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Abstract

This research describes the proper specification and measurement of

portfolio skewness and presents empirical results abcut the behavior of

skewness parameters as portfolio size is altered. Since the analysis is

mathematical in nature, the concepts developed in the paper can be

applied to any security population.





MEASURING PORTFOLIO SKEWNESS

Traditional portfolio theory using the mean and variance of security

return distributions is appropriate if investor utility functions are

quadratic or if return distributions are characterized completely by their

first two moments. Because of the restrictive assumptions required for

mean-variance analysis, Arditti [2], Jean [20], Kraus and Litzenberger

[22] and others [10, 21, 23, 30] have extended portfolio analysis to in-

clude the third moment of the expected return distribution. Recent papers

by Simkowitz and Beedles [30], Kane [21], and Conine and Tamarkin [10]

demonstrate that consideration of return distribution skewness can affect

the measurement of expected utility and explain seemingly contradictory

investor behavior such as antidiversification.

The purpose of this paper is to develop the proper mathematical mea-

surements for portfolio skewness and to examine the behavior of skewness

statistics across different types of portfolios as portfolio size is

varied. Our concern is with the proper estimation and measurement of

portfolio skewness, not with the efficiency of any particular portfolio

from an investment strategy or valuation perspective. Since the analysis

is statistical in nature, the concepts can be applied to any security

group.

Using several years of security data, skewness characteristics are

calculated and compared for portfolios of common stocks, covered options

and long option positions. The negatively skewed covered option returns

permit an interesting contrast with the positively skewed stock and long

option portfolios and illustrate that skewness and expected utility need

not always deteriorate with diversification. Furthermore, because of the
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extreme heterogeneity in security distribution moments within each port-

folio population, the data demonstrates the importance of considering the

variance in skewness and cross-sectional return deviations when estimating

portfolio skewness. Our results have important implications for research

[10, 21] using portfolio construction rules based on risk-skewness trade-

offs assuming portfolio parameter homogeneity. .

In the following section the theoretical motivation for the analysis

of skewness is examined as well as analytical considerations regarding the

measurement of portfolio skewness. Part III describes the data base and

methodology employed, while Part IV presents the empirical results. Con-

clusions and implications are contained in the final section.

II. EXPECTED UTILITY AND THE
MEASUREMENT OF PORTFOLIO SKEVJNESS

Let R be a random variable representing return on investment and

U(R) a utility function quantifying the utility to an investor of the re-

turn, R. Let E(R) denote the expected value of the random variable R.

If the mathematical assumptions are satisfied, U may be expanded around

E(R) in a Taylor series and expectations taken of both sides to solve

for the expected investor utility of R:

E[U(R)]=U[E(R)]. ^"f^^^>U^^ ^"'t^^^^J M^^ " ^^^-^^^ (1)

n=4

where a M_ and M^ represent the variance, skewness and higher moments

of R's probability distribution.

Sufficient conditions which require the inclusion of the third moment.

Ml, to evaluate expected utility include: a utility function of higher

order than quadratic, or the inadequacy of the mean and variance to describe
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the distribution of returns. Research [2, 11, 21, 22, 28] has demon-

strated that a preference (aversion) for positive (negative) skewness is

consistent for rational investors having utility functions other than

quadratic. Much research [2, 3, 4, 5, 6, 14, 15, 17, 18, 24] has examined

the positive skewness typically found in stock returns. Regarding options,

the empirical literature [19, 25, 26, 27, 32] consistently reports non-

normal, skewed return distributions across different samples and various

differencing intervals. Given the empirical presence and theoretical

importance of skewness, an accurate measurement of portfolio skewness is

crucial if the impact of alternative diversification policies upon in-

vestor utility is to be accurately assessed. Proper evaluation of port-

folio skewness requires consideration of the following three skewness

components

.

A. The Expected Level of Time Series Skewness

Portfolio skewness traditionally is measured by the skewness in the

time series return distribution. In a portfolio context, this skewness

3
in return, M , on a portfolio of n securities is calculated as:

- n n n
M = Z E E x,x.x,M.., (2)n.T.-,,iiicijk ^'

1=1 j=l k=l -" -^

where x,, x., and x, represent the portfolio proportions invested in as-

sets i, j, and k and M. indicates the coskewness between the time series
ij tc

returns on i, j, and k.

Under a naive or random investment policy of equal investment in each

security, equation (A5) gives the relationship between the expected level

of skewness for a portfolio of n securities and the market level of skew-

7 3
ness: '
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E(„3, , i.^_]
r^ (K-l)(N-2)-(,-l)(n-2) 5^3 ^ 3 („.„ („.„,5.

'

" n (N-2) L *"^' ^'l

n (N-l)(N-2)

where: E(>r) = expected skexmess on a portfolio of n securities

n = niimber of securities in the portfolio

N = number of securities in the population

—3
M = average skewness for a one security portfolio

M. = average curvilinear relationship for the population

>C = market (systematic) skewness for an equally-weighted
portfolio of all N securities in the population

Examination of equation (A5) reveals that the effect on E(M ) of
n

changing portfolio size is a priori indeterminate. Unlike portfolio re-

3turn and variance, the parameters describing E(M ) can assume positive, nega-

3
tive or zero values; thus, E(M ) may increase, decrease or remain the

same with diversification. In addition, equation (A5) indicates that ex-

_3
pected skewness equals the average one security skewness, M , when n = 1,

then passes through the average curvilinear product, M..., and eventually

3equals market portfolio skewness, K^^, when n = N.

Because coskewness structures differ across security groups, diver-

sification will have different effects on E(>r) for alternative portfolios.
n

Strategies including call options, for example, contain extreme leverage

but low correlation of returns, whereas portfolios of stocks and covered

options are more conservative with higher correlation in returns. Conse-

3quently, the relative magnitudes of systematic, M,^, and unsystematic,

(M^ - fl,) , skewness will vary dramatically between these security groups

and differences will exist in the effects of diversification upon the
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absolute level of expected skex^ness. Furthermore, unlike portfolio re-

turn and risk, the proportionate change (percentage change in unsystematic

4
skew) as n goes from one to N will also differ across security groups.

Finally, it is important to realize that (A5) is a measure of only

the expected or mean level of portfolio skewness at portfolio size n.

For example, in a population containing 100 securities, A950 (100 x 99/2)

unique two security portfolios can be formed; (A5) is the cross-sectional

average of the skewness found in these portfolios.

