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EDITOR'S PREFACE.

THE high place that Professor Moseley occupies in the

scientific world, as an original investigator, and the clear-

ness and elegance of the methods he has employed in this

work have made it a standard text book on the subjects it

treats of. In undertaking its revision for the press, at the

request of the publishers of this edition, it has been deemed

advisable, in view of the class of students into whose hands

it may fall, to make some slight addition to the original.

This has been done in the way of Notes thrown into an

Appendix, the matter of which has been gathered from

various authorities
;
but chiefly from notes taken by the

editor, whilst a pupil at the French military school at Metz,

of lectures delivered by General Poncelet, at that time, 1829,

professor in that school. It is a source of great pleasure to

the editor to have this opportunity of publicly acknowledg-

ing his obligations to the teachings of this eminent savan,

who is distinguished not more for his high scientific attain-

ment, and the advancement he has given to mechanical

science, than for having brought these to minister to the

wants of the industrial classes, the intelligent success of

whose operations depends so much upon mechanical science,

by presenting it in a form to render it attainable by the most

ordinary capacities.
Hi
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The editor would remark that lie has carefully refrained

from making any alterations in the text revised, except cor-

rections of typographical errors, and in one instance where,

from a repetition of apparently one of these, he apprehended

some difficulty might be offered to the student if allowed

to remain exactly as printed in the original.

UNITED STATES MILITARY ACADEMY,

Went Point March 8, 1866.



PKEFACE TO THE SECOND EDITION.

I HAVE added in this Edition articles : first,
" On the

Dynamical Stability of Floating Bodies ;" secondly,
" On

the Kolling of a Cylinder ;" thirdly,
" On the descent of a

body upon an inclined plane, when subjected to variations of

temperature, which would otherwise rest upon it ;" fourthly,
u On the state bordering upon motion of a body moveable

about a cylindrical axis of finite dimensions, when acted

upon by any number of pressures."

The conditions of the dynamical stability of floating

bodies include those of the rolling and pitching motion of

ships. The discussion of the rolling motion of a cylinder

includes that of the rocking motion to which a locomotive

engine is subject, when its driving wheels are falsely

balanced, and that of the slip of the wheel due to the same

cause. The descent of a body upon an inclined plane

when subjected to variations in temperature, which other-

wise would rest upon it, appears to explain satisfactorily the

descent of glaciers.

The numerous corrections made in the text, I owe chiefly

to my old pupils at King's College, to whom the lectures

of which it contains the substance, were addressed. For
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several important ones I am, however, indebted to Mr

Eobinson, Master of the School for Shipwrights' Apprentices,

in Her Majesty's Dockyard, Portsea
;
to whom I have also to

express my warm acknowledgments for the care with

which he has corrected the proof sheets whilst going through

the press.

May, 1855



PREFACE.

IN the following work, I have proposed to myself to apply:
the principles of mechanics to the discussion of the most

important and obvious of those questions which present
themselves in the practice of the engineer and the architect

;

and I have sought to include in that discussion all the

circumstances on which the practical solution of such ques-
tions may be assumed to depend. It includes the substance

of a course of lectures delivered, to > the students of King's

College in the department of engineering and architecture,

during the years 1840, 1841, 1842.*

In the first part I have treated of those portions of the

science of STATICS, which have their application in the theory
of machines and the theory of construction.

In the second, of the science of DYNAMICS, and, under this

head, particularly of that union of a continued pressure with

a continued motion which has received from English writers

the various names of "dynamical effect," "efficiency," "work

done," "labouring force," "work," &c.
;
and "moment

d'activite"," "quantite d'action," "puissance mecanique,"
"
travail," from French writers.

Among the latter this variety of terms has at length given

place to the most intelligible and the simplest of them,,

* The first 170 pages of the work were printed for the use of my pupils in the-

year 1840. Copies of them were about the same time in the possession of

several of my friends in the Universities.
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" travail." The English word " work "
is the obvious trans-

lation of "
travail," and the use of it appears to be recom-

mended by the same considerations. The work of overcoming
a pressure of one pound through a space of one foot has, in

this country, been taken as the unit, in terms of which any
other amount of work is estimated

;
and in France, the work

of overcoming a pressure of one kilogramme through a space

of one metre. M. Dupiii has proposed the application of the

term dyname to this unit.

I have gladly sheltered myself from the charge of having
contributed to increase the vocabulary of scientific words,

by assuming the obvious term " unit of work "
to represent

concisely and conveniently enough the idea which is attached

to it.

The work of any pressure operating through any space is

evidently measured in terms of such units, oy multiplying
the number of pounds in the pressure by the number of feet

in the space, if the direction of the pressure be continually

that in which the space is described. If not, it follows, by
a simple geometrical deduction, that it is measured by the

product of the number of pounds in the pressure, by the

number of feet in the projection of the space described,*

upon the direction of the pressure ;
that is, by the product

of the pressure by its virtual velocity. Thus, then, we
conclude at once, by the principle of virtual velocities, that

if a machine work under a constant equilibrium of the

pressures applied to. it, or if it work uniformly, then is the

aggregate work of those pressures which tend to accelerate

its motion equal to the aggregate work of those which tend

to retard it
; and, by the principle of vis viva, that if the

machine do not work under an equilibrium of the forces

impressed upon it, then is the aggregate work of those which
tend to accelerate the motion of the machine greater or less

* If the direction of the pressure renfain always parallel to itself, the space
described may be any finite space ;

if it do not, the space is understood to be
so small, that the direction of the pressure may be supposed to remain parallel
to itself whilst that space is described.
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than the aggregate work of those which tend to retard its

motion by one half the aggregate of the vires vivce acquired
or lost by the moving parts of the system, whilst the work is

being done upon it. In no respect have the labours of the

illustrious president of the Academy of Sciences more con-

tributed to the development of the theory of machines than

in the application which he has so successfully made to it of

this principle of vis viva.* In the elementary discussion of

this principle, which is given by M. Poncelet, in the intro-

duction to his Mecanique Industrielle, he has revived the

term vis inertia (vis inertias, vis insita, Newton), and,

associating with it the definitive idea of a force of resistance

opposed to the acceleration or the retardation of a body's

motion, he has shown (Arts. 66. and 122.) the work expended
in overcoming this resistance through any space, to be

measured by one half the vis viva accumulated through the

space ;
so that throwing into the consideration of the forces

under which a machine works, the vires inerticB of its moving
elements, and observing that one half of their aggregate vis

viva is equal to the aggregate work of their vires inertice, it

follows, by the principle of virtual velocities, that the differ-

ence between the aggregate work of those forces impressed

upon a machine, which tend to accelerate its motion, and

the aggregate work of those which tend to retard the motion,

is equal to the aggregate work of the vires inerticB of the

moving parts of the machine : under which form the prin-

ciple of vis viva resolves itself into the principle of virtual

velocities. So many difficulties, however, oppose themselves

to the introduction of the term vis inertice, associated with

the definitive idea of a force, into the discussion of questions

of mechanics, and especially of practical and elementary

mechanics, that I have thought it desirable to avoid it. It

is with this view that I have given a new interpretation to

that function of the velocity of a moving body which is

known as its vis viva. One half that function I have inter-

preted to represent the number of units of work accumulated

* See Poncelet, Mecanique Industrielle, troisieme partie.



PREFACE.

in the body so long as its motion is continued. This number

of units of work it is capable of reproducing upon any resist-

ance opposed to its motion. A very simple investigation

(Art. 66.) establishes the truth of this interpretation, and

gives to the principle of vis viva the following more simple
enunciation :

" The difference between the aggregate work

done upon the machine, during any time, by those forces

which tend to accelerate the motion, and the aggregate

work, during the same time, of those which tend to retard

the motion, is equal to the aggregate number of units of

work accumulated in the moving parts of the machine

during that time if the former aggregate exceed the latter,

and lost from them during that time if the former aggregate
fall short of the latter." Tims, then, if the aggregate work
of the forces which tend to accelerate the motion of a

machine exceeds that of the forces which tend to retard it,

then is the surplus work (that done upon the driving points,

above that expended upon the prejudicial resistances and

upon the working points) continually accumulated in the

moving elements of the machine, and their motion is thereby

continually accelerated. And if the former aggregate be

less than the latter, then is the deficiency supplied from the

work already accumulated in the moving elements, so that

their motion is in this case continually retarded.

The moving power divides itself whilst it operates in a

machine, first, into that which overcomes the prejudicial
resistances of the machine, or those which are opposed by
friction and other causes, uselessly absorbing the work in its

transmission. Secondly, into that which accelerates the

motion of the various moving parts of the machine, and which
accumulates in them so long as the work done by the moving
power upon it exceeds that expended upon the various

resistances opposed to the motion of the machine. Thirdly,
into that which overcomes the useful resistances, or those

which are opposed to the motion of the machine at the

working point, or points, by the useful work which is done

by it.
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Between these three elements there obtains in every
machine a mathematical relation, which I have called its

MODULUS. The general form of this modulus I have discussed

in a memoir on the "
Theory of Machines "

published in the

Philosophical Transactions for the year 1841. The deter-

mination of the particular moduli of those elements of

machinery which are most commonly in use, is the subject

of the third part of the following work. From a combination

of the moduli of any such elements there results at once the

modulus of the machine compounded of them."

"When a machine has acquired a state of uniform motion,

work ceases to accumulate in its moving elements, and its

modulus assumes the form of a direct relation between the

work done by the motive power upon its driving point and

that yielded at its working points. I have determined by a

general method'35
'

the modulus in this case, from that statical

relation between the driving and working pressures upon
the machine which obtains in the sfate bordering upon its

motion, and which may be deduced from the known condi-

tions of equilibrium and the established laws of friction. In

making this deduction I have, in every case, availed myself
of the following principle, first published in my paper on the

theory of the arch, read before the Cambridge Philosophical

Society in Dec. 1833, and printed in their Transactions of

the following year: "In the state bordering upon motion

of one body upon the surface of another, the resultant

pressure upon their common surface of contact is inclined

to the normal, at an angle whose tangent is equal to the

coefficient of friction."

This angle I have called the limiting angle of resistance.

Its values calculated, in respect to a great variety of surfaces

of contact, are given in a table at the conclusion of the

second part, from the admirable experiments of M. Morin,f

into the mechanical details of which precautions have been

introduced hitherto unknown to experiments of this class,

* Art. 152. See Phil. Trans., 1841, p. 290.

f Nouvelles Experiences sur le Frottement, Paris, 1833.
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and which have given to our knowledge of the laws of

friction a precision and a certainty hitherto unhoped for.

Of the various elements of machinery those which rotate

about cylindrical axes are of the most frequent occurrence

and the most useful application; I have, therefore, in the

first place sought to establish the general relation of the

state bordering upon motion between the driving and the

working pressures upon such a machine, reference being
had to the weight of the machine.* This relation points out

the existence 'of a particular direction in which the driving

pressure should be applied to any such machine, that the

amount of work expended upon the friction of the axis may
be the least possible. This direction of the driving pressure

always presents itself on the same side of the axis with that

of the working pressure, and when the latter is vertical it

becomes parallel to it
;
a principle of the economy of power

in machinery which has received its application in the

parallel motion of the marine engines known as the Gorgon

Engines.
I have devoted a considerable space in this portion of my

work to the determination of the modulus of a system of

toothed wheels
;

this determination I have, moreover,
extended to bevil wheels, and have included in it, with the

influence of the friction of the teeth of the wheels, that of

their axes and their weights. An approximate form of this

modulus applies to any shape of the teeth under which they

may be made to work correctly ;
and when in this approxi-

mate form of the modulus the terms which represent the

influence of the friction of the axis and the weight of the

wheel are neglected, it resolves itself into a well known
theorem of M. Poncelet, reproduced by M. ISTavier and the

Rev. Dr. Whewell.f In respect to wheels having epicy-

* In my memoir on the "
Theory of Machines "

(Phil. Trans. 1841), I have
extended this relation to the case in which the number of the pressures and
their directions are any whatever. The theorem which expresses it is given in

the Appendix of this work.

f In the discussion of the friction of the teeth of wheels, the direction of the

mutual pressures of the teeth is determined by a method first applied by me to
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cloidal and involute teeth, the modulus assumes a character

of mathematical exactitude and precision, and at once

establishes the conclusion (so often disputed) that the loss of

power is greater before the teeth pass the line of centres

than at corresponding points afterwards
;
that the contact

should, nevertheless, in all cases take place partly before

and partly after the line of centres has been passed. In the

case of involute teeth, the proportion in which the arc of

contact should thus be divided by the line of centres is

determined by a simple formula
;

as also are the best

dimensions of the base of the involute, with a view to the

most perfect economy of power in the working of the

wheels.

The greater portion of the discussions in the third part of

my work I believe to be new to science. In the fourth part
I have treated of " the theory of the stability of structures,"

referring its conditions, so far as they are dependent upon
the rotation of the parts of a structure upon one another, to

the properties of a certain line which may be conceived to

traverse every structure, passing through those points in it

where its surfaces of contact are intersected by the resultant

pressures upon them. To this line, whose properties I first

discussed in a memoir upon
" the Stability of a System of

Bodies in Contact," printed in the sixth volume of the Carrib.

Phil. Trans., I have given the name of the line of resist-

ance
;

it differs essentially in its properties from a line

referred to by preceding writers under the name of the

curve of equilibrium or the line of pressure.

The distance of the line of resistance from the extrados of

a structure, at the point where it most nearly approaches it,

I have taken as a measure of the stability of a structure,* and

that purpose in a popular treatise, entitled Mechanics applied to the Arts,

published in 1834.

* This idea was suggested to me by a rule for the stability of revetement

walls attributed to Vauban, to the effect, that the resultant pressure should

intersect the base of such a wall at a point whose distance from its extrados is

iths the distance between the extrados at the base and the vertical through

the centre of gravity.
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have called it the modulus of stability; conceiving thia

measure of the stability to be of more obvious and easier

application than the coefficient of stability used by the

French writers.

That structure in respect to every independent element

of which the modulus of stability is the same, is evidently

the structure of the greatest stability having a given quantity

of material employed in its construction
;
or of the greatest

economy of material having a given stability.

The application of these principles of construction to the

theory of piers, walls supported by counterforts and shores,

buttresses, walls supporting the thrust of roofs, and the

weights of the floors of dwellings, and Gothic structures,

has suggested to me a class of problems never, I believe,

before treated mathematically.
I have applied the well known principle of Coulomb to

the determination of the pressure of earth upon revetement

walls, and a modification of that principle, suggested by M.

Poncelet, to the determination of the resistance opposed to

the overthrow of a wall backed by earth. This determina-

tion has an obvious application to the theory of foundations.

In the application of the principle of Coulomb I have

availed myself, with great advantage, of the properties of

the limiting angle of resistance. All my results have thus

received a new and a simplified form.

The theory of the arch I have discussed upon principles
first laid down in my memoir on " the Theory of the Stability

of a System of Bodies in Contact," before referred to, and

subsequently in a memoir printed in the "Treatise on

Bridges" by Professor Hosking and Mr. Hann.* They
differ essentially from those on which the theory of Coulomb
is founded ;f when, nevertheless, applied to the case treated

* I have made extensive use of the memoir above referred to in the following

work, by the obliging permission of the publisher, Mr. Weale.

f The theory of Coulomb was unknown to me at the time of the publication
of my memoirs printed in the Camb. Phil. Trans. For a comparison of the

two methods see Mr. Hann's treatise.
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by the French mathematicians, they lead, to identical results,

I have inserted at the conclusion of my work the tables of

the thrust of circular arches, calculated by M. Garidel from

formulae founded on the theory of Coulomb.

The fifth part of the work treats of the "strength of

materials," and applies a new method to the determination

of the deflexion of a beam under given pressures.

In the case of a beam loaded uniformly over its whole

length, and supported at four different points, I have deter^

mined the several pressures upon the points of support by a

method applied by M. Navier to a similar determination in

respect to a beam loaded at given points.*

In treating of rupture by elongation I have been led to a

discussion of the theory of the suspension bridge. This

question, so complicated when reference is had to the weight
of the roadway and the weights of the suspending rods, and

:

when the suspending chains are assumed to tte of uniform

thickness, becomes comparatively easy when the section of

the chain is assumed so to vary its dimensions as to be every
where of the same strength. A suspension bridge thus

constructed is obviously that which, being of a given

strength, can be constructed with the least quantity of

materials
; or, which is of the greatest strength having a

given quantity of materials used in its construction.!

The theory of rupture by transverse strain has suggested
a new class of problems, having reference to the forms of

girders having wide flanges connected by slender ribs or by

open frame work : the consideration of their strongest forms

leads to results of practical importance.
In discussing the conditions of the strength of breast-

summers, my attention has been directed to the best positions

of the columns destined to support them, and to a comparison

* As in fig. p. 487. of the following work.

f That particular case of this problem, in which the weights of the suspending

rods are neglected, has been treated by Mr. Hodgkinson in the fourth vol. of

Manchester Transactions, with his usual ability. He has not, however, suc-

ceeded in effecting its complete solution.
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of the strength of a beam carrying a uniform load and sup-

ported freely at its extremities, with that of a beam similarly

loaded but having its extremities firmly imbedded in

masonry.
In treating of the strength of columns I have gladly

replaced the mathematical speculations upon this subject,

which are so obviously founded upon false data, by the

invaluable experimental results of Mr. E. Hodgkinson,
detailed in his well known paper in the Philosophical

Transactions for 1840.

The sixth and last part of my work treats on "
impact ;"

and the Appendix includes, together with tables of the

mechanical properties of the materials of construction, the

angles of rupture and the thrusts of arches, and complete

elliptic functions, a demonstration of the admirable theorem

of M. Poncelet for determining an approximate value of the

square root of the sum or difference of two squares.

In respect to the following articles of my work I have tc

acknowledge my obligations to the work of M. Poncelet,

entitled Mecanique Industrielle. The mode of demonstration

is in some, perhaps, so far varied as that their origin might
with difficulty be traced

;
the principle, however, of each

demonstration all that constitutes its novelty or its value

belongs to that distinguished author.

30,* 38, 40, 45, 46, 47, 52, 58, 62, 75, 108,f 123, 202,

267,t 268, 269, 270, 349, 354, 365.

* The enunciation only of this theorem is given in the Mec. Ind., 2me partie,

Art. 38.

f Some important elements of the demonstration of this theorem are taken

from the Mec. Ind., Art. 79. 2me partie. The principle of the demonstration

is not, however, the same as in that work.

\ In this and the three following articles I have developed the theory of the

9y-wheel, under a different form from that adopted by M. Poncelet (Mec. Ind.,

Art. 56. 3me partie). The principle of the whole calculation is, however,
taken from his work. It probably constitutes one of the most valuable of hia

contributions to practical science.

The idea of determining the work necessary to produce a given deflection

of a beam from that expended the compression and the elongation of its com-

ponent fibres was suggested by an observation in the Mec. Ind., Art. 75. 3me

partie.



CONTENTS.

STATICS.

1*1
The Parallelogram of Pressures ........ g

The Principle of the Equality of Moments ...... 6

The Polygon of Pressures ......... 10

The Parallelopipedon of Pressures ... ..... 14

Of Parallel Pressures .......... 16

The Centre of Gravity .......... 20

The Properties of Guldinus ......... 3$

PART II.

DYNAMICS.

Motion .............. 47

Velocity ............. 48

WORK ............. 48

Work of Pressures applied in different Directions to a Body moveable

about a fixed Axis .......... 57

Accumulation of Work .......... 58

Angular Velocity ........... 65

The Moment of Inertia .......... 70

THE ACCELERATION OF MOTION BY GIVEN MOVING FORCES . . .79
The Descent of a Body upon a Curve ....... 83

The Simple Pendulum .......... 85

Impulsive Force ........... 86

The Parallelogram of Motion ......... 86

The Polygon of Motion .......... 88

The Principle of D'Alembert ......... 89

Motion of Translation .......... 90

Motion of Rotation about a fixed Axis ....... 91

The Centre of Percussion ....... . .96
The Centre of Oscillation.......... 96

Projectiles ............ 99

Centrifugal Force ........... 106

ft



XV111 CONTENTS.

Page

The Principle of virtual Velocities 112

The Principle of Vis Viva 115

Dynamical Stability * 121

FRICTION 124

Summary of the Laws of Friction 130

The limiting Angle of Resistance 131

The Cone of Resistance 133

The two States bordering upon Motion 133

THE RIGIDITY OF CORDS . . . . 142

PART III.

