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THE PROBLEM 

Investigate oceanographic factors pertinent to the behavior 

of underwater sound and to surface and subsurface navigation. 

Specifically, study the thermal structure of the upper sea layers 

by use of a towed thermistor chain. 

RESULTS 

ih The slopes, autocorrelation, and power spectra of isotherms 

obtained with the U. S. Navy Electronics Laboratory (NEL) therm- 

istor chain in sections of detailed sea temperature structure from 

San Diego, California, to Honolulu, Hawaii, showed the median of 

the absolute values of vertical slope, in over 40, 000 data samp- 

lings, to be 0°16" and the 70th percentile of the absolute values of 

slope to be 0°30'. 

2G The autocorrelation of depth of encounter of isotherms in the 

sea at 30- and 60-minute lags has higher values near California 

than near Hawaii. 

3. The significant high-frequency peaks in the power spectrum 

of isotherms are distributed in patches all the way from the 

California coast to the Hawaiian coast; however, they appear to be 

a little more numerous in the central part of the section. 

RECOMMENDATIONS 

ay Continue development of the thermistor chain to improve the 

quality, accuracy, and reliability of the data. 
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PX Make detailed studies of the thermocline and its associated 

internal waves by use of the chain. Include studies of the effects 

on the thermocline of islands, shoals, coastal configurations, 

tides, currents, upwelling, river runoff, water-mass boundaries, 

storms, and seasons. Particularly, acquire more data on the di- 

rection and speed of internal waves. 

Be Investigate the use of other sensors, in conjunction with 

temperature on the thermistor chain, for current, sound velocity, 

and salinity. 
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viewing this report. Thanks are also due Mrs. Rita Brown for 

the programming and machine computation, and to the Command- 

ing Officer, LT John Baldwin, and other personnel of USS 

MARYSVILLE for making possible the collection of data. 
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INTRODUCTION 

The NEL thermistor chain has been in operation since 1961 

and is capable of measuring and recording vertical sections of sea 

temperature structure from the surface down to a depth of 800 

feet. USS MARYSVILLE (EPCE(R) 857), from which the chain is 

operated (fig. 1), conducted Cruise 1, the first test of this equip- 

ment, over the nearby San Diego Trough in June 1961, and the re- 

sults have been reported.’ Cruise 2 was made between 10 and 14 

July 1961 off Southern California.” Cruise 3 entailed a test near 

San Clemente Island. 

Cruise 4, the subject of this report, was from San Diego, 

California, to Honolulu, Hawaii (fig. 2). The purpose was to 

study the nature of vertical variations in temperature structure of 

internal waves in the deep ocean regions well away from shore, 

Figure 1. NEL thermistor chain hoist used on USS MARYSVILLE to obtain data. 
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Figure 2. Track of USS MARYSVILLE showing locations A to P where data were 

collected between San Diego and Honolulu. 

specifically, for each of two selected isotherms, to investigate the 

depth change or slope; the autocorrelation of successive depth 

measurements; and the power spectrum of the depth between San 

Diego and Honolulu. 

EQUIPMENT 

The NEL thermistor chain has been described in previous 

reports.” — The sea and deck units consist of a chain hoist, chain 

links, and the drum on which the chain is wound. This large, 

rugged assembly weighs 37,500 pounds. The chain is composed of 

flat links about 1 foot long, 10 inches wide, and 1 inch thick. At 

the end of the chain is a 2,300-pound, streamlined weight, called 

a "fish, '' to hold it down. 

About 100 pairs of insulated electrical leads fit through 

grooves inside the flat links. The electrical wires are connected, 



at intervals of 27 feet, to the temperature sensors, or thermistor 

beads. 

The upper ends of the electrical leads are connected to a 

recorder located in the ship's laboratory. Signals from the leads 

are scanned electronically every 10 to 12 seconds, and lines show- 

ing the depths of isotherms are printed on 19-inch-wide tape. 