Previous research [5, 10, 21, 30] has focused only upon the expected

level of time series skewness (A5) when evaluating the expected utility

of alternative diversification policies. However, for investors holding

portfolios smaller than the market, two additional components of skewness

should be recognized. One, the variance in skewness, provides information

about the dispersion of possible values of skewness at any portfolio size;

the other, cross-sectional skewness, measures deviations of portfolio

returns from the expected return of the market. Calculations for these

skewness measures are described below.

B. The Variance in Skewness

If the time series skewness on a portfolio of n securities is the

skewness measure that is of interest, then the investor should be con-

cerned not only with its expected value (A5), but also with the dispersion

of possible values it can assume; or, the variance in skewness. Analyti-

cally, the variance in skewness measure, equation (C32) , allows the in-

vestor to infer how closely the skewness of any particular portfolio

will compare to the expected level of skewness at a particular portfolio

size. While previous analyses have neglected this statistic, ignoring
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the variance in skewness requires the unrealistic assumption of portfolio

skewness homogeneity—all portfolios of a given size have the same level

of skewness

.

E(M? - M^)^ = ihl,n n, n (1 - l^i) E(mJ - M^)^ + 9(n-l) [1 - n(n-l)
N(N-l) ] X

^^^ijk^lmn^
+ 6(n-l) [1 - ^] [E(mJ>L^^) + E(mJm.^j)] + 6(n-l)(n-2) x

[1 -
iZlll ^ ^(^^jjk^

"* 6(n-l)(n-2) [1 - ^] E(mJm..j^) + 2(n-l) (n-2) (n-3) x

fl - tSw^ ^(^^jkl^ ^ 36(n-l(n-2) [1 - |^] E(M. ..M. .j^) + 18(n-l) x

(^-2) (-3) [1 -
';^!3;^g:,^j ] [E(M,,.M.^^) + E(M...M.^P] + 6(n-l)(n-2)(n-3) x

(,.4) [I - 'l^''-]Y'':'l%-'h E(M...R, )(n-3) (n-4)N(N-l) iij Tclm
(C32)

where: E(M. - M^) = variance in skewness, the variance associated
' with the distribution of sketvrs of portfolios

of size n

E(M. - m) = variance associated with the distribution of

skews of the individual securities (i = 1,...,N)

Equation (C32) reveals three aspects about the structure of portfolio

skews that should be noted. First, the greatest uncertainty about the
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sk.e^^mess of a randomly selected portfolio occurs when n = 1, and declines

to zero when n = N. Second, the magnitude of the uncertainty at a given

size n is related to the risk characteristics of the individual securi-

ties. Deviations in returns become magnified in portfolio skewness

structures and stretch out the dispersion of portfolios' skews. Third,

the coskewness structure inherent in the security population affects

the rate at which skewness uncertainty is eliminated. Thus, the rate

at which (C32) approaches zero may vary considerably across security

populations.

Given the portfolio alternatives existing today, potential exists

for large levels of skewness uncertainties as well as enormous differences

across portfolio skewness uncertainty structures. For example, because

long positions in calls possess large deviations in returns, much larger

levels of skewness uncertainty would be expected in these portfolios rela-

tive to, say, covered option writing. On the other hand, the rate at

which uncertainty is eliminated will probably be faster for long option

positions, since there is less correlation in security returns.

Considering equations (A5) and (C32) together enables the investor

to assess the effect of portfolio size on expected portfolio skewness.

3
For portfolios in which E(M ) falls as portfolio size increases, as sho^jn

in Figure 1, an investor might select a portfolio size at which the prob-

ability of portfolio skewness falling below some predetermined level is

less than, say 10%. For portfolios with increasing levels of E(>r),

shovm in Figure 2, an additional incentive for diversification is provided,
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Cross-Sectional Portfolio* Skewness

Because the return on a particular portfolio may deviate not only

from the expected return of the portfolio, but from the expected return

of the market as well, cross-sectional portfolio skewness also should be

considered by the investor. The term "cross-sectional" skewness refers

to the skewness of portfolio expected returns about their average ex-

pected return on the market as depicted in Figure 3. For many port-

folios the cross-sectional distribution of average returns is highly

dispersed and extremely skewed. As diversification proceeds, the dis-

tribution of average returns collapses about its mean—the market return.

If positive cross-sectional skewness is present, diversification can

severely reduce the upside average return potential of the chosen port-

folio.

We believe that cross-sectional skewness is an important considera-

tion in portfolio analysis and argue that the traditional manner in which

portfolio skewness is measured, (A5), is incorrect since it ignores the

cross-sectional average return skewness. A more complete measure of ex-

pected skewness is the skewness about the expected return on the market.

This "total" skewness is composed of both the skewness in the return of

the portfolio about the mean return on the portfolio (A5) and the skewness

caused by the difference between the expected return on the portfolio

and the expected return on the market. Equation (A5) can be adjusted for

this extra element and the total expected ske^-mess function is given as:
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M"

E(M ) = the expected level
n

of portfolio skewness

E(MT -M ) = the variance
i,n n

in skewness

N n

Figure 1: Diversification and its effects upon the

variance about a declining mean level of portfolio skew

N n

M"

= E(M ) = the expected level
n

of portfolio skewness

= E(Mj -M^)^ = the variance
i,n n

•in skewness

Figure 2: Diversification and its effects upon the

variance about an increasing mean level of portfolio skew

\

1

N n

r = the expected return on a

portfolio of size n

= r^ = the average expected

return across all portfolios
of size n

= the distribution of port-
folio expected returns for
portfolios of size n

Figure 3: Diversification and its effects upon the
distribution of portfolio expected returns
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i (Nil) 1^ +3(n-l)(N-n)M...j

n^(N-l)(N-2) n (N-2)

, (N-1) (N-2)- (n-1) (n-2) ,^ ,- - ,3

+ 3(n-l)(N-n) E[ (r.-rj^)^(r^-r^) ] (A5) + (Dl)

where: E(r.-r„) = skewness of the individual securities' expected
returns about the expected return on the popula-
tion

E[(r.-r-,) (r.-Tj^)] = average return curvilinear relationship for the
•^ population

r. = expected return on security i

r„ = expected return on the market

The following section illustrates the measurement of the three com-

ponents of skewness described above for selected sample portfolios. Dif-

ferences in the behavior of these statistics across security groups and

for different levels of diversification are striking.

