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THE UNITED STATES NAVY

GUARDIAN OF OUR COUNTRY
The United States Navy is responsible for maintaining control of the sea

and is a ready force on watch at home and overseas, capable of strong

action to preserve the peace or of instant offensive action to win in war.

It is upon the maintenance of this control that our country's glorious

future depends; the United States Navy exists to make it so.

WE SERVE WITH HONOR
Tradition, valor, and victory are the Navy's heritage from the past. To

these may be added dedication, discipline, and vigilance as the watchwords

of the present and the future.

At home or on distant stations we serve with pride, confident in the respect

of our country, our shipmates, and our families.

Our responsibilities sober us; our adversities strengthen us.

Service to God and Country is our special privilege. We serve with honor.

THE FUTURE OF THE NAVY
The Navy will always employ new weapons, new techniques, and

greater power to protect and defend the United States on the sea, under

the sea, and in the air.

Now and in the future, control of the sea gives the United States her

greatest advantage for the maintenance of peace and for victory in war.

Mobility, surprise, dispersal, and offensive power are the keynotes of

the new Navy. The roots of the Navy lie in a strong belief in the

future, in continued dedication to our tasks, and in reflection on our

heritage from the past.

Never have our opportunities and our responsibilities been greater.
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CHAPTER 1

NUMBER SYSTEMS AND SETS

Mathematics is a basic tool. Some use of

mathematics is found in every rating in the

Navy, from the simple arithmetic of counting
for inventory purposes to the complicated equa-
tions encountered in computer and engineering
work. Storekeepers need mathematical compu-
tation in their bookkeeping. Damage Control-
men need mathematics to compute stress, cen-
ters of gravity, and maximum permissible roll.

Electronics principles are frequently stated by
means of mathematical formulas. Navigation
and engineering also use mathematics to a great
extent. As maritime warfare becomes more
and more complex, mathematics achieves ever

increasing importance as an essential tool.

From the point of view of the individual there
are many incentives for learning the subject.
Mathematics better equips him to do his pres-
ent job. It will help him in attaining promotions
and the corresponding pay increases. Statisti-

cally it has been found that one of the best indi-

cators of a man's potential success as a naval
officer is his understanding of mathematics.

This training course begins with the basic
facts of arithmetic and continues through some
of the early stages of algebra. An attempt is

made throughout to give an understanding of

why the rules of mathematics are true. This is

done because it is felt that rules are easier to

learn and remember if the ideas that led to

their development are understood.

Many of us have areas in our mathematics

background that are hazy, barely understood, or

troublesome. Thus, while it may at first seem
beneath your dignity to read chapters on funda-
mental arithmetic, these basic concepts may be

just the spots where your difficulties lie. These

chapters attempt to treat the subject on an adult

level that will be interesting and informative.

COUNTING

Counting is such a basic and natural process
that we rarely stop to think about it. The proc-
ess is based on the idea of ONE-TO-ONE COR-
RESPONDENCE

,
which is easily demonstrated

by using the fingers. When children count on

their fingers, they are placing each finger in

one-to-one correspondence with one of the ob-

jects being counted. Having outgrown finger

counting, we use numerals.

NUMERALS

Numerals are number symbols. One of the

simplest numeral systems is the Roman nu-

meral system, in which tally marks are used to

represent the objects being counted. Roman
numerals appear to be a refinement of the tally

method still in use today. By this method, one

makes short vertical marks until a total of four

is reached; when the fifth tally is counted, a

diagonal mark is drawn through the first four

marks. Grouping by fives in this way is remi-

niscent of the Roman numeral system, in which

the multiples of five are represented by special

symbols.
A number may have many "names." For

example, the number 6 may be indicated by any
of the following symbols: 9-3, 12/2, 5 + 1, or

2x3. The important thing to remember is that

a number is an idea; various symbols used to

indicate a number are merely different ways of

expressing the same idea.

POSITIVE WHOLE NUMBERS

The numbers which are used for counting in

our number system are sometimes called natu-

ral numbers. They are the positive whole num-

bers, or to use the more precise mathematical

term, positive INTEGERS. The Arabic nu-

merals from through 9 are called digits, and

an integer may have any number of digits. For

example, 5, 32, and 7,049 are all integers. The

number of digits in an integer indicates its

rank; that is, whether it is "in the hundreds,"
"in the thousands," etc. The idea of ranking

numbers in terms of tens, hundreds, thousands,

etc., is based on the PLACE VALUE concept.

PLACE VALUE

Although a system such as the Roman nu-

meral system is adequate for recording the



results of counting, it is too cumbersome for

purposes of calculation. Before arithmetic

could develop as we know it today, the following
two important concepts were needed as addi-

tions to the counting process:
1. The idea of as a number.
2. Positional notation (place value).
Positional notation is a form of coding in

which the value of each digit of a number de-

pends upon its position in relation to the other

digits of the number. The convention used in

our number system is that each digit has a

higher place value than those digits to the right
of it.

The place value which corresponds to a given
position in a number is determined by the BASE
of the number system. The base which is most
commonly used is ten, and the system with ten

as a base is called the decimal system (decem
is the Latin word for ten). Any number is as-
sumed to be a base-ten number, unless some
other base is indicated. One exception to this

rule occurs when the subject of an entire dis-

cussion is some base other than ten. For ex-

ample, in the discussion of binary (base two)
numbers later in this chapter, all numbers are
assumed to be binary numbers unless some
other base is indicated.

DECIMAL SYSTEM

In the decimal system, each digit position in

a number has ten times the value of the position

adjacent to it on the right. For example, in the

number 11, the 1 on the left is said to be in the

"tens place," and its value is 10 times as great
as that of the 1 on the right. The 1 on the right
is said to be in the "units place," with the un-

derstanding that the term "unit" in our system
refers to the numeral 1. Thus the number 11

is actually a coded symbol which means "one

ten plus one unit." Since ten plus one is eleven,
the symbol 11 represents the number eleven.

Figure 1-1 shows the names of several digit

positions in the decimal system. If we apply
this nomenclature to the digits of the integer

235, then this number symbol means "two hun-
dreds plus three tens plus five units." This
number may be expressed in mathematical

symbols as follows:

2x lOx 10 + 3x 10 + 5x 1

Notice that this bears out our earlier statement:
each digit position has 10 times the value of the

position adjacent to it on the right.

W99
UNITS

TENS

HUNDREDS

THOUSANDS

Figure 1-1. Names
of digit positions .

The integer 4,372 is a number symbol whose

meaning is "four thousands plus three hundreds

plus seven tens plus two units." Expressed in

mathematical symbols, this number is as fol-

lows:

4 x 1000 +3x100+7x10+2x1

This presentation may be broken down further,
in order to show that each digit position as 10

times the place value of the position on its

right, as follows:

4 x 10 x 100 + 3 x 10 x 10 + 7 x 10 x 1 + 2x1

The comma which appears in a number sym-
bol such as 4,372 is used for "pointing off" the

digits into groups of three beginning at the

right-hand side. The first group of three digits
on the right is the units group; the second group
is the thousands group; the third group is the

millions group; etc. Some of these groups are
shown in table 1-1.

Table 1-1. Place values and grouping.

By reference to table 1-1, we can verify that

5,432,786 is read as follows: five million, four



hundred thirty-two thousand, seven hundred

eighty-six. Notice that the word "and" is not

necessary when reading numbers of this kind.

Practice problems:
1. Write the number symbol for seven thousand

two hundred eighty-one.
2. Write the meaning, in words, of the symbol

23,469.
3. If a number is in the millions, it must have

at least how many digits ?

4. If a number has 10 digits, to what number
group (thousands, millions, etc.) does it

belong?

Answers:
1. 7,281
2. Twenty-three thousand, four hundred sixty-

nine.

3. 7

4. Billions

BINARY SYSTEM

The binary number system is constructed in

the same manner as the decimal system. How-
ever, since the base in this system is two, only
two digit symbols are needed for writing num-
bers. These two digits are 1 and 0. In order
to understand why only two digit symbols are
needed in the binary system, we may make
some observations about the decimal system
and then generalize from these.

One of the most striking observations about
number systems which utilize the concept of

place value is that there is no single-digit sym-
bol for the base. For example, in the decimal

system the symbol for ten, the base, is 10. This

symbol is compounded from two digit symbols,
and its meaning may be interpreted as "one
base plus no units." Notice the implication of

this where other bases are concerned: Every
system uses the same symbol for the base,
namely 10. Furthermore, the symbol 10 is not

called "ten" except in the decimal system.
Suppose that a- number system were con-

structed with five as a base. Then the only

digit symbols needed would be 0, 1, 2, 3, and 4.

No single-digit symbol for five is needed, since

the symbol 10 in a base-five system with place
value means "one five plus no units." In gen-
eral, in a number system using base N, the

largest number for which a single -digit symbol
is needed is N minus 1. Therefore, when the

base is two the only digit symbols needed are
1 and 0.

An example of a binary number is the sym-
bol 101. We can discover the meaning of this

symbol by relating it to the decimal system.
Figure 1-2 shows that the place value of each

digit position in the binary system is two times
the place value of the position adjacent to it on

the right. Compare this with figure 1-1, in

which the base is ten rather than two.

Figure 1-2. Digit positions
in the binary system.

Placing the digits of the number 101 in their

respective blocks on figure 1-2, we find that

101 means "one four plus no twos plus one unit."

Thus 101 is the binary equivalent of decimal 5.

If we wish to convert a decimal number, such

as 7, to its binary equivalent, we must break it

into parts which are multiples of 2. Since 7 is

equal to 4 plus 2 plus 1, we say that it "con-

tains" one 4, one 2, and one unit. Therefore
the binary symbol for decimal 7 is 111.

The most common use of the binary number

system is in electronic digital computers. All

data fed to a typical electronic digital computer
is converted to binary form and the computer

performs its calculations using binary arith-

metic rather than decimal arithmetic. One of

the reasons for this is the fact that electrical

and electronic equipment utilizes many switch-

ing circuits in which there are only two operat-

ing conditions. Either the circuit is "on" or it

is "off," and a two-digit number system is

ideally suited for symbolizing such a situation.

Details concerning binary arithmetic are be-

yond the scope of this volume, but are available

in Mathematics, Volume 3, NavPers 10073, and

in Basic Electonics, NavPers 10087 -A.

Practice problems:
1. Write the decimal equivalents of the binary

numbers 1101, 1010, 1001, and 1111.

2. Write the binary equivalents of the decimal

numbers 12, 7, 14, and 3.

Answers:
1. 13, 10, 9, and 15

2. 1100, 111, 1110, and 11



SETS

Any serious study of mathematics leads the

student to investigate more than one text and

more than one way of approaching each new
topic. At the time of printing of this course,
much emphasis is being placed on so-called

modern math in the public schools. Conse-

quently, the trainee who uses this course is

likely to find considerable material, in his par-
allel reading, which uses the ideas and termi-

nology of the "new" math.
In the following paragraphs, a very brief in-

troduction to some of the set theory of modern
math is presented. Although the remainder of

this course is not based on set theory, this brief

introduction should help in making the transi-

tion from traditional methods to newer, experi-
mental methods.

DEFINITIONS AND SYMBOLS

The word "set" implies a collection or group-
ing of similar objects or symbols. The objects
in a set have at least one characteristic in com-
mon, such as similarity of appearance or pur-
pose. A set of tools would be an example of a

group of objects not necessarily similar in ap-
pearance but similar in purpose. The objects
or symbols in a set are called members or

ELEMENTS of the set.

The elements of a mathematical set are usu-

ally symbols, such as numerals, lines, or points.
For example, the integers greater thanzero and
less than 5 form a set, as follows:

{1, 2, 3, 4}

Notice that braces are used to indicate sets.

This is often done where the elements of the set

are not too numerous.
Since the elements of the set {2, 4, 6} are

the same as the elements of {4, 2, 6}, these two

sets are said to be equal. In other words, equal-

ity between sets has nothing to do with the order
in which the elements are arranged. Further-

more, repeated elements are not necessary.
That is, the elements of {2, 2, 3, 4} are simply

2, 3, and 4. Therefore the sets (2, 3, 4} and

{2, 2, 3, 4} are equal.

Practice problems:
1. Use the correct symbols to designate the set

of odd positive integers greater than and
less than 10.

2. Use the correct symbols to designate the set

of names of days of the week which do not

contain the letter "s".

3. List the elements of the set of natural num-
bers greater than 15 and less than 20.

4. Suppose that we have sets as follows:

A ={1,2,3} C ={1,2,3,4}

B ={1,2,2,3} D = {l, 1,2,3}

Which of these sets are equal ?

Answers:
1.

jl, 3,5,7, 9}
2. {Monday, Friday}
3. 16, 17, 18, and 19

4. A = B = D

SUBSETS

Since it is inconvenient to enumerate all of

the elements of a set each time the set is men-
tioned, sets are often designated by a letter.

For example, we could let S represent the set

of all integers greater than and less than 10.

In symbols, this relationship could be stated

as follows:

S ={1,2,3,4,5,6,7,8,9}

Now suppose that we have another set, T,
which comprises all positive even integers less

than 10. This set is then defined as follows:

T ={2,4,6, 8}

Notice that every element of T is also an ele-

ment of S. This establishes the SUBSET rela-

tionship; T is said to be a subset of S.

POSITIVE INTEGERS

The most fundamental set of numbers is the

set of positive integers. This set comprises
the counting numbers (natural numbers) and in-

cludes, as subsets, all of the sets of numbers
which we have discussed. The set of natural

numbers has an outstanding characteristic: it

is infinite. This means that the successive
elements of the set continue to increase in size

without limit, each number being larger by 1

than the number preceding it. Therefore there
is no "largest" number; any number that we
might choose as larger than all others could be



increased to a larger number simply by adding
1 to it.

One way to represent the set of natural num-
bers symbolically would be as follows:

{1,2,3,4,5,6,...}

The three dots, called ellipsis, indicate that the

pattern established by the numbers shown con-
tinues without limit. In other words, the next
number in the set is understood to be 7, the

next after that is 8, etc.

POINTS AND LINES

In addition to the many sets which can be
formed with number symbols, we frequently
find it necessary in mathematics to work with
sets composed of points or lines.

A point is an idea, rather than a tangible ob-

ject, just as a number is. The mark which is

made on a piece of paper is merely a symbol
representing the point. In strict mathematical

terms, a point has no dimensions (physical size)
at all. Thus a pencil dot is only a rough picture
of a point, useful for indicating the location of

the point but certainly not to be confused with
the idea.

Now suppose that a large number of points
are placed side by side to form a "string."

Picturing this arrangement by drawing dots on

paper, we would have a "dotted line." If more
dots were placed between the dots already in

the string, with the number of dots increasing
until we could not see between them, we would
have a rough picture of a line. Once again, it

is important to emphasize that the picture is

only a symbol which represents an ideal line.

The ideal line would have length but no width or
thickness.

The foregoing discussion leads to the con-
clusion that a line is actually a set of points.
The number of elements in the set is infinite,
since the line extends in both directions without
limit.

The idea of arranging points together to

form a line may be extended to the formation of

planes (flat surfaces). A mathematical plane
is determined by three points which do not lie

on the same line. It is also determinedby two

intersecting lines.

Line Segments and Rays

When we draw a "line," label its end points
A and B, and call it "line AB," we really mean
LINE SEGMENT AB. A line segment is a sub-
set of the set of points comprising a line.

When a line is considered to have a starting

point but no stopping point (that is, it extends

without limit in one direction), it is called a

RAY. A ray is not a line segment, because it

does not terminate at both ends; it may be ap-

propriate to refer to a ray as a "half-line."

THE NUMBER LINE

As in the case of a line segment, a ray is a

subset of the set of points comprising a line.

All three lines, line segments, and rays are
subsets of the set of points comprising a plane.

Among the many devices used for represent-

ing a set of numbers, one of the most useful is

the number line. To illustrate the construction

of a number line, let us place the elements of

the set of natural numbers in one-to-one cor-

respondence with points on a line. Since the

natural numbers are equally spaced, we select

points such that the distances between them are

equal. The starting point is labeled 0, the next

point is labeled 1, the next 2, etc., using the

natural numbers in normal counting order. (See

fig. 1-3.) Such an arrangement is often referred

to as a scale, a familiar example being the

scale on a thermometer.

Thus far in our discussion, we have not men-
tioned any numbers other than integers. The
number line is an ideal device for picturing the

Figure 1-3. A number line.
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relationship between integers and other num-
bers such as fractions and decimals. It is clear
that many points, other than those representing
integers, exist on the number line. Examples
are the points representing the numbers 1/2

(located halfway between and 1) and 2.5 (lo-

cated halfway between 2 and 3).

An interesting question arises, concerning
the "in-between" points on the number line:

How many points (numbers) exist between any
two integers? To answer this question, suppose
that we first locate the point halfway between
and 1, which corresponds to the number 1/2.
Then let us locate the point halfway between
and 1/2, which corresponds to the number 1/4.
The result of the next such halving operation
would be 1/8, the next 1/16, etc. If we need
more space to continue our halving operations
on the number line, we can enlarge our "pic-
ture" and then continue.

It soon becomes apparent that the halving
process could continue indefinitely; that is,
without limit. In other words, the number of

points between and 1 is infinite. The same is

true of any other interval on the number line.

Thus, between any two integers there is an infi-

nite set of numbers other than integers. If this

seems physically impossible, considering that

even the sharpest pencil point has some width,
remember that we are working with ideal points,
which have no physical dimensions whatsoever.

Although it is beyond the scope of this course
to discuss such topics as orders of infinity, it

is interesting to note that the set of integers
contains many subsets which are themselves
infinite. Not only are the many subsets of num-
bers other than integers infinite, but also such
subsets as the set of all odd integers and the

set of all even integers. By intuition we see
that these two subsets are infinite, as follows:

If we select a particular odd or even integer
which we think is the largest possible, a larger
one can be formed immediately by merely
adding 2.

Perhaps the most practical use for the num-
ber line is in explaining the meaning of nega-
tive numbers. Negative numbers are discussed
in detail in chapter 3 of this course.



CHAPTER 2

POSITIVE INTEGERS

The purpose of this chapter is to review the

methods of combining integers. We have al-

ready used one combination process in our dis-
cussion of counting. We will extend the idea of

counting, which is nothing more than simple ad-

dition, to develop a systematic method for add-

ing numbers of any size. We will also learn
the meaning of subtraction, multiplication, and
division.

ADDITION AND SUBTRACTION

In the following discussion, it is assumed
that the reader knows the basic addition and
subtraction tables, which present such facts as
the following: 2 + 3 =

5, 9 + 8 = 17, 8-3 =
5,

etc.

The operation of addition is indicated by a

plus sign (+) as in 8 + 4 = 12. The numbers 8

and 4 are ADDENDS and the answer (12) is their
SUM. The operation of subtraction is indicated

by a minus sign (-) as in 9 - 3 = 6. The number
9 is the MINUEND, 3 is the SUBTRAHEND, and
the answer (6) is their DIFFERENCE.

REGROUPING

Addition may be performed with the addends

arranged horizontally, if they are small enough
and not too numerous. However, the most com-
mon method of arranging the addends is to place
them in vertical columns. In this arrangement,
the units digits of all the addends are alined

vertically, as are the tens digits, the hundreds

digits, etc. The following example shows three
addends arranged properly for addition:

357

1,845
22

It is customary to draw a line below the last

addend, placing the answer below this line. Sub-
traction problems are arranged in columns in

the same manner as for addition, with a line at

the bottom and the answer below this line.

Carry and Borrow

Problems involving several addends, with

two or more digits each, usually produce sums
in one or more of the columns which are greater
than 9. For example, suppose that we perform
the following addition:

357
845
22

1,224

The answer was found by a process called

"carrying." In this process extra digits, gen-
erated when a column sum exceeds 9, are car-

ried to the next column to the left and treated

as addends in that column. Carrying may be

explained by grouping the original addends.
For example, 357 actually means 3 hundreds

plus 5 tens plus 7 units. Rewriting the problem
with each addend grouped in terms of units,

tens, etc., we would have the following:

300 +50+7
800 +40+5

20+2

1,100 + 110 + 14

The "extra" digit in the units column of the

answer represents 1 ten. We regroup the col-

umns of the answer so that the units column has

no digits representing tens, the tens column has

no digits representing hundreds, etc., as follows:

1,100 + 110 + 14 = 1,100 + 110+10 + 4
= 1,100 + 120 + 4

= 1,100 + 100 + 20 + 4
= 1,200 + 20 + 4

= 1,000 + 200 + 20 + 4
= 1,224

When we carry the 10 from the expression
10 + 4 to the tens column and place it with the

110 to make 120, the result is the same as if



we had added 1 to the digits 5, 4, and 2 in the

tens column of the original problem. There-

fore, the thought process in addition is as fol-

lows: Add the 7, 5, and 2 in the units column,
getting a sum of 14. Write down the 4 in the

units column of the answer and carry the 1 to

the tens column. Mentally add the 1 along with

the other digits in the tens column, getting a
sum of 12. Write down the 2 in the tens column
of the answer and carry the 1 to the hundreds
column. Mentally add the 1 along with the other

digits in the hundreds column, getting a sum of

12. Write down the 2 in the hundreds column of

the answer and carry the 1 to the thousands
column. If there were other digits in the thou-

sands column to which the 1 could be added, the

process would continue as before. Since there
are no digits in the thousands column of the

original problem, this final 1 is not added to

anything, but is simply written in the thousands

place in the answer.
The borrow process is the reverse of carry-

ing and is used in subtraction. Borrowing is

not necessary in such problems as 46 - 5 and
58 - 53. In the first problem, the thought proc-
ess may be "5 from 6 is 1 and bring down the 4

to get the difference, 41." In the second prob-
lem, the thought process is "3 from 8 is 5" and
"5 from 5 is zero," and the answer is 5. More
explicitly, the subtraction process in these ex-

amples is as follows:

40+ 1 =41

50 + 8

50 + 3

0+5 = 5

This illustrates that we are subtracting units

from units and tens from tens.

Now consider the following problem where
borrowing is involved:

43
8

If the student uses the borrowing method, he

may think "8 from 13 is 5 and bring down 3 to

get the difference, 35." In this case what actu-

ally was done is as follows:

30 + 13

8

30 + 5 = 35

A 10 has been borrowed from the tens column
and combined with the 3 in the units column to

make a number large enough for subtraction of

the 8. Notice that borrowing to increase the

value of the digit in the units column reduces
the value of the digit in the tens column by 1.

Sometimes it is necessary to borrow in more
than one column. For example, suppose that we
wish to subtract 2,345 from 5,234. Grouping
the minuend and subtrahend in units, tens, hun-

dreds, etc., we have the following:

5,000 + 200+30 + 4

2,000 + 300 + 40+5

Borrowing a 10 from the 30 in the tens column,
we regroup as follows:

5,000 + 200 + 20+14
2,000 + 300 + 40 + 5

The units column is now ready for subtrac-
tion. By borrowing from the hundreds column,
we can regroup so that subtraction is possible
in the tens column, as follows:

5,000 + 100 + 120 + 14

2,000 + 300 + 40 + .5

In the final regrouping, we borrow from the

thousands column to make subtraction possible
in the hundreds column, with the foilowing result:

4,000 + 1,100 + 120 + 14

2,000 + 300+40+5

2,000+ 800 + 80+ 9 = 2,889

In actual practice, the borrowing and re-

grouping are done mentally. The numbers are
written in the normal manner, as follows:

5,234

-2,345

2,889

The following thought process is used: Borrow
from the tens column, making the 4 become 14.

Subtracting in the units column, 5 from 14 is 9.

In the tens column, we now have a 2 in the min-
uend as a result of the first borrowing opera-
tion. Some students find it helpful at first to

cancel any digits that are reduced as a result
of borrowing, jotting down the digit of next lower



value just above the canceled digit.

been done in the following example:

4 12

This has

-2,345

2,889

After canceling the 3, we proceed with the

subtraction, one column at a time. We borrow
from the hundreds column to change the 2 that

we now have in the tens column into 12. Sub-

tracting in the tens column, 4 from 12 is 8.

Proceeding in the same way for the hundreds

column, 3 from 11 is 8. Finally, in the thou-

sands column, 2 from 4 is 2.

Practice problems. In problems 1 through
4, add the indicated numbers. In problems 5

through 8, subtract the lower number from the

upper.

1. Add 23, 468, 7, and 9,045.

2. 129 3.

5.

129

958

787
436

709
594

9,497

6,364

4,269

9,785

6. 8,700

5,008

Answers:

1.

5.

9,543
115

2.

6.

2,310

3,692

4. 67,856
22,851

44,238
97,156

7. 7,928

5,349

3. 29,915
7. 2,579

75,168
28,089

4. 232,101
8. 47,079

Denominate Numbers

Numbers that have a unit of measure asso-
ciated with them, such as yard, kilowatt, pound,
pint, etc., are called DENOMINATE NUMBERS.
The word "denominate" means the numbers
have been given a name; they are not just ab-

stract symbols. To add denominate numbers,
add all units of the same kind. Simplify the re-

sult, if possible. The following example illus-

trates the addition of 6 ft 8 in. to 4 ft 5 in.:

6ft
4ft

8 in.

5 in.

10 ft 13 in.

Since 13 in. is the equivalent of 1 ft 1 in., we
regroup the answer as 11 ft 1 in.

A similar problem would be to add 20 de-

grees 44 minutes 6 seconds to 13 degrees 22
minutes 5 seconds. This is illustrated as fol-

lows:

20 deg 44 min 6 sec
13 deg 22 min 5 sec

33 deg 66 min 11 sec

minThis answer is regrouped as 34 deg 6

11 sec.

Numbers must be expressed in units of the

same kind, in order to be combined. For in-

stance, the sum of 6 kilowatts plus 1 watt is not

7 kilowatts nor is it 7 watts. The sum can only
be indicated (rather than performing the opera-
tion) unless some method is used to write these

numbers in units of the same value.

Subtraction of denominate numbers also in-

volves the regrouping idea. If we wish to sub-

tract 16 deg 8 min 2 sec from 28 deg 4 min
3 sec, for example, we would have the following

arrangement:

28 deg 4 min 3 sec

-16 deg 8 min 2 sec

In order to subtract 8 min from 4 min we re-

group as follows:

27 deg 64 min 3 sec

-16 deg 8 min 2 sec

11 deg 56 min 1 sec

Practice problems. In problems 1, 2, and 3 add. In

problems 4, 5, and 6 subtract the lower number from
the upper.

1. 6yd

2yd

7 in.

9 in.

10 in.

2. 9hr 47 min 51 sec

3 hr 36 min 23 sec

5 hr 15 min 23 sec

4. 15 hr 25 min 10 sec

6 hr 50 min 35 sec

5. 125 deg
47 deg 9 min 14 sec

3. 10 wks 5 days 7 hrs 6. 20 wks 2 days 10 hrs

22 wks 3 days 10 hrs 7 wks 6 days 15 hrs

3 wks 4 days 12 hrs



Answers:

1. 9 yd 2 ft 2 in.

2. 18 hr 39 min 37 sec

3. 36 wks 6 days 5 hr

4. 8 hr 34 min 35 sec

5. 77 deg 50 min 46 sec

6. 12 wks 2 days 19 hr

Mental Calculation

Mental regrouping can be used to avoid the

necessity of writing down some of the steps, or

of rewriting in columns, when groups of one-

digit or two-digit numbers are to be added or

subtracted.

One of the most common devices for rapid
addition is recognition of groups of digits whose
"am is 10. For example, in the following prob-
(m two "ten groups" have been marked with

races:

10

To add this column as grouped, you would say
to yourself, "7, 17, 22, 32." The thought should

be just the successive totals as shown above
and not such cumbersome steps as "7 + 10, 17,

+ 5, 22, + 10, 32."

When successive digits appear in a column
and their sum is less than 10, it is often con-

venient to think of them, too, as a sum rather

than separately. Thus, if adding a column in

which the sum of two successive digits is 10 or

less, group them as follows:

10

The thought process here might be, as shown

by the grouping, "5, 14, 24."

Practice problems. Add the following col-

umns from the top down, as in the preceding
example:

1. 2

7

3

6

4

1

2. 4

6

7

8

1

8

3. 88

36

59

82

28

57

4. 57
32

64

97
79

44

Answers, showing successive mental steps:

1. 2, 12, 22, 23 - - Final answer, 23

2. 10, 17, 26, 34 - - Final answer, 34

3. Units column: 14, 23, 33, 40 - - Write down
0, carry 4.

Tens column: 12, 20, 30, 35 - - Final an-

swer, 350.

4. Units column: 9, 20, 29, 33 - - Write down
3, carry 3.

Tens column: 8, 17, 26, 37 - - Final an-

swer, 373.

SUBTRACTION. In an example such as
73 -

46, the conventional approach is to place
46 under 73 and subtract units from units and
tens from tens, and write only the difference

without the intermediate steps. To do this, the

best method is to begin at the left. Thus, in the

example 73 -
46, we take 40 from 73 and then

take 6 from the result. This is done mentally,

however, and the thought would be "73, 33, 27,"
or "33, 27." In the example 84 - 21 the thought
is "64, 63" and in the example 64 - 39 the thought
is "34, 25."

Practice problems. Mentally subtract and
write only the difference:

1. 47 - 24

2. 69 - 38

3. 87 - 58

4. 86 - 73

5. 82 - 41
6. 30 - 12

Answers, showing successive mental steps:

1. 27, 23 - - Final answer, 23
2. 39, 31 - - Final answer, 31
3. 37, 29 - - Final answer, 29
4. 16, 13 - - Final answer, 13

5. 42, 41 - - Final answer, 41
6. 20, 18 - - Final answer, 18

MULTIPLICATION AND DIVISION

Multiplication may be indicated by a multi-

plication sign (x) between two numbers, a dot

10



Between two numoers, or parenmeses arouna
one or both of the numbers to be multiplied. The

following examples illustrate these methods:

6x 8 = 48
6 8 = 48

6(8) = 48

(6)(8) = 48

Notice that when a dot is used to indicate

multiplication, it is distinguished from a deci-

mal point or a period by being placed above the

line of writing, as in example 2, whereas a

period or decimal point appears on the line.

Notice also that when parentheses are used to

indicate multiplication, the numbers to be mul-

tiplied are spaced closer together than they are
when the dot or x is used.

In each of the four examples just given, 6 is

the MULTIPLIER and 8 is the MULTIPLICAND.
Both the 6 and the 8 are FACTORS, and the

more modern texts refer to them this way. The
"answer" in a multiplication problem is the

PRODUCT; in the examples just given, the

product is 48.

Division usually is indicated either by a
division sign (+) or by placing one number over
another number with a line between the num-
bers, as in the following examples:

1. 8-4 = 2

2. |=2

The number 8 is the DIVIDEND, 4 is the DIVI-

SOR, and 2 is the QUOTIENT.

MULTIPLICATION METHODS
The multiplication of whole numbers may be

thought of as a short process of adding equal
numbers. For example, 6(5) and 6x5 are read
as six 5's. Of course we could write 5 six times
and add, but if we learn that the result is 30 we
can save time. Although the concept of adding
equal numbers is quite adequate in explaining
multiplication of whole numbers, it is only a

special case of a more general definition, which
will be explained later in multiplication involv-

ing fractions.

Grouping

Let us examine the process involved in mul-

tiplying 6 times 27 to get the product 162. We
first arrange the factors in the following manner:

x6

162

The thought process is as follows:

1. 6 times 7 is 42. Write down the 2 and

carry the 4.

2. 6 times 2 is 12. Add the 4 that was car-

ried over from step 1 and write the result, 16,
beside the 2 that was written in step 1.

3. The final answer is 162.

Table 2-1 shows that the factors were grouped
in units, tens, etc. The multiplication was done
in three steps: Six times 7 units is 42 units (or
4 tens and 2 units) and six times 2 tens is 12

tens (or 1 hundred and 2 tens). Then the tens

were added and the product was written as 162.

Table 2-1. Multiplying by a

one-digit number.

In preparing numbers for multiplication as

in table 2-1, it is important to place the digits

of the factors in the proper columns; that is,

units must be placed in the units column, tens

in tens column, and hundreds in hundreds col-

umn. Notice that it is not necessary to write

the zero in the case of 12 tens (120) since the 1

and 2 are written in the proper columns. In

practice, the addition is done mentally, and just
the product is written without the intervening

steps.

Multiplying a number with more than two

digits by a one-digit number, as shown in table

2-2, involves no new ideas. Three times 6 units

is 18 units (1 ten and 8 units), 3 times tens is

0, and 3 times 4 hundreds is 12 hundreds (1

11



thousand and 2 hundreds). Notice that it is not

necessary to write the O's resulting from the

step "3 times tens is 0." The two terminal
O's of the number 1,200 are also omitted, since

the 1 and the 2 are placed in their correct col-

umns by the position of the 4.

Partial Products

In the example, 6(8) = 48, notice that the

multiplying could be done another way to get
the correct product as follows:

6(3 + 5) = 6 x 3 + 6 x 5

That is, we can break 8 into 3 and 5, multiply
each of these by the other factor, and add the

partial products. This idea is employed in

multiplying by a two-digit number. Consider
the following example:

43
x27

1,161

Breaking the 27 into 20 + 7, we have 7 units

times 43 plus 2 tens times 43, as follows:

43(20 + 7) = (43)(7) + (43)(20)

Since 7 units times 43 is 301 units, and 2 tens

times 43 is 86 tens, we have the following:

86 = 8 hundreds, 6 tens

1,161

As long as the partial products are written

in the correct columns, we can multiply begin-

ning from either the left or the right of the

multiplier. Thus, multiplying from the left, we
have

43

x27

86

301

1,161

Multiplication by a number having more places
involves no new ideas.

End Zeros

The placement of partial products must be

kept in mind when multiplying in problems in-

volving end zeros, as in the following example:

1,080

We have units times 27 plus 4 tens times 27,

as follows:

27

x40

108

1,080

The zero in the units place plays an important
part in the reading of the final product. End
zeros are often called "place holders" since

their only function in the problem is to hold the

digit positions which they occupy, thus helping to

place the other digits in the problem correctly.
The end zero in the foregoing problem can

be accounted for very nicely, while at the same
time placing the other digits correctly, by means
of a shortcut. This consists of offsetting the 40
one place to the right and then simply bringing

12



down the 0, without using it as a multiplier at

all. The problem would appear as follows:

27
x40

1,080

If the problem involves a multiplier with
more than one end 0, the multiplier is offset as

many places to the right as there are end O's.

For example, consider the following multipli-
cation in which the multiplier, 300, has two
end O's:

220

x300

66,000

Notice that there are as many place-holding
zeros at the end in the product as there are

place-holding zeros in the multiplier and the

multiplicand combined.

Placement of Decimal Points

In any whole number in the decimal system,
there is understood to be a terminating mark,
called a decimal point, at the right-hand end of

the number. Although the decimal point is sel-

dom shown except in numbers involving decimal
fractions (covered in chapter 5 of this course),
its location must be known. The placement of

the decimal point is automatically taken care of

when the end O's are correctly placed.
Practice problems. Multiply in each of the

following problems:

1. 287 x 8

2. 67x49
3. 940 x 20

Answers:

1. 2,296
2. 3,283
3. 18,800

DIVISION METHODS

4. 807 x 28

5. 694 x 80

6. 9,241 x 7,800

4. 22,596
5. 55,520
6. 72,079,800

Just as multiplication can be considered as

repeated addition, division can be considered as

repeated subtraction. For example, if we wish
to divide 12 by 4 we may subtract 4 from 12 in

successive steps and tally the number of times
that the subtraction is performed, as follows:

12

_
*

8

4 *

As indicated by the asterisks used as tally

marks, 4 has been subtracted 3 times. This
result is sometimes described by saying that

"4 is contained in 12 three times."

Since successive subtraction is too cumber-
some for rapid, concise calculation, methods
which treat division as the inverse of multipli-
cation are more useful. Knowledge of the mul-

tiplication tables should lead us to an answer
for aproblem such as 12 * 4 immediately, since

we know that 3 x 4 is 12. However, a problem
such as 84 + 4 is not so easy to solve by direct

reference to the multiplication table.

One way to divide 84 by 4 is to note that 84

is the same as 80 plus 4. Thus 84 + 4 is the

same as 80 * 4 plus 4 + 4. In symbols, this can

be indicated as follows:

(When this type of division symbol is used, the

quotient is written above the vinculum as shown.)

Thus, 84 divided by 4 is 21.

From the foregoing example, it can be seen

that the regrouping is useful in division as well

as in multiplication. However, the mechanical

procedure used in division does not include

writing down the regrouped form of the divi-

dend. After becoming familiar with the proc-

ess, we find that the division can be performed
directly, one digit at a time, with the regrouping

taking place mentally. The following example
illustrates this:

14

4/56

4_

16

16

The thought process is as follows: "4 is con-

tained in 5 once" (write 1 in tens place over

the 5); "one times 4 is 4" (write 4 in tens place

13
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under 5, take the difference, and bring down 6);

and "4 is contained in 16 four times" (write 4

in units place over the 6). After a little prac-

tice, many people can do the work shown under

the dividend mentally and write only the quo-

tient, if the divisor has only 1 digit.
The divisor is sometimes too large to be

contained in the first digit of the dividend. The

following example illustrates a problem of this

kind:

Since 2 is not large enough to contain 7, we
divide 7 into the number formed by the first two

digits, 25. Seven is contained 3 times in 25; we
write 3 above the 5 of the dividend. Multiplying,
3 times 7 is 21; we write 21 below the first two

digits of the dividend. Subtracting, 25 minus 21

is 4; we write down the 4 and bring down the 2

in the units place of the dividend. We have now
formed a new dividend, 42. Seven is contained

6 times in 42; we write 6 above the 2 of the

dividend. Multiplying as before, 6 times 7 is 42;

we write this product below the dividend 42.

Subtracting, we have nothing left and the divi-

sion is complete.

Estimation

When there are two or more digits in the

divisor, it is not always easy to determine the

first digit of the quotient. An estimate must be

made, and the resulting trial quotient may be

too large or too small. For example, if 1,862
is to be divided by 38, we might estimate that

38 is contained 5 times in 186 and the first digit

of our trial divisor would be 5 . However, mul-

tiplication reveals that the product of 5 and 38

is larger than 186. Thus we would change the 5

in our quotient to 4, and the problem would then

appear as follows:

On the other hand, suppose that we had esti-

mated that 38 is contained in 186 only 3 times.

We would then have the following:

38

3

T862
114

72

Now, before we make any further moves in the

division process, it should be obvious that some-

thing is wrong. If our new dividend is large
enough to contain the divisor before bringing
down a digit from the original dividend, then the

trial quotient should have been larger . In other

words, our estimate is too small.

Proficiency in estimating trial quotients is

gained through practice and familiarity with
number combinations. For example, after a
little experience we realize that a close esti-

mate can be made in the foregoing problem by
thinking of 38 as "almost 40." It is easy to see
that 40 is contained 4 times in 186, since 4
times 40 is 160. Also, since 5 times 40 is 200,
we are reasonably certain that 5 is too large
for our trial divisor.

Uneven Division

In some division problems such as 7*3,
there is no other whole number that, when mul-

tiplied by the divisor, will give the dividend.

We use the distributive idea to show how divi-

sion is done in such a case. For example, 7-^3
could be written as follows:

Thus, we see that the quotient also carries one
unit that is to be divided by 3. It should now be
clear that 3/37 = 3/30 + 7, and that this can be
further reduced as follows:

30
3

- + - = 1033 2 +i= 12 4-

In elementary arithmetic the part of the divi-

dend that cannot be divided evenly by the divisor
is often called a REMAINDER and is placed
next to the quotient with the prefix R. Thus, in

the foregoing example where the quotient was



method of indicating uneven division is useful
in examples such as the following:

Suppose that $13 is available for the pur-
chase of spare parts, and the parts needed cost

$3 each. Four parts can be bought with the

available money, and $1 will be left over. Since
it is not possible to buy 1/3 of a part, express-
ing the result as 4 R 1 gives a more meaningful
answer than 4 1/3.

Placement of Decimal Points

In division, as in multiplication, the place-
ment of the decimal point is important. Deter-

mining the location of the decimal point and the

number of places in the quotient can be rela-

tively simple if the work is kept in the proper
columns. For example, notice the vertical
alinement in the following problem:

We notice that the first two places in the divi-

dend are used to obtain the first place in the

quotient. Since 3 is in the hundreds column
there are two more places in the quotient (tens

place and units place). The decimal point in the

quotient is understood to be directly above the

position of the decimal point in the dividend. In

the example shown here, the decimal point is

not shown but is understood to be immediately
after the second 1.

Checking Accuracy

The accuracy of a division of numbers can
be checked by multiplying the quotient by the

divisor and adding the remainder, if any. The
result should equal the dividend. Consider the

following example:

5203
42/218541

210

85
84

Check:

141
126

15

5203
x 42

10406
20812

218526
+ 15

218541

DENOMINATE NUMBERS

We have learned that denominate numbers
are not difficult to add and subtract, provided
that units, tens, hundreds, etc., are retained in

their respective columns. Multiplication and
division of denominate numbers may also be

performed with comparative ease, by using the

experience gained in addition and subtraction.

Multiplication

In multiplying denominate numbers by inte-

gers, no new ideas are needed. If in the prob-
lem 3(5 yd 2 ft 6 in.) we remember that we can

multiply each part separately to get the correct

product (as in the example, 6(8) = 6(3) + 6(5)),
we can easily find the product, as follows:

5 yd 2 ft 6 in.

x 3

15 yd 6 ft 18 in.

Simplifying, this is

17 yd 1 ft 6 in.

When one denominate number is multiplied

by another, a question arises concerning the

products of the units of measurement. The
product of one unit times another of the same
kind is one square unit. For example, 1 ft

times 1 ft is 1 square foot, abbreviated sq ft;

2 in. times 3 in. is 6 sq in.; etc. If it becomes
necessary to multiply such numbers as 2 yd 1 ft

times 6 yd 2 ft, the foot units may be converted
to fractions of a yard, as follows:

(2 yd 1 ft)(6 yd 2 ft)
= (2 1/3 yd)(6 2/3 yd)

In order to complete the multiplication, a

knowledge of fractions is needed. Fractions
are discussed in chapter 4 of this training
course.

Division

The division of denominate numbers requires
division of the highest units first; and if there
is a remainder, conversion to the next lower

unit, and repeated division until all units have
been divided.

In the example (24 gal 1 qt 1 pt) -s- 5, we per-
form the following steps:
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Step 1: 4 gal
5/24 gal

20

4 gal (left over)

Step 2: Convert the 4 gal left over to 16 qt and
add to the 1 qt.

Step 3: 3qt
5/TTqt

15

2 qt (left over)

Step 4: Convert the 2 qt left over to 4 pt and
add to the 1 pt.

Step 5:

Therefore, 24 gal 1 qt 1 pt divided by 5 is

4 gal 3 qt 1 pt.

Practice problems. In problems 1 through 4,

divide as indicated. In problems 5 through 8,

multiply or divide as indicated.

1. 549 + 9

2. 470/63

3. 25/^300

4. 64/74,816

Answers:

1. 61

2. 7 R 29

3. 92

4. 1,169

5. 4 hr 26 min 16 sec
x 5

6. 3(4 gal 3 qt 1 pt)

7. 67 deg 43 min 12 sec

8. 5/63 Ib 11 oz

5. 22 hr 11 min 20 sec

6. 14 gal 2 qt 1 pt

7. 33 deg 51 min 36 sec

8. 12 Ib 11 4/5 oz

ORDER OF OPERATIONS

When a series of operations involving addi-

tion, subtraction, multiplication, or division is

indicated, the order in which the operations are

performed is important only if division is in-

volved or if the operations are mixed. A se-

ries of individual additions, subtractions, or

multiplications may be performed in any order.

Thus, in

4 + 2 + 7 + 5 = 18

or

or

100 - 20 - 10 - 3 = 67

4x2x7x5= 280

the numbers may be combined in any order de-
sired. For example, they may be grouped easily
to give

and

and

6 + 12 = 18

97 - 30 = 67

40 x 7 = 280

A series of divisions should be taken in the
order written.

Thus,

100 H- 10 * 2 = 10 + 2 = 5

In a series of mixed operations, perform multi-

plications and divisions in order from left to right, then

perform additions and subtractions in order from left

to right.

For example

100 -* 4 x 5 = 25 x 5 = 125

and

60 - 25 + 5 = 60 - 5 = 55

Now consider

60 - 25 - 5 + 15 - 100 + 4 x 10
= 60 - 5 + 15 - 100 + 4 x 10
= 60 - 5 + 15 - 100 4- 40
= 115 - 105
= 10



Practice problems. Evaluate each of the

following expressions:

1. 9 4 3 + 2

2. 18 - 2 x 5 + 4

3. 90 + 2 + 9

4. 75 + 5 x 3 + 5

5. 7+1-8x4+16

Answers:

1. 5

2. 12

3. 5

4. 9

5. 6

MULTIPLES AND FACTORS

Any number that is exactly divisible by a

given number is a MULTIPLE of the given
number. For example, 24 is a multiple of 2, 3,

4, 6, 8, and 12, since it is divisible by each of

these numbers. Saying that 24 is a multiple of

3, for instance, is equivalent to saying that 3

multiplied by some whole number will give 24.

Any number is a multiple of itself and also of 1 .

Any number that is a multiple of 2 is an
EVEN NUMBER. The even numbers begin with
2 and progress by 2's as follows:

2,4,6,8, 10, 12, ...

Any number that is not a multiple of 2 is an
ODD NUMBER. The odd numbers begin with 1

and progress by 2's, as follows:

1, 3, 5, 7, 9, 11, 13, ...

Any number that can be divided into a given
number without a remainder is a FACTOR of

the given number. The given number is a mul-

tiple of any number that is one of its factors.

For example, 2, 3, 4, 6, 8, and 12 are factors

of 24. The following four equalities show vari-

ous combinations of the factors of 24:

24 = 24

24 = 12

1

2

24 = 8 3

24 = 6 4

K the number 24 is factored as completely as

possible, it assumes the form

24 = 2 2 2 3

ZERO AS A FACTOR

If any number is multiplied by zero, the

product is zero. For example, 5 times zero
equals zero and may be written 5(0) = 0. The
zero factor law tells us that, if the product of

two or more factors is zero, at least one of the
factors must be zero.

PRIME FACTORS
A number that has factors other than itself

and 1 is a COMPOSITE NUMBER. For exam-
ple, the number 15 is composite. It has the
factors 5 and 3.

A number that has no factors except itself

and 1 is a PRIME NUMBER. Since it is some-
times advantageous to separate a composite
number into prime factors, it is helpful to be
able to recognize a few prime numbers quickly.
The following series shows all the prime num-
bers up to 60:

2, 3, 5, 1, 11, 13, 17, 19, 23, 29, 31, 37,41,
43,47,53,59.

Notice that 2 is the only even prime number.
All other even numbers are divisible by 2.

Notice also that 51, for example, does not ap-
pear in the series, since it is a composite num-
ber equal to 3 x 17.

K a factor of a number is prime, it is called
a PRIME FACTOR. To separate a number into

prime factors, begin by taking out the smallest
factor. If the number is even, take out all the
2's first, then try 3 as a factor, etc. Thus, we
have the following example:

540 = 2 270
=2-2-135
=2-2-3-45
= 2 2 3 3 15
= 2-2- 3-3-3-5

Since 1 is an understood factor of every num-,
ber, we do not waste space recording it as one
of the factors in a presentation of this kind.

A convenient way of keeping track of the

prime factors is in the short division process
as follows:

2/54Q

2/2IQ

3/45
3/15

5/5_
1

17



If a number is odd, its factors will be odd

numbers. To separate an odd number into

prime factors, take out the 3's first, if there

are any. Then try 5 as a factor, etc. As an

example,

5,775 = 3 1,925
=3-5-385
=3-5-5-77
= 3 5 5 7 11

Practice problems:

1. Which of the following are prime numbers
and which are composite numbers?

25, 7, 18, 29, 51

2. What prime numbers are factors of 36?

3. Which of the following are multiples of 3?

45, 53, 51, 39, 47

4. Find the prime factors of 27.

Answers:

1. Prime: 7, 29

Composite: 25, 18, 51

2. 36 = 2 2 3 3

3. 45, 51, 39

4. 27 = 3 3 3

Tests for Divisibility

It is often useful to be able to tell by inspec-
tion whether a number is exactly divisible by
one or more of the digits from 2 through 9. An
expression which is frequently used, although it

is sometimes misleading, is "evenly divisible."

This expression has nothing to do with the con-

cept of even and odd numbers, and it probably
should be avoided in favor of the more descrip-
tive expression, "exactly divisible." For the re-
mainder of this discussion, the word "divisible"

has the same meaning as "exactly divisible."

Several tests for divisibility are listed in the

following paragraphs:
1. A number is divisible by 2 if its right-

hand digit is even.

2. A number is divisible by 3 if the sum of

its digits is divisible by 3. For example, the

digits of the number 6,561 add to produce the

sum 18. Since 18 is divisible by 3, we know
that 6,561 is divisible by 3.

3. A number is divisible by 4 if the number
formed by the two right-hand digits is divisible

by 4. For example, the two right-hand digits of

the number 3,524 form the number 24. Since

24 is divisible by 4, we know that 3,524 is di-

visible by 4.

4. A number is divisible by 5 if its right-
hand digit is or 5.

5. A number is divisible by 6 if it is even

and the sum of its digits is divisible by 3. For

example, the sum of the digits of 64,236 is 21,
which is divisible by 3. Since 64,236 is also an

even number, we know that it is divisible by 6.

6. No short method has been found for de-

termining whether a number is divisible by 7.

7. A number is divisible by 8 if the number
formed by the three right-hand digits is divisi-

ble by 8. For example, the three right-hand

digits of the number 54,272 form the number

272, which is divisible by 8. Therefore, we
know that 54,272 is divisible by 8.

8. A number is divisible by 9 if the sum of

its digits is divisible by 9. For example, the

sum of the digits of 546,372 is 27, which is di-

visible by 9. Therefore we know that 546,372
is divisible by 9.

Practice problems. Check each of the fol-

lowing numbers for divisibility by all of the

digits except 7:

1. 242,431,231,320
2. 844,624,221,840
3. 988,446,662,640
4. 207,634,542,480

Answers: All of these numbers are divisible

by 2, 3, 4, 5, 6, 8, and 9.
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CHAPTER 3

SIGNED NUMBERS

The positive numbers with which we have
worked in previous chapters are not sufficient

for every situation which may arise. For ex-

ample, a negative number results in the opera-
tion of subtraction when the subtrahend is larger
than the minuend.

NEGATIVE NUMBERS

When the subtrahend happens to be larger
than the minuend, this fact is indicated by plac-
ing a minus sign in front of the difference, as
in the following:

12 - 20 = -8

The difference, -8, is said to be NEGATIVE. A
number preceded by a minus sign is a NEGA-
TIVE NUMBER. The number -8 is read "minus

eight." Such a number might arise when we
speak of temperature changes. If the tempera-
ture was 12 degrees yesterday and dropped 20

degrees today, the reading today would be
12 - 20, or -8 degrees.

Numbers that show either a plus or minus

sign are called SIGNED NUMBERS. An un-

signed number is understood to be positive and
is treated as though there were a plus sign
preceding it.

If it is desired to emphasize the fact that a
number is positive, a plus sign is placed in

front of the number, as in +5, which is read

"plus five." Therefore, either +5 or 5 indi-

cates that the number 5 is positive. If a num-
ber is negative, a minus sign must appear in

front of it, as in -9.

In dealing with signed numbers it should be

emphasized that the plus and minus signs have
two separate and distinct functions. They may
indicate whether a number is positive or nega-
tive, or they may indicate the operation of ad-
dition or subtraction.

When operating entirely with positive num-
bers, it is not necessary to be concerned with

this distinction since plus or minus signs indi-

cate only addition or subtraction. However,
when negative numbers are also involved in a

computation, it is important to distinguish be-
tween a sign of operation and the sign of a
number.

DIRECTION OF MEASUREMENT

Signed numbers provide a convenient way of

indicating opposite directions with a minimum
of words. For example, an altitude of 20ft
above sea level could be designated as +20 ft.

The same distance below sea level would then

be designated as -20 ft. One of the most com-
mon devices utilizing signed numbers to indicate

direction of measurement is the thermometer.

Thermometer

The Celsius (centigrade) thermometer shown
in figure 3-1 illustrates the use of positive and

negative numbers to indicate direction of travel

above and below 0. The mark is the change-
over point, at which the signs of the scale num-
bers change from - to +.

When the thermometer is heated by the sur-

rounding air or by a hot liquid in which it is

placed, the mercury expands and travels up the

tube. After the expanding mercury passes 0,

the mark at which it comes to rest is read as a

positive temperature. If the thermometer is

allowed to cool, the mercury contracts. After

passing in its downward movement, any mark
at which it comes to rest is read as a negative

temperature.

Rectangular Coordinate System

As a matter of convenience, mathematicians
have agreed to follow certain conventions as to

the use of signed numbers in directional meas-
urement. For example, in figure 3-2, a direc-

tion to the right along the horizontal line is

positive, while the opposite direction (toward
the left) is negative. On the vertical line, di-

rection upward is positive, while direction

downward is negative. A distance of -3 units

along the horizontal line indicates a measure-
ment of 3 units to the left of starting point 0, A
distance of -3 units on the vertical line indicates
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Figure 3-1. Celsius (centigrade)

temperature scale.

a measurement of 3 units below the starting

point.
The two lines of the rectangular coordinate

system which pass through the position are
the vertical axis and horizontal axis. Other
vertical and horizontal lines may be included,

forming a grid. When such a grid is used for

the location of points and lines, the resulting

"picture" containing points and lines is called a
GRAPH.

STARTING POINr

I 2. 3

Figure 3-2. Rectangular
coordinate system.

The Number Line

Sometimes it is important to know the rela-

tive greatness (magnitude) of positive and nega-
tive numbers. To determine whether a partic-
ular number is greater or less than another

number, think of all the numbers both positive
and negative as being arranged along a hori-

zontal line. (See fig. 3-3.)

-5 -4 -3 -2 -I + 1 +E +3 +4 +5

Figure 3-3. Number line showing both

positive and negative numbers.

Place zero at the middle of. the line. Let the

positive numbers extend from zero toward the

right. Let the negative numbers extend from
zero toward the left. With this arrangement,
positive and negative numbers are so located

that they progress from smaller to larger num-
bers as we move from left to right along the

line. Any number that lies to the right of a

given number is greater than the given number.
A number that lies to the left of a given number
is less than the given number. This arrange-
ment shows that any negative number is smaller
than any positive number.

The symbol for "greater than" is >. The

symbol for "less than" is <. It is easy to dis-

tinguish between these symbols because the

symbol used always opens toward the larger
number. For example, "7 is greater than 4"

can be written 7 > 4 and "-5 is less than -1"

can be written -5 < -1.
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Absolute Value

The ABSOLUTE VALUE of a number is its

numerical value when the sign is dropped. The
absolute value of either +5 or -5 is 5. Thus,
two numbers that differ only in sign have the

same absolute value.

The symbol for absolute value consists of

two vertical bars placed one on each side of the

number, as in
I
-5

I

= 5. Consider also the

following:

I 4 - 20
I

= 16

|+7| = |-7| = 7

The expression |
-7

|

is read "absolute value of

minus seven."
When positive and negative numbers are

used to indicate direction of measurement, we
are concerned only with absolute value, if we
wish to know only the distance covered. For

example, in figure 3-2, if an object moves to

the left from the starting point to the point in-

dicated by -2, the actual distance covered is 2

units. We are concerned only with the fact that

1-2 |

=
2, if our only interest is in the distance

and not the direction.

OPERATING WITH SIGNED NUMBERS

The number line can be used to demonstrate
addition of signed numbers. Two cases must
be considered; namely, adding numbers with

like signs and adding numbers with unlike signs.

ADDING WITH LIKE SIGNS

As an example of addition with like signs,

suppose that we use the number line (fig. 3-4)

to add 2 + 3. Since these are signed numbers,
we indicate this addition as (+2) + (+3). This

emphasizes that, among the three + signs shown,
two are number signs and one is a sign of

operation. Line a (fig. 3-4) above the number
line shows this addition. Find 2 on the number
line. To add 3 to it, go three units more in a

positive direction and get 5.

To add two negative numbers on the number
line, such as -2 and -3, find -2 on the number
line and then go three units more in the nega-
tive direction to get -5, as in b (fig. 3-4) above
the number line.

Observation of the results of the foregoing

operations on the number line leads us to the

following conclusion, which may be stated as a

law: To add numbers with like signs, add the

absolute values and prefix the common sign.

ADDING WITH UNLIKE SIGNS

To add a positive and a negative number,
such as (-4) + (+5), find +5 on the number line

and go four units in a negative direction, as in

line c above the number line in figure 3-4.

Notice that this addition could be performed in

the other direction. That is, we could start at

-4 and move 5 units in the positive direction.

(See line d, fig. 3-4.)
The results of our operations with mixed

signs on the number line lead to the following

conclusion, which maybe stated as a law: To
add numbers with unlike signs, find the differ-

ence between their absolute values and prefix
the sign of the numerically greater number.

The following examples show the addition of

the numbers 3 and 5 with the four possible com-
binations of signs:

8

-3

-5

-8

3

-5

-3

5

-12-11-10-9 -8 -7 -6 -S-4 -3 -2-1 I 2 3 A S 6 7 fl 9 10 1 1 12

Figure 3-4. Using the number line to add.

In the first example, 3 and 5 have like signs
and the common sign is understood to be posi-
tive. The sum of the absolute values is 8 and no

sign is prefixed to this sum, thus signifying that

the sign of the 8 is understood to be positive.
In the second example, the 3 and 5 again have

like signs, but their common sign is negative.
The sum of the absolute values is 8, and this

time the common sign is prefixed to the sum.
The answer is thus -8.

In the third example, the 3 and 5 have unlike

signs. The difference between their absolute
values is 2, and the sign of the larger addend is

negative. Therefore, the answer is -2.

In the fourth example ,
the 3 and 5 again have

unlike signs. The difference of the absolute
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values is still 2, but this time the sign of the

larger addend is positive. Therefore, the sign

prefixed to the 2 is positive (understood) and

the final answer is simply 2.

These four examples could be written in a

different form, emphasizing the distinction be-

tween the sign of a number and an operational

sign, as follows:

(+3) + (+5) = +8

(-3) + (-5)

(+3) + (-5)

(-3) + (+5)

= -8
= -2
= +2

Practice problems. Add as indicated:

-10 + 5 = (-10) + (+5) = ?

Add -9, -16, and 25
- 7 - 1 - 3 = (-7) + (-1) + (-3) = ?

4. Add -22 and -13

Answers:

1. -5

2.

SUBTRACTION

3. -11

4. -35

Subtraction is the inverse of addition. When
subtraction is performed, we "take away" the

subtrahend. This means that whatever the value

of the subtrahend, its effect is to be reversed
when subtraction is indicated. In addition, the

sum of 5 and -2 is 3. In subtraction, however,
to take away the effect of the -2, the quantity +2
must be added. Thus the difference between
+5 and -2 is +7.

Keeping this idea in mind, we may now pro-
ceed to examine the various combinations of

subtraction involving signed numbers. Let us

first consider the four possibilities where the

minuend is numerically greater than the sub-

trahend, as in the following examples:

8

5

8

-5

-8

-5

-13

We may show how each of these results is

obtained by use of the number line, as shown in

figure 3-5.

In the first example, we find +8 on the num-
ber line, then subtract 5 by making a movement
that reverses its sign. Thus, we move to the

left 5 units. The result (difference) is +3. (See
line a, fig. 3-5.)

In the second example, we find +8 on the

number line, then subtract (-5) by making a

movement that will reverse its sign. Thus we
move to the right 5 units. The result in this

case is +13. (See line b, fig. 3-5.)