THE THEORY OP MACHINES.

The Transmission of Work by Machines . 146

The Modulus of a Machine moving with a uniform or periodical Motion . 148

The Modulus of a Machine moving with an accelerated or a retarded

Motion 150

The Velocity of a Machine moving with a variable Motion . . . 151

To determine the Co-efficients of the Modulus of a Machine . . .153

General Condition of the State bordering upon Motion in a Body acted

upon by Pressures in the same Plane, and moveable about a cylindrical

Axis 154

The Wheel and Axle 155

The Pulley 160

System of one fixed and one moveable Pulley . . . . . .161
A System of one fixed and any Number of moveable Pulleys . . .163

A Tackle of any Number of Sheaves 166

The Modulus of a compound Machine 169

The Capstan 194

The Chinese Capstan 199

The Horse Capstan, or the Whim Gin 202

The Friction of Cords 207

The Friction Break 213

The Band 215

The modulus of the Band 217

The Teeth of Wheels 227

Involute Teeth 234

Epicycloidal and Hypocycloidal Teeth 236

To set out the Teeth of Wheels 239

A Train of Wheels 241

The Strength of Teeth 243

To describe Epicycloidal Teeth 245

To describe involute Teeth 251

The Teeth of a Rack and Pinion . . 253



CONTENTS. XLX
r

Page

The Teefh of a Wheel working with a Lantern or Trundle . . . 25r
<

The driving and working Pressures on Spur Wheels 259

The Modulus of a System of two Spur Wheels . . . . . . 268

The Modulus of a Rack and Pinion 282

Conical or Bevil Wheels 284

The Modulus of a System of two Bevil Wheels 288

The Modulus of a Train of Wheels 301

The Train of least Resistance 310

The Inclined Plane 312

The Wedge driven by Pressure . 321

The Wedge driven by Impact 823

The mean Pressure of Impact 325

The Screw 326

Applications of the Screw 329

The Differential Screw 331

Hunter's Screw 332

The Theory of the Screw with a Square Thread in reference to the vari-

able Inclination of the Thread at different Distances from the Axis . 333

The Beam of the Steam Engine 337

The Crank 341

The Dead Points in the Crank 845

The Double Crank 346

The Crank Guide 351

The Fly-wheel 353

The Friction of the Fly-wheel 362

The Modulus of the Crank and Fly-wheel 363

The Governor . 364

The Carriage-wheel 368

On the State of the accelerated or retarded Motion of a Machine . .373

PART IV.

THE THEORY OF THE STABILITY OF STRUCTURES.

General Conditions of the Stability of a Structure of Uncemented Stones 877

The Line of Resistance . 371

The Line of Pressure 37;)

The Stability of a Solid Body 38 >

The Stability of a Structure 381

The Wall or Pier . . . 382

The Line of Resistance in a Pier 383

The Stability of a Wall supported by Shores 387

The Gothic Buttress 396

The Stability of Walls sustaining Roofs ....... 397

The Plate Band 402

The sloping Buttress 40J



XX CONTENTS.

Page
The Stability of a Wall sustaining the Pressure of a Fluid . . .408
Earth Works 412

Revetement Walls 416

The Arch 429

The Angle of Rupture 437
The Line of Resistance in a circular arch whose Voussoirs are equal, and
whose Load is distributed over different Points of its Extrados . . 440

A segmental Arch whose Extrados is horizontal 441

A Gothic Arch, the Extrados of each Semi-Arch being a straight Line

inclined at any given Angle to the Horizon, and the Material of the

Loading different from that of the Arch 442
A circular Arch having equal Voussoirs and sustaining the Pressure of

Water 444
The Equilibrium of an Arch, the Contact of whose Voussoirs is geometri-

cally accurate 446

Applications of the Theory of the Arch 448
Tables of the Thrust of Arches .... .454

PART V.

THE STRENGTH OP MATERIALS.

Elasticity 458

Elongation $ 459
The Moduli of Resilience and Fragility 452
Deflection

. 467
The Deflexion of Beams loaded uniformly .... .481
The Deflexion of Breast Summers

. 486

Rupture 502

Tenacity 502
The Suspension Bridge 505
The Catenary 50g
The Suspension Bridge of greatest Strength 510

- Rupture by Compression . . .

*

618
The Section of Rupture in a Beam ..... 520
General Conditions of the Rupture of a Beam 521
The Beam of greatest Strength t 527
The Strength of Breast Summers

< 540
The best Positions of their Points of Support .... 542
Formulas representing the absolute Strength of a Cylindrical Column to

sustain a Pressure in the Direction of its Length 545
Torsion



CONTENTS. XXI

PART VI.

IMPACT.

Page
The Impact of two Bodies whose centres of Gravity move in the same

right Line 553
Greatest Compression of the Surface of the Bodies ... . 555

Velocity of two elastic Bodies after Impact ... . 556
The Pile Driver 534

ADDITIONS BY THE AMERICAN EDITOR .... .671

APPENDIX.

Note A 631

Note B. Poncelet's Theorems 632

Note C. On the Rolling of Ships 637

Note D 653

Note E. On the Rolling Motion of a Cylinder 655

Note F. On the Descent upon an Inclined Plane of a Body subject to

Variations of Temperature, and on the Motion of Glaciers . . . 675

Note G. The best Dimensions of a Buttress 683

Note H. Dimensions of the Teeth of Wheels 684

Note I. Experiments of M. Morin on the Traction of Carriages . . 685

N"ote K. On the Strength of Columns
, 686

Table I. The Numerical Values of complete Elliptic Functions of the

first and second Orders for Values of the Modulus Jc corresponding to

each Degree of the Angle $in- lk 687

Table II. Showing the Angle of Rupture * of an Arch whose Loading
is of the same Material with its Voussoirs, and whose Extrados is

inclined at a given Angle to the Horizon 688

Table III. Showing the Horizontal Thrust of an Arch, the Radius of

whose Intrados is Unity, and the Weight of each Cubic Foot of its

Material and that of its Loading, Unity 691

Table IV. Mechanical Properties of the Materials of Construction . . 694

Table V. Useful Numbers . 698





THE

MECHANICAL PRINCIPLES

or

CIVIL ENGINEERING.

PA.RT I.

STATICS,

1. FORCE is that which, tends to cause or to destroy
motion, or which actually causes or destroys- it.

The direction of a force is that straight line in which it

tends to cause motion in the point to which it is applied, or

in which it tends to destroy the motion in it.*

When more forces than one are applied to a body, and
their respective tendencies to communicate motion to it

counteract one another, so that the body remains at rest,
these forces are said to be in EQUILIBRIUM, and are called

PRESSURES.

It is found by experiment f that the effect of a pressure,
when applied to a solid body, is the same at whatever point
in the line of its direction it is applied ;

so that the condi-

tions of the equilibrium of that pressure, in respect to other

pressures applied to the same body, are not altered, if, with
out altering the direction of the pressure, we remove its.

point of application, provided only the point to which we
remove it be in the straight line in the direction of which it

acts.

The science of STATICS is that which treats of the equili-
brium ofpressures. When two pressures only are applied to

* Note (a) Ed. Appendix. f Note (6) Ed. Appendix.



THE UNIT OF PKESSURE.

a body, and hold it at rest, it is found by experiment that

these pressures act in opposite directions, and have their

directions always in the same straight line. Two such pres-

sures are said to be equal.

If, instead of applying two pressures which are thus equal
in opposite directions, we apply them both in the same

direction, the single pressure which must be applied in a

direction opposite to the two to sustain them, is said to be

double of either of them. If we take a third pressure, equal
to either of the two first, and apply the three in the same

direction, the single pressure, which must be applied in a

direction opposite to the three to sustain them, is said to be

triple of either of them : and so of any number of pressures.

Thus, fixing upon any one pressure, and ascertaining how

many pressures equal to this are necessary, when applied in

an opposite direction, to sustain any other greater pressure,
we arrive at a true conception of the amount of that greater

pressure in terms of the first.

That single pressure, in terma of which the amount of any
other greater pressure is thus ascertained, is called an UNIT

of pressure.

Pressures, the amount of which are determined in terms

of some known unit of pressure, are said to be measured.

Different pressures, the amounts of which can be deter-

mined in terms of the same unit, are said to be commensur-
able.

The units of pressure which it is found most convenient to

use, are the weights of certain portions of matter, or the

pressures with which they tend towards the centre of the

earth. The units of pressure are different in different coun-
tries. With us, the unit of pressure from which all the rest

are derived is the weight of 22-S15* cubic inches of distilled

water. This wr

eiglit is one pound troy ; being divided into

5760 equal parts, the weight of each is a grain troy, and
TOGO such grains constitute the pound avoirdupois.

If straight lines be taken in the directions of any number
of pressures, and have their lengths proportional to the
numbers of units in those pressures respectively, then these
lines having to one another the same proportion in length
that the pressures have in magnitude, and being moreover
draw^n in the directions in which those pressures respectively
act, are said to represent them in magnitude and direction.

* This standard was fixed by Act of Parliament, in 1824. The temperature
of the water is supposed to be 62 Fahrenheit, the weight to be taken in air,
and the barometer to stand at 30 inches.



THE PARALLELOGRAM OF PRESSURES. 3

A system of pressures being in equilibrium, let any num-
ber of them be imagined to be taken away and replaced by
a single pressure, and let this single pressure be such that

the equilibrium which before existed may remain, then this

single pressure, producing the same effect in respect to the

equilibrium that the pressures which it replaces produced, is

said to be the RESULTANT.

The pressures which it replaces are said to be the COMPO-

NENTS of this single pressure ;
and the act of replacing them

by such a single pressure, is called the COMPOSITION of

pressures.

If, a single pressure being removed from a system in equi-

librium, it be replaced by any number of other pressures,

such, that whatever effect was produced by that which they

replace singly, the same effect (in respect to the conditions of

the equilibrium) may be produced by those pressures con-

jointly, then is that single pressure said to have been RE-

SOLVED into these, and the act of making this substitution

of two or more pressures for one, is called the RESOLUTION

of pressures.

THE PARALLELOGRAM OF PRESSURES.

2. The resultant of any two pressures applied to a point,
is represented in direction by the diagonal of a paral-

lelogram, whose adjacent sides represent those pressures in

magnitude and direction*

(Duchayla's Method.f)

To the demonstration of this*proposition, after the excel-

lent method of Duchayla, it is necessary in the first place
to show, that if there be any two pressures P2

and P3
whose

directions are in the same straight line, and a third pressure
P

x
in any other direction, and if the proposition be true in

respect to Pj and P
2 ,
and also in respect to P

1
and P3 ,

then

it will be true in respect to Pj and P2 -f-P3

Let P
15
P

2 ,
and P

3 ,
form part of any system of pressures in

? ? equilibrium, and let them be applied to the point

^;*C%;Tr\ A; take AB and AC to represent, in magnitude
\

x
\;V^v, and direction, the pressures Y l

and P
Q ,
and CD

>-."* foQ pressTire P3?
and complete the parallelograms

CB and DF. Suppose the proposition to be true with regard

* This proposition constitutes the foundation of the entire science of Statics.

f Note (c) Ed. App.
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to P, and P2 ,
tlie resultant of 'P

l
and P2

will then be in the

direction of the diagonal AF of the parallelogram BO, whose

adjacent sides AC and AB represent P, and P2
in magnitude

and direction. Let P, and P
?
be replaced by this resultant.

It matters not to the equilibrium where in the line AF it is

applied ;
let it then be applied at F. But thus applied at

F it may, without affecting the conditions of the equilibrium,
be in its turn replaced by (or resolved into) two other pressures

acting in OF and BF, and these will manifestly be equal to

P, and P2 ,
of which P, may be transferred without altering

the conditions to 0, and P2
to E. Let this be done, and let

P
3
be transferred from A to C, we shall then have Pj and

!P
3 acting in the directions CF and CD at C and P2 ,

in the

direction FE at E, and the conditions of the equilibrium will

not have been affected by the transfer of them to these

points. .Now suppose that the proposition is also true in

respect to P
x
and P3

as well as P
x
and P2 . Then since CF

and CD represent tt

l
and P3

in magnitude and direction,
therefore their resultant is in the direction of the diagonal
CE. Let them be replaced by this resultant, and let it be
transferred to E, and let it then be resolved into two other

pressures acting in the directions DE and FE
;
these will

evidently be P
a
and P8

. We have now then transferred all

the three pressures P 1?
P2 ,

P
3 ,
from A to E, an.d they act at E

in directions parallel to the directions in which they acted at

A, and this has been done without affecting the conditions of

the equilibrium ; or, in other words, it has been shown that

the pressures P
1?
P

2 ,
P

3 , produce the same effect as it re-

spects the conditions of the equilibrium, whether they be

applied at A or E. The residtant of P
1?
T

2 ,
P

3 ,
must there-

fore produce the same effect as it regards the conditions of
the equilibrium, whether it be applied at A or E. But in

order that this resultant may thus produce the same effect

when acting at A or E, it must act in the straight line AE,
because a pressure produces the same effect when applied at

two different points only when both those points are in the
line of its direction. On the supposition made, therefore,
the resultant of P,, P

2 ,
and P

3 ,
or of P, and P

2 + P
3

acts in the direction of the diagonal AE of the parallel-
ogram BD, whose adjacent sides AD and AB representPa + P

3 and P> in magnitude and direction
;
and it has been

shown, that if the proposition be true in respect to P
t
and

P2 ,
and also in respect to P, and P

3 ,
then it is true in respect

to Pj and P
a + P

3
. Now this being the case for all values

f P P
a ,
P

35
it is the case when P

1?
P

2 ,
and P

8 ,
are equal
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to one another. But if P
x
be equal to P

a their resultant
will manifestly have its direction as much towards one of
these pressures as the other

;
that is, it will have its direc-

tion midway between them, and it will bisect the angle BAG :

but the diagonal AF in. this case also bisects the angle BAG,
since P, being equal to P2 ,

AC is equal to AB
;
so that in

this particular case the direction of the resultant is the

direction of the diagonal, and the proposition is true, and

similarly it is true of P
t
and P

3 ,
since these pressures are

equal. Since then it is true of P
l
and P

2 when they are

equal, and also of P
x
and P3 ,

therefore it is true in this case

of P, and P
2 + P

s ,
that is of P

1
and 2 Pr And since it is

true of Pj and P2 ,
and also of P

1
and 2 Pn therefore it is true

of
_P 1

and P
2 + 2 P

15 that is of P, and 3 P, ;
and so of P, and

m P
15

if m be any w^hole number
;
and similarly since it is

true ofm P
x
and P 1? therefore it is true of m P

a
and 2 P,, &c.,

and ofmP
t
and n P

1
where n is any whole number. There-

fore the proposition is true of any two pressures raP
x
and

n P
1
which are commensurable.

It is moreover true when the pressures are in-

j,^.........^ cot)imensuraiie ^ yor iet AC anci AB represent

|:;V:~\y/r:-::i? anv two such pressures P! and P
2
in magnitude

and direction, and complete the parallelogram

ABDC, then will the direction of the resultant of P, and

P
2
be in AD ;

for if not, let its direction be AE, and draw

EG parallel to CD. Divide AB into equal parts, each less

than GO, and set oif on AC parts equal to those from A
towards C. One of the divisions of these will manifestly

fall in GC. Let it be H, and complete the parallelogram
AHFB. Then the pressure P

2 being conceived to be

divided into as many equal units of pressure as there are

equal parts in the line AB, AH may be taken to represent a

pressure P3 containing as many ot these units of pressure

as there are equal parts in AH, and these pressures P2
and

P3
will be commensurable, being measured in terms of the

same unit. Their resultant is therefore in the direction AF,
and this resultant of P 3

and P2
has its direction nearer to

AC than the resultant AE of P, and P
2
has

;
which is

absurd, since P a
is greater than P3

.

Therefore AE is not in the direction of the resultant ot

P and Pa ;
and in the same manner it may be shown that no

other than AD is in that direction. Therefore, &c.
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3. The resultant of two pressures applied in any directions

to a point, is represented in magnitude as well as in direc-

twnoy the diagonal of the parallelogram whose adjacent
sides represent those pressures in magnitude and in direc-

tion.

Let BA and CA represent, in magnitude and

%., direction, any two pressures applied to the point"

A. Complete the parallelogram BC. Then by
the last proposition AD will represent the result-

ant of these pressures in direction. It will also

represent it in magnitude ; for, produce DA to G, and con-

ceive a pressure to be applied in GA equal to the resultant

of BA and CA, and opposite to it, and let this pressure be

represented in magnitude by the line GA. Then will the

pressures represented by the lines BA, CA, and GA, mani-

festly be pressures in equilibrium. Complete the parallelo-

gram BG
r
then is the resultant of GA and BA in the

direction FA; also since GA and BA are in equilibrium
wTith CA, therefore this resultant is in equilibrium, with CA,
but when two pressures are in equilibrium, their directions

are in the same straight line
;
therefore FAC is a straight

line. But AC is parallel to BD, therefore FA is parallel to

BD, and FB is, by construction, parallel to GD, therefore

AFBD is a parallelogram, and AD is equal to FB and
therefore to AG. But AG represents the resultant of CA
and BA in magnitude, AD therefore represents it in magni-
tude. Therefore, &c*

THE PRINCIPLE OF THE EQUALITY OF MOMENTS.

4. DEFINITION. If any number of pressures act in the
same plane, and any point be taken in that plane, and per-
pendiculars be drawn from it upon the directions of all these

pressures, produced if necessary, and if the number of units
in each pressure be then multiplied by the number of units
in the corresponding perpendicular, then this product is

called the moment of that pressure about the point from
which the perpendiculars are drawn, and these moments are
said to be measured from that point.

* Note (d) Ed. App.



EQUALITY OF MOMENTS.

5. If three pressures be in equilibrium, and their moments
~be taken about any point in the plane in which they act,
then the sum of the moments of those two pressures which
tend to turn the plane in one direction about the point
from which the moments are measured, is equal to the
moment of that pressure which tends to turn it in the

opposite direction.

. .....*,c P
15
P

a ,
P

3 , acting in the directions
PA. PA p

30, be any three pressures in

~D,....-^>|--iB equilibrium. Take any point A in the plane
'*-"' in which they act, and measure their moments

from A, then will the sum of the moments of P
2 and P

8 ,

which tend to turn the plane in one direction about A, equal
the moment of P

1?
which tends to turn it in the opposite

direction.

Through A draw DAB parallel to OP
15
and produce OP,

to meet it in D. Take OD to represent P
3 ,
and take DB

such a length that OD may have the same proportion to

DB that P2
has to P,. Complete the parallelogram ODBC,

then will OD and OC represent P2
and P

1
in magnitude and

direction. Therefore OB will represent P
3
in magnitude

and direction.

Draw AM, AN, AL, perpendiculars on OC, OD, OB,
and join AO, AC. Now the triangle OBC is equal to the

triangle OAC, since these triangles are upon the same base

and between the same parallels.

Also, A ODA+AOAB =AOBD = AOBC,
.-.A PDA -fAOAB=A OAC,

AN+P 3 x AL=Px AM.
Now Pj x AM, P

2
x AN, P

3 x AL, are the moments of P,,

P
2 ,
P

3 ,
about A (Art. 4.)

..mt P
9 + mt P

>
= mt P

1
...... (1).

Therefore, &c. &c.

6. If E be the resultant of P2 and P^then since E is

equal to P
1
and acts in the same straight line, rr^E = mtPj,

The sum of the moments therefore, about any point, of

two pressures, Pa and P3
in the same plane, which tend to
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turn it in the same direction about that point, is equal to

the moment of their resultant about that point.
If they had tended to turn it in opposite directions, then

the difference of their moments would have equalled the

moment of their resultant. For let R be the resultant of

P
t
and P3 ,

which tend to turn the plane in opposite direc-

tions about A, &c. Then is R equal to P2 ,
and in the same

straight line with it, therefore moment R is equal to

moment P
2

. But by equation (1) m.tP
1 m'P,, = m^ ;

.-.mT, mtP
3
= mtR.

Generally, therefore, m* P, 4- m* P2
= m1 R (2),

the moment, therefore, of the resultant of any two pressures
in the same plane is equal to the sum or difference of the

moments of its components, according as they act to turn the

plane in the same direction about the point from which the

moments are measured, or in opposite directions.*

7. If any number ofpressures in the same plane be in equi-
librium* and any point be taken, in that plane, from
which their moments are measured, then the sum of the

moments of those pressures which tend to turn the plane
in one direction about thatpoint is equal to the sum of the

moments of those which tend to turn it in the opposite
direction.

