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ABSTRACT

A matrix-generator language for use in structuring and inputting

linear programming problem matrices is described. The generator is based

on the definition of the geometric sub-arrays which occur within a sparse

linear programming matrix. An exhaustive list of sub-array structures is

given, and their use within the described generator language is demon-

strated by the presentation of a real-world agricultural planning problem.

Estimates of the cost-reducing potential of this generator system are

given.
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INTRODUCTION

The major costs of linear programming are incurred in three

areas: model formulation and input to the computer, data collection and

collation, and interpretation of solutions. The costs incurred in the first

and third of these areas can be significantly reduced by the use of matrix

-

generation and associated report -generation procedures. The use of these

generators goes hand-in-hand with generalized modeling techniques .

With these techniques one can formulate a set of generic model structures

which can be applied to a wide range of specific problems.

The conventional approach to linear programming is to formulate

a model for each problem, write out the list of coefficients in SHARE

standard format (column I.D., row I.D., value), keypunch each coefficient,

and read the data from the resultant cards. For any but very simple prob-

lems, this is an extremely expensive and error-prone process.

In cases where given model structures are used repeatedly, as in

commercial applications of linear programming, some of the problems of

model specification, input and output have been overcome by the use of

matrix generators and report generators. These generators are usually de-

signed for the model structures used, and are not sufficiently general

to allow major changes in model structure to be made easily. Such model-

specific generators, despite their lack of generality, result in signifi-

cant reductions in the costs of entering models to the computer. For ex-

ample, a generator developed by Marceau et. al. for application in farm

planning reduced the input requirement for the average individual problem

model from 5000 cards to 70 cards [l].

The approach to matrix generation described in this paper is

one of complete generality. The generator takes advantage of the sub-

array structures of a sparse matrix, and allows the user to describe the

matrix structure in terms of these arrays. This approach overcomes the

problems arising in the use of model-specific generators. An additional

advantage is that the user simply needs to define his model structures in

generic terms (i.e., by activity type) and then reproduce them by the use

of matrix-generator parameters

.
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COST EFFECTIVENESS OF A MATRIX GENERATOR

The importance of a matrix generator can be demonstrated by

consideration of the problems of furnishing data for large-scale linear

programming models. For the purposes of this analysis, a model is

postulated to have 4,000 constraints, 10,000 variables and to be 1%

dense in nonzero coefficients. This yields ^-00, 000 data items to be input

to the system. With the conventional input procedures available on cur-

rent linear programming codes, two data items could be input on each card,

thereby requiring 200,000 cards or approximately 1.5 tape reels to input

the entire tableau. However, with a matrix generator it is possible to

effect significant savings in the number of data cards required and the

time to input the data.

For example, consider the problem of farm planning using linear
(k)

programming. If x. is the number of acres of crop k = 1, ...,n to be

grown on field i = 1, ...,m and a. is the acreage of field i, then the m

acreage constraints

^ (k)
E x. ' < a.

k
X ~ X

can be written as

:

(1) (2)
+x v '

•

•

• •

(n)
+Xl/ <a

x

•

m

•

(2)
+x v '

m
(n)

+x v '

m
< a— m

This sub-section of the tableau would appear as

1 1 1 < a
i

1 1 . . . . 1 < a
m
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These inn coefficients (excluding the right-hand sides) could be defined

using the matrix generator with one statement:

DIAGONAL(m) : 1 * n.

With this statement an m by m sub-matrix whose coefficients are 1 on the

diagonal and elsewhere is duplicated n times within the total matrix

structure

.

In general, using a matrix generator yields three types of sav-

ings. First, there is the saving in time and money required for keypunching.

This saving, of course, is due to the lesser number of cards required for

the matrix generator and can be expressed as

Cv (f - N ),k 2 m

where C, is the cost of keypunching one card (under the assumption
k.

that it costs the same to punch a card for the conventional

system as for the matrix generator),

N is the number of data items, i.e., twice the number of cards

required for the conventional system, and

N is the corresponding number of cards for the matrix generator,
m

Second, there is the saving realized in getting the data into

the computer. This is the difference between reading fewer cards and in-

ternally generating the values versus reading a larger deck of cards and

extracting all data from this deck, and can be expressed as:

C (tI - (T + et)N )
c 2 m

c

T

e

where C_ is the cost of computer time,

is the time to read a card and scan the information,

is N/N ; i.e., the average number of elements generated

per matrix generator statement, and

is the time to internally generate one value.
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Noting that e = N/N yields a simplified expression of

C [(T- 2t)J - TN ] .

c 2 m

Since T will normally be measured in milliseconds and t will be performed

in microseconds, T-t is approximately equal to T. Thus the saving realized

in getting the data into the computer is

o (1 - u ) I

r 2 m

where C is C T, the cost of reading a card,re' to

The third form of saving is not as easy to quantize. This is

the saving in analyst's time in going from an idea of a model to implementa-

tion and calculation on the computer. The primary component of this saving

is due to the saving in keypunch time. However, the monetary reward is re-

lated to the increased efficiency of the analyst due to the enhancement of

the feedback of results to the model builder. An additional saving is the

reduction in analyst's time necessary to prepare the forms for keypunching.

Considering only the first two types of savings in the above

discussion,
;

S = (C. + C )(| - N )x k r v 2 m

where S is the total saving due to use of the matrix generator. Replacing

the sum of keypunching and reading a card, C + C , by C yields

S=C(|-|), or "
J

S - of{Sf). I

NNote that C— equals the total cost of keypunching and entering data by

conventional means. Tests of the matrix generator have shown that a value

for e of 50 is not unreasonable. Hence, the equation above shows that

for this value of e, the saving produced by the matrix generator is 96$

of the cost that would be incurred with the conventional system. That

is to say, the cost of the matrix generator approach is k% of the conven-

tional system cost.
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The remaining question is whether this saving is significant.

Considering a keypunching cost of $6.00 per 100 cards and a data field

width of half a card, one arrives at a value for C, of $0.03- An analysis

of the cost of reading a card, C (under the assumption of using magnetic

tape with the B5500) yielded a value of $0.0003. Since C, is two orders

of magnitude greater than C , we shall consider the total cost, C, to be

equal to C, . Thus for a tableau of i+00, 000 nonzero data items, the cost

of inputting data by conventional means is $32000.00. This cost incurred

for a matrix generator with an average efficiency, e, of 50 is k-% of the

conventional cost or $^0.00. It should be noted that C was conservatively

estimated, and thus the total cost for inputting the data is probably

underestimated. In addition, the value of e will tend to increase as the

size of the model increases. Hence, the attractiveness of using a matrix

generator increases with the size of the model.
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MATRIX GENERATOR LANGUAGE

Many classes of linear programming problems can be formulated in

generic terms, requiring the definition of only one of each type of activ-

ity occurring in the model. For example, in an agricultural model, the

structures of the vectors defining the production of multiple crops are

identical so the model builder needs to define the structure only once.

Additionally, activity and constraint definitions can be made in such a

way that most of the nonzero matrix entries are unity, and therefore con-

stant for all problems of the class specified. Individual problem ma-

trices can be created by naming the specific activities required and aug-

menting the matrix skeleton with technical coefficients, objective func-

tion values and constraint levels pertaining to the problem.

A linear programming matrix can be regarded as consisting of a

number of sub-arrays created by a small number of geometric structures.

In the language described herein, there are twelve elementary structures,

six of which have mirror images, giving a total of eighteen structures.

A right mirror image is indicated by "(R)" prefacing the name of the ele-

mentary structure. The geometric structures and their generator names are

listed in Table 1. The term "value" refers to only nonzero coefficients.

The generator statement defining each sub-array has the form:

<structure (dimension): value list # repeat factor> .

Structures are either singly or doubly dimensioned. In the latter case,

the first integer in the parentheses specifies the number of rows in the

structure, and the second, the number of columns (except in the case of

BANDs, where the second refers to the number of diagonals in the structure);

The value list is either simple or compound. A simple value list is a

single value which is used for all elements in the structure. A compound

value list is a series of values (separated by commas) which are used in

accordance with the rules of the structure. For example, the DIAGONAL

structure accepts a compound value list and will use the first value in

the list as the first diagonal element, the second value in the list as

the second diagonal element, etc. Whenever a structure accepts a compound

value list and the list contains fewer values than are specified by the
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Table 1

Geometric Structures and Generator Names

Structure Generator Name

1. point, or single value

2. row

3. column

h

.