In the third example, we find -8 on the num-
ber line, then subtract 5 by making a movement
that reverses its sign. Thus we move to the

left 5 units. The result is -13. (See line c,

fig. 3-5.)
In the fourth example, we find -8 on the

number line, then reverse the sign of -5 by

moving 5 units to the right. The result is -3.

(See line d, fig. 3-5.)

Next, let us consider the four possibilities
that arise when the subtrahend is numerically
greater than the minuend, as in the following

examples:

5

8

-3

5

-8

13

-5

8

-13

-5

-8

In the first example, we find +5 on the num-
ber line, then subtract 8 by making a movement

-13 -12 -I MO -9 -fl -7-6-5-4-3-2-1 I 2345 6 7 8 9 10 12 13

Figure 3-5. -Subtraction by use of the number line.
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that reverses its sign. Thus we move to the

left 8 units. The result is -3. (See line e,

fig. 3-5.)

In the second example, we find +5 on the

number line, then subtract -8 by makingamove-
ment to the right that reverses its sign. The
result is 13. (See line f, fig. 3-5.)

In the third example, we find -5 on the num-
ber line, then reverse the sign of 8 by a move-
ment to the left. The result is -13. (See line g,

fig. 3-5.)

In the fourth example, we find -5 on the num-
ber line, then reverse the sign of -8 by a move-
ment to the right. The result is 3. (See line h,

fig. 3-5.)

Careful study of the preceding examples
leads to the following conclusion, which is

stated as a law for subtraction of signed num-
bers: In any subtraction problem, mentally

change the sign of the subtrahend and proceed
as in addition.

Practice problems. In problems 1 through 4,

subtract the lower number from the upper. In

5 through 8, subtract as indicated.

1. 17

-10
2. -12

8

3. -9

-13

4. 7

16

5. 1 -(-5) = ?

6. -6 -(-8) = ?

7. 14 - 7 -(-3) =

8. -9 - 2 = ?

Answers:

1. 27
5. 6

2. -20

6. 2

3. 4

7. 10

4. -9

8. -11

MULTIPLICATION

To explain the rules for multiplication of

signed numbers, we recall that multiplication
of whole numbers may be thought of as short-

ened addition. Two types of multiplication

problems must be examined; the first type in-

volves numbers with unlike signs, and the sec-

ond involves numbers with like signs.

Unlike Signs

Consider the example
multiplicand is negative.

3(-4), in which the

This means we are

to add -4 three times; that is, 3(-4) is equal to

(-4) + (-4) + (-4), which is equal to -12. For

example, if we have three 4-dollar debts, we
owe 12 dollars in all.

When the multiplier is negative, as in -3(7),
we are to take away 7 three times. Thus, -3(7)
is equal to -(7)

-
(7)

-
(7) which is equal to -21.

For example, if 7 shells were expended in one

firing, 7 the next, and 7 the next, there would
be a loss of 21 shells in all. Thus, the rule is

as follows: The product of two numbers with

unlike signs is negative.
The law of signs for unlike signs is some-

times stated as follows: Minus times plus is

minus; plus times minus is minus. Thus a

problem such as 3(-4) can be reduced to the

following two steps:
1. Multiply the signs and write down the

sign of the answer before working with the

numbers themselves.
2. Multiply the numbers as if they were un-

signed numbers.

Using the suggested procedure, the sign of

the answer for 3(-4) is found to be minus. The

product of 3 and 4 is 12, and the final answer
is -12. When there are more than two numbers
to be multiplied, the signs are taken in pairs
until the final sign is determined.

Like Signs

When both factors are positive, as in 4(5),

the s-ign of the product is positive. We are to

add +5 four times, as follows:

4(5) = 5 ..+ 5 + 5 + 5 = 20

When both factors are negative, as in -4(-5),
the sign of the product is positive. We are to

take away -5 four times.

-4(-5) = -(-5) - (-5)
-

(-5)
-

(-5)
= +5 +5 +5 +5
= 20

Remember that taking away a negative 5 is the

same as adding a positive 5. For example,
suppose someone owes a man 20 dollars and

pays him back (or diminishes the debt) 5 dollars

at a time. He takes away a debt of 20 dollars

by giving him four positive 5 -dollar bills, or a

total of 20 positive dollars in all.

The rule developed by the foregoing example
is as follows: The product of two numbers with

like signs is positive.

Knowing that the product of two positive num-
bers or two negative numbers is positive, we
can conclude that the product of any even num-
ber of negative numbers is positive. Similarly,
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the product of any odd number of negative num-
bers is negative.

The laws of signs may be combined as fol-

lows: Minus times plus is minus; plus times
minus is minus; minus times minus is plus;

plus times plus is plus. Use of this combined
rule may be illustrated as follows:

4(-2) (-5) (6) (-3) = -720

Taking the signs in pairs, the understood plus
on the 4 times the minus on the 2 produces a
minus. This minus times the minus on the 5

produces a plus. This plus times the under-
stood plus on the 6 produces a plus. This plus
times the minus on the 3 produces a minus, so
we know that the final answer is negative. The

product of the numbers, disregarding their

signs, is 720; therefore, the final answer is

-720.

Practice problems. Multiply as indicated:

1. 5(-8) = ?

2. -7(3) (2)
= ?

3. 6(-l)(-4) = ?

4. -2(3) (-4) (5) (-6) = ?

Answers:

1. -40

2. -42

DIVISION

3. 24

4. -720

Because division is the inverse of multipli-

cation, we can quickly develop the rules for

division of signed numbers by comparison with
the corresponding multiplication rules, as in

the following examples:
1. Division involving two numbers with un-

like signs is related to multiplication with un-
like signs, as follows:

3(-4) = -12

Therefore,
-12 = -4

Thus, the rule for division with unlike signs is:

The quotient of two numbers with unlike signs
is negative.

2. Division involving two numbers with like

signs is related to multiplication with like signs,
as follows:

3(-4) = -12

Therefore, ^p = 3

Thus the rule for division with like signs is:

The quotient of two numbers with like signs is

positive.
The following examples show the application

of the rules for dividing signed numbers:

3

-12

-3
= 4

-12 = 4
3

12 _ A

-3

Practice problems. Multiply and divide as

indicated:

1. 15 * -5

2. -2(-3)/-6

Answers:

1. -3

2. -1

SPECIAL CASES

3 (-3) (4)

4. -81/9

3. 2

4. -9

Two special cases arise frequently in which
the laws of signs may be used to advantage.
The first such usage is in simplifying subtrac-

tion; the second is in changing the signs of the

numerator and denominator when division is

indicated in the form of a fraction.

Subtraction

The rules for subtraction may be simplified
by use of the laws of signs, if each expression
to be subtracted is considered as being multi-

plied by a negative sign. For example, 4 -(-5)
is the same as 4 + 5, since minus times minus
is plus. This result also establishes a basis
for the rule governing removal of parentheses.

The parentheses rule, as usually stated, is:

Parentheses preceded by a minus sign may be

removed, if the signs of all terms within the

parentheses are changed. This is illustrated
as follows:

12 -(3
- 2 + 4) = 12 - 3 + 2 - 4
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The reason for the changes of sign is clear

when the negative sign preceding the parenthe-
ses is considered to be a multiplier for the

whole parenthetical expression.

Division in Fractional Form

Division is often indicated by writing the

dividend as the numerator, and the divisor as
the denominator, of a fraction. In algebra,

everyfraction is considered to have three signs.
The numerator has a sign, the denominator has
a sign, and the fraction itself, taken as a whole,
has a sign. In many cases, one or more of

these signs will be positive, and thus will not be
shown. For example, in the following fraction

the sign of the numerator and the sign of the

denominator are both positive (understood) and
the sign of the fraction itself is negative:

Fractions with more than one negative sign
are always reducible to a simpler form with at

most one negative sign. For example, the sign
of the numerator and the sign of the denomina-
tor may be both negative. We note that minus
divided by minus gives the same result as plus
divided by plus. Therefore, we may change to

the less complicated form having plus signs

(understood) for both numerator and denomina-

tor, as follows:

-15 +15 15

-5 +5

Since -15 divided by -5 is 3, and 15 divided

by 5 is also 3, we conclude that the change of

sign does not alter the final answer. The same
reasoning may be applied in the following ex-

ample, in which the sign of the fraction itself is

negative:

-15
-5

+15
+5

!.
5

When the fraction itself has a negative sign, as

in this example, the fraction may be enclosed

in parentheses temporarily, for the purpose of

working with the numerator and denominator

only. Then the sign of the fraction is applied

separately to the result, as follows:

If a fraction has a negative sign in one of the

three sign positions, this sign may be moved to

another position. Such an adjustment is an ad-

vantage in some types of complicated expres-
sions involving fractions. Examples of this

type of sign change follow:

!5_ = -15 _ 15

"5 5-5
In the first expression of the foregoing ex-

ample, the sign of the numerator is positive

(understood) and the sign of the fraction is neg-
ative. Changing both of these signs, we obtain

the second expression. To obtain the third ex-

pression from the second, we change the sign
of the numerator and the sign of the denomina-
tor. Observe that the sign changes in each case

involve a pair of signs. This leads to the law
of signs for fractions: Any two of the three

signs of a fraction may be changed without al-

tering the value of the fraction.

AXIOMS AND LAWS

An axiom is a self-evident truth. It is a

truth that is so universally accepted that it does
not require proof. For example, the statement

that "a straight line is the shortest distance

between two points" is an axiom from plane

geometry. One tends to accept the truth of an

axiom without proof, because anything which is

axiomatic is, by its very nature, obviously true.

On the other hand, a law (in the mathematical

sense) is the result of defining certain quanti-
ties and relationships and then developing logi-
cal conclusions from the definitions.

AXIOMS OF EQUALITY

The four axioms of equality with which we
are concerned in arithmetic and algebra are
stated as follows:

1. If the same quantity is added to each of

two equal quantities, the resulting quantities
are equal. This is sometimes stated as follows:

If equals are added to equals, the results are

equal. For example, by adding the same quan-
tity (3) to both sides of the following equation,
we obtain two sums which are equal:

-2

All of this can be done mentally.

-2 = -3

+ 3 = -3

1 = 1

+ 1

+ 1 +
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tracting 2 from both sides of the following equa-
tion we obtain results which are equal:

5 = 2 + 3

5-2 = 2 + 3-2
3 = 3

3. If two equal quantities are multiplied by
the same quantity, the resulting products are

equal. This is sometimes stated as follows: If

equals are multiplied by equals, the products
are equal. For example, both sides of the fol-

lowing equation are multiplied by -3 and equal
results are obtained:

e duueuuo 10 uic L cgai

5 = 2 + 3

(-3) (5)= (-3) (2 +
-15 = -15

3)

4. If two equal quantities are divided by the

same quantity, the resulting quotients are equal.
This is sometimes stated as follows: If equals
are divided by equals, the results are equal.
For example, both sides of the following equa-
tion are divided by 3, and the resulting quotients
are equal:

12 + 3 = 15

12 + 3 _ JL5
3 3

4 + 1 = 5

These axioms are especially useful when
letters are used to represent numbers. If we
know that 5x = -30, for instance, then dividing
both 5x and -30 by 5 leads to the conclusion
that x = -6.

LAWS FOR COMBINING NUMBERS

Numbers are combined in accordance with
the following basic laws:

1. The associative laws of addition and mul-

tiplication.
2. The commutative laws of addition and

multiplication.
3. The distributive law.

of the manner in which they are grouped. For

example, 6 + 3 + 1 is the same as 6 + (3 + 1) or

(6 +3) +1.

This law can be applied to subtraction by
changing signs in such a way that all negative

signs are treated as number signs rather than

operational signs. That is, some of the ad-

dends can be negative numbers. For example,
6-4-2 can be rewritten as 6 + (-4) + (-2).

By the associative law, this is the same as

6 + [(-4) + (-2)] or [6 + (-4)] + (-2).

However, 6-4-2 is not the same as 6 -
(4

-
2);

the terms must be expressed as addends before

applying the associative law of addition.

Associative Law of Multiplication

This law states that the product of three or

more factors is the same regardless of the

manner in which they are grouped. For ex-

ample, 6 3 2 is the same as (6 3) 2 or

6 (3 2). Negative signs require no special

treatment in the application of this law.

For example, 6 (-4) (-2) is the same
as [6- (-4)J -(-2) or 6 -[(-4) -(-2)].

Commutative Law of Addition

The word "commute" means to change, sub-

stitute or move from place to place. The com-
mutative law of addition states that the sum of

two or more addends is the same regardless of

the order in which they are arranged. For ex-

ample, 4 + 3 + 2 is the same as 4 + 2 + 3 or

2+4 + 3.

This law can be applied to subtraction by
changing signs so that all negative signs be-
come number signs and all signs of operation
are positive. For example, 5 - 3 - 2 is changed
to 5 + (-3) + (-2), which is the same as 5 + (-2)
+ (-3) or (-3) +5 + (-2).

Commutative Law of Multiplication

This law states that the product of two or
more factors is the same regardless of the

order in which the factors are arranged. For

example, 3 4 5 is the same as 5 3 4 or
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4-3-5. Negative signs require no special 2(3 + 4 + 5) = 2-3 + 2'4 + 2'5
treatment in the application of this law. For =6 + 8 + 10

example, 2 (-4) (-3) is the same as (-4)

(-3) 2 or (-3) 2 (-4). To verify the distributive law, we note that

2(3 + 4 + 5) is the same as 2(12) or 24. Also,

Distributive Law
f

6
.t ?.

+ "> is 2
,

4 ' For
^cation

of the dis-

tributive law where negative signs appear, the

This law combines the operations of addition following procedure is recommended:

and multiplication. The word "distributive" re- 3(4
-

2) = 3 [4 + (-2)]

fers to the distribution of a common multiplier = 3(4) + 3(-2)

among the terms of an additive expression. =12-6
For example, = 6
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CHAPTER 4

COMMON FRACTIONS

The emphasis in previous chapters of this

course has been on integers (whole numbers).
In this chapter, we turn our attention to num-
bers which are not integers. The simplest type
of number other than an integer is a COMMON
FRACTION. Common fractions and integers

together comprise a set of numbers called the

RATIONAL NUMBERS; this set is a subset of

the set of real numbers.
The number line may be used to show the

relationship between integers and fractions.

For example, if the interval between and 1 is

marked off to form three equal spaces (thirds),

then each space so formed is one-third of the

total interval. If we move along the number line

from toward 1, we will have covered two of

the three "thirds" when we reach the second
mark. Thus the position of the second mark
represents the number 2/3. (See fig. 4-1.)

-2
>3

I

Figure 4-1. Integers and fractions on the

number line.

The numerals 2 and 3 in the fraction 2/3 are
named so that we may distinguish between them;
2 is the NUMERATOR and 3 is the DENOMINA-
TOR. In general, the numeral above the di-

viding line in a fraction is the numerator and
the numeral below the line is the denominator.
The numerator and denominator are the TERMS
of the fraction. The word "numerator" is re-

lated to the word "enumerate." To enumerate
means to "tell how many"; thus the numerator
tells us how many fractional parts we have in

the indicated fraction. To denominate means to

"give a name" or "tell what kind"; thus the de-
nominator tells us what kind of parts we have

(halves, thirds, fourths, etc.).

Attempts to define the word "fraction" in

mathematics usually result in a statement sim-
ilar to the following: A fraction is an indicated

division. Any division maybe indicated by plac-

ing the dividend over the divisor and drawing a

line between them. By this definition, any num-
ber which can be written as the ratio of two in-

tegers (one integer over the other) can be con-

sidered as a fraction. This leads to a further

definition: Any number which can be expressed
as the ratio of two integers is a RATIONAL
number. Notice that every integer is a rational

number, because we can write any integer as

the numerator of a fraction having 1 as its de-

nominator. For example, 5 is the same as 5/1.

It should be obvious from the definition that

every common fraction is also a rational

number.

TYPES OF FRACTIONS

Fractions are often classified as proper or

improper. A proper fraction is one in which the

numerator is numerically smaller than the de-

nominator. An improper fraction has a nu-

merator which is larger than its denominator.

MIXED NUMBERS

When the denominator of an improper frac-

tion is divided into its numerator, a remainder
is produced along with the quotient, unless the

numerator happens to be an exact multiple of

the denominator. For example, 7/5 is equal to

1 plus a remainder of 2. This remainder may
be shown as a dividend with 5 as its divisor, as

follows:

T_

5

The expression 1 + 2/5 is a MIXED NUM-
BER. Mixed numbers are usually written with-

out showing the plus sign; that is, 1 + 2/5 is
O

the same as 1 4 or 1 2/5. When a mixed num-

ber is written as 1 2/5, care must be taken to

insure that there is a space between the 1 and
the 2; otherwise, 1 2/5 might be taken to mean
12/5.
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MEASUREMENT FRACTIONS

Measurement fractions occur in problems
such as the following:

If $2 were spent for a stateroom rug at $3

per yard, how many yards were bought? If $6
had been spent we could find the number of yards

by simply dividing the cost per yard into the

amount spent. Since 6/3 is 2, two yards could

be bought for $6. The same reasoning applies
when $2 are spent, but in this case we can only
indicate the amount purchased as the indicated

division 2/3. Figure 4-2 shows a diagram for

both the $6 purchase and the $2 purchase.

- 2YDS -

1 YD

1 $2 $3 $4 $5 $6
2 YARDS PURCHASED FOR $ 6 AT $ 3 PER YARD

-IYD-

$4 $Z p $7

% YARD PURCHASED FOR $2 AT $3 PER YARD

Figure 4-2. Measurement fractions.

PARTITIVE FRACTIONS

The difference between measurement frac-

tions and partitive fractions is explained as

follows: Measurement fractions result when we
determine how many pieces of a given size can

be cut from a larger piece. Partitive fractions

result when we cut a number of pieces of equal
size from a larger piece and then determine the

size of each smaller piece. For example, if 4

equal lengths of pipe are to be cut from a 3-foot

pipe, what is the size of each piece? If the

problem had read that 3 equal lengths were to

be cut from a 6-foot pipe, we could find the size

of each pipe by dividing the number of equal

lengths into the overall length. Thus, since 6/3
is 2, each piece would be 2 feet long. By this

same reasoning in the example, we divide the

overall length by the number of equal parts to

get the size of the individual pieces; that is,

3/4 foot. The partitioned 6-foot and 3-foot

pipes are shown in figure 4-3.

6 FEET DIVIDED INTO 3 EQUAL PARTS OF Z FEET EACH

I PARTI I PARTi I PARTi I PART_J~
3, CT~n~ ^, rr" 3^ cr~n 3, CT t

I I

2FT 3FT

3 FEET DIVIDED INTO 4 EQUAL PARTS OF ^ OFA FOOT EACH

Figure 4-3. Partitive fractions

EXPRESSING RELATIONSHIPS

When a fraction is used to express a rela-

tionship, the numerator and denominator take

on individual significance. In this frame of

reference, 3/4 means 3 out of 4, or 3 parts in

4, or the ratio of 3 to 4. For example, if 1 out

of 3 of the men in a division are on liberty, then

it would be correct to state that 1/3 of the

division are on liberty. Observe that neither of

these ways of expressing the relationship tells

us the actual number of men; the relationship
itself is the important thing.

Practice problems.

1. What fraction of 1 foot is 11 inches?

2. Represent 3 out of 8 as a fraction.

3. Write the fractions that indicate the rela-

tionship of 2 to 3; 8 divided by 9; and 6 out of

7 equal parts.

4. The number 6-r- means 6-

Answers:

1. 11/12
2. 3/8
3. 2/3; 8/9; 6/7
4. plus

EQUIVALENT FRACTIONS

It will be recalled that any number divided

by itself is 1. For example, 1/1, 2/2, 3/3, 4/4,
and all other numbers formed in this way, have

the value 1. Furthermore, any number multi-

plied by 1 is equivalent to the number itself.

For example, 1 times 2 is 2, 1 times 3 is 3,

1 times 1/2 is 1/2, etc.

These facts are used in changing the form
of a fraction to an equivalent form which is

more convenient for use in a particular problem.
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will be in a different form, as follows:

2J
2-5

__
10

Figure 4-4 shows that -? of line a is equal to

c

y- of line b where line a equals line b. Line a

is marked off in fifths and line b is marked off
fi *?

in tenths. It can readily be seen that
TQ

and
g-

measure distances of equal length.

J..LJL.1.JL.L.Z.JL.LJ2.
10 10 10 10 10 10 10 10 10 10

Figure 4-4. Equivalent fractions.

The markings on a ruler show equivalent
fractions. The major division of an inch divides

it into two equal parts. One of these parts

represents
-jr.

The next smaller markings divide

the inch into four equal parts. It will be noted that

two of these parts represent the same distance as
1 21
i; that is, 4 equals |-. Also, the next smaller
Lt Tt

markings break the inch into 8 equal parts. How

many of these parts are equivalent to \ inch?
Ci

The answer is found by noting that- equals i.

Practice problems. Using the divisions on a
ruler for reference, complete the following
exercise:

3"~A ~ 1C
?_

16

o 1- -L
*'

8
~

16 4
-1
16

A review of the foregoing exercise will re-
veal that in each case the right-hand fraction
could be formed by multiplying both the nu-
merator and the denominator of the left-hand

fraction by the same number. In each case the

number may be determined by dividing the de-
nominator of the right-hand fraction by the de-
nominator of the left-hand fraction. Thus in

problem 1, both terms of -jwere multiplied by 2.

In problem 3, both terms were multiplied by 4.

It is seen that multiplying both terms of a frac-

tion by the same number does not change the

value of the fraction.
1 2

Since -^ equals -T, the reverse must also be
t *

2 1

true; that is -7 must be equal to ^ This can

likewise be verified on a ruler. We have al-
M 119 *?

ready seen that % is the same as -=, jg equals
-^,

2 1
and |r equals -r. We see that dividing both terms

8 4
of a fraction by the same number does not

change the value of the fraction.

FUNDAMENTAL RULE OF FRACTIONS

The foregoing results are combined to form

the fundamental rule of fractions, which is

stated as follows: Multiplying or dividing both

terms of a fraction by the same number does

not change the value of the fraction. This is

one of the most important rules used in dealing

with fractions.
The following examples show how the funda-

mental rule is used:

1 Change 1/4 to twelfths. This problem is set

up as follows:

I - 2-
4

'
12

The first step is to determine how many 4's

are contained in 12. The answer is 3, so we

know that the multiplier for both terms of the

fraction is 3, as follows:

3 1

3*4
__
12
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2. What fraction with a numerator of 6 is equal
to 3/4?

SOLUTION: 6.
7

3_

4

We note that 6 contains 3 twice; therefore we
need to double the numerator of the right-hand
fraction to make it equivalent to the numerator
of the fraction we seek. We multiply both terms
of 3/4 by 2, obtaining 8 as the denominator of

the new fraction, as follows:

1 1
4

'

2

3. Change 6/16 to eighths.

SOLUTION:
16

both terms of the preceding example by 6 re-

duces the fraction to lowest terms. In computa-
tion, fractions should usually be reduced to

lowest terms where possible.
If the greatest common factor cannot readily

be found, any common factor may be removed
and the process repeated until the fraction is in

18
lowest terms: Thus, 75- could first be divided

48

by 2 and then by 3.

18 * 2 _ _9_

48 - 2
~

24

9 + 3 3

24 + 3
~

8

Practice problems. Reduce the following
fractions to lowest terms:

We note that the denominator of the fraction

which we seek is 1/2 as large as the denomina-
tor of the original fraction. Therefore the new
fraction may be formed by dividing both terms
of the original fraction by 2, as follows:

-
-

48

4*'
60

22 '

20

5.
18

24
6.

35

56

9

144

3.1

Answers:

1. 80
2. 11

3. 27

4. 36

5. 6

6. 15

REDUCTION TO LOWEST TERMS

It is frequently desirable to change a frac-

tion to an equivalent fraction with the smallest

possible terms; that is, with the smallest pos-
sible numerator and denominator. This process

n

is called REDUCTION. Thus, ^ reduced to

lowest terms is v-. Reduction can be accom-

plished by finding the largest factor that is

common to both the numerator and denominator
and dividing- hnth nf these terms bv it. Dividing

quite "proper" mathematically, it is usually

customary to change it to a mixed number. A

recipe may call for
VJT

cups of milk, but would

o

not call for = cups of milk.

Since a fraction is an indicated division, a
method is already known for reduction of im-

proper fractions to mixed numbers. The im-
Q

proper fraction -s- may be considered as the di-

vision of 8, by 3. This division is carried out

as follows:

2 R 2 = 2fO

3/5
6

2
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The truth of this can be verified another way:
o C

If 1 equals -r> then 2 equals -5-.
Thus

,

These examples lead to the following con-

clusion, which is stated as a rule: To change
an improper fraction to a mixed number, divide

the numerator by the denominator and write the

fractional part of the quotient in lowest terms.

Practice problems. Change the following
fractions to mixed numbers:

1. 31/20
2. 33/9

Answers:

o o.
2. 3

3. 65/20
4. 45/8

3 3J. 6

4. 5

OPERATING WITH MIXED NUMBERS

In computation, mixed numbers are often un-

wieldy. As it is possible to change any im-
proper fraction to a mixed number, it is like-

wise possible to change any mixed number to an

improper fraction. The problem can be reduced
to the finding of an equivalent fraction and a

simple addition.

EXAMPLE: Change 2-= to an improper fraction.

SOLUTION:

Step 1: Write
2-^

as a whole number plus a

fraction, 2 + -r-.

Step 2: Change 2 to an equivalent fraction

with a denominator of 5, as follows:

2(5) _ 10

W)
~

5

Step 3: Add + - =

Thus, 2 = ^o D

2
EXAMPLE: Write

5^
as an improper fraction.

SOLUTION:
,2 , 2
5
9

= 5 +
"9

_ 1
1

"
9

5(9) .. 45

1(9) 9

45 47

Thus,
47
9

In each of these examples, notice that the

multiplier used in step 2 is the same number as

the denominator of the fractional part of the

original mixed number. This leads to the fol-

lowing conclusion, which is stated as a rule:

To change a mixed number to an improper frac-

tion, multiply the whole -number part by the

denominator of the fractional part and add the

numerator to this product. The result is the

numerator of the improper fraction; its denom-
inator is the same as the denominator of the

fractional part of the original mixed number.

Practice problems. Change the following
mixed numbers to improper fractions:

'4 33.

4. 4
10

Answers:

'f *.*

2.
20

NEGATIVE FRACTIONS

A fraction preceded by a minus sign is nega-
tive. Any negative fraction is equivalent to a

positive fraction multiplied by -1. For example,
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1
5

The number - -= is read "minus two-fifths."
o

We know that the quotient of two numbers
with unlike signs is negative. Therefore,

anri __ .

I and
^5

= - 7

This indicates that a negative fraction is equiv-
alent to a fraction with either a negative nu-
merator or a negative denominator.

2
The fraction -r is read "two over minus

o

-2
five." The fraction -;r- is read "minus two

over five."

A minus sign in a fraction can be moved
about at will. It can be placed before the nu-

merator, before the denominator, or before the

fraction itself. Thus,

JL
-5

2_

5

Moving the minus sign from numerator to

denominator, or vice versa, is equivalent to

multiplying the terms of the fraction by -1.

This is shown in the following examples:

and

A fraction may be regarded as having three

signs associated with it the sign of the numer-
ator, the sign of the denominator, and the sign

preceding the fraction. Any two of these signs

may be changed without changing the value of

the fraction. Thus,

_3

4

-3

4 -4 -4

OPERATIONS WITH FRACTIONS

It will be recalled from the discussion of

denominate numbers that numbers must be of

the same denomination to be added. We can add

pounds to pounds, pints to pints, but not ounces

to pints. If we think of fractions loosely as de-

nominate numbers, it will be seen that the rule

of likeness applies also to fractions. We can
add eighths to eighths, fourths to fourths, but

1 2
not eighths to fourths. To add-jr- inch to ? inch

we simply add the numerators and retain the

denominator unchanged. The denomination is

fifths; as with denominate numbers, we add 1

fifth to 2 fifths to get 3 fifths, or
|.

LIKE AND UNLIKE FRACTIONS

We have shown that like fractions are added

by simply adding the numerators and keeping the

denominator. Thus,

3 + 2 _ 5_

8 "8

or

16 16
~

16

Similarly we can subtract like fractions by

subtracting the numerators.

8

7-2 _5

8

The following examples will show that like

fractions may be divided by dividing the nu-

merator of the dividend by the numerator of

the divisor.

SOLUTION: We may state the problem as a
1 1

question: "How many times does - appear in-,
8 o

1 3
or how many times may

-g-
be taken

from-g-?"

3/8 - 1/8 = 2/8

2/8 - 1/8 = 1/8

1/8 - 1/8 =0/8=0

(1)

(2)

(3)

We see that 1/8 can be subtracted from 3/8

three times. Therefore,

3/8 +1/8=3



When the denominators of fractions are un-

equal, the fractions are said to be unlike. Ad-

dition, subtraction, or division cannot be per-
formed directly on unlike fractions. The
proper application of the fundamental rule,

however, can change their form so that they
become like fractions; then all the rules for

like fractions apply.

LOWEST COMMON DENOMINATOR

To change unlike fractions to like fractions,
it is necessary to find a COMMON DENOMINA-
TOR and it is usually advantageous to find the

LOWEST COMMON DENOMINATOR (LCD).
This is nothing more than the least common
multiple of the denominators.

Least Common Multiple

H a number is a multiple of two or more
different numbers, it is called a COMMON
MULTIPLE. Thus, 24 is a common multiple of

6 and 2. There are many common multiples of

these numbers. The numbers 36, 48, and 54, to

name a few, are also common multiples of 6

and 2.

The smallest of the common multiples of a

set of numbers is called the LEAST COMMON
MULTIPLE. It is abbreviated LCM. The least

common multiple of 6 and 2 is 6. To find the

least common multiple of a set of numbers,
first separate each of the numbers into prime
factors.

Suppose that we wish to find the LCM of 14,

24, and 30. Separating these numbers into

prime factors we have

14 = 2 7

24 = 2
3

3

30 = 2 3 5

The LCM will contain each of the various prime
factors shown. Each prime factor is used the

greatest number of times that it occurs in any
one of the numbers. Notice that 3, 5, and Teach
occur only once in any one number. On the

other hand, 2 occurs three times in one number.
We get the following result:

LCM = 2
3

3 5 7
= 840

Thus, 840 is the least common multiple of 14,

24, and 30.

Greatest Common Divisor

The largest number that can be divided into

each of two or more given numbers without a

remainder is called the GREATEST COMMON
DIVISOR of the givennumbers. It is abbreviated

GCD. It is also sometimes called the HIGHEST
COMMON FACTOR.

In finding the GCD of a set of numbers, se-

parate the numbers into prime factors just as

for LCM. The GCD is the product of only those

factors that appear in all of the numbers. Notice

in the example of the previous section that 2 is

the greatest common divisor of 14, 24, and 30.

Find the GCD of 650, 900, and 700. The pro-
cedure is as follows:

650 = 2

900 = 2
2

700 = 2
2

GCD = 2

5* 13
- 3

2
5

2

5
2

7

5
2 = 50

Notice that 2 and5 2 are factors of each num-
ber. The greatest common divisor is 2 x 25 = 50.

USING THE LCD

Consider the example

1
.

1

"2
+

3"

The numbers 2 and 3 are both prime; so the

LCD is 6.

Therefore

and 1-1
3

"
6

Thus, the addition of - and - is performed as
2 3

follows :

I
2

In the example

10 is the LCD.

i
6

I JL
5

+
10
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Therefore, .1
10

_2_

10

To

_3_

10

_1

2

EXAMPLE:

Practice problems. Change the fractions in

each of the following groups to like fractions
with least common denominators:

a -

3' 6

2-
12' "3

Answers:

3 I I 2
-

2' 4' 3

I JL i
6' 10' 5

O 1

Here we change 7? to the mixed number 1
y. Then

10^
= 10 + 1 + i

i 1 i
'

6' 6

o _ _
'

12' 12

ADDITION

4.

JL J. JL
12' 12' 12

A JL _i
30' 30' 30

It has been shown that in adding like frac-
tions we add the numerators. In adding unlike

fractions
,
the fractions must first be changed so

that they have common denominators. We apply
these same rules in adding mixed numbers. It

will be remembered that a mixed number is an

indicated sum. Thus, 2
-5-

is really 2 +.
o o

Add-

ing can be done in any order. The following

examples will show the application of these

rules:

EXAMPLE:

EXAMPLE:

Add

*i

We first change the fractions so that they are
like and have the least common denominator
and then proceed as before.

4 12

~3
= 2

12

EXAMPLE:

Add

12

8

This could have been written as follows:

2 - 22
2

" 2
8

1 _ 2_

4
~

8

c 2
;

2
5 + = 5

11 3
Since -^ equals 1 -^, the final answer is found

o o

as follows:
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"I
Practice problems. Add, and reduce the

sums to simplest terms:

2y <J. ? 3. 6f

2
3 li

5. = 4
8

&> *

Jr- 1

Answers:

1. 3
28

2. 2 3. 9
13

"20
4 2

31
4 - 2

40
5. 5

8

The following example demonstrates a prac-
tical application of addition of fractions:

EXAMPLE: Find the total length of the piece
of metal shown in figure 4-5 (A).

SOLUTION: First indicate the sum as follows:

(B)

Figure 4-5. Adding fractions to obtain

total length or spacing.

EXAMPLE: Subtract li from 5
-|o o

-1648416
Changing to like fractions and adding numerators,

We see that whole numbers are subtracted from
whole numbers; fractions from fractions.

The total length is 3 i inches.
EXAMPLE: Subtract from

o 5

Practice problem. Find the distance from
the center of the first hole to the center of the

last hole in the metal plate shown in figure
4-5 (B).

Answer:

SUBTRACTION-

2 -^ inches
lo

The rule of likeness applies in the sub-
traction of fractions as well as in addition.

Some examples will show that cases likely to

arise may be solved by use of ideas previously
developed.

5

1

Changing to like fractions with an LCD, we have

32

40

_5_
40

_27
40

36



EXAMPLE-. Subtract from 3 -

J.A

o 2 _ , _8_6
3

~ J
12

U 11

12 12

Regrouping 3 ^ we have

12 12 12

Then

20

12

11 - li
12

"
12

_

12

Practice problems. Subtract the lower num-
ber from the upper number and reduce the

difference to simplest terms:

70 K 1
, 9-2. <JK_2- 4 is S 2J. . ^T" A. TT- O. O T^T T. J J. 6 "7^

l

Answers:

"

18
>

3
3. 2}

The following problem demonstrates sub-

traction of fractions in a practical situation.

EXAMPLE: What is the length of the dimen-

sion marked X on the machine bolt shown in

figure 4-6 (A)?

SOLUTION: Total the lengths of the known

parts.

*_ .- _ .--
4 84 2

~
64 64 64

~
64

Subtract this sum from the overall length.

o _ 12 ~ l

49
64

64
64

ii
64

1 15
64

15
The answer is 1

j^j
inch.

(A)

(B)

Figure 4-6. Finding unknown dimensions

by subtracting fractions.

Practice problem. Find the length of the

dimension marked Y on the machine bolt in

figure 4-6 (B).

Answer: 2 inches

MULTIPLICATION

The fact that multiplication by a fraction does
not increase the value of the product may con-

fuse those who remember the definition of mul-

tiplication presented earlier for whole numbers.
It was stated that 4(5) means 5 is taken as an

addend 4 times. How is it then that -(4) is 2, a
Ct

number less than 4 ? Obviously our idea of

multiplication must be broadened.
Consider the following products:

4(4) = 16

3(4) = 12

2(4) = 8

1(4) = 4
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|(4)
= 2

{(4)
= 1

Notice that as the multiplier decreases, the

product decreases, until, when the multiplier
is a fraction, the product is less than 4 and
continues to decrease as the fraction decreases.
The fraction introduces the "part of" idea:

-5(4) means ~ of 4; j(4) means
-j

of 4.
A 4 4

The definition of multiplication stated for

whole numbers may be extended to include frac-

tions. Since 4(5) means that 5 is to be used 4

times as an addend, we can say that with frac-

tions the numerator of the multiplier tells how

many times the numerator of the multiplicand
is to be used as an addend. By the same rea-

soning, the denominator of the multiplier tells

how many times the denominator of the mul-

tiplicand is to be used as an addend. The fol-

lowing examples illustrate the use of this idea:

1. The fraction A is multiplied by the whole
\&

number 4 as follows:

From these examples a general rule is

developed: To find the product of two or more
fractions multiply their numerators together
and write the result as the numerator of the

product; multiply their denominators and write

the result as the denominator of the product;
reduce the answer to lowest terms.

In using this rule with whole numbers, write

each whole number as a fraction with 1 as the

denominator. For example, multiply 4 times

1/12 as follows:

4 x _

12

__
12

JL
12

1
=

3

In using this rule with mixed numbers, re-

write all mixed numbers as improper frac-

tions before applying the rule, as follows:

2 1 X 1-1 X 12
3

X
2

~
3
X

2

_! _l x JL
12

"
1
X

12

.1 + 1 + 1 + 1

__
12

12

1

T
This example shows that 4 (1/12) is the same as

12
'

Another way of thinking about the multiplica-
tion of 1/12 by 4 is as follows:

12

2. The fraction 2/3 is multiplied by 1/2 as
follows:

2

3"

2

6"

1
3

A second method of multiplying mixed num-
bers makes use of the distributive law. This
law states that a multiplier applied to a two-part
expression is distributed over both parts. For

example, to multiply 6
-^ by 4 we may rewrite

6 -i as 6 + 1/3. Then the problem can be written
3

as 4(6 + 1/3) and the multiplication proceeds as

follows:

4(6 + 1/3) = 24 + 4/3

= 25 + 1/3

- 25!- 25
3

Cancellation

Computation can be considerably reduced by
dividing out (CANCELLING) factors common to

both the numerator and the denominator. We
recognize a fraction as an indicated division.

Thinking of ~ as an indicated division, we re-
9

member that we can simplify division by show-

ing both dividend and divisor as the indicated
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(B)

=DIAMETER

-RIVET SPACING =-

5k DIAMETERS

Figure 4-7. Application of multiplication of fractions
in determining rivet spacing.

The distance is 11 - inches
12-4

Practice problem. Find the distance between
the centers of the two rivets shown in figure
4-7 (B).

Answer: 4 inches
Ib

DIVISION

There are two methods commonly used for

performing division with fractions. One is the
common denominator method and the other is

the reciprocal method.

Common Denominator Method

The common denominator method is an adap-
tation of the method of like fractions. The rule
is as follows: Change the dividend and divisor
to like fractions and divide the numerator of
the dividend by the numerator of the divisor.
This method can be demonstrated with whole
numbers, first changing them, to fractions with
1 as the denominator. For example, 12 * 4 can
be written as follows:

If the dividend and divisor are both fractions,
as in 1/3 divided by 1/4, we proceed as follows:

1 -1 - A J_
3 4

~
12

'

12

= 4 +
3_

12 + 12

Reciprocal Method

The word "reciprocal" denotes an inter-
changeable relationship. It is used in mathe-
matics to describe a specific relationship be-
tween two numbers. We say that two numbers
are reciprocals of each other if their product
is one. In the example 4 x A =

1, the fractions

and -1 are reciprocals. Notice the interchange-

ability: 4 is the reciprocal of
-J and I is the re-
4 4

ciprocal of 4.



What is the reciprocal of
-^-7

It must be a

3
number which, when multiplied by =-, produces

the product, 1. Therefore,

SOLUTION: i .1 JL _ 2. ^ jL
2 22

= 2-5

1 1 Check:

4. Wliat is the reciprocal of 3 ~?
Q

We see that -r- is the only number that could ful-
O

fill the requirement. Notice that the numerator
q

and denominator of were simply interchanged

to get its reciprocal. If we know a number, we
can always find its reciprocal by dividing 1 by
the number. Notice this principle in the follow-

ing examples:
1. What is the reciprocal of 7?

SOLUTION:

Check:

1 _ 8 .25~~

= 8-25

_
25

= 1

Check:

Notice that the cancellation process in this ex-

ample does not show the usual 1's which result

when dividing a number into itself. For ex-

ample, when 7 cancels 7, the quotient 1 could be
shown beside each of the 7's. However, since 1

as a factor has the same effect whether it is

written in or simply understood, the 1's need
not be written.

2. What is the reciprocal of ?
o

i - -" '
A
8

.8*S,orf

Check:

The foregoing examples lead to the rule for

finding the reciprocal of any number: The re-

ciprocal of a number is the fraction formed
when 1 is divided by the number . (If the final

result is a whole number, it can be considered
as a fraction whose denominator is 1.) A short-

cut rule which is purely mechanical and does
not involve reasoning may be stated as follows:

To find the reciprocal of a number, express
the number as a fraction and then invert the

fraction.

When the numerator of a fraction is 1, the

reciprocal is a whole number. The smaller the

fraction, the greater is the reciprocal. For ex-

ample, the reciprocal of
*

is 1,000.

Also, the reciprocal of any whole number is a

proper fraction. Thus the reciprocal of 50 is

1

50'

Practice problems. Write the reciprocal of

each of the following numbers:

1. 4 2. -|- 3. 2^- 4. 17 5. 4 6. -7O Lt &

3. What is the reciprocal of ^
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The reciprocal method of division makes use
of the close association of multiplication and
division. In any division problem, we must find

the answer to the following question: What
number multiplied by the divisor yields the

dividend? For example, if the problem is to

divide 24 by 6, we must find the factor which,
when multiplied by 6, yields 24. Experience
tells us that the number we seek is 1/6 of 24.

Thus, we may rewrite the problem as follows:

24 + 6 = 24

Check:

= 4

6 x 4 = 24

speed and the possibility of cancellation of like

factors, which simplifies the computation. It

is the suggested method once the principles be-
come familiar.

EXAMPLE: f.4.7

Common Denominator
Method

1-4=1 -20
5 55

= 2+20

.1
20

_L
10

Reciprocal Method

1, 4 -l x !
5

' 4 "
5
X

4

In the example 1
-5-

*
3, we could write 3 x ? =

It

\.
The number we seek must be one-third of EXAMPLE:

10

1 -i. Thus we can do the division by taking one-

third of 1-i; that is, we multiply !-- by the re-
2

ciprocal of 3.

1 . Q _ i 1 v 1

2
' 3 ~ *

2
X

"3

= 1x1

Common Denominator
Method

2
~3

T 3 =
I

T
I

= 8*9

1"
9

Reciprocal Method

2 f^

Check: <**-_ i3 x
2

~
2

- 1
2

The rule for division by the reciprocal
method is: Multiply the dividend by the recipro-
cal of the divisor. This is sometimes stated in

short form as follows: Invert the divisor and

multiply.
The following examples of cases that arise

in division with fractions will be solved by both
the reciprocal method and the common denom-
inator method. The common denominator
method more clearly shows the division proc-
ess and is easier for the beginner to grasp.
The reciprocal method is more obscure as to

the reason for its use but has the advantage of

EXAMPLE: 9 -y
=

9 ,1 = 63 ^ 1
7 7 7

= 63-2

- 83 .. 1~
2

~ 31
2

Method

9x7
1x2

63

EXAMPLE: 10 + 5 = ?
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COMPLEX FRACTIONS

When the numerator or denominator, or both,
in a fraction are themselves composed of

-
12

Mixed numbers appearing in complex fractions
usually show the plus sign.
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Thus,

might be written

-?-

7 +

Practice problems,
complex fractions:

Simplify the following

24-
LT

8

3. 4.

1.

Answers:

* 2
3. 1

19

36

16
"

32

4. 18

Complex fractions may arise in electronics

when it is necessary to find the total resistance

of several resistances in parallel as shown in

figure 4-8. The rule is: The total resistance
of a parallel circuit is 1 divided by the sum of

the reciprocals of the separate resistances.

Written as a formula, this produces the follow-

ing expression:

(B) I Rl"
=- 5fl<

T
R2S R3<
2n< 10CX<

Figure 4-8. Application of complex fractions

in calculating electrical resistance.

346
The LCD of the fractions -i, 4, and! is 12.

Tt U

Thus,

R =
__

12 12 12

1

JL
12

R, R

EXAMPLE: Find the total resistance of the

parallel circuit in figure 4-8 (A). Substituting
the values 3, 4, and 6 for the letters Rj, R
and R 3 ,

we have the following:
2>

= 1 ohms (measure of resistance).
3

Practice problem: Find the total resistance
of the parallel circuit in figure 4-8 (B).

Answer: 1-7- ohms.



CHAPTER 5

DECIMALS

The origin and meaning of the word "decimal"
were discussed in chapter 1 of this course. Also
discussed in chapter 1 were the concept of place
value and the use of the number ten as the base
for our number system. Another term which is

frequently used to denote the base of a number
system is RADIX. For example, two is the

radix of the binary system and ten is the radix
of the decimal system. The radix of a number
system is always equal to the number of differ-

ent digits used in the system. For example, the

decimal system, with radix ten, has ten digits:

through 9.

DECIMAL FRACTIONS

A decimal fraction is a fraction whose de-
nominator is 10 or some power of 10, such as

100, 1,000, or 10,000. Thus, ,
and 215

100' 1000
are decimal fractions. Decimal fractions have

special characteristics that make computation
much simpler than with other fractions.

Decimal fractions complete our decimal

system of numbers. In the study of whole num-
bers, we found that we could proceed to the left

from the units place, tens, hundreds, thousands,
and on indefinitely to any larger place value,
but the development stopped with the units place.
Decimal fractions complete the development so
that we can proceed to the right of the units

place to any smaller number indefinitely.

Figure 5-1 (A) shows how decimal fractions

complete the system. It should be noted that as
we proceed from left to right, the value of each

place is one-tenth the value of the preceding
place, and that the system continues uninter-

rupted with the decimal fractions.

Figure 5-1 (B) shows the system again, this

time using numbers. Notice in (A) and (B) that

the units place is the center of the system and
that the place values proceed to the right or

left of it by powers of ten. Ten on the left is

balanced by tenths on the right, hundreds by
hundredths, thousands by thousandths, etc.

Notice that 1/10 is one place to the right of

the units riicrit 1/1(10 is two nlanes to thp

etc. (See fig. 5-1.) If a marker is placed after

the units digit, we can decide whether a decimal

digit is in the tenths, hundredths, or thousandths

position by counting places to the right of the

marker. In some European countries, the

marker is a comma; but in the English-speaking
countries, the marker is the DECIMAL POINT.

Thus,
~ is written 0.3. To write ^ it is

necessary to show that 3 is in the second place
to the right of the decimal point, so a zero is

inserted in the first place. Thus, ~ is written

0.03. Similarly, can be written by insert-

ing zeros in the first two places to the right of

the decimal point. Thus, r~r is written 0.003.

In the number 0.3, we say that 3 is in the first

decimal place; in 0.03, 3 is in the second deci-

mal place; and in 0.003, 3 is in the third deci-
mal place. Quite frequently decimal fractions

are simply called decimals when written in this

shortened form.

WRITING DECIMALS

Any decimal fraction may be written in the

shortened form by a simple mechanical process.
Simply begin at the right-hand digit of the nu-

merator and count off to the left as many places
as there are zeros in the denominator. Place
the decimal point to the left of the last digit
counted. The denominator may then be dis-

regarded. If there are not enough digits, as

many place-holding zeros as are necessary are
added to the left of the left-hand digit in the

numerator.

Thus, in beginning with the digit 3,

we count off four places to the left, adding two
O's as we count, and place the decimal point to

the extreme left. (See fig. 5-2.) Either form
is read "twenty-three ten-thousandths."

When a decimal fraction is written in the

shortened form, there will always be as many
ripnimal nlarps In thp shnrtpnpd fnrtn afi



Figure 5-1. Place values including decimals.

10000

/
-*-*-*-

-i, A no 7
'

PLACE HOLDING
ZEROS AOOED

Figure 5-2. Conversion
of a decimal fraction

to shortened form.

are zeros in the denominator of the fractional

form.

Figure 5-3 shows the fraction rllttl and

what is meant when it is changed to the short-

ened form. This figure is presented to show
further that each digit of a decimal fraction

holds a certain position in the digit sequence
and has a particular value.

By the fundamental rule of fractions, it

should be clear that - = ^- = -^-. Writing
10 100 1000

the same values in the shortened way, we have
0.5 = 0.50 = 0.500. In other words, the value of

a decimal is not changed by annexing zeros at

the right-hand end of the number. This is not

100000 OF

\Z TENTHS OR .2

I4HUNDREDTHS OR.O4
THOUSANDTHS OR. 003
TEN.THOUSANDTHS OR .0005

I 8 HUNDRED-THOUSANDTHS OR .QOOOfl
.14358

Figure 5-3. Steps in the conversion of a

decimal fraction to shortened form.

true of whole numbers. Thus, 0.3, 0.30, and
0.300 are equal but 3, 30, and 300 are not equal.
Also notice that zeros directly after the deci-

mal point do change values. Thus 0.3 is not

equal to either 0.03 or 0.003.

Decimals such as 0.125 are frequently seen.

Although the on the left of the decimal point
is not required, it is often helpful. This is par-
ticularly true in an expression such as 32 * 0.1.

In this expression, the lower dot of the division

symbol must not be crowded against the decimal

point; the serves as an effective spacer. If

any doubt exists concerning the clarity of an

expression such as .125, it should be written as

0.125.
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Practice problems. In problems 1 through 4,

change the fractions to decimals. In problems
5 through 8, write the given numbers as deci-

mals:

1. 8/100 5. Four hundredths
2. 5/1000 6. Four thousandths
3. 43/1000 7. Five hundred one ten-

4. 32/10000 thousandths
8. Ninety- seven thousandths

Answers:

1. 0.08 5. 0.04

2. 0.005 6. 0.004
3. 0.043 7. 0.0501
4. 0.0032 8. 0.097

READING DECIMALS

To read a decimal fraction in full, we read
both its numerator and denominator, as in read-

ing common fractions. To read 0.305, we read
"three hundred five thousandths." The denomi-
nator is always 1 with as many zeros as deci-
mal places. Thus the denominator for 0.14 is

1 with two zeros, or 100. For 0.003 it is 1,000;
for 0.101 it is 1,000; and for 0.3 it is 10. The
denominator may also be determined by count-

ing off place values of the decimal. For 0.13

we may think "tenths, hundredths"and the frac-

tion is in hundredths. In the example 0.1276 we
may think "tenths, hundredths, thousandths,
ten-thousandths." We see that the denominator
is 10,000 and we read the fraction "one thou-

sand two hundred seventy- six ten-thousandths."
A whole number with a fraction in the form

of a decimal is called a MIXED DECIMAL.
Mixed decimals are read in the same manner
as mixed numbers. We read the whole number
in the usual way followed by the word "and" and
then read the decimal. Thus, 160.32 is read
"one hundred sixty and thirty-two hundredths."
The word "and" in this case, as with mixed

numbers, means plus. The number 3.2 means
three plus two tenths.

It is also possible to have a complex deci-

mal. A COMPLEX DECIMAL contains a com-

mon fraction. The number 0.3^ is a complex

decimal and is read "three and one-third tenths."

The number 0.87^ means 87^ hundredths. The
A i

common fraction in each case forms a part of

the last or right-hand place.

In actual practice when numbers are called

out for recording, the above procedure is not

used. Instead, the digits are merely called out

in order with the proper placing of the decimal

point. For example, the number 216.003 is

read, "two one six point zero zero three." The
number 0.05 is read, "zero point zero five."

EQUIVALENT DECIMALS

Decimal fractions may be changed to equiv-
alent fractions of higher or lower terms, as is

the case with common fractions. If each deci-
mal fraction is rewritten in its common frac-
tion form, changing to higher terms is accom-

plished by multiplying both numerator and
denominator by 10, or 100, or some higher
power of 10. For example, if we desire to

change y-
to hundredths, we may do so by mul-

tiplying both numerator and denominator by 10.

Thus,

5 = 50
10 100

In the decimal form, the same thing may be ac-

complished by simply annexing a zero. Thus,

0.5 = 0.50

Annexing a on a decimal has the same ef-

fect as multiplying the common fraction form
of the decimal by 10/10. This is an application
of the fundamental rule of fractions. Annexing
two O's has the same effect as multiplying the

common fractionform of the decimal by 100/100;

annexing three O's has the same effect as mul-

tiplying by 1000/1000; etc.

REDUCTION TO LOWER TERMS

Reducing to lower terms is known as ROUND-
OFF, or simply ROUNDING, when dealing with

decimal fractions. If it is desired to reduce
6.3000 to lower terms, we may simply drop as

many end zeros as necessary since this is

equivalent to dividing both terms of the fraction

by some power of ten. Thus, we see that 6.3000

is the same as 6.300, 6.30, or 6.3.

It is frequently necessary to reduce a num-
ber such as 6.427 to some lesser degree of

precision. For example, suppose that 6.427 is

to be rounded to the nearest hundredth. The

question to be decided is whether 6.427 is closer
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to e.42 or b.43. The oest way to decide mis

question is to compare the fractions 420/1000,

427/1000, and 430/1000. It is obvious that

427/1000 is closer to 430/1000, and 430/1000
is equivalent to 43/100; therefore we say that

6.427, correct to the nearest hundredth, is 6.43.

A mechanical rule for rounding off can be

developed from the foregoing analysis. Since

the digit in the tenths place is not affected when
we round 6.427 to hundredths, we may limit our

attention to the digits in the hundredths and

thousandths places. Thus the decision reduces
to the question whether 27 is closer to 20 or 30.

Noting that 25 is halfway between 20 and 30, it

is clear that anything greater than 25 is closer

to 30 than it is to 20.

In any number between 20 and 30, if the digit

in the thousandths place is greater than 5, then

the number formed by the hundredths and thou-

sandths digits is greater than 25. Thus we
would round the 27 in our original problem to

30, as far as the hundredths and thousandths

digits are concerned. This result could be sum-
marized as follows: When rounding to hun-

dredths, if the digit in the thousandths place is

greater than 5, increase the digit in the hun-
dredths place by 1 and drop the digit in the

thousandths place.
The digit in the thousandths place may be

any one of the ten digits, through 9. If these
ten digits are split into two groups, one com-
posed of the five smaller digits (0 through 4)

and the other composed of the five larger digits,
then 5 is counted as one of the larger digits.

Therefore, the general rule for rounding off is

stated as follows: If the digit in the decimal

place to be eliminated is 5 or greater, increase
the digit in the next decimal place to the left

by 1. K the digit to be eliminated is less than 5,

leave the retained digits unchanged.
The following examples illustrate the rule

for rounding off:

1. 0.1414 rounded to thousandths is 0.141.

2. 3.147 rounded to tenths is 3.1.

3. 475 rounded to the nearest hundred is 500.

Observe carefully that the answer to exam-
ple 2 is not 3.2. Some trainees make the error
of treating the rounding process as a kind of

chain reaction, in which one first rounds 3.147

to 3.15 and then rounds 3.15 to 3.2. The error
of this method is apparent when we note that

147/1000 is closer to 100/1000 than it is to

200/1000.
Problems of the following type are some-

times confusing: Reduce 2.998 to the nearest

nunareatn. TO arop tne ena ngure we musi in-

crease the next figure by 1. The final result is

3.00. We retain the zeros to show that the an-
swer is carried to the nearest hundredth.

Practice problems. Round off as indicated:

1. 0.5862 to hundredths
2. 0.345 to tenths

3. 2346 to hundreds
4. 3.999 to hundredths

1.

2.

Answers:

0.59

0.3

3. 2300
4. 4.00

CHANGING DECIMALS
TO COMMON FRACTIONS

Any decimal may be reduced to a common
fraction. To do this we simply write out the

numerator and denominator in full and reduce
to lowest terms. For example, to change 0.12
to a common fraction, we simply write out the

fraction in full,

_
100

and reduce to lowest terms,

3

it
= 25

25

Likewise, 0.77 is written

77_
100

but this is in lowest terms so the fraction can-
not be further reduced.

Oneway of checking to see if a decimal frac-

tion can be reduced to lower terms is to con-
sider the makeup of the decimal denominator.
The denominator is always 10 or a power of 10.

Inspection shows that the prime factors of 10

are 5 and 2. Thus, the numerator must be di-

visible by 5 or 2 or both, or the fraction cannot
be reduced.

EXAMPLE: Change the decimal 0.0625 to a
common fraction and reduce to lowest terms.
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SOLUTION: 0.0625 = 625

10000

- 625 * 25

10000 + 25

_
16

25

400

Complex decimals are changed to common
fractions by first writing out the numerator and
denominator in full and then reducing the re-

sulting complex fraction in the usual way. For

example, to reduce
0.12|, we first write

Li

100

Writing the numerator as an improper fraction

we have

25

2

100

and applying the reciprocal method of division,
we have

1

ii x .I. - 1
2 100

"
8

4

Practice problems. Change the following
decimals to common fractions in lowest terms:

1. 0.25

2. 0.375

Answers:

1. 1/4
2. 3/8

3. 0.6*

4. 0.031
5

3. 5/8
4. 4/125

CHANGING COMMON
FRACTIONS TO DECIMALS

The only difference between a decimal frac-

tion and a common fraction is that the decimal

fraction has 1 with a certain number of zeros

(in other words, a power of 10) for a denomina-

tor. Thus, a common fraction can be changed

to a decimal if it can be reduced to a fraction

having a power of 10 for a denominator.
If the denominator of the common fraction in

its lowest terms is made up of the prime fac-
tors 2 or 5 or both, the fraction can be con-
verted to an exact decimal. If some other prime
factor is present, the fraction cannot be con-
verted exactly. The truth of this is evident
when we consider the denominator of the new
fraction. It must always be 10 or a power of 10,
and we know the factors of such a number are

always 2's and 5's.

The method of converting a common fraction
to a decimal is illustrated as follows:

EXAMPLE: Convert 3/4 to a decimal.

SOLUTION: 3

4

300
400

300
4

= 75 x

= 0.75

J_
100

1

100

Notice that the original fraction could have been
rewritten as 3000/4000, in which case the re-
sult would have been 0.750. On the other hand,
if the original fraction had been rewritten as

30/40, the resulting division of 4 into 30 would
not have been possible without a remainder.
When the denominator in the original fraction

has only 2's and 5's as factors, so that we know
a remainder is not necessary, the fraction

should be rewritten with enough O's to complete
the division with no remainder.

Observation of the results in the foregoing
example leads to a shortcut in the conversion
method. Noting that the factor 1/100 ultimately
enters the answer in the form of a decimal, we
could introduce the decimal point as the final

step without ever writing the fraction 1/100.

Thus the rule for changing fractions to deci-

mals is as follows:

1. Annex enough O's to the numerator of the

original fraction so that the division will be
exact (no remainder).

2. Divide the original denominator into the

new numerator formed by annexing the O's.

3. Place the decimal point in the answer so

that the number of decimal places in the answer
is the same as the number of O's annexed to the

original numerator.
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If a mixed number in common fraction form
is to be converted, convert only the fractional

part and then write the two parts together. This

is illustrated as follows:

2 + .75 = 2.75

Practice problems. Convert the following
common fractions and mixed numbers to deci-

mal form:

3. 4. 2:
32 16

Answers:

1. 0.25 2. 0.375 3. 0.15625 4. 2.3125

When a common fraction generates such a

repeating decimal, it becomes necessary to

arbitrarily select a point at which to cease the

repetition. This may be done in two ways. We
may write the decimal fraction by rounding off

at the desired point. For example, to round off

the decimal generated by i to hundredths, we

carry the division to thousandths, see that this

figure is less than 5, and drop it. Thus, 5-
o

rounded to hundredths is 0.33. The other method
is to carry the division to the desired number
of decimal places and carry the remaining in-

complete division as a common fraction that

is, we write the result of a complex decimal.

