))

f and (f )
=

(/f (f ),

The following well-known lemma characterizes the orthonormality of the system
[<Pi(-

~
^} : 1 < / < L, k e Zd

}. We give a proof for the sake of completeness.

Lemma 2.1 . The system { 9l (.-k): \<l<L,k el.d } is orthonormal ifand only if

Proof. Suppose that the system {^(.
-

*) : 1 < / < L, jfc 6 1d
] is orthonormal. Note that

(<Pj(-
~

/?). ^/('
-

^))
=

(^./^/(-
-

fe
-

/?)))
for 1 < ;, / < L and p, q e Zd . Now

E ^7(f + 2*^)#/(? + 2^7r)e
/^^d^ by (1).

jd
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Therefore, the 2*2^ -periodic function G
jt () = <Pj ( + 2for)/(f + 2Jbr) has Four-

ier coefficients G //(-p) = <5//6op, p 2J which implies that G// = <5
;-/

a.e. By reversing
the above steps we can prove the converse. D

Let M*( ) be the conjugate transpose of the matrix M() and IL denote the identity

matrix of order L.

Lemma 2.2. (The splitting lemma) Let {<pi : 1 < / < L} be functions in L 2
(R

d
) such that

the system {a
l /2

(f>j(A
-

k) : 1 <
7 < L, ^ Zd

} is orthonormal Let V be its closed

linear span. Let K be a set of digitsfor B. Also let f[ ,
-Hr be as above. Then

{//"(
-

*) :
< r < a - 1, 1 < / < L, )t 1d ]

is an orthonormal system ifand only if

^v/L ) 0<r,j<a- 1. (11)

Moreover, {//"( -A') :
< r < -

1, 1 < / < L, Jk 6 Zd } is an orthonormal hasis ofV

whenever it is orthonormal.

Proof. For 1 < /, j < L, < r, JT < a - 1 and p e ZJ
,
we have

/;,//(-
-

= 7^ / E E ^
(27T)

U
jRrf ,_!= i

'

(by (5))

L L

E E E

(by (D)

E ^-
(27T)" JT^ /i/Cm==

E ^(S- 1

(? + 2/.7T)

(by (2))

L L

E E h
r

jn
(27T)

rf

(by Lemma 2.1)

. '

f
I ^

(2n)
a
Jjd ( IJL Km=\
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Therefore,

(/[. //('
-

/>))
=

SrsSjlSop

E E fi
r

Jm (B-
l

S + 2B- l

iui)h
f

lm(B-^ + 2B- t

fjLn) = Sr,Sji for a.e. 6
m~\

E Eh r

jmG + 2B- [

iJur)h*[mG + 2B- l

iJUt) = fy for a.e. f e
/^ 6 AT w= 1

We have proved the first part of the lemma.

Now assume that
{//"(

-
k) :

< r < a - 1, 1 < / < L, /: ZJ
} is an orthonormal

system. We want to show that this is an orthonormal basis of V. Let / V. So there

exists [cjp : p 6 Z^} 6 /
2
(Z

J
), 1 < ; < L such that

/W= E E c^a^(^-P)-
7=lp2'y

Assume that / JL // (
-

fc) for all r, /, k.

Claim, f = 0.

For all r, /, k such that < r < a - 1, 1 < / < L, k e Zd
,
we have

=
(//

r

(-,/} = //( -A),

(by (5))

L _

L _
E E ^y(-h2^7r)e-

/ <*'^+2^^e/^^+2^ 7r)
df (by (3))

r L L
(

/
E E E TO E

/Goni=l
j/=lpgZ'' l^eZ''
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a i/2 f
L

=
7T~v/" / E E h

r

im ($)cmi,s-
l(k * BVQl(P* ]

&% (by Lemma 2.1)
VZ7TJ JQom=\pZd

fl
] /2 _

n } /2

ce
\f>~liy

Q
~' (k ' B '

}
: k e ^1 is an orthonormal basis for L 2

(B~
lJd

), the above equa-

sgive

E E E c^e
/
(*+2/?

" l

^^)A
/

r

w (? + 25-'^) = a.e. for all r, /.

fiK m~\ psZ'l

m = 1,2, ...,L, define

(12)

i have

L
= 0, 0<r<fl-l, 1 < / < L. (13)

AT m=I

ations (1 1) are equivalent to saying that for < r < <z 1, 1 < / < L and for i.e.

(R^, the vectors

mutually orthogonal and each has norm 1 , considered as a vector in the ^Lrdimensional

:e CaL
, so that they form an orthonormal basis for CaL . Equation (13) says that the

:or

: I < m < L, /z e K (14)

rthogonal to each member of the above orthonormal basis of CaL . Hence, the vector

le expression (14) is zero. In particular, Cw () = 0, for all m, 1 < m < L. That is,

= 0, 1 < m < L, p <zZd . Therefore, / = 0. This ends the proof.
Q

'he splitting lemma can be used to decompose an arbitrary Hilbert space into mutually

ogonal subspaces, as in [7]. We will use the following corollary later.
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COROLLARY 2.3

Let [Eik : I < I < L, k Z^] be an orthononnal basis of a separable Hilbert space H.

Let Hr ,
^<r<a-\beas above and satisfy (11). Define

Then {F[k : 1 < / < L, k Zd
]

is an orthonormal basisfor its closed linearspanH
r and

ft = ?~dw.

Proof. Let <p1,^2,..-.^ be functions in L 2
(U

d
) such that {<pi (-&) : 1 < / < I,jfc Z^}

is an orthonormal system. Let V = Jp{a
] /2

q>i(A
-

k) : /, k}. Define a linear operator T
from the Hilbert space V to ft by T(a 1/2

<p/(A
-

-fc)) = / tJfc
. Let /^ are as in (4). Then,

T(f[(- k)) = F/^. Now the corollary follows from the splitting lemma. D

3. Construction of multiwavelet packets

Let (Vj : j Z} be an MRA of L2
(R'

/

) of multiplicity L associated with the dilation

matrix A. Let {<p/ : 1 < / < L} be the scaling functions. Since <p/, 1 < / < L are in

VQ C V\ and (a
[/2

(pj(A -k) : 1 < j < L,k e 1d ] forms an orthonormal basis of V[9

there exist [hijk
: * Zrf

} 6 /
2
(Z

C/

) for 1 < /, ; < L such that

wW= E E^/^^V/C^-^)-

Taking Fourier transform, we get

- E E

B- l

&, (15)
7= 1

where /i/7 (f )
= E*e2</ a'

l

^hijkt"
i(^

y and /i//
is 2jrZ^ -periodic and is in L 2

(T^). Let

be the L x L matrix defined by

1</J<

We will call HQ the low-pass filter matrix. Rewriting (15) in the vector notations (8) and

(9), we have

|

f). (16)

Let Wj be the wavelet subspaces, the orthogonal complement of Vj in V)+i :

w/ = v,+iev,..

Properties (Ml) and (M3) of Definition 1.2 now imply that
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and

/ Wj < f(A-J
-) Wo- (17)

Moreover, by (M2), L
2
(R'') can be decomposed into orthogonal direct sums as

= W, (18)

(19)

By Lemma 2.1 and eq. (15), we have (for 1 <l,j <L)

= E I E hjm (B-
]

(!;+2kTt))vm (B-
}

(t;+2kn))}
kZ(!

l /=l J

Now, using (2), we have

L L

E E E
;i=l /2=1

where KB is a set of digits for B. Using Lemma 2. 1 again, we get

L .

This is equivalent to saying that

= /L fora.e.f.

Equation (20) is also equivalent to the orthonormality of the vectors

: 1 < ; < L, /z e ATB 1 < / < L, f TJ .

= E Ehj,n(B-
[!=+2B- }

i^)h!m (B-
l

t= + 2B- [

iJ.n). (20)

These L orthonormal vectors in the flL-dimensional space C
aL can be completed, by

Gram-Schmidt orthonormalization process, to produce an orthonormal basis for CaL . Let

us denote the new vectors by

jtf + 2B- VTT) : I < j < L, p e KB >
I <l < L> I <r <a -

I, != eJd
,

and extend the functions h r

tj
(1 < r < fl

-
1, !</,;'< L) 27rZ^-periodically (see [9]

for the one-dimensional dyadic dilation). Denoting by Hr (%], 1 < r < a 1 the L x L

matrix
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we have

+ 2B~ {

^n) = r,/L for a.e. .

Now, for 1 < r < -
1

,
1 < / < L, define

L

//"(?)= Y, h
1j(

B
~

l

^Vj(B
~

1

^- (21)

Since h
r

tj
are 2jrZrf

-periodic, there exist {h
r

ljk
: k e Z<

7

} e I
2
(1

d
) such that

Now, applying the splitting lemma to Vj, we see that
{//"( &) : < r < <z 1, 1 <

/ < L, k Z^} is an orthonormal basis for Vi . We use the convention (pi
= f, 1 < / < L

with
/2/y

=
7i^

and A/j^
=

/z^.
The decomposition V\ = VQ Wo> and the fact that

{//(-
-

/:) : 1 < / < L, /: Z^} is an orthonormal basis of VQ, imply that

.{//(-
-

k) : I < r < a - 1, 1 < / < L, k 6 Z^}

is an orthonormal basis for WQ- By (17) and (18), we see that

{a
j/2

ff
r

(A j
-AO : 1 < r < a - 1, 1 < / < L, ; Z, k e Zd ]

is an orthonormal basis for L2
(R^). This basis is called the multiwavelet basis and the

functions
{//"

: 1 < r < a 1, 1 < / < L} are the multiwavelets associated with

the MRA (Vj : j e Z} of multiplicity L. For < r < a 1, by denoting Fr (x) =

(/fW, /2
rW -

, / W)
r

and Fr() =
(/f (f ), /{(f ), . . .

, /(?)/, we can write (16)

and (21) as

^), < r < a ~ 1. (22)

This equation is known as the scaling relation satisfied by the scaling functions (r
= 0)

and the multiwavelets (1 < r < a 1).

As we observed, applying splitting lemma to the space V\ = 5p{a
} /2

<pi(A k) :

I < I < L, * e ZJ }, we get the functions f[,
< r <a~- 1

,
1 < / < L. Now, for any

n NO = N U {0}, we define //
l

,
1 < / < L recursively as follows. Suppose that

//",

r E f^o, 1 < / < L are defined already. Then define

//+
r
(jt) = Ehijk

a {/2

fj(Ax-ky, 0<j<a-l, 1</<L. (23)

Taking Fourier transform

L

(// )
A
(^) = E^//(^""

1

f)(//')
A
(^"

1

?)- (24)

7=1

In vector notation, (24) can be written as

5- 1

?). (25)
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ote that (23) defines fj
1

for every non-negative integers and every / such that 1 < / < L.

bserve that //*
=

<pi, 1 < I < L are the scaling functions and ff, 1 < r < a 1, 1 <
< L are the multiwavelets. So this definition is consistent with the scaling relation (22)

Ltisfied by the scaling functions and the multiwavelets.

EFINITION3.1

he functions [ff
1

: n > 0, 1 < / < L} as defined above will be called the basic multi-

avelet packets corresponding to the MRA { V) : 7 2} of L 2
(R^) of multiplicity L

jsociated with the dilation A.

he Fourier transforms of the multiwavelet packets

'ur aim is to find an expression for the Fourier transform of the basic multiwavelet packets

i terms of the Fourier transform of the scaling functions. For an integer n >
1, we consider

le unique 'a-adic expansion' (i.e., expansion in the base a):

n /xi + M2<2 -f l-i^a
2
H-----h Hja

j
~~

]

, (26)

rhere <
/z/

< <3 1 for all/ = 1
, 2, . . .

, j and
IJLJ ^ 0.

If n can be expressed as in (26) then we will say n has a-adic length /. We claim that if

has length / and has expansion (26), then

^(^-^(B- 1?)^^-2

^...^/^-^)^-^), (27)

D that
(//*)

A
(f ) is the /th component of the column vector in the right hand side of (27).

/e will prove the claim by induction.

From (22) we see that the claim is true for all n of length L Assume it for length j. Then

n integer m of fl-adic length j -f 1 is of the form m =
/x + flw, where < M < a 1 and

has length 7 . Suppose n has the expansion (26). Then from (25) and(27), we have

ince m = p -f an = /i + MI a + /^2
2
H h /f/0

7
'

, A>* (?) has the desired form. Hence,

le induction is complete.

The first theorem regarding the multiwavelet packets is the following.

lieorem 3.2. Let [ff : n > 0, 1 < / < L} be the basic multiwavelet packets constructed

bove. Then

(0 {fi
n

(-
~

k) : a j
'

<n< a j
'

+l -
1, 1 < / < L, k e1d

} is an orthonormal basis of

Wh j > 0.

'") {//"(
~~

k) : < w < a j
'

1, 1 < / < L, Jt 6 Hd } is an orthonormal basis of

") {//"(-
-

A;) : n > 0, 1 < / < L, A: 6 1d ] is an orthonormal basis ofL
2
(R

d
).
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Proof. Since {//*
: 1 < n < a - 1

,
1 < / < L] are the multiwavelets, their Zd -translates

form an orthonormal basis for W . So (i) is verified for ;
= 0. Assume for ;. We

will prove for j -f 1. By assumption, the functions {//*(-
-

k) : a j
'

< n < a^ [ -
1,

1 < I < L, k Hd \ is an orthonormal basis of Wj. Since / 6 W) > /(A-) W)+i,

the system of functions

{a
l/2

fl
l

(A'-k) :a j <n<a j+ l

-l, I < I < L, * 6 1d
]

is an orthonormal basis of W/+ 1
. Let

En = Jp{a
[/2

ff(A -~k): 1 < / < L, * ZJ
}.

Hence,

Applying the splitting lemma to Ent we get the functions

*) (P<r<fl-l, 1</<L) (29)

so that [g"'
r
(-k) : Q<r <a I, 1 < / < L, /:eZJ }isan orthonormal basis of ",,.

But by (23), we have

This fact, together with (28), shows that

[fi
r+an

(-
~

k) :
< r < a - 1, 1 < / < L, kz1d

,
aj <n< aj+l - 1}

= {/"(--A:):^
1 <n<fl-/+2 -l, 1 < / < L, ^c e Z^}

is an orthonormal basis of W/+ i. So (i) is proved. Item (ii) follows from the observation

that Vj
= V W

: Wj- 1
and (iii) follows from the fact that UV) = L2

(R
d
).

D

4. Construction of orthonormal bases from the multiwavelet packets

We now take all dilations by the matrix A and all ZJ-translations of the basic multiwavelet

packet functions.

DEFINITION 4.1

Letf//
1

: n > 0, 1 < / < L} be the basic multiwavelet packets. The collection offunctions

p = {a
J
'^ff(A

J - -k) : n > 0, 1 < / < L, ; e Z, k e 1d ]

will be called the
'

'general multiwaveletpackets' associated with the MRA {Vj} of L 2
(IR

/

)

of multiplicity L.

Remark 4.2. Obviously the collection P is overcomplete in L 2
(R

d
). For example
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(i) The subcollection with j = 0, n > 0, 1 < / < L, k Zd
gives us the basic multi-

wavelet packet basis constructed in the previous section,

(ii) The subcollection with n = 1, 2, ...,- 1; 1 < / < L, ; Z, fc Zrf
is the usual

multiwavelet basis.

So it will be interesting to find out other subcollections of P which form orthonormal

bases for L2
(R^).

For w > and j Z, define the subspaces

Un

j
= sp(a

j/2
ff(A

j -*) : 1 < / < L, /: 2^}. (30)

Observe that

^=V/ and

Hence, the orthogonal decomposition V)+i
= V) Wy can be written as

r=0

We can generalize this fact to other values of n.

PROPOSITION 4.3

Forn > and j Z, we have

Proof. By definition

Let

A-'
+l

- -*), for 1 < / < L,

Then {E/,/; : 1 < / < L, k e Hd } is an orthonormal basis of the Hilbert space Uj+l
. For

< r < a - 1
,
let

**<*) = E E Ui.mj-AkEjW. l<l<L 9 keZ',

and

W = Jp{F[k : 1 < / < L,

Then, by Corollary 2.3 we have

r=0
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Now
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E E
L

E E

E
m=

E

-*), by (23).

