

1m Jax banker R.M. Sat: 5 Dec: 1908.

MATHEMATICAL TRACTS.

i linev. Chi Calendaria

PART II.

$\mathbf{B}\mathbf{Y}$

F. W. NEWMAN, M.R.A.S.

EMERITUS PROFESSOR OF UNIVERSITY COLLEGE, LONDON; HONORARY FELLOW OF WORCESTER COLLEGE, OXFORD.

Cambridge : MACMILLAN AND BOWES.

1889

[All Rights reserved.]

NH NH

V. 2.

to it.

jeft of 9 Wargenliein to matter Theft.

Cambridge : PRINTED BY C. J. CLAY, M.A. AND SONS, AT THE UNIVERSITY PRESS.

CONTENTS (OF ANTICYCLICS).

- 1. Gudermann's Treatise.
- 2. His notation by German types of cos, sin, tan for which here mere capital initials suffices. Thus Tan x means $\frac{1-e^{-2x}}{1+e^{-2x}}$.
- 4. His primary Integral $\int \sec \omega \, d\omega$. A Table of Tan x from x = 01 to x = 1.00.
- 7. First Properties of the Integral.
- 8. Inverse Functions.
- 12, 13. Peculiar Series from Gudermann.
- 14. Calculation of the *Primary* Anticyclics. To the symbols Sin, Cos, Tan, Cot, I add for conciseness \triangleright for Cosec, \triangleright (Samech) for Sec, \sqcap for (1 Tan), \supset for (Cot 1).
- Anticyclics shorn of their first term (*Mutilated*)*. Eight Secondary Anticyclics, suggested by Elliptics.
- 16. Peculiar Transformations. New aids to Convergence.
- 19. Numerical Illustrations, testing my Tables.

Skeleton Tables, in which x (the argument) advances by $\cdot 1$ at each step, and the results run to 16 decimals.

First from x = 9 to x = 1, for $x^{-1} - P(x)$, $1 = \sec x$, $\cot x - x^{-1}$, and $\tan x$. p. 109.

Next (from x=1 upward) for P(x) and Sec x. pp. 110-113.

..... so $\supseteq(x)$ and $\prod(x)$. pp. 114-116.

Further, the Mutilated. pp. 117-120.

Natural log $\frac{1}{1-e^{-2x}}$, and $(1+e^{-2x})$. pp. 121–123.

Also log Cot x. p. 124.

[In anticipation of Legendre's Elliptic Scale is a special Table on p. 126.] p. 125. Further details of the Eight *Secondaries*, with other Hebrew letters. Next, *Five* short Tables, all to 16 decimals.

Finally, in pp. 5–139 a Table of $e^{-\rho}$ in the same scale.

* I add a zero Index, as in Po, Do, Do, Do for Mutilated Functions.

line, off Oalforada

PART II.

ANTICYCLICS.

1. A VOLUME exists of 354 quarto pages by Dr C. Gudermann, Professor of Mathematics in Münster. It was published in 1833 by G. Reiner, Berlin, bearing the title, Theory of Potential Cyclic Hyperbolic Functions. These I call simply ANTICYCLIC. The substance of Gudermann's treatise, it seems, appeared previously in volumes 6, 7, 8, 9 of Crelle's Journal. From p. 159 to p. 260 is an elaborate table of the integral $u = \int_0 \frac{d\theta}{\cos \theta}$, tabulated previously by Legendre for use in Elliptic Integrals; but Gudermann's table is tenfold in amplitude. From p. 263 to p. 336 is a second large table, giving the common logarithms of

$$\frac{1}{2}(\epsilon^k+\epsilon^{-k}), \quad \frac{1}{2}(\epsilon^k-\epsilon^{-k})$$

and of their ratio, to 9 and at last 10 decimals, with k increasing by only 001 at every step. Perhaps this was primarily intended to aid the valuation of Elliptic series: for he begins his table at k = 2. If he had begun at k = 1.57 (for $k = \frac{1}{2}\pi$), his task would have been complete. For in Elliptics two constants kk' bear the relation $kk' = \frac{1}{4}\pi^2$. We can work, at pleasure, through either; and one or other must exceed $\frac{1}{2}\pi$. Gudermann has certainly achieved a great and arduous task.

2. He was probably first to introduce (with German types) [I content myself with capital S and C] Sin x for $\frac{1}{2} (\epsilon^x - \epsilon^{-x})$ and Cos x for $\frac{1}{2} (\epsilon^x + \epsilon^{-x})$. This is the beginning of Anticyclic notation. The beauty of it is seen in formulas which abound in the higher theory of Elliptics, such as

$$\omega = x + \frac{\sin 2x}{\cos 2\rho} + \frac{1}{2} \frac{\sin 4x}{\cos 4\rho} + \frac{1}{3} \cdot \frac{\sin 6x}{\cos 6\rho} + \&c. \dots$$

where ρ is the leading constant, a function of the modulus c; x, the leading variable, is proportional to Legendre's First Integral

$$\int_0 \frac{d\omega}{\sqrt{(1-c^2\sin^2\omega)}},$$

N. II.

becoming equal to ω at every complete quadrant. An eminent mathematician observed, that while our *theory* of these integrals seems complete, the extreme difficulty of calculating the constants baffles us when we try to *use* the higher scales. Until we have better aid in Anticyclic tables, apparently this difficulty must remain.

3. Analogy drives us on to use Tan for $\frac{\text{Sin}}{\text{Cos}}$, and Cot for the reciprocal. Nor can we any the more refuse Sec Cosec for the reciprocals of Cos and Sin. Thus we have

$$\operatorname{Tan} x = \frac{\epsilon^{x} - \epsilon^{-x}}{\epsilon^{x} + \epsilon^{-x}} = \frac{1 - \epsilon^{-2x}}{1 + \epsilon^{-2x}}; \quad \operatorname{Cot} x = \frac{1 + \epsilon^{-2x}}{1 - \epsilon^{-2x}}, \text{ functions of } \epsilon^{-2x} \text{ alone.}$$

Hence too 1 - Tan $x = \frac{2\epsilon^{-2x}}{1 + \epsilon^{-2x}}; \quad \operatorname{Cot} x - 1 = \frac{2\epsilon^{-2x}}{1 - \epsilon^{-2x}}.$
These, as well as Cosec $x = \frac{2\epsilon^{-x}}{1 - \epsilon^{-2x}}$ and Sec $x = \frac{2\epsilon^{-x}}{1 + \epsilon^{-2x}}$

are very simple functions of e^{-x} . We may almost say the same of

 $\log_{\epsilon} \operatorname{Sin} x \text{ and } \log_{\epsilon} \operatorname{Cos} x; \text{ since } \log \operatorname{Sin} x = x - \log 2 + \log (1 - e^{-2x})$ and log Cos $x = x - \log 2 + \log (1 + e^{-2x}).$

A complete and trustworthy table of e^{-x} is presupposed in this whole theory. Because Gudermann had *not* such at hand, therefore (perhaps) he began his table at k = 2.

Since $\cos x \pm \sin x = e^{\pm x}$, $\therefore \cos^2 x - \sin^2 x = 1$.

Dividing the last by $\cos^2 x$, we obtain $1 - \tan^2 x = \sec^2 x$.

Evidently $\cos x$, like $\sec \theta$, varies from 1 to ∞ ; $\sin x$, like $\tan \theta$, from 0 to ∞ : but $\operatorname{Tan} x$ and $\operatorname{Sec} x$, like positive $\sin \theta$ and $\cos \theta$, from 0 to 1.

Gudermann's Längezahl.

4. I cannot translate this word: it is not in my German Dictionary. The "Length-Number" sounds to me nonsensical.

Since Tan x has the same limits as positive $\sin \theta$, we are led to assume the equation Tan $x = \sin \theta$ tentatively, and are instantly rewarded by a series of important relations. First, from

 $1 - \operatorname{Tan}^2 x = \operatorname{Sec}^2 x$, it gives $\operatorname{Sec} x = \cos \theta$;

whence again $\cos x = \sec \theta$. Also

$$\sin x = \frac{\operatorname{Tan} x}{\operatorname{Sec} x} = \frac{\sin \theta}{\cos \theta} = \tan \theta.$$

Thus, if from a given x we can pass to θ , a trigonometrical table that furnishes us with the circular functions of θ will make us masters of the Anticyclic functions of x. To pass from x to Tan x will enable us to reach θ .

From our definitions of $\cos x$ and $\sin x$ as $\frac{1}{2}(\epsilon^x \pm \epsilon^{-x})$ we forthwith deduce $d \cdot \cos x = \sin x dx$ and $d \cdot \sin x = \cos x dx$. Therefore also we get

$$d \cdot \operatorname{Tan} x = d \cdot \frac{\operatorname{Sin} x}{\operatorname{Cos} x} = \frac{\operatorname{Cos} x d \operatorname{Sin} x - \operatorname{Sin} x d \operatorname{Cos} x}{(\operatorname{Cos} x)^2} = \frac{\operatorname{Cos}^2 x - \operatorname{Sin}^2 x}{\operatorname{Cos}^2 x} \cdot dx$$
$$= \operatorname{Sec}^2 x dx.$$

Hence on differentiating $\operatorname{Tan} x = \sin \theta$, you find

 $\operatorname{Sec}^2 x \, dx = \cos \theta \, d\theta.$

But $\operatorname{Sec}^2 x = \cos^2 \theta$; whence $dx = \frac{d\theta}{\cos \theta}$, or $x = \int_0^{\infty} \frac{d\theta}{\cos \theta}$;

since x vanishes with θ .

This is the integral tabulated, first by Legendre; next, more elaborately by Gudermann. To have the mastery over x when θ is given, and conversely, is our first problem.

5. If we take $\rho = \int_0^{\infty} \sec \theta \, d\theta$ as a Polar curve, with ρ as radius vector, the locus has ρ as an asymptote (logarithmic infinity) when $\theta = 90^{\circ}$. The curve starts at $\theta = 0$ perpendicular to this asymptote, from which it attains its maximum distance, nearly where $\theta = 60^{\circ}$. As attempts at admissible nomenclature, I have sometimes called ρ the Range and θ the Elevation.

Legendre has two integrations slightly differing:

(a)
$$\int_{0}^{1} \frac{d\theta}{\cos\theta} = \int_{0}^{1} \frac{\cos\theta}{\cos^{2}\theta} d\theta = \int_{0}^{1} \frac{d\sin\theta}{1-\sin^{2}\theta} = \frac{1}{2} \log \frac{1+\sin\theta}{1-\sin\theta};$$

(b) Let $\theta = 2\omega$ $\therefore \int_{0}^{1} \frac{d\theta}{\cos\theta} = \int_{0}^{1} \frac{2d\omega}{\cos^{2}\omega} = \int_{0}^{1} \frac{2d\omega}{\cos^{2}\omega - \sin^{2}\omega}$
 $= \int_{0}^{1} \frac{2\sec^{2}\omega}{1-\tan^{2}\omega} d\omega = \int_{0}^{1} \frac{2d\tan\omega}{1-\tan^{2}\omega} = \log \frac{1+\tan\omega}{1-\tan\omega}$
 $= \log \tan (45^{\circ} + \omega).$

6. From the last, if x = this integral, $\epsilon^x = \tan(45^\circ + \frac{1}{2}\theta), \ \epsilon^{-x} = \tan(45^\circ - \frac{1}{2}\theta)$ 83

6 - 2

whence, reverted, $\frac{1}{2}\theta = 45^{\circ} - \tan^{-1}(\epsilon^{-x})$, which avails us, if we have a good table of ϵ^{-x} from x as argument.

As I regarded such a table as of first necessity for Anticyclics, I prepared one myself, and was rewarded by the Philosophical Society of Cambridge publishing it in 87 quarto pages, under the zealous and toilful superintendence of Mr Glaisher. By the kind support of Professor Adams, the same society has since published my table of ϵ^x from x = 0 to x = 2.

If x exceeds 3, the series $\tan^{-1} \cdot e^{-x} = e^{-x} - \frac{1}{3}e^{-3x} + \frac{1}{5}e^{-5x} - \&c.$ converges very rapidly: but it is more convenient to have θ in degrees; and unless x is less than 1, I suppose from a trigonometrical table, with e^{-x} known, $\tan^{-1} \cdot e^{-x}$ can be found in degrees with the needful accuracy. But to meet the case of x < 1, Professor J. C. Adams of Cambridge (to whom I sent a table of Tan x, calculated for x less than 1, wishing him to get it tested by differencing), was kind enough to compute it—by help of a new machine, as I understand—independently, from my values of e^{-x} , and had his own results verified by differencing. Thus I am able to present to the reader the table attached, which now rests not on me, but on the authority of the distinguished astronomer.

TABLE OF

 $\operatorname{Tan} x = \frac{1-\epsilon^{-2x}}{1+\epsilon^{-2x}}, \ \text{from} \ x = 01 \ \text{to} \ x = 1,$

x	Tan <i>x</i> .	x	Tan <i>x</i> .
·01	·0099 9966 6680	·11	·1095 5847 0215
·02	·0199 9733 3760	·12	·1194 2729 8535
·03	·0299 9100 3239	·13	·1292 7258 3606
·04	·0399 7868 0318	·14	·1390 9244 7878
·05	·0499 5837 4958	·15	·1488 8503 3623
·06	·0599 2810 3529	·16	·1586 4850 4297
·07	·0698 8589 0316	·17	·1683 8104 5870
·08	·0798 2976 9111	·18	·1780 8086 8117
·09	·0897 5778 4747	·19	·1877 4620 5869
·10	·0996 6799 4625	·20	·1973 7532 0225

as corrected by Professor J. C. ADAMS.

x	Tan <i>x</i> .	x	Tan <i>x</i> .
·21	[•] 2069 6649 9730	·61	·5441 2709 8854
·22	[•] 2165 1806 1493	·62	·5511 2802 8538
·23	[•] 2260 2835 2279	·63	·5580 5221 5559
·24	[•] 2354 9574 9539	·64	·5648 9955 2846
·25	[•] 2449 1866 2403	·65	·5716 6996 6085
·26	^{•2542} 9553 2627	·66	·5783 6341 3044
·27	•2636 2483 5472	·67	·5849 7988 2881
·28	•2729 0508 0563	·68	·5915 1939 5433
·29	•2821 3481 2670	·69	·5979 8200 0499
·30	•2913 1261 2451	·70	·6043 6777 7117
·31	'3004 3709 7147	·71	·6106 7683 2817
·32	'3095 0692 1213	·72	·6169 0930 2877
·33	'3185 2077 6903	·73	·6230 6534 9572
·34	'3274 7739 4808	·74	·6291 4516 1414
·35	'3363 7554 4337	·75	·6351 4895 2388
·36	·3452 1403 4136	·76	•6410 7696 1186
·37	·3539 9171 2477	·77	•6469 2945 0442
·38	·3627 0746 7578	·78	•6527 0670 5962
·39	·3713 6022 7877	·79	•6584 0903 5955
·40	·3799 4896 2255	·80	•6640 3677 0268
·41	·3884 7268 0216	·81	.6695 9025 9620
·42	·3969 3043 2005	·82	.6750 6987 4838
·43	·4053 2130 8689	·83	.6804 7600 6113
·44	·4136 4444 2187	·84	.6858 0906 2230
·45	·4218 9900 5251	·85	.6910 6946 9833
·46	*4300 8421 1403	·86	·6962 5767 2687
·47	*4381 9931 4833	·87	·7013 7413 0938
·48	*4462 4361 0249	·88	·7064 1932 0397
·49	*4542 1643 2682	·89	·7113 9373 1818
·50	*4621 1715 7260	·95	·7162 9787 0199
·51	·4699 4519 8933	·91	^{•7211} 3225 4078
·52	·4777 0001 2168	·92	^{•7258} 9741 4849
·53	·4853 8109 0606	·93	^{•7305} 9389 6096
·54	·4929 8796 6675	·94	^{•7352} 2225 2916
·55	·5005 2021 1190	·95	^{•7397} 8305 1273
·56	*5079 7743 2898	·96	·7442 7686 7362
·57	*5153 5927 8008	·97	·7487 0428 6969
·58	*5226 6542 9685	·98	·7530 6590 4870
·59	*5298 9560 7528	·99	·7573 6232 4216
·60	*5370 4956 6998	1·00	·7615 9415 5955

When x is given (less than 1), this table shows $\operatorname{Tan} x$, and the equation $\sin \theta = \operatorname{Tan} x$ determines θ .

Moreover Gudermann shows how to use his table inversely, and obtain θ from x.

Every one acquainted with Elliptic Integrals will see that the assumption there admitted, of

$$\sin\theta = \sqrt{-1} \cdot \tan\psi,$$

Tan $1 r - \tan 1 A$

whence $\cos \theta = \sec \psi$, $\tan \theta = \sqrt{-1} \sin \psi$, &c. does but introduce Anticyclics in disguise.

7. Some other elegant relations must be mentioned,

Proof:
$$\tan \frac{1}{2}\theta = \sqrt{\frac{1-\cos\theta}{1+\cos\theta}} = \sqrt{\frac{\sec\theta-1}{\sec\theta+1}} = \sqrt{\frac{2(\cos x-1)}{2(\cos x+1)}}$$
$$= \sqrt{\frac{\epsilon^x + \epsilon^{-x} - 2}{\epsilon^x + \epsilon^{-x} + 2}} = \frac{\epsilon^{\frac{1}{2}x} - \epsilon^{-\frac{1}{2}x}}{\epsilon^{\frac{1}{2}x} + \epsilon^{-\frac{1}{2}x}} = \operatorname{Tan} \frac{1}{2}x.$$
$$x = \int_0 \frac{d\theta}{\cos\theta} = \frac{1}{2}\log\frac{1+\sin x}{1-\sin x}$$

may of course be developed into

 $\sin\theta + \frac{1}{3}\sin^3\theta + \frac{1}{5}\sin^5\theta + \frac{1}{7}\sin^7\theta + \&c. \dots (a).$

This development of x in odd powers of $\sin \theta$ suggests the assumption x, or

$$\int_{0} \sec \theta d\theta = A_1 \sin \theta - \frac{1}{3}A_3 \sin 3\theta + \frac{1}{5}A_5 \sin 5\theta - \&c.$$

Differentiate: then

$$\sec \theta = A_1 \cos \theta - A_3 \cos 3\theta + A_5 \cos 5\theta - \&c.$$

Multiply by $2\cos\theta$, and apply the formula

 $2\cos\theta \cdot \cos(2n+1)\theta = \cos 2n\theta + \cos(2n+2)\theta;$

 $\therefore \quad 2 = A_1 \left(1 + \cos 2\theta \right) - A_3 \left(\cos 2\theta + \cos 4\theta \right)$

 $+ A_{5} (\cos 4\theta + \cos 6\theta) - \&c.,$

which requires $A_1 = 2 = A_3 = A_5 = A_7$ &c.

Hence $\frac{1}{2}x = \sin \theta - \frac{1}{3}\sin 3\theta + \frac{1}{5}\sin 5\theta - \frac{1}{7}\sin 7\theta + \&c.$ a series which can be otherwise confirmed. Namely, it is known in the Higher Trigonometry that if r is < 1,

 $\frac{(1+r)\cot \theta}{1+2r\cos 2\theta+r^2} = \cos \theta - r\cos 3\theta + r^2\cos 5\theta - r^4\cos 7\theta + \&c.$

With r constant and θ variable, multiply by $d\theta$ and integrate:

$$\therefore \quad (1+r) \int_{\theta} \frac{\cos \theta \, d\theta}{1+2r \cos 2\theta + r^2} = \sin \theta - \frac{1}{3}r \sin 3\theta + \frac{1}{5}r^2 \sin 5\theta - \&c.$$

This, being true as long as r < 1, and the series on the right converging even when r reaches 1, will not prove false at the extreme value r = 1. But when r = 1, the left member becomes

$$2\int \frac{\cos\theta \, d\theta}{2\left(1+\cos 2\theta\right)} \text{ or } 2\int_{0} \frac{\cos\theta d\theta}{4\cos^{2}\theta} \text{ or } \int_{0} \frac{d\theta}{2\cos\theta} \, .$$

if $x = \int_{0} \sec\theta d\theta$,

we find $\frac{1}{2}x = \sin \theta - \frac{1}{3}\sin 3\theta + \frac{1}{5}\sin 5\theta - \&c.$ as before.

Of course, from slow convergence, this series does not aid computation.

8. We pass to Inverse Anticyclic Functions.

If $t = \operatorname{Tan} x, \ x = \operatorname{Tan}^{-1} t.$

But

Thus

$$dt = d \operatorname{Tan} x = \operatorname{Sec}^{2} x dx = (1 - \operatorname{Tan}^{2} x) dx$$
$$= (1 - t^{2}) dx.$$
$$\therefore \quad dx = \frac{dt}{1 - t^{2}} = (1 + t^{2} + t^{4} + t^{6} + \&c.) dt,$$

 $x = t + \frac{1}{3}t^3 + \frac{1}{5}t^5 + \&c....(a).$

But $t = \sin \theta$ or $x = \sin \theta + \frac{1}{3} \sin^{3} \theta + \frac{1}{5} \sin^{5} \theta + \&c$. The t and $\sin \theta$ are always less than 1.

- 9. We proceed to Sin^{-1} and Cos^{-1} . Let $u = \operatorname{Sin} x$, $v = \operatorname{Cos} x$.
- First, $du = \cos x dx = \sqrt{1 + \sin^2 x}$. $dx = \sqrt{(1 + u^2)} dx$,

$$dx = \frac{du}{\sqrt{1+u^2}}$$

The development by Bin. Th. is twofold. First, when u is less

than 1.
$$dx = \left\{ 1 - \frac{1}{2}u^2 + \frac{1 \cdot 3}{2 \cdot 4} \cdot u^4 - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} u^6 + \&c. \right\} du,$$

whence x or $\operatorname{Sin}^{-1} u = u - \frac{1}{2} \cdot \frac{u^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{u^5}{5} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{u^7}{7} + \&c.$

Next when u is > 1, develop $(u^2 + 1)^{-\frac{1}{2}}$ in descending order, $x = \int u^{-1} \left\{ 1 - \frac{1}{2}u^{-2} + \frac{1 \cdot 3}{2 \cdot 4}u^{-4} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}u^{-6} + \&c. \right\} du$ $= \log (\alpha u) + \frac{1}{2} \cdot \frac{u^{-2}}{2} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{u^{-4}}{4} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{u^{-6}}{6} - \&c. ...(b).$ To find α , the constant of integration, observe that $e^x = \cos x + \sin x$ $= \sqrt{(1 + u^2) + u};$ $\therefore x = \log \{\sqrt{(1 + u^2) + u}\}.$ Make u infinite; then $x = \log (2u)$. But x then by (b)

 $= \log (\alpha u), \quad \therefore \quad \alpha = 2.$

10. Next, from
$$v = \cos x$$
, $dv = \sin v dx = \sqrt{(v^2 - 1)} dx$,
or $dx = \frac{dv}{\sqrt{(v^2 - 1)}} = v^{-1} \left\{ 1 + \frac{1}{2}v^{-2} + \frac{1 \cdot 3}{2 \cdot 4}v^{-4} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}v^{-6} \right\} dv$;
 $\therefore \quad x = \log (\beta v) - \frac{1}{2} \cdot \frac{v^{-2}}{2} - \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{v^{-4}}{4} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{v^{-6}}{6} - \&c.....(c)$.