For example, carried to thousandths would be

Nonterminating Decimals

As stated previously, if the denominator of a
common fraction contains some prime factor

other than 2 or 5, the fraction cannot be con-

verted completely to a decimal. When such
fractions are converted according to the fore-

going rule, the decimal resulting will never
terminate. Consider the fraction 1/3. Apply-
ing the rule, we have

The division will continue indefinitely. Any
common fraction that cannot be converted ex-

actly yields a decimal that will never terminate
and in which the digits sooner or later recur.
In the previous example, the recurring digit
was 3. In the fraction 5/11, we have

.4545

11/5.0000
4 4

60

5JL

50
44

60
55

The recurring digits are 4 and 5.

Practice problems. Change the following
common fractions to decimals with three places
and carry the incomplete division as a common
fraction:

J7
13

Answers:

1. 0.5381̂J

2. 0.555ŷ

3 -3 '

15

3. 0.266f

4. 0.416|o

'r!

OPERATION WITH DECIMALS

In the study of addition of whole numbers, it

was established that units must be added to

units, tens to tens, hundreds to hundreds, etc.

For convenience, in adding several numbers,
units were written under units, tens under tens,
etc. The addition of decimals is accomplished
in the same manner.
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Chapter 5-DECIMALS

ADDITION

In adding decimals, tenths are written under

tenths, hundredths under hundredths, etc. When
this is done, the decimal points fall in a straight
line. The addition is the same as in adding
whole numbers. Consider the following example:

2.18

34.35

0.14

4.90

41.57

Adding the first column on the right gives 17

hundredths or 1 tenth and 7 hundredths. As
with whole numbers, we write the 7 under the

hundredths column and add the 1 tenth in the

tenths column that is, the column of the next

higher order. The sum of the tenths column is

15 tenths or 1 unit and 5 tenths. The 5 is writ-

ten under the tenths column and the 1 is added
in the units column.

It is evident that if the decimal points are

kept in a straight line that is, if the place
values are kept in the proper columns addition

with decimals may be accomplished in the ordi-

nary manner of addition of whole numbers. It

should also be noted that the decimal point of

the sum falls directly under the decimal points
of the addends.

SUBTRACTION

Subtraction of decimals likewise involves no

new principles. Notice that the place values of

the subtrahend in the following example are

fixed directly under the corresponding place
values in the minuend. Notice also that this

causes the decimal points to be alined and that

the figures in the difference (answer) also re-

tain the correct columnar alinement.

45.76

-31.87

13.89

We subtract column by column, as with whole

numbers, beginning at the right.
Practice problems. Add or subtract as

indicated:

1. 12.3 + 2.13 + 4 + 1.234

2. 0.5 + 0.04 + 12.001 + 10

3. 237.5 - 217.9
4. 9.04 - 7.156

Answers:

1. 19.664
2. 22.541

MULTIPLICATION

3.

4.

19.6

1.884

Multiplication of a decimal by a whole num-
ber may be explained by expressing the decimal
as a fraction.

EXAMPLE: Multiply 6.12 by 4.

SOLUTION:
1 1UU

= 24.48

4 612 = 2448
1 100 100

When we perform the multiplication keeping
the decimal form, we have

6.12

4

24.48

By common sense, it is apparent that the whole
number 4 times the whole number 6, with some
fraction, will yield a number in the neighbor-
hood of 24. Hence, the placing of the decimal

point is reasonable.

An examination of several examples will re-
veal that the product of a decimal and a whole
number has the same number of decimal places
as the factor containing the decimal. Zeros, if

any, at the end of the decimal should be rejected.

Multiplication of Two Decimals

To show the rule for multiplying two deci-
mals together, we multiply the decimal in frac-
tional form first and then in the conventional

way, as in the following example:

0.4 x 0.37

Writing these decimals as common fractions,
we have
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0.4
3.

0.148

The placing of the decimal point is reasonable,
since 4 tenths of 37 hundredths is a little less

than half of 37 hundredths, or about 15 hun-

dredths.

Consider the following example:

4.316 x 3.4

In the common fraction form, we have

4316 34 _ 4316 x 34

1000 10
"

1000 x 10

146744
10000

= 14.6744

In the decimal form the problem is

4.316

3.4

17264
12948

14.6744

We note that 4 and a fraction times 3 and a

fraction yields a product in the neighborhood of

12. Thus, the decimal point is in the logical

place.
In the above examples it should be noted in

each case that when we multiply the decimals

together we are multiplying the numerators.
When we place the decimal point by adding the

number of decimal places in the multiplier and

multiplicand, we are in effect multiplying the

denominators.
When the numbers multiplied together are

thought of as the numerators, the decimal points

may be temporarily disregarded and the num-
bers may be considered whole. This justifies
the apparent disregard for place value in the

multiplication of decimals. We see that the

rule for multiplying decimals is only a modifi-

cation of the rule for multiplying fractions.

To multiply numbers in which one or more
of the factors contain a decimal, multiply as

though the numbers were whole numbers. Mark
off as many decimal places in the product as
there are decimal places in the factors together.

6.5

xO.Ol

Answers:

1. 0.074

3. 0.065

4. 0.0073

x5.4

2. 0.315

4. 0.03942

Multiplying by Powers of 10

Multiplying by a power of 10 (10, 100, 1,000,

etc.) is done mechanically by simply moving
the decimal point to the right as many places
as there are zeros in the multiplier. For ex-

ample, 0.00687 is multiplied by 1,000 by mov-

ing the decimal point three places to the right
as follows:

1,000 x 0.00687 = 6.87

Multiplying a number by 0.1, 0.01, 0.001,

etc., is done mechanically by simply moving
the decimal point to the left as many places as

there are decimal places in the multiplier. For

example, 348.2 is multiplied by 0.001 by moving
the decimal point three places to the left as

follows:

348.2 x 0.001 = 0.3482

DIVISION

When the dividend is a whole number, we
recognize the problem of division as that of

converting a common fraction to a decimal.
Thus in the example 5 +

8, we recall that the

problem could be written

5000
1000

o = 5000 * 8

1000

625

1000

= .625

This same problem may be worked by the

following, more direct method:
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how many decimal places it Is desired to carry
the quotient. If it is decided to terminate a

quotient at the third decimal place, the division

should be carried to the fourth place so that the

correct rounding off to the third place may be

determined.
When the dividend contains a decimal, the

same procedure applies as when the dividend is

whole. Notice the following examples (rounded
to three decimal places):

1. 6.31 + 8 .789

2. 0.0288 * 32 0.0009 = 0.001

32/0.0288
288

Observe in each case (including the case
where the dividend is whole), that the quotient
contains the same number of decimal places as

the number used in the dividend. Notice also

that the place values are rigid; that is, tenths

in the quotient appear over tenths in the divi-

dend, hundredths over hundredths, etc.

Practice problems. In the following division

problems, round off each quotient correct to

three decimal places.

1. 10 * 6

2. 23.5 * 16

Answers:

1. 1.667

2. 1.469

Decimal Divisors

3. 2.743 * 77

4. 1.00 + 3

3. 0.036

4. 0.333

In the foregoing examples, the divisor in

each case was an integer. Division with divi-

sors which are decimals may be accomplished
by changing the divisor and dividend so that the

divisor becomes a whole number.

the division problem as a fraction. Multiply
the numerator (dividend) and denominator (divi-

sor) by 10, 100, or some higher power of 10;
the power of 10 must be large enough to change
the divisor to a whole number. This rule is

illustrated as follows:

2.568 * 0.24 = 2.568

0.24

2.568
0.24

256.8

24

100
100

Thus 2.568 divided by 0.24 is the same as 256.8
divided by 24.

From the mechanical standpoint, the fore-

going rule has the effect of moving the decimal

point to the right, as many places as necessary
to change the divisor to an integer. Therefore
the rule is sometimes stated as follows: When
the divisor is a decimal, change it to a whole
number by moving the decimal point to the

right. Balance the change in the divisor by
moving the decimal point in the dividend an

equal number of places to the right.
The following example illustrates this ver-

sion of the rule:

9 1.1

0.9A/81.9A9

The inverted v, called a caret, is used as a
marker to indicate the new position of the deci-

mal point. Notice that the decimal point in the

quotient is placed immediately above the caret
in the dividend. Alinement of the first quotient

digit immediately above the 1 in the dividend,
and the second quotient digit above the 9, as-
sures that these digits are placed properly with

respect to the decimal point.
Practice problems. In the following division

problems, round off each quotient to three dec-
imal places:

1. 0.02958 + 0.12

2. 30.625 * 3.5

Answers:

1. 0.247

2. 8.750

3. 4610 + 0.875

4. 0.000576 * 0.008

3.. 5268.571

4. 0.072
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Dividing by Powers of 10

Division of any number by 10, 100, 1,000,

etc., is really just an exercise in placing the

decimal point of a decimal fraction. Thus,

5,031 * 100 may be thought of as the decimal

fraction
-TQQ-;

to remove the denominator, we

simply count off two places from the right.

Thus,

5031
100

= 50.31

The following three examples serve to illus-

trate this procedure further:

401 + 10 = 40.1

2 + 1,000 = .002

11,431 v 100 = 114.31

If the dividend already contains a decimal

part, begin counting with the first number to

the left of the decimal point. Thus, 243.6 * 100 =

2.436. When the decimal point is not shown in

a number, it is always considered to be to the

right of the right-hand digit.

Dividing by 0.1, 0.01, 0.001, etc., may also

be accomplished by a simple mechanical rule.

We simply begin at the position of the decimal

point in the dividend and count off as many
places to the right as there are decimal places
in the divisor. The decimal point is then placed
to the right of the last digit counted. E there

are not enough digits, zeros may be added.

The foregoing rule is based on the fact that

0.1 is really
JQ,

0.01 is ^, 0.001 is ~^, etc.

For example,

23 - 0.1 = 23 +
ji

= 230

Notice that dividing by 0.1 is the same as

multiplying by 10. Likewise,

1
234.1 + 0.001 = 234.1 *

= 234.1 x

= 234,100

1000

1000

and

24 * 0.01 = - = 2,400

Practice problems. Divide by relocation of

the decimal point.

1. 276 + 100

2. 2,845 * 1,000

Answers:

1. 2.76

2. 2.845

3. 276 * 0.01

4. 2,845 * 0.001

3. 27,600

4. 2,845,000
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CHAPTER 6

PERCENTAGE AND MEASUREMENT

In the discussion of decimal fractions, it was
shown that for convenience in writing fractions

whose denominators are 10 or some power of

10, the decimal point could be employed and the

denominators could be dropped. Thus, this spe-
cial group of fractions could be written in a

much simpler way. As early as the 15th cen-

tury, businessmen made use of certain decimal
fractions so much that they gave them the spe-
cial designation PERCENT.

MEANING OF PERCENT

The word "percent" is derived from Latin.

It was originally "per centum," which means
"by the hundred." Thus the statement is often

made that "percent means hundredths."

Percentage deals with the group of decimal
fractions whose denominators are 100 that is,

fractions of two decimal places. Since hun-
dredths were used so frequently, the decimal

point was dropped and the symbol % was placed
after the number and read "percent" (per 100).

Thus, 0.15 and 15% represent the same value,
15/100. The first is read "15 hundredths," and
the second is read "15 percent." Both mean 15

parts out of 100.

Ordinarily, percent is used in discussing
relative values. For example, 25 percent may
convey an idea of relative value or relationship.
To say "25 percent of the crew is ashore" gives
an idea of what part of the crew is gone, but it

does not tell how many. For example, 25 per-
cent of the crew would represent vastly different

numbers if the comparison were made between
an LSM and a cruiser. When it is necessary
to use a percent in computation, the number is

written in its decimal form to avoid confusion.

By converting all decimal fractions so that

they had the common denominator 100, men
found that they could mentally visualize the

relative size of the part of the whole that was

being considered.

CHANGING DECIMALS TO PERCENT

Since percent means hundredths, any decimal

may be changed to percent by first expressing

it as a fraction with 100 as the denominator.
The numerator of the fraction thus formed in-

dicates how many hundredths we have, and
therefore it indicates "how many percent" we
have. For example, 0.36 is the same as 36/100.

Therefore, 0.36 expressed as a percentage
would be 36 percent. By the same reasoning,
since 0.052 is equal to 5.2/100, 0.052 is the

same as 5.2 percent.
In actual practice, the step in which the de-

nominator 100 occurs is seldom written down.
The expression in terms of hundredths is con-
verted mentally to percent. This results in the

following rule: To change a decimal to percent,

multiply the decimal by 100 and annex the per-
cent sign (%). Since multiplying by 100 has the

effect of moving the decimal point two places to

the right, the rule is sometimes stated as fol-

lows: To change a decimal to percent, move
the decimal point two places to the right and
annex the percent sign.

Changing Common Fractions and
Whole Numbers To Percent

Common fractions are changed to percent by
first expressing them as decimals. For exam-
ple, the fraction 1/4 is equivalent to the deci-

mal 0.25. Thus 1/4 is the same as 25 percent.
Whole numbers may be considered as special

types of decimals (for example, 4 may be writ-

tenas 4.00) and thus may be expressed in terms
of percentage. The meaning of an expression
such as 400 percent is vague unless we keep in

mind that percentage is a form of comparison.
For example, a question which often arises is

"How can I have more than 100 percent of some-
thing, if 100 percent means all of it?"

This question seems reasonable, if we limit

our attention to such quantities as test scores.

However, it is also reasonable to use percent-

age in comparing a current set of data with a

previous set. For example, if the amount of

electrical power used by a Navy facility this

year is double the amount used last year, then

this year's power usage is 200 percent of last

year's usage.
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The meaning of a phrase such as "200 per-
cent of last year's usage" is often misinter-

preted. A total amount that is 200 percent of

the previous amount is not the same as an in-

crease of 200 percent. The increase in this

case is only 100 percent, for a total of 200. If

the increase had been 200 percent, then the

new usage figure would be 300 percent of the

previous figure.
Baseball batting averages comprise a spe-

cial case in which percentage is used with only
occasional reference to the word "percent."
The percentages in batting averages are ex-

pressed in their decimal form, with the figure
1.000 representing 100 percent. Although a

batting average of 0.300 is referred to as "bat-

ting 300," this is actually erroneous nomencla-
ture from the strictly mathematical standpoint.
The correct statement, mathematically, would
be "batting point three zero zero" or "batting
30 percent."

Practice problems. Change each of the fol-

lowing numbers to percent:

1. 0.0065

2. 1.25

Answers:

1. 0.65%

2. 125%

3. 0.363

4. 3/4

3. 36.3%

4. 75%

5. 7

6. 1/2

5. 700%

6. 50%

CHANGING A PERCENT
TO A DECIMAL

Since we do not compute with numbers in the

percent form, it is often necessary to change a

percent back to the decimal form. The proce-
dure is just opposite to that used in changing
decimals to percents: To change a percent to a

decimal, drop the percent sign and divide the

number by 100. Mechanically, the decimal
point is simply shifted two places to the left

and the percent sign is dropped. For example,
25 percent is the same as the decimal 0.25.
Percents larger than 100 percent are changed
to decimals by the same procedure as ordinary
percents. For example, 125 percent is equiva-
lent to 1.25.

Practice problems. Change the following
percents to decimals:

0.63%

3. 125%

4. 25%

5. 5;

6.

Answers:

1. 0.025

2. 0.0063

3. 1.25 5. 5.75% = 0.0575

4. 0.25 6. 9.50% = 0.095

THE THREE PERCENTAGE CASES

To explain the cases that arise in problems
involving percents, it is necessary to define the

terms that will be used. Rate (r) is the number
of hundredths parts taken. This is the number
followed by the percent sign. The base (b) is

the whole on which the rate operates. Percent-

age (p) is the part of the base determined by
the rate. In the example

5% of 40 = 2

5% is the rate, 40 is the base, and 2 is the

percentage.
There are three cases that usually arise in

dealing with percentage, as follows:

Case I To find the percentage when the
base and rate are known.

EXAMPLE: What number is 6% of 50 ?

Case n-To find the rate when the base and

percentage are known.

EXAMPLE: 20 is what percent of 60 ?

Case IE To find the base when the percent-
age and rate are known.

EXAMPLE: The number 5 is 25% of what
number ?

Case I

In the example

6% of 50 = ?

the "of" has the same meaning as it does in
fractional examples, such as

of 16 =

In other words, "of" means to multiply. Thus,
to find the percentage, multiply the base by the
rate. Of course the rate must be changed from
a percent to a decimal before multiplying can
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0.06 x 50 = 3

The number that is 6% of 50 is 3.

FRACTIONAL PERCENTS.-Af r ac tional
percent represents a part of 1 percent. In a
case such as this, it is sometimes easier to

find 1 percent of the number and then find the

fractional part. For example, we would find

1/4 percent of 840 as follows:

1% of 840 = 0.01 x 840

= 8.40

Therefore, \% of 840 = 8.40 x ^

= 2.10

Case II

To explain case II and case III, we notice in

the foregoing example that the base corresponds
to the multiplicand, the rate corresponds to the

multiplier, and the percentage corresponds to

the product.

50 (base or multiplicand)
.06 (rate or multiplier)

3.00 (percentage or product)

Recalling that the product divided by one of its

factors gives the other factor, we can solve the

following problem:

?% of 60 = 20

We are given the base (60) and percentage (20).

60 (base)

__?_ (rate)

20 (percentage)

We then divide the product (percentage) by the

multiplicand (base) to get the other factor (rate) .

Percentage divided by base equals rate. The
rate is found as follows:

60

% (rate)

quotient in the decimal form first, and finally
as a percent.

Case in

The unknown factor in case III is the base,
and the rate and percentage are known.

EXAMPLE: 25% of 7 = 5

? (base)
.25 (rate)

5.00 (percentage)

We divide the product by its known factor to

find the other factor. Percentage divided by
rate equals base. Thus,

.25
= 20 (base)

The rule for case III may be stated as follows:

To find the base when the rate and percentage
are known, divide the percentage by the rate.

Practice problems. In each of the following

problems, first determine which case is in-

volved; then find the answer.

1. What is of 740?

2. 7.5% of 2.75 = ?

3. 8 is 2% of what number?

4. ?% of 18 = 15.

5. 12% of ? = 12.

6. 8 is what percent of 32?

Answers:

1. Case I; 5.55

2. Case I; 0.20625

3. Case III; 400

4. Case II; 83^%

5. Case HI; 100

6. Case II; 25%
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places, For example, we may oe asked to add
such numbers as 4.1 and 32.31582. How should

they be added? Should zeros be annexed to 4.1

until it is of the same order as the other deci-
mal (to the same number of places)? Or, should
.31582 be rounded off to tenths? Would the sum
be accurate to tenths or hundred-thousandths?
The answers to these questions depend on how
the numbers orignially arise.

Some decimals are finite or are considered
as such because of their use. For instance, the

decimal that represents TT, that is 0.5, is as
u

accurate at 0.5 as it is at 0.5000. Likewise,

the decimal that represents ? has the value
o

0.125 and could be written just as accurately
with additional end zeros. Such numbers are
said to be finite. Counting numbers are finite.

Dollars and cents are examples of finite values.

Thus, $10.25 and $5.00 are finite values.

To add the decimals that represent $ and ^,O J-t

it is not necessary to round off 0.125 to tenths.

Thus, 0.5 + 0.125 is added as follows:

0.500

0.125

0.625

Notice that the end zeros were added to 0.5 to

carry it out the same number of places as 0.12 5.

It is not necessary to write such place-holding
zeros if the figures are kept in the correct col-
umns and decimal points are alined. Decimals
that have a definite fixed value may be added or
subtracted although they are of different order.

On the other hand, if the numbers result
from measurement of some kind, then the ques-
tion of how much to round off must be decided
in terms of the precision and accuracy of the

measurements.

ESTIMATION

Suppose that two numbers to be added re-
sulted from measurement. Let us say that one
number was measured with a ruler marked off

in tenths of an inch and was found, to the near-
est tenth of an inch, to be 2.3 inches. The other

tion between marks on any measuring instru-

ment is subject to human error. Experience
has shown that the best the average person can
do with consistency is to decide whether a
measurement is more or less than halfway be-
tween marks. The correct way to state this

fact mathematically is to say that a measure-
ment made with an instrument marked off in

tenths of an inch involves a maximum probable
error of 0.05 inch (five hundredths is one-half

of one tenth). By the same reasoning, the prob-
able error in a measurement made with an in-

strument marked in thousandths of an inch is

0.0005 inch.

PRECISION

In general, the probable error in any meas-
urement is one-half the size of the smallest

division on the measuring instrument. Thus
the precision of a measurement depends upon
how precisely the instrument is marked. It is

important to realize that precision refers to

the size of the smallest division on the scale; it

has nothing to do with the correctness of the

markings. In other words, to say that one in-

strument is more precise than another
does not imply that the less p r e c i s e in-

strument is poorly manufactured. In fact, it

would be possible to make an instrument with

very high apparent precision, and yet mark it

carelessly so that measurements taken with it

would be inaccurate.

From the mathematical standpoint, the pre-
cision of a number resulting from measurement
depends upon the number of decimal places;
that is, a larger number of decimal places
means a smaller probable error. In 2.3 inches

the probable error is 0.05 inch, since 2.3 actu-

ally lies somewhere between 2.25 and 2.35. In

1.426 inches there is a much smaller probable
error of 0.0005 inch. If we add 2.300 + 1.426

and get an answer in thousandths, the answer,
3.726 inches, would appear to be precise to

thousandths; but this is not true since there

was a probable error of .05 in one of the ad-

dends. Also 2.300 appears to be precise to

thousandths but in this example it is precise

only to tenths. It is evident that the precision
of a sum is no greater than the precision of the
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least precise addend. It can also be shown that

the precision of a difference is no greater than

the less precise number compared.
To add or subtract numbers of different or-

ders, all numbers should first be rounded off to

the order of the least precise number. In the

foregoing example, 1.426 should be rounded to

tenths that is, 1.4.

This rule also applies to repeating decimals.
Since it is possible to round off a repeating
decimal at any desired point, the degree of pre-
cision desired should be determined and all re-

peating decimals to be added should be rounded
to this level. Thus, to add the decimals gener-

12 5
ated by j, -z, and rz correct to thousandths,

first round off each decimal to thousandths, and
then add, as follows:

.333

.667

.417

1.417

When a common fraction is used in recording
the results of measurement, the denominator of

the fraction indicates the degree of precision.
For example, a ruler marked in sixty-fourths
of an inch has smaller divisions than one
marked in sixteenths of an inch. Therefore a

4
measurement of 3gj inches is more precise64

1
than a measure of 3 inches, even though the

16
two fractions are numerically equal. Remember

that a measurement of 3~ inches
64

contains a

probable error of only one -half of one sixty -

fourth of an inch. On the other hand, if the

smallest division on the ruler is one- sixteenth of

an inch, then a measurement of 3 inches con-
16

tains a probable error of one thirty-second of

an inch.

ACCURACY

Even though a number may be very precise,
which indicates that it was measured with an
instrument having closely spaced divisions, it

may not be very accurate. The accuracy of a
measurement depends upon the relative size of

the probable error when compared with the

quantity being measured. For example, a dis-

tance of 25 yards on a pistol range may be

measured carefully enough to be correct to the

nearest inch. Since there are 900 inches in 25

yards, this measurement is between 899.5

inches and 900.5 inches. When compared with

the total of 900 inches, the 0.5-inch probable
error is not very great.

On the other hand, a length of pipe may be
measured rather precisely and found to be 3.2

inches long. The probable error here is 0.05

inch, and this measurement is thus more pre-
cise than that of the pistol range mentioned be-
fore. To compare the accuracy of the two meas-
urements, we note that 0.05 inch out of a total

of 3.2 inches is the same as 0.5 inch out of 32

inches. Comparing this with the figure obtained

in the other example (0.5 inch out of 900), we
conclude that the more precise measurement is

actually the less accurate of the two measure-
ments considered.

It is important to realize that the location of

the decimal point has no bearing on the accu-

racy of the number. For example, 1.25 dollars

represents exactly the same amount of money
as 125 cents. These are equally accurate ways
of representing the same quantity, despite the

fact that the decimal point is placed differently.
Practice problems. In each of the following

problems, determine which number of each pair
is more accurate and which is more precise:

1. 3.72 inches or 2,417 feet

2. 2.5 inches or 17.5 inches

3 7
3. 5j inches or 12^- inches

4. 34.2 seconds or 13 seconds

Answers:

1. 3.72 inches is more precise.

2,417 feet is more accurate.

2. The numbers are equally precise.
17.5 inches is more accurate.

7
3. 12^- inches is more precise and more accu-

o

rate.

4. 34.2 seconds is more precise and more ac-
curate .

Percent of Error

The accuracy of a measurement is deter-
mined by the RELATIVE ERROR. The relative
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error is the ratio between the probable error

and the quantity being measured. This ratio is

simply the fraction formed by using the prob-
able error as the numerator and the measure-
ment itself as the denominator. For example,

suppose that a metal plate is found to be 5.4

inches long, correct to the nearest tenth of an

inch. The maximum probable error is five

hundredths of an inch {one-half of one tenth of

an inch) and the relative error is found as

follows:

probable error _ 0.05

measured value
~

5i4

5

540

Thus the relative error is 5 parts out of 540.

Relative error is usually expressed as PER-
CENT OF ERROR. When the denominator of

the fraction expressing the error ratio is di-

vided into the numerator, a decimal is obtained.

This decimal, converted to percent, gives the

percent of error. For example, the error in

the foregoing problem could be stated as 0.93

percent, since the ratio 5/540 reduces to 0.0093

(rounded off) in decimal form.

Significant Digits

The accuracy of a measurement is often de-
scribed in terms of the number of significant

digits used in expressing it. If the digits of a
number resulting from measurement are exam-
ined one by one, beginning with the left-hand

digit, the first digit that is not is the first

significant digit. For example, 2345 has four

significant digits and 0.023 has only two sig-
nificant digits.

The digits 2 and 3 in a measurement such as
0.023 inch signify how many thousandths of an
inch comprise the measurement. The O's are
of no significance in specifying the number of

thousandths in the measurement; their presence
is required only as "place holders" in placing
the decimal point.

A rule that is often used states that the sig-
nificant digits in a number begin with the first

nonzero digit (counting from left to right) and
end with the last digit. This implies that can
be a significant digit if it is not the first digit
in the number. For example, 0.205 inch is a
measurement having three significant digits.
The between the 2 and the 5 is significant

because it is a part of the number specifying
how many hundredths are in the measurement.

The rule stated in the foregoing paragraph
fails to classify final O's on the right. For ex-

ample, in a number such as 4,700, the number
of significant digits might be two, three, or

four. If the O's merely locate the decimal point

(that is, if they show the number to be approxi-

mately forty -seven hundred rather than forty

seven), then the number of significant digits is

two. However, if the number 4,700 represents
a number such as 4,730 rounded off to the near-

est hundred, there are three significant digits.

The last merely locates the decimal point. If

the number 4,700 represents a number such as

4,700.4 rounded off, then the number of signifi-

cant digits is four.

Unless we know how a particular number
was measured, it is sometimes impossible to

determine whether right-hand O's are the result

of rounding off. However, in a practical situa-

tion it is normally possiWe to obtain informa-

tion concerning the instruments used and the

degree of precision of the original data before

any rounding was done.

In a number such as 49.30 inches, it is rea-

sonable to assume that the in the hundredths

place would not have been recorded at all if it

were not significant. In other words, the in-

strument used for the measurement can be read

to the nearest hundredth of an inch. The on

the right is thus significant. This conclusion

can be reached another way by observing that

the in 49.30 is not needed as a place holder in

placing the decimal point. Therefore its pres-
ence must have some other significance.

The facts concerning significant digits may
be summarized as follows:

1. Digits other than Oare always significant.

2. Zero is significant when it falls between

significant digits.

3. Any final to the right of the decimal

point is significant.
4. When a is present only as a place

holder for locating the decimal point, it is not

significant.
5. The following categories comprise the

significant digits of any measurement number:
a. The first nonzero left-hand digit is

significant.
b. The digit which indicates the precision

of the number is significant. This is the digit

farthest to the right, except when the right-hand
digit is 0. If it is 0, it may be only a place
holder when the number is an integer.
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c. All digits between significant digits
are significant.

Practice problems. Determine the percent
of error and the number of significant digits in

each of the following measurements:

1. 5.4 feet

2. 0.00042 inch

Answers:

3. 4.17 sec

4. 147.50 miles

1. Percent of error: 0.93%

Significant digits: 2

2. Percent of error: 1.19%

Significant digits: 2

3. Percent of error: 0.12%

Significant digits: 3

4. Percent of error: 0.0034%

Significant digits: 5

CALCULATING WITH
APPROXIMATE NUMBERS

The concepts of precision and accuracy form
the basis for the rules which govern calculation

with approximate numbers (numbers resulting
from measurement).

Addition and Subtraction

A sum or difference can never be more pre-
cise than the least precise number in the cal-

culation. Therefore, before adding or sub-

tracting approximate numbers, they should be
rounded to the same degree of precision. The
more precise numbers are all rounded to the

precision of the least precise number in the

group to be combined. For example, the num-
bers 2.95, 32.7, and 1.414 would be rounded to

tenths before adding as follows:

3.0

32.7

1.4

Multiplication and Division

When two numbers are multiplied, the result

often has several more digits than either of the

original factors. Division also frequently pro-
duces more digits in the quotient than the orig-
inal data possessed, if the division is "carried
out" to several decimal places. Results such

as these appear to have more significant digits
than the original measurements from which they
came, giving the false impression of greater

accuracy than is justified. In order to correct
this situation, the following rule is used:

In order to multiply or divide two approxi-
mate numbers having an equal number of sig-
nificant digits, round the answer to the same
number of significant digits as are shown in one
of the original numbers. If one of the original
factors has more significant digits than the

other, round the more accurate number before

multiplying. It should be rounded to one more
significant digit than appears in the less accurate

number; the extra digit protects the answer from
the effects of multiple rounding. After perform-
ing the multiplication or division, round the

result to the same number of significant digits
as are shown in the less accurate of the original
factors.

Practice problems:

1. Find the sum of the sides of a triangle in

which the lengths of the three sides are as
follows: 2.5 inches, 3.72 inches, and 4.996

inches.

2. Find the product of the length and width of a

rectangle which is 2.95 feet long and 0.9046
foot wide.

Answers:

1. 11.2 inches

2. 2.67 square feet

MICROMETERS AND VERNIERS

Closely associated with the study of deci-
mals is a measuring instrument known as a
micrometer. The ordinary micrometer is ca-

pable of measuring accurately to one -thousandth

of an inch. One -thousandth of an inch is about
the thickness of a human hair or a thin sheet of

paper. The parts of a micrometer are shown
in figure 6-1.

MICROMETER SCALES

The spindle and the thimble move together.
The end of the spindle (hidden from view in

figure 6-1) is a screw with 40 threads per inch.

Consequently, one complete turn of the thimble

moves the spindle one -fortieth of an inch or
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THIMBLE RATCHET STOP

LOCKNUT SLEEVE

(A)

(B)

Figure 6-1. (A) Parts of a micrometer;
(B) micrometer scales.

0.025 inch since
JQ

is equal to 0.025. The

sleeve has 40 markings to the inch. Thus each

space between the markings on the sleeve is

also 0.025 inch. Since 4 such spaces are 0.1

inch (that is, 4 x 0.025), every fourth mark is

labeled in tenths of an inch for convenience in

reading. Thus, 4 marks equal 0.1 inch, 8 marks
equal 0.2 inch, 12 marks equal 0.3 inch, etc.

To enable measurement of a partial turn,
the beveled edge of the thimble is divided into

25 equal parts. Thus each marking on the

thimble is ^r of a complete turn, or ^ of TT
25 25 40

of an inch. Multiplying ^F
times 0.025 inch, we

find that each marking on the thimble repre-
sents 0.001 inch.

READING THE MICROMETER
It is sometimes convenient when learning to

read a micrometer to writedown the component

parts of the measurement as read on the scales

and then to add them. For example, in figure
6-1 (B) there are two major divisions visible

(0.2 inch). One minor division is showing
clearly (0.025 inch). The marking on the thimble
nearest the horizontal or index line of the sleeve
is the second marking (0.002 inch). Adding
these parts, we have

0.200

0.025

0.002

0.227

Thus, the reading is 0.227 inch. As explained

previously, this is read verbally as "two hun-
dred twenty-seven thousandths." A more skill-

ful method of reading the scales is to read all

digits as thousandths directly and to do any
adding mentally. Thus, we read the major divi-

sion on the scale as "two hundred thousandths "

and the minor division is added on mentally.
The mental process for the above setting then

would be "two hundred twenty -five; two hundred

twenty-seven thousandths."

Practice problems:

1. Read each of the micrometer settings shown
in figure 6-2.

(A)
/ 1 I 1 t 5 T

(E)

(G)
1 2 } 4 9 >

(I)

Fieure 6-2. Micrometer settings.



Answers:

1. (A) 0.750 (F) 0.009

(B) 0.201 (G) 0.662

(C) 0.655 (H) 0.048

(D) 0.075 (I) 0.526

(E) 0.527

VERNIER

Sometimes the marking on the thimble of the

micrometer does not fall directly on the index
line of the sleeve. To make possible readings
even smaller than thousandths, an ingenious
device is introduced in the form of an additional

scale. This scale, called a VERNIER, was
named after its inventor, Pierre Vernier. The
vernier makes possible accurate readings to

the ten-thousandth of an inch.

Principle of the Vernier

Suppose a ruler has markings every tenth of

an inch but it is desired to read accurately to

hundredths. A separate, freely sliding vernier
scale (fig. 6-3) is added to the ruler. It has 10

markings on it that take up the same distance
as 9 markings on the ruler scale . Thus

,
each19 9

space on the vernier is TTrof r~- inch, or

inch.

nier

Each vernier space is inch smaller than a

~-

How much smaller is a space on the ver-
than a space on the ruler? The ruler

space is rr- inch, or r^ inch, and the vernier
10 100

space is
r^r inch. The vernier space is smaller

by the difference between these two numbers,
as follows:

10

100

9

100

1

100

DECIMAL RULER (ENLARGED)

VERMER

Figure 6-3. Vernier scale.

ruler space.
As an example of the use of the vernier

scale, suppose that we are measuring the steel

bar shown in figure 6-4. The end of the bar

almost reaches the 3 -inch mark on the ruler,

and we estimate that it is about halfway between
2.9 inches and 3.0 inches. The vernier marks

help us to decide whether the exact measure-
ment is 2.94 inches, 2.95 inches, or 2. 96 inches.

DECIMAL RULER IENLAROED)

3 4

I i i i i I r f i
i.

I I i ,i-,i .1 i

VEHNIEH

-STEEL BAH
BEING MEASURED

Figure 6-4. Measuring with a vernier.

The on the vernier scale is spaced the

distance of exactly one ruler mark (in this case,
one tenth of an inch) from the left hand end of

the vernier. Therefore the is at a position
between ruler marks which is comparable to

the position of the end of the bar. In other

words, the on the vernier is about halfway
between two adjacent marks on the ruler, just
as the end of the bar is about halfway between
two adjacent marks. The 1 on the vernier scale
is a little closer to alinement with an adjacent
ruler mark; in fact, it is one hundredth of an
inch closer to alinement than the 0. This is

because each space on the vernier is one hun-
dredth of an inch shorter than each space on
the ruler.

Each successive mark on the vernier scale
is one hundredth of an inch closer to alinement
than the preceding mark, until finally alinement
is achieved at the 5 mark. This means that the
on the vernier must be five hundredths of an

inch from the nearest ruler mark, since five

increments, each one hundredth of an inch in

size, were used before a mark was found in
alinement.
We conclude that the end of the bar is five

hundredths of an inch from the 2.9 mark on the

ruler, since its position between marks is ex-
actly comparable to that of the on the vernier
scale. Thus the value of our measurement is
2.95 inches.
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through for any distance between markings.
Suppose the mark fell seven tenths of the dis-

tance between ruler markings. It would take

seven vernier markings ,
a loss of one-hundredth

of an inch each time, to bring the marks in line

at 7 on the vernier .

The vernier principle may be used to get
fine linear readings, angular readings, etc.

The principle is always the same. The vernier

has one more marking than the number of mark-
ings on an equal space of the conventional scale

of the measuring instrument. For example, the

vernier caliper (fig. 6-5) has 25 markings on

the vernier for 24 on the caliper scale. The
caliper is marked off to read to fortieths (0.025)
of an inch, and the vernier extends the accuracy
to a thousandth of an inch.

Figure 6-5. A vernier caliper.

Vernier Micrometer

By adding a vernier to the micrometer, it is

possible to read accurately to one ten-thousandth
of an inch. The vernier markings are on the

sleeve of the micrometer and are parallel to

the thimble markings. There are 10 divisions
on the vernier that occupy the same space as 9

divisions on the thimble. Since a thimble space
is one thousandth of an inch, a vernier space is

10
of

iooo
inch

>
or

16600
inch - rt is

10606
inch

less than a thimble space. Thus, as in the pre-
ceding- explanation of verniers, it is possible to

read the nearest ten-thousandth of an inch by
reading the vernier digit whose marking coin-
cides with a thimble marking.

In figure 6-6 (A), the last major division

showing fully on the sleeve index is 3. The
third minor division is the last mark clearly

and below the index is the 8 (0.008). The ver-
nier marking that matches a thimble marking
is the fourth (0.0004). Adding them all together,
we have,

0.3000

0.0750

0.0080

0.0004

0.3834

The reading is 0.3834 inch. With practice these

readings can be made directly from the microm-
eter, without writing the partial readings.

-20

0123' r

"liiilmlinlni :

-15

-5
(A)

116

-10

I Z

Imtmfi"

01234!

-0

20

it;

(O

C\J

F-I5

10

IE) IF)

Figure 6-6. Vernier micrometer settings.

Practice problems:

1. Read the micrometer settings in figure 6-6.

Answers:

1. (A) See the foregoing example.

(B) 0.1539 (E) 0.4690

(C) 0.2507 (F) 0.0552

(D) 0.2500
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CHAPTER 7

EXPONENTS AND RADICALS

The operation of raising a number to a power
is a special case of multiplication in which the

factors are all equal. In examples such as
4 2 = 4 x 4 = 16 and 5

3 = 5x5x5 = 125, the

number 16 is the second power of 4 and the

number 125 is the third power of 5. The ex-

pression 5
3 means that three 5's are to be mul-

tiplied together. Similarly, 4 2 means 4x4.
The first power of any number is the number
itself. The power is the number of times the

number itself is to be taken as a factor.

The process of finding a root is the inverse
of raising a number to a power. A root is a

special factor of a number, such as 4 in the

expression 4 2 = 16. When a number is taken
as a factor two times, as in the expression
4 x 4 = 16, it is called a square root. Thus, 4

is a square root of 16. By the same reasoning,
2 is a cube root of 8, since 2x2x2 is equal
to 8. This relationship is usually written as
2 3 = 8.

POWERS AND ROOTS

A power of a number is indicated by an EX-
PONENT, which is a number in small print

placed to the right and toward the top of the

number. Thus, in 4 3 = 64, the number 3 is the

EXPONENT of the number 4. The exponent 3

indicates that the number 4, called the BASE,
is to be raised to its third power. The expres-
sion is read "4 to the third power (or 4 cubed)

equals 64." Similarly, 5
2 = 25 is read "5 to the

second power (or 5 squared) equals 25." Higher
powers are read according to the degree indi-

cated; for example, "fourth power," "fifth

power," etc.

When an exponent occurs, it must always be

written unless its value is 1. The exponent 1

usually is not written, but is understood. For

example, the number 5 is actually 5
1

. When we
work with exponents, it is important to remem-
ber that any number that has no written expo-
nent really has an exponent equal to 1.

A root of a number can be indicated by plac-

ing a radical sign, -vT, over the number and

within the notch of the radical sign. Thus, N/154

indicates the cube root of 64, and \H32 indicates

the fifth root of 32. The number that indicates
the root is called the INDEX of the root. In the

case of the square root, the index, 2, usually is

not shown. When a radical has no index, the

square root is understood to be the one desired.
For example, ^T36 indicates the square root of

36. The line above the number whose root is to

be found is a symbol of grouping called the vin-

culum. When the radical symbol is used, a vin-

culum, long enough to extend over the entire

expression whose root is to be found, should be
attached.

Practice problems. Raise to the indicated

power or find the root indicated.

3. 4 3
4. 25 3

7. ^Tl25 8. Vl2

3. 64

7. 5

4. 15,625

8. 2

NEGATIVE INTEGERS

Raising to a power is multiplication in which
all the numbers being multiplied together are

equal. The sign of the product is determined,
as in ordinary multiplication, by the number of

minus signs. The number of minus signs is odd
or even, depending on whether the exponent of

the base is odd or even. For example, in the

problem

(-2)
3 = (-2) (-2) (-2) = -8

there are three minus signs. The result is

negative. In

(-2)
6 = 64

there are six minus signs. The result is posi-



Thus, when the exponent of a negative num-
ber is odd, the power is negative; when the ex-

ponent is even, the power is positive.
As other examples, consider the following:

(-3)
4 = 81

2\3 _ _8_
5/

"

125

(-2)
8 = 256

(-1)5 = -1

Positive and negative numbers belong to the

class called REAL NUMBERS. The square of a

realnumber ispositive. For example, (-7)
2 = 49

and 7 2 = 49. The expression (-7)
2 is read

"minus seven squared." Note that either seven

squared or minus seven squared gives us +49.

We cannot obtain -49 or any other negative
number by squaring any real number, positive
or negative.

Since there is no real number whose square
is a negative number, it is sometimes said that

the square root of a negative number does not

exist. However, an expression under a square
root sign may take on negative values. While
the square root of a negative number cannot

actually be found, it can be indicated.

The indicated square root of a negative num-
ber is called an IMAGINARY NUMBER. The
number J^T, for example, is said to be imagi-
nary. It is read "square root of minus seven."

Imaginary numbers are discussed in chapter 15

of this course.

FRACTIONS

We recall that the exponent of a number tells

the number of times that the number is to be
taken as a factor. A fraction is raised to a

power by raising the numerator and the denom-
inator separately to the power indicated. The

expression
(=J

means is used twice as a

factor. Thus,

_ 3 3 _ 3f
-7X7-72

__
49

Similarly,

Since a minus sign can occupy any one of
three locations in a fraction, notice that evalu-

/ 1\ 2

ating (--s) is equivalent to

The process of taking a root of a number is

the inverse of the process of raising the num-
ber to a power, and the method of taking the

root of a fraction is similar. We may simply
take the root of each term separately and write
the result as a fraction. Consider the following

examples:

Practice problems. Find the values for. the

indicated operations:

2. T

Answers:

1. 1/9

5. 4/6

DECIMALS

2. 9/16

6. 4/5

3. 36/25

7. 2/3

4. 8/27

8. 3/7

25

When a decimal is raised to a power, the

number of decimal places in the result is equal
to the number of places in the decimal multi-

plied by the exponent. For example, consider

(0.12)
3

. There are two decimal places in 0.12

and 3 is the exponent. Therefore, the number
of places in the power will be 3(2) = 6. The re-

sult is as follows:

(0.12)
3 = 0.001728

The truth of this rule is evident when we re-

call the rule for multiplying decimals. Part of

the rule states: Mark off as many decimal

places in the product as there are decimal

places in the factors together. If we carry out
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for any decimal raised to any power by simply
carrying out the multiplication indicated by the

exponent.
Consider these examples:

(1.4)
2 = 1.96

(0.12)
2 = 0.0144

(0.4)
3 = 0.064

(0.02)
2 = 0.0004

(0.2)
2 = 0.04

Finding a root of a number is the inverse of

raising a number to a power. To determine the

number of decimal places in the root of a per-
fect power, we divide the number of decimal

places in the radicand by the index of the root.

Notice that this is just the opposite of what was
done in raising a number to a power.

Consider *1 0.0625. The square root of 625

is 25. There are four decimal places in the

radicand, 0.0625, and the index of the root is 2.

Therefore, 4*2 = 2 is the number of decimal

places in the root. We have

= 0.25

4 x 4, we see that 4 is used as a factor five

times. Therefore 4
3 x 4

2
is the same as 4

s
.

This result could be written as follows:

4 3 x4 2 =4x4x4x4x4

Notice that three of the five 4's came from
the expression 4

3
, and the other two 4's came

from the expression 4
2

. Thus we may rewrite
the problem as follows:

4 3 x 4
2 = 4<

3+2 >

= 4
s

The law of exponents for multiplication may
be stated as follows: To multiply two or more
powers having the same base, add the exponents
and raise the common base to the sum of the

exponents. This law is further illustrated by
the following examples:

2
3
x 2

4 = 2
7

3 x 3
2 = 3

3

15
4 x 15

2 = 15
6

10
2
x 10' s = 10

2 ' 5

Similarly,

LAWS OF EXPONENTS

All of the laws of exponents may be devel-

oped directly from the definition of exponents.
Separate laws are stated for the following five

cases:

1. Multiplication.
2. Division.

3. Power of a power.
4. Power of a product.
5. Power of quotient.

MULTIPLICATION

To illustrate the law of multiplication, we
examine the following problem:

Common Errors

It is important to realize that the base must
be the same for each factor, in order to apply
the laws of exponents. For example, 2

3 x 3 is

neither 2
5 nor 3

5
. There is no way to apply the

law of exponents to a problem of this kind. An-
other common mistake is to multiply the bases

together. For example, this kind of error in

the foregoing problem would imply that 2
3
x 3

2

is equivalent to 6
s

, or 7776. The error of this

may be proved as follows:

8x92
3 x 3

2 =

= 72

DIVISION

The law of exponents for division may be

developed from the following example:

x

= 6'
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Cancellation of the five 6's in the divisor with

five of the 6's in the dividend leaves only two

6's, the product of which is 6
2

.

This result can be reached directly by noting
that 6

2
is equivalent to 6 (- 7

~ 5\ In other words,
we have the following:

6
7 + 6

s = 6(7
-
5)

= 6
2

Therefore the law of exponents for division is

as follows: To divide one power into another

having the same base, subtract the exponent of

the divisor from the exponent of the dividend.

Use the number resulting from this subtraction

as the exponent of the base in the quotient.
Use of this rule sometimes produces a neg-

ative exponent or an exponent whose value is 0.

These two special types of exponents are dis-

cussed later in this chapter.

POWER OF A POWER

Consider the example (3
2

)

4
. Remembering

that an exponent shows the number of times the

base is to be taken as a factor and noting in

this case that 3
2

is considered the base, we
have

(3
2
)

4 = 3
2

3
2

3
2

3
2

Also in multiplication we add exponents. Thus,

3
2

- 3
2

- 3
2

3
2
= 3

(2+2+2 +2) = 3
8

Therefore,

(3
2

)

4 = 3
(4X2)

= 3
s

The laws of exponents for the power of a

power may be stated as follows: To find the

power of a power, multiply the exponents. It

should be noted that this case is the only one in

which multiplication of exponents is performed,

POWER OF A PRODUCT

Consider the example (3 2 5)
3

. We know
that

Thus 3, 2, and 5 appear three times each as

factors, and we can show this with exponents as
3
3

,
2

3
,
and 5

3
. Therefore,

(3 2 5)
3 = 3

3
2

3
5
3

The law of exponents for the power of a

product is as follows: The power of a product
is equal to the product obtained when each of

the original factors is raised to the indicated

power and the resulting powers are multiplied

together.

POWER OF A QUOTIENT

The law of exponents for a power of an indi-

cated quotient may be developed from the fol-

lowing example:

2\
3

_ 2 2 2

3/
~

3
'

3
'

3

_ 2-2-2
"3-3-3
2!~
3

3

Therefore,

The law is stated as follows: The power of

a quotient is equal to the quotient obtained when
the dividend and divisor are each raised to the

indicated power separately, before the division

is performed.
Practice problems. Raise each of the fol-

lowing expressions to the indicated power:

3.
3 - 2

5

2. 3" + 3"

Answers:

4. (-3
2

)

3

5& '

5

6. (3 2 7)
2

1. 3
4

x 2
6 = 5,184

2. 27

3.
1

125

(3 5)
3 = (3 - 2 - 5)(3 - 2 -

5) (3 - 2 -
5)

4. [(-3)
2

]

3 = 729

5. 25

6. 9 4 - 49 = 1,764



SPECIAL EXPONENTS ONE AS AN EXPONENT

Thus far in this discussion of exponents, the

emphasis has been on exponents which are posi-
tive integers. There are two types of exponents
which are not positive integers, and two which
are treated as special cases even though they

may be considered as positive integers,

ZERO AS AN EXPONENT

Zero occurs as an exponent in the answer to

a problem such as 4 3 + 4 3
. The law of expo-

nents for division states that the exponents are
to be subtracted. This is illustrated as follows:

=

The number 1 arises as an exponent some-
times as a result of division. In the example
5
3

2 we subtract the exponents to get

= 5

This problem may be worked another way as
follows:

Therefore,

5
1 = 5

= 5

Another way of expressing the result of

dividing 4 3
by 4 3

is to use the fundamental
axiom which states that any number divided by
itself is 1. In order for the laws of exponents
to hold true in all cases, this must also be true

when any number raised to a power is divided

by itself. Thus, 4
3
/4

3 must equal 1.

Since 4 3
/4

3 has been shown to be equal to

both 4 and 1, we are forced to the conclusion
that 4 = 1.

By the same reasoning,

We conclude that any number raised to the

first power is the number itself. The exponent
1 usually is not written but is understood to

exist.

NEGATIVE EXPONENTS

If the law of exponents for division is ex-

tended to include cases where the exponent of

the denominator is larger, negative exponents
arise. Thus,

5 _ s- 5 _ =- 5 |2-5 = 3
-3

Also,

Therefore,

*-'

5 = I

Thus we see that any number divided by itself

results in a exponent and has a value of 1.

By definition then, any number (other than zero)
raised to the zero power equals 1. This is fur-

ther illustrated in the following examples:

3 = 1

400 = 1

0.02 = 1

v5

K5) = 1

Another way of expressing this problem is as

follows:

3-3-3 3

Therefore,

r3 * Jr

We conclude that a number N with a negative

exponent is equivalent to a fraction having the

following form: Its numerator is 1; its denomi-
nator is N with a positive exponent whose abso-

lute value is the same as the absolute value of

the original exponent. In symbols, this rule

may be stated as follows:

N a =
N
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Also,

N
NJ

The following examples further illustrate

the rule:

' 12

Notice that the sign of an exponent may be

changed by merely moving the expression which
contains the exponent to the other position in the

fraction. The sign of the exponent is changed
as this move is made. For example,

1

nr 2

....
'

= i x

10 2

i?
1

Therefore,

By using the foregoing relationship, a prob-
lem such as 3 -5- 5"4

may be simplified as fol-

lows:

= 3 x 5
4

FRACTIONAL EXPONENTS

Fractional exponents obey the same laws as

do integral exponents. For example,

4 l/2 x 4 1/2 _ 4 ( 1/2 + 1/2)

= 4
2/2

= 4
1 = 4

Another way of expressing this would be

4
1/2 x 4

l/2 = (4 1/2)
2

_ 4 (l/-2 x 2)

= 4
1 = 4

Observe that the number 4 1/2
,
when squared

in the foregoing example, produced the number
4 as an answer. Recalling that a square root of

a number N is a number x such that x 2 = N, we
conclude that 4 1/2 is equivalent to "sTi". Thus
we have a definition, as follows: A fractional

exponent of the form 1/r indicates a root, the

index of which is r. This is further illustrated

in the following examples:

2
1/2

1/3

Also,

6
2/3 = (6

l/
3)

2 =

2/3

3 2/3Notice that in an expression such as 8"
1' we

can either find the cube root of 8 first or square
8 first, as shown by the following example:

(8
1/32

2
2 = 4 and (8

2
)

1/3 = 4

All the numbers in the evaluation of 8
2/3

remain small if the cube root is found before

raising the number to the second power. This
order of operation is particularly desirable in

evaluating a number like 64
5/6

. If 64 were first

raised to the fifth power, a large number would
result. It would require a great deal of unnec-

essary effort to find the sixth root of 64 s
. The

result is obtained easily, if we write

64
5/6 = (64

1/6
)

5
= 2 = 32

If an improper fraction occurs in an expo-
nent, such as 7/3 in the expression 2 7/3

,
it is

customary to keep the fraction in that form
rather than express it as a mixed number. In

fraction form an exponent shows immediately
what power is intended and what root is in-

tended. However, 2
7/3 can be expressed in

another form and simplified by changing the

improper fraction to a mixed number and writ-

ing the fractional part in the radical form as
follows:

7/3 ,1/3 = 4
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The law of exponents for multiplication may
be combined with the rule for fractional expo-
nents to solve problems of the following type:

PROBLEM: Evaluate the expression 4 2 - 5
.

The laws of exponents form the basis for

calculation using powers of 10. The following
list includes several decimals and whole num-
bers expressed as powers of 10:

SOLUTION:

2
1/3

2.5 = 4
2 X 4

O.S

= 16 x 4 1/2

= 16 x 2

= 32

Practice problems:

1. Perform the indicated division:

2. Find the product: 7
2/5 x 7 1/10 x 7 3/1

3. Rewrite with a positive exponent and sim-

plify: 9~ 1/2

4. Evaluate 100 3/2

5. Evaluate (8)
5

Answers:

i. 2
3/3 + 2 l/3 = VT

9 78/10& I

Q 1 1
3.

gTTT
=

3

4. 1,000

5. 1

SCIENTIFIC NOTATION
AND POWERS OF 10

Technicians, engineers, and others engaged
in scientific work are often required to solve

problems involving very large and very small
numbers. Problems such as

22,684 x 0.00189

0.0713 x 83 x 7

are not uncommon. Solving such problems by
the rules of ordinary arithmetic is laborious

and time consuming. Moreover, the tedious

arithmetic process lends itself to operational
errors. Also there is difficulty in locating the

decimal point in the result. These difficulties

can be greatly reduced by a knowledge of the

powers of 10 and their use.

The concept of scientific notation may be
demonstrated as follows:

60,000 = 6.0000 x 10,000

= 6 x 104

538 = 5.38 x 100

= 5.38 x 10 2

Notice that the final expression in each of

the foregoing examples involves a number be-

tween 1 and 10, multiplied by a power of 10.

Furthermore, in each case the exponent of the

power of 10 is a number equal to the number of

digits between the new position of the decimal

point and the original position (understood) of

the decimal point.
We apply this reasoning to write any number

in scientific notation; that is, as a number be-

tween 1 and 10 multiplied by the appropriate

power of 10. The appropriate power of 10 is

found by the following mechanical steps:
1. Shift the decimal point to standard posi-

tion, which is the position immediately to the

right of the first nonzero digit.

2. Count the number of digits between the

new position of the decimal point and its origi-
nal position. This number indicates the value

of the exponent for the power of 10.

3. If the decimal point is shifted to the. left,

the sign of the exponent of 10 is positive; if the

decimal point is shifted to the right, the sign of

the exponent is negative.
The validity of this rule, for those cases in

which the exponent of 10 is negative, is demon-
strated as follows:
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0.00657 = 6.57 x 0.001

= 6.57 x 10~ 3

0.348 = 3.48 x 0.1

= 3.48 x 10~ J

Further examples of the use of scientific

notation are given as follows:

543,000,000 = 5.43 x 10 8

186 = 1.86 x 10 2

243.01 = 2.4301 x 10 2

0.0000007 = 7 x 10~ 7

0.00023 = 2.3 x 10~
4

Multiplication Using Powers of 10

From the law of exponents for multiplication
we recall that to multiply two or more powers
to the same base we add their exponents. Thus,

104 x 10 2 = 10
6

We see that multiplying powers of 10 together
is an application of the general rule. This is

demonstrated in the following examples:

1. 10,000 x 100 = 10* x 10
2

= 10 4 + 2

= 10 5

2. 0.0000001 x 0.001 = 10~ 7 x 10~ 3

3.

4.

= 10' 10

10,000 x 0.001 = 10 4 x 10~3

= 10 4 ~ 3

= 10

23,000 x 500 = ?

23,000 = 2.3 x 10 4

500 = 5 x 10 2

Therefore,

23,000 x 500 = 2.3 x 10
4 x 5 x 10

2

= 2.3 x 5 x 10 4 x 10
2

= 11.5 x 10 6

= 1.15 x JO
7

5. 62,000 x 0.0003 x 4,600 = ?

62,000 = 6.2 x 104

0.0003 = 3 x 10~
4

4,600 = 4.6 x 10
3

Therefore,

62,000 x 0.0003 x 4,600 = 6.2 x 3

x 4.6 x 10
4 x 10~4 x 10

3

= 85.56 x 10
3

= 8.556x 10
4

Practice problems. Multiply, using powers
of 10. For the purposes of this exercise, treat

all numbers as exact numbers:

1. 10,000 x 0.001 x 100

2. 0.000350 x 5,000,000 x 0.0004

3. 3,875 x 0.000032 x 3,000,000

4. 7,000 x 0.015 x 1.78

Answers:

1. 1.0 x 10
3

2. 7.0 x lO" 1

3. 3.72 x 10 s

4. 1.869 x 10 2

Division Using Powers of 10

The rule of exponents for division states

that, for powers of the same base, the exponent
of the denominator is subtracted from the ex-

ponent of the numerator. Thus,

= 10 7 '10;
10

;

It should be remembered that powers may
be transferred from numerator to denominator
or from denominator to numerator by simply
changing the sign of the exponent. The follow-

ing examples illustrate the use of this rule for

powers of 10:

1. 72,000
0.0012

7.2 x 104

1.2 x 10~3

7.2

1.2

= 6 x 10 7

x 10 4 x 10 3
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Chapter 7-EXPONENTS AND RADICALS

Using the rules already shown, multiplica-
tion and division involving powers of 10 may be
combined. The usual method of solving such

problems is to multiply and divide alternately
until the problem is completed. For example,

36,000 x 1.1 x 0.06

0.012 x 2,200

Rewriting this problem in scientific notation,
we have

3.6x 10
4 x 1.1 x 6x 10

2

1.2x 10~ 2 x 2.2 x 10 3
_ 3.6 x 1.1 x 6

1.2 x 2.2

= 9 x 10

= 90

x 10

Notice that the elimination of O's, wherever
possible, simplifies the computation and makes
it an easy matter to place the decimal point.

SIGNIFICANT DIGITS.-One of the most im-
portant advantages of scientific notation is the

fact that it simplifies the task of determining
the number of significant digits in a number.
For example, the fact that the number 0.00045
has two significant digits is sometimes ob-
scured by the presence of the O's. The confu-
sion can be avoided by writing the number in

scientific notation, as follows:

0.00045 = 4.5 x 10~4

Practice problems. Express the numbers in

the following problems in scientific notation

and round off before performing the calculation.

In each problem, round off calculation numbers
to one more digit than the number of significant

digits in the least accurate number; round the

answer to the number of significant digits in.

the least accurate number:

1. 0.000063 x 50.4 x 0.007213

2.

780 x 0.682 x 0.018

0.015 x 216 x 1.78

72 x 0.0624 x 0.0353

3. 0.000079 x 0^00036

Other Applications

The applications of powers of 10 may be
broadened to include problems involving recip-
rocals and powers of products.

RECIPROCALS. The following example il-

lustrates the use of powers of 10 in the forma-
tion of a reciprocal:

250,000 x 300 x 0.02

_ 1
~

2.5 x 10
s
x 3 x 10

2 x 2 x 10~
2

=
10~ 5

2.5 x 3 x 2

_ 10~ 5

~
15

Rather than write the numerator as 0.00001,
write it as the product of two factors, one of

which may be easily divided, as follows:

10~
s

10 2 x 10~ 7

15 15

n''x in'x 10

= 6.67 x 10~ 7

= 0.000000667

POWER OF A PRODUCT.-The following
example illustrates the use of powers of 10 in

finding the power of a product:

(80,000 x 2 x 10s
)

2 = (8 x 10 4 x 2 x 10 s
)

2

= 8
2 x 2

2
x (10

4+5
)

2

= 64 x 4 x 10
18

= 256 x 10
18

= 2.56 x 10
20

RADICALS

An expression such as \T2, /5~, or Va + b



in tne radical torm. me wora radical is ae-

rived from the Latin word "radix,"which means
"root." The word "radix" itself is more often

used in modern mathematics to refer to the

base of a number system, such as the base 2 in

the binary system. However, the word "radical"

is retained with its original meaning of "root."