Therefore,

and

r=0

Using Proposition 4.3 we can get various decompositions of the wavelet subspa

Wy, j > 0, which in turn will give rise to various orthonormal bases of L 1 '

Theorem 4.4. Let j > 0. Then, we have

a-\

Wj =
if/;

r=l

= ^ /<;

where Uf is defined in (30).

Proof. Since W) = "I,
1

C/j,
we can apply Proposition 4.3 repeatedly to get (32).

Theorem 4.4 can be used to construct many orthonormal bases of L2
(U

d
). We have

following orthogonal decomposition (see (19)):

L2
(R

d
)
= V WQ Wi W2 -
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For each j > 0, we can choose any of the decompositions of W/ described in (32). For

example, if we do not want to decompose any Wj ,
then we have the usual multiwavelet

decomposition. On the other hand, if we prefer the last decomposition in (32) for each

Wj, then we get the multiwavelet packet decomposition. There are other decompositions

as well. Observe that in (32), the lower index of /* 's are decreased by 1 in each succ-

essive step. Ifwe keep some of these spaces fixed and choose to decompose others by using

(31), then we get decompositions of Wj which do not appear in (32). So there is certain

interplay between the indices n NO and j Z.

Let 5 be a subset of NO x 2, where NO = M U {0}. Our aim is to characterize those S

for which the collection

iff(A
J -*) : 1 < / < L, * ZJ

, (w s jf) e

will be an orthonormal basis of L 2
(R

d
). In other words, we want to find out those subsets

S of NO x Z for which

(nJ)eS

By using (31) repeatedly, we have

r=0

tf(rt-H) 1 u(n+\) 1

= ";-,=
L lv=0

Let /,; = {r e NO
' a j n <r< aj

(n -f 1)
-

1}. Hence,

That is,

But we have already proved in Theorem 3.2 that

r

Thus, for (33) to be true, it is necessary and sufficient that [Inj : (n, j) e S} is a partition

of N . We say {A/ : / /} is a partition of N if A/ C MO. ^/ 's are pairwise disjoint, and

U/ / A/ = NQ. We summarize the above discussion in the following theorem.

Theorem 4.5, Let
{//'

: n > 0, \ <l <L] be the basic multiwavelet packets and

S C NO x Z. Then the collection offunctions

ft

n
(A

j -*) : !</<!, * Zrf

, (n, y)

w an orthonormal basis ofL
2
(R

d
) ifand only if{Inj : (n, ;) 5} is a partition ofMQ .
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5. Wavelet frame packets

Let H be a separable Hilbert space. A sequence [xk : k e Z} ofH is said to be a frame for

ft if there exist constants C\ and Ci, < Cj < C2 < oo such that for all jc e 7i,

CiW 2 < EK*.**>I
2 2C2 ||*||

2
. (36)

*eZ

The largest C] and the smallest Ci for which (36) holds are called the frame bounds.

Suppose that <D =
[<p

{

, <p
2

,
. .. ,<p

N
}
C L 2

(R
J

) such that [<p
l

(-
-

k) : 1 < I < N,

k Z^} is a frame for its closed linear span S(4>). Let ^ !

, i/r

2
____ , I/S

N be elements in

5(<E>) so that each $J is a linear combination of <p
l

(- k)\ I <l < L, k e ~L
d

. A natural

question to ask is the following: when can we say that {^-
7
(- k) : 1 < j < N, k e TL

d
}

is also a frame for 5 (<$)?

If ^J E 5(d>), then there exists
[pjik

: k 6 ZJ
}
in /

2
(Z

J
) such that

Vr''(*)= E E

In terms of Fourier transform

f/-

() = E E

E^7)^tf) 0<7<^), (37)
/=!

where P-/(|) = E P7*e
~' (U)

- Let p (^) be the N x ^ matrix

Let5 and T be two positive definite matrices oforderN. WesayS < Tif (jc, Sx) < U,
for all x e RN . The following lemma is the generalization of Lemma 3. 1 in [2].

Lemma 5.1. Let <p
l

,is
l

for I < I < N, and P(f ) be as above. Suppose that there exist

constants C\ and 2, < Ci < Ci <

C27 for a.e. $ T. (38)

Then, for all f L 2
(R^), we have

Ci E E |{/, ^(-
-

^))|

2 < E E |(/, *'( -
^))|

2 < c2E E |(/, ^(-
-

*))|

2
- (39)

Let A be a dilation matrix, B = A 1 and a =
|
det A\ = |

det B\. Let

^={o, !,..., afl-,} (40)

and

^5 = Wo,^N...,^i} (41)
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e fixed sets of digits for A and B respectively. For <
r, s < a 1 and 1 < /, j < L,

efine for a.e. ,

P,*.r/. (42)

et

nd

() =
( "(f)) _ (44)

o () is block matrix with a blocks in each row and each column, and each block is

square matrix of order L, so that () is a square matrix of order aL. We have the

allowing lemma which will be useful for the splitting trick for frames.

emma 5.2. (i) //v e KA , then e-/2;r(/rVv) _^
us KB

i) The matrix (), defined in (44), is unitary.

'roof. Item (i) is the orthogonal relation for the characters of the finite group Z
d
/BZ

d
(see

14]). Observe that the mapping

/^ ~r o iL \> e
""

', V G A/^

; a character of the (finite) coset group Zd/BZ
d

. If v =0 (i.e., if v e AZd ), then

lere is nothing to prove. Suppose that v ^ 0, then there exists a // 6 ^^ such that

~i.7T( /^ ,u) ^ | Since AT^ is a set of digits for B, so is # p! . Hence,

low

'herefore,

e-/ar(*->M,y) = o, since

b prove (ii), observe that the (r, s)\h block of the matrix ()*( ) is

r=o

'he (/, j)th entry in this block is

fl-l L

r=0/=i
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= E' E 8lma
-V2

r=0m=l

L
= E &imSjmSrS , (by (0 of the lemma)

m=l

This proves that E(f)*() = /. Similarly, *()() = /. Therefore, E(f ) is a unitary

matrix. D

6. Splitting lemma for frame packets

Let {(pi : 1 < / < L] be functions in L 2
(IR'

/

) such that {<?/(
-

k) : 1 < / < L, fc Zd ] is a

frame for its closed linear span V. For < r < a \ and 1 < / < L, suppose that there

exist sequences {fcj^
: k eZd

}e I
2
(2

d
). Define /7

r
as in (4) and (5). That is,

= E E

Let //r (f ) be the matrix defined in (7). Let KA and AT# be respectively fixed sets of digits

for A and B as in (40) and (41). Let H (?) be the matrix

n (47)
0</Vf<fl 1

is a block matrix with a blocks in each row and each column, and each block is of

order L so that H() is a square matrix of order aL. Assume that there exist constants C[

and Ci, < Cj < C? < oo such that

C\I < #*()#() < C2I for a.e. f e Trf
. (48)

We can write f[ as %

E E' E *i.j,+M"
l/2

Vj(Ax
-

*
- A*), by (2)

where

^ }

(jc)
= a 1/2

^;(Ajc
-

a,), < s < a - 1. (49)

Taking Fourier transform, we obtain
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here ,[/<)
= t6Z, ^.M,^^'*'' Define

* r
'< =

(rf/>), *.>*!.
(50)

id

(52)

'here () is defined in (42)-(44).

'roofof the claim. The (r, j)th block of the matrix P(B)E(f ) is the matrix

"he (/, j)th entry in this block is equal to

1

E ^
*

E *?.^

, the (/, j)th entry in the (r, j)th block of H(%) is

^(f + 2B- 1Ajr)=- 1/l E ^e-

"

E hi,j.ai
f=0^2^

= ^" l/2E E A^^
r=0^ez^

So the claim is proved. In particular, we have

Since E(% ) is unitary by Lemma 5.2, #*()#() and P*(B)P(B) are similar matrices.

Let X() and A(f ) respectively be the minimal and maximal eigenvalues of the positive

definite matrix #*()#(), and let X = inf X(f ) and A = sup A( ). (It is clear from (52)

that X(?) and A() are 2nZd-periodic functions.) Suppose < X < A < oo. Then we

have, by (48) (in the sense of positive definite matrices),

X/ < H*(f)H(g) < A/ for a.e. 6 Tr/
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which is equivalent to

U < P*()P(f )
< A/ for a.e. Jd

.

Then by Lemma 5. 1 ,
for all g L 2

(fR
J
), we have

where^ is defined in (49). Since

E E i(v /2
w(A--*))i

2
== "EE E |(^/

(1)

(--*))l

2

. (55)
"

which follows from (49), inequality (54) can be written as

-)|
2 < E'EE |(^fl

I/2 .- <

< AE E |(*,fl
1/2

(A--*))|
2

. (56)
/= 1 A-Z^

This is the splitting trick for frames: the A~~ ^-translates of the L dilated func-

tions (pi(A-), 1 < / < L, are 'decomposed' into Z^ -translates of the aL functions f,
0<s <a- 1, 1 <l < L.

We now apply the splitting trick to the functions (ff : 1 < / < L} for each s, < ^ <

a 1 to obtain

E |(*,fl
l/2

//'(A--t)}|
2

,(57)

where //'

r
,

< r < a - 1 are defined as in (46) (f now replaces (pi):

ff'M = E E hfoaWf^Ax
-

*); < 5 < fl
-

1, 1 < / < L. (58)

Summing (57) over < 5 < a 1, we have

''
K*. #"(- *>)l

2

lV=0 /= 1 jte2rf sQ r=0 /=

Using (56), we obtain

*2 i; E i(*,

. (59)
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Now as in the case of orthonormal wavelet packets, we can define /, for each n > and
1 < / < L (see (23) and (27)). In order to ensure that

//' are in L2
(R

J
) it is sufficient

to assume that all the entries in. the matrix H(), defined in (47), are bounded functions

Comparing (58) and (23), we see that

So (59) can be written as

o A _ ,, ->/^ .,2
a2~ [ L

-*)}|
< E E

L

By induction, we get for each 7 > 1
,

< "E E

--k). (60)

We summarize the above discussion in the following theorem.

Note, if/
1

: n > 0, 1 < / < L} will be called the wavelet frame packets.

Theorem 6.1. Let{<pt : I < I < L} c L 2
(U

d
) be such that {<pi(--k) : 1 < I < L,k Zd

]

is aframefor its closed linear span VQ, withframe bounds C\ andCi. LetH(%), Hr (t-),l.

and A be as above. A ssume that all entries ofHr (t;+2B~
{

#VTT) are bounded measurable

functions such that < X < A < oo. Let {//
l

: n > 0, 1 < / < L} be the waveletframe

packets and let Vj
= {/ : /(A"-

7
'-) V }. Thenfor all j > 0, the system offunctions

{//"(
-

*) : < n < ^ -
1, 1 < / < I, it 6 Z^}

w aframe ofVj with frame bounds WC\ and A-^Co.

/ Since {^/(.
-

k) : 1 < Z < L, A: Z^} is a frame of VQ with frame bounds Ci and

2 , it is clear that for all 7

[a
j/2

<pi(A
J -*) : 1 < / < L, Jt 6 Zrf

}

is a frame of V) with the same bounds. So from (60), we have

*.
JCiM 2 <*i:E E \(g,ff(--V)?<*

JC2M 2
forallgeVj. (61)

n=0 /=UeZJ

D

In Theorem 3.2 we proved that the basic multiwavelet packets form an orthonormal basis

for L2
(U

d
) = UV). An analogous result holds for the wavelet frame packets if the matrix

/f (?), defined in (47), is unitary.
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Before proving this result let us observe how the space Uj>oV) looks like. Let VQ =

sp{<pt(-
-

k) : 1 < / < L, k Zd ), Vj
= [f : f(A'J.) e V } and V

j C Vj+ {
. Let

W = UV}. Then it is easy to check that / W =/(- A'-'Jfc) W for all j Z and

k e Zrf
. We claim that elements ofthe form A~Jk are dense in [R

J
. For AT = {A: i, #2. -,&}

a set of digits for A, define the set

2 =

In the above representation of x, efs need not be distinct. We have

where C is a constant and < a. < 1 (see [17], Chapter 5). Therefore, the series that defines

x is convergent. Forjc = (jci, jc2 ,
. . .,^) e Rd

, \\x\\
= (ki|

2
H-|jc2 |

2
4-- - + |jt /|

2
)i The

set Q satisfies the following properties (see [10]):

(0 fi
= U?=! A-

|

(fi+A:/)

GO ^62(2 + *) = I*'

(iii) Q is compact.

Let > and y 6 Q. We first show that there exist ; 6 Z and k e Z.
d such that

|| y
- A~^|| < . From (i) we have

]

= U U (

1=1 W=l

Hence, for any ;
> 1 and any y e Q, there exist yj Q and /i, /2, ...,// # such that

y = A~S
yj -f A^'/j + A-W

"
l)

/y-i + + A" 1

/!.

Therefore,

=
||A-'x/ll

< C'a-7

(as 2 is compact)

< 6, choosing j suitably.

Now if y 6 Rd
,
then by (ii) y = yQ -f p for some >'o e Q and p e Zd . For >'o 2, there

exist ; > and k e 1d such that
||>-

- A~J
k\\ < e. That is,

So the claim is proved.
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We have proved that W is invariant under translations by A~^k and these elements are

dense in Ud . Therefore, W is a closed translation invariant subspace of L2
((R

J
). Hence,

W = L|(R
J

) for some E C Ud (see [15]), where

L 2
E (R

d
)
= {/ L 2

(R
rf

) : supp / C E}.

Now let

L

Claim. E = a.e. _
To prove the claim we will follow [1], Theorem 4.3. Since <pi(A

j
) e V/ C W, the

function
(<p/(A'.))

A =
^i(B'J-) e W ={/:/ W}. Therefore, ->(supp</) =

supp (jj7#/(fl~~
</

"-))
C for all 7 > and 1 < / < L, which implies that Q C E. Let

i =\E .Wehave

), (62)

for some 2n Z.
d
-periodic functions m/ 6 L 2

(T
J
). Hence, (62) implies that / =^0

on E\ for

all / e Vj and hencejfor all / e UV) = W. Taking closure, we obtain that / = on E\

for all / W. ButW is the set of all functions whose Fourier transform is supported in

E. Since E\ C , we get that E\ = a.e. Therefore, E = EQ a.e. D

Theorem 6.2. L^r {^/(-
-

k) : 1 < / < L, ^ ZJ } C L 2
(R^) te a frame for its closed

linear span VQ, withframe bounds C\ and 2 and let VQ C Vi, where Vj
= {/ : /(A"-7

'-) 6

isunitatyfora.e. f. Then{ff(k) : n > 0, 1 < / < L, * ZJ }

w aframe for the space U/>o V/ w/f/z r/z^ sameframe bounds.

More generally, let S = {(n, 7) MO x ^} ^^ ^^A r/zar
U(/i,/)6S ^J' ^ a partition of

NO- 7%en rftg collection offunctions [aJ^f^AJ -fc) : 1 < / < L, (/x, j) 5, * 2^} w

aframefor Uj>o V/ w///z ^/ze 5m^ bounds C\ and 2

Proof Since #() is unitary, X = A = 1 so that the inequalities in (60) are equalities, and

from (61) we have

E |M"(--*))|
2
<C2ll*ll

2
forallgeV). (63)

Now let ft e U/>oV/. Then there exists hj e Vj such that A; -> A as 7
- oo. Fix 7, then

for 7 < /, we have from (63)

E |(*y,//
ll

(--*)}|
2

<C2l|A/||
2

.

Letting 7' > oo first and then j > oo, we have for all A 6 U/>oVy

EE |{A,//
I

(--*))|
2 <C2 ||A||

2
. (64)
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To get the reverse inequality we again use (63):

M 2 * "EE E \(hj,f>
n

(-

"'
= EE

Therefore,

^-,l/2nt it / v> T~^ \ v \li 7 xn / i \\|2

c\' \\hj\\
<

{
E E E \(

hj- h <fi('- k n\

, by (64).

Taking 7
-

oo, we get

c,IIMI
2 < EE E l(A>//

f

(--*))|
2

for all h (JVj. So the first part is proved.

