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PART II.

ANTICYCLICS.

1. A VOLUME exists of 354 quarto pages by Dr C. Gudermann,

Professor of Mathematics in Minister. It was published in 1833 by
G. Reiner, Berlin, bearing the title, Theory of Potential Cyclic

Hyperbolic Functions. These I call simply ANTICYCLIC. The sub

stance of Gudermann s treatise, it seems, appeared previously in

volumes 6, 7, 8, 9 of Crelle s Journal. From p. 159 to p. 260 is

r tlfi

an elaborate table of the integral u = I ^ ,
tabulated previously by

J COS v

Legendre for use in Elliptic Integrals; but Gudermann s table is

tenfold in amplitude. From p. 263 to p. 336 is a second large table,

giving the common logarithms of

i(e
l + e-*), i (&quot;-&quot;)

and of their ratio, to 9 and at last 10 decimals, with k increasing

by only -001 at every step. Perhaps this was primarily intended to

aid the valuation of Elliptic series : for he begins his table at k = 2.

If he had begun at & = 1 57 (for & = ^7r), his task would have been

complete. For in Elliptics two constants kk bear the relation

kk
^jr^.

We can work, at pleasure, through either; and one or

other must exceed ^TT. Gudermann has certainly achieved a great

and arduous task.

2. He was probably first to introduce (with German types] [I

content myself with capital S and C] Sin x for \ (e* e~
x
)
and Cos x

for ^ (e* 4- 6&quot;

x
).

This is the beginning of Anticyclic notation. The

beauty of it is seen in formulas which abound in the higher theory of

Elliptics, such as

sin 2#
,
sin 4# sin 6#

0)=X+ ~ - + f ~ -: h * . ^ c~ + &C. . . .

Cos2p
z Cos 4/3 Cos 6/3

where p is the leading constant, a function of the modulus c; x, the

leading variable, is proportional to Legendre s First Integral

dw

L
x. u. (j



82

becoming equal
:

to&quot; -&? a/t -evsiy Complete quadrant. An eminent

mathematician observed, that while our theory of these integrals

seems complete, the extreme difficulty of calculating the constants

baffles us when we try to use the higher scales. Until we have better

aid in Anticyclic tables, apparently this difficulty must remain.

3. Analogy drives us on to use Tan for -^ ,
and Cot for the

reciprocal. Nor can we any the more refuse Sec Cosec for the

reciprocals of Cos and Sin. Thus we have

x x
1

~ 2x
1 4. e

~ 2x

Tan x = -
x --.

=
T~ ~^2x ;

Cot x = ---
Tx ,

functions of e~
2&amp;gt;r

alone.
e + e 1+e

Hence too 1 - Tan x =

e

These, as well as Cosec x= ---^ and Sec# =
&quot;1 i

&quot;**

are very simple functions of e~
x

. We may almost say the same of

loge Sin x and log Cos x
;
since log Sin x x log 2 + log (1 e&quot;

2

)

and log Cos x = x log 2 + log (1 + e~
2a;

).

A complete and trustworthy table of e~* is presupposed in this

whole theory. Because Gudermann had not such at hand, therefore

(perhaps) he began his table at k = 2.

Since Cos x 4 Sin x = e
x

,
. . Cos2 x Sin

2 x = 1.

Dividing the last by Cos
2

x, we obtain 1 Tan2 # = Sec2
#.

Evidently Cos#, like sec 0, varies from 1 to
;
Sin x, like tan 0,

from to oc : but Tan x and Sec x, like positive sin 6 and cos 6, from

to 1.

Gudermanris Langezahl.

4. I cannot translate this word: it is not in my German Dic

tionary. The &quot;

Length-Number
&quot;

sounds to me nonsensical.

Since Tan x has the same limits as positive sin 0, we are led

to assume the equation Tan x = sin 6 tentatively, and are instantly

rewarded by a series of important relations. First, from

1 Tan 2 x = Sec2

x, it gives Sec x = cos
;
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whence again Cos x = sec 0. Also

Tan x sin 6 ~
Sin x = cr

- =-
/i
= tan 6.

Sec a? cos

Thus, if from a given as we can pass to 9, a trigonometrical table that

furnishes us with the circular functions of 6 will make us masters of

the Antinyclic functions of x. To pass from x to Tan x will enable us

to reach 0.

From our definitions of Cos x and Sin x as (e* e~*) we forthwith

deduce d . Cos x = Sin #da? and d . Sin a; = Cos xdx. Therefore also

we get

, m 7 Sin^ CosorfSina Sin#cCo8 Cos2# Sin
2# ,

a . Tan x = d. ~ = -
77^
-^- - = --

r,
~&quot; **

Cos # (Cos a?)

2 Cos2 #

= Sec2
#c&.

Hence on differentiating Tan x = sin 0, you find

Sec2 x . doc = cos . dO.

But Sec2 x = cos
2 6 : whence dx = -- -

,
or x = I

-
;

COS J o COS

since a? vanishes with 6.

This is the integral tabulated, first by Legendre; next, more

elaborately by Gudermann. To have the mastery over x when 6

is given, and conversely, is our first problem.

5. If we take p
=

I seed .dO as a Polar curve, with p as radius
Jo

vector, the locus has p as an asymptote (logarithmic infinity) when

6 = 90. The curve starts at = perpendicular to this asymptote,

from which it attains its maximum distance, nearly where 6 = 60.

As attempts at admissible nomenclature, I have sometimes called

p the Range and 6 the Elevation.

Legendre has two integrations slightly differing :

dO cos 6 d6 d sin d , 1 + sin
[

dO _ [
cos 6 d6 _ f

d sin d _ L , 1 +

Jo^s~&amp;lt;9

~
Jo cos

2
0&quot;

~
J 1 - sin*0

&quot; g
1 -

=

sn

dd 2do&amp;gt;

2 sec
2
codco [ Id tan co , 1 + tan o&amp;gt;_ [ Id

J i- a&amp;gt; 1 - tan o&amp;gt;

=
log tan (45 +

o&amp;gt;).