To find β , we have

$$\epsilon^{x} = \operatorname{Cos} x + \operatorname{Sin} x = v + \sqrt{v^{2} - 1},$$

$$x = \log (v + \sqrt{v^{2} - 1}).$$

Make v infinite; $\therefore x = \log 2v$. This proves β to be 2, just as α previously. These results are Gudermann's.

11. Recurring to the "Range",

observe that from
$$e^x = \cos \theta + \sin \theta$$
,
we have $e^x = \sec \theta + \tan \theta$.

When x = 1, let θ have the special value θ_i ; then $\epsilon = \sec \theta_i + \tan \theta_i$.

From above, we infer

$$\frac{1}{2}\theta_1 = 45^\circ - \tan^{-1} \cdot (\epsilon^{-1}),$$

$$\epsilon^{-1} = \cdot 3678 \ 7944 \ 1171,$$

where

from which I deduced that θ_1 slightly exceeds 49°36'. I since find that Dr James Booth had found

 $\theta_1 = 49^{\circ} 36' 15''$, and $\tan \theta_1 = 1.17520 3015$.

Series which advance by powers of $\tan \theta$ or $\sin \theta$ are not convenient for a continuous table. Especially if all the terms are of one sign, Legendre evades them. We may here notice one such series with alternate signs, *viz*.

$$x = \operatorname{Sin}^{-1} (\tan \theta) = \tan \theta - \frac{1}{2} \frac{\tan^3 \theta}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{\tan^5 \theta}{5} - \&c. \dots (d).$$

12. Why Gudermann is not satisfied to work from Legendre's original equation $x = \log \tan (45^\circ + \frac{1}{2}\theta)$ I have not understood; but it seems to belong to liberal knowledge to be acquainted with his series.

For small values of θ Gudermann has $\theta = \frac{1}{2}\pi v$, and v a small fraction. To go back; from

$$\sin heta = heta \left(1 - rac{ heta^2}{\pi^2}\right) \left(1 - rac{ heta^2}{2^2 \pi^2}\right)$$
, &c.

you get in Trigonometry,

$$\theta \cot \theta = 1 - \Sigma \frac{2\theta^2}{n^2 \pi^2 - \theta^2};$$

where n = 1, 2, 3, 4... Next,

$$\frac{1}{\sin \theta} = \frac{1}{\theta} + \frac{2\theta}{\pi^2 - \theta^2} - \frac{2\theta}{2^2 \pi^2 - \theta^2} + \frac{2\theta}{3^2 \pi^2 - \theta^2} - \&c.$$

Thence, putting $\theta = \frac{1}{2}\pi - \omega$, resolving

$$\frac{2\theta}{n^2\pi^2-\theta^2} \text{ into } \frac{1}{n\pi-\theta}-\frac{1}{n\pi+\theta},$$

and for a moment making $\frac{1}{2}\pi = p$, you find

$$\frac{1}{\cos \omega} = \frac{2p}{p^2 - \omega^2} - \frac{2 \cdot 3p}{3^2 p^2 - \omega^2} + \frac{2 \cdot 5p}{5^2 p^2 - \omega^2} - \&c.$$

In this last, restore θ for ω , since the equation is identical, then

$$x = \int_{\theta} \frac{d\theta}{\cos \theta} = \log \frac{p+\theta}{p-\theta} - \log \frac{3p+\theta}{3p-\theta} + \log \frac{5p+\theta}{5p-\theta} - \&c.$$

If you here develop *every* term on the right, you have a result in powers of θ . But, to improve convergence, leave the first term undeveloped, and where $\theta = pv$ or $\frac{1}{2}\pi v$, you obtain

$$\begin{split} x &= \log \frac{1+v}{1-v} - 2 \left\{ M_1 v + M_3 v^3 + M_5 v^5 + \&c. \right\} \dots \dots (e), \\ \text{if} \quad M_n &= \frac{1}{n} \left\{ 3^{-n} - 5^{-n} + 7^{-n} + \&c. \right\} \end{split}$$

in which n is an odd integer.

If for other purposes $1 - V_n$ has been tabulated [a task which I had myself assumed] for n = 2, 3, 4, 5, &c. where V_n means

$$1^{-n} - 3^{-n} + 5^{-n} - 7^{-n} + \&c.$$

then we have simply M_r in our series

$$=\frac{1-V_r}{r}.$$

13. For increasing values of θ , Gudermann seems to use the results of (b) or (c) in Art. 9 and 10 above, viz.

$$x = \operatorname{Sin}^{-1} (\tan \theta) = \log (2 \tan \theta) + \frac{1}{2} \cdot \frac{\cot^2 \theta}{2} - \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{\cot^4 \theta}{4} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{\cot^4 \theta}{6} - \&c.$$

$$x = \operatorname{Cos}^{-1} (\sec \theta) = \log (2 \sec \theta) + \frac{1}{2} \cdot \frac{\cos^2 \theta}{2} - \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{\cos^4 \theta}{4} - \&c.$$

Embarrassing wealth of series possibly gave him great power of verification.

Finally, when θ approaches 90°, put $\theta = \frac{1}{2}\pi - \omega$; then ω is very small, $x = \int \frac{-d\omega}{\sin \omega},$

which further suggests $\omega = u\pi$,

or
$$\theta = \frac{1}{2}\pi - \pi u = \frac{1}{2}\pi (1 - 2u),$$

and our series will be developable in powers of u.

Write U_n for $1 - 2^{-n} + 3^{-n} - 4^{-n} + \&c$. and you easily get

$$x = \int \frac{-d\omega}{\sin \omega} = \log \frac{C}{\omega} - U_2 \cdot \frac{\omega^2}{\pi^2} - \frac{1}{2}U_4 \cdot \frac{\omega^4}{\pi^4} - \frac{1}{3}U_6 \cdot \frac{\omega^6}{\pi^6} - \&c.$$

where C = 2, when ω converges to zero,

or
$$x = \log \frac{2}{u\pi} - U_2 \cdot u^2 - \frac{1}{2}U_4 u^4 - \frac{1}{3}U_6 \cdot u^6 - \&c....(g).$$

But, for better convergence, add to the last

$$-\log(1-u^2) = u^2 + \frac{1}{2}u^4 + \frac{1}{3}u^6 + \&c.,$$

and observe that

$$\log \frac{2}{u\pi} + \log (1 - u^2) = \log (u^{-1} - u) - \log (\frac{1}{2}\pi);$$

$$\begin{array}{ll} \therefore \ x = \log \left(u^{-1} - u \right) - \log \left(\frac{1}{2} \pi \right) + \left(1 - U_2 \right) u^2 \\ & + \frac{1}{2} \left(1 - U_4 \right) u^4 + \frac{1}{3} \left(1 - U_6 \right) u^6 + \&c....(h), \\ \text{where} \qquad \qquad \theta = \frac{1}{2} \pi \left(1 - 2u \right), \\ \text{or} \qquad \qquad u = \frac{\frac{1}{2} \pi - \theta}{\pi}. \end{array}$$

Calculation of the Primary Anticyclics.

14. Since $\operatorname{Sin} x$ and $\operatorname{Cos} x$ increase rapidly, only their logarithms, when x exceeds 2, can well be registered, a task which Gudermann has executed, up to x = 12. When x exceeds 12, $\log(1 \pm e^{-2x})$ in series converges so rapidly, that its first term probably suffices; the two first are e^{-2x} and $\frac{1}{2}e^{-4x}$. Thus when x is large, $\log \sin x$ and $\log \operatorname{Cos} x$ are sufficiently known. For small values of x, put

$$P = e^{-2x} + \frac{1}{3}e^{-6x} + \frac{1}{5}e^{-10x} + \&c.$$

$$Q = \frac{1}{2}e^{-4x} + \frac{1}{4}e^{-8x} + \frac{1}{6}e^{-12x} + \&c.$$

$$-\log(1 - e^{-2x}) = P + Q; \quad \log(1 + e^{-2x}) = P - Q$$

Then

and from x given, P and Q are computable by a general table of $\epsilon^{-\rho}$ (such as has been published by the Cambridge Philosophical Society). I find it convenient to write

 $\sigma(x)$ as equivalent to P + Q, and $\kappa(x)$ for P - Q;

whence

here
$$\log \operatorname{Sin} x = x - \log 2 - \sigma(x)$$

 $\log \operatorname{Cos} x = x - \log 2 + \kappa(x)$ and $\log \operatorname{Cot} x = 2P$.

The reciprocals of $\sin x$ and $\cos x$ can be obtained from $\frac{2e^{-x}}{1 \mp e^{-2x}}$ by long division, by aid of the table of e^{-x} . But when x is not very small, the development rising by powers of e^{-2x} yields a result nearly accurate and less tedious: moreover it will give two results at once. I write P(x) for Cosec x, i.e. for the reciprocal of Sin x, and D for Sec x or the reciprocal of Cos x.

When x exceeds 1.37, \triangleright and \triangleright are found most easily by summing

$$M = e^{-x} + e^{-5x} + e^{-9x} + e^{-13x} + e^{-17x} + \dots$$

$$N = e^{-3x} + e^{-7x} + e^{11x} + e^{-15x} + \dots$$

$$D(x) = 2(M + N); D(x) = 2(M - N).$$

Then

After calculating this latter part of the table, we may go back to x less than 1.37, and take the sums

$$H = \epsilon^{-x} + \epsilon^{-5x} + \epsilon^{-18x} + \epsilon^{-17x} + \epsilon^{-25x}$$
$$K = \epsilon^{-7x} + \epsilon^{-11x} + \epsilon^{-19x} + \epsilon^{-23x}$$

Evidently then by the expansion of $\mathcal{D}(3x)$ and $\mathcal{D}(3x)$, you find

P(x) = 2(H+K) + P(3x) of which P(3x) and D(3x) are

D(x) = 2(H - K) - D(3x) supposed already in our tables.

Occasional long division is a valuable check on error, especially as to the last figures.

The table of ρ and D ends naturally when the second term $2\epsilon^{-sx}$ is insignificant, so that $\rho(x)$ and D(x) are undistinguishable from $2\epsilon^{-x}$.

Since $\cot x$ and $\operatorname{Tan} x$ converge towards 1 when x increases, I write \supset for $\cot - 1$ and \sqcap for $1 - \operatorname{Tan}$; which give $\supset (x) = \frac{2e^{-2x}}{1 - e^{-2x}}$;

$$\Pi(x) = \frac{2\epsilon}{1 - \epsilon^{-2x}}.$$

When an entire table of rightarrow(x) pre-exists, you can deduce from it entire tables of $\beth(x)$ and $\varPi(x)$ by the process of $a \pm b$ for each entry For we have as identity

$$\frac{2y}{1\mp y} = \frac{2y}{1-y^2} \pm \frac{2y^2}{1-y^2};$$

in which you have merely to assume $y = e^{-2x}$, then, with the upper sign, $\supset (x) = \bigcap (2x) + \supset (2x)$ with the lower, $\square (x) = \bigcap (2x) - \supset (2x)]$.

Begin with x so large, that $\Im(2x)$ is undistinguishable from $2e^{-2x}$ that is, when $2e^{-4x}$ is insignificant; and work backward.

The great ease of this method seems to give primacy to a table of $\Im x$. That of $\Im(x)$ is less serviceable.

Moreover if you repeat the equation

$$(2x) \triangleleft (2x) \triangleleft (2x) \triangleleft (2x) \triangleleft$$

by writing for x, first 2x, next 4x, next 8x, ... and so on to $2^{n-1}x$, then adding all together, you get

$$(x) - \zeta(2^{n}x) = (2^{n}x) + (2^{2}x) + (2^{n}x) + \dots + (2^{n}x);$$

when *n* is large, $\supset (2^n x) = 0$. Practically, when 16 decimals suffice, $e^{-37} = 0$; $\therefore \supset (18) = 0$.

The last series converges nearly as

 $2\left(\epsilon^{-2x}+\epsilon^{-4x}+\epsilon^{-8x}+\epsilon^{-16x}+\ldots\right)$

If you calculate $\supset(x)$ by long division, this formula avails to verify a table of \supset . Like remarks may be made on the companion formula [obtained from $\supset(x) + \bigcap(x) = 2\bigcap(2x)$],

$$x = \chi^{(2^{*}x)} - \chi^{(2^{*}x)} -$$

The Mutilated and the Secondary Functions.

15. Advantage is sometimes found in using the Anticyclics $\pi \subset \mathcal{A}$ deprived of their first term of development. I call these *Mutilated*, and denote them by $\mathcal{A}_{\mathcal{A}} \subset \mathcal{A}_{\mathcal{A}}$. Then

$$\begin{split} \mathcal{P}_{0}(x) &= \frac{2\epsilon^{-3x}}{1 - \epsilon^{-2x}}; \quad \mathcal{D}_{0}(x) = \frac{2\epsilon^{-3x}}{1 + \epsilon^{-x}}; \\ \mathcal{D}_{0}(x) &= \frac{2\epsilon^{-4x}}{1 - \epsilon^{-2x}}; \quad \mathcal{D}_{0}(x) = \frac{2\epsilon^{-4x}}{1 + \epsilon^{-2x}}; \\ \mathcal{D}_{0}(x) &= \mathcal{P}(x) - 2\epsilon^{-x}; \quad \mathcal{D}_{0}(x) = 2\epsilon^{-x} - \mathcal{D}(x); \\ \mathcal{D}_{0}(x) &= \mathcal{D}(x) - 2\epsilon^{-2x}; \quad \mathcal{D}_{0}(x) = 2\epsilon^{-2x} - \mathcal{D}(x); \end{split}$$

or

If tables are calculated, the Mutilated Functions $\rho_0 x$, $D_0 x$ may be made *auxiliary*; thus we may calculate them first, and $\rho(x)$, Dx from them; then proceed to $\Box(x)$ and $\Pi(x)$, and from these deduce $\Box_0(x)$ and $\Pi_0(x)$.

Again, these Mutilated forms facilitate our estimate of what I further call the *Secondary* Functions, which are suggested by Elliptic Integrals. If, as in Legendre's notation, $F(c\omega)$ mean

while
$$\begin{split} & \int_{0} \frac{d\omega}{\sqrt{(1-c^2 \sin^2 \omega)}}, \\ \rho &= \frac{1}{2}\pi \cdot \frac{F\left(b, \frac{1}{2}\pi\right)}{F\left(c, \frac{1}{2}\pi\right)}, \\ \text{where} & b^2 + c^2 = 1; \end{split}$$

it is convenient also to take

$$\frac{x}{\frac{1}{2}\pi} = \frac{F(c\omega)}{F(c, \frac{1}{2}\pi)},$$

then x is the leading independent variable, and ρ the leading constant in the Higher Theory. It is never *necessary* to suppose ρ less than $\frac{1}{2}\pi$; for if ρ' be related to b as ρ to c, we obviously have $\rho\rho' = (\frac{1}{2}\pi)^2$, so that either ρ or ρ' must exceed $\frac{1}{2}\pi$; and b is symmetrical with c. The relation of ρ to c is transcendental. For conciseness we may write C [not for $F(c, \frac{1}{2}\pi)$ as in Legendre's great Supplement, but]

$$rac{F\left(c,\ rac{1}{2}\pi
ight) }{rac{1}{2}\pi}$$
 ;

and B for the like function of b. The relation of these constants guides us to eight Secondary Anticyclics. In Legendre's notation ρ is not used, but instead he has q equivalent to what here is $\epsilon^{-2\rho}$,

so that
$$\mathbf{p}(\rho) = \frac{2\sqrt{q}}{1-q}, \quad \mathbf{D}(\rho) = \frac{2\sqrt{q}}{1+q},$$
$$\mathbf{D}(q) = \frac{2q}{1-q}, \quad \mathbf{D}(q) = \frac{2q}{1+q}.$$

For conciseness let simple l mean \log_{e} . Then with the Hebrew letters $\forall n \in \mathcal{A}$ for functional symbols, we may assume,

Secondary Anticyclics.

1.
$$(\rho)$$
 for $l \operatorname{Cot} \rho + l \operatorname{Cot} 3\rho + l \operatorname{Cot} 5\rho + \&c. ad infin.$

2.
$$\mathfrak{D}(\rho)$$
 for $l \operatorname{Cot} \rho - l \operatorname{Cot} 2\rho + l \operatorname{Cot} 3\rho - l \operatorname{Cot} 4\rho + \&c$.

3.
$$\mathfrak{D}(\rho)$$
 for $\Pi(\rho) + \frac{1}{2}\Pi(2\rho) + \frac{1}{3}\Pi(3\rho) + \&c.$

4.
$$\Upsilon(\rho)$$
 for $\Pi(\rho) - \frac{1}{2}\Pi(2\rho) + \frac{1}{3}\Pi(3\rho) - \&c.$

5.
$$\neg(\rho)$$
 for $\neg(\rho) - \neg(3\rho) + \neg(5\rho) - \neg(7\rho) + \&c.$

6.
$$1(\rho)$$
 for $\frac{1}{2} \supset (2\rho) + \frac{1}{4} \supset (4\rho) + \frac{1}{6} \supset (6\rho) + \&c.$

7.
$$\Pi(\rho)$$
 for $\Pi(\rho) - \Pi(3\rho) + \Pi(5\rho) - \&c.$

8.
$$\boldsymbol{\mathcal{U}}(\rho)$$
 for $\boldsymbol{\rho}(x) - \boldsymbol{\rho}(3x) + \boldsymbol{\rho}(5x) - \&c$.

The routine of the Calculus in Elliptic Integrals then elicits the equations

$$\begin{split} & (\rho) = \frac{1}{4} \cdot l \cdot \frac{1}{b}; \quad \mathfrak{D}(\rho) = \frac{1}{2} \cdot l \cdot C; \\ & l \cdot \frac{4}{c} = \rho + 2\mathfrak{V}(\rho); \quad C = 1 + 2\Im(\rho); \\ & Cc = 2\mathfrak{V}(\rho); \quad Cb = 1 - 2\Im(\rho). \end{split}$$

[where C is defined by $\frac{1}{2}\pi$. $C = F_c$; ρ by the equation ρ . $F_c = \frac{1}{2}\pi$. F_b .]

The function $\mathbf{i}(\rho)$ arises in the course of the same theory, and is needful in certain transformations. As for $\mathbf{b}(\rho)$, it is a companion to $\mathbf{y}(\rho)$ and somewhat aids computation.

16. Each of these Secondary functions admits of transformations into a new series, to which the notation through q leads most easily. Thus for (ρ) , observe that

$$\operatorname{Cot} \rho = \frac{1 + e^{-2\rho}}{1 - e^{-2\rho}} = \frac{1 + q}{1 - q},$$
$$\operatorname{Cot} \cdot n\rho = \frac{1 + e^{-2n\rho}}{1 - e^{-2n\rho}} = \frac{1 + q^n}{1 - q^n}.$$

and

Hence

$$l \operatorname{Cot} . n\rho = 2 \{ q^n + \frac{1}{3} q^{3n} + \frac{1}{5} q^{5n} + \&c. \}$$

In the last, put 1, 3, 5, 7, \dots for n, then you get

Add these up in vertical columns; using the formula

$$q^{m} + q^{3m} + q^{5m} + \&c. = \frac{q^{m}}{1 - q^{2m}}.$$

$$(\rho) = \frac{2q}{1 - q^{2}} + \frac{1}{3} \cdot \frac{2q^{3}}{1 - q^{6}} + \frac{1}{5} \cdot \frac{2q^{5}}{1 - q^{10}} + \&c.$$

$$= \rho(2\rho) + \frac{1}{3} \cdot \rho(6\rho) + \frac{1}{5} \cdot \rho(10\rho) + \&c.$$

Then

By a perfectly similar process

 $\mathfrak{D}(\rho)$ is changed to $\mathfrak{n}(\rho) + \frac{1}{3}\mathfrak{n}(\rho) + \frac{1}{5}\mathfrak{n}(5\rho) + \&c.;$ $\mathfrak{n}(\rho)$ into $\mathfrak{D}(2\rho) + \mathfrak{D}(4\rho) + \mathfrak{D}(6\rho) + \&c.;$

$$\begin{aligned} \mathbf{Y}(\rho) & \text{into } 2 \left\{ \kappa(\rho) - \kappa(2\rho) + \kappa(3\rho) - \&c. \right\}; \\ \mathbf{D}(\rho) & \text{into } 2 \left\{ \sigma(\rho) - \sigma(2\rho) + \sigma(3\rho) - +\&c. \right\}; \\ \mathbf{I}(\rho) & \text{into } \sigma(2\rho) + \sigma(4\rho) + \sigma(6\rho) + \&c. \\ \mathbf{D}(\rho) & \text{into } \mathbf{D}(2\rho) - \mathbf{D}(4\rho) + \mathbf{D}(6\rho) - \&c. \\ \mathbf{\mathcal{U}}(\rho) & \text{into } \mathbf{D}(\rho) + \mathbf{D}(3\rho) + \mathbf{D}(5\rho) + \ldots \end{aligned}$$

By reason of this double expression, the convergence of each function in series may be increased by the help of the Mutilated forms.