This procedure is equivalent to lowering a bathythermograph 

every 100 to 120 feet at a ship's speed of 6 knots. Also printed on 

the same tape are the depth of the fish at the end of the chain, 

which is the maximum depth of observation, and the temperature 

of the sea surface. 

With the thermistor chain it is possible for USS MARYS- 

VILLE to lower a string of temperature sensors into the water and 

then cruise ahead with the string suspended vertically from its 

fantail. Since elements are sensing from the surface down to about 

800 feet while the ship is moving through the water horizontally, 

two dimensions of coverage, depth and distance, are achieved. | 

However, time, a third dimension, must also be considered. 

The thermal structure presented here is more properly the 

"structure of encounter," or "depth of encounter," of isotherms. 

The vertical scale is depth, but the horizontal scale may be con- 

sidered as both time and distance. The amplitude of the vertical 

changes in isotherms is correct in either sense, but in 10 or 12 

hours some time changes must certainly have occurred at the be- 

ginning of the section when the end is being recorded. The struc- 

tures will in reality portray a spatial plot rather than time changes 

since the advective and vertical-oscillation changes caused by in- 

ternal waves occur much more slowly than the movement of the 

ship across the section. Therefore the detailed thermal-structure 

data presented (fig. 3) can be described as vertical sections in the 

sea in the same manner as are other oceanographic sections de- 

rived from serial station data. 
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Figure 3. Example of temperature data taken with the thermistor chain between 

San Diego and Honolulu. 

OBSERVATIONS AND DATA 

Procedure 

The ship's course on Cruise 4 consisted of a great circle tow 

between deep water off San Diego to deep water off Honolulu. The 

chain was towed the entire distance and recorded temperature from 

the surface to a maximum depth of about 750 feet at a speed of 6 

knots. However, for one hour each day the ship's speed was in- 

creased to 8 knots, and thus the towing depth decreased for this 

period. 

The long, continuous section of isotherms constituted the 

source of raw data. Inspection revealed that any given isotherm 

became progressively deeper as the ship proceeded westward and 

southward from the California coast. Also the surface water be- 

came warmer and the vertical gradients were weaker toward 

Hawaii. 



During the tow some temperature sensors in the string of 34 

developed electrical shorts and did not operate properly. This is 

shown by flat lines in the data. The shorts nullified detection of 

any isotherm passing through the depth of the faulty sensor. This 

did not, however, affect the recording of isotherms at other depths. 

It was feasible to choose and analyze the characteristics of iso- 

therms at other valid depths. In the example of raw data (fig. 3), 

the 18- and 23-degree isotherms were chosen for analysis. 

The data samples used were from an 8- or 12-hour continu- 

ous section each day for 16 consecutive days. Shown in figure 2 is 

the location of the sections used and in table 1 the specific times, 

positions, and sample size. 

Nature of Vertical Oscillations 

The nature of the detailed vertical changes in the isotherms 

has not been investigated in an open sea area before nor has the 

cause of vertical oscillations been established. It seems fairly 

certain that the density boundaries in the sea should have certain 

frequencies of oscillation and modes thereof. Eckart, referring 

to Vaisala,° points out that a given density boundary may have its 
own normal oscillating frequency, the Vaisala frequency. Still 

another possibility is that strong winds may create convection 

cells and eddies in the upper layers of the sea, the circulation of 

which will cause the thermocline to be lowered more in one area 

than another. Tidal forces causing water movement around land 

boundaries and topographic features can start oscillation in the 

thermal structure. There is, however, reason to believe that the 

vertical variations observed with distance in the isotherms are in- 

ternal waves moving in one or more directions. The progressive 

nature of these oscillations in shallow water has been determined 

by studies conducted from anchored ships and from the NEL 

Oceanographic Research Tower. a 

The detailed recording of isotherm depths indicates the com- 

plicated character of oceanic thermal structure and emphasizes 

the exceedingly complex nature of the sea, not only in temperature, 

but in chemical, biological, and other aspects. 
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VARIABILITY 

Changes in sea temperature at the surface and at various 

depths, which thus change the depth of isotherms, may be attrib- 

uted te any of several factors, among which are the advection of 

water of different temperature into an area; radiation from the sun; 

mixing by the wind; tidal currents; internal waves; and others.” 