diagonal

5. band matrix: values above and
below main diagonal

6. lower band matrix: values only
below main diagonal

7. upper band matrix: values only-

above main diagonal

8. upper triangular matrix

9- lower triangular matrix

10. parallelogram

11. rectangle

12

.

square

POINT

ROW

COLUMN

DIAGONAL

(R) BAND

(R) LOBAND

(R) HIBAND

(R) HITRI

(R) LOTRI

(R) PARM

RECTANGLE

SQUARE
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dimension of the structure, the last value in the list is used to provide

the missing terms. Thus, if a value list of 1,2, 3, was supplied to a

DIAGONAL (5) structure, the resulting sub-matrix would have diagonal ele-

ments of 1,2, 3,3>3« Decimals may be written without a prefacing zero (i.e.,

both .5 and 0.5 yield the same value) and integers may be written without

a zero decimal part (i.e., both 1 and 1.0 yield the same value). The

value list may be input on cards, as in the examples of the data structure

below, or may be contained in a file identified in a structural statement

of the form:

<structure (dimension): file name (file location)> :

where the file from which the values are read may be cards, tape, or disk.

The repeat factor is an integer and specifies the total number

of contiguous structures to be horizontally strewn. For example, a decla-

ration of L0TRI(2) : 1 * 3 will produce 3 lower triangular matrices.

A characterization of the eighteen different structures by

dimension and value types is shown in Table 2. Specific examples for each

type follow. Although only integers are used to display sample structures,

reals are equally acceptable to the matrix generator code.

Table 2

Characterization of Data Structures

Dimens ion

Values

Simple Compound

Single

POINT, SQUARE,

(R)LOTRI, (R)HITRI

ROW, COLUMN,

DIAGONAL

Double
RECTANGLE (r)band, (r)loband,

(r)hiband

(r)parm
. 1

Examples of Data Structures

1. Single dimension, simple value list:
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POINT : 1 * 5

11111

SQUAEE(3) : 2

222
222

LOTRI(^) : 1 * 2

I 1

II 11
III 111
11111111

RLOTRI.(4) : 1 * 2
1 1

11 11
111 111
11111111

HITRl(if) : 1 * 2

11111111
111 111
11 11
1 1

RHITRI(^) : 1 * 2

11111111
111 111
11 11
1 1

2. Single dimension, compound value list:

R0W(5) : 1,2,3 * 2

1233312333

COIAMN(5) : 1,2,3 * 2

11
22

33
33
33

DIAGONAL^) : 1,2,3,^5 * 3111
2 2 2

3 3 3
k k k

5 5 5

3. Double dimension, simple value list:

RECTANGLE (3, 5) : 1
11111
11111
11111

k. Double dimension, compound value list:

-9-



EAND(6,5) : l,2,3,k,5

321
U321
5^321
5^321
5^32
5^3

BAND(6,5) : 1,2,3
321
3321
33321
33321
3332
333

RBAND(6,5) :

123
123k

123^5
123^5
23^5
3^5

LOBA.ND(6,5)
1

21
321
*J-321

5^321
5^321

1,2,3,^,5

1,2,3,^,5

L0BA.ND(6,2) : 1 * 2
I 1
II 11

11 11
11 11
11 11
11 11

RLOBAWD(6,3) : 1,2,3
1

12

123
123

123
123

HIBAND(6,5) : 1,2,3,^,5
5^321
5^321
5^32
5^3

5

RHIBA.ro(6,5) : 1,2,3
12333

12333
2333
333
33

3

parm(6,i+) :

I 1

II 11
III 111
11111111
11111111
11111111
111 111
11 11
1 1

1 *2 PARM(k,6)
2

22
222

2222
2222
222
22
2

RPARM(^,6)
2

22

: 2

2222

-10-
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Use of the Data Structures

In order to use these structures to create the matrix represen-

tation of a linear programming model, it is necessary to specify, their lo-

cations in the matrix. Experience in developing a prototype matrix gener-

ator showed that an explicit (x,y) coordinate system for expressing sub-

array locations was very complex to use even when x and y were expressed

as variables. The problem was that each sub-array is rigidly fixed to the

origin. Thus a change in the size of a preceding data structure could be

reflected only through increasingly complex coordinate expressions.

