

Ir f faefanter R.M.
Sat: $5 \mathrm{Dec}=1908$.

MATHEMATICAL TRACTS.

PART II.

BY

F. W. NEWMAN, M.R.A.S.

EMERITUS PROFESSOR OF UNIVERSITY COLLEGE, LONDON ;

 HONORARY FELLOW OF WORCESTER COLLEGE, OXFORD.Cambrione:
MACMILLAN AND BOWES.
1889

Cambridge:

PRINTED BY C. J. CLAY, MA. AND SONS,
AT THE UNIVERSITY PRESS.

CONTENTS (OF ANTICYCLICS).

1. Gudermann's Treatise.
2. His notation by German types of cos, \sin, tan for which here mere capital initials suffices. Thus $\operatorname{Tan} x$ means $\frac{1-\epsilon^{-2 x}}{1+\epsilon^{-2 x}}$.
3. His primary Integral $\int \sec \omega d \omega$.

A Table of Tan x from $x=01$ to $x=1.00$.
7. First Properties of the Integral.
8. Inverse Functions.

12, 13. Peculiar Series from Gudermann.
14. Calculation of the Primary Anticyclics. To the symbols Sin, Cos, Tan, Cot, I add for conciseness P for Cosec, D (Samech) for Sec, Π for ($1-\mathrm{Tan}$), \beth for (Cot-1).
15. Anticyclics shorn of their first term (Mutilated)*.

Eight Secondary Anticyclics, suggested by Elliptics.
16. Peculiar Transformations. New aids to Convergence.
19. Numerical Illustrations, testing my Tables.

Skeleton Tables, in which x (the argument) advances by $\cdot 1$ at each step, and the results run to 16 decimals.
First from $x=9$ to $x=\cdot 1$, for $x^{-1}-p(x), 1=\operatorname{Sec} x, \operatorname{Cot} x-x^{-1}$, and Tan x. p. 109.

Next (from $x=1$ upward) for $P(x)$ and $\operatorname{Sec} x$. pp. 110-113.
$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.
Further, the Mutilated. pp. 117-120.
Natural $\log \frac{1}{1-\epsilon^{-2 x}}$, and $\left(1+\epsilon^{-2 x}\right)$. pp. 121-123.
Also $\log \operatorname{Cot} x$. p. 124.
[In anticipation of Legendre's Elliptic Scale is a special Table on p. 126.]
p. 125. Further details of the Eight Secondaries, with other Hebrew letters.

Next, Five short Tables, all to 16 decimals.
Finally, in pp. 5-139 a Table of $\epsilon^{-\rho}$ in the same scale.

* I add a zero Index, as in $\rho_{0}, \square_{0}, \Omega_{0}, \beth_{0}$ for Mutilated Functions.

PART II.

ANTICYCLICS.

1. A volume exists of 354 quarto pages by Dr C. Gudermann, Professor of Mathematics in Münster. It was published in 1833 by G. Reiner, Berlin, bearing the title, Theory of Potential Cyclic Hyperbolic Functions. These I call simply Anticyclic. The substance of Gudermann's treatise, it seems, appeared previously in volumes 6, 7, 8, 9 of Crelle's Journal. From p. 159 to p. 260 is an elaborate table of the integral $u=\int_{0} \frac{d \theta}{\cos \theta}$, tabulated previously by Legendre for use in Elliptic Integrals; but Gudermann's table is tenfold in amplitude. From p. 263 to p. 336 is a second large table, giving the common logarithms of

$$
\frac{1}{2}\left(\epsilon^{k}+\epsilon^{-k}\right), \quad \frac{1}{2}\left(\epsilon^{k}-\epsilon^{-k}\right)
$$

and of their ratio, to 9 and at last 10 decimals, with k increasing by only 001 at every step. Perhaps this was primarily intended to aid the valuation of Elliptic series: for he begins his table at $k=2$. If he had begun at $k=1 \cdot 57$ (for $k=\frac{1}{2} \pi$), his task would have been complete. For in Elliptics two constants $k k^{\prime}$ bear the relation $k k^{\prime}=\frac{1}{4} \pi^{2}$. We can work, at pleasure, through either; and one or other must exceed $\frac{1}{2} \pi$. Gudermann has certainly achieved a great and arduous task.
2. He was probably first to introduce (with German types) [I content myself with capital S and C$] \operatorname{Sin} x$ for $\frac{1}{2}\left(\epsilon^{x}-\epsilon^{-x}\right)$ and $\operatorname{Cos} x$ for $\frac{1}{2}\left(\epsilon^{x}+\epsilon^{-x}\right)$. This is the beginning of Anticyclic notation. The beauty of it is seen in formulas which abound in the higher theory of Elliptics, such as

$$
\omega=x+\frac{\sin 2 x}{\operatorname{Cos} 2 \rho}+\frac{1}{2} \frac{\sin 4 x}{\operatorname{Cos} 4 \rho}+\frac{1}{3} \cdot \frac{\sin 6 x}{\operatorname{Cos} 6 \rho}+\& c \ldots
$$

where ρ is the leading constant, a function of the modulus $c ; x$, the leading variable, is proportional to Legendre's First Integral

$$
\int_{0} \frac{d \omega}{\sqrt{\left(1-c^{2} \sin ^{2} \omega\right)}}
$$

N. II.
becoming equak to ω ar every complate quadrant. An eminent mathematician observed, that while our theory of these integrals seems complete, the extreme difficulty of calculating the constants baffles us when we try to use the higher scales. Until we have better aid in Anticyclic tables, apparently this difficulty must remain.
3. Analogy drives us on to use Tan for $\frac{\operatorname{Sin}}{\operatorname{Cos}}$, and Cot for the reciprocal. Nor can we any the more refuse Sec Cosec for the reciprocals of Cos and Sin. Thus we have
$\operatorname{Tan} x=\frac{\epsilon^{x}-\epsilon^{-x}}{\epsilon^{x}+\epsilon^{-x}}=\frac{1-\epsilon^{-2 x}}{1+\epsilon^{-2 x}} ; \operatorname{Cot} x=\frac{1+\epsilon^{-2 x}}{1-\epsilon^{-2 x}}$, functions of $\epsilon^{-2 x}$ alone.
Hence too $1-\operatorname{Tan} x=\frac{2 \epsilon^{-2 x}}{1+\epsilon^{-2 x}} ; \operatorname{Cot} x-1=\frac{2 \epsilon^{-2 x}}{1-\epsilon^{-2 x}}$.
These, as well as Cosec $x=\frac{2 \epsilon^{-x}}{1-\epsilon^{-2 x}}$ and Sec $x=\frac{2 \epsilon^{-x}}{1+\epsilon^{-2 x}}$
are very simple functions of ϵ^{-x}. We may almost say the same of $\log _{\epsilon} \operatorname{Sin} x$ and $\log _{\epsilon} \operatorname{Cos} x ;$ since $\log \operatorname{Sin} x=x-\log 2+\log \left(1-\epsilon^{-2 x}\right)$ and $\log \operatorname{Cos} x=x-\log 2+\log \left(1+\epsilon^{-2 x}\right)$.
A complete and trustworthy table of ϵ^{-x} is presupposed in this whole theory. Because Gudermann had not such at hand, therefore (perhaps) he began his table at $k=2$.

Since $\operatorname{Cos} x \pm \operatorname{Sin} x=\epsilon^{ \pm x}, \therefore \operatorname{Cos}^{2} x-\operatorname{Sin}^{2} x=1$.
Dividing the last by $\operatorname{Cos}^{2} x$, we obtain $1-\operatorname{Tan}^{2} x=\operatorname{Sec}^{2} x$.
Evidently $\operatorname{Cos} x$, like $\sec \theta$, varies from 1 to $\propto ; \operatorname{Sin} x$, like $\tan \theta$, from 0 to \propto : but Tan x and $\operatorname{Sec} x$, like positive $\sin \theta$ and $\cos \theta$, from 0 to 1 .

Gudermann's Längezahl.

4. I cannot translate this word: it is not in my German Dictionary. The "Length-Number" sounds to me nonsensical.

Since Tan x has the same limits as positive $\sin \theta$, we are led to assume the equation $\operatorname{Tan} x=\sin \theta$ tentatively, and are instantly rewarded by a series of important relations. First, from

$$
1-\operatorname{Tan}^{2} x=\operatorname{Sec}^{2} x \text {, it gives Sec } x=\cos \theta ;
$$

whence again $\operatorname{Cos} x=\sec \theta$. Also

$$
\operatorname{Sin} x=\frac{\operatorname{Tan} x}{\operatorname{Sec} x}=\frac{\sin \theta}{\cos \theta}=\tan \theta .
$$

Thus, if from a given x we can pass to θ, a trigonometrical table that furnishes us with the circular functions of θ will make us masters of the Anticyclic functions of x. To pass from x to $\operatorname{Tan} x$ will enable us to reach θ.

From our definitions of $\operatorname{Cos} x$ and $\operatorname{Sin} x$ as $\frac{1}{2}\left(\epsilon^{x} \pm \epsilon^{-x}\right)$ we forthwith deduce $d \cdot \operatorname{Cos} x=\operatorname{Sin} x d x$ and $d \cdot \operatorname{Sin} x=\operatorname{Cos} x d x$. Therefore also we get

$$
d \cdot \operatorname{Tan} x=d \cdot \frac{\operatorname{Sin} x}{\operatorname{Cos} x}=\frac{\operatorname{Cos} x d \operatorname{Sin} x-\operatorname{Sin} x d \operatorname{Cos} x}{(\operatorname{Cos} x)^{2}}=\frac{\operatorname{Cos}^{2} x-\operatorname{Sin}^{2} x}{\operatorname{Cos}^{2} x} . d x
$$

Hence on differentiating $\operatorname{Tan} x=\sin \theta$, you find

$$
\operatorname{Sec}^{2} x . d x=\cos \theta . d \theta
$$

$$
\text { But } \operatorname{Sec}^{2} x=\cos ^{2} \theta ; \text { whence } d x=\frac{d \theta}{\cos \theta} \text {, or } x=\int_{0} \frac{d \theta}{\cos \theta} \text {; }
$$

since x vanishes with θ.
This is the integral tabulated, first by Legendre; next, more elaborately by Gudermann. To have the mastery over x when θ is given, and conversely, is our first problem.
5. If we take $\rho=\int_{0} \sec \theta . d \theta$ as a Polar curve, with ρ as radius vector, the locus has ρ as an asymptote (logarithmic infinity) when $\theta=90^{\circ}$. The curve starts at $\theta=0$ perpendicular to this asymptote, from which it attains its maximum distance, nearly where $\theta=60^{\circ}$. As attempts at admissible nomenclature, I have sometimes called ρ the Range and θ the Elevation.

Legendre has two integrations slightly differing:
(a) $\int_{0} \frac{d \theta}{\cos \theta}=\int_{0} \frac{\cos \theta d \theta}{\cos ^{2} \theta}=\int_{0} \frac{d \sin \theta}{1-\sin ^{2} \theta}=\frac{1}{2} \log \frac{1+\sin \theta}{1-\sin \theta}$;
(b) Let $\theta=2 \omega \therefore \int_{0} \frac{d \theta}{\cos \theta}=\int_{0} \frac{2 d \omega}{\cos 2 \omega}=\int_{0} \frac{2 d \omega}{\cos ^{2} \omega-\sin ^{2} \omega}$

$$
\begin{aligned}
=\int_{0} \frac{2 \sec ^{2} \omega d \omega}{1-\tan ^{2} \omega}=\int_{0} \frac{2 d \tan \omega}{1-\tan ^{2} \omega} & =\log \frac{1+\tan \omega}{1-\tan \omega} \\
& =\log \tan \left(45^{\circ}+\omega\right) .
\end{aligned}
$$

6. From the last, if $x=$ this integral,

$$
\epsilon^{x}=\tan \left(45^{\prime \prime}+\frac{1}{2} \theta\right), \epsilon^{-x}=\tan \left(45^{\circ}-\frac{1}{2} \theta\right)
$$

whence, reverted, $2_{2}^{1} \theta=45^{0}-\tan ^{-1}\left(\epsilon^{-x}\right)$, which avails us, if we have a good table of ϵ^{-x} from x as argument.

As I regarded such a table as of first necessity for Anticyclics, I prepared one myself, and was rewarded by the Philosophical Society of Cambridge publishing it in 87 quarto pages, under the zealous and toilful superintendence of Mr Glaisher. By the kind support of Professor Adams, the same society has since published my table of ϵ^{x} from $x=0$ to $x=2$.

If x exceeds 3 , the series $\tan ^{-1} \cdot \epsilon^{-x}=\epsilon^{-x}-\frac{1}{3} \epsilon^{-3 x}+\frac{1}{5} \epsilon^{-5 x}-\& c$. converges very rapidly: but it is more convenient to have θ in degrees; and unless x is less than 1 , I suppose from a trigonometrical table, with ϵ^{-x} known, $\tan ^{-1} . \epsilon^{-x}$ can be found in degrees with the needful accuracy. But to meet the case of $x<1$, Professor J. C. Adams of Cambridge (to whom I sent a table of Tan x, calculated for x less than 1, wishing him to get it tested by differencing), was kind enough to compute it-by help of a new machine, as I understand-independently, from my values of ϵ^{-x}, and had his own results verified by differencing. Thus I am able to present to the reader the table attached, which now rests not on me, but on the authority of the distinguished astronomer.

Table of
$\operatorname{Tan} x=\frac{1-\epsilon^{-2 x}}{1+\epsilon^{-2 x}}$, from $x=01$ to $x=1$,
as corrected by Professor J. C. Adams.

x	$\operatorname{Tan} x$.	x	$\operatorname{Tan} x$.
$\cdot 1$	-0099 99666680	11	$\cdot 10955847$ 0215
$\cdot 02$	- 019997333760	-12	-1194 27298535
-03	-0299 9100 3239	${ }^{1} 13$	- 129272583606
$\cdot 04$	-0399 7868 O318	$\cdot 14$	${ }^{\text {'1390 }} 92447878$
-05	$\cdot 049958374958$	'15	$\cdot 148885033623$
-06	-0599 2810 3529	- 16	$\cdot 158648504297$
-07	-0698 8589 0316	$\cdot 17$	$\cdot 168381045870$
-08	-0798 2976 9111	$\cdot 18$	-1780 8086 81ı7
-09	-0897 57784747	$\bullet 19$	$\cdot 187746205869$
- 10	.0996 67994625	20	-1973 7532025

x	$\operatorname{Tan} x$.	x	$\operatorname{Tan} x$.
$\cdot 21$	$\cdot 206966499730$	-61	-5441 27098854
$\cdot 22$	$\cdot 2165$ 1806 1493	$\cdot 62$	-5511 28028538
$\cdot 23$	-2260 28352279	$\cdot 63$	-5580 52215559
$\cdot 24$	$\cdot 235495749539$	$\cdot 64$	-5648 99552846
$\cdot 25$	$\cdot 2449$ I866 2403	$\cdot 65$	-5716 69966085
$\cdot 26$	$\cdot 254295532627$	$\cdot 66$	${ }^{5} 578363415044$
$\cdot 27$	$\cdot 263624835472$	$\cdot 67$	-5849 7988 2881
$\cdot 28$	$\cdot 272905080563$	-68	-5915 1939 5433
$\cdot 29$	-282I 3481 2670	$\cdot 69$	$\cdot 597982000499$
30	$\cdot 2913$ 1261 2451	70	$\cdot 604367777117$
$\cdot 31$	$\cdot 300437097147$	71	-6106 7683 2817
32	309506921213	72	-6169 09302877
$\cdot 33$	318520776903	73	$\cdot 623065349572$
$\cdot 34$	$\cdot 327477394808$	74	-6291 45161414
$\cdot 35$	$\cdot 336375544337$	75	$\cdot 63514895 \quad 2388$
$\cdot 36$	$\cdot 345214034136$	76	-6410 7696 1186
$\cdot 37$	-3539 9171 2477	77	$\cdot 646929450442$
38	362707467578	78	$\cdot 652706705962$
$\cdot 39$	-3713 6022 7877	79	-6584 09フ3 5955
$\cdot 40$	$\cdot 379948962255$	-80	-6640 36770268
4 4	$\cdots 388472680216$.81	-6695 90259620
$\cdot 42$	3396930432005	$\cdot 82$	-6750 6987 4838
$\cdot 43$	-4053 2130 8689	$\cdot 83$	-6804 7600 6ıI3
$\cdot 44$	-4136 4444 2187	-84	-6858 0906 2230
$\cdot 45$	-42189900 5251	-85	-6910 69469833
$\cdot 46$	-4300 842 1 1403	- 86	$\cdot 69625767 \quad 2687$
-47	4381 9931 4833	-87	701374130938
$\cdot 48$	$\cdot 446243610249$	-88	7706419320397
$\cdot 49$	$\cdot 454216432682$	-89	711393731818
-50	-4621 1715 7260	9^{3}	7162 9787 O199
'51	-4699 4519 8933	91	$\cdots 21132254078$
$\cdot 52$	-4777 0001 2168	$\cdot 92$	725897414849
$\cdot 53$	-4853 8ı09 о606	93	$\cdot 730593896096$
-54	-4929 8796 6675	$\cdot 94$	735222252916
-55	-5005 20211190	'95	739783051273
-56	-5079 77432898	96	$\cdots 74427686$
$\cdot 57$	-515359278008	97	748704286969
$\cdot 58$	$\cdot 522665429685$	$\cdot 98$	$\cdots 753065904870$
$\cdot 59$	- 529895607528	$\cdot 99$	7757362324216
$\cdot 60$	'5370 49566998	I.00	761594155955

When x is given (less than 1), this table shows $\operatorname{Tan} x$, and the equation $\sin \theta=\operatorname{Tan} x$ determines θ.

Moreover Gudermann shows how to use his table inversely, and obtain θ from x.

Every one acquainted with Eliiptic Integrals will see that the assumption there admitted, of

$$
\sin \theta=\sqrt{ }-1 \cdot \tan \psi
$$

whence

$$
\cos \theta=\sec \psi, \tan \theta=\sqrt{ }-1 \sin \psi, \& c .
$$

does but introduce Anticyclics in disguise.
7. Some other elegant relations must be mentioned,

$$
\operatorname{Tan} \frac{1}{2} x=\tan \frac{1}{2} \theta \text {. }
$$

Proof: $\tan \frac{1}{2} \theta=\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=\sqrt{\frac{\sec \theta-1}{\sec \theta+1}}=\sqrt{\frac{2(\operatorname{Cos} x-1)}{2(\operatorname{Cos} x+1)}}$

$$
=\sqrt{\frac{\epsilon^{x}+\epsilon^{-x}-2}{\epsilon^{x}+\epsilon^{-x}+2}}=\frac{\epsilon^{\frac{1}{2} x}-\epsilon^{-\frac{1}{2} x}}{\epsilon^{\frac{1}{x} x}+\epsilon^{-\frac{1}{2} x}}=\operatorname{Tan} \frac{1}{2} x .
$$

$$
x=\int_{0} \frac{d \theta}{\cos \theta}=\frac{1}{2} \log \frac{1+\sin x}{1-\sin x}
$$

may of course be developed into

$$
\sin \theta+\frac{1}{3} \sin ^{3} \theta+\frac{1}{5} \sin ^{5} \theta+\frac{1}{7} \sin ^{7} \theta+\& c . \ldots \ldots \ldots \ldots .(a) .
$$

This development of x in odd powers of $\sin \theta$ suggests the assumption x, or

$$
\int_{0} \sec \theta d \theta=A_{1} \sin \theta-\frac{1}{3} A_{3} \sin 3 \theta+\frac{1}{5} A_{5} \sin 5 \theta-\& c
$$

Differentiate: then

$$
\sec \theta=A_{1} \cos \theta-A_{3} \cos 3 \theta+A_{5} \cos 5 \theta-\& c
$$

Multiply by $2 \cos \theta$, and apply the formula

$$
\left.\begin{array}{rl}
2 \cos \theta \cdot \cos (2 n+1) \theta=\cos 2 n \theta+\cos (2 n+2) \theta ; \\
\therefore \quad 2= & A_{1}(1+\cos 2 \theta)-A_{3}(\cos 2 \theta
\end{array}+\cos 4 \theta\right) .
$$

which requires $\quad A_{1}=2=A_{3}=A_{5}=A_{7} \& c$.
Hence $\quad \frac{1}{2} x=\sin \theta-\frac{1}{3} \sin 3 \theta+\frac{1}{5} \sin 5 \theta-\frac{1}{7} \sin 7 \theta+\& c$.
a series which can be otherwise confirmed. Namely, it is known in the Higher Trigonometry that if r is <1,

$$
\frac{(1+r) \cot \cdot \theta}{1+2 r \cos 2 \theta+r^{2}}=\cos \theta-r \cos 3 \theta+r^{2} \cos 5 \theta-r^{4} \cos 7 \theta+\& c .
$$

With r constant and θ variable, multiply by $d \theta$ and integrate:

$$
\therefore \quad(1+r) \int_{0} \frac{\cos \theta \cdot d \theta}{1+2 r \cos 2 \theta+r^{2}}=\sin \theta-\frac{1}{3} r \sin 3 \theta+\frac{1}{5} r^{2} \sin 5 \theta-\& \mathrm{c} .
$$

This, being true as long as $r<1$, and the series on the right converging even when r reaches 1 , will not prove false at the extreme value $r=1$. But when $r=1$, the left member becomes

$$
2 \int \frac{\cos \theta \cdot d \theta}{2(1+\cos 2 \theta)} \text { or } 2 \int_{0} \frac{\cos \theta d \theta}{4 \cos ^{2} \theta} \text { or } \int_{0} \frac{d \theta}{2 \cos \theta} .
$$

Thus if

$$
x=\int_{0} \sec \theta d \theta,
$$

we find $\quad \frac{1}{2} x=\sin \theta-\frac{1}{3} \sin 3 \theta+\frac{1}{5} \sin 5 \theta-\& c$. as before.
Of course, from slow convergence, this series does not aid computation.
8. We pass to Inverse Anticyclic Functions.