Now let
U*}

= sp{aJ
/2

f/
l

(AJ -k) : 1 <l <L, he Zd
}. Then we can prove as in

the orthogonal case (see (35)) that

where is just a direct sum not necessarily orthogonal, and Inj = [r e NQ : a-^n < r <

a-i(n + 1) 1}. Now, since H(%) is unitary, we have A = A = 1 and hence (57) is an

equality. Therefore,

E E \\t,aWf?(A-k)}?= EE E \(g,fr
+r

(--k))f.
l~\kzZd r=0/=ljfe Z'

From this we get

E E i(g,a
2/2

//'(A
2
.-fc))|

2 = "EE'E E

=
fl

't" E E l(*.//
r

(--*))l
2

-

Similarly,

E E. |(-
;/2

//"(A
J

'

-^))|

2 =
"

"E E E \(g> f{(-
-

*))|

2

= E E E \(S,f[(--k)f. (65)
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From the first part of the theorem, we have for all / e UV)

C,||/||
2 < E E E !(/,//^~*))|

2 <c2 ||/l!
2

.

>0 /=! kzl^

But, the set 5 is such that U (/7 ^s Inj = NO- Therefore,

c,imi
2 < E E E E \(f.f[(--V)f<C2\\f\\

2
.

(n,j)eSrlnjl=\ke2d

Using (65), we get

Ciii/n
2 < E E E \(f,

j/2
fi
n
(A J

'-V)f<C2\\f\\
2

for all / UV/. This completes the proof of the theorem. D
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Abstract. A variational principle is described and analysed for the solutions of

vector equilibrium problems.

Keywords. Vector equlibrium problem; variational principle; P-convexity; P $-
monotonicity.

1. Introduction

Throughout this paper, X is a real topological vector space; K c X be a nonempty, closed

and convex set; (F, P) be a real ordered topological vector space with a partial order </>

induced by a solid, pointed, closed and convex cone P with apex at origin, thus

x < P y <=> y
- jc e P Vx, y Y.

If intP denotes the topological interior of the cone P
,
then weak ordering, say &mtp (or

^int/3 )' on Y is defined by

x ^imP y r y ^int/> x 4=* y
- x $ intP V*, y e Y.

Let / : X x X > Y be a mapping with /(jc, x) = Vjt e X, then vector equilibrium

problem (for short, VEP(/, K)) is to find x e K such that

f(x,y) miP Q, Vx.yeK.

VEP(/, K) has been studied by Kazmi [K2]. VEP(/, K) includes as special cases, vector

optimization problems, vector variational inequalities, vector variational-like inequalities,

vector complementarity problems, etc., see Kazmi [K2] and the references therein.

If Y = R, P = R+ , then VEP(/, K) reduces to the scalar equilibrium problem [B-O1,

B-O2] of finding x K such that

/C*,y)>0, VyeK.

In this paper, we shall describe and analyse a variational principle for the solutions of

VEP(/, K).

The construction of variationai principles is of interest both theoretically and in practice.

Conceptually, it is of significance to know that there is a mapping defined on X which is

optimized precisely at the solutions of VEP(/, K). In practice, it is of importance because

it allows one to use the highly developed theory of numerical optimization to numerically

approximate, and compute solutions of these problems.

465
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More precisely, following the terminology of Auchmuty [A], we say that a variational

principle holds for VEP(/, K), if there exists a mapping F : K > Y depending on

the data of VEP(/, K) but not on its solution set, such that the solution set of VEP(/, K)
coincides with the solution set of the vector maximization problem (for short, VMP(/, K))

maxjnt /> F(x), subject to x e K.

If f(x,y) =
(<t>'(x), rj(y,x)) t

where
r\

: K x K * X is a continuous function and

4> : K > Y is Frechet (or linear Gateaux) differentiable and P-convex mapping, the x is

a solution of VEP(/, K) if and only if jc is a solution of

mining <t>(x)> subject to x e K,

see Kazmi [Kl]. For related work, see [K3, K-A].

Thus, setting F = $, a variational principle for VEP(/, K) holds.

Now, consider the case:

where g, h : K x K > Y are nonlinear mappings, then VEP(/, K) becomes:

(VEP( + h, K)), find jc e K such that g(x t y) + h(x, y) lniP 0, Vy e K.

We shall use the following concepts and result:

The mapping g is called P-monotone if and only if

g(x 9 y) < P -g(y, x), VJT, y e K.

A mapping T : X > Y is called jP-convex if and only if for each pair x, y e K and

^ 6 [0,1],

7(Xjc + (1
-

X)v) < P XT(x) + (1
-

X)T(y).

Note that if g(x, y) = <0 (jc), yx) where
<f>

: X > Y be P-convex and linear Gateaux

differentiable, then g is P-monotone since () is P-monotone.

Lemma 1 [C]. Let (Y, P) be an ordered topological vector space w/Y/z a solid, pointed,

closed and convex cone P. Then YJC, y e X, we have

y< P x and y m[P imply x
int/> 0.

Finally, in order to formulate our variational principle we introduce a perturbation mapping

VT(- , ) : K x K > Y which satisfies for all jc, y e K:

(i) 0</> V(*,y),

(ii) V(*,*) = 0,

(iti) VC*, ty + (1
-

A.)x) = o(X); 1 E [0, 1].

Let us indicate some possible choices for i/r( , )' K x K > Y satisfying properties

(iM0 above. Clearly, the choice ^(- , )
= is always possible. Next let </>( , ):

K x K > Y be P-convex in the second argument, and YJC e K, let (/>(- , ) be Gateaux

differentiable at x with Gateaux differential </>'(*, ) L(X, Y) where L(X, 7) is a space
of all linear bounded functional from X to Y. Set

')
-

*(*, ^) - (<t>\x,x) 9 y-x) 9
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n VT(. , .) satisfies properties (i)-(iii). In particular if 0(): K > Y be P-convex, and

teaux differentiable, then we may choose

tf (*. y) = 0(30
- 0(*) - <0'(*), >'

-
x).

ally, if VG * ) K x # * R |J{oo}, where K is a subset of normed linear space X,
n we may choose VU, >0 = a||;y

-
*||

2
, fora > 0, which satisfies (i)-(iii).

, we define a mapping G : K > Y by means of

GO) := inf{-g(y, x) + A(*, >>) + ^U, 7) : y e K}, (I)

I we associate to VEP(g 4- /i, A') the following vector maximization problem:

VMP(# -f A, V, /Q : max intp{G(;t) : x e K}.

remark that the mapping G(-) generalizes the gap function used in connection with

iational inequalities, see Herker and Pang [H-P], and the references therein.

"rom g(x, A-) H- h(x, x) -f ty(x, x) = follows

G(JC) < P V^: K. (2)

also define the following concept.

_et
\js satisfy (i)-(iii), the mapping g is called P -^-monotone if and only if

g(x, y) <P MX, >')
-

g(y, x), Vx, y K.

ls(x, >')
= 0, Vjc, y K, then P ^-monotone mapping becomes P-monotone.

Results

st we prove the following results:

eorem 2. Let thefollowing assumptions hold:

* The mapping g satisfies: g(x, x) = 0, Vx K; g is P-monotone; Vx, y e K, the

mapping A e [0, 1] > g(X.y -f (1 tyx, y) is continuous at + ; g is P -convex in

the second argument.

i The mapping h satisfies: h(x,x) =0, V.x e K\h is P -convex in the second argument.

en VEP(g + h, K) and the problem offinding x e K such that

pO, (3)

l

h have the same solution set.

lof. Let x be a solution of VEP(# + h,K), that is,

g(x,y)+h(x,y) miP 9 VyeK. (4)

ice g is P-monotone, YJC, y e K, we have

(g(x, y) + h(x, >'))
~ (-(}',*) + h(x, y)) < P 0, (5)

>m Lemma 1
, eqs (4) and (5), it follows that
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or,

-g(y,x)+h(x,y)eW:=Y\(-inlP), VyzK. (6)

Since ifr(x, y) e P, we have

-g(y,x) + h(x,y) + t(x,y)W + PcW 9 Vy e AT,

which implies

inf{-(v,x)+/z(*,y) + 1/^,30 :
>' K} iniP 0,

that is,

G(*)&nt/> 0.

Conversly, let* be a solution of problem (3). Then by the definition of G(-), we have

-*(?, x) + h(x, y) + VT(JC, y); intp 0, V>' e K.

Fix y K arbitrarily, let*x := ky + (1 X)*, A. ]0, 1], jc^ 6 K as K is convex, and

hence the above inequality becomes

0. (7)

Since g is P-convex in the second argument, we have

=

<p

-(l-k)g(x^x) < P

By using preceding inequality and the properties of cone P, we have

<P Igfa, y)

< P

using the properties of h and
i//".

Since (1
-

A) > 0, after dividing the preceding inequality by (1
-

X) > 0, we have, from
Lemma 1, (7) and the resultant inequality,

+ *A(x, y) + o(A)^ intP e W.
(L A)

After dividing the preceding inclusion by A > 0, letting A 4, and hence ^ * x e
and then by hemicontinuity of g and closedness of W, we have

P O
t Vy e K.

This completes the proof.

Theorem 3. Let all the assumptions of Theorem 2 except P-monotonicity ofg hold. Let

g be P -
^-monotone, then VEP(g + /i, K) andproblem (3) both have the same solution

set.
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Proof. Let x be a solution of VEP( + h,K), that is,

g(x,y) + h(x,ytetopO> vve*. (8)

Since is P ~ ^ -monotone, Vx, >>
e tf, we have

(g(*,30 + M*,)0)- (-(}%*) +M*, 7) + lK*.>0) <p 0. (9)

From Lemma 1
, (8) and (9), it follows that

-g(y, x) + h(x, y) + ^ (x, }')^intP 0, Vy e K,

which implies

mf{~g(y,x) + h(x,y) + il'(x,y) : y e #}; int/
> 0.

Converse part of theorem is just same as the converse part of Theorem 2. This completes

the proof.

Now, on combining Theorem 2 (or Theorem 3) with inequality (2), we have the following

variational principle for VEP(g + h
t K).

Theorem 4. Let the assumptions of Theorem 2 and inequality (2) hold, x is a solution of

VEP(g + h^ K ) ifand on iy ifG(x)
= 0. If the solution set of VEP(g +h,K) is nonempty,

then the solution sets of VEP(g + h, K) and VMP(g + h,1r,K) coincide.

Proof. If x is a solution of VEP( + h,K) then, by Theorem 2,

G(*) nt/ > 0.

From (2),

G(x) < P 0.

These above inequalities imply that G(x) = 0. Next, if G(x) = then by definition of

G(-), we have

0^ intP 0<P -g(y,x)+h(x,y) + ilr(x,y), VyzK.

By Lemma 1, it follows that

-g(y, ^ + h(x, 30 + ^(x, y) intP Vy e K.

Follow the same lines of converse part of Theorem 2, we can have that x is a solution of

VEP(g+h t K). This proves the first part of the theorem. IfxisasolutionofVEP(+fc, *0,

then GO) =
0, and from inequality (2) follows that* is a solution of VMP(g + h, ^i ^)-

Then all solutions of VMP( + h, &, K) must satisfy G(*) =
0, and therefore are in the

solution set of VEP( + h,K). This completes the proof.

We remark that the variational principle described in this paper is a generalization of

variational principles described by Blum and Oettli [B-O1, B-02], and Auchmuty [A].
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On a generalized Hankel type convolution of generalized functions
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Abstract. The classical generalized Hankel type convolution are defined and ex-

tended to a class of generalized functions. Algebraic properties of the convolution

are explained and the existence and significance of an identity element are discussed.
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functions (distributions); convolution.

1. Introduction

The fact that there is no simple expression for the product J]i[x
v
]JljL [y

v
] in the sense that

there is a simple expression e^*"1"^ for the product e
1 v*e /:v means that there is no simple

Faltung or convolution theorem for the Hankel transform corresponding to well known

transforms like Laplace, Fourier transform and so on.

Hankel-convolution operation has been defined in the classical sense by [4] and [2]. We
consider here the generalized Hankel type convolution and an extension of that definition

to a class of generalized functions analogous to that introduced by [1 1, 5] and [6]. This

extension has useful applications, when dealing with continuous linear systems which can

be characterized by a Hankel convolutional representation; such systems, which we may
call 'generalized Hankel translation invariant continuous linear systems', may thereafter

be considered when developing sampling expansions for inverse generalized Hankel type

transforms of distributions of compact support on the positive half line of which the work

of [8] is a particular case.

2. Notation and preliminary results

We use the following definition for the classical generalized Hankel type transform of order

CO

(Vu/)(r) = F(r) = vr-'
j (X r)

v J
li [(

X T)
v
]f(X)AX ,

OO

=
h-] v [F](x) = v*- 1

/(*r)%[(;tr)'']F(r)dr.

(1)

(2)

471
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The transform pair ( 1 ) and (2) has been extended to certain spaces of generalized functions

in [6] by kernel method and in [5] by mixed Parseval equation (a new adjoint method).

We begin with a brief review of the essential results obtained by [5] for the generalized

Hankel type transform of generalized functions.

Lemma 2.1. If f(x) is of bounded variation and x
v/2

f(x] e Z/(0, oo) then the direct

transform is well defined by (1), and the inversionformula (2) holds almost everywhere in

a neighbourhood of every point y = x > 0.

Lemma 2.2. For f (x) andG (x) satisfying the conditions ofLemma 2. 1 we have the Parseval

relation

00 00

f xf(x)g(x)dx = f rF(r)G(r)dr. (3)

o o

Finally we shall need results involving the linear differential operator N]L , y , ^ > 1/2,

defined by

-fW (4)

and the Bessel type differential operator of order /x, A, defined by

1 = x- v~ vl^Dx 2vil+{ Dx- v
'
L~ v+l

, (5)

where A! = x-vn-iv+\ Dx 2Vn+[ Dx -vn = A liA
. and D stands for the usual differential

operator.

PROPOSITION 2.3

Ifxf(x) > as x -> oo where f(x) is sufficiently smooth /z /A v -transformable function,
then integration by parts shows that

(6)

/n^ g = /i^ v [/] and changing r into x,

. (7)

PROPOSITION 2.4

!n general, for sufficiently well behaved (p(x) and non-negative i, 7 we can obtainfrom (6)

<md (7)

(8)

orM/^ the definingformula (4) z>zto consideration,

}. (9)
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PROPOSITION 2.5

For any sufficiently smoothfunction f(x) on (0, oo) it can be shown that

VvfA/(*)](T) = -V 2
T

2lV v [/](r) (10)

provided that f is h,^ y -transformable and that xf(x) and xN,LtV f(x) both tend to zero

as x -> oo.

3. Spaces of fundamental and generalized functions

3 . 1 Testing function spaces

A complex valued function 0, defined and infinitely differentiable on (0, oo),, is said to

belong to the space H^ (/) if and only if the numbers y^WO defined by

sup
0<jt<oo

(11)

are finite for every pair m, k of non-negative integers where v is real number and ^ >

1/2. HH^ V (I) is a testing function space with the topology generated by the multinorm

tyn,'* WOJm, *=0 and We have

D(0, oo) c #,,, (0, oo) C "(0, oo), (12)

where D(0, oo) and E(Q, oo) denote respectively the restrictions of D(R) and E(R) to the

positive real axis. Using (9) and following the same lines of [5], it can be readily shown

that the h^ v transformation is a topological isomorphism of #M , v (0, oo) onto itself.

3.2 The space M (0, oo) of multipliers

Denote by M(0, oo) the linear space of all infinitely smooth functions 0(x), < x < oo

such that for each non-negative integer / there exists non-negative integer /=/(/) for which

aWrV~2vwoo o 3)

is bounded on (0, oo). By using the generalized Leibnitz formula it can be shown that the

map 6 ->
6<j> is an isomorphism of H,^ y (0, oo) for each M(0, oo); Af (0, oo) is the

space of multipliers on H
IJL^(0, oo).

3.3 Duals of testingfunction spaces

We denote H*
t v (0, oo) the space of all complex valued functions V> defined and infinitely

smooth on (0, oo) which are of the form

. -(14)

H*
v (0, oo) is again a (complete) testing function space, with the topology generated by

the sequence of multinorms

As usual we denote the dual of H* v (0, oo) by H*'
<v (0, oo).
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For any VOO = x<t>(x) #* y (0, oo), and any non-negative integer r, set

Then, for each / e #* v (0, oo) there will exist constants c and r such that

e #M ,v(0,oo)
= |{/(x), *0(jc)>l < Ccrr (0). (16)

In particular, let /(*) be any locally integrable function on (0, oo) which is such that

xf(x) e L [

(0, oo) and /(jc) does not grow more rapidly than a polynomial when x > oo.