In response to this problem, a language has been developed in

.

which the sub-array coordinates are implied through specifications of the

activities and constraints. For example, suppose the following partial

L.P. matrix was to be defined in the matrix generator language:

Activities

Constraints

Obtain 1 unit

in period
1 p

Use 1 unit
in period
1 —

p

Save 1 unit
in period
1 p

Total units
accumulated

Initial
inventory

Monthly
salary

Dispose or -1

Accumulate

Disposal
Requirements

Addition to
savings '1-

=0

Monthly
expenses

-1 =0

-11-



We begin by defining a block of activities. In this case we will

define the activities of obtaining units in various periods. The ones on

the diagonal are the coefficients of the variables whose values the solution

algorithm will determine . The statement defining this block of vectors is

:

**OBTAIN UNITS BY PERIOD

The two asterisks denote the definition of a block of activities containing

PERIOD variables, where PERIOD has yet to be defined. If, for example, we

were considering 12 monthly periods in our model, we would define PERIOD as:

PERIOD = 12

After a block of activities is defined, the blocks of constraints applicable

to those activities are defined and data structures are supplied. For this

model we have

:

* INITIAL INVENTORY BY PERIOD

DIAGONAL (PERIOD) : 1

RHS( PERIOD) : MONTHLY SALARY ( CARDS)

* dispose/accumulate BY PERIOD

DIAGONAL (PERIOD) : -1

RHS(PERIOD) :

Note that RHS stands for right-hand side (constraint level) and that the pro^

vision exists for extracting nonzero data from card, tape and disk files.

** USE UNITS BY PERIOD

* dispose/accumulate BY PERIOD

DIAGONAL(PERIOD) : 1

* DISPOSAL REQTS BY PERIOD

DIAGONAL(PERIOD) : 1

RHS (PERIOD) : MONTHLY EXPENSES ( CARDS)

** SAVE UNITS BY PERIOD

* dispose/accumulate BY PERIOD

DIAGONAL (PERIOD) : 1

* ADDITION TO SAVINGS

ROW(PERIOD) : RETURN VECTOR (DISK)

RHS (PERIOD) :

** TOTAL UNITS
-12-



* ADDITION TO SAVINGS

POINT : -1

The preceding illustrates the nature of the matrix-generator

language and the format of the statements used to create a linear program-

ming matrix. The next section presents a more complex example which will

facilitate the reader's understanding of the procedure, and will demonstrate

the use of the generator for a "real" problem.

-13-



EXAMPLE MODEL

The model used as an example below is a conventional individual-

farm production planning model. The model is applicable to crop-livestock

farms, the characteristics of which are defined by the activity sets crea-

ted and by the nonzero data coefficients used in the matrix.

The model considers the production of crops on discrete tracts

of land, at various technological levels (fertilizer, row spacing, etc.),

and their disposal by sale or as livestock feeds. The disposal activities

are expressed on a periodic basis. The livestock alternatives are the feed-

ing of various types of cattle and hogs, where "type" means starting weight,
j

daily rate of gain, feeding period,, finished weight, or any other set of

variables affecting price and nutrient requirements

.

The Tableau

The example model is presented in tableau form, with generic struc-

tures shown for each of the sets of activities. The model sections are showr

in order from the top, left-hand corner of the matrix. Where a constraint

set is common to more than one set of activities, it is identified in the

diagram by the previously used name. The same is true for activity sets

using more than one constraint set. The complete matrix tableau can be re

constructed by matching-up the overlapping sets of constraints and activities.

The use of generic structures facilitates the creation of the L.P. ;

matrix for an individual problem through the use of the matrix generator

language

.

The individual sections of the generalized model are defined and ,

shown below.

1. The model first considers crop growing, which requires land

and labor, is subject to restrictions on crop acreages, and produces yields.

This is shown in Figure 1.

The coefficients I, V and £" are periodic labor requirements, pel

acre, for each of the crops. A given crop grown at a specified level has

a discrete set of these coefficients which are identical for each tract.

The coefficients y. are expected yields of each crop, at each levl,
J



Figure 1

Crop Production Activities

Grow 1 acre Grow 1 acre Grow 1 acre
CROP 1 at LEVEL 1 CROP 1 at LEVEL 2 CROP C at LEVEL 1 Right Hand
on TRACT 1-T on TRACT 1-T on TRACT 1-T Side

12 3. . . T 12 3. • • T 12 3. . . T (R.H.S.)