If

$$
t=\operatorname{Tan} x, x=\operatorname{Tan}^{-1} . t .
$$

But

$$
\begin{aligned}
& d t=d \operatorname{Tan} x=\operatorname{Sec}^{2} x d x=\left(1-\operatorname{Tan}^{2} x\right) d x \\
&=\left(1-t^{2}\right) d x . \\
& \therefore \quad d x=\frac{d t}{1-t^{2}}=\left(1+t^{2}+t^{4}+t^{6}+\& c .\right) d t
\end{aligned}
$$

whence

$$
\begin{equation*}
x=t+\frac{1}{3} t^{3}+\frac{1}{5} t^{5}+\& c . \tag{a}
\end{equation*}
$$

But $t=\sin \theta$ or $x=\sin \theta+\frac{1}{3} \sin ^{3} \theta+\frac{1}{5} \sin ^{5} \theta+\& c$.
The t and $\sin \theta$ are always less than 1 .
9. We proceed to Sin^{-1} and Cos^{-1}. Let $u=\operatorname{Sin} x, v=\operatorname{Cos} x$.

First, $d u=\operatorname{Cos} x d x=\sqrt{1+\operatorname{Sin}^{2} x} . d x=\sqrt{ }\left(1+u^{2}\right) d x$,

$$
d x=\frac{d u}{\sqrt{ }\left(1+u^{2}\right)} .
$$

The development by Bin. Th. is twofold. First, when u is less than 1. $\quad d x=\left\{1-\frac{1}{2} u^{2}+\frac{1.3}{2 \cdot 4} \cdot u^{4}-\frac{1.3 \cdot 5}{2.4 \cdot 6} u^{6}+\& \mathrm{c}.\right\} d u$, whence $\quad x$ or $\operatorname{Sin}^{-1} u=u-\frac{1}{2} \cdot \frac{u^{3}}{3}+\frac{1.3}{2.4} \cdot \frac{u^{5}}{5}-\frac{1.3 .5}{2.4 \cdot 6} \cdot \frac{u^{7}}{7}+\& c$.

Next when u is >1, develop $\left(u^{2}+1\right)^{-\frac{1}{2}}$ in descending order,

$$
\begin{aligned}
x & =\int u^{-1}\left\{1-\frac{1}{2} u^{-2}+\frac{1.3}{2 \cdot 4} u^{-4}-\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} u^{-6}+\& \mathrm{c} .\right\} d u \\
& =\log (x u)+\frac{1}{2} \cdot \frac{u^{-2}}{2}+\frac{1.3}{2.4} \cdot \frac{u^{-4}}{4}+\frac{1.3 .5}{2.4 \cdot 6} \cdot \frac{u^{-6}}{6}-\& c . \ldots(l) .
\end{aligned}
$$

To find α, the constant of integration, observe that

$$
\begin{aligned}
\epsilon^{x} & =\operatorname{Cos} x+\operatorname{Sin} x \\
& =\sqrt{ }\left(1+u^{2}\right)+u ; \\
\therefore \quad x & =\log \left\{\sqrt{ }\left(1+u^{2}\right)+u\right\} .
\end{aligned}
$$

Make u infinite ; then $x=\log (2 u)$. But x then by (b)

$$
=\log (\alpha u), \quad \therefore \alpha=2 .
$$

10. Next, from $v=\operatorname{Cos} x, \quad d v=\operatorname{Sin} x d x=\sqrt{ }\left(v^{2}-1\right) d x$,
or $\quad d x=\frac{d v}{\sqrt{ }\left(v^{2}-1\right)}=v^{-1}\left\{1+\frac{1}{2} v^{-2}+\frac{1.3}{2.4} v^{-4}+\frac{1.3 .5}{2.4 .6} v^{-6}\right\} d v$;
$\therefore \quad x=\log (\beta v)-\frac{1}{2} \cdot \frac{v^{-2}}{2}-\frac{1.3}{2.4} \cdot \frac{v^{-4}}{4}-\frac{1.3 .5}{2.4 \cdot 6} \cdot \frac{v^{-6}}{6}-\& c . \ldots \ldots \ldots .(c)$.
To find β, we have

$$
\begin{aligned}
\epsilon^{x} & =\operatorname{Cos} x+\operatorname{Sin} x=v+\sqrt{ }\left(v^{2}-1\right), \\
x & =\log \left(v+\sqrt{v^{2}-1}\right) .
\end{aligned}
$$

Make v infinite; $\therefore x=\log 2 v$. This proves β to be 2 , just as α previously. These results are Gudermann's.
11. Recurring to the "Range",

$$
x=\int_{0} \sec \theta d \theta
$$

observe that from

$$
\begin{aligned}
& \epsilon^{x}=\operatorname{Cos} x+\operatorname{Sin} x \\
& \epsilon^{x}=\sec \theta+\tan \theta
\end{aligned}
$$

we have
When $x=1$, let θ have the special value θ_{1}; then $\epsilon=\sec \theta_{1}+\tan \theta_{1}$.
From above, we infer

$$
\begin{aligned}
\frac{1}{2} \theta_{1} & =45^{0}-\tan ^{-1} \cdot\left(\epsilon^{-1}\right) \\
\epsilon^{-1} & =3678 \quad 7944 \quad 1171
\end{aligned}
$$

where
from which I deduced that θ_{1} slightly exceeds $49^{\circ} 36^{\prime}$. I since find that Dr James Booth had found

$$
\theta_{1}=49^{\circ} 36^{\prime} 15^{\prime \prime}, \text { and } \tan \theta_{1}=1 \cdot 175203015
$$

Series which advance by powers of $\tan \theta$ or $\sin \theta$ are not convenient for a continuous table. Especially if all the terms are of one sign, Legendre evades them. We may here notice one such series with alternate signs, viz.

$$
x=\operatorname{Sin}^{-1}(\tan \theta)=\tan \theta-\frac{1}{2} \frac{\tan ^{3} \theta}{3}+\frac{1.3}{2.4} \cdot \frac{\tan ^{5} \theta}{5}-\& c \ldots \ldots(d) .
$$

12. Why Gudermann is not satisfied to work from Legendre's original equation $x=\log \tan \left(45^{\circ}+\frac{1}{2} \theta\right)$ I have not understood; but it seems to belong to liberal knowledge to be acquainted with his series.

For small values of θ Gudermann has $\theta=\frac{1}{2} \pi v$, and v a small fraction. To go back; from

$$
\sin \theta=\theta\left(1-\frac{\theta^{2}}{\pi^{2}}\right)\left(1-\frac{\theta^{2}}{2^{2} \pi^{2}}\right), \& c .
$$

you get in Trigonometry,

$$
\theta \cot \theta=1-\Sigma \frac{2 \theta^{2}}{n^{2} \pi^{2}-\theta^{2}}
$$

where $n=1,2,3,4 \ldots$ Next,

$$
\frac{1}{\sin \theta}=\frac{1}{\theta}+\frac{2 \theta}{\pi^{2}-\theta^{2}}-\frac{2 \theta}{2^{2} \pi^{2}-\theta^{2}}+\frac{2 \theta}{3^{2} \pi^{2}-\theta^{2}}-\& c .
$$

Thence, putting $\theta=\frac{1}{2} \pi-\omega$, resolving

$$
\frac{2 \theta}{n^{2} \pi^{2}-\theta^{2}} \text { into } \frac{1}{n \pi-\theta}-\frac{1}{n \pi+\theta},
$$

and for a moment making $\frac{1}{2} \pi=p$, you find

$$
\frac{1}{\cos \omega}=\frac{2 p}{p^{2}-\omega^{2}}-\frac{2.3 p}{3^{2} p^{2}-\omega^{2}}+\frac{2.5 p}{5^{2} p^{2}-\omega^{2}}-\& c .
$$

In this last, restore θ for ω, since the equation is identical, then

$$
x=\int_{0} \frac{d \theta}{\cos \theta}=\log \frac{p+\theta}{p-\theta}-\log \frac{3 p+\theta}{3 p-\theta}+\log \frac{5 p+\theta}{5 p-\theta}-\& c .
$$

If you here develop every term on the right, you have a result in powers of θ. But, to improve convergence, leave the first term undeveloped, and where $\theta=p v$ or $\frac{1}{2} \pi v$, you obtain

$$
\begin{aligned}
x & =\log \frac{1+v}{1-v}-2\left\{M_{1} v+M_{s^{3}} s^{3}+M_{5} v^{5}+\& \mathrm{c} .\right\} \ldots \ldots(e), \\
\text { if } \quad M_{n} & =\frac{1}{n}\left\{3^{-n}-5^{-n}+7^{-n}+\& \mathrm{c} .\right\}
\end{aligned}
$$

in which n is an odd integer.

If for other purposes $1-V_{n}$ has been tabulated [a task which I had myself assumed] for $n=2,3,4,5, \& c$. where V_{n} means

$$
1^{-n}-3^{-n}+5^{-n}-7^{-n}+\& c .
$$

then we have simply M_{r} in our series

$$
=\frac{1-V_{r}}{r} .
$$

13. For increasing values of θ, Gudermann seems to use the results of (b) or (c) in Art. 9 and 10 above, viz.
$\left.\begin{array}{r}x=\operatorname{Sin}^{-1}(\tan \theta)=\log (2 \tan \theta)+\frac{1}{2} \cdot \frac{\cot ^{2} \theta}{2}-\frac{1.3}{2.4} \cdot \frac{\cot ^{4} \theta}{4} \\ \\ +\frac{1.3 .5}{2 \cdot 4 \cdot 6} \cdot \frac{\cot ^{8} \theta}{6}-\& c .\end{array}\right\} \cdots(f)$.
Embarrassing wealth of series possibly gave him great power of verification.

Finally, when θ approaches 90°, put $\theta=\frac{1}{2} \pi-\omega$; then ω is very small,

$$
x=\int \frac{-d \omega}{\sin \omega}
$$

which further suggests $\quad \omega=u \pi$,
or

$$
\theta=\frac{1}{2} \pi-\pi u=\frac{1}{2} \pi(1-2 u),
$$

and our series will be developable in powers of u.
Write U_{n} for $1-2^{-n}+3^{-n}-4^{-n}+\& c$. and you easily get

$$
x=\int \frac{-d \omega}{\sin \omega}=\log \frac{C}{\omega}-U_{2} \cdot \frac{\omega^{2}}{\pi^{2}}-\frac{1}{2} U_{4} \cdot \frac{\omega^{4}}{\pi^{4}}-\frac{1}{3} U_{6} \cdot \frac{\omega^{6}}{\pi^{6}}-\& c .
$$

where $C=2$, when ω converges to zero,
or

$$
x=\log \frac{2}{u \pi}-U_{2} \cdot u^{2}-\frac{1}{2} U_{4} u^{4}-\frac{1}{3} U_{6} \cdot u^{6}-\& c \ldots \ldots .(g) .
$$

But, for better convergence, add to the last

$$
-\log \left(1-u^{2}\right)=u^{2}+\frac{1}{2} u^{4}+\frac{1}{3} u^{6}+\& c .
$$

and observe that

$$
\log \frac{2}{u \pi}+\log \left(1-u^{2}\right)=\log \left(u^{-1}-u\right)-\log \left(\frac{1}{2} \pi\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
\therefore x=\log \left(u^{-1}-u\right)-\log \left(\frac{1}{2} \pi\right)+\left(1-U_{2}\right) u^{2} \\
\\
\\
\text { where } \quad+\frac{1}{2}\left(1-U_{4}\right) u^{4}+\frac{1}{3}\left(1-U_{6}\right) u^{6}+\& c \ldots \ldots(h), \\
\\
\text { or } \quad \theta=\frac{1}{2} \pi(1-2 u), \\
\qquad u=\frac{\frac{1}{2} \pi-\theta}{\pi} .
\end{array}
\end{aligned}
$$

Calculation of the Primary Anticyclics.

14. Since $\operatorname{Sin} x$ and $\operatorname{Cos} x$ increase rapidly, only their logarithms, when x exceeds 2 , can well be registered, a task which Gudermann has executed, up to $x=12$. When x exceeds $12, \log \left(1 \pm \epsilon^{-2 x}\right)$ in series converges so rapidly, that its first term probably suffices; the two first are $\epsilon^{-2 x}$ and $\frac{1}{2} \epsilon^{-4 x}$. Thus when x is large, $\log \operatorname{Sin} x$ and $\log \operatorname{Cos} x$ are sufficiently known. For small values of x, put

$$
\begin{aligned}
P & =\epsilon^{-2 x}+\frac{1}{3} \epsilon^{-6 x}+\frac{1}{5} \epsilon^{-10 x}+\& c . \\
Q & =\frac{1}{2} \epsilon^{-4 x}+\frac{1}{4} \epsilon^{-8 x}+\frac{1}{6} \epsilon^{-12 x}+\& c .
\end{aligned}
$$

Then

$$
\left.-\log \left(1-\epsilon^{-2 x}\right)=P+Q ; \quad \log \left(1+\epsilon^{-2 x}\right)=P-Q\right\rfloor
$$

and from x given, P and Q are computable by a general table of $\epsilon^{-\rho}$ (such as has been published by the Cambridge Philosophical Society). I find it convenient to write

$$
\sigma(x) \text { as equivalent to } P+Q \text {, and } \kappa(x) \text { for } P-Q \text {; }
$$

whence

$$
\left.\begin{array}{l}
\log \operatorname{Sin} x=x-\log 2-\sigma(x) \\
\log \operatorname{Cos} x=x-\log 2+\kappa(x)
\end{array}\right] \text { and } \log \operatorname{Cot} x=2 P .
$$

The reciprocals of $\operatorname{Sin} x$ and $\operatorname{Cos} x$ can be obtained from $\frac{2 \epsilon^{-x}}{1 \mp \epsilon^{-2 x}}$ by long division, by aid of the table of ϵ^{-x}. But when x is not very small, the development rising by powers of $\epsilon^{-2 x}$ yields a result nearly accurate and less tedious: moreover it will give two results at once. I write $P(x)$ for $\operatorname{Cosec} x$, i.e. for the reciprocal of $\operatorname{Sin} x$, and \square for $\operatorname{Sec} x$ or the reciprocal of $\operatorname{Cos} x$.

When x exceeds $1.37, p$ and D are found most easily by summing

$$
\left.\begin{array}{l}
M=\epsilon^{-x}+\epsilon^{-5 x}+\epsilon^{-9 x}+\epsilon^{-13 x}+\epsilon^{-17 x}+\ldots \\
N=\epsilon^{-3 x}+\epsilon^{-7 x}+\epsilon^{11 x}+\epsilon^{-15 x}+\ldots
\end{array}\right] .
$$

Then

$$
P(x)=2(M+N) ; \square(x)=2(M-N) .
$$

After calculating this latter part of the table, we may go back to x less than 137 , and take the sums

$$
\left.\begin{array}{l}
H=\epsilon^{-x}+\epsilon^{-5 x}+\epsilon^{-13 x}+\epsilon^{-17 x}+\epsilon^{-25 x} \\
K=\epsilon^{-7 x}+\epsilon^{-11 x}+\epsilon^{-19 x}+\epsilon^{-23 x}
\end{array}\right] .
$$

Evidently then by the expansion of $P(3 x)$ and $\square(3 x)$, you find

$$
\left.\begin{array}{l}
P(x)=2(H+K)+P(3 x) \\
\square(x)=2(H-K)-D(3 x)
\end{array}\right] \begin{aligned}
& \text { of which } p(3 x) \text { and } \square(3 x) \text { are } \\
& \text { supposed already in our tables. }
\end{aligned}
$$

Occasional long division is a valuable check on error, especially as to the last figures.

The table of P and D ends naturally when the second term $2 \epsilon^{-3 x}$ is insignificant, so that $P(x)$ and $\square(x)$ are undistinguishable from $2 \epsilon^{-x}$.

Since $\operatorname{Cot} x$ and Tan x converge towards 1 when x increases, I write $Ј$ for Cot -1 and $\boldsymbol{\Omega}$ for 1 - Tan ; which give $J(x)=\frac{2 \epsilon^{-2 x}}{1-\epsilon^{-2 x}}$; $\Omega(x)=\frac{2 \epsilon^{-2 x}}{1-\epsilon^{-2 x}}$.

When an entire table of $p(x)$ pre-exists, you can deduce from it entire tables of $\boldsymbol{\beth}(x)$ and $\boldsymbol{\Omega}(x)$ by the process of $a \pm b$ for each entry For we have as identity

$$
\frac{2 y}{1 \mp y}=\frac{2 y}{1-y^{2}} \pm \frac{2 y^{2}}{1-y^{2}}
$$

in which you have merely to assume $y=\epsilon^{-2 x}$,
then, with the upper sign, $コ(x)=p(2 x)+\beth(2 x)]$.
with the lower,

$$
\Omega(x)=p(2 x)-\beth(2 x)]
$$

Begin with x so large, that $\boldsymbol{J}(2 x)$ is undistinguishable from $2 \epsilon^{-2 x}$ that is, when $2 \epsilon^{-4 x}$ is insignificant; and work backward.

The great ease of this method seems to give primacy to a table of $\boldsymbol{D} x$. That of $\boldsymbol{D}(x)$ is less serviceable.

Moreover if you repeat the equation

$$
\supset(x)-\supset(2 x)=p(2 x)
$$

by writing for x, first $2 x$, next $4 x$, next $8 x, \ldots$ and so on to $2^{n-1} x$, then adding all together, you get

$$
כ(x)-\supset\left(2^{n} x\right)=p(2 x)+p\left(2^{2} x\right)+p\left(2^{3} x\right)+\ldots+p\left(2^{n} x\right) ;
$$

when n is large, $\beth\left(2^{n} x\right)=0$. Practically, when 16 decimals suffice, $\epsilon^{-37}=0 ; \therefore$ J $(18)=0$.

The last series converges nearly as

$$
2\left(\epsilon^{-2 x}+\epsilon^{-4 x}+\epsilon^{-8 x}+\epsilon^{-16 x}+\ldots\right.
$$

If you calculate $\beth(x)$ by long division, this formula avails to verify a table of \beth. Like remarks may be made on the companion formula [obtained from $\beth(x)+\Omega(x)=2 p(2 x)$],

$$
\boldsymbol{\Omega} x=p(2 x)-\nabla\left(2^{2} x\right)-p\left(2^{3} x\right)-p\left(2^{4} x\right)-\& c .
$$

- The Mutilated and the Secondary Functions.

15. Advantage is sometimes found in using the Anticyclics P Mutilated, and denote them by $P_{0} \unrhd_{0} \beth_{0} \Omega_{0}$. Then
or

$$
\begin{array}{ll}
P_{0}(x)=\frac{2 \epsilon^{-3 x}}{1-\epsilon^{-2 x}} ; & D_{0}(x)=\frac{2 \epsilon^{-3 x}}{1+\epsilon^{-x}} \\
J_{0}(x)=\frac{2 \epsilon^{-4 x}}{1-\epsilon^{-2 x}} ; & \Omega_{0}(x)=\frac{2 \epsilon^{-4 x}}{1+\epsilon^{-3 x}}
\end{array}
$$

$$
\begin{array}{ll}
P_{0}(x)=P(x)-2 \epsilon^{-x} ; & D_{0}(x)=2 \epsilon^{-x}-D(x) ; \\
J_{0}(x)=\beth(x)-2 \epsilon^{-2 x} ; \quad \Omega_{0}(x)=2 \epsilon^{-2 x}-\Omega(x) ;
\end{array}
$$

If tables are calculated, the Mutilated Functions $p_{0} x, D_{0} x$ may be made auxiliary; thus we may calculate them first, and $P(x), \square x$ from them ; then proceed to $\beth(x)$ and $\Omega(x)$, and from these deduce $\beth_{0}(x)$ and $\boldsymbol{\mu}_{0}(x)$.