Since all the factors simultaneously exert influence, it is difficult 

to determine their individual effects. 

Several investigators have made studies of the variability of 

surface and subsurface sea temperatures.” ~ Others have devel- 

oped methods for the statistical analysis of physical properties ap- 

plicable to sea temperature variability .* °° In this report, three 

approaches to the study of isotherm depth variability are used: 

(1) differences in depth values; (2) autocorrelation of depth values; 

and (3) power spectrum of depth values. 

Differences in Depth Values 

The first method of presenting the isotherm variability is by 

depth differences from point to point along the isotherm. For this 

the depths of isotherms were scaled from the original record in 

each section at half-minute intervals. 

The selected sections are listed in table 1. One of the iso- 

therms chosen for analysis was located in the main thermocline 

and the other below the main thermocline. These must also be at 

a level where the sensors were operating properly. Those chosen 

in the data section (fig. 3) were the 18° and 23°C isotherms. 

The depth differences from point to point along the isotherms 

were determined from the formula: 

Le ees aly 

1=k=N 
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Xemandwar a are depths (feet) of a given isotherm at the be- 
1 1 

ginning and end of the 7th distance (or time) interval along the 

track; Y , is the depth difference (feet). When the isotherm is 

falling, the difference is negative. 

From the speed of the ship and depth differences, approxi- 

mate slopes can be obtained. At a speed of 6 knots, the ship trav- 

eled 304 feet in each half-minute interval; therefore the dividing of 

the depth differences by 304 feet gave the slope of the isothermal 

surface in the direction of the ship's motion. This slope could also 

be expressed by the angle having this slope for a tangent. 

From 1010 to 1440 consecutive observations of isotherm 

depths were made on each sample section of Cruise 4. The dis- 

tributions of depth changes and slopes for each selected isotherm 

on each 8-12 hour section of the cruise are diagrammed as a 

cumulative frequency curve of depth changes and slope angle in 

Appendix A. 

Appendix A shows that half-minute depth changes as great as 

plus or minus 30 feet were observed over a distance of 304 feet in 

several of the isotherms. This corresponds to a vertical angle of 

5°45', On the other hand 58 per cent of all the adjacent half- 

minute readings showed changes of less than one foot for the shal- 

low isotherm, and 51 per cent for the deep isotherm. An example 

of the S-shaped nature of the cumulative frequency curve (or per 

cent of observations) is shown in figure 4. 

The change in depth of this 20°C isotherm may be plus or 

minus. In figure 4 the 25th and 75th percentile depth changes are 

-1.3 and +1.4 feet; thus in 50 per cent of the cases the change is 

less than about 1.35 feet (in absolute value) in a horizontal dis- 

tance of 304 feet. The 15th and 85th percentile changes occur at 

-2.3 and +2.7 feet with 70 per cent of the data in this range. The 

corresponding vertical angles are less than 0°15' (in absolute 

value) for the central 50 per cent of the cases and less than 0°28' 

for the central 70 per cent of the data. This example is a nearly 

typical case since the median of the absolute values of 44, 000 data 

samplings is 0°16', and the 70th percentile of the absolute values 

of slope is 0°30'. 

13 
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Figure 4. Example of cumulative percentage distribution of differences in depth 

between half=minute or 304-foot spaced readings of 20°C isotherm on section H. 

The 25 and 75 percentile delineating the central 50% of Data and the 15 and 85 

percentile delineating the central 70% of Data. 

To summarize the variability of depth changes (Appendix A), 

points were scaled from each of the cumulative percentage distri- 

butions of changes in depth per 304 feet, which corresponded to the 

25th and 75th percentile of depth change and the absolute values 

averaged. Similarly the 15th and 85th percentiles were also de- 

termined and averaged. The latter average is somewhat analogous 

to the "significant wave" method whereby the upper 30 per cent is 

"average.'’ However, here the value represents a depth change 

greater in absolute value than 70 per cent of the observations. 