C. From the last, if x = this integral,

6* = tan (4-5 + J0), e~ = tan (45
-

0)

G 2
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whence, reverted, ^0 = 45 tan&quot;
1

(e *),
which avails us, if we have a

good table of
~x from x as argument.

As I regarded such a table as of first necessity for Anticyclics, I

prepared one myself, and was rewarded by the Philosophical Society

of Cambridge publishing it in 87 quarto pages, under the zealous and

toilful superintendence of Mr Glaisher. By the kind support of

Professor Adams, the same society has since published my table of

e* from x = to x 2.

If x exceeds 3, the series tan&quot;
1

. e~* = e~
x

le~
zx + ^e~

5x
&c. con

verges very rapidly : but it is more convenient to have 6 in degrees ;

and unless x is less than 1, I suppose from a trigonometrical table,

with e~
x
known, tan&quot;

1
. e~

x
can be found in degrees with the needful

accuracy. But to meet the case of x&amp;lt; 1, Professor J. C. Adams of

Cambridge (to whom I sent a table of Tana?, calculated for a? less than

1, wishing him to get it tested by differencing), was kind enough to

compute it by help of a new machine, as I understand inde

pendently, from my values of
e&quot;*,

and had his own results verified by

differencing. Thus I am able to present to the reader the table

attached, which now rests not on me, but on the authority of the

distinguished astronomer.

TABLE OF

,
from x= &quot;01 to a? = 1,

1 +

as corrected by Professor J. C. ADAMS.

X
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X
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When x is given (less than 1), this table shows Tan#, and the

equation sin = Tan x determines 6.

Moreover Gudermann shows how to use his table inversely, and

obtain 6 from x.

Every one acquainted with Elliptic Integrals will see that the

assumption there admitted, of

sin 6 = V 1 tan
i/r,

whence cos 9 = sec ty, tan 6 = *J 1 sin ty, &c.

does but introduce Anticyclics in disguise.

7. Some other elegant relations must be mentioned,

Tan i# = tan |-0.

, /l-cos0 /sec 0-1 /2(Cosa?-l)
Proof: tan \6 = A / ^ ^ \ 3 =r

=
A / ^7r\J yl+cos0 \fsec + 1 V2(Cos#+l)

,=/Jo

e
* +
l^ihfei= T^

,
. 1 + sin x= i logr

Ocos
2

1 sin x

may of course be developed into

sin + 1 sin
3 + J sin

5 + } sin
7

-f &c (a).

This development of # in odd powers of sin suggests the

assumption x, or

sec Odd = J.
x
sin %A sin 30 + %A B

sin 50 &c.
o

Differentiate: then

sec = A
l
cos A

3
cos 30 + -4

5
cos 50 &c.

Multiply by 2 cos 0, and apply the formula

2 cos . cos (27i +1)0- cos 2n0 + cos (2w + 2) 0;

2 = A
l (1 + cos 20)

- A
a (cos 20 + cos 40)

+ A b (cos 40 + cos 60)
-

&c.,

which requires A
v

= 2 = A
3
= A

6
= A^ &c.

Hence \x = sin - sin 30 + sin 50 - f sin 70 + &c.

a series which can be otherwise confirmed. Namely, it is known in

the Higher Trigonometry that if r is &amp;lt; 1,

-,
= cos r cos 30 + r cos 50 r

4
cos 70 + &c.

&amp;gt;

-

I + Zr cos 20 -(- /-
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With r constant and variable, multiply by d9 and integrate:

/. (1 + r) I -= ^ -^ o = sin - 4?- sin 30 + ir2
sin 50 - &c.

/
J 1 + 2r cos 20 + r

This, being true as long as r &amp;lt; 1, and the series on the right con

verging even when r reaches 1, will not prove false at the extreme

value r = 1. But when r = 1, the left member becomes

f cos . dO
f
cos 6dO

[ _d6
J 2(1 + cos 20) J o 4 cos

y C r
J o 2cos

Thus if x = ( sec 0d0,
Jo

we find ^ = sin -i sin 30 + 1 sia 50 &c. as before.

Of course, from slow convergence, this series does not aid computa
tion.

8. We pass to Inverse Anticyclic Functions.

But dt = d Tan x = Sec2xdx = (
1 - Tan 2

^) dx

=
(1
-

f) dx.

..
1 t

whence x = t + t
5 + t

5 + &c......................... (a).

But ^ = sin or x = sin + sin
3 + 1 sin

5 + &c.

The ^ and sin are always less than 1.

9. We proceed to Sin
1 and Cos&quot;

1

. Let u = Sin a, v = Cos x.

First, du = Cos xdx = Jl + JSin
2
a? . rfa; = \/(l + w2

, =

The development by Bin. Th. is twofold. First, when u is less

than 1. dx =
\l
- i u* + Li| . n4 - Lil^ w6 + &c.l du,

( 35 . T! z . 4&amp;lt; . o J

whence ., or Sin- --$.+ Jl-J
. f

- ^-J . + &c.
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Next when u is &amp;gt; 1, develop (u
2 + 1)

- in descending order,

-K2 +^ *-2~ u&quot; + &c du

To find a, the constant of integration, observe that

e
x = Cos # -f Sin x

Make -M infinite
;
then x = log (2w). But # then by (6)

=
log (aw), /. a = 2.

10. Next, from v=Cosx, dv= Sinxdx = ^(v
2

, dv _, ( _2 1 . 3 _4 1 . 3 . 5 _^ =^2

-l)
=

&quot;

I
1+i?; + 2T^ + 2^T6 V

. v-
2 1.3 w&quot;

4 1.3.5 v-
6

.

,. ^ = log(W -i. T -^. T-^^. -&c.......... (c).

To find /3, we have

e^ = Cos x + Sin a; = v + */(v*
-

1),

x = log (i; + Jv
2

1).

Make v infinite; . . x = log2v. This proves y9 to be 2, just as a

previously. These results are Gudermann s.

11. Recurring to the
&quot;&quot;Range&quot;,

x = ( sec Odd,
Jo

observe that from e
x = Cos x -f Sin x,

we have e* = sec 6 + tan 6.