III. ILLUSTRATING THE CONCEPTS

The objectives of this section are to illustrate the differences in

magnitude and behavior of the various components of portfolio skewness

for different security populations. Five diverse portfolios were chosen

as samples, primarily because of the differences between their return

distributions. The five portfolios include common stocks, at-the-money

and out-of-the-money covered option writing portfolios and at-the-money

and out-of-the-money long option positions. After the data and method-

ology for calculating security returns are described, results are pre-

sented to illustrate the effects of diversification upon the elements

of portfolio skewness.
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The Data and Methodology

The sample chosen includes the 136 stocks having listed options

available on December 31, 1975. Securities not having complete price

data on the Compustat tapes over the period July 1, 1963 to December 31,

1978, were eliminated, resulting in 102 sample securities for analysis.

Although the choice of this particular group introduces a selection bias

in the study, these securities represent over one-third of the population

of listed option securities; thus, these results may be inferred to the

current universe of optionable stocks.

Since listed options were not available until 1973, six month

premiums for the 102 stocks sample were generated for the 15 1/2 year

sample period using the Black and Scholes pricing model, equation (3):

C = PN(Dl) - Ke"'^'^N(D2)

where;

Dl = [ln(P/K) + (r + jV^)t3/v/t

D2 = Dl - v/t

The beginning of period price P, was obtained from the Compustat

tapes; time to maturity, t, was specified as 180 days; the daily equiva-

lent of the six month commercial paper rate was proxied for the risk-free

2
rate, r; and the variance rate, V , was estimated from the log of daily

price changes obtained from the CRSP tapes for the six months prior to

each option pricing date. The impact of dividends on the option premium

was considered by reducing the stock price by the present value of div-

idends paid during the life of the option (see [8]). The above data were

used to generate option premiums, C, across two exercise prices (K)

:

at-the-raoney and 10 percent out-of-the-money

.
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Use of Black and Scholes beginning of period option premiums is be-

lieved necessary to generate a sample period of sufficient length and to

standardize stock price/exercise price ratios. The similarity between

Black-Scholes model prices and actual premiums has been demonstrated

[7, 25] (in [25], the divergence between at-the-money model and market

premiums is reported to be about 0.1%).

Semiannual returns (gross of commissions) on each long option posi-

tion for the thirty-one six month holding periods were calculated by

dividing the beginning of period call value as determined by equation (5)

into the intrinsic value of the option at maturity. Intrinsic value is

the maximum of zero or the difference between stock price and striking

price at option maturity.

Semiannual returns on each covered writing position were calculated

by dividing the beginning stock price less the option premium received

into the sum of stock price at the end of the period plus dividends, less

the option's intrinsic value at maturity. Stock holding period returns

include price appreciation plus dividends. Commissions are ignored in

all transactions.

Return Distribution Statistics for Alternative Portfolios

Table I presents return distribution statistics for the five secur-

ity groups examined. Line 1 reveals that average returns increase (5.01%

to 21.00%) as one goes from writing strategies to call options with suc-

cessively higher exercise prices, while total risk as measured by the

—9
average security variance, a", increases from 42.51 to 75,934.70. That

long positions in call options contain large amounts of systematic risk
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relative to stocks and covered v/riting portfolios is shown by the market

2
variance, a (line 3).

Average security skewness (ir) and systematic (market portfolio)

skewness, (^) > data presented in lines 4-5 exhibit a wide range of values

and behavior. The data imply that for stocks and long option positions,

diversification will reduce the positive skewness (K^ < M. . . < n where

rC, M. . . and M > 0) whereas for option writing strategies, increasing

portfolio size will lower (a benefit) the negative skewness

(M^ > M^^. > M^ where M^, M^^. and M"^ < 0).''

Lines 7 thru 9 indicate the relative importance of the additional

skewness component considerations. The variance in skewness (line 9) con-

tains an enormous amount of uncertainty regarding the level of skewness

for even the relatively low-risk option writing positions. The uncer-

tainty becomes incredibly large for stocks and long option portfolios.

In particular, the very large variance in skewness for out-of-the-money

Q

calls (6,354,172,509.58 x 10 ) is attributable to the dispersion in the

underlying return distributions for these assets. While many options ex-

pired worthless, some showed returns of several thousand percent.

Deviations in returns also is documented in the cross-sectional

average return skexrmess figures, E(r. - r„) • This skewness element is

very large (162,882.34) for out-of-the-money calls and becomes smaller as

one moves into stocks and covered v/riting. However, even the writing

portfolios exhibit positive cross-sectional skewness, which largely is

attributable to a few securities that generated high option premiums but

exhibited an ex-post stability in prices. This resulted in large average

returns for these positions, relative to other covered positions. Since
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investors can diversify their holdings, it is instructive to examine the

behavior of the various elements of portfolio skewness in response to

changes in portfolio size.

Diversification and Changes in Portfolio Skewness

Using the summary skewness and coskewness data from Table I for

each sample, equation (A5) allows the traditional time series skewness

measures for any portfolio size to be calculated. Table II presents re-

lationships between portfolio size and the time series skewness for the

five portfolios examined. The results indicate a wide spectrum of port-

folio size-skewness relationships. First, for the writing strategies,

increasing portfolio size is beneficial in eliminating much of the nega-

tive skewness present in these security positions, with over 90% being

potentially diversifiable. On the other hand, for stocks and call options,

the diversification process has a damaging effect upon positive skewness.

This is particularly evident for the out-of-the-money portfolio, where

over 98% of the skewness is unsystematic and thus can be destroyed with

diversification.

Second, the rate at which expected skevmess approaches its market

3
level varies considerably across the portfolios. For example, E(M )

changes least rapidly for the option writing strategies; thus, larger

covered option portfolios are needed to replicate market skewness. On

the other hand, slight changes in portfolio size in long option portfolios

rapidly destroys positive skewness.
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Diversif ication and the Uncertainty About Ske^.^mess

In Table III, the relationships between portfolio size and the var-

iance in skewness (equation (C32)) are presented. The results demonstrate

that diversification quickly reduces uncertainty about portfolio skewness.

For example, by the three security level about 97% of the variance in

skewness has been eliminated for the writing strategies and about 99%

has been removed for stocks and long option positions.

Due to the differences in magnitudes of the numbers, the results

presented in Tables II-III illustrate that the traditional method of eval-

uating diversification and portfolio risk in terms of the percent of

diversif iable risk eliminated can be misleading when applied to portfolio

skewness measures. First, mu'ch smaller portfolios are required to achieve

similar absolute levels of expected skewness. For example, a forty secur-

ity out-of-the-raoney option portfolio contains a greater expected skewness

g

(2,705,037.17) and variance in skewness (3349.61 x 10 ) than a ten

(.

security at-the-money option portfolio (1,478,822.01 and 332,036.55 x 10 )

.