1 1 1 1

2 1 1 1

1-T 3 1 1 1

• # 9 • <acres in

I

• • • • TRACT 1-1

•

T
•

1 1 1

I 111. . .1 111. . .1
acreage

e

ction •

-
restriction

< by

-C

•

C 111. . .1 CROP 1-C

1 £ . . . 1 Xj . • • Ju Ju • • . Xj

2 V . . • V aj . . . Xj xj • • • Xj labor

• • • . • • available
i 1-P # • • . # . . < by

m * • • . . PERIOD 1-P
P r . . . r r . . . r r . . . . r

cry 1 -y . • • -y -y • • • -y

•

•

c -y . • . -y

=

ive

w = . . . c U • • • L> (—#••(_, = z(min.)
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on each tract. All the y are therefore discrete values.
J

The coefficients c . are the per acre costs of growing the crop.
J

These are constants for a given crop grown at a specified level, but vary

between crops and between levels.

2. To convert the per acre crop yields to total production of

each crop, thus allowing the consideration of disposal activities, a set

of storage activities is created.

Figure 2

Crop Storage Activities

Store 1 unit
of CROP 1-C R. H. S

•

1 . . . C

Inventory 1 1

by • • See

CROP 1-C •

•

C

•

«

1

Figure 1

Storage 1 1

Capacity 2 1

for
CROP 1 by
PERIOD 1-P

•

•

P
•

1

Capacity
for

CROP 1

Storage 1 1
Capacity
for

CROP C by
PERIOD 1-P

2

P

1

•

•

•

P

Capacity
for

~ CROP C

Objective
o See

Row Figure 1
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The geometric arrays described earlier in this report are all-inclusive,

hut a new feature of their use is encountered in Figure 2 and later figures.

This is the STEP function, which is used in cases where geometric sub-arrays

are repeated in a diagonal format. For example, in Figure 2, the storage

capacity constraints are columns of dimension (P), but each column starts

one row below the end of the column on its left. This structural format

is defined as < COLUMNSTEP > . All other basic array statements can have

<STEP> appended to them, with the same effect as here. This feature will

be encountered in later sections of the model and the associated generator

statements

.

3. Since periodic sale of the crop products is a feature of the

model, crop sale activities are defined.

Figure 3

Crop Sale Activities

! Sell 1 unit Sell 1 unit

'

of CROP 1 of CROP C R.-H.S.

in in
PERIOD 1-P PERIOD 1-P12... p 1 2 ... P

Storage 1 -1

Capacity
for

CROP 1

2

•

•

-1 -1

• • •

• • •

See
Figure 2

by # • • .

PERIOD 1-P P -1 -1 . . . -1

Storage 1 -1

Capacity
for

CROP C

2

•

-1 -1

* • •

• • •

See
Figure 2

by # • « •

PERIOD 1-P P -1 -1 . . . -1

Objective
Row

""C • • •
—G ™C-> • • • ™o

See
Figure 1

The coefficients -c . are per unit sale prices for each crop in

each period.
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k. The use of the crop products as livestock feeds (in this case,

cattle only are specified, hogs having the same structure) requires removal

from storage and specification of nutrient contents of each feed.

Figure k

Crop Use as Feeds Activities

Use 1 unit Use 1 unit
of CROP 1 for of CROP C for
Cattle feed in Cattle feed in R. H. S

.

PERIODS 1-P PERIODS 1-P
1 2 ... P 12. . . P

Storage 1 -1

Capacity
for

CROP 1 by

2

•

-1 -1

• « •

• • •

See
Figure 2

PERIOD 1-P
P

• * •

-1 -1 . . . -1

Storage 1 -1

Capacity 2 -1 -1 See
for • • • • Figure 2

CROP C by • • •

PERIOD 1-P •

P -1 -1 . . . -1

NUTRIENT 1 1 n n
1

Inventory 2 n n i

by
PERIOD 1-P

•

*

•

•

•

•

(

<

•

P
•

n
•

n

NUTRIENT N 1 n» n«

Inventory 2 n 1 n 1

1

by . • • >
PERIOD 1-P • • •

•

P n'

«

n"

Objective o See
Row Figure 1
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The coefficients, n, are the nutrient analyses per unit for each

feedstuff. The inequality constraint for nutrient 1 indicates a maximum rer

quirement for this nutrient, while that for nutrient 2 indicates a minimum

requirement

.