Thus

(1) From
$$(2\rho) = p(2\rho) + \frac{1}{3}p(6\rho) + \frac{1}{5}p(10\rho) + \&c.$$

subtract $l \operatorname{Cot} \rho = 2(e^{-2\rho} + \frac{1}{3}e^{-6\rho} + \frac{1}{5}e^{-10\rho} + \&c.)$
Thence $(\rho) = l \operatorname{Cot} \rho + p_0(2\rho) + \frac{1}{3}p_0(6\rho) + \frac{1}{5}p_0(10\rho) + \&c.$
converging as $e^{-6\rho}, e^{-18\rho}, e^{-30\rho}...$
(2) From $D(\rho) = D(\rho) + \frac{1}{3}D(\rho) + \frac{1}{5}D(5\rho) + \&c.$
subtract $l \operatorname{Cot} \rho = 2(e^{-2\rho} + \frac{1}{3}e^{-6\rho} + \frac{1}{5}e^{-10\rho} + ... \&c.$
Thence $D(\rho) = l \operatorname{Cot} \rho - D_0(\rho) - \frac{1}{3}D_0(3\rho) - \frac{1}{5}D_0(5\rho) - \&c.$
(3) From $D(\rho) = D(\rho) + \frac{1}{2}D(2\rho) + \frac{1}{3}D(3\rho) + \frac{1}{4}.\&c.$
subtract $2\sigma(\rho) = 2(e^{-2\rho} + \frac{1}{4}e^{-4\rho} + \frac{1}{3}.e^{-6\rho} + \&c.$
[See Art. 14 for $\sigma.$]
Thence $D(\rho) = D(\rho) - \frac{1}{2}D(2\rho) - \frac{1}{3}D_0(3\rho) - \&c.$
(4) From $\Im(\rho) = D(\rho) - \frac{1}{2}D(2\rho) + \frac{1}{3}D(3\rho) - \&c.$
subtract $2\kappa(\rho) = 2(e^{-2\rho} - \frac{1}{2}e^{-4\rho} + \frac{1}{3}e^{-6\rho} - \&c.$
Thence $\Im(\rho) = 2\kappa(\rho) - D_0(\rho) + \frac{1}{2}D_0(2\rho) - \frac{1}{3}D_0(3\rho) + \frac{1}{4}.\&c.$
(5) From $\neg(\rho) = D(\rho) - D(3\rho) + D(5\rho) - \&c.$
subtract $D(2\rho) = 2(e^{-2\rho} - e^{-6\rho} + e^{-10\rho} - \&c.$
(6) From $\uparrow(\rho) = \frac{1}{2}D(2\rho) + \frac{1}{3}D(4\rho) + \frac{1}{6}D(6\rho) - \&c.$
subtract $\sigma(2\rho) = 2\{\frac{1}{2}e^{-4\rho} + \frac{1}{4}e^{-8\rho} + \frac{1}{6}e^{-12\rho} + ...\}$
Thence $\uparrow(\rho) = \sigma(2\rho) + \frac{1}{2}D_0(2\rho) + \frac{1}{4}D_0(4\rho) + \frac{1}{5}D_0(6\rho) + ...$
Thence $\uparrow(\rho) = \sigma(2\rho) + \frac{1}{2}D_0(2\rho) + \frac{1}{4}D_0(4\rho) + \frac{1}{5}D_0(6\rho) + ...$
The function \uparrow is the logarithm of $Q = \{(1-q^4)(1-q^6)...\}^{-1},$
a factor known in Elliptics.

(7) From $\Pi(\rho) = \Pi(\rho) - \Pi(3\rho) + \Pi(5\rho) - \Pi(7\rho) + \&c.$ subtract $D(2\rho) = 2e^{-2\rho} - 2e^{-6\rho} + 2e^{-10\rho} - \&c.$

Thence $\Pi(\rho) = \mathsf{D}(2\rho) - \mathsf{\Pi}_{0}(\rho) + \mathsf{\Pi}_{0}(3\rho) - \mathsf{\Pi}_{0}(5\rho) + \&c.$

(8) Finally, from
$$\boldsymbol{\psi}^{i}(\rho) = \boldsymbol{\rho}(\rho) - \boldsymbol{\rho}(3\rho) + \boldsymbol{\rho}(5\rho) - \&c.$$

subtract $\boldsymbol{D}(\rho) = 2e^{-\rho} - 2e^{-3\rho} + 2e^{-5\rho} - \&c.$
Thence $\boldsymbol{\psi}^{i}(\rho) = \boldsymbol{D}(\rho) + \boldsymbol{\rho}_{0}(\rho) - \boldsymbol{\rho}_{0}(3\rho) + \boldsymbol{\rho}_{0}(5\rho) - \&c.$

17. Suppose that $\triangleright(\rho)$ has been tabulated. From it the pair \triangleright and \aleph can be deduced by working backwards. The process at each step is only that of $m \pm n$. For by mere inspection of the series we get

$$\left\{ \begin{array}{l} \mathbf{\mathfrak{D}}(\rho) + \mathbf{\mathfrak{Y}}(\rho) = 2\mathbf{\mathfrak{D}}(\rho) \\ \mathbf{\mathfrak{O}}(\rho) - \mathbf{\mathfrak{Y}}(\rho) = \mathbf{\mathfrak{O}}(2\rho) \end{array} \right\};$$

whence further

$$\left\{ \begin{array}{l} \boldsymbol{\mathfrak{b}}\left(\boldsymbol{\rho}\right)=\boldsymbol{\mathfrak{D}}\left(\boldsymbol{\rho}\right)+\frac{1}{2}\,\boldsymbol{\mathfrak{b}}\left(2\boldsymbol{\rho}\right) \\ \boldsymbol{\mathfrak{V}}\left(\boldsymbol{\rho}\right)=\boldsymbol{\mathfrak{D}}\left(\boldsymbol{\rho}\right)-\frac{1}{2}\,\boldsymbol{\mathfrak{b}}\left(2\boldsymbol{\rho}\right) \right\} . \end{array} \right.$$

If a whole table is aimed at, we begin when ρ is so large that $\mathbf{b}(2\rho)$ is undistinguishable from $\mathbf{n}(\rho)$, or indeed from $2e^{-2\rho}$. Moreover from the former equation of the last pair, we get by repetition and dividing by 2,

$$\begin{split} \mathbf{b}(\rho) - 2^{-1} \mathbf{b}(2\rho) &= \mathbf{D}(\rho); \quad 2^{-1} \mathbf{b}(2\rho) - 2^{-2} \mathbf{b}(2^2 \rho) = 2^{-1} \cdot \mathbf{D}(2\rho); \\ 2^{-2} \mathbf{b}(2^2 \rho) - 2^{-3} \mathbf{b}(2^3 \rho) &= 2^{-2} \mathbf{D}(2^2 \rho); \\ \text{to} \qquad 2^{-n+1} \mathbf{b}(2^{n-1} \rho) - 2^{-n} \mathbf{b}(2^n \rho) &= 2^{-n+1} \mathbf{D}(2^{n-1} \rho); \end{split}$$

up to

of which the sum is

$$\mathbf{D}(\rho) - 2^{-n} \mathbf{D}(2^{n} \rho) = \mathbf{D}(\rho) + 2^{-1} \mathbf{D}(2\rho) + 2^{-2} \mathbf{D}(2^{2} \rho) + \dots + 2^{-n+1} \mathbf{D}(2^{n-1} \rho);$$

Make $n = \infty$, then

 $\mathfrak{D}(\rho) = \mathfrak{D}(\rho) + 2^{-1}\mathfrak{D}(2\rho) + 2^{-2}\mathfrak{D}(2^{2}\rho) + 2^{-3}\mathfrak{D}(2^{3}\rho) + \&c. ad infin.$ which involves

$$\mathbf{Y}(\rho) = \mathbf{\mathfrak{D}}(\rho) - 2^{-1} \mathbf{\mathfrak{D}}(2\rho) - 2^{-2} \mathbf{\mathfrak{D}}(2^{2}\rho) - 2^{-3} \mathbf{\mathfrak{D}}(2^{3}\rho) - \&c.$$

with very high convergence, even when $\rho = 1$. Of this pair, **Y** is the more obviously important in Elliptics.

If you express \neg and $\boldsymbol{\psi}$ in series of \boldsymbol{D} , mere inspection shews that $\neg (\rho) - \neg (2\rho) = \boldsymbol{\psi} (2\rho).$

In this last write 2ρ , 4ρ , $8\rho \dots 2^{n-1}$ for ρ , and add together the results : then $\neg (\rho) - \neg (2^n \rho) = \mathcal{U}(2\rho) + \mathcal{U}(2^2\rho) + \mathcal{U}(2^3\rho) + \dots + \mathcal{U}(2^n\rho);$ N. II. 7 so that, making $n = \infty$,

 $\neg (\rho) = \boldsymbol{\mathcal{W}}^{\boldsymbol{i}}(2\rho) + \boldsymbol{\mathcal{W}}^{\boldsymbol{i}}(2^{2}\rho) + \boldsymbol{\mathcal{W}}^{\boldsymbol{i}}(2^{3}\rho) + \dots ad infin.$

In passing from the transcendental constant ρ to the constants which dominate in the Lower theory of Elliptics; the most obvious and serviceable relations are

$$\log \cdot \frac{1}{b} = 4 \stackrel{\checkmark}{\not} (\rho); \qquad \log \frac{4}{c} = \rho + 2 \mathfrak{U}(\rho).$$

(The logarithms have ϵ for base.)

 $C = 1 + 2 \Im(\rho)$. Also $\log C = 2 \beth(\rho)$.

If $b = \cos \gamma$ and $c = \sin \gamma$, I covet a table, which, from γ given, will show ρ . Long Division will give it, from

$$\rho = \frac{1}{2}\pi \cdot \frac{B}{C};$$

in fact, Legendre found B by first calculating ρ .

18. Gudermann's great table of log Sin ρ requires the ρ not less than 2, and that 8 *decimals* suffice. If we had 9 decimals, $\epsilon^{-9\rho}$ would be omissible, when $\rho > 2$. Under these conditions our chief functions are easily expressed in powers of $\epsilon^{-\rho}$. For we have

$$\frac{1}{2} \mathcal{P}(\rho) = \epsilon^{-\rho} + \epsilon^{-3\rho} + \epsilon^{-5\rho} + \epsilon^{-7\rho}; \quad \frac{1}{2} \mathcal{D}(\rho) = \epsilon^{-2\rho} + \epsilon^{-4\rho} + \epsilon^{-6\rho} + \epsilon^{-8\rho};$$

and with even terms made negative, these yield $\frac{1}{2}D(\rho)$ and $\frac{1}{2}D(\rho)$.

Next,

$$\frac{1}{2} \overleftarrow{}(\rho) = \epsilon^{-2\rho} + (1 + \frac{1}{3}) \epsilon^{-6\rho};$$

$$\frac{1}{2} \overleftarrow{}(\rho) = (q - q^2 + q - q^4) - \frac{1}{2} (q^2 - q^4) + \frac{1}{3} (q^3) - \frac{1}{4} q^4,$$
(where q means $\epsilon^{-2\rho}$);

$$= \epsilon^{-2\rho} - \frac{3}{2} \epsilon^{-4\rho} + \frac{4}{3} \epsilon^{-6\rho} - \frac{3}{4} \epsilon^{-8\rho}.$$

$$\frac{1}{2} \overleftarrow{}(\rho) = \epsilon^{-2\rho} - \epsilon^{-4\rho} + \frac{4}{3} \epsilon^{-6\rho} - \epsilon^{-8\rho}.$$

 S_0

At most, we find 4 terms; and the last terms drop off, as ρ increases.

Indeed, if $\epsilon^{-10\rho}$ be the highest term admissible, (i.e. $\epsilon^{-11\rho}$ be negligible,) then, since

$$\frac{1}{2}\mathsf{D}(2\rho) = \frac{\epsilon^{-2\rho}}{1+\epsilon^{-4\rho}} = \epsilon^{-2\rho} - \epsilon^{-6\rho} + \epsilon^{-10\rho};$$

we deduce $\frac{1}{2}D(4\rho) = \text{simply } e^{-4\rho}$; whence $\frac{1}{2} \Im(\rho)$ or

$$\begin{split} &\frac{1}{2} \mathbb{D}(2\rho) + \frac{1}{2} \mathbb{D}(4\rho) + \frac{1}{2} \mathbb{D}(6\rho) + \frac{1}{2} \mathbb{D}(8\rho) + \frac{1}{2} \mathbb{D}(10\rho) \\ &= \{\epsilon^{-2\rho} - \epsilon^{-6\rho} + \epsilon^{-10\rho}\} + \epsilon^{-4\rho} + \epsilon^{-6\rho} + \epsilon^{-8\rho} + \epsilon^{-10\rho} \\ &= \epsilon^{-2\rho} + \epsilon^{-4\rho} + \epsilon^{-8\rho} + 2\epsilon^{-10\rho}; \end{split}$$

 $\therefore C-1 = 4 \{ \epsilon^{-2\rho} + \epsilon^{-4\rho} + \epsilon^{-8\rho} \} + 8\epsilon^{-10\rho};$

a very simple expression for C.

[The great advantage of ρ as the leading constant in Elliptics, is that to change from ρ to 2ρ , 3ρ , 4ρ ... changes to the scales whose index is 2, 3, 4...]

Numerical Illustrations.

I take (1) first from the series

 $l \operatorname{Cot} \rho + l \operatorname{Cot} 2\rho + l \operatorname{Cot} 3\rho + \&c.,$

next from $\rho(2\rho) + \frac{1}{3}\rho(6\rho) + \frac{1}{5}\rho(10\rho) + \&c.,$

lastly from $l \operatorname{Cot} \rho + \overline{\rho}_0 (2\rho) + \frac{1}{3} \overline{\rho}_0 (6\rho) + \frac{1}{5} \overline{\rho}_0 (10\rho) + \&c.;$

observing that, for high values of ρ , (indeed $\rho > 6.1$,) $l \operatorname{Cot} \rho$ merges in $2e^{-2\rho}$; also for $\rho > 12.6$, $\rho(\rho)$ merges in $2e^{-\rho}$.—The like remark need not be repeated. Besides the case of $\rho = 1$, others have been taken at random.

99

7 - 2

(1) from first series.			(1) from second series.						
l Cot 1) = .2757			
3	49	5751	4506	6900)= 16			
5		9079	9859	5874	1 <u>5</u> 7(10)=	1815	997I	9422
7		166	3057	4382	$\frac{1}{7}$ p(14	$=\frac{2}{7}\epsilon^{-14}$	23	7579	6340
9		3	0459	9594	$\frac{1}{9}$ (18)	$=\frac{\dot{2}}{9}\epsilon^{-18}$	•••••	3344	4399
11	••••		557	8936	(22)	••••	50	7176
13			10	2182	(26)	••••		7860
15		•••••		1872	(30)		• • • • • •	125
17		•••••	••••	34	(34)		•••••	2
_=(ı) ک	²⁷⁷³	9147	7363	8089	(ז) ל) = .2773	9147	7363	8087

(1) by the Mutilated Functions.

$l \cot i = .2723$	4146	8911	8315
$p_0(2) = 50$		8298	
$\frac{1}{3} p_0 (6) = \frac{1}{5} p_0 (10) =$	I	0153	3822
			373
$\zeta(I) = .5773$	9147	7363	8088

20. \square (1) from second series.

1) = י2384	0584	4044	2351
$\frac{1}{3}\pi(3) = 16$			
$\frac{1}{5}$ π (5) =			
$\frac{1}{7}$ π (7) =			
$\frac{1}{9} \mathbf{n} \left(9 \right) = \dots \dots$	••••	3384	4399
$\frac{1}{11} \Pi (II) = \frac{2}{11} \epsilon^{-22}$	••••	50	7176
$(13) = \dots$			
$(15) = \dots$	•••••	••••	124
$(17) = \dots$	• • • • • •	•••••	2
p(1) = 2400	7265	9644	8653

 $\mathfrak{D}(1)$ from original series.

	Positie	e tern	ns.	
$l \operatorname{Cot} 1$.2723	4146	8911	8315
(3)	49	5751	dec.	••••
:	asi	inder	7(1)	
(17)		•••••	• • • • • •	• • • • • •
	·2773	9147	7363	8089
	sum	of Pos	itive t	erms.
	Negati	ve teri	ms.	
$l \operatorname{Cot} 2$.0366	3537	4743	6963
(4)	6	7092	5280	9725
(6)			8424	7067
(8)	$= 2\epsilon^{-1}$	3 22	5070	3494
(10)		•••••	4122	
(12)		••••		5026
(14)		• • • • • •	I	3828
(16)	•••••	•••••	•••••	254
(18)	•••••	•••••		4
			7718	
	sum o	f Neg	ative t	erms.
whence			~	04
= (I) מ	: 2400	7265	9044	8051

2(1) by the Mutilated Functions.

 $\Im(1)$ from first series. 21.

(ו) ב	.3130	3528	5499	3310
- > (3)	- 49	6982	3313	6888
⊃(5)		9080	3982	0194
- 2 (7)		- 166	3058	8210
⊃(9)		3	°459	9598
	•••••	•••••	- 557	8936
⊃(13)	••••	••••	10	2182
- 2 (15)				1872
⊃(17)		•••••	••••	34
ר (1)=	.3081	5463	3020	9412

 \neg (1) by second series.

D (2)	•2658	0222	8834	0797
(4)	366	1899	3473	6866
(6)	49	5747	3893	5604
(8)	6	7092	5180	3024
(10)		9079	9859	3378
(12)		1228	8424	7062
(14)	•••••	166	3°57	4382
(16)	•••••	22	5070	3494
(18)	•••••	3	°459	9594
(20)	•••••		4122	3072
(22)	•••••	• • • • • • •	557	8936
(24)		••••	75	5026
(26)			10	2182
(28)			I	3828
(30)	• • • • • • •	• • • • • •		1872
(32)	•••••			254
(34)	• • • • • • •	• • • • • • •		34
(36)	•••••			4
ר(I)=	: 3081	5463	3020	9409

$\Im(1)$ by the Auxiliaries.

D(2) 2658 0222 8834 0797 $D_0(1) + 423 \quad 6471$ 9026 1059 $- \supset_{0} (3)$ – 1231 8960 3561 $\begin{array}{c|c} \neg_{0}^{\circ}(5) & \dots \\ \neg_{0}^{\circ}(7) & \dots \end{array}$ + 4122 4945 - I 3828 [(9)].... +4 r(i) = .308i 5463 30209416

22. To find 2 (1). Observe that when

$$\rho > 11$$
, $\mathbf{D}(\rho) = 2\epsilon^{-\rho} = \mathbf{P}(\rho)$.

It is convenient to separate the following terms. Put

$$a = e^{-13} - e^{-15} + e^{-17} - e^{-19} + \&c.$$

$$b = e^{-13} + e^{-15} + e^{-17} + e^{-19} + \&c.$$
(13) = 226 0329 4070 (preceded by 5 zeros)
(15) = 30 5902 3205
(17) = 4 1399 3772
(19) = 5602 7964
(21) = 758 2561
(23) = 102 6188
(25) = 13 8879
(27) = 1 8795
(29) = 2544
(31) = 344
(33) = 46
(35) = 6
 $\therefore b = 261 4110 8374$ (16 decimals).

Also taking the even rows negatively

a = 199 0891 5370.

Then $\mathcal{U}(1)$ by its first series shows

Second Method.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$p(1) = 8509 \ 1812 \ 8239 \ 3215$	D(I) = .6480 5427 3663 8854
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-(3) -998 2156 9668 8232	(3) 993 2793 7419 4324
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(5) + 134 7650 5830 5877	(5) 134 7528 2221 3057
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(7) 18 2376 2414 5974
$\begin{array}{c} \text{six terms} = 7629 \ 6271 \ 5163 \ 8058 \\ 2a = 398 \ 1783 \ 0740 \end{array} \qquad \begin{array}{c} \text{six terms} = 7629 \ 6146 \ 8725 \ 2065 \\ 2b = 522 \ 8221 \ 6748 \end{array}$	(9) 2 4681 9611 9324	(9) 2 4681 9604 4144
$2a = 398 \ 1783 \ 0740$ $2b = 522 \ 8221 \ 6748$	-(11) -3340 3401 5896	(11) 3340 3401 5712
	six terms = .7629 6271 5163 8058	six terms = .7629 6146 8725 2065
$\vec{v}(1) =, \vec{v}(1) =, \vec{v}$	$2a = 398 \ 1783 \ 0740$	b = 522 8221 6748
	v(1) = .7629 6669 6946 8798	$v(1) = .7629 \ 6669 \ 6946 \ 8813$

The latter is in excess by 15 in the two last decimals, which probably results from the number of rows that were added,—18 rows, all positive. Treated by the Mutilated Functions, in which negative rows enter as balance, the result agrees with the first method.

Third Method.

D (I)	.6480	5427	3663	8854
$P_0(I)$	+ 1151	5924	5896	4369
$-P_{0}(3)$	- 2	4743	2933	0953
P ₀ (5)		+61	1832	4168
$-p_{0}(7)$			1516	5140
(9) _ق م			+ 3	7592
$-p_{0}(11)$		•••••	• • • • • •	- 92
v (1)	= .7629	6669	6946	8798

Accurate agreement in the last figure can only be matter of chance.

23. I proceed to some other trials at random. To find $\neg(1.5)$. First (2 - 2.)

Next,

	First $(2\rho = 3)$.							
D(3)	.0993	2792	7419	4324				
(6)	49	5747	3893	5604				
(9)	2	4681	9604	4144				
(12)		1228	8424	7062				
(15)		61	1804	6410				
(18)		3	°459	9594				
(21)	•••••	••••	1516	5128				
(24)	••••	••••	75	5026				
(27)		• • • • • • •	3	7590				
(30)	•••••	••••		1872				
(33)	•••••	••••	• • • • • • •	92				
(36)	•••••		••••	4				
(1.2)=	-1045	4515	3202	6850				

- 2	4685	007 I	8922
	+61	1804	8282
	-	1516	5128
	••••	+ 3	7590
	•••••	• • • • • •	- 92
- 1045	4515	3202	6850
	- 2 	-2 4685 + 61 	– 1516 + 3

Otherwise:

D(3)	= '	0993	2792	7419	4324
+ >0 (1.2)) =	+ 52	1725	6246	7841
$- \supset_0 (4.5)$) =	•••	- 3	0463	7189
$+ \supset_{0} (7.5)$) =	•••••		+	1872
(1.2) د) = 1	·1045	4515	3202	6848

24. To find $\neg (1.7)$. $(2\rho = 3.4)$.

D(3·4)	·0666	7228	1989	9218
(6.8)	22	2754	7532	4278
(10.3)	••••	7434	0637	2656
(13.0)	•••••		0990	
(17.0)		8	2794	7544
(20.4)			2763	2652
(23.8)	• • • • • • •		92	-
(27.2)			3	
(30.6)		•••••	•••••	1026
(34.0)			••••	34
ר (1.2) =	• •0689	7673	6807	1976

(1.7) כ (5.1) כ – (8.5) כ	·0690	5099	7501	2924
-⊃(5·1)		7434	3400	7360
⊃(8·5)		+ 8	2798	7578
-2(11.0)			-92	2192
⊃(15.3)		•••••	••••	1026
ר (1.2) =	••689	7673	6807	1976

D (3·4)	.0666	7228	1989	9218
ס (3·4) כ (1·7)	+ 2 3	0445	7580	6402
$-2^{\circ}(2.1)$		-	2763	3678
⊃₀(8·5)		•••••		+ 34
ד (1.4) =	• • • 689	7673	6807	1976

25. So far, I have worked by my skeleton tables, which afford 16 decimals. They have borne the test well. When ρ has *two* decimals, I am driven to my longer tables, which yield only 12 decimals for the entries.