Second, even though 99.9% of the variance in skewness has been eliminated

at the five security level for out-of-the-money options, the magnitude

Q

of this uncertainty is 4,253,340.92 x 10 . This is over 36 million times

g
the mean level of skewness (4,253,340.92 x 10 vs. 11,728,466.66). On

the other hand, the uncertainty about the level of skewness for at-the-

money writing at the five security level is about 62 times the mean level

of skewness (28,444.72 vs. -454.02). Furthermore, these levels of un-

certainty are still quite large for large portfolios. Note that the

level of skewness uncertainty for a forty security at-the-money writing

portfolio is 3971.33 which is about 22 times the mean level of skewness
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(-178.28). For out-of-the-money options, this same comparison yields

a factor of over 123,000 (3,349.61 x 10^ vs. 2,705,037.17).

These results reveal that the level of skewness xmcertainty can

differ dramatically across alternative stock/option portfolio positions.

Also the data indicate that the variance in skewness can be quite large

even for large portfolios of "relatively" low risk assets. Thus, a

dilemma exists for investors seeking to establish an appropriate portfolio

size, given a preference (aversion) for positive (negative) skewness.

For the option writing portfolios, diversification is beneficial since

it reduces the negative skewness present in these positions. However,

since the level changes more slowly (see Table II) than for stocks or

long options, more securities are required to achieve the same benefits

of diversification. Furthermore, the uncertainty/ about the level of

ske^^mess is quite large, even for large portfolios. These factors may

motivate option writers to hold relatively larger portfolios than would

be selected if only the expected level of time series skewness was con-

sidered.

On the other hand, investors holding long positions in stocks and

options face a different and more complex tradeoff. Increasing portfolio

size reduces positive skewness (an undesirable effect), while at the same

time reducing the uncertainty about skewness (a positive consideration).

Given the extreme variance in skewness present in the sample portfolios,

it appears that some investors may be motivated to increase portfolio

size so that a more precise estimate of portfolio skewness could be ob-

tained.
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Cross-Sectional Portfolio Skewness

Values for the cross-sectional component of expected skewness (equa-

tion (Dl)) at varying portfolio sizes are presented in Table IV. As indi-

cated by the first column under each group, the values fall rapidly for

all portfolios as portfolio size is increased. The importance of this

element can be gauged through an analysis of the effects that diversifi-

cation has upon the maximum potential return at each portfolio size.

This is shown in the second column under each strategy in Table IV.

For example, over the 15 1/2 year sample period, for out-of-the-money

options, there is the opportunity to earn a return of 264.94% at the

one security level. At the ten security level, the largest portfolio

return is 120.56%, about one-half the size one amount. The effect that

increasing portfolio size has upon the upside return potential becomes

less dramatic as one moves from option buying to stocks to option writing.

Recognition of this component of skewness may result in a willingness

on the part of the investor to trade some of the reduction in return

uncertainty to preserve some upside return potential, especially in the

case of option buying.

IV. CONCLUSION

This paper has presented three components of portfolio skewness and

illustrated the magnitude and diversity of these statistics across five

portfolio groups. The results indicate that investors who hold portfolios

smaller than the market should consider not only time series skewness but

also the variance in skewness and cross sectional skewness in returns when

determining an appropriate portfolio size.
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Investors in positively skewed portfolios such as common stocks or

long options may be motivated to hold portfolios smaller than the market

to preserve the greatest amount of positive skew. However, the extreme

uncertainty about eiqjected skewness in these portfolios is an encourage-

ment for some diversification. Conversely, option writing portfolios

possess negative time series skewness which can be reduced through diver-

sification. Because greater certainty about the skewness estimate is

possible with larger portfolios, investors in these securities should be

motivated to hold the market portfolio of covered call positions. Re-

sults presented above are consistent with observed investor behavior of

antidiversification for investors in stock and options [31].

Footnotes

In this paper the term "skewness" will refer to a distribution's
third moment. Many authors use the term "skewness" to denote the third
moment divided by the cube of the standard deviation.

2
The assumption of an equal weighting scheme is consistent with the

literature which examines the effect of portfolio size on portfolio dis-
tribution parameters (for example, see [12, 30]). An equal or random in-
vestment policy is optimal when one is unable to predict future return
distribution parameters. Knowledge of the future structure of returns
implies that security weights (investment proportions) can be adjusted
to improve the parameter structures of portfolios.

3
The derivation of all results are presented in the accompanying

Appendixes

.

4
Since the expected level of portfolio return is constant (and

equals r^, the average market return) for all n, the percentage change in

E(r ) equals zero for all n for all security groups. From Elton and
Gruber [12, p. 419], the portfolio expected risk equivalent of equation
(5A) is:

_. 2, 1 -2 ,, n-1. ^ , N , .n-1, 2
E(a^) =-a (1 - nH) + fcX—) ^N'

—2 2
where a is the average one security variance and a„ is the market

"^ _2 'y

portfolio risk. The percentage of unsystematic risk (a - c„) which has
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and thus is the same for all

been eliminated at portfolio size n is given by the ratio:

r-2 „, 2. ,,.-2 2. , . , , N(n-l)
[c - E((j^)]/(ct - a^) which equals

^(-^_^>,

security groups and independent of the levels of the population parameters
—2 2
a and a^. On the other hand, the percentage change in unsystematic

-3 3—3 3
skew is given by [n - ^ '"' "E(M )]/(M - M^) and will be different for different

populations because of the influence of the parameter M . . .

.

For example, asstime there are only three possible n security
portfolios with return characteristics as shown below, and the investor
randomly selects one of these portfolios. Considering only the time

series skewness of each portfolio would imply that additional diversifi-
cation will have no further effect on portfolio skewness. However, if

cross-sectional skewness is examined it becomes evident that consider-
able skewness is still present in the possible portfolio returns. Even
though the average expected return is 30% regardless of the portfolio
combination selected, the upside return potential (average return skew-
ness) differs significantly across the possible portfolio combinations.
By selecting only one portfolio, there is the opportunity to earn 70%,
whereas combining all three portfolios produces a maximum potential
return of only 30%. Diversifying destroys the average return skewness;
consequently, the investor may be willing to trade some of the reduction
in return uncertainty to preserve the upside average return potential
and thus may be motivated to hold a portfolio smaller than the market.