The radical symbol (\T) appears to be a dis-

tortion of the initial letter "r" from the word
"radix." With long usage, the r gradually lost

its significance as a letter and became dis-

torted into the symbol as we use it. The vin-

culum helps to specify exactly which of the

letters and numbers following the radical sign

actually belong to the radical expression.
The number under a radical sign is theRAD-

ICAND. The index of the root (except in the

case of a square root) appears in the trough of

the radical sign. The index tells what root of

the radicand is intended. For example, in V 32,
the radicand is 32 and the index of the root is 5.

The fifth root of 32 is intended. In \/~50, the

square root of 50 is intended. When the index
is 2, it is not written, but is understood.

If we can find one square root of a number
we can always find two of them. Remember
(3)

2
is 9 and (-3)

2
is also 9. Likewise (4)

2 and

(-4)
2
both equal 16 and (5)

2 and (-5)
2
both equal

25. Conversely, 4^ is +3 or -3, ^/T6 is +4 or

-4, and ^25 is +5 or -5. When we wish to show
a number that may be either positive or nega-
tive, we may use the symbol which is read

"plus or minus." Thus 3 means "plus or
minus 3." Usually when a number is placed
under the radical sign, only its positive root is

desired and, unless otherwise specified, it is

the only root that need be found.

COMBINING RADICALS

A number written in front of another number
and intended as a multiplier is called a COEF-
FICIENT. The expression 5x means 5 times x;

aymeans a times y; and 7 N/T means 7 times
v2. In these examples, 5 is the coefficient of

x, a is the coefficient of y, and 7 is. the coeffi-

cient of A/2~.

Radicals having the same index and the same
radicand are SIMILAR. Similar radicals may
have different coefficients in front of the radi-

cal sign. For example, 3 *J~2, \/T, and
|-

\T2

cais is tne same as mat stated lor aaaing de-
nominate numbers: Add only units of the same
kind. For example, we could add 2 N/T and
4 N/T because the "unit" in each of these num-
bers is the same (N/~3)_. By the same reasoning,
we could not add 2 */3 and 4 "/~5 because these
are not similar radicals.

Addition and Subtraction

When addition or subtraction of similar rad-
icals is indicated, the radicals are combined by
adding or subtracting their coefficients and

placing the result in front of the radical. Add-

ing 3 N/T and 5 \T~2~ is similar to adding 3 bolts

and 5 bolts. The following examples illustrate

the addition and subtraction of similar radical

expressions:

= 8 /2"

+ 1/3 (NTS)
= 5/6 (\T3)

1. 3 \T2~

2. 1/2

3. N/Tr

4. -5 ITT -2 N/T+ ? Vr= o

Example 4 illustrates a case that is some-
times troublesome. The sum of the coefficients,

-5, -2, and 7, is 0. Therefore, the coefficient

of the answer would be 0, as follows:

O(\TT) = o x

Thus the final answer is 0, since multiplied

by any quantity is still 0.

Practice problems. Perform the indicated

operations:

1. 4

2.

- \T3~+ 5

3. -\T5 - 6

4. -2 N/TJO - 7 "xTIS"

Answers

1. 8

2. 1

3. -5

4. -9
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otner radical, multiplication is intended. Some-
times a dot is placed between the radicals, but
not always. Thus, either N/T- vTT or -/T-sTTT

means multiplication.
When multiplication or division of radicals

is indicated, several radicals having the same
index can be combined into one radical, if de-
sired. Radicals having the same index are said
to be of the SAME ORDER. For example, "/"2

is a radical of the second order. The radicals

^/and "'/IT are of the same order.
If radicals are of the same order, the radi-

cands can be multiplied or divided and placed
under one radical symbol. For example ,

"/IT

multiplied by N/~3~is the same as V 5 x 3. Also,
N/1T divided by */3" is the same as V6 - 3. If

coefficients appear before the radicals, they
also must be included in the multiplication or
division. This is illustrated in the following

examples:

1.

2.

= 5x\T2"

= 5 \T2

It is important to note that what we have
said about multiplication and division does not

apply to addition. A typical error is to treat

the expression N/9 + 4 as if it were equivalent
to N/1F + \T4T These expressions cannot be

equivalent, since 3 + 2 is not equivalent to N! 13.

FACTORING RADICALS.-A radical can be

split into two or more radicals of the same or-
der if the radicand can be factored. This is

illustrated in the following examples:

lent torm that is easier to use. A radical is in

its simplest form when no factor can be re-

moved from the radical, when there is no frac-

tion under the radical sign, and when the index
of the root cannot be reduced. A factor can be
removed from the radical if it occurs a number
of times equal to the index of the root. The fol-

lowing examples illustrate this:

Removing a factor that occurs a number of

times equal to the index of the root is equiva-
lent to separating a radical into two radicals so
that one radicand is a perfect power. The rad-
ical sign can be removed from the number that

is a perfect square, cube, fourth power, etc.

The root taken becomes the coefficient of the

remaining radical.

In order to simplify radicals easily, it is

convenient to know the squares of whole num-
bers up to about 25 and a few of the smaller

powers of the numbers 2, 3, 4, 5, and 6. Table
7-1 shows some frequently used powers of

numbers.

Table 7-1. Powers of numbers.

= vT= 2
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Table 7-1. Powers of numbers Continued.

Referring to table 7-1 (A), we see that the

series of numbers

1, 4, 9, 16, 25, 36, 49, 64, 81, 100

comprises all the perfect squares from 1 to 100

inclusive. If any one of these numbers appears
under a square root symbol, the radical sign
can be removed immediately. This is illus-

trated as follows:

\f2lT = 5

-JUT = 9

A radicand such as 75, which has a perfect

square (25) as a factor, can be simplified as

follows:

3

-V/T

This procedure is further illustrated in the fol-

lowing problems:

1. N/1T =

By reference to the perfect fourth powers in

table 7-1, we may simplify a radical such as

v~405. Noting that 405 has the perfect fourth

power 81 as a factor, we have the following:

105 =

= 3

As was shown with fractional exponents,

taking a root is equivalent to dividing the expo-
nent of a power by the index of the root. If a

factor of the radicand has an exponent that is

not a multiple of the index of the root, the fac-

tor may be separated so that one exponent is

divisible by the index, as in

</37 = N/^TS = 36/2 . 31/2 = 33 . ,/y = 27 N/T

Consider also

V2 3 3 7 5 = N/2 2 2 3 6 3 5

= 2 3
3
(V2 3 5)

= 54 JM)

If the radicand is a large number, the per-
fect powers that are factors are not always ob-

vious. In such a case the radicand can be sepa-
rated into prime factors. For example,

/ 8,820 = N/2
2

3
2 5 7

2

= 2 3 7 \nr

= 42

Practice problems. Simplify the radicals

and reduce to lowest terms:

= 5

3(^10)

76



Answers:

1. 3

2.

3. 6(</~3)

4. 7

RATIONAL AND
IRRATIONAL NUMBERS

Real and imaginary numbers make up the

number system of algebra. Imaginary numbers
are discussed in chapter 15 of this course.
Real numbers are either rational or irrational.

The word RATIONAL comes from the word
"ratio." A number is rational if it can be ex-

pressed as the quotient, or ratio, of two whole
numbers. Rational numbers include fractions
like 2/7, whole numbers, and radicals if the

radical sign is removable.

Any whole number is rational. Its denomi-
o

nator is 1. For instance, 8 equals -r, which is

the quotient of two integers. A number like

*fl6 is rational, since it can be expressed as
4

the quotient of two integers in the form
y.

The

following are also examples of rational numbers:

denominators are cnangea immediately to deci-

mals, as in

7 _ 7

sfZ
"

1.4142

the process of evaluating a fraction becomes an
exercise in long division. Such a fraction can
be evaluated quickly by first changing the de-
nominator to a rational number. Converting a
fraction with an irrational number in its de-

nominator to an equivalent fraction with a ra-

tional number in the denominator is called

RATIONALIZING THE DENOMINATOR.
Multiplying a fraction by 1 leaves the value

of the fraction unchanged. Since any number
divided by itself equals 1, it follows, for exam-
ple, that

= 1

If the numerator and denominator of -^ are

each multiplied by \f2~, another fraction having
the same value is obtained. The result is

1- l/o~> which equals -g-
i y o

-6
2, -6, which equals -=-

3. =, which equals -=-

Any rational number can be expressed as the

quotient of two integers in many ways. For
example,

7 -1- M _ 11
1

~
2

~
3
"

An IRRATIONAL number is a real number
that cannot be expressed as the ratio of two in-

o

tegers. The numbers N/T, 5 *T2, N/T,
-g

NT20",

2
and -Ff are examples of irrational numbers.

The denominator of the new equivalent frac-

tion is 2, which is rational. The decimal value

of the fraction is

= 7(0.7071) = 4.9497

To rationalize the denominator in _

multiply the numerator and denominator by
We get

We

5(3)

, or _L_
15 15

Practice problems. Rationalize the denomi-
nator in each of the following:

Rationalizing Denominators
1. 3.

Expressions such as 77 and77^ an
p. r?

rational numbers in the denominator.

have ir-

If the
2. 4 -
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Answers:

1. 3 -T2

2.

3.

4.

N/T

EVALUATING RADICALS

Any radical expression has a decimal equiv-
alent which may be exact if the radicand is a

rational number. If the radicand is not rational,
the root may be expressed as a decimal ap-
proximation, but it can never be exact. A pro-
cedure similar to long division may be used for

calculating square root and cube root, and

higher roots may be calculated by means of

methods based on logarithms and higher math-
ematics. Tables of powers and roots have been
calculated for use in those scientific fields in

which it is frequently necessary to work with

roots.

SQUARE ROOT PROCESS

The arithmetic process for calculation of

square root is outlined in the following para-
graphs:

1. Begin at the decimal point and mark the

number off into groups of two digits each, mov-
ing both to the right and to the left from the

decimal point. This may leave an odd digit at

the right-hand or left-hand end of the number,
or both. For example, suppose that the number
whose square root we seek is 9025. The num-
ber marked off as specified would be as follows:

2. Find the greatest number whose square
is contained in the left-hand group (90). This
number is 9, since the square of 9 is 81. Write
9 above the first group. Square this number (9),

place its square below the left-hand group, and

subtract, as follows:

Bring down the next group (25) and place it be-
side the 9, as shown. This is the new dividend

(925).
3. Multiply the first digit in the root (9) by

20, obtaining 180 as a trial divisor. This trial

divisor is contained in the new dividend (925)
five times; thus the second digit of the root ap-
pears to be 5. However, this number must be
added to the trial divisor to obtain a "true
divisor." If the true divisor is then too large
to use with the second quotient digit, this digit
must be reduced by 1. The procedure for step 3

is illustrated as follows:

5.

189

185

II
9 25

9 25

00

The number 180, resulting from the multi-

plication of 9 by 20, is written as a trial divisor
beside the new dividend (925), as shown. The
quotient digit (5) is then recorded and the trial

divisor is adjusted, becoming 185. The trial

quotient (180) is crossed out.

4. The true divisor (185) is multiplied by
the second digit (5) and the product is placed
below the new dividend (925). This step is

shown in the illustration for step 3. When the

product in step 4 is subtracted from the new
dividend, the difference is 0; thus, in this ex-

ample, the root is exact.

5. In some problems, the difference is not

after all of the digits of the original number
have been used to form new dividends. Such

problems may be carried further by adding O's

on the right-hand end of the original number,
just as in normal long division. However, in
the square root process the O's must be added
and used in groups of 2.

Practice problems. Find the square root of

each of the following numbers:

1. 9.61 2. 123.21

Answers:

1. 3.1 2. 11.1

TABLES OF ROOTS

3. 0.0025

3. 0.05

The decimal values of square roots and cube
roots of numbers with as many as 3 or 4 digits
can be found from tables. The table in appen-
dix I of this course gives the square roots and
cube roots of numbers from 1 to 100. Most of

the values given in such tables are approximate
numbers which have been rounded off.
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For example ,
the fourth column in appendix I

shows that N/ 72 = 8.4853, to 4 decimal places.

By shifting the decimal point we can obtain

other square roots. A shift of two places in the

decimal point in the radicand corresponds to a
shift of one place in the same direction in the

square root.

The following examples show the effect, as

reflected in the square root, of shifting the

location of the decimal point in the number
whose square root we seek:

\T72 = 8.4853

N/~0772 = 0.84853

N/0.0072 = 0.084853

V7,200 = 84.853

Cube Root

The fifth column in appendix I shows that the

cube root of 72 is 4.1602. By shifting the deci-

mal point we immediately have the cube roots

of certain other numbers involving the same
digits. A shift of three places in the decimal

point in the radicand corresponds to a shift of

one place in the same direction in the cube
root.

Compare the following examples:

^72 = 4.1602

\/ 0.072 = 0.41602

\/ 72,000 = 41.602

Many irrational numbers in their simplified
forms involve */2" and \^3~. Since these radicals
occur often, it is convenient to remember their

decimal equivalents as follows:

"/2~ = 1.4142 and \/T= 1.7321

Thus any irrational numbers that do not contain

any radicals other than "/or '\T3~can be con-

verted to decimal forms quickly without re-

ferring to tables.

For example consider

NT72 = 6 \T= 6(1.4142) = 8.485

NT2T = 3 \T3"= 3(1.7321) = 5.196

Keep in mind that the decimal equivalents of

NHTand N/~3"as used in the foregoing examples
are not exact numbers and the results obtained
with them are approximate in the fourth deci-

mal place.
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CHAPTER 8

LOGARITHMS AND THE SLIDE RULE

Logarithms represent a specialized use of

exponents. By means of logarithms, computa-
tion with large masses of data can be greatly

simplified. For example, when logarithms are

used, the process of multiplication is replaced
by simple addition and division is replaced by
subtraction. Raising to a power by means of

logarithms is done in a single multiplication,
and extracting a root reduces to simple division.

DEFINITIONS

In the expression 2
3 = 8, the number 2 is

the base (not to be confused with the base of the

number system), and 3 is the exponent which
must be used with the base to produce the num-
ber 8. The exponent 3 is the logarithm of 8

when the base is 2. This relationship is usually
stated as follows: The logarithm of 8 to the

base 2 is 3. In general, the logarithm of a

number N with respect to a given base is the

exponent which must be used with the base to

produce N. Table 8-1 illustrates this.

Table 8-1. Logarithms with various bases.

Table 8-1 shows that the logarithmic rela-

tionship may be expressed equally well in either

of two forms; these are the exponential form
and the logarithmic form. Observe, in table

8-1, that the base of a logarithmic expression
is indicated by placing a subscript just below
and to the right of the abbreviation "log." Ob-
serve also that the word "logarithm" is abbre-
viated without using a period.

The equivalency of the logarithmic and ex-

ponential forms may be used to restate the fun-
damental definition of logarithms in its most
useful form, as follows:

b" = N implies that log b
N = x

In words, this definition is stated as follows: If

the base b raised to the x power equals N, then
xis the logarithm of the number N to the base b.

One of the many uses of logarithms may be
shown by an example in which the base is 2.

Table 8-2 shows the powers of 2 from through
20. Suppose that we wish to use logarithms to

multiply the numbers 512 and 256, as follows:

From table 8-2,

Then

and from the table again

512 = 2 9

256 = 2
8

512 x 256 = 2
9 x 2

(

= 2
17

2 17 = 131072

It is seen that the problem of multiplication
is reduced to the simple addition of the expo-
nents 9 and 8 and finding the corresponding
power in the table.

Table 8-2 (A) shows the base 2 in the expo-
nential form with its corresponding powers.
The actual computation in logarithmic work
does not require that we record the exponential
form. All that is required is that we add the

appropriate exponents and have available a
table in which we can look up the number cor-

responding to the new exponent after adding.

Therefore, table 8-2 (B) is adequate for our

purpose. Solving the foregoing example by this

table, we have the following:

Iog 2
512 = 9

Iog 2
256 = 8

log 2 of the product = 17

Therefore, the number we seek is the one in

the table whose logarithm is 17. This number
is 131,072. In this example, we found the expo-
nents directly, added them since this was a
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Table 8-2. Exponential and logarithmic
tables for the base 2.

multiplication problem, and located the corre-

sponding power. This avoided the unnecessary
step of writing the base 2 each time.

Practice problems. Use the logarithms in

table 8-2 to perform the following multiplication:

1. 64 x 128

2. 1,024 x 256

Answers:

1. 8,192

3. 128 x 4,096

4. 512 x 2,048

3. 524,288

NATURAL AND COMMON LOGARITHMS

Many natural phenomena, such as rates of

growth and decay, are most easily described in

terms of logarithmic or exponential formulas.

Furthermore, the geometric patterns in which
certain seeds grow (for example, sunflower

seeds) is a logarithmic spiral. These facts ex-

plain the name "natural logarithms." Natural

logarithms use the base e, which is an irra-
tional number approximately equal to 2.71828.
This system is sometimes called the Napierian
system of logarithms, in honor of John Napier,
who is credited with the invention of logarithms.

To distinguish natural logarithms from other

logarithmic systems the abbreviation, In, is

sometimes used. When In appears, the base is

understood to be e and need not be shown. For
example, either log c

45 or In 45 signifies the

natural logarithm of 45.

COMMON LOGARITHMS

As has been shown in preceding paragraphs,
any number may be used as a base for a system
of logarithms. The selection of a base is a
matter of convenience. Briggs in 1617 found
that base 10 possessed many advantages not
obtainable in ordinary calculations with other
bases. The selection of 10 as a base proved so

satisfactory that today it is used almost exclu-

sively for ordinary calculations. Logarithms
with 10 as a base are therefore called COM-
MON LOGARITHMS.

When 10 is used as a base, it is not neces-

sary to indicate it in writing logarithms. For

example,

log 100 = 2

is understood to mean the same as

Iog 10
100 = 2

If the base is other than 10, it must be speci-
fied by the use of a subscript to the right and
below the abbreviation "log." As noted in the

foregoing discussion of natural logarithms, the

use of the distinctive abbreviation "In" elimi-

nates the need for a subscript when the base
is e.

It is relatively easy to convert common log-
arithms to natural logarithms or vice versa, if

necessary. It should be noted further that each

system has its peculiar advantages, but for



more often used. A simple relation connects

the two systems. If the common logarithm of a

number can be found, multiplying by 2.3026

gives the natural logarithm of the number. For

example,

log 1.60 = 0.2041

In 1.60 = 2.3026 x 0.2041

= 0.4700

Thus the natural logarithm of 1.60 is 0.4700,
correct to four significant digits.

Conversely, multiplying the natural loga-
rithm by 0.4343 gives the common logarithm of

a number. As might be expected, the conver-
sion factor 0.4343 is the reciprocal of 2.3026.

This is shown as follows:

1

2.3026
= 0.4343

Positive Integral Logarithms

The derivation of positive whole logarithms
is readily apparent. For example, we see in

table 8-3 (B) that the logarithm of 10 is 1. The
number 1 is simply the exponent of the base 10

which yields 10. This is shown in table 8-3 (A)

opposite the logarithmic equation. Similarly,

10 = 1 log 1 =

10 2 = 100 log 100 = 2

10
3 = 1,000 log 1,000 = 3

10
4 = 10,000 log 10,000 = 4

Table 8-3. Exponential and corresponding logarithmic notations using base 10.
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Keiemng to taoie ts-a, notice mat tne ioga-
rithm of 1 is and the logarithm of 10 is 1.

Therefore, the logarithm of a number between
1 and 10 is between and 1. An easy way to

verify this is to consider some numbers be-

tween 1 and 10 which are powers of 10; the ex-

ponent in each case will then be the logarithm
we seek. Of course, the only powers of 10

which produce numbers between 1 and 10 are
fractional powers.

EXAMPLE: 10 1/2 = 3.1623 (approximately)

10 0.5 _= 3.1623

Therefore, log 3.1623 = 0.5

Other examples are shown in the table for

10 3/2
,
10 5/2

,
and 10 7/2

. Notice that the num-
ber that represents 10 3/2 , 31.623, logically

enough lies between the numbers representing
10

: and 10
2-that is, between 10 and 100. No-

tice also that 10 s/2
appears between 10

2 and
10

3
,
and 10

7/2
lies between 10

3 and 10
4

.

Negative Logarithms

Table 8-3 shows that negative powers of 10

may be fitted into the systpm of logarithms.

We recall that 10" 1 means -~, or the decimal

fraction, 0.1. What is the logarithm of 0.1?

SOLUTION: 10' 1 = 0.1; log 0.1 = -1

Likewise ID" 2 = 0.01; log 0.01 = -2

Negative Fractional Logarithms

Notice in table 8-3 that negative fractional

exponents present no new problem in loga-
rithmic notation. For example, 10~ 1/2 means

1

10'

/To

/ib"

10

= 0.31623

What is the logarithm of 0.31623?

SOLUTION:

10" 1/2 = 0.31623; log 0.31623 =

mere are only B integral logarithms m the en-
tire range. Excluding zero logarithms, the

logarithms for all other numbers in the range
are fractional or contain a fractional part. By
the year 1628, logarithms for all integers from
1 to 100,000 had been computed. Practically
all of these logarithms contain a fractional

part. It should be remembered that finding the

logarithm of a number is nothing more than ex-

pressing the number as a power of 10. Table
8-4 shows the numbers 1 through 10 expressed
as powers of 10. Most of the exponents which

comprise logarithms are found by methods be-

yond the scope of this text. However, it is not

necessary to know the process used to obtain

logarithms in order to make use of them.

Table 8-4. The numbers 1 through 10

expressed as powers of 10.

= -0.5

COMPONENTS OF LOGARITHMS

The fractional part of a logarithm is usually
written as a decimal. The whole number part
of a logarithm and the decimal part have been

given separate names because each plays a

special part in relation to the number which the

logarithm represents. The whole number part
of a logarithm is called the CHARACTERISTIC.
This part of the logarithm shows the position of

the decimal point in the associated number.
The decimal part of a logarithm is called the

MANTISSA.
For a particular sequence of digits making

up a number, the mantissa of a common loga-
rithm is always the same regardless of the

position of the decimal point in that number.
For example, log 5270 = 3.72181; the mantissa
is 0.72181 and the characteristic is 3.

CHARACTERISTIC

The characteristic of a common logarithm
shows the position of the decimal point in the
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associated number. The characteristic for a

given number may be determined by inspection.

It will be remembered that a common logarithm

is simply an exponent of the base 10. It is the

power* of 10 when a number is written in

scientific notation.

When we write log 360 = 2.55630, we under-

stand this to mean 10
2 ' 55630 - 360. We know

that the number is 360 and not 36 or 3,600 be-

cause the characteristic is 2. We know 10 is

10 10
2

is 100, and 10
3

is 1,000. Therefore,

the number whose value is ID 2 - 55 "30 must lie

between 100 and 1,000 and of course any num-

ber in that range has 3 digits.

Suppose the characteristic had been 1: where

would the decimal point in the number be

placed? Since 10
J

is 10 and 10 2
is 100, any

number whose logarithm is between 1 and 2

must lie between 10 and 100 and will have 2

digits. Notice how the position of the decimal

point changes with the value of the character-

istic in the following examples:

log 36,000
= 4.55630

log 3,600
= 3.55630

log 360 = 2.55630

log 36 = 1.55630

log 3.6 = 0.55630

Note that it is only the characteristic

changes when the decimal point is moved,
advantage of using the base 10 is thus revea
If the characteristic is known, the decimal p

may easily be placed. If the number is km
the characteristic may be determined by
spection; that is, by observing the locatloi

the decimal point.

Although an understanding of the rela
of the characteristic to the powers of 1C

necessary for thorough comprehension of lc

rithms, the characteristic may be determi

mechanically by application of the follov

rules:

1. For a number greater than 1, the char
teristic is positive and is one less than
number of digits to the left of the decimal P'

in the number.
2. For a positive number less than 1,

characteristic is negative and has an abaci

value one more than the number of zeros
tween the decimal point and the first nonz

digit of the number.
Table 8-5 contains examples of each type

characteristic.

Practice problems. In problems 1 thro

4, write the characteristic of the logarithm
each number. In 5 through 8, place the decit

Table 8-5. Positive and negative characteristics.
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point in each number as indicated by the char-
acteristic (c) given for each.

Table 8-6.-Effect of changes in the

location of the decimal point.

1. 4,321 2. 1.23

5. 123; c = 4

7. 8; c = -1

3. 0.05 4. 12

6. 8,210; c =

8. 321; c = -2

Answers:

1. 3

5. 12,300

2.

6. 8.210

3. -2

7. 0.8

4. 1

8. 0.0321

Negative Characteristics

When a characteristic is negative, such as

-2, we do not carry out the subtraction, since

this would involve a negative mantissa. There
are several ways of indicating a negative char-

acteristic. Mantissas as presented in the table

in the appendix are always positive and the sign
of the characteristic is indicated_ separately.
For example, where log 0.023 = 2.36173, the

bar over the 2 indicates that only the charac-
teristic is negative that is, the logarithm is

-2 + 0.36173.

Another way to show the negative character-
istic is to place it after the mantissa. In this

case we write
:

.36173-2.

A third method, which is used where possi-
ble throughout this chapter, is to add a certain

quantity to the characteristic and to subtract

the same quantity to the right of the mantissa.
In the case of the example, we may write:

2.36173

10 -10

8.36173-10

In this way the value of the logarithm remains
the same but we now have a positive character-
istic as well as a positive mantissa.

MANTISSA

The mantissa is the decimal part of a loga-
rithm. Tables of logarithms usually contain

only mantissas since the characteristic can be

readily determined as explained previously.
Table 8-6 shows the characteristic, mantissa,
and logarithm for several positions of the deci-

mal point using the sequence of digits 4, 5, 6.

It will be noted that the mantissa remains the

same for that particular sequence of digits, re-

gardless of the position of the decimal point.

Appendix I of this training course is a table

which includes the logarithms of numbers from
1 to 100. For our present purpose in using this

table, we are concerned only with the first and
sixth columns.

The first column contains the number and
the sixth column contains its logarithm. For

example, if it is desired to find the logarithm
of 45, we would find the number 45 in the first

column, look horizontally across the page to

column 6 and read the logarithm, 1.65321. A
glance down the logarithm column will reveal

that the logarithms increase in value as the

numbers increase in value.

It must be noted in this particular table that

both the mantissa and the characteristic are

given for the number in the first column. This
is simply an additional aid, since the charac-
teristic can easily be determined by inspection.

Suppose that we wish to use the table of

Appendix I to find the logarithm of a number
not shown in the "number" column. By recall-

ing that the mantissa does not change when the

decimal point moves, we may be able to deter-

mine the desired logarithm. For example, the

number 450 does not appear in the number col-

umn of the table. However, the number 45 has

the same mantissa as 450; the only difference

between the two logs is in their characteristics.

Thus the logarithm of 450 is 2.65321.

Practice problems. Find the logarithms of

the following numbers:
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1. 64

Answers:

1. 1.80618

3. 3.80618

2. 98 3. 64UU

2. 1.99123

4. 0.99123

THE SLIDE RULE

4. y.

In 1620, not long after the invention of loga-

rithms, Edmond Gunter showed how logarithmic
\ calculations could be carried out mechanically.
This is done by laying off lengths on a rule,

representing the logarithms of numbers, and by

combining these lengths in various ways. The
idea was developed and with the contributions

of Mannheim in 1851 the slide rule came into

being as we know it today.
The slide rule is a mechanical device by

which we can carry out any arithmetic calcula-

tion with the exception of addition and subtrac-

tion. The most common operations with the

slide rule are multiplication, division, finding
the square or cube of a number, and finding the

square root or cube root of a number. Also

trigonometric operations are frequently per-
formed. The advantage of the slide rule is that

it can be used with relative ease to solve com-

plicated problems. One limitation is that it

will give results with a maximum of only three

accurate significant digits. This is sufficient

in most calculations, however, since most phys-
ical constants are only correct to two or three

significant digits. When greater accuracy is

required, other methods must be used.
A simplified diagram of a slide rule is pic-

tured in figure 8-1. The sliding, central part
of the rule is called the SLIDE. The movable

glass or plastic runner with a hairline imprinted
on it is called the INDICATOR. There is a C
scale printed on the slide, and a D scale exactly
the same as the C scale printed on the BODY
or STOCK of the slide rule. The mark that is

associated with the primary number 1 on any
slide rule scale is called the INDEX. There is

HAIRLINE. SLIDE

an index at the extreme leit and at the extreme

right on both the C and D scales. There are

other scales, each having a particular use.

Some of these will be mentioned later.

SLIDE RULE THEORY

We have mentioned that the slide rule is

based on logarithms. Recall that, to multiply
two numbers, we simply add their logarithms.

Previously we found these logarithms in tables,
but if the logarithms are laid off on scales such

as the C and D scale of the slide rule, we can

add the lengths, which represent these loga-
rithms. To make such a scale we could mark
off mantissas ranging from to 1 on a rule as

in figure 8-2. We then find in the tables the

logarithms for numbers ranging from 1 to 10

and write the number opposite its correspond-

ing logarithm on the scale.

LOGARITHM O.2 0.3 0.4 0.3 0.6 0.7 0.8 0.9

INOEV BODf' INDICATOR'

Figure 8-1. Simplified diagram of a slide rule.

Figure 8-2. Logarithms and corresponding
numbers on a scale.

Table 8-7 lists the numbers 1 through 10

and their corresponding logarithms to three

places. These numbers are written opposite
their logarithms on the scale shown in figure
8-2. If we have two such scales, exactly alike,

arranged so that one of them is free to slide

along the other, we can perform the operation
of multiplication, for example, by ADDING
LENGTHS; that is, by adding logarithms. For

example, if we wish to multiply 2x3, we find

the logarithm of 2 on the stationary scale and

move the sliding scale so that its index is over
that mark. We then add the logarithm of 3 by
finding that logarithm on the sliding scale and

by reading below it, on the stationary scale, the

logarithm that is the sum of the two.

Since we are not interested in the logarithms
themselves, but rather in the numbers they

represent, it is possible to remove the loga-
rithmic notation on the scale in figure 8-2, and

leave only the logarithmically spaced number
scale. The C and D scales of the ordinary slide

rule are made up in this manner. Figure 8-3

shows the multiplication of 2 x 3. Although the

logarithm scales have been removed, the num-
bers 2 and 3 in reality signify the logarithms of
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Table 8-7. Numbers and their

corresponding logarithms.

1 5\6/7 a 9 1

Figure 8-3. Multiplication by use of

the slide rule.

2 and 3, namely, 0.301 and 0.477; the product 6

on the scale really signifies the logarithm of 6,
that is, 0.778. Thus, although logarithms are
the underlying principle, we are able to work
with the numbers directly.

It should be noted that the scale is made up
from mantissas only. The characteristic must
be determined separately as in the case where
tables are used. Since mantissas identify only
the digit sequence, the digit 3 on the slide rule

represents not only 3 but 30, 300, 0.003, 0.3,
and so forth. Thus, the divisions may repre-
sent the number multiplied or divided by any
power of 10. This is true also for numbers
that fall between the divisions. The digit se-

quence, 1001, could represent 100.1, 1.001,
0.01001, and so forth. The following example
shows the use of the same set of mantissas
which appear in the foregoing example, but with
a different characteristic and, therefore, a dif-

ferent answer:

EXAMPLE: Use logs (positions on the slide

rule) to multiply 20 times 30.

SOLUTION:

log 20 = 1.301 (2 on the slide rule)

log 30 = 1.477 (3 on the slide rule)

log of answer = 2.778 (6 on the slide rule)

Since the 2 in the log of the answer is

merely the indicator of the position of the deci-
mal point in the answer itself, we do not expect
to find it on the slide rule scale. As in the

foregoing example, we find the digit 6 opposite
the multiplier 3. This time, however, the 6

represents 600, because the characteristic of

the log represented by 6 in this problem is 2.

READING THE SCALES

Reading a slide rule is no more complicated
than reading a yard stick or ruler, if the dif-

ferences in its markings are understood.

Between the two indices of the C or D scales

(the large digit 1 at the extreme left and right
of the scales) are divisions numbered 2, 3, 4,

,5, &, 1, 8, and 9. Each length between two con-
secutive divisions is divided into 10 sections

and each section is divided into spaces. (See

fig. 8-4.)
DIVISION

Figure 8-4. Division, section, and (space of

a slide rule scale.

Notice that the division between 1 and 2

occupies about one -third of the length of the

rule. This is sufficient space in which to write

a number for each of the section marks. The
sections in the remaining divisions are not

numbered, because the space is more limited.

Notice also that in the division between 1 and 2,

the sections are each divided into 10 spaces.
The sections of the divisions from 2 to 4 are
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subdivided into only 5 spaces, and those from
4 to the right index are subdivided into only 2

spaces. These subdivisions are so arranged
because of tine limits of space.

Only the sequence of significant digits is

read on the slide rule. The position of the dec-
imal point is determined separately. For ex-

ample, if the hairline of the indicator is in the

left-hand position shown in figure 8-5, the sig-
nificant digits are read as follows:

Figure 8-5. Readings in the first division

of a slide rule.

1. Any time the hairline falls in the first

division, the first significant digit is 1.

2 . Since the hairline lies between the index
and the first section mark, we know the number
lies between 1.0 and 1.1, or 10 and 11, or 100

and 110, etc. The second significant digit is 0.

3. We next find how far from the index the

hairline is located. It lies on the marking for

the third space.
4. The three significant digits are 103.

In the second example shown in figure 8-5,
the hairline is located in the first division, the

ninth section, and on the fourth space mark of

that section. Therefore, the significant digits
are 194.

Thus, we see that any number falling in the

first division of the slide rule will always have
1 as its first significant digit. It can have any

TEN SPACES IN EACH
SECTION

number from through 9 as its second digit, and
any number from through 9 as its third digit.

Sometimes a fourth digit can be roughly approx -

imated in this first division, but the number is

really accurate to only three significant digits .

In the second and third divisions, each sec-
tion is divided into only 5 spaces. (See fig. 8-6.)

Thus, each space is equal to 0.2 of the section.

Suppose, for example, that the hairline lies on
the third space mark after the large 2 indicat-

ing the second division. The first significant

digit is 2. Since the hairline lies between 2 and
the first section mark, the second digit is 0.

The hairline lies on the third space mark or
0.6 of the way between the division mark and
the first section mark, so the third digit is 6.

Thus, the significant digits are 206. Notice
that if the hairline lies on a space mark the

third digit can be written accurately; otherwise
it must be approximated.

From the fourth division to the right index,
each section is divided into only two spaces.

Thus, if the hairline is in the fourth division

and lies on the space mark between the sixth

and seventh sections, we would read 465. If the

hairline did not fall on a space mark, the third

digit would have to be approximated.

OPERATIONS WITH THE SLIDE RULE

There are two parts in solving problems
with a slide rule. In the first part the slide

rule is used to find the digit sequence of the

final result. The second part is concerned with

the placing of the decimal point in the result.

Let us consider first the digit sequence in mul-

tiplication and division.

Multiplication

Multiplication is performed on the C and D
scales of the slide rule. The following proce-
dure is used:

ONLY FIVE SPACES IN EACH
SECTION

1 2

HAIRLINE

Figure 8-6. Reading in the second division of a slide rule.
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1. Locate one of the factors to be multiplied
on the D scale, disregarding the decimal point.

2. Place the index of the C scale opposite
that number.

3. Locate the other factor on the C scale

and move the hairline of the indicator to cover
this factor.

4. The product is on the D scale under the

hairline.

Sometimes in multiplying numbers, such as
25 x 6, the number on the C scale extends to

the right of the stock and the product cannot be
read. In such a case, we simply shift indices.

Instead of the left-hand index of the C scale,
the right-hand index is placed opposite the fac-

tor on the D scale. The rest of the problem
remains the same. By shifting indices, we are

simply multiplying or dividing by 10, but this

plays no part in reading the significant digits.

Shifting indices affects the characteristic only.

EXAMPLE: 252 x 3 = 756

1. Place the left index of the C scale over
252.

2. Locate 3 on the C scale and set the hair-

line of the indicator over it.

3. Under the hairline on the D scale read
the product, 756.

EXAMPLE: 4 x 64 = 256

1. Place the right index of the C scale

over 4.

2. Locate 64 on the C scale and set the

hairline of the indicator over it.

3. Under the hairline on the D scale read
the product, 256.

Practice problems. Determine the following

products by slide rule to three significant

digits:

1. 2.8 x 16

2. 7 x 1.3

Answers:

1. 44,8

2. 9.10

Division

3. 6 x 85

4. 2.56 x 3.5

3. 510

4. 8.96

Division being the inverse of multiplication,
the process of multiplication is reversed to

perform division on a slide rule. We subtract

the length representing the logarithm of the

divisor from the length representing the loga-
rithm of the dividend to get the logarithm of the

quotient.
The procedure is as follows:

1. Locate the dividend on the D scale and

place the hairline of the indicator over it.

2. Move the slide until the divisor (on the C
scale) lies under the hairline.

3. Read the quotient on the D scale opposite
the C scale index.

If the divisor is greater numerically than

the dividend, the slide will extend to the left. If

the divisor is less, the slide will extend to the

right. In either case, the quotient is the number
on the D scale that lies opposite the C scale in-

dex, falling within the limits of the D scale.

EXAMPLE: 6-3 =

1. Locate 6 on the D scale and place the

hairline of the indicator over it.

2. Move the slide until 3 on the C scale is

under the hairline.

3. Opposite the left C scale index, read the

quotient, 2, on the D scale.

EXAMPLE: 378 = 63 = 6

1. Locate 378 on the D scale and move the

hairline of the indicator over it.

2. Move the slide to the left until 63 on the

C scale is under the hairline.

3. Opposite the right-hand index of the C

scale, read the quotient, 6, on the D scale.

Practice problems. Determine the following

quotients by slide rule.

1. 126 * 3

2. 960 * 15

Answers:

1. 42

2. 64

3. 142 * 71

4. 459 * 17

3. 2

4. 27

PLACING THE DECIMAL POINT

Various methods have been advanced regard-
ing the placement of the decimal point in num-
bers derived from slide rule computations.

Probably the most universal and most easily
remembered method is that of approximation.
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The method of approximation means simply
the rounding off of numbers and the mechanical

shifting of decimal points in the numbers of the

problem so that the approximate size of the

solution and the exact position of the decimal

point will be seen from inspection. The slide

rule may then be used to derive the correct se-

quence of significant digits. The method may
best be demonstrated by a few examples. Re-

member, shifting the decimal point in a number
one place to the left is the same as dividing by
10. Shifting it one place to the right is the

same as multiplying by 10. Every shift must
be compensated for in order for the solution to

be correct.

EXAMPLE: 0.573 x 1.45

SOLUTION: No shifting of decimals is neces-

sary here. We see that approximately 0.6 is to

be multiplied by approximately 1 1/2. Immedi-

ately, we see that the solution is in the neigh-
borhood of 0.9. By slide rule we find that the

significant digit sequence of the product is 832.

From our approximation we know that the deci-
mal point is to the immediate left of the first

significant digit, 8. Thus,

0.573x 1.45 = 0.832

EXAMPLE: 239 x 52.3

SOLUTION: For ease in multiplying, we shift

the decimal point in 52.3 one place to the left,

making it 5.23. To compensate, the decimal

point is shifted to the right one place in the

other factor. The new position of the decimal

point is indicated by the presence of the caret

symbol.

239. A x 5A2.3

Our problem is approximately the same as

2,400 x 5 = 12,000

By slide rule the digit sequence is 125. Thus,

239 x 52.3 = 12,500

EXAMPLE: 0.000134 x 0.092

SOLUTION:

Shifting decimal points, we have

A00.000134 x 0.09A2

Approximation: 9 x 0.0000013 = 0.0000117.

By slide rule the digit sequence is 123. From
approximation the decimal point is located as
follows:

0.0000123

Thus,

0.000134 x 0.092 = 0.0000123

EXAMPLE: 53.1

42.4

SOLUTION: The decimal points are shifted so
that the divisor becomes a number between 1

and 10. The method employed is cancellation.

Shifting decimal points, we have

5A3 ' 1

4A2.4

Approximation: 5_ _ 1

Digit sequence by slide rule:

1255

Placing the decimal point from the approxi-
mation:

1.255

Thus,

EXAMPLE:

53.1

42.4
= 1.255

0.00645

0.0935

SOLUTION:

Shifting decimal points

0.00A645

0.09A35

Approximation:

-j-
= 0.07

Digit sequence by slide rule: 690
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mation:

Thus,

^/\JJ.IIL xi uiu nit; me 110.1 uvci oil uii LUC

0.0690

0.00645

0.0935
= 0.0690

Practice problems. Solve the following
problems with the slide rule and use the method
of approximation to determine the position of

the decimal point:

3. 0.0362 x 1.21

4. 67 - 316

3. 0.0438

4. 0.212

1. 0.00453 x 0.1645

2. 53.1 - 1.255

Answers:

1. 0.000745

2. 42.4

MULTIPLICATION AND
DIVISION COMBINED

In problems such as

0.644 x 330

161 x 12

it is generally best to determine the position of

the decimal point by means of the method of

approximation and to determine the significant

digit sequence from the slide rule. Such prob-
lems are usually solved by dividing and multi-

plying alternately throughout the problem. That

is, we divide 0.644 by 161, multiply the quotient

by 330, and divide that product by 12.

Shifting decimal points, we have

A0.644 x 3A30

1A61 x 1A2

Since there is a combined shift of three places
to the left in the divisor, there must also be a

combined shift of three places to the left in the

dividend.

2

Approximation: 'v ** = 0.06 x 2 =0.12

The step-by-step process of determining the

significant digit sequence of this problem is as

follows:

2 . Draw the slide so that 16 1 of the C scale

lies under the hairline opposite 644.

3. Opposite the C scale index (on the D scale)
is the quotient of 644 +161. This is to be mul-

tiplied by 330, but 330 projects beyond the rule

so the C scale indices must be shifted.

4. After shifting the indices, find 330 on the

C scale and place the hairline over it. Opposite
330 under the hairline on the D scale is the

644
product of - 330.

5. Next, move the C scale until 12 is under
the hairline. Opposite the C scale index (on the

D scale) is the final quotient. The digit se-

quence is 110.

The decimal point is then placed according
to our approximation: 0.11. Thus,

0.644 x 330
161 x 12

= 0.11

Practice problems. Solve the following

problems, using a slide rule:

1. 22 x 78.5 x 157

17 x 18.3 x 85

2. 432 x 9,600

25,600 x 198

3. 2.77 x 0.064

0.17 x 1.97

Answers:

1. 10.2 2. 0.817 3. 0.529

SQUARES

Squares of numbers are found by reference
to the A scale. The numberson the A scale are
the squares of those on the D Scale. The A
scale is really a double scale, each division

being one -half as large as the corresponding
division on the D scale. The use of a double
scale for squaring is based upon the fact that

the logarithm of the square of a number is twice
as large as the logarithm of the number itself.

In other words,

log N 2 = 2 log N

This is reasonable, since

log N 2 = log (N x N)

= log N + log N
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For a numerical example, suppose that we
seek to square 2 by means of logarithms.

log 2 = 0.301

log 2
2 = 2 log 2

= 2 x 0.301

= 0.602

Since each part of the A scale is half as

large as the corresponding part of the D scale,
the logarithm 0.602 on the A scale will be the

same length as the logarithm 0.301 on the D
scale. That is, these logarithms will be oppo-
site on the A and D scales. On the A scale as
on the D scale, the numbers are written rather

than their logarithms. Select several numbers
on the D scale, such as 2, 4, 8, 11, and read
their squares on the A scale, namely 4, 16,

64, 121.

Notice also that the same relation exists for

the B and C scales as for the A and D scales.
Of interest, also, is the fact that since the A
and B scales are made up as are the C and D
scales, they too could be used for multiplying
or dividing.

Placing the Decimal Point

Usually the decimal may be placed by the

method of approximation. However, close ob-

servation will reveal certain facts that elimi-

nate the need for approximations in squaring
numbers. Two rules suffice for squaring whole
or mixed numbers, as follows:

1. When the square of a number is read on
the left half of the A scale, that number will

contain twice the number of digits to the left of

the decimal point in the original number, less 1.

2. When the square of a number is read on
the right half of the A scale, that number will

contain twice the number of digits to the left of

the decimal point in the original number.

EXAMPLE: Square 2.5.

SOLUTION: Place the hairline over 25 on the

D scale. Read the digit sequence, 625, under
the hairline in the left half of the A scale.

By rule 1: (2xnumberof digits)-! = 2(1)-1=1.
There is one digit to the left of the decimal

point. Thus,

(2.5)
2 = 6.25

EXAMPLE: Square 6,340.

SOLUTION:

Digit sequence, right half A scale: 402.

By rule 2: 2 x number of digits
= 2x4 = 8

(digits in answer). Thus,

(6,340)
2 = 40,200,000

Positive Numbers Less Than One

If positive numbers less than one are to be

squared, a slightly different version of the pre-
ceding rules must be employed. Count the
zeros between the decimal point and the first

nonzero digit. Consider this count negative.
Then the number of zeros between the decimal

point and the first significant digit of the

squared number may be found as follows:

1. Left half A scale: Multiply the zeros
counted by 2 and subtract 1.

2. Right half A scale: Multiply the zeros
counted by 2.

EXAMPLE: Square 0.0045

SOLUTION:

Digit sequence, right half A scale: 2025.

By rule 2: 2(-2) = -4. (Thus, 4 zeros be-
tween the decimal point and the first digit.)

(0.0045)
2 = 0.00002025

EXAMPLE: Square 0.0215

SOLUTION:

Digit sequence, left half A scale: 462.

By rule 1: 2(-l) -1 = -3

(0.02 15)
2 = 0.000462

SQUARE ROOTS

Taking the square root of a number with the

slide rule is the inverse process of squaring a

number. We find the number on the A scale,
set the hairline of the indicator over it, and
read the square root on the D scale under the

hairline.

Positioning Numbers on the A Scale

Since there are two parts of the A scale

exactly alike and the digit sequence could be
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found on either part, a question arises as to

which section to use. Generally, we think of

the left half of the rule as being numbered from
1 to 10 and the right half as being numbered
from 10 to 100. The numbering continues- left

half 100 to 1,000, right half 1,000 to 10,000, and
so forth.

A simple process provides a check of the

location of the number from which the root is

to be taken. For whole or mixed numbers, be-

gin at the decimal point of the number and mark
off the digits to the left (including end zeros) in

groups of two. This is illustrated in the follow-

ing two examples:

1. ^40,300.21

V4'03'00.21

2. N/2, 034.1

N/20'34.1

Powers of 10

When the square root of 10, 1,000, 100,000,
and so forth, is desired, the center index is

used. That is, when the number of digits in a

power of 10 is even, use the center index.
The slide rule uses only the first three

significant digits of a number. Thus, if the

rule is used, \/23451.6 must be considered as

^23500.0. Likewise, 1.43567 would be consid-
ered 1.43000, and so forth. For greater accu-

racy, other methods must be used.
Practice problems. State which half of the

A scale should be used for each of the following:

4. \/0. 00045

Look at the left-hand group. If it is a 1-digit

number, use the left half of the A scale. If it

is a 2-digit number, use the right half of the A
scale. The number in example 1 is thus located

in the left half of the A scale and the number in

example 2 is located in the right half.

N" '.fibers Less Than One

For positive numbers less than one, begin at

the decimal point and mark off groups of two to

the right. This is illustrated as follows:

Answers:

1. VO.000245

VO.00'02'45

2. N/0.00402

N/0.00'40'2

Looking from left to right, locate the first group
that contains a digit other than zero. If the

first figure in this group is zero, locate the

number in the left half of the A scale. If the

first figure is other than zero, locate the num-
ber in the right half of the A scale. Thus,

WO.00'02'45 is located left

and

1. Left

2. Left

3. Left

4. Left

5. Right

6. Right

7. Left

8. Left

Placing the Decimal Point

To place the decimal point in the square
root of a number, mark off the original number
in groups of two as explained previously.

For whole or mixed numbers, the number of

groups marked off is the number of digits in-

cluding end zeros to the left of the decimal

point in the root. The following problems il-

lustrate this:

N/2'34'15 Three digits to left of dec-

imal point in square root

2. \/421,562.4

^42'15'62.4 Three digits to left of dec-

imal point in square root

3. W231.321

A mo i -. i -._ i.j i

N/2'31.321 Two digits to left of deci-
*^s f\t vni vt
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For positive numbers less than one, there

will be one zero in the square root between the

decimal point and the first significant digit for

every pair of zeros counted between the deci-

mal point and the first significant digit of the

original number. This is illustrated as follows:

\/0.00'04 One zero before first digit

in square root

2. V 0.00008

VO.00'00'8 Two zeros before first digit

in square root

3. V0.08' No zeros before first digit
in square root

EXAMPLE:

(Two digits in left-hand group)

Place the hairline over 452 on the right half of

the A scale. Read the digit sequence of the

root, 672, on the D scale under the hairline.

Since there are two groups in the original num-
ber, there are two digits to the left of the deci-
mal point in the root. Thus,

EXAMPLE:

v/4~521 = 67.2

N/0.000741

VO.00'07'41

(First figure is zero in this group)

Place the hairline over 741 on the left half of

the A scale. Read the digit sequence of the

root, 272, under the hairline on the D scale.

Since there is one pair of zeros to the left of

the group containing the first digit, there is one
zero between the decimal point and the first

significant digit of the root. Thus,

^0.000741 = 0.0272

Practice problems. Evaluate each of

following by means of a slide rule:

1. (17.75)
2

2. (0.65)
2

the

Answers:

1. 315

2. 0.422

3. 3.07

4. 0.272

CUBES AND CUBE ROOTS

Cubes and cube roots are read on the K and
D scales of the slide rule. On the K scale are

compressed three complete logarithmic scales
in the same space as that of the D scale. Thus,
any logarithm on the K scale is three times the

logarithm opposite it on the D scale. To cube
a number by logarithms, we multiply its loga-
rithm by three. Therefore, the logarithms of

cubed numbers will lie on the K scale opposite
the numbers on the D scale.

As with the other slide rule scales men-
tioned, the numbers the logarithms represent,
rather than the logarithmic notations, are

printed on the rule. In the left-hand third of

the K scale, the numbers range from 1 to 10; in

the middle third they range from 10 to 100; and
in the right-hand third, they range from 100 to

1,000.
To cube a number, find the number on the D

scale, place the hairline over it, and read the

digit sequence of the cubed number on the K
scale under the hairline.

Placing the Decimal Point

The decimal point of a cubed whole or mixed
number may be easily placed by application of

the following rules:

1. If the cubed number is located in the left

third of the K scale, its number of digits to the

left of the decimal point is 3 times the number
of digits to the left of the decimal point in the

original number, less 2.

2. If the cubed number is located in the

middle third of the K scale, its number of digits
is 3 times the number of digits of the original

number, less 1.

3. If the cubed number is located in the

right third of the K scale, its number of digits
is 3 times the number of digits of the original
number.

EXAMPLE: (1.6)
3

SOLUTION: Place the hairline over 16 on

scale. Read the digit sequence, 409, on the

scale under the hairline.
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Number of digits to left of decimal point in the

number 1.6 is 1 and the cubed number is in the

left-hand third of the K scale.

3 x (No. of digits)- 2 = (3 x l)-2

= 1

Therefore,

(1.6)
3 - 4.09

(4. 1)
3EXAMPLE:

Digit sequence = 689.

SOLUTION: Number of digits to left of decimal

point in the number 4.1 is 1, and the cubed
number is in the middle third of the K scale.

3 x (No. of digits)-! = (3 x 1)-1

= 2

Therefore,

EXAMPLE:

(4. 1)
3 = 68.9

(52)
3

SOLUTION: Digit sequence = 141.

Number of digits to left of decimal point in the

number 52 is 2, and the cubed number is in the

right-hand third of the K scale.

3 x No. of digits = 3x2
= 6

Therefore,

(52)
3 = 141,000

Positive Numbers Less Than One

If positive numbers less than one are to be

cubed, count the zeros between the decimal

point and the first nonzero digit. Consider the

count negative. Then the number of zeros be-
tween the decimal point and the first significant

digit of the cubed number may be found as
follows:

1. Left third of K scale: Multiply the zeros
counted by 3 and subtract 2.

2. Middle third of K scale: Multiply the

zeros counted by 3 and subtract 1.

3. Right third of K scale: Multiply the zeros
counted by 3.

EXAMPLE: Cube 0.034

SOLUTION: Digit sequence = 393

Zero count of 0.034 = -1, and 393 is in the mid-
dle third of the K scale.

3 x (No. of zeros)-! = (3 x -1)-1 = -4

Therefore,

(0.034)
3 = 0.0000393

Practice problems. Cube the following num-
bers using the slide rule.

1. 21 2. 0.7 3. 0.0128 4. 404

Answers:

1. 9260

2. 0.342

Cube Roots

3. 0.0000021

4. 66,000,000

Taking the cube root of a number on the
slide rule is the inverse process of cubing a
number. To take the cube root of a number,
find the number on the K scale, set the hairline
over it, and read the cube root on the D scale
under the hairline.

POSITIONING NUMBERS ON THE K SCALE .-
Since a given number can be located in three

positions on the K scale, the question arises as
to which third of the K scale to use when locat-

ing a number. Generally, the left index, the
left middle index, the right middle index, and
the right index are considered to be numbered
as shown in figure 8-7.

i

1,000

10

10,000

100

100,000

1,000

1,000,000

Figure -8- 7. Powers of 10 associated with
K-scale indices.

A system similar to that used with square
roots may be used to locate the position of a
number on the K scale. Groups of three are
used rather than groups of two. The grouping
for cube root is illustrated as follows:
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1. ^40,531.6

N/40'531.6

2. ^4,561.43

W561.43

3. ^0.000043

\'0.000'043

For whole or mixed numbers the following
rules apply:

1. If the left-hand group contains one digit,

locate the number in the left third of the K scale.

2. If the left group contains two digits, lo-

cate the number in the middle third of the K
scale.

3. If the left group contains three digits,
locate the number in the right third of the K
scale.

The following examples illustrate the fore-

going rules:

1. s/4'561.43

(One digit) -left third K scale.

2. K/40'531.6

(Two digits)-middle third K scale.

3.
3

'

(Three digits) right third of K scale.

For positive numbers less than one, look
from left to right and find the first group that

contains a digit other than zero.

1. If the first two figures in this group are

zeros, locate the number in the left third of the
K scale.

2. K only the first figure in this group is

zero, locate the number in the middle third of

the K scale.

3. If the first figure of the group is not zero,
locate the number in the right third of the K
scale.

The following examples illustrate these
rules:

1.
3
N/ 0.000' 004' 53

(Two zeros)-left third K scale.

2. N/0.000'050'43

(One zero) middle third K scale.

3. x/0.000'000'430

(No zero) right third K scale.

PLACING THE DECIMAL POINT.-To place
the decimal point in the cube root of a number,
we use the system of marking off in groups of
three as shown above.

For whole or mixed numbers, there is one
digit in the root to the left of the decimal point
for every group marked in the original number .

Thus,

(Two digits in root to left of decimal point.)

For positive numbers less than one, there
will be one zero in the root between the decimal
point and the first significant digit for every
three zeros counted between the decimal point
and the first significant digit of the original
number. Thus,

N/0.000'000'004

(Two zeros between decimal point and first sig-
nificant digit of root.)

EXAMPLE: N/216000.4

3r

(Three digits in left group)

Place the hairline over 216 in the right third of
the K scale. Read the digit sequence, 6, under
the hairline on the D scale. Since there are
two groups in the original number, there are
two digits to the left of the decimal point in the
root. Thus,

V216000.4 = 60

EXAMPLE: * 0.0000451
3r
VO.000'045'1

(Only first figure is zero in this group)

Place the hairline over 451 in the middle third
of the K scale. Read the digit sequence, 357,
under the hairline on the D scale. Since there
is one group of three zeros, there is one zero
between the decimal point and the first signifi-
cant digit of the root. Thus,

VO.0000451 = 0.0357
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POWERS OF 10.-To take the cube root of a 4. N/204,000 d. s. 589
power of 10, mark it off as explained in the _
preceding paragraphs. The number in the left 5. V 734,000,000 d. s. 902
group will then be 1, 10, or 100. We know that

the cube root of 10 is a number between 2 and 6. V4,913 d. s. 17
3. Thus, for the cube root of any number whose
left group is 10, use the K scale index which Answers:
lies between 2 and 3 on the D scale. The cube
root of 100 lies between 4 and 5. Therefore, 1. 0.02844
for a number whose left group is 100, use the K
scale index between 4 and 5 on the D scale. 2. 0.371

Practice problems. Following are some
problems and the digit sequence (d. s.) of the 3. 5.026
roots. Locate the decimal point for each root.

3 4. 58.9
1. N/0.000023 d. s. 2844

2. N/TTU51 d. s. 371 5> 902

3. IfTZI d. s. 5026 6. 17
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CHAPTER 9

FUNDAMENTALS OF ALGEBRA

The numbers and operating rules of arith-

metic form a part of a very important branch
of mathematics called ALGEBRA.

Algebra extends the concepts of arithmetic

so that it is possible to generalize the rules for

operating with numbers and use these rules in

manipulating symbols other than numbers. It

does not involve an abrupt change into a dis-

tinctly new field, but rather provides a smooth
transition into many branches of mathematics
with a continuation of knowledge already gained
in basic arithmetic.

The idea of expressing quantities in a gen-
eral way, rather than in the specific terms of

arithmetic, is fairly common. A typical exam-
ple is the formula for the perimeter of a rec-

tangle, P = 2L + 2W, in which the letter P rep-
resents perimeter, L represents length, and W
represents width. It should be understood that

2L = 2(L) and 2W = 2(W). If the L and the W
were numbers, parentheses or some other mul-
tiplication sign would be necessary, but the

meaning of a term such as 2L is clear without
additional signs or symbols.

All formulas are algebraic expressions, al-

though they are not always identified as such.
The letters used in algebraic expressions are
often referred to as LITERAL NUMBERS (lit-
eral implies "letteral").

Another typical use of literal numbers is in

the statement of mathematical laws of operation.
For example, the commutative, associative, and
distributive laws, introduced in chapter 3 with

respect to arithmetic, may be restated in gen-
eral terms by the use of algebraic symbols.

COMMUTATIVE LAWS
The word "commutative" is defined in chap-

ter 3. Remember that the commutative laws
refer to those situations in which the factors
and terms of an expression are rearranged in a
different order.

ADDITION

The algebraic form of the commutative law
for addition is as follows:

a + b = b + a

From this law, it follows that

a + (b + c) = a + (c + b) = (c + b) + a

In words, this law states that the sum of two or
more addends is the same regardless of the
order in which the addends are arranged.

The arithmetic example in chapter 3 shows

only one specific numerical combination in

which the law holds true. In the algebraic ex-

ample, a, b, and c represent any numbers we
choose, thus giving a broad inclusive example
of the rule. (Note that once a value is selected

for a literal number, that value remains the

same wherever the letter appears in that par-
ticular example or problem. Thus, if we give a
the value of 12, in the example just given, a's

value is 12 wherever it appears.)

MULTIPLICATION

The algebraic form of the commutative law

for multiplication is as follows:

ab = ba

In words, this law states that the product of

two or more factors is the same regardless of

the order in which the factors are arranged.