5. The final section of the model comprises the cattle feeding

activities. Each cattle type can "be started in the feedlot in periods 1 to

p, and is fed for a specified period of time, thus generating hand matrices in

the nutrient and feedlot capacity constraint rows.

Figure 5

Cattle Feeding Activities

Feed 1 head Feed 1 head
Type 1 Cattle Type 2 Cattle
starting in PERIOD 1-P starting in PERIOD 1-P R.H. S

.

1 2 ... P 1 2 ... P

NUTRIENT 1 1 -n -n

Inventory 2 -n -n -n -n See
hy . • • • • • • Figure k

PERIOD 1-P . -n • • •

. -n -n

P -n -n -n -n . -n -n

NUTRIENT N 1 -n' -n*

Inventory 2 -n'-n 1 -n'-n' See
hy • • • • . Figure k

PERIOD 1-P • -n« . .

• . -n !

.

P -n* -n' -n 1 -n 1

. . -n' -n 1

- Feedlot 1 1 1

Capacity
hy

PERIOD 1-P

2

•

•

1 1

• • •

1 .

1
111

1 1

• • *

• • •

1 .

1 . .11

Feedlot
< Capacity
(No. of

•

P
head)

Objective
!

Row
-c . . . -c -c . . . -c

Bee
Figure 1

The coefficients, -n, are the periodic requirements for each nu-

trient per head of cattle. For each type of cattle, the vectors of require-

ments for each nutrient are discrete. Within each cattle type, the column

vectors forming the hand matrix for a given nutrient are identical; i.e. ,

-19-



the coefficients of a given diagonal are constants. The number of coefficients

in each of the column vectors (thus the number of bands) is determined by the

feeding period specified for the cattle type.

The Matrix Generator Statements

This section demonstrates the use of the matrix generator to speci-

fy a matrix for an individual problem conforming to the generic structure

described above.

The characteristics of the problem to be modeled are as follows:

1. Five crops are considered:

) 2 fertilizer levels each;
soybeans )

rice )

sorghum ( 1 fertilizer level each.)

)

alfalfa )

2. Twenty tracts (fields) can be used to grow each crop.

3. Acreage restrictions exist for alfalfa, sorghum and rice. There

are no restrictions for corn and soybeans.

k. The number of periods to be considered for crop disposal and

cattle feeding is 12 (months).

5- The crop disposal alternatives are:

corn n
|

alfalfa ) sale or cattle feed; \

sorghum

soybeans)
) sale only,

rice (

6. The cattle types to be considered are:

Type 1: ^50 lb. start; rate of gain 2.0 lbs. per day; feeding

period 9 months;

Type 2: 600 lb. start; rate of gain 2.0 lbs. per day; feeding

period 7 months.

In the statements which follow, many of the individual data coeffi-

cients are not given explicitly, but are identified by their file locations.
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First, the list of variables to be used by the generator is defined.

This is followed by the actual structural statements, which are identified by

the preceding figures to which they refer.

C VARIABLE LIST

CROP = 2; CORN, BEANS

CR0P1 = 3; RICE, SORGHUM, ALFALFA

LEVEL = 2; FERTILIZER

LEVEL1 = 1; FERTILIZER

TRACT = 20

CL = CROP * LEVEL

LT = LEVEL * TRACT

CL1 = CR0P1 * LEVEL!

LT1 = LEVEL1 * TRACT

CC1 = CROP + CROP 1

PERIOD = 12

CATTLE = 2; TYPE 1, TYPE 2

GROWPERIOD = 9

GR0WPERI0D1 = 7

CPROD - CL * TRACT + CL1 * TRACT

STORE = CC1 * PERIOD

Figure 1

** CROP PRODUCTION BY CPROD

* ACRES BY TRACT

DIAGONAL (TRACT) : 1 * CL

DIAGONAL (TRACT) : 1 * CL1

RHS (TRACT) : FIELDACRES (CARDS); L

The first statement defines the matrix columns to be created

( CPROD = 1^0). The single asterisk statement identifies the constraint

set to which the structural statements refer. The DIAGONAL statements

cause the creation of 7 unitary diagonals of 20 elements each. The RHS

statement says that the 20 constraint level values are on a card file

called "FIELDACRES," and that these constraint equations are of the less-

than-or-equal type.
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* RESTRICTION BY CC1

ROWSTEP (LT) : * CROP

ROWSTEP (LT1) : 1 * CROP 1

RHS (CROP 1) : CROPAREA ( CARDS ) ; L,E,G

This set of statements defines the acreage restriction constraints.