When x = 1, let 6 have the special value 6^\ then e = sec ^ + tan
2

.

From above, we infer

^JP-teif1.^
where r^-3678 7944 1171,

from which I deduced that O
l slightly exceeds 49 36 . I since find

that Dr James Booth had found

i

= 49 36 15&quot;, and tan 0,
= 117520 3015.
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Series which advance by powers of tan or sin are not convenient

for a continuous table. Especially if all the terms are of one sign,

Legendre evades them. We may here notice one such series with

alternate signs, viz.

a- -iu * a ^tan fl 1.3 tan5

.,.
# = Sm x

(tan 6)
= tan#-i h ^ : . = &c (d).o L . TP

12. Why Gudermann is not satisfied to work from Legendre s

original equation x = log tan (45 + \Q] I have not understood
;
but it

seems to belong to liberal knowledge to be acquainted with his series.

For small values of 6 Gudermann has 6 = \TTV, and v a small

fraction. To go back
;
from

Z 7T

you get in Trigonometry,

where n = l, 2, 3, 4... Next,

1 1 2(9 2(9

sin 6 Q 7T
2

-&quot;
2 2V2 -

&amp;lt;9

2 T 3V2 -

Thence, putting
=

JTT co, resolving

20 1 1
into

, &c.

nV-0 2 mr-6
and for a moment making JTT =p, you find

-

I ^ O &amp;gt;

cos CD /-a)
2

3y-ft&amp;gt;

2 5y-
In this last, restore 6 for to, since the equation is identical, then

d9 v + 6
x

If you here develop every term on the right, you have a result in

powers of 6. But, to improve convergence, leave the first term

undeveloped, and where 6 pv or ^TTV, you obtain

x = log
- 2 {^ + 1//+ 3f/ + &c.} (e\

if j|f = 1
{3-

)l - 5~
n + Tn + &c.l

w l

in which n is an odd integer.
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If for other purposes 1 V
n

lias been tabulated [a task which I

had myself assumed] for n = 2, 3, 4, 5, &c. where Vn means

then we have simply Mr
in our series

13. For increasing values of 6, Gudermaim seems to use the

results of (6) or (c) in Art. 9 and 10 above, viz.

1.3.5 cot6

f
27476 &quot;IT&quot;

x = Cos 1

(sec 0)
=

log (2 sec (9) + . ?^? _ Li?
. ^?_&c .

Ij . 4 4

Embarrassing wealth of series possibly gave him great power of

verification.

Finally, when approaches 90, put 6 = |TT co
;
then o&amp;gt; is very

[ d(o
small, # = I ,

J sin a)

which further suggests o&amp;gt;

=
UTT,

or 6 =
-|TT

iru =
-|TT (1 2u),

and our series will be developable in powers of u.

Write Un for 1 - 2
n + S~

n - 4f
n + &c. and you easily get

where 0=2, when &&amp;gt; converges to

or log^-IT1 V^iO&amp;gt;-iO
p

.V-*o

But, for better convergence, add to the last

-
log ( 1

- w2

)
= w2 +X +K + &c.,

and observe that

2
log 4- log (1

-
u*)

= log (u
l -

u)
-

log (ITT) ;
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.-. x m log (
M&quot; -

u)
-

log (ITT) + (1
-

Z7J M-

where

or
7T

Calculation of the Primary Anticyclics.

14. Since Sin a? and Cos# increase rapidly, only their logarithms,

when x exceeds 2, can well be registered, a task which Gudermann
has executed, up to .

= 12. When x exceeds 12, log (1 +
~
2X

)
in

series converges so rapidly, that its first term probably suffices
;
the

two first are e~
2x and

Je&quot;

4
*. Thus when x is large, log Sin x and

log Cos x are sufficiently known. For small values of x
t put

Then _log(l-
-2
*)
= P+Q ;

log (l + e^) = P- Q

and from x given, P and Q are computable by a general table of 6~?

(such as has been published by the Cambridge Philosophical Society).
I find it convenient to write

cr (x) as equivalent to P + Q, and K (x) for P Q;

whence log Sin x = x log 2 a (#)~|
,
&

r, , a ; ( and log Cot a? = 2P.
log (Jos x= x log z + /e

(a?)J

26&quot;^

The reciprocals of Sin x and Cos x can be obtained from _ ,_^x by

long division, by aid of the table of e *. But when x is not very small,

the development rising by powers of e~
2*

yields a result nearly accurate

and less tedious : moreover it will give two results at once. I write

p (x) for Cosec x, i.e. for the reciprocal of Sin x, and D for Sec x or

the reciprocal of Cos x.

When x exceeds T37, p
and D are found most easily by summing

M= e~
x + 6~

5X + e~
x + e

13* + e&quot;

17* + . . .1

N = e~
sx + e

~7x + e
llx + e&quot;

15* + . . .

Then p (x)
= 2 (M + N) ; D () - 2 (Jl/

-
JV).
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After calculating this latter part of the table, we may go back to

x less than 1 37, and take the sums

K = ,,

+
;,l

+
l-

Evidently then by the expansion of p (3#) and D (3#), you find

p (x)
= 2 (H + K] + p (3&amp;lt;e)-l

of which
p (30?) and D (3a?) are

D (#)
= 2

(-H&quot; jfiT) D (ox) \ supposed already in our tables.

Occasional long division is a valuable check on error, especially as

to the last figures.

The table of p and D ends naturally when the second term 2e~
3a;

is

insignificant, so that p(#) and D(#) are undistinguishable from 2e~*.

Since Cot a? and Tana; converge towards 1 when x increases, I

2e~
a:

write 3 for Cot 1 and H for 1 Tan
;
which give 3 (x)

= =-z^ ;

2e

When an entire table of
p(#) pre-exists, you can deduce from it

entire tables of 3 (x) and H (#) by the process of a b for each entry

For we have as identity

in which you have merely to assume y = e~
2

*,

then, with the upper sign, 3 (a?)
=
p (2#) 4- ^

(2a;)~j

with the lower, fi( -
p (2a?)