ASSOCIATIVE LAWS

The associative laws of addition and multi-

plication refer to the grouping (association) of

terms and factors in a mathematical expression.

ADDITION

The algebraic form of the associative law

for addition is as follows:

In words, this law states that the sum of three

or more addends is the same regardless of the

manner in which the addends are grouped.

MULTIPLICATION

The algebraic form of the associative law
for multiplication is as follows:

a b c = (a b) c = a (b c)
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In words, this law states that the product of

three or more factors is the same regardless
of the manner in which the factors are grouped.

DISTRIBUTIVE LAW

The distributive law refers to the distribu-

tion of factors among the terms of an additive

expression. The algebraic form of this law is

as follows:

a(b + c) = ab + ac

From this law, it follows that: If the sum of two

or more quantities is multiplied by a third

quantity, the product is found by applying the

multiplier to each of the original quantities

separately and summing the resulting expres-

sions.

ALGEBRAIC SUMS

The word "sum" has been used several times
in this discussion, and it is important to realize

the full implication where algebra is concerned.
Since a literal number may represent either a

positive or a negative quantity, a sum of sev-
eral literal numbers is always understood to be
an ALGEBRAIC SUM. That is, it is the sum
that results when the algebraic signs of all the

addends are taken into consideration.

The following problems illustrate the proce-
dure for finding an algebraic sum;

Let a =
3, b = -2, and c = 4.

Then a + b + c = (3) + (-2) + (4)

= 5

Also, a-b-c = a + (-b) + (-c)

= 3 + (+2) + (-4)

= 1

The second problem shows that every expres-
sion containing two or more terms to be com-
bined by addition and subtraction may be re-
written as an algebraic sum, all negative signs
being considered as belonging to specific terms
and all operational signs being positive.

It should be noted, in relation to this subject,
that the laws of signs for algebra are the same
as those for arithmetic.

ALGEBRAIC EXPRESSIONS

An algebraic expression is made up of the

signs and symbols of algebra. These symbols

include the Arabic numerals, literal numbers,
the signs of operation, and &Q forth. Such an
expression represents one number or one quan-
tity. Thus, just as the sum of 4 and 2 is one

quantity, that is, 6, the sum of c and d is one

quantity, that is, c + d. Likewise p -vTB, ab,

a -
b, and so forth, are algebraic expres-

sions each of which represents one quantity or
number.

Longer expressions may be formed by com-
binations of the various signs of operation and
the other algebraic symbols, but no matter how
complex such expressions are they still repre-
sent one number. Thus the algebraic expres-

-a + ^2a + b
sion.

6
-c is one number

The arithmetic value of any algebraic ex-

pression depends on the values assigned to the

literal numbers. For example, in the expres-
sion 2x 2 - 3ay, if x = -3, a = 5, and y =

1, then
we have the following:

2x 2 - Say = 2(-3)
2

-3(5)(1)

= 2(9)
- 15 = 18 - 15 = 3

Notice that the exponent is an expression
such as 2x 2

applies only to the x. If it is de-
sired to indicate the square of 2x, rather than
2 times the square of x, then parentheses are
used and the expression becomes (2x)

2
.

Practice problems. Evaluate the following

algebraic expressions when a = 4, b = 2, c =
3,

x =
7, and y = 5. Remember, the order of op-

eration is multiplication, division, addition, and
subtraction.

ax

nr

1. 3x + 7y - c 3.
u

2. xy - 4a2
4. c H

Answers:

1. 53 3. 19

2. -29 4. 53

TERMS AND COEFFICIENTS

The terms of an algebraic expression are

the parts of the expression that are connected

by plus and minus signs. In the expression
3abx + cy - k, for example, 3abx, cy, and k are

the terms of the expression.
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An expression containing only one term, such
as Sab, is called a monomial (mono means one).
A binomial contains two terms; for example,
2r + by. A trinomial consists of three terms.

Any expression containing two or more terms

may also be called by the general name, poly-
nomial (poly means many). Usually special
names are not given to polynomials of more than

three times. The expression x 3 - 3x 2 + 7x + 1

is a polynomial of four terms. The trinomial
x 2 + 2x + 1 is an example of a polynomial which
has a special name.

Practice problems. Identify each of the fol-

lowing expressions as a monomial, binomial,
trinomial, or polynomial. (Some expressions
may have two names.)

1. x 3. abx

2. Sy + a-t-b 4. 4 + 2b + y

5. 3y
2
+ 4

6.

Answers:

1. Monomial

3. Monomial

5. Binomial

(also polynomial)

2. Trinomial

(also polynomial)

4. Polynomial

6. Binomial

(also polynomial)

In general, a COEFFICIENT of a term is

any factor or group of factors of a term by
which the remainder of the term is to be multi-

plied. Thus in the term 2axy, 2ax is the coeffi-

cient of y, 2a is the coefficient of xy, and 2 is

the coefficient of axy. The word "coefficient"
is usually used in reference to that factor which
is expressed in Arabic numerals. This factor
is sometimes called the NUMERICAL COEF-
FICIENT. The numerical coefficient is cus-

tomarily written as the first factor of the term.
In 4x, 4 is the numerical coefficient, or simply
the coefficient, of x. Likewise, in 24xy

2
,
24 is

the coefficient of xy
2 and in 16(a + b), 16 is the

coefficient of (a + b). When no numerical coef-
ficient is written it is understood to be 1. Thus
in the term xy, the coefficient is 1.

COMBINING TERMS

When arithmetic numbers are connected by
plus and minus signs, they can always be com-
bined into one number. Thus,

Here three numbers are added algebraically
(with due regard for sign) to give one number.
The terms have been combined into one term.

Terms containing literal numbers can be
combined only if their literal parts are the
same. Terms containing literal factors in
which the same letters are raised to the same
power are called like terms. For example, 3y
and 2y are like terms since the literal parts
are the same. Like terms are added by adding
the coefficients of the like parts. Thus, 3y + 2y
= 5y just as 3 bolts + 2 bolts = 5 bolts. Also
3a2 b and a

2
b are like; 3a2 b + a 2b = 4a2 b and

3a2 b - a 2 b = 2a 2
b. The numbers ay and by are

like terms with respect to y. Their sum could
be indicated in two ways: ay + by or (a + b)y.
The latter may be explained by comparing the
terms to denominate numbers. For instance,
a bolts + b bolts = (a + b) bolts.

Like terms are added or subtracted by add-

ing or subtracting the numerical coefficients
and placing the result in front of the literal

factor, as in the following examples:

7x
2 - 5x 2 =

(7
- 5)x

2 = 2x 2

5b 2x - Say
2 - 8b 2x + lOay

2 = -3b 2x + 7ay
2

Dissimilar or unlike terms in an algebraic
expression cannot be combined when numerical
values have not been assigned to the literal

factors. For example, -5x 2 + 3xy - 8y
2 con-

tains three dissimilar terms. This expression
cannot be further simplified by combining terms
through addition or subtraction. The expres-
sion may be rearranged as x(3y - 5x) - 8y 2 or

y(3x -
8y)

- 5x 2
,
but such a rearrangement is

not actually a simplification.
Practice problems. Combine like terms in

the following expression:

1. 2a + 4a

2. y + y
2 + 2y

3 4 ay - ay
3. 4 _

Answers:

1. 6a

2. y
2 + 3y

3. 3
ay

4. 2ay
2 - ay

2

5. bx 2 + 2bx 2

6. 2y + y
2

4. ay
2

5. 3bx 2

6. 2y + y
2
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Chapter 9-FUNDAMENTALS OF ALGEBRA

SYMBOLS OF GROUPING

Often it is desired to group two or more
terms to indicate that they are to be considered

and treated as though they were one term even

though there may be plus and minus signs be-

tween them. The symbols of grouping are pa-
rentheses ( ) (which we have already used),
brackets

[ ] ,
braces { }, and the vinculum

The vinculum is sometimes called the "over-
score." The fact that -7 + 2-5 is to be sub-
tracted from 15, for example, could be indi-

cated in any one of the following ways:

15 - (-7 + 2 - 5)

15 -
[-7 + 2 -

5]

15 - {-7 + 2 - 5}

15 - -7+2-5

Actually the vinculum is seldom used except
in connection with a radical sign, such as in
N' a + b, or in a Boolean algebra expression.
Boolean algebra is a specialized kind of sym-
bolic notation which is discussed in Mathe-

matics, Volume 3, NavPers 10073.

Parentheses are the most frequently used

symbols of grouping. When several symbols
are needed to avoid confusion in grouping, pa-
rentheses usually comprise the innermost sym-
bols, followed by brackets, and then by braces
as the outermost symbols. This arrangement
of grouping symbols is illustrated as follows:

2x -
{3y + [- 8 - 5y - (x -

4)]}

REMOVING AND INSERTING
GROUPING SYMBOLS

Discussed in the following paragraphs are

various rules governing the removal and inser-

tion of parentheses, brackets, braces, and the

vinculum. Since the rules are the same for all

grouping symbols, the discussion in terms of

parentheses will serve as a basis for all.

Removing Parentheses

If parentheses are preceded by a minus sign,
the entire quantity enclosed must be regarded
as a subtrahend. This means that each term of

the quantity in parentheses is subtracted from
the expression preceding the minus sign. Ac-

cordingly, parentheses preceded by a minus

sign can be removed, if the signs of all terms
within the parentheses are changed.

This may be explained with an arithmetic

example. We recall that to subtract one num-
ber from another, we change the sign of the

subtrahend and proceed as in addition. To sub-
tract -7 from 16, we change the sign of -7 and

proceed as in addition, as follows:

16 -
(-7) =16+7

= 23

It is sometimes easier to see the result of

changing signs in the subtrahend if the minus

sign preceding the parentheses is regarded as
a multiplier. Thus, the thought process in re-

moving parentheses from an expression such
as -

(4
- 3 + 2) would be as follows: Minus

times plus is minus, so the first term of the

expression with parentheses removed is - 4.

(Remember that the 4 in the original expres-
sion is understood to be a +4, since it has no

sign showing.) Minus times minus is plus, so
the second term is +3. Minus times plus is

minus, so the third term is -2. The result is

-4+3-2, which reduces to -3.

This same result can be reached just as

easily, in an arithmetic expression, by combin-

ing the numbers within the parentheses before

applying the negative sign which precedes the

parentheses. However, in an algebraic expres-
sion with no like terms such combination is not

possible. The following example shows how the

rule for removal of parentheses is applied to

algebraic expressions:

2a - (-4x + 3by) = 2a + 4x - 3by

Parentheses preceded by a plus sign can be
removed without any other changes, as the fol-

lowing example shows:

2b + (a-b) = 2b+a-b = a + b

Many expressions contain more than one set

of parentheses, brackets, and other symbols of

grouping. In removing symbols of grouping, it

is possible to proceed from the outside inward
or from the inside outward. For the beginner,
it is simpler to start on the inside and work to-

ward the outside, collecting terms and simpli-

fying as one proceeds. In the following example
the inner grouping symbols are removed first:



= 2a -
[7x

-
12a]

= 2a - 7x + 12a

= 14a - 7x

Enclosing Terms in Parentheses

When it is desired to enclose a group of

terms in parentheses, the group of terms re-

mains unchanged if the sign preceding the pa-
rentheses is positive. This is illustrated as

follows:

3x - 2y + 7x - y = (3x - 2y) + (7x -
y).

Note that this agrees with the rule for removing
parentheses preceded by a plus sign.

If terms are enclosed within parentheses
preceded by a minus sign, the signs of all the

terms enclosed must be changed as in the fol-

lowing example:

3x - 2y + 7x - y = 3x - (2y - 7x + y)

Practice problems. In problems 1 through 4,

remove the symbols of grouping and combine
like terms. In problems 5 through 8, enclose

the first two terms in parentheses preceded by
a plus sign (understood) and the last two in pa-
rentheses preceded by a minus sign.

1. 6a - (4a -
3)

2. 3x + [2x
- 4y(6 -

4x)] + 2y - (3 - x + 3y)

3. -a + [-a
- (2a + 3)] + 3

4. (7x - Say) - (4a - b) + 16

5. 4a - 3b - 2c + 4d

6. -2 -3x +4y - z

7. x + 4y + 3z + 7

8. -4 + 2a - 6c + 3d

Answers:

1. 2a + 3

2. 6x + 16xy - 25y - 3

3. -4a

4. 7x - Say - 4a + b + 16

7. (x + 4y) - (-3z - 7)

8. (-4 + 2a) - (6c - 3d)

EXPONENTS AND RADICALS

Exponents and radicals have the same mean-
ing in algebra as they do in arithmetic. Thus,
if n represents any number then n 2 = n . n,
n3 = n n n, etc. By the same reasoning, nm

means that nis to be taken as a factor m times.
That is, n m is equal to n n . n . . .

, with n
appearing m times. The series of dots, called

ellipsis (not to be confused with the geometric
figure having a similar name, ellipse), repre-
sents continuation of the same pattern or the
same symbol.

The rules of operation with exponents are
also the same in algebra as in arithmetic. For
example, n 2 n3 = n 2+3 = n 5

. Some care is

necessary to avoid confusion over an expres-
sion such as 3

2 3 3
. In this example, n = 3 and

the product desired is 3 s
,
not 9

s
. In general,

3 D 3 b = 3 a+b
,
and a similar result is reached

whether the factor which acts as a base for the

exponents is a number or a letter. Thus the

general form can be expressed as follows:

n b =

In words, the general rule for multiplication

involving exponents is as follows: When multi-

plying terms whose literal factors are like, the

exponents are added. This rule may be applied
to problems involving division, if all expres-
sions containing exponents in denominators are
rewritten as expressions with negative expo-

x 2
y

xy 2

rewritten as (x
2
y)(x"

1 y" 2
), which is equal to

nents. For example, the fraction - can be

(x
2
y)(x-

1
y-

2
),

" 1 No-(x
2 ~ 1

)(y
1 " 2

). This reduces to xy"
J

,
or.

tice that the result is the same as it would have
been if we had simply subtracted the exponents
of literal factors in the denominator from the

exponents of the same literal factors in the

numerator.
The algebraic rules for radicals also remain

the same as those of arithmetic. In arithmetic,
]/T = 4 1/2 = 2. Likewise, in algebra \Ta. = a 172

and = a1/n
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MULTIPLYING MONOMIALS

If a monomial such as 3abc is to be multi-

plied by a numerical multiplier, for example 5,

the coefficient alone is multiplied, as in the

following example:

5 x 3abc = 15abc

When the numerical factor is not the initial

factor of the expression, as in x(2a), the result

of the multiplication is not written as x2a. In-

stead, the numerical factor is interchanged with

literal factors by use of the commutative law of

multiplication. The literal factors are usually

interchanged to place them in alphabetical or-

der, and the final result is as follows:

x(2a) = 2ax

The rule for multiplication of monomials
may be stated as follows: Multiply the numeri-
cal coefficients to form the coefficient of the

product. Multiply the literal factors, combining
exponents in like factors, to form the literal

part of the product. The complete process is

illustrated in the following example:

(2ab)(3a
2
)(2b

3
)
=

= 12a 3 b 4

Practice problems,
operations:

1. (2x
2
)(5x

5
)

2. (-5ab
2
)(2a

2
b)

3. (-4x
4
y)(-3xy

4
)

Answers:

1. 10x 7

2. -10a3 b3

3. 12x
s
y
5

Perform the indicated

4. (2")(2
b

)

5. (-4a
3
)
2

6. (3a
2
b)

2

4. 2 a+b

5. 16a 6

6. 9a4b2

DIVIDING MONOMIALS

As may be expected, the process of dividing
is the inverse of multiplying. Because 3 x 2a
= 6a, 6a * 3 = 2a, or 6a + 2 = 3a. Thus, when
the divisor is numerical, divide the coefficient

of the dividend by the divisor.

When the divisor contains literal parts that

are also in the dividend, cancellation may be

performed as in arithmetic. For example,
6ab -r 3a may be written as follows:

(2)(3a)(b)

3a

Cancellation of the common literal factor, 3a,

from the numerator and denominator leaves 2b

as the answer for this division problem.
When the same literal factors appear in both

the divisor and the dividend, but with different

exponents, cancellation may still be used, as

follows:

14a 3b 3x
-21a 2b sx

(7)(2)a
2 ab3 x

(7)(-3)a
2b3b 2x

2a2a
= -

3b
2

This same problem may be solved without

thinking in terms of cancellation, by rewriting
with negative exponents as follows:
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OPERATIONS WITH POLYNOMIALS

Adding and subtracting polynomials is sim-

ply the adding and subtracting of their like

terms. There is a great similarity between the

operations with polynomials and denominate
numbers. Compare the following examples:

1. Add 5 qt and 1 pt to 3 qt and 2 pt.

3 qt + 2 pt
5 qt + 1 pt

8 qt + 3 pt

2. Add 5x + y to 3x + 2y.

3x
5x

2y
y

8x + 3y

One method of adding polynomials (shown in

the above examples) is to place like terms in

columns and to find the algebraic sum of the

like terms. For example, to add 3a + b -
3c,

3b + c -
d, and 2a + 4d, we would arrange the

polynomials as follows:

3a + b - 3c

3b + c - d

2a + 4d

5a + 4b - 2c + 3d

Subtraction may be performed by using the

same arrangement that is, by placing terms of

the subtrahend under the like terms of the min-
uend and carrying out the subtraction with due

regard for sign. Remember, in subtraction the

signs of all the terms of the subtrahend must
first be mentally changed and then the process
completed as in addition. For example, sub-
tract lOa + b from 8a -

2b, as follows:

8a - 2b
lOa + b

-2a - 3b

Again, note the similarity between this type of

subtraction and the subtraction of denominate
numbers.

Addition and subtraction of polynomials also
can be indicated with the aid of symbols of

grouping. The rule regarding changes of sign
when removing parentheses preceded by a minus

sign automatically takes care of subtraction.
For example, to subtract lOa + b from 8a - 2b,
we can use the following arrangement:

(8a -
2b) - (lOa + b) = 8a - 2b - lOa - b

= -2a - 3b

Similarly, to add -3x + 2y to -4x -
5y, we can

write

(~3x + 2y) + (-4x -
5y) = -3x + 2y - 4x - 5y

= -7x - 3y

Practice problems. Add as indicated, in
each of the following problems:

1. 3a + b

2a_+ 5b

2. (6s
3
t + 3s 2

t + st + 5) + (s
3
t -

5)

3. 4a + b + c, a + c -
d, and 3a + 2b + 2c

4. 4x + 2y
3x - y + z

_x
- z

In problems 5 through 8, perform the indi-
cated operations and combine like terms.

5. (2a + b)
- (3a + 5b)

6. (5x
3
y + 3x 2

y)
-

(x
3
y)

7. (x + 6) + (3x + 7)

8. {4a
2 -

b)
- (2a

2 + b)

Answers:

1. 5a + 6b

2. 7s 3 t + 3s 2
t + st

3. 8a + 3b + 4c - d

4. 8x + y

5. -(a + 4b)

6. 4x3
y + 3x 2

y

7. 4x + 13

8. 2(a
2 -

b)

MULTIPLICATION OF A POLY-
NOMIAL BY A MONOMIAL

We can explain the multiplication of a poly-
nomial by a monomial by using an arithmetic

example. Let it be required to multiply the
binomial expression, 7 -

2, by 4. We may write
this 4 x (7

-
2) or simply 4(7 -

2). Now 7 -2 = 5.

Therefore, 4(7 -
2) = 4(5) = 20. Now, let us

solve the problem a different way. Instead of
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then subtract. Thus, 4(7 -
2) = (4 x 7)

-
(4 x 2)

= 20. Both methods give the same result. The
second method makes use of the distributive

law of multiplication.
When there are literal parts in the expres-

sion to be multiplied, the first method cannot

be used and the distributive method must be

employed. This is illustrated in the following
examples:

4(5 + a) = 20 + 4a

3(a + b) = 3a + 3b

ab(x + y -
z) = abx + aby - abz

Thus, to multiply a polynomial by a monomial,
multiply each term of the polynomial by the

monomial.
Practice problems. Multiply as indicated:

1. 2a(a -
b)

2. 4a 2
(a

2 + 5a + 2)

Answers:

1. 2a 2 - 2ab

2. 4a4 + 20a 3 8a 2

3. -4x(-y - 3z)

4. 2a 3
(a

2 - ab)

3. 4xy + 12xz

4. 2a 5 - 2a4b

MULTIPLICATION OF A POLY-
NOMIAL BY A POLYNOMIAL

As with the monomial multiplier, we explain
the multiplication of a polynomial by a poly-
nomial by use of an arithmetic example. To
multiply (3 + 2)(6

-
4), we could do the opera-

tion within the parentheses first and then mul-

tiply, as follows:

(3 + 2)(6
-

4) = (5)(2)
- 10

However, thinking of the quantity (3 + 2) as one

term, we can use the method described for a
monomial multiplier. That is, we can multiply
each term of the multiplicand by the multiplier,

(3 + 2), with the following result:

(3 + 2)(6
-

4) =
[(3 + 2) x 6 -

(3 + 2) x 4]

Now considering each of the two resulting
products separately, we note that each is a bi-

nomial multiplied by a monomial.

(3 + 2)6 =
(3 x 6) + (2 x 6)

and the second is

-(3 + 2)4 = -
[(3 x 4) + (2 x 4)]

= -(3 x 4) -
(2 x 4)

Thus we have the following result:

(3 + 2)(6 -
4) = (3 x 6) + (2 x 6)

-
(3 x 4)

- (2x4)

=18+12-12-8
= 10

The complete product is formed by multiplying
each term of the multiplicand separately by
each term of the multiplier and combining the

results with due regard to signs.
Now let us apply this method in two exam-

ples involving literal numbers.

1. (a + b)(m + n) = am + an + bm + bn

2. (2b + c)(r + s + 3t -
u) = 2br + 2bs

+ 6bt - 2bu + cr + cs + 3ct - cu

The rule governing these examples is stated as
follows: The product of any two polynomials is

found by multiplying each term of one by each
term of the other and adding the results alge-
braically.

It is often convenient, especially when either

of the expressions contains more than two

terms, to place the polynomial with the fewer
terms beneath the other polynomial and multi-

ply term by term beginning at the left. Like
terms of the partial products are placed one
beneath the other to facilitate addition.

Suppose we wish to find the product of

3x 2 - 7x - 9 and 2x - 3. The procedure is

27

27

Practice problems. In the following prob-
lems, multiply and combine like terms:
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1. (2a - 3)(a + 2) 3. x 3 + 5x 2 - x + 2

2x + 3

2. (ax + b)(ax - b) 4. 2a 2 + Sab - b 2

a + b

Answers:

1. 2a2 + a - 6 3. 2x4 + 13x3 + 13x 2 + x + 6

2. a2x 2 - b 2 4. 2a 3 + 7a 2b + 4ab 2 - b 3

SPECIAL PRODUCTS

The products of certain binomials occur fre-

quently. It is convenient to remember the form
of these products so that they can be written

immediately without performing the complete
multiplication process. We present four such

special products as follows, and then show how
each is derived:

1. Product of the sum and difference of two
numbers .

EXAMPLE: (x - y)(x + y)
= x 2 - y

2

2. Square the sum of two numbers.

EXAMPLE: (x + y)
2 = x 2 + 2xy + y

2

3. Square of the difference of two numbers.

EXAMPLE: (x -
y)

2 = x 2 - 2xy + y
2

4. Product of two binomials having a com-
mon term.

EXAMPLE: (x + a)(x + b) = x2 + (a + b)x + ab

Product of Sum and Difference

The product of the sum and difference of

two numbers is equal to the square of the first

number minus the square of the second number.
If, for example, x - y is multiplied by x + y, the

middle terms cancel one another. The result
is the square of x minus the square of y, as
shown in the following illustration:

x - y
x + y

x 2 - xy
+ xy - y

2

By keeping this rule in mind, the product of

the sum and difference of two numbers can be
written down immediately by writing the differ-

ence of the squares of the numbers. For ex-

ample, consider the following three problems:

(x + 3)(x -
3) = x 2 - 3 2 = x 2 - 9

(5a + 2b)(5a - 2b) = (5a)
2 -

(2b)
2 = 25a 2 - 4b2

(7x + 4y)(7x - 4y) = 49x 2 - 16y
2

RATIONALIZING DENOMINATORS.- The
product of the sum and difference of two num-
bers is useful in rationalizing a denominator
that is a binomial. For example, in a fraction

such as

\T2" - 6

the denominator can be altered so that no radi-

cal terms appear in it. (This process is called

rationalizing.) The denominator must be mul-

tiplied by N/T + 6, which is called the conjugate
of *J~2 - 6. Since the value of the original frac-

tion would be changed if we multiplied only the

denominator, our multiplier must be applied to

both the numerator and the denominator. Mul-

tiplying the original fraction by

is, in effect, the same as multiplying it by 1.

The result of rationalizing the denominator
of this fraction is as follows:

2 \T2 + 6 2(T2 + 6)

- 6 6 Ov/Tr - 6'

_ 2(V2 + 6)

2-36

2(\/2 + 6)
~

2(1 - 18)

+ 6)

6
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MENTAL MULTIPLICATION.-The product
of the sum and difference can be utilized to

mentally multiply two numbers that differ from
a multiple of 10 by the same amount, one

greater and the other less. For example, 67 is

3 less than 70 while 73 is 3 more than 70. The
product of 67 and 73 is then found as follows:

67(73) = (70 - 3)(70 + 3)

= 70 2 - 3 2 = 4,900 - 9 = 4,891

Square of Sum or Difference

The square of the SUM of two numbers is

equal to the square of the first number plus
twice the product of the numbers plus the square
of the second number. The square of the DIF-
FERENCE of the same two numbers has the
same form, except that the sign of the middle
term is negative.

These results are evident from multiplica-
tion. When x and y represent the two numbers,
we obtain

x + y
x + y

x 2 + xy
+ xy + y

2

x 2 + 2xy + y
2

-
Y

x - xy
- xy + y

- 2xy +

Applying this rule to the squares of the bi-

nomials 3a + 2b and 3a -
2b, we have the fol-

lowing two cases:

1. (3a + 2b)
2 = (3a)

2 + 2(3a)(2b) + (2b)
2

= 9a 2 + 12ab + 4b 2

2. (3a - 2b)
2 = 9a2 - 12ab + 4b 2

The square of the sum or difference of two
numbers is applicable to squaring a binomial
that contains one or two irrational terms, as in

the following examples:

1. KT+ 8)
2 = (*/3)

2 + 2(8)(^) + 64

= 3 + 16 -S/TH- 64 = 67 + 16 \T3

2.

3.

4.

-
8)

2 = (-/I)
2 - 2(8)(V3) + 64

= 3 - 16 \T3 + 64 = 67 - 16 -s/"3~

= 5 + 2 N/15 + 7 = 12 + 2 -735

-
*/T)

2 = 12 - 2 ^^55

The square of the sum or difference of two
numbers can be applied to the process of men-
tally squaring certain numbers. For example,
82 2 can be expressed as (80 + 2)

2 while 67 2

can be expressed as (70 -
3)

2
. We find that

(80 + 2)
2 = 80 2 + 2(80)(2) + 2 2

= 6,400 + 320 + 4 = 6,724

(70 -
3)

2 = 70 2 - 2(70)(3) + 3
2

= 4,900 - 420 + 9 = 4,489

Binomials Having a Common Term

The binomials x + 2 and x - 3 have a com-
mon term, x. They have two unlike terms,
+2 and -3. The product of these binomials is

x
x

+ 2
- 3

x2 + 2x
- 3x - 6

x 2 - x - 6

Inspection of this product shows that it is

obtained by squaring the common term, adding
the sum of the unlike terms multiplied by the

common term, and finally adding the product of

the unlike terms.

Apply this rule to the product of 3y - 5 and

3y + 4. The common term is 3y; its square is

9y
2

. The sum of the unlike terms is -5 + 4 = -1;
the sum of the unlike terms multiplied by the

common term is -3y; and the product of the

unlike terms is -5(4) = -20. The product of the

two binomials is

(3y
-

5)(3y + 4) = 9y
2 - 3y - 20

The product of two binomials having a com-
mon term is applicable to the multiplication of

numbers like /3 + 7 and *J~5 - 2 which contain

irrational terms. For example,

7)(V3" -
2) = (J5)

2 + 5 */3 - 14

= 3 + 5 *J~3 - 14

= -11 + 5 -/3

Practice problems. In problems 1 through 4,

multiply and combine terms. In 5 through 8,

simplify by using special products.
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1. (x + 4)(x + 2)

2. (-J* -
b)

2

3. (7a + 4b)(7a - 4b)

4. (ax + y)
2

Answers:

1. x 2 + 6x + 8

2. a -
2b\/~a + b

2

3. 49a 2 - 16b 2

4. a 2x 2 + 2axy + y
2

5
v/lT - 2

6. 48(52)

7. (N/T+ 7)
2

8. (73)
2

5. - + 2)

6. (50 - 2)(50 + 2)
= 2496

7. 52 + \4\T5

8. (70 + 3)(70 + 3)
= 5329

DIVISION OF A POLY-
NOMIAL BY A MONOMIAL

Division, like multiplication, may be dis-

tributive. Consider, for example, the problem
(4 + 6 -

2) * 2, which may be solved by adding
the numbers within the parentheses and then

dividing the total by 2. Thus,

4 + 6-2 = 8 A

2 T

Now notice that the problem may also be solved

distributively.

4 + 6-2 _ 4_ 6_ 2^

2 2 2
"

2

= 2 + 3-1
= 4

CAUTION: Do not confuse problems of the

type just described with another type which is

similar in appearance but not in final result.

For example, in aproblem such as 2 * (4 + 6 -
2)

the beginner is tempted to divide 2 successively
by 4, then 6, and then -2, as follows:

4 + 6-24 62
Notice that we have canceled the "equals" sign,
because 2 -r 8 is obviously not equal to 1/2 +
2/6. - 1. The distributive method applies only
in those cases in which several different nu-
merators are to be used with the same de-
nominator

When literal numbers are present in an ex-
pression, the distributive method must be used,
as in the following two problems:

1
2ax + aby + a _ 2ax aby a

i. _ __ +___+_

2.

= 2x + by + 1

18ab 2 - 12bc 18ab 2 12bc
6b 6b

"
6b

= 3ab - 2c

Quite often this division may be done men-
tally, and the intermediate steps need not be
written out.

DIVISION OF A POLY-
NOMIAL BY A POLYNOMIAL

Division of one polynomial by another pro-
ceeds as follows:

1. Arrange both the dividend and the divisor
in either descending or ascending powers of the
same letter.

2. Divide the first term of the dividend by
the first term of the divisor and write the re-
sult as the first term of the quotient.

3. Multiply the complete divisor by the quo-
tient just obtained, write the terms of the prod-
uct under the like terms of the dividend, and
subtract this expression from the dividend.

4. Consider the remainder as a new dividend
and repeat steps 1, 2, and 3.

EXAMPLE:

(10x
3 - 7x2

y - 16xy
2 + 12y

3
)

+ (5x -
6y)

SOLUTION:

2x2 + xy - 2y
2 _

5x - 6y HOx3 - 7x 2
y - 16xy

2 + 12y
3

10x 3 - 12x 2
y

5x2
y - 16xy

2

5x 2
y - 6xy

2

- lOxy
2 + 12y

3

- IQxy
2 + 12y

3

In the example just shown, we began by di-

viding the first term, 10x3
,
of the dividend by

the first term, 5x, of the divisor. The result is

2x 2
. This is the first term of the quotient.

Next, we multiply the divisor by 2x2 and
subtract this product from the dividend. Use
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the remainder as a new dividend. Get the sec-

ond term, xy, in the quotient by dividing the

first term, 5x2
y, of the new dividend by the

first term, 5x,of the divisor. Multiply the divi-

sor by xy and again subtract from the dividend.

Continue the process until the remainder is

zero or is of a degree lower than the divisor.

In the example being considered, the remainder
is zero (indicated by the double line at the bot-

tom). The quotient is 2x 2 + xy - 2y
2

.

The following long division problem is an

example in which a remainder is produced:

- x + 3

x + 3

- x 2 - 3x

3x

3x

- 4

The remainder is -4.

Notice that the term -3x in the second step
of this problem is subtracted from zero, since

there is no term containing x in the dividend.

When writing down a dividend for long division,
leave spaces for missing terms which may en-
ter during the long division process.

In arithmetic, division problems are often

arranged as follows, in order to emphasize the

relationship between the remainder and the

divisor:

- 9 j.

2
- 2 +

2

This same type of arrangement is used in alge-
bra. For example, in the problem just shown,
the results could be written as follows:

2x2

x + 3
= x2 - x + 3 -

Remember, before dividing polynomials ar-

range the terms in the dividend and divisor

according to either descending or ascending
powers of one of the literal numbers. When
only one literal number occurs, the terms are

usually arranged in order of descending powers.
For example, in the polynomial 2x 2 + 4x3 +

5 - 7x the highestpower among the literal terms

is x 3
. If the terms are arranged according to de-

scending powers of x, the term in x 3 should ap-
pear first. The x 3 term should be followed by the
x 2

term, the x term, and finally the constant term.
The polynomial arranged according to descending
powers of x is 4x 3 + 2x 2 - 7x + 5.

Suppose that 4ab + b 2 + 15a 2
is to be divided

by 3a + 2b. Since 3a can be divided evenly into

15a 2
, arrange the terms according to descend-

ing powers of a. The dividend takes the form

15a 2 + 4ab + b 2

Synthetic Division

Synthetic division is a shorthand method of

dividing a polynomial by a binomial of the form
x - a. For example, if 3x4 + 2x

3
+ 2x2 - x - 6

is to be divided by x -
1, the long form would

be as follows:

3x3 + 5x 2 + 7x

x - 1 I 3x 4 + 2x3 + 2x 2 - x - 6

3x -

Notice that every alternate line of work in

this example contains a term which duplicates

the one above it. Furthermore, when the sub-

traction is completed in each step, these dupli-

cated terms cancel each other and thus have no

effect on the final result. Another unnecessary

duplication results when terms from the divi-

dend are brought down and rewritten prior to

subtraction. By omitting these duplications,

the work may be condensed as follows:

3x3 +5x 2 +7x +6

x - 1
j
3x 4 +2x 3 +2x 2 -x ^

-3x 3 -5x 2 -7x -6

+5x 3 +7x 2 +6x

The coefficients of the dividend and the con-

stant term of the divisor determine the results

of each successive step of multiplication and

subtraction. Therefore, we may condense still

further by writing only the nonliteral factors,

as follows:
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3 +5 +7 +6
- 1 |3 +2 +2 -1 -6

-3 -5 -7 -6

3 +5 +7 +6

Notice that if the coefficient of the first term
in the dividend is brought down to the last line,

then the numbers in the last line are the same
as the coefficients of the terms in the quotient.
Thus we do not really need to write a separate
line of coefficients to represent the quotient.

Instead, we bring down the first coefficient of

the dividend and make the subtraction "sub-

totals" serve as coefficients for the rest of the

quotient, as follows:

x - 1 3 2 2-1-6
-3 -5 -7 -6

The unnecessary writing of plus signs is also

eliminated here.

The use of synthetic division is limited to

divisors of the form x -
a, in which the degree

of x is 1. Thus the degree of each term in the

quotient is 1 less than the degree of the corre-

sponding term in the dividend. The quotient in.

this example is as follows:

3x 3 + 5x 2 + 7x + 6

The sequence of operations in synthetic di-

vision may be summarized as follows, using as

an example the division of 3x - 4x 2 + x4 - 3 by
x + 2:

1 0-43-32-406
1-2 03-9

First, rearrange the terms of the dividend
in descending powers of x. The dividend then
becomes x 4 - 4x 2 + 3x -3, with 1 understood
as the coefficient of the first term. No x 3 term
appears in the polynomial, but we supply a zero
as a place holder for the x 3

position.

Second, bring down the 1 and multiply it by
the +2 of the divisor. Place the result under
the zero, and subtract. Multiply the result (-2)

by the +2 of the divisor, place the product under
the -4 of the dividend, and subtract. Continue
this process, finally obtaining x3 - 2x 2 + 3 as
the quotient. The remainder is -9.

Practice problems. In the following prob-
lems, perform the indicated operations. In 4,
5, and 6, first use synthetic division and then
check your work by long division:

1. (a
3 - 3a 2 + a) - a

2.
- 7x s 4x 4

3. (10x
3 - 7x 2

y - 16xy
2 + 12y

3
)

H- (2x
2 + xy - 2y 2

)

4. (x
2 + llx + 30) + (x + 6)

5. (12 + x 2 - 7x) + (x
-

3)

6. (a
2 - lla + 30) - (a

-
5)

Answers:

1. a 2 - 3a + 1 4. x + 5

2. x4 - 7x 3 + 4x2 5. x - 4

3. 5x - 6y 6. a - 6
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CHAPTER 10

FACTORING POLYNOMIALS

A factor of a quantity N, as defined in chap-
ter 2 of this course, is any expression which
can be divided into N without producing a re-
mainder. Thus 2 and 3 are factors of 6, and
the factors of 5x are 5 and x. Conversely, when
all of the factors of N are multiplied together,
the product is N. This definition is extended to

include polynomials.
The factors of a polynomial are two or more

expressions which, when multiplied together,

give the polynomial as a product. For example,
3, x, and x 2 - 4 are factors of 3x

3 - 12x, as the

following equation shows:

(3)(x)(x
2 - 4) = 3x

3 - 12x

The factors 3 and x, which are common to both
terms of the polynomial 3x

3 -
12x, are called

COMMON FACTORS.
The distributive principle, mentioned in

chapters 3 and 9 of this course, is an important
part of the concept of factoring. It may be
stated as follows :

If the sum of two or more quantities is multi-

plied by a third quantity, the product is found

by applying the multiplier to each of the origi-
nal quantities separately and summing the re-

sulting expressions. It is this principle which
allows us to separate common factors from the

terms of a polynomial.
Just as with numbers , an algebraic expres-

sion is a prime factor if it has no other factors

except itself and 1. The factor x 2 - 4 is not

prime, since it can be separated into x - 2 and
x + 2. The factors x - 2 and x + 2 are both

prime factors, since they cannot be separated
into other factors.

The process of finding the factors of a poly-
nomial is called FACTORING. An expression
is said to be factored completely when it has
been separated into its prime factors. The

polynomial 3x 3 - 12x is factored completely as
follows:

3x 3 - 12x = 3x(x - 2)(x + 2)

COMMON FACTORS

Factoring any polynomial begins with the

removal of common factors. Notice that "re-
moval" of a factor does not mean discarding it.

To remove a factor is to insert parentheses and
move the factor outside the parentheses as a
common multiplier. The removal of common
factors proceeds as follows:

1. Inspect the polynomial and find the fac-

tors which are common to all terms. These
common factors, multiplied together, comprise
the "largest common factor."

2. Mentally divide each term of the poly-
nomial by the largest common factor and write

the quotients within a set of parentheses.
3. Write the largest common factor outside

the parentheses as a common multiplier.
For example, the expression x 2

y - xy
2 con-

tains xy as a factor of each term. Therefore,
it is factored as follows:

x 2

y - xy
2 = xy(x - y)

Other examples of factoring by the removal
of common factors are found in the following

expressions:

6m 4n + 3m 3n 2 - 3m 2n3 = 3m2n(2m 2 + mn - n 2
)

-5z
2 - 15z = -5z(z + 3)

7x - 7y + 7z = 7(x - y + z)

In selecting common factors, always remove
as many factors as possible from each term in

order to factor completely. For example, x is

a factor of 3ax 2 - Sax, so that 3ax 2 - Sax is

equal to x(3ax -3a). However, 3 and a are also

factors. Thus the largest common factor is3ax.

When factored completely, the expression is as

follows :

3ax
2 - 3ax = 3ax(x - 1)

Practice problems: Remove the common
factors:

111



i. y - y 4. 6mn 2 + 30m 2n

22

4. 6mn(n + 5m)

2. a^ - a^b

3. 2b
3 - 8b

2 - 6b

Answers:

1. y(y
-

i)

2. a 2 b 2
(a

-
1)

3. 2b(b
2 - 4b -

3)

LITERAL EXPONENTS
It is frequently necessary to remove com-

mon factors involving literal exponents; that is,

exponents composed of letters rather than num-
bers. A typical expression involving literal

2a which xexponents is x + x
,
in

factor. The factored form is x"(x
n
+ 1).

is a common
An-
Re-
Thus

2a
a

n
other example of this type is a

m+n +

member that am+n is equivalent to a
m

the factored form is as follows:

a
m+n + 2a

m = a
m

a
n

+ 2a
m

= a
m
(a

n + 2)

BINOMIAL FORM
The distinctions between monomial, bino-

mial, and trinomial factors are discussed in

detail in chapter 9 of this course. An expres-
sion such as a(x + y) + b(x + y) has a common
factor in binomial form. The factor (x + y) can

be removed from both terms, with the following

result:

a(x + y) + b(x + y) = (x + y)(a + b)

Sometimes it is easier to see this if a single

letter is substituted temporarily for the bino-

mial. Thus, let (x + y) =
n, so that a(x + y) +

b(x + y) reduces to (an + bn). The factored

form is n(a + b),, which becomes (x + y)(a + b)

when n is replaced by its equal, (x + y).

Another form of this type is x(y -
z)

- w(z -
y) .

Notice that this expression could be factored

easily if the binomial in the second term were

(y
-

z). We can show that -w(z -
y) is equiva-

lent to +w(y -
z), as follows:

-w(z -
y)

= -w [(-1) (-1) z + (-1) y]

= -w {(-1) [(-1) z + y]}

= (-w)(-l) [-z + y]

= +w(y - z)

Substituting +w(y -
z) for -w(z -

y) in the origi-
nal expression, we may now factor as follows:

x(y -
z) -w(z -

y) = x(y -
z) + w(y -

z)

= (y
-

z)(x + w)

In factoring an expression such as ax + bx +
ay + by, common monomial factors are re-
moved first, as follows:

ax + bx + ay + by = x(a + b) + y(a + b)

Having removed the common monomial factors,
we then remove the common binomial factor to

obtain (a + b)(x + y).

Notice that we could have rewritten the ex-

pression as ax + ay + bx + by, based on the
commutative law of addition, which states that

the sum of two or more terms is the same re-

gardless of the order in which they are ar-

ranged. The first step in factoring would then

produce a(x + y) + b(x + y) and the final form
would be (x + y)(a + b). This is equivalent to

(a + b)(x + y), by the commutative law of multi-

plication, which states that the product of two
or more factors is the same regardless of the

order in which they are arranged.
Practice problems. Factor each of the fol-

lowing:

3a 3x2a

2. xy
2
+ y + x 2

y + x

3. e
x
+ 4e

4x

4. 7(x
2 + y

2
)

- 3z(x
2

+ y
2

)

5. a
2
+ ab - ac - cb

6. e - ier
2

7. a
x+2 + a

2

8. xy - 3x - 2y + 6

Answers:

1. x2a
(x

a
+ 3)

2. (xy + l)(x + y)

3. e
x
(l + 4e

3x
)

4. (x
2
+ y

2
)(7

-
3z)

5. (a + b)(a -
c)

6-
|er(e

-

Jr)

7. aV + 1)

8. (y
-

3)(x -
2)
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Chapter 10- FACTORING POLYNOMIALS

BINOMIAL FACTORS

After any common factor has been removed
from a polynomial, the remaining polynomial
factor must be examined further for other fac-

tors. Skill in factoring is principally the ability

to recognize certain types of products such as

the square of a sum or difference. Therefore,
it is important to be familiar with the special

products discussed in chapter 9.

DIFFERENCE OF TWO SQUARES

In chapter 9 we learned that the product of

the sum and difference of two numbers is the

difference of their squares. Thus, (a + b)(a - b)
= a 2 - b

2
. Conversely, if a binomial is the dif-

ference of two squares, its factors are the sum
and difference of the square roots. For exam-

ple, in 9a 2 - 4b 2 both 9a 2 and 4b 2 are perfect

squares. The square roots are 3a and 2b, re-

spectively. Connect these square roots with a

plus sign to get one factor of 9a 2 - 4b 2 and with

a minus sign to get the other factor. The two
binomial factors are 3a - 2band 3a + 2b. There-

fore, factored completely, the binomial can be
written as follows:

9a 2 - 4b 2 = (3a - 2b)(3a + 2b)

We may check to see if these factors are

correct by multiplying them together to see if

their product is the original binomial.

The expression 20x 3
y - 5xy

3 reduces to the

difference of two squares after the common
factor 5xy is removed. Completely factored,
this expression produces the following:

20x 3
y - 5xy

3 = 5xy(4x
2 - y

2
)

= 5xy(2x - y)(2x + y)

Other examples that show the difference of

two squares in factored form are as follows:

49 - 16 =
(7 + 4)(7

- 4)

16a2 - 4x 2 = 4(4a
2 - x 2

)

= 4(2a + x)(2a - x)

4x 2
y - 9y = y(4x

2 - 9)

= y(2x + 3)(2x - 3)

Practice problems: Factor each of the fol-

lowing:

1. a 2 - b 2

2. b 2 - 9

3. a2 b 2 - 1

4. a
2 - 144

Answers:

1. (a + b)(a - b)

2. (b + 3)(b - 3)

3. (ab + l)(ab -
1)

4. (a + 12)(a -
12)

5. x 2 - y
2

6. y
2 - 36

7. 1 - 4y
2

8. 9a
2

- 16

5. (x + y)(x
-

y)

6. (y + 6)(y
-

6)

7. (1 + 2y)(l
- 2y)

8. (3a + 4)(3a - 4)

SPECIAL BINOMIAL FORMS

Special cases involving binomial expressions
are frequently encountered. All such expres-
sions may be factored by reference to general

formulas, but these formulas are beyond the

scope of this course. For our purposes, anal-

ysis of some special cases will be sufficient.

Even Exponents

When the exponents on both terms of the bi-

nomial are even, the expression may be treated

as the sum or difference of two squares. For

example, x 6 - y
6
can be rewritten as (x

3
)

2 -

(y
3
)
2 which results in the following factored

form:

x6 - y
6 = (x

3 - y
3
)(x

3 + y
3

)

In general, a binomial with even exponents
has the form x 2m

y
2n

, since all even numbers
have 2 as a factor. If the connecting sign is

positive, the expression may not be factorable;

for example, x 2 + y
2

,
x4 + y

4
,
and x 8 + y

8 are

all nonfactorable binomials. If the connecting

sign is negative, a binomial with even exponents
is factorable as follows:

,2m - y
2n = (x

ra - y
n
)(x

m + y
n

)

A special case which is particularly impor-
tant because it occurs so often is the binomial

which has the numeral 1 as one of its terms.

For example, x 4 - 1 is factorable as the differ-

ence of two squares, as follows:

x4 - 1 = (x
2 - l){x

2 + 1)

= (x
- l)(x + l)(x

2 + 1)
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Odd Exponents

Two special cases involving odd exponents
are of particular importance. These are the

sum of two cubes and the difference of two
cubes. Examples of the sum and difference of

two cubes, showing their factored forms, are

as follows:

x3 + y
3 = (x + y)(x

2 - xy + y
2
)

x 3 - y
3 = (x

-
y)(x

2
+ xy + y

2
)

Notice that each of these factored forms in-

volves a first degree binomial factor ((x + y)

in the first case and (x
-

y) in the second). The

connecting sign in the first degree binomial
factor corresponds to the connecting sign in. the

original unfactored binomial.

We are now in a position to give the com-
pletely factored form of x 6 - y

6
, as follows:

x 6 - y
6 = (x

3 - y
3
)(x

3 + y
3
)

= (x
- y)(x

2
+ xy

(x + y)(x
2 - xy + y

2
)

y
2
)

In general, (x + y) is a factor of (x
n
+ y

n
) if

n is odd. If n is even, (x
n + y") is not factor-

able unless it can be expressed as the sum of

two cubes. When the connecting sign is nega-
tive, the binomial is always factorable if n is

a whole number greater than 1. That is, (x -
y)

is a factor of (x
n - y

n
) for both odd and even

values of n.

The special case in which one of the terms
of the binomial is the numeral 1 occurs fre-

quently. An example of this is x 3
+ 1, which is

factorable as the sum of two cubes, as follows:

x 3 + 1 = (x + l)(x
2 - x + 1)

In a similar manner, 1 + x 6 can be treated

as the sum of two cubes and factored as follows:

1 + x 6 = 1 + (x
2
)

3

=
(1 + x 2

)(l
- x 2

+ x 4
)

Practice problems. In each of the following
problems, factor completely:

1. x 4 - y
4

2. m 3 + n 3

3. x 6 - y
6

4. x 3 -
y

3

5. a9 - b 9

6. x 2a - y
2b

7. 1 - x 4

8. x 6 + 1

9. 1 - x 3

Answers:

1. (x + y)(x
- y)(x

2 + y
2
)

2. (m + n)(m
2 - mn + n 2

)

3. (x + y)(x
-

y)(x
2

+ xy + y
2
)(x

2 - xy + y
2
)

4. (x
-

y)(x
2 + xy + y

2
)

5. (a
- b)(a

2 + ab + b 2
)(a

6 + a
3 b 3 + b 6

)

6. (x
a -

y
b
)(x

a + y
b

)

7. (1 + x 2
)(l

- x)(l + x)

8. (x
2 + l)(x

4 - x 2 + 1)

9. (1
-

x)(l + x + x 2
)

TRINOMIAL SQUARES

A trinomial that is the square of a binomial
is called a TRINOMIAL SQUARE. Trinomials
that are perfect squares factor into either the

square of a sum or the square of a difference.

Recalling that (x + y)
2 = x 2 + 2xy + y

2 and

(x -
y)

2 = x 2 - 2xy + y
2
,
the form of a trinomial

square is apparent. The first term and the last

term are perfect squares and their signs are

positive. The middle term is twice the product
of the square roots of these two numbers. The
sign of the middle term is plus if a sum has
been squared; it is minus if a difference has
been squared.

The polynomial 16x 2 - 8xy + y
2

is a trino-

mial in which the first term, 16x 2
,
and the last

term, y
2
, are perfect squares with positive

signs. The square roots are 4x and y. Twice
the product of these square roots is 2(4x)(y) =

8xy. The middle term is preceded by a minus

sign indicating that a difference has been

squared. In factored form this trinomial is as
follows:

16x
2 - 8xy + y

2 = (4x -
y)

2

To factor the trinomial, we simply take the

square roots of the end terms and join them
with a plus sign if the middle term is preceded
by a plus or with a minus if the middle term is

preceded by a minus.
The terms of a trinomial may appear in any

order. Thus, 8xy + y
2 + 16x 2

is a trinomial

square and may be factored as follows:

8xy + y
2 + 16x 2 = 16x 2 + 8xy + y

2 = (4x + y)
2
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2. 16y
2 + 30x + 9

3. 36 + 12x + x
2

4. a2 + 2ab + b 2

Answers:

1. (y
- 4)

2

2. Not a trinomial

square

3. (6 + x)
2

4. (a * b)
2

6. 4x
2
+ y

2 + 4xy

7. 9 - 6cd c
2
d

2

6.

x 4 + 4x
2 + 4

Not a trinomial

square

(2x + y)
2

1. (3
- cd)

2

8. (x
2

+ 2)
2

SUPPLYING THE MISSING TERM
Skill in recognizing trinomial squares may

be improved by practicing the solution of prob-
lems which require supplying a missing term.
For example, the expression y

2 + (?) + 16 can
be made to form a perfect trinomial square by
supplying the correct term to fill the paren-
theses.

The middle term must be twice the product
of the square roots of the two perfect square
terms; that is, (2)(4)(y), or 8y. Check: y

2 + 8y
+ 16 =

(y + 4)
2

. The missing term is 8y.

Suppose that we wish to supply the missing
term in 16x 2 + 24xy + (?) so that the three
terms will form a perfect trinomial square.
The square root of the first term is 4x. One-
half the middle term is 12xy. Divide 12xy by4x.
The result is 3y which is the square root of the

last term. Thus, our missing term is 9y
2

.

Checking, we find that (4x + 3y)
2 = 16x 2 +

24xy + 9y
2

.

Practice problems. In each of the following

problems, supply the missing term to form a

perfect trinomial square:

1.x 2 + (?) + y
2

2. t
2 + (?) + 25

3. 9a2 - (?)

Answers:

1. 2xy

2. lot

3. 30ab

4. 4m 2
+ 16m + (?)

5. x 2
+ 4x + (?)

25b 2
6. c

2 - 6cd + (?)

4. 16

5. 4

6. 9d 2

pressions of which they are products:

1. (x + 3)(x + 4) = x 2 + 7x + 12

2. (x
-

3)(x - 4) = x 2 - 7x + 12

3. (x - 3)(x + 4) = x 2 + x - 12

4. (x + 3)(x - 4) = x 2 - x - 12

It is apparent that trinomials like these may
be factored into binomials as shown. Notice
how the trinomial in each of the preceding ex-

amples is formed. The first term is the square
of the common term of the binomial factors.

The second term is the algebraic sum of their

unlike terms times their common term. The
third term is the product of their unlike terms.

Such trinomials may be factored as the prod-
uct of two binomials if there are two numbers
such that their algebraic sum is the coefficient

of the middle term and their product is the last

term.
For example, let us factor the expression

x 2 - 12x + 32. If the expression is factorable,
there will be a common term, x, in each of the

binomial factors. We begin factoring by placing
this term within each set of parentheses, as

follows:

(x

Next, we must find the other terms that are to

go in the parentheses. They will be two num-
bers such that their algebraic sum is -12 and

their product is +32. We see that -8 and -4

satisfy the conditions. Thus, the following ex-

pression results:

x
2 - 12x + 32 = (x

- 8)(x
-

4)

It is of value in factoring to note some use-

ful facts about trinomials. If both the second

and third terms of the trinomial are positive,

the signs of the terms to be found are positive

as in example 1 of this section. If the second

term is negative and the last is positive, both

terms to be found will be negative as in exam-

ple 2. If the third term of the trinomial is neg-

ative, one of the terms to be found is positive

and the other is negative as in examples 3 and 4.

Concerning this last case, if the second term is
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positive as in example 3, the positive term in

the factors has the greater numerical value. If

the second term is negative as in example 4,

the negative term in the factors has the greater
numerical value.

It should be remembered that not all trino-

mials are factorable. For example, x 2 + 4x + 2

cannot be factored since there are no two ra-

tional numbers whose product is 2 and whose
sum is 4.

Practice problems. Factor completely, in

the following problems:

1. y
2 + 15y + 50

2. y
2 - 2y - 24

3. x 2 + 8x - 48

4. x 2 - 4x - 60

Answers:

1. (y + 5)(y + 10)

2. (y
-

6)(y + 4)

3. (x + 12)(x - 4)

4. (x - 10)(x + 6)

5. x 2 - 12x - 45

6. x 2 - 15x + 56

7. x 2 + 2x - 48

8. x 2
+ 14x + 24

5. (x
- 15)(x + 3)

6. (x - 7)(x -
8)

7. (x
- 6)(x + 8)

8. (x + 12)(x + 2)

Thus far we have considered only those ex-

pressions in which the coefficient of the first

term is 1. When the coefficient of the first

term is other than 1, the expression can be fac-

tored as shown in the following example:

6x 2 - x - 2 = (2x + l)(3x -
2)

Although this result can be obtained by the trial

and error method, the following procedure
saves time and effort. First, find two numbers
whose sum is the coefficient of the second term
(-1 in this example) and whose product is equal
to the product of the third term and the coeffi-

cient of the first term (in this example, (6)(-2)
or -12). By inspection, the desired numbers
are found to be -4 and +3. Using these two
numbers as coefficients for x, we can rewrite
the original expression as 6x 2 - 4x + 3x - 2 and
factor as follows:

6x
2 - 4x + 3x - 2 = 2x(3x -

2) + l(3x - 2)

= (2x + l)(3x -
2)

1. 2x 2 + 13x + 21

2. 16x 2
+ 26x + 3

3. 15x 2 - 16x - 7

4. 12x 2 - 8x - 15

1. (2x + 7)(x + 3)

2. (2x + 3)(8x + 1)

3. (3x + l)(5x

4. (6x + 5)(2x

7)

3)

REDUCING FRACTIONS TO
LOWEST TERMS

There are many useful applications of fac-

toring. One of the most important is that of

simplifying algebraic fractions. Fractions that

contain algebraic expressions in the numerator
or denominator, or both, can be reduced to

lower terms, if there are factors common to

numerator and denominator. If the terms of a
fraction are monomials, common factors are

immediately apparent, as in the following ex-

pression:

3x
2
y = 3xy(x) = x_

6xy 3xy(2) 2

If the terms of a fraction are polynomials,
the polynomials must be factored in order to

recognize the existence of common factors ,
as

in the following two examples:

1.

a - b a - b

2.

a
2 - 2ab + b 2

(a - b)(a -
b) (a -

b)

4x 2 - 9 (2x + 3)(2x -
3) (2x + 3)

6x 2 - 9x 3x(2x -
3) 3x

Notice that without the valuable process of fac-

toring, we would be forced to use the fractions
in their more complicated form. When there

are factors common to both numerator and de-

nominator, it is obviously more practical to

cancel them (first using the factoring process)
before proceeding.

Practice problems. Reduce to lowest terms
in each of the following:

1.
12

6x + 12
4.

y
2 - 25

a2 - b 2

2 '

a
2 - 2ab + b 2

Practice problems,
the following problems:

Factor completely, in 3
V

2 - 14y + 45

y - 8y - 9
6.

'
2 - 8y + 15

a
2 - 5a - 24

a2 - 64

4x2
y - 9y

4x 2 + 12x + J
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When the multiplier is a fraction, the rules of

arithmetic remain applicable that is, multiply
numerators together and denominators together.
This is illustrated as follows:

Arithmetic: l-x4= A-
o ID

The rules of arithmetic apply to the division

of algebraic fractions; as in arithmetic, simply
invert the divisor and multiply, as follows:

Arithmetic :

__ _ __
16

"
8
x J[6

9

= x
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AigeDra: X - Jy
_._

x- - oxy + ay
x + 3y

'

x 2 + 7xy

- x - 3y x 2 + 7xy + 12y
2

"
x + 3y

'

x^ - 6xy + 9y*

- ax. x - t

Practice problems. In the following prob-

lems, divide and reduce to lowest terms:

4.

a + 2

5

4t - 6

ADDING AND SUBTRACTING
FRACTIONS

The rules of arithmetic for adding and sub-

tracting fractions are applicable to algebraic
fractions. Fractions that are to be combined
by addition or subtraction must have the same
denominator. The numerators are then com-
bined according to the operation indicated and
the result is placed over the denominator. For
example, in the expression

x - 4 2 - llx
x - 2 2 - x

the second denominator will be the same as the

first, if its sign is changed. The value of the

fraction will remain the same if the sign of the
numerator is also changed. Thus, we have the

following simplification:

X. - t __^
x - 2

"*" 2-x ~
x - 2

+
-(2 - x)

_ x - 4 llx - 2~
x - 2 x-2

- x - 4 + llx - 2

x - 2

12x - 6

x-2

- 6(2x -
~ x-2

When the denominators are not the same, we
must reduce all fractions to be added or sub-

tracted to a common denominator and then pro-
ceed.

Consider, for example,

x 2 - 4
+

x 2 - 4x - 12

We first must find the least common denomina-
tor (LCD). Remember this is the least number
that is exactly divisible by each of the denomi-
nators. To find such a number, as in arithme-

tic, we first separate each of the denominators
into prime factors. The LCD will contain all of

the various prime factors, each one as many
times as it occurs in any of the denominators.