I have naturally calculated the secondary Functions by the Mutilated Auxiliars, which give a correct result by fewer terms to add or subtract. I take at random cases to corroborate by other methods. I chose small values of ρ , solely because with them the process is less speedy. My tables give

 $\gamma(1.01) = .3012 8975 9279.$

To check this I calculate the same through \mathcal{D} , thus

w(2.02) = .2654	7527 3	3838
(4.04) = 321		
	1934 2	
$(16.16) = \dots$	19 1	1792
1 (1.01) = .3013	8975 9	278

I take at random $\neg(1.07)$. To proceed by \mathcal{U} ,

	•2353	9987	4442
$\psi(4.28) = \dots$	276	8532	6204
$\psi(8.56) = 2e^{-8.56} =$	3	8323	8588
$\psi(17.12) = 2\epsilon^{-17.12} =$			
.·. ٦(1·07) <u>=</u>	-2634	6851	2670

The computation by the auxiliary \beth_0 is

D(2.14) = .5320 9684	
$D_0(1.07) = 313 7697$	
$- \Im_0 (3.21) = \dots - 231$	3696
$\Box_0(5.35) = \dots$	
(1.07) = .5634 6851	2670

Further, to calculate \neg (1.11). First,

Otherwise,

D(2.22) = .5146 8520 2182	(1.11) = .5436 8428 3048
$D_0(1.11) = 264 \ 6636 \ 5398$	$-D_0(2\cdot 22) = -25 3242 0463$
$- \Im_{0} (3.33) = -328 \ 6883$ $\Im_{0} (5.55) = 2\epsilon^{-22.20} \ 457$	$- D_0 (4.44) = -328 2216$
$\Box_0 (5.55) = 2\epsilon^{-25.00} 457$	$- \mathbf{D}_{0}(6.66) = \dots - 4206$
$\neg(1.11) = .5411 4882 6129$	$- \mathbf{p}_{0}(8.88) = \dots - 5$
	(1.11) = .5411 4882 6128

Or again:

w(2.22) = .2172	7867	1153
(4.44) = 235	9187	7952
$\psi(8.88) = 2$	7828	8332
$\vec{w}(17.76) = \dots$	· 3	8722
ז (1.11) = .5411	4887	6159

Make some trials on 2.

To find $\mathcal{U}(1.34)$.

First,

IISU,	Of thus,
D(1.34) = .4000 8052 003	
$p_0(1.34) = 385 4896 871$	
$P_0(4.02) = -115765$	
$p_0(6.70) = \dots 37.$	
v (1.34) = .5286 2666 68	$\dot{\psi}(1.34) = .5286 \ 2666 \ 6890$

On thus

Nevt

To find $\mathcal{D}(1.5)$ to 16 decimals.

First,

		1.0103
D(1.2) = .45000000000000000000000000000000000000		p(1.5) = .4696 4244 0595 2243
$P_0(1.5) = 233 8212$		$-D_0(1.5) = -211 6428 5354 5792$
$-p_0(4.5) = \dots - 274$		$-\mathbf{p}_{0}(4.5) = \dots - 274$ 1579 8350
$P_0(7.5) = \dots$	338 3796	$- \mathbf{p}_{0}(7.5) = \dots - 338 \ 3796$
$-p_0(10.5) = \dots$		$-D_0(10.5) = \dots - 418$
$\therefore w(1.5) = .4484 7541$	3322 3887	(1.5) = .4484 7541 3322 3887
		1.0

as before.

To find \mathcal{U} (1.81). In my table, calculated through \mathcal{P}_0 , I have 3277 7800 6407. I now check it by calculating through \mathcal{D}_0 .

(1.81) ק	= '3363	1570	8424
$-\dot{D}_{0}(1.81)$	= -85	3753	3605
$-D_{0}(5.43)$	=	- 16	8407
$- D_{0}(9.02)$			
v (1.81)	= '3277	7800	6409
nearly as before.			

If any figure (but the last) in any of the entries here *elicited at* random were erroneous, the error would show itself in the result. No test which I have in these is so complete and absolute as that of the table of ϵ^{-x} , in which I had Mr Glaisher's valued revision. But I have laboured, by double methods and by recomputing after intervals of time, to impart what accuracy I can to my other tables. I am painfully aware that a tired brain will go wrong in the simplest process: but I have a strong faith that these functions, *elicited by the progress of the Calculus*, will live in the mathematics of the future.

I have executed tables of all these functions, (1) skeleton tables in which ρ increases by '1 at each step, and the entries are carried to 16 decimals; (2) ampler tables, with ρ increasing by '01 at each step, but the entries having only 12 decimals. Each set is complete in this sense, that they are continued from $\rho = 1$ until the function is merged in the form $2e^{-n\rho}$, so as no longer to deserve a separate registration. Besides the large table of e^{-x} already published with the skeleton table of e^{-x} to 16 decimals, I have also an intermediate table (unpublished) in which x proceeds by '01 at each step, and the entries have 12 decimals until x = 18.50, after which I give 16 decimals (perhaps with no adequate advantage), and the table is continued until e^{-x} fails to affect the 12th decimal.

Whether any but the skeleton tables, which now follow, will ever see the light, the writer is uncertain. It seems that competent mathematicians are too busy to put forth any judgment on an eccentric undertaking.

Skeleton Anticyclics to 16 Decimals.

Summary, here repeated, for compactness.

Gudermann writes Sin, Cos, Tan in German type, not easy to imitate. Here capital letters contrast Sin to sin, Cos to cos, &c. and

Cos. x means $\frac{1}{2} (\epsilon^x + \epsilon^{-x})$; Sin x means $\frac{1}{2} (\epsilon^x - \epsilon^{-x})$.

Conformably	$\operatorname{Tan} x \operatorname{means} \frac{\operatorname{Sin} x}{\operatorname{Cos} x},$
or	$\frac{\epsilon^x-\epsilon^{-x}}{\epsilon^x+\epsilon^{-x}},$
that is,	$\frac{1-\epsilon^{-2x}}{1+\epsilon^{-2x}};$
whence further	$\operatorname{Cot} x \ means \ \frac{1+\epsilon^{-2x}}{1-\epsilon^{-2x}},$

and Sec x means
$$\frac{2}{\epsilon^x + \epsilon^{-x}}$$

or

and Cosec x means
$$\frac{2\epsilon^{-x}}{1-\epsilon^{-2x}}$$

The possession of a good table for e^{-x} opens the way to a registration of these Anticyclics.

 $2\epsilon^{-x}$

 $1 + e^{-2x}$

For conciseness it is convenient to write also

$$\mathcal{P}(x) \text{ for Cosec } x, \ \mathcal{D}(x) \text{ for Sec } x,$$
$$\mathcal{D}(x) \text{ for } 1 - \operatorname{Tan} x, \text{ or } \frac{2e^{-2x}}{1 + e^{-2x}},$$
$$\mathcal{D}(x) \text{ for Cot } (x) - 1, \text{ or } \frac{2e^{-2x}}{1 - e^{-2x}}.$$

I also include as Mutilated Anticyclics the functions

$$\begin{split} & \overrightarrow{\mathsf{P}}_{\mathsf{o}}(x) = \overrightarrow{\mathsf{P}}(x) - 2\epsilon^{-x}; \quad & \overrightarrow{\mathsf{D}}_{\mathsf{o}}(x) = 2\epsilon^{-x} - \overrightarrow{\mathsf{D}}(x); \\ & \overrightarrow{\mathsf{D}}_{\mathsf{o}}(x) = 2\epsilon^{-2x} - \overrightarrow{\mathsf{D}}(x); \quad & \overrightarrow{\mathsf{D}}_{\mathsf{o}}(x) = \overrightarrow{\mathsf{D}}(x) - 2\epsilon^{-2x}. \end{split}$$

Finally, I write κ and σ (as auxiliaries towards log Cos and log Sin) interpreted as

 $\kappa(x) = \log_{\epsilon} (1 + \epsilon^{-2x}) \text{ and } -\sigma(x) = \log_{\epsilon} (1 - \epsilon^{-2x}).$

Since $\operatorname{Tan} x$ is positive, and less than 1, we may assume

$$\sin \theta = \operatorname{Tan} x,$$

and take for θ an arc between zero and 90°. Till a better name is found, I call θ the *Elevation* and x its *Range**. We have now

$$\cos \theta = \sec x, \quad \tan \theta = \sin x, \quad \sec \theta = \cos x,$$

$$\frac{1-\cos\theta}{1+\cos\theta} = \frac{1-\sec x}{1+\sec x} = \frac{2\cos x - 2}{2\cos x + 2} = \frac{\epsilon^x - 2 + \epsilon^{-x}}{\epsilon^x + 2 - \epsilon^{-x}} = \left(\frac{\sin\frac{1}{2}x}{\cos\frac{1}{2}x}\right)^2;$$

whence
$$\tan\frac{1}{2}\theta = \operatorname{Tan}.\frac{1}{2}x.$$

Also $x = \int_{\Omega} \frac{d\theta}{\cos \theta}$.

Legendre tabulated this integral, and Gudermann has enlarged the table tenfold. He calls x the Längezahle of θ , but I cannot translate this. The "Length-number" sounds nonsensical.

- N.B. $\log_{\epsilon} \cos x = x \log_{\epsilon} 2 + \kappa(x),$ and $\log_{\epsilon} \sin x = x - \log_{\epsilon} 2 - \sigma(x).$
 - * Taking a Polar Curve, with ρ radius vector, and $\sin \theta = \operatorname{Tan} \rho$, which amounts to $\rho = f_0 \sec \theta \cdot d\theta$.

 $\begin{array}{ll} \text{With } \ensuremath{ \angle} ASX{=}90^\circ, & \ensuremath{ \angle} ASP{=}\theta, & SP{=}\rho, & \text{Tan } \frac{1}{2}\rho{=}\tan \frac{1}{2}\theta, \\ \text{then with } \theta{=}90^\circ, & \text{Tan } \frac{1}{2}\rho{=}1, & \frac{e^\rho-1}{e^\rho+1}{=}1, & e^\rho{=}\alpha \ , & \rho{=}\log \alpha \ . \end{array}$

For small values of x.

Primary Anticyclics.

<i>x</i>	$\frac{\mathbf{I}}{x}$ - Cosec x	x	$I - \operatorname{Sec} x$
·9 ·8 ·7 ·6 ·5 ·4 ·3 ·2 ·1	1369 4286 3331 1060 1240 0826 0211 5182 1103 2533 7105 1180 0959 5375 7731 5912 0809 6524 8668 2201 0654 4287 8392 7115 0494 7993 6590 5823 0331 7843 1185 4831 0166 4724 2703 8901 approximating to $\frac{1}{6}x$.	.9 .8 .7 .6 .5 .4 .3 .2 .1	$\begin{array}{c} \cdot 3022 & 0535 & 8899 & 6676 \\ \cdot 2523 & 0008 & 1762 & 5802 \\ \cdot 2032 & 9454 & 0007 & 1249 \\ \cdot 1564 & 4931 & 2378 & 1164 \\ \cdot 1131 & 8118 & 9128 & 4733 \\ \cdot 0749 & 9254 & 8094 & 2449 \\ \cdot 0433 & 7208 & 8099 & 7516 \\ \cdot 0196 & 7200 & 2355 & 2746 \\ \cdot 0049 & 7925 & 1046 & 7735 \\ approximating to \frac{1}{2}x^2. \end{array}$

<i>x</i>	$\operatorname{Cot} x - \frac{\mathbf{I}}{x}$	- x	Tan x
·9 ·8 ·7 ·6 ·5 ·4 ·3 ·2 ·1	$\begin{array}{c} -2849 \ 5614 \ 1918 \ 9029 \\ -2559 \ 4070 \ 2043 \ 7062 \\ -2260 \ 5020 \ 7231 \ 2008 \\ -1953 \ 5885 \ 4719 \ 9995 \\ -1639 \ 5341 \ 3738 \ 6538 \\ -1319 \ 3244 \ 1832 \ 1884 \\ -0994 \ 0509 \ 6988 \ 4084 \\ -0664 \ 8956 \ 3439 \ 4728 \\ -0333 \ 1113 \ 2253 \ 9896 \\ -approximating \ to \ \frac{1}{3}x. \end{array}$	·9 ·8 ·7 ·6 ·5 ·4 ·3 ·2 ·1	.7162 9787 0199 0224 .6640 3677 0267 8494 .6043 6777 7117 1635 .5370 4956 6998 0353 .4621 1715 7260 0098 .3799 4896 2255 2245 .2913 1261 2451 5909 .1973 7532 0224 9047 .0996 6799 4624 9558 approximating to x. x

If $H_1 H_2 H_3 \dots$ are Euler's coefficients,—in

$$x \cot x = 1 - 2 (H_1 x^2 + H_2 x^4 + H_3 x^6 + \&c.)$$

we have

Т

Cot
$$x - \frac{1}{x}$$
 [or, say $K(x)$] = 2 $(H_1 x - H_2 x^3 + H_3 x^5 - \&c...)$.
whence $\frac{1}{x} - \operatorname{Cosec} x = K(x) - K(\frac{1}{2}x);$
Tan $x = 2K(2x) - K(x)$.

P and	D	to	Sixteen	Decimals.
-------	---	----	---------	-----------

x		<i>x</i>	
(1.) ס(1.)	[.] 8509 1812 8239 3215 [.] 6480 5427 3663 8854	2.4	·1829 4146 8590 0977 ·1799 5492 3081 6373
1.1	.7487 0055 3378 0705 .5993 3406 0570 7929	2.2	·1652 8366 9855 0954 ·1630 7123 1929 9781
1.5	^{.6624} 8797 7194 3154 [.] 5522 8615 4278 2047	2.6	·1493 7117 2122 2848 ·1477 3218 2327 8366
1.3	·5887 9553 7472 7589 ·5073 7875 0740 6021	2.7	·1350 2085 8114 1130 ·1338 0667 6793 1016
1.4	[•] 5251 2692 9342 7329 [•] 4649 2199 2408 9817	2.8	[.] 1220 7152 9128 8169 [.] 1211 7204 7532 4136
1.2	·4696 4244 0595 2243 ·4250 9603 4942 2804	2.9	·1103 8062 3493 2692 ·1097 1427 4141 5019
1.0	[.] 4209 5196 5887 9284 .3879 7818 9874 4896	3.0	.0998 2156 9668 8225 .0993 2792 7419 4331
1.2	·3779 8152 7668 3616 ·3535 6734 9501 4020	3.1	902 8162 5082 9535 899 1592 6650 8797
1.8	·3398 8469 1415 4933 ·3218 0486 9506 5875	3.3	816 6009 0874 6531 813 8917 5180 7533
1.9	·3059 8229 8640 1752 ·2925 9173 5483 7630	3.3	·0738 6682 0864 6194 ·0736 6612 1764 9807
2.0	[.] 2757 2056 4771 7832 .2658 0222 8834 0795	3.4	·0668 2096 3449 0966 ·0666 7228 1989 9217
2°I	·2486 4137 7381 2334 ·2412 9450 6201 8549	3.2	·0604 4989 0009 1559 ·0603 3974 4120 1677
2.2	[•] 2243 6087 1403 8413 [•] 2189 1857 8920 1682	3.6	·0546 8827 4384 1248 ·0546 0667 6324 9982
2.3	^{•2025} 5372 4210 8383 •1985 2217 5149 3391	3.7	.0494 7729 6074 5175 .0494 1684 6756 6524

P(x) and $D(x)$	to Sixteen Decimals.
-----------------	----------------------

x		x	
3.8	·0447 6394 5893 2198 ·0447 1916 3942 6338	5.2	·0110 3346 4617 2459 3279 3086 2335
3.9	.0405 0041 7329 2519 .0404 6724 2047 0393	5.3	.0099 8343 6561 2227 8293 9078 8133
4 ' 0	·0366 4357 0325 8654 1899 3473 6865	5.4	.0090 3334 6161 0009 3297 7616 9677
4.1	.0331 5445 6793 4411 3624 9814 2153	5.2	·0081 7367 9391 2755 7340 6367 1407
4.5	.0299 9789 9188 2770 8441 1126 6582	5.6	·0073 9582 8564 9758 9562 6303 7217
4.3	·0271 4211 5045 0343 3212 2843 3915	5.2	·0066 9200 5835 1925 9185 5996 3701
4.4	·0245 5838 1566 5102 5097 9161 5505	5.8	·0060 5516 4992 9252 5505 3989 5956
4.2	·0222 2073 5333 0788 1525 1496 6496	5'9	·0054 7893 0754 4899 7884 8521 2007
4.6	.0201 0570 2957 4680 0164 0431 5416	6.0	•0049 5753 4813 4793 5747 3893 5605
4.7	·0181 9205 9124 4828 8904 9531 2660	6.1	.0044 8575 8004 3780 8571 2873 7920
4.8	·0164 6060 8954 2863 5837 9392 7991	6.3	.0040 5887 7989 4405 5884 4555 8801
4.9	·0148 9399 2037 5291 9234 0337 7575	6.3	.0036 7262 1938 1950 7259 7170 0042
5.0	.0134 7650 5830 5889 7528 2221 3045	6.4	·0033 2312 3720 7367 2310 5372 0099
5.1	-0121 9394 6383 9042 9303 9911 8518	6.2	.0030 0688 5182 5061 0687 1589 4349

$\mathcal{D}(x)$ and $\mathcal{D}(x)$ to Sixteen	Decimals.
--	-----------

x		x
6.6	·0027 2074 1110 1024 2073 1040 1076	8·0 67092 5331 3076 5180 3024
6.2	·0024 6182 7535 3703 0075 3347	8·1 60707 8332 0915 8220 2239
6.8	·0022 2755 3058 9582 2754 7532 4278	8·2 54930 7181 3811 7098 5075
6.9	.0020 1557 2905 1762 1556 8811 0218	8·3 49703 3684 9129 3623 5189
7.0	·0018 2376 5447 6224 2414 5980	8·4 44973 4671 0985 4625 6169
7.1	·0016 5021 0969 9924 5020 8723 0728	8·5 40693 6754 8681 6721 1745
7.2	·0014 9317 2449 0332 0784 4744	8.6 36821 1599 8157 1574 8545
7'3	·0013 5107 8166 9557 6933 8201	8.7 33317 1631 2211
7'4	·0012 2250 5979 0238 5065 4946	8·8 30146 6157 0402 6143 3415
7.2	.0011 0616 9078 6753 8401 9160	8·9 27277 7858 0382 7847 8898
7.6	.0010 0090 3117 5590 2616 2034	9°0 24681 9611 9323 9604 4143
7.7	.0009 0565 4551 4802 4180 0670	9 ^{.1} 22333 1619 7650 1614 1954
7.8	81947 0095 5344 81946 9820 3848	9'2 20207 8805 7372 8801 6112
7.9	74148 7182 8362 6979 0002	9 [.] 3 18284 8464 4847 8461 4279

When x reaches 10, the equations $p(x) = 2e^{-x} = D(x)$ are true to 12 decimals.

P(x) and $D(x)$ to	Sixteen Decimals.
--------------------	-------------------

1	1	11	1	1	1	1
<i>x</i>		x			<i>x</i>	
9.4	16544 8132 249 8129 98		5507 2898	7412 6576	11.6	1833 2175 4741 4709
9.2	14970 3660 612 3658 936	2 10.6	4983 2019	4940 4320	11.2	1658 7638 3 ²²⁷ 3203
9.6	13545 7473 603 7472 360	1 10.7	4508 9875	8494 8034	11.8	1500 9115 8309 8293
9'7	12256 6990 566 6989 646	8 10.8	4079 9006	8393 8053	11.9	1358 0809 6154 6142
9.8	11090 3199 205 3198 523	. 10.0	3691 6468 6467	0042 9790	12'0	1228 8424 7070 7062
9.9	10034 9364 364 9363 859	9 7 11.0	3340 3401	5897 5713	12.1	1111 9026 4836 4829
10.0	9079 9859 712 337		3022 4647	6465 6329	12.3	1006 0911 ²¹⁴⁵ 2140
10.1	8215 9110 5 ⁸ 9 312		2734 8392	1364 1264	12.3	910 3488 9263 9259
10.3	7434 0637 470 265	8 11.3	2474 5848	5274 5198	12.4	823 7177 4152 4149
10.3	6726 6190 447 295		2239 0969	6880 6824	12.2	745 3306 ³⁴⁴² 3440
10.4	6086 4966 073 4965 960	11 11 15	2026 0187	1993 1953	12.6	674 4030 4683 4682

When x exceeds 12.6, we have $p(x) = D(x) = 2e^{-x}$ true to 16 decimals. They are true to 12 decimals, even when x reaches 10.