The first ROWSTEP statement is used merely as a row counter "by the

generator, since there are no restrictions on corn and beans. The

specification of a zero value in these two rows indicates that the rows

are to be counted but not generated in the matrix. (This procedure can

be used with all other structures recognized by the generator. ) The

second ROWSTEP statement causes the creation of three stepped unitary

rows of 20 elements each. The RHS statement gives the source of the

restriction levels and identifies the nature of the inequalities, in

order, as less -than-or -equal, equal and greater-than-or—equal.

* LABOR BY PERIOD

COLUMN (PERIOD)

COLUMN (PERIOD)

COLUMN (PERIOD)

COLUMN (PERIOD)

COLUMN (PERIOD)

CORNLABOR (CARDS) * LT

BEANLABOR (CARDS) * LT

RICELABOR (CARDS) * LT1

SORGLABOR ( CARDS) * LT1

ALFALFALABOR ( CARDS) * LT1

RHS (PERIOD) : MANHOURS ( CARDS); L

The above statements define the structure of the labor constraints.

Each COLUMN statement specifies that a set of 12 values will be found

in the named file, and that each column is to be repeated the number

of times specified by the repeat factor. In this case, the labor re-

quirements per acre for each level of corn (and soybeans) are the same,

so only one set of coefficients is necessary for each crop. However,

cases could arise where the labor requirements would differ between

levels. In such cases, the crops would be defined as CORN and C0RN1,

and the labor requirements specified for each. Thus, the definition

of variables can be used to create models with quite different charac-

teristics, within a given generic structure. This holds, of course,

for applications in many areas other than agriculture.

-22-



* INVENTORY BY CC1

ROWSTEP (LT)

ROWSTEP (LT)

ROWSTEP (LT1)

ROWSTEP (LT1)

ROWSTEP (LT1)

CORNYIELD ( CARDS)

BEANYIELD ( CARDS)

: RICEYIELD (CARDS)

: SORGYIELD ( CARDS)

; ALFALEAYIELD ( CARDS)

RHS(CCl) : ; E

The ROWSTEP statements above generate the yield rows, the coefficients

"being retrieved from a series of card files. The RHS statement speci-

fies that the constraint levels are zero. This statement, although

resulting in no generated matrix values, is included because an RHS

statement is mandatory for each set of constraints specified, excepting

the OBJECTIVE ROW set.

* OBJECTIVE ROW

OBJECTIVE (TRACT)

OBJECTIVE (TRACT)

OBJECTIVE (TRACT)

OBJECTIVE (TRACT)

OBJECTIVE (TRACT)

OBJECTIVE (TRACT)

OBJECTIVE (TRACT)

CORNCOST (CARDS)

CORNCOST1 (CARDS)

BEANCOST (CARDS)

BEANCOSTl (CARDS)

RICECOST (CARDS)

SORGCOST (CARDS)

ALFALEACOST ( CARDS)

The OBJECTIVE ROW coefficients for this section of the model are the

per acre growing costs for each crop and level of crop.

Eigure 2

** CROP STORAGE BY CC1

* INVENTORY BY CC1

DIAGONAL (CC1) : 1

* STORAGE BY STORE

COLUMNSTEP (PERIOD)

RHS (PERIOD)

RHS (PERIOD)

RHS (PERIOD)

RHS (PERIOD)

1 * CC1

CORNSTORE (CARDS) ; L

BEANSTORE ( CARDS) ; L

RICESTORE (CARDS) ; L

SORGSTORE ( CARDS) ; L
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* RHS (PERIOD) : ALFALFASTORE (CARDS) ; L

It should be noted that the INVENTORY constraint set defined above

does not require an RHS statement, this having been defined in the

generator statements referring to Figure 1.

* OBJECTIVE ROW

OBJECTIVE (CC1):0

Although the objective coefficients for this section of the model are

zero, and are therefore not generated, the OBJECTIVE statement is includ-

ed because it is mandatory for each set of activities defined.