Again, these Mutilated forms facilitate our estimate of what I further call the Secondary Functions, which are suggested by Elliptic Integrals. If, as in Legendre's notation, $F(c \omega)$ mean
while

$$
\begin{aligned}
& \int_{0} \frac{d \omega}{\sqrt{ }\left(1-c^{2} \sin ^{2} \omega\right)}, \\
& \rho=\frac{1}{2} \pi \cdot \frac{F\left(b, \frac{1}{2} \pi\right)}{F\left(c, \frac{1}{2} \pi\right)},
\end{aligned}
$$

where

$$
b^{2}+c^{2}=1
$$

it is convenient also to take

$$
\frac{x}{\frac{1}{2} \pi}=\frac{F(c \omega)}{F\left(c, \frac{1}{2} \pi\right)},
$$

then x is the leading independent variable, and ρ the leading constant in the Higher Theory. It is never necessary to suppose ρ less than $\frac{1}{2} \pi$; for if ρ^{\prime} be related to b as ρ to c, we obviously have $\rho \rho^{\prime}=\left(\frac{1}{2} \pi\right)^{2}$, so that either ρ or ρ^{\prime} must exceed $\frac{1}{2} \pi$; and b is symmetrical with c. The relation of ρ to c is transcendental. For conciseness we may write C [$n o t$ for $F\left(c, \frac{1}{2} \pi\right)$ as in Legendre's great Supplement, but]

$$
\frac{F\left(c, \frac{1}{2} \pi\right)}{\frac{1}{2} \pi}
$$

and B for the like function of b. The relation of these constants guides us to eight Secondary Anticyclics. In Legendre's notation ρ is not used, but instead he has q equivalent to what here is $\epsilon^{-2 \rho}$,
so that

$$
\begin{aligned}
& P(\rho)=\frac{2 \sqrt{ } q}{1-q}, \quad \square(\rho)=\frac{2 \sqrt{ } q}{1+q}, \\
& \beth(q)=\frac{2 q}{1-q}, \quad \Omega(q)=\frac{2 q}{1+q}
\end{aligned}
$$

For conciseness let simple l mean $\log _{e}$. Then with the Hebrew letters לם for functional symbols, we may assume,

Secondary Anticyclics.

1. $\zeta(\rho)$ for $l \operatorname{Cot} \rho+l \operatorname{Cot} 3 \rho+l \operatorname{Cot} 5 \rho+\& c . a d$ infin.
2. $\boldsymbol{D}(\rho)$ for $l \operatorname{Cot} \rho-l \operatorname{Cot} 2 \rho+l \operatorname{Cot} 3 \rho-l \operatorname{Cot} 4 \rho+\& \mathrm{c}$.
3. $\Omega(\rho)$ for $\Omega(\rho)+\frac{1}{2} \boldsymbol{\Omega}(2 \rho)+\frac{1}{3} \boldsymbol{\Omega}(3 \rho)+\& \mathrm{c}$.
4. $\boldsymbol{\zeta}(\rho)$ for $\boldsymbol{\Omega}(\rho)-\frac{1}{2} \boldsymbol{\Omega}(2 \rho)+\frac{1}{3} \boldsymbol{\Omega}(3 \rho)-\& \mathrm{c}$.
5. $7(\rho)$ for $\beth(\rho)-\beth(3 \rho)+\beth(5 \rho)-\beth(7 \rho)+\& c$.
6. $i(\rho)$ for $\frac{1}{2} \beth(2 \rho)+\frac{1}{4} \beth(4 \rho)+\frac{1}{6} \beth(6 \rho)+\& c$.
7. $\Pi(\rho)$ for $\Omega(\rho)-\Omega(3 \rho)+\Omega(5 \rho)-\& c$.
8. $\boldsymbol{\psi}(\rho)$ for $p(x)-p(3 x)+p(5 x)-\& c$.

The routine of the Calculus in Elliptic Integrals then elicits the equations

$$
\begin{array}{rlrl}
\zeta(\rho) & =\frac{1}{4} \cdot l \cdot \frac{1}{b} ; & \supset(\rho) & =\frac{1}{2} \cdot l \cdot C \\
l \cdot \frac{4}{c} & =\rho+2 \boldsymbol{\Xi}(\rho) ; & C=1+2\urcorner(\rho) ; \\
C c & =2 \ddot{\bullet}(\rho) ; & C b & =1-2 \Omega(\rho) .
\end{array}
$$

[where C is defined by $\frac{1}{2} \pi . C=F_{c} ; \rho$ by the equation $\rho . F_{c}=\frac{1}{2} \pi . F_{b}$.]
The function i (ρ) arises in the course of the same theory, and is needful in certain transformations. As for $\boldsymbol{\Xi} \boldsymbol{\rho}$), it is a companion to $\boldsymbol{\Sigma}(\rho)$ and somewhat aids computation.
16. Each of these Secondary functions admits of transformations into a new series, to which the notation through q leads most easily. Thus for $\zeta(\rho)$, observe that

$$
\operatorname{Cot} \rho=\frac{1+\epsilon^{-2 \rho}}{1-\epsilon^{-2 \rho}}=\frac{1+q}{1-q},
$$

and

$$
\text { Cot. } n \rho=\frac{1+\epsilon^{-2 n \rho}}{1-\epsilon^{-2 n \rho}}=\frac{1+q^{n}}{1-q^{n}} \text {. }
$$

Hence

$$
l \operatorname{Cot} . n \rho=2\left\{q^{n}+\frac{1}{3} q^{3 n}+\frac{1}{5} q^{5 n}+\& c .\right\}
$$

In the last, put $1,3,5,7, \ldots$ for n, then you get

$$
\left.\begin{array}{rl}
\zeta(\rho) & =2\left\{q+\frac{1}{3} q^{3}+\frac{1}{5} q^{5}+\frac{1}{7} q^{7}+\& \mathrm{cc} .\right\} \\
& +2\left\{q^{3}+\frac{1}{3} q^{9}+\frac{1}{5} q^{15}+\frac{1}{7} q^{21}+\& \mathrm{c} .\right\} \\
& +2\left\{q^{5}+\frac{1}{3} q^{15}+\frac{1}{5} q^{25}+\frac{1}{7} q^{35}+\& \mathrm{c} .\right\} \\
& +2\left\{q^{7}+\frac{1}{3} q^{21}+\frac{1}{5} q^{55}+\frac{1}{4} q^{49}+\& \mathrm{c} .\right\} \\
\& \mathrm{cc} . \quad \& \mathrm{c} .
\end{array}\right\} .
$$

Add these up in vertical columns; using the formula

$$
q^{m}+q^{3 m}+q^{5 m}+\& \mathrm{c} .=\frac{q^{m}}{1-q^{2 m}}
$$

Then

$$
\begin{aligned}
\zeta(\rho) & =\frac{2 q}{1-q^{2}}+\frac{1}{3} \cdot \frac{2 q^{3}}{1-q^{6}}+\frac{1}{5} \cdot \frac{2 q^{5}}{1-q^{10}}+\& c . \\
& =P(2 \rho)+\frac{1}{3} \cdot P(6 \rho)+\frac{1}{5} \cdot P(10 \rho)+\& c .
\end{aligned}
$$

By a perfectly similar process
$\boldsymbol{D}(\rho)$ is changed to $\boldsymbol{\Omega}(\rho)+\frac{1}{3} \boldsymbol{\Omega}(\rho)+\frac{1}{5} \boldsymbol{\Omega}(5 \rho)+\& c$.;
$\urcorner(\rho)$ into $\boldsymbol{D}(2 \rho)+\boldsymbol{D}(4 \rho)+\boldsymbol{D}(6 \rho)+\& c$.;

$$
\begin{aligned}
& \mathbf{Y}(\rho) \text { into } 2\{\kappa(\rho)-\kappa(2 \rho)+\kappa(3 \rho)-\& \mathrm{c} .\} ; \\
& \boldsymbol{D}(\rho) \text { into } 2\{\sigma(\rho)-\sigma(2 \rho)+\sigma(3 \rho)-+\& \mathrm{c} .\} ; \\
& \boldsymbol{i}(\rho) \text { into } \sigma(2 \rho)+\sigma(4 \rho)+\sigma(6 \rho)+\& \mathrm{c} \text {; ; } \\
& \boldsymbol{\Omega}(\rho) \text { into } D(2 \rho)-D(4 \rho)+D(6 \rho)-\& \mathrm{c} . ; \\
& \boldsymbol{\omega}(\rho) \text { into } D(\rho)+D(3 \rho)+D(5 \rho)+\ldots
\end{aligned}
$$

By reason of this double expression, the convergence of each function in series may be increased by the help of the Mutilated forms.

Thus
(1) From $h(\rho)=p(2 \rho)+\frac{1}{3} p(6 \rho)+\frac{1}{5} p(10 \rho)+\& c$.
subtract $l \operatorname{Cot} \rho=2\left(\epsilon^{-2 \rho}+\frac{1}{3} \epsilon^{-6 \rho}+\frac{1}{5} \epsilon^{-10 \rho}+\& c\right.$. $)$
Thence

$$
h(\rho)=l \operatorname{Cot} \rho+p_{0}(2 \mu)+\frac{1}{3} p_{0}(6 \rho)+\frac{1}{5} p_{0}(10 \rho)+\& c .
$$

converging as

$$
\epsilon^{-6 \rho}, \quad \epsilon^{-18 \rho}, \quad \epsilon^{-30 \rho} \ldots
$$

(2) From $\boldsymbol{\Omega}(\rho)=\boldsymbol{\Omega}(\rho)+\frac{1}{3} \boldsymbol{\Omega}(\rho)+\frac{1}{5} \Omega(5 \rho)+\& c$.
subtract $l \operatorname{Cot} \rho=2\left(\epsilon^{-2 \rho}+\frac{1}{3} \epsilon^{-6 \rho}+\frac{1}{5} \epsilon^{-10 \rho}+\ldots \& c\right.$.
Thence

$$
D(\rho)=l \operatorname{Cot} \rho-\boldsymbol{\Omega}_{0}(\rho)-\frac{1}{3} \boldsymbol{\Omega}_{0}(3 \rho)-\frac{1}{5} \boldsymbol{\Pi}_{0}(5 \rho)-\& c
$$

(3) From $D(\rho)=\Omega(\rho)+\frac{1}{2} \Omega(2 \rho)+\frac{1}{3} \Omega(3 \rho)+\frac{1}{4} . \& c$.
subtract $2 \sigma(\rho)=2\left(\epsilon^{-2 \rho}+\frac{1}{2} \epsilon^{-4 \rho}+\frac{1}{3} \cdot \epsilon^{-6 \rho}+\& c\right.$.
[See Art. 14 for σ.]
Thence

$$
\beth(\rho)=2 \sigma(\rho)-\Omega_{0} \rho-\frac{1}{2} \Pi_{0}(2 \rho)-\frac{1}{3} \Pi_{0}(3 \rho)-\& c .
$$

(4) From $\boldsymbol{\zeta}(\rho)=\boldsymbol{\Omega}(\rho)-\frac{1}{2} \boldsymbol{\Omega}(2 \rho)+\frac{1}{3} \boldsymbol{\Omega}(3 \rho)-\& \mathrm{c}$. subtract $2 \kappa(\rho)=2\left(\epsilon^{-2 \rho}-\frac{1}{2} \epsilon^{-4 \rho}+\frac{1}{3} \epsilon^{-6 \rho}-\& c\right.$.
Thence

$$
\mathbf{Y}(\rho)=2 \kappa(\rho)-\boldsymbol{\Omega}_{0}(\rho)+\frac{1}{2} \Omega_{0}(2 \rho)-\frac{1}{3} \Omega_{0}(3 \rho)+\frac{1}{4} . \& c
$$

(5) From $\urcorner(\rho)=\beth(\rho)-\beth(3 \rho)+\beth(5 \rho)-\& c$. subtract $D(2 \rho)=2\left(\epsilon^{-2 \rho}-\epsilon^{-6 \rho}+\epsilon^{-10 \rho}-\& c\right.$.
Thence

$$
\urcorner(\rho)=\square(2 \rho)+\beth_{0}(\rho)-\beth_{0}(3 \rho)+\beth_{0}(5 \rho)-\& c .
$$

(6) From $i(\rho)=\frac{1}{2} \beth(2 \rho)+\frac{1}{4} \beth(4 \rho)+\frac{1}{6} \beth(6 \rho)-\& c$. subtract $\sigma(2 \rho)=2\left\{\frac{1}{2} \epsilon^{-4 \rho}+\frac{1}{4} \epsilon^{-8 \rho}+\frac{1}{6} \epsilon^{-12 \rho}+\ldots\right\}$
Thence

$$
i(\rho)=\sigma(2 \rho)+\frac{1}{2} \beth_{0}(2 \rho)+\frac{1}{4} \beth_{0}(4 \rho)+\frac{1}{6} \beth_{0}(6 \rho)+\ldots
$$

The function \boldsymbol{i} is the logarithm of

$$
Q=\left\{\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{6}\right) \ldots\right\}^{-1},
$$

a factor known in Elliptics.
(i) From $\quad \Pi(\rho)=\boldsymbol{\pi}(\rho)-\boldsymbol{\Omega}(3 \rho)+\boldsymbol{\Omega}(5 \rho)-\Omega(7 \rho)+\& c$. subtract $\square(2 \rho)=2 \epsilon^{-2 \rho}-2 \epsilon^{-6 \rho}+2 \epsilon^{-10 \rho}-\& c$.
Thence

$$
\Pi(\rho)=\square(2 \rho)-\Omega_{0}(\rho)+\Omega_{0}(3 \rho)-\Omega_{0}(5 \rho)+\& c .
$$

(8) Finally, from $\dot{\boldsymbol{v}}(\rho)=p(\rho)-p(3 \rho)+p(5 \rho)-\& c$.
subtract

$$
D(\rho)=2 \epsilon^{-\rho}-2 \epsilon^{-3 \rho}+2 \epsilon^{-5 \rho}-\& c .
$$

Thence

$$
\ddot{ש}(\rho)=\square(\rho)+\rho_{0}(\rho)-p_{0}(3 \rho)+p_{0}(5 \rho)-\& c .
$$

17. Suppose that $\boldsymbol{\square}(\rho)$ has been tabulated. From it the pair and $\boldsymbol{\Psi}$ can be deduced by working backwards. The process at each step is only that of $m \pm n$. For by mere inspection of the series we get
whence further

$$
\left\{\begin{array}{l}
פ(\rho)=ゆ(\rho)+\frac{1}{2} פ(2 \rho) \\
\boldsymbol{Y}(\rho)=\boldsymbol{D}(\rho)-\frac{1}{2} פ(2 \rho)
\end{array}\right\} .
$$

If a whole table is aimed at, we begin when ρ is so large that $\beth(2 \rho)$ is undistinguishable from $\boldsymbol{\Omega}(\rho)$, or indeed from $2 \epsilon^{-2 \rho}$. Moreover from the former equation of the last pair, we get by repetition and dividing by 2 ,

$$
\begin{gathered}
\text { コ } \left.(\rho)-2^{-1} \text { פ }(2 \rho)=\text { D }(\rho) ; 2^{-1} \text { פ (2 } 2\right)-2^{-2} \text { פ }\left(2^{2} \rho\right)=2^{-1} . \text { D }(2 \rho) ; \\
2^{-2} \text { פ }\left(2^{2} \rho\right)-2^{-3} \text { פ }\left(2^{3} \rho\right)=2^{-2} \text { פ }\left(2^{2} \rho\right) ;
\end{gathered}
$$

up to

$$
2^{-n+1} פ\left(2^{n-1} \rho\right)-2^{-n} פ\left(2^{n} \rho\right)=2^{-n+1} \emptyset\left(2^{n-1} \rho\right) ;
$$

of which the sum is

Make $n=\infty$, then

$$
פ(\rho)=\Phi(\rho)+2^{-1} \boldsymbol{D}(2 \rho)+2^{-2} \boldsymbol{\Delta}\left(2^{2} \rho\right)+2^{-3} \Delta\left(2^{3} \rho\right)+\& c . \text { ad infin. }
$$

which involves

$$
\boldsymbol{\xi}(\rho)=\boldsymbol{g}(\rho)-2^{-1} \boldsymbol{D}(2 \rho)-2^{-2} \boldsymbol{\square}\left(2^{2} \rho\right)-2^{-3} \boldsymbol{D}\left(2^{3} \rho\right)-\& c .
$$

with very high convergence, even when $\rho=1$. Of this pair, $¥$ is the more obviously important in Elliptics.

If you express \urcorner and $\mathscr{ש}$ in series of \square, mere inspection shews that

$$
\urcorner(\rho)-\urcorner(2 \rho)=\mathscr{ש}(2 \rho) .
$$

In this last write $2 \rho, 4 \rho, 8 \rho \ldots 2^{n-1}$ for ρ, and add together the results : then $\quad\urcorner(\rho)-\urcorner\left(2^{n} \rho\right)=\dot{\mathscr{U}}(2 \rho)+\dot{\mathscr{\varphi}}\left(2^{2} \rho\right)+\dot{\mathscr{U}}\left(2^{3} \rho\right)+\ldots+\dot{\varphi}\left(2^{n} \rho\right)$;
so that, making $n=\infty$,

$$
\urcorner(\rho)=\dot{\varphi}(2 \rho)+\dot{\varphi}\left(2^{2} \rho\right)+\dot{\varphi}\left(2^{3} \rho\right)+\ldots \text { ad infin. }
$$

In passing from the transcendental constant ρ to the constants which dominate in the Lower theory of Elliptics; the most obvious and serviceable relations are

$$
\log \cdot \frac{1}{b}=4 \zeta(\rho) ; \quad \log \frac{4}{c}=\rho+2 \Im(\rho)
$$

(The logarithms have ϵ for base.)

$$
C=1+2\urcorner(\rho) . \quad \text { Also } \log C=2 ゅ(\rho) .
$$

If $b=\cos \gamma$ and $c=\sin \gamma$, I covet a table, which, from γ given, will show ρ. Long Division will give it, from

$$
\rho=\frac{1}{2} \pi \cdot \frac{B}{C} ;
$$

in fact, Legendre found B by first calculating ρ.
18. Gudermann's great table of $\log \operatorname{Sin} \rho$ requires the ρ not less than 2, and that 8 decimals suffice. If we had 9 decimals, $\epsilon^{-9 \rho}$ would be omissible, when $\rho>2$. Under these conditions our chief functions are easily expressed in powers of $\epsilon^{-\rho}$. For we have

$$
\frac{1}{2} p(\rho)=\epsilon^{-\rho}+\epsilon^{-3 \rho}+\epsilon^{-5 \rho}+\epsilon^{-7 \rho} ; \quad \frac{1}{2} \supset(\rho)=\epsilon^{-2 \rho}+\epsilon^{-4 \rho}+\epsilon^{-6 \rho}+\epsilon^{-8 \rho} ;
$$

and with even terms made negative, these yield $\frac{1}{2} D(\rho)$ and $\frac{1}{2} \Omega(\rho)$.
Next,

$$
\frac{1}{2} \zeta(\rho)=\epsilon^{-2 \rho}+\left(1+\frac{1}{3}\right) \epsilon^{-6 \rho} ;
$$

$$
\begin{aligned}
\frac{1}{2} \boldsymbol{Y}(\rho)= & \left(q-q^{2}+q-q^{4}\right)-\frac{1}{2}\left(q^{2}-q^{4}\right)+\frac{1}{3}\left(q^{3}\right)-\frac{1}{4} q^{4}, \\
& \left.\quad \text { where } q \text { means } \epsilon^{-2 \rho}\right) ; \\
= & \epsilon^{-2 \rho}-\frac{3}{2} \epsilon^{-4 \rho}+\frac{4}{3} \epsilon^{-6 \rho}-\frac{3}{4} \epsilon^{-8 \rho} .
\end{aligned}
$$

So

$$
\frac{1}{2} D(\rho)=\epsilon^{-2 \rho}-\epsilon^{-4 \rho}+\frac{4}{3} \epsilon^{-6 \rho}-\epsilon^{-8 \rho} .
$$

At most, we find 4 terms; and the last terms drop off, as ρ increases.
Indeed, if $\epsilon^{-10 \rho}$ be the highest term admissible, (i.e. $\epsilon^{-11 \rho}$ be negligible,) then, since

$$
\frac{1}{2} D(2 \rho)=\frac{\epsilon^{-2 \rho}}{1+\epsilon^{-4 \rho}}=\epsilon^{-2 \rho}-\epsilon^{-6 \rho}+\epsilon^{-10 \rho} ;
$$

we deduce $\frac{1}{2} D(4 \rho)=$ simply $\epsilon^{-4 \rho}$; whence $\left.\frac{1}{2}\right\urcorner(\rho)$ or

$$
\begin{aligned}
& \frac{1}{2} D(2 \rho)+\frac{1}{2} D(4 \rho)+\frac{1}{2} D(6 \rho)+\frac{1}{2} D(8 \rho)+\frac{1}{2} D(10 \rho) \\
& =\left\{\epsilon^{-2 \rho}-\epsilon^{-6 \rho}+\epsilon^{-10 \rho}\right\}+\epsilon^{-4 \rho}+\epsilon^{-6 \rho}+\epsilon^{-8 \rho}+\epsilon^{-10 \rho} \\
& =\epsilon^{-2 \rho}+\epsilon^{-4 \rho}+\epsilon^{-8 \rho}+2 \epsilon^{-10 \rho} ; \\
\therefore C-1 & =4\left\{\epsilon^{-2 \rho}+\epsilon^{-4 \rho}+\epsilon^{-8 \rho}\right\}+8 \epsilon^{-10 \rho} ;
\end{aligned}
$$

a very simple expression for C.
[The great advantage of ρ as the leading constant in Elliptics, is that to change from ρ to $2 \rho, 3 \rho, 4 \rho \ldots$ changes to the scales whose index is $2,3,4 \ldots$]

Numerical Illustrations.