N. II.

8

 $\Im(x) = \operatorname{Cot} x - 1$, and $\Pi(x) = 1 - \operatorname{Tan} x$, to Sixteen Decimals.

x		x	
1.0	·3130 3528 5499 3313 ·2384 0584 4044 2351	2.2	·0135 6730 9812 6083 ·0133 8570 1848 5695
1.1	·2492 2076 4568 3124 ·1995 0097 8239 3703	2.6	.0110 9433 1435 5912 .0109 7259 7798 9007
1.5	·1995 3754 4192 3508 ·1663 4539 2987 8447	2.2	.0090 7414 6000 1196 .0089 9254 6321 8822
1.3	·1604 6550 3557 8761 ·1382 7684 0686 6936	2.8	.0074 2317 7331 0795 .0073 6847 9798 8721
1.4	·1294 9470 6459 8964 ·1146 4835 1797 7375	2.9	·0060 7349 7336 4337 3683 2649 4167
1.2	·1047 9139 2982 5114 ·0948 5174 6355 1336	3.0	.0049 6982 3313 6889 4524 6313 2697
1.0	·0849 8873 6155 7778 ·0783 3144 5593 5284	3.1	·0040 6711 5200 7812 5064 0778 0998
1.2	.0690 2099 2201 2924 .0642 9092 9396 9008	3.5	'0033 2864 5281 1247 1760 2160 3487
1.8	·0561 8256 1614 5180 ·0531 9398 7153 7316	3.3	·0027 2444 2319 3478 1703 9900 8570
1.9	·0457 6534 9914 1786 ·0437 6254 1872 2610	3.4	·0022 3003 4052 1958 2507 2065 7206
2.0	·0373 1472 0727 5481 ·0359 7241 9924 1831	3.2	·0018 2542 8506 4434 2210 2388 8014
2.1	·0304 4773 4990 0075 ·0295 4806 3386 5465	3.6	·0014 9428 7230 3932 9205 7667 6732
2.5	·0248 5989 3164 4710 ·0242 5686 9968 5494	3.7	·0012 2325 3239 1790 2175 8718 8686
2.3	.0203 0780 2181 1268 .0199 0360 3733 8092	3.8	·0010 0140 4020 9588 0040 2214 1592
2.4	·0165 9607 5602 2530 ·0163 2514 2306 3198	3.9	·0008 1980 5861 0968 1913 4329 9720

\supset (x) and	(x) ת I	to Sixteen	Decimals.
-------------------	---------	------------	-----------

x		x	
4.0	67115 0401 6824 67070 0260 9328	5.4	4079 9839 1187 8174 5599
4.1	54945 8050 5595 54915 6312 2027	5.2	3340 3959 4833 2843 6961
4.5	83 5801 7305 449 ₆₃ 3540 4665	5.0	2734 8766 1037 2734 8018 1692
4.3	368 ²⁷ 9389 7045 14 3809 9269	5.2	2239 1220 3658 0719 0102
4'4	301 ⁵¹ 1597 9608 42 0716 1195	5.8	1833 ² 343 5085 2007 4397
4.2	246 ⁸⁵ 0071 8921 28978 9151 9725	5.9	1500 9228 4677 9003 1941
4.6	202 ⁰⁹ 9223 6588 05 8387 8156	6.0	1228 8500 2096 8348 2044
4.7	165 ⁴⁶ 1818 7874 43 4445 7°34	6.1	1006 0961 8256 0860 6036
4.8	135 ⁴⁶ 6647 9665 135 ₄₄ 8299 2397	6.3	823 7211 3407 7143 4895
4.9	110 ⁹⁰ 9348 9652 89 7049 4456	6.3	674 4053 2094 4007 7274
5.0	9080 3982 0194 9079 5737 4050	6.4	552 1560 3880 552 1529 9004
5.1	7434 3400 7360 7433 7854 2056	6.2	45 ² 0669 0322 0648 5958
5.3	6086 6818 3452 3113 8012	6.6	370 1209 2454 1195 5466
5.3	4983 3261 1090 0777 8790	6.2	303 0292 8156 303 0283 6328

115

x		x	
6.8	248 0993 2376 0987 0824	8.1	18 4272 0336 4271 9996
6.9	203 1265 0054 1260 8794	8.2	15 0869 ¹⁷⁸⁴ 1556
7:0	166 3058 6771 3056 1994	8.3	12 3521 2342 2190
7.1	136 1597 1958 1595 3418	8.4	10 1130 6320 6220
72	111 4781 3600 4780 1172	8.2	8 2798 7578 7510
7'3	91 2705 6900 2704 8572	8.6	6 7789 ⁸⁸⁸⁸ 8844
7.4	74 7260 1552 74 7259 5968	8.7	5 5501 6664 6632
7.2	61 1804 ⁸²⁸² 4538	8.8	4 5440 9206 9188
7.6	50 0903 3998 1490	8.9	3 7203 ^{8792.} 8780
7.7	41 0104 9992 8310	9.0	3 0459 9598 9590
7.8	$33 5765 {5624 \atop 4496}$	9.1	2 4938 5°58 5°54
7.9	27 4901 ⁵⁸ 34 5078	9.3	2 0417 9216 9212
8∙0	22 5070 3748 3230	9.3	1 6716 ⁷⁸⁰³ 7801

 \supset (x) and \prod (x) to Sixteen Decimals.

When x is as large as 9.4, $\supset(x) = 2e^{-2x} = \bigcap(x)$ without error in 16th decimal.

MUTILATED Anticyclics.

	$p_0(x)$ or $p(x) = 2e^{-10}$		Decimais.
x		x	
1.0	1151 5924 5896 4369	4.2	274 2256 5942
I.I	829 5838 5981 9114	4.6	203 1468 2009
1.5	600 9955 3369 9112	4.7	150 4921 6432
1.3	437 3195 1404 7337	4.8	111 4856 2462
1.4	319 3300 1459 5200	4'9	82 5895 6803
1.2	233 8212 0298 3647	5.0	61 1832 4168
1.9	171 5892 9898 6175	5.1	45 3252 8730
1.2	126 1447 9562 8923	5.2	33 5775 7245
1.8	92 8691 4972 3250	5.3	24 8747 4022
1.9	68 4506 0194 9051	54	18 4275 7757
2.0	50 4999 8298 5578	5.2	13 6514 3475
2'I	37 2852 0875 2596	5.6	10 1132 0098
2.2	27 5455 4679 1739	5.7	7 4920 2501
2.3	20 3603 6765 3296	5.8	5 5502 1736
2.4	15 0556 2011 2726	5.9	4 1116 9533
2.2	11 1367 2607 3008	6.0	3 0460 1465
2.6	8 2401 5693 6173	6·1	2 2565 4064
2.7	6 0983 2634 6135	6.2	1 6716 8490
2.8	4 5140 3878 3811	6.3	1 2384 1372
2.9	3 3418 3380 4546	6.4	9174 3887
3.0	2 4743 2933 0953	6.2	6796 7510
3.1	1 8322 0295 8379	6.6	5035 0066
3.5	1 3568 2917 9206	6.7	3730 0251
3.3	1 0048 6062 1394	6.8	2763 2686
3.4	7442 3528 4445	6.9	2047 0792
3.2	5512 3164 5188	7.0	1516 5140
3.6	4082 9489 5399	7'1	1123 4606
3.7	3024 3133 8386	7.2	832 2799
3.8	2240 2180 8886	7'3	616 5679
3.9	1659 4437 6430	7.4	456 7647
4.0	1229 2548 3370		
4.1	910 5989 9186		
4.2	674 5547 3214		
4'3	499 7020 6524		
4.4	370 1760 3735		
	0, , 0,05	11	

 $\mathcal{D}_{0}(x)$ or $\mathcal{D}(x) - 2\epsilon^{-x}$ to Sixteen Decimals.

Beyond this value of x, $p_0(x) = 2e^{-3x} = D_0(x)$.

Mutilated	$D_{o}(x) =$	$2\epsilon^{-x}$ –	$\cdot \mathbf{D}(x).$	Sixteen	Decimals.
-----------	--------------	--------------------	------------------------	---------	-----------

x						
1.0	.0877	0460	8678	9992	4.5	274 1579 8350
1.1	.0664	0810	6825	6662	4.6	203 1057 7255
1.5	.0201	0226	9546	1995	4.7	150 4672 1257
1.3	.0376	8483	5327	4231	4.8	111 4705 2409
1.4	.0282		5474	2312	4.9	82 5807 0912
1.2	211	6428	5354	5792	5.0	61 1776 8664
1.9	158	1484	6114	8212	5.1	45 3219 1795
1.2	117	9969	8604	0672	5.2	33 5755 2880
1.8	87	9290	6936	5856	5.3	24 8735 0071
1.0	65	4550	2961	5071	5.4	19 0568 2576
2.0		6833	7639	1459		13 5509 7874
2'1	36	1835		1089	5.5 5.6	
2.2	26	8773	0304 7804	4996		10 1129 2441 7 4918 5724
				2683	5 [.] 7 5 [.] 8	
2.3	19	9551	2296	1877		5 5501 1560
2'4	14	8098	3497	1077	5.9	4 1116 3360
2.2	10	9876	5317	8195	6.0	3 0459 7722
2.6	8	1497	4100	8311	6.1	2 2565 1796
2.7	6	0434	8886	3979	6.5	1 6716 7114
2.8	4	4807	7718	0223	6.3	1 2384 0536
2.9	3	3216	5917	3125	6.4	9174 3380
3.0	2	4620	9316	2948	6.2	6796 5202
3.1	I	8247	8136	2359	6.6	5034 9882
3.2	I	3523	2775	9791	6.7	3730 0122
3.3	I	0021	3037	4993	6.8	2763 2618
3.4		7425	7930	7304	6 · 9 [.]	2067 0752
3.2		5502	2724	4693	7.0	1516 5110
3.6		4076	8569	5869	7'1	1123 4590
3.2		3020	6184	0264	7.2	832 2789
3.8		2237	9769	6974	7.3	616 5676
3.9		1658	0844	5695	7.4	456 7645
		1050		5095	14	
4.0		1228	4306	7818		I have had few
4'I		910	0989	3072		cases before me
4'2		674	2514	2972		to test this Table.
4'3		499	5181	0103		
4'4		370	0644	5864		

When x exceeds 7.4, $D_0(x) = 2\epsilon^{-3x}$.

					11 1	
x					x	
1.0	.0423	6741	9026	1059	4.0	22 5145 8774
1.1	.0276	1444	-	6447	4'I	15 0190 6131
1.5	.0181	0163	7613	5258	4.2	10 1153 3727
1.3	.0110	1834	7129	2084	4.3	6 7802 3695
1'4	·007Ś		1209	4605	4.4	4 5447 7703
1.2	52	1725	6246	7841	4.2	3 0463 7189
1.6	34	6432	8199	0454	4.6	2 0419 9846
1.2	23	0445	7580	6403	4.7	I 3687 6733
1.8	15	3511	6719	9330	4.8	9174 9847
1.0	10	2380	6201	8424	4'9	6150 1019
2.0	6	8344	2950	0805	5.0	4122 4945
2'1	4	5658	1349	0520	5.1	2763 3678
2.5	3	0521	3358	3347	5.2	1852 3284
2.3	2	0413	0691	8597	5.3	1241 6460
2.4	I	3658	1504	2126	5.4	832 2961
2.2		9141	5814	4375	5.2	557 9027
2.6		6120	2594	0697	5.6	373 9722
2.2		4098	4114	8945	5.7	250 6806
2.8		2744	9898	1145	5.8	168 0379
2.9		1838	7845	6820	5.9	112 6377
3.0		1231	8960	3561	6.0	75 5030
3.1		825	3928	1896	6.1	50 6112
3.2		553	0734	7769		
3.3		370	6244	2520		
3.4		248	3756	5062		
3.5		166	4575	3342		
3.6		III	5613	6399		
3.7		74	7716	9199		
3.8		50	1154	0776		
3.9		33	5903	1373		

$\beth_{o}(x)$ or $\beth x - 2e^{-2x}$ to Sixteen Decimals.

For values of x, higher than 6.1, $\beth_0(x) = 2e^{-4x}$.

x					x	
1.0	.0322	6472	2428	9903	4.0	22 4994 8722
1.1	.0221	0533	8485	2974	4.1	15 0827 7437
1.5		9051	3590	9803	4.2	10 1106 8913
1.3	.0102	7031	5741	9741	4.3	6 7777 4081
1.4	.0069	7-3-		6984	4.4	4 5434 0713
			545-			
1.2	47	2239	0380	5935	4.5	3 0456 2007
1.0	31	9296	2363	2042	4.6	2 0415 8586
1.2	21	5561	0523	7513	4.7	1 3685 4107
1.8	14	5345	7740	8533	4.8	9173 7421
1.0	9	7900	1840	0702	4.9	6149 4187
2.0	6	5885	7853	2853	5.0	4122 1200
2.1	4	4309	0254	4092	5.1	2763 1626
2.5	2	9780	9837	5877	5.2	1852 2156
2.3	2	0066	7755	4579	5.3	1241 5840
2.4	I	3435	1791	7202	5.4	832 2623
2.2		9091	2149	6013	5.2	557 8843
2.6		6053	1042	6207	5.6	373 9622
2.7		4061	5563	3431	5.7	250 6750
2.8		2724	7634		5.8	168 0329
2.0		1827	6841	3348	5.9	112 6359
		1027	0041	3340	- 59	
3.0		1225	8040		6.0	75 5022
3.1		822	0 494	4916	6.1	50 6107
3.5		551	2385	9995		
3.3		369	6174	2388		
3.4		247	8229	9690		
3.2		166	1542	3078		
3.6		111	3949	· ·		
3.7		74	6803	3905		
3.8		50	0652	7220		
		33	5627	9875		
3.9		33	5027	9015		

 $\mathbf{n}_{0}x = 2\epsilon^{-2x} - \mathbf{n}x$ to Sixteen Decimals.

For higher values of x, $\Pi_0 x = 2e^{-4x} = \beth_0(x)$.

$\sigma(x) \text{ means } -\log_{\epsilon}(1-\epsilon^{-2x}); \ \kappa(x) \text{ means } \log_{\epsilon}(1+\epsilon^{-2x}).$

x		x	
1.0	σ ¹⁴⁵⁴ 1345 7868 8591 κ ¹²⁶⁹ 2801 1042 9725	2.3	101 0269 6562 3132 100 0165 2055 6520
1.1	σ '1174 3664 8812 5736 κ '1050 8331 9768 4102	2.4	82 6379 8368 4526 81 9606 7338 2682
1.3	950 9995 0522 4007 868 3615 2153 9481	2.2	67 6074 9449 4885 67 1534 8489 1181
1.3	771 7652 8823 4132 716 4469 1967 6700	2.6	55 3183 6855 7432 55 0140 3909 6574
1.4	627 3754 4004 4562 590 3282 6287 9514	2.7	45 2681 1510 7333 45 0641 1799 2495
1.2	510 6918 0942 7015 485 8735 1573 7420	2.8	37 0471 7716 5048 36 9104 3426 9466
1.0	416 1627 2352 8589 399 5333 3162 4303	2.9	30 3214 7060 5769 30 2298 0930 8316
1.2	339 4286 6281 1794 328 2847 0424 8652	3.0	²⁴ ⁸¹⁸² 9368 9595 7568 5137 7315
1.8	277 0395 7650 5573 269 5709 3008 2051	3.1	20 3149 2721 0270 2737 4123 8382
1.9	226 2479 3155 9337 221 2421 6454 8791	3.5	16 6293 9190 4285 6017 8414 0455
2.0	184 8544 6825 8866 181 4992 7917 8096	3.3	13 6129 4178 1702 5944 3575 2599
2.1	151 0914 7282 5446 148 8425 4671 9180	3.4	11 1439 5856 3140 1315 5360 4646
2.5	123 5332 9044 1634 122 0258 4607 6962	3.2	9 1229 7982 8390 9 1146 6453 7742

σ and κ to Sixteen Decimals.

 σ and κ to Sixteen Decimals.

x		x
3.6	7 46 ⁸⁶ 4642 3523 30 7251 8276	5 ^{.1} 37 ¹⁷ 1009 5175 37 ¹⁶ 9627 8849
3.7	6 1143 9472 2609 06 6202 2535	5 [·] 2 3 ⁰ 43 2946 0858 2019 9498
3.8	5 00 ⁵⁷ 6701 0545 32 6249 3860	5 [•] 3 2491 6320 1404 5699 3329
3.9	4 09 ⁸¹ 8943 2925 4 09 ⁶⁵ 1060 5254	5 [.] 4 2039 9711 4839 9295 3442
4.0	3 35 ⁵¹ 8908 0768 3 35 ⁴⁰ 6372 8957	5.5 1670 ¹⁸⁴⁰ 2651 1561 3183
4'1	^{69 1294 1714} ^{2 74} 61 5859 5851	5 ^{.6} 1367 4289 5583 4102 5747
4.5	2 2489 2610 6263 2 2484 2045 3116	5.7 1119 547 5125
4.3	1 84 ¹² 2743 2196 1 84 ₀₈ 8848 2758	5 ^{.8} 916 6 ¹²⁹ 7451 045 7278
4'4	1 507 ⁴ 4436 6671 2 1716 2070	5 [.] 9 75° 45 ⁸⁶ °744 29 75°
4.2	I 234 ¹ 7419 7031 2340 2189 7232	6.0 614 4 ^{231 2289} 193 4777
4.6	1 010 ⁴ 4506 6613 3 4297 7006	6·1 503 04 ⁶⁸ 2598 42 9544
4.7	8272 7487 3808 0644 1198	6.2 411 85 ^{97 1889} 2261
4.8	677 ³ 1030 1852 677 ² 6443 0045	6·3 337 20 ²⁰ 9193 09 5489
4.9	5545 3136 9290 5545 0062 0401	6·4 276 07 ⁷⁶ 3829 7611
5.0	45 39 8899 2169	$6.5 \qquad 226 \circ 3^{31}_{26} 9615_{8525}$

 σ and κ to Sixteen Decimals.

x	-	x	
6.6	185 0602 9103 0599 4857	7.9	13 7450 ⁷⁸²² 7634
6.7	151 51 ^{45 2599} 42 9643	8.0	11 2535 1810 1684
6.8	124 049 ⁵ 8494 4 3106	8.1	9 2136 0125 0041
6.9	101 563 ¹ 9869 9555	8.2	7 5434 58 ⁶³ 07
7.0	83 152 ⁹ 0648 3734	8.3	6 1760 61 ⁵² 14
7.1	68 079 <mark>8 3661</mark> 7 9027	8.4	5 0565 31 ⁴³ 23
7.2	50 7390 ⁵²⁴⁶ 2140	8.2	4 1399 37 ⁸⁰ 4
7'3	45 6352 7409 5327	8.6	3 3 ⁸ 94 94 ³⁸ ₂₈
7.4	37 36 ³⁰ 0078 29 8682	8.7	2 7750 83 ²⁸ 20
7.5	30 5902 ³⁶⁷³ 2737	8.8	2 2720 4 ⁶⁰¹ 597
7.6	25 0451 6685 6059	8.9	1 8601 939 ³
7.7	20 5052 4786 4366	9.0	I 5229 979 ⁸
7.8	16 7882 7671 73 ⁸ 9	9 . 1	1 2469 252 <mark>9</mark>

For higher values of x, $\sigma(x) = e^{-2x} = \kappa(x)$.

Remember that all these are natural, not common logarithms.

					0		
x						x	
1.0	.2723	4146	8911	8315		1.0	6 7092 5280 9725
1.1	.2225	1996	8580	9836	4	1°1	5 4930 7153 7565
1.5	.1810	3610	2676	3487		1.2	4 4973 4655 9379
1.3	·1488	2122				1.3	3 6821 1591 4954
1.4	.1217		0292			4'4	3 0146 6152 8741
1.2	996	5653	2516	4435		1 .2	2 4681 9609 4264
1.6	815		5515	2891		1.6	2 0207 8804 3619
1.2	667	7133	6706	0447		1.2	1 6544 8131 4906
1.8	546	6105	0658	7625		1.8	1 3545 7473 1887
1.9	447		9610	8129	11	1 [.] 9	1 1090 3198 9781
2.0	366	3537	4743	6963		5.0	9079 9859 5874
2'1	299		1954	4626		5'1	7434 0637 4024
2.2	245	5591	3651	8595		5.2	6086 4966 0356
2.3	201		8617	9652		5.3	4983 2019 4733
2.4	164		5706			5.4	4079 9006 8281
2.2	134	7609	7938	6066		5.2	3340 3401 4355
2.6	110	3324	0765	4006		5.6	2734 8392 1331
2.7	90	3322	3309	9827		5.7	2239 0969 6861
2.8	73	9576	1143	4507		5.8	1833 2175 4729
2.9	60	5512	7991	4083		5.9	1500 9115 8305
3.0	49	5751	4506	6900		5.0	1228 8424 7067
3.1	40		6844		0	5'1	and upwards = $2\epsilon^{-2x}$.
3.2	33	2311	7604	4747			-
3.3	27	2073	7753	4301			
3.4	22	2755		7787			
3.2	18	2376	4436	6132			
3.6	14		1894	1799			
3.7	12	2250	5674	5141			
3.8	10	0090	2950	4405			
3.9	8	1947	0003	8179			
					1		

 $\log_{\epsilon} \operatorname{Cot} x$ to Sixteen Decimals. Primary Anticyclics with Natural logarithms.

To adapt Legendre's Elliptic scale for a rapid calculation of

$$\int_0 \frac{d\omega}{\sqrt{(1-c^2\sin^2\omega)}},$$

when ω is given, and the constant

$$\rho = \frac{1}{2}\pi \cdot \frac{F(b, \frac{1}{2}\pi)}{F(c, \frac{1}{2}\pi)};$$

[of which a good table might be calculated with argument γ ($c = \sin \gamma$) from Legendre's own work; where, if $c, c_1, c_2 \dots c_n$ are formed on Lagrange's scale, $\rho = 2^{-n} \dots \log_e \dots \frac{4}{c_n}$, with any large value for n, but n = 4, suffices at worst]: it next is requisite for the use of the equation

$$\tan \frac{1}{2}(\omega_1 - \omega) = \Delta(c, \beta) \cdot \tan \omega$$

to calculate $\Delta(c, \beta)$ in Legendre's scale, with $F(c, \beta) = \frac{2}{3}F(c, \frac{1}{2}\pi)$ for the definition of β . Put $\phi(\rho)$ as equivalent to $-\log_{10}\Delta(c, \beta)$; where $\Delta(c, \beta) = \sqrt{(1-c^2\sin^2\beta)}$, then

$$-\frac{1}{3}\log_{e} \Delta(c,\beta) = \rho(2\rho) + \frac{1}{5}\rho(10\rho) + \frac{1}{7}\rho(14\rho) + \frac{1}{11}\rho(22\rho) + \&c.$$

in which each term is of the form

$$\frac{1}{2n-1} \cdot \overrightarrow{\rho}(\overline{4n-2} \cdot \rho):$$

but every term in which (2n-1) divides by 3 is excluded.

Then, if ρ and ω are given, the following table of $\phi(\rho)$ enables you to calculate $F(c, \omega)$ much more rapidly than by Lagrange's scale.

ρ		ρ	
1.0	3592 5572 9411 6719	4.0 8 7413 7507 52	80
1.1	2923 2484 2664 4562		07
1.5	2383 5463 1860 7711		58
1.3	1946 1441 0045 9939		82
1.4	1590 4540 8993 1846		96
1.2	1300 5603 0350 5642	4.5 3 2157 7186 46	32
1.6	1063 9363 9293 4314		37
1'7	0870 5994 8696 7943		60
1.8	0712 5245 5310 8973	4.8 1 7648 5299 95	
1.9	0583 2220 7250 4299		09
2.0	0477 4230 2244 3056	5.0 1 1830 1634 09	04
2'1	0390 8376 6653 7070	5.1 9685 7005 90	
2.2	0319 9670 8941 8197		01
2.3	0261 9538 7599 8236		50
2.4	0214 4625 4932 5163		24
2.2	0175 5651 6359 9217	5.5 4352 0738 96	15
2.6	0142 8531 8618 4305	5.6 3563 1767 38	
2.7	0117 6939 6969 2738	5.7 2917 2823 73	
2.8	0096 3590 2604 9745	5.8 2388 4687 94	
2.9	0078 8917 4230 4561	5.9 1955 5128 55	
3.0	0064 6209 0040 0540	6.0 1601 0385 12	46
3.1	0052 8824 4940 6155	6.1 1301 8194 67	•
3.2	0043 2964 2883 7997	6.2 1073 2082 09	
3.3	0035 5301 5415 2412	6.3 878 6685 65	
3.4	0029 0224 2004 9576	6.4 719 3926 77	
3.2	0022 4736 5465 9947		
3.6	0019 4542 9665 4372		
3.7	0017 2307 1146 9322		
3.8	0013 0406 0102 6271		
3.9	0010 6767 4021 7259		

Values of $\phi(\rho) = -\log_{10} \sqrt{(1 - c^2 \sin^2 \beta)}$ in Legendre's Elliptic scale.