As an alternate treatment of the data, a cumulative percent- 

age distribution curve for the absolute values of depth differ- 

ences could be plotted. The new 70th percentile change would 

agree almost exactly with the average of the absolute values of the 

15th and 85th percentiles discussed above. Hence, that average 

will be designated 70th percentile of absolute value of depth change 

(70th percentile - depth change). Likewise the 50th percentile in the 

alternate treatment would agree with the average of the absolute 

values of the 25th and 75th percentiles discussed in the previous 

paragraph, and that average will be designated 50th percentile - 

depth change. 



In order to compare with other sample sections, the 70th per- 

centiles and 50th percentiles of absolute values of slope were plotted 

infigure 5 for boththe selected isotherm inthe main thermocline and 

the isotherm below the main thermocline. All of these angles, of 

which half of the depth changes were greater and half less in absolute 

values, are shown (fig.5, bottom section) with reference to longitude. 

ISOTHERM BELOW MAIN THERMOCLINE 

----- ISOTHERM IN MAIN THERMOCLINE 
HONOLULU SAN DIEGO 

70 
PERCENTILE 

VERTICAL ANGLE IN MINUTES 

158°W 150° 140° 130° 120° 

LONGITUDE 

Figure 5. Summary of differences in depth of between halfeminute or 304-foot-spaced 

depth readings of isotherms between San Diego and Honolulu. 

Upper: Seventy percentile of absolute value of slope of an isotherm in the 

main thermocline and an isotherm below the main thermocline. 

Lower: Fifty percentile of absolute value of slope of an isotherm in the 

main thermocline and an isotherm below the main thermocline. 

15 
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Although there was considerable variability in changes in the 

vertical angle expressed in the 70th and 50th percentiles - slope, 

the results show that the 70th percentile - angle varies from 16 to 

56 minutes. In general the slope becomes a little less when run- 

ning from San Diego toward Honolulu where the vertical gradients 

are weaker and the internal waves are larger. The slopes of the 

deeper isotherm are usually less than the one in the main thermo- 

cline where the vertical gradients are stronger. The average 

slope of the latter is around half a degree. 

The slopes of the 50th percentile - slope plotted in the lower 

part of figure 5 necessarily show lower angles with an average 

slope of around 16 minutes. This condition undergoes a great deal 

of variation with a tendency for lower median angles toward 

Honolulu. 

Autocorrelation of Depth Values 

Another approach to measuring subsurface temperature var- 

iability is by means of autocorrelation coefficients. By using the 

same half-minute isotherm depth data, autocorrelations were com- 

puted for each leg of the cruise and each selected isotherm. Suc- 

cessive pairs of points at equal but overlapping time intervals were 

correlated with each other and the process repeated for each time 

interval, increasing by one-half minute steps from one half a min- 

ute to 72 minutes, or 144 lags. Autocorrelation, Ay , was com- 

puted for increasing intervals, A, of 304 feet (half minute), using 

the expression: 

N-xr INN INS 2S 
(-A) 2, Holle = x, Me oo 

iS ail =i, =i 
Fy 

W-d w-a |?)5 oh. 2% |? 
WED) Dae, S|) DD ze (WER) DB, 208. || DO 

t+Xr utr 
t=1 t=1 t=l1 =1 

where A=0, 1, 2, ..... 144 lag intervals, 1 = total number of 

depth recordings inarun. J is usually 1440, and 2 is 10° 



The computed autocorrelations of all the selected isotherms on 

each sample section of the cruise were plotted for comparison in 

Appendix B. 

One example of the autocorrelation is shown in figure 6. 

Starting with zero lags (0 minutes) the autocorrelation 2) is 1.0, 

but as the lags increase the correlation becomes less and in some 

cases negative. In this example, after 60 lags the value of hy is 

reduced to 0.76; 120 lags, 0.64; and 144 lags, 0.61. 