Portfolio

A
B

C

Average Return

70%
10
10

Time Series Time Series

Risk ("^)
3

Skewness (M )

Market 30%

While it would be informative to use actual premiums, we believe
that deficiencies in the historical data base could provide misleading
results. These data problems include:

a) A short time period for analysis. The CBOE began trading
listed options in 1973 on only sixteen securities.

b) Nonavailability of listed contracts for desired stock price/
exercise price ratios. It has not been until the last few

years that sufficient varieties of stock price/exercise price
ratios have been available on most securities.

Further research can incorporate actual premiums once the listed option
market becomes more complete and the historical data base has been gener-
ated. The objective of our analysis was to select a sample of reasonable
size and sufficient duration so as to provide meaningful measures of

portfolio skewness.
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Because the stock skewness statistic is highly sensitive to the
differencing interval used [14], caution should be exercised when comparing
the results of our stock sample data with previous studies of security
skewness. Simkowitz and Beedles [30] used a 549 common stock sample and
observed skewness to change from positive to negative values with in-
creasing portfolio size. Their analysis was based on monthly, rather
than six-month, returns. Merton, Scholes and Gladstein [25] used six-
month returns and report mean, variance and positive skewness values
similar to our results. Studies of common stock portfolios have reported
both positive and negative skewness measures for various market periods
[3, 5, 6, 15, 17, 19, 24, 32].
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Appendix A

The Expected Level of Portfolio Skewness

Equation (A5) is developed by decomposing equation (4) into its

unsystematic and market components. The skewness of any equally-weighted

(x. = —) portfolio containing n securities is:

- n,__ nnn._ n n n._
IT = l (-) MT + III (-) M. ..+ Ill (-) M... (Al)
n . , n 1 . , J T . , n iii . , . , , . n ijk

1=1 1=1 i=l j=l -^ 1=1 j=l k=l -^

where mJ = E(r^-r.)^, M^^^ = E[ (r .-r .)^(r^-?^ ) ] and M.^^ = E[(r.-r^)x

- - 3
(r.-r .)(r. -r, )] . In (Al) there are n terms like M., 3n(n-l) terms like

J J k k 1

3
M. . . and n(n-l)(n-2) terns like M. ., for a total of n terms. Taking
iij ijk

expected values

:

E(mJ) = n(i)^ M^ + 3n(n-l)(i)^ ^^_ + n(n-l) (n-2) (^)^ lU.^

= (i)2 ^ + [llBzilj -, + [iBlil^Szilj H,.j^ (A2)

n n

where >r is the average one security skewness for all securities in the

population, M. , . is the average curvilinear product for the population and

M. ., is the population triplicate product average.

The relationship between £(« ) and market skewness can be developed

3
by recognizing that the market portfolio skewness, R,, of an equally

weighted portfolio of all N securities in the population is given by:

or: M.., = r ... /^.. ,J >e, - (i)' M-" - l^-^^^P^] "l. . . (A4)- r_Ji__l m3 r-^2 -3 . 3 01-1) -

ijk = ^(N-l)(N-2)^ L^J
-

^N^ ^ - ^—2
^ '^iij



Substituting (A4) into (A2) and rearranging produces equation (A5)

in the text:

N^(N-2)

(N-l)(N-2)- (n-l)(n-2) -3
^ 3(,.,)(^.,) ^ /

(N-1) ' ^ ' iij

^^ (n-l)(n-2)N^
j

.
(A5)

n (N-l)(N-2)

Appendix B

Useful Formulas

In deriving the variability about portfolio skewness in Appendix C,

1 ^ 2
it is useful to know the E(— E Z.) , where Z represents any variable of

^ i=l
interest. From Elton and Gruber [12, p. 427]:

1=1

_ 2
where Z and a represent the mean and variance about Z.

1 ^ 3
In Appendix D, we need to know the E(— Z Z.) . Using (Al) and (A2)

,

'^ i=l ^

we see that:

,n _ ._ n- nnn _ nnn
E(- E Z.) = (-) E( Z Z + Z Z Z Z. Z. + E Z Z Z.Z.Z, )

1=1 1=1 1=1 1=1 j=l •' 1=1 3=1 k=l -^

±^i i?^j=k

= ik^ Z^ + [^-^^J ECZ^Z.) + [

(n-l)(n-2)
^ E(Z.Z.Z^) (B2)

^2 1 J ^2 1 : k

But, for a population of N securities:

- 1
^'"
.^ ^i
1=1



- 3 1^3
i=l

or: E(Z.Z.Z^) = [ (,_,^(,-.,) ] [ (Z)^ - 4)' z' - [^^] ECZ^Z.)] (B3)

Substituting (B3) into (B2)

13 1

i=l
^

N-(N-2)

, (N-l)(N-2)-(n-l)(n-2) , 73.-, ^ . .„ „^r/72„ .

I (^-l)
^ 3(n-l)(N-n)E(Z^Z )

n (N-l)(N-2)

But: M^ = E(Z-Z)^ = Z^ - 3Z^Z + 2(Z)^,

(B4)

-3
Or: Z = l4 + 3Z~Z - 2(5)"^ (B5)

Substituting (B5) into (B4)

1^3 1

i=l ^ N-(N-2) L
r
(N-l)(N-2)-(n-l)(n-2) , ...3 . .=2= „,=.3,

I (N^T) ^ i^'^^Z
3Z Z - 2(Z) ]

+ 3(n-l)(N-n)E(Zp.)
n (N-l)(N-2)

(B6)

Appendix C

The Variabilitv in Portfolio Skewness-----

If we define (M^) as the dispersion of portfolio skews at a given

portfolio size n, then using the result from (Al) and (A2):

2 3 3 -3 2
a^OT) = E(M^ - M ) = E

n i,n n

n 3 n n ^13
^ i=l " ^ " i=l i=l i=l " "^J

n^ ^^J i=l j=l k=l ^ ^-^^ n^ ^^"^

i#j#k

(CI)