Then f(x) generates a regular generalized function in H* v (0, oo) by the formula

(17)

Any generalized function in H*^ V (Q, oo) not generated by the formula of the type (17) will

be described as singular.

In general, the derivative of a generalized function in H*
V (Q, oo) (defined in the usual

sense of Schwartz), is not in H*
v (0, oo). However, in certain cases the result of applying

a differential operator to a generalized function in H*
v (0, oo) does yield a generalized

function in H*
tV (Q t oo). In particular, using for differential operators in a generalized

sense the same notation as the one used for the corresponding operators which applied in

a classical sense, we have the following results:

(i) / e E'(0, oo) c H% v (0, oo) = Df e #*%(0, oo);

(ii) / e
ff*; v (0, oo) =* (x

l
'2v

D)
k
f e H*%(0, oo);

(iii) / e H*[ V (Q, oo) ==> A*/ e H*'
y (0, oo); for any non-negative integer k.

3.4 Distributional generalized h,L ^ ^-transform

We can now define the generalized /z
/z , v -transform ofany / G JY*'

y (0, oo) by the analogue
of the Parseval relation:

</,*0M) =(Vv[/](r),r<D(r)) (18)

and clearly we have that / E #*' y (0, oo) = /ZM , y [/] e //"*'
y (0, oo). Moreover, we can

establish that

Vu[A*/(*)](r) = (-v
2
T
2v
)*h^ V [/](T) (19)

for any non-negative integer k.

The generalized /i^ y -transform ofany distribution a e "(0, oo), in the sense of (18), is

a regular generalized function in H*[ v (0, oo) generated by a smooth function f(x) defined

on (0, oo) by

/(*) = (cr(r), T%[(*T)
V

]}
=

(d(r), r^A(r) JM [(^r)
y

]} , (20)

where A D(0, oo) is such that A (r) = i on the support of a. The function extend into

the finite complex-plane as an entire function of exponential type which grows no faster

than a polynomial on the positive real axis; it is easy to show that f(x) e M(Q, oo).
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lassicai generalized Hankel type convolution

INITION4.1

is define Zji, y [0, co), 1 < p < oo, the space of Lebesgue measurable functions on

o) such that

< oo.

_0

;onsider the kernel DM , v (x, >-, z), < jt, v, z < oo defined by

CO

M M M

Properties of the kernel DMi U (A:, y, z)

swing Watson [10], Hirschmann [4] and Cholewinski [2] we can establish the following

>erties for (21):

or < x, y < oo and < r < oo, we have

oo

, v (x, y, z) =

1-v

00

/'

refore,

hence the result. In particular, taking T = 0, gives

Z
2v- l D

lt , v (x, y, z)dz=l, (23)
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that is, for which x, y > 0, D,^ U (JT, v, z) belongs to LQ v (0, oo).

(iii) < jc, y, z < oo, Z)M ,
u (jc, >', z) > 0, and

(iv)D^ v (x, >', z) = >

/AV (z, *, >')
=

V,v(}', z, *) =

DEFINITION 4. 3

We define the classical /i
/A v -convolution, for any two function /(jc) and g(jc), < jc < oo

as

oo oo

f * g(x) = v f
J(yzYf(y)g(z)D^

v (x, y, (24)

whenever the integral exists. We observe the following properties:

(i) Commutativity: For any x e /, (/ * g)(x) = (g * /)(*). Proof is obvious from the

relation (24).

(ii) Associativity: For any t e /, (/ * g) * h(t) = / * (g * i

CO CO

00

//LOO
oo oc

//
LO

Since the integral exists due to equation (24), by changing the order of integration and

D
jltV (x 9 >', z)D,L , v (x,s, t) = DM , v (z,5, Jc)D/z<1J (jc, v, r) we have the result. While /

and g are such that both
/i^, (/) and h,^ v (g) exists, we have the convolution product

properties,

(iii)

v(). (25)

LHS = vr

CO OC

//
L.O

Changing the order of integration we get

00 CO

Using (22) we get

^ v(jc, y,

LO

dvdz.

CO OO

= v^~ l+v

f f
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..-l-v ^
J(yr)

v

J,d(yry]f(yWy

o

I\z.T)
v J

/i

4.4 h
fi , v

-translation

If the /7 M> y -convolution / * g exists, then using Fubinis theorem we can write it in the form

o

dy = v

f y
v
f(y)g(x

o

,(26)

where we write

o;y) = (27)

with x o
3; denoting the /z

Mi y -translation on the positive real line. (The analogue of the

translation consider for the definition of the usual convolution *.)

The function g(jc o y) will be called the h
fit v translate of g(x); provided g(x) is locally

bounded on < x < oo, g(x o y) is well-defined and continuous on (0, oo) x (0, oo),

(Nussbaum [7]). The h,^ ^-translation is a particular case of the translations of Delsarte

[3], subsequently studied by Braaksma [1].

Theorem 4.5. Ifg e L 1

Q u (0, oo) fl L(0, oo) and a e [0, oo), then a simple calculation

using Fubinis theorem shows that

(28)

Proof.

LHS =
oo

f(xr)
v J

fi [(xT)
v
]x-

v

g(xoa)dx

o

00 00

,A(xrY] f
z
v

g(z)D,i , v (x, a, z)dzdx.

Using Fubinis theorem,

1

j
z
v
g(z)dz f J,A(xT)

v
]DllrV (x, a,

Using (22) we get
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5. Generalized Hankel type convolution of generalized functions

5.1

For fixed x, y e (0, oo) then the function DfltV (x t >', z), < z < oo defines a regular

generalized function in H*^ v (0, oo) which we denote by DM> y (jc o y, z). In fact for fixed

x
t y e (0, oo) and e #

/z , u (0, CXD) we have that

and since

t.v(x y, z), z
(/>(z))

=
(^/x, vU, >', ^;,

00

z
u

0(z)D/^, v (x, y, z)dz = <p(x o j) (29)

o

CO

|0(jcoy)| =

o

X 'o (

), (by (23)) (30)

then D
IL , v (x o y, z), < z < oo truly generates a continuous linear functional on

H*
V (Q, oo) through (29). Moreover, since

then we can write

Vv[^.(*o^z)] = ^[(*T)'']7M [(yT)
1

'] > ()<*,>< oo (31)

in the sense of #*'
,,(0, oo) and even in the classical sense.
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We now show that, for every fixed y > 0, the following implication

#,,,y(0, oo) => jr 1+1
>(* o y) E #

yil v (0, oo) (32)

holds.

In fact, since 0(jc) e #MiV (0, oo), then, <I> = /z
/Aill [0] 6 #

/(t>v (0, oo). On the other

hand,

but /
/1 [(yr)

u
] AfT (0, oo) and so JM [(yT)

u
]<I>(T) ff

;i , ((), oo).

Hence, since /i
/Zi v transformation is an automorphism on H

t^ v (0, oo), the function of

x given by h~^} [J}l [(yr)
v
]^(T)} = ;c~

1+y0U o y also belongs to H^ y (0, oo).

5.2 Delsarte translation

For any 0(;c) //
/IM v (0, oo) and < ;c, y < oo, following from well-known property of

the Delsarte translation, we also have that

;y) (33)

for any non-negative integer m, by

PROPOSITION 5.3

1, 02 ///^ v (0, oo) andm is a non-negative integer, then

(i) 0i * 02 existsfor allQ < x < oo;

(ii)*-
1-^* 02 effMlV (0,oo);

(iii) Af[0! * 2 ]
=

(A?0i) * 02 - [01 * (Af 2 ) (34)

/ In fact (34)(i) follows since 0i, 02 LQ v (0, oo) for any p such that 1 < p < oo;

(34)(ii) is justified by the fact that the function

belongs to
fiT^ v (0, oo) and similarly for its h~ ^-transform; (34)(iii) follows from (33) and

differentiation under integral sign. Note finally that for any 0i, 02 ////, y (0, oo),

00

01 *02< = v(0i(;y), }>

V
02(* o y)) = v /

oo oo

= v

y /0i(>0 / z
v

fa(z)D,lt v (x, y, tfdzdy

Since 0i , 0o LQ u (0, oc) we can make use of Fubini's theorem to get
\

00 00

I y>i (y)^. (*, y,
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00

= VM Z
V
<t>2(y)<t>\(xZ)fc

=
v(02>Z

l

>lO O
~))

This proves (34)(iv).

5.4

If X #M , y (0, oo), then for each fixed ;c e (0, oo); we have

it follows that for any a e E f

(Q, oo) the convolution a * X(x) is well-defined by

jc"
1+V * A,(*) = H>0, v/jr

1+v
A.(;c o

y)). (35)

Further,

(36)

where A(T) = /i
/Xi V [X].

6 7/MiU (0,oo),andthereforez-
+u

cr*X(jc) HM%U (0, oo).

Hence jc""
1+wa * A(JC) generates a regular generalized function in //*'

y (0, oo), and for any

#M , V (0, oo) we get

- (V v^" 1+Vflr * ^

-
(or(jc) f

^^A * <DW](T)}
=

(OT(JC),
^ U

A *
<D(jc)}. (37)

This could be taken as the definition of the generalized Hankel type convolution of gen-

eralized function (or generalized h^ v -convolution), and this in turn allows another form

analogous to the direct product definition of the generalized Hankel type ordinary convo-

lution:

=
(CT(JC),

x
v
X * 0(z))

v

<l>(x o
v)))

=
(cr(x),

vx
v

(^(y), y^(x o
y)))

=
(v(x) X(y), v(^)VU o

}')) (38)

5.5

For / H* f

V (Q, oo) and X e H
jJLtV (Q, oo). The convolution is again well-defined as a

generalized function in #*'
y (0, oo). By

<l>(x))
=

(/(Jc),
;c

yA * 000}
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e #,,, y (0, oo) by (34)(ii). Using (18), we get

(x~
l+v

f * A.(*), j

000} - (/(*), *
yi * W)

, r[r
l
~ uV V [X](T)0(T)}

-
(T^V ,[/](r) A(r),

hat, in the sense of #*'
y (0, oo),

= r^V v[/]V vW. (39)

illy, let / e #*'
u (0, oo) and a G '(0, oo). Since, for any e H^ y (0, oo) we

e cr * 0(x) 6 //M , y (0, oo), it follows that x~ l+v
f * cr is well-defined as a generalized

:tioninff*%(0,oo)by

(jc-
1+u

/ * or 00, x4>(x))
=

(/(Jc),
zV * 0(x)). (40)

before, this may also be expressed in the form

(x~
]+v

f * o-oo, x000) = (/U) ^W. v(xyY4>(x o
>0) (41)

L, using (18) again, we can derive the analogue of (39)

h
fJL ,vlx-

l+ v
f*a] = T

l
- v

h^ v [f]h ll , v [cr}. (42)

te that h
llt y [a] 6 M(0, oo), so that the product in (42) makes sense in H*[ V (Q, oo).

Algebraic properties of the generalized h^v
- convolution

already remarked, the classical h
fli v -convolution defined in L^ v (0, oo) is commutative

I associative; however, it possesses no identity element We consider in turn these

perties with respect to generalized h^ v -convolution.

Commutativity

cr e ;

(0, oo), X H
jl% v (0, oo). We have

^~ * A,(JC), JC000 = CTJC, x *

=
(A /4 , v [cr](r), rA Mf v [jc

ere the last manipulation make sense since h^ v [cr] e M(0, oo) and see (37) and Pinto's

?er for other type proof .



482 S P Malgonde and G S Gaikawad

(ii) If / #*' y (0, oo), A e H
IJL , y (0, oo) then

(;t~
1+v

/ * AC*), *0M) -
(/(*).

*
v
* * 000}

__ lx -l+ v
^ ^ f(x

This is justified because every function in H,lt y (0, oo) is also a multiplier in #*' y (0, oo)

whenever JC000 #M , y (0, oo).

(iii) If / e H* 1

y (0, oo), a e "(0, oo) then the same kind of argument gives

But since h,^ v [f] does not belong to M(0, oo), no general commutativity property can

be deduced. If, in addition, we have / e
7

(0, oo), then h^ v [f] e M(0, oo), and the

argument to establish commutativity proceed as before.

6.2 Associativity

(i) a e
7

(0, oo), AI , A2 e #
/x , y (0, oo). We can establish the result

^- 1+v U- 1+vcr*A 1 ]*A2
= x"HV*U- 1+vA 1 *A2 ] (43)

in the following sense, for any e H
llf y (0, oo).

(jc-
1+v

(^-
l+u

cr*A)*A 2 ,^0(jc))

-
(or (x), *[*-

1+1% * (JC-
1+y A2 *

(x)])}

=
{^~

1+V * [J
1

"^! * A,2 00], JC0 W).

The equality x
vX

}
* (x~

I+uA2 * 0) = ((JC
I;

AI *;c- 1+v;A2 ) * 0) is justified by the fact that

A i, A.2 and belong to L^ v (0, oo). (ii)/ e H*[ v (0, oo) ,
or e

7

(0,cx)),A, HMiV (0, CXD).

We have that

jc~
1+y

[jr
1+ v

/ * a] * A(JC) = jc~
1+v

/ * [^-
1+V * A.]W. (44)
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Proof.

=
(x~

l+v
f *<r (x),

(iii) If / H w (0, oo), cr,, a2 6 E'(0, oo). We show, finally, that

Proof.

(*-
l+1

'[*-
1+w

= x~ 1+v
/ * a\(x),x

vaz

*

6.3 Identity element

For a, 6 strictly positive we know that DM . (a . *. z) defines a regular
generated

function

D
IL , ,\a. b, z) in H- v (0, oo) If either of a, i takes the value zero then D,, v (a,b, z)

longer defined as an ordinary function since

is only a formal identity because the integral fails to converge for any z.

Instead, for any fixed a > 0, we consider the integral

/

which for each R > is uniformly convergent on < z < oo.

DEFINITION 6.4

Define the generalized function Dfl ,
v (a,z) in H*' v (0, oo) by

(46)

DM . v(a.z)= lim f
v

/? >OO J
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in the sense that for any <j>
e H

IL , v (0, oo),

= lim
R-*oo

(47)

For each finite R > the integral (44) defines a function which generates a regular gener-

alized function in #*' v (0, oo) (Sneddon [9]), Therefore,

or by Fubini's theorem

/
R

(!^,\ r\

oo

f

A 2"- 1

.

Thus

R-+OO

= a
l-v

= lim a 1^
/c

and so

A-v

(48)



Convolution ofgeneralizedfunctions 485

h shows that DMi v (a, z) e H*{ u (0, oo). Moreover, since

(/V v(a, z), z

btain

- JM [(flr)
v
]. (49)

let (fln )J-i be a monotone decreasing sequence of positive real numbers, tending to

as n ~* oo, and consider the sequence of generalized functions (D/x , (an , z))%L j

in

,(0, oo). Since H*'
v (0, oo) is complete, this limit is again a generalized function in

; (0, oo). For each n and any <j> e /f
/jt , v (0, oo),

therefore we define the generalized function DM ,
v (z)

= lim a^V^/i) = v<(0+) (50)
->-00

ipendently of the particular sequence (fl/i)^ chosen). Moreover, since

(OM.v(2),z
v

*(z))
= v0(0+) = (1,

vr
v

<D(r))
=

v(l,
vr

u

cD(r)),

tave

= v.l=v (51)

equality being understood in the sense of H*[ V (Q, oo). The generalized function

u.sOO H*'
v (0, oo) is the required identity element with respect to the general-

/i^, y -convolution. In fact, it is easy to show that D^ v,zW '(0, oo) and therefore

my / H*[ V (Q, oo) and every H,^ v (0, oo), by using the results in (40), (41) and

we obtain

= /(*>

:h shows that

/ *^^ = /(*) (52)

ic sense of H*' V (Q, oo), as asserted.