In order to summarize the autocorrelation of successive 

depth changes with time and distance, two points were scaled off 

the individual plots of autocorrelation, one at 60 lags (30 minutes) 

and another at 120 lags (60 minutes). Then, in order to compare 

these autocorrelations with those of other sample sections they 

were plotted with reference to longitude on the section between San 

Diego and Honolulu (fig. 7). 

The upper part of figure 7, identified as A, shows the auto- 

correlations for the lags at 60 and 120 half-minute stops (is ) = 60 

and 120) for the isotherm in the main thermocline whereas the 

lower figure, B, is a similar presentation for the isotherm chosen 

Ry, 0.5¢ 
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Figure 6. Example of autocorrelation of successive halfeminute readings of the depth of 

20°C isotherm on section H. The 60-lag (302minute) and 120-elag (60-minute) values are 

indicated. (\}=60 and 120 respectively). 
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60 LAGS (30 MIN) 

HONOLULU 

1.0 

ISOTHERM IN 

0.8 MAIN THERMOCLINE 

0.6 

R 
nN 
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0.2 

0 

A. Isotherm in main thermocline. 

ISOTHERM BELOW 
MAIN THERMOCLINE 

R 
m\ 

158°W 150° 140° 130° 120° 

LONGITUDE 

B. Isotherm below main thermocline. 

Figure 7. Summary of autocorrelation of selected isotherm depth values at 60 lags 

(30 minutes, \ =60) solid line and 120 lags (60 minutes, \ =120) dashed line for each 

set of data between San Diego and Honolulu. 

below the main thermocline. Both A and B contain considerable 

variation in the autocorrelation values with reference to longitude. 

However, there is some similarity in the fluctuation. As might be 

expected, the value of £) is nearly always less for the greater 

lags (120) than for the fewer lags (60). The values of autocorrela- 

tion (fig. 7), like those of the slopes (fig. 5), decrease slightly 

from the San Diego area toward Honolulu. 

-—--==} 120 LAGS (60 MIN) SAN DIEGO 



Power Spectrum of Depth Values 

The third method of representing variability is by the power 

spectrum cere Wana he power spectrum U(h) is given by the 

Fourier transform of the autocorrelation, &. It is the energy per 

unit bandwidth and thus designed to emphasize the dominant fre- 

quencies, since the amplitudes are squared. The smoothed power 

spectrum values were obtained as follows: 

1 A=n-l LN Ne 

=o dy He T(t) == B(O) R (A) (1 + cos —) cos 

= i 

where h=0, 1, 2, 3.... m index number of frequency 

(actual frequencies are given 

by 1 /(2At) cycles/min, 

Nee —y/ Zemin) sean 

X=0, 1, 2, 3.... nm is the lag number 

The results of the computed power spectra of all the selected 

isotherms on each section of the cruise were plotted for compari- 

son in Appendix C. 

One example of the computed power spectrum is shown in 

figure 8. The importance of the power spectrum lies in the peaks 

in the curve that indicate frequencies (or periods) in the original 

data which may have been obscured by "background noise.'' Of 

significance is the fact that this example of power spectrum has a 

large number of peaks or peak zones ranging in frequency* of 

*Here the sampling chain is moving through aquasi-stationary field 

of internal waves and the frequencies discussed are ''frequencies of 

encounter.'' The wave lengths are nominal ones computed from the 

ship speed of 6 knots assuming that the internal waves are essen- 

tially stationary, i.e. are moving much slower than 6 knots. One 

should expect broad peaks or "peak zones"'as often as narrow peaks 

if the internal waves are traveling in all directions; e.g. if inter- 

nalwaves ofonly a very narrow band of frequencies arrived 

from ali directions, the straight track of the ship would intercept 

apparent wavelengths corresponding to a broad band of fre- 

quencies. 
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0.056 to 0.318 cycle per minute, which is equivalent to a period of 

17.9 to 3.1 minutes or a wave length of 1.8 to 0.3 miles. When 

the peaks are wide they are considered as zones; for example, 

0.121 to 0.163 cycle per minute (or 0.8- to 0.6-mile wave lengths) 

is considered a zone. 