Expression (CI) contains three squared terms and tvelve cross-product

terms. Analyzing the first squared term:

n ,-,, -i-,^^ -,/ -.n
E[ I (i)^ M? - (-)^ M^]^ = (-)^ E[- Z (M^-M^)]^

. , n in " n "-n . , 1 '"
1=1 1=1

Using (Bl), we note that Z = M; - M which means that E(Z.) = Z =

Thus: E[ E (^)^I^ - (i) M^]^ = (^)^1 - ^) E(M^ - M^)^ (C2)
. , n 1 n n w—i i
1=1

For the second squared term in (CI):

nnn^_ o^,-> ^ia nnn „

E[ Z Z Z i-)"^ M... -
[

-^"^""-^^
l M...]^ = (-y E[ Z Z EM.,.]^

1=1 1=1 j=l -• n ^ 1=1 1=1 j=l

_ 6n(n:i), -
E Z Z M...) + [

^"^^^^ 1^ (M...)^

n^ ^^J i=l i=l j=l ^^^ n^ "^^

= (^)^ E[ Z Z Z M...]^ -
[

^"^""^ ^]^ (M...)^ (C3)

i=l i=l j=l ^^^ n^ ^

But, through decomposition we find that:

n n n _ „

E[Z Z Z M. ..] = 9n(n-l) [MT. . + E(M.. . M. ..)] + 9n(n-l)(n-2) X
i=i i=i j=i

"-^y ^^J ^^J ^JJ

t^^^^iij ^iik>
^ 2 E(M.^. M..^) + E(M.^. Mj^^.)] + 9n(n-l) (n-2) (n-3) E(^... M^^^^)

(C4)



Similarly: (M. .
.)" =

.
n n n
I. E Z M. . .

1=1 1=1 j=l ^^J

= [
2 2

9N (N-1)

•] 9N(N-1)[M?.

.

3N(N-1)

+ E(M... M^..)] + 9N(N-l)(N-2) [E(M... M..^) + 2 E(M... M..^^) + E(M... M^^^ . ) ]

+ 9N(N-l)(N-2)(N-3) E(M. . . M,
, , )

111 Kkl
(C5)

Substituting (C4) and (C5) into (C3) and rearranging yields (C6);

n n n . _

E[ E Z E (-y M. ..

1=1 1=1 1=1 -^

±^2

[^^^^]M...]2= (V
3 111 n

n -^

9(n-l) [1-^^] X

f^iij -^
^^hl: ^13?^ " 9(n-l)(n-2) [1 - f^l^Htl] ^ [^(M... M..,)

^ ' ^(^iij ^J3k> ^ ^^^iij \^P^ ^ 9(n-l)(n-2)(n-3) [1 - "^-^l^^-^^gll) ^ ^

^(^iii \kl> (C6)

For the third squared term in (CI);

E[ Z Z E (^)^ M..^ -
t

^fa-l)(n-2 ) - 2

i=l j=l k=l ^ ^J^ n^ ^J^

, , n n n

" 1=1 j=l k=l
^^^

ij'j^k

2n(n-l)(n-2) -
^ ^ I ^ _ , ^ ^-iBzllillzlll ^

2

n^ "J^ i=l j=l k=l
^'^

n^ ^J^

i^^jj'k

= (i)^E[ ? ? ? ^_ 2 n(n-l)(n-2) 2 - 2
n i-jk 3 ink

1=1 j=l k=l -^ n -^

ij^JT^k

(C7)



Expanding the first bracketed term in (C7)

n n n _ _

E[ E Z E M, ., ] = 6n(n-l)(n-2) MT., + 18n(n-l) (n-2) (n-3) x
i=l j=l k=l ^^^ "-^^

E(M.., M..,) + 9n(n-l)(n-2)(n-3)(n-4) E(M. .. M.. ) + n(n-l) (n-2) (n-3) (n-4) x
13 k ijl ijK ilm

(n-5) E(M.., M. )
ijk Imn

(C8)

Also: (M^.^)
2 =

n n n
E Z Z M

i=l j=l k=l
i!^.1/k

N(N-l)(N-2)

ijk

= [

N^(N-l)^(N-2)^ ^
6N(N-l)(N-2) R^^^

+ 18N(N-l)(N-2)(N-3) E(M^.^ M^.^) + 9N(N-1) (N-2) (N-3) (N-4) ^(M M )

+ N(N-l)(N-2)(N-3)(N-4)(N-5) E(M. ., M, ) (C9)
ij k imn

Substituting (C8) and (C9) into (C7) and rearranging produces (CIO):

6(n-l)(n-2) xE[ ? E E ih^ M..^ -
[

nfa-l)("-2)
] m..J^ = ik^

i=l j=l k=l ^ ^'^
n^

^'^

if^j^'k

n n(n-l) (n-2) i
-2

. -.af ^\f o\/' i\ T^ n(n-l) (n-2) (N-3) ^ ^ « %
f^ -

N(N-l)(N-2) ^ ^ijk ^ 18(n-l)(n-2)(n-3) [1 - (^.3)n(n.1) (N-2) ^ ^^ijk ^ijl^

J. af^ -wr^ o\f^ 'i\ fr, /^ n n(n-l) (n-2) (N-3) (N-4) ., . ,

+ 9 (n-1) (n-2) (n-3) (n-4) [1 -
(^,3) (^,4)^(^-1) (n-2) ^ ^^ijk \lm^

+ (n-1) (n-2) (n-3) (n-4) (n-5) [1 - n(n-l) (n-2) (N-3) (N-4) (N-5)

,

^
(n-3 ) (n-4 ) (n-5 )N (N-1) (N-2) J ^'^''ijk "^Imn'1

(CIO)

Now consider the twelve cross-product terms in (CI). They are;



nn n "13
2E[ E (-)^ K ^ ^ ^ (-) M...] (Cll)

i=l " ^ i=l i=l j=l " "^^

-2(i)^ M^ E[ Z Z Z (i)3 M 1 = [^iigzil] m3 M (C13)
^

i=l i=l j=l " ^^J n^ ^"-J

2(1)2 -3
^
3n(n-l) - [^^:^] R^ m. . . (C14)

n 3 ill 4 LIT
n -^ n -^

2E[ Z (-) M. ZEE (-)-^M..,] (C15)

i=l
n ^ i=i j=i k=l ^ ^J'"

.2^
n(n-l)(n-2) -

J
13 ^3 ^ -2(n-l)(n-2) -3 -

3 Ilk . , n 1 4 ilk
n -^ 1=1 n -

-2(-)^ M^ E[ Z Z E (-)^ M. .,] = [ZiCSziliSzlIj j^3
-

^^^^^
"^

i=l j=l k=l " ^^"^
n

^^

i?^j?^k

2(1)2 -3^ n(n-l)(n-2) - ^ 2(n-l)(n-2) -3
^_ ^

n 3 ijk 4 ijk
n n

n nn,_ n n n.-
2E[ E Z E (-)'^M, .. Z Z Z (-) M. ., ] (C19)

1 • 1 • 1 n iij . , . , , , n ijk'
1=1 j=l j = l -^ 1=1 j=l k=l -^

_2^
n(n-l)(n-2) - ? ? ? (1)^ m...] = [

-^<"-^> ^"-^)
] m. . . m, .^ (C20)

n^ ^'^ i=l i=l j=l " ^^J
n^

^^J "-'^

i^j



n^ ^^J i=l j=i k=i ^ i:k ^4 ii: ijk

3n(n::ll ^ n(n-l)(n-2) - ^ 6 (n-l)^" (n-2) - -
^ 3 iij 3 " ijk 4 ^ 111 ijk

n -^ n -^ n j j

(C22)

Note that (C13) cancels (C14), (C17) cancels (C18) and (C21) cancels (C22)

This leaves (Cll) and (C12), (C15) and (C16), and (C19) and (C20)

.