)ifferentiability properties of the /i^-convolution

conclude with a briefremark on the differentiability properties ofthe generalized AM ,

-

/olution. Let fc be any nonnegative integer / H*' v (0, oo) and X e H
IJL . V (Q, oo).
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Then, since for any 4> H
llt v (0, oo),

A = A*[/
oo

/v~

oo

.
/,*

I^V

= v
(
x 2v- l

<t>(x)^x
l
- v

oo oo

( f(yz)

v

f(yMz)D,ltt (x, y, z)dydz

Lo o

dx.

Differentiating under the integral sign and using Fubini's theorem we get

A = v

Similarly

(53)

in the sense of H*f

v (0, oo).

If now / #*' v (0, oo) and a '(0, oo), then by the same kind of argument, and

using (53), we derive the double equality.

A*[/ * cr]
= / * [A^a] = [A*/] * cr (54)

in the sense of # *'

v (0, oo).v
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Abstract In this paper we study nonlinear elliptic boundary value problems with

monotone and nonmonotone multivalued nonlinearities. First we consider the case of

monotone nonlineari ties. In the first result we assume that the multivalued nonlinearity

is defined on all R. Assuming the existence of an upper and of a lower solution, we

prove the existence of a solution between them. Also for a special version of the

problem, we prove the existence of extremal solutions in the order interval formed

by the upper and lower solutions. Then we drop the requirement that the monotone

nonlinearity is defined on all ofR. This case is important because it covers variational

inequalities. Using the theory of operators ofmonotone type we show that the problem
has a solution. Finally in the last part we consider an eigenvalue problem with a

nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth

locally Lipschitz functionals we prove the existence of at least two nontrivial solutions

(multiplicity theorem),

Keywords. Upper solution; lower solution; order interval; truncation function;

pseudomonotone operator; coercive operator; extremal solution; Yosida approxima-

tion; nonsmooth Palais-Smale condition; critical point; eigenvalue problem.

Introduction

this paper we employ the method of upper and lower solutions, the theory of nonlinear

jerators of monotone type and the critical point theory for nonsmooth functionals in

der to solve certain nonlinear elliptic boundary value problems, involving discontinuous

mlinearities of both monotone and nonmonotone type.

Most of the works so far have treated semilinear probems. Only Deuel-Hess [12],

>al with a fully nonlinear equation, but their forcing term on the right hand side is a

aratheodory function. Deuel-Hess use the method ofupper and lower solutions, in orderto

ow that problem has a solution located in the order interval formed by the upper and lower

lutions. More recently Dancer-Sweers [11] considered a semilinear elliptic problem,

ith a Caratheodory forcing term, which is independent of the gradient of the solution and

ey proved the existence of extremal solutions in the order interval (i.e the existence of a

aximal and of a minimal solution there). Semilinear elliptic problems with discontinuities

ive been studied by Chang [8] and Costa-Goncalves [10], who used critical point theory

r nondifferentiable functionals, by Ambrosetti-Turner [4] and Ambrosetti-Badiale [5],

489
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who used the dual variational principle of Clarke [9] and by Stuart [23] and Carl-Heikkila

[7], who used monotonicity techniques. In Carl-Heikkila [7], we encounter differential

inclusions but they assume that the monotone term ft () corresponding to the discontinuous

nonlinearity, is defined everywhere i.e (dom/? = R), while here we have a result where

dom/3 R, a case of special importance since it incorporates variational inequalities.

We also consider the case where the term /?() is nonmonotone, which corresponds to

problems in mechanics, in which the constitutive laws are nonmonotone and multivalued

and so are described by the subdifferential of nonsmooth and nonconvex potential functions

(hemivariational inequalities).

2. Preliminaries

Let X be a reflexive Banach and X* its topological dual. In what follows by (, ) we denote

the duality brackets of the pair (X, X*). A map A : A -* 2X
*

is said to be monotone, if

for all [jci, **], [JC2, JtJ] GrA, we have (xj
- **, *2 - *i) > 0. The set D = {x e X :

A(x) 7^ 0} is called the 'domain of A'. We say that A(-) is maximal monotone, if its

graph is maximal with respect to inclusion among the graphs of all monotone maps from

X into X*. It follows from this definition that A(-) is maximal monotone if and only if

(v* jc*, v x) > for all DC,**] e GrA, implies [u, v*] e GrA. For a maximal

monotone map A(-), for every x e D, 400 is nonempty, closed and convex. Moreover,

GrA C X x X* is demiclosed, i.e. ifxn - x in X and jc* -^ x* in X* or ifxn A x in X and

x* -> x* in X*, then [jc, x*] 6 GrA. A single-valued A : X -* X* with domain all of X, is

said to be hemicontinuous if for all jc, y,z X, the map A > (A (x + A.y ), z) is continuous

from [0, 1] into R (i.e. for all jc, y e X, the map A -* A(;c -f A.y) is continuous from

[0, 1] into X* furnished with the weak topology). A monotone hemicontinuous operator

is maximal monotone. A map A : X -> 2X
*

is said to be 'pseudomonotone', if for all

x e X,A(x) is nonempty, closed and convex, for every sequence {[*, **]}>! C GrAsuch

ihoixn -^ jc in X, jc* -* x* in X* and lim sup(**, xn x) < 0, we have that for each y e X,

there corresponds a y*(y) e A(x) such that (y*(y),x-y) < lim inf(x*,xn y) and finally

A is upper semicontinuous (as a set-valued map) from every finite dimensional subspace

ofX into X* endowed with the weak topology. Note that this requirement is automatically

satisfied if A(-) is bounded, i.e. maps bounded sets into bounded sets. A map A : X ->

2X
*

with nonempty, closed and convex values, is said to be generalized pseudomonotone

if for any sequence {[xn ,x*]}n>\ GrA such that xn -* x in X, x* -^ jc* in X* and

limsup(x*,xn
-

Jt)
< 0, we have [jc.jc*] GrA and (x*,xn ) -* (x*,x) (generalized

pseudomonotonicity). The sum of two pseudomonotone maps is pseudomonotone and a

maximal monotone map with domain D = X, is pseudomonotone. A pseudomonotone

map which is also coercive (i.e
mf

[(*^**eA(*)]
^ ^ as

\\
x

||
_^ ooj js surjective.

A function q> : X ~> R = R U {-hoc} is said to be proper, if it is not identically +00,
i.e dom<p = {x e X : <p(x) < .-foo) (the effective domain of <p) is nonempty. By Fo(X)
we denote the space of all proper, convex and lower semicontinuous functions. Given a

proper, convex function <?(), its subdifferential d<p : X -> 2** is defined by

d(p(x) = {** E X* : (jc*, y
- x) <

(^(y)
-

(^(z) for all y e dom<p}.

If (p e Fo(X), then fyp(-) is maximal monotone (in fact cyclically maximal monotone).

Finally recall that a <p 6 T (X) is locally Lipschitz in the interior of its effective domain.
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Next let (p : X -> R be locally Lipschitz. For such a function we can define the

generalized directional derivative of <p at* e X in the direction /z e X, as follows

0, ,, r <p(x' + Ui)-<p(x')
(p^(x\ h) hmsup- .

It is easy to see that <p(jt; ) is sublinear and continuous and so by the Hahn-Banach

theorem we can define the nonempty, weakly compact and convex set

d(p(x) = {x* e X* : (**, h) < <A*; h) for all h e X}.

The set d<p(x) is called the (generalized) subdifferential of <p at A: (see Clarke [9]). If (p is

also convex, then this subdifferential coincides with the subdifferential of <p in the sense

of convex analysis defined earlier. Moreover, in this case CP(JC; h) = lim V^+W-yM
>40

A

= (p'(x; h) (the directional derivative of (p at x in the direction h). A function (p for which

0>(jt; )
=

<p

f

(x\ ) is said to be regular at x. Finally recall that if jc isalocalextremumof<p,

then d<p(x). More generally a point x e X for which we have dip(jc), is said to be

a critical point of (p. For further details on operators of monotone type and subdifferentials,

we refer to Hu-Papageorigiou [16] and Zeidler [25].

3. Existence results with monotone nonlinearities

Let Z c RN be a bounded domain with a C 1

-boundary P. In what follows by Aj(-)

we denote the nonlinear, second order differential operator in divergence form defined by

AI (*)() = Yjc=\ AfcflJkG,*O *()) In this section we study the following boundary

value problem:

First using the method of upper and lower solutions, we establish the existence of (weak)

solutions for problem (1), when dom/? = R. Let us start by introducing the hypotheses on

the coefficient functions ak(z, x, y}, k e {1, 2, . . .
, TV}, and on the multifunction /?(r).

H(ce^):
a
k

: E x R x RN -> R, k e {1, 2, . . .
, TV}, are functions such that

(i) for all jc E R and all y e R^, z -> <z*(z, *, )0 is measurable;

(ii) for almost all z Z, (x, y)
-

a*(z, ;c, y) is continuous;

(iii) for almost all z Z, all ;c e R and all y 6 R^, we have

!<**(* *,)OI <Y(z) + c(\x\
p~ l + \\y\\

p~ l

)

with y L*(Z), c> 0, 2 <
/? < oo and

| -f
^
= 1;

(iv) for almost all z Z, all x R and all y, / R^, y ^ y', we have

AT

, x, y)
- ak (z, x, y'))(yk

-
y'k ) > 0;
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(v) for almost all z Z, all x e R and all y e RN
,
we have

N

withcj >0, yi 6 L !

(Z).

Remark. By virtue of these hypotheses, we can define the semilinear form

a\ W^
P
(Z) x

by setting

H(/l): ZxR -> 2R is a graph measurable multifunction such that for all z Z, (z, )

is maximal monotone, dom/?(z, )
= R, /?(z,0) anc* \P(z,x)\ = max[|t>| : v e

P(z, x)] < k(z) + r\\x\P~
l
a.e on Z with fc G L^(Z), 77

> 0.

Remark. It is well-known (see for example [16], example III.4.28(a), p. 348 and theorem

III.5.6, p. 362), that for all z 6 Z, j8(z,;t) = dj(z, x) with y(z *) a jointly measurable

function such that j (z, ) is convex and continuous (in fact locally Lipschitz). Ifp(z,x) =
proj(0; j8(z, ;c)) (= the unique element of ^(z, ;c) with the smallest absolute value), then

x -* jS(z,jc) is nondecreasing and for every (z,x) e Z x R, we have f)(z,x) =
[j}*(z,x-),P

Q
(z,x

+
)]. Moreover, ; (z ,x) = 7(2, 0) + !Q P

Q
(z,s)ds. Since j(z ,

: )
is

unique up to an additive constant, we can always have j(z, 0) = 0. Since by hypothesis

0(z, 0), we infer that for all z e Z and all x e R, j(z, x) > 0. In what follows

_(z, x) = pP(z, x') and 0+(z, ^) - ^(z ,
x +). So ^(z, jc) = [_(z, jc), ^(z, ^)]. Ev-

idently we have for almost all z Zandall* e R, |_(z, jc)|, |j8+(z,^)[
< A:(z)+ r?|jc|

y;
~ 1

.

To introduce the hypotheses on the rest of the data of (1 ), we need the following defini-

tions.

DEFINITION

A function q> e W l *p
(Z) is said to be an 'upper solution' of (1) if there exists x* e Lq

(Z)
such that jc*(z) 6 0(z, ^(^)) a.e. on Z and

a(<p,v)+ I ao(z,(p, D(p)v(z)dz+ I x*
{ (z)v(z)dz> I g((p(z))v(z)dz

Jz Jz Jz

for all v WQ'
P n V\Z)+ and ^, r

> 0.

DEFINITION

A function $ e W l * p
(Z) is said to be a 'lower solution' of (1), if there exists x% e LP(Z)

such that
jcj(z) )5(z, V^fe)) a.e. on Z and

I JcJ(z)u(z)dz< f
Jz Jz

for all i; e W Up h L y;
(Z)+ and ^, r

< 0.



Nonlinear elliptic bvp 's 493

We can continue with the hypotheses on the data of (1):

HQ: There exist an upper solution cp e W l - p (Z) and a lower solution V" W [ ' P
(Z) such

that i/r(z)
< < <p(z) a.e. on Z and for all y e L P

(Z) such that VOO < y(z) < <p(z) a.e.

on Z we have g(y(-)) e Lfl(Z). Moreover, #() is nondecreasing.

H(<*o): o : Z x R x RN -> R, is a function such that

(i) for all x R and all y e R^, z -> tfofe *> >') is measurable;

(ii) for almost all z e Z, (;c, >) -> o(z. x, y) is continuous;

(iii) for almost all z Z and all jc e [^(z). ^(z)], we have

DEFINITION

By a *(weak) solution' of (1), we mean a function x e W$
P
(Z) such that there exists

/ L*(Z) with /(z) e j8(z, jc(z)) a.e. on Z and

f
Jz

for all ue

Let ^ = ty,(p] = {y e W l

^(Z) : ty(z) < y(z) <
<p(z) a.e. on Z}. Our approach

will involve truncation and penalization techniques. So we introduce the following two

functions:

r : W l
* p (Z) -> W l ' p (Z) (the truncation function) defined by

if

x(z) if

if x(z)<if(z)

and u : Z x R - E (the penalty function) defined by

)Y~
l

if

if

*)"""
1

if

It is easy to check that the following are true (see also Deuel-Hess [12]).

Lemma 1. (a) The truncation function map r : W ! ''J

(Z) -> W !

^(Z) s bounded and

continuous, (b) The penaltyfunction u(z, x) is a Caratheodoryfunction such that

/or a// j: 6 L P (Z) and some cs, 04 > 0.
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To solve (1), we first investigate the following auxiliary problem, with y e K:

4- p(z, *(z)) + p(z, *(z)) 3 (>'(*)) on Z

Here A2(*) is the nonlinear, second order differential operator in divergence form, defined

by

N

A2(x)(z) = 2_J Dk<Zk(z, ?(x), Dx).

k=\

In the next proposition we establish the nonemptiness of the solution set S(y) c W^
p
(Z)

of (2) for all ye K.

PROPOSITION 2

If hypotheses H(^),H(^), Ho.H(flo) A0W 0nd >' 6 K, then the solution set S(y) c
W ltp

(Z) 0/(2) nonemptyfor p > large.

Proof Let : W
Q
ll/;

(Z) x wJ'^Z) -^ R be the semilinear Dirichlet form defined by

By virtue of hypotheses H(ajk), this Dirichlet form defines a nonlinear operator A\ :

Wo^(Z) -> W- {

*(Z) by (AI(AC), y) = ^(jc, y) (here by {-, -) we denote the duality

brackets of the pair (W
1>P

(Z), W' l

^(Z))). Also let OQ : W^
P
(Z) -+ L(Z) be defined

by OQ(X)(Z) = ao(z, r(;c)(z), DT(JC)(Z)). This is continuous and bounded (see hypothesis

H(ao))-

Claim 1. The operator A 2 = AI +2" : W
Q

l
' /7

(Z) -> W" !

^(Z) is pseudomonotone.

To this end, let JCM -^ jcin W ' /;

(Z)asn ~> oo and assume that limsup(A2(jc),xn --Jc}
<

0. Then limsup(Ai(jto) -f-2b(^/i)^/i ^) < 0. From the Sobolev embedding theorem,

we have*n -+ x in LP (Z) and so (2b(xn ), x "
^) = (?bUn). ^n - Jc)/,^

-> (by, -)^
we denote the duality brackets of (L /7

(Z), Lq
(Z)). Therefore we obtain lim sup(Ai (*),

xn -x) <0.

We have

r
(A\(xn ), xn - x)

= /

Jzz
k=\

*=i

N

P0*fe. r(xn ), Dx)(Dkxn -
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[ x^
-

/ 2_^^' T (*")' x )(DkXn - Dkx)dz (hypothesis H(a*)(iv)).
Jz *=i

Since ^rt
-^ ^c in WQ

' y)

(Z), we have^ - x in L /;
(Z) and then directly from the definition

of the truncation map r, we have r(xn )
-

r(;c) in

Therefore

, Dx)(Dkxn
- Dkx)dz - Oasn -* oo.

On the other hand we already know that lim sup(A i (;cn ), * -*) < 0. Hence (Aj (xn ), xn

x) -> as n -* oo. From this it follows that

,
T (*,,), Djcn )

- ak (z, r(xn ), Dx))(Dkxn
- Dkx)dz -+ Oas n -> oo.