Factoring, we have

(x + 2){x - 2)
T

(x - 6)(x + 2)

and the LCD is (x + 2)(x - 2)(x - 6). Rewriting
the fractions with this denominator and adding

numerators, we have the following expression:

4(x - 6)

(x + 2)(x - 2)(x - 6)
+

3(x - 2)

+ 2)(x - 2)(x - 6)

4(x - 6) + 3(x
- 2)

EC15

4x - 24 + 3x - 6

LCD

7x - 30
=

(x + 2)(x - 2)(x - 6)

As another example, consider

4 x + 2
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Factoring the denominator of the second frac- x - 3 x + 2

tion, we find that the LCD is (x + 3)(x + 1). Re- 3x
+

2x

writing the original fractions with the LCD as

denominator, we may now combine the fractions

as follows:

4(x + 1) _ (x + 2)

(x + 3)(x +1) (x + 3)(x + 1)
J '

(a + 4)
2

"

a(a + 4)
+

6(a + 4)

4x + 4 - x - 2 Answers:"
(x + 3)(x + 1)

3x - x2
3x + 2

-

(x + 2)(x -

(X + 3)(X + :) 6a + 9

Practice problems. Perform the indicated
+ "

'

operations in each of the following problems: ,,
5

3 '

63X-4X-2 o323 2
9 v 1 A 2 - a + a - a

4 '

(a* + l)(a + l)(a -
1)

3a 3 a 2 + IQa - 48
- 9

"
3 - a -

6a(a + 4)
2
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CHAPTER 11

LINEAR EQUATIONS IN ONE VARIABLE

One of the principal reasons for an intensive

study of polynomials, grouping symbols, fac-

toring, and fractions is to prepare for solving

equations. The equation is perhaps the most

important tool in algebra, and the more skillful

the student becomes in working with equations,
the greater will be his ease in solving problems.

Before learning to solve equations, it is nec-

essary to become familiar with the words used
in the discussion of them. An EQUATION is a

statement that two expressions are equal in

value. Thus,

and

4 + 5 = 9

A = Iw

(Area of a rectangle = length x width)

are equations. The part to the left of the equal-

ity sign is called the LEFT MEMBER, or first

member, of the equation. The part to the right
is the RIGHT MEMBER, or second member, of

the equation.
The members of an equation are sometimes

thought of as corresponding to two weights that

balance a scale. (See fig. 11-1.) This com-
parison is often helpful to students who are

learning to solve equations. It is obvious, in

4 + 5

Figure 11-1. Equation compared to a

balance scale.

the case of the scale, that any change made in

one pan must be accompaniedby an equal change
in the other pan. Otherwise the scale will not
balance. Operations on equations are based on
the same principle. The members must be kept
balanced or the equality is lost.

CONSTANTS AND VARIABLES

Expressions in algebra consist of constants
and variables. A CONSTANT is a quantity
whose value remains the same throughout a

particular problem. A VARIABLE is a quan-
tity whose value is free to vary.

There are two kinds of constantsfixed and

arbitrary. Numbers such as 7, -3, 1/2, and IT

are examples of FIXED constants. Their values

never change. In 5x + 7 =
0, the numbers 0, 5,

and 7, are fixed constants.
ARBITRARY constants can be assigned dif-

ferent values for differentproblems. Arbitrary
constants are indicated by letters quite often

letters at the beginning of the alphabet such as

a, b, c, and d. In

ax + b =
0,

the letters a and b represent arbitrary con-
stants. The form ax + b = represent many
linear equations. If we give a and b particular

values, say a = 5 and b =
7, then these constants

become fixed, for this particular problem, and
the equation becomes

5x + 7 =

A variable may have one value or it may
have many values in a discussion. The letters

at the end of the alphabet, such as x, y, z, and w,

usually are used to represent variables. In

5x + 7, the letter x is the variable. If x =
1,

then

5x + 7 = 5 + 7 = 12

If x =
2, then

5x + 7 =
5(2) + 7 = 10 + 7 = 17



equality

5x + 7 = -23

holds true for just one value of x. The value is

-6, since

5(-6) + 7 = -23

In an algebraic expression, terms that con-

tain a variable are called VARIABLE TERMS.
Terms that do not contain a variable are CON-
STANT TERMS. The expression 5x + 7 con-

tains one variable term and one constant term.
The variable term is 5x, while 7 is the constant

term. In ax + b, ax is the variable term and b
is the constant term.
A variable term often is designated by nam-

ing the variable it contains. In 5x + 7, 5x is the

x-term. In ax + by, ax is the x-term, while by
is the y-term.

DEGREE OF AN EQUATION

The degree of an equation that has not more
than one variable in each term is the exponent
of the highest power to which that variable is

raised in the equation. The equation

3x - 17 =

is a FIRST-DEGREE equation, since x is raised

only to the first power.
An example of a SECOND-DEGREE equa-

tion is

5x - 2 x + 1 = 0.

The equation,

4x
3 - = 0,

is of the THIRD DEGREE.
The equation,

3x - 2y = 5

is of the first degree in two variables, x and y.

When more than one variable appears in a term,
as in xy = 5, it is necessary to add the expo-
nents of the variables within a term to get the

Graphs are used in many different forms to

give visual pictures of certain related facts.

For example, they are used to show business

trends, production output, continued individual

attainment, and so forth. We find bar graphs,
line graphs, circle graphs, and many other

types, each of which is used for a particular
need. In algebra, graphs are also used to give
a visual picture containing a great deal of in-

formation about equations.
Sometimes many numerical values, when

substituted for the variables of an equation, will

satisfy the conditions of the equation. On a

particular type of graph (which will be explained

fully in chapter 12) several of these values are

plotted (located), and when enough are plotted,
a line is drawn through these points. For each

particular equation a certain type of curve re-

sults. For equations in the first degree in one

or two variables, the resulting shape of the

"curve" is a straight line. Thus, the name
LINEAR EQUATION is derived. Equations of

a higher degree form various other shapes.
The name "linear equation" now applies to

equations of the first degree, regardless of the

number of variables they contain. Chapter 12

shows how an equation may be pictured on a

graph. The purpose and value of graphing an

equation will also be developed.

IDENTITIES

If a statement of equality involves one or

more variables, it may be either an IDENTITY

(identical equation) or a CONDITIONAL EQUA-
TION. An identity is an equality that states a

fact, such as the following examples:

1. 9 + 5 = 14

2. 2n + 5n = 7n

3. 6(x - 3) = 6x - 18

Notice that equation 3 merely shows the fac-

tored form of 6x - 18 and holds true when any
value of x is substituted. For example, if x = 5,

it becomes

6(5-3) = 6(5) - 18

6(2) = 30-18

12 = 12
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If x assumes the negative value -10, this iden-

tity becomes

6(-10-3) = 6(-10)-18

6(-13) = -60-18

-78 = -78

An identity is established when both sides of

the equality have been reduced to the same
number or the same expression. When 5 is

substituted for x, the value of either side of

6(x-3) = 6x - 18 is 12. When -10 is substituted

for x, the value on either side is -78. The fact

that this equality is an identity can be shown
also by factoring the right side so that the

equality becomes

6(x-3) = 6(x-3)

The expressions on the two sides of the equality
are identical.

CONDITIONAL EQUATIONS

A statement such as 2x-l = is an equality
only when x has one particular value. Such a
statement is called a CONDITIONAL EQUA-
TION, since it is true only under the condition
that x = 1/2. Likewise, the equation y - 7 = 8

holds true only if y = 15.

The value of the variable for which an equa-
tion in one variable holds true is a ROOT, or

SOLUTION, of the equation. When we speak of

solving equations in algebra, we refer to condi-
tional equations. The solution of a conditional

equation can be verified by substituting for
the variable its value, as determined by the
solution.

The solution, is correct if the equality re-
duces to an identity. For example, if 1/2 is

substituted for x in 2x - 1 =
0, the result is

1-1 =

=
j(an identity)

The identity is established for x =-i since the
t

value of each side of the equality reduces to
zero.

SOLVING LINEAR EQUATIONS

Solving a linear equation in one variable

means finding the value of the variable that

makes the equation true. For example, 11 is

the SOLUTION of x - 7 = 4, since 11-7 = 4.

The number 11 is said to SATISFY the equation.

Basically, the operation used in solving equa-
tions is to manipulate both members, by addi-

tion, subtraction, multiplication, or division

until the value of the variable becomes appar-
ent. This manipulation may be accomplished in

a straightforward manner by use of the axioms
outlined in chapter 3 of this course. These
axioms may be summed up in the following
rule: If both members of an equation are in-

creased, decreased, multiplied, or divided by
the same number, or by equal numbers, the re-

sults will be equal. (Division by zero is ex-

cluded.)
As mentioned earlier, an equation may be

compared to a balance. What is done to one
member must also be done to the other to main-
tain a balance. An equation must always be

kept in balance or the equality is lost. We use
the above rule to remove or adjust terms and
coefficients until the value of the variable is

discovered. Some examples of equations solved

by means of the four operations mentioned in

the rule are given in the following paragraphs.

ADDITION

Find the value of x in the equation

x - 3 = 12

As in any equation, we must isolate the variable

on either the right or left side. In this prob-

lem, we leave the variable on the left and per-
form the following steps:

1. Add 3 to both members of the equation,
as follows:

In effect, we are "undoing" the subtraction indi-

cated by the expression x -
3, for the purpose

of isolating x in the left member.

2. Combining terms, we have

x = 15
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SUBTRACTION

Find the value of x in the equation

x + 14 = 24

1. Subtract 14 from each member. In effect,
this undoes the addition indicated in the expres-
sion x + 14.

x + 14 - 14 = 24 - 14

2. Combining terms, we have

x = 10

MULTIPLICATION

Find the value of y in the equation

Practice problems . Solve the following equa-
tions:

1. The only way to remove the 5 so that the

y can be isolated is to undo the indicated divi-

sion. Thus we use the inverse of division, which
is multiplication. Multiplying both members by
5, we have the following:

5(|)
. 5(10)

2. Performing the indicated multiplications,
we have

y = 50

DIVISION

Find the value of x in the equation

3x = 15

1. The multiplier 3 may be removed from
the x by dividing the left member by 3. This
must be balanced by dividing the right member
by 3 also, as follows:

3x 15

T = T
2. Performing the indicated divisions, we

have

x = 5

1. m + 2 = 8

2. x - 5 = 11

3. 6x = -48

Answers:

1. m = 6

2. x = 16

3. x = -8

4 JL_ o*'
14

" *

5. 2n = 5

6. ^y = 6

4. x = 28

5. n =
2^-

6. y = 36

SOLUTIONS REQUIRING MORE
THAN ONE OPERATION

Most equations involve more steps in their

solutions than the simple equations already de-

scribed, but the basic operations remain un-

changed. If the basic axioms are kept well in

mind, these more complicated equations will

not become too difficult. Equations may re-

quire one or all of the basic operations before

a solution can be obtained.

Subtraction and Division

Find the value of x in the following equation:

2x + 4 = 16

1. The term containing x is isolated on the

left by subtracting 4 from the left member.
This operation must be balanced by also sub-

tracting 4 from the right member, as follows:

2x +4-4= 16 -4

2. Performing the indicated operations, we
have

2x = 12

3. The multiplier 2 is removed from the x

by dividing both sides of the equation by 2, as

follows:

2x _ 12

2
"

2

x = 6
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Addition, Multiplication, and Division

Find the value of y in the following equation:

1. Isolate the term containing y on the left

by adding 4 to both sides, as follows:

-4+4= 11 +43yT

2. Since the 2 will not divide the 3 exactly,

multiply the left member by 2 in order to elim-
inate the fraction. This operation must be bal-

anced by multiplying the right member by 2, as

follows:

to eliminate the fraction. However, notice that
this multiplication cannot be performed on the
first term only; any multiplier which is intro-

duced for simplification purposes must be ap-
plied to the entire equation. Thus each term in
the equation is multiplied by 4, as follows:

+ 4(2x) = 4(12)

3x + 8x = 48

3. Add the terms containing x and then di-
vide both sides by 11 to isolate the x in the left

member, as follows:

llx = 48

48
x =

11

- 2 < 15

3y = 30

3. Divide both members by 3, in order to

isolate the y in the left member, as follows:

3y _ 30~~ ~~

y = 10

Equations Having the Variable in

More Than One Term

Find the value of x in the following equation:

3x 10
-j- + x = 12 - x

1. Rewrite the equation with no terms con-

taining the variable in the right member. This

requires adding x to the right member to elim-
inate the -x term, and balance requires that we
also add x to the left member, as follows:

3x

~ + 2x = 12

2. Since the 4 will not divide the 3 exactly,
it is necessary to multiply the first term by 4

Practice problems. Solve each of the follow-

ing equations:

1.x- 1={

2.^ + y = 8

3. 4 + 3x = 7

Answers:

1. x = 3/2

2. y = 6

3. x = 28/13

4. 4 - 7x = 9 - 8x

5.-J
+ 6y = 13

6. -x - 2x = 25 + x

4. x = 5

5. y = 2

6. x = -10

EQUATIONS WITH LITERAL
COEFFICIENTS

As stated earlier, the first letters of the

alphabet usually represent known quantities

(constants), and the last letters represent un-
known quantities (variables). Thus, we usually
solve for x, y, or z.

An equation such as

ax - 8 = bx - 5

has letters as coefficients. Equations with lit-

eral coefficients are solved in the same way as
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quations with numerical coefficients, except
lat when an operation cannot actually be per-
>rmed, it merely is indicated.

In solving for x in the equation

ax - 8 = bx - 5

ubtract bx from both members and add 8 to

oth members. The result is

ax - bx = 8 - 5

Since the subtraction on the left side cannot

ctually be performed, it is indicated. The
uantity, a -

b, is the coefficient of x when
3rms are collected. The equation takes the

(a-b) x = 3

k>w divide both sides of the equation by a-b.

.gain the result can be only indicated. The
olution of the equation is

x =
a-b

In solving for y in the equation

ay + b = 4

ubtract b from both members as follows:

ay = 4 - b

Ividing both members by a, the solution is

4-b

Practice problems. Solve for x in each of

following:

. 3 + x = b

. 4x = 8 + t

Answers:

. x = b - 3

3. 3x + 6m = 7m

4. ax - 2(x + b) = 3a

4. x

3

3a 2b
a - 2

REMOVING SIGNS OF GROUPING

If signs of grouping appear in an equation
they should be removed in the manner indicated

in chapter 9 of this course. For example, solve
the equation

5 = 24 -
[x-12(x-2)

-
6(x-2)]

Notice that the same expression, x-2, occurs in

both parentheses. By combining the terms con-

taining (x-2), the equation becomes

5 = 24 -
[x-18(x-2)]

Next, remove the parentheses and then the

bracket, obtaining

5 = 24 -
[x-18x + 36]

= 24 -
[36

-
17x]

= 24 - 36 + 17x

= -12 + 17x

Subtracting 17x from both members and then

subtracting 5 from both members, we have

-17x = - 12 - 5

-17x = - 17

Divide both members by -17. The solution is

x = 1

EQUATIONS CONTAINING FRACTIONS

To solve for x in an equation such as

12

first clear the equation of fractions. To do

this, find the least common denominator of the

fractions. Then multiply both sides of the equa-
tion by the LCD.

The least common denominator of 3, 12, 4,

and 2 is 12. Multiply both sides of the equation

by 12. The resulting equation is

8x + x - 12 = 3 + 6x

Subtract 6x from both members, add 12 to both

members, and collect like terms as follows:

9x - 6x = 12 + 3

3x = 15
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The solution is

x = 5

To prove that x = 5 is the correct solution,
substitute 5 for x in the original equation and
show that both sides of the equation reduce to

the same value. The result of substitution is

2(5) +
5

l - i
+ 5

T" +
12

" 1 ~T + T

In establishing an identity, the two sides of

the equality are treated separately, and the op-
erations are performed as indicated. Some-
times, as here, fractions occur on both sides of

the equality, and it is desirable to find the least

common denominator for more than one set of

fractions. The same denominator could be used
on both sides of the equality, but this might
make some of the terms of the fractions larger
than necessary.

Proceeding in establishing the identity for
x = 5 in the foregoing equation we obtain

10 5 3 _ 1 10Tl2~"3~T

Each member of the equality has the value
11/4 when x = 5. The fact that the equation be-
comes an identity when x is replaced by 5

proves that x = 5 is the solution.

Practice problems. Solve each of the fol-

lowing equations:

A-T' ' -T

2. I- 1= I
2 v 3

Answers:

1. x = 24

2. v = 6

4. =
4x

3. y = 30

4. x = 1/8

GENERAL FORM OF A LINEAR
EQUATION

The expression GENERAL FORM, in mathe-

matics, implies a form to which all expressions
or equations of a certain type can be reduced.

The only possible terms in a linear equation in

one variable are the first-degree term and the
constant term. Therefore, the general form of

a linear equation in one variable is

ax + b =

By selecting various values for a and b, this

form can represent any linear equation in one
variable after such an equation has been simpli-
fied. For example, if a = 7 and b =

5, ax + b =

represents the numerical equation

7x + 5 =

If a = 2m - n and b = p -
q, then ax + b = rep-

resents the literal equation

(2m-n)x + p - q =0

This equation is solved as follows:

(2m-n)x + (p-q) -
(p-q) = -

(p-q)

(2m-n)x = -
(p-q)

x = -(p-q) ^ q-p

USING EQUATIONS TO
SOLVE PROBLEMS

To solve a problem, we first translate the

numerical sense of the problem into an equa-
tion. To see how this is accomplished, con-

sider the following examples and their solutions.

EXAMPLE 1: Together Smith and Jones have

$120. Jones has 5 times as much as Smith.

How much has Smith?

SOLUTION:

Step 1. Get the problem clearly in mind.
There are two parts to each problem what is

given (the facts) and what we want to know (the

question). In this problem we know that Jones
has 5 times as much as Smith and together they
have $120. We want to know how much Smith
has.
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Step 2. Express the unknown as a letter.

Usually we express the unknown or number we
know the least about as a letter (conventionally
we use x). Here we know the least about Smith's

money. Let x represent the number of dollars
Smith has.

Step 3. Express the other facts in terms of

the unknown. If x is the number of dollars
Smith has and Jones has 5 times as much, then
5x is the number of dollars Jones has.

Step 4. Express the facts as an equation.
The problem will express or imply a relation

between the expressions in steps 2 and 3.

Smith's dollars plus Jones' dollars equal $120.

Translating this statement into algebraic sym-
bols, we have

x + 5x = 120

Solving the equation for x,

6x = 120

x = 20

Thus Smith has $20.

Step 5. Check: See if the solution satisfies

the original statement of the problem. Smith
and Jones have $120.

$20

(Smith's money)
$100

(Jones' money)

= $120

EXAMPLE 2: Brown can do a piece of work in

5 hr. If Olsen can do it in 4 hr how long will it

take them to do the work together ?

SOLUTION:

Step 1. Given: Brown could do the work in

5 hr. Olsen could do it in 4 hours.
Unknown: How long it takes them to do the

work together.

Step 2. Let x represent the time it takes
them to do the work together.

Step 3. Then -^ is the amount they do to-

gether in 1 hr. Also, in 1 hour Brown does -i of
p

the work and Olsen does
-|

of the work.

Step 4. The amount done in 1 hr is equal to

the part of the work done by Brown in 1 hr plus
that done by Olsen in 1 hr.

Solving the equation,

20x
(-1)

-
\x/

20 = 4x + 5x

20 = 9x

20x + 20x

^ =
x, or x = 2 hours

y y

They complete the work together in 2^- hours.
y

2 1
Step 5. Check: 2-~x-= = amount Brown does

2 1

2^-
x -T = amount Olsen does

20 i] [20 i\ 1 5.__9
9

x 5/\9 X 4/~99~9

Practice problems. Use a linear equation in

one variable to solve each of the following

problems:

1. Find three numbers such that the second is

twice the first and the third is three times as

large as the first. Their sum is 180.

2. A seaman drew $75.00 pay in dollar bills

and five-dollar bills. The number of dollar

bills was three more than the number of five-

dollar bills. How many of each kind did he
draw? (Hint: If x is the number of five-dollar

bills, then 5x is the number of dollars they
represent.)

3. Airman A can complete a maintenance task
in 4 hr. Airman B requires only 3 hr to do the

same work. If they work together, how long
should it take them to complete the job?

Answers:

1. First number is 30.

Second number is 60.

Third number is 90.

2. Number of five-dollar bills is 12.

Number of one-dollar bills is 15.



can be set up if they are related in some way,
even though the relationship may not be one of

equality.
The expression "number sentence" is often

used to describe a general relationship which

may be either an equality or an inequality. If

the number sentence states an equality, it is an

EQUATION; if it states an inequality, it is an

INEQUATION.

ORDER PROPERTIES
OF REAL NUMBERS

The idea of order, or relative rank accord-

ingto size, is based upon two intuitive concepts:
"greater than" and "less than." Mathematicians
use the symbol > to represent "greater than"
and the symbol < to represent "less than." For

example, the inequation stating that 7 is greater
than 5 is written in symbols as follows:

7 > 5

The inequation stating that x is less than 10 is

written as follows:

x < 10

A "solution" of an inequation involving a
variable is any number which may be substi-

tuted for the variable without changing the re-

lationship between the left member and the

right member. For example, the inequation
x < 10 has many solutions. All negative num-
bers zero, and all positive numbers less than 10,

may be substituted for x successfully. These
solutions comprise a set of numbers, called the

SOLUTION SET.
The SENSE of an inequality refers to the

direction in which the inequality symbol points.
For example, the following two inequalities
have opposite sense:

7 > 5

10 < 12

PROPERTIES OF INEQUALITIES

Inequations may be manipulated in accord-
ance with specific operational rules, in a man-
ner similar to that used with equations.

the same sense as the original inequation. The

following examples illustrate this:

1. 5 < 8

5 + 2 < 8 + 2

7 < 10

The addition of 2 to both members does not

change the sense of the inequation.

2. 5 < 8

5 + (-3) < 8 + (-3)

2 < 5

The addition of -3 to both members does not

change the sense of the inequation.
Addition of the same quantity to both mem-

bers is a useful method for solving inequations.
In the following example, 2 is added to both

members in order to isolate the x term on the

left:

x - 2 > 6

x-2 + 2>6 + 2

x> 8

Multiplication

The rule for multiplication is as follows: If

both members of an inequation are multiplied

by the same positive quantity, the sense of the

resulting inequation is the same as that of the

original inequation. This is illustrated as

follows:

1. -3 < -2

2(-3) < 2(-2)

-6 < -4

Multiplication of both members by 2 does not

change the sense of th inequation.

2. 10 < 12

5 < 6
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Multiplication of both members by 1/2 does not

;hange the sense of the inequation.
Notice that example 2 illustrates division of

ioth members by 2. Since any division can be
'ewritten as multiplication by a fraction, the

nultiplication rule is applicable to both multi-
lication and division.

Multiplication is used to simplify the solu-

ion of inequations such as the following:

~o~ ^ &

Multiply both members by 3:

3 () > 3(2)

x > 6

ense Reversal

If both sides of an inequation are multiplied
r divided by the same negative number, the

ense of the resulting inequation is reversed,
'his is illustrated as follows:

1. -4 < -2

(-3) (-4) > (-3) (-2)

12 > 6

2. 7 > 5

(-2) (7) < (-2) (5)

-14 < -10

Sense reversal is useful in the solution of an

lequation in which the variable is preceded by
negative sign, as follows:

2 - x < 4

Add -2 to both members to isolate the x term:

2 - x - 2 < 4 - 2

- x < 2

Multiply both members by -1:

x > -2

Practice problems. Solve each of the fol-

lowing inequations:

1. x + 2 > 3

2. - 1 < 2

Answers:

1. x > 1

2. y < 9

3. 3 - x < 6

4. 4y > 8

3. x > -3

4. y > 2

GRAPHING INEQUALITIES

An inequation such as x > 2 can be graphed
on a number line, as shown in figure 11-2.

The heavy line in figure 11-2 contains all

values of x which comprise the solution set.

Notice that this line continues indefinitely in

the positive direction, as indicated by the arrow
head. Notice also that the point representing
x = 2 is designated by a circle. This signifies

that the solution set does not contain the num-
ber 2.

Figure 11-3 is a graph of the inequation
x 2 > 4. Since the square of any number greater
than 2 is greater than 4, the solution set con-

tains all values of x greater than 2. Further-

more, the solution set contains all values of x
less than -2. This is because the square of any

negative number smaller than -2 is a positive

number greater than 4.

-f

-4-3-2-1 I 234
Figure 11-2. Graph of the inequation x > 2.

-4 -3 -2-1 01 2

Figure 11-3.-Graph of x 2 > 4.



CHAPTER 12

LINEAR EQUATIONS IN TWO VARIABLES

Thus far in this course, discussions of equa-
tions have been limited to linear equations in

one variable. Linear equations which have two

variables are common, and their solution in-

volves extending some of the procedures which
have i Iready been introduced.

RECTANGULAR COORDINATES

An outstanding characteristic of equations in

two variables is their adaptability to graphical

analysis. The rectangular coordinate system,
which was introduced in chapters of this course,
is used in analyzing equations graphically. This

system of vertical and horizontal lines, meeting
each other at right angles and thus forming a

rectangular grid, is often called the Cartesian
coordinate system. It is named after the French

philosopher and mathematician, Rene Descartes,
who invented it.

COORDINATE AXES

The rectangular coordinate system is devel-

oped on a framework of reference similar to

figure 3-2 in chapter 3 of this course. On a

piece of graph paper, two lines are drawn in-

tersecting each other at right angles, as in

figure 12-1. The vertical line is usually labeled
with the capital letter Y and called the Y axis.

The horizontal line is usually labeled with the

capital letter X and called the X axis. The
point where the X and Yaxes intersect is called
the ORIGIN and is labeled with the letter o.

Above the origin, numbers measured along
or parallel to the Y axis are positive; below the

origin they are negative. To the right of the

origin, numbers measured along or parallel to

the X axis are positive; to the left they are

negative.

COORDINATES

A point anywhere on the graph may be lo-

cated by two numbers, one showing the distance
of the point from the Yaxis, and the other show-
ing the distance of the point from the X axis.

Figure 12-1. Rectangular coordinate system.

Point P (fig. 12-1) is 6 units to the right of the

Y axis and 3 units above the X axis. We call

the numbers that indicate the position of a point

COORDINATES. The number indicating the

distance of the point measured horizontally
from the origin is the X coordinate (6 in this

example), and the number indicating the dis-

tance of the point measured vertically from the

origin (3 in this example) is the Y coordinate.

In describing the location of a point by means
of rectangular coordinates, it is customary to

place the coordinates within parentheses and

separate them with a comma. The X coordinate

is always written first. The coordinates of

point P (fig. 12-1) are written (6, 3). The co-

ordinates for point Q are (4, -5); for point R,

they are (-5, -2); and for point S, they are

(-8, 5).

Usually when we indicate a point on a graph,
we write a letter and the coordinates of the

point. Thus, in figure 12-1, for point S, we
write S(-8, 5). The other points would ordinarily
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written, P(6, 3), Q(4, -5), and R(-5, -2). The
coordinate of a point is often called its ORDI-
VTE and the X coordinate is often called its

3SCISSA.

QUADRANTS

The X and Y axes divide the graph into four

rts called QUADRANTS. In figure 12-1, point
is in quadrant I, point S is in quadrant II, R
in quadrant HI, and Q is in quadrant IV. In

? first and fourth quadrants, the X coordinate

positive, because it is to the right of the

igin. In the second and third quadrant it is

gative, because it is to the left of the origin,

kewise, the Y coordinate is positive in the

'st and second quadrants, being above the

igin; it is negative in the third and fourth

adrants, being below the origin. Thus, we
ow in advance the signs of the coordinates of

point by knowing the quadrant in which the

int appears. The signs of the coordinates in

j four quadrants are shown in figure 12-1.

Locating points with respect to axes is called

jOTTING. As shown with point P (fig. 12-1),

)tting a point is equivalent to completing a

ctangle that has segments of the axes as two
its sides with lines dropped perpendicularly
the axes forming the other two sides. This
the reason for the name "rectangular co-
dinates."

PLOTTING A LINEAR EQUATION

A linear equation in two variables may have

my solutions. For example, in solving the

nation 2x -
y =

5, we can find an unlimited
mber of values of x for which there will be a

rresponding value of y. When x is 4, y is 3,

ice (2 x 4) - 3 = 5. When x is 3, y is 1, and
en x is 6, y is 7. When we graph an equa-
n, these pairs of values are considered co-
iinates of points on the graph. The graph of

equation is nothing more than a line joining
* points located by the various pairs of num-
rs that satisfy the equation.
To picture an equation, we first find several
irs of values that satisfy the equation. For
imple, for the equation 2x - y =

5, we assign
reral values to x and solve for y. A conven-
it way to find values is to first solve the

aation for either variable, as follows:

2x - y = 5

-y = -2x + 5

y = 2x - 5

Once this is accomplished, the value of y is

readily apparent when values are substituted

for x. The information derived may be re-
corded in a table such as table 12-1. We then

lay off X and Y axes on graph paper, select

some convenient unit distance for measurement
along the axes, and then plot the pairs of values
found for x and y as coordinates of points on
the graph. Thus, we locate the pairs of values
shown in table 12-1 on a graph, as shown in

figure 12-2 (A).

Table 12-1. Values of x and y in the equation
2x - y = 5.

(8,11)

17,9)

16,7)

(5,5)

.0,1)

(V31

(A) IB)

Figure 12-2. Graph of 2x - y = 5.

Finally, we draw a line joining these points,

as in figure 12-2 (B). It is seen that this is a

straight line; hence the name "linear equation."
Once the graph is drawn, it is customary to

write the equation it represents along the line,

as shown in figure 12-2 (B).

It can be shown that the graph of an equation
is the geometric representation of all the points
whose coordinates satisfy the conditions of the

equation. The line represents an infinite num-
ber of pairs of coordinates for this equation.
For example, selecting at random the point on

the line where x is 2\ and y is and substitut-
^

ing these values in the equation, we find that

they satisfy it. Thus,

'(4)
- = 5
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If two points that lie on a straight line can

be located, the position of the line is known.

The mathematical language for this is "Two

points DETERMINE a straight line." We now
know that the graph of a linear equation in two

variables is a straight line. Since two points
are sufficient to determine a straight line, a

linear equation can be graphed by plotting two

points and drawing a straight line through these

points. Very often pairs of whole numbers
which satisfy the equation can be found by in-

spection. Such points are easily plotted.
After the line is drawn through two points, it

is well to plot a third point as a check. If this

third point whose coordinates satisfy the equa-
tion lies on the line the graph is accurately
drawn.

X AND Y INTERCEPTS

Any straight line which is not parallel to one
of the axes has an X intercept and a Y inter-

cept. These are the points at which the line

crosses the X and Y axes. At the X intercept,
the graph line is touching the X axis, and thus

the Y value at that point is 0. At the Y inter-

cept, the graph line is touching the Y axis; the

X value at that point is 0.

In order to find the X intercept, we simply
let y = and find the corresponding value of x.

The Y intercept is found by letting x = and

finding the corresponding value of y. For ex-

ample, the line

5x + 3y = 15

crosses the Y axis at (0,5). This may be veri-
fied by letting x = in the equation. The X in-

tercept is (3,0), since x is * when y is 0. Fig-
ure 12-3 shows the Lvne

5x + 3y = 15

graphedi by means of the X and Y intercepts.

EQUATIONS IN ONE VARIABLE

An equation containing only one variable is

easily graphed, since the line it represents lies

parallel to an axis. For example, in

the value of y is

2y = 9

f

H

-5

,5)

(3,o):

5 _

+t

\XJ>
V

~Nr

10
X'

Figure 12-3.-Graph of 5x + 3y = 15.

The line 2y = 9 lies parallel to the X axis at a

distance of 4^ units above it. (See fig. 12-4.)
t

Notice that each small division on the graph

paper in figure 12-4 represents one-half unit.

The line 4x + 15 = lies parallel to the Y
axis. The value of x is - =|. Since this value is

4

negative, the line lies to the left of the Y axis

at a distance of
3j

units. (See fig. 12-4.)

.-5

2y = 9

X"

Figure 12-4. Graphs of 2y = 9 and 4x + 15 = 0.



From the foregoing discussion, we arrive at

two important conclusions:

1. A pair of numbers that satisfy an equa-
tion are the coordinates of a point on the graph
of the equation.

2. The coordinates of any point on the graph
of an equation will satisfy that equation.

SOLVING EQUATIONS IN
TWO VARIABLES

A solution of a linear equation in two vari-
ables consists of a pair of numbers that satisfy
the equation. For example, x = 2 and y = 1

constitute a solution of

3x - 5y = 1

When 2 is substituted for x and 1 is substituted

for y, we have

3(2) - 5(1) = 1

The numbers x = -3 and y = -2 also form a
solution. This is true because substituting -3

for x and -2 for y reduces the equation to an

identity:

3(-3) -5(-2) = 1

-9 + 10 = 1

1 = 1

Each pair of numbers (x, y) such as (2, 1) or

(-3, -2) locates a point on the line 3x - 5y = 1.

Many more solutions could be found. Any two
numbers that constitute a solution of the equa-
tion are the coordinates of a point on the line

represented by the equation.

Suppose we were asked to solve a problem
such as: Find two numbers such that their sum
is 33 and their difference is 5. We could indi-

cate the problem algebraically by letting x rep-
resent one number and y the other. Thus, the

problem may be indicated by the two equations

x + y = 33

x - y = 5

Considered separately, each of these equations
represents a straight line on a graph. There
are many pairs of values for x and y which sat-

isfy the first equation, and many other pairs
which satisfy the second equation. Our problem

is to find ONE pair of values that will satisfy

BOTH equations. Such a pair of values is said

to satisfy both equations at the same time, or

simultaneously. Hence, two equations for which
we seek a common solution are called SIMUL-
TANEOUS EQUATIONS.

'

The two equations,
taken together, comprise a SYSTEM of equa-
tions.

Graphical Solution

If there is a pair of numbers that can be substituted

for x and y in two different equations, the pair form

the coordinates of a point which lies on the graph of

each equation. The only way in which a point can lie

on two lines simultaneously is for the point to be at the

intersection of the lines. Therefore, the graphical

solution of two simultaneous equations involves

drawing their graphs and locating the point at which

the graph lines intersect.

For example, when we graph the equations
x + y = 33 and x - y =

5, as in figure 12-5, we
see that they intersect in a single point. There
is one pair of values comprising coordinates of

that point (19, 14), and that pair of values sat-

isfies both equations, as follows:

x + y = 33

19 + 14 = 33

x - y = 5

19 - 14 = 5

Figure 12-5. Graph of x + y = 33 and x - y = 5.
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This pair of numbers satisfies each equation.
It is the only pair of numbers that satisfies the

two equations simultaneously.
The graphical method is a quick and simple

means of finding an approximate solution of

two simultaneous equations. Each equation is

graphed, and the point of intersection of the two
lines is read as accurately as possible. A high

degree of accuracy can be obtained but this, of

course, is dependent on the precision with which
the lines are graphed and the amount of accu-

racy possible in reading the graph. Sometimes
the graphical method is quite adequate for the

purpose of the problem.
figure 12-6 shows the graphs of x + y = 11

and x - y = -3. The intersection appears to be
the point (4, 7). Substituting x = 4 and y = 7

into the equations shows that this is the actual

point of intersection, since this pair of num-
bers satisfies both equations.

-57

.10

-5

?>

\X$
10-

Figure 12-6. Graph of x + y = 11 and x - y = -3.

The equations 7x - 8y = 2 and 4x + 3y = 5

are graphed in figure 12-7. The lines intersect
where y is approximately 1/2 and x is approxi-
mately 5/6.

Practice problems. Solve the following si-

multaneous systems graphically:

1. x + y = 8

x - y = 2

2. 3x + 2y = 12

4x + 5y = 2

Answers:

1. x = 5

y = 3

Addition Method

2. x = 8

y = -6

The addition method of solving systems of

equations is illustrated in the following ex-

ample:

x - y = 2

x + y = 8

2x + = 10

x = 5

The result in the foregoing example is obtained

by adding the left member of the first equation
to the left member of the second, and adding the

right member of the first equation to the right
member of the second.

Having found the value of x, we substitute

this value in either of the original equations to

find the value of y, as follows:

x - y = 2

(5)
- y = 2

-y = 2 - 5

-y = -3

y = s

Notice that the primary goal in the addition

method is the elimination (temporarily) of one
of the variables. If the coefficient of y is the

same in both equations, except for its sign,

adding the equations eliminates y as in the

foregoing example. On the other hand, suppose
that the coefficient of the variable which we de-
sire to eliminate is exactly the same in both

equations.
In the following example, the coefficient of x

is the same in both equations, including its sign:

x + 2y = 4

x - 3y = -1

Adding the equations would not eliminate either

x or y. However, if we multiply both members
of the second equation by -1, then addition will

eliminate x, as follows:
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Figure 12-7. Graph of 7x - 8y = 2 and 4x + 3y = 5.

x + 2y = 4

-x + 3y = 1

5y ='5

y = i

'he value of x is found by substituting 1 for y
i either of the original equations, as follows:

x + 2(1) = 4

x = 2

As a second example of the addition method,
nd the solution of the simultaneous equations

3x + 2y = 12

4x + 5y = 2

ere both x and y have unlike coefficients. The
^efficients of one of the variables must be
lade the same, except for their signs.
The coefficients of x will be the same except

>r signs, if both members of the first equation

are multiplied by 4 and both members of the

second equation by -3. Then addition will elim-
inate x.

Following this procedure to get the value of

y, we multiply the first equation by 4 and the

second equation by -3, as follows:

12x + 8y = 48

-12x - 15y = -6

-7y = 42

y = -6

Substituting for y in the first equation to get the

value of x, we have

3x + 2(-6) = 12

x + 2(-2) = 4

x - 4 = 4

x = 8
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substituting 8 for x and -6 for y in each of the

original equations, as follows:

1. 3x + 2y = 12

3(8) + 2(-6) = 12

24 - 12 = 12

2. 4x + 5y = 2

4(8) + 5(-6) = 2

32 - 30 = 2

Practice problems. Use the addition method
to solve the following problems:

1. x + y = 24

x - y = 12

2. 5t + 2v = 9

3t - 2v .= -5

Answers:

3. x - 2y = -1

2x + 3y = 12

4. 2x + 7y = 3

3x - 5y = 51

Substitution Method

In some cases it is more convenient to use
the substitution method of solving problems. In

this method we solve one equation for one of

the variables and substitute the value obtained
into the other equation. This eliminates one of

the variables, leaving an equation in one un-
known. For example, find the solution of the

following system:

4x + y = 11

x + 2y = 8

It is easy to solve for either y in the first equa-
tion or x in the second equation. Let us solve
for y in the first equation. The result is

y
- 11 - 4x

we may substitute this value of y wherever y
appears in the second equation. Thus,

x + 2(11
- 4x) = 8

We now have one equation that is linear in x;

that is, the equation contains only the variable x.

Removing the parentheses and solving for x,

we find that

x + 22 - 8x = 8

-7x = 8 - 22

-7x = -14

x = 2

To get the corresponding value of y, we sub-

stitute x = 2 in y = 11 - 4x. The result is

y = 11 -4(2)

= 11-8
n

Thus, the solution for the two original equa-
tions is x = 2 and y = 3.

Practice problems. Solve the following sys-
tems by the substitution method:

1. 2x - 9y = 1

x - 4y = 1

2. 2x + y =

2x - y = 1

Answers:

3. 5r + 2s = 23

4r + s = 19

4. t - 4v = 1

2t - 9v = 3

Literal Coefficients

Simultaneous equations with literal coeffi-

cients and literal constants may be solved for

the value of the variables just as the other

equations discussed in this chapter, with the

exception that the solution will contain literal
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lumbers. For example, find the solution of the

system:

3x + 4y = a

4x + 3y = b

Ve proceed as with any other simultaneous
Lnear equation. Using the addition method, we
my proceed as follows: To eliminate the y
erm we multiply the first equation by 3 and the

econd equation by -4. The equations then
ecome

9x + 12y = 3a

-16x - 12y = -4b

-7x

x

= 3a - 4b

= 3a - 4b

-7

v _ 4b - 3ax _

To eliminate x, we multiply the first equa-
on by 4 and the second equation by -3. The
juations then become

12x + 16y = 4a

-12x - 9y = -3b

7y = 4a - 3b

4a - 3b
y

7

We may check in the same manner as that

sed for other equations, by substituting these
ilues in the original equations.

INTERPRETING EQUATIONS

Recall that the general form for an equation
i the first degree in one variable is ax + b = 0.

he general form for first-degree equations in

ro variables is

ax + by + c = 0.

is interesting and often useful to note what
ippens graphically when equations differ, in

jrtain ways, from the general form. With this

formation, we know in advance certain facts

mcerning the equation in question.

LINES PARALLEL TO THE AXES

If in a linear equation the y term is miss-

ing, as in

2x - 15 =

the equation represents a line parallel to the Y

axis and 7^ units from it. Similarly, an equa-
*

tion such as

4y - 9 =

which has no x term, represents a line paral-

lel to the X axis and 2j units from it. (See

fig. 12-8.)
The fact that one of the two variables does

not appear in an equation means that there are
no limitations on the values the missing vari-

able can assume. When a variable does not ap-

pear, it can assume any value from zero to

plus or minus infinity. This can happen only if

the line represented by the equation lies paral-
lel to the axis of the missing variable.

Lines Passing Through the Origin

A linear equation, such as

4x + 3y =

that has no constant term, represents a line

passing through the origin. This fact is obvi-

ous since x = 0, y = satisfies any equation not

having a constant term. (See fig. 12-8.)

Lines Parallel to Each Other

An equation such as

3x - 2y = 6

has all possible terms present. It represents
a line that is not parallel to an axis and does

not pass through the origin.

Equations that are exactly alike, except for

the constant terms, represent parallel lines.

As shown in figure 12-8, the lines represented

by the equations

3x - 2y = -18 and 3x - 2y = 6

are parallel.
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Figure 12-8. Interpreting equations.

Parallel lines have the same slope. Chang-
ing the constant term moves a line away from
or toward the origin while its various positions
remain parallel to one another. Notice in fig-
ure 12-8 that the line 3x - 2y = 6 lies closer to

the origin than 3x - 2y = -18. This is revealed
at sight for any pair of lines by comparing their
constant terms. That one which has the constant
term of greater absolute value will lie farther
from the origin. In this case 3x - 2y = -18 will

be farther from the origin since |-18l > |6|.
The fact that lines are parallel is indicated

by the result when we try to solve two equations
such as 3x - 2y = -18 and 3x - 2y = 6 simultane-

ously. Subtraction eliminates both x and y im-
mediately. If both variables disappear, we can-

find values for them such that both equations

are satisfied at the same time. This means that

there is no solution. No solution implies that

there is no point of intersection for the straight
lines represented by the equations. Lines that

do not intersect in the finite plane are parallel.

USING TWO VARIABLES IN
SOLVING WORD PROBLEMS

Many problems can be solved quickly and

easily using one equation with one variable.

Other problems that might be rather difficult to

solve in terms of one variable can easily be
solved using two equations and two variables.

The difference in the two methods is shown in

the following example, solved first by using one

variable and then using two.
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EXAMPLE: Find the two numbers such that

half the first equals a third of the second and

twice their sum exceeds three times the second

by 4.

SOLUTION USING ONE VARIABLE:

1. Let x = the first number.

x 1
2. Then^ = ~ of the second number.

2 o

OY
3. Thus ^ = the second number.

Ct

From the statement of the problem, we then

have

3x\
2)

+ 4

2x , 3x = f + 4

lOx = 9x + 8

x = 8

52 = 12

(first number)

(second number)

SOLUTION USING TWO VARIABLES:

If we let x and y be the first and second num-
bers, respectively, we can write two equations
almost directly from the statement of the prob-
lem. Thus,

2. 2(x + y) = 3y + 4

Solving for x in the first equation and sub

stituting this value in the second, we have

2
(f

*
y)

- 3y * 4

4|
+ 2y = 3y + 4

4y + 6y = 9y + 12

y = 12

x 12

2
"

3

x = 8

(second number)

(first number)

Thus, we see that the solution using two vari-

ables is more direct and simple. Often it would

require a great deal of skill to manipulate a

problem so that it might be aolved using one

variable; whereas the solution using two vari-

ables might be very simple. The use of two

variables, of course, involves the fact that the

student must be able to form two equations
from the information given in the problem.

Practice problems. Solve the following prob-
lems using two variables:

1. A Navy tug averages 12 miles per hour down-

stream and 9 miles per hour upstream. How
fast is the stream flowing?

2. The sum of the ages of two boys is 18. If 4

times the younger boy's age is subtracted from

3 times the older boy's age, the difference is

12. What are the ages of the two boys?

Answers:

1. 4 mph.
i

2. 6 years and 12 years.

INEQUALITIES IN TWO VARIABLES

Inequalities in two variables are of the fol-

lowing form:

x + y > 2

Many solutions of such an inequation are ap-

parent immediately. For example, x could have

the value 2 and y could have the value 3, since

2 + 3 is greater than 2.

The existence of a large number of solutions

suggests that a graph of the inequation would

contain many points. The graph of an inequa-

tion in two unknowns is, in fact, an entire area

rather than just a line.

PLOTTING ON THE
COORDINATE SYSTEM

It would be extremely laborious to plot

enough points at random to define an entire

area of the coordinate system. Therefore our

method consists of plotting a boundary line and

shading the area, on one side of this line,

wherein the solution points lie.

The equation of the boundary line is formed

by changing the inequation to an equation. For
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example, the equation of the boundary line for

the graph of

x + y > 2

is the equation

x + y = 2

Figure 12-9 is a graph of x + y > 2. Notice

that the boundary line x + y = 2 is not solid.

This is intended to indicate that points on the

boundary line are not members of the solution

set. Every point lying above and to the right of

the boundary line is a member of the solution

set. Any solution point may be verified by sub-

stituting its X and Y coordinates for x and y in

the original inequation.

SIMULTANEOUS INEQUALITIES

The areas representing the solutions of two
different inequations may overlap. If such an

overlap occurs, the area of the overlap includes

all points whose coordinates satisfy both in-

equations simultaneously. An example of this

is shown in figure 12-10, in which the following
two inequations are graphed:

x + y > 2

x - y > 2

Figure 12-9. -Graph of x + y > 2.

Figure 12- 10. -Graph of x + y > 2 and x - y > 2.

The double crosshatchedarea in figure 12-10

contains all points which comprise the solution

set for the system.
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CHAPTER 13

RATIO, PROPORTION, AND VARIATION

The solution of problems based on ratio,

roportion, and variation involves no new prin-
iples. However, familiarity with these topics
111 often lead to quick and simple solutions to

roblems that would otherwise be more com-
licated.

RATIO

The results of observation or measurement
ften must be compared with some standard
alue in order to have any meaning. For ex-

tnple, to say that a man can read 400 words
er minute has little meaning as it stands,

however, when his rate is compared to the 250
ords per minute of the average reader, one
an see that he reads considerably faster than
le average reader. How much faster? To
nd out, his rate is divided by the average
ite, as follows:

400
250

hus, for every 5 words read by the average
sader, this man reads 8. Another way of mak-

3
ig this comparison is to say that he reads

lg

mes as fast as the average reader.
When the relationship between two numbers

i shown in this way, they are compared as a
ATIO. A ratio is a comparison of two like

lantities. It is the quotient obtained by divid-

ig the first number of a comparison by the

;cond.

Comparisons may be stated in more than
ie way. For example, if one gear has 40 teeth
id another has 10, one way of stating the com-
xrison would be 40 teeth to 10 teeth. This

smparison could be shown as a ratio in four

ays as follows:

1. 40:10

2. 40 * 10

3. 40

10

4. The ratio of 40 to 10.

When the emphasis is on "ratio," all of these

expressions would be read, "the ratio of 40 to

10." The form 40 - 10 may also be read "40

40
divided by 10." The form -rr- may also be read

"40 over 10."

Comparison by means of a ratio is limited

to quantities of the same kind. For example, in

order to express the ratio between 6 ft and 3 yd,
both quantities must be written in terms of the

same unit. Thus the proper form of this ratio

is 2 yd : 3 yd, not 6 ft : 3 yd. When the parts of

the ratio are expressed in terms of the same

unit, the units cancel each other and the ratio

consists simply of two numbers. In this exam-

ple, the final form of the ratio is 2 : 3.

Since a ratio is also a fraction, all the rules

that govern fractions may be used in working
with ratios. Thus, the terms may be reduced,

increased, simplified, and so forth, according
to the rules for fractions. To reduce the ratio

15:20 to lowest terms, write the ratio as a

fraction and then proceed as for fractions.

Thus, 15:20 becomes

15

20 4

Hence the ratio of 15 to 20 is the same as the

ratio of 3 to 4.

3
Notice the distinction in thought between ^

3
as a fraction and 7 as a ratio. As a fraction we

o

think of j as the single quantity "three-fourths."

3
As a ratio, we think of

^
as a comparison be-

tween the two numbers, 3 and 4. For example,
9

the lengths of two sides of a triangle are
Ij-g

ft

and 2 ft. To compare these lengths by means
of a ratio, divide one number by the other and

reduce to lowest terms, as follows:

i JL 25

116 _ 16 25

2
~

2
~

32
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The two sides of the triangle compare as 25

to 32.

INVERSE RATIO

It is often desirable to compare the numbers
of a ratio in the inverse order. To do this, we
simply interchange the numerator and the de-
nominator. Thus, the inverse of 15:20 is 20:15.

When the terms of a ratio are interchanged, the

INVERSE RATIO results.

Practice problems. In problems 1 through 6,

write the ratio as a fraction and reduce to low-
est terms. In problems 7 through 10, write the
inverse of the given ratio.

1. The ratio of 5 Ib to 15 Ib

2. $16 : $12

3. 18+4

4. One quart to one gallon

5. 5x to lOx

6. sj 4|

7. The ratio of 6 ft to 18 ft

members are ratios. In other words when two
ratios are set equal to each other, a proportion
is formed. The proportion may be written in

three different ways as in the following ex-
amples:

15:20 : : 3:4

15:20 = 3:4

15
_3

20 4

The last two forms are the most common. All
these forms are read, "15 is to 20 as 3 is to 4."
In other words, 15 has the same ratio to 20 as
3 has to 4.

One reason for the extreme importance of

proportions is that if any three of the terms
are given, the fourth may be found by solving a
simple equation. In science many chemical and

physical relations are expressed as propor-
tions. Consequently, a familiarity with propor-
tions will provide one method for solving many
applied problems. It is evident from the last

15 3
form shown, on =

j> that a proportion is really

a fractional equation. Therefore, all the rules
for fraction equations apply.

9. 5 : 8

10. 15 to 21

Answers:

9 i2 '

3

i
4

3. --

'

27

7'
1

*!

PROPORTION

Closely allied with the study of ratio is the

subject of proportion. A PROPORTION is

nothing more than an equation in which the

TERMS OF A PROPORTION

Certain names have been given to the terms
of the two ratios that make up a proportion. In
a proportion such as 3:8 = 9:24, the first and
the last terms (the outside terms) are called

the EXTREMES. In other words, the numerator
of the first ratio and the denominator of the

second are called the extremes. The second
and third terms (the inside terms) are called

the MEANS. The means are the denominator of
the first ratio and the numerator of the second.
In the example just given, the extremes are 3

and 24; the means are 8 and 9.

Four numbers, such as 5, 8, 15, and 24, form
a proportion if the ratio of the first two in the

order named equals the ratio of the second two.

When these numbers are set up as ratios with
the equality sign between them, the members
will reduce to an identity if a true proportion
exists. For example, consider the following

proportion:

5 _ 15

8
~

24



15 5
n this proportion, =7 must reduce to

-g
for the

iroportion to be true. Removing the same fac-

15
or from both members of we have

5 _ 3(5)

8
~

378]

The number 3 is the common factor that

aust be removed from both the numerator and
tie denominator of one fraction in order to show
tiat the expression

15

24

3 a true proportion. To say this another way,
: is the factor by which both terms of the ratio

must be multiplied in order to show that this

atio is the same as 57

Practice problems. For each of the follow-

ig proportions, write the means, the extremes,
nd the factor of proportionality.

JL - !>
'

16
"

80
o 25 1
d<

75
=

3

4. 12:3 :: 4:1. 4:5 = 12:15

Answers:

. Means: 16 and 15

Extremes: 3 and 80

Factor of proportionality: 5

. M: 5 and 12

E: 4 and 15

FP: 3

. M: 75 and 1

E: 25 and 3

FP: 25

. M: 3 and 4

E: 12 and 1

FP: 3

PERATIONS OF PROPORTIONS

It is often advantageous to change the form
E a proportion. There are rules for changing

or combining the terms of a proportion without

altering the equality between the members.
These rules are simplifications of fundamental
rules for equations; they are not new, but are

simply adaptations of laws or equations pre-
sented earlier in this course.

Rule 1. In any proportion, the product of the

means equals the product of the extremes.
This is perhaps the most commonly used

rule of proportions. It provides a simple way
to rearrange a proportion so that no fractions

are present. In algebraic language the rule is

illustrated as follows:

a

b

c

cf

be = ad

To prove this rule, we note that the LCD of the

two ratios
-|
and ^ is bd. Multiplying both mem-

bers of the equation in its original form by this

LCD, we have

bd = bd

ad = be

d

The following numerical example illustrates

the simplicity of rule 1:

3 _9_

8
=

24

8(9) = 3(24)

If one of the terms of a proportion is a vari-

able to the first power as in

7:5 = x:6

the proportion is really a linear equation in one

variable. Such an equation can be solved for

the unknown.

Equating the products of the means and ex-

tremes produces the following:

5x = 42

'-I
Mean Proportional

When the two means of a proportion are the

same quantity, that quantity is called the MEAN
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In the proportion

fL
x

JC

c

x is the mean proportional between a and c.

Rule 2. The mean proportional between two

quantities is the square root of their product.
This rule is stated algebraically as follows:

a _ x
x

~
c

X = '/llC

To prove rule 2, we restate the proportion
and apply rule 1, as follows:

=
x

~
c

x 2 = ac

x = ac

Rule 2 is illustrated by the following nu
merical example:

2 _ JL
8

~
32

8 = \T2f32)

8 = \T64

d

c
_b

a

Note that the product of the means and the prod-
uct of the extremes still yield the same equal-

ity as in the original proportion.
The inversion relationship may be illustrated

by the following numerical example:

Therefore,

Alternation

10

16

16

10

The four selected numbers (a, b, c, and d)

are in proportion by ALTERNATION in the fol-

lowing form:

a

c

b

d

To prove the alternation relationship, first

multiply both sides of the original proportion

by ,
as follows:

C

OTHER FORMS FOR PROPORTIONS

If four numbers, for example, a, b, c, and d,

form a proportion, such as

a
_c

b
=

d

they also form a proportion according to other

arrangements.

Inversion

The four selected numbers are in proportion
by INVERSION in the form

b _ d

a c

The inversion relationship is proved as fol-

lows, by first multiplying both members of the

original proportion by :

ciC

a. _
b

~
d

cb
b/c

c\d

3, D

c
=
d

The following numerical example illustrates

alternation:

10

16

Therefore,

10
~

16

SOLVING PROBLEMS BY
MEANS OF PROPORTION

One of the most common types of problems
based on proportions involves triangles with

144



roportional sides. Suppose that the corre-

ponding sides of two triangles are known to be

iroportional. (See fig. 13-1.) The lengths of

tie sides of one triangle are 8, 9, and 11. The
ength of the side of the second triangle corre-

ponding to side 8 in the first triangle is 10.

/e wish to find the lengths of the remaining
ides, b and c.

8 10

Figure 13-1. Triangles with corresponding
sides proportional.

Since the corresponding sides are propor-
onal, the pairs of corresponding sides may be
sed to form proportions as follows:

JL
10 b

11

c

__ _ 11

10 c

Si

b

To solve for b, we use the proportion

JL
10

i.

b

id obtain the following result:

8b = 90

4b = 45

The solution for c is similar to that for b,

sing the proportion

_8_

10

11

c

with the following result:

8c = 110

c =
13|

The sides of the second triangle are 10, 11 7,

3
and ISj. The result can also be obtained by

using the factor of proportionality. Since 8 and
10 are lengths of corresponding sides, we can
write

8k = 10

10 5
k =

8

The factor of proportionality is thus found to

bef.
Multiplying any side of the first triangle by

7 gives the corresponding side of the second

triangle, as follows:

b = 9 a = n" & \ A I A
*- J. .

\4/ 4 4

c -C ~
55

4

Proportional sides of similar triangles may
be used to determine the height of an object by

measuring its shadow. (See fig. 13-2.)

20 FT. 16 FT.

12 FT.

Figure 13-2. Measuring height by
shadow length.

In figure 13-2, mast AC casts a shadow 20 ft.

long (AB). At the same time, DF (12 ft. long) casts a

shadow of 16 ft. long (DE). Assuming that both masts

are vertical and on level ground, triangle ABC is similar

to triangle DBF and their corresponding sides are

therefore proportional. Thus the height of AC may be

found as follows:
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AC _
12

~

AC =

20

16

= 15

Practice problems. In each of the following

problems, set up a proportion and then solve

for the unknown quantity:

1. Referring to figure 13-1, if the shortest side

of the larger triangle is 16 units long, rather
than 10, how long is side c ?

2. If a mast 8 ft high casts a shadow 10 ft long,
how high is a mast that casts a shadow 40 ft

long?

Answers:

1.
_8_

16
=

8c =

11

c

_
c

c = 22

Word Problems

JL A
10 40

(8)(40) _
10

h = 32

A knowledge of proportions often provides a

quick method of solving word problems. The
following problem is a typical example of the

types that lend themselves to solution by means
of proportion.

If an automobile runs 36 mi on 2 gal of gas,
how many miles will it run on 12 gal? Com-
paring miles to miles and gallons to gallons,
we have

36:x = 2:12

Rewriting this in fraction form, the solution is

as follows:

36 J_
x

~
12

2x = 12(36)

x = 6(36)

= 216 mi

Practice problems. In each of the following
problems, first set up a proportion and then
solve for the unknown quantity:

1. The ratio of the speed of one aircraft to that

of another is 2 to 5. If the slower aircraft has
a speed of 300 knots, what is the speed of the

faster aircraft?

2. If 6 seamen can empty 2 cargo spaces in 1

day, how many spaces can 150 seamen empty in

1 day?

3. On a map having a scale of 1 in. to 50 mi,
how many inches represent 540 mi?

Answers:

1. 750 kt 2. 50

VARIATION

3. 10.8 in.

When two quantities are interdependent,

changes in the value of one may have a predict-
able effect on the value of the other. Variation

is the name given to the study of the effects of

changes among related quantities. The three

types of variation which occur frequently in the

study of scientific phenomena are DIRECT,
INVERSE, and JOINT.

DIRECT VARIATION

An example of direct variation is found in

the following statement: The perimeter (sum
of the lengths of the sides) of a square in-

creases if the length of a side increases. In

everyday language, this statement might be-

come: The longer the side, the bigger the

square. In mathematical symbols, using p for

perimeter and s for the length of the side, the

relationship is stated as follows:

p = 4s

Since the number 4 is constant, any varia-

tions which occur are the results of changes in

p and s. Any increase or decrease in the size

of s results in a corresponding increase or de-

crease in the size of p. Thus p varies in the

same way (increasing or decreasing) as s. This

explains the terminology which is frequently
used: p varies directly as s.

In general, if a quantity can be expressed in

terms of a second quantity multiplied by a con-

stant, it is said to VARY DIRECTLY AS the

second quantity. For example if x and y are

variables and k is a constant, x varies directly
as y, if x = ky. Thus, as y increases x increases,
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and as y decreases, x decreases. There is a
direct effect on x caused by any change in y.