The power spectrum curve shows that the greatest power is 

in the low frequencies which show no peaks. The number of de- 

2 
grees of freedom is given by UV = an 5° When using 1440 consec- 

n 

utive depth sample values and 144 lags, vy = 19.5. The correspond- 

ing ratio of computed to true value’ falls between 0.54 and 1.60 

for 90-percent confidence limits. 

The ratio of background to peak height was determined by 

constructing a base line and vertical height (fig. 8). For example 

the 4.6-minute-period peak of this 20°C isotherm depth has a 

peak-to-background of 52 to 17, or a ratio of 3.06, which is signi- 

ficant, whereas the 17.9-minute-period peak (fig. 8) has a ratio of 

1.21, which is not significant. 

To summarize the power spectrum, the peaks and peak zones 

were read from the individual power spectrum graphs, and the 

peak-to-background ratio was computed and plotted (fig. 9A) for 

the data sections in an isotherm in the thermocline and (fig. 9B) 

for data sections in the isotherm below the thermocline. In both 

graphs the values were arranged with reference to longitude and 

frequency. Thus figures 9A and 9B are similarly portrayed as a 

longitude section from near San Diego to near Honolulu. 

In addition a contour was drawn for ratio values of 1.6 and, 

when present, 2.0. Values greater than 1.6 are considered signi- 

ficant in accordance with the 95-per cent confidence limits. 

The contours show that zones of significant frequencies of 

vertical changes in isotherm depths vary widely from sample to 

sample. No value exceeds 3.1. The higher or more significant 

values appear to be distributed in patches. However, for the shal- 

low isotherm in the thermocline (fig. 9A) the higher values are a 

little more frequent near a midway zone and nearly to Hawaii. 
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The similar plot of power spectrum peak to background of 

the deeper isotherm (fig. 9B) also shows more high values in a 

midway zone to Hawaii. The most persistent significant values 

occurred between 140 and 150°W where the frequency was 0.15- 

0.23 cycles per minute (cpm) or a wavelength of 0.7 to 0.4 miles. 

However, in general no single frequency persists over great dis- 

tances. There are, however, a number of peaks with ratios 

greater than 1.6 all along the entire section. 

RECOMMENDATIONS 

Ie Continue development of the thermistor chain to improve the 

quality, accuracy, and reliability of the data. 

Ph Make detailed studies of the thermocline and its associated 

internal waves by use of the chain. Include studies of the effects 

on the thermocline of islands, shoals, coastal configurations, 

tides, currents, upwelling, river runoff, water-mass boundaries, 

storms, and seasons. Particularly, acquire more data on the di- 

rection and speed of internal waves. 

3. Investigate the use of other sensors, in conjunction with 

temperature on the thermistor chain, for current, sound velocity, 

and salinity. 
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SUMMARY AND CONCLUSIONS 

The sections of temperature structure between a point off 

San Diego to Honolulu provided new detailed data of the upper 

layers of the sea. 

The slope of the isotherms in two levels at 16 locations re- 

vealed that the median absolute value generally became less steep 

away from the California coast. Similarly, the deeper of the two 

isotherms, selected where the vertical temperature gradient was 

weak, had a greater number of larger vertical angles than the 

shallow one. 

The autocorrelation of successive depth values of given iso- 

therms became smaller more rapidly with increased distance from 

the California coast. The power spectrum of the depth of iso- 

therms showed peaks at varying frequencies. The higher and more 

significant peaks appear to be most numerous in a zone half way to 

Hawaii than in other parts of the section. 
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POWER SPECTRUM, FT2CPM 

FIGURE SECTION 
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POWER SPECTRUM, FT2CPM 

FIGURE SECTION 

C-31 P-1 SHALLOW 

C-—32 P—2 DEEP 
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