Then invoking Lemma 6 of Landes [17], we infer that Dfcxn (z) - DjtJc(z) a.e on Z for all

A {1, 2, . . .
, N}. So usingLemma 3.2 ofLeray-Lions[ 18], we have that A\(xn ) -^ AI(^)

in W l

*Q(Z). We have already established earlier that
(Ai(jcn ),jcn x]

- 0. Since

(Ai(jcn ), j:)
->

(A i (*),*},
we obtain that (A [(xn ),xn )

~>
(AI(JC),^).

Also (2b(jcn),^) =

(2b(*n) ^i)y^/- But again by Lemma 3.2, Leray-Lions [18], we have that <5bC*/i) -^ 2b(jc)

in Z/y (Z). Since xn -> * in L /; (Z) (by the Sobolev imbedding theorem, we have that

(2b(*n), */?) = (2b(^/i)^n)^ -^ (2bW. *)/?</
= (2bW^>. Therefore finally we have

^2(^/1) -^ ^2(^) in W~ !

'^(Z) and
JAifoi), Jf/i)

->
(A2(jc), ^},

which proves that A-2 is a

generalized pseudomonotone. But A2 is everywhere defined, single-valued and bounded.

So from Proposition 111.6. 1 1, p. 366 of Hu-Papageorgiou [16], it follows that AI is pseu-

domonotone. This proves the claim.

Next let 17 : W^
P
(Z) -+ L (Z) be defined by U(x)(z) = u(z,x(z)). From the compact

embedding ofW^
P
(Z) in L /; (Z) and Lemma 1, we infer that 17(0 is completely continuous

(i.e. sequentially continuous from WQ
' /;

(Z) with the weak topology into Z/7 (Z) with strong

topology). Therefore A = A 2 + pU : W^
P
(Z) -> W {

^(Z) is pseudomonotone.
From Lebourg's subdifferential mean value theorem (see Clarke [9], theorem 2.3.7,

p. 41), we have that for almost all z 6 Z and all x E, \j(z,x)\ < k(z)\x\ + rj\x\
p

. Thus

if we define G : LP (Z) -> Rby G(jc) = /z ;(^^W)dz, we have that G(-) is continuous

(in fact locally Lipschitz) and convex. Let G = G\ W \, P (Z). Then from Lemma 2.1 of
*^o

Chang [8], we have that for all x e W^
P
(Z), 3G(x) = 8G(x) c L^(Z).

Then the auxiliary boundary value problem is equivalent to the following abstract oper-

ator inclusion

with g(>0(.) = (?()) L*(Z) (see hypothesis H ).

Ctom 2. jc -> A(^) 4- 3GW is coercive form W ll/J

(Z) into W"^(Z), for p > large.
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To this end, we have

(A(x),x)
=

(Ai(x) + 2bW + pU(x), x).

From hypothesis H(a^)(v), we have

(Ai (*),*)
>

c,||Z>jc||
-

llyilli
>

csWIi,/;
- c6 ,

with c5 ,
c6 . > 0. (3)

Also from hypothesis H(flo) (Hi), we have

>
> -C7WI/J*!!?'

1 ~ C
8ll*ll/;

for some c7 ,c8 > 0. (4)

From Young's inequality with 6 > 0, we obtain

and so using that in (4), we have

(5)

Finally from lemma 1, we have

(pU(x) t x) >
cgp\\x]\p -CIQ for some C9,cio > 0. (6)

From (3), (5) and (6) it follows that

> c5
-

cj ||jt|| + c9p - ci- \\x\\ p
-

ct\\x\\ p
- c6 .

(7)

~Choose > so that c$ > cj~. Then with > fixed this way choose p > so that

cip > ci-~r-. From (7) it follows that A is coercive.

Moreover, since by hypothesis H(/2) we have that 0(z t 0), it follows that e 3G(0)

and so (jc*, x) > for all Jt* e 3G(x). Thus A 4- dG is coercive and this proves the claim.

Finally because 3G(-) is maximal monotone and domdG = X, we have that dGQ is

pseudomonotone. So A -f 3G is pseudomonotone (Claim 1) and coercive (Claim 2). Apply

Corollary III.6.30, p. 372, of Hu-Papageorgiou [16] to conclude that A -f 8G is surjective.

So there exists jc W lt7
'(Z) such that A(x) + 6G(x) 3 ?(>')

Having this auxiliary result, we can now prove the first existence theorem concerning

our original problem (1).

Theorem 3. If hypotheses H(ajO, H(<2o)> HO and H(/?) /zo/J, //z^n problem (I) has a

nonempty solution set.

Proof. We consider the solution multifunction S : K -> 2wn (Z) for the auxiliary problem

(2), i.e for every y e K, S(y) c W ll/?

(Z) is the solution set of (2). From Proposition 2,

we know that 5(0 has nonempty values.

Claim I. S(K) OK.
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Let y K and let ;c e $(>). We have

}
+ (**, v)

for some** 9G(jc) and all v W lt/;
(Z). Since $ e W^ P (Z) is a lower solution, by

definition we have

)+ f floU, ^ D^)v(z)dz + (*J, u) < (?W, > for all v e W l

'*(Z) n
Jz

and for some jc* L'7
(Z) withz^(z) 0(s, V(z)) a.eonZ.

Let u = (^
-

^c)
+ W K/?

(Z) n L /; (Z)+ (see for example Gilbarg-Trudinger [13],

Lemma 7.6, p. 145). From the definition of the convex subdifferential, we have

<jc*, (Vr
-

Jc)
+

)
< G(JC + (^ - ^)

+
)

and

Using these two inequalities, we obtain

+ W ~ ^)
+

) + GW
-x)

+
) (8)

and

J(Vr, (iA
~

x)
+

) 4-

z

Note that G(x) + G(^) - G(x 4- (^ - x)
+

)
~

G(Vr
- (^ ~*)+ )

= 0. So adding (8) and

(9), we obtain

&Q(Z,

First we estimate the quantity

- + f

Jz

We have

Jz

r
r

-/,?

Since

n./,/ ^+,,^_
Q ^
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(see Gilbarg-Trudinger [13]), we have

(see hypothesis H(^)) (iv)). Also because

D<p(z) if <p(z)<x(z)
= Dx(z) if

if

we have

-
flo(z,

(fl (Z, ^r, />^r)
-

*0(Z, f, />^))(^ - jr)fe)dz = 0.

^1

Therefore finally we can write that

fl% (1^
~

^)
+

) + / *o(z, ^ ^)^)(^ - ^)
+
dz - (A2 , (^ - A:)

+
)

> 0. (1 1)
/ 2,

Because g(-) is nondecreasing (see hypothesis HO) and y K, we have

(?(^)
-

?()>), (^ - ^)
+

)
=

/* fe(^fe))
-

^(^(z)))(^
- x^(z)dz < 0.

J2

(12)

Using (11) and (12) in (10), we obtain

I -W-x)'>-
[ (zM-x)+

Jz

Similarly we show that jc < <p, hence jc K. This proves the claim.

Claim 2. If y\ < x\ S(y\) and y\ < y2 K, then there exists xi e S(yi) such that

X\ < ^2-

Since x\ e S(y\) c ,
we have for some /i L^(Z) with f[(z) e p(z,x\(z)) a.e on

Z,

?(jci,v)+ / flo(z,Jci,D^i)u(z)dz+ / /i(z)u(z)dz= /
Jz Jz Jz

for all u e W 1|P
(Z),

/i(z)u(z)dz <
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all n 6 W ' P
(Z) n L /;

(Z)+, since g(-) is nondecreasing and y\ < yi. Thus x\ e
|P
(Z) is a lower solution of the problem

argument similar to that of Claim 1, gives us a solution KI e W ' /;

(Z) of (13) such that

<*2 <<P- Note that <p e W lt/J
(Z) remains an upper solution of (13), since y2 e K and

< g(<p(z)) a.e on Z. This proves the claim.

im 3. For every y e K, S(y) c W ' ;

'(Z) is weakly closed.

b this end, let xn S(>0, w >
1, and assume that;c,z

> x in W '^(Z), By definition

have

A(xn)+x* = ?(y), n >
1, with x* e 3G(xn )

=
(A(xn ), Jc/i

-
Jc)
= (g(y),xn

-
x) pq

-
(x*, xn - x).

rn the compact embedding of W lt/;

(Z) into L ;;
(Z), we have that^ -> x in Z/(Z) and

?(y)^~*)pq -> 0. Also{jc*}n>i c Z/7 (Z) is bounded (see the proofofProposition 2)

so (**, Jt,i *) = (^*, xn - *)/j<7
-^ 0. Therefore

lim A(jc,,), xn - Jc = == A(JCW ) -^ A(x) in W- KC/
(Z)

ce A is bounded, pseudomonotone).

>Jso we may assume that x* -^ ;c* in Lq
(Z). Since [*,**] Gr9G = GrOG n

)

llp
(Z) x L^(Z)) (see the proof of Proposition 2 and Chang [8], Lemma 2.1)andGr9G

emiclosed, we conclude that^:* 9G(x). Thus finally we have

A(JC) + x* = g*(y), with ;c* 9G(jc),

- Jc e S(>')> which proves the claim.

"laims 1, 2 and 3 and that fact that W 1>/; (Z) is separable, permit the application of

position 2.4 ofHeikkila-Hu [15], which gives x e S(x) (fixed point of ()). Evidently

is a weak solution of problem (1). D

In fact with a little additional effort, we can show that the result is still valid,

nstead we assume that there exists M > such that x -+ g(x) + MX is nonde-

ising. However, to simplify our presentation we have decided to proceed with the

>nger hypothesis that #() is nondecreasing. Moreover, it is clear from our proof, that if

Z x R x RN -> R^ is defined by a(z, x, >')
= (ak (z, x, >0)f=1 and x e W^

P
(Z) is a

ition of (1), then -divafe, Jc, Dx) e Lq (Z) and

f -div

Ulr=
i / Z/'CZ), /(z) )8(z, jc(z)) a.e on Z (i.e jc is a strong solution).

?or a particular version of problem (1), we can show the existence of extremal solutions

he order interval; K, i.e of solutions x
l

,
xu in K such that for every solution x e K, we
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So let A
3;t(z)

= -
f=i DkQk(z, Dx) (second order nonlinear differential operator in

divergence form) and consider the following boundary value problem

A3 0000 + a
Q (z, x(z)) + ]8(z, *(0) 3 (*(z)) on Z

The hypotheses on the functions a
k
and a

Q
are the following:

H(cck ))
f

: a
k

: Z x RN - R, A: {1, 2, . . .
, N], are functions such that

(i) for all y E^, z -> a
k (z, y) is measurable;

(ii) for almost all z Z, y
-

^(z, >') is continuous;

(iii) for almost all z Z, and all
>'

RN , we have

with y Z/'(Z), c> 0, 2 < p < oo and
^ + 5-

= 1;

(iv) for almost all z 6 Z and all y, / R7

^, y 7^ >
J/

, we have

(v) for almost all z Z and all y RN
,
we have

j

> 0, yj e L l

(Z).

H(oc )': ^ : Z x R - R, is a function such that

(i) for all x R z -> a (z, ^) is measurable;

(ii) for almost all z Z, x -
<2 (z> Jc) is continuous, nondecreasing;

(iii) for almost all z 6 Z and all x e [^ (z) t (p(z)] 9 we have ||fl (z,^)|| < KO (Z) with

Then we can prove the following result.

PROPOSITION 4

Ifhypotheses H(aA:
)

/

, H(0 )', H(^) an^ H hold, then problem (14) has extremal solutions

in the order interval K.

Proof. Hypotheses E(ak )

f

and H(floy, imply that the map S : K -> K is actually single-

valued. Also we claim that it is increasing with respect to the induced partial order on K.
Indeed let y }

, y2 e K, y
{

< y2 and let x
l

= 5^), A:
2
= 5(>'2 ).' We have
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ithjcf edG(x i
)J = 1,2.

Using (jcj
- Jt

2)+ 6 WQ
P
(Z) H L^(Z)+ as our test function, we have

*i-*2)}. 05)

/ virtue of hypotheses H(a^)
x

and H(a )' (ii), we have

(A(xi)
- A(*2 ), (x {

- *2)
+

)

>
(strictly if x\ ^ x2). (16)

Iso from the monotonicity of the subdifferential, we have

(*?
-

*2, (jci
-

jc2)+ )
=

(*J
-

*J, (xi
- x2)+ ) pq

> 0. (17)

nally since by hypothesis HO, #() is nondecreasing it follows that

X2)+)pq
< 0. (18)

sing (16), (17) and (18) in (15), we infer that Ui JC2)
+ = 0,hencexi < x^. Thisproves

e claim. Using Corollary 1.5 of Amann [2], we infer that S(-) has extremal fixed points

K. Clearly these are the extremal solutions of (14) in K. D

Now we will consider a multivalued nonlinear elliptic problem, with a /3() such that

)m/5 T>
R. This case is important because it covers variational inequalities.

So now we examine the following boundary value problem:

| Ai(jc)(z)+a (z f Jc(z))+^U(z))s^(z)onZ 1
Q

Mr=Q I'

ur hypotheses on a and /? are the following:

(a )
//

: a : Z x E - R, is a function such that

T) for all x R, z -* (z, x) is measurable;

ii) for almost all z Z, ^ -^ fl (z, z) is continuous, nondecreasing;

li) for almost all z e Z and all x e R, we have |a (z, Jc)|
< 72(2) 4- c

2 \x\ with /2

(j8)i: jS : R ~> 2R , is a maximal monotone map with /J(0).

heorern 5. If hypotheses H(ak ), H(a )

/;

, H(y3)i hold and g e LP (Z), then the solution

t ofproblem (19) is nonempty.

roof. Recall $ = 8; with ; e r (R). Let ft = i(l - (1 4- ^)~ 1

), > 0, be the Yosida

>proximation of fi(-) and consider the following approximation of problem (19):

J
A(xi) - fl (z, jc(z)) + ft (*(z)) = ^(z) on Z 1

(2Q)
{ o:|r =0 J

'
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As before let 2" : W
Q

l ' y)

(Z) x WQ'
/;

(Z) be the semilinear form defined by

N

and let AI : W K/;
(Z) -> W^(Z) be defined by

(A!(JC), >'}
= a(x, v) for all *, >> e W^

P
(Z).

Also let SQ - L P (Z) -> L^(Z) be the Nemitsky operator corresponding to a
Q

i.e. 2* (

= a (-,*(-)) (in fact note that by H(a)" (iii) ofr) 6 L';

(Z) c Z/'(Z) since/? > 2 > g).

From Theorem 3,1 ofGossez-Mustonen [ 14] we know that A i is pseudomonotone, while

exploiting the compact embedding of W ll/;
(Z) in L /;

(Z), we can easily see that
fl^l^i,,,

is

completely continuous. Therefore A 2 = A\ -\- 2b is pseudomonotone.

Let G : WQ'
/;

(Z)
- R be the integral functional defined by G s (x) = /z je (x(z))dz

with jK (r) being the Moreau-Yosida regularization of j(-) (see for example Hu-Papageor-

giou [16], Definition IIL4.30, p. 349). We know that G fi (-) is Gateaux differentiable

and 3GK (x) = a;e (x(-)) (see Hu-Papageorgiou [16], Proposition III.4.32, p. 350). Then

problem (20) is equivalent to the following operator equation

A 2W + 8G e (x) = g. (21)

Note that 3GE is maximal monotone, with dom3G
fi
= W

Q

' /;

(Z). Therefore3G^ is pseudo-

monotone and hence so is A? + 3G S . We will show that A2 + 3G is coercive. Since

0= G
fi (0) and (3G fi (jc), x) > 0, to establish the desired coercivity of AI + 3 G^, it suffices

to show that AI is coercive. To this end we have

Since a
Q (z, ) is nondecreasing (hypothesis H(a)

;/

(ii)) (fl (z,^(z)) fl (z, 0))^(z) >

a.e on R and so

f
Jz

Therefore is follows that

> ci\\Dx\\
p
p
-

\\yi\\i

z

O, 0)\\ q \\x\\ P ,

from which we infer the coercivity of x -* (A 2 + 3G R )(x). Thus Corollary III.6.30,

p. 372, of Hu-Papageorgiou [16], implies that there exists xs e W^
P
(Z) which solves

(21). Now let sn | and set xn = x
Kn
n > 1. We will derive some uniform bounds for the

sequence {xn }n >\ c W^
P
(Z). To this end, we have

( f
I aQ(z,xn )xn (z)Az + / pen
Jz JZ

(xn )xn (z)dz

=
I g(z)xn (z)dz
Jz
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xn \\

P
p
~

|| XI 111

(since ps (xn (z))xn (z) > a.e on Z).