19. To fix ideas and give confidence to the student, it may be well to set forth examples of calculation under unfavourable conditions. To exact 16 decimals and (as the case of worst convergence) $\rho=1$, is a severe test. I will calculate $\zeta(1), \boldsymbol{\square}(1), \boldsymbol{\top}(1), \boldsymbol{\psi}(1)$ by three different methods, and compare the three results. (The successive entries are taken from my own tables of the Primary Anticyclics, which I complete for high numbers from the table of ϵ^{-x}, when they merge in it.)

I take h (1) first from the series

$$
\begin{gathered}
\qquad \operatorname{Cot} \rho+l \operatorname{Cot} 2 \rho+l \operatorname{Cot} 3 \rho+\& \mathrm{c} . \\
\text { next from } P(2 \rho)+\frac{1}{3} p(6 \rho)+\frac{1}{5} p(10 \rho)+\& \mathrm{c} . \\
\text { lastly from } l \operatorname{Cot} \rho+p_{0}(2 \rho)+\frac{1}{3} p_{0}(6 \rho)+\frac{1}{5} p_{0}(10 \rho)+\& \mathrm{c} .
\end{gathered}
$$

observing that, for high values of ρ, (indeed $\rho>6 \cdot 1$,) $l \operatorname{Cot} \rho$ merges in $2 \epsilon^{-2 \rho}$; also for $\rho>12 \cdot 6, p(\rho)$ merges in $2 \epsilon^{-\rho}$. -The like remark need not be repeated. Besides the case of $\rho=1$, others have been taken at random.

7 (1) from first series.

l Cot 1	$\cdot 2723$	4146	8911	8315
3	49	5751	4506	6900
5		9079	9859	5874
7	166	3057	4382
9	3	0459	9594
11		557	8936
13	10	
15			1872
17	34
(I) $=$	2773	9147	7363	8089

(1) from second series.

$p(2)=2757$	2056	4771	7832
$p(6)=16$	5251	04	4931
(10) $=$	1815	9971	9422
$\frac{1}{7} p(14)=\frac{2}{7} \epsilon$	23	7579	6340
$p(18)=$		334	439
(22)		50	7176
(26)			7860
(30)			125
(34)			
$h(\mathrm{r})=2773$		7363	8087

$\zeta(1)$ by the Mutilated Functions.

$$
\begin{aligned}
& l \text { Cot } \mathrm{I}=\mathbf{2 7 2 3} 414689 \mathrm{II} 83 \mathrm{I} 5 \\
& P_{0}(2)=50499982985578 \\
& \frac{1}{3} p_{0}(6)=\quad 101533822 \\
& \frac{1}{3} p_{0}(10)=\quad 373 \\
& \text { ל(} \mathrm{I})=2773914773638088
\end{aligned}
$$

20. i(1) from second series.

$$
\begin{aligned}
& \Omega(\mathrm{I})=.238405844044 \quad 2351 \\
& \frac{1}{3} \Omega(3)=16484154377566 \\
& \frac{1}{5} \Omega(5)=\ldots \ldots \text { ェ8 } 5914748 \text { го } \\
& \frac{1}{7} \Omega(7)=\ldots \ldots . \quad 2375794365 \\
& \frac{1}{9} ת(9)=\ldots \ldots . \cdots \cdots 33844399 \\
& \frac{1}{11} \Omega(11)=\frac{2}{11} \epsilon^{-22} \ldots \ldots .507176 \\
& (\mathrm{I} 3)=\ldots \ldots . \ldots \ldots7860 \\
& \left(\mathrm{I}_{5}\right)=\ldots \ldots . \quad \ldots \ldots . . \ldots . .124 \\
& (\mathrm{I} 7)=\ldots \ldots \\
& D(1)=\begin{array}{llll}
\hline 2400 & 7265 \quad 96448653 \\
\hline
\end{array}
\end{aligned}
$$

$\boldsymbol{\Delta}(1)$ from original series.

	Positive terms.
$l \operatorname{Cot}_{1}$	-2723 4146 8911 8315
(3)	49575 I \&c.
	as under b (1)
(17)
	$\cdot 2773914773638089$
	sum of Positive terms.
	Negative terms.
$l \operatorname{Cot} 2$	$\cdot 036635374743 \quad 6963$
(4)	6709252809725
(6)	
(8)	$=2 \epsilon^{-16} \quad 2250703494$
(10) 41223072
(12) 755026
(14)	1 3828
(16) 254
(18) 4
	$\circ 037318817718 \quad 9433$
	sum of Negative terms.

whence
$D(1)=2400 \quad 726596448651$
(1) by the Mutilated Funetions.

$$
\begin{aligned}
& \begin{array}{l|llll}
l \text { Cot I } & \cdot 2723414689118315
\end{array} \\
& -\Omega_{0}(\mathrm{r})-322 \quad 647^{2} \quad 24289903 \\
& -\frac{1}{3} n_{0}(3) \text {......-4086013 } 3544 \\
& -\frac{1}{5} \pi_{0}(5) \quad \ldots \ldots-8244240 \\
& -(7)=\frac{2}{7} \epsilon^{-28} \ldots \ldots . . \ldots .-1975 \\
& \text { (9) is insignificant } \\
& \text {-.0322 } 688092669662 \\
& \text { sum of negative terms. } \\
& \therefore D(\mathrm{r})=2400726596448653
\end{aligned}
$$

21. (1) from first series.

כ (1)	-3130	3528	5499	3310
- ${ }^{\text {(3) }}$	-49	6982	3313	6888
כ (5)		9080	3982	-194
- כ (7)		-166	3058	8210
כ (9)		3	0459	9598
$-2(11)$			- 557	8936
כ (13)			10	2182
- ${ }^{\text {(15 }} 5$	1872
2 (17)	\ldots		34
$7(\mathrm{I})=$	3081	5463	3020	9412

(1) by second series.

0 (2)	$\cdot 2658$	0222	8834	$\bigcirc 797$
(4)		1899	3473	6866
(6)	49	5747	3893	5604
(8)	6	7092	5180	3024
(10)	...	9079	9859	3378
(12)		1228	8424	7062
(14)	166	3057	4382
(16)	22	5070	3494
(18)	3	0459	9594
(20)		4122	3072
(22)	557	8936
(24)	75	5026
(26)	10	2182
(28)			3828
(30)			1872
(32)			...	254
(34)			34
(36)	4
$7(\mathrm{I})=308 \mathrm{r}$		5463	3020	9409

ㄱ(1) by the Auxiliaries.

0 (2)	$\cdot 2658$	0222	8834	0797
$J_{0}(1)$	$+423$	6471	9026	1059
$-J_{0}(3)$	-123I	8960	3561
$\mathrm{J}_{0}(5)$	\ldots		4122	4945
$-J_{0}(7)$			- I	3828
$2_{0}(9)$	\ldots	+ 4
$7(\mathrm{x})=$	3081	5463	3020	9416

As ρ increases, the advantage of the auxiliaries lessens.

To firidien (1) Observe that when

$$
\rho>11, D(\rho)=2 \epsilon^{-\rho}=P(\rho) .
$$

It is convenient to separate the following terms. Put

$$
\begin{aligned}
& a=\epsilon^{-13}-\epsilon^{-15}+\epsilon^{-17}-\epsilon^{-19}+\& c \text {. } \\
& b=\epsilon^{-13}+\epsilon^{-15}+\epsilon^{-17}+\epsilon^{-19}+\& c . \\
& \left(\mathrm{I}_{3}\right)=22603294070 \text { (preceded by } 5 \text { zeros) } \\
& (15)=3059023205 \\
& (17)=413993772 \\
& \text { (19) }=\ldots \ldots .{ }^{5602} 7964 \\
& \text { (21) }=\ldots \ldots . \quad 7582561 \\
& (23)=\ldots \ldots . \quad 1026188 \\
& \text { (25) }=\ldots \ldots \text {. } 138879 \\
& \text { (27) }=\ldots \ldots \text {. } 18795 \\
& \text { (29) = } 2544 \\
& \text { (31) = } 344 \\
& (33)=\ldots \ldots . . \ldots . .46 \\
& (35)=\ldots \ldots . . \ldots \ldots .6 \\
& \therefore b=26141108374 \text { (r6 decimals). }
\end{aligned}
$$

Also taking the even rows negatively

$$
a=199 \circ 891537 \circ .
$$

Then $\boldsymbol{\mathscr { U }}(\mathbf{1})$ by its first series shows

Second Method.

880 54273663				
(3)		2793	7419	4324
(5)	134	7528	2221	3057
(7)	18	2376	2414	5974
(9)		4681	9604	414
(II)		3340	3401	571
$\begin{aligned} \text { six terms } & =7629 \\ 2 b & = \end{aligned}$		6146	8725	206
		522	8221	6748
$\dot{\sim}(\mathrm{r})=7629$		6669	6946	8813

(3) $993 \quad 2793 \quad 74194324$
(5) 134752822213057
(7) $18 \quad 237624145974$
(9) 2468196044144 six terms $=\begin{aligned} & 7629614687252065\end{aligned}$
$\cdot 2 b=\quad 52282216748$
$\dot{\psi}(\mathrm{x})=762966696946$ 8813

The latter is in excess by 15 in the two last decimals, which probably results from the number of rows that were added,- 18 rows, all positive. Treated by the Mutilated Functions, in which negative rows enter as balance, the result agrees with the first method.

Third Method．

D（1）	＇6480	5427	3663	8854
$\mathrm{P}_{0}(\mathrm{I})$	$+{ }^{1151}$	59^{24}	5896	4369
$-p_{0}(3)$	－2	4743	2933	－953
$\mathrm{P}_{0}(5)$	．．．．．．	＋61	1832	4168
$-p_{0}(7)$	．．．．	．．．．．．	1516	514
$\mathrm{P}_{0}(9)$	．．．．．．	．．．．．	＋3	759
－ $\mathrm{Pa}_{0}(\mathrm{II})$				
ن（ I ）	$=7629$	6669	6946	879

Accurate agreement in the last figure can only be matter of chance．

23．I proceed to some other trials at random．To find $7(1 \%)$ ．

First（ $2 \rho=3$ ）．

Next，

\％（1．5）	$\cdot 1047$	9139	2982	5120
－כ（4．5）	－2	4685	0071	8922
כ（7＊5）		＋6I	1804	8282
－${ }^{(10 \cdot 5 \text { ）}}$	．．．．．．		－1516	5128
2（13．5）	．．．．．	．．．．．．	＋	7590
コ（16．5）	．．．．．	．．．．	．．．	－92
$7\left(\mathrm{I}^{5} 5\right)=.104$		4515	3202	6850

$$
\begin{aligned}
& \text { 口(3) = }{ }^{\circ} 0993279274194324 \\
& +\mathrm{J}_{0}(\mathrm{I} \cdot 5)=+5217256246784 \mathrm{I} \\
& -\mathrm{J}_{0}(4 \cdot 5)=\ldots \ldots . \quad-304637189 \\
& +\Sigma_{0}\left(7^{\circ} 5\right)=\ldots \ldots . . \ldots . .+187^{2} \\
& 7(1 \cdot 5)=\cdot 1045451532026848
\end{aligned}
$$

24．To find $7(1 \cdot 7)$ ．$\quad(2 \rho=3 \cdot 4)$ ．

$\square(3.4)$	$\cdot 0666722819899218$	$5(1 \cdot 7)$	$\bigcirc 06905099$	75	2924
（6．8）	$22 \quad 275475324278$	$-)^{(5 \cdot 1)}$	．．．．．－ 743		7360
（10．2）	． 743406372656	（ $8 \cdot 5$ ）	…．+8	2798	7578
（13．6）	2480990 1600	－כ（11．9）	．．．．．．．．	－92	2192
（17＊）	827947544	2（15．3）	．．．．．		1026
(20.4)	27632652	$7\left(\mathrm{r}^{7} 7\right)=$	$\cdot 06897673$		1976

$$
\begin{array}{r|rrrr}
0(3.4) & 0666 & 7228 & 1989 & 9218 \\
\mathrm{O}_{0}(\mathrm{I} \cdot 7) & +23 & 0445 & 7580 & 6402 \\
-\mathrm{O}_{0}(5 \cdot 1) & \ldots \ldots . & -2763 & 3678 \\
\mathrm{~J}_{0}(8 \cdot 5) & \ldots \ldots & \ldots \ldots . & \ldots \ldots & +34 \\
7(\mathrm{r} \cdot 7) & =0689 & 7673 & 6807 & 1976 \\
\hline
\end{array}
$$

25. So far, I have worked by my skeleton tables, which afford 16 decimals. They have borne the test well. When ρ has two decimals, I am driven to my longer tables, which yield only 12 decimals for the entries.

I have naturally calculated the secondary Functions by the Mutilated Auxiliars, which give a correct result by fewer terms to add or subtract. I take at random cases to corroborate by other methods. I chose small values of ρ, solely because with them the process is less speedy. My tables give

$$
\urcorner(\mathrm{r} \circ \mathrm{OI})=301289759279 .
$$

To check this I calculate the same through $\boldsymbol{\bullet} \boldsymbol{ש}$, thus

$$
\begin{aligned}
& (8 \cdot 08)=619342070 \\
& (16 \cdot 16)=\ldots \ldots . \quad 191792 \\
& 7(\mathrm{r} \cdot \mathrm{O})=30128975 \quad 9278
\end{aligned}
$$

I take at random $\urcorner(1.07)$. To proceed by $\boldsymbol{\varphi}$,

$$
\begin{aligned}
& \text { ن่ (2•14) = •2353 } 99874442 \\
& \dot{\psi}(4 \cdot 28)=\cdots \ldots \ldots . \quad 276.85326204 \\
& \dot{v}(8 \cdot 56)=2 \epsilon^{-2 \cdot 56}=\quad 383238588 \\
& \dot{\varphi}\left(\mathrm{I}^{\cdot} \mathrm{I} 2\right)=2 \epsilon^{-17^{\prime 12}}=\ldots \ldots . \quad 73436 \\
& \therefore 7(\mathrm{r} \circ \mathrm{\circ})=263468512670
\end{aligned}
$$

The computation by the auxiliary \beth_{0} is

$$
\begin{aligned}
& \text { D }(2 \cdot 14)={ }^{2} 3209684 \quad 7809 \\
& \mathrm{~J}_{0}(\mathrm{I} \cdot \mathrm{\circ} 7)=31376977541 \\
& -\mathrm{J}_{0}\left(3^{\circ} \mathrm{II}\right)=\ldots \ldots .-53 \mathrm{I} 3696 \\
& \mathrm{~J}_{0}\left(5^{\circ} 35\right)=\ldots \ldots . . \ldots \ldots 1016 \\
& \therefore 7(1 \circ 07)=263468512670
\end{aligned}
$$

Further, to calculate $7(1 \cdot 11)$.

First,

$$
\begin{aligned}
& \text { D (2.22) }=.214685797187 \\
& \boldsymbol{\nu}_{\mathrm{g}}(\mathrm{I} \cdot \mathbf{I I})=26466365398 \\
& -y_{0}(3.33)=-3286883 \\
& \partial_{0}\left(5^{\circ} 55\right)=2 \epsilon^{-22 \cdot 20} \quad 457 \\
& 7(\mathbf{I} \cdot \mathbf{I I})=241148876159
\end{aligned}
$$

Otherwise,

$$
\begin{aligned}
& \text { I (I•II) }=\cdot 243684583048 \\
& -D_{0}(2.22)=-2532420463 \\
& -D_{0}(4.44)=\quad-3282216 \\
& -D_{0}(6 \cdot 66)=\ldots \ldots \quad-4206 \\
& -D_{0}(8 \cdot 88)=\ldots \ldots . . \ldots . .-5 \\
& 7(1 \cdot 11)=241148876158
\end{aligned}
$$

Or again:

$$
\begin{aligned}
& \because(2 \cdot 22)={ }^{2172} 78671153 \\
& \dot{ש}(4 \cdot 44)=2359187795^{2} \\
& \because(8 \cdot 88)=\quad 278288332 \\
& \dot{\cup}(17 \times 76)=\ldots \ldots . \quad 38722 \\
& 7(1 \cdot 11)=.241148876159
\end{aligned}
$$

Make some trials on ${ }^{\circ}$.
To find $\boldsymbol{ש}(1 \cdot 34)$.
First, Or thus,

$$
\begin{aligned}
& \text { 口 (} \mathrm{r} \cdot 34 \text {) }=490089270938 \\
& P_{0}(x \cdot 34)=38548968756 \\
& -P_{0}(4 \circ 02)=- \text { II57 } 6533 \\
& P_{0}(6 \cdot 70)=\ldots \ldots . \quad 3730 \\
& \dot{v}(\mathrm{r} \cdot 34)=\begin{array}{r}
5286 \quad 2666 \quad 689 \mathrm{I} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& p(1 \cdot 34)=562240305916 \\
& \text { - } \mathrm{D}_{0}(\mathrm{I} \cdot 34)=-33602066222 \\
& -D_{0}(4.02)=-11569073 \\
& -D_{0}(6 \cdot 70)=\ldots \ldots . \quad-373 \mathrm{I} \\
& \dot{\psi}(\mathrm{r} \cdot 34)=\begin{array}{r}
5286 \quad 2666 \quad 6890 \\
\hline
\end{array}
\end{aligned}
$$

To find $\dot{\boldsymbol{\varphi}}(\mathbf{1} \cdot 5)$ to 16 decimals.

First,
$D(\mathrm{r} \cdot 5)=4250 \quad 96034942 \quad 2804$
$p_{0}(1 \cdot 5)=233821202983647$
$-p_{0}(4 \cdot 5)=\ldots \ldots-27422565942$
$p_{0}(7 \cdot 5)=\cdots \cdots \cdot \cdots \cdots \cdot 33^{8} 379^{6}$

$\therefore \because\left(\mathrm{r}^{\circ} 5\right)=4484754 \mathrm{I} 33223887$
Next,

$$
\begin{aligned}
& p\left(r^{\circ}\right)=4696424405952243 \\
& \text { - } D_{0}\left(\mathrm{r}^{\circ} 5\right)=-211642853545792 \\
& -\mathrm{D}_{0}\left(4^{\circ} 5\right)=\ldots \ldots-27415798350 \\
& -D_{0}(7 \cdot 5)=\ldots \ldots-33^{8} 379^{6} \\
& \therefore \dot{v}\left(\mathrm{r}^{\circ} 5\right)=4484754133223887 \\
& \text { as before. }
\end{aligned}
$$

To find $\dot{\varepsilon}^{\dot{j}}(1 \cdot 81)$. In my table, calculated through p_{0}, I have 327778006407 . I now check it by calculating through D_{0}.

$$
\begin{aligned}
& p(\mathrm{r} \cdot 8 \mathrm{I})=-336315708424 \\
& -D_{0}(\mathrm{I} \cdot 8 \mathrm{I})=-8537533605 \\
& -D_{0}(5.43)=\ldots . .-168407 \\
& -D_{0}\left(9^{\circ} 05\right)=\ldots \ldots-3 \\
& ש(\mathrm{r} \cdot 8 \mathrm{I})=3277 \quad 78006409 \\
& \text { nearly as before. }
\end{aligned}
$$

If any figure (but the last) in any of the entries here elicited at random were erroneous, the error would show itself in the result. No test which I have in these is so complete and absolute as that of the table of ϵ^{-x}, in which I had Mr Glaisher's valued revision. But I have laboured, by double methods and by recomputing after intervals of time, to impart what accuracy I can to my other tables. I am painfully aware that a tired brain will go wrong in the simplest process: but I have a strong faith that these functions, elicited by the progress of the Calculus, will live in the mathematics of the future.

I have executed tables of all these functions, (1) skeleton tables in which ρ increases by 1 at each step, and the entries are carried to 16 decimals; (2) ampler tables, with ρ increasing by 01 at each step, but the entries having only 12 decimals. Each set is complete in this sense, that they are continued from $\rho=1$ until the function is merged in the form $2 \epsilon^{-n \rho}$, so as no longer to deserve a separate registration. Besides the large table of ϵ^{-x} already published with the skeleton table of ϵ^{-x} to 16 decimals, I have also an intermediate table (unpublished) in which x proceeds by 01 at each step, and the entries have 12 decimals until $x=18 \cdot 50$, after which I give 16 decimals (perhaps with no adequate advantage), and the table is continued until ϵ^{-x} fails to affect the 12 th decimal.

Whether any but the skeleton tables, which now follow, will ever see the light, the writer is uncertain. It seems that competent mathematicians are too busy to put forth any judgment on an eccentric undertaking.