For higher values of ρ , $\phi(\rho) = 6e^{-2\rho}$, multiplied by modulus of common logarithms. This at least shows a new possible method.

Carefully as I have worked at this table for $\phi(\rho)$ I must confess that I myself distrust it, because I have no check on error, and am sadly aware how a tired brain may blunder.

Secondary Anticyclics.

Summary, repeated for compactness.

Calling attention to the *capitals* in Sin, Cos, I use $\neg \Box$ for reciprocals of Sin and Cos: so \supset for Cot -1, and $\neg \Box$ for 1 - Tan. But Elliptic Integrals suggest other combinations not unimportant, to denote which I use other Hebrew letters.

In Elliptics we have $b^2 + c^2 = 1$; I put $\frac{1}{2}\pi \cdot C$ [not, as Legendre, mere C,] for $\int_0^{\frac{1}{2}\pi} \frac{d\omega}{\sqrt{(1-c^2\sin^2\omega)}}$;

and by *B* I mean the same function of *b* which *C* is of *c*. It is convenient to call *c* modulus, *b* submodulus; *C* the modular, *B* the submodular, and to assume $\rho = \frac{1}{2}\pi \cdot \frac{B}{C}$ for our chief constant.

Then it is allowable to assume eight Secondary Anticyclics defined by eight Series, with l for Nap. log.

Put

$$\begin{aligned} & (\rho) \text{ for } \log \operatorname{Cot} \rho + l \operatorname{Cot} 3\rho + l \operatorname{Cot} 5\rho + \&c. & \text{Hebrew } Lamda. \\ & (\rho) \text{ for } l \operatorname{Cot} \rho - l \operatorname{Cot} 2\rho + l \operatorname{Cot} 3\rho - l \operatorname{Cot} 4\rho + \&c. & \text{Hebrew } M\bar{a}im. \\ & (\rho) \text{ for } D(2\rho) + D(4\rho) + D(6\rho) + D(8\rho) + \&c. & \text{Hebrew } Reish. \\ & (\rho) \text{ for } D(2\rho) - D(4\rho) + D(6\rho) - \&c. & \text{Hebrew } Khai. \\ & (\rho) \text{ for } \frac{1}{2} \operatorname{D}(2\rho) + \frac{1}{4} \operatorname{D}(4\rho) + \frac{1}{6}(6\rho) + \&c. & \text{Hebrew } Z\bar{a}in. \\ & (\rho) \text{ for } \frac{1}{2} \operatorname{D}(2\rho) + \frac{1}{3} \operatorname{D}(3\rho) - \frac{1}{4} \operatorname{D}(4\rho) + \&c. & \text{Hebrew } Tsaddi. \\ & (\rho) \text{ for } D(\rho) + \frac{1}{3} \operatorname{D}(2\rho) + \frac{1}{3} \operatorname{D}(3\rho) + \&c. & \text{Hebrew } Pai. \\ & \forall (\rho) \text{ for } D(\rho) + D(3\rho) + D(5\rho) + \&c. & \text{Hebrew } Shin. \end{aligned}$$

Then in Elliptics it is known that

$$\begin{split} \overleftarrow{}(\rho) &= \frac{1}{4} \log \left(\frac{1}{\overline{b}}\right); \quad \overleftarrow{}(\rho) = \frac{1}{2} \log C; \\ & \neg(\rho) = \frac{1}{2} (C-1); \quad \overrightarrow{}(\rho) = \frac{1}{2} (1-Cb); \\ \text{also} \qquad \overleftarrow{}(\rho) &= \log Q, \\ \text{if } Q^{-1} \text{ stand for} \qquad (1-q^{\texttt{s}}) (1-q^{\texttt{4}}) (1-q^{\texttt{6}}) (1-q^{\texttt{s}}) \dots \\ \text{where} \qquad q = e^{-2\rho} \end{split}$$

Next
$$\mathbf{Y}(\rho) = \frac{1}{2} \left(\log \frac{4}{c} - \rho \right)$$
 and $\mathbf{\mathcal{U}}(\rho) = \frac{1}{2}Cc.$

Perhaps it is well to add a 9th function,

 $\Im(\rho) = l \operatorname{Cot} \rho + l \operatorname{Cot} 2\rho + l \operatorname{Cot} 3\rho + \&c. \quad (\text{Hebrew Nun.})$

Of these, \neg \neg i and \mathbf{x} are of the most obvious use in Elliptics, but to compute pairs may be as easy as to compute a single series, and the use of some of these may in the future be greater than we yet know. Their remarkable relations are elsewhere shown.

I have calculated \mathbf{D} and \mathbf{Y} in pairs from the equations with $\mathbf{D}(\rho)$ previously known; working backward from the known fact,

that when ρ is as large as 4.7, $2\epsilon^{-4\rho}$ is negligible, which permits us in in the last equations to substitute at first $\epsilon^{-4\rho}$ for their last term. Obviously, $\Im(\rho) = \Im(\rho) - 2\Im(2\rho)$.

ρ	ζ(ρ)	to 1	6 deci	mals.		ρ	(ρ) to 16 decimals.
1.0	.2773	9147	7363	8088	_	4.0	6 7092 5356 4751
1.1	2252	7452	4938	4952		4'I	5 4930 7195 1933
1.5		4166		0481		4.2	4 4973 4678 6788
1.3		4523	6530	5588		4.3	3 6821 1603 9760
1.4		2177		3692		4.4	3 0146 6159 7235
1.2		0396	5450	7918		4.5	2 4681 9613 1854
1.6	817	0528	8433	4168		4.6	2 0207 8806 4249
1.2		4576	0234	5234		4'7	1 6544 8132 6238
1.8	547	0188	0148	3081		4.8	1 3545 7473 8101
1.9	447	7141	1791	7024	•	4'9	1 1090 3199 3191
2.0	366	4766	7292	0334		5.0	9079 9859 7738
2'I		0014	7501	7840		5'1	7434 0637 5050
2.2		5961	5412	2330		5'2	6c86 4966 0920
2.3	201 (0638	0086	1661		5.3	4983,2019 5043
2.4	164 (6098	0562	9670		5.4	4079 9006 8451
2.2	134	7670	9771	0234		5.2	3340 3401 4447
2.6	110	3357	6541	1251		5.6	2734 8392 1381
2.7	90 (3340	75 ⁸ 5	7584		5.7	2239 0969 6889
2.8	70 9	9586	2275	4605		5.8	1833 2175 4745
2.9	60	5518	3493	5819		5.9	1500 9115 8313
3.0		5754	4966	8365		6.0	1228 8424 7071
3.1	40	5888	3561	7142		6.1	1006 0910 6144
3.2	33	2312	6778	8627	11	6.5	823 7177 4153
3.3	27 :	2074	2788	4367		6.3	674 4030 4684
3.4	22 :	2755	3980	0 473			
3.5	18 2	2376	5953	1272		1	
3.6	14 9	9317	2726	4598			
3.7	12 2	2250	6132	2788			
3.8		0090	3201	1183			•
3.9	8 1	1 947	0141	3927			

 $\varsigma_{\rho} = l \operatorname{Cot} \rho + l \operatorname{Cot} 3\rho + l \operatorname{Cot} 5\rho + \&c. = \rho(2\rho) + \frac{1}{3}\rho(6\rho) + \frac{1}{5}\rho(10\rho) + \&c.$

When ρ exceeds 6.3, $(\rho) = 2e^{-2\rho}$, correct to sixteen decimals. In Elliptics $(\rho) = \frac{1}{4} \log_{\epsilon} \left(\frac{1}{b}\right)$.

N. II,

129

9

ρ	م) در) to 1	6 deci	ınals.	ρ	2	(ρ) to	16 de	cimals
1.0	.2400	7265	9644	8655	4.0	6	7070	0286	1003
1.1	*2004	1339	7926	0180	4'I	5	4915	6326	0128
1.5	·1668	4521		8973	4.5			3549	
1.3	1385	5079	3171		4.3	3	6814	3814	0873
1.4		9856			4.4	3		0718	
1.2	949	3413	1983	7457	4.2	2	4678	9153	2257
1.9	783	7664	0094		4.6	2			5033
1.2	646	1572	5261		4.7	I			0799
1.8	532	0759		4883	4.8	I		8299	
1.9	437				4.9	I		7049	
2.0	359	7651	6865	2436	5.0		9079	5737	4674
2°I	295	5031		4731	5'1		7433	7874	2398
2'2	242	5810	3811		5.2		6086	3113	
2.3		0428			5.3		4983		
2.4	163	2551			5.4		4079		
2.5	133	8590	5788	9429	5.2		3340	2843	5510
2.6		7270			5.6			8018	
2.7	89	9260	7746	6340	5.7			0719	
2.8		6851		3551	5.8		1833		4400
2.9	60	3685		0730	5.9			9003	1946
3.0	49	4525	6466	6268	6.0		1228	8349	2045
3.1			6350		6.1			0860	
3.2	33	1760	5218		6.5		823	7143	
3.3	27	1704		1913	6.3			4007	7274
3.4	22	2507		8097	0		•••		
3.5	18	2210	2894	3054					
3.6	14			0998					
3.7	12		8871	1236					
3.8	10	0040	2297	7185					
3.9	8	1913	4375	8304					

 $\mathfrak{D}(\rho) = \frac{1}{2} \log C = l \operatorname{Cot} \rho - l \operatorname{Cot} 2\rho + l \operatorname{Cot} 3\rho - l \operatorname{Cot} 4\rho + \&c.$

When ρ exceeds 6.3, $\mathfrak{D}(\rho) = \Pi(\rho)$, which is given in a table above.

Also, $\mathfrak{D}(\rho) = \mathfrak{i}(\rho) - \mathfrak{i}(2\rho) - \mathfrak{i}(2^{2}\rho) - \mathfrak{i}(2^{3}\rho) - \&c.$

If we begin calculation from highest value of ρ we may deduce both \supset and \supset from a table of $\bigtriangledown (\rho)$ by the formulas

$$\begin{array}{l} \boldsymbol{\zeta}(\rho) = \boldsymbol{\zeta}(\rho) + \boldsymbol{\zeta}(2\rho) \\ \boldsymbol{\zeta}(\rho) = \boldsymbol{\zeta}(\rho) - \boldsymbol{\zeta}(2\rho) \end{array} \right\},$$

but then errors accumulate.

ρ	7 (ρ) to 16 decimals.	ρ	7 (ρ) to 16 decimals.
1.0	·3081 5463 3020 9416	4.0	6 7115 0326 1798
1.1	2465 2932 1077 3797	41	5 4945 8009 1205
1.5	1980 5544 5157 0211	4'2	4 4983 5778 9895
1.3	1596 5019 3564 1257	4.3	3 6827 9377 2241
1.4	1290 4652 7589 8850	4.4	3 0151 1591 1118
1.2	·1045 4515 3202 6148	4.5	2 4685 0067 9332
1.6	848 5349 4204 8395	4.6	2 0209 9221 5958
1.2	689 7643 6807 1977	4.7	1 6546 1817 6544
1.8	561 4179 2212 6355	4.8	1 3546 6647 3450
1.9	457 4296 9893 7954	4'9	1 1090 9348 6242
2.0	373 0243 6348 2641	5.0	9080 3981 8322
2'I	304 4099 2452 9691	5.1	7434 3400 6334
2.5	248 5619 2513 0357	5'2	6086 6818 2888
2.3	203 0577 1121 3383	5.3	4983 3261 0780
2.4	165 9496 0896 3902	5.4	4079 9839 1018
2.2	135 6669 8035 5560	5.2	3340 3959 4740
2.6	109 7159 0492 2469	5.6	2734 8766 0986
2.7	90 7396 1731 8453	5.2	2239 1220 3642
2.8	74 2307 6201 8311	5.8	1833 2343 5076
2.9	60 7344 1835 2760	5.9	1500 9228 4670
3.0	49 6979 2853 9161	6.0	1228 8500 2092
3.1	40 6709 8484 0696	6.1	1006 0961 8254
3.5	33 2863 6106 7867		
3.3	27 2443 7284 3596		
3.4	22 3003 1288 9340		
3.2	18 2542 6989 9316		
3.6	14 9428 6398 1143		
3.7	12 2325 2780 4145		
3.8	10 0140 3770 2810		
3.9	8 1980 5723 5221		

 $\mathsf{T}(\rho) = \frac{1}{2} \left(C - 1 \right) = \mathsf{D}(2\rho) + \mathsf{D}(4\rho) + \mathsf{D}(6\rho) + \&c.$

When ρ reaches 6.2, $\neg(\rho) = 2 (\epsilon^{-2\rho} + \epsilon^{-4\rho})$. Indeed when ρ is > 3, $\neg_{0}(3\rho) = 0$; therefore $\neg(\rho) = \neg(2\rho) + \neg_{0}(\rho)$.

Among Jacobian Elliptic functions we have

$$\begin{split} Q^{-1} &= (1 - q^2) \, (1 - q^4) \, (1 - q^6) \, (1 - q^8) \dots \\ q &= \epsilon^{-2\rho} .\\ \log Q &= 1(\rho), \\ \sigma \, (\rho) &= -\log \, (1 - \epsilon^{-2\rho}), \end{split}$$

moreover

Put then whence if

 $l(\rho) = \sigma(2\rho) + \sigma(4\rho) + \sigma(6\rho) + \&c. = \frac{1}{2} \Im(2\rho) + \frac{1}{4} \Im(4\rho) + \frac{1}{6} \Im(6\rho) + \&c.$

ρ	7	(ρ) or 16 dec			(ρ)		1 (p)
1.0	.0188	2722	4599	9831	3.0	614	4268	9795
1.1	.0125	0594	7085	8422	3.1	411	8614	1517
1.5	83	3209	1414	3569	3.5	276	0784	0048
1.3	55	6243	8615	8715	3.3	185	0606	3350
1.4	37	1844	2759	0558	3.4	124	0497	3882
1.2	24	8798	8868	0132	3.2	83	1529	7562
1.6	16	6570	4561	6278	3.6	55	• •	8353
1.2	II		7735	3365	3.7	37		
1.8	7		2449		3.8	25		
1.0	5	0082		1246	3.9	16		7953
2'0	3	3563	1481	0218	4.0	II	2535	1937
2'1	2		3187	3138	4.1	7	5434	
2.2	I		7160		4.2	5		3168
2.3	I		4716		4'3	3		9449
2.4		6773	5617	6775	4'4	2	2720	4606
2.2		4540	3022	6177	4.2	I	5299	9800
2.6			3872	2501	4.6	I		9608
2.7		2040	0127	6319				
2.8				5444				
2.9			6213					

When ρ exceeds 4.6, $\uparrow(\rho) = \epsilon^{-4\rho}$.