Let P15
P

a ,
P

3 P, be any number of pressures in

the same plane which are in equi-

librium, and A any point in the

plane from which their moments
are measured, then will the .sum of

the moments of those pressures
which tend to turn the plane in one direction about A equal
the sum of the moments of those which tend to turn it in

the opposite direction.

Let R, be the resultant of P
1
and P

2 ,

R2 R, and P
3 ,

R
3 R

a and P4 ,

&c &c.

Therefore, by the last proposition, it being understood
that the moments of those of the pressures r

1?
P

2 ,
which

) to the left of A

* Note (c) Ed. App.

tend to turn the plane to the left of A, are to be taken nega-
tively, we have



EQUALITY OF MOMENTS.

m* K, = m4 P
t + m* P

2
.

m* E
2
= m* E! + m* P,,m4 E

3
= m* K

2 + m' P
4 ,

&c. = &c. &c.
m* En_ = m*

Adding these equations together, and striking out the
terms common to both sides, we have

m* P, + in* P
2 4- m1 P

3 -f ..... .+ m* Pn

(3), where Rn_i is the resultant of all the pressures P1?

But these pressures are in equilibrium ; they have, there-

fore, no resultant.

.-.Kn-i = .-. m'En-! = 0,

.-.m4

P, + m* P2 + m1 P3 , + ..... m* Pn = . . . . (4).

Now, in this equation the moments of those pressures which
tend to turn the system to the left hand are to be taken

negatively. Moreover, the sum of the negative terms must

equal the sum of the positive terms, otherwise the whole
sum could not equal zero. It follows, therefore, that the
sum of the moments of those pressures which tend to turn

the system to the right must equal the sum of the moments
of those which tend to turn it to the left. Therefore, &c. &c.

8. If any number ofpressures acting in the same plane fie in

equilibrium, and they be imagined to be moved
parallel^

to

their existing directions, and all applied to the samepoint^
so as all to act upon that point ^n directions parallel to

those in which they before acted upon different points, then

will they he in equilibrium about that point.

For (see the preceding figure) the pressure E, at whatever

point in its direction it be conceived to be applied, may be
resolved at that point into two pressures parallel and equal
to

Pj
and P

2 : similarly, E2 may be resolved, at any point in

its direction, into two pressures parallel and equal to Ej and
P

3 ,
of which E

x may be resolved into two, parallel and equal
to P, and P

2 ,
so that E2 may be resolved at any point of its

direction into three pressures parallel and equal to Pn P2 ,
P

8 :

and, in like manner, E3 may be resolved into two pressures

parallel and equal to E2
and P

4 ,
and therefore into four pres-

sures parallel and equal to P
1?
P2 ,

P
3 ,
P

4 ,
and so of the rest.
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Therefore K_i may, at any point of its direction be resolved

into n pressures parallel and equal to Pn P2 ,
P

3 ,
Pn ;

if, therefore, n such pressures were applied to that point,

they would just be held in equilibrium by a pressure equal
and opposite to Rn_ i. But R_i = 0; these n pressures

would, therefore, be in equilibrium with one another if

applied to this point.
Now it is evident, that if, being thus applied to this point,

they would be in equilibrium, they would be in equilibrium
if similarly applied to any other point. Therefore, &c.

THE POLYGON OF PRESSURES.

9. The conditwns of the equilibrium of any number ofpres-
sures applied to apoint.

Let OP
15
OP

2 ,
OP3 , &c., represent in mag-

nitude and direction pressures P x ,
P2 , &c.,

applied to the same point O. Complete the

parallelogram OPj AP2 ,
and draw its diago-

nal OA
;
then will OA represent in magni-

tude and direction the resultant of Pj and
P2 . Complete the parallelogram OABP

3 ,
then will OB

represent in magnitude and direction the resultant of OA
and P 3 ;

but OA is the resultant of P
x
and P

2 ,
therefore OB

is the resultant of P 1?
P

2 ,
P

3 ; similarly, if the parallelogram
OBCP4

be completed, its diagonal OC represents the result-

ant of OB and P4 ,
that is, of P,, P2 ,

P
3 ,
P

4 ,
and in like

manner OD, the diagonal of the parallelogram OCDP
5 ,

represents the resultant of P,, P2 ,
P

3 ,
P

4 ,
P

B
.

ISTow let it be observed, that AP
X
is equal and parallel to

OP
2 ,
AB to OP3 ,

BO to OP
4 ,
CD to OP., so that P,A, AB,

BC, CD, represent P2 ,
P

3 ,
P

4 ,
P

6 , respectively in magnitude,
and are parallel to their directions. Moreover, OP X

is in the
direction of Pj and represents it in magnitude, so that the

sides OP,, P,A, AB, BC, CD, of the polygon OP 1?
ABCDO

represent the pressures P
a ,
P

2 ,
P

8 ,
P

4 ,
P

5 , respectively in

magnitude, and are parallel to their directions
;
whilst the

side OD, which completes that polygon, represents the
resultant of those pressures in magnitude and direction.

If, therefore, the pressures P P2 ,
P

8 ,
P

4 ,
P

5 ,
be in equili-

brium, so that they have no resultant, then the side OD of
the polygon must vanish, and the point D coincide with O.

Thus, then, if any number of pressures be applied to a point
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and lines be drawn parallel to the directions of those pres-

sures, and representing them in magnitude, so as to form
sides of a polygon (care being taken to draw each line from
the point where it unites with the preceding, towards the
direction in which the corresponding pressure acts), then the
line thus drawn parallel to the last pressure, and representing
it in magnitude, will pass through the point from which the

polygon commenced, and will just complete it if the pres-
sures be in equilibrium ;

and if they be not in equilibrium,
then this last line will not complete the polygon, and if a
line be drawn completing it, that line will represent the
resultant of all the pressures in magnitude and direction.

This principle is that of the POLYGON OF PRESSURES
;

it

obtains in respect to pressures applied to the same point,
whether they be in the same plane or not.

10. If any number ofpressures in the sameplane "be in equi-

librium, and each be resolved in directions parallel to any
two rectangular axes, then the sum of all those resolved

pressures, whose tendency is to communicate motion in one
direction along either axis, is equal to the sum of those

whose tendency is in the opposite direction.

Let the polygon of pressures be formed in respect to any
number of pressures, Pn PQ ,

P
3 ,
P

4 ,
in the same plane and in

equilibrium (Arts. 8, 9), and let the sides of

^"s Ptyg n be projected on any straight line

Ax in the same plane. ]STow it is evident,
that the sum of the projections of those sides

& of the polygon which form that side of the

figure which is nearest to Ax, is equal to the sum of the pro-

jections of those sides which form the opposite side of the

polygon : moreover, that the former are those sides of the

polygon which represent pressures tending to communicate
motion from A towards x, or from left to right in respect to

the line Ax ; and the latter, those which tend to communi-
cate motion in the opposite direction. Now each projection
is equal to the corresponding side of the polygon, multiplied

by the cosine of its inclination to Ax. The sum of all those

sides of the polygon which represent pressures tending to

communicate motion from A towards x, multiplied each by
the cosine of its inclination to Ax, is equal, therefore, to the

sum of all the sides representing pressures whose tendency
is in the opposite direction, each being similarly multiplied

by the cosine of its inclination to Ax. Now the sides of the
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polygon represent the pressures in magnitude, and are

inclined at the same angles to Ax. Therefore, each pressure

being multiplied by the cosine of its inclination to Aa?, the

sum of all these products, in respect to those which tend to

communicate motion in one direction, equals the sum simi-

larly taken in respect to those which tend to communicate
motion in the opposite direction

; or, if in taking this sum it

be understood that each term into which there enters a pres-

sure, whose tendency is from A towards a?, is to be taken

positively, whilst each into which there enters a pressure
which tends from x towards A is to be taken negatively,
then the sum of all these terms will equal zero

;
that is,

calling the inclinations of the directions of P
15
P2 ,

P
3

. . . P4

to Aa?, 1? 2 , 3
. . . . an respectively,

P, cos.
> -f P2 cos. 2 + P3cos. 3 + + Pn cos. an =0 ... (5),

in which expression all those terms are to be taken nega-
tively which include pressures, whose tendency is from x
towards A.

This proposition being true in respect to any axis, Aa? is

true in respect to another axis, to which the inclinations of
the directions of the pressures are represented by /315 j32 , /33 ,

Pn ,
so that,

P, cos. ft + P
2 cos. ft+ . . . . + P^cos. pn =0.

Let this second axis be at right angles to the first :

then ft = a
x

/. cos. ft= sin. o
1? j3a

=
2 , .% cos. ft

= sin. a
a ,
&c. = &c.

/. P, sin. a
x + P

2 sin.
2 + ....+ Pw sin. an = . . . . (6) ;

those terms in this equation, involving pressures which tend
to communicate motion in one direction, in respect to the
axis Ay being taken with the positive sign, and those which
tend in the opposite direction with the negative sign.

If the pressures P 15 P2 ,
&c. be each of them resolved

into two others, one of which is parallel to the axis Aa?, and
the other to the axis Ay, it is evident that the pressures
thus resolved parallel to Aa?, will be represented by P, cos. a

l5P
2 cos. a,, &c., and those resolved parallel to Ay, by

P! sin. a, P2 sin. a
a ,

&c. Thus then it follows, that if

any system of pressures in equilibrium be thus resolved

parallel to two rectangular axes, the sum of those resolved

pressures, whose tendency is in one direction along either
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axis, is equal to the sum of those whose tendency is in the

opposite direction.*

This condition, and that pf the equality of moments, are

necessary to the equilibrium of any number of pressures in

the same plane, and they are together sufficient to that equi-
librium.

11. To determine the resultant of any number of pressures
in the same plane.

If the pressures Pj Pa .... Pw be not in

equilibrium, and have a resultant, then one
side is wanting to complete the polygon of

pressures, and that side represents the res-

ultant of all the pressures in magnitude,
and is parallel to its direction (Art. 9).

Moreover it is evident, that in this case the sum of the pro-

jections on Ax (Art. 10) of those lines which form one

side of the polygon, will be deficient of the sum of those of

the lines which form the other side of the polygon, by the

projection of this last deficient side
;
and therefore, that the

sum of the resolved pressures acting in one direction along
the line A#, will be less than the sum of the resolved pres-
sures in the opposite direction, by the resolved part of the

resultant along this line. Now if R represent this resultant,

and 6 its inclination to AOJ, then R cos. is the resolved part
of R in the direction of A.X. Therefore the signs of the terms

being understood as before, we have

R cos. 0=P
a
cos. OJ + PS cos. +.... +Pw cos. an . . (7).

And reasoning similarly in respect to the axis Ay, we have

R sin. 0=P
1
sin. a.+ P, sin. a

2+ .... +Pn sin. an . . . (8).

Squaring these equations and adding them, and observing
that R2

sin.
2

0-fR2
cos.

2 Ra

(sin.
2

0+cos.
a

0) =R2

,
we have

R2

=(2P sin. )

2+ (2P cos. a)
2 ........ (9),

where 2P sin. a is taken to represent the sum P, sin. ^ -r

P2 sin. a
a+P 3

sin. a
s+ &c., and 2p cos. a to represent the

sum P
x
cos. o^+P,, cos. 2+ P3

cos. a
3+ &c.

Dividing equation (8) by equation (7),

r, 2P sin. a /im
tan. 0=-_ - ....... (10).

SP cos. a

Thus then by equation (9) the magnitude of the resultant

Note(/)Ed. App.
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K is known, and by equation (10) its inclination 6 to the axis

Ax is known. In order completely to determine it, we have

yet to find the perpendicular distance at which it acts from
the given point A. For this wre must have recourse to the

condition of the equality of moments (Art. Y).

If the sum of the moments of those of the pressures, P1?

P
a

. . . . P,
,
which tend to turn the system in one direc-

tion about A, do not equal the sum of the moments of those

which tend to turn it the other way, then a pressure being
applied to the system, equal and opposite to the resultant R,
will bring about the equality of these two sums, so that the

moment of R must be equal to the difference of these sums.

Let then p equal the perpendicular distance of the direction

of E from A. Therefore

a-f .... +mt Pw . . . (11),

in the second member of which equation the moments of

those pressures are to be taken negatively, which tend to

communicate motion round A towards the left.

Dividing both sides by E- we have

Thus then by equations (9), (10), (12), the magnitude of

the resultant R, its inclination to the given axis Aa?, and the

perpendicular distance of its direction from the point A, are

known; and thus the resultant pressure is completely deter-

mined in magnitude and direction.

THE PARALLELOPIPEDON OF PRESSURES.

12. Three pressures, P
l?
P

Q ,
P

3 , being applied to the same

point A, in directions a?A, ^/A, 0A, which are not in the
same plane, it is required to determine their resultant.

Take the lines P, A, P2 A, P3 A, to represent the pressures
Pj, P

2 ,
P

3 ,
in magnitude and direction.

Complete the parallelopipedoii RPa P 8
P

l5

ofwhich APj,AP2 ,
AP

3 ,
are adjacent edges,

and draw its diagonal RA ;
then will RA

represent the resultant of P,, P2 ,
P

3 ,
in

direction and magnitude. For since

PjSPjjA is a parallelogram, whose adjacent
sides Pj A, P

2 A, represent the presurea
P

a
and P

a
in magnitude and direction, therefore its diagonal
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SA represents the resultant of these two pressures. And
similarly KA, the diagonal of the parallelogram KSAP 3 ,

re-

presents in magnitude and direction the resultant of SA and
P

8 ,
that is, of F

15
P

2 and P
3 ,

since SA is the resultant of

P, and P
9

.

It is evident that the fourth pressure necessary to produce
an equilibrium with Pn P9 ,

P
8 , being equal and opposite to

their resultant, is represented in magnitude and direction

by AR.

13. Three pressures, P,, P2 ,
P

8 , "being in equilibrium, it is

required to determine the third P
3
in terms of the other

two, and their inclination to one another.

Let APj and AP
a represent the pressures P l

and P
2 in

magnitude and direction, and let the inclination

P, AP, of JP 1
to P2 be represented by A- Com-

plete the parallelogram AP X
RP

2 ,
and draw its

diagonal AR. Then does AR represent the
resultant of P, and P

2
in magnitude and direc-

tion. But this resultant is in equilibrium with P
3 ,

since P,
and P

2
are in equilibrium with P

3
. It acts, therefore, in the

same straight line with P
3 ,
but in an opposite direction, and

is equal to it. Since then AR represents this resultant in

magnitude and direction, therefore RA represents P3
in mag-

nitude and direction.

Now, A]?=AP> 2AF
X

. PJK . cos.

also, AP.R^Tr ^AP^Tr A, P 1R=AP,, and AP
15
AP

2)

AR, represent P,, P2 ,
P

3 ,
in magnitude.

/. ?/= ?,- 2?^. COB. (7T A) +P,-).
NOW COS. (7T A)= COS. A, .'. P.'zrP^+ SP,?, COS. A

(13).

14. If three pressures, P 1?
P2 ,

P
3 ,

he in equilibrium, any two

of them are to one, another inversely as the sines of their

inclinations to the third.

Let the inclination of Pj to P3
be represented by A> an(i

that of P
a
to P, by A-

rrrTT P.AP.rrzTA, " SlU. P.ARrzrsin. & '

P
1RA=P,AR=^ P2

AP
3
=rr A, /. sin. P

1
KA= Sin. A-
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AF, AP, sin. P,KA
Also, AP

2

~~
P,R

~
sin.

sn.

That is, P, is to P2 inversely, as the sine of the inclina-

tion of PJ to P3 is to the sine of the inclination of P2
to P

3
.

Therefore, &c. &c. [Q. E. D.]

OF PARALLEL PRESSURES.

15. The principle of the equality of moments obtains in

respect to pressures in the same plane whatever may be

their inclinations to one another, and therefore if their

inclinations be infinitely small, or if they he parallel.

In this case of parallel pressures, the same line AB, which

3 is drawn from a given point A, perpendicular
to one of these pressures, is also perpendicular
to all the rest, so that the perpendiculars are

here the parts of this line AM
1?
AM

2 ,
&c.

intercepted between the point A and the direc-

tions of the pressures respectively. The principle is not how-
ever in this case true only in respect to the intercepted parts
of this perpendicular line AB, but in respect to the inter-

cepted parts of any line AC, drawn through the point A
across the directions of the pressures, since the intercepted

parts Amx ,
Am

2 ,
Am

3 ,
&c. of this second line are proportional

to those, AM 15
AM

2 ,
&c. of the first.

Thus taking the case represented in the figure, since by
the principle of the equality of moments we have,

AM, . P, +AM4
. P4
=AM

2
.

dividing both sides by AM 6 ,

.
- ,

AM.
' r'+ AM

5

' r*~~ AM
5

' r'+ AM
5

'

AM, Am, AM
2
Am2

Butbysimilartriangles,
=

'

Am.
'

Am,
' 4~~Am

B

' Am '

Therefore multiplying by Am6 ,

Am, . P.+ Amt
. P

4 =Am^ . P3 +Am, . P
8+Am~ . P

6.

Therefore, &c.
[Q.B.D.]
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16. Tofind the resultant of any number ofparallel pressures
in the same plane.

It is evident that if a pressure equal and opposite to the
resultant were added to the system, the whole would be in

equilibrium. And being in equilibrium it has been shown
(Art. 8.), that if the pressures were all moved from their

present points of application, so as to remain parallel to their

existing directions, and applied to the same point, they are

such as would be in equilibrium about that point.

'

But

being thus moved, these parallel pressures would all have
their directions in the same straight line. Acting therefore all

in the same straight line, and being in equilibrium, the sum
of those pressures whose tendency is in one direction along
that line must equal the sum of those whose tendency is in

the opposite direction. Now one of these sums incluaes the
resultant R. It is evident then that before R was introduced
the two sums must have been unequal, and that R equals, the
excess of the greater sum over the less

;
and generally that if

2P represent the sum of any number of parallel pressures, .

those whose tendency is in one direction being taken with:

the positive sign, and those whose tendency is in the opposite
direction, with the negative sign ;

then

R = 2P (15).

the sign of R indicating whether it act in the direction of

those pressures which are taken positively, or those which are

taken negatively.
Moreover since these pressures, including R, are in equi-

librium, therefore the sum of the moments about any point,
of those whose tendency is to communicate motion in one

direction, must equal the sum of the moments of the rest

these moments being measured on any line, as AC
;
but one

of these sums includes the moment of R
;
these

two sums must therefore, before the introduc-

tion of R, have been unequal, and the moment
of R must be equal to the excess of the greater
sum over the less, so that, representing the

sum of the moments of the pressures (R not being included)

by 2 m* P, those whose tendency is to communicate motion

in one direction, having the positive sign, and the rest the

negative ;
and representing by x the

^

distance from A, mea-

sured along the line AC, at which R intersects that line, we
have, since xR is the moment of R, xR = 2 ml

P, where the
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sign of a?R indicates the direction in which R tends to turn

the system about A, but E- = 2P,

. (16).
2P

Equations (15) and (16) determine completely the magni-
tude and the direction of the resultant of a system of parallel

pressures in the same plane.

IT. To determine tlw resultant of any number of parallel

pressures not in the same plane.

Let Pj 'and P2 be the points of application of any two of

these pressures, and let the pressures themselves
be represented by P

1
and P2 . Also let their

resultant Rj intersect the line joining the points

PI and P2 in the point Rj ; produce the line

P
1?
P

a ,
to intersect any plane given in position,

in the point L. Through the points P
15
P2 ,

and R
15
draw

P.Mj, Pa
M

2 ,
and Rj]^ perpendicularly to this plane: these

lines will be in the same plane with one another and with

Pj L ;
let the intersection of this last mentioned plane with

the first be LM,, then will PjMj, P2
M

2 ,
and R^ be per-

pendiculars to LM
: ;

moreover by the last proposition,

But by similar triangles,

LP_PM l
LP2_P2

1VI
2

Let now the resultant, R2 ,
of R

:
and Ps

intersect the line joining the points R, and
P

3
in the point R2 ,

and similarly let the

resultant, R3 ,
of R2

and P
4 intersect the

me j mmg the points R2
and P

4
in the

point Rg, and so on : then by the last equa-
tion.
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Similarly, E, . R +P3
. P.M. = E2

&c. + &c. = &c.