Skeleton Anticyclics to 16 Decimals.
Summary, here repeated, for compactness.
Gudermann writes Sin, Cos, Tan in German type, not easy to imitate. Here capital letters contrast Sin to $\sin , \operatorname{Cos}$ to cos, \&c. and Cos. x means $\frac{1}{2}\left(\epsilon^{x}+\epsilon^{-x}\right) ; \quad \operatorname{Sin} x$ means $\frac{1}{2}\left(\epsilon^{x}-\epsilon^{-x}\right)$.

Conformably

$$
\operatorname{Tan} x \text { means } \frac{\operatorname{Sin} x}{\operatorname{Cos} x},
$$

or

$$
\begin{aligned}
& \frac{\epsilon^{x}-\epsilon^{-x}}{\epsilon^{x}+\epsilon^{-x}} \\
& \frac{1-\epsilon^{-2 x}}{1+\epsilon^{-2 x}}
\end{aligned}
$$

whence further
$\operatorname{Cot} x$ means $\frac{1+\epsilon^{-2 x}}{1-\epsilon^{-2 x}}$,
and
Sec x means $\frac{2}{\epsilon^{x}+\epsilon^{-x}}$,
or

$$
\frac{2 \epsilon^{-x}}{1+\epsilon^{-2 x}}
$$

and
Cosec x means $\frac{2 \epsilon^{-x}}{1-\epsilon^{-2 x}}$.
The possession of a good table for ϵ^{-x} opens the way to a registration of these Anticyclics.

For conciseness it is convenient to write also $\mathrm{P}(x)$ for $\operatorname{Cosec} x, \square(x)$ for $\operatorname{Sec} x$,

$$
\Omega(x) \text { for } 1-\operatorname{Tan} x, \text { or } \frac{2 \epsilon^{-2 x}}{1+\epsilon^{-2 x}}
$$

$$
J(x) \text { for } \operatorname{Cot}(x)-1, \text { or } \frac{2 \epsilon^{-2 x}}{1-\epsilon^{-2 x}}
$$

I also include as Mutilated Anticyclics the functions

$$
\begin{array}{ll}
\rho_{0}(x)=P(x)-2 \epsilon^{-x} ; & \Xi_{0}(x)=2 \epsilon^{-x}-\square(x) \\
\Omega_{0}(x)=2 \epsilon^{-2 x}-\Omega(x) ; & \beth_{0}(x)=\beth(x)-2 \epsilon^{-2 x}
\end{array}
$$

Finally, I write κ and σ (as auxiliaries towards $\log \operatorname{Cos}$ and $\log \operatorname{Sin})$ interpreted as

$$
\kappa(x)=\log _{\epsilon}\left(1+\epsilon^{-2 x}\right) \text { and }-\sigma(x)=\log _{\epsilon}\left(1-\epsilon^{-2 x}\right) .
$$

Since Tan x is positive, and less than 1 , we may assume

$$
\sin \theta=\operatorname{Tan} x,
$$

and take for θ an arc between zero and 90°. Till a better name is found, I call θ the Elevation and x its Range*. We have now

$$
\begin{aligned}
& \qquad \cos \theta=\operatorname{Sec} x, \quad \tan \theta=\operatorname{Sin} x, \quad \sec \theta=\operatorname{Cos} x, \\
& \frac{1-\cos \theta}{1+\cos \theta}=\frac{1-\operatorname{Sec} x}{1+\operatorname{Sec} x}=\frac{2 \operatorname{Cos} x-2}{2 \operatorname{Cos} x+2}=\frac{\epsilon^{x}-2+\epsilon^{-x}}{\epsilon^{x}+2-\epsilon^{-x}}=\left(\frac{\operatorname{Sin} \frac{1}{2} x}{\operatorname{Cos} \frac{1}{2} x}\right)^{2} ; \\
& \text { tan } \frac{1}{2} \theta=\operatorname{Tan} . \frac{1}{2} x .
\end{aligned}
$$

Also

$$
x=\int_{0} \frac{d \theta}{\cos \theta} .
$$

Legendre tabulated this integral, and Gudermann has enlarged the table tenfold. He calls x the Längezahle of θ, but I cannot translate this. The "Length-number." sounds nonsensical.
N.B. and

$$
\log _{\epsilon} \operatorname{Cos} x=x-\log _{\epsilon} 2+\kappa(x),
$$

$$
\log _{\epsilon} \operatorname{Sin} x=x-\log _{\epsilon} 2-\sigma(x)
$$

* Taking a Polar Curve, with ρ radius vector, and $\sin \theta=\operatorname{Tan} \rho$, which amounts to

$$
\rho=\int_{0} \sec \theta \cdot d \theta
$$

With $\angle A S X=90^{\circ}, \quad \angle A S P=\theta, \quad S P=\rho, \quad \operatorname{Tan} \frac{1}{2} \rho=\tan \frac{1}{2} \theta$, then with $\theta=90^{\circ}, \quad \operatorname{Tan} \frac{1}{2} \rho=1, \quad \frac{\epsilon^{\rho}-1}{\epsilon^{\rho}+1}=1, \quad \epsilon^{\rho}=\alpha, \quad \rho=\log \propto$.

For small values of x.
Primary Anticyclics.

x	$\frac{1}{x}-\operatorname{Cosec} x$	\boldsymbol{x}	$\mathrm{I}-\operatorname{Sec} x$
	${ }^{1} 1369428633311060$	-9	$\cdot 3022053588996676$
$\cdot 8$	- 12400826 O211 5182	-8	$\cdot 2523000817625802$
$\cdot 7$	-1103 253371051180	7	$\cdot 2032945400071249$
$\cdot 6$	-09595375 7731 5912	$\cdot 6$	${ }^{-156449312378 ~} 1164$
$\cdot 5$	-0809 $65248668{ }^{2201}$	5	
$\cdot 4$	-0654 428783927115	4	-0749 925480942449
$\cdot 3$	-0494 $79936590{ }^{5823}$	3	-0433 720880997516
$\cdot 2$	-03317843 1185483 I	$\cdot 2$	-0196 $72002355{ }^{2} 746$
'I	-0166 47242703 8901 approximating to $\frac{1}{6} x$.	'I	-0049 7925 1046 7735 approximating to $\frac{1}{2} x^{2}$.

x	$\operatorname{Cot} x-\frac{1}{x}$	x	Tan x
	-2849 5614 19189029	'9	${ }^{7} 71629787 \bigcirc 1909224$
$\cdot 8$	-2559 407020437062	$\cdot 8$	$\cdot 6640367702678494$
$\cdot 7$	- 2260502072312008	. 6	$\cdot 6043677771171635$
$\cdot 6$	-19535885 47199995	$\cdot 6$	$\cdot 5370495669980353$
$\cdot 5$	-1639 5341 37386538	4	$\cdot 4621171572600098$
$\stackrel{4}{4}$	${ }^{1} 1319324418321884$	4	$\cdots 3799489622552245$
\cdots	$\cdot 0994$ -066489596988884084	3	${ }^{2913} 126124515909$
I	$\cdot 0664$ $\cdot 0333$	$\stackrel{2}{1}$	$\cdot 1973753202249047$ $\cdot 0966679946249558$
	approximating to $\frac{1}{3} x$.		approximating to x.

If $H_{1} H_{2} H_{3} \ldots$ are Euler's coefficients,-in

$$
x \cot x=1-2\left(H_{1} x^{2}+H_{2} x^{4}+H_{3} x^{6}+\& c .\right)
$$

we have

$$
\operatorname{Cot} x-\frac{1}{x}[\text { or, say } K(x)]=2\left(H_{1} x-H_{2} x^{3}+H_{3} x^{5}-\& c . \ldots\right) .
$$

Thence

$$
\begin{aligned}
\frac{1}{x}-\operatorname{Cosec} x & =K(x)-K\left(\frac{1}{2} x\right) \\
\operatorname{Tan} x & =2 K(2 x)-K(x)
\end{aligned}
$$

p and \square to Sixteen Decimals.

x		x	
$\begin{aligned} & P\left(I^{\circ}\right) \\ & D\left(I^{\circ}\right) \end{aligned}$	$\begin{array}{llll} \cdot 8509 & 1812 & 8239 & 3215 \\ \cdot 6480 & 5427 & 3663 & 8854 \end{array}$	24	-1829 $41468590 \quad 0977$ '1799 $549^{2} 30816373$
I'I	$\cdot 7487005533780705$ -5993 $3406 \quad 05707929$	2.5	$\begin{array}{llll} \cdot 1652 & 8366 & 9855 & 0954 \\ \cdot 1630 & 7123 & 1929 & 978 \mathrm{I} \end{array}$
I ${ }^{2}$	-6624 $8797 \quad 71943154$ -5522 86I5 4278 2047	2.6	$\begin{array}{llll}\cdot 1493 & 7117 & 2122 & 2848 \\ \cdot 1477 & 3218 & 2327 & 8366\end{array}$
I*3	$\cdot 5887955374727589$ -5073 78750740602 I	27	$\cdot{ }^{\cdot 1350} 208581141130$ ${ }^{\text {' }} 333806676793$ гог 6
I 4	$\begin{array}{llll} \cdot 5251 & 2692 & 9342 & 7329 \\ \cdot 4649 & 2199 & 2408 & 9817 \end{array}$	2.8	$\begin{array}{lllll}\cdot 1220 & 7152 & 9128 & 8169 \\ \cdot 1211 & 7204 & 7532 & 4136\end{array}$
I 5	$\begin{array}{llll} \cdot 4696 & 4244 & 0595 & 2243 \\ 4250 & 9603 & 494^{2} & 2804 \end{array}$	2.9	$\begin{array}{llll} \cdot 1103 & 8062 & 3493 & 2692 \\ -1097 & 1427 & 414 \mathrm{I} & 5019 \end{array}$
I*6	$\cdot 4209519658879284$ 3879781898744896	3°	$\begin{array}{llll} \cdot 0998 & 2156 & 9668 & 8225 \\ \cdot 0993 & 279^{2} & 7419 & 433^{1} \end{array}$
I 7	$\begin{array}{llll} 3779 & 8152 & 7668 & 3616 \\ \cdot 3535 & 6734 & 9501 & 4020 \end{array}$	$3^{\circ} \mathrm{I}$	902 8162 50829535 899 1592 66508797
ェ.8	$\begin{array}{llll} 3398 & 8469 & 1415 & 4933 \\ \cdot 3218 & 0486 & 9506 & 5875 \end{array}$	$3 \cdot 2$	816600908746531 813 8917 5180 7533
I'9	$\begin{array}{llll} \cdot 3059 & 8229 & 8640 & 1752 \\ \cdot 2925 & 9173 & 5483 & 7630 \end{array}$	3.3	-0738 6682 0864 6194 $\cdot 0736$ 6612 17649807
2%	$\begin{array}{lllll} -2757 & 2056 & 4771 & 7832 \\ -2658 & 0222 & 8834 & 0795 \end{array}$	34	-0668 209634490966 -0666 7228 1989 9217
$2 \cdot 1$	$\begin{array}{llll} \cdot 2486 & 4137 & 73^{81} & 2334 \\ \cdot 2412 & 9450 & 6201 & 8549 \end{array}$	3.5	-0604 498900091559 $\cdot 0603397441201677$
2.2	$\begin{array}{llll} \cdot 2243 & 6087 & 1403 & 8413 \\ \cdot 2189 & 1857 & 8920 & 1682 \end{array}$	$3 \cdot 6$	$\begin{array}{llll} \cdot 0546 & 8827 & 4384 & 1248 \\ \cdot 0546 & 0667 & 6324 & 9982 \end{array}$
$2 \cdot 3$	$\begin{array}{llll} \cdot 2025 & 5372 & 4210 & 8383 \\ \cdot 1985 & 2217 & 5149 & 3391 \end{array}$	377	-0494 772960745175 .0494168467566524

$P(x)$ and $\square(x)$ to Sixteen Decimals.

x		x	
$3 \cdot 8$	-0447 639458932198 $\cdot 0447191639426338$	$5{ }^{\circ}$	--110 $\begin{array}{rlrl}3346 & 4617 & 2459 \\ 3279 & 3086 & 2335\end{array}$
3.9	$\begin{array}{llll} \cdot 0405 & 0041 & 7329 & 2519 \\ \cdot 0404 & 6724 & 2047 & 0393 \end{array}$	$5 \% 3$.0099 $\begin{aligned} & 8343 \\ & 8293\end{aligned}$
$4^{\circ} 0$	$\cdot \cdot 0366 \begin{array}{r}4357 \\ 1899 \\ \\ \\ \hline\end{array}$	$5 \cdot 4$.00903334 6161 3297 7616 677
$4^{\circ} \mathrm{I}$.033I $\begin{array}{llll}5445 & 6793 & 44 \mathrm{II} \\ 3624 & 9814 & 2153\end{array}$	5.5	-0081 $\begin{array}{rlrl}7367 & 9391 & 2755 \\ 7340 & 6367 & 1407\end{array}$
4.2		$5 \cdot 6$	$\cdot \cdot 0073 \begin{array}{llll}9582 & 8564 & 9758 \\ 9562 & 6303 & 7217\end{array}$
43	$\begin{array}{rrrr} \\ .0271 & 4211 & 5045 & 0343 \\ 3212 & 2843 & 3915\end{array}$	$5{ }^{\circ} 7$	$.0066 \begin{array}{llll}9200 & 5835 & 1925 \\ 9185 & 5996 & 3701\end{array}$
$4 * 4$	$.0245 \begin{array}{llll}5838 & 1566 & 5102 \\ 5097 & 9161 & 5505\end{array}$	$5 \cdot 8$	
4.5	.0222 $\begin{array}{rrrr}2073 & 5333 & 0788 \\ 1525 & 1496 & 6496\end{array}$	5*9	$\cdot \cdot 0054 \begin{array}{llll}7893 & 0754 & 4899 \\ 7884 & 8521 & 2007\end{array}$
$4 \cdot 6$	$\cdot \cdot 0201 \begin{array}{ccc}0570 & 2957 & 4680 \\ 0164 & 0431 & 5416\end{array}$	6*	-0049 $\begin{array}{rlll}5753 & 4813 & 4793 \\ 5747 & 3893 & 5605\end{array}$
4*7	$\cdot .018 \mathrm{I} \begin{array}{lll} 9205 & 9124 & 4828 \\ 8904 & 953 \mathrm{I} & 2660 \end{array}$	$6 \cdot 1$	$.0044 \begin{array}{llll}8575 & 8004 & 3780 \\ 8571 & 2873 & 7920\end{array}$
$4 \cdot 8$	$.0164 \begin{array}{llll}6060 & 8954 & 2863 \\ 5837 & 9392 & 7991\end{array}$	$6 \cdot 2$	$\cdot 0040 \begin{array}{lll} 5887 & 7989 & 4405 \\ 5884 & 4555 & 880 \mathrm{I} \end{array}$
4.9	$\begin{array}{rrrr}.0148 & 9399 & 2037 & 5291 \\ 9234 & 0337 & 7575\end{array}$	$6 \cdot 3$	$\begin{array}{llll} .0036 & 7262 & 1938 & 1950 \\ 7259 & 7170 & 0042 \end{array}$
$5^{\circ} 0$	$\begin{array}{lllll}.0134 & 7650 & 5830 & 5889 \\ 7528 & 2221 & 3045\end{array}$	6.4	$\cdot 0033 \begin{array}{llll} 2312 & 3720 & 7367 \\ 2310 & 5372 & 0099 \end{array}$
$5^{\circ} \mathrm{I}$.OI21 $\begin{array}{rlll}9394 & 6383 & 9042 \\ 9303 & 9911 & 8518\end{array}$	$6 \cdot 5$	$\cdot .0030 \begin{array}{llll}0688 & 5182 & 5061 \\ 0687 & 1589 & 4349\end{array}$

$P(x)$ and $D(x)$ to Sixteen Decimals.

x		x		
$6 \cdot 6$	$.0027 \begin{array}{llll}2074 & \text { IIIO } & 1024 \\ 2073 & 1040 & 1076\end{array}$	8*	67092	$\begin{array}{lll}5331 & 3076 \\ 5180 & 3024\end{array}$
$6 \cdot 7$.0024 6182 $\begin{array}{rrr}7535 & 3703 \\ 0075 & 3347\end{array}$	8•I	60707	83320915 8220239
$6 \cdot 8$	$.0022 \begin{array}{lllll}2755 & 3058 & 9582 \\ 2754 & 7532 & 4278\end{array}$	$8 \cdot 2$	54930	$\begin{array}{ll}7181 & 3811 \\ 7098 & 5075\end{array}$
6%	$.0020 \begin{array}{llll}\text { I } 557 & 2905 & \text { I762 } \\ \text { 1556 } & 88 \mathrm{II} & \text { O2I8 }\end{array}$	$8 \cdot 3$	49703	3684 3623129 189
7*0	.0018 23765447 2414	8.4	44973	$\begin{array}{ll}4671 & 0985 \\ 4625 & 6169\end{array}$
7×1	$.0016 \begin{array}{llll}5021 & 0969 & 9924 \\ 5020 & 8723 & 0728\end{array}$	$8 \cdot 5$	40693	$\begin{array}{ll}6754 & 8681 \\ 6721 & 1745\end{array}$
$7 \cdot 2$.0014 93172449 0784	$8 \cdot 6$	3682 I	15998157 1574 8545
7’3	.0013 $5107 \begin{array}{lll}8166 & 9557 \\ 6933 & 8201\end{array}$	$8 \cdot 7$	33317	16312211 16127295
$7 \bullet 4$.0012 $2250 \begin{array}{r}59790238 \\ 50654946\end{array}$	$8 \cdot 8$	30146	6157 6143 14245
7•5	.0011 061690786753 8401 160	$8 \cdot 9$	27277	$\begin{array}{ll}7858 & 0382 \\ 7847 & 8898\end{array}$
$7 \cdot 6$. 0010 0090 $\begin{array}{r}3117 \\ 2616590 \\ 2034\end{array}$	9°	24681	$\begin{array}{ll}9611 & 9323 \\ 9604 & 4143\end{array}$
7’7	.0009 05654551 4880 4802 8060	$9^{\text {¹ }}$	22333	$\begin{array}{r}1619 \\ 1614 \\ \hline 1950 \\ \hline\end{array}$
$7 \cdot 8$	81947 00955344 8r946 98203848	$9{ }^{\circ} 2$	20207	8805 8801 8872 612
7`9 & \(74148 \begin{array}{lll}7182 & 8362 \\ 6979 & 0002\end{array}\) & \(9 ` 3\)	18284	84644847 84614279		

When x reaches 10 , the equations $p(x)=2 \epsilon^{-x}=\emptyset(x)$ are true to 12 decimals.
$P(x)$ and $\square(x)$ to Sixteen Decimals.