132

ρ $\Pi(\rho)$ to 16 decimals. ρ $\Pi(\rho)$ to 16 decimals.1'0'2335 4976 0324 4134 '1968 1693 6051 3083 '1' '1968 6552 3364 2407 '1'2 '1648 6552 3364 2407 '1'3 '1325 1679 7493 0137 '1'3 '1325 1679 7493 0137 '1'4' '1142 0037 5186 22284'06 7070 0185 4302 5 4915 6270 7637 '4'3 3 6814 3797 4465 '3 0142 0709 27061'5'0946 0556 7494 7826 '1'4' '1142 0037 5186 22284'5 '4'42 4678 9148 0136 2 0205 8385 7526 '6' 2 0205 8385 7526 '7' 645 1637 4229 3297 '1'6 51637 4229 3297 '1'6 45 1637 4229 3297 '1'6 45 1637 4229 3297 '1'6 45 1637 4229 3297 '1'6 539 5321 9416 4069 '1'9 437 4016 2353 23344'5 '5' '1'0'8 7049 10472'0359 6013 5695 9045 2'1' 295 4132 0894 9901 2'2' 242 5316 9330 8121 '2'2' 242 5316 9330 8121 '2'2' 242 5316 9330 8121 '2'2' 242 5316 9330 8121 '5'2' '1'6'3 2402 7601 70025'0 '4' '4'079 8174 54302'5133 8509 0071 8916 16'3 2402 7601 70025'5 '4' '4079 8174 54302'5133 8509 0071 8916 '1'8' 99236 2053 6417 '1'' 89 9236 2053 6417 '5'' '1'' 89 9236 2053 6417 '5'' '2'' 89 9236 2053 6417 '5'' '2''' 89 9236 2053 6417 '5'' '2'''''''''''''''''''''''''''''''''''						14	
1'1'19681693 6051 3083 4'15 4915 6270 7637 1'2'1648 6552 3364 2407 4'24 4963 3517 7255 1'3'1325 1679 7493 0137 4'3 3 6814 3797 4465 1'4'1142 0037 5186 2228 4'4 3 0142 0709 2706 1'5'0946 0556 7494 7826 4'5 2 4678 9148 0136 1'6 781 9622 1991 2661 4'6 2 0205 8385 7526 1'7 645 1637 4229 3297 4'71 6543 4444 5703 1'8 539 5321 9416 4069 4'81 1089 7049 1047 2'0 359 6013 5695 9045 $5'0$ 9079 5737 2178 2'1 295 4132 0894 9901 $5'1$ 7433 7874 1030 2'2 242 5316 9330 8121 $5'3$ 4983 0777 8480 2'1 295 4132 0894 9901 $5'7$ 7433 7844 1030 2'2 242 5316 9330 8121 $5'3$ 4983 0777 8480 2'3 199 0157 2678 1467 $5'7$ 2239 0719 074 2'4 1	ρ	Π(o) to 1	6 deci	imals.	ρ	$\Pi(\rho)$ to 16 decimals.
1'2'1648 6552 3364 2407 $4'2$ 44663 3517 7255 1'3'13251679749301374'3 36814 3797 4465 1'4'11420037518622284'4 30142 070927061'5'09460556749478264'5 24678 914801361'67819622199126614'6 2025 838575261'76451637422932974'716543444457031'85395321941640694'813544829861821'94374016235323344'911089704910472'03596013569590455'09079573721782'12954132089499015'17433787410302'22425316933081215'26086311374482'31990157267814675'34983<077	1.0	·2335	4976	0324	4134	4.0	6 7070 0185 4302
1'2'1648 6552 3364 2407 $4'2$ 4 4963 3517 7255 1'3'1325 1679 7493 0137 $4'3$ 3 6814 3797 4465 1'4'1142 0037 5186 2228 $4'4$ 3 0142 0709 2706 1'5'0946 0556 7494 7826 $4'5$ 2 4678 9148 0136 1'6 781 9622 1991 2661 $4'6$ 2 0205 8385 7526 1'7 645 1637 4229 3297 $4'7$ 1 6543 4444 5703 1'8 539 5321 9416 4069 $4'8$ 1 3544 8298 6182 1'9 437 4016 2353 2334 $4'9$ 1 1089 7049 1047 2'0 359 6013 5695 9045 $5'0$ 9079 5737 2178 2'1 295 4132 0894 9901 $5'1$ 7433 7874 1030 2'2 242 5316 9330 8121 $5'2$ 6083 3173 7448 2'3 199 0157 2678 1467 $5'3$ 4983 0777 8480 2'4 163 2402 7601 7002 $5'4$ 4079 8174 5430 2'5 133 8509 0071 8916 $5'5$ 3340 2843 6870	1.1	1968	1693	6051	3083	4'I	5 4915 6270 7637
1'3'13251679749301374'33 6814 3797 4465 1'4'11420037518622284'430142070927061'5'09460556749478264'52 4678 914801361'67819622199126614'620205838575261'76451637422932974'716543444457031'85395321941640694'813544829861821'94374016235323344'911089704910472'03596013569590455'09079573721782'12954132089499015'17433787410302'22425316933081215'26086311374482'31990157267814675'34983077784802'41632402760170025'44079817454302'51338509007189165'53340284368702'6103896663395'81833200743802'7899236205364175'72239071900742'8736837866963395'8183320074380	1.5	·1648	6552	3364	2407	4.5	
1'4'1142 0037 5186 2228 4'4 3 0142 0709 2706 1'5'0946 0556 7494 7826 4'5 2 4678 9148 0136 1'6 781 9622 1991 2661 4'6 2 0205 8385 7526 1'7 645 1637 4229 3297 4'71 6543 44444 5703 1'8 539 5321 9416 4069 4'81 3544 8298 6182 1'9 437 4016 2353 2334 4'91 1089 7049 1047 2'0 359 6013 5695 9045 $5'0$ 9079 5737 2178 2'1 295 4132 0894 9901 $5'1$ 7433 7874 1030 2'2 242 5316 9330 8121 $5'2$ 6086 3113 7448 2'3 199 0157 2678 1467 $5'3$ 4983 0777 8480 2'4 163 2402 7601 7002 $5'4$ 4079 8174 5430 2'5 133 8509 0071 8916 $5'5$ 3340 2843 6870 2'6 108 3985 6855 6693 $5'6$ 2734 8018 1642 2'7 89 9236 2053 6417 $5'7$ 2239 0719 074 2'8 73637 8	1.3	1325			0137	4.3	
167819622199126614.62 0205 8385 7526176451637422932974.71654344445703185395321941640694.81354482986182194374016235323344.91108970491047203596013569590455.0907957372178212954132089499015.1743378741030222425316933081215.2608631137448231990157267814675.34983077784802.41632402760170025.44079817454302.41632402760170025.44079817454302.61083985685566935.62734801816422.7899236205364175.72239071900742.8736837866963395.81833200743802.9603677714826085.91500900319343.0494421585349776.2823714348933.1405062406138826.36.36.3674400772723.1		.1142	0037		2228	4'4	3 0142 0709 2706
1'67819622199126614'62 0205 8385 7526 1'76451637422932974'7165434444 5703 1'85395321941640694'8135448298 6182 1'94374016235323344'911089 7049 1047 2'03596013569590455'0 9079 5737 2178 2'12954132089499015'1 7433 7874 1030 2'22425316933081215'2 6086 3113 7448 2'31990157267814675'3 4983 0777 8480 2'41632402760170025'4 4079 8174 5430 2'513385090071 8916 5'5 3340 2843 6870 2'61083985 6855 6693 5'6 2734 8018 1642 2'7 89 9236 2053 6417 5'7 2239 0719 0074 2'873 6837 8669 6339 5'8 1533 2007 4380 2'9 60 3677 7148 2608 5'9 1500 9003 1934 3'0 49 4421 5853 4977 $6'0$ 1228 8349 2010 1006 0862 4	1.2	·0946	0556	7494	7826	4.2	2 4678 9148 0136
1.7 645 1637 4229 3297 4.7 1 6543 4444 5703 1.8 539 5321 9416 4069 4.8 1 3544 8298 6182 1.9 437 4016 2353 2334 4.9 1 1089 7049 1047 2.0 359 6013 5695 9045 5.0 9079 5737 2178 2.1 295 4132 0894 9901 5.1 7433 7874 1030 2.2 242 5316 9330 8121 5.2 6086 3113 7448 2.3 199 0157 2678 1467 5.3 4983 0777 8480 2.42 5316 9330 8121 5.2 6086 3113 7448 2.3 199 0157 2678 1467 5.3 4983 0777 8480 2.42 5316 9330 8121 5.2 3340 2843 6870 2.4 163 2402 7601 7002 5.4 4079 8174 5430 2.7 89 9236 2053 6417 5.7 2239 0719 0074 2.8 73 6837 8669 6339 5.8 1533 2007 4380 2.9 60 3677 7148 2608 5.9 1500 9003 1934 3.0 49 4421 5853					2661		
1.8 539 5321 9416 4069 4.8 1 3544 8298 6182 1.9 437 4016 2353 2334 4.9 1 1089 7049 1047 2.0 359 6013 5695 9045 5.0 9079 5737 2178 2.12 295 4132 0894 9901 5.1 7433 7874 1030 2.2 242 5316 9330 8121 5.2 6086 3113 7448 2.3 199 0157 2678 1467 5.3 4983 0777 8480 2.4 163 2402 7601 7002 5.4 4079 8174 5430 2.4 163 2402 7601 7002 5.4 4079 8174 5430 2.7 133 8509 0071 8916 5.5 3340 2843 6870 2.7 89 9236 2053 6417 5.7 2239 0719 0074 2.8 73 6837 8669 6339 5.8 1833 2007 4380 2.9 60 3677 7148 2608 5.9 1228 8349 2010 3.1 40 5062 4061 3882 6.7 1228 8349 2010 3.1 40 5062 4061 3882 6.3 6.3 6.3 6.3 6.3 6.74 4007 72	1.2	645	1637	4229	3297	4.7	
1 $\cdot 9$ 4374016235323344 $\cdot 9$ 11089704910472 $\cdot 0$ 3596013569590455 $\cdot 0$ 9079573721782 $\cdot 1$ 2954132089499015 $\cdot 1$ 7433787410302 $\cdot 2$ 2425316933081215 $\cdot 2$ 6086311374482 $\cdot 3$ 1990157267814675 $\cdot 3$ 4983077784802 $\cdot 4$ 1632402760170025 $\cdot 4$ 4079817454302 $\cdot 5$ 1338509007189165 $\cdot 5$ 3340284368702 $\cdot 6$ 1083985685566935 $\cdot 6$ 2734801816422 $\cdot 7$ 899236205364175 $\cdot 7$ 2239071900742 $\cdot 8$ 736837866963395 $\cdot 8$ 1833200743802 $\cdot 9$ 603677714826085 $\cdot 9$ 1500900319343 $\cdot 0$ 494421585349776 $\cdot 0$ 1228834920103 $\cdot 3$ 1759298601076 $\cdot 2$ 823714348933 $\cdot 3$ 17703486586886 $\cdot 3$ 6 $\cdot 3$ 6 $\cdot 4$ 400772723 $\cdot 4$ 22 $\cdot 2506$ 930245886 $\cdot 3$ 6 $\cdot 4$ 400772723 $\cdot 4$ 22 $\cdot 2506$ 930245886 $\cdot 3$ 6 $\cdot 3$		539	5321	9416	4069	4.8	
2'1295 4132 0894 9901 5'1 7433 7874 1030 2'2242 5316 9330 8121 5'2 6086 3113 7448 2'3199 0157 2678 1467 5'3 4983 0777 8480 2'4 163 2402 7601 7002 5'4 4079 8174 5430 2'5 133 8509 0071 8916 5'5 3340 2843 6870 2'6 108 3985 6855 6693 5'6 2734 8018 1642 2'7 89 9236 2053 6417 $5'7$ 2239 0719 0074 2'8 73 6837 8669 6339 5'8 1833 2007 4380 2'9 60 3677 7148 2608 5'9 1500 9003 1934 3'0 49 4421 5853 4977 $6'0$ 1228 8349 2010 $3'1$ 40 5062 4061 3882 $6'1$ 1006 0866 6333 $3'2$ 33 1759 2986 0107 $6'2$ 823 7143 4893 $3'3$ 27 1703 4865 8688 $6'3$ 674 4007 7272 $3'4$ 222 506 9302 4588 $6'3$ 674 4007 7272 $3'5$ 18 2210 0872 5774 $3'6$ 14 9205 <td>1.9</td> <td>437</td> <td></td> <td>2353</td> <td>2334</td> <td>4 9</td> <td></td>	1 .9	437		2353	2334	4 9	
2'1295 4132 0894 9901 5'1 7433 7874 1030 2'2242 5316 9330 8121 5'2 6086 3113 7448 2'3199 0157 2678 1467 5'3 4983 0777 8480 2'4 163 2402 7601 7002 5'4 4079 8174 5430 2'5 133 8509 0071 8916 5'5 3340 2843 6870 2'6 108 3985 6855 6693 5'6 2734 8018 1642 2'7 89 9236 2053 6417 $5'7$ 2239 0719 0074 2'8 73 6837 8669 6339 5'8 1833 2007 4380 2'9 60 3677 7148 2608 5'9 1500 9003 1934 3'0 49 4421 5853 4977 $6'0$ 1228 8349 2010 $3'1$ 40 5062 4061 3882 $6'1$ 1006 0866 6333 $3'2$ 33 1759 2986 0107 $6'2$ 823 7143 4893 $3'3$ 27 1703 4865 8688 $6'3$ 674 4007 7272 $3'4$ 222 506 9302 4588 $6'3$ 674 4007 7272 $3'5$ 18 2210 0872 5774 $3'6$ 14 9205 <td>2.0</td> <td>359</td> <td>6013</td> <td>5695</td> <td>9045</td> <td>5.0</td> <td>9079 5737 2178</td>	2.0	359	6013	5695	9045	5.0	9079 5737 2178
$2 \cdot 2$ $242 \cdot 5316 \cdot 9330 \cdot 8121$ $5 \cdot 2$ $5 \cdot 806 \cdot 3113 \cdot 7448$ $2 \cdot 3$ $199 \cdot 0157 \cdot 2678 \cdot 1467$ $5 \cdot 3$ $4983 \cdot 0777 \cdot 8480$ $2 \cdot 4$ $163 \cdot 2402 \cdot 7601 \cdot 7002$ $5 \cdot 4$ $4079 \cdot 8174 \cdot 5430$ $2 \cdot 5$ $133 \cdot 8509 \cdot 0071 \cdot 8916$ $5 \cdot 5$ $3340 \cdot 2843 \cdot 6870$ $2 \cdot 6$ $108 \cdot 3985 \cdot 6855 \cdot 6693$ $5 \cdot 6$ $2734 \cdot 8018 \cdot 1642$ $2 \cdot 7$ $89 \cdot 9236 \cdot 2053 \cdot 6417 \cdot 577$ $2239 \cdot 0719 \cdot 0074$ $2 \cdot 8 \cdot 73 \cdot 6837 \cdot 8669 \cdot 6339 \cdot 5 \cdot 8$ $1500 \cdot 9003 \cdot 1934$ $2 \cdot 9 \cdot 60 \cdot 3677 \cdot 7148 \cdot 2608 \cdot 5 \cdot 9$ $1500 \cdot 9003 \cdot 1934$ $3 \cdot 0 \cdot 49 \cdot 4421 \cdot 5853 \cdot 4977 \cdot 61 \cdot 1500 \cdot 9003 \cdot 1934$ $1006 \cdot 866 \cdot 6033$ $3 \cdot 2 \cdot 33 \cdot 1759 \cdot 2986 \cdot 0107 \cdot 61 \cdot 288 \cdot 3499 \cdot 2010 \cdot 1006 \cdot 8660 \cdot 6033$ $3 \cdot 3 \cdot 2 \cdot 2506 \cdot 9302 \cdot 4588$ $6 \cdot 3 \cdot 3 \cdot 674 \cdot 4007 \cdot 7272 \cdot 272 \cdot 272 \cdot 272 \cdot 275 \cdot 8260 \cdot 1041 \cdot 388 \cdot 3943 \cdot 377 \cdot 12 \cdot 2175 \cdot 8260 \cdot 1041 \cdot 38 \cdot 10 \cdot 0040 \cdot 1963 \cdot 4814$							
$2 \cdot 3$ $199 \ 0157 \ 2678 \ 1467$ $5 \cdot 3$ $4983 \ 0777 \ 8480$ $2 \cdot 4$ $163 \ 2402 \ 7601 \ 7002$ $5 \cdot 4$ $4079 \ 8174 \ 5430$ $2 \cdot 5$ $133 \ 8509 \ 0071 \ 8916$ $5 \cdot 5$ $3340 \ 2843 \ 6870$ $2 \cdot 6$ $108 \ 3985 \ 6855 \ 6693$ $5 \cdot 6$ $2734 \ 8018 \ 1642$ $2 \cdot 7$ $89 \ 9236 \ 2053 \ 6417$ $5 \cdot 7$ $2239 \ 0719 \ 0074$ $2 \cdot 8$ $73 \ 6837 \ 8669 \ 6339$ $5 \cdot 8$ $1833 \ 2007 \ 4380$ $2 \cdot 9$ $60 \ 3677 \ 7148 \ 2608$ $5 \cdot 9$ $1500 \ 9003 \ 1934$ $3 \cdot 0$ $49 \ 4421 \ 5853 \ 4977$ $6 \cdot 0$ $1228 \ 8349 \ 2010$ $3 \cdot 1 \ 40 \ 5062 \ 4061 \ 3882 \ 6107 \ 51228 \ 8349 \ 2010$ $1006 \ 0860 \ 6033$ $3 \cdot 2 \ 33 \ 1759 \ 2986 \ 0107 \ 612 \ 823 \ 7143 \ 4893$ $6 \cdot 3 \ 823 \ 7143 \ 4893$ $3 \cdot 3 \ 27 \ 1703 \ 4865 \ 8688 \ 613 \ 613 \ 614 \ 4007 \ 7272 \ 7$	2.2	242					
2.4 163 2402 7601 7002 5.4 4079 8174 5430 2.5 133 8509 0071 8916 5.5 3340 2843 6870 2.6 108 3985 6855 6693 5.6 2734 8018 1642 2.7 89 9236 2053 6417 5.7 2239 0719 0074 2.8 73 6837 8669 6339 5.8 1833 2007 4380 2.9 60 3677 7148 2608 5.9 1500 9003 1934 3.0 49 4421 5853 4977 6.0 1228 8349 2010 3.1 40 5062 4061 3882 6.1 1006 0866 6033 3.2 33 1759 2986 0107 6.2 823 7143 4893 3.3 27 1703 4865 8688 6.3 6.74 4007 7272 3.4 22 2506 9302 4588 6.3 6.74 4007 7272 3.4 22 2506 9302 4588 6.3 6.74 4007 7272 3.4 22 210 872 5774 3.6 14 9205 6835 3943 3.7 12 2175 8260 1041 3.8 10 0040 1963 4814	2.3	199		2678	1467		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	163	2402		7002		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5	133	8509	0071	8916	5.2	3340 2843 6870
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3985	6855			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.7	89					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		73		8669	6339	5.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.9		3677				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.0	49	4421	5853	4977	6.0	1228 8349 2010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					3882	6.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-		•			6.5	
3'4 22 2506 9302 4588 3'5 18 2210 0872 5774 3'6 14 9205 6835 3943 3'7 12 2175 8260 1041 3'8 10 0040 1963 4814						6.3	
3'6 14 9205 6835 3943 3'7 12 2175 8260 1041 3'8 10 0040 1963 4814					4588		
3'6 14 9205 6835 3943 3'7 12 2175 8260 1041 3'8 10 0040 1963 4814	3.5	18	2210	0872	5774	-	
3.7 3.8 10 0040 1963 4814	3.6	14		6835			
3.8 10 0040 1963 4814							
		1					
		1	•				-1

$$\begin{split} \label{eq:phi} \Pi\left(\rho\right) &= \mathsf{D}\left(2\rho\right) - \mathsf{D}\left(4\rho\right) + \mathsf{D}\left(6\rho\right) - \mathsf{D}\left(8\rho\right) + \&c.\\ &= \mathsf{D}(2\rho) - \mathfrak{n}_{\scriptscriptstyle 0}(\rho) + \mathfrak{n}_{\scriptscriptstyle 0}(3\rho) - \mathfrak{n}_{\scriptscriptstyle 0}(5\rho) + \&c. \end{split}$$

When ρ reaches 6.2, $\sqcap (\rho) = 2 \ (\epsilon^{-2\rho} - \epsilon^{-4\rho}).$

133

 $\boldsymbol{\boldsymbol{\mathcal{U}}}(\rho) = \boldsymbol{\mathsf{D}}(\rho) + \boldsymbol{\mathsf{D}}(3\rho) + \boldsymbol{\mathsf{D}}(5\rho) + \boldsymbol{\mathsf{D}}(7\rho) + \&c. \text{ may be developed in powers of } \boldsymbol{\epsilon}^{-\rho}; \text{ then } \frac{1}{2}\boldsymbol{\boldsymbol{\mathcal{U}}}(\rho) = \boldsymbol{\epsilon}^{-\rho} + 2\boldsymbol{\epsilon}^{-5\rho} + \boldsymbol{\epsilon}^{-9\rho} + 2^{-1^{3}\rho} + 2\boldsymbol{\epsilon}^{-17\rho} + 2\boldsymbol{\epsilon}^{-21\rho} \text{ if the rest may be neglected.}$

			÷			
ρ	iU (p) to 10	6 deci	mals.	ρ	$\overleftarrow{\boldsymbol{v}}(ho)$ to 16 decimals.
г.о	.7629	6669	6946	8796	4.0	366 3128 6022 0232
1.1	·6821	9209	6819	4580	4'1	331 4535 5804 1340
1.5	.6123	4490	8595	9986	4'2	299 9115 6673 9794
1.3	.5510		4501		4.3	271 3711 9864 0438
1.4	·4968			3553	4.4	245 5468 0921 9239
1.2	.4484	7541	3322	3887	4.2	222 1799 3753 2438
1.9	·4051	3600	4992	3565	4.6	201 0367 1899 7424
1.2	•3661	8137	5828	2675	4.7	181 9055 4452 3572
1.8	.3310	9160	0206	9033	4.8	164 5949 4249 0452
1.9	[.] 2994	3672	0759	2514	4.9	148 9316 6233 4377
2.0	.2708	5219	6672	6783	5.0	134 7589 4053 7225
2.1	.2450	2301	4693		5.1	121 9349 3164 8248
2.2	.2216	7312	8564		5.2	110 3312 8861 9581
2.3	.2005	5820	9867		5.3	99 8318 7826 2156
2.4	1814	6048	4260		5.4	90 3316 1892 7435
2.5	·1641	8490	4198	8994	5.2	81 7354 2881 4883
2.6	.1485	5619	7883		5.6	73 9572 7435 7314
2.7	.1344	1650	9371	7815	5.7	66 9193 0916 6203
2.8	1216		1388	0546	5.8	60 5510 9491 7692
2.0	.1100	0.0	7512	7106	5.9	54 7888 9638 1541
		4045	1312	1100		
3.0	.0995	7536	0348	7687 1892	6.0	49 5750 4353 7069
3.1	900	9914	6945			l
3.5	815	2485	8098	0526		
3.3	737	6660	7826	8674	OL	oserve also that
3.4	667	4670	5518	2637		$\mathcal{U}^{i}(ho) = D(ho)$
3.2		9486		6448		$+ \mathcal{D}_{0}(\rho) - \mathcal{D}_{0}(3\rho) $
3.6	546		5814			
3.7	494		9890	4844		$+ \mathcal{P}_{\mathfrak{o}}(5\rho) - \mathcal{P}_{\mathfrak{o}}(7\rho)$
3.8	447	4156	6123	5194		$+ \mathcal{P}_{0}(9\rho) - \&c.$
3.9	404	8383	6484	6812		1

Since and

$$\begin{array}{l} \frac{1}{2}Cc = \boldsymbol{\mathcal{U}}^{i}\left(\boldsymbol{\rho}\right), \\ \frac{1}{2}C = \boldsymbol{\daleth}\left(\boldsymbol{\rho}\right) + \frac{1}{2}; \\ \vdots \quad c = \frac{\boldsymbol{\mathcal{U}}\left(\boldsymbol{\rho}\right)}{\frac{1}{2} + \boldsymbol{\curlyvee}\left(\boldsymbol{\rho}\right)}. \end{array}$$

When ρ is > 6, $\psi(\rho) = 2\epsilon^{-\rho}$ true to sixteen decimals.

If any diligent reader seek to test these small tables, (which the compiler naturally desires,) he may sometimes complain of inability to continue them beyond the highest value of ρ . That all may, on this scale, be complete within these covers, a skeleton table of $\epsilon^{-\rho}$ is here added, which has already, under the title of ϵ^{-x} , appeared in the *Cambridge Philosophical Transactions*, Vol. III. Part III. To obtain 16 decimals, in working for other results, 18 decimals are here given, though the two last cannot be trusted.

ρ	ε ^{- ρ}	ρ	ε ^{-ρ}
.1	·9048 3741 80359 5954	5 3.1	450 4920 23935 57806
•2	8187 3075 30779 8184	3 3.2	407 6220 39783 66216
.3	7408 1822 06817 1787	1 3.3	368 8316 74012 40006
.4	6703 2004 60356 3930	7 3.4	333 7326 99603 26081
.2	6065 3065 97126 3342	3 3.5	301 0738 34223 18502
·6	.5488 1163 60940 2644	1 <u>3</u> .6	273 2372 24472 92561
.7	4965 8530 37014 0952	3 3.7	247 2352 64703 39390
•8	4493 2896 41172 21599	3.8	223 7077 18561 65595
.9	4065 6965 97405 99120	3.9	202 4191 14458 04390
1.0	3678 7944 11714 4232	1 4.0	183 1563 88887 34179
1.1	3328 7108 36980 79553	3 4.1	165 7267 54017 61246
1.5	3011 9421 19122 02090		149 9557 68204 77705
1.3	2725 3179 30340 12603		135 6855 90122 00932
1.4	2465 9696 39416 0647	3 4.4	122 7733 99030 68440
1.2	2231 3016 01484 29829	4.2	111 0899 65382 42306
1.0	2018 9651 79946 5540	4.6	100 5183 57446 33583
1.2	1826 8352 40527 34648	3 4.7	90 9527 71016 95819
1.8	1652 9888 82215 86535	; 4.8	82 2974 70490 20030
1.9	1495 6861 92226 35054	4'9	74 4658 30709 24342
2.0	1353 3528 32366 12691	5.0	67 3794 69990 85467
2.1	1224 5642 82529 81900	5.1	60 9674 65655 15637
2.2	1108 0315 83623 33881		55 1656 44207 60774
2.3	1002 5884 37228 03731		49 9159 39069 10218
2'4	907 1795 32894 12500	5.4	45 1658 09426 12670
2.2	820 8499 86238 98791	5.5	40 8677 14384 64068
2.6	742 7357 83143 33876	5 5.6	36 9786 37164 82931
2.7	672 0551 27397 49761		33 4596 54574 71272
2.8	608 1006 26252 17961		30 2755 47453 75813
2.9	550 2322 00564 07225		27 3944 48187 68370
3.0	497 8706 83678 63943		24 7875 21766 66358