Concerning (Cll) and (C12), (Cll) can be decomposed as:

(Cll) = 2(-)^ 3n(n-l)[E(M-? M...) + EOI"? M, . . ) ] + 3n(n-l)(n-2) E(M^ M. ., )

N M. N N N M . . .

As for (C12), examine the expression: Z — Z Z Z „„> ^>

i=l i=l i=l j=l
^^'•^^-^''

In this expression there are 3N(N-1) terns like (M, M. ), 3n(n-l) terms

3 3
like CM. M...) and 3n(n-l)(n-2) terms of the form (M. M. ., ) for a total

1 iij ^ 1 jjk

of 3N^(N-1) terms. Thus:

^^
^iii = f-F ^

^ 3N^(N-1)
3N(N-l)rE(M^ M...) + E(M-? M...)] + 3N(N-1) (N-2) E(m5 M^ ., )

(C24)

Substituting (C23) for (Cll) and (C24) for (C12) and then adding (C23)

and (P24 ) and rearranging produces (C25):

(C23) + (C24) = (-)^
n

6(n-l)[l - f][E(Mj M^^.) + E(mJ \±-^'^ "^ 6(n-l)(n-2) x

n n(N-2) .| ^.^.3 ^ .

(C25)

Working with (C15) and (C16) , (C15) can be expanded as;

(C15) = 2(-)^
n

3n(n-l)(n-2) E(M-^ M. .. ) + n(n-I) (n-2) (n-3) E(K^. ¥..,.) \
(C26)

1 IJ K 1 J KX.
I



N MT N N N M ,

As for (C16), consider the expression: E rr^ E LI „/>, ,\ /., ^v ,

i=l ^ i=l j=lk=l
N(N-l)(N-2)

where there are 3N(N-l)(N-2) terms like (M M. ., ) and N(N-l) (N-2) (N-3) terms
1 IJ K

3 2
of the form (M. M ) for a total of N (N-l)(N-2) terms. Hence:

1 J JCX

^'
^'ijk =

^Z2
-]

N (N-l)(N-2) *-

3N(N-l)(N-2) E(M^ M. ) + N(N-l) (N-2) (N-3)E(M^ M )
X 1 J tC X J eCX

(C27)

Substituting (C26) for (C15) and (C27) for (C16) and then adding (C26)

and (C27) and rearranging produces (C28)

:

(C26) + (C27) = (-)^
n

6(n-l)(n-2) [1 - |] E(mJ M.^^^) + 2 (n-1) (n-2) (n-3) x

^^ (n-3)NJ ''^-i ^jkl^
(C28)

Finally, working with (C19) and (C20), we find that (C19) can be

expressed as

:

(C19) = 2(-)^
n

18n(n-l)(n-2) E(M,,. M. ., ) + 9n(n-l) (n-2) (n-3) [E(M,.. M.,J
lij ijk iij ikl

+ E(M... M., .)] + 3n(n-l)(n-2)(n-3)(n-4) E(M.,. M, . )

113 jkl ilj tclm
(C29)

N N N M. . . N N N
E Z E

M
iik

As for (C20), examine: E E E ^^r^_;^. - ^ ^
N (N-1) (N-2)'

i=l i=l j=l -^ ' -* i=l j=l k=l ^ ^^ ^
iT'j ±^2^k

which has 18N(N-1) (N-2) terms of the form (M M. ), 9N (N-1) (N-2) (N-3)

terms like (M. . . M.,.) and 3N(N-1) (N-2) (N-3) (N-4) terms like (M.,. M, , )iij ikl lij Tclm

2 2
for a total of 3N (N-1) (N-2) terms. Therefore:

M.. . M. ., = [

iij ijk
1 a\i

] 18N(N-1) (N-2) E(M. . . M^ ., ) + 9N(N-1) (N-2) (N-3) x
3N"' (N-1) (N-2)

"iij ijk

E(M... H., J + 3N(N-l)(N-2)(N-3)(N-4) E(M. . . M )

11 J ikl iij Tclm
(C30)



Substituting (C29) for (C19) and (C30) for (C20) and then adding (C29)

and (C30) and rearranging produces (C31):

(C29) + (C30) <^'^ 36(n-l)(n-2)[l - ^{^1 E(M
iij \jk^ "^ 18(n-l)(n-2) x

^-3) ti - ZmtlV f^^ij ^ki^ ^
^<^^ii.i ^iki>J

^ 6(n-l)(n-2)(n-3)(n-4) [1 - ';^r3;!SmN:t! j ^^ij \lJ

Thus, the variance in portfolio skewness at portfolio size n is

the sum of (C2), (C6) (CIO), (C25), (C28) and (C31):

(C31

3 -3 2 15
E(Mf - M-*) = {^yi,n n n

(1-^) E(M5-M^)2^9(n-1) [l-g{^] X

f^iij "
^(^iij ^iJJ>J ^ 9(n-l)(n-2) (1 -

';^:-;^g:i; ]
[E(M,,j M^,,) ^ 2E(M^^j M^^,

^ ^^^iij \kj)^ ^ 9(n-l)(n-2)(n-3) [1 -
^i^^-^lS^N InIi j

^ ^<^ij \kl^

^ 6(n-l)(n-2) [1 - ff^EHM^ ^llk
^ l«(n-l)(n-2)(n-3) [1 - t^^^^^ ) x

c/'M vf ^J.Q,' 1 \r ON/- ^^/ /^r^ n(n-l)(n-2) (N-3) (N-Al ,

^^^ijk ^ijl^
" 9(n-l)(n-2)(n-3)(n-4) [1 - (^.3) ^„.,);,^^,_i) (^._2) ^ '^

r^M M ^ ^ r ^^^ ->^^ iNr /w <^\ n n(n-l) (n-2) (N-3) (N-4) (N-5) ,

^^^^Ijk ^llm^ ^ (n-l)(n-2)(n-3)(n-A)(n-5) [1 -
(^.3) (n.^) (n.5)x(v_iu,,.2) ^ '^

E(M.^j^
^Imn^ "^ ^^""^^ ^^ " N^

^^^'^1
"^iij^ ^ ^^^l "ijj^^ "*" ^^^-^^^^'^^ ^

[1 -
T^lfy^l E(mJ Mjjj^) + 6(n-l)(n-2) [1 - ^] E(mJ M^^^) + 2 (n-1) (n-2) (n-3) x i