When x exceeds $12 \cdot 6$, we have $\rho(x)=\square(x)=2 \epsilon^{-x}$ true to 16 decimals. They are true to 12 decimals, even when x reaches 10 .
$כ(x)=\operatorname{Cot} x-1$, and $\boldsymbol{\Omega}(x)=1-\operatorname{Tan} x$, to Sixteen Decimals.

x		x	
I*O	$\begin{array}{lllll} 3130 & 3528 & 5499 & 3313 \\ 2384 & 0584 & 4044 & 2351 \end{array}$	2.5	-0135 673098126083 - $1338570 \quad 1848 \quad 5695$
I ${ }^{\text { }}$	$\begin{array}{lllll} \cdot 2492 & 2076 & 4568 & 3124 \\ \cdot 1995 & 0097 & 8239 & 3703 \end{array}$	$2 \cdot 6$	$\begin{array}{rrrr}\text {-110 } & 9433 & 1435 & 5912 \\ \text {-109 } & 7259 & 7798 & 9007\end{array}$
1*2	$\begin{array}{llll} \cdot 1995 & 3754 & 4192 & 3508 \\ \cdot 1663 & 4539 & 2987 & 8447 \end{array}$	$2 \cdot 7$	$\begin{array}{llll} \cdot 0090 & 7414 & 6000 & \text { 1196 } \\ \cdot 0089 & 9254 & 6321 & 8822 \end{array}$
1*3	\cdot '1604 655035578761 ${ }^{\cdot} 1382768406866936$	2.8	$\cdot 0074231773310795$ $\cdot 0073684797988721$
I*4	$\begin{array}{llll} \cdot 1294 & 9470 & 6459 & 8964 \\ -1146 & 4835 & 1797 & 7375 \end{array}$	2.9	.0060 $\begin{array}{rlll}7349 & 7336 & 4337 \\ 3683 & 2649 & 4167\end{array}$
1 5	$\begin{array}{llll} \cdot 1047 & 9139 & 2982 & 5114 \\ \cdot 0948 & 5174 & 6355 & \text { I } 336 \end{array}$	3°	$.0049 \begin{array}{llll}6982 & 3313 & 6889 \\ 4524 & 6313 & 2697\end{array}$
土 6	$\begin{array}{llll} \bullet 0849 & 8873 & 6155 & 7778 \\ \cdot 0783 & 3 I 44 & 5593 & 5284 \end{array}$	3'1	$\cdot .0040 \begin{array}{ccc}6711 & 5200 & 7812 \\ 5064 & 0778 & 0998\end{array}$
1 ${ }^{\prime} 7$.0690509975012924 $\cdot 0645909293969008$	$3 \cdot 2$.0033 $\begin{array}{llll}2864 & 5281 & 1247 \\ 1760 & 2160 & 3487\end{array}$
1.8	$\begin{array}{llll} \bullet & \text { O56I } 8256 & \text { 16I4 5I80 } \\ \cdot 05318398 & 7153 & 73 \text { I6 } \end{array}$	3.3	.00272444 1703 7
I ${ }^{\circ} 9$	$\begin{array}{llll} \cdot 0457 & 6534 & 9914 & \text { I786 } \\ \cdot 0437 & 6254 & 1872 & 2610 \end{array}$	3.4	$\begin{array}{rlll}.0022 & 3003 & 4052 & 1958 \\ 2507 & 2065 & 7206\end{array}$
$2{ }^{\circ}$	$\begin{array}{llll} \cdot \circ 373 & 1472 & 0727 & 548 \mathrm{I} \\ \cdot & 359 & 724 \mathrm{I} & 9924 \\ \mathrm{I} 83 \mathrm{I} \end{array}$	3.5	.0018 2542 8506 4434 2210 2388 8014
$2 \cdot 1$	$\cdot 0304477349900075$ -0295 480633865465	$3 \cdot 6$	$.0014 \begin{array}{rrr}9428 & 7230 & 3932 \\ 9205 & 7667 & 6732\end{array}$
2.2	$\begin{array}{llll} \cdot 0248 & 5989 & 3164 & 4710 \\ \cdot 0242 & 5686 & 9968 & 5494 \end{array}$	37	.0012 $\begin{array}{rl}2325 & 3239 \\ 2175 & 8718 \\ & 8686\end{array}$
$2 \cdot 3$	-0203 0780 218I 1268 -0199 0360 3733 8092	$3 \cdot 8$	$.0010 \begin{array}{ccc} 0140 & 4020 & 9588 \\ 0040 & 2214 & 1592 \end{array}$
2.4	-0165 9607 56022530 -0163 25142306 3198	3.9	

$\boldsymbol{J}(x)$ and $\boldsymbol{\Omega}(x)$ to Sixteen Decimals.

x		x	
4°	$\begin{array}{llll} 67115 & 0401 & 6824 \\ 67070 & 0260 & 9328 \end{array}$	54	40799839 8174 18597
4.1	$\begin{array}{llll} 54945 & 8050 & 5595 \\ 54915 & 6312 & 2027 \end{array}$	5.5	33403959 2843 8936 6965
$4{ }^{2}$	$\begin{array}{llll}83 & 5801 & 7305 \\ 449 \\ 63 & 3540 & 4665\end{array}$	5.6	$2734 \begin{aligned} & 87661037 \\ & 8018 \\ & 1692\end{aligned}$
43	$\left.368 \begin{array}{lll}27 & 9389 & 7045 \\ \text { I4 } & 3809 & 9269\end{array}\right]$	57	22391220 0719 1058 O102
44		$5 \cdot 8$	18332343 2007
4.5		$5{ }^{\circ} 9$	
$4 \cdot 6$		6.0	122888500 8348 83096
47	${ }_{165} 5_{43}^{46} \quad 18184857874$	6. ${ }^{\text {I }}$	
$4 \cdot 8$	${ }^{1} 355_{44}^{46} 66847896965$	6.2	$823 \begin{array}{lll}7211 & 3407 \\ 7143 & 4895\end{array}$
4.9	$\begin{array}{r}1109093489652 \\ 89 \\ 7049 \\ \hline 8456\end{array}$	$6 \cdot 3$	$674 \begin{aligned} & 40532094 \\ & 4007 \\ & 7274\end{aligned}$
5*	$\begin{array}{lll} 9083 & 3982 & \circ 194 \\ 9079 & 5737 & 4050 \end{array}$	6.4	$\begin{array}{cccc} \\ 552 \\ & 1560 & 3880 \\ 1529 & 9004\end{array}$
5'I	$\begin{array}{lll} 7434 & 3400 & 7360 \\ 7433 & 7854 & 2056 \end{array}$	6.5	4520669 0322 0648 5958
5.2	$6086 \begin{aligned} & 6818 \\ & 3113 \\ & 313 \\ & 8012\end{aligned}$	$6 \cdot 6$	
5*3	498332611 2097 779 8790	6.7	$303 \begin{aligned} & 0292 \\ & 0283 \\ & 02856 \\ & 6328\end{aligned}$

$\boldsymbol{J}(x)$ and $\boldsymbol{\Omega}(x)$ to Sixteen Decimals.

x		x	
6•8	$248 \begin{array}{r}0993 \\ 0987\end{array}$	8.1	I8 $\begin{array}{r}42720336 \\ 427 \mathrm{I} \\ \hline 1996\end{array}$
$6 \cdot 9$	$203 \begin{array}{r}12650054 \\ 12608794\end{array}$	8.2	15 $0869 \begin{aligned} & \text { I } 784 \\ & 1556\end{aligned}$
7*0	166 $\begin{array}{r}30586771 \\ 30561994\end{array}$	$8 \cdot 3$	I2 $352 \mathrm{I} \begin{aligned} & 2342 \\ & 2190\end{aligned}$
7×1	$136 \begin{aligned} & \text { 1597 } \\ & 159598 \\ & 1595\end{aligned}$	8.4	10 1130 $\begin{aligned} & 6320 \\ & 6220\end{aligned}$
72	III4781 3600 4780 7172	$8 \cdot 5$	$8 \quad 2798$ 7578 750
73	91 $\begin{array}{r}27056900 \\ 27048572\end{array}$	$8 \cdot 6$	6778988888
$7 \bullet 4$	74 7260 7259 72592	$8 \cdot 7$	5 5501 6664
7•5	$6 \mathrm{I} \quad \mathrm{I} 804 \begin{aligned} & 8282 \\ & 4538\end{aligned}$	8.8	$45440 \begin{aligned} & 9206 \\ & 9188\end{aligned}$
$7 \cdot 6$	$\begin{array}{lll}50 & 0903 \begin{array}{l}3998 \\ 1490\end{array}\end{array}$	$8 \cdot 9$	$37203 \begin{aligned} & 8792 \\ & 8780\end{aligned}$
77	$410104 \begin{aligned} & 9992 \\ & 8310\end{aligned}$	$9^{\circ} \mathrm{O}$	$3 \bigcirc 459 \begin{aligned} & 9598 \\ & 9590\end{aligned}$
7*8	$33 \quad 5765 \begin{aligned} & 5624 \\ & 4496\end{aligned}$	$9^{\circ} \mathrm{I}$	$24938 \begin{aligned} & 5058 \\ & \\ & \\ & 5054\end{aligned}$
7`9	$274901 \begin{aligned} & 5834 \\ & 5078\end{aligned}$	$9{ }^{\circ} 2$	$20417 \begin{aligned} & 9216 \\ & 9212\end{aligned}$
8•0	$225070 \begin{aligned} & 3748 \\ & 3230\end{aligned}$	9×3	1 $6716 \begin{gathered}7803 \\ 7801\end{gathered}$

When x is as large as $9 \cdot \boldsymbol{J}, \boldsymbol{J}(x)=2 \epsilon^{-2 x}=\boldsymbol{\Omega}(x)$ without error in $16^{\text {th }}$ decimal.

Mutilated Anticyclics.
$P_{0}(x)$ or $P(x)-2 \epsilon^{-x}$ to Sixteen Decimals.

x		x	
I*O	-II5I 592458964369	4.5	27422565942
I'I	8295838598 I 9 II 4	4.6	20314682009
I 2	60099553369 9112	4.7	15049216432
1•3	437 3195 1404 7337	$4 \cdot 8$	IrI 48562462
1.4	319330014595200	4.9	8258956803
r.5	233821202983647	5*	6118324168
1.6	171 5892 98986175	5.1	4532528730
1.7	126144795628923	$5 \cdot 2$	3357757245
I•8	92869149723250	$5 \cdot 3$	2487474022
I•9	684506 O194 905I	54	18 42757757
$2 \cdot 0$	50499982985578	5.5	13 6514 3475
$2 \cdot 1$	$\begin{array}{lllllllllllllll}37 & 2852 & 0875\end{array}$	$5 \cdot 6$	1011320098
$2 \cdot 2$	27545546791739	$5 \cdot 7$	749202501
$2 \cdot 3$	20360367653296	$5 \cdot 8$	55502 1736
2.4	15055620112726	5%	4 İı6 9533
2.5	$\begin{array}{llllll}11 & 136726073008\end{array}$	$6 \cdot 0$	304601465
$2 \cdot 6$	824015693 6r73	$6 \cdot 1$	225654064
2.7	6098326346135	$6 \cdot 2$	I 67168490
$2 \cdot 8$	4514038783811	$6 \cdot 3$	I 23841372
2.9	3341833804546	$6 \cdot 4$	91743887
$3^{\circ} \mathrm{O}$	2474329330953	$6 \cdot 5$	67967510
$3 \cdot 1$	1 83220295 8379	$6 \cdot 6$	50350066
$3 \cdot 2$	1 356829179206	$6 \cdot 7$	37300251
3.3	1004860621394	$6 \cdot 8$	27632686
3.4	744235284445	$6 \cdot 9$	20470792
3.5	551231645188	$7{ }^{\circ}$	15165140
$3 \cdot 6$	408294895399	$7 \cdot 1$	II23 4606
$3 \cdot 7$	3024 3I33 8386	$7 \cdot 2$	8322799
$3 \cdot 8$	224021808886	$7 \cdot 3$	6165679
3.9	165944376430	74	4567647
4.0	122925483370		4
$4 \cdot 1$	9105989 9186		
4.2	6745547 3214		
4.3	49970206524		
4.4	37017603735		

Beyond this value of $x, \boldsymbol{P}_{0}(x)=2 \epsilon^{-3 x}=\square_{0}(x)$.

Mutilated $\square_{0}(x)=2 \epsilon^{-x}-\square(x)$. Sixteen Decimals.

x		x	
I 0	$\cdot 0877046086789992$	4.5	27415798350
I'I	-0664 08ı 68256662	$4 \cdot 6$	20310577255
1.2	-0501 02269546 1995	4.7	15046721257
I 3	-0376 8483 53274231	$4 \cdot 8$	11147052409
I 4	$\cdot 0282719354742312$	4.9	825807 09r 2
1.5	211642853545792	5*	$61 \quad 17768664$
I.6	158148461148212	5*I	453219 1795
1.7	117996986040672	$5 \cdot 2$	3357552880
I.8	87929069365856	$5 \cdot 3$	2487350071
I*9	65455029615071	$5 \cdot 4$	1905682576
$2{ }^{\circ} \mathrm{O}$	$\begin{array}{llllll}48 & 6833 & 7639 & 1459\end{array}$	$5 \cdot 5$	1355097874
$2 \cdot 1$	$\begin{array}{lllllllllll}36 & 1835 & \text { ०304 } & 1089\end{array}$	$5 \cdot 6$	10 1129 2441
2.2	26877378044996	$5 \cdot 7$	749185724
$2 \cdot 3$	19 9551 22962683	$5 \cdot 8$	5 5501 1560
2.4	$1480983497 \quad 1877$	5%	4 III6 3360
2.5	10 987653178195	$6 \cdot 0$	304597722
2.6	81497 4100 8311	$6 \cdot 1$	225651796
2.7	6043488863979	$6 \cdot 2$	1 6716 7114
2.8	4480777180223	$6 \cdot 3$	I 23840536
2.9	3321659173125	$6 \cdot 4$	9174 3380
3.0	2462093162948	$6 \cdot 5$	67965202
$3 \cdot 1$	1 8247 8136 2359	$6 \cdot 6$	50349882
$3 \cdot 2$	I 352327759791	$6 \cdot 7$	3730 O122
3.3	I 002130374993	$6 \cdot 8$	27632618
3.4	742579307304	$6 \cdot 9$	20670752
3.5	550227244693	$7{ }^{\circ}$	1516 5110
3.6	407685695869	$7{ }^{\prime} 1$	11234590
3.7	302061840264	$7 \cdot 2$	8322789
$3 \cdot 8$	223797696974	73	6165676
3.9	165808445695	$7 \cdot 4$	4567645
$4{ }^{\circ}$	122843067818		
$4 \cdot 1$	91009893072		cases before me
4.2	67425142972		to test this Table.
43	499 5181 О103		
44	$370 \quad 66445864$		

When x exceeds $7 \cdot 4, D_{0}(x)=2 \epsilon^{-3 x}$.
$\beth_{0}(x)$ or $\beth x-2 \epsilon^{-2 x}$ to Sixteen Decimals.

x		x	
1.0	$\cdot 0423674190261059$	$4{ }^{\circ}$	2251458774
I'I	$\cdot 0276144478436447$	$4 \cdot 1$	15 OI90 6ı3I
I 2	-OI81 о163 7613 5258	4.2	1011533727
I 3	-0119 1834 71292084	4.3	678023695
I4 4	$\cdot 00787458$ 1209 4605	4.4	454477703
I.5	52172562467841	4.5	304637189
1.6	34643281990454	$4 \cdot 6$	204199846
1.7	23044575806403	$4 \cdot 7$	土 36876733
I.8	I5 3511 6719 9330	$4 \cdot 8$	91749847
I.9	10 238062018424	4.9	6150 1019
2.0	6834429500805	5*	
$2 \cdot 1$	45658 ェ349 0520	5.1	27633678
$2 \cdot 2$	3 O521 33583347	$5 \cdot 2$	18523284
$2 \cdot 3$	2041306918597	$5 \cdot 3$	12416460
24	I 3658 1504 2126	$5 \cdot 4$	832 2961
2.5	914158144375	5.5	5579027
2.6	612025940697	$5 \cdot 6$	3739722
2.7	4098 4II4 8945	$5 \cdot 7$	2506806
2.8	274498981145	$5 \cdot 8$	$168 \bigcirc 379$
2.9	183878456820	5.9	112 6377
$3{ }^{\circ}$	123189603561	$6 \cdot 0$	755030
$3 \cdot 1$	8253928 1896	$6 \cdot 1$	506112
$3 \cdot 2$	55307347769		
3.3	37062442520		
34	24837565062		
3.5	166 45753342		
$3 \cdot 6$	III 56ı3 6399		
3.7	7477169199		
$3 \cdot 8$	5011540776		
3.9	3359031373		

For values of x, higher than $6 \cdot 1, \beth_{0}(x)=2 \epsilon^{-4 x}$.

$$
\Omega_{0} x=2 \epsilon^{-2 x}-\Omega_{x} \text { to Sixteen Decimals. }
$$

x		x	
1×0	-0322 647224289903	$4^{\circ} 0$	2249948722
I'I	-022I 053384852974	$4 \cdot 1$	1508277437
I.2	-0150 905I 35909803	$4 \cdot 2$	10 x106 8913
1.3	-0102 703I 5741 9741	$4 \cdot 3$	67777 408r
1.4	$\cdot 0069717734526984$	4.4	454340713
I'5	$472239 \bigcirc 3805935$	4.5	304562007
1.6	3 T 929623632042	$4 \cdot 6$	204158586
1.7	2 I 56 I O523 7513	4.7	I 36854107
I.8	14534577408533	4.8	91737421
I*9	9790018400702	49	61494187
2.0	$6 \quad 588578532853$	5°	41221200
${ }^{2} 1$	4430902544092	$5^{\circ} \mathrm{I}$	27631626
$2 \cdot 2$	2978098375877	5.2	18522156
$2 \cdot 3$	2006677554579	$5 \cdot 3$	12415840
2.4	1 343517917202	$5 \cdot 4$	8322623
2.5	9091 21496013	$5 \cdot 5$	5578843
2.6	605310426207	$5 \cdot 6$	3739622
$2 \cdot 7$	406155633431	57	2506750
2.8	272476340939	$5 \cdot 8$	1680329
2.9	1827684 I 3348	5.9	II2 6359
$3^{\circ} \mathrm{O}$	122580400631	$6 \cdot 0$	755022
$3 \cdot 1$	82204944916	6. 1	506107
3.2	55123859995		
3.3	36961742388		
3.4	24782299690		
3.5	16615423078		
$3 \cdot 6$	III 3949 0801		
3.7	7468033905		
$3 \cdot 8$	$50-6527220$		
3.9	3356279875		

For higher values of $x, \Omega_{0} x=2 \epsilon^{-4 x}=\beth_{0}(x)$.
$\sigma(x)$ means $-\log _{\epsilon}\left(1-\epsilon^{-2 x}\right) ; \kappa(x)$ means $\log _{\epsilon}\left(1+\epsilon^{-2 x}\right)$.
σ and κ to Sixteen Decimals.

x			x	
$1{ }^{\circ}$	σ κ	$\begin{array}{llll}\text { 1454 } & 1345 & 7868 & 8591 \\ \cdot 1269 & 2801 & 1042 & 9725\end{array}$	23	101026965623132 $100 \text { о165 } 20556520$
I'I	σ κ	$\begin{array}{llllll}\cdot 1174 & 3664 & 8812 & 5736 \\ \cdot 1050 & 8331 & 9768 & 4102\end{array}$	24	$\begin{array}{lllll} 82 & 6379 & 8368 & 4526 \\ 81 & 9606 & 7338 & 2682 \end{array}$
1.2		$\begin{array}{lllll}950 & 9995 & 0522 & 4007 \\ 868 & 3615 & 2153 & 9481\end{array}$	2.5	$\begin{array}{llll} 67 & 6074 & 9449 & 4885 \\ 67 & 1534 & 8489 & \text { II } 8 \text { I } \end{array}$
I'3		$\begin{array}{llll} 771 & 7652 & 8823 & 4132 \\ 716 & 4469 & 1967 & 6700 \end{array}$	2.6	$\begin{array}{lllll} 55 & 3183 & 6855 & 7432 \\ 55 & 0140 & 3909 & 6574 \end{array}$
1.4		$\begin{array}{llll} 627 & 3754 & 4004 & 4562 \\ 590 & 3282 & 6287 & 9514 \end{array}$	$2 \cdot 7$	$\begin{array}{lllll} 45 & 2681 & 1510 & 7333 \\ 45 & 0641 & 1799 & 2495 \end{array}$
1 5		510691809427015 485873515737420	2.8	$\begin{array}{llll} 37 & 0471 & 7716 & 5048 \\ 36 & 9104 & 3426 & 9466 \end{array}$
1.6		$\begin{array}{llll} 416 & 1627 & 2352 & 8589 \\ 399 & 5333 & 3162 & 4303 \end{array}$	$2 \cdot 9$	$\begin{array}{llll}30 & 3214 & 7060 & 5769 \\ 30 & 229 & 0930 & 8316\end{array}$ 30229809308316
1 7		$\begin{array}{llll} 339 & 4286 & 6281 & 1794 \\ 328 & 2847 & 0424 & 8652 \end{array}$	$3{ }^{\circ}$	
I.8		$\begin{array}{lllll}277 & 0395 & 7650 & 5573 \\ 269 & 5709 & 3008 & 2051\end{array}$	$3 \cdot 1$	20 $\begin{array}{r}314927210270 \\ 2737 \\ 4123 \\ \hline 1838\end{array}$
I ${ }^{\prime}$		$\begin{array}{lllll}226 & 2479 & 3155 & 9337 \\ 221 & 2421 & 6454 & 8791\end{array}$	3.2	166293 6017 194140 84285
2.0		$\begin{array}{llll} 184 & 8544 & 6825 & 8866 \\ 181 & 4992 & 7917 & 8096 \end{array}$	33	13 $\begin{array}{r}612941781702 \\ 5944 \\ 3575 \\ 2599\end{array}$
$2 \cdot 1$		$\begin{array}{llll} 151 & 0914 & 7282 & 5446 \\ 148 & 8425 & 4671 & 9180 \end{array}$	34	
$2 \cdot 2$		123533290441634 122025846076962	3.5	$\begin{array}{lll}1229 & 7982 & 8390 \\ 1146 & 6453 & 7742\end{array}$

σ and κ to Sixteen Decimals.