E7i_2

Adding these equations, and striking out terms common to

both sides,

P, . P +P2
P + . . . + P. ."P3L=R-1

.

P
2
M

2+ ..... +PW . PnMn ;

. p N- -' >

in which expression those of the parallel pressures P
15
P

2 ,

&c. which tend in one direction, are to be taken positively,
whilst those which tend in the opposite direction are to be
taken negatively.
The line En_i N_i represents the perpendicular distance

from the given plane of a point through which the resultant

of all the pressures P1?
P2 . . . . Pn , passes. In the same

manner may be determined the distance of this point from

any other plane. Let this distance be thus determined in

respect to three given planes at right angles to one another.

Its actual position in space will then be known. Thus then
we shall know a point through which the resultant of all the

pressures passes, also the direction of that resultant, for it is

parallel to the common direction of all the pressures, and we
shall know its amount, for it is equal to the sum of all the

pressures with their proper signs. Thus then the resultant

pressure will be completely known. The point E^i is called

the CENTRE OF PARALLEL PRESSURES.

18. The product of any pressure by its perpendicular dis-

tance from a plane (or rather the product of the number of

units in the pressure by the number of units in the perpen-

dicular), is called the moment of the pressure, in respect to

that plane. Whence it follows from equation (17) that the

sum of the moments of any number of parallel pressures in
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respect to a given plane is equal to the moment of their

resultant in respect to that plane.

19. It is evident, from equation (18), that the distance

~Nn i of the centre of pressure of any number of

parallel pressures from a given plane, is independent of the
directions of these parallel pressures, and is dependent
wholly upon their amounts and the perpendicular distances

PjM^ P
2
M

2 ,
&c. of their points of application from the

given plane.
So that if the directions of the pressures were changed,

provided that their amounts and points of application
remained the same, their centre of pressure, determined as

above, would remain unchanged; that is, the resultant,

although it would alter its direction with the directions of
the component pressures, would, nevertheless, always pass
through the same point.
The weights of any number of different bodies or different

parts of the same body, constitute a system of parallel pres-
sures

;
the direction, therefore, through this system of the

resultant weight may be determined by the preceding pro-
position ;

their centre of pressure is their centre of gravity.

THE CENTRE OF GRAVITY.

20. The resultant of the weights of any number of bodies
or parts of the same body unitea into a system of inva-
riableform passes through the same point in it, into what-
ever position it may be turned.

For the effect of turning it into different positions is to

cause the directions of the
weights

of its parts to traverse
the heavy body or system in different directions, at one time

lengthwise for instance, at another across, at another

obliquely and the effect upon the direction of the resultant

weight through the body, produced by thus turning it into
different positions, and thereby changing the directions in
which the weights of its component parts traverse its mass,
is manifestly the same as would be produced, if without alter-

ing the position of the body, the direction of gravity could
be changed so as, for instance, to make it at one time tra-
verse that body longitudinally, at another obliquely, at a
third

transversely. But by Article 19, this last mentioned
change, altering the common direction of the parallel pres-
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sures through the body without altering their amounts or

their points of application, would not alter the position of
their centre of pressure in the body ; therefore, neither would
the first mentioned change. Whence it follows that the
centre of pressure of the weights of the parts of a heavy
body, or of a system of invariable form, does not alter its

position in the body, whatever may be the position into

which the body is turned; or in other words, that the
resultant of the weights of its parts passes always through
the same point in the body or system in whatever position
it may be placed.

This point, through which the resultant of the weights of

the parts of a body, or system of bodies of invariable form,

passes, in whatever position it is placed ; or, if it be a body
or system of variable form, through which the resultant

would pass, in whatever position it were placed, if it became

rigid or invariable in its form, is called the CENTRE OF
GRAVITY.

21. Since the weights of the parts of a body act in

parallel directions, and all tend in the same direction, there-

fore their resultant is equal to their sum. Now, the result-

ant of the weights of the parts of the body would produce,

singly, the same effect as it regards the conditions of the

equilibrium of the body, that the weights of its parts

actually do collectively, and this weight is equal to the sum
of the weights of the parts, that is, to the whole weight of

the body, and in every position it acts vertically downwards

through the same point in the body, viz. the centre of

gravity. Thus then it follows, that in every position of the

body and under every circumstance, the weights of its parts

produce the same effect in respect to the conditions of its

equilibrium, as though they were all collected in and acted

through that one point of it its centre of gravity*
* That the resultant of the weights of all the parts of a rigid body passes

in all the positions of that body through the same point in it is a property of

many and most important uses in the mechanism of the universe, as well as in

the practice of the arts
;
another proof of it is therefore subjoined, which

may be more satisfactory to some readers than that given in the text. The

system being rigid, the distance PI, P2 ,
of the points of

application of any two of the pressures remains the

same, into whatever position the body may be turned :

the only difference produced in the circumstance under

which they are applied is an alteration in the inclina-

tions of these pressures to the line PI, P2 : now being

weights, the directions of these pressures always remain

parallel to one another, whatever may be their inclina-

tion
;
thus then it follows by the principle of the equa-
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22. To determine the position jf the centre o gravity of
two weights',

P
x
and reforming part of a rigid system.

Let it be represented by G. Then since the resultant of

T@ ^ Pj and P
Q passes through G, we have by equa-P

* tion (16), taking P t
as the point from which the

moments are measured,

P 4-P P (1 P P P
x^j-fjrt . r

a
vr 1 3

. JT
jiT.,,

P P Pp r\ _ 2j_^_i^_2 .

ilU -TVfPT
whence the position of G is known.

23. It is required to determine the centre of gravity of three

weights P 15
P

2 ,
P

3 ,
not in the same straight line, andform-

ingpart of a rigid system.

Find the centre of gravity G15
of P

x
and P

2 ,
as in the last

proposition. Suppose the weights P
1
and P2 to

jft
be collected in G

15
and find as before the com-

^^Jc,
mon centre of gravity G2

of this weight Pj + P,,
r.*-- Vj so collected in G

a ,
and the third weight P3

. It

Lg
is evident that this point G

2 is the centre of

gravity required. Since G
2 is the centre of

gravity of P3
and P^ P

2 collected in G
15 we have by the

last proposition

G?, . P.,

G.P..F.

lity of moments (Art. 15), that Pi4-P 2 PiRi P2 . PiP 2 ,
so that for every

such inclination of the pressures to PI P2 ,
the line PI HI is of the same length,

and the point Rj therefore the same point ; therefore, the line P 3Ri is always
the same line in the body; and RI which equals P!-f-P 2 ,

is always the same

pressure, as also is P 8 ,
and these pressures always remain parallel, therefore,

for the same reason as before, R 2 is always the same point in the body in

whatever position it may be turned, and so of R3 , R4 and R.-I. That

is, in every position of the body, the resultant of the weights of its parts

passes through the same point R-i in it. Since the resultant of the weights
of the parts of a body always passes through its centre of gravity, it is

evident, 'that a single force applied at that point equal and opposite to this

resultant, that is, equal in amount to the whole weight of the body, and in a

direction vertically upwards, would in every position of the body sustain it.

This property of the centre of gravity, viz. that it is a point in the body where
a single force would support it is sometimes taken as the' definition of it.
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If P
15
P

2 ,
P

3 ,
be all equal, then

%<M=
Moreover in this case,

24. To find the centre of gravity offour weights not in thf>

sameplane.

Let P
1?
P

2 ,
P

3 ,
P

4 , represent these weights; find the
centre of gravity G2

of the weights P,, P3 ,

y5_

P
3 ,

as in the last proposition ; suppose these

/j\
three weights to he collected in G

2 ,
and then

//I \ find the centre of gravity G3 of the weight
/iift... \ tnus collected in G-

2
and t\. G

3
will he the

jgjSfc^
3^ centre of gravity required, and since G

3
is

the centre of gravity of P
4 acting at the

point P4 ,
and of P^Pa+P, collected at G

2 ,

If all these weights be equal, then by the above equation,

also, _G1
G

?=i_G1
P

3 ,

and &?!=$ P.P.-

25. THE CENTRE OF GRAVITY OF A TRIANGLE.

Let the sides AB and EC of the triangular lamina ABC
be bisected in E and D, and the lines CE and
AD drawn to the opposite angles, then is the

intersection G of these lines the centre of gravity
of the triangle : for the triangle may be supposed
to be made up of exceedingly narrow rectangular

strips or bands, parallel to JBC, each of which will

be bisected by the line AD; for by similar triangles
PK : DB :: AE : AD :: KQ : DC, therefore, alternando,
PK : KQ::DB : DC; but DB=DC; therefore PR=PvQ.

Therefore, each of the elementary bands, or rectangles

parallel to BC, which compose the triangle ABC, would

separately balance on the line AD
; therefore, all of them
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joined together would balance on the line AD, therefore the

centre of gravity of the triangle is in AD.
In the same manner it may be shown that the centre of

gravity of the triangle is in the line CE
; therefore, the cen-

tre of gravity is at the intersection G of these lines.

Now DG=J DA : for imagine the triangle to be without

weight, and three equal weights to be placed at the angles

A, 6, and C, then it is evident that these three weights will

balance upon AD ;
for AD being supported, the weight A

will be supported, since it is in that line
; moreover, B and

C will be supported since they are equidistant from that

line.

Since, then, all three of the weights will balance upon
AD, their centre of gravity is in AD. In like manner it

may be shown that the centre of gravity of all three weights
is in CE

;
therefore it is in G, and coincides with the centre

of gravity of the triangle.
]N ow, suppose the weights B and C to be collected in their

centre of gravity D, and suppose each weight to be repre-
sented in amount by A, a weight equal to 2A will then be
collected in D, and a weight equal to A at A, and the centre

of gravity of these is in G
;

therefore DA x A = DG x

(2A+ A),

. . DA = 3 DG, or DG = DA.* [Q.E.D.]

26. THE CENTKE OF GRAVITY OF THE PYRAMID.

Let ABC be a pyramid, and suppose it to be
made up of elementary laminae l)cd, parallel to

the base BCD. Take G, the centre of gravity
of the base BCD, and join AG; thenAG will

pass through the centre of gravity g of the

lamina Icd^ therefore each of the laminae will separately
balance on the straight line AG

;
therefore the laminae when

combined will balance upon this line
;
therefore the whole

figure will balance on AG, and the centre of gravity of

the whole is in AG. In like manner if the centre of gravity
H of the face ABD be taken, and CH be joined, then it may
be shown that the centre of gravity of the whole is in Cli

;

* Note (g) Ed. App.
f For produce the plane ABG- to intersect the plane ADC in AM, then by

similar triangles DM : MC : : dm : me, but DM= MC
;
therefore dm= me. Also

by similar triangles GM : BM::#m : bm, but GM= i BM; therefore gm= $
bm. Since then dm= J dc and gm= $ bm, therefore g is the centre of gravity
of the triangle bdc.
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therefore the lines AGr and CII intersect, and the centre of

gravity is at their intersection K.
Now GK is one-fourth of GA

;
for suppose equal weights

to be placed at the angles A, B, C, and D of the pyramid
(the pyramid itself being imagined without weight), then
will these four

^weights balance upon the line AG, for one
of them, A, is in that line, and the line passes through the
centre of gravity G of the other three.

Since, then, the equal weights A, B, C, and D balance

upon the line AG, their centre of gravity is in AG
;
in the

same manner it may be shown that the centre of gravity of
the four weights is in CH, therefore it is in K, and coincides
with the centre of gravity of the pyramid.
Now let the number of units in each weight be repre-

sented by A, and let the three weights B, C, and D be
supposed to be collected in their centre of gravity G ;

the
four weights will then be reduced to two, viz. 3A at G, and
A at A, whose common centre of gravity is K,

/. GKx3A+A = GAxA,
/. 4GK= GA or GK= J GA.* [Q.E.D.]

27. The centre of gravity of apyramid with a polygonal lase
is situated at a vertical height from the base, equal to one

fourth the whole height of the pyramid.

For any such pyramid ABCDEF may be supposed to

be made up of triangular pyramids ABOF,
ACDF, and ADEF, whose centres of gravity
G, H, and K, are situated in lines AL, AM,
and AN, drawn to the centres of gravity L, M,
and N of their bases'

;
LG being one-fourth of

LA, Mil one-fourth of MA, and NK one-fourth

of NA. The points G, H, and K, are therefore in a plane

parallel to the base of the pyramid, and whose vertical dis-

tance from the base equals one-fourth the vertical height of

the pyramid.
Since then the centres of gravity G, H, and K of the ele-

mentary triangular pyramids which compose the whole poly-

gonal pyramid are in this plane, therefore the centre of gravity
of the whole is in this plane, i. e. the centre of gravity of the

whole polygonal pyramid is situated at a vertical height from

the base, equal to one fourth the vertical height of the whole

* Note (h) Ed. App.
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pyramid, or at a vertical depth from the vertex, equal to three

fourths of the whole. JSTow the above proportion is true,
whatever be the number of the sides of the polygonal base,
and therefore if they be infinite in number

;
and therefore it

is true of the cone, which may be considered a pyramid hav-

ing a polygonal base, of an infinite number of sides
;
and it

is true whether the cone orpyramid be an oblique or a right
cone orpyramid.

28. If a body be of a prismatic form, and symmetrical
about a certain plane, then its whole weight may be sup-

posed to be collected in the surface of that plane, and uni-

formly distributed through it. For let

ACBEFD represent such a prismatic

body, and dbc a plane about which it is

symmetrical : take m, an element of uni-

form thickness whose sides are parallel to
B the sides of the prism, and which is

terminated by the faces ACB and DFE of the prism ;

it is evident that this element m will be bisected by the

plane abc, and that its centre of gravity will therefore

lie in that plane, so that its whole weight nlay be sup-

posed collected in that plane ;
and this being true of

every other similar element, and all these elements be-

ing equal, it follows that the whole weight of the body
may be supposed to be collected in and uniformly dis-

tributed through that plane. It is in this sense only that we
can speak with accuracy of the weight and the centre of gra-

vity of a plane, whereas a plane being a surface only, and

having no thickness, can have no weight, and therefore no
centre of gravity. In like manner when we speak of the
centre of gravity of a curved surface, we mean the centre of

gravity of a body, the weights of all whose parts may be sup-
posed to be collected and uniformly distributed throughout
that curved surface. It is evident that this condition is

approached to whenever the body being hollow, its material
is exceedingly thin. Its whole weight may then be conceived
to be collected in a surface equidistant from its two external
surfaces. In like manner an exceedingly thin uniform curved
rod may be imagined to have its weight collected uniformly
in a line passing along the centre of its thickness, and in this

sense we may speak of the centre of gravity of a line,

although a line having no breadth or thickness can have no

weight, and therefore no centre of gravity.
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29. THE CENTRE OF GRAVITY OF A TRAPEZOID.

Let AD and BO be the parallel sides of the trapezoid, of

B which AD is the less. Let AD be represented
by 0,BC by 5, and the perpendicular distance~ '

tlie tw sides by ^* Draw DE parallel
to AB. Let G

x
be the intersection of

t]le ^iag0nals of the parallelogram ABED,
then will

4
G

t
be the centre of gravity of that parallelo-

gram. Bisect OE in L, join DL, and take DG
2=f DL,

then will G3 be the centre of gravity of the triangle DEC.
Draw GjM, and G2

M
2 perpendiculars to AD

;
then since

AG,=i AE, therefore G.M^i FE=4 h. And since

DG2
= f DL, therefore G

2
M

2
= | NL = f h. Suppose the

whole parallelogram to be collected in its centre of gravity
G

1?
and the whole triangle in its centre of gravity Ga

. Let
G be the centre of gravity of the whole trapezoid, and draw
GM perpendicular to AD. Then would the whole be sup-

ported by a single force equal to the weight of the trapezoid

acting upwards at G. Therefore (Art. 17),

MG . ABCD=~G^M 1
. ABED+G~M2 . "CED

Now, ABCD = i h (a+ 5), ABED = ha,
CED = i A (7,_a), G.M, = J A, G2

M2
= f A,

.-. MG' .
-J-
h (a+~b} = % h . ha+% h . \ li(ba\

.-. MG (a+6) = Aa+| h (I a) = -J h

(19).

30. THE CENTRE OF GRAVITY OF ANY QUADRILATERAL FIGURE.

Draw the diagonals AC andBD of any quadrilateral figure

ABCD, and let them intersect in E,
and from the greater of the two parts,
BE and DE, of either diagonal BD set

off a part BF equal to the less part.
Bisect the other diagonal AC in H, join
HF and take HG equal to one third of

HF
;
then

w^ill
G be the centre of gravity of the whole

figure.
For if not, let g be the centre of gravity, join HB and HD

and take HG
X \ HB and HG2

= i HD, then will G
x
and

G
2 be the centres of gravity of the triangles ABC and ADC
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respectively (Art. 25). Suppose these triangles to be col-

lected in their centres of gravity G15
G

2 ;
it is evident that

the centre of gravity ^, of the whole figure, will be in the

straight line joining the points Gx
G2

: let this line intersect

AC in K
;
then since a pressure equal to the weight of the

whole figure acting upwards at
</,

will be in equilibrium with
the weights of the triangles collected in Gj and G2 ,

we have,

by the principle of the equality of moments (Art. 15),

E^ . ABCD^KG, . ABC KG
2

. ADC.

Now since HG, = \ HB, and HG2
= \ HD, therefore G,G2

is parallel to DB, therefore KG^i BE, and KG
a
= J DE.

Now let the angle AED = BEC i. Therefore the perpen-
dicular from B upon AC BE sin.

,
and that from 33 = DE

sin.
,
therefore area of triangle ABC % AC . BE sin.

,

and area of triangle ADC = J AC . DE sin.
i,
therefore area

of quadrilateral ABGD = j AC . BE~ sin. i+J AC . DE
sin. = J (BE+DE) AC sin. *. Substituting these values in

the preceding equation,

!Lg . J (BE+DE)J[C sin^iJBE . J AC . BE sin. i

DE . AC . DE sin. i

(BE+DE) = -i- (BF DE5

),

But sin-ce HG = i HF, .\KG= ^ FE, .-.E^= KG; that

is, the true centre of gravity g coincides with the point G.

Therefore, &c. [Q.E.D.]

*31. In the examples hitherto given, the centre of pressure
of a system of weights, or their centre of gravity, lias been
determined by methods which are indirect as compared with
the direct and general method indicated in Article IT. That
method supposes, however, a determination of the sum of the

moments of the weights of all the various elements of the

body in respect to three given planes. Now in a continuous

body these elements are infinite in number, each being infi-

nitely small
;

this determination supposes, therefore, the sum-
mation of an infinite number of infinitely small quantities,
and requires an application of the principles of the intregal
calculus.

Let AM be taken to represent any small element of the
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volume M of a continuous body, and x its perpendicular
distance from a given plane. Then will OJJA AM represent
the moment of the weight of this element about that plane,
fx representing the weight of each unit of the volume M.
Let \&xAM represent the sum of all such moments, taken in

respect to all the small elements, such as AM, which make
up the volume of the body. Then if G^ represent the dis-

tance of the centre of gravity of the body from the given

plane ;
since i^2a?AM represents the sum of the moments of a

system of parallel pressures about that plane, f*M the sum of

those pressures, and G
x
the distance of their centre of pres-

sure from the plane (Art. 19), it follows by equation (18) that

4^3^ (20) _

Now it is proved in the theory of the integral calculus,*
that a sum, such as is represented by the above expression
2a?AM, whose terms are infinite in number, and each the pro-
duct of a finite quantity a?, and an infinitely small quantity
AM, and in which M is, as in this case, a function of x (and
therefore x a function of M), is equal to the definite integral

/ a Therefore, generally,

fx

M

Similarly,

J'ydM.
(21).

M

In the two last of which equations y and s are taken to repre-

sent, respectively, the distances of the element AM of the

*
Poisson, Journal de 1'Ecole Polytechnique, 18me cahier, p. 320, or Art. 2,

in the Treatise on Definite Integrals in the Encyclopaedia Metropolitana by the

author of this work. See Appendix, note A.
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body from two other planes, as x represents its distance from
the first plane ;

and G
t
and G2 to represent the distances of

its centre of gravity from those planes. The distances G,,
G2 ,

G
3 ,

of the centre of gravity from three different planes

being thus known, its actual position in space is fully deter-

mined. These three planes are usually taken at right angles
to one another, and are then called rectangular co-ordinate

planes, and their common intersections rectangular co-ordi-

nate axes.