The fact that x varies as y is sometimes in-

dicated by x a, y ?
or x ~

y. However, it is usu-

ally written in the form x = ky.
The relationship x = ky is equivalent to

^
= k. If one quantity varies directly as a sec-

ond quantity, the ratio of the first quantity to

the second quantity is a constant. Thus, what-
ever the value of x, where it is divided by y,
the result will always be the same value, k.

A quantity that varies directly as another

quantity is also said to be DIRECTLY PRO-
PORTIONAL to the second quantity. In x = ky,
the coefficient of x is 1. The relationship x = ky
can be written in proportion form as

- I~

or

k_
x

J.

y

Notice that the variables, x and y, appear
either in the numerators or in the denominators
of the equal ratios. This implies that x and y
are directly proportional. The constant, k, is

the CONSTANT OF PROPORTIONALITY.
Practice problems. Write an equation show-

ing the stated relationship, in each of the fol-

lowing problems:

1. The cost, C of a dozen wrenches varies di-

rectly as the price, p, of one wrench.

2. X is directly proportional to Y (use k as the

constant of proportionality).

3. The circumference, C, of a circle varies

directly as its diameter, d (use n as the con-
stant of proportionality).

In the following problems, based on the formula

p =
4s, find the appropriate word or symbol to

fill the blank.

4. When s is doubled, p will be.

5. When s is halved, p will be_

Answers:

1. C = 12p

2. X = kY

3. C = Trd

4. doubled

5. halved

6. p

Variation as the Power of a Quantity

Another form of direct variation occurs
when a quantity varies as some power of an-

other. For example, consider the formula

A = ?rr
2

Table 13-1 shows the values of r and the cor-

responding values of A.

Table 13-1. Relation between values of

radius and area in a circle.

Notice how A changes as a result of a change
in r. When r changes from 1 to 2, A changes
from TT to 4 times ir or 2 2 times it. Likewise
when r changes from 3 to 4, A changes not as

r, but as the SQUARE of r. In general, one

quantity varies as the power of another if it is

equal to a constant times that quantity raised

to the power. Thus, in an equation such as

x = ky
n

,
x varies directly as the n th

power of y.

As y increases, x increases but more rapidly
than y, and as y decreases, x decreases, but

again more rapidly.

Practice problems.

1. In the formula V = e 3
,
how does V vary?

2. In the formula A=s 2
,
ifsis doubled how

much is A increased?

et 2

3. In the formula s =
^-, g is a constant. If t

is halved, what is the resulting change in s ?

Answers:

1. Directly as the cube of e.

2. It is multiplied by 4.

. ,. ,, ,. , , 3. It is multiplied by -r.
.is directly proportional to s.

" J 4
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INVERSE VARIATION

A quantity VARIES INVERSELY as another

quantity if the product of the two quantities is a

constant. For example, if x and y are variables
and k is a constant, the fact that x varies in-

versely as y is expressed by

xy = k

or

X

If values are substituted for x and y, we see

that as one increases, the other must decrease,
and vice versa. Otherwise, their product will

not equal the same constant each time.
If a quantity varies inversely as a second

quantity, it is INVERSELY PROPORTIONAL to

the second quantity. In xy = k, the coefficient

of k is 1. The equality xy = k can be written in

the form

x
k

1

y

or

Notice that when one of the variables, x or

y, occurs in the numerator of a ratio, the other
variable occurs in. the denominator of the sec-
ond ratio. This implies that x and y are in-

versely proportional.
Inverse variation may be illustrated by

means of the formula for area of a rectangle.
If A stands for area, L for length, and W for

width, the expression for the area of a rec-

tangle in terms of the length and width is

A = LW

Suppose that several rectangles, all having the

same area but varying lengths and widths, are
to be compared. Then LW = A has the same
form as xy = k, where A and k are constants.
Thus L is inversely proportional to W, and W
is inversely proportional to L.

If the constant area is 12 sq ft, this rela-

tionship becomes

LW = 12

If the length is 4 ft, the width is found as fol-

lows:

W = ^=^ = 3ft

If the length increases to 6 ft, the width de-
creases as follows:

W = ^ = 2 ft

If a constant area is 12, the width of a rec-

tangle decreases from 3 to 2 as the length in-

creases from 4 to 6. When two inversely pro-
portional quantities vary, one decreases as the
other increases.

Another example of inverse variation is

found in the study of electricity. The current

flowing in an electrical circuit at a constant

potential varies inversely as the resistance of

the circuit. Suppose that the current, I, is 10

amperes when the resistance, R, is 11 ohms
and it is desired to find the current when the

resistance is 5 ohms.
Since I and R vary inversely, the equation

for the relationship is IR =
k, where k is the

constant voltage. Therefore, (10)(11) = k. Also,
when the resistance changes to 5 ohms, (5)(I)

= k.

Quantities equal to the same quantity are equal
to each other, so we have the following equation:

51 = (10)(11)

. 22
D

The current is 22 amperes when the resistance
is 5 ohms. As the resistance decreases from
11 to 5 ohms, the current increases from 10 to

22 amperes.
One type of variation problem which tends to

be confusing to the beginner involves rates of

speed or rates of doing work. For example, if

1 men can complete a job in 20 days, how long
will 50 men require to complete the same job?
The strictly mechanical approach to this prob-
lem might result in the following false solution,

relating men to men and days to days:

7 men _ 20 days
50 men

~
T

However, a little thought brings out the fact

that we are dealing with an INVERSE relation-

ship rather than a direct one. In other words,
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Chapter 13-RATIO, PROPORTION, AMD VARIATION

the more men we have, the less time is re-

quired. Therefore, the correct solution re-

quires that we use an inverse proportion; that

is, we must invert one of the ratios as follows:

J7_
50

T =

_

20

= 2
| days

Practice problems. In problems 1 and 2,

express the given data as a proportion, using k
as the constant of proportionality.

1. The rate, r, at which a vessel travels in

going a certain distance varies inversely as the

time, t.

2. The volume, V, of a gas varies inversely as
the pressure, p.

3. A ship moving at a rate of 15 knots requires
10 hr to travel a certain distance. If the speed
is increased to 25 knots, how long will the ship

require to travel the same distance ?

Answers:

3. 6hr

JOINT VARIATION

A quantity VARIES JOINTLY as two or more
quantities, if it equals a constant times their

product. For example, if x, y, and z are vari-

ables and k is a constant, x varies jointly as

y and z, if x = kyz. Note that this is similar to

direct variation, except that there are two var-

iable factors and the constant with which to

contend in the one number; whereas in direct

variation, we had only one variable and the

constant. The equality, x = kyz, is equivalent to

[f a quantity varies jointly as two or more other

quantities, the ratio of the first quantity to the

product of the other quantities is a constant.

The formula for the area of a rectangle is

an example of joint variation. If A is allowed
to vary, rather than being constant as in the

example used earlier in this chapter, then A

varies jointly as L and W. When the formula is

written for general use, it is not commonly ex-

pressed as A = kLW, although this is a mathe-

matically correct form. Since the constant of

proportionality in this case is 1, there is no

practical need for expressing it.

Using the formula A = LW, we make the fol-

lowing observations: If L = 5 and W =
3, then

A = 3(5) = 15. If L = 5 and W =
4, then A =

4(5) = 20, and so on. Changes in the area of a

rectangle depend on changes in either the length
or the width or both. The area varies jointly

as the length and the width.

As a general example of joint variation,
consider the expression a oc be. Written as an

equation, this becomes a = kbc. If the value of

a is known for particular values of b and c, we
can find the new value of a corresponding to

changes in the values of b and c. For example,

suppose that a is 12 when b is 3 and c is 2.

What is the value of a when b is 4 and c is 5 ?

Rewriting the proportion,

Thus

Also,

12 = k

= k

Since quantities equal to the same quantity are

equal to each other, we can set up the following

proportion:

12

a =.40

Practice problems. Using k as the constant

of proportionality, write equations that express
the following statements:

1. Z varies jointly as x and y.

2. S varies jointly as b times the square of r.

3. The length, W, of a radio wave varies jointly

as the square root of the inductance, L, and the

capacitance, C.



Answers: v kw 2L~~

is an example of combined variation and is

read, "E varies jointly as L and the square of

W, and inversely as the square of p." Likewise,

COMBINED VARIATION V -~
t

The different types of variation can be com-
bined. This is frequently the case in applied is read, "V varies jointly as r and s and in-

problems. The equation versely as t."
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CHAPTER 14

DEPENDENCE, FUNCTIONS, AND FORMULAS

In chapter 13 of this course, use is made of

everal formulas, such as A = LW, E =
ER, etc.

t is the purpose of this chapter to explain the
unction and dependency relationships which
aake formulas so useful.

DEPENDENCE AND FUNCTIONS

Dependence may be defined as any relation-

hip between two variables which allows the

redaction of change in one of them as a result
f change in the other. For example, the cost
f 200 bolts depends upon the price per hun-
red. If C represents cost and p represents
le price of 100 bolts, then the cost of 200 bolts

lay be expressed as follows:

C = 2p

In the example just given, C is called the

lEPENDENT VARIABLE because its value de-
ends upon the changing values of p. The EN-
IEPENDENT VARIABLE is p. It is standard
ractice to isolate the dependent variable on
ic left side of an equation, as in the example.
Consider the formula for the area of a rec-

rngle, A = LW. Here we have two independent
ariables, L and W.
Figure 14-1 (A) shows what happens if we

ouble the length. Figure 14-1 (B) ;snows the

esult of doubling the width. Figure 14-1 (C)
hows the effect of doubling both length and
idth. Notice that when the length or width
lone is doubled the area is doubled, but when
ath length and width are doubled the area is

>ur times as great.
In any equation showing a dependency rela-

onship, the dependent variable is said to be a
UNCTION of the independent variable. An-
ther use of the term "function" in describing
a equation such as C = 2p is to refer to the
hole expression as "the function C = 2p."
his terminology is especially useful when the

ight-hand expression has several terms. For
sample, consider the equation y = 2x 2 + 3x - 4.

[athematicians frequently use a shorthand no-

Figure 14-1. Changes in the area of a

rectangle resulting from changes in

length and width.

expression f(x) is understood to mean "a func-

tion of x" and reference to the function by call-

ing it f(x) saves the space and time that would
otherwise be required to write out all .three

terms.
Practice problems. Answer the following

questions concerning the function r = -r

1. When t increases and d remains the same,
doesr increase, decrease, or remain the same?

2. When d increases and t remains the same,
doesr increase, decrease, or remain the same?

3. When t decreases and d remains the same,
doesr increase, decrease, or remain the same?

4. When d decreases and t remains the same,
doesr increase, decrease, or remain the same?

5. When d is doubled "and t remains the same,
is r doubled or halved?

6. When t is doubled and d remains the same,



Answers:

1. Decreases.

2. Increases.

3. Increases.

4. Decreases.

5. Doubled.

6. Halved.

FORMULAS

One of the most common uses of algebra is

in the solution of formulas. Formulas have a

wide and varied use throughout the Navy. It is

important to know how formulas are derived,
how to translate them into words, how to make
them from word statements, and how to use
them to solve problems.

A formula is a general fact, rule, or princi-

ple expressed in algebraic symbols. It is a
shorthand expression of a rule in which letters

and signs of operation take the place of words.
The formula always indicates the mathematical

operations involved. For example, the formula
P = 2L + 2W indicates that the perimeter (sum
of the lengths of the sides) of a rectangle is

equal to twice its length plus twice its width.

(See fig. 14-2.)

W

Figure 14-2. Perimeter
of a rectangle.

A formula obtained by logical or mathemati-
cal reasoning is called a mathematical for-

mula. A formula whose reliability is based on
a limited number of observations, or on imme-
diate experience, and not necessarily on estab-
lished theories or laws is called an EMPIRI-
CAL formula. Empirical formulas are found

frequently in engineering and physical sciences.

They sometimes are valid for only a limited
number of values.

SUBJECT OF A FORMULA

Usually a formula is taken almost directly
from the verbal rule or law. For instance, the

perimeter of a rectangle is equal to twice the

length plus twice the width. Where possible,
letters are used as symbols for the words.

Thus, P = 2L + 2W. A simple formula such as
this is like a declarative sentence. The left

half is the SUBJECT and all the rest is the

predicate. The subject is P. It corresponds to

the part of the verbal rule that reads "the pe-
rimeter of a rectangle." This subject is usu-

ally a single letter followed by the equality sign.
All formulas are equations, but not all equa-

tions are formulas. Some distinctions between
a formula and an ordinary equation are worthy
of note. The equation may not have a subject,
while the formula typically does. In the for-

mula, the unknown quantity stands alone in the

left-hand member. No computation is per-
formed upon it, and it does not appear more
than once. In the equation, on the other hand,
the unknown quantity may appear once or more
in either or both members, and computation
may be performed with it or on it. We evaluate

a formula by substituting for the literal num-
bers in the right member. An equation is solved

by computation in either or both members until

all that remains is an unknown in one member
and a known quantity in the other. The solution

of an equation usually requires a knowledge of

algebraic principles, while the evaluation of a
formula may ordinarily be accomplished with

only a knowledge of arithmetic.

SYMBOLS

Letters that represent words have been

standardized in many cases so that certain for-

mulas may be written the same in various texts

and reference books. However, to avoid any

misunderstanding a short explanation often ac-

companies formulas as follows:

A = hw,

where

A = area in square units

h = height

w = width

Subscripts and Primes

In a formula in which two or more of the

same kind of letters are being compared, it is

desirable to make a distinction between them.

In electronics, for example, a distinction be-

tween resistances may be indicated by R a and

Rb or Rj and R r These small numbers or
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letters written to the right and below the R's
are called subscripts. Those shown here are
read: R sub a, R sub b, R sub one, and R sub
two. Primes are also used in the same manner
to distinguish between quantities of the same
kind. Primes are written to the right and above
the letters, as in S 1

, S", and S'". They are
read: S prime, S double prime, and S triple

prime.

CHANGING THE SUBJECT
OF A FORMULA

If values are given for all but one of its var-

iables, a formula can be solved to obtain the

value of that variable. The first step is usually
the rearranging of the formula so that the un-

known value is the subject that is, a new for-

mula is derived from the original. For exam-

ple, the formula for linear motion distance

equals rate times time is usually written

d = rt

Suppose that instead of the distance we wish
to know the rate, r, or the time, t. We simply
change the subject of the formula by the alge-
braic means developed in earlier chapters.

Thus, in solving the formula for r, we divide

both sides by t, with the following result:

d_
t

= r, or r =
-p

In words, this formula states that rate equals
distance divided by time . Likewise, in solving
for t, we have the following :

d_
r

rt

r

In words, this formula states that time equals
distance divided by rate.

We have in effect two new formulas, the

subject of one being rate and the subject of the

other being time. They are related to the orig-
inal formula because they were derived from
it, but they are different in that they have dif-

ferent subjects.

Practice problems. Derive new formulas
from the following expressions with subjects
as indicated:

1. A =
-jbh, subject h

2. P = 2L + 2W, subject L

3. i = prt, subject r

4. p = br, subject b

5. E = IR, subject I

6. The modern formula for converting Fahren-
heit temperatures to Celsius (centigrade) is

/ 1;\
C = (F + 40)m - 40. Express the formula for

\ y /

converting Celsius (centigrade) temperatures
to Fahrenheit.

Answers:

2. L =
P - 2W

4. b =
r

6. F = (C + 40) I-
- 40

EVALUATING FORMULAS

The first step in finding the value of the un-

known variable of a formula is usually the der-

ivation of a formula that has the unknown as its

subject. Once this is accomplished, the evalua-

tion of a formula consists of nothing more than

substituting numerical values for the letters

representing known quantities and performing
the indicated operations .

For example, suppose we wish to find the

time required to fly 1,250 nautical miles at the

rate of 250 knots. The formula is d = rt. We
can change the subject by dividing both sides of

the equation by r, as follows:

d_
r

t
-

1 -

rt

"r"

125

250
- 5 hr" & nr

Formulas can be solved for an unknown by
substituting directly in the original formula
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even though that unknown is not the subject.

Generally, however, it is simpler to first make
the unknown the subject.

Formulas vary widely, from the simple type
such as we have been considering to some that

are very complex. All formulas have certain

characteristics in common. There is always a

subject, the quantity whose value is sought as a

final answer. This subject usually stands alone,

being placed equal to at least one and possibly
several literal numbers, which are combined

according to certain indicated operations. The
formula can always be evaluated for a specific
case when numerical values are known for all

these literal quantities.

Evaluating formulas may be facilitated by

developing a routine order of doing the work.
If someone else can read the work and clearly
understand whaj has been done, the work is in

good order. The original formula should be

written first, then the derived formula that is

going to be used in solving the problem, and

finally the actual substitutions. The indicated

operations may then be carried out. Care
should be taken to label answers with correct

units; that is, miles per hour, foot-pounds,
square feet, etc.

Practice problems.

1. E = IR. Solve for R in ohms if E is 110 volts

and I is 5 amperes.

2. d = rt. Solve for t in hours if d is 840 nauti-

cal miles and r is 25 knots.

3. F = (C +
40)(|)

- 40. Solve for C if F is 32.

Answers:

1. 22 ohms 2. 33.6 hr 3. O
c

DEVELOPING FORMULAS

Developing a formula from a verbal state-

ment is nothing more than reducing the state-

ment to a shorthand form and showing the math-
ematical relationships between the elements of

the statement.

For example, suppose that we wish to de-

velop a formula showing the distance, D, trav-

eled at the rate of 20 knots for t hours. If the

distance traveled in 1 hr is 20 nautical miles,

then the distance traveled in t hours is 20t.

Therefore, the formula is

D = 20t

Practice problems.

1. Write a formula for the cost, C of p pounds
of sugar at 15 cents per pound.

2. Write the formula for the cost, C, of one

article when the total cost, T, of n similar ar-

ticles is known.

3. Write a formula for the number of days, d,

in w weeks.

4. Write a formula for the number of ounces,

n, in p pounds.

Answers:

1. C = I5p

2. C = T/n

3. d = 7w

4. n = 16p

Developing Formulas from Tables

In technical work, instrument readings and

other data are often recorded in a tabular ar-

rangement. By careful observation of such

tables of data, it is frequently possible to find

values that are related in a definite pattern.

The table can thus be used in developing a for-

mula showing the relationship between the re-

lated quantities.
For example, table 14-1 shows the results

of time trials on a ship, with the data rounded

to the nearest whole hour and the nearest whole

mile.

Table 14-1. Time trials.

By inspection of the table, it soon becomes
clear that the number of miles traveled is al-

ways 20 times the corresponding number of

hours. Therefore the formula developed from
this table is as follows :

d = 20t
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A second example of the derivation of a for-

mula from a table is shown in figure 14-3.

Figure 14-3 (A) shows several polygons (many-
sided plane figures), each with one or more
diagonals. A diagonal is a straight line joining
one vertex (point where two sides meet) with
another.

(B)

Figure 14-3. Diagonals of plane figures.

The table in figure 14-3 (B) compares the

number of sides of each polygon with the num-
ber of diagonals that can be drawn from any
one vertex. Using this table, we make a for-

mula for the number, d, of diagonals that can
be drawn from one vertex of a polygon of n

sides. In the table we note that the number of

diagonals is always 3 less than the number of

sides. Therefore the formula is d = n - 3.

Practice problems. Complete the following
tables and write formulas to show the relation-

ship between the numbers.

1.

2.

3.

4.

Answers:

1. P = 6L

2. b = a + 4

3. y = 3x

4. s = n 2 + 2

TRANSLATING FORMULAS

Thus far, we have been concerned primarily
with reducing verbal rules or statements to

formula form. It is also necessary to 'be able

to do the reverse, and translate a formula into

words. Technical publications frequently take

advantage of the fact that it is more convenient

to write formulas than longhand rules. Under-

standing is hampered if we are not able to

translate these formulas into words. As an ex-

ample of translation, we may translate the for-

mula V = Iwh into words, with the literal fac-

tors representing words as follows:

V = volume of a

rectangular solid

1 = length

w = width

h = height

This produces the following translation: The
volume of a rectangular solid equals the length
times the width times the height.

As a second example, we translate the alge-
braic expression 2 \Tx - 4 into words as fol-

lows: Twice the square root of a certain num-

ber, minus 4.

Practice problems. Translate each of the

following expressions into words.

1. PV = k, where P represents pressure of a

gas and V represents volume. (Assume con-

stant temperature.)

2. x = y + 4, where x and y are numbers.

3. A = LW, where A is the area of a rectangle,

L is its length, and W is its width.

4. d =
rt, where d is distance, r is rate, and t

is time.

Answers:

1. The pressure of a gas multiplied by its vol-

ume is constant, if the temperature is constant.
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2. A certain number, x, is equal to the sum of

another number, y, and 4.

3 . The area of a rectangle is equal to the prod-
uct of its length times its width.

4. Distance is equal to rate multiplied by time.

GRAPHING FORMULAS

We have seen that the formula is an equa-
tion. Since all formulas are equations they

may be graphed. Graphs of formulas have wide
use in the Navy in such fields as electronics

and engineering. In practical applications it is

often convenient to derive information from

graphs of formulas rather than from formulas

directly.
As an example, suppose that a fuel costs 30

cents per gallon. The formula for the cost in

dollars of n gallons is

C = 0.30n

We see that this is a linear equation, the re-

sulting curve of which passes through the origin

(no constant term). Since we are interested

only in positive values, we can eliminate three

quadrants of the graph and use only the first

quadrant. We already know one point on the

graph is (0,0). We need plot only one other

point to graph the formula. The result is shown
In figure 14-4.

We may read the cost directly from the

graph when the number of gallons is known, or

the number of gallons when the cost is known.

For instance, if 5-1/2 gal are sold, find 5-1/2

on the gallons scale and follow the vertical line

from that point to the point where it intersects

the graph of the formula. From this point, fol-

low the horizontal line to the cost scale. The
horizontal line intersects the cost scale at 1.65.

Therefore the cost of 5-1/2 gal is $1.65.

Likewise, to answer the question, "How many
gallons may be bought for $1.27," we would en-

large the graph enough to estimate to the exact

cent. Then we would follow a horizontal line

from 1.27 on the cost scale to the formula

graph and follow a vertical line from that point

to the gallons scale. Thus, 4-1/4 gal maybe
bought for $1.27.

Plotting two formulas on the same graph may
help to solve certain kinds of problems. For

example, suppose that two ships leave port at

the same time. One averages 10 knots and the

other averages 15 knots. How far has each

traveled at the end of 3 hr and at the end of

5 hr? A graph to relate the two ships' move-
ments at any time can be made as follows: Let

the vertical scale be in nautical miles and the

23456789 10

GALLONS

Figure 14-4. Graph for the formula C = O.SOn.

23456789
HOURS (t)

Figure 14-5. Graph of the formulas d = lOt

and d = 15t.
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jrizontal scale be in hours. The formula for

ie first ship's distance related to time is

d = lOt

he formula for the second ship's distance re-

ited to time is

d = 15t

We see that these formulas are linear and
ieir curves pass through the origin. They are

raphed in figure 14-5.

With this graph we can now answer the ques-
ons originally posed, at a glance. Thus in 3

r the first ship traveled 30 mi and the second

traveled 45 mi. In 5 hr the first ship traveled

50 mi and the second traveled 75 mi.

We could also answer such questions as:

When the second ship has traveled 100 mi, how
far has the other traveled? We first find the

point on the graph of d = 15t where the ship has
traveled 100 mi. We then follow the vertical

line from that point to the point where it inter-

sects the graph of the other formula. From the

point of intersection we follow a horizontal line

to the distance axis and see that the first ship
has traveled about 67 mi when the second has

traveled 100 mi.

The foregoing examples serves to illustrate

the wide variety of applications in which graphs
of formulas are useful.
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CHAPTER 15

COMPLEX NUMBERS

In certain calculations in mathematics and
related sciences, it is necessary to perform
operations with numbers unlike any mentioned
thus far in this course. These numbers, unfor-

tunately called "imaginary" numbers by early

mathematicians, are quite useful and have a

very real meaning in the physical sense. The
number system, which consists of ordinary
numbers and imaginary numbers, is called the

COMPLEX NUMBER system. Complex num-
bers are composed of a "real" part and an

"imaginary" part.
This chapter is designed to explain imagi-

nary numbers and to show how they can be com-
bined with the numbers we already know.

REAL NUMBERS

The concept of number, as has been noted in

previous chapters, has developed gradually. At
one time the idea of number was limited to

positive whole numbers.
The concept was broadened to include posi-

tive fractions; numbers that lie between the

whole numbers. At first, fractions included

only those numbers which could be expressed
with terms that were integers. Since any frac-
tion may be considered as a ratio, this gave
rise to the term RATIONAL NUMBER, which
is defined as any number which can be ex-

pressed as the ratio of two integers. (Remem-
ber that any whole number is an integer.)

It soon became apparent that these numbers
were not enough to complete the positive num-
ber range. The ratio, IT, of the circumference
of a circle to its diameter, did not fit the con-

cept of number thus far advanced, nor did such

numbers as *T2 and "JIT. Although decimal
values are often assigned to these numbers,
they are only approximations. That is, TT is not

exactly equal to 22/7 or to 3.142. Such num-
bers are called IRRATIONAL to distinguish
them from the other numbers of the system.
With rational and irrational numbers, the posi-
tive number system includes all the numbers
from zero to infinity in a positive direction.

Since the number system was not complete
with only positive numbers, the system was ex-

panded to include negative numbers. The idea

of negative rational and irrational numbers to

minus infinity was an easy extension of the

system.
Rational and irrational numbers, positive

and negative to infinity as they have been

presented in this course, comprise the REAL
NUMBER system. The real number system is

pictured in figure 15-1.

OPERATORS

As shown in a previous chapter, the plus

sign in an expression such as 5 + 3 can stand

for either of two separate things: It indicates

the positive number 3, or it indicates that +3

is to be added to 5; that is, it indicates the op-
eration to be performed on +3.

Likewise, in the problem 5 -
3, the minus

sign may indicate the negative number -3, in

which case the operation would be addition; that

is, 5 + (-3). On the other hand, it may indicate

the sign of operation, in which case +3 is to be

subtracted from 5; that is, 5 - (+3).

Thus, plus and minus signs may indicate

positive and negative numbers, or they may in-

dicate operations to be performed.

Figure 15-1. The real number system.
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IMAGINARY NUMBERS

The number line pictured in figure 15-1 rep-
resents all positive and negative numbers from

plus infinity to minus infinity. However, there

is a type of number which does not fit into the

picture. Such a number occurs when we try to

solve the following equation:

x + 4 =

x 2 = -4

X =

Notice the distinction between this use of the

radical sign and the manner in which it was
used in chapter 7. Here, the symbol is in-

cluded with the radical sign to emphasize the

fact that two values of x exist. Although both

roots exist, only the positive one is usually

given. This is in accordance with usual mathe-
matical convention.

The equation

X =

raises an interesting question:
What number multiplied by itself yields -4 ?

The square of -2 is +4. Likewise, the square
of +2 is +4. There is no number in the system
of real numbers that is the square root of a

negative number. The square root of a nega-
tive number came to be called an IMAGINARY
NUMBER. When this name was assigned the

square roots of negative numbers, it was natu-

ral to refer to the other known numbers as the

REAL numbers.

IMAGINARY UNIT

To reduce the problem of imaginary num-
bers to its simplest terms, we proceed as far

as possible using ordinary numbers in the so-
lution. Thus, we may write \f -4 as a product

2

Likewise,

Also,

Thus, the problem of giving meaning to the

square root of any negative number reduces to

that of finding a meaning for '/^T.

The square root of minus 1 is designated i

by mathematicians. When it appears with a co-

efficient, the symbol i is written last unless
the coefficient is in radical form. This con-

vention is illustrated in the following examples:

2 xT^l = 2i

The

= i

T = 3i

symbol i stands for the imaginary unit

. An imaginary number is any real multi-

ple, positive or negative, of i. For example,

-7i, +7i, i NTiT, and bi are all imaginary num-
bers.

In electrical formulas the letter i denotes

current. To avoid confusion, electronic techni-

cians use the letter j to indicate '/"-T and call it

"operator j." The name "imaginary" should be

thought of as a technical mathematical term of

convenience. Such numbers have a very real

purpose in the physical sense. Also it can be

shown that ordinary mathematical operations
such as addition, multiplication, and so forth,

may be performed in exactly the same way as

for the so-called real numbers.
Practice problems. Express each of the

following as some real number times i:

1.

2. 2

Answers:

1. 4i

2. 2i

3. 5.

3. i

4. di

5. 5i

R 3
i6. 1

Powers of the Imaginary Unit

The following examples illustrate the re-

sults of raising the imaginary unit to various

powers:

i =

1
3 = i

2
i = -li, or -i

1
4 =iV = -1 -1 = +1

- 3
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We see from these examples that an even

power of i is a real number equal to +1 or -1.

Every odd power of i is imaginary and equal to

i or -i. Thus, all powers of i reduce to one of

the following four quantities: N/^T, -1, --vTT,

or +1.

GRAPHICAL REPRESENTATION

Figure 15-1 shows the real numbers repre-
sented along a straight line, the positive num-
bers extending from zero to the right for an

infinite distance, and the negative numbers ex-

tending to the left of zero for an infinite dis-

tance. Every point on this line corresponds to

a real number, and there are no gaps between

them. It follows that there is no possibility of

representing imaginary numbers on this line.

Earlier, we noted that certain signs could be

used as operators. The plus sign could stand

for the operation of addition. The minus sign

could stand for the operation of subtraction.

Likewise, it is easy to explain the imaginary
number i graphically as an operator indicating

a certain operation is to be performed on the

number of which it is the coefficient.

H we graphically represent the length, n, on

the number line pictured in figure 15-2 (A), we
start at the point and measure to the right

(positive direction) a distance representing n

units. If we multiply n by -1, we may repre-
sent the result -n by measuring from in a

negative direction a distance equal to n units.

Graphically, multiplying a real number by
-1 is equivalent to rotating the line that repre-
sents the number about the point through 180

so that the new position of n is in the opposite
direction and a distance n units from 0. In this

case we may 'think of -1 as the operator that

rotates n through two right angles to its new

position (fig. 15-2 (B)).

As we have shown, i
2 = -l. Therefore, we

have really multiplied n by i
2

,
or i x i. In other

words, multiplying by -1 is the same as multi-

plying by i twice in succession. Logically, if

we multiplied n by i just once, the line n would
be rotated only half as much as before that is,

through only one right angle, or 90. The new

segment ni would be measured in a direction

90 from the line n. Thus, i is an operator that

rotates a number through one right angle. (See

fig. 15-3.)
We have shown previously that a positive

number may have two real square roots, one

positive and one negative. For example, */ = 3 .

-n

(A)

Figure 15-2. -Graphical multiplication by
- 1 and by operator i .

Figure 15-3. Graphical multi-

plication by operator i.

We also saw that an imaginary number may
have two roots. For example, \f^l is equal to

2i. When the operator -1 graphically rotates

a number, it may do so in a counterclockwise

or a clockwise direction. Likewise, the opera-
tor i may graphically rotate a number in either

direction. This fact gives meaning to numbers
such as 2i. It has been agreed that a number

multiplied by +i is to be rotated 90 in a coun-

terclockwise direction. A number multiplied

by -i is to be rotated 90 in a clockwise di-

rection.



In figure 15-4, +2i is represented by rotating
ae line that represents the positive real num-
er 2 through 90 in a counterclockwise direc-
ion. It follows that -2i is represented byrotat-
ig the line that represents the positive real

umber 2 through 90 in a clockwise direction.

Figure 15-4.- -Graphical representation
of 2i.

In figure 15-5, notice that the idea of i as an

perator agrees with the concept advanced con-

erning the powers of i. Thus, i rotates a num-
er through 90; i

2
or -1 rotates the number

THE COMPLEX PLANE

All imaginary numbers may be represented
graphically along a line extending through zero
and perpendicular to the line representing the

real numbers. This line may be considered in-

finite in both the positive and negative direc-

tions, and all multiples of i may be represented
on it. This graph is similar to the rectangular
coordinate system studied earlier.

In this system, the vertical or y axis is

called the axis of imaginaries, and the horizon-
tal or x axis is called the axis of reals. In the

rectangular coordinate system, real numbers
are laid off on both the x and y axes and the

plane on which the axes lie is called the real

plane. When the y axis is the axis of imagi-
naries, the plane determined by the x and y axes
is called the COMPLEX PLANE (fig. 15-6).

In any system of numbers a unit is neces-

sary for counting. Along the real axis, the unit

is the number 1. As shown in figure 15-6,

along the imaginary axis the unit is i. Numbers
that lie along the imaginary axis are called

PURE IMAGINARIES. They will always be
some multiple of i, the imaginary unit. The
numbers 5i, 3i *f2, and */^7 are examples of

pure imaginaries.

irough 180, and the number is real and nega- NUMBERS IN THE COMPLEX PLANE
ive; i

3
rotates the number through 270, which

as the same effect as -i; and i
4

rotates the All numbers in the complex plane are complex
umber through 360, and the number is once numbers, including reals and pure imaginaries.

gain positive and real. However, since the reals and imaginaries have

= -bi

Figure 15-5. Operation with powers of i.
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AXIS OF IMAGINARIES
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I"

-4 -3 -2 -1

AXIS OF REALS
rH I I

-

1 234

Figure 15-6. The complex plane.

the special property of being located on the

axes, they are usually identified by their dis-

tinguishing names.
The term complex number has been defined

as the indicated sum or difference of a real

number and an imaginary number.
For example, 3 + 5 \l -1 or 3 + 5i, 2 -

6i,

and -2 + N/^5" are complex numbers. In the

complex number 7 - i ^/~2~
J
7 is the real part

and -i ^/Tis the imaginary part.

All complex numbers correspond to the gen-
eral form a + bi, where a and b are real num-
bers. When a has the value 0, the real term

disappears and the complex number becomes a

pure imaginary. When b has the value of 0, the

imaginary term disappears and the complex
number becomes a real number. Thus, 4 may
be thought of as 4 + Oi, and 3i may be consid-

ered + 3i. From this we may reason that the

real number and the pure imaginary number
are special cases of the complex number. Con-

sequently, the complex number may be thought
of as the most general form of a number and

can be construed to include all the numbers of

algebra as shown in the chart in figure 15-7.

Plotting Complex Numbers

Complex numbers may easily be plotted
in the complex plane. Pure imaginaries are

plotted along the vertical axis, the axis of imag-

inaries, and real numbers are plotted along the

horizontal axis, the axis of reals. It follows

that other points in the complex plane must

represent numbers that are part real and part

imaginary; in other words, complex numbers.
If we wish to plot the point 3 + 2i, we note that

the number is made up of the real number 3

and the imaginary number 2i. Thus, as in fig-

ure 15-8, we measure along the real axis in a

COMPLEX NUMBERS

(a + bi)

1
REAL NUMBERS
(FORM IS a WHERE
bIS o)

1
PURE IMAGINARIES

(FORM IS bi WHERE
a ISo)

Figure 15-7. The complex number system.
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3-2i

Figure 15-8. Plotting complex numbers.

ositive direction. At point (3, 0) on the real

xis we turn through one right angle and meas-
re 2 units up and parallel to the imaginary
sis. Likewise, the number -3 + 2i is 3 units

) the left and up 2 units; the number 3 - 2i

5 3 units to the right and down 2 units; and the

umber -3 -2i is 3 units to the left and down
units.

omplex Numbers as Vectors

A vector is a directed line segment. A corn-

lex number represents a vector expressed in

le RECTANGULAR FORM. For example, the

omplex number 6 + 8i in figure 15-9 may be

onsidered as representing either the point P
r the line OP. The real parts of the complex
umber (6 and 8) are the rectangular compo-
ents of the vector. The real parts are the legs
E the right triangle (sides adjacent to the right

ngle),and the vector OP is its hypotenuse (side

pposite the right angle). If we merely wish to

idicate the vector OP, we may do so by writ-

igthe complex number that represents it along
le segment as in figure 15-9. This method not

nly fixes the position of point P, but also shows
hat part of the vector is imaginary (PA) and
hat part is real (OA).

If we wish to indicate a number that shows
le actual length of the vector OP, it is neces-

ary'to solve the right triangle OAP for its

ypotenuse. This may be accomplished by tak-

ig the square root of the sum of the squares of

I

53.1 AXIS OF REALS

Figure 15-9. A complex number
shown as a vector.

the legs of the triangle, which in this case are

the real numbers, 6 and 8. thus,

However, since a vector has direction as

well as magnitude, we must also show the di-

rection of the segment; otherwise the seg-
ment OP could radiate in any direction on the

complex plane from point 0. The expression

10/53.1 indicates that the vector OP has been

rotated counterclockwise from the initial posi-

tibn through an angle of 53.1. (The initial po-

sition in a line extending from the origin to the

right along OX.) This method of expressing the

vector quantity is called the POLAR FORM.
The number represents the magnitude of the

quantity, and the angle represents the position

of the vector with respect to the horizontal ref-

erence, OX. Positive angles, represent coun-

terclockwise rotation of the vector, and nega-

tive angles represent clockwise rotation. The

polar form is generally simpler for multiplica-

tion and division, but its use requires a knowl-

edge of trigonometry.
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ADDITION AND SUBTRACTION OF
COMPLEX NUMBERS

Pure imaginaries are added and subtracted
in the same way as any other algebraic quanti-
ties. The coefficients of similar terms are
added or subtracted algebraically, as follows:

4i + 3i = 7i

4i - 3i = i

4i -
(-3i) = 71

Likewise, complex numbers in the rectangular
form are combined like any other algebraic
polynomials. Add or subtract the coefficients
of similar terms algebraically. If parentheses
enclose the numbers, first remove the paren-
theses. Next, place the real parts together and
the imaginary parts together. Collect terms.
As examples, consider the following:

1. (2
-

3i) + (5 -f 4i) = 2 - 3i + 5 + 4i

= 2 + 5 - 3i + 4i

= 7 + i

2. (2
-

J3)
-

(5 + j4) = 2 -
J3

- 5 -
J4

= 2 - 5 -
j3

-
j4

= - 3 -
J7

In example 2, notice that the convention for

writing operator j (the electronics form of the

imaginary unit) with numerical coefficients is
to place j first.

If the complex numbers are placed one un-
der the other, the results of addition and sub-
traction appear as follows:

ADDITION

3 + 4

2-7
5 - 3

SUBTRACTION

I:

a + jb

-c + jd

(a
-

c) + j(b
-

d)

Practice problems. Add or subtract as in-

dicated, in the following problems:

1. (3a + 4i) + (0
-

2i)

2. (3 + 2i) + (-3 + 3i)

3. (a + bi) + (c + di)

4. (1 + 2 -s/^I) + (-2 - 2

5. (-5 + 3i) - (4 -
2i)

6. (a + bi) - (-c + di)

Answers:

1. 3a + 2i

2. 5i

3. a + c + (b + d)i

4. -1

5. -9 + 51

6. a + c + (b
-

d)i

MULTIPLICATION OF
COMPLEX NUMBERS

Generally, the rules for the multiplication of

complex numbers and pure imaginaries are the
same as for other algebraic quantities. How-
ever, there is one exception that should be
noted: The rule for multiplying numbers under
radical signs does not apply to TWO NEGA-
TIVE numbers. When at least one of two radi-
cands is positive, the radicands can be multi-

plied immediately, as in the following examples:

When both radicands are negative, however,
as in N/~^2~ N/ -3, an inconsistent result is ob-
tained if we multiply both numbers under the
radical signs immediately. To get the correct

result, express the imaginary numbers first in
terms of i, as follows:

= (-1)

Multiplying complex numbers is equivalent
to multiplying binomials in the manner ex-

plained previously. After the multiplication is

performed, simplify the powers of i as in the

following examples:

1.

12 + i - i
2 = 12 + i -

(-1)

= 13 + i

164



. (-6 + 5 \/^7) (8-2
= (-6 + 5i N/77 (8

- 2i

= -48 + 40i N/T + 12i

= -48 + 52i N/T+ 70

= 22 + 52i VY

-
10(7)i

Practice problems. Perform the indicated
Derations:

(2 + 5i) (3
-

2i)

(a + \/-b) (a -

(-2 + /T45 (-1

(8
- ^7] (6 +

Answers:

-12 5. 16 + Hi

6i 6. a 2 + b

-6 7. -2 - 61

-ab \fa~ 8. 55 + 2i

DNJUGATES AND
'ECIAL PRODUCTS

Two complex numbers that are alike except
r the sign of their imaginary parts are called

)NJUGATE COMPLEX NUMBERS. For ex-

(iple, 3 + 5i and 3 - 5i are conjugates. Either
mber is the conjugate of the other.
If one complex number is known, the conju-
te can be obtained immediately by changing
3 sign of the imaginary part. The conjugate
-8 + -V -10 is -8 - N/-10. The conjugate of

The sum of two conjugate complex numbers
a real number, as illustrated by the following:

(3 + j5) + (3 -
J5)

= 2(3)
= 6

^
(4* )*(-!--)

Product of Two Conjugates

The product of two conjugate complex num-
bers is a real number. Multiplying two conju-
gates is equivalent to finding the product of the

sum and difference of two numbers.
Consider the following examples:

1. (3 + J5) ( 3 -
J5)

= 3
2

-
(J5)

2

= 9 -
25(-l)

= 9 + 25

= 34

1 -v/3
i = s-

-

4

= 1

Squaring a Complex Number

Squaring a complex number is equivalent to

raising a binomial to the second power. For

example :

(-6 - ^25)
2

= (-6 -
J5)

2

=
[(-1) (6 + J5)]

2

= (-1)
2

(6
2
+ J60 +

J

2
25)

= 36 + J60
- 25

= 11 + J60

DIVISION OF COMPLEX NUMBERS

When dividing by a pure imaginary, the de-

nominator may be rationalized and the problem
thus simplified by multiplying both numerator

and denominator by the denominator. Thus,

12

= -6i
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Division of complex numbers can be accom-
plished by multiplying the numerator and de-
nominator by the number that is the conjugate
of the denominator. This process is similar to

the process of rationalizing a denominator in

the case of real numbers that are irrational.
As an example, consider

5 - 2i

3 + i

The denominator is 3 + i. Its conjugate is

3 -
i. Multiplying numerator and denominator

by 3 -
i gives

5-21 3 - i _ 15 - Hi + 2i
2

9 - 12
'

3 + i 3 - i

= 15 - 111 - 2

9 + 1

_ 13 - 111

To"

13.
10

ill
10

l

Practice problems. Rationalize the denomi-
nators and simplify:

1.-

2.

3.

4 + 2

-2 + 4i

-1 + 41

3

1.

2.

3.

3 -

Answers:

21 + 1

5

18 + 41

17

7 + 61 */

11

4.

5.

5.

6.

3 - i

8 - 41

3
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CHAPTER 16

QUADRATIC EQUATIONS IN ONE VARIABLE

The degree of an equation in one variable is

the exponent of the highest power to which the

variable is raised in that equation. A second-

degree equation in one variable is one in which
the variable is raised to the second power. A
second-degree equation is often called a QUAD-
RATIC EQUATION. The word quadratic is de-
rived from the Latin word quadratus, which
means "squared." In a quadratic equation the

terra of highest degree is the squared term.
For example, the following are quadratic equa-
tions:

x 2 + 3x + 4 =

3m + 4m 2 = 6

The terms of degree lower than the second

may or may not be present. The possible terms
of lower degree than the squared term in a

quadratic equation are the first- degree term
and the constant term. In the equation

3x 2 - 8x - 5 =

-5 is the coefficient of x. If we wished to

emphasize the powers of x in this equation, we
could write the equation in the form

3x 2 - Sx 1 - 5x =

Examples of quadratic equations in which either
the first-degree term or the constant term is

missing are:

1. 4x
2 = 16

2. y
2
+ 16y =

3. e 2 + 12 =

GENERAL FORM OF A
QUADRATIC EQUATION

Any quadratic equation can be arranged in

the general form:

If it has more than three terms, some of them
will be alike and can be combined, after which
the final form will have at most three terms.
For example,

2x 2 + 3 + 5x - 1 + x 2 = 4 - x 2 - 2x - 3

reduces to the simpler form

4x 2 + 7x + 1 =

In this form, it is easy to see that a, the coef-

ficient of x 2
,

is 4; b, the coefficient of x, is 7;

and c, the constant term, is 1.

Sometimes the coefficients of the terms of

a quadratic appear as negative numbers, as
follows:

2x
2 - 3x - 5 =

This equation can be rewritten in such a way
that the connecting signs are all positive, as in

the general form. This is illustrated as follows:

2x 2 + (-3)x + (-5) =

In this form, the value of a is seen to be 2,

b is -3, and c is -5.

An equation of the form

x 2 + 2 =

has no x term. This can be considered as a
case in which a is 1 (coefficient of x 2 under-
stood to be 1), b is 0, and c is 2. For the pur-
pose of emphasizing the values of a, b, and c

with reference to the general form, this equa-
tion can be written

x 2 + Ox + 2 =

The coefficient of x 2 can never be 0; if it

were 0, the equation would not be a quadratic.
If the coefficients of x and x are

,
then those

terms do not normally appear. To say that the

coefficient of x is is the same as saying that

the constant term is or is missing.
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roots is the same as the degree of the equation.
A fourth-degree equation has four roots, a

cubic (third-degree) equation has three roots, a

quadratic equation has two roots, and a linear

equation has one root.

As an example, 6 and -1 are roots of the

quadratic equation

x 2 - 5x - 6 =

This can be verified by substituting these val-

ues into the equation and noting that an identity
results- in each case.

Substituting x = 6 gives

6
2 -

5(6) -6 =

36 - 36 =

=

Substituting x = - 1 gives

(-1)
2

-
5(-l) -6 =

1+5-6 =

6-6 =

=

Several methods of finding the roots of quad-
ratic equations (SOLVING) are possible. The
most common methods are solution by FAC-
TORING and solution by the QUADRATIC FOR-
MULA. Less commonly used methods of solu-
tion are accomplished by completing the square
and by graphing.

SOLUTION BY FACTORING

The equation x 2 - 36 = is a pure quadratic
equation. There are two numbers which, when
substituted for x, will satisfy the equation as
follows:

also

(+6)
2

36

(-6)
2

36

36 =

36 =

36 =

36 =

rauc ;one in wmcn no x term appears ana me
constant term is a perfect square) involves re-

writing with the constant term in the right

member, as follows:

x 2 = 36

Taking square roots on both sides, we have

x = 6

The reason for expressing the solution as both

plus and minus 6 is found in the fact that both

+6 and -6, when squared, produce 36.

The equation

x 2 - 36 =

can also be solved by factoring, as follows:

x 2 - 36 =

(x + 6)(x -
6)

=

We now have the product of two factors equal
to zero. According to the zero factor law, if a

product is zero, then one or more of its factors

is zero. Therefore, at least one of the factors

must be zero, and it makes no difference which

one. We are free to set first one factor and

then the other factor equal to zero. In so doing
we derive two solutions or roots of the equation.

If x + 6 is the factor whose value is 0, then

we have

x + 6 =

x = -6

If x - 6 is the zero factor, we have

x - 6 =

x = 6

When a three-term quadratic is put into

simplest form, it is customary to place all the

terms on the left side of the equality sign with

the squared term first, the first-degree term

next, and the constant term last, as in

9x 2 - 2x + 7 =
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If the trinomial in the left member is readily
factorable, the equation can be solved quickly
by separating the trinominal into factors. Con-
sider the equation

3x 2 - x - 2 =

By factoring the trinominal, the equation be-
comes

(3x + 2)(x -
1) =

Once again we have two factors, the product of

which is 0. This means that one or the other of

them (or both) must have the value 0. If the

zero factor is 3x + 2, we have

3x + 2 =

3x = -2

If the zero factor is x -
1, we have

x - 1 =

x = 1

Substituting first x = 1 and then x = - in
o

the original equation, we see that both roots

satisfy it. Thus,

3(1)
2

-
(1)

- 2 =

3-1-2 =

[-!]'-[-!]-*-

=

In summation, when a quadratic may be

readily factored, the process for finding its

roots is as follows:
1. Arrange the equation in the order of the

descending powers of the variable so that all

the terms appear in the left member and zero
appears in the right.

2. Factor the left member of the equation.
3. Set each factor containing the variable

equal to zero and solve the resulting equations.
4. Check by substituting each of the derived

roots in the original equation.

EXAMPLE: Solve the equation x 2 - 4x = 12
forx.

1. x 2 - 4x - 12 =

2. (x
-

6)(x + 2)
=

3. x - 6 =

x = 6

x + 2 =

x = -2

4. (6)
2 -

4(6) = 12 (x =
6)

36 - 24 = 12

12 = 12

(-2)
2 - 4 (-2) = 12 (x = -2)

4 + 8 = 12

12 = 12

Practice problems. Solve the following equa-
tions by factoring:

1. x2 + lOx - 24 = 4. 7y
2 - 19y - 6 =

5. m 2
- 4m = 96

4. y = 3

2
y =

-7

5. m = -8

m = 12

2. a - a - 56 =

3. y
2 -

2y = 63

Answers:

1. x = -12

x = 2

2. a = 8

a = -7

3. y = -7

y = 9

SOLUTION BY
COMPLETING THE SQUARE

When a quadratic cannot be solved by fac-

toring, or the factors are not readily seen, an-

other method of finding the roots is needed. A
method that may always be used for quadratics
in one variable involves perfect square trino-

mials. These, we recall, are trinomials whose
factors are identical. For example,

x 2 - lOx + 25 = (x -
5)(x

-
5)

= (x
-

5)
2

Recall that in squaring a binomial, the third

term of the resulting perfect square trinomial
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is always the square of the second term of the

binomial. The coefficient of the middle term of

the trinomial is always twice the second term
of the binomial. For example, when (x + 4) is

squared, we have

x + 4

x + 4

4. Take the square root of both members.

x 2 + 4x

+ 4x + 16

x 2 + 8x + 16

Hence if both the second- and first-degree
terms of a perfect square trinomial are known,
the third may be written by squaring one-half

the coefficient of the first- degree term.

Essentially, in completing the square, cer-
tain quantities are added to one member and
subtracted from the other, and the equation is

so arranged that the left member is a perfect

square trinomial. The square roots of both

members may then be taken, and the subsequent
equalities may be solved for the variable.

For example,

+ 5x -
11

=

cannot be readily factored. To solve for x by
completing the square, we proceed as follows:

1. Leave only the second- and first-degree
terms in the left member.

X 2
4- 5X = ^

(If the coefficient of x 2
is not 1, divide through

by the coefficient of x 2
.)

2. Complete the square by adding to both
members the square of half the coefficient of

the x term. In this example, one -half of the

g
coefficient of the x term is -, and the square

- V- Thus
>

25 11

T = T +
25

4

3. Factor the left member and simplify the

right member,
2

x +
|

= 3

Remember that, in taking square roots on both

sides of an equation, we must allow for the fact

that two roots exist in every second-degree

equation. Thus we designate both the plus and

the minus root of 9 in this example.
5. Solve the resulting equations.

1=3

x ~
2

"
2

x=
2

x -X ~ " "

x = -
n
2

11

2

=

(B(-M-
121

4

55

2

11
=

110 55 _ n
~4~

" T ~

=

The process of completing the square may
always be used to solve a quadratic equation.

However, since this process may become com-

plicated in more complex equations, a formula

based on completing the square has been devel-

oped in which known quantities may be substi-

tuted in order to derive the roots of the quad-
ratic equation. This formula is explained in

the following paragraphs.

SOLUTION BY THE
QUADRATIC FORMULA

The quadratic formula is derived by apply-

ing the process of completing the square to



solve for x in the general form of the quadratic

equation, ax
2 + bx + c = 0. Remember that the

general form represents every possible quad-
ratic equation. Thus, if we can solve this equa-
tion for x, the solution will be in terms of a, b,

and c. To solve this equation for x by complet-

ing the square, we proceed as follows:

1. Subtract the constant term, c, from both

members.

ax + bx = -c

2. Divide all terms by a so that the coeffi-

cient of the x 2 term becomes unity.

o b c
x 2 + -x = - -

a a

3. Add the square of one-half the coefficient

of the x term, ,
to both members,

a

Square 7: 4a 2

2

Add: x2+ -x + 77 = -r-
a 4a^ 4a- a.

4. Factor the left member and simplify the

right member.

x +
b - 4ac

2a/
"

4a 2

5. Take the square root of both members,

b
X + 7T"~ i

- 4ac
2a

6. Solve for x.

- 4ac
~2a

-b

2a

- 4ac
2a

Thus, we have solved the equation repre-
senting every quadratic for its unknown in terms
of its constants a, b, and c. Hence, in a given

quadratic we need only substitute in the ex-

pression

-b \/b 2 - 4ac

2a

the values of a, b, and c, as they appear in the

particular equation, to derive the roots of that

equation. This expression is called the QUAD-
RATIC FORMULA. The general quadratic

equation, ax 2 + bx + c = 0, and the quadratic
formula should be memorized. Then, when a

quadratic cannot be solved quickly by factoring,
it may be solved at once by the formula.

EXAMPLE: Use the quadratic formula to solve

the equation

x 2 + 30 - llx = 0.

SOLUTION:

1. Set up the equation in standard form.

x 2 - llx + 30 =

Then a (coefficient of x 2
)

=1

b (coefficient of x)
= -11

c (the constant term) = 30

2. Substituting,

x =
-b vb 2 - 4ac

2a

- (-11) >/(-! I)
2 -

4(1)(30)= _

11 N/121 - 120

11 1

3. Checking:

When

= 6 or 5

When

x =
6, x = 5,

(6)
2 - 11(6) + 30 = (5)

2
-

11(5) + 30 =

36 - 66 + 30 = 25 - 55 + 30 =

0=0 0=0

EXAMPLE: Find the roots of

2x 2 - 3x - 1 =

Here, a =
2, b = -3, and c = -1.

171



MATHEMATICS, VOLUME 1

The two roots are

and x = -

These roots are irrational numbers, since the

radicals cannot be removed.
If the decimal values of the roots are de-

sired, the value of the square root of 17 can be
taken from appendix I of this course. Substi-

tuting ^/T7"= 4.1231 and simplifying gives

x
l

-
3 + 4.1231

and x
2

=
3 - 4.1231

_ 7.1231
4

= 1.781

x, =
-1.1231

4

= -0.281

In decimal form, the roots of 2x 2 - 3x - 1 =

to the nearest tenth are 1.8 and -0.3.

Notice that the subscripts, 1 and 2, are used
to distinguish between the two roots of the equa-
tion. The three roots of a cubic equation in x
might be designated x

1( x 2 ,
and x 3 . Sometimes

the letter r is used for root. Using r, the roots
of a cubic equation could be labeled r

l}
r 2 ,

and r
3

.

Checking:

When Xj
=

2x 2 - 3x - 1 =

then

4 / -3^^^-; -1 =

(3 + N/17)
2

9 + 3 N/17 1

8 4
1 =

9 + 6 'JW + 17-18-6 ^/l7 - 8

8
=

8

Multiplying both members of the equation by 8,
the LCD, we have

-
8(1) = o

9-6 -/IT + 17 - 2 (9
- 3 \/T7) -8 =

9 - 6 -S/T7 + 17-18 + 6 N/T? -8 =

=

Practice problems. Use the quadratic for-

mula to find the roots of the following equations:

1. 3x2- 20 - 7x =

2. 4x2 - 3x - 5 =

Answers:

1. Xi = 4

3. 15x 2 - 22x - 5 =

4.

3.

+ 7x = 8

x 9 = --
1

5

2. 4.

Xo = 3 -

GRAPHICAL SOLUTION

A fourth method of solving a quadratic equa-
tion is by means of graphing. In graphing lin-

ear equations using both axes as reference, we
recall that an independent variable, x, and a

dependent variable, y, were needed. The co-

ordinates of points on the graph of the equation
were designated (x, y).

Since the quadratics we are considering con-

tain only one variable, as in the equation

= - 8x + 12 =



we cannot plot values for the equations in the

present form using both x and y axes. A de-

pendent variable, y, is necessary.
K we think of the expression

x 2 - 8x + 12

is a function, then this function can be consid-
sred to have many possible numerical values,
iepending on what value we assign to x. The
particular value or values of x which cause the
/alue of the function to be are solutions for
:he equation

x 2 - 8x + 12 =

For convenience, we may choose to let y
'epresent the function

x 2 - 8x + 12

f numerical values are now assigned to x, the

:orresponding values of y may be calculated.
Vhen these pairs of corresponding values of x
md y are tabulated, the resulting table pro-
'ides the information necessary for plotting a

;raph of the function.

5XAMPLE: Graph the equation

x 2 + 2x - 8 =

(-5,7).

J-4.01

-5

10

(3,7)

(2,0)

and from the graph write the roots of the equa-
tion.

SOLUTION:

1. Let y = x 2 + 2x - 8.

2. Make a table of the y values corresponding
to the value assigned x, as shown in table 16-1.

Table 16-1. Tabulation of x and y values

for the function y = x 2 +2x-8.

3. Plot the pairs of x and y values that ap-

pear in the table as coordinates of points on a

rectangular coordinate system as in figure
16-1 (A).

4. Draw a smooth curve through these points,
as shown in figure 16-1 (B).

Notice that this curve crosses the X axis in

two places. We also recall that, for any point
on the X axis, the y coordinate is zero. Thus,
in the figure we see that when y is zero, x is

-4 or +2. When y is zero, furthermore, we
have the original equation,

(V5)

(A)

Figure 16-1. Graph of the equation y = x 2 + 2x - 8. (A) Points plotted;

(B) curve drawn through plotted points.

173



Thus, the values of x at these points where
the graph of the equation crosses the X axis

(x = -4 or +2) are solutions to the original equa-
tion. We may check these results by solving
the equation algebraically. Thus,

x 2 + 2x - 8 =

(x + 4)(x -
2)

=

Xj + 4 =

Xl = -4

Check:

(-4)
2

+ 2(-4) -8 =

16 - 8 - 8 =

=

me A coordinate, or aoscissa, 01 me maximum
or minimum value is

x
2

- 2 =

x, = 2

(2)
2

+ 2(2) -8=0
4 + 4-8 =

=

The curve in figure 16-1 (B) is called a

PARABOLA. Every quadratic of the form
ax 2 + bx + c = y will have a graph of this gen-
eral shape. The curve will open downward if a

is negative, and upward if a is positive.

Graphing provides a fourth method of finding
the roots of a quadratic in one variable. When
the equation is graphed, the roots will be the X
intercepts (those values of x where the curve
crosses the X axis). The X intercepts are the

points at which y is 0.

Practice problems. Graph the following

quadratic equations and read the roots of each

equation from its graph

1. x 2 - 4x - 8 =

2. 6x - 5 - x 2 =

Answers:

1. See figure 16-2. x = 5.5; x = -1.5

2. See figure 16-3. x =
1; x = 5

MAXIMUM AND MINIMUM POINTS

It will be seen from the graphs of quadratics
in one variable that a parabola has a maximum
or minimum value, depending on whether the

curve opens upward or downward. Thus, when
a is negative the curve passes through a maxi-
mum value; and when a is positive, the curve

passes through a minimum value. Often these
maximum or minimum values comprise the only
information needed for a particular problem.

x = _

2a

In other words, if we divide minus the coeffi-

cient of the x term by twice the coefficient of

the x 2
term, we have the X coordinate of the

maximum or minimum point. If we substitute

this value for x in the original equation, the

result is the Y value or ordinate, which corre-

sponds to the X value.

For example, we know that the graph of the

equation

x 2 + 2x - 8 = y

passes through a minimum value because a is

positive. To find the coordinates of the point
where the parabola has its minimum value, we
note that a =

1, b = 2, c = -8. From the rule

given above, the X value of the minimum point is

2a
X =

_"
2(1)

x = -1

Substituting this value for x in the original

equation, we have the value of the Y coordinate

of the minimum point. Thus,

(.1)2 + 2 (-l)
- 8 = y

1 - 2 - 8 = y

-9 = y

The minimum point is (-1, -9). From the graph
in figure 16-1 (A), we see that these coordi-

nates are correct. Thus, we can quickly and

easily find the coordinates of the minimum or

maximum point for any quadratic of the form
ax 2 + bx + c = 0.