x		x	
3.6	$746 \begin{array}{llll}86 & 4642 & 3523 \\ 30 & 7251 & 8276\end{array}$	5*I	$\begin{array}{rlll}371 & 7 & 1009 & 5175 \\ 6 & 9627 & 8849\end{array}$
377	$\begin{array}{rrrr}6 & 11\end{array} \begin{array}{rrr}43 & 9472 & 2609 \\ 06 & 6202 & 2535\end{array}$	5°	$3043 \begin{aligned} & 29460858 \\ & 2019\end{aligned}$
$3 \cdot 8$	$\begin{array}{rrrr}50057 & 6701 & 0545 \\ 32 & 6249 & 3860\end{array}$	$5 \cdot 3$	2491 $\begin{array}{r}6320 \\ 5699 \\ \hline 6329\end{array}$
3.9	$40^{4} \begin{array}{rrrr}81 & 8943 & 2925 \\ 65 & 1060 & 5254\end{array}$	54	$2039 \begin{aligned} & 9711\end{aligned}$
4*0	$335^{51} \begin{array}{llll}\text { I } & 8908 & 0768 \\ 40 & 6372 & 8957\end{array}$	5.5	$1670 \begin{array}{ll}1840 & 2651 \\ 1561 & 3183\end{array}$
$4^{\prime \prime}$	$2 \begin{array}{lrll}69 & 1294 & 1714 \\ 61 & 5859 & 5851\end{array}$	5.6	$1367 \begin{array}{r}4289 \\ 4102583 \\ \\ \\ \end{array}$
4.2	2248984826106263	5%	III9 $5_{422}^{547} 5125$
43	I $84 \begin{array}{rrr}\text { I2 } & 2743 & 2196 \\ 08848 & 2758\end{array}$	5.8	$9166 \begin{array}{r}129 \\ 045 \\ 7275\end{array}$
44		5%	$75045 \begin{array}{ll}86 & 0744 \\ 29 & 7560\end{array}$
4.5	I 2341 7419 7031 189 7232	$6 \cdot$	$\begin{array}{llll}614 & 4 \\ 4 \\ \text { 231 } & 22889 \\ 4777\end{array}$
4.6	$\begin{array}{rrr} & \text { ого } \\ 4 & 4506 & 66 \text { I } 3 \\ 3297 & 7006 \end{array}$	6.1	$50304 \begin{array}{lll}68 & 2598 \\ 42 & 9544\end{array}$
47	$8272 \begin{array}{ll}7487 & 3808 \\ 0644 & \text { 1198 }\end{array}$	$6 \cdot 2$	4 II $\begin{array}{llll}85 & 97 & 1889 \\ 80 & 2261\end{array}$
4.8	$677 \begin{array}{lll}3 & 1030 & 1852 \\ 2 & 6443 & 0045\end{array}$	$6 \cdot 3$	337 20 20 9193 9489
49	$5545 \begin{aligned} & 3136 \\ & 0062 \\ & 0290 \\ & \text { 0401 }\end{aligned}$	$6 \cdot 4$	$\begin{array}{llll}276 & \circ 7 \\ 768 & 3829 \\ 7681\end{array}$
$5^{\circ} \mathrm{O}$	$45 \begin{array}{ccc}40 & 0960 & 3705 \\ 39 & 8899 & 2169\end{array}$	$6 \cdot 5$	$22603 \begin{array}{lll}31 & 9615 \\ 26 & 8525\end{array}$

σ and κ to Sixteen Decimals.

x		x	
6•6	1850602 0599 8857	7*9	13 $7450 \begin{array}{r}7822 \\ 7634\end{array}$
$6 \cdot 7$	$\begin{array}{llr}151 & 51 \\ & 45 & 2599 \\ 42 & 9643\end{array}$	8.0	II $2535 \begin{aligned} & 18 \mathrm{ro} \\ & 1684\end{aligned}$
$6 \cdot 8$	$\begin{array}{llll}124 & 049 & 5 & 8494 \\ 4 & 3106\end{array}$	8.1	$92136 \begin{gathered}\text { O125 } \\ 004 \mathrm{I}\end{gathered}$
$6 \cdot 9$		8.2	$7543458{ }^{63}$
$7{ }^{\circ}$	$83 \quad 1529$9 0648	$8 \cdot 3$	6 1760 6I ${ }^{5}$
7×1	$68079 \begin{array}{ll}8 & 3661 \\ 7 & 9027\end{array}$	$8 \cdot 4$	$505653^{1} 43$
$7 \cdot 2$	$507390 \begin{aligned} & 5246 \\ & 2140\end{aligned}$	$8 \cdot 5$	$4139937{ }_{64}^{80}$
73	$456352 \begin{aligned} & 7409 \\ & 5327\end{aligned}$	$8 \cdot 6$	$33^{89} 9494_{28}^{38}$
7×4	$3736 \begin{array}{r}30 \\ 29\end{array}$	$8 \cdot 7$	$2775083{ }_{20}^{28}$
7.5	$305902 \begin{array}{r}3673 \\ 2737\end{array}$	8•8	227204_{597}^{601}
7.6	$25045 \mathrm{I} \begin{aligned} & 6685 \\ & 6059\end{aligned}$	$8 \cdot 9$	1 $8601939{ }^{3}$
77	2050524786	9°	1 52299798
7.8	$167882 \begin{array}{r}7671 \\ 7389\end{array}$	9 ${ }^{\text {I }}$	I 24692529

For higher values of $x, \sigma(x)=\epsilon^{-2 x}=\kappa(x)$.
Remember that all these are natural, not common logarithms.
$\log _{\epsilon} \operatorname{Cot} x$ to Sixteen Decimals. Primary Anticyclics with Natural logarithms.

x		x	
1×0	-2723 4146 8911 8315	$4^{\circ} \mathrm{O}$	6709252809725
I'I	-2225 1996 8580 9836	$4 \cdot 1$	5493071537565
I. 2	-1819 3610 26763487	$4 \cdot 2$	4497346559379
I•3	-1488 2122 0791 0832	$4 \cdot 3$	3682115914954
I 4	-1217 7037 02924077	4.4	30146 6I52 874I
1.5	996565325164435	4.5	$2{ }_{2} 468196094264$
1.6	81569605515 2891	$4 \cdot 6$	202078804 3619
1.7	667 7133 67060447	4.7	ı 6544 8ı31 4906
I•8	546 6105 0658 7625	$4 \cdot 8$	1 354574731887
1.9	44749009610 8129	4.9	I 1090 31989781
$2{ }^{\circ}$	366353747436963	5°	907998595874
$2 \cdot 1$	299934019544626	$5^{\circ} \mathrm{I}$	743406374024
$2 \cdot 2$	245559136518595	$5 \cdot 2$	$60864966 \bigcirc 356$
$2 \cdot 3$	2010434 8617 9652	$5 \cdot 3$	498320194733
$2 \cdot 4$	164598657067208	$5 \cdot 4$	4079 9006 828r
2.5	134760979386066	5.5	3340 3401 4355
2.6	110 332407654006	$5 \cdot 6$	27348392 1331
2.7	90332233099827	$5 \cdot 7$	22390969 6861
2.8	73957611434507	$5 \cdot 8$	183321754729
2.9	60551279914083	5%	150091158305
3.0	49575145066900	$6 \cdot 0$	$\begin{array}{lll} 1228 & 8424 & 7067 \end{array}$
$3 \cdot 1$	40588668448652	$6 \cdot 1$	and upwards $=2 \epsilon^{-2 x}$.
$3 \cdot 2$	33 23II 76044747		
3.3	27207377534301		
3.4	22275512167787		
3.5	18237644366132		
$3 \cdot 6$	14931718941799		
3.7	12225056745141		
$3 \cdot 8$	10009029504405		
3.9	81947 0003 8179		

To adapt Legendre's Elliptic scale for a rapid calculation of

$$
\int_{0} \frac{d \omega}{\sqrt{ }\left(1-c^{2} \sin ^{2} \omega\right)}
$$

when ω is given, and the constant

$$
\rho=\frac{1}{2} \pi \cdot \frac{F\left(b, \frac{1}{2} \pi\right)}{F\left(c, \frac{1}{2} \pi\right)} ;
$$

[of which a good table might be calculated with argument $\gamma(c=\sin \gamma)$ from Legendre's own work; where, if $c, c_{1}, c_{2} \ldots c_{n}$ are formed on Lagrange's scale, $\rho=2^{-n} . \log _{\epsilon} \cdot \frac{4}{c_{n}}$, with any large value for n, but $n=4$, suffices at worst]: it next is requisite for the use of the equation

$$
\tan \frac{1}{2}\left(\omega_{1}-\omega\right)=\Delta(c, \beta) \cdot \tan \omega
$$

to calculate $\Delta(c, \beta)$ in Legendre's scale, with $F(c, \beta)=\frac{2}{3} F\left(c, \frac{1}{2} \pi\right)$ for the definition of β. Put $\phi(\rho)$ as equivalent to $-\log _{10} \Delta(c, \beta)$; where $\Delta(c, \beta)=\sqrt{ }\left(1-c^{2} \sin ^{2} \beta\right)$, then

$$
-\frac{1}{3} \log _{e} \cdot \Delta(c, \beta)=p(2 \rho)+\frac{1}{5} p(10 \rho)+\frac{1}{7} p(14 \rho)+\frac{1}{11} p(22 \rho)+\& c .,
$$

in which each term is of the form

$$
\frac{1}{2 n-1} \cdot p(\overline{4 n-2} \cdot \rho):
$$

but every term in which $(2 n-1)$ divides by 3 is excluded.
Then, if ρ and ω are given, the following table of $\phi(\rho)$ enables you to calculate $F(c, \omega)$ much more rapidly than by Lagrange's scale.

Values of $\phi(\rho)=-\log _{10} \sqrt{ }\left(1-c^{2} \sin ^{2} \beta\right)$ in Legendre's Elliptic scale.

ρ		ρ	
I'O	35925572941156719	$4^{\circ} \mathrm{O}$	8741375075280°
I'I	2923248426644562	$4^{\cdot 1}$	7156832332307
I. 2	23835463 1860 7711	$4 \cdot 2$	5859518579358
I 3	1946144100459939	4.3	4797367979182
I 4	1590 45408993 I846	4.4	3927752654496
I 5	1300560303505642	4.5	3215771864632
I 6	1063936392934314	$4 \cdot 6$	2631851307237
1.7	0870599486967943	4.7	2155596326260
I-8	0712524553108973	$4 \cdot 8$	I 764852999547
199	0583222072504299	4.9	I 444939423209
2.0	0477423022443056	5°	$1 \begin{array}{lllll}1 & 1830 & 1634 & 0904\end{array}$
$2 \cdot 1$	0390837666537070	5^{\prime} I	968570059051
$2 \cdot 2$	-319 9670 8941 8197	5.2	792999567201
$2 \cdot 3$	0261 953875998236	$5 \cdot 3$	649253132650
2.4	02I4 4625 49325163	$5 \cdot 4$	531563506124
2.5	-175 565I 6359 92I7	5.5	435207389615
2.6	-142 853I 86ı8 4305	5.6	3563 г767 3812
2.7	OII7 693969692738	$5 \cdot 7$	291728237398
2.8	0096359026049745	$5 \cdot 8$	238846879488
2.9	0078891742304561	5%	195551285509
$3{ }^{\circ}$	0064620900400540	6.0	1601 03851246
$3 \cdot 1$	0052882449406155	$6 \cdot 1$	130181946701
$3 \cdot 2$	0043296428837997	$6 \cdot 2$	107320820936
3.3	0035530154152412	$6 \cdot 3$	87866856544
$3 \cdot 4$	0029022420049576	$6 \cdot 4$	71939267729
$3 \cdot 5$	0022473654659947		
$3 \cdot 6$	OOI9 454296654372		
3.7	OOI7 2307 II46 9322		
$3 \cdot 8$	0013 0406 OIO2 627I		
3.9	0010 676740217259		

For higher values of $\rho, \phi(\rho)=6 \epsilon^{-2 \rho}$, multiplied by modulus of common logarithms. This at least shows a new possible method.

Carefully as I have worked at this table for $\phi(\rho)$ I must confess that I myself distrust it, because I have no check on error, and am sadly aware how a tired brain may blunder.

Secondary Anticyclics.

Summary, repeated for compactness.
Calling attention to the capitals in Sin, Cos, I use for reciprocals of Sin and Cos: so $\supset \operatorname{Cor} \operatorname{Cot}$, and Ω for 1 -Tan. But Elliptic Integrals suggest other combinations not unimportant, to denote which I use other Hebrew letters.

In Eiliptics we have $b^{2}+c^{2}=1$; I put $\frac{1}{2} \pi . C[n o t$, as Legendre, mere C,] for

$$
\int_{0}^{\frac{1}{2} \pi} \frac{d \omega}{\sqrt{ }\left(1-c^{2} \sin ^{2} \omega\right)}
$$

and by $B \mathrm{I}$ mean the same function of b which C is of c. It is convenient to call c modulus, b submodulus; C the modular, B the submodular, and to assume $\rho=\frac{1}{2} \pi \cdot \frac{B}{C}$ for our chief constant.

Then it is allowable to assume eight Secondary Anticyclics defined by eight Series, with l for Nap. log.

Put
$\zeta(\rho)$ for $\log \operatorname{Cot} \rho+l \operatorname{Cot} 3 \rho+l \operatorname{Cot} 5 \rho+\& \mathrm{c} . \quad$ Hebrew Lamda.
$\Delta(\rho)$ for $l \operatorname{Cot} \rho-l \operatorname{Cot} 2 \rho+l \operatorname{Cot} 3 \rho-l \operatorname{Cot} 4 \rho+\& c$. Hebrew $M \bar{u} i m$.
$7(\rho)$ for $\square(2 \rho)+\square(4 \rho)+\square(6 \rho)+\square(8 \rho)+\& c$. Hebrew Reish.
$\Omega(\rho)$ for $\square(2 \rho)-\square(4 \rho)+\square(6 \rho)-\& c . \quad$ Hebrew Khai.
$\boldsymbol{i}(\rho)$ for $\frac{1}{2} \boldsymbol{J}(2 \rho)+\frac{1}{4} \boldsymbol{J}(4 \rho)+\frac{1}{6}(6 \rho)+\& c . \quad$ Hebrew $Z a \bar{a} i n$.
$\boldsymbol{\Sigma}(\rho)$ for $\boldsymbol{\Omega}(\rho)-\frac{1}{2} \Omega(2 \rho)+\frac{1}{3} \boldsymbol{\Omega}(3 \rho)-\frac{1}{4} \boldsymbol{\Omega}(4 \rho)+\& c$. Hebrew Tsaddi.
$\Xi(\rho)$ for $Л(\rho)+\frac{1}{3} \Omega(2 \rho)+\frac{1}{3} \Omega(3 \rho)+\& c$.
$\boldsymbol{\psi}(\rho)$ for $D(\rho)+D(3 \rho)+D(5 \rho)+\& c$.
Hebrew Pai.
Hebrew Shin.

Then in Elliptics it is known that

$$
\begin{aligned}
& \zeta(\rho)=\frac{1}{4} \log \left(\frac{1}{b}\right) ; \quad D(\rho)=\frac{1}{2} \log C \\
& \neg(\rho)=\frac{1}{2}(C-1) ; \quad \Omega(\rho)=\frac{1}{2}(1-C b)
\end{aligned}
$$

also

$$
i(\rho)=\log Q
$$

if Q^{-1} stand for $\quad\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{6}\right)\left(1-q^{8}\right) \ldots$
where

$$
q=\epsilon^{-2 \rho} .
$$

Next

$$
\Psi(\rho)=\frac{1}{2}\left(\log \frac{4}{c}-\rho\right) \text { and } \dot{\psi}(\rho)=\frac{1}{2} C c .
$$

Perhaps it is well to add a $9^{\text {th }}$ function,

$$
J(\rho)=l \operatorname{Cot} \rho+l \operatorname{Cot} 2 \rho+l \operatorname{Cot} 3 \rho+\& c . \quad \text { (Hebrew Nun.) }
$$

Of these, $\zeta \boldsymbol{\nu} \boldsymbol{\Sigma} \boldsymbol{\gamma} \boldsymbol{i}$ and $\boldsymbol{\xi}$ are of the most obvious use in Elliptics, but to compute pairs may be as easy as to compute a single series, and the use of some of these may in the future be greater than we yet know. Their remarkable relations are elsewhere shown.

I have calculated $\boldsymbol{\square}$ and $\boldsymbol{\Psi}$ in pairs from the equations with $\boldsymbol{\Delta}(\rho)$ previously known; working backward from the known fact,

$$
\left\{\begin{array}{l}
\beth(\rho)=\boldsymbol{D}(\rho)+\frac{1}{2} \beth(2 \rho) \\
\mathbf{\zeta}(\rho)=\boldsymbol{D}(\rho)-\frac{1}{2} \supseteq(2 \rho)
\end{array}\right.
$$ that when ρ is as large as $4.7,2 \epsilon^{-4 \rho}$ is negligible, which permits us in in the last equations to substitute at first $\epsilon^{-4 \rho}$ for their last term. Obviously, $\ 7(\rho)=7(\rho)-2\urcorner(2 \rho)$.

$ל \rho=l \operatorname{Cot} \rho+l \operatorname{Cot} 3 \rho+l \operatorname{Cot} 5 \rho+\& \mathrm{c} .=p(2 \rho)+\frac{1}{3} p(6 \rho)+\frac{1}{5} p(10 \rho)+\& \mathrm{c}$.

ρ	$\zeta(\rho)$ to 16 decimals.	ρ	$\zeta(\rho)$ to 16 decimals.
$1{ }^{\circ} \mathrm{O}$	$\cdot 2773914773638088$	$4{ }^{\circ} 0$	6709253564751
I'I	$\cdot 2252745^{2} 4938495^{2}$	$4{ }^{1} 1$	5493071951933
1.2	$\cdot 183441664965048 \mathrm{r}$	$4 \cdot 2$	4497346786788
I.3	$\cdot 14964523653055^{88}$	43	3682 I 1603 9760
I.4	-1222 217741783692	4.4	3 OI46 6i59 7235
I'5	-0999 039654507918	45	$24^{6881} 96131854$
1.6	817052884334168	$4 \cdot 6$	2020788064249
1.7	$668 \quad 457602345234$	47	I 654481326238
I•8	547 ог88 Оı148 308ı	$4 \cdot 8$	I 354574738 IOr
- 9	447 7141 17917024	49	I 1090 3199 3191
$2 \cdot 0$	$\begin{array}{llllllllllllll}366 & 4766 & 7292 & 0334\end{array}$	5°	907998597738
$2 \cdot 1$	300 OOI 475017840	$5^{\prime} 1$	743406375050
2.2	245 5961 54122330	$5 \cdot 2$	6 c 8649660920
$2 \cdot 3$	20106380086 1661	5*3	4983,2019 5043
2.4	164609805629670	$5 \cdot 4$	4079 9006 845 I
2.5	134767097710234	5.5	334034014447
2.6	110 3357 6541 1251	$5 \cdot 6$	27348392 I 381
2.7	90334075857584	57	223909696889
$2 \cdot 8$	70958622754605	$5 \cdot 8$	183321754745
2.9	60551834935^{819}	5%	1500 9115 8313
$3^{\circ} \mathrm{O}$	49575449668365	6.0	12288424707 I
$3^{\cdot 1}$	405888 3561 7142	6.1	10060910 6r44
$3 \cdot 2$	33231267788627	$6 \cdot 2$	82371774153
3.3	$\begin{array}{llllllllllllllllllll}27 & 2074 & 2788 & 4367\end{array}$	$6 \cdot 3$	67440304684
3.4	22275539800473		
3.5	18 237659531272		
3.6	14931727264598		
$3 \cdot 7$	12225061322788		
$3 \cdot 8$	Io 0090 3201 II83		.
3.9	81947 Or 413927		

When ρ exceeds $6 \cdot 3, \zeta(\rho)=2 \epsilon^{-2 \rho}$, correct to sixteen decimals. In Elliptics $\zeta(\rho)=\frac{1}{4} \log _{\epsilon}\binom{1}{l}$.
$\boldsymbol{p}(\rho)=\frac{1}{2} \log C=l \operatorname{Cot} \rho-l \operatorname{Cot} 2 \rho+l \operatorname{Cot} 3 \rho-l \operatorname{Cot} 4 \rho+\& c$.

When ρ exceeds $63, \boldsymbol{\Omega}(\rho)=\boldsymbol{\Omega}(\rho)$, which is given in a table above.