If the centre of gravity of the body be known to lie in a

certain plane, and one of the co-ordinate planes spoken of

above, as for instance that from which G
3 is measured, be

taken to coincide with this plane in which the centre of gra-

vity is known to lie, then G
3
==

0, and the position of the cen-

tre of gravity is determined by the two first only of the above
three equations. This case occurs when the body, whose
centre of gravity is to be determined, is symmetrical about a
certain plane, since then its centre of gravity evidently lies

in its plane of symmetry. If the centre of gravity of the

body be known to lie in a certain line, and two of the co-or-

dinate planes, those for instance from which G
2
and G

3 are

measured, be taken so as to intersect one another in that line,
then the centre of gravity will be in both those planes ;

there-

fore G2
= and G

3
=

0, and its position is determined by the
first of the preceding equations alone. This case occurs

when^ the body is symmetrical about a given line
;

its centre
of gravity is then manifestly in that line.

"*32. THE CENTRE OF GRAVITY OF A CURVED LINE WHICH LIES

WHOLLY IN THE SAME PLANE.

Taking M to represent the length S of such a line, we
have, by equations (21),

.- ,
..

EXAMPLE. Let it ~be required to determine the centre of
gravity of a circular arc EF.
The centre of gravity of such an arc is evidently in the

radius CA, which bisects it; since the arc
is symmetrical about that radius. Take a

plane Cy perpendicular to this radius, and

passing through the centre, to measure the
moments from. Let x represent the dis-

tance PM of any point P in this arc from
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this plane ;
also let s represent the arc P A, and S the aro

EAF, a the radius C A, and C the chord EF.

.-. x =PM= OF cos. CPM = CP cos. AGP = a cos. -

#8 IS

.'. fxdS=a I cos. ds=a* /.cos. d\ ) 2&2

sin.( )>/ / a v a \a/ \af

the integral being taken between the limits -JS and JS,
because these are the values of s which correspond to the
extreme points F and E of the arc.

Now 2a sin. J ( )
= chord ofEAF = C, /.Juarffl

= 00,

"Gi = lT ...... (23).

The distance of the centre of gravity of a circular arc from
the centre of the circle is therefore a fourth proportional to

the length of the arc, the length of the chord, and the radius

of the arc.

*33. THE CENTRE OF GRAVITY OF A CURVILINEAR AREA
WHICH LIES WHOLLY IN THE SAME PLANE.

'Let BAG represent such an area. If x and y represent
the perpendicular distances PN and PM of any
point P in the- curve AB from planes AC and

AD, perpendicular to the plane of the given area

and to one another, and M represent the area

PAM, then, considering this area to be made up
of rectangles parallel to PM, the width of each

of which is represented by the exceedingly small quantity

Aa?, the area AM of each such rectangle will be -represented

by yAaj, and its moment about AD by v-xy&x.

j xydx

Therefore by equation (20), G, = =
-g

. . (24).

A similar expression determines the value o G2 ; butane
more convenient for calculation is obtained, if we consider

the weight of each of the rectangles, whose length is y, to

be collected in its centre of gravity, whose distance from AC
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is \y. The moment of the weight of each rectangle about
AC will then be represented ^y*&x ;

whence it follows that

i

tfdx
.....

(
25

).-

2 M
EXAMPLE. Suppose the curve APB to be a parabola, whose

axis is AC.
Dl B By the equation to the -parabola y

1 = 4##, if a
] be the distance of the focus from the vertex.

Moreover, the limits between which the integral
is to be taken are and aj

t
and and y1?

since at

A, x 0, y= 0, and at C, x= a?
1? y y^

therefore Cxydx 2 \/ a /*x%dx~ \f ax1
2

; also, M =Cyd

C2

051 4 3= 2 ya Cx\dx g i/tf^f, therefore Gj^ ^^.
o

1 1
^,4

,1 _ . t

Also, jy^dx 4^ /xdx= %ax? =^J J b<

o
Q

therefore G
2 Q^.o

If, then, G be the centre of gravity of the parabolic area

ACB, then AH= ? AC, HG = - CB.
5 -8

* 34. THE CENTRE OF GRAVITY OF A SURFACE OF REVOLUTION.

Any surface of revolution BAC is evidently symmetrical
about its axis of revolution AD, its centre of

gravity is therefore in that axis. Let the mo-
ments be measured from a plane passing through
A and perpendicular to the axis AD, and let x
and y be co-ordinates of any point P in the

generating curve APB of the surface, and s the

length of the curve AP. Then M being taken to represent
the area of the surface, and being supposed to be made up
of bands parallel to PQ, the area AM of each such band is

represented (see Art. 40.)* by %ny&s, and its moment by

* Church's Diff. Calculus, Art. 91.
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s,

27T,/

(26>.

EXAMPLE. To determine the centre of gravity of the

face of any zone or segment of a sphere.

B //\ 7

j^ j^ACj represent the surface of a spherev
:,D whose centre is D, and whose radius DP is repre-

sented by #, and the arc AP by s. Then x=DM
= DP cos. sn.,

=# sn. -,
a

a

= %a? sin. - cos. - = a* sin. .

a a a

S, S,
./* /* 2^

.*. STT / xyds = TTO? I sin. ds

s, s,

= 4
j

cos.
^i_

cos.
^1

= TO- icos.
3 ?? - cos.

3 il ..... (27).

{ J

<

where S
4
and S2 are the values of s at the points

03 B, and B
a ,
where the zone is supposed to ter-

minate.

Also, since = 27ry, /. M = tor

= 27ra /*sin. 1 <fo = 2^9 i cos. ^-a - cos. ?2 1

J a (
a a

>
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... .(28),

if E be the bisection of EJE,.

If S2
= 0, or the zone commence from A, then

G, = -a \ 1 + cos. 4 = cos.
2
-?i. . . . (29).

2
(

a
)

2a

*35. THE CENTRE OF GRAVITY OF A SOLID OF REVOLUTION.

Any solid of revolution BAG is evidently symmetrical
about its axis of revolution AD, its centre of

gravity is therefore in that line
;
and taking a

plane passing through A and perpendicular to

that axis as the plane from which the moments
are measured, we have only to determine the

distance AG of ^the centre of gravity, from
that plane.

Now, if x and y represent the co-ordinates of any point P
in the generating curve, and M the volume of the portion
PAQ of this solid, then, conceiving it to be made up of

cylindrical laminse parallel to PQ, the thickness of each of

which is A#, the volume of each is represented by iry*&x, and
its moment by *pxy*&x.

i

*lxy*dx

^xy^x_^ ......
M M

EXAMPLE. To determine the centre of gravity of any solid

segment of a sphere.

Let BjACj represent any such segment of a

sphere whose centre is D and its radius a. Let x
and y represent the co-ordinates AM and MP of

any point P, x being measured from A
;
then by

the equation to the circle y*=2axx*,

:. if fxy*dx= fx (2axx*) dx

a?
2 o

x, x,

Also, M.=fydx = * f(2axx*) dx=
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(31).a xv JL A

If the segment become a hemisphere, x
t
=a

9
/.G

l =-|a.

36. The centre of gravity of the sector of a circle.

Let CAB represent such a sector
;
conceive the arc ADB

to be a polygon of an infinite number of sides

and lines, to be drawn from all the angles of the

polygon to the centre C of the circle, these will

divide the sector into as many triangles. Now
/B the centre of gravity of each triangle will be at

a distance from C equal to f- the line drawn from the vertex
C of that triangle to the bisection of its base, that is equal
to f the radius of the circle, so that the centres of gravity of

all the triangles will lie in a circular arc FE, whose centre is

C and its radius CF equal to fCA, and the weights of the

triangles may be supposed to be collected in this arc FE,
and to be uniformly distributed through it, so that the cen-

tre of gravity G of the whole sector CAB is the centre of

gravity of the circular arc FE. Therefore by equation (23),
if S 1

,
C 1

,
and a\ represent the arc FE, its chord FE, and its

radius CF, and S, C, &, the similar arc, chord, and radius of

ADB, then CG
^

;
but since the arcs AB and FE are

similar, and that a1 = \a, :. C 1 = fC and S 1 = fS. Substi-

tuting these values in the last equation, we have

C*C* 2.
^ /QO\=|
-s-

(32) "

37. The centre of gravity of any portion of a circular ring
or of an arch of equal voussoirs.

2 represent any such portion of a circular ring
whose centre is A. Let a

l represent the

radius, and C
t
the chord of the arc BA> and

Sj its length, and let a C2 similarly represent
the radius and chord of the arc B2

C
2 ,
and Sa

the length of that arc.

Also let G, represent the centre of gravity of the sector
~

15
G

2 that of the sector AB2
C

2 ,
and Q- the centre of

gravity of the ring. Then

AG2 x sect, AB
2C2+AG x ring B 1

C
1
B

2
C

2
=AG; x sect. ABA

ISTow (by equation 32), AG1=-|i, AG2=f
8
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also sector AB
1
C

I
= ^8^, sector AB2C2

= ^S 2
#

2 ,

.-. ring B 1
O

l 1
B

1=sect. AB.C, sect. AB2
C2
= JSA

.-. AG . (SA ^,0=1 (OA* CA*),

.-. AG = |^ "" fy*
a

(33).

38. THE PROPERTIES OF GULDENUS.

If NL represent any plane area, and AB be any axis, in the

same plane, about which the area is made to

revolve, so thai NL is by this revolution made to

generate a solid of revolution, then is the volume

of this solid equal to that of a prism whose base

^s NL, and whose height is equal to the length

of the path which the centre of gravity G of the

area NL is made to describe.

For take any rectangular area PRSQ in NL, whose sides

are respectively parallel and perpendicular to AB, and let

MT be the mean distance of the points P and Q, or R and

S, from AB. Now it is evident that in the revolution of

NL about AB, PQ will describe a superficial ring.

Suppose this to be represented by QFPK, let M be the

centre of the ring, and let the arc subtended by
the angle QMF at distance unity from M be repre-
sented by d, then the area FQPK equals the sector

FQM the sector
~

Now the solid ring generated by PRSQ is evidently equal
to the superficial ring generated by PQ, multiplied by the

distance PR. This solid ring equals therefore 6 (MT x PQ
xPR) or dxMTxPRSQ. Now suppose the area PRSQ
to be exceedingly small, and the whole area NL to be made

up of such exceedingly small areas, and let them be repre-
sented by #

15
a a3 ,

&c. and their mean distances MT by x
: ,

a?
2 ,

a?
3 , &c. then the solid annuli generated by these areas

respectively will (as we have shown), be represented by
&x

z
a

z ,
&c. &c.

;
and the sum of these annuli,
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or the whole solid, will be represented by .^^ ,
.

to,a,+ &c., or by 6
(x^a,+ x,a,+ x,a3+ &c.). Now if p repre-

sent the weight of
any superficial el'ement of the plane NX,x

l
a

1^=thQ moment of the weight of a, about the axis AB*
35,0^=that of the area <z

2 about the same axis AB, and so
on, therefore the sum

(fl?1<^,-|-fiP,aj-hQ9taf -4
i
&o.)f*=;the moment

of the whole area NL about AB
;
but if G be the centre of

gravity of NL, and GI its distance from AB, then the

moment of NL about AB=GI>
therefore the whole solid=6 . Gl
but 6 . GI equals the length of the circu-
lar path described by G ; therefore the
volume of the solid equals NL multi-

plied by the length of the path de-
scribed by G, i. e. it equals &^sm NM,
whose base is NL, and whose height GH
is the length of the path described byG

;
which is the first property of GUL-

DDTCJS.

39. The above proposition is applicable to finding the
solid contents of the thread of a screw of variable diame-
ter, or of the material in a spiral staircase: for it is
evident that the thread of a screw may be supposed to be
made up of an infinite number of small solids of revolution,
arranged one above another like the steps of a staircase; all
of which (contained in one turn of the thread) might be
made to slide along the axis, so that their surfaces should all
lie in the same plane ;

in which case they would manifestly
form one solid of revolution, such as that whose volume has
been investigated. The principle is moreover applicable to
determine the volume of any solid (however irregular may
be its form otherwise), provided only that it may be con-
ceived to be generated by the motion of a given plane area,
perpendicular to a given curved line, which always passes

through the same point in the plane. For it

is evident that whatever point in this curved
line the plane may at any instant be traver-

sing, it may at that instant be conceived to be revolving
about a certain fixed axis, passing through the centre of

curvature of the curve at that point; and thus revolving
about a fixed axis, it is generating for an instant a solid of

revolution about that axis, the volume of which elementary
solid of revolution is equal to the area of the plane miilti-
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plied by the length of the path described by its centre of

gravity ;
and this being true of all such elementary solids.

each being equal to the' product of the plane by the corres-

ponding elementary path of the centre of gravity, it follows

that the whole volume of the solid is equal to the product
of the area by the whole length of the path.

40. If AB represent any curved line made to revolve about

the axis AD so as to generate the sur-

face of revolution BAG, and G l)e the

centre of gravity of this curved line,

then is the area of this surface equal
to the product of the length of the

curved line AB, by the length of the

path described lyy thepoint G, during
the revolution of the curve about AD. This is the second

property of Guldinus.

Let PQ be any small element of the generating curve,
and PQFK a zone of the surface generated by this element,
this zone may be considered as a portion of the surface of a
cone whose apex is M, where the tangents to the curve at T
and V, which are the middle points of PQ and FK, meet
when produced. Let this band PQFK of the cone QMF be

developed*, and let PQFK represent its develop-
ment

;
this figure PQFK will evidently be a circu-

lar ring, whose centre is M
;
since the develop-

ment of the whole cone is evidently a circular

sector MQF whose centre M corresponds to the

apex of the cone, and its radius MQ to the side MQ of the

cone.

Now, as was shown in the last proposition, the area of

this circular ring when thus developed, and therefore of the

conical band before it was developed, is represented by
6 . MT . PQ, where represents the arc subtended by QMF
at distance unity. Now the arc whose radius is MT is

represented by & . MT
;
but this arc, before it wras developed

from the cone, formed a complete circle whose radius was

NT, and therefore its circumference 2^NT
;
since then the

circle has not altered its length by its development, we
have

* If the cone be supposed covered with a flexible sheet, and a band such
as PQFK be imagined to be cut upon it, and then unwrapped from the cone
and laid upon a plane, it is called the development of the band.
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Substituting this value of dMT in the expression for the area
of the band we have

area of zone PQFK=2* . NT . PQ.
Let the surface be conceived to be divided into an infinite

number of such elementary bands, and let the lengths of

the corresponding elements of the curve AB be represented

by s
l9 $, $

3 ,
&c. and the corresponding values of NT by yl5

2/2? 2/3?
&c - Then will the areas of the corresponding zones

be represented by 2tf?/ 1
s

1 , 2tfy2
s
2 , 2#y3

s
3 ,
&c. and the area of

the whole surface BAG by %*y 1
s

l + 2tfy2
s
2+ 2*y, 8+ .... or

by 2-7r(y 1
s

1+ y2
s2+ y3

$
3 -f ....). But since G is the centre of

gravity of the curved line AB, therefore AB . GHjx repre-
sents the moment of the weight of a uniform thread or wire
of the form of that line about AD, j* being the weight of

each unit in the length of the line : moreover, this moment
equals the sum of the moments of the weights s^, s^, $,,
&c. of the elements of the line.

/.AB . GH=y1 1 __
Therefore area of surface BAC=2*AB . GH=AB

But 2-rrGH equals the length of the circular path described

by G in its revolution about AD. Therefore, &c.
This proposition, like the last, is true not only in respect to

a surface of revolution, but of any surface generated by a

plane curve, which traverses perpendicularly another curve
of any form whatever, and is always intersected by it in the

same point. It is evident, indeed, that the same demonstra-
tion applies to both propositions. It must, however, be ob-

served, that neither proposition applies unless the motion of

the generating plane or curve be such, that no two of its con-

secutive positions intersect or cross one another.

41. The volume of any truncated prismatic or cylindrical

lody ABCD, of which one extremity CD is perpendicular
to the sides of the prism, and the other AB inclined to

them, is equal to that of an upright jwism ABEF, having

for its lose the plane AB, and for its height the perpen-
dicular height GN of the centre of gravity G of the plane
DC, above theplane of AB.

For let i represent the inclination of the plane DC to AB
;



40 THE PROPERTIES OF GULDINUS.

take m, any small element of the plane
CD, and let mr be a prism whose base is m
and whose sides are parallel to AD and
BC

;
of elementary prisms similar to which

the whole solid ABCD may be supposed
to be made up. Now the volume of this prism, whose base

is m and its height mr, equals mr xm = sec. i x (mr . cos.
i)

xm = sec. x (mr . sin. mm) m = sec. * x mn x m.

Therefore the whole solid equals the sum of all such pro-
ducts as mn x m, each such product being multiplied by the

constant quantity sec.
i,
or it is equal to the sum just spoken

of, that sum being divided by cos. i. Let this sum be repre-

sented by 2mn x m, therefore the volume of the solid is re-

, 'Zmn xm AT
'

^T.
,

presented by JNow suppose CD to represent a

thin lamina of uniform thickness, the weight of each square
unit of which is f*,

then will the weight of the element m be

represented by M* X m, and its moment about the plane ABIsT

by M- x mn x m, and ^mn xm will represent the sum of the

moments of all the elements of the lamina similar to m about
that plane. Now by Art. 15. this sum equals the moment of

the whole weight of the lamina f* x CD supposed to be col-

lected in G, about that plane. Therefore

I* x CD x ~NG=^mn x m,
:. T)D x NG Zmn x m.

Substituting this value of 2mn x n, we have

volume of solid = sec. * x CD x NGL
But the plane CD is the projection of AB, therefore CD

= AB cos.
i, .'. CD x sec. i = AB

;

.-. vol. of solid ABCD = AB x SX5= vol. of prism ABEF.
Therefore, &c.

[Q. E. D.]
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T II.

DYNAMICS.

42. MOTION is change of place.
The science of DYNAMICS is that which treats of the laws

which govern the motions of material bodies, and of their

relation to the forces whence those motions result.

The SPACES described by a moving body are the distances

between the positions which it occupies at different succes-

sive periods of time.

UNIFORM MOTION is that in which equal spaces are de-

scribed in equal successive intervals of time.

The VELOCITY of uniform motion is the space which a

body moving uniformly describes in each second of time.

Thus if a body move uniformly with a velocity represented

by Y, and during a time represented in seconds by T, then
the space S described by it in those T seconds is represented

by TY, or S=TY. Whence it follows that Y =
|-and

T=L5

so that if a body move uniformly, the space described by it

is equal to the velocity multiplied by the time in seconds,
the velocity is equal to the space divided by the time, and
the time is equal to the space divided by the velocity.

43. It is a law of motion, established from constant obser-

vation upon the motions of the planets, and by experiment
upon the motions of the bodies around us, that when once

communicated to a body, it remains in that body, unaffected

by the lapse of time, carrying it forward for ever with the

same velocity and in the same direction in which it first be-

n to move, unless some force act afterwards in a contrary
irection to destroy it.*

* This is the first LAW OP MOTION. For numerous illustrations of this fun-

damental law of motion, the reader is referred to the author's work, entitled,

ILLUSTRATIONS OF MECHANICS, Art. 193.
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The velocity, at any instant, of a body moving with a

VARIABLE MOTION, is the space which it would describe in

one second of time if its motion were from that instant to

become UNIFORM.
An ACCELERATING FORCE is that which acting continually

upon a body in the direction of its motion, produces in it a

continually increasing velocity of motion.

A RETARDING FORCE is that which acting upon a body in

a direction opposite to that of its motion produces in it a

continually diminishing velocity.
An IMPULSIVE FORCE is that which having communicated

motion to a body, ceases to act upon it after an exceedingly
small time from the commencement of the motion.