Practice problems. Without graphing, find

the coordinates of the maximum or minimum
points for the following equations and state

whether they are maximum or minimum.

1. 2x 2 - 5x + 2 =

2. 68 - 3x - x 2 =

3. 3 + 7x - 6x 2 =

4. 24x 2 - 14x = 3
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Figure 16-2. Graph of x 2 - 4x - 8 = 0.

Answers:

5 . .x =
-j Minimum

7=
yjj

Maximum

Maximum

y =
281

y
4

121

14

7
4. x =

gi
Minimum

121
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Figure 16-3. Graph of 6x - 5 - x 2 = 0.

THE DISCRIMINANT

The roots of a quadratic equation may be

classified in accordance with the following
criteria:

1. Real or imaginary.
2. Rational or irrational.

3. Equal or unequal.

The task of discriminating among these possi-
ble characteristics to find the nature of the

roots is best accomplished with the aid of the

quadratic formula. The part of the quadratic
formula which is used is called the DISCRIMI-
NANT.

If the roots of a quadratic are denoted by the

symbols r : and r 2 ,
then the following relations

may be stated:

-b - - 4ac

-b + - 4ac
2a

We can show that the character of the roots

is dependent upon the form taken by the expres-
sion

b 2 - 4ac

which is the quantity under the radical in the

formula. This expression is the DISCRIMI-
NANT of a quadratic equation.

IMAGINARY ROOTS

Since there is a radical in each root, there

is a possibility that the roots could be imagi-

nary. They are imaginary when the number
under the radical in the quadratic formula is

negative (less than 0). In other words, when
the value of the discriminant is less than 0, the

roots are imaginary.
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EXAMPLE:

x 2 + x + 1 =

a =
1, b =

1, c = 1

b 2 - 4ac =
(I)

2 -
4(1)(1)

= 1-4
= -3

rhus, without further work, we know that the
roots are imaginary.

CHECK: The roots are

r, =
-1 -i -

fi = -
1 i -V5

2
+ ~2~

Ve recognize both of these numbers as being
maginary.
We may also conclude that when one root is

maginary the other will also be imaginary,
rhis is because the pairs of imaginary roots
ire always conjugate complex numbers. If one
oot is of the form a + ib, then a - ib is also

i root. Knowing that imaginary roots always
>ccur in pairs, we can conclude that a quad-
atic equation always has either two imaginary
oots or two real roots.

Practice problems. Using the discriminant,
itate whether the roots of the following equa-
ions are real or imaginary:

.. x 2 - 6x - 16 =

!. x 2 - 6x = -12

i. 3x 2 - lOx + 50 =

;. 6x 2 + x = 1

Answers:

. Real

. Imaginary

. Imaginary

. Real

1QUAL OR DOUBLE ROOTS

If the discriminant b
2 - 4ac equals zero, the

adical in the quadratic formula becomes zero.

In this case the roots are equal; such roots are
sometimes called double roots.

Consider the equation

9x 2 + 12x + 4 =

Comparing with the general quadratic, we no-
tice that

a =
9, b =

12, and c = 4

The discriminant is

b
2 - 4ac = 12 2 -

4(9) (4)

= 144 - 144

=

Therefore, the roots are equal.

CHECK: From the formula

-12 -b -12-0

I

2(9) 2(9)

'.--I

The equality of the roots is thus verified.

The roots can be equal only if the trinomial

is a perfect square. Its factors are equal.

Factoring the trinomial in

we see that

9x 2 + 12x + 4 =

(3x + 2) =

Since the factor 3x + 2 is squared, we actu-

ally have

3x + 2 =

twice , and we have

x ~
"3

twice.

The fact that the same root must be counted

twice explains the use of the term "double

root." A double root of a quadratic equation is

always rational because a double root can oc-

cur only when the radical vanishes.
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wnen me discriminant is positive, me roots

must be real. Also they must be unequal since

equal roots occur only when the discriminant
is zero.

Rational Roots

If the discriminant is a perfect square, the

roots are rational. For example, consider the

equati on

3x 2 - x - 2 =

in which

a =
3, b = -1, and c = -2

The discriminant is

b 2 - 4ac =
(-1)

2 -
4(3) (-2)

= 1 + 24

= 25

We see that the discriminant, 25, is a per-
fect square. The perfect square indicates that

the radical in the quadratic formula can be re-

moved, that the roots of the equation are ra-

tional, and that the trinomial can be factored.
In other words, when we evaluate the discrimi-
nant and find it to be a perfect square, we know
that the trinomial can be factored.

Thus,

3x 2 - x - 2 =

(3x + 2)(x -
1)

=

from which

3x + 2 = x - 1 =

x = 1

We see that the information derived from the

discriminant is correct. The roots are real,

unequal, and rational.

Irrational Roots

If the discriminant is not a perfect square,
the radical cannot be removed and the roots
are irrational.

2x z - 4x + 1 =

in which

a =
2, b = -4, and c = 1.

The discriminant is

b 2 - 4ac = (-4)
2 -

4(2) (1)

= 16-8

This discriminant is positive and not a perfect

square. Thus the roots are real, unequal, and

irrational.

To check the correctness of this information,
we derive the roots by means of the formula.

Thus,

x =
-b - 4ac

2a

4

2

1x = 1 + or x = 1 -

This verifies the conclusions reached in

evaluating the discriminant. When the dis-

criminant is a positive number, not a perfect

square, it is useless to attempt to factor the

trinomial. The formula is needed to find the

roots. They will be real, unequal, and irrational.

SUMMARY

The foregoing information concerning the

discriminant may be summed up in the follow-

ing four rules:

1. If b 2 - 4ac is a perfect square or zero,
the roots are rational; otherwise they are

irrational.

2. If b 2 - 4ac is negative (less than zero),
the roots are imaginary.

3. If b 2 - 4ac is zero, the roots are real,

equal, and rational.

4. If b 2 - 4ac is greater than zero, the roots

are real and unequal.
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1. x" - 7x + 12 =

2. 9x 2 - 6x + 1 =

3. 2x 2 - x + 1 =

4. 2x - 2x 2 + 6 =

Answers:

1. Real, unequal, rational

2. Real, equal, rational

3. Imaginary

4. Real, unequal, irrational

GRAPHICAL INTERPRETATION
OF ROOTS

When a quadratic is set equal to y and the

resulting equation is graphed, the graph will

reveal the character of the roots, but it may
not reveal whether the roots are rational or

irrational.

Consider the folio-wing equations:

1. x 2 + 6x - 3 = y

2.x 2 +6x+9=y
3. x 2 + 6x + 13 = y

The graphs representing these equations are

shown in figure 16-4.

We recall that the roots of the equation are

the values of x at those points where y is zero.

Y is zero on the graph anywhere along the X
axis. Thus, the roots of the equation are the

positions where the graph crosses the X axis.

In parabola No. 1 (fig. 16-4) we see immedi-

ately that there are two roots to the equation
and that they are unequal. These roots appear
to be -6.5 and 0.5. Algebraically, we find them
to be the irrational numbers

-3 + 2-^/3 and -3 -2 /5".

For equation No. 2 (fig. 16-4), the parabola

just touches the X axis atx = -3. This means
that both roots of the equation are the same
that is, the root is a double root. At the point

where the parabola touches the X axis, the two

roots of the quadratic equation have moved

Figure 16-4. Graphical interpretation of roots.

together and the two points of intersection of the

parabola and the X axis are coincident. The

quantity -3 as a double root agrees with the

algebraic solution.

When the equation No. 3 (fig. 16-4) is solved

algebraically, we see that the roots are -3 + 2i

and -3 - 2i. Thus they are imaginary. Para-

bola No. 3 does not cross the X axis. When this

situation occurs, imaginary roots are implied.

Only equations having real roots will have

graphs that cross or touch the X axis. Thus we

may determine from the graph of an equation

whether the roots are real or imaginary.

VERBAL PROBLEMS
INVOLVING QUADRATIC EQUATIONS

Many practical problems give rise to quad-

ratic equations. In such problems it often hap-

pens that one of the roots will have no meaning.

We must select the root that satisfies the con-

ditions of the problem .

Consider the following example: The length

of a plot of ground exceeds its width by 7 ft and

the area of the plot is 120 sq ft. What are the

dimensions?

179



SOLUTION:

then

and

Let x = length

y = width

x - y = 7

xy = 120

Solving (1) for y, y = x - 7

Substituting (x - 7) for y in (2)

x(x -
7) = 120

Therefore

x 2 - 7x - 120 =

(x -
15){x + 8) =

x = 15, x = -8

Thus, length = +15 or -8.

(1)

(2)

But the length obviously cannot be a negative
value. Therefore, we reject -8 as a value for
x and use only the positive value, +15. Then
from equation (1),

15 - y = 7

y = 8

Length =15, Width = 8

Practice problems. Solve the following

problems by forming quadratic equations:

1. A rectangular plot is 8 yd by 24 yd. If the

length and width are increased by the same
amount, the area is increased by 144 sq yd.
How much is each dimension increased?

2. Two cars travel at uniform rates of speed
over the same route a distance of 180 mi. One
goes 5 mph slower than the other and takes

1/2 hr longer to make the run. How fast does
each car travel?

Answers:

1. Length and width are each increased by 4yd.

2. Faster car: 45 mph.
Slower car: 40 mph.
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CHAPTER 17

PLANE FIGURES

The discussion of lines and planes in chap-
ter 1 of this course was limited to their con-

sideration as examples of sets. The present
chapter is concerned with lines, angles, and
areas as found in various plane (flat) geometric
figures.

LINES

In the strictly mathematical sense, the term
"line segment" should be used whenever we re-
fer to the straight line joining some point A to

some other point B. However, since the straight
lines comprising geometric figures have clearly

designated end points, we may simplify our

terminology. Throughout the remaining chap-
ters of this course, the general term "line" is

used to designate straight line segments, unless

stated otherwise.

TYPES OF LINES

The two basic types of lines in geometry are

straight lines and curved lines. A curved line

joining points A and B is designated as "curve

AB." (See fig. 17-1.) If curve AB is an arc of

a circle, it may be designated as "arc AB."

BROKEN LINE DASHED LINE

Figure 17-2. Broken and dashed lines.

ORIENTATION

Straight lines may be classified in terms of

their orientation to the observer's horizon or
in terms of their orientation to each other. For

example, lines in the same plane which run be-
side each other without meeting at any point,
no matter how far they are extended, are PAR-
ALLEL. (See fig. 17-3 (A).) Lines in the same

plane which are not parallel are OBLIQUE.
Oblique lines meet to form angles (discussed in

the following section). If two oblique lines

cross or meet in such a way as to form four

equal angles, as in figure 17-3 (B), the lines

are PERPENDICULAR. This definition includes

the case in which only one angle is formed,
such as angle AEC in figure 17-3 (C). By ex-

tending line AE to form line AD, and extending
CE to form CB, four equal angles (AEC, CED,
DEB, and BEA) are formed.

A B A

LINE AB CURVE AB

Figure 17-1. Straight and curved lines.

The term "broken line" in mathematics
means a series of two or more straight seg-
ments connected end-to-end but not running In

the same direction. In mathematics, a series
of short, straight segments with breaks be-
tween them, which would form a single straight
line if joined end-to-end, is a DASHED LINE.

(See fig. 17-2.)

(A) (B)

A

)--- I ..(

I

A

(0

Figure 17-3. -(A) Parallel lines; (B) and (C)

perpendicular lines.

Lines parallel to the horizon are HORIZON-
TAL. Lines perpendicular to the horizon are

VERTICAL.

181
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ANGLES

Lines which meet or cross each other are

said to INTERSECT. Angles are formed when
two straight lines intersect. The two lines

which form an angle are its SIDES, and the point
where the sides intersect is the VERTEX. In

figure 17-4, the sides of the angles are AV and

BV, and the vertex is V in each case. Figure
17-4 (A) is an ACUTE angle; (B) is an OBTUSE
angle.

(A) (B)

Figure 17-4. (A) Acute angle; (B) obtuse angle.

CLASSIFICATION BY SIZE

When the sides of an angle are perpendicular
to each other, the angle is a RIGHT angle. This
term is related to the Latin word "rectus,"
which may be translated "erect11 or "upright.

11

Thus, if one side of a right angle is horizontal,
the other side is erect or upright.

The size of an angle refers to the amount of

separation between its sides, and the unit of

angular size is the angular DEGREE. A right

angle contains 90 degrees, abbreviated 90. An
angle smaller than a right angle is acute; an

angle larger than a right angle is obtuse. There-
fore, acute angles are angles of less than 90,
and obtuse angles are angles between 90 and
180.

If side AV in figure 17-5 (A) is moved down-

V

(A)

Figure 17 -5. -(A) LJ

(B) straigh

figure 17-6 are VERTIC
because they share a con
and 4 are opposite eac

vertical angles. Lines wt

17-6, always form two pi

and the vertical angles th

pairs; that is, angle 1 eq
2 equals angle 4.

Figure 17-6.-V<

Angles 1 and 2 infigui

angles. Other pairs of i

ure 17-6 are 2 and 3, 3

the sense used here, ac

side, not merely close

For example, angles 1 i

angles even though they t

COMPLEMENTS AND S 1

Two angles whose su
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: two equal angles are complementary, each
ains how many degrees?

'ind the size of an angle which is twice as
e as its own complement.

t: If x is the angle, then 90 - x is its

plement.)

definition assumes that the standard po
a triangle drawn for general discussi<

shown in figure 17-7, in which the tri

lying on one of its sides. The vertex
the base is the highest point of a tri;

standard position, and is thus called th<

nswers:

.cute

ight

5

GEOMETRIC FIGURES

'he discussion of geometric figures in this

iter is limited to polygons and circles. A
lYGON is a plane closed figure, the sides of

;h are all straight lines. Among the poly-
i discussed are triangles, parallelograms,
trapezoids.

ANGLES

. triangle is a polygon which has three sides

three angles. In general, any polygon has

lany angles as it has sides, and conversely.

:s of a Triangle

ach of the three angles of a triangle is a

TEX; therefore, every triangle has three

ices. The three straight lines joining the

ices are the SIDES (sometimes called legs),
the side upon which the triangle rests is its

E, often designated by the letter b. This

APEX

BASE

Figure 17-7. Triangle in standard pc

A straight line perpendicular to the

a triangle, joining the base to the apex

ALTITUDE, often designated by the ]

The altitude is sometimes referred tc

height, and is then designated by the 1

Figure 17-8 (B) shows that the apex ma
situated directly above the base. In th

the base must be extended, as shown

dashed line, in order to drop a perpe
from the apex to the base. Mathem
often use the term "drop a perpend
The meaning is the same as "draw a i

perpendicular line."

In general, the geometrical term "

from a point to a line" means the ler

perpendicular dropped from the poin
line. Many straight lines could be dra

a line to a point not on the line, but the

of these is the one we use in measu:



distance from the point to the line. The short-
est one is perpendicular to the line.

Perimeter and Area

The PERIMETER of a triangle is the sum of

the lengths of its sides. In less precise terms,
this is sometimes stated as "the distance
around the triangle." If the three sides are
labeled a, b, and c, the perimeter P can be
found by the following formula:

P = a + b + c

/

The area of a triangle is the space bounded
(enclosed) by its sides. The formula for the
area can be found by using a triangle which is

part of a rectangle. In figure 17-9, triangle
ABC is one -half of the rectangle. Since the
area of the rectangle is a times b (that is, ab),
the area of the triangle is given by the follow-

ing formula:

Area = ^ ab

Written in terms of h, representing height,
th- formula is:

A = bh

This formula is valid for every triangle, in-

cluding those with no two sides perpendicular.

Figure 17-10. Perime
of triangles

Answers:

1. P = 12 units 3.

A = 6 square units

2. P = 16 units 4.

A = 12 square units

CAUTION: The concept c

lj-io-i if 4-U,, ..-.:t-~ ^e xi i
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.1 Triangles

3 classification of triangles depends upon
special characteristics, if any. For ex-

,
a triangle may have all three of its sides

in length; it may have two equal sides and
I side which is longer or shorter than the

two; it may contain a right angle or an
i angle. If it has none of these special

iteristics, it is a SCALENE triangle. A
ie triangle has no two of its sides equal
1 two of its angles equal.
}HT TRIANGLE. -If one of the angles of a

le is a right angle, the figure is a right
le. The sides which form the right angle
e LEGS of the triangle, and the third side

;ite the right angle) is the HYPOTENUSE.
2 area of a right triangle is always easy
3rmine. If the base of the triangle is one

legs, as in figure 17-10 (4), the other leg
altitude. If the hypotenuse is acting as

ise, as in figure 17-10 (3), the triangle
s turned until one of its legs is the base,

figure 17-10 (1). If the triangle is not

to be a right triangle, then the altitude

36 given, as in figure 17-10 (2), in order

culate the area.

y triangle whose sides are in the ratio of

is a right triangle. Thus, triangles with

as follows are right triangles:

>ide 1

3

6

12

3x

Side 2

4

8

16

4x

Side 3

5

10

20

5x

Figure 17 -11. (A) Isoceles triangh

(B) equilateral triangle.

Figure 17-11 (B) illustrates an EQTJ
ERAL triangle, which is a special case

isosceles triangle. An equilateral trian^

all three of its sides equal in length. Sii

lengths of the sides are directly related

size of the angles opposite them, an equi

triangle is also equiangular; that is, all

of its angles 'are equal.

OBLIQUE TRIANGLES.-Any triangh

taining no right angle is an OBLIQUE tr

Figure 17-12 illustrates two possible c<

rations, both of which are oblique trij

An oblique triangle which contains an

angle is often called an OBTUSE triangle

(A) ACUTE (B) OBTUSE

(x is any positive number) Figure 17-12. Oblique triangles.

(A) Acute; (B) obtuse.
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QUADRILATERALS

A QUADRILATERAL is a polygon with four

sides. The parts of a quadrilateral are its

sides, its four angles, and its two DIAGONALS.
A diagonal is a straight line joining two alter-

nate vertices of a polygon. Figure 17-13 illus-

trates the parts of a quadrilateral, in which
AC and DB are the diagonals.

Figure 17-13. Parts of a quadrilateral.

Perimeter and Area

The perimeter of a quadrilateral is the sum
of the lengths of its sides. For example, the

perimeter of the quadrilateral in figure 17-13
is 30 units.

Figure 17-14. A p

Since lines AB and CI
DE and CF (both perpend
figure 17-14) are equal,
in figure 17-14 are equal
line cutting two parallel 1

BC, forms equal angles w
Thus, triangles AED and
line AD equals line BC.

proved that the opposite

gram are equal. If all fou

same length, the parallelo
In addition to the equ

sides, the opposite angle
are also equal. For exam]
angle BCD in figure 17-

equals angle ABC.
RECTANGLES AND SC

the angles of a parallelogi
it is a RECTANGLE. A r

of its sides the samelengt
a square is a rhombus hav

square is a rectangle, anc

parallelogram. Notice th;

statement is not true.

The area of a rectang!

plying its length times its

each side of a square has
thp smiarp* is s2_
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gle AED and figure EBCD. Since triangle
is equal to triangle BFC, the sum of AED
EBCD is equal to the sum of BFC and
D. Thus the area of parallelogram ABCD
,e same as the area of rectangle EFCD.
j the area of EFCD is DC multiplied by
and DC has the same length as AB, we
lude that the area of a parallelogram is the

act of its base times its altitude. Written

formula, this is

A = ba

A = bh, where h is height

iczoids

TRAPEZOID is a quadrilateral in which
sides are parallel and the other two sides

not parallel. By orienting a trapezoid so

its parallel sides are horizontal, we may
the parallel sides bases. Observe that the

s of a trapezoid are not equal in length,

fig. 17-15.)

(A) (B)

Figure 17-15. Typical trapezoids.

he area of a trapezoid may be found by
rating it into two triangles and a rectangle,
i figure 17-16. The total area A of the

^zoid is the sum of A
x plus A 2 plus A3 ,

and
Jculated as follows:

bi

Figure 17-16. Area of a trapezoi

Practice problems. Find the area of

the following figures:

1. Rhombus; base 4 in., altitude 3 in.

2. Rectangle; base 6 ft, altitude 4 ft

3. Parallelogram; base 10 yd, altitude 1

4. Trapezoid; bases 6 ft and 4 ft, altitu

Answers:

1. 12 sq in.

2. 24 sq ft

CIRCLES

3. 40 sq yd

4. 30 sq ft

The mathematical definition of a circ

that it is a plane figure bounded by a

line, every point of which is equally

from the center of the figure. The pa

circle are its circumference, its radi

its diameter.
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Figure 17-17. Parts of a circle.

An ARC is a portion of the circumference of

a circle. A CHORD is a straight line joining
the end points of any arc. The portion of the

area of a circle cut off by a chord is a SEG-
MENT of the circle, and the portion of the

circle's area cut off by two radii (radius lines)
is a SECTOR. (See fig. 17-18.)

Formulas for Circumference and Area

The formula for the circumference of a
circle is based on the relationship between the

circumference and the diameter. This com-
parison can be made experimentally by mark-
ing the edge of a circular object, such as a

coin, and rolling it (without slippage) along a

Figure 17-18. Arc, chori

C=3.I4

INITIAL POSITION

Figure 17-19. Measuri
of a cii

This formula states that
flat firr 17-1Q
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:tice problems. Calculate the circum-
of each of the following circles, using
the value of n:

us = 21 in. 3. Radius = 14 ft

neter = 7.28 in. 4. Diameter = 2.8 yd

vers:

in.

8 in.

3. 88 ft

4. 8.8 yd

)A. The area of a circle is found by

ying the square of its radius by TT. The
i is written as follows:

A = Trr
2

?LE: Find the area of a circle whose
er is 4 ft, using 3.14 as the value of n.

ION: The radius is one-half the diam-

rherefore,

r =
|(4 ft)

= 2 ft

A = ?rr
2 =

?r(2 ft)
2

A = 3.14 (4 sq ft)

= 12.56 sq ft

Then

Figure 17 -20. Concentric circles.

Let R = radius of large circle

r = radius of small circle

AR
= area of large circle

A
r
= area of small circle

A = area of ring

A = AR
- A

= TfR 2 - TTr
2

= Tr(R
2 - r 2

)



CHAPTER 18

GEOMETRIC CONSTRUCTIONS AND SOLID F

Many ratings in the Navy involve work which

requires the construction or subdivision of

geometric figures. For example, materials
must be cut into desired shapes, perpendicular
lines must be drawn, etc. In addition to these

skills, some Navy ratings require the ability to

recognize various solid figures and calculate

their volumes and surface areas.

CONSTRUCTIONS

From the standpoint of geometry, a CON-
STRUCTION may involve either the process of

building up a figure or that of breaking down a

figure into smaller parts. Some typical con-
structions are listed as follows:

1. Dividing a line into equal segments.
2. Erecting the perpendicular bisector of a

line.

3. Erecting a perpendicular at any point on
a line.

4. Bisecting an angle.
5. Constructing an angle.
6. Finding the center of a circle.

7. Constructing an ellipse.

EQUAL DIVISIONS ON A LINE

A line may be divided into any desired num-
ber of equal segments by the method shown in

figure 18-1.

off seven spaces of some co

1/2 inch, on it. Extend A
order to get seven intervals

on it. This produces the p<

and g, as shown in figure
from g to B, and then draw

starting at each of the points

The segments of AB cut ofi

equal in length.
It is frequently necess

determined number of lines

material. This may be don
on the foregoing discussion,

pose that the sheet of typi
18-2 is to be divided into 24

The 12-inch ruler is la

at an angle, in such a way
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coincide with the top and bottom edges of

Der. There are 24 spaces, each 1/2 inch

on a 12-inch ruler. Therefore, we mark
Der beside each 1/2-inch division marker
ruler. After removing the ruler, we

i line through each of the marks on the

parallel to the top and bottom edges of

ENDICULAR BISECTOR
LINE

bisect a line or an angle means to divide

two equal parts. A line may be bisected

tctorily by measurement, or by a geo-
: method. If the measuring instrument
iot reach the full length of the line, pro-
s follows:

Starting at one end, measure about half

igth of the line and make a mark.

Starting at the other end, measure exactly
cne distance as before and make a second

rhe bisector of the line lies halfway be-
these two marks.
j geometric method of bisecting a line is

"pendent on measurement. It is based
le fact that all points equally distant from
ds of a straight line lie on the perpen-
r bisector of the line.

ecting a line geometrically requires the

a mathematical compass, which is an in-

snt for drawing circles and comparing
:es. If a line AB is to be bisected as in

18-3, the compass is opened until the

:e between its points is more than half as
s AB. Then a short arc is drawn above

proximate center of the line and another

using A as the center of the arcs' circle.

g. 18-3.)
"> mnrp shnrt nrr.s arp rirawn nnp above

A

V

Figure 18-3. Bisecting a line geometric

Figure 18-4.- -Erecting a perpendicul
at a point.

1. Using any convenient point above t

(such as O) as a center, draw a circle wi

dius OC. This circle cuts AB at C and

2. Draw line DO and extend it to int

the circle at E.

3. Draw line EC. This line is perpenc
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Figure 18-5. Bisecting an angle.

SPECIAL ANGLES

Several special angles may be constructed

by geometric methods, so that an instrument
for measuring angles is not necessary in these

special cases.

Figure 18-4 illustrates a method of con-

structing a right angle, DCE, by inscribing a

right triangle in a semicircle. But an alternate

method is needed for those situations in which

drawing circles is inconvenient. The method
described herein makes use of a right triangle

having its sides in the ratio of 3 to 4 to 5. It is

often used in laying out the foundations of build-

ings. The procedure is as follows:

1. A string is stretched as shown in figure

18-6, forming line AC. The length of AC is

3 feet.

2. A second string is stretched, crossing
line AC at A, directly above the point intended

as the corner of the foundation. Point D on this

line is 4 feet from A.

3. Attach a third string, 5 feet long, at C
and D. When AC and AD are spread so that line

CD is taut, angle DAC is a right angle.
A 60 angle is constructed as shown in fig-

ure 18-7. With AB as a radius and A and B as

centers, draw arcs intersec

and B are connected to C by
three angles of triangle AI

The special angles alre

used in constructing 45 and

angle is bisected to form twi

60 angle is bisected to fo]

FINDING THE CENTER
OF A CIRCLE

It is sometimes necessar
of a circle of which only an

given. (See fig. 18-8.)
From any point on the ar

two chords intersecting th

points, such as B and C. W
and C as centers, use any
and draw short intersecting

perpendicular bisectors of c

Join the intersecting arcs o

obtaining line MP, and join
side of AB, obtaining line N<^

of MP and NQ is point O,
circle.

ELLIPSES

An ellipse of specified 1

constructed as follows:

1. Draw the major axis,

axis, CD, as shown in figure
2. On a straightedge or r

(labeled a in the figure) an

measure one-half the length
and make a second mark (

From point a, measure one
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A B

ure 18-7. Constructing 60 angles.

M

Figure 18-8. Finding the center

of a circle.

SOLID FIGURES

The plane figures discussed in chapter
this course are combined to form solid fig

For example, three rectangles and two tria

may be combined as shown in figure 1

The flat surfaces of the solid figure ai

FACES; the top and bottom faces are theB^

and the faces forming the sides are the

ERAL FACES.

EDGE
UPPER
BASE

LATERAL
FACE

'
LATERAL
EDGE

LOWER
BASE

Figure 18-10.-Parts of a solid figure

Some solid figures do not have any flat :

and some have a combination of curved su]

and flat surfaces. Examples of solids

curved surfaces include cylinders, cones

spheres.

PRISMS

The solid shown in figure 18-10 is a P
A prism is a solid with three or more 1

faces which intersect in parallel lines.

Types of Prisms
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prism, and if its bases are rectangles, it is a

rectangular solid. A CUBE is a rectangular
solid in which all of the six rectangular faces

are squares.

Parts of a Prism

The parts of a prism are shown in figure
18-10. The line formed by the joining of two
faces of a prism is an EDGE. If the two faces

forming an edge are lateral faces, the edge
thus formed is a LATERAL EDGE.

Surface Area and Volume

The SURFACE AREA of a prism is the sum
of the areas of all of its faces, including the

bases. The VOLUME of a prism may be con-
sidered as the sum of the volumes of many thin

wafers, each having a thickness of one unit and
a shape that duplicates the shape of the base.

(See fig. 18-11.)

Figure 18-12.-He
which is not a :

CIRCULAR CYLINDERS

Any surface may be cc

of moving a straight line

angles to its length. For
the stick of charcoal in J

from position CD to posi
across the paper. The bi

charcoal represents a pis

face is said to be "gene:
AB.

Figure 18-11. Volume of a prism.

The wafers which comprise the prism in

figure 18-11 all have the same area, which is

the area of the base. Therefore, the volume of
the prism is found by multiplying the area of

CHARCOAL
STICK

Fieure 18- 13. -Surf
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Figure 18-14. (A) Line generating a cylinder;

(B) elliptical cylinder;
(C) circular cylinder.

are circles, the cylinder is a CIRCULAR
FDER. Figure 18-14 (C) illustrates a
circular cylinder. Line O-O T

, joining the

s of the bases of a right circular cylin-
5 the AXIS of the cylinder.

e Area and Volume

5 lateral area of a cylinder is the area of

rved surface, excluding the area of its

Figure 18-15 illustrates an experimen-
thod of determining the lateral area of a

circular cylinder.

The card of length L and width W in

18-15 is rolled into a cylinder. The he
the cylinder is W and the circumference
The lateral area is the same as the o:

area of the card, LW. Therefore, the ]

area of the cylinder is found by multiply

height by the circumference of its base,

ten as a formula, this is

A = Ch

EXAMPLE: Find the lateral area of a

circular cylinder whose base has a rad
4 inches and whose height is 6 inches.

W
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SOLUTION: The circumference of the base is

C = ?rd

C = 3.14 x 8 in.

= 25.12 in.

Therefore,

A = 25.12 in. x 6 in.

= 151 sq in. (approximately)

The formula for the volume of a cylinder is

obtained by the same reasoning process that

was used for prisms. The cylinder is consid-

ered to be composed of many circular wafers,
or disks, each one unit thick. The area of each

disk, multiplied by the number of disks, is the

volume of the cylinder. With V representing
volume, A ..representing the area of each disk,
and n representing the number of disks, the

formula is as follows:

Since the number of disks is the same as the

height of the cylinder, the formula for the vol-

ume of a cylinder is normally written

V = Bh

In this formula, B is the area of the base and h
is the height of the cylinder.

EXAMPLE: Determine the volume of a circular

cylinder with a base of radius 5 inches and a

height of 14 inches.

SOLUTION:

2. Determine the volumi

problem 1.

Answers:

1. 88 sq in. 2.

REGULAR PYRAMIDS AI

RIGHT CIRCULAR CONE

A PYRAMID is a sol

faces of which are triang!
A REGULAR PYRAMID
faces equal.

Figure 18-16. -(A) Ir:

(B) regular j

A regular pyramid with

of lateral faces would ha\

many sides. If the numt

ciently large, the base pol
able from a circle and tl

the many lateral faces
curved surface. The soli

is a RIGHT CIRCULAR C(

A
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igth of line AV in figure 18-18 (A) is the

leight. The slant height of a right circu-
le is the length of any straight line join-
5 vertex to the circumference line of the

Such a line is perpendicular to a line

t to the base at the point where the slant

intersects the base. (See fig. 18-18 (B).)

AV, BV, and CV in figure 18-18 (B) are
nt heights.

i 18-18. (A) Slant height of a regular

tmid; (B) slant height of a right circular

.1 Area

i lateral area of a pyramid is the sum of

5as of its lateral faces. If the pyramid is

r, its lateral faces have equal bases;

rmore, the slant height is the altitude of

ice. Therefore, the area of each lateral

3 one-half the slant height multiplied by

gth of one side of the base polygon. Since

m of these sides is the perimeter of the

the total lateral area of the pyramid is

Volume

The volume of a pyramid is determii
its base and its altitude, as is the cas
other solid figures. Experiments show tl

volume of any pyramid is-one-thirdof the

uct of its base and its altitude. This n

stated as a formula with V representin

ume, B representing the area of the bas

h representing height (altitude), as follow

V-i.Bh

The formula for the volume of a pj

does not depend in any way upon the nun-

faces. Therefore, we use the same fornn

the volume of a right circular cone. Sir

base is a circle, we replace B with Trr
2

r is the radius of the base). The formi

the volume of a right circular cone is the

Practice problems:

1. Find the lateral area of a regular pj

with a 5 -sided base measuring 3 inches c

side, if the slant height is 12 inches.

2. Find the lateral area of a right circula

whose base has a diameter of 6 cm and

slant height is 14 cm.

3. Find the volume of a regular pyramid
square base measuring 4 cm on each s

the vertex is 9 cm above the base.
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Figure 18-19. Parts of a sphere.

In figure 18-19, the center of the sphere is

point O.

A RADIUS of a sphere is a straight line seg-
ment joining the center of the sphere to a point
on the surface. Lines OA, OB, OC, OD, OE,
and OF in figure 18-19 are radii. A DIAMETER
of a sphere is a straight line segment joining
two points on the surface and passing through
the center of the sphere. Lines AB, CD, and
EF in figure 18-19 are diameters. A HEMI-
SPHERE is half of a sphere.

Circles of various sizes may be drawn on

the surface of a sphere. The largest circle

that may be so drawn is one with a radius equal
to the radius of the sphere. Such a circle is a

GREAT CIRCLE. In figure 18-19, circles

AEBF, ACBD, and CEDF are great circles.

On the surface of a sphere, the shortest dis-

tance between two points is an arc of a great
circle drawn so that it passes through the two

points. This explains the importance of great
circles in the science of navigation, since the

earth is approximately a sphere.

The formula for the sur

may be rewritten as follov

A = (2-nr]

When the formula is facto

easy to see that the surfac

simply its circumference

Volume

The volume of a sphe]
is given by the formula

EXAMPLE: Find the volu

diameter is 42 inches.

SOLUTION:

=
I

x 3. 14 x (21 i

=
|

x 3.14x21 x

= 4.187x21 x21 >

=
38,776 cu in. (aj

Practice problems. C

area and the volume of t

the following problems:

1. Radius = 7 inches

Answers:



CHAPTER 19

NUMERICAL TRIGONOMETRY

The word "trigonometry" means "measure-
ment by triangles." As it is presented in many
textbooks, trigonometry includes topics other

than triangles and measurement. However, this

chapter is intended only as an introduction to

the numerical aspects of trigonometry as they
relate to measurement of lengths and angles.

SPECIAL PROPERTIES OF
RIGHT TRIANGLES

A RIGHT TRIANGLE has been defined as

any triangle containing a right angle. The side

opposite the right angle in a right triangle is a

HYPOTENUSE. (See fig. 19-1.) In figure 19-1,

s ; e AC is the hypotenuse.

x

{A)

Figure 19-2. The Pythagorc
(A) General triangle; (B) t]

sides of specific len

labeled as in figure 19-2 (A),

Theorem is stated in symbols a

x 2 + y
2 = r

2

An example of the use of

Theorem in a problem follows:

EXAMPLE: Find the length o

in the triangle shown in figure

SOLUTION:

EXAMPLE: An observer on 5

figure 19-3, knows that his dis

C is 1,200 yards and that the
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. A

Figure 19-3. Using the Pythagorean Theorem.

SIMILAR RIGHT TRIANGLES

Two right triangles are SIMILAR if one of

the acute angles of the first is equal to one of

the acute angles of the second. This conclusion

is supported by the following reasons:

1. The right angle in the first triangle is

equal to the right angle in the second, since all

right angles are equal.
2. The sum of the angles of any triangle is

180. Therefore, the sum of the two acute

angles in a right triangle is 90.
3. Let the equal acute angles in the two tri-

angles be represented by A and A' respectively.

(See fig. 19-4.) Then the other acute angles,
B and B', are as follows:

B = 90 - A

B' = 90 - A'

AB'

angle of the second have

spending angles equal. Th
are similar.

Practical situations freqi
similar right triangles are
lems. For example, the he

determined by comparing
shadow with that of a nearbj
in figure 19-5.

TREE

SHADOW

Figure 19-5.-Calculat

comparison of s

Assume that the rays of

and that the tree and flag

angles with the ground.
r
.

and A TB TC f are right trian

equal to angle B' . Thereto:

similar and their correspoi

portional, with the following

B'C'

Suppose that the flagpol
feet high, the shadow of the

fho aViaslmir rrf -fla
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^igure 19-6 represents an L-shaped build-

with dimensions as shown. On the line of

it from A to D, a stake is driven at C, a
it 8 feet from the building and 10 feet from
If ABC is a right angle, find the length of

and the length of AD. Notice that AE is 18

and ED is 24 feet.

-24 FT-

Figure 19-6. Using similar triangles.

Answers:

> feet 2. AB = 6 feet

AD = 30 feet

TRIGONOMETRIC RATIOS

rhe relationships between the angles and the

js of a right triangle are expressed in terms
^RIGONOMETRIC RATIOS. For example, in

re 19-7, the sides of the triangle are named
.ccordance with their relationship to angle 9 .

;rigonometry, angles are usually named by
ins of Greek letters. The Greek name of

fivmhnl f) is theta.

Ul P

SIDE ADJACENT
TO ANGLE

(A)

X

(B!

Figure 19 -7. Relationship of sides an<

in a right triangle. (A) Names of th

(B) symbols used to designate the sid<

Table 19-1. Trigonometric ratio;

hypotenuse
side adjacent to 9

hypotenuse
side opposite to 9

The other acute angle in figure 19

labeled a fGreek alDha}. The side or
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be expressed as a common fraction or as a

decimal. For example,

sin 6 =
I-

= 0.800
o

sin a = ~ = 0.600
o

Decimal values have been computed for

ratios of angles between and 90, and values

for angles above 90 can be expressed in terms
of these same values by means of conversion

formulas. Appendix II of this training course

gives the sine, cosine, and tangent of angles
from to 90. The secant, cosecant, and

cotangent are calculated, when needed, by using
their relationships to the three principal ratios.

These relationships are as follows:

1

secant =

cosecant 6 =

cotangent d =

cosine 9

1

sine 6

1

tangent 6

TABLES

Tables of decimal values for the trigono-
metric ratios may be constructed in a variety
of ways. Some give the angles in degrees, min-

utes, and seconds; others in degrees and tenths

of a degree. The latter method is more com-
pact and is the method used for appendix II.

The "headings" at the bottom of each page in

appendix II provide a convenient reference

showing the minute equivalents for the decimal
fractions of a degree. For example, 12' (12

minutes) is the equivalent of 0.2.

the angle plus 0.0; in 01

0.0, or simply 35.0. ^

sine of 35.0 is 0.5736. B;

the sine of 42.7 is 0.67!

32.3 is 0.6322.

A typical problem in t:

the value of an unknown s

when only one side and
known. EXAMPLE: In tri;

find the length of AC if A
angle CAB is 34.7.

Figure 19-8. Using t

ratios to evaluat

SOLUTION:

AC = cos 34
13

AC = 13 cos

= 13 x

= 10.69 i

Thp antrlpsnf a triano-l*
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9

13,
12

Figure 19-9. Using trigonometric
ratios to evaluate angles.

t triangle. The only information given,

'ning angle 9, is the ratio of sides in the

le. The size of is calculated as follows:

9 =
ll

=
-4167

9 = the angle whose tangent is 0.4167

mining that the sides and angles in figure
ire in approximately the correct proper -

we estimate that angle 9 is about 20.
.ble entries for the tangent in the vicinity
are slightly too small, since we need a

r near 0.4167. However, the tangent of

is 0.4163 and the tangent of 2242 T

is

The following arrangement of numbe
recommended for interpolation:

ANGLE TANGENT

2236 1

2242'

.0004

0.4183

The spread between 22 36' and 2242'
and we use the comparison of the tangent
to determine how much of this 6' spread
eluded in 6

,
the angle whose value is s

Notice that the tangent of 9 is different

tan 22 36' by only 0.0004, and the total s

in the tangent values is 0.0020. Therefoi

tangent of 9 is
'

Q20
of the way betwei

tangents of the two angles given in the

This is 1/5 of the total spread, since

0.0004 _4_
0.0020

"
20

Another way of arriving at this res

to observe that the total spread is 2(

thousandths, and that the partial spreac

responding to angle 9 is 4 ten-thousa

Since 4 out of 20 is the same as 1 out of 5
3

e is 1/5 of the way between 22 36' and 2:

Taking 1/5 of the 6' spread betwee

angles, we have the following calculation:

A- V fi' - JL v Ei'fift"
^f A D ~fr X DU

= 1'12" (1 minute and 12 secor

The 12" obtained in this calculation caus
answer to appear to have greater accurac
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In this example, we are concerned with an

angular spread of 0.10 and 9 is located 1/5 of

the way through this spread. Thus we have

9 = 22.60 -f
i x 0.10'
\o

= 22.60 + 0.02

9 = 22.62

'

Interpolation must be approached with com-
mon sense, in order to avoid applying correc-

tions in the wrong direction. For example, the

cosine of an angle decreases in value as the

angle increases from to 90. If we need the

value of the cosine of an angle such as 2239',
the calculation is as follows:

ANGLE

2242'

COSINE

0.9232

0.9225

0.0007

In this example, it is easy to see that 22 39'

is halfway between 2236' and2242'. There-
fore the cosine of 2239' is halfway between the

cosine of 2236' and that of 2242'. Taking
one-half of the spread between these cosines,
we then SUBTRACT from 0.9232 to find the

cosine of 2239', as follows:

1. a. 1

b. 0.8660

c. 0.7420

2. a. B = 16.2

b. 9 = 2536'

RIGHT TRIANG
SPECIAL ANGLES A1S

Three types of right tri;

significant because of th

rence. These are the 30-
45 -90 triangle, and the 3

THE 30-60-90 TRIANC

The 30-60-90 trian

cause these are the sizes

The sides of this trianglt
1 to N/T to 2

,
as shown in f

cos 2239 T = 0.9232 - Mr x 0.0007
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^.B is 2 units long and, by the rule of

oras, AC is found as follows:

AC = N/(AB)2 - (BC) 2

= \/4 - i = \rr

jardless of the size of the unit, a 30-
} triangle has a hypotenuse which is 2

as long as the shortest side. The short-

ie is opposite the 30 angle. The side op-
the 60 angle is \T~3 times as long as the

ist side. For example, suppose that the

muse of a 30 -60 -90 triangle is 30 units

then the shortest side is 15 units long,
e length of the side opposite the 60 angle
*>/3~ units,

ictice problems. Without reference to

or to the rule of Pythagoras, find the

ing lengths and angles in figure 19-11:

igth of AC .

e of angle A.

e of angle B.

4. Length of RT.

5. Length of RS.

6. Size of angle T.

A

90
<

45
C

Figure 19-12.-A 45-90 triangle.

measures 90. Since angles A and B are
the sides opposite them are also equal. 1

fore, AC equals CB. Suppose that CB is

long; then AC is also 1 unit long, and the

of AB is calculated as follows:

(AB)
2 = I

2 + I
2 = 2

AB =

Regardless of the size of the triangl
has two 45 angles and one 90 angle, its

are in the ratio 1 to 1 to \T2~. For exam
sides AC and CB are 3 units long, AB is

units long.

Practice problems. Without referei

tables or to the rule of Pythagoras, fi

following lengths and angles in figure

1. AB 2. BC 3. A

Answers:
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Figure 19-13.- Finding unknown parts
in a 45 -90 triangle.

It is interesting to note U
figure 19-15 (B) is N/T. Thi

coincidence, in which one s

angle is the square root of t

two sides.

Related to the basic 3-4

triangles whose sides are i

to 5 but are longer (proport
basic lengths. For example
tured in figure 19-6 is a 3-4

10.

Figure 19-14. A 3-4-5 triangle.

8

Figure 19-16. Triangle i

are multiples of 3,

The 3-4-5 triangle is ver
tions of distance. If the dat

fit a 3-4-5 configuration, nc

tion of square root (Pythago
needed.

EXAMPLE: An observer at

vertical tower knows that th

is 30 feet from a target or

does he calculate his slant r

sight) from the target?

SOLUTION: Figure 19-17

sired length, AB, is the hy
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gure 19-17. Solving problems with a

3-4-5 triangle.

;uy wire 15 feet long is stretched from
D of a pole to a point on the ground 9 feet

he base of the pole. Calculate the height

pole.

wers:

feet 2. 12 feet

OBLIQUE TRIANGLES

ique triangles were defined in chapter 17

; training course as triangles which con-

D right angles. A natural approach to the

>n of problems involving oblique triangles
construct perpendicular lines and form

riangles which subdivide the original tri-

Then the problem is solved by the usual

is for right triangles.

ON INTO RIGHT TRIANGLES

35

D

Figure 19-18. Finding the unknown ps

of an oblique triangle.

CAUTION: A careless appraisal of this

lem may lead the unwary trainee to rep
the ratio AC/AB as the cosine of 40.
error is avoided only by the realization t

trigonometric ratios are based on RIG!

angles.

2. In order to find the length of DC
calculate BD.

BD
= sin 40

C

35

BD = 35 sin 40

= 35 (0.6428)

= 22.4 (approximately)

3. Find the length of DC.

22.4
, _.o

-^ = tan 75

- 22.4 _ 22.4
" ~~ 1 ~
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Figure 19-19. Calculation of unknown

quantities by means of oblique triangles.

Suppose that point B is the top of a hill, and

point D is inaccessible. Then the only meas-
urements possible on the ground are those

shown in figure 19-19. If we let h represent
BD and x represent CD, we can set up the fol-

lowing system of simultaneous equations:

= tan 70
x

50 + x
= tan 30

C

Solving these two equations for h in terms of

x, we have

h = x tan 70

and

h = (50 + x) tan 30'

Since the two quantities which are both equal
to h must be equal to each other, we have

x tan 70 =
(5

x (2.748) = 5C

x (2.748)
- x (0.5774) = 28

x (2.171) = 2

_ 28.8
..g~

2.171

Knowing the value of x,

compute h as follows:

h = x tan 70

= 13.3 (2.748)

= 36.5 feet (ap

Practice problems:

1. Find the length of sideE

2. Find the height of poii

figure 19-20 (B).

Answers:

1. 21.3 feet

LAW OF SINES

2.

The law of sines provi
to the solution of oblique t

necessity of subdividing
Let the triangle in figure

any oblique triangle with 2

The labels used in fig

ardized. The small lette

side opposite angle A; sm;

B; small c is opposite ang
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Figure 19-21.- (A) Acute oblique triangle with standard labels;

(B) obtuse triangle with standard labels.

The law of sines states that in any triangle,

whether it is acute as in figure 19-21 (A) or

obtuse as in figure 19-21 (B), the following is

true:

EXAMPLE: In figure 19-21 (A), let angle A be

15 and let angle C be 85. If BC is 20 units,

find the length of AB.

SOLUTION: By the law of sines,

c =
20 sin 85

C

sin 15

_ 20 (0.9962) = r

c
0.2588



APPENDIX I

SQUARES, CUBES, SQUARE ROOTS, CUBE

LOGARITHMS, AND RECIPROCALS OF NU



Appendix I-POWERS, ROOTS, LOGARITHMS, ETC.
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APPENDIX II

NATURAL SINES, COSINES, AND TANGENTS
OF ANGLES FROM to 90

0-14.9
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16-29.9



Appendix II-NATURAL SINES, COSINES, AND TANGENTS

30-44.9



MATHEMATICS, VOLUME 1

46-69.9



Appendix H-NATURAL SINES, COSINES, AND TANGENTS

60-74.9
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75-89.9



APPENDIX III

MATHEMATICAL SYMBOLS

SYMBOL NAME OR MEANING

+ Addition or positive value

Subtraction or negative value

Positive or negative value

Multiplication dot (Centered; not to

be mistaken for decimal point.)

x Multiplication symbol

( ) Parentheses

[ ]
Brackets

{ } Braces

Vinculum (overscore)

% Percent

-r Division symbol

: Ratio symbol

: : Proportion symbol

= Equality symbol

"Not equal" symbol

Grouping
symbols

SYMBOL NAME OR ME1

N/~ Square root symbol

\/ Square root symbol w:

Vinculum is made L

cover all factors o:

whose square root i

NT Radical symbol. Lett

sents a number ind

root is to be taken.

i or j Imaginary unit; operat

tronics; represents

oc Infinity symbol

Ellipsis. Used in se

bers in which suo

bers are predicts
conformance to a p;

ing is approximatec

log N Logarithm of N to the

log N Logarithm of N to the

(understood)

In N Natural or Napierian k
Base of the natura
lop-arithm svstem.



APPENDIX IV

WEIGHTS AND MEASURES

Dry Measure

ips = 1 pint (pt)

.nts = 1 quart (qt)

larts = 1 gallon (gal)

larts = 1 peck (pk)

jcks = 1 bushel (bu)

Liquid Measure

:aspoons (tsp) = 1 tablespoon (tbsp)

;ablespoons = 1 cup

ips = 1 pint

:luid ounces (oz) = 1 pint

.nts = 1 quart

larts = 1 gallon

> gallons = 1 barrel (bbl)

cubic inches = 1 gallon

3 gallons = 1 cubic foot (cu ft)

Weight

Dunces = 1 pound (Ib)

)0 pounds = 1 short ton (T)

Area

144 square inches = 1 square foot (sq

9 square feet = 1 square yd (sq yd)

30-1/4 square yards = 1 square rod

160 square rods = 1 acre (A)

640 acres = 1 square mile (sq mi)

Volume

1,728 cubic inches = 1 cubic foot

27 cubic feet = 1 cubic yard (cu yd)

Counting Units

12 units = 1 dozen (doz)

12 dozens = 1 gross

144 units = 1 gross

24 sheets = 1 quire

480 sheets = 1 ream

Equivalents

1 cubic foot of water weighs 62

(approx) = 1,000 ounces

1 gallon of water weighs 8-1/3 pound



APPENDIX V

FORMULAS

- a 2A = s

A-fh

A = Trr 2

A = Iw

A = Ch

Areas

The area of a square is equal to

the square of a side.

The area of a triangle is equal to

one half the base times the

height.

The area of a circle is equal to

the radius squared times pi.

The area of a rectangle is equal
to the length times the width.

The lateral area of a cylinder is

equal to the circumference of

the base times the height.

A = 47rr 2

V = e 3

V = Bh

'!

Areas

The square area c

equal to 4 times

radius squared.

Volumes

The volume of a c 1

cube of an edge.

The volume of a rec

or cylinder equj

the base times tl

The volume of a S]

pi times the rad:



INDEX

Absolute value, 21

Accuracy, 15, 59

Addend, 7

Adding:
complex numbers, 164

decimals, 51

fractions, 118

signed numbers, 21

unlike fractions, 35

Addition:

and subtraction, 7

method for solving simultaneous equations,
135

Adjacent angles, 182

Algebraic:

expressions, 99

fractions, 117

sum, 99

Alternation in a proportion, 144

Altitude of a triangle, 183

Angles, 182

Apex of a triangle, 183

Approximate numbers, 61

Arabic numerals, 1

Arbitrary constant, 120

Areas:

circle, 189

quadrilateral, 186

triangle, 184

Associative laws, 26, 98

Axioms of equality, 25

Base of:

exponent, 65

Centigrade thermometer, 19

Changing:
common fractions to decimal

fractions to percent, 55

integers to percent, 55

percent to a decimal, 56

Characteristic, logarithms, 83

Checking accuracy, 14

Chord of a circle, 188

Circle, 187

Circular cylinder, 194-195

Circumference of a circle, 187

Coefficients, literal, 125, 136

Combined variation, 150

Combining:
radicals, 74

terms, 100

Common:
denominator, 34

factors, 111

fractions, 28, 49

logarithms, 81

Commutative laws, 26, 98

Complement of an angle, 182

Completing the square, 169

Complex:
decimal, 47

fraction, 43-44

numbers, 158-163

plane, 161

Components of logarithms, 83

Composite number, 17

Concentric circles, 189

Conditional equation, 121-122



INDEX

Decimal Continued :

complex, 47

divisors, 53

equivalent, 47

fractions, 45

mixed, 47

multiplying, 51-52

nonterminating, 50

number system, 2, 45

points, 13, 15

power of, 66

reducing, 47

system, 2

Degree:
angular, 182

of an equation, 121

Denominate numbers, 9, 15

Denominator, definition, 28

Dependence, 151

Dependent variable
,
151

Developing formulas, 154

Diameter:

circle, 187

sphere, 198

Difference:

answer in subtraction, 7

of two squares, 113

Digit positions:

binary, 3

decimal, 2

Digits, significant, 60

Direction of measurement, 19

Directly proportional, 147

Direct variation, 146

Discriminant, 176

Distributive law, 27', 99

Dividend, 11

Dividing:
a line into equal segments, 190

approximate numbers, 61
VVCT r\r\m*-r*a n-f fo R4

Edge of a prism, 194

Element:

cylinder, 194

set, 4

Ellipses, 192

Ellipsis, definition, 5

End zeros in multiplication, 13

Equality axioms, 25

Equal or double roots, 177

Equations, plotting, 131

Equilateral triangle, 185

Equivalent:

decimal, 47

fraction, 29

Error:

percent of, 59

relative, 60

Estimation, 14, 58

Evaluating:

formulas, 153

radicals, 78

Exponential form, 80

Exponents:
and radicals, 102

definition, 65

fractional, 70

laws of, 67

literal, 112

Extremes of a proportion, 142

Faces of a solid, 193

Factor, 11, 17

Factoring:

definition, 111

method of solving quadratic e

radicals, 75

trinomials, 115

Fixed constant, 120

Formulas:

developing, 154

evaluating. 153
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Fractions Continued:

fundamental rule, 30

improper, 28, 31

in equations, 125

measurement, 29

negative, 32

partitive, 29

power of, 66

proper, 28

reducing, 31, 116

Function:

general, 151

trigonometric, 202, 213
Fundamental rule of fractions, 30

General form of a linear equation, 126

Geometric:
classification of angles, 182

figures, 183-190

Graphical:

interpretation of roots, 179

representation of complex numbers, 160

solution of quadratic equations, 172

Graphing:
formulas, 156

general, 20

inequalities, 129, 139

Great circle, 198

Greater than (symbol), 20, 128

Greatest common divisor, 34

Grouping:
for multiplication, 11

symbols, 101

Hemisphere, 198

Highest common factor, 34

Horizontal lines, 181

Hypotenuse, 199

Identity, 121

Imaginary:
number, 66. 159

Intersecting lines, 182

Inversely proportional, 148

Inverse ratio, 142

Inverse variation; 148

Inversion in a proportion, 144

Irrational:

number, 77, 158

root, 178

Irregular pyramid, 196

Isosceles triangle, 185

Joint variation, 149

Lateral:

area, pyramid, 197

edge, prism, 194

Laws:

associative, 26

commutative, 26

distributive, 27

exponents, 67

sines, 208
Least common multiple, 34

Less than (symbol), 20, 128

Like:

fractions, 33

signs, adding, 21

Line:

general, 161

parallel, 137

segment, 5

Linear equation, 121, 126

Literal:

coefficient, 124, 136

exponent, 112

Logarithm:
definition, 80

natural, 81

Lowest common denominator,

Mantissa, 83, 85

Mathematical svmbols. 219



INDEX

Minuend, 7

Mixed:

decimal, 47

number, 28, 32

Monomial multiplication, 103

Multiples, 17

Multiplicand, 11

Multiplication:

fractions, 37

general, 10

grouping, 11

Multiplier, 11

Multiplying:

approximate numbers, 61

complex numbers, 164

decimals, 51-52

denominate numbers, 15

signed numbers, 23

Natural logarithms, 81

Negative:
exponents, 69

fractions, 32

logarithms, 83

numbers, 19

Nontermmating decimals, 50

Number:
set, 4

systems, 2, 3

Number line:

fractions, 28

general, 5, 20

Numerals, 1

Numerator, definition, 28

Numerical coefficient, definition, 100

Oblique:

line, 181

triangle, 185, 207

Obtuse :

Parallel lines, 181

Parallelogram, 186

Parentheses, removing, 101

Partial products, 12

Partitive fractions, 29

Percent:

changing numbers to, 55

changing to decimal, 56

definition, 55

fractional, 57

of error, 59

Percentage cases, 56

Perimeter:

quadrilateral, 186

triangle, 184

Perpendicular:
at any point on a line, 191

bisector of a line, 191

lines, 181

Pi (TT) ,
188

Place value, 1, 2, 46

Placing decimal points, 13, 15

Plotting:

complex numbers, 162

coordinates, 131

equations, 131

inequalities, 139

Points and lines, 5

Polar form, 163

Polynomials, 104-106

Positional notation, 2

Positive:

and negative numbers, 20

integers, 4

Powers and roots, 65

Powers of:

fractions, 66

negative integers, 65

ten, 52, 54, 71-73

Precision, 58

Prime:
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Quadrant, definition, 131

Quadratic:

definition, 167

equations, 172, 179

formula, 170-172

Quadrilateral, 186

Quotient, 11

Radical, 73, 102

Radicand, definition, 74

Radius:

circle, 187

sphere, 198

Ratio:

definition, 141

trigonometric, 201
Rational:

number, 28, 77, 158

roots, 178

Rationalizing denominators, 77, 106

Ray, geometric, 5

Reading:

decimals, 47

micrometers, 62

slide rule scales, 87
Real numbers, 66, 158

Reciprocals, 73

Rectangle, 186

Rectangular;
coordinates, 19, 130

prism, 193

Reducing:
decimals, 47

fractions, 31, 116

Regrouping, 7

Regular pyramid, 196
Relative error, 60

Remainder, 14

Removing parentheses, 101

Rhombus, 186
Rip-ht-

Segment of a circle, 188

Sense reversal, inequalitic
Sets:

comprising points and 1

elements of, 4

infinite, 6

Sides of a triangle, 183

Signed numbers, 19, 23

Significant digits, 60, 73
Similar triangles, 200

Simplifying radicals, 75

Simultaneous:

equations, 133

inequalities, 140

Sines, law of, 208
Slide rule:

description, 86

operation, 88-97
Solid figures, 193

Solving:
linear equations, 122-1!

oblique triangles, 208

Special:

exponents, 69

products, 106

triangles, 204-250

Spheres, 197-198

Square:

geometric, 186

of a sum or difference,
root, 78, 92

Squaring:

by slide rule, 91

complex numbers, 165

Straight and curved lines,

Subject of a formula, 152

Subscripts, 152

Subsets, 4

Substitution method for sol

equations, 136



INDEX

Surface area Continued:

sphere, 198

Symbols:
grouping, 101

in formulas, 152

mathematical, 219

Synthetic division, 110

System of equations, 133

Tangent to a circle, 187

Terms:
and coefficients, 99

of a proportion, 142

Test for divisibility, 18

Thermometer, 19

Three percentage cases, 56

Translating formulas, 155

Trapezoid, 187

Trial quotients, 14

Triangles:

general, 183-186

similar, 200

special, 204-205

Triangular prism, 193

Trigonometric:
ratios, 201

tables, 202, 213
Trinomial:

factoring, 115

squares, 114

Uneven division, 14

Unit, imaginary, 159

Unlike:

fractions, 33

signs, adding, 21

Variable, 120, 151

Variation:

combined, 150

general, 146

joint, 149

Vector representation of comp
Verbal problems, 138-139, 179

Vernier:

caliper, 64

general, 61-64

measurements, 63

micrometer, 64

principle, 63

Vertex:

angle, 182

triangle, 183

Vertical:

angle, 182

line, 181

Volume:

prism, 194

pyramid, 197

sphere, 198

Weights and measures, 220

Whole numbers, 1

Zero as an exponent, 69