From this inequality we deduce that {xn }n>\ c W K;;
(Z) is bounded. Also note that

lln (r) = !&(>) |

y;
~ 2& /? 0") is locally Lipschitz on R and qn (0) = 0. So from Marcus-

Mizel [20], we know that rjn (xn (-)) e W^
p
(Z),n > 1. Using this as our test function, we

have

/ Y^ ak(z,xn ,Dxn)Dk rin (xn )dz + / a (z,^)^(^)dz -f / \pEn (xn )\
p dz

Jz /c=l Jz Jz

-
f g(z)^(jfn(z))dz. (22)
Jz

^^

Mizel [20], and recall that fiKn () being Lipschitz is differentiable almost everywhere).

Since &() is nondecreasing, (p
-

l)ift,,te(z))|
/;
~ 2^ 7

(jc/2 )) > a.e on Z. Thus using

hypothesis H(a&)(v), we have

Moreover, from hypothesis HCao)'^"!) floG. *()) L /;
(Z). In addition since ^,,(0

is j Lipschitz and = Ar;? (0), we have |j6fi/I (r)|
<

j-|r|,
from which it follows that

!&/(*()) I

L CI
(Z). So by Holder's inequality, we have"

/ ao(z t
xn

Jz

But since [xn }n >\ c W
Q

' /;

(Z) is bounded, we have sup,2 >j ||2b(^/i)ll/; ^i (see hypoth-

esis H(flo)"(iiO)- So we obtain

f flo(z^/,
Jz

Returning to (22), we can write

> -

is bounded, hence is bounded also in L 2
(Z). Hence by passing to a subsequence if neces-

sary, we may assume that xn -^ x in W 1/;

(Z) and^e/l (^) -^ u* in L 2
(Z) as n - oo.

Also we have

Exploiting the compact embedding of W I>;;

(Z) into L /?
(Z), we obtain
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(recall that A2 is pseudomonotone and bounded). Hence in the limit as n > oo we have

A2 (;c) + u* = g in W~ {

4(Z). Let J8 : L 2
(Z) -> 2L2(Z) be defined by

{w L(Z) : a(z) 0(*(z)) a.e. on Z}.

We know that /f is maximal monotone (see Hu-Papageorgiou [ 1 6], p. 328). Using Proposi-

tion III.2.29, p. 325, of Hu-Papageorgiou [16], we have that v* e /T(jt) and so u*(z)

). Sox e WQ'^Z) is a solution of [19]. D

4. Existence results with nonmonotone nonlinearities

In this section we examine a quasilinear elliptic problem with a multivalued nonmonotone

nonlinearity. The problem that we study is a hemivariational inequality. Hemivariational

inequalities are a new type of variational inequalities, where the convex subdifferential is

replaced by the subdifferential in the sense of Clarke [9], of a locally Lipschitz function.

Such inequalities are motivated by problems in mechanics, where the lack of convexity

does not permit the use of the convex superpotential ofMoreau [21]. Concrete applications

to problems of mechanics and engineering can be found in the book of Panagiotopoulos

[22]. Also our formulation incorporates the case of elliptic boundary value problems with

discontinuous nonlinearities. Such problems have been studied (primarily for semilinear

systems) by Ambrosetti-Badiale [5], Ambrosetti-Turner [3], [4], Badiale [6], Chang [8]

and Stuart [23].

Let Z c R^ be a bounded domain with a C l

-boundary F. We start with a few remarks

concerning the first eigenvalue of the negative p-Laplacian A
/;

;t = div(||Z)jtp~~
2
Z)je),

2 < p < oo, with Dirichlet boundary conditions. We consider the following nonlinear

eigenvalue problem:

-div(\\Dx(z)\\
p~2

Dx(z = *.\x(zW-
2
x(z) a.e. on Z

The least A 6 R for which (20) has a nontrivial solution is called the first eigenvalue of

(Ap ,
W 1>/;

(Z)). From Lindqvist [19] we know that A.I > 0, is isolated and simple.

Moreover, A.] > is characterized via the Rayleigh quotient, namely

AI = mm jj-
: x e

This minimum is realized at the normalized first eigenfunction u
\ ,

which we know that

it is positive, i.e u \ (z) > a.e on Z (note that by nonlinear elliptic regularity theory

ui C/jf (Z), < p < 1; seeTolksdorf [24]).

We consider the following nonlinear eigenvalue problem:

A9/(z, x(z)) a.e on Z
*lr=0,2</? <oo,A.>0

' ( }

Our approach to problem (24) will be variational, based on the critical point theory for

nonsmooth locally Lipschitz functionals, due to Chang [8]. In this case the classical Palais-

Smale condition (PS-condition for short) takes the following form. LetX be a Banach space
and / : X -> R a locally Lipschitz function. We say that /() satisfies the nonsmooth
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PS-condition, if any sequence [xn }n>\ c X for which {/(*)}>! is bounded and m(xn )
=

nindl** ||
: x* e 3f(xn )} -> as n -

oo, has a strongly convergent subsequence. When
f 6 C 1

(X), we know that 8f(xn )
= {/'(*)} and so we see that the above definition of

:he PS-condition coincides with the classical one.

Our hypotheses on the function 7(2, r) in problem (24), are the following:

H(j): j : Z x R -> E is a function such that

(i) for all * e R -> ; (z, *) is measurable;

(ii) for almost all z Z, x -* / (z, jc) is locally Lipschitz;

Jiii) for almost all z e Z, all x e R and all u e 3y (z, jc), we have

with ci > 0, 1 < r < p;

(iv) ;(, 0) L(Z), /z jf(z, 0)dz = and there exists JC
Q E R such that for almost all

z e Z, j(z,xQ ) > 0;

(v) limjc-^o sup ^4%^ < uniformly for almost all z e Z.

We will need the following nonsmooth variant of the classical 'Mountain Pass theorem'.

The result is due to Chang [8].

Theorem 6. IfX is a reflexive Banach space, V : X -> R is a locally Lipschitzfunctional

which satisfies the (PS) -condition andfor some r > and y e X with \\y\\ > r we have

max[V(0), V001 < inf[V(*) : ||*||
- r].

Then there exists a nontrivial critical point x e X of V (Le 9 V(jc)) such that the

critical value c = V(x) is characterized by the following minimax principle

c = inf max V(y(r)),
yero<r<i

where r = {y C([0, 1], X) : y(0) = 0, y(l) = v}.

We have the following multiplicity result for problem (1).

Theorem 7. If hypotheses H(y') /ioW, f/z^/i f/z^re exists A,
Q
> such thatfor all X > X

Q

problem (24) /za^ af /^^.y? fwo nontrivial solutions.

Proof. For A. > 0, let ^ : wJ'^CZ) -> R be defined by

Vx (x) = -\\Dx\\t-), [ j(z,
P Jz

We know that VA, is locally Lipschitz (see Clarke [9]).

Vx satisfies the nonsmooth (PS)-condition. L
< M\ for all n > 1 and m(^/7 ) -> as n -> CXD. Let jc* e 8V^(^n ) such that

Claim 1. Vx satisfies the nonsmooth (PS)-condition. Let {xn }n>\ C W ' y;

(Z) be such that
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m(jc/7 )
=

||jt*|| for all n > 1. Its existence follows the fact that a Vx(xn ) is w-compact and

the norm functional is weakly lower semicontinuous. We have

Here A : W^
P
(Z) -+ W~ l

^(Z) is defined by

= I
J z

for all x, y W lf/7

(Z) and u* di!/(xn ) where VOO = /2 j(z, x(z))dz. It is easy to see

that A is monotone, demicontinuous, thus maximal monotone.

From theLebourg mean value theorem (see Clarke [9], Therorem 2.3.7, p. 41), we know

that there exists v* e dj(z, 17* ). <
77
< 1 such that j(z, x)

-
j (z, 0) = u**. Using this,

together with hypothesis H(j)(iii) and the fact that j (-,0) e L(Z), we can write that for

almost all z e Z, and all x e R, we have \j(z, x)\ < 0[ 4- fa\x\
r with

{ , #> > 0. Hence

we have that

j(z,xn (zdz
P

> -\\Dxnfp -W\\Z\-\fo\\xn \\

r

p
for some ft > 0.

Here|Z| denotes the Lebesgue measure of the domain Z c R^. Using Young's inequality

with s > 0, we have

for some Mg > 0. Let s <
^-.

We have

Mi >

1 ^ . ., " _
x0i |Z|

- Af
fi (Rayleigh quotient). (25)

Since - - > (recall the choice of s > 0), from the above inequality it follows
P

i
_

i

that {xn }n>] c WQ
P
(Z) is bounded. So we may assume that xn -^ x in W^

P
(Z) and so

xn -> x in LP (Z) as n -> oo. We have

From Theorem 2.2 of Chang [8], we have that {v*}n>\ c L^(Z) and is bounded. So we

have

lim (A(xn ), xn ~ x)
= lim A,(u*, *n - x) ;^.

Since A is maximal monotone, we have (A (xn ),xn }

->
(A(^),^) =^ ||D;cw.||y,

>
||Z)^||y7

.

Since DJCW A D* in L^(Z, R^) and L';

(Z, R^) is uniformly convex, from the Kadec-

Klee property (see Hu-Papageorgiou [16], Definition 1.1.72 and Lemma 1.1.74, p. 28) it

follows that Dxn -> Dx in LP(Z>R
N

), hence xn -> x in T^'^Z). This proves the claim.
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From (25), we have that VA.(-) is coercive. This combined with Claim 1, allow the use

Df Theorem 3.5 of Chang [8] which gives us yi G W^
P
(Z) such that e dV^(y\) and

c\ = inf V\ -

rrom hypothesis H(;) (iv), for? = X
Q , we have ^(jc) > where ^ : L r

(Z) -> R is

iefined by V(v) = fz j(z, y(z))dz. Evidently ^ is locally Lipschitz and ^\ w i. Pf7 .
-

\[r.W

Since W ll/;

(Z) is embedded continuously and densely in U (Z), from the continuity of

it follows that we can find x W
Q

iy;

(Z) such that \fs(x) = ^r(jc) > 0. Then there exists

\, > such that for A, > 1
Q
we have Vx (yi) = \\Dy\\$

~ W(yi) < = Vx (0). So

Vi 7^ 0.

Claim 2. There exists r > such that inf[Vx (;c) : ||jc||
= r] > 0.

By virtue of hypotheses H(y')(v), we can find 8 > such that for almost all z Z and

all |;c|
< 5, we have for some y < 0,

Also recall that j(z,x) <
fi\ + p2\x\

r
. Thus we can find $4 > large enough such that

for almost all z Z and all x e R, we have

j(z> x) < h P4\x\
x
with p < s < p* =

Therefore, we can write that

VA(*) > -
f 1 ^) ||Z)jc||^ -^5 II^II for some ft > 0.

P \ A
i /

Note that (1-^-)
> (since y < OandO < A. < A., A }

> 0). Thus for every A. > X >

we can find H^l^p > (depending in general on X) such that inf[V^(x) : \\x\\
= p] > 0.

Then Vx(^i) < V'A.(O) < inf[Vx(jt) : \\x\\
= p] and so we can apply Theorem 6 and obtain

y2 ^ 0, y2 ^ y\ such that 3 VA.^)-

Now let v = y\ or 3;
= V2. From e 3^(v) we have

A(y) = Xu*

for some u*

From Clarke [9] we know that u* e L^(Z) and u*(z) e dj(z, >'(z)) a.e on Z. From

the representation therorem for the elements in W~ l

^(Z) (see Adams [1], Theorem 3.10,

p. 50) we have that divdlZtyp-
1

Dy) e W~ l

^(Z), So we have for all u 6 W lf/
'(Z),

, u)
=

(

-
div(\\Dy\\P-

2
Dy) t u}

= X(u*, w)w
-div(||Dy(z)||^-

2
Dy(z) = Xv*(z) e A8/fe, >'(z)) a.e on

Ji , >'2 are distinct, nontrivial solutions of (24).
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Remark. Our theorem extends Theorem 3.5 ofChang [8], who studies a semilinear problem

and proves the existence of one solution for some A R. Moreover, in Chang ; (z, ;c) =

JQ h(z, s)ds. In addition our result extends Theorem 5.35 of Ambrosetti-Rabinowitz [2]

to nonlinear problems with multivalued terms.

References

[1] Adams R, Sobolev Spaces (New York: Academic Press) (1975)

[2] Ambrosetti A and Rabinowitz P, Dual variational methods in critical point theory and appli-

cations, J. Funct. Anal 14 (1973) 349-381

[3] Ambrosetti A and Turner R, Dual variational methods in critical point theory and applications,

J. Funct. Anal. 14 (1973) 349-381

[4] Ambrosetti A and Turner R, Some discontinuous variational problems, Diff. Integral Eqns I

(1988)341-350

[5] Ambrosetti A and Badiale M, The dual variational principle and elliptic problems with dis-

continuous nonlinearities, 7. Math. Anal. Appl. 140 (1989) 363-373

[6] Badiale M, Semilinear elliptic problems in E^ with discontinuous nonlinearities, An. Sem.

Mat. Fis. Univ Modena 43 (1995) 293-305

[7] Carl S and Heikkika S, An existence result for elliptic differential inclusions with discontin-

uous nonlinearity, Nonlin. Anal. 18 (1992) 471-472

[8] Chang K C, Variational methods for nondifferentiabla functional and its applications to partial

differential equations, J. Math. Anal. Appl. 80 (1981) 102-129

[9] Clarke F H, Optimization and Nonsmooth Analysis (New York: Wiley) (1983)

[10] Costa D and Goncalves J, Critical point theory for nondifferentiable functionals and applica-

tions, J. Math. Anal. Appl. 153 (1990) 470-^85

[11] Dancer E and Sweers G, On the existence of a maximal weak solution for a semilinear elliptic

equation, Diff Integral Eqns 2 (1989) 533-540

[12] Deuel J and Hess P, A criterion for the existence of solutions of nonlinear elliptic boundary
value problems, Proc. R. Soc. Edinburg 74 (1974, 75) 49-54

[13] Gilbarg D and Trudinger N, Elliptic Partial Differential Equations of Second Order (Berlin:

Springer-Verlag) (1983)

[14] Gossez J-P and Mustonen V, Pseudomonotonicity and the Leray-Lions condition, Diff. Inte-

gral Eqns 6 (1 993) 37-46

[15] Heikkila S and Hu S, On fixed points of multifunvtions in ordered spaces Appl. Anal. 54

(1993) 115-127

[16] Hu S and Papageorgiou N S, Handbook of Multivalued Analysis. Volume I: Theory (The
Netherlands: Kluwer, Dordrecht) (1997)

[17] Landes R, On Galerkin's method in the existence theory of quasilinear elliptic equations, J.

Fund Anal 39 (1980) 123-148

[1 8] Leray J and Lions J-L, Quelques resultants de Visik sur les problems elliptiques nonlinearairies

par methods de Minty-Browder Bull. Soc Math. France 93 (1 965) 97-1 07

[19] Lindqvist P, On the equation div(\Dx\
p~2

Dx) + h.\x\
p~2x = 0, Proc. Am. Math. Soc. 109

(1990) 157-164

[20] Marcus M and Mizel V, Absolute continuity on tracks and mappings of Sobolev spaces, Arch.