44. A UNIFORMLY accelerating or retarding force is that

which produces equal increments or decrements of velocity
in equal successive intervals of time. Iff represent the

additional velocity communicated to a body by a uniformly
accelerating force in each successive second of time, and T
the number of seconds during which it moves, then since by
the first law of motion it retains all these increments of velo-

city (if its motion be unopposed), it follows that after T
seconds, an additional velocity represented by fT, will have
been communicated to it

;
and if at the commencement of

this T seconds its velocity in the same direction was Y, then
this initial velocity having been retained (by the first law of

motion), its whole velocity will have become Y+/T.
If, on the contrary, f represents the velocity continually

taken away from a body in each successive second of time,

by a uniformly retarding force, and Y the velocity with
which it began to move in a direction opposite to that in

which this retarding force acts, then will its remaining velo-

city after T seconds be represented by Y /T; so that gene-
rally the velocity Y of a body acted upon by a uniformly
accelerating or retarding force is represented, after T seconds,

by the formula

(34).

The force of gravity is, in respect to the descent of bodies
near the earth's surface, a constantly accelerating force,

increasing the velocity of their descent by 32j feet in each
successive second, and if they be projected upwards it is a

constantly retarding force, diminishing their velocity by that

quantity in each second. The symbol g is commonly used to
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represent this number 32| ;
so that in respect to gravity the

above formula becomes v=V 0T, the sign being taken

according as the body is projected downwards or upwards.
A VARIABLE accelerating force is that which communicates

unequal increments of velocity in equal successive intervals

of time
;
and a variable retarding force that which takes

away unequal decrements of velocity.*

45. To DETERMINE THE RELATION BETWEEN THE VELOCITY AND
THE SPACE, AND THE SPACE AND TIME OF A BODY'S MOTION.

Let AM1? M^, M2
M

8 ,
&c. represent the exceeding small

successive periods of a body's motion, and
AP the velocity with which it began to

move, MjPj the velocity at the expiration
of the first interval of time, M2

P2 that at

the expiration of the second, M 3
P

3
of the

third interval of time, and so on; and
instead of the body varying the velocity of its motion con-

tinually throughout the period AM1? suppose it to move
through that interval with a velocity which is a mean
between the velocity AP at A, and that M^ at M

15
or with

a velocity equal to ^(AP+ M.P,).
Since on this supposition it moves with a uniform motion,

the space it describes during the period AM 1 equals the

product of that velocity by that period of time, or it equals

KAP-fMjP^AMj. Now this product represents the area

of the trapezoid AM^P. The space described then in the

interval AMn on the supposition that the body moves during
that interval with a velocity which is the mean between
those actually acquired at the commencement and termi-

nation of the interval, is represented by the trapezoidal

areaAM^P.
Similarly the areas P^,, P2

M
3 ,

&c. represent the spaces
the body is made to describe in the successive intervals

MjM2 ,
M

2
M

3 ,
&c.

;
and therefore the whole polygonal area

APCB represents the whole space the body is made to

describe in the whole time AB, on the supposition that it

moves in each successively exceeding small interval of time

with the mean velocity of that interval. Now the less the

intervals are, the more nearly does this mean velocity of each

interval approach the actual velocity of that interval
;
and

if they be infinitely small, and therefore infinitely great in

* Kote (i) Ed. App.
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number, then the mean velocity coincides with the actual

velocity of each interval, and in this case the polygonal area

passes into the curvilinear area APCB.
Generally, therefore, if we represent by the abscissa of a

curve the times through which a body has moved, and by
the corresponding ordinates of that curve the velocities which
it has acquired after those times, then the area of that curve

will represent the space through which the body has moved
;

or in other words, if a curve PC be taken such that the num-
ber of equal parts in any one of its abscissaeAM9 being taken

to represent the number of seconds during which a body has

moved, the number of those equal parts in the corresponding
ordinate M3

P
3
will represent the number of feet in the velo-

city then acquired; then the space which the body has

described will be represented by the number of these equal

parts squared which are contained in the area of that curve.

46. To DETERMINE THE SPACE DESCRIBED IN A GIVEN TIME BY
A BODY WHICH IS PROJECTED WITH A GIVEN VELOCITY, AND
WHOSE MOTION IS UND7ORMLY ACCELERATED, OR UNIFORMLY
RETARDED.

Take any straight line AB to represent the whole time T,
in seconds, of the body's motion, and draw AD
perpendicular to it, representing on the same
scale its velocity at the commencement of its

motion. Draw DE parallel to AB, and accord-

ing as the motion is accelerated or retarded

draw DC or DF inclined to DE, at an angle w
Those tangent

equals/", the constant increment or decrement of the body's

velocity. Then if any abscissa AM be taken to represent a

number of seconds t during which the body has moved, the

corresponding ordinate MP orMQ will represent the velocity
then acquired by it, according as its motion is accelerated or

retarded. For PR= EQ = DK tan. PDE=AM tan. PDE
;

but AM =
,
and tan. PDE=/: therefore PR = KQ=/j{.

Also BM=AD=V, therefore JdP==BM+PB==V-f/^, and

MQ=EM RQ=V--ft\ therefore by equation (34), MP or

MQ represents the velocity after the time AM according as

the motion is accelerated or retarded. The same being true
of every other time, it follows, by the last proposition, that
the whole space described in the time T or AB is represented
by the area ABCD if the motion be accelerated, and by the
area ABFD if it be retarded.
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ISTow area ABCD=iAB(AD+BO), but AB=T, AD=Y
BC=Y+/T,

/. area ABOD=iT(V+V+/T)=YT+i/T'.
Also area ABFD=JAB (AD+ BF), where AB and AD

have the same values as before, and BF=Y /T,

/. area ABFD=iT(Y+Y-/T)^YT-i/T
2
.

Therefore generally, if S represent the space described after

T seconds,

S-YTi/T a

(35);

in which formula the sign is to be taken according as the
motion is accelerated or retarded.

47. To DETERMINE A RELATION BETWEEN THE SPACE DESCRD3ED
AND THE VELOCITY ACQUIRED BY A BODY WHICH IS PROJECTED
WITH A GIVEN VELOCITY, AND WHOSE MOTION IS UNIFORMLY
ACCELERATED OR RETARDED.

Let v be the velocity acquired after T seconds, then by

equation (34), v = Y /T, .-. T= ^
p J*\ c ]Sr w area ABCI) = *AB (AD + BC)>

where
E AB=T= ^'
p f

(v V}
:. area ABCD= i^ 1" ("V+ ^)

=
f

area ABFD = JAB (AD+BF), where AB=T=-

Therefore generally, if S represent the space through which

the velocity v is acquired, then S=iJ- 3 4

(36);
in which formula the sign is to be taken according as
the motion is accelerated or retarded.

If the body's motion be retarded, its velocity v will eventu-

ally be destroyed. Let Sj be the space which will have been
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described when v thus vanishes, then by the last equation
0-Y2= - 2/S,.

A Y2

-2/S 1 (37),

where Y is the velocity with which the body is projected
in a direction opposite to the force, and S

t
the whole space

which by this velocity of projection it can be made to

describe.

If the body's motion be accelerated, and it fall from rest,

or have no velocity of projection, then ir
2

- = +2/*S,

..tf=2/S (38).

Let S2 be the space through which it must in this case

move to acquire a velocity V equal to that with which it

was projected in the last case, therefore Y2= 2/*S a
. Whence

it follows that S
1
=S

a ,
or that the whole space S

t through
which a body will move when projected with a given velo-

city Y, and uniformly retarded by any force, is equal to the

space Sa , through which it must move to acquire that velo-

city when uniformly accelerated by the same force.

In the case of bodies moving freely, and acted upon by
gravity, f equals 32| feet and is represented by g ;

and the

space Sa , through which any given velocity Y is acquired, is

then said to be that due to that velocity.

WOBK.

48. WORK is the union of a continued pressure with a
continued motion. And a mechanical agent is thus said to

WORK when a pressure is continually overcome, and a point
(to which that pressure is applied) continually moved by it.

Neither pressure nor motion alone is sufficient to constitute

work / so that a man who merely supports a load upon his

shoulders, without moving it, no more works, in the sense in

which that term is here used, than does a column which sus-

tains a heavy weight upon its summit
;
and a stone, as it falls

freely in vacuo, no more works than do the planets as they
wheel unresisted through space.*

49. THE UNIT OF WORK. The unit of work used in this

country, in terms of which to estimate every other amount

* Note
(,; ) Ed. App.
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of work, is the work necessary to overcome a pressure of one

pound through a distance of one foot, in a direction opposite
to that in which a pressure acts. Thus, for instance, if a

pound weight be raised through a vertical height of one foot,
one unit of work is done

;
for a pressure of one pound is

overcome through a distance of one foot, in a direction oppo-
site to that in which the pressure acts.

50. The number of units of work necessary to overcome a

pressure of M pounds through a distance of 1ST feet, is

equal to the product MN.

For since, to overcome a pressure of one pound through
one foot requires one unit of work, it is evident that to over-

come a pressure of M pounds through tho same distance of

one foot, will require M units. Since, then, M units of work
are required to overcome this pressure through one foot, it

it evident that N" times as many units (i. e. KM) are required
to overcome it through IN" feet. Thus, if we take U to repre-
sent the number of units of work done in overcoming a con-

stant pressure of M pounds through N feet, we have

(39).*

51. To ESTIMATE THE WOEK DONE UNDER A VARIABLE
PRESSURE.

Let PC be a curved line and AB its axis, such that any
one of its abscissae AM

3 , containing as many
equal parts as there are units in the space

through which any portion of the work has

M M been done, the corresponding ordinate M
S
P

3

may contain as many of those equal parts,
as there are in the pressure under which it is then being
done. Divide AB into exceedingly small equal parts, AM 19

MjM2 , &c., and draw the ordinates MjPj, M2
P

2 ,
&c. ; then if

we conceive the work done through the space AMj (which
is in reality done under pressures varying from AP to M,?,),
to be done uniformly under a pressure, which is the arith-

metic mean between AP and M^, it is evident that the

number of units in the work done through that small space
will equal the number of square units in the trapezoid

APPjM, (see Art. 45.), and similarly with the other trape-

* Note (fc)
Ed. App.
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zoids
;
so that the number of units in the whole work done

through the space AB will equal the number of square units

in the whole polygonal area APPff^ &c., CB.
But since AM,, M.M^ &c., are exceedingly small, 'this

polygonal area passes into the curvilinear area APCB
;
the

whole work done is therefore represented by the number of

square equal parts in this area.

Now, generally, the area of any curve is represented by

the integral Iydx, where y represents the ordinate, and x

the corresponding abscissa. But in this case the variable

pressure P is represented by the ordinate, and the space S
described under this variable pressure by the abscissa. If

therefore U represent the work done between the values S
a

and S
a of S, we have.

s

(40).

8,

Mean pressure is that under which the same work would
be done over the same space, provided that pressure, instead

of varying throughout that space, remained
the same : thus, the mean pressure in re-

spect to an amount of work represented by
the curvilinear area AEFC, is that under
which an amount of work would be done

represented by the rectilineal area ABDC, the area ABDC
being equal to the curvilinear area AEFC

;
the mean pres-

sure in this case is represented by AB. Thus, to determine
the mean pressure in any case of variable pressure, we have

only to find a curvilinear area representing the work done
under that variable pressure, and then to describe a rectan-

.gular parallelogram on the same base AC, which shall have
an area equal to the curvilinear area.

If S represent the space described under a variable pres-

sure, U the work done, and p the mean pressure, then

pS = U, thereforep= -^
.*

52. To estimate the work of a pressure, whose direction is not
that in which itspoint of application is made to move.

Hitherto the work of a force has been estimated only on

* Note (I) Ed. App.
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the supposition that the point of applica-
- tion of that force is moved in the direction

in which the force operates, or in the oppo-
site direction. Let PQ be

tfye
direction of

a pressure, whose point of application Q
is made to move in the direction of the

straight line AB. Suppose the pressure P to remain con-

stant, and its direction to continue parallel to itself. It is

required to estimate the work done, whilst the point of

application has been moved from A to Q.
Eesolve P into R and S, of which R is parallel and S per-

pendicular to AB. Then since no motion takes place in the :

direction of SQ, the pressure S does no work, and the whole.-

work is done by R ;
therefore the work = R . AQ.

]STow R=P . cos. PQR, therefore the work=:P . AQcos;.
PQR. From the point A draw AM perpendicular to PQ>
then AQ cos. PQR^QM ;

therefore work^P . QM. There-
fore the work of any pressure as above, not acting ia the
direction of the motion of the point of application of that

pressure, is the same as it would have been if the point of

application had been made to move in the direction of the

pressure, provided that the space through which it was so

moved had been the projection of the space through which

it actually moves. The product P . QM may be called the

work of r resolved in the direction of P.
The above proposition which has been proved, whatever

may be the distance through which the point of application
is moved, in that particular case only in which the pressure
remains the same in amount and always parallel to itself, is

evidently true for exceedingly small spaces of motion, even
if the pressure be variable both in amount and direction

;

since for such exceedingly small variations in the positions
of the points of application, the variations of the pressures

themselves, both in amount and direction, arising from these

variations of position, must be exceedingly small, and there-

fore the resulting variations in the work exceedingly small

as compared with the whole work.*

* Note (m) Ed. App.
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53. If any number ofpressures P,, P2 ,
P

3 , le applied to the

same point A, and remain constant and parallel to them-

selves, whilst the point A is made to move through the

straight lirfe AB, then the whole work done is equal to the

sum o the works of the different pressures resolved in the

directions of those pressures, each being taken negatively
whose point of application is made to move in an opposite

to the pressure upon it.

Let a
i?
a

25
a

g?
&c. represent the inclinations of the pres-

sures P,, P2 ,
&c. to the line AB, then will

the resolved parts of these pressures in the
direction of that line be Y

l
cos. a

l?
P

2 cos.

2 ,
P

3 cos. 3 ,
&c. and they will be equiva-

lent to a single pressure in the direction

of that line represented by P, cos.
t -fP2

cos. a
2+P3

cos. a
35

&c. in which sum all

those terms are to be taken negatively which involve pres-
sures whose direction is from B towards A (since the single

pressure from A towards B is manifestly equal to the differ-

ence between the sum of those resolved pressures which act

in that direction, and those in the opposite direction). There-
fore the whole work is equal to jPj cos. ^ + P2 cos. 2 -f- P3

cosv ..... }. AB = P, . AB cos, a, + P
2 . AB cos. a

2

+P3
ABcos. a

3+ ... =P
1

;
in which expression the successive terms are the

works of the different pressures resolved in the several

directions of those pressures, each being taken positively or

negatively, according as the direction of the corresponding
pressure is towards the direction of the motion or opposite
to it.

Thus if U represent the whole work and Uj and U
2
the

sums of those done in opposite directions, then

U=U,-U, (41).

54. If any number ofpressures applied to apoint he in equi-

librium, and their point ofapplication he moved, the whole
work done by these pressures in the direction of the motion
will equal the whole work done in the opposite direction.

For if the pressures P,, P2 ,
P

3 ,
&c, (Art. 53) be in equi-

librium, then the sums of their resolved pressures in opposite

* Note (n) Ed. App.
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directions along AB will be equal (Art. 10) ; therefore the
whole work U along AB, which by the last proposition is

equal to the work of a pressure represented by the difference
of these sums, will equal nothing, therefore = tJ, U

2 ,

therefore IT, U
2 ,
that is, the whole work done in one direc-

tion along AB, by the pressures P,, P2 ,
&c. is equal to the

whole work done in the opposite direction.

55. If a body be acted upon by a force whose direction is

always towards a certain point S, called a centre offorce,
and be made to describe any given curve PA in a direction

opposed to the action of that force, and Sp be measured on
SA equal to SP, then will the work done in moving the

body through the curve PA be equal to that which would
be necessary to move it in a straight linefrom p to A.

For suppose the curve PA to be a portion of a polygon of

an infinite number of sides, PP,, P,P2 ,
&c.

Through the points P, P,, P2 ,
&c. describe circu-

lar arcs with the radii SP, SP,, SP2 ,
&c. and let

them intersect SA in p, p^ p^ &c. Then since

PP, is exceedingly small, the force may be consi-

dered to act throughout this space always in a
direction parallel to SP, ;

therefore the work done

through PP, is equal to the work which must be
done to move the body through the distance raP, (Art. 52.),
since mP, is the projection of PP, upon the direction SP, of

the force. But mP
l=pp l ;

therefore the work done through
PP, is equal to that which would be required to move the

body along the line SA through the distance pp^ ;
and simi-

larly the work done through P,P2 is equal to that which
must be done to move the body through p^p so that

the work through PP2 is equal to that through pp^ and so

of all other points in the curve. Therefore the work through
PA is equal to that through pA.* Therefore, &c. [Q.E.D.]

* Of course it is in this proposition supposed that the force, if it be not

constant, is dependant for its amount only on the distance of the point at

which it acts from the centre of force S
;

so that the distances of p and P
from S being the same, the force at p is equal to that at P

; similarly the

force at pi is equal to that at P1} the force at p* equal to that at P2 ,
&c.
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56. If S ~be at an exceedingly great distance as compared
with AJ?, then all the lines drawnfrom S to AP may ~be con-

sideredparallel. This is the case with the force of gravity
at the surface of the earth, which tends towards a point, the

earth's centre, situated at an exceedingly great distance, as

compared with any of the distances through which the work
of mechanical agents is usually estimated.

Thus then it follows that the work necessary to move a

heavy body up any curve PA, or inclined plane, is the same
as would be necessary to raise it in a vertical line pA. to the

same
height.

The dimensions of the body are here supposed to be ex-

ceeding small. If it be of considerable dimensions, then

whatever be the height through which its centre of gravity
is raised along the curve, the work expended is the same

(Art 60.) as though the centre of gravity were raised verti-

cally to that height.*

57. In the
preceding^ propositions the work has been esti-

mated on the supposition that the body is made to move so

as to increase its distance from the centre S, or in a direction

opposed to that of the force impelling it towards S. It is

evident, nevertheless that the work would have been precisely
the same, if instead of the body moving from P to A it had
moved from A to P, provided only that in this last case

there were applied to it at every point such a force as would

prevent its motion from being accelerated by the force con-

tinually impelling it towards S
;
for it is evident that to pre-

vent this acceleration, there must continually be applied to

the body a force in a directionfrom S equal to that by which
it is attracted towards it

;
and the work of such a force is

manifestly the same, provided the path be the same, whether
the body move in one direction or the other along that path,

being in the two cases the work of the same force over the
same space, but in opposite directions.

* The only force acting upon the body is in this proposition supposed to be
that acting towards S. No account is taken of friction or any other forces
"which oppose themselves to its motion.
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58. If there ~be any number ofparallel pressures, Pn PaJ P3 ,

&c. whose points of application are transferred, each

through any given distancefrom one position to another,
then is the work which would he necessary to transfer their
resultant through a space equal to that ~by which their

centre ofpressure is displaced in this change ofposition,
equal to the difference between the aggregate work of those

pressures whose points of application have been moved in
the directions in which thepressures applied to them act,
and those whose points of application have been moved in
the opposite directions to their pressures.

For (Art. IT.), if y15 ya , ?/3 , &c. represent the distances of
the points of application of these pressures from any given
plane in their first position, and h the distance of their centre

of pressure from that plane, and if Y
t ,
Y

2 ,
Y

8 &c. and H re-

present the corresponding distances in the second position,
and if P

15
P

2 ,
P

3 ,
&c. be taken positively or negatively ac-

cording as their directions are from or towards the given

plane, h
{

, (Y3-y2)

'+P3 (Y3-y3)+ ..... (42);

in the second member of which equation the several terms

are evidently positive or negative, according as the pressure
P corresponding to each, arid the difference Y y of its dis-

tances from the plane in its two positions, have the same or

contrary signs. Now by supposition P is positive or negative

according as it actsfrom or towards the plane ;
also Y y is

evidently positive or negative according as the point of appli-

cation of P is moved from or towards the plane ;
each term

is therefore positive or negative, according as the correspond-

ing point of application is transferred in a direction towards

that in which its applied pressure acts, or in the opposite
direction.