Also, $\boldsymbol{\Delta}(\rho)=\zeta(\rho)-\zeta(2 \rho)-\zeta\left(2^{2} \rho\right)-\zeta\left(2^{3} \rho\right)-\& c$.
If we begin calculation from highest value of ρ we may deduce both $\boldsymbol{\rho}$ and \boldsymbol{J} from a table of $\zeta(\rho)$ by the formulas

$$
\left.\begin{array}{rl}
J(\rho) & =\zeta(\rho)+J(2 \rho) \\
D(\rho) & =\zeta(\rho)-J(2 \rho)
\end{array}\right\},
$$

but then errors accumulate.

$$
\urcorner(\rho)=\frac{1}{2}(C-1)=D(2 \rho)+D(4 \rho)+D^{\prime} 6 \rho\right)+\& c .
$$

ρ	$7(\rho)$ to 16 decimals.	ρ	7 (1) to 16 decimals.
I 0	$\cdot 3081546330209416$	$4{ }^{\circ} \mathrm{O}$	6711503261798
I'I	$\cdot 2465293210773797$	4 I	5494580091205
$1 \cdot 2$	-1980 5544 5157 02II	$4 \cdot 2$	4498357789895
$1 \cdot 3$	${ }^{1} 1596501935641257$	4.3	3682793772241
1.4	-1293 465275898850	4.4	3 OI5I I591 III8
I 5	$\cdot 1045$ 45I5 3202 6148	4.5	2468500679332
I 6	848534942048395	4.6	2020992215958
- 7	689764368071977	4.7	I 6546 1817 6544
1.8	561 4179 22126355	$4 \cdot 8$	I 354666473450
${ }^{1} 9$	457429698937954	49	I 1090 93486242
$2 \cdot 0$	$\begin{array}{llllll}373 & 0243 & 6348 & 2641\end{array}$	$5{ }^{\circ}$	908039818322
$2 \cdot 1$	304409924529691	$5^{\circ} \mathrm{I}$	743434006334
$2 \cdot 2$	248 5619 2513 0357	$5 \cdot 2$	638668182888
$2 \cdot 3$	2030577 1121 3383	$5 \cdot 3$	4983 3261 0780
2.4	165 9496 0896 3902	$5 \cdot 4$	40799839 1018
2.5	135666980355560	5.5	334039594740
2.6	109715904922469	5.6	273487660986
2.7	907396 I73I 8453	5•7	223912203642
$2 \cdot 8$	74230762018311	$5 \cdot 8$	183323435076
2.9	$6073441835 \quad 2760$	5.9	150092284670
$3^{\circ} \mathrm{O}$	4969792853 9161	$6 \cdot 0$	122885002092
$3 \cdot \mathrm{I}$	40670984840696	$6 \cdot 1$	1006 0961 8254
3.2			
3.3	27244372843596		
3.4	22300312889340		
3.5	18254269899316		
3.6	14 94286398 In43		
3.7	12232527804145		
$3 \cdot 8$	10014037702810		
3.9	8 1980 5723522 I		

When ρ reaches $6 \because 2,7(\rho)=2\left(\epsilon^{-2 \rho}+\epsilon^{-4 \rho}\right)$. Indeed when ρ is >3, $\beth_{0}(3 \rho)=0$; therefore $\urcorner(\rho)=D(2 \rho)+\beth_{0}(\rho)$.

Among Jacobian Elliptic functions we have

$$
Q^{-1}=\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{6}\right)\left(1-q^{8}\right) \ldots
$$

moreover

$$
q=\epsilon^{-2 \rho} .
$$

Put then

$$
\log Q=i(\rho)
$$

whence if

$$
\sigma(\rho)=-\log \left(1-\epsilon^{-2 \rho}\right),
$$

$$
\boldsymbol{i}(\rho)=\sigma(2 \rho)+\sigma(4 \rho)+\sigma(6 \rho)+\& c .=\frac{1}{2} \beth(2 \rho)+\frac{1}{4} \beth(4 \rho)+\frac{1}{6} \beth(6 \rho)+\& c .
$$

ρ	; (ρ) or $\log Q$ to 16 decimals.	(ρ)	$i(\rho)$
I 0	-0188 27224599 9831	3.0	614 42689795
1 -	-0125 059470858422	$3^{1} 1$	411 8614 1517
$1 \cdot 2$	83320914143569	$3 \cdot 2$	27607840048
$1 \cdot 3$	556243 86ı5 87I5	$3 \cdot 3$	18506063350
I.4	$37 \quad 184427590558$	34	12404973882
1.5	2487988868 ог 32	3.5	8315297562
I 6	16657045616278	3.6	5573908353
1.7	1 I 1563 77353365	3.7	3736301474
I•8	7474224493276	$3 \cdot 8$	2504517312
1.9	5008272781246	3.9	1678827953
$2{ }^{\circ}$	33563 I481 02I8	4°	$\begin{array}{llll}11 & 25351937\end{array}$
$2 \cdot 1$	2249431873138	$4^{1} 1$	754345920
$2 \cdot 2$	1507671605524	$4 \cdot 2$	505653168
$2 \cdot 3$	1 OIO5 4716 6536	43	$3 \quad 38949449$
2.4	6773 5617 6775	4.4	227204606
2.5	454030226177	4.5	I 52999800
$2 \cdot 6$	304338722501	$4 \cdot 6$	102089608
$2 \cdot 7$	204001276319		
$2 \cdot 8$	136744765444		
2.9	91662137641		

When ρ exceeds $4 \cdot 6, \boldsymbol{j}(\rho)=\epsilon^{-4 \rho}$.

$$
\begin{aligned}
\Pi(\rho) & =\square(2 \rho)-D(4 \rho)+D(6 \rho)-D(8 \rho)+\& c . \\
& =\square(2 \rho)-\Omega_{0}(\rho)+\boldsymbol{\Omega}_{0}(3 \rho)-\Omega_{0}(5 \rho)+\& c .
\end{aligned}
$$

ρ	$\Pi(\rho)$ to 16 decimals.	ρ	$\Pi(\rho)$ to 16 decimals.
1×0	${ }^{2} 335497603244134$	$4^{\circ} \mathrm{O}$	67070 or85 4302
$\mathrm{I}^{\prime} 1$	$\cdot 1968$ 1693 6051 3083	4^{1} I	5491562707637
I 2	$\cdot 1648655233642407$	$4 \cdot 2$	4496335177255
$1 \cdot 3$	${ }^{1} 132516797493$-137	4.3	3681437974465
1.4	$\cdot 1142003751862228$	4.4	3014207092706
${ }^{1} 5$	-0946 055674947826	4.5	246789148 O136
1.6	7819622 1991 2661	$4 \cdot 6$	2020583857526
17	645163742293297	4.7	I 654344445703
1-8	539 5321 9416 4069	$4 \cdot 8$	I 354482986182
199	437401623532334	49	I 1089 70491047
2.0	359601356959045	5°	907957372178
2.I	29541320894 9901	5. I	743378741030
$2 \cdot 2$	242531693308121	$5 \cdot 2$	6086 3113 7448
$2 \cdot 3$	199 O157 26781467	$5 \cdot 3$	498307778480
2.4	163240276017002	$5 \cdot 4$	4079 8174 5430
	133850900718916	5.5	334028436870
2.6	108398568556693	$5 \cdot 6$	2734 8018 1642
$2 \cdot 7$	89923620536417	$5 \cdot 7$	223907190074
$2 \cdot 8$	73683786696339	5.8	183320074380
2.9	60367771482608	$5 \cdot 9$	150090031934
$3^{\circ} \mathrm{O}$	49442158534977	$6 \cdot 0$	122883492010
$3 \cdot 1$	40506240613882	$6 \cdot 1$	100608606033
$3 \cdot 2$		$6 \cdot 2$	82371434893
3.3	$27 \quad 170348658688$	$6 \cdot 3$	67440077272
3.4	22250693024588		
$3 \cdot 5$	18221008725774		
$3 \cdot 6$	14920568353943		
3.7 3.8	12217582601041		
$3 \cdot 8$	10 004019634814		
3.9	8191341923973		

When ρ reaches $6 \cdot 2, \boldsymbol{\Pi}(\rho)=2\left(\epsilon^{-2 \rho}-\epsilon^{-4 \rho}\right)$.
$\ddot{\ddot{u}}(\rho)=\boldsymbol{D}(\rho)+\boldsymbol{D}(3 \rho)+\boldsymbol{D}(5 \rho)+\boldsymbol{D}(7 \rho)+\& c$. may be developed in powers of $\epsilon^{-\rho}$; then $\frac{1}{2} \dot{U}(\rho)=\epsilon^{-\rho}+2 \epsilon^{-5 \rho}+\epsilon^{-9 \rho}+2^{-19 \rho}+2 \epsilon^{-17 \rho}+2 \epsilon^{-21 \rho}$ if the rest may be neglected.

When ρ is $>6, \boldsymbol{ש}(\rho)=2 \epsilon^{-\rho}$ true to sixteen decimals.

If any diligent reader seek to test these small tables, (which the compiler naturally desires,) he may sometimes complain of inability to continue them beyond the highest value of ρ. That all may, on this scale, be complete within these covers, a skeleton table of $\epsilon^{-\rho}$ is here added, which has already, under the title of ϵ^{-x}, appeared in the Cambridge Philosophical Transactions, Vol. III. Part III. To obtain 16 decimals, in working for other results, 18 decimals are here given, though the two last cannot be trusted.

ρ	$\epsilon^{-\rho}$	ρ	$\epsilon^{-\rho}$
'I	$\bigcirc 9048$ 3741 80359 59545	$3^{\prime \prime}$	45049202393557806
2	-8187 307530779 81848	3.2	40762203978366216
3	$\cdot 7408182206817{ }^{17871}$	3.3	36883167401240006
4	$\cdot 670320046035639307$	3.4	33373269960326081
5	$\cdot 606530659712633423$	3.5	30107383422318502
$\cdot 6$	$\cdot 5488$ 1163 60940 26441	$3 \cdot 6$	27323722447292561
7	-4965 8530 3701409523	37	$2472352^{2} 6470^{\circ} 339390$
-8	-4493 2896 4II72 2I599	$3 \cdot 8$	2237077 18561 65595
9	${ }^{4065} 69659740599120$	3.9	20241915445804390
$1{ }^{\circ} \mathrm{O}$	$33^{678} 7944$ II7I4 4232 I	4°	183 1563 8888734179
$1 \cdot 1$	$\cdots 332871083698079553$	$4^{\cdot 1}$	165726754017 61246
I*2	3 3 II 942 I 19122 02096	$4^{\cdot 2}$	14995576820477705
I•3	$\cdot 272531793034012603$	43	135 68559012200932
$1 \cdot 4$	$\cdot 246596963941606475$	4.4	12277339903068440
I'5	-223I 3016 OI484 29829	45	III O899 65382 42306
I 6	$\cdot 201896517994655407$	4.6	100 5183 5744633583
I 7	$\cdot 182683524052734648$	4.7	909527 71016 958ı9
I 8	-1652 9888 822I5 86535	$4 \cdot 8$	8229747049020030
1*9	-1495 6861 9222635054	4.9	744658 30709 24342
2.0	${ }^{1} 135335283236612691$	5°	6737946999085467
$2 \cdot 1$	-1224 56428252981909	$5{ }^{1} 1$	$609674 \quad 65655 \times 5637$
$2 \cdot 2$	$\cdot 1108031583623$ 3388ı	5.2	5516564420760774
$2 \cdot 3$	$\cdot 1002588437228$ O373I	$5 \cdot 3$	49 9159 39069 10218
2.4	$9 \bigcirc 717953289412500$	$5 \cdot 4$	4516580942612670
2.5	82084998623898791	5.5	4086771438464068
2.6		$5 \cdot 6$	3697863716482931
2.7	672 0551 2739749761	$5 \cdot 7$	3345965457471272
2.8	60810062625217961	$5 \cdot 8$	3027554745375813
2.9	$\begin{array}{lllllllllll}550 & 2322 & 00564 & 07225\end{array}$	5.9	27394448 I 8768370
$3^{\circ} \mathrm{O}$	49787068367863943	$6 \cdot 0$	2478752176666358

ρ	$\epsilon^{-\rho}$	ρ	$\epsilon^{-\rho}$
6.1	2242867719485802	9.6	67728736490855
$6 \cdot 2$	2029430636295735	9.7	61283495053224
$6 \cdot 3$	1836304777028910	$9 \cdot 8$	55451599432180
$6 \cdot 4$	1661557273173937	9.9	50174682056176
$6 \cdot 5$	15 0343 91929 77572	10\%	45399929762485
$6 \cdot 6$	1360368037547893	10	41079555225302
$6 \cdot 7$	1230911902673481	$10 \cdot 2$	3717 O3186 84128
$6 \cdot 8$	11 1377 51478 44802	10.3	3363 30951 85721
6.9	1007785429048510	10.4	30432483008403
$7{ }^{\circ}$	9 II88 19655 545ı5	10.5	27536449349746
7'1	825104923265905	10.6	249160097 31501
$7 \cdot 2$	$70^{7} 065858083$ 7668ı	$10 \cdot 7$	225449379 I 3206
$7 \cdot 3$	675538775193846	$10 \cdot 8$	203995034 III66
$7 \cdot 4$	6 1125 276II 29574	$10 \cdot 9$	18458233995777
75	553084370147832	11\%	16701700790246
$7 \cdot 6$	50045143344^{40611}	II'I	15112323819857
77	452827182886790	II	1367 41960 65685
$7 \cdot 8$	409734978979781	11.3	12372924261791
7.9	370743540459080	I I 4	III9 5484842595
$8 \cdot 0$	3354626279 O2501	115 5	IOI3 009359863 I
8.1	30353 91380 78857	I 1×6	$91660877 \quad 36245$
$8 \cdot 2$	274653569972135	11.7	829 38191 60755
$8 \cdot 3$	248516827107947	II•8	75045579 15075
$8 \cdot 4$	224867324178844	11.9	67904048 07381
$8 \cdot 5$	203468369010644	$12{ }^{\circ}$	6144212353327
$8 \cdot 6$	I 84105793667577	12.1	5559513241665
$8 \cdot 7$	1 66585810987632	12.2	50304556 07114
$8 \cdot 8$	I 50733075095474	12.3	4551744463084
$8 \cdot 9$	I 36388926482008	$2 \cdot 4$	4 II 8588707538
$9{ }^{\circ}$	I 23400804086675	12.5	3726653172085
9 ${ }^{\text {I }}$	I 1166 58084 901II	12.6	337 20152 34153
92	I Or03 94018 3709r	12.7	3051125558050
93	9142423147817 I	12.8	2760772572053
9.4	8272406555663 I	12.9	2498050325884
9.5	7485 18298 87702	13.0	2260329406997

ρ	$\epsilon^{-\rho}$	ρ	$\epsilon^{-\rho}$
I3.1	2045230624491	${ }^{1} 6.6$	6 ı7606 i 3351
13.2	185 0601 1 97553	16.7	55883313920
13.3	1674493209446	16.8	50565313478
13.4	1515144112156	16.9	45753387708
13.5	1370959086393	$17^{\circ} 0$	41399377202
13.6	1240495079965	17.1	$374597 \bigcirc 5575$
13.7	1122446365241	17.2	3389494327 I
13.8	1015631471020	I 7.3	30669412954
13.9	918981357913	17*4	27750832429
14°	8315287 I9119	17.5	251099 9157I
14.1	$75 \quad 2398299227$	17.6	22720459942
14.2	68 07981 34408	17%	20558322310
14.3	6160116 26igi	17.8	I 86091 39278
14.4	557390369323	179	ェ 6831730706
14.5	504347662588	18.0	I 5229979752
14.6	4563526368 ıо	I $8 \cdot 1$	I 3780655555
14.7	412924941607	$18 \cdot 2$	I 2469252791
14.8	373629938007	18.3	I 1282646525
14.9	338074348400	18.4	I 0208960750
$15^{\circ} \mathrm{O}$	305902320519	18.5	9237449702
$15^{\circ} \mathrm{I}$	276791865864	18.6	8358390136
15°	250451637241	18.7	7562984148
I 5\% 3	226618012790	18.8	6843271049
$15{ }^{\circ}$	205052457575	18.9	6192047706
15.5	18553913627 I	19°	5602796459
15.6	167882753003	$19{ }^{\circ} 1$	5069619869
15.7	151906596759	19.2	4587181754
15.8	137450772802	193	4150653683
I 5.9	124370602371	19.4	375566676 т
16.0	11 2535174726	19.5	33982 67815
$16 \cdot 1$	101826036937	19.6	3074879877
16.2	92136008336	19.7	2782266367
16.3	8 33681 о7883	19.8	2517498715
16.4	75434583479	19.9	2277927037
16.5	68256033757	$20^{\circ} 0$	20611 53619

ρ	$\epsilon^{-\rho}$	ρ	$\epsilon^{-\rho}$	ρ	$\epsilon^{-\rho}$
$20^{\circ} 1$	18650 08918	23.6	563 18394	$27^{\prime} 1$	1700667
20.2	1687529854	23.7	50958993	$27^{\circ} 2$	I 538828
$20 \cdot 3$	1526940156	23.8	46109586	27.3	I 392387
$20 \cdot 4$	1381632570	23.9	41721690	274	I 259884
$20 \cdot 5$	12501 52863	240	37751347	27.5	I 139991
$20 \cdot 6$	II3II 85098	$24^{\prime} 1$	34158831	$27 \cdot 6$	10 31506
$20 \cdot 7$	1023538612	24.2	30908189	27.7	933346
$20 \cdot 8$	926136038	24.3	27966885	$27 \cdot 8$	844526
$20 \cdot 9$	838002554	24.4	25305484	27.9	764157
21°	758256070	24.5	22897350	28.0	691435
$2 \mathrm{I}^{\prime} \mathrm{I}$	686098471	24.6	20718380	$28 \cdot 1$	625638
$21 \cdot 2$	620807569	$24^{\circ} 7$	18746766	$28 \cdot 2$	566101
21.3	5617 29937	24.8	16962776	$28 \cdot 3$	512231
21.4	508274242	24.9	15348556	$28 \cdot 4$	463485
21.5	$4599 \bigcirc 555^{8}$	$25^{\circ} \mathrm{O}$	13887944	$28 \cdot 5$	419376
21.6	4161 39757	$25^{\prime} 1$	12566332	$28 \cdot 6$	379466
21.7	376538823	$25 \cdot 2$	11370489	$28 \cdot 7$	343356
21.8	340706418	25.3	10288446	$28 \cdot 8$	3 10681
21.9	308283916	25%	9309369	$28 \cdot 9$	2 8iri6
$22^{\circ} \mathrm{O}$	278946822	25.5	8423462	29°	254364
22^{\prime} I	2524 O1519	$25 \cdot 6$	7621864	29 ${ }^{\text {I }}$	230158
$22 \cdot 2$	228382340	$25^{\prime} 7$	6896548	29°	208255
22.3	206648887	$25 \cdot 8$	6240260	29.3	I 88442
22.4	1869 83647	25.9	5646419	29.4	170511
22.5	169189802	26.0	5109089	29.5	154280
22.6	153089264	$26 \cdot 1$	$46 \quad 22895$	29.6	1 39598
22.7	${ }_{1} 3^{8} 520895$	$26 \cdot 2$	4182968	$29^{\circ} 7$	I 26313
$22 \cdot 8$	125338887	26.3	3784905	$29^{\circ} 8$	114293
22.9	II34 II313	26.4	3427424	$29^{\circ} 9$	103418
23°	102618800	$26 \cdot 5$	3098820	30°	93576
$23 \cdot 1$	92853333	$26 \cdot 6$	2803927	$30 \cdot 1$	84671
$23^{\circ} 2$	840 17171	$26 \cdot 7$	2537102	$30 \cdot 2$	76612
23.3	76021882	$26 \cdot 8$	2295663	$30^{\circ} 3$	69323
23.4	68787436	26.9	2072200	$30 \cdot 4$	62725
23.5	62241450	27°	1879528	$30 \cdot 5$	56757

ρ	$\epsilon^{-\rho}$	ρ	$\epsilon^{-\rho}$	ρ	$\epsilon^{-\rho}$
$30 \cdot 6$	51356	33^{1} I	4215	$35^{\text {I }}$	571
$30^{\circ} 7$	46469	$33^{\circ} 2$	3812	$35^{\circ} 2$	517
$30 \cdot 8$	42047	33.3	2450	$35 \cdot 3$	467
$30 \cdot 9$	38044	33.4	3122	$35^{\circ} 4$	423
$3 \mathrm{I}^{\circ} \mathrm{O}$	34424	33.5	2825	$35 \cdot 5$	383
31'1	31149	33.6	2556	$35^{\circ} 6$	346
$31 \cdot 2$	28184	33.7	2313	$35^{\circ} 7$	313
31'3	25502	$33 \cdot 8$	2093	$35^{\circ} 8$	283
31.4	23075	33.9	1894	35%	256
315	20878	34°	I715	36°	232
31.6	1889 I	$34^{\circ} \mathrm{I}$	1552	$36 \cdot 1$	210
317	17094	$34^{\circ} 2$	1404	$36 \cdot 2$	190
$3 \mathrm{I} \cdot 8$	15466	34.3	1270	$36 \cdot 3$	172
3 I 9	13995	34.4	1150	$36 \cdot 4$	156
$3^{\circ}{ }^{\circ}$	12662	34.5	1040	$36 \cdot 5$	141
$32 \cdot 1$	11460	34.6	94^{1}	$36 \cdot 6$	128
$32 \cdot 2$	10366	34.7	852	$36 \cdot 7$	116
$32 \cdot 3$	9381	$34 \cdot 8$	771	$36 \cdot 8$	105
32.4	8487	34.9	698	$36 \cdot 9$	95
32.5	7680	$35^{\circ} \mathrm{O}$	63 I	$37^{\circ} \mathrm{O}$	86
$32 \cdot 6$	6949				
32.7	6288				
$32 \cdot 8$	5689				
$32 \cdot 9$	5149				
$33^{\circ} \mathrm{O}$	4658				

THE END.

7 DAY USE
 RETASTK UROKKY,FRPM WUMUFORROWED STATISTICS LIBRARY

This publication is due on the LAST DATE and HOUR stamped below.

U.C. BERKELEY LIBRARIES
 C048082910 STATISIICS Lעп....