- D (2a?)J

Begin with x so large, that 3(2aj) is undistinguishable from 2e~
2*

that is, when 2e~
4*

is insignificant; and work backward.

The great ease of this method seems to give primacy to a table of

|&amp;gt;?.
That of D (x) is less serviceable.

Moreover if you repeat the equation
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by writing for x, first 2x, next 4-x, next 8a?, ... and so on to 2
n~1

ar, then

adding all together, you get

3
&amp;lt;X&amp;gt;

- 3 (2&quot;#)
- p (2#) + p (2X&amp;gt; + p (2V) + . . . + p (2V);

when n is large, 3(2V)=0. Practically, when 16 decimals suffice,

The last series converges nearly as

If you calculate ^ (x) by long division, this formula avails to verify a

table of 3. Like remarks may be made on the companion formula

[obtained from 3 (a?) + H (a?)
-
2p (2a?)],

Ha - p (2ff)
- D (2 ff)

-
p (2ff)

-
p (2V) - &c.

The Mutilated and the Secondary Functions.

15. Advantage is sometimes found in using the Anticyclics

p D D H deprived of their first term of development. I call these

Mutilated, and denote them by p D D H . Then

or
p (^ = p (0)

- 2e-*
; D (^ = 2e^ - D (a) ;

3 (x)
= l(x}- 26^ ; no (x)

= 2e-
2* - H (a,-) ;

If tables are calculated, the Mutilated Functions p a?, D # may be

made auxiliary, thus we may calculate them first, and p (a;), Da; from

them
;
then proceed to D (x) and H (a;),

and from these deduce 3 (a?)

and no (x).

Again, these Mutilated forms facilitate our estimate of what I

further call the Secondary Functions, which are suggested by Elliptic

Integrals. If, as in Legendre s notation, F(ca&amp;gt;}
mean

I
da)_

J /V/(1 c*sm*a&amp;gt;)

while p.J

where 6
2

-f c
2 = 1

;
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it is convenient also to take

x F (coy)

f*~F(c, ITT)

then x is the leading independent variable, and p the leading constant

in the Higher Theory. It is never necessary to suppose p less than

JTT; for if p be related to b as p to c, we obviously have pp =
(^Tr)

2
,
so

that either p or p must, exceed JTT ;
and b is symmetrical with c. The

relation of p to c is transcendental. For conciseness we may write C

[not for F (c, JTT) as in Legendre s great Supplement, but]

F(c, ITT)

*T

and B for the like function of b. The relation of these constants

guides us to eight Secondary Anticyclics. In Legendre s notation p

is not used, but instead he has q equivalent to what here is e~ 2p
,

so that =
, D--,

For conciseness let simple mean loge . Then with the Hebrew

letters 7 Jb *l T M $ for functional symbols, we may assume,

Secondary Anticyclics.

1. S (p) for Z Cot p + I Cot 3/3 + I Cot op + &c. ad infin.

2. fc(p) ^r I Cot p -I Cot 2p + J Cot 3p
- J Cot 4/3 + &c.

3. & (p) for nfc) + ^ (2/3) + jn (3p) +&c.

4. ^(p)forn(p)-in(2/3)+in(3/3)-&c.

5. 1 (p) for Kp)-3 (3p) -f D (5p)
- D (7p) + &c.

6. T (p) for iD (2p) + JD (4p) + J3 (6p) + &c.

7. p|(/o) for n (p)
- n (3p) + H (op)

- &c.

8. # (p) for (a?)
-

(3a?) + (5.r)
- &c.
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The routine of the Calculus in Elliptic Integrals then elicits the

equations

[where C is defined by ^TT . C= F
c \ p by the equation p. Fc

=
JTT . Fb .]

The function T (/o)
arises in the course of the same theory, and is

needful in certain transformations. As for (p), it is a companion to

(p)
and somewhat aids computation.

16. Each of these Secondary functions admits of transformations

into a new series, to which the notation through q leads most easily.

Thus for 7 (p), observe that
2P

Hence I Cot . np = 2 {q
n + ^q

3n
4- i^

n
4- &c.}

In the last, put 1, 3, 5, 7, ... for n, then you get

&c. &c.

Add these up in vertical columns
; using the formula

Then S (p)
=
jlfL

+ l
. 4 i . + &c.

=
p (2p) + 1

.

p (6p) + 1
. p (lOp) + &c.

By a perfectly similar process

(p) is changed to H (p) + JH (p) -I- H (5/o) + &c.;

&quot;1 (p) into D (2p) + D
(4&amp;gt;p)

+ D (6/0) -f &c. ;
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* (p) into 2 {* (p)
-

K. (2p) + K (3p)
-

&c.} ;

(p) into 2
{(7 (p)

- cr (2p) -f o- (8/3)
- + &c.} ;

T (p) into a (2/3) + &amp;lt;r (4/o) + o- (6/3) + &c.
;

MG&amp;gt;)
into D (2/j)

- D (4p) + D (6/0)
- &c.

;

&(p) into D (p) + D (3p) + D (op) + . . -

By reason of this double expression, the convergence of each function

in series may be increased by the help of the Mutilated forms.

Thus

(1) From S(p) = p(2p)+ip(6P ) + ip(10/o)
+ &c.

subtract I Cot p
= 2 (e~^ + Je~^ -f Je-*

10 + &c
-)

Thence S (p)
= J Cot p + p (2,) -f ip (Gp) + ip (lO/o) + &c.

converging as e&quot;^, e~ 18p
,

e~ 30p ...

(2) From
&(/&amp;gt;) =H(p) + iH(p) +in(5^) + &c.

subtract Z Cot p = 2 (e-
2 + ie- 6 + ie

10
&quot; + . . . &c.

Thence (p)
= l Cot p

- H (p)
- iH (3^)

- iH (5p)
- &c.

(3) From D (p)
= H (p) + JH (2/9) + JH (3/3) + J . &c.

subtract 2r (p)
= 2 (e^ + ^e~^ + J . e ^ + &c.

[See Art. 14 for a.]

Thence ^ (p)
=

2&amp;lt;r (p)
- H p

- iH (2p)
- jno (3/o)

- &c.