6.7 12 3091 19026 73481 $10^{\circ}2$ 3717 03186 841 6.8 11 1377 51478 44802 $10^{\circ}3$ 3363 30951 857 $6^{\circ}9$ 10 0778 54290 48510 $10^{\circ}4$ 3043 24830 084 $7^{\circ}0$ 9 1188 19655 54515 $10^{\circ}5$ 2753 64493 497 $7^{\circ}0$ 9 1188 19655 54515 $10^{\circ}5$ 2753 64493 497 $7^{\circ}2$ 7 0658 58083 76681 $10^{\circ}7$ 2254 49379 132 7.3 6 7553 87751 93846 $10^{\circ}8$ 2039 95034 111 7.4 6 1125 27611 29574 $10^{\circ}9$ 1845 82339 957 7.5 5 5308 43701 47832 $11^{\circ}0$ 1670 17007 902 7.6 5 0045 14334 406111 $11^{\circ}11$ 1511 23238 198 7.7 4 5282 71828 86790 $11^{\circ}21$ 1367 41960 656 7.8 4 0973 49789 79781 $11^{\circ}31$ 1237 29242 617 7.9 3 7074 35404 59080 $11^{\circ}411196$ 6567 $8^{\circ}2$ 2 7465 35699 72135 $11^{\circ}7$ 829 38191 607 $8^{\circ}3$ 2 <th></th> <th></th> <th>€⁻^ρ</th> <th></th> <th>ρ</th> <th></th> <th>€-p</th> <th></th> <th></th> <th>ρ</th>			€ ⁻ ^ρ		ρ		€-p			ρ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	855	008:	87364	6772	0.6	85802	77104	4286	22	6.1
$6 \cdot 3$ 18 3630 47770 28910 $9'8$ 5545 15994 321 $6 \cdot 4$ 16 6155 72731 73937 $9'9$ 5017 46820 561 $6 \cdot 5$ 15 0343 91929 77572 $10^{\circ}0$ 4539 99297 624 $6 \cdot 6$ 13 6036 80375 47893 $10^{\circ}1$ 4107 95552 253 $6 \cdot 7$ 12 3091 19026 73481 $10^{\circ}2$ 3717 03186 841 $6 \cdot 8$ 11 1377 51478 44802 $10^{\circ}3$ 3633 30951 857 $6 \cdot 9$ 10 0778 54290 48510 $10^{\circ}4$ 3043 24830 844 $7 \cdot 0$ 9 1188 19655 54515 $10^{\circ}5$ 2753 64493 497 $7 \cdot 1$ 8 2510 49232 65905 $10^{\circ}6$ 2491 60097 315 $7 \cdot 2$ $7 0658$ 58083 76681 $10^{\circ}7$ 2254 49379 132 $7 \cdot 3$ 6 7553 87751 93846 $10^{\circ}8$ 2039 95034 1111 $7 \cdot 4$ 61125 27611 29574 $10^{\circ}9$ 1845 82339 957 $7 \cdot 5$ 5308 43701 47832 $11^{\circ}9$ 1670 17007 902 $7 \cdot 6$ $5 0045$ 14334 40611 $11^{\circ}11$ 1511 23238 198 $7 \cdot 7$ 45282 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></td<>								-		
$6\cdot4$ 16 6155 72731 73937 $9\cdot9$ 5017 46820 5617 $6\cdot5$ 15 0343 91929 77572 $10\cdot0$ 4539 99297 624 $6\cdot6$ 13 6036 80375 478933 $10\cdot1$ 4107 95552 253 $6\cdot7$ 12 3091 19026 73481 $10\cdot2$ 3717 03186 841 $6\cdot8$ 11 1377 51478 44802 $10\cdot3$ 3043 24830 841 $6\cdot9$ 10 0778 54290 48510 $10\cdot4$ 3043 24830 844 $7\cdot0$ 9 1188 19655 54515 $10\cdot5$ 2753 64493 497 $7\cdot1$ 8 2510 49232 65905 $10\cdot6$ 2491 60097 315 $7\cdot2$ 7 0658 58083 76681 $10\cdot7$ 2254 49379 132 $7\cdot3$ 6 7553 87751 93846 $10\cdot8$ 2039 95034 1117 $7\cdot4$ 6 1125 27611 29574 $10\cdot9$ 1845 82339 957 $7\cdot5$ 5 5308 43701 47832 $11\cdot0$ 1670 17007 902 7.6 5 $00+51$ 4334 406111 $11\cdot1$ 1511 23238 198 7.7 4 5282 71828 86790 $11\cdot2$ 1367 41960 656 7.8 4 073 49789 <					0.8				-	
$6\cdot5$ 15 0343 91929 77572 $10\cdot0$ 4539 99297 624 $6\cdot6$ 13 6036 80375 47893 $10\cdot1$ 4107 95552 253 $6\cdot7$ 12 3091 19026 73481 $10\cdot2$ 3717 03186 841 $6\cdot8$ 11 1377 51478 44802 $10\cdot3$ 3363 30951 857 $6\cdot9$ 10 0778 54290 48510 $10\cdot4$ 3043 24830 844 $7\cdot0$ 9 1188 19655 54515 $10\cdot5$ 2753 64493 497 $7\cdot1$ 8 2510 49232 65905 $10\cdot6$ 2491 60097 315 $7\cdot2$ 7 0658 58083 76681 $10\cdot7$ 2254 49379 132 $7\cdot3$ 6 7553 87751 93846 $10\cdot8$ 2039 95034 1117 $7\cdot4$ 6 1125 27611 29574 $10\cdot9$ 1845 82339 957 $7\cdot5$ 5 5308 43701 47832 $11\cdot0$ 1670 17007 902 $7\cdot6$ 5 0045 14334 406111 $11\cdot1$ 1511 23238 198 7.7 4 5282 71828 86790 $11\cdot2$ 1367 41960 656 7.8 4 0973 49789 79781 $11\cdot3$ 1237 29242 617 7.9 3 7074 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.4</td>										6.4
6.6 13 6036 80375 47893 10.1 4107 95552 253 6.7 12 3091 19026 73481 10.2 3717 03186 841 6.8 11 1377 51478 44802 10.3 3363 30951 857 6.9 10 0778 54290 48510 10.4 3043 24830 084 7.0 9 1188 19655 54515 10.5 2753 64493 497 7.1 8 2510 49232 65905 10.6 2491 60097 315 7.2 7 0658 58083 76681 10.7 2254 49379 132 7.3 6 7553 87751 93846 10.8 2039 95034 1117 7.4 6 1125 27611 29574 10.9 1845 82339 957 7.5 5 5308 43701 47832 11.0 1670 17007 902 7.6 5 0045 14334 40611 11.1 1511 23238 198 7.7 4 5282 71828 86790 11.2 1367 41960 656 7.8 4 0973 49789 79781 11.3 1237 29242 617 7.9 37074 35404 59860 11.4 1119 54848 4255 8.0 3 3546 2627				• ·				00		04
6.712 3091 19026 73481 10.2 3717 03186 841 6.8 11 1377 51478 44802 10.3 3363 30951 857 6.9 10 0.778 54290 48510 10.4 3043 24830 084 7.0 9 1188 19655 54515 10.5 2753 64493 497 7.1 8 2510 49232 65905 10.6 2491 60097 315 7.2 7 0658 58083 76681 10.7 2254 49379 132 7.3 6 7553 87751 93846 10.8 2039 95034 111 7.4 6 1125 27611 29574 10.9 1845 82339 957 7.5 5 5308 43701 47832 11.0 1670 17007 902 7.6 5 0045 14334 40611 11.1 1511 23238 198 7.7 4 5282 71828 86790 11.2 1367 41960 656 7.8 4 0973 49789 79781 11.3 1237 29242 617 7.9 3 7074 35404 59080 11.4 1119 54848 425 8.0 3 3546 26279 02501 11.5 1013 00935 986 8.3 2 24867 32647 <td< td=""><td>405</td><td>0240</td><td>99297</td><td>4539</td><td>10.0</td><td>77572</td><td>91929</td><td>0343</td><td>15</td><td>0.2</td></td<>	405	0240	99297	4539	10.0	77572	91929	0343	15	0.2
$6\cdot 8$ III377 51478 44802 IO:3 3363 30951 857 $6\cdot 9$ IO 0.778 54290 48510 IO:4 3043 24830 084 $7\cdot0$ 9II88 19655 54515 IO:5 2753 64493 497 $7\cdot1$ 8 2510 49232 65905 IO:6 2491 60097 315 $7\cdot2$ 7 0658 58083 76681 IO:7 2254 49379 132 $7\cdot3$ 6 7553 87751 93846 IO:8 2039 95034 III $7\cdot4$ 6II25 27611 29574 IO:9I845 82339 957 $7\cdot5$ 5 5308 43701 47832 II:0I 670 17007 902 $7\cdot6$ 5 0045 I 4334 40611 II:1I 511 23238 198 7.7 4 5282 71828 86790 II:2I 367 41960 656 7.8 4 0973 49789 79781 II:3 1237 29242 617 7.9 3 7074 35404 59080 II:4III9 54848 425 $8\cdot0$ 3 3546 26279 02501 II:5IOI3 00935 986 $8\cdot1$ 3 0353 91380 78857 II:6 916 60877 362 $8\cdot2$ 2 7465 35699 72135 II:7 829		2530	95552	4107	10.1	47893		6036	13	6.6
$6\cdot8$ III377 51478 44802 IO·3 3363 30951 857 $6\cdot9$ IO 0778 54290 48510 IO·4 3043 24830 084 $7\cdot0$ 9II88 19655 54515 IO·5 2753 64493 497 $7\cdot1$ 8 2510 49232 65905 IO·6 2491 60097 315 $7\cdot2$ 7 0658 58083 76681 IO·7 2254 49379 132 $7\cdot3$ 6 7553 87751 93846 IO·8 2039 95034 III $7\cdot4$ 6II25 27611 29574 IO·9I845 82339 957 $7\cdot5$ 5 5308 43701 47832 II·0I670 17007 902 7.6 5 0045 I 4334 406111 II·1 1511 23238 198 7.7 4 5282 71828 86790 II·2 1367 41960 656 7.8 4 0973 49789 79781 II·3 1237 29242 617 7.9 3 7074 35404 59080 II·4II19 54848 425 $8\cdot0$ 3 3546 26279 02501 II·5IOI3 00935 9860 $8\cdot1$ 3 0353 91380 78857 II·6 916 60877 362 $8\cdot2$ 2 7465 35699 72135 II·7 829	128	8412	03186	3717	10.3	73481	19026	3091	12	6.7
$6 \cdot 9$ 10 $0 \cdot 778$ 54290 48510 $10 \cdot 4$ $30 \cdot 43$ $248 \cdot 30$ $88 \cdot 497$ $7 \cdot 0$ 9118819655 54515 $10 \cdot 5$ 2753 64493 497 $7 \cdot 1$ 8 2510 $492 \cdot 32$ $6590 \cdot 5$ $10 \cdot 6$ 2491 $600 \cdot 97$ 315 $7 \cdot 2$ 7 0658 $580 \cdot 83$ 76681 $10 \cdot 7$ 2254 49379 132 $7 \cdot 3$ 6 7553 87751 93846 $10 \cdot 8$ 2039 $950 \cdot 34$ 111 $7 \cdot 4$ 6 1125 27611 29574 $10 \cdot 9$ 1845 $82 \cdot 339$ 957 $7 \cdot 5$ 5 5308 43701 47832 $11 \cdot 0$ 1670 17007 902 $7 \cdot 6$ 5 0045 14334 406111 $11 \cdot 1$ 1511 $232 \cdot 38$ 198 $7 \cdot 7$ 4 5282 71828 86790 $11 \cdot 2$ 1367 41960 656 $7 \cdot 8$ 4 073 49789 79781 $11 \cdot 3$ 1237 29242 617 $7 \cdot 9$ 3 7074 35404 59080 $11 \cdot 4$ 1119 54848 425 $8 \cdot 0$ 3 3546 26279 02501 $11 \cdot 5$ 1013 00935 986 $8 \cdot 1$ 3 0353 91380 78857 $11 \cdot 6$ 916 60877 362 $8 \cdot 2$ 2 7465 35699 72135 $11 \cdot 7$ 829 38191 <td>721</td> <td>857:</td> <td>30951</td> <td>3363</td> <td>10.3</td> <td>44802</td> <td>51478</td> <td>1377</td> <td>II</td> <td>6.8</td>	721	857:	30951	3363	10.3	44802	51478	1377	II	6.8
$7 \cdot \circ$ 91188196555451510.5275364493497 $7 \cdot 1$ 82510492326590510.6249160097315 $7 \cdot 2$ 70658580837668110.7225449379132 $7 \cdot 3$ 67553877519384610.8203995034111 $7 \cdot 4$ 61125276112957410.9184582339957 $7 \cdot 5$ 55308437014783211.0167017007902 $7 \cdot 6$ 50045143344061111.1151123238198 $7 \cdot 7$ 45282718288679011.2136741960656 $7 \cdot 8$ 40973497897978111.3123729242617 $7 \cdot 9$ 37074354045968011.4111954848425 $8 \cdot 0$ 33546262790250111.5101300935986 $8 \cdot 1$ 30353913807885711.691660877362 $8 \cdot 2$ 27465356997213511.782938191607 $8 \cdot 3$ 24851682710794711.875045579150 $8 \cdot 4$ 22486732417884411.967904048673 $8 \cdot 5$ 20346836901064412.061442123533 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td>6.0</td>									10	6.0
7'I82510492326590510'62491600973157'270658580837668110'72254493791327'367553877519384610'82039950341117'461125276112957410'91845823399577'555308437014783211'01670170079027'650045143344061111'11511232381987'745282718288679011'21367419606567'840973497897978111'31237292426177'937074354045968011'41119548484258'033546262790250111'51013009359868'130353913807885711'6916608773628'227465356997213511'7829381916078'324851682710794711'8750455791508'422486732417884411'9679040486738'520346836901064412'0614421235338'618410579366757712'1555951324168'7166585810987										- 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ч <i>у</i> /-		-155		J+J-J	-9055		9	<i></i>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3150			1 1					
7.461125276112957410.9184582339957 7.5 55308437014783211.0167017007902 7.6 50045143344061111.1151123238198 7.7 45282718288679011.2136741960656 7.8 40973497897978111.3123729242617 7.9 37074354045908011.4111954848425 8.0 33546262790250111.5101300935986 8.1 30353913807885711.691660877362 8.2 27465356997213511.782938191607 8.3 24851682710794711.875045579150 8.4 22486732417884411.967904048073 8.5 20346836901064412.061442123533 8.6 18410579366757712.155595132416 8.7 16658581098763212.250304556071 8.8 15073307509547412.345517444630 8.9 13638892648200812.441185887075		1320	49379		10.2			0658	7	7.2
7.55530843701 47832 11.0167017007902 7.6 50045143344061111.1151123238198 7.7 45282718288679011.2136741960656 7.8 40973497897978111.3123729242617 7.9 37074354045908011.4111954848425 8.0 33546262790250111.5101300935986 8.1 30353913807885711.691660877362 8.2 27465356997213511.782938191607 8.3 24851682710794711.875045579150 8.4 22486732417884411.967904048073 8.5 20346836901064412.061442123533 8.6 18410579366757712.155595132416 8.7 16658581098763212.250304556071 8.8 15073307509547412.345517444630 8.9 13638892648200812.441185887075	166	1110	95034	2039	10.8	93846	87751	7553	6	7.3
7.6 $5 \ 0.045 \ 14334 \ 4.0611$ $11'1$ $1511 \ 23238 \ 198$ 7.7 $4 \ 5282 \ 71828 \ 86790$ $11'2$ $1367 \ 41960 \ 656$ 7.8 $4 \ 0.973 \ 4.9789 \ 79781$ $11'3$ $1237 \ 29242 \ 617$ 7.9 $3 \ 7074 \ 35404 \ 59080$ $11'4$ $1119 \ 54848 \ 425$ 8.0 $3 \ 3546 \ 26279 \ 0.2501$ 11.5 $1013 \ 0.0935 \ 986$ 8.1 $3 \ 0.353 \ 91380 \ 78857$ 11.6 $916 \ 60877 \ 362$ 8.2 $2 \ 7465 \ 35699 \ 72135 \ 11.7$ $829 \ 38191 \ 607$ 8.3 $2 \ 4851 \ 68271 \ 0.7947 \ 11.8 \ 750 \ 45579 \ 150 \ 8.4 \ 2 \ 2486 \ 73241 \ 78844 \ 11.9 \ 679 \ 0.4048 \ 073 \ 8.5 \ 2 \ 0.346 \ 83690 \ 10644 \ 12.0 \ 614 \ 42123 \ 533 \ 8.5 \ 2 \ 0.346 \ 83690 \ 10644 \ 12.0 \ 614 \ 42123 \ 533 \ 8.6 \ 1 \ 8410 \ 57936 \ 67577 \ 12.1 \ 555 \ 95132 \ 410 \ 8.8 \ 1 \ 5073 \ 30750 \ 95474 \ 12.3 \ 455 \ 17444 \ 630 \ 8.9 \ 1 \ 3638 \ 89264 \ 82008 \ 12.4 \ 411 \ 85887 \ 075 \ 45587 \ 0.56 \ 0.$	777	957	82339	1845	10.0	29574	27611	1125	6	7.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	246	902	17007	1670	11.0	47832	43701	5308	5	7.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	857	108	22228	1511	TT'T	40611	T 4 2 2 4	0045		7:6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							14334			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			29242							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-		•••			-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	631	986	00935	1013	11.2	02501	26279	3546	3	8.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	245	362.	60877	916	11.6	78857	01380	0353	3	8.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		607								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							•			
8.7 1 6658 58109 87632 12.2 503 04556 071 8.8 1 5073 30750 95474 12.3 455 17444 630 8.9 1 3638 89264 82008 12.4 411 85887 075	-	533			-					
8.7 1 6658 58109 87632 12.2 503 04556 071 8.8 1 5073 30750 95474 12.3 455 17444 630 8.9 1 3638 89264 82008 12.4 411 85887 075										
8.8 1 5073 30750 95474 12.3 455 17444 630 8.9 1 3638 89264 82008 12.4 411 85887 075	-	416	95132		12.1	67577			I	8.6
8.9 1 3638 89264 82008 12.4 411 85887 075	114			503	12.5	87632	58109	6658	I	8.7
8.9 1 3638 89264 82008 12.4 411 85887 075		630		455	12.3	95474	30750	5073	I	8.8
	538	075		411	-	82008	89264		I	8.0
/·····	085		66531							-
0'I I 1166 58084 90111 12'6 337 20152 341	153	241	20152	227	12:6	00111	58084	1166		017
			•			-	• •			-
	8050	500							I	1 -
	2053				11					1
	884				-					9'4
9.5 7485 18298 87702 13.0 226 03294 060	99 7	069	03294	226	13.0	87702	18298	7485		9'5

ρ	€	ρ	€-₽
P		P	
13.1	204 52306 24491	16.6	6 17606 13351
13.5	185 06011 97553	16.2	5 58833 13920
13.3	167 44932 09446	16.8	5 05653 13478
	151 51441 12156	16.9	4 57533 87708
13.4		17.0	
13.2	137 09590 86393	170	4 13993 77202
13.6	124 04950 79965	17.1	3 74597 °5575
13.7	112 24463 65241	17.2	3 38949 43271
13.8	101 56314 71020	17.3	3 06694 12954
13.9	91 89813 57913	17.4	2 77508 32429
14.0	83 15287 19119	17.5	2 51099 91571
		1-16	
14.1	75 23982 99227 68 07981 34408	17.6	2 27204 59942
14'2		17.7	2 05583 22310
14.3	61 60116 26191	17.8	1 86091 39278
14.4	55 73903 69323	17.9	1 68317 30706
14.2	50 43476 62588	18.0	1 52299 79752
14.6	45 63526 36810	18.1	1 37806 55555
14.7	41 29249 41607	18.3	1 24692 52791
14.8	37 36299 38007	18.3	1 12826 46525
14.9	33 80743 48400	18.4	1 02089 60750
15.0	30 59023 20519	18.2	92374 49702
12.1	27 67918 65864	18.0	83583 90136
15.5	25 04516 37241	18.2	75629 84148
15.3	22 66180 12790	18.8	68432 71049
15.4	20 50524 57575	18.0	61920 47706
15.2	18 55391 36271	19.0	56027 96459
	16 78827 53003	1017	50696 19869
15.6		19.1	
15.2	15 19065 96759	19'2	45871 81754
15.8	13 74507 72802	19.3	41506 53683
15.9	12 43706 02371	19'4	37556 66761
16.0	11 25351 74726	19.2	33982 67815
16.1	10 18260 36937	19.6	30748 79877
16.3	9 21360 08336	19.7	27822 66367
16.3	8 33681 07883	19.8	25174 98715
16.4	7 54345 83479	19.9	22779 27037
16.2	6 82560 33757	20'0	20611 53619
105	0 02300 33757	200	20011 53019

		1		11 (
ρ	$\epsilon^{-\rho}$	ρ	€ - Р	ρ	$\epsilon^{- ho}$
20'1	18650 08918	23.6	563 18394	27.1	17 00667
20'2	16875 29854	23.7	509 58993	27.2	15 38828
20.3	15269 40156	23.8	461 09586	27.3	13 92387
20.4	13816 32570	23.9	417 21690	27 4	12 59884
20.5	12501 52863	240	377 51347	27.5	11 39991
			577 5-547		3999-
20.6	11311 85098	24.1	341 58831	27.6	10 31506
20.7	10235 38612	24'2	309 08189	27.7	9 33346
20.8	9261 36038	24.3	279 66885	27.8	8 44526
20.9	8380 02554	24.4	253 05484	27.9	7 64157
21.0	7582 56070	24.2	228 97350	28.0	6 91435
21.1	6860 98471	24.6	207 18380	28.1	6 25638
21.5	6208 07569	24.7	187 46766	28.2	5 66101
21.3	5617 29937	24.8	169 62776	28.3	5 12231
21.4	5082 74242	24.9	153 48556	28.4	4 63485
- 1	4599 05558	25.0	138 87944	28.5	4 19376
21.2	4599 05550	230	138 87944	205	4 19370
21.6	4161 39757	25.1	125 66332	28.6	3 79466
21.7	3765 38823	25.2	113 70489	28.7	3 43356
21.8	3407 06418	25.3	102 88446	28.8	3 10681
21.0	3082 83916	25.4	93 09369	28.9	2 81116
22.0	2789 46822	25.2	84 23462	29.0	2 54364
22'7	2524 01519	25.6	76 21864	20'1	2 30158
22.1	2283 82340		68 96548	29.1	2 08255
22.2	2066 48887	25.7 25.8	62 40260	29.2	1 88442
22.3		-		29.3	
22.4	1869 83647	25.9	56 46419	29.4	
22.2	1691 89802	26.0	51 09089	29.5	1 54280
22.6	1530 89264	26.1	46 22895	29.6	1 39598
22.7	1385 20895	26.2	41 82968	29.7	1 26313
22.8	1253 38887	26.3	37 84905	29.8	1 14293
22.9	1134 11313	26.4	34 27424	29.9	1 03418
23.0	1026 18800	26.5	30 98820	30.0	93576
23.1	928 53333	26.6	28 03927	30.1	84671
U U	928 53333 840 17171	26.7		30.2	76612
23.2					69323
23.3		26.8	22 95663	30.3	
23.4	687 87436	26.9	20 72200 18 79528	30.4	62725
23.2	622 41450	27.0	18 79528	30.2	56757

ρ	€ ⁻ ^ρ	ρ	€ ⁻ ^ρ	ρ	€
30.6	51356	33.1	4215	35.1	571
30.2	46469	33.2	3812	35.2	517
30.8	42047	33.3	2450	35.3	467
30.0	38044	33.4	3122	35.4	423
31.0	34424	33.5	2825	35.5	383
31.1	31149	33.6	2556	35.6	346
31.5	28184	33.7	2313	35.7	313
31.3	25502	33.8	2093	35.8	283
31.4	23075	33.9	1894	35.9	256
31.2	20878	34.0	1715	36.0	232
31.6	18891	34'1	1552	36.1	210
31.7	17094	34.2	1404	36.2	190
31.8	15466	34'3	1270	36.3	172
31.9	13995	34.4	1150	36.4	156
32.0	12662	34.5	1040	36.2	141
32.1	11460	34.6	941	36.6	128
32.2	10366	34.7	852	36.7	116
32.3	9381	34.8	771	36.8	105
32.4	8487	34.9	698	36.9	95
32.2	7680	35.0	631	37.0	86
32.6	6949				
32.2	6288				
32.8	5689				
32.9	5149				
33.0	4658				

THE END.

139

CAMBRIDGE: PRINTED BY C. J. CLAY, M.A. & SONS, AT THE UNIVERSITY PRESS.

7 DAY USE RETABLE OR ONLY FROM NEMATIKOR ROWED STATISTICS LIBRARY

This publication is due on the LAST DATE and HOUR stamped below.

	1	
		······································
	1	
	1	
		·
		General Library University of California Berkeley
RB 17-60m-3,'66 (G1105s10)4188	11	University of California
(G1105s10)4188		Berkeley
		DURCLEY