Figure 3

** CROP SALES BY STORE

* STORAGE BY STORE

LOTRISTEP( PERIOD) *-l, -1, -1, -1, 0*CCl

* OBJECTIVE ROW

OBJECTIVE (PERIOD)

OBJECTIVE (PERIOD)

OBJECTIVE( PERIOD)

OBJECTIVE (PERIOD)

OBJECTIVE (PERIOD)

:CORNPRICE( CARDS)

:BEANPRICE( CARDS)

:RICEPRICE( CARDS)

:SORGPRICE( CARDS)
j

j

:0

t

The LOTRISTEP statement above creates four contiguous, stepped

lower triangular matrices of value -1 and leaves a zero array of the same

dimension in the set of storage constraints defined for alfalfa, since this
(

is not sold. This is necessary because the number of constraints specified 1

in the structural statement must conform to that defined by the single

asterisk statement, in which <STORE> is the operative variable.

The zero value in the last statement corresponds to alfalfa,

which is not sold.

Figure k

** CROP FEEDING TO CATTLE BY STORE

* STORAGE BY STORE

LOTRISTEP(PERIOD) : -1,0, 0, -1, -1*CC1

* NUTRIENT 1 BY PERIOD

DIAGONAL ( PERIOD : CR0PANALYSIS1( CARDS ) *CC1

RHS (PERIOD) :0;L



* NUTRIENT N BY PERIOD

DIAGONAL^ PERIOD) : CROPANALYSISN( CARDS ) * 1

RHS ( PERIOD ):OjG

* OBJECTIVE ROW

OBJECTIVE(STORE):0

The zero values in the LOTRISTEP statement above are included because

neither soybeans nor rice are to be considered as cattle feeds. The

remainder of the above is self-explanatory.

Figure 5

** CATTLE FEEDING BY CATTLE*PERIOD

* NUTRIENT 1 BY PERIOD

LOBAND( PERIOD, GROWPERIOD) : CLNUTRIENTl( CARDS

)

LOBAND( PERIOD, GROWPERIODl) : C2NUTRIENTl( CARDS)

* NUTRIENT N BY PERIOD

LOBAND( PERIOD, GROWPERIOD) :

1

LOBAND( PERIOD, GROWPERIODl) : 1

* FEEDLOT CAPACITY BY PERIOD

LOBAND( PERIOD, GROWPERIOD) :

1

LOBAND( PERIOD, GROWPERIODl) :

1

RHS ( PERIOD : FEEDCAPACITY ( CARDS ) ;

L

* OBJECTIVE ROW

OBJECTIVE ( PERIOD : C1PRICE ( CARDS

)

OBJECTIVE ( PERIOD : C2PRICE ( CARDS

)

*** END

The above series of statements defines the cattle feeding sections, causing

the structuring of a series of band matrices with the number of bands (9

and 7 respectively) conforming to the feeding period (GROWPERIOD) for each

cattle type. The data on nutrient requirements are derived from a series

of card files as specified.

The output from the matrix generator is in SHARE standard format,

which is accepted by most linear programming codes. In the case of the

above example, the generator will produce a model of 289 columns, 139 rows

and 3^59 nonzero coefficients. The non-unit coefficients must, of course,



be card/punched, but due to the use of repeat factors, the number of co-

efficients input is small (508). A further reduction in card input is

achieved by the use of the row type descriptors in the <RHS> statements.

The net reduction here is 139* Thus, the number of cards required to

input this model is reduced from 3598 to l6l.

An additional advantage derived from this type of matrix gener-

ator is that the user-defined names can be passed to a report-generator

which interprets the solutions and outputs them in a report, with format

specified by the user, in which the assigned names are utilized. The de-

velopment of a report generator, which will contribute further to cost re-

ductions in the use of linear programming, is currently being undertaken.

This will be the subject of a later paper.
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CONCLUSION

As the use of linear programming becomes more widespread in

the solution of large resource-allocation problems, it is becoming evi-

dent that automation and simplification of matrix preparation and computer

input must be accomplished in order to reduce the high costs of using the

technique.

We feel that the matrix generator language described in this

paper represents a significant advance in the state of the art, and will

lead to considerable cost reductions in many areas in which linear pro-

gramming is applied. This generator has the advantages that it is easy

to learn and apply; it allows complete user freedom in the naming of ac-

tivities and constraints; it's use greatly facilitates the introduction

of changes in the structure of models; and the concept of the generator

itself is independent of the linear programming code, the computer, and

the model with which it is to be used.
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