f^ - tSt^^ '^^? ^jkl>
* ^'^(n-l)(n-2) [1 - ^^] E(M^^j M^^^) * 18(n-l) x

(n-2)(n-3) [1 -
"^!;"3)t,[!;.:^i

1 [E(M^^j M^j^^) + E(M^^j M^^^] + 6(n-l) (n-2) (n-3) x

(
« A^ n n(n-l)(N-3)(N-u) , _.„ „ .

"-"•^ ^^ - (n-3)(n-4)N(N-l)^ ^^^iij \lm^ (C32)



Appendix D

Another Element of Portfolio Skewness

Traditionally, portfolio skewness has been measured by the skewness

in the portfolio return distribution over time (Appendix A). However, a

more appropriate measure of portfolio skewness is total skewness which

measures the skewness of a portfolio's return about the market's expected

return and includes both the skewness in a portfolio mean return (equation

(A5)) as well as the skewness of the portfolio's average return about the

— — 3 --3 l"--'
mean return on the market, E(r -r.,) . Note that: E(r -r.,) = E[— Z (r,-r„)].'nN nN n.,ir<

i=l

Using (B6), we see that Z = (r.-r„) which means that E(Z ) = Z = 0.

Thus, 3Z^Z = -2(Z)^ = (Z)^ = and M^ = E(r.-r^,)^ and

E(Z^Z ) = E[(r^-?jj)^ (r^-r^,)]. Eence:

EC. F,)^ = [-^J—1 rt
(N-l)0:-2)-;n-l)(n-2)

^
,(- - 3 , 3(,.,)(,.„) ,

"" ^ N^(N-2) L C..-1) 1 ^J

E[(?.-?jj)2(r^-?jj)' (Dl)



Substituting (C29) for (C19) and (C30) for (C20) and then adding (C29)

and (C30) and rearranging produces (C31):

(C29) + (C30) = ^y 36(n-l)(n-2)[l - f{^] E(M... K^.^) + 18(n-l)(n-2) x

«
<-3> ti - to-3)N(N:u ' '^«iij "iki' * ^^111 «)ki>i

n(n-l)(N-3)(N-4).
+ 6(n-l)(n-2)(n-3)(n-4) [1 - (-3^^ -4;,;;^i:; ] E(M... M^^) (C31

Thus, the variance in portfolio skewness at portfolio size n is

the sum of (C2), (C6), (CIO), (C25), (C28) and (C31)

:

3 -3 2 15
E(M-: - m"*)^ = {-y

i,n n n'

rr.2

(1 - ^) ECnJ - M^)2 + 9(n-l) [1 - f^SzlIj ,

I

"^":^,^,,^!;~:h [E(M... M..,) + 2E(M... M...
(n-2)N(N-l)' iij Ilk' iij jjl

[Mt,, + E(M,,, M. ..)] + 9(n-l)(n-2) [1 -
xij lij ijj

*
^»lij \kj>l + 9(n-l)(n-2)(n-3) (1 - £i£^liSl|Kg) ] e(M... ,^^^)

|

cz-M V. A J. Q r i\,' ON/ ^^/- /^ n n(n-l)(n-2) (N-3) (N-4) ^

^^^ijk ^ijl^ + 9(n-l)(n-2)(n-3)(n-4) [1 -
(^.3) (n_4)N(N-l) (N-2)^ ^

T7^M M > ^ r ^^^ 9^r -^^ ^ /^^ ^^ n n(n-l) (n-2) (N-3) (N-4) (N-5) , ^
^^^^ijk \lm^ ^ (n-l)(n-2)(n-3)(n-4)(n-5) [1 -

^^_2) (n-A) {n-5)^(ll-l) (^-2)^
^

^^^ijk ^W ^ ^^^-^^ f^ - t^ f^^'^i ^ij^ "" ^^^^? ^^ijj^^ ^ 6(n-l)(n-2) x
|

[1 - TT^] E(M? M,,,,) + 6(n-l)(n-2) [1 - |] E(mJ M,,^) + 2 (n-1) (n-2) (n-3) x i
(n-2)N-' 1 jjk N' "' i ijk

n(n-l^
f^ - tSt?^ ^^^i ^jkl) ^ 3.(n-l)(n-2) [1 - ^^-^_^y ...^.. .^.^] E(M, . . M. ., ) + 18(n-l) X

(-2) (n-3) [1 - "Itmitl] ^ f^^^'iij ^ikl^ ^ ^(^^iij ^jkl^^ ^ 6 (n-1) (n-2) (n-3) x

r /\ T^
n(n-l)(N-3)(M-4) , . .

^"-"^^ ^^ - (n-3)(a-4)N(N-l)^ ^^^iij \lJ (C32)



Appendix D

Another Element of Portfolio Skewness

Traditionally, portfolio skewness has been measured by the skewness

in the portfolio return distribution over time (Appendix A). However, a

more appropriate measure of portfolio skewness is total skewness which

measures the skewness of a portfolio's return about the market's expected

return and includes both the skewness in a portfolio mean return (equation

(A5)) as well as the skewness of the portfolio's average return about the

— — 3 __3 i^__'
mean return on the market, E(r -r..) . Note that: E(r -r.,) = E[— Z (r.-r.,)]."nN nN n.,iN

1=1

Using (B6), we see that Z = (r.-r„) which means that E(Z,) = Z = 0.

Thus, 3Z^Z = -2(Z)^ = (Z)^ = and M^ = E(r.-rj^)-^ and

E(Z^Z^) = E[(?^-r^)^
(^j-^N^^-

^^''''^''

N^(N-2) ^

,(N-l)(N-2)-(n-l)(n-2) , _.- - ^3 , ., ^ . ,„ „, ^
I (n-l) ^ ^ i~ N^

3(n-l) (N-n) x

E[(?.-?jj)^r^-?jj) (Dl)
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