Now the plane from which the distances of the points of

application are measured may be any plane whatever. Let

it be a plane perpendicular to the directions of the pressures.
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Let A.xy represent this plane, and let P
P' represent the two positions of the point
of application of the pressure P (the path
described by it between these two positions

having been any whatever). Let MP and
M'P' represent the perpendicular dis-

tances of the points P and P' from the

plane, and draw Pm from P perpendicular
to M'P'. Then P (Y y)=P(M'P'-MP)^P . mP'; but by
Art. 55., P . mP' equals the work of P as its point of applica-
tion is transferred from P to P'. Thus each term of the second

member of equation (42) represents the work of the corre-

sponding pressure, so that if 2-z^, represent the aggregate
work of those pressures whose points of application are trans-

ferred towards the directions in which the pressures act, and
2^

2
the work of those whose points of application are moved

opposite to the directions in which they severally act, then
the second member of the equation is represented by 2^
2-z/,

a
. Moreover the first member of the equation is evidently

the work necessary to transfer the resultant pressure P
2+

P2 -fP3 &c. through the distance H A, which is that by
which the centre of pressure is removedfrom or towards the

given plane, so that if U represent the quantity of work

necessary to make this transfer of the centre of pressure,

11=2^-2^ (43).

t

59. If the sum of those parallel pressures whose tendency
is in one direction equal the sum of those whose tendency
is in the opposite direction, then Pj+ Pg+ Pg-j- =0.
In this case, therefore, 11=0, therefore 2^2^0, there-

fore 2^= 2^
2 ;

so that when in any system ofparallel pres-
sures the sum of those whose tendency is in one direction

equals the sum of those whose tendency is in the opposite direc-

tion, then the aggregate work of those whose points of appli-
cation are moved in the directions of the pressure severally

applied to them is equal to the aggregate work of those whose

points of application are moved in the opposite directions.

This case manifestly obtains when the parallel pressures
are in EQUILIBRIUM, the sum of those whose tendency is in

one direction then equalling the sum of those whose tendency
is in the opposite direction, since otherwise, when applied to

a point, these pressures could not be in equilibrium about
that point (Art. 8.).
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60. The preceding proposition is manifestly true in respect
to a system of weights, these being pressures whose directions
are always parallel, wherever their points of application may
be moved. 'Now the centre of pressure of a system of

weights is its centre of gravity (Art. 19). Thus then it fol-

lows, that if the weights composing such a system be sepa-

rately moved in any directions whatever, and through any
distances whatever, then the difference between the aggre-
gate work done upwards in making this change of relative

position and that done downwards is equal to the work

necessary to raise the sum of all the weights through a height
equal to that through which their centre of gravity is raised

or depressed.* Moreover that if .such a system of weights
be supported in equilibrium by the resistance of any fixed

point or points, and be put in motion, ttVn (since the work
of the resistance of each such point is nothing) the aggregate

* This proposition has numerous applications. If, for instance, it be required
to determine the aggregate expenditure of work in raising the different ele-

ments of a structure, its stone, cement, &c., to the different positions they
occupy in it, we make this calculation by determining the work requisite to

raise the whole weight of material at once^to the height of the centre of gra-

vity of the structure. If these materials have been carried up by labourers, and
we are desirous to include the whole of their labour in the calculation, we
ascertain the probable amount of each load, and conceive the weight of a la-

bourer to be added to each load, and then all these at once to be raised to the

height of the centre of gravity.

Ag:iin, if it be required to determine the expenditure of work made in rais-

ing the material excavated from a well, or in pumping the water out of it, we
know that (neglecting the effect of friction, and the weight and rigidity of the

cord) this expenditure of work is the same as though the whole material had
been raised at one lift from the centre of gravity of the shaft to the surface.

Let us take another application of this principle which offers so many practical
results. The material of a railway excavation of considerable length is to be

removed so as to form an embankment across a valley at some distance, and it

is required to determine the expenditure of work made in this transfer of th3

material. Here each load of material is made to traverse a different distance,

a resistance from the friction, &c., of the road being continually opposed to its

motion. These resistances on the different loads constitute a system of paral-

lel pressures, each of whose points of application is separately transferred fro n

one given point to another given point, tb.e directions of transfer being als >

parallel. Now by the preceding proposition, the expenditure of work in all

these separate transfers is the same as it would have been had a pressure equil
to the sum of all these pressures been at once transferred from the centre of

resistance of the excavation to the centre of resistance of the embankment.

Now the resistances of the parts of the mass moved are the frictions of its ele-

ments upon the road, and these frictions are proportional to the weights of the

elements
;
their centre of resistance coincides therefore with the centre of gra-

vity of the mass, and it follows that the expenditure of work is the same as

though all the material had been moved at once from the centre of gravity of

the excavation to that of the embankment. To allow for the weight of the

carriages, as many times the weight of a carriage must be added to the weight
of the material as there are journeys made.
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work of those weights which are made to descend, is equal
to that of those which are made to ascend.

61. If aplane ~be taken perpendicular to the directions of any
number ofparallel pressures and there he two different po-
sitions ojr

the points of application of certain of these pi^es-

sures in which they are at different distances from the

plane-, whilst the points of application of the rest of tJwse

pressures remain at the same distance from that plane,
and if in both positions the system be in equilibrium, then

the centre of pressure of the first mentionedpressures will

be at the same distance from the plane in bothpositions.

For since in both positions the system is in equilibrium,
therefore in both positions Pj +P2+P8+ ... =0,

Now let Pw be any one of the pressures whose points ol appli-
cation is at the same distance from the given plane in both

positions,

Yn=yn ,
and Y.-y. = 0,

..(Y1

-
2/1)P 1+ (Y2

-
.-. Y^+YJP, +. . .

. Y
1
P

1+Y2
P

2+ . . .

where Hw_, represents the distance of the centre of pressure
of P

15
P

2
. . . Pn_,, from the given plane in the first position,

and An_ 1
its distance in the second position. Its distance in

the first position is therefore the same as in the second,

Therefore, &c.
From this proposition, it follows that if a system of weights

be supported by the resistances of one or more fixed points,
and if there be any two positions whatever of the weights in

both of which they are in equilibrium with the resistances

of those points, then the height of the common centre of

gravity of the weights is the same in both positions. And
that if there be a series of positions in all of which the

weights are in equilibrium about such a resisting point or

points, then the centre of gravity remains continually at the

same height as the system passes through this series of posi-
tions.

If all these positions of equilibrium be infinitely near to
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one another, then it is only during an infinitely small motion
of the points of application that the centre of gravity ceases
to ascend or descend

; and, conversely, if for an infinitely
small motion of the points of application the centre of

gravity ceases to ascend or descend, then in two or more
positions of the points of application of the system, infi-

nitely near to one another, it is in equilibrium.

WORK OF PRESSURES APPLIED IN DIFFERENT DIRECTIONS TO
A BODY MOVEABLE ABOUT A FIXED AxiS.

62. The work of a pressure applied to a body moveable about
a fixed axis is the same at whatever point in its proper
direction that pressure may be applied.

For let AB represent the direction of a pressure applied
to a body moveable about a fixed axis

O
;
the work done by this pressure

will be the same whether it be ap-

plied at A or B. For conceive the

body to revolve about O, through an

exceedingly small angle AOC, or

BOD, so that the points A and D may describe circular arcs

AC and BD. Draw Cm, Dn, and OE, perpendiculars to

AB, then if P represent the pressure applied to AB, P . Am
will represent the work done by P when applied at A (Art.

52.), and P . l&n will represent the work done by P when

applied at B
;
therefore the work done by P at A is the same

as that done by P at B, if Am is equal to B^.

Now AC and BD being exceedingly small, they may be

conceived to be straight lines. Since BD and BE are

respectively perpendicular to OB and OE, therefore /DBE
/ BOE ;'* and because AC and AE are perpendicular to

OA and OE, therefore / CAE = /_ AOE. Now Am =
CA

CA . cos. CAE = CA . cos. AOE = ^ . OA . cos. AOE

PA= 7.

- x OE. Similarly B^ = DB cos. DBE = DB . cos.

BOE = 55 OB cos. BOE = ^ x OE, i.e. Am= OE .

* It is a well-known principle of Geometry, that if two lines be inclined at

any angle, and any two others be drawn perpendicular to these, then the incli-

nation of the last two to one another shall equal that of the first two.
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CA n BD CA BD
PT-T-,

and tin= OE -^5. But 7 =7^^ since the /_AOC
V/JTX \)JL> W-OL \JJ

/ BOD, therefore Am = ~Bn*

63. If any number ofpressures oe ^n equilibrium about a

fixed axis, then the whole work of those which tend to move
the system in one direction about that axis is equal to the

whole work of those which tend to move it in the opposite
direction about the same axis. For let P be any one of such
a system of pressures, and O a fixed axis, and OM perpen-
dicular to the direction of P, then whatever may be the

point of application of P, the work of that pressure is the
same as though it were applied at M. Suppose the whole

system to be moved through an exceeding small

angle d about the point O, and let OM be repre-
sented by Pi then will pQ represent the space
described by the point M, which will be actually
in the direction of the force P, therefore the work

of P=P . p . 6. Now let P,, P2 , P,, &c. represent those

pressures which act in the direction of the motion, and P'
x ,

P'2 ,
&c. those which act in the opposite direction, and let

Pupvpv &c. be the perpendiculars on the first, and j/l5 p'n
p

'

&c. be the perpendiculars on the second
;
therefore by

the principle of the equality of moments Pj^+P^+ ^^P*
f &c. = P'^ + P'2y2+ P'

8y3+ &c.
;
therefore

multiplying
both sides by 0, Pj>^ + Pj^ + P3^ = P',^ + P'^pV -f

P'^V+ &c.
;
but Pjj?^, P',^>'^, &c. are the works of the

forces P
15

P'
15
&c.

;
therefore the aggregate work of those

which tend to move the system in one direction is equal to

the aggregate of those which tend to move it in the opposite
direction.

64. THE ACCUMULATION OF WOEK IN A MOVING BODY.

In every moving bod^ there is accumulated, by the action
of the forces whence its motion has resulted, a certain

amount of power which it reproduces upon any resistance

opposed to its motion, and which is measured by the work
done by it upon that obstacle. Not to multiply terms, we
shall speak of this accumulated power of working, thus
measured by the work it is capable of producing, as ACCU-
MULATED WOEK. It is in this sense that in a ball fired from

* Note (o) Ed. App.
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a cannon there is understood to be accumulated the work it

reproduces upon the obstacles which it encounters in its

flight ;
that in the water which flows through the channel

of a mill is accumulated the work which it yields up to the
wheel

;

* and that in the carriage which is allowed rapidly
to descend a hill is accumulated the work which carries it a
considerable distance up the next hill. It is when the pres-
sure under which any work is done, exceeds the resistance

opposed to it, that the work is thus accumulated in a moviftg
body ;

and it will subsequently be shown (Art. 69.) that in

every case the work accumulated is precisely equal to the
work done upon the body beyond that necessary to over-

come the resistances opposed to its motion, a principle
which might almost indeed be assumed as in itself evident.

65. The amount of work thus accumulated in a body
moving with a given velocity, is evidently the same, what-
ever may have been the circumstances under which its

velocity has been acquired. Whether the velocity of a ball

has been communicated by projection from a steam gun, or

explosion from a cannon, or by being allowed to fall freely
from a sufficient height, it matters not to the result

; pro-
vided the same velocity be communicated to it in all three

cases, and it be of the same weight, the work accumulated
in it, estimated by the effect it is capable of producing, is

evidently the same.
In like manner, the whole amount of work which it is

capable of
yielding to overcome any resistance is the same,

whatever may be the nature of that resistance.

66. To ESTIMATE THE NUMBER OF UNITS OF WORK ACCUMU-
LATED IN A BODY MOVING WITH A GIVEN VELOCITY.

Let w be the weight of the body in pounds, and v its

velocity in feet.

Now suppose the body to be projected with the velocity v

in a direction opposite to gravity, it will ascend to the height
h from which it must have fallen, to acquire that same velo-

city v (Art. 47.); there must then at the instant of projection
have been accumulated in it an amount of work sufficient to

raise it to this height h
;
but the number of units of work

* This remark applies more particularly to the under-shot wheel, which is

carried round by the rush of the water.
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requisite to raise a weight w to a height A, is represented by
wh

;
this then is the number of units of work accumulated

in the body at the instant of projection. But since h is the

height through which the body must fall to acquire the velo-

city v, therefore u
2

%gh (Art. 47.) ;
therefore h=% ;

whence

it follows that if U represent the number of units of work

accumulated,
nn

Moreover it appears by the last article that this expression

represents the work accumulated in a body weighing w
pounds, and moving with a velocity of v feet, whatever may
have been the circumstances under which that velocity was
accumulated.

The product j'W

2
is called the vis VIVA of the body, so

that the accumulated work is represented by half the vis

viva, the quotient (

J
is called the MASS of the body.*

67. To estimate the work accumulated in a body, or lost by
it, as it passesfrom one velocity to another.

In a body whose weight is w, and which moves with a

velocity v there is accumulated a number of units of work
w

represented (Art. 66.) by the formula v\ After it has

passed from this velocity to another V, there will be accumu-
w

lated in it a number of units of work, represented by ^ V2

,

so that if its last velocity be greater than the first, there

will have been added to the work accumulated in it a num-

ber of units represented by J Y2

J v
2

;
or if the second

velocity be less than the first, there will have been taken

from the work accumulated in it a number of units repre-

sented by i>
2

J V2
. So that generally if U represent

the work accumulated or lost by the body, in passing from
the velocity v to the velocity Y, then

* Note (p),Ed. App.
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U=i-{y-t^ ---- (45),

where the sign is to be taken according as the motion is

accelerated or retarded.

68. The work accumulated in a body, whose motion is accele-

rated through any given space by given forces is equal to

the work which it would he necessary to do upon the body
to cause it to move hack again through the same space
when acted upon by the sameforces.

For it is evident that if with the velocity which a body
has acquired through any space AB by the

action of any forces whose direction is from A
towards B, it be projected back again from B
towards A, then as it returns through each
successive small part or element of its path, it

will be retarded by precisely the same forces as those by
which it was accelerated when it before passed through it

;

so that it will, in returning through each such element, lose

the same portion of its velocity as before it gained there
;

and when at length it has traversed the whole distance BA,
and reached the point A, it will have lost between B and A
a velocity, and therefore an amount of work (Art. 67.),

precisely equal to that which before it gained between A
and B. Now the work lost between B and A is the work

necessary to overcome the resistances opposed to the motion

through 'BA. The work accumulated from A to B is there-

fore equal to the work which would be necessary to over-

come the resistances between B and A, or which would be

necessary to move the body from a state of rest, and with a

uniform motion, in opposition to these resistances, through
BA. Let this work be represented by U ;

also let v be the

velocity with which the body started from A, and Y that

which it has acquired at B. Then will J (Y
3

v*) repre-

sent the work accumulated between A and B,

If the body, instead of being accelerated, had been

retarded, then the work lost being that expended in over-

coming the retarding forces, is evidently that necessary to
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move the body uniformly in opposition to these retarding
forces through AB ;

so that if this force be represented by
w

TJ, then, since -| (V
2 V2

)
is in this case the work lost, we

t/

shall have v* Y2

=^-. Therefore, generally,

(46),

where the sign is to be taken according as the motion is

accelerated or retarded.

69. The work accumulated in a body which has moved

through any space acted upon by anyforce, is equal to the

excess of the work which has been done upon it by those

forces which tend to accelerate its motion above that which
has been done upon it by those which tend to retard its

motion.

For let R be the single force which would at any point P
(see last fig.) be necessary to move the body back again

through an exceeding small element of the same path (the
other forces impressed upon it remaining as before) ;

then it

follows by Art. 54:. that the work of R over this element of

the path is equal to the excess of the work over that

element of the forces which are impressed upon the body in

the direction of its motion above the work of those

impressed in the opposite direction. Now this is true at

every point of the path ;
therefore the whole work of the

force II necessary to move the body back again from B to A
is equal to the excess of the work done upon it, by the

impressed forces in the direction of its motion, #bove the

work done upon it by them in a direction opposed to its

motion
;
whence also it follows, by the last proposition, that

the accumulated work is equal to this excess. There-

fore, &c.

*70. If P represent the force in the direction of the
motion which at a given distance S, measured along the

path, acts to accelerate the motion of the body, this force

being understood not to be counteracted by any other, or to

be the surplus force in the direction of the motion over and
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above any resistance opposed to it, then will f PdS be the
o

work which must be done in an opposite direction to over-
s

come this force through the space S, or U f
o

by equation (46), Y2-V:= - ...... (47).

71. If the force P tends at first towards the direction in

which the body moves, so as to accelerate the motion, and
if after a certain space has been described it changes its

direction so as to retard the motion, and U
1 represent the

value of U in respect to the former motion, and Y
x
the

velocity acquired when that motion has terminated, whilst

U
2
is the value of U in respect to the second or retarded

motion, and if v be the initial and Y the ultimate or actual

velocity, then

V-V-" " W '

. ; . . . . (48).

As U
2 increases, the actual velocity Y of the body con-

tinually diminishes
;
and when at length U^Uj, that is

when the whole work done (above the resistances) in a

direction opposite to the motion, comes to equal that done,

before, in the direction of the motion, then Y=v, or the

velocity of the body returns again to that which it had
when the force P

begjan
to act upon it. This is that gene-

ral case of reciprocating motion which is so frequently pre-
sented in the combinations of machinery, and of which the

crank motion is a remarkable example.

If the force which accelerates the body's motion act

always towards the same centre S, and SJ be taken equal to
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SB, it has been shown (Art 55.) that the work

necessary to move the body along the curve from
B to A, 'is equal to that which would be necessary
to move it through the straight line &A. The
accumulated work is therefore equal to that neces-

sary to move the body through the difference 5A
of the two distances SA and SB (Art. 68.). If these

distances be represented by 3^ and Ra ,
and P

represent the pressure with which the body's motion along
JA would be resisted at any distance R from the point S,

RI

then / ~PdH will represent this work. Moreover the work

R<2

accumulated in the body between A and B is represented

by -J (Y
2

v*),
if Y represent the velocity at B and v that

at A,

73. The work accumulated in the body while it descends

the curve AB, is the same as that which it would acquire in

falling directly towards S through the distance A5, for both
of these are equal to the work which w^ould be necessary to

raise the body from b to A. Since then the work accumu-
lated by the body through AB is equal to that which it would
accumulate if it fell through A5, it follows that velocity

acquired by it in falling, from rest, through AB is equal to

that which it would acquire in falling through AZ>. For if

Y represent the velocity acquired in the one case, and Y
t

that in the other, then the accumulated work in the first case

W W
is represented by $ Ya

,
and that inthe second caseby -J- Y!

a

,

W W
therefore i Ya = J Y,

8

,
therefore Y=V,.

From this it follows, that if a body descend, being pro-
jected obliquely into free space, or sliding from rest upon
any curved surface or inclined plane, and be acted upon only
by the force of gravity (that is, subject to no friction or
resistance of the air or other retarding cause), then the velo-



TIIE ACCUMULATION OF WORK. 65

city acquired by it in its descent is precisely the same as

though it had fallen vertically through the same height.

74. DEFINITION. The ANGULAR VELOCITY of a body which
rotates about a fixed axis is the arc which every particle of

the body situated at a distance unity from the axis describes

in a second of time, if the body revolves uniformly ; or, if

the body moves with a variable motion, it is the arc which it

would describe in a second of time if (from the instant when
its angular velocity is measured) its revolution were to

become uniform.

75. THE ACCUMULATION OF WORK IN A BODY WHICH,
ROTATES ABOUT A FIXED AXIS.

Propositions 68 and 69 apply to every case of the motion
of a heavy body. In every such case the work accumulated
or lost by the action of any moving force or pressure, whilst

the body passes from any one position to another, is equal
to the work which must be done in an opposite direction, to

cause it to pass back from the second position into the first.

Let us suppose U to represent this work in respect to a body
of any given dimensions, which has rotated about a fixed

axis from one given position into another, by the action of

given forces.

Let , be taken to represent the ANGULAR VELOCITY of the

body after it has passed from one of these positions into

another. Then since a is the actual velocity of a particle at

distance unity from the axis, therefore the velocity of a par-
ticle at any other distance p t

from the axis is ap,. Let j*

represent the weight of each unit of the volume of the body,
and m

t
the volume of any particle whose distance from the

axis is pj, then will the weight of that particle be pml ;
also

its velocity has been shown to be ap 15
therefore the amount

of work accumulated in that particle is represented by

-^, or by ia
2

Similarly the different amounts of work accumulated in

the other particles or elements of the body whose distances

from the axis are represented by p2 , p 3 ,
. . . and their

i*

volumes by m2 ,
m

a , ra< . . . .,
are represented by ia2 -^a pa

a

,

y

a3-
77^p3

3

,
&c.