(4) From ^ (p)
= H (p)

- iH (2p) + JH (3p)
- &c.

subtract 2/e (p)
= 2 (e

2
&quot; - \e~^ + ^e-^

- &c.

Thence (/o)
- 2 (p)

- H (/o) + iH (2/o)
- iH (3/o) + J . &c.

(5) From 1 (p)
= 3 (p)

- 3 (3p) + D (5p)
- &c.

subtract D (2p)
= 2 (e-

2P - -&amp;gt; + e&quot;

10 1 - &c.

Thence *1 (p)
= D (2P ) + D (p)

- 3 (3p) + D (5p)
- &c.

(6) From T (p)
-^ (2/&amp;gt;)

+ J D (4/&amp;gt;)
+p (6/0)

- &c.

subtract
&amp;lt;r(2p)

= 2 {^-^ + ie&quot;

8
&quot; + e-^ + ...}

Thence T (p)
=

&amp;lt;r (2p) + ^ (2p) + J D (4p) -J-p (Gp) + . . .

The function T is the logarithm of

Q=Ki-o(i-&amp;lt;?
4

)u-&amp;lt;?v-r&amp;gt;

a factor known in Elliptics.
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(7) From

subtract D (2p)
= 2e~^- 2e~^ + 2e- 10p -&c.

Thence H (p)
= D (2p)

- H (p) + H (3p)
- H (op) + &c.

(8) Finally, from & (p)
=
p (p)

-
p (8/3) + p (op)

- &c.

subtract D (p)
= 2e- J - 2e~^ + 2e- 5

&amp;lt;&amp;gt;
- &c.

Thence & (p)
= D (p) + p (p)

-
p (3p) + p (5p)

- &c.

17. Suppose that ft (p) has been tabulated. From it the pair B
and 1C can be deduced by working backwards. The process at each step

is only that of m n. For by mere inspection of the series we get

whence further

If a whole table is aimed at, we begin when p is so large that 3 (2p)

is undistinguishable from H (p), or indeed from Ze~^. Moreover from

the former equation of the last pair, we get by repetition and dividing

by 2,

s (P)
- sra (2p)

= a (p) ;
2- 55 (2p)

- 2-
2s (2 = a-

1

. a (2p) ;

2-
2S (2

2

p)
- 2-

3
55 (2

3

p)
= 2-

2
fc (2

2

p);

up to 2-&quot;

+1
S (2&quot;-^)

-
2-&quot; fi (2

= 2-+ia (2
M-1

p) ;

of which the sum is

fi (p)
-

2-S(2&quot;p)
= a (p) + 2-

ja (2p) + 2-
2D (2

2

p) + . . + 2-&quot;

+1

&(2-
1

p) ;

Make w = oo
,
then

B (p)
= a (p) + 2~

]a (2p) + 2~
2D (2

2

p) + 2
3

(2
3

p) + &c. a^ infin.

which involves

V (p)
= D (p)

- 2-
1 D (2p)

- 2-
2D (2

2

p)
- 2-

3a (2
3

p)
- &c.

with very high convergence, even when p = 1. Of this pair, is the

more obviously important in Elliptics.

If you express *1 and $ in series of D, mere inspection shews that

In this last write 2p, 4p, &p...2
n~l

for p, and add together the results :

then 1 (p)
- ^ (2

= # (2p) + ^ (2p) + ^ (2
3

p) +...+# (2 ;

N. II. 7
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so that, making n = oo
,

*1 (p)
= & (2/o) + P (2 + P (2V) + ...ad infin.

In passing from the transcendental constant p to the constants

which dominate in the Lower theory of Elliptics ;
the most obvious

and serviceable relations are

(The logarithms have e for base.)

0=1 + 2*1 (p). Also logC=2Jb(p).

If b = cos 7 and c = sin 7, I covet a table, which, from 7 given, will

show
|0. Long Division will give it, from

in fact, Legendre found B by first calculating p.

18. Gudermann s great table of log Sinp requires the p not less

than 2, and that 8 decimals suffice. If we had 9 decimals, e~ 9p

would be omissible, when p &amp;gt; 2. Under these conditions our chief

functions are easily expressed in powers of e~ p
. For we have

Jp (p)
= e-P + e- 3p

and with even terms made negative, these yield JDQo)

Next,

iX^p) = (q-

(where q means e~ 2p
);

= e- 2 -
|e-

4p + fe-
6 -

fe
8

&quot;.

So iD (p)
= e- 2P - e- 4p +K 6 - e-8p.

At most, we find 4 terms
;
and the last terms drop off, as p increases.

Indeed, if e~ 10p be the highest term admissible, (i.e. e~ llp be

negligible,) then, since
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we deduce JD(4p)
= simply e~ 4p

;
whence J^) (p) or

iD(2p) + JD(4p) + JD(6p) + iD(8p) + iD(10p)

6-4P+ e -8p+ 2 e
-

a very simple expression for C.

[The great advantage of p as the leading constant in Elliptics, is

that to change from p to 2p, 3p, 4p... changes to the scales whose

index is 2, 3, 4...]

Numerical Illustrations.

19. To fix ideas and give confidence to the student, it may be

well to set forth examples of calculation under unfavourable conditions.

To exact 16 decimals and (as the case of worst convergence) p= 1, is

a severe test. I will calculate f?(l), & (1), *j (1), fc^(l) by three

different methods, and compare the three results. (The successive

entries are taken from my own tables of the Primary Anticyclics,

which I complete for high numbers from the table of
e&quot;*,

when they

merge in it.)

I take 7 (1) first from the series

I Cot p + I Cot 2p + I Cot 3p + &c.,

next from
p (2p) + Jp (6p) + ip (10p) + &c.,

lastly from I Cot p + (2p) + J (6p) + J (10p) + &c.
;

observing that, for high values of p, (indeed p &amp;gt; 61,) ICotp merges
in 2e~2p

;
also for

p&amp;gt;12 6, p (p) merges in 2e~ )
. The like remark

need not be repeated. Besides the case of p
= 1, others have been

taken at random.