Rational Mech. Anal. 45 (1972) 294-320

[21] Moreau J-J, La notion de sur-potentiel et les liaisons unilaterales en elastostatique, Compt.es
RendusAcad. Sci. Paris 267 (1968) 954-957

[22] Panagiotopouios P D, Hemivariational Inequalities. Applications in Mechanics and Engineer-

ing (Berlin: Springer-Verlag) (1993)

[23] Stuart C, Maximal and minimal solutions of elliptic differential equations with discontinuous

nonlinearities, Math. 163 (1978) 239-249

[24] Tolksdorf P, Regularity for a more general class of quasilinear elliptic equations, J. Diff. Eqns
51(1894) 126-150

[25] Zeidler E, Nonlinear Functional Analysis and its Applications II (New York: Springer-Verlag)

(1990)



Proceedings (Mathematical Sciences) Volume 111,2001

SUBJECT INDEX

[n, k, d] cyclic code

Cyclic codes of length T 371

2 categories

Algebraic stacks 1

4x4 matrices

Unitary tridiagonalization in M(4, C) 38 1

Abel's theorem

On a Tauberian theorem of Hardy and

Littlewood 221

Absolute Euler summability

Multipliers for the absolute Euler

summability of Fourier series 203

Absolute summability

Multipliers for the absolute Euler

summability of Fourier series 203

Absolutely continuous spectrum

Spectra of Anderson type models with de-

caying randomness 179

Ahlfors-Bers variational formulae

Variational formulae for Fuchsian groups
over families of algebraic curves 33

Algebraic curve

Unitary tridiagonalization in M(4, C) 381

Algebraic stacks

Algebraic stacks 1

Anderson model

Spectra of Anderson type models with de-

caying randomness 179

Arzela-Ascoli theorem

Periodic and boundary value problems for

second order differential equations 1 07

Asymptotic behaviour

On oscillation and asymptotic behaviour of
'

solutions of forced first order neutral differ-

ential equations 337

Banach lattice

On property (j3) in Banach lattices, Calderdn-

LozanowskiTand Orlicz-Lorentz spaces

319

Binary forms

On totally reducible binary forms: I 249

Boundary controllability

Boundary controllability of integro-
differential systems in Banach spaces 127

C*-enveloping algebra

Topological *-algebras with C*-enveloping

algebras II 65

Calder6n-Lozanowskii space
On property (/3) in Banach lattices, Calder6n-

Lozanowskii and Orlicz-Lorentz spaces

319

Caratheodory function

Periodic and boundary value problems for

second order differential equations" 107

Character

Obstructions to Clifford system extensions

of algebras 151

Clifford system
Obstructions to Clifford system extensions

of algebras 151

Coercive operator
Nonlinear elliptic differential equations with

multivalued nonlinearities 489

Cohomology groups
Obstructions to Clifford system extensions

of algebras 151

Compact embedding
Periodic and boundary value problems for

second order differential equations 107

Contraction mapping theorem

Monotone iterative technique for impulsive

delay differential equations 351

Convolution

On a generalized Hankel type convolution

of generalized functions 47 1

Critical point
Nonlinear elliptic differential equations with

multivalued nonlinearities 489

C-totally real submanifold

On Ricci curvature of C-totally real

submanifolds in Sasakian space forms 399

Cuspidal curve

The multiplication map for global sections

of line bundles and rank 1 torsion free sheaves

on curves 163

Cyclotomic cosets

Cyclic codes of length T 37 1

Decaying randomness

Spectra of Anderson type models with de-

caying randomness 179

Degree

Unitary tridiagonalization in M(4, C) 381

Dilation matrix

Multiwavelet packets and frame packets of

L\R
(I

) 439

Divergent series

On a Tauberian theorem of Hardy and

Littlewood 221

509



510 Subject index

Dunford-Pettis theorem

Periodic and boundary value problems for

second order differential equations 1 07

Eigenvalue problem
Nonlinear elliptic differential equations with

multivalued nonlineadties 489

Embeddable measures

Limits of commutative triangular systems on

locally compact groups 49

Equisummability
On the equisummability of Hermite and

Fourier expansions 95

Euler-Bernoulii beam equation
On initial conditions for a boundary stabi-

lized hybrid Euler-Bernoulli beam 365

Exponential energy decay
On initial conditions for a boundary stabi-

lized hybrid Euler-Bernoulli beam 365

Extremal solution

Periodic and boundary value problems for

second order differential equations 107

Monotone iterative technique for impulsive

delay differential equations 35 1

Nonlinear elliptic differential equations with

multivalued nonlinearities 489

Fixed point theorem

Boundary controllability of integro-
difTerential systems in Banach spaces 127

Fixed points

Common fixed points for weakly compatible

maps 24 1

Frame packets
Multiwavelet packets and frame packets of

L
2

(tf') 439

Frechet *-algebra

Topological ^-algebras with C*-enveloping

algebras II 65

Fuchsian groups
Variational formulae for Fuchsian groups
over families of algebraic curves 33

Galois group
Descent principle in modular Galois theory

139

Generalized functions (distributions)

On a generalized Hankel type convolution

of generalized functions 471

Generalized Hankel type transformation

On a generalized Hankel type convolution

of generalized functions 47 1

Generator polynomial

Cyclic codes of length 2"' 37 1

Groupoid C*-algebra

Topological *-algebras with C*-enveloping
algebras II 65

Hardy-Littlewood Tauberian theorem
On a Tauberian theorem of Hardy and
Littlewood 221

Hardy's theorem

Uncertainty principles on two step nilpotent
Lie groups 293

Hecke lines

Stability of Picard bundle over moduli space
of stable vector bundles of rank two over a

curve 263

Heisenberg's inequality

Uncertainty principles on two step nilpotent
Lie groups 293

Hermite functions

On the equisummability of Hermite and

Fourier expansions 95

Homogeneous operators

Homogeneous operators and projective rep-

resentations of the Mobius group: A survey
415

Hybrid system
On initial conditions for a boundary stabi-

lized hybrid Euler-Bernoulli beam 365

Idempotent generator

Cyclic codes of length 2
1"

37 1

Impulsive delay differential equations
Monotone iterative technique for impulsive

delay differential equations 351

Infmitesimally divisible measures

Limits of commutative triangular systems on

locally compact groups 49

Initial conditions

On initial conditions for a boundary stabi-

lized hybrid Euler-Bernoulli beam 365

Integrodifferential system

Boundary controllability of integro-
differential systems in Banach spaces 127

Iteration

Descent principle in modular Galois theory
139

Line bundle

The multiplication map for global sections

of line bundles and rank 1 torsion free sheaves

on curves 163

Unitary tridiagonalization in A/(4, C) 381

Loop groups

Principal C-bundles on nodal curves 271

Lower solution

Periodic and boundary value problems for

second order differential equations 1 07

Nonlinear elliptic differential equations with

multivalued nonlinearities 489

Mobility edge

Spectra of Anderson type models with de-

caying randomness 1 79



Subject index 511

oduli spaces

Algebraic stacks

ultipliers

Multipliers for the absolute

summability of Fourier series

Euler

203

*utral equations
On oscillation and asymptotic behaviour of

solutions of forced first order neutral differ-

ential equations 337

Ddal curve

The multiplication map for global sections

of line bundles and rank 1 torsion free sheaves

on curves
'

163

Dnoscillation

On oscillation and asymptotic behaviour of

solutions of forced first order neutral differ-

ential equations 337

ansmooth Palais Smale condition

Nonlinear elliptic differential equations with

multivalued nonlinearities 489

^-algebra

Topological *-algebras with C*-enveloping

algebras II 65

bstructions

Obstructions to Clifford system extensions

of algebras 151

rder interval

Periodic and boundary value problems for

second order differential equations 107

Nonlinear elliptic differential equations with

multivalued nonlinearities 489

rlicz-Lorentz space
On property (/3) in Banach lattices, Calderon-

Lozanowskii and Orlicz-Lorentz spaces
319

scillation

On oscillation and asymptotic behaviour of

solutions of forced first order neutral differ-

ential equations 337

irabolic bundles

Principal G-bundies on nodal curves 271

irserval relation

On a generalized Hankel type convolution

of generalized functions 47 1

-convexity
A variational principle for vector equilibrium

problems 465

sdersen ideal of a C*-algebra

Topological *~algebras with C*-enveloping

algebras II 65

malty function

Periodic and boundary value problems for

second order differential equations 1 07

Periodic points
Boundedness results for periodic points on

algebraic varieties 173

Periodic problem
Periodic and boundary value problems for

second order differential equations 107

Picard bundle

Stability of Picard bundle over moduli space
of stable vector bundles of rank two over a

curve 263

P-y/-monotonicity
A variational principle for vector equilibrium

problems 465
Prescribed Gaussian curvature

A variational proof for the existence of a

conformal metric with preassigned negative
Gaussian curvature for compact Riemann
surfaces of genus > 1 407

Principal bundles

Principal G-bundles on nodal curves 271

Projective representations

Homogeneous operators and projective rep-
resentations of the Mobius group: A survey

415

Property (j3)

On property (j3) in Banach lattices, Calderon-

Lozanowskii and Orlicz Lorentz spaces

319

Proximinality and strong proximinality
Proximinal subspaces of finite codimension
in direct sum spaces 229

Pseudomonotone operator
Nonlinear elliptic differential equations with

multivalued nonlinearities 489

Rank 1 torsion free sheaf

The multiplication map for global sections

of line bundles and rank 1 torsion free sheaves

on curves 163

Real algebraic groups
Limits of commutative triangular systems on

locally compact groups 49

Reproducing kernels

Homogeneous operators and projective rep-

resentations of the Mobius group: A survey
415

Ricci curvature

On Ricci curvature of C-totally real sub-

manifolds in Sasaki an space forms 399

Riemann surfaces

Variational formulae for Fuchsian groups
over families of algebraic curves 33

A variational proof for the existence of a

conformal metric with preassigned negative

Gaussian curvature for compact Riemann
surfaces of genus > 1 407



512 Subject index

Sasakian space form

On Ricci curvature of C-totally real sub-

manifolds in Sasakian space forms 399

Semigroup theory

Boundary controllability of integro-

differential systems in Banach spaces 127

Singular projective curve

The multiplication map for global sections

of line bundles and rank 1 torsion free sheaves

on curves 163

Small deflection

On initial conditions for a boundary stabi-

lized hybrid Euler-Bernoulli beam 365

Smooth Frechet algebra crossed product

Topological ^-algebras with C*-enveloping

algebras II 65

Sobolev space
Periodic and boundary value problems for

second order differential equations 1 07

Special divisor

The multiplication map for global sections

of line bundles and rank 1 torsion free sheaves

on curves 163

Special Hermite expansions
On the equisummability of Hermite and

Fourier expansions 95

Sturm-Liouville boundary conditions

Periodic and boundary value problems for

second order differential equations 107

Summ ability of factored Fourier series

Multipliers for the absolute Euler

summability of Fourier series 203

Sz-Nagy-Foias characteristic functions

Homogeneous operators and projective rep-
resentations of the Mobius group: A survey

415

Tauberian theorem

On a Tauberian theorem of Hardy and
Littlewood 221

Topological *-algebra

Topological *-algebras with C*-enveloping

algebras II 65

Totally disconnected groups
Limits ofcommutative triangular systems on

locally compact groups 49

Transitivity

Descent principle in modular Galois theory
139

Triangular systems of measures

Limits ofcommutative triangular systems on

locally compact groups 49
Truncation function

Nonlinear elliptic differential equations with

multivalued nonlinearities 489

Truncation map
Periodic and boundary value problems for

second order differential equations 107

Two step nilpotent Lie groups

Uncertainty principles on two step nilpotent
Lie groups 293

Unbounded operator representation

Topological *-algebras with C*-enveloping

algebras II 65

Uncertainty principles

Uncertainty principles on two step nilpotent
Lie groups 293

Uniformization theorem

A variational proof for the existence of a

conformal metric with preassigned negative
Gaussian curvature for compact Riemann
surfaces of genus > 1 407

Unitary tridiagonalization

Unitary tridiagonalization in M(4, C) 381

Universal algebra on generators with relations

Topological *-algebras with C*-enveloping

algebras II 65

Upper solution

Periodic and boundary value problems for

second order differential equations 107

Nonlinear elliptic differential equations with

multivalued nonlinearities 489

Variational principle
A variational principle for vector equilibrium

problems 465

Vector bundles

Algebraic stacks 1

Vector equilibrium problem
A variational principle for vector equilibrium

problems 465

Wavelet

Multiwavelet packets and frame packets of

L\R
(I

) 439

Wavelet packets
Multiwavelet packets and frame packets of

L\R
d

) 439

Weakly compatible maps
Common fixed points for weakly compatible

maps 241

Yosida approximation
Nonlinear elliptic differential equations with

multivalued nonlinearities 489



AUTHOR INDEX

Abhyankar Shreeram S

Descent principle in modular Galois theory
139

Anandhi E R
see Balachandran K 127

Bagchi Bhaskar
A survey of homogeneous operators and pro-

jective representations of the Mobius group
415

Balachandran K
Boundary controllability of integro-

differential systems in Banach spaces 127

Ballico E
The multiplication map for global sections

of line bundles and rank 1 torsion free sheaves

on curves 163

Behera Biswaranjan
Multiwavelet packets and frame packets of

L2
(R'<) 439

Bhatt S J

Topological ^'-algebras with C*-enveloping

algebras II 65

Bhattacharyya Dakshini

Variational formulae for Fuchsian groups
over families of algebraic curves 33

BhosleUshaN

Principal G-bundles on nodal curves 271

Biswas Indranil

Stability of Picard bundle over moduli space
of stable vector bundles of rank two over a

curve 263

Bose Sujit K
On initial conditions for a boundary stabi-

lized hybrid Euler-Bernoulli beam 365

Cegarra Antonio M
Obstructions to Clifford system extensions

of algebras 151

Chandra Prem

Multipliers for the absolute Euler

summability of Fourier series 203

Chugh Renu
Common fixed points for weakly compatible

maps 241

Deswal Sunita

see Kumar Rajneesh 1 37

Dey Rukmini
A variational proof for the existence of a

conformal metric with preassigned negative
Gaussian curvature for compact Riemann
surfaces of genus > 1 407

Fakhruddin Najmuddin
Boundedness results for periodic points on

algebraic varieties 173

FiaccaAntonella

Nonlinear elliptic differential equations with

multivalued nonlinearities 489
Fu Xilin

see Yan Baoqiang 35 1

Gaikawad G S

see Malgonde S P 471

Garzon Antonio R
see Cegarra Antonio M 151

G6mezTomdsL
Algebraic stacks 1

see Biswas Indranil 263

Hooley C
On totally reducible binary forms: I 249

Indumathi V
Proximinal subspaces of finite codimension
in direct sum spaces 229

Kazmir K R
A variational principle for vector equilibrium

problems 465
Keskar Pradipkumar H

see Abhyankar Shreeram S 1 39

Kolwicz Pawei
On property (/3) in Banach lattices, Calder6n~

Lozanowskii and Orlicz-Lorentz spaces

319

KrishnaM
Spectra of Anderson type models with de-

caying randomness 179

Kumar Rajneesh

Steady-state response of a micropolar gen-
eralized thermoelastic half-space to the mov-

ing mechanical/thermal loads 137

KumarSanjay
see Chugh Renu 241

Malgonde S P
On a generalized Hankel type convolution

of generalized functions 47 1

Matzakos Nikolaos

see Fiacca Antonella 489

Misra Gadadhar

see Bagchi Bhaskar 415

513



514 Author index

Narayanan E K
On the equisummability of Hermite and

Fourier expansions 95

Papageorgiou Nikolaos S

Periodic and boundary value problems for

second order differential equations 1 07

s^FiaccaAntonella 489

Papalini Francesca

see Papageorgiou Nikolaos S 107

Parhi N
On oscillation and asymptotic behaviour of

solutions of forced first order neutral differ-

ential equations 337

PatiT

On a Tauberian theorem of Hardy and

Littlewood 221

PatiVishwambhar

Unitary tridiagonalization in M(4, C) 381

Pruthi Manju
Minimal cyclic codes of length 2"' 37 1

Rath R N
see Parhi N

RaySK
Uncertainty principles on two step nilpotent
Lie groups 293

Servadei Raffaella

seeFiaccaAntonella 489
Shah Riddhi

Limits of commutative triangular systems on

locally compact groups 49
Sinha K B

see Krishna M 179

Thangavelu S

see Narayanan E K 65

337

XiminLiu
On Ricci curvature of C-totally real

submanifolds in Sasakian space forms 399

Yan Baoqiang
Monotone iterative technique for impulsive

delay differential equations 351

End of one hundred and eleventh volume