72
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7(1) from first series.

I Cot i

3

5

7

9
ii

13 10 2182

15 1872
17 34

2723 4146 8911 8315
49 575 1 456 6900

979 9859 5 874
166 3057 4382

3 0459 9594
557 8936

7(1) from second series.

p( 2)=-2757 2056 4771 7832

Jp(6)= 16 5251 1604 4931

ip(lo) = ..._...
1815 9971 9422

^p(i4) = ff~
14

23 7579 6340

ip(i8) = fe
lfl

...... 3344 4399
(22) ............ 50 7176

(26) ................. 7860
(3) .................. 125

(34) ..................

9147 7363 8089 = 2773 7363 8o8 7

7(1) by the Mutilated Functions.

ICot i = -2723 4146 8911 8315

p (2)= 50 4999 8298 5578
Ip (

6)= i OI 53 3822
T Po ( I0 )

=
373. _

i&amp;gt;(i)

= -2773 9147 7363 8088

20. Jb (1) from second series.

in(3)

(13)=
(
I 5)=

0584 4044 2351
16 4841 5437 7566

l8l 5 9 J 47 4810
23 7579 4365

3384 4399
&quot; M

...... so 7176
7860
I24

7265 9644 8653

fOoti

(4)

(6)

(8)

(10)

(12)

(16)

whence

from original series.

Positive terms.

2723 4146 8911 8315
49 575 ! &c
as under? (i)

2773 9 J 47 73 6 3 8089
sum of Positive terms.

Negative terms.

0366 3537 4743 6963
6 7092 5280 9725

1228 8424 7067
= 2~ 16

22 5070 3494
4122 3072

75 526
i 3828

0373 1881 7718 9433
sum of Negative terms.

7265 9644 8651
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by the Mutilated

1*2723 4146 8911 8315

101

-MO

(9)

-322 6472 2428 993
-408 6013 3544

- 824 4240

. .

is insignificant
- 0322 6880 9266 9662

sum of negative terms.

2400 7265 9644 8653

21. 1(1) from first series. by second series.

3(1)

-3(3)
3(5)

-3(7)
3(9)

-3(n)
3(13)

-3(15)

3(17)

n(i)
=

5499 33 10

-49 6982 3313 6888

9080 3982 0194
- 166 3058 8210

3 0459 9598
-557 8936

10 2182
- 1872

34

3081 5463 3020 9412

0(2)
(4)

(6)

(8)

(10)

(12)

(U)
(16)

(18)

(20)

(22)

(24)

(26)

(28)

(30)

(32)

(34)

(36)

-1(1)
=
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:^ L. .Observe that when

It is convenient to separate the following terms. Put

(13)=
(l5)=

(19)
=

(21)
=

(23)
=

(25)
=

(27)-
(29)

=

(30 =

(33)
=

(35)-
.\b=

226 0329 4070 (preceded by 5 zeros)

30 5902 3205
4 1399 3772

56 2 7964

758 2561
102 6188

13 8879
i 8795

2544
344
46

261 4110 8374 (16 decimals).

Also taking the even rows negatively

a= 199 0891 5370.

Then E (l) by its first series shows

p(i) = -8509 1812 8239 3215

-(3) ~998 2I 5 6 9668 82 3 2

(5)

-(7)
(9)

-()
six terms = -7629 6271 5163 8058

20,= 398 1783 0740

6669 6946 8798

h 134 7650 5830 5877
-18 2376 5447 6230

2 4681 9611 9324
-3340 3401 5896

Second Method.

D(i)= 648o 5427 3663 8854
(3) 993 2793 7419 4324
(5) 134 7528 2221 3057
(7) 18 2376 2414 5974
(9) 2 4681 9604 4144

(ll) 3340 3401 5712
six terms = 7629 6146 8725 2065

26= 522 8221 6748

K&amp;gt;(i)

= -7629 6669 6946 8813

The latter is in excess by 15 in the two last decimals, which

probably results from the number of rows that were added, 18 rows,

all positive. Treated by the Mutilated Functions, in which negative

rows enter as balance, the result agrees with the first method.
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P!W
-Po (3)

D (0
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D (3 4)

3o( 7)
3o(5 i)

0666 7228 1989 9218
+ 23 0445 7580 6402

-2763 3678

1 (
i 7)

= 0689 7 6 73_68o 7 1 976

25. So far, I have worked by my skeleton tables, which afford

16 decimals. They have borne the test well. When p has two

decimals, I am driven to my longer tables, which yield only 12

decimals for the entries.

I have naturally calculated the secondary Functions by the

Mutilated Auxiliars, which give a correct result by fewer terms to

add or subtract. I take at random cases to corroborate by other

methods. I chose small values of p, solely because with them the

process is less speedy. My tables give

&quot;i(i oi)
= -3012 8975 9279.

To check this I calculate the same through $, thus

B&amp;gt;(2-02)
= -2654 7527 3838

(4*04)= 35 J 9495 J 57 8

(8 o8)= 6 1934 2070
(i6 i6)= 19 1792

l(i-oi)
= -3012 8975 9278

I take at random 1(1 07). To proceed by fc?,

BJ(2-i4)
= -2353 9987 4442

e&amp;gt;(4-28)
= 276.8532 6204

^(8-56)
=2e~ 8

3 8323 8588
Cy(i7-i2)

= 2e&quot;
17 12 =

_1_3_4_36_
.-. 1(1-07)= &quot;2634 6851 2670

The computation by the auxiliary D is

D (2*14)
= 2320 9684 7809

3 (
I 7)= 3 J 3 7697 754i

-3o(3 2I
)
= -531 3696

3 (5 35)
= 1016

.-. -1(1-07)
= -2634 6851 2670&quot;

Further, to calculate 1(111).

First,

0(2-22)= -2146 8579 7187
3 n (rn)- 264 6636 5398

-3,,(3 33)= -328 6883
3 (5 55) -2e-&quot; 457

&quot;i(i ii)
= 2411 4887 6159

Otherwise,

3(rn)=-2436 8458 3048
- D (2-22)= -25 3242 0463- D (4*44)= -328 22l6
- D (6 66)- -4206
-D (8-88H -5

v(rxi)- -2411 4887 6158
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Or again :

^(2*22) = 2172 7867 1153

0(4-44):= 235 9187 7952

$($88)= 2 7828 8332
^(1776)- 3 8722

l(i ii) = 2411 4887 6159

Make some trials on 0.

To find 0(1-34).

First, Or thus,

p( I-34) = *5 622 43 59 l6

D (i 34)
= 336 0206 6222

- D (4*02)= -1156 9073

D (i 34)= 4900 8927

M**34)= 385 4896 8756
p (4 02)= - 1157 6533

Po(6 7o)= 3730
= 5286 2666 6891

-Do (670) = -3731
? (1-34)

= -5286 2666 6890

First,

D(i 5)
= 4 2 5 9 6 3 494 2 2804

Po(i*5)= 2 33 8212 0298 3647

Po(4 5) = ~ 2 74 22 5 6 594 2

Po(7 5)
= 338 3796

Uio 5)- -418

To find
B&amp;gt;(1 5) to 16 decimals.

Next,

p

Bf (1-5)= -4484 7541 3322 3887

i 5)
= 4696 4 244 595 2243

-D.li?5) =-2ii 6428 5354 5792

-Do (4*5)
= - 2 74 1579 8350

-D (7 5)= -338 3796
- D (io 5)

= -418
. 0(1-5)^-4484 754i 33 22 3887

as before.

To find 0(1*81). In my table, calculated through D ,
I have

3277 7800 6407. I now check it by calculating through D .

p(i-8i)= -3363 1570 8424
-D (i 8i) = -85 3753 3605
- D (5 43) = ~ l6 8407

ty(i*8i)= -3277 7800 6409

nearly as before.

If any figure (but the last) in any of the entries here elicited at

random were erroneous, the error would show itself in the result. No
test which I have in these is so complete and absolute as that of the

table of
e&quot;*,

in which I had Mr Glaisher s valued revision. But I

have laboured, by double methods and by recomputing after intervals

of time, to impart what accuracy I can to my other tables. I am

painfully aware that a tired brain will go wrong in the simplest

process : but I have a strong faith that these functions, elicited by the

progress of the Calculus, will live in the mathematics of the future.
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I have executed tables of all these functions, (1) skeleton tables in

which p increases by 1 at each step, and the entries are carried to

16 decimals; (2) ampler tables, with p increasing by 01 at each step,

but the entries having only 12 decimals. Each set is complete in

this sense, that they are continued from p
= 1 until the function is

merged in the form 2e~n
&amp;lt;&amp;gt;,

so as no longer to deserve a separate

registration. Besides the large table of e~
x

already published with the

skeleton table of e~* to 16 decimals, I have also an intermediate table

(unpublished) in which x proceeds by 01 at each step, and the entries

have 12 decimals until # = 18*50, after which I give 16 decimals

(perhaps with no adequate advantage), and the table is continued until

e~
x
fails to affect the 12th decimal.

Whether any but the skeleton tables, which now follow, will ever

see the light, the writer is uncertain. It seems that competent
mathematicians are too busy to put forth any judgment on an

eccentric undertaking.
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Skeleton Anticydics to 16 Decimals.

Summary, here repeated, for compactness.

Gudermaim writes Sin, Cos, Tan in German type, not easy to

imitate. Here capital letters contrast Sin to sin, Cos to cos, &c. and

Cos . x means \ (e
x +

e&quot;*) ;
Sin x means J (e* e~*).

Conformably Tan x means ^ ,

or

that is,

1-
1 + e-

2*

1

whence further Cot x means
1 e

x

2
and Sec x means x _, ,

or ?-i- -2* ,

1 + e
*

and Cosec x means

The possession of a good table for e
*

opens the way to a registration

of these Anticyclics.

For conciseness it is convenient to write also

p(#)
for Cosec x, D(#) for Sec a?,

H (x) for 1 Tan x, or z^ ,

e

D(^) for Cot (x} 1, or ^- .

I also include as Mutilated Anticyclics the functions

.(*)
= (0 - 26-

; D,(&amp;gt;)
= 2e- - D() ;

Finally, I write K and a- (as auxiliaries towards log Cos and

log Sin) interpreted as

K (x)
=

loge (1 + e~-
x

)
and -

&amp;lt;r(x)

= loge (1
-

e~-*).
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Since Tan x is positive, and less than 1, we may assume

sin = Tan x,

and take for 6 an arc between zero and 90. Till a better name is

found, I call the Elevation and x its Range*. We have now

cos 6 = Sec x, tan = Sin x
t

sec 6 = Cos x,

1 - cos = 1 - Sec a; = 2 Cos a? -2 = e* - 2 + e&quot;* = /Sin

l+cos0~TTSec0
&quot;

2 Cos a? + 2
~

e* + 2 - e

~

whence

Also

tan 1(9 = Tan . \x.

d0_
O cos 6

Legendre tabulated this integral, and Gudermann has enlarged the

table tenfold. He calls x the Langezahle of 0, but I cannot translate

this. The &quot;Length-number&quot; sounds nonsensical.

N.B. loge Cos# = #-log 2 + K(X),

and loge Sin x = x loge 2 a (x).

*
Taking a Polar Curve, with p radius vector, and sin = Tan p, which amounts to

p =/ sec 6 . dd.

With ASX=W,

then with ^=--90, Tan
/&amp;gt;

=

e, SP=p,
P 1~~-=1, eP=&amp;lt;x, p^logoc
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For small values of x.

Primary Anticyclics.

109

X
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p and D to Sixteen Decimals.

X
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and D(#) to Sixteen Decimals.

X
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and D(^) to Sixteen Decimals.

X
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p (a?) and D (#) to Sixteen Decimals.
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3 (a?)
= Cot x 1, and fl(#)

= 1 Tan a;, to Sixteen Decimals.

X
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(x) and H (#) to Sixteen Decimals.

X
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(x) and H (#) to Sixteen Decimals.

X
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MUTILATED Anticyclics.

p (#) or
p(a?)

2e~* to Sixteen Decimals.

X
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Mutilated D (x)
= 2e~* - D (as). Sixteen Decimals.

X
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(a?) or e to Sixteen Decimals.

X
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# = 2e~
&amp;gt;2*

T\x to Sixteen Decimals.

X
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a- (x) means loge (1 e&quot;&quot;

2

*) ;
K (si) means loge (1 + e

te

).

a and K to Sixteen Decimals.

X
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cr and K to Sixteen Decimals.

X



ANTICYCLICS.

and K to Sixteen Decimals.

123

X
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loge Cot x to Sixteen Decimals. Primary Anticyclics with

Natural logarithms.

X
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To adapt Legendre s Elliptic scale for a rapid calculation of

do)
I

dco

when a) is given, and the constant

, F(b, JTT).

&amp;lt;&amp;gt;-**-7&wr

[of which a good table might be calculated with argument 7 (c
= sin 7)

from Legendre s own work ; where, if c, cv c
2

. . . cn are formed on

4
Lagrange s scale, p

= 2~
n

. loge . , with any large value for n, but n = 4,
c

suffices at worst]: it next is requisite for the use of the equation

tan i
(co t co)

= A (c, /3) . tan o&amp;gt;

to calculate A (c, /3) in Legendres scale, with .P (c, /3)
=

f-P (c, TT) for

the definition of /3. Put
&amp;lt;^&amp;gt; (^) as equivalent to Iog10

A (c, /3); where

A (c, /3)
= V(l - c

2
sin

2

), then

-
1 loge . A (c, /3)

=
p(2 /o) + ip (10p) + }p (14p) + ^p (22p) + &c.,

in which each term is of the form

but every term in which (2n 1) divides by 3 is excluded.

Then, if p and co are given, the following table of
(f&amp;gt; (p) enables

you to calculate F (c, &&amp;gt;)

much more rapidly than by Lagrange s

scale.
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Values of
&amp;lt;f&amp;gt;(p)=- Iog10 V(l

- c
2
sin

2

/3) in Legendre s Elliptic scale.

p
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Secondary Anticyclics.

Summary, repeated for compactness.

Calling attention to the capitals in Sin, Cos, I use p D for recipro

cals of Sin and Cos: so D for Cot 1, and n for 1 Tan. But

Elliptic Integrals suggest other combinations not unimportant, to

denote which I use other Hebrew letters.

In Elliptics we have 6
2 + c

2 = 1
;
I put J-TT . C [not, as Legendre,

mere
c&amp;gt;]

for /!V=TO) ;

and by B I mean the same function of b which C is of c. It is con

venient to call c modidus, b submodulus; C the modidar, B the
T*

submodular, and to assume p = ITT . ~ for our chief constant.

Then it is allowable to assume eight Secondary Anticyclics de

nned by eight Series, with I for Nap. log.

Put

7 (p) for log Cot p + I Cot 3p + I Cot op + &c. Hebrew Lamda.

(p) for ICotp-l Cot 2p + I Cot 3p
- 1 Cot 4p + &c. Hebrew Maim.

&quot;I (p) for D (2p) 4- D (4p) + D (Gp) + D (Sp) + &c. Hebrew Reish.

n(p) for D (2p)
- D (4p) + D (6p)

- &c. Hebrew Khai.

T (p) for |D (2p) + -JD (4p) -f i (6p) + &c. Hebrew Zain.

V (p) for n (p)
-^ (2p) + jn (3p)

- jn (4p) + &c. Hebrew

& (p)
for n (p) + jn (2p) 4- JH (3p) + &c. Hebrew

& (p) for D (p) + D (3p) + D (5p) + &c. Hebrew Shin.
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Then in Elliptics it is known that

also T (p)
=

log Q,

if Q~
l
stand for (1

-
?
2

) (1
-

?
4

) (1
-

g
fi

) (1 -/)...

where q = e~ 2p
.

Next *(p) =ilg-p and & (p)
= Cc.

\ c /

Perhaps it is well to add a 9th function,

J (p)
= I Cot p + Z Cot 2p + Z Cot 3p + &c. (Hebrew Nun.)

Of these, 7 H *1 T and are of the most obvious use in Elliptics,

but to compute pairs may be as easy as to compute a single series,

and the use of some of these may in the future be greater than we

yet know. Their remarkable relations are elsewhere shown.

I have calculated ) and in pairs from (*( } faf \ i.frfv \

the equations with Jb (p) previously known;
j 1*1)9 ^

working backward from the known fact,
^ ~

(P) 2 ( P)

that when p is as large as 47, 2e~ 4p is negligible, which permits us in

in the last equations to substitute at first e~4p for their last term.

Obviously, n (p)
=

*)(/&amp;gt;)

-
2&quot;)

(2/&amp;gt;).
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p
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-l Cot 2p + I Cot 3p
- I Cot 4p + &c.

p
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f &c.

P
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Among Jacobian Elliptic functions we have

moreover

Put then

whence if

q
= e~2p

.

a (p)
=

log (1 e~2p
)

4- &c.
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PI o = D 2 - D (4/o) + D (G/o)
- D (Sp) + &c.

- n
o&amp;gt;)

+ n (3/D)
- n (5/o) + &c.

p
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(p)
= D (/o) 4- D (3/o)

+ D (5/o )
4- D (7p) 4- &c. may be developed in

s of e~ p
;
then %$ (p)

= e~ p+ 2e~ 5p -he~9p 4-2~ 1: p 4-2e~ 17p 4-2e~ 21p
powers of e p

;
then

-%
v ^,

if the rest may be neglected

P
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If any diligent reader seek to test these small tables, (which the

compiler naturally desires,) he may sometimes complain of inability
to continue them beyond the highest value of p. That all may, on
this scale, be complete within these covers, a skeleton table of e-? is

here added, which has already, under the title of
e&quot;*, appeared in the

Cambridge Philosophical Transactions, Vol. in. Part in. To obtain
16 decimals, in working for other results, 18 decimals are here given,

though the two last cannot be trusted.

p

I

2

3

4

5
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p
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p
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