;
so that the whole work accumulated is repre-

y
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U Ui '
ttt

eented by the sum ia
2 -m

1 p 1

2+ -Ja
2 -m

2 p2
2

+-|a
2 -m

3 p 8

s + .

y .
y ff

,
or by a2 -

{m1 p 1

2+m2 p2

2+m3 p3

2+ }.

The sum m
1 ??+ m2 p2

2+ mg p 3

2+ . . .
., or 2mp

2
taken in

respect to all the particles or elements which compose the

body, is called its MOMENT OF INERTIA in respect to the

particular axis about which the rotation takes place. Let it

be represented by I
;
then will -Ja

2
. I

J
. I, represent the

whole amount of work accumulated in the body whilst it has

been made to acquire the angular velocity a from rest. If

therefore U represent the work which must be done in an

opposite direction to cause the body to pass back from its

last position into its first,

=#)?

If instead of the body's first position being one of rest, it

had in its first position been moving with an angular velocity
x
which had passed, in its second position, into a velocity

a
;
and if U represent, as before, the work which must be

done in an opposite direction, to bring this body back from

its second into its first position, then is -Ja
2

(

-j
I %a* (

-j I,

or J (
-

) (a
2 a

x

s

) I, the work accumulated between the first

9
and second positions ;

therefore

('-<)!= TI,

where the sign is to be taken according as the motion is

accelerated or retarded between the first and second posi-

tions, since in the one case the angular velocity increases

during the motion, so that a2
is greater than a^, whilst in the

latter case it diminishes, so that a2
is less than a^.

76. If during one part of the motion, the work of the
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impressed forces tends to accelerate, and during another to
retard it, and the work in the former case be represented by
Uj, and in the latter by U9 ,

then

From this equation it follows that when 112=11,, or when
the work U

2
done by the forces which tend to resist the

motion at length, equals that done by the forces which tend
to accelerate the motion, then a an or the revolving body
then returns again to the angular velocity from which it set

out. "Whilst, if UV
*

never becomes equal to U, in the course
of a revolution, then the angular velocity a does not return
to its original value, but is increased at each revolution

;

and on the other hand, if U2 becomes at each revolution

greater than U^, then the angular velocity is at each revolu-

tion diminished.

The greater the moment of inertia I of the revolving
mass, and the greater the weight f* of its unit of volume

(that is, the heavier the material of which it is formed), the
less is the variation produced in the angular velocity a by
any given variation of II or U

1
U

2 at different periods of

the same revolution, or from revolution to revolution
;
that

is, the more steady is the motion produced by any variable

action of the impelling force. It is on this principle that

the fly-wheel is used to equalize the motion of machinery
under a variable operation of the moving power, or of the

resistance. It is simply a contrivance for increasing the

moment of inertia of the revolving mass, and thereby

giving steadiness to its revolution, under the operation of

variable impelling forces, 011 the principles stated above.

This great moment of inertia is given to the fly-wheel, by
collecting the greater part of its material on the rim, or

about the circumference of the wheel, so that the distance

p of each particle which composes it, from the axis about

which it revolves, may be the greatest possible, and thus

the sum 2mp
2

,
or I, may be the greatest possible.

^

At the

same time the greatest value is given to the quantity f*, by
constructing the wheel of the heaviest material applicable
to the purpose.
What has here been said will best be understood in its

application to the CRANK.
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77. If we conceive a constant pressure Q to act upon the

B arm CB of the crank

... "X^^^^P in tne direction AB of

/ VVCi
>^::

^3jL ^6 crank ro(^? an^ a

I
c@r j t '^^-^r~ constant resistance R

/y* to be opposed to the

revolution of the axis

C always at the same perpendicular distance from that axis,

it is evident that since the perpendicular distance at which

Q acts from the axis is continually varying (being at one
time nothing, and at another equal to the whole length CB
of the arm of the crank), the effective pressure upon the

arm CB must at certain periods of each revolution exceed the

constant resistance opposed to the motion of that arm, and
at other periods fall short of it

;
so that the resultant of

this pressure and this resistance, or the unbalanced pressure
P upon the arm, must at one period of each revolution have
its direction in the direction of the motion, and at another
time opposite to it. Representing the work done upon the

arm in the one case by tF,, and in the other by U2 ,
it follows

that if U^TJ, the arm will return in the course of each

revolution, from the velocity which it had when the work
Uj began to be done, to that velocity again when the work
U2 is completed. If on the contrary \J

l
exceed Ua ,

then the

velocity will increase at each revolution
;
and if Uj be less

than u
2 ,

it will diminish. It is evident from equation (52),
that the greater the moment of inertia I of the body put
in motion, and the greater the weight M- of its unit of

volume, the less is the variation in the value of a, pro'duced

by any given variation in the value of Uj U2 ;
the less

therefore is the variation in the rotation of the arm of the

crank, and of the machine to which it gives motion, pro-
duced by the varying action of the forces impressed upon it.

Now the fly-wheel being fixed upon the same axis with the
crank arm, and revolving with it, adds its own moment of

inertia to that of the rest of the revolving mass, thereby
increasing greatly the value of I, and therefore, on the prin-

ciples stated above, equalizing the motion, whilst it does not
otherwise increase the resistance to be overcome, than by
the friction of its axis, and the resistance which the air

opposes to its revolution.*

* We shall hereafter treat fully of the crank and fly-wheel
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78. The rotation of a T)ody about a fixed axis when acted

upon ly no other movingforce than its weight.

Let U represent the work necessary to raise it from its

second position into the first if it be descending, or from its

first into its second position if it be ascending, and let
x
be

its angular velocity in the first position, and a in the second
;

fT>m-> ~V\-tr Ck/rna-f-i r\ri ('\~\\then by equation (51),

"Now it has been shown (Art. 60.), that the work necessary
to raise the body from its second position into the first if it

be descending, or from its first into its second if it be

ascending (its weight being the only force to be overcome),
is the same as would be necessary to raise its whole weight
collected in its centre of gravity from the one position into

the other position of its centre of gravity. Let CA repre-
sent the one, and CA

1
the other position of

the body, and G and G^ the two correspond-
ing positions of the centre of gravity, then
will the work necessary to raise the body
from its position CA to its position CA1?

be

equal to that which is necessary to raise its

whole weight "W, supposed collected in G,
from that point to Gj ;

which by Article 56, is the same as

that necessary to raise it through the vertical height GM.
Let now CG=CG,=:A, let CD be a vertical line through

C, let G.CD ^ and GCD=d, in the case in which the

body descends, and conversely when it ascends; therefore

GM=KN"
1
=CK CN^h cos. 4 h cos. ^ when the body

descends, or =h cos.
X

h cos. 6 when it ascends from the

position AC to AC
1?

since in this last case GCD=^ and
Q

1
GD=6. Therefore GM=A (cos.

A cos. 6\ the sign

being taken according as the body ascends or descends.

U=W . GM=WA cos. 4 cos.

.'. by equation (51)
a*=ai,*+ { 3\ (cos.

6 cos. ^).

If M represent the volume of the revolving body Mf*=W,

(cos. d-cos. ^) ..... (53).

When the body has descended into the vertical position,
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0=0, so that (cos. 6 cos. ^)=1 cos. ^=2 sin.
2

-^. When
it has ascended into that position d=tf, so that (cos.

6 cos.

*,)= (1 + cos. ^)= 2 cos.
2

^.
In the first case, therefore,

In the second case,

e.'tt ..... (55).

When the body has descended or ascended into the hori-

if

zontal position d=~, so that (cos - ^ cos - ^) cos - ^i- But

it is to be observed, that if the body have descended into

the horizontal position, 0, must have been greater than ^,2

and therefore cos. 6
l
must be negative and equal to cos.

BCG, ;
so that if we suppose 6

t
to be measured from CB or

CD, according as the body descends or ascends, then (cos.
6 cos. fl,)=cos. d

1?
and we have for this case of descent

or ascent to a horizontal position

(56.)

If the body descend from a state of rest, a
l
=0.

.-. by equation (53)
<*?=-$ (cos.

d cos.
d,)

. . . (57).

Thus the angular velocity acquired from rest is less as the

moment of inertia I is greater as compared with the volume

M, or as the mass of the body is collected farther from its

axis.

THE MOMENT OF INERTIA.

79. Having given the moment of inertia of a ~body, or system

of bodies, about an axis passing through its centre of
gravity, to find its moment of inertia about an axis, par-
allel to the first, passing through any other point in the

body or system.

Let m, be any element of the body or system, 7
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plane perpendicular to the axis, about
which the moments are to be measured, A

\ the point where this plane is intersected

by that axis, and G the point where it is

intersected by the parallel axis passing
through the centre of gravity of the body. Join AG,
A.m^ Gra,, and draw m

1
M

1 perpendicular to AG. Let

JSTow (Euclid, 212.), Am' = AG^+G^'+aAG . GM^,

if therefore the volume of the element be represented byma and both sides of the above equation be multiplied by it,

pj'mj= ffm^+ r
1

2m
1 -f 2Aa^m^

And if m
2 , m^ m4 ,

&c. represent the volumes of any other

elements, and ps ,
r

2 ,
a?

2 ; Pa ,
r

3 ,
a?

3 ,
&c. be similarly taken in

respect to those elements, then,

Adding these equations we have, p 1

9m
1+ p 2

2m
2+ p*ma+

,+ m3 +

or

~Now 2xm is the sum of the moments of all the elements
of the body about a plane perpendicular to AG, and passing
through the centre of gravity G of the body. Therefore

(Art. IT.)

Also 2pV& is the moment of inertia of the body about the

given axis passing through A, and 2r2m is the moment of
inertia about an axis parallel to this, passing through the
centre of gravity of the body. Let the former moment be

represented by X ;
and the latter by I

;
and let the volume

of the body ^m be represented by M,
.-. ];=A

fM+I ..... (58).

From which relation the moment of inertia (I,) about any
axis may be found, that (I) about an axis parallel to it, and

passing through the centre of gravity of the body being
known.

80. THE RADIUS OF GYRATION. If we suppose ^ to be the

distance from the axis passing through A, at which distance,
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if the whole mass of the body were collected, the moment of

inertia would remain the same, so that &t*M=I,, then \ is

called the RADIUS OF GYRATION, in respect to that axis.

If k be the radius of gyration, similarly taken in respect
to the axis passing through G1?

so that &a

M=I, then, substi

tuting in the preceding equation, and dividing by M,

The following are examples of the determination of the
moments of inertia of bodies of some of the more common
geometrical forms, about the axes passing through their cen-

tres of gravity : they may thence be found about any other

axes parallel to these, by equation (58).

1. The moment of inertia of a thin uniform rod about an
axis perpendicular to its length and passing through its

middle point.

Let m represent an element of the rod contained between
two plane sections perpendicular to its

faces, the area of each of which is
,
and

whose distance from one another is Ap,
I and let K and Ap be so small -that every

point in this element may be considered to be at the same
distance p from the axis A, about which the rod revolves.

Then is the volume of the element represented by Ap ?
and

its moment of inertia about A by p

2

Ap. So that the whole
moment of inertia I of the bar is represented by 2/cp

a

Ap, or,

since K is the same throughout (the bar being uniform), by
;2p

a

Ap; or since Ap is infinitely small, it is represented by

the definite integral KJ p

2

<#p, where I is the whole length
\i

of the bar,

or I= TV^
3 ..... (60).

*82. The moment of inertia of a thin rectangular lamina
about an axis, passing through its centre of gravity

r

,
and

parallel to one of its sides.

It is evident that such a lamina may be conceived to be
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made up of an infinite number of slendei

rectangular rods of equal length, each of
which will be bisected by the axis AB,
and that the moment of inertia of the
whole lamina is equal to the sum of the

moments of inertia of these rods. Now if K be the section
of any rod, and I the length of the lamina, then the moment
of inertia of that rod is, by the last proposition, represented
by TV/^

3

;
so that if the section of each rod be the same, and

they be n in number, then the whole moment of inertia of

the lamina is -j?nicF. Now UK, is the area of the transverse
section of the lamina, which may be represented by K, so

that the moment of inertia of the lamina about the axis AB
is represented by the formula

(61).

*83. The moment of inertia of a rectangular parallelopipe-
don about an axis, passing through its centre of gravity,
andparallel to either of its edges.

Let CD be a rectangular parallelopipedon, and AB an
axis passing through its centre of gravity and

parallel to either of its edges ;
also let ab be

an axis parallel to the first, passing through
the centre of gravity of a lamina contained

by planes parallel to either of the faces of the

parallelepiped. Let a, 5, c, represent the
three edges ED, EF, EG, of the parallele-

piped, then will the moment of inertia of the lamina about
the axis ab be represented by TyK&

8

,
where K is the trans-

verse section of the lamina (equation 61). Now let the

perpendicular distance between the two axes AB and ab be

represented by x. Then (by equation 58) the moment of

inertia of the lamina about the axis AB is represented by
the formula o^M+y^KJ

3

,
where M represents the volume of

the lamina. Let the thickness of the lamina be represented

by AX
;

.*. M ab^x, K a&x
;

.*. m* ina of lama= dbx*&x +
jijfl&'Aaj ;

.-. whole m* ina of parallelepiped = ab'Zx'Ax +
jJyd^'SAoj ;

or taking &x infinitely small, and representing the

moment of inertia of the parallelepiped by I.

/ + j-c /* +|o

! abj
x*dx+

j-sCtb'J
dx

;

~\c |o
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or 1=

(62).

moment of inertia of an upright triangular 2^1
about a vertical axis passing through its centre of gravity.

Let AB be a vertical axis passing through the centre of

gravity of a prism, whose horizontal section is

an isosceles triangle having the equal sides ED
and EF.

Let two planes be drawn parallel to the face

DF of the prism, and containing between them
a thin lamina pq of its volume. Let Cm, the

perpendicular distance of an axis passing through
the centre of gravity of this lamina from the

axis AB, be represented by a?
;
also let A# represent the

thickness of the lamina.

Let DF= #, DG = 5, and let the perpendicular from the

vertex E to the base DF of the triangle DEF be represented

:.pq= -
(fc a?) ;

also transverse sectionK of lamina=
c

.'.volume M of lamina = -
(ftf oc)&oc.

Therefore by equa-
c

tions (58) and (61),

m* ina of lama about AB=^(fc x)x'Ax+ 7̂ 3 (%c-x)*Ax-,
c c

:. m* ina of prism about

ob

C -*c

Performing the integrations here indicated, and represent-

ing the inertia of the prism about AB by I, we have

...... (63).
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*85. The moment of inertia of a solid cylinder about its

axis of symmetry.

Let AB be the axis of such a cylinder, whose radius AC
is represented by #, and its height by b. Con-
ceive the cylinder to be made up of cylindrical

rings having the same axis
;

let AP p be the
internal radius of one of these, and let its thick-

ness PQ be represented by Ap, so that p+ Apis
D the exteral radius AQ of the ring. Then will

the volume of the ring be represented by
tf(p-|-Ap)

2

<rrZ>p

2

,
or by tf#[2pAp-|-(Ap)

2

] ;
or if Ap

be taken exceedingly small,, so that (Ap)
2

may vanish as com-

pared with 2pAp, then is the volume of the ring represented

by 2 <

n$pAp.
Now this being the case, the ring may be considered as an

element AM of the volume of the solid, every part of which
element is at the same distance p from the axis AB, so that

the whole moment of inertia 2p
2AM of the cylinder =

*86. The moment of inertia of a hollow cylinder about

axis of symmetry.

be the external radius AC, and #2 the internal

radius AP, and b the height of the cylinder ;

then by the last proposition the moment of in-

ertia of the cylinder CD, if it were solid, would
be ^~ba* ;

also the moment of inertia of the

cylinder PK, which is taken from this solid to

form the hollow cylinder, would be %*la*. Now
let I represent the moment of inertia of the hol-

low cylinder CP, therefore

Let the thickness a, a, of the hollow cylinder be repre-

sented by c, and its mean radius therefore
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Substituting these values in the preceding equation, we ob
tain

(65).

\1. The moment of inertia of a cylinder about an axis

passing through ^ts centre of gravity, and perpendicular
to its axis of symmetry.

Let AB be such an axis, and let PQ represent a lamina
contained between planes perpendicular to

this axis, and exceedingly near to each other.

Let CD, the axis of the cylinder, be repre-

,
sented by 5, its radius by tz, and let CM=a?.
Take &x to represent the thickness of the

lamina, and let MP=y. Now this lamina

may be considered a rectangular parallelo

piped traversed through its centre of gravity by the axis AB
;

therefore by equation (62) its moment of inertia about that axis

is represented by i-VC^O^O^) ft*+ (^2/)
2

} =y& \b*y+ ty*\ &x.

Now the whole moment of inertia I of the cylinder about
AB is evidently equal to the sum of the moments of inertia

of all such laminae
;

.'.1=

Also, since x and y are the co-ordinates of a point in a
circle from its centre, therefore y ($

2
a?

2

)*. Substituting
this value of y, and integrating according to the well known
rules of the integral calculus,* we have

*88. The moment of inertia of a cone about its axis of
symmetry.

The cone may be supposed to be made up of laminae, such

as PQ, contained by planes perpendicular to

the axis of symmetry AB, and each having its

centre of gravity in that axis. Let BP #?, and
let Aa? represent the thickness of the lamina,
and y its radius PR. Then, since it may be
considered a cylinder of very email height, its

moment of inertia about AB (equation 64) is

represented by fyty^x. Now the moment of

Church's Diff. and Intcg. Calculus, Arts. 148, 149.
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inertia I of the whole cone is equal to the sum of the mo-
ments of all such elements,

Let the radius of the base of the cone be represented by

and its height by 5
;
therefore-=-, therefore Aa?= -Ay ;

y a a

(6T).

89. The moment of inertia of a sphere about one of its

diameters.

Let C be the centre of the sphere and AB the diameter
about which its moment is to be determined.

eLet
PQ be any lamina contained by planes

perpendicular to AB
;

let CM=#, and let &x

represent the thickness of the lamina, and y its

radius
;
also let CA=a

;
then since this lamina,

being exceedingly thin, may be considered a

cylinder, its moment of inertia about the axis AB is (equa-
tion 64) %*y*&x ;

and the moment of inertia I of the whole

sphere is the sum of the moments of all such laminae,

Now by the equation to the circle y*=a* a?
2

,
therefore

2/*=&
4 2V+#4

. If this value be substituted for y
4

,
and

the integration be completed according to the common

methods, we shall obtain the equation,

(68).

90. The moment of inertia of a cone about an axis gassing

through its centre of gravity and perpendicular to its axis

of symmetry.

Let CD be an axis passing through the centre of gravity
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G of the cone, and perpendicular to its axis of

symmetry, and let GP the distance of the lamina
from G, measured along the axis, be represented

by x
;
also let the thickness of the lamina be re-

presented by &x. Now this lamina may be con-

sidered a cylinder of exceedingly small thick-

ness. If its radius be represented by y, its mo-
ment of inertia about an axis parallel to CD passing through
its centre, is therefore (equation 66) represented by
J^y

2

jy
Q

+-J(Aa?)
2

}Aa??
or if ACC be assumed exceedingly email,

it is represented by fay*&x. Now this being the moment of

the lamina about an axis parallel to CD, passing through its

centre of gravity, and the distance of this axis from CD be-

ing a?, and also the volume of the lamina being flry'Aaj, it fol-

lows (equation 58), that the moment of the lamina about CD
is represented by tfyVAoj+J^Aa? * jyV-f Jy

4

J
A#.

Now the moment I of the whole cone about CD equals
the sum of the moments of all such elements,

Now if a be the radius of the base of the cone and ~b its

height, then since BG=f5,

j x 1} T>

91. The moment of inertia of a segment of a sphere about

a diameterparallel to theplane of section.

Let ADBE represent any such portion of a sphere, and
T> AB a diameter parallel to the plane of section.

/^JlX Let CD=tf, CE=5, and let PQ be any lamina

p ^:::::::--'-^
contained by planes parallel to the plane of

\Z'-S--"""/*" section : let the distance of the lamina from

C=#, and let its thickness be &x and its radius

, Then considering it a cylinder of exceeding small thick-
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ness, its moment of inertia about an axis passing through its

centre of gravity and parallel to AB, is represented (equa-
tion 66) by i^y

2

fy
2+ i(Aa?)

2

! AOJ, or (neglecting powers of A#
above the first by %*y*&x. Hence, therefore, the moment of
this lamina about the axis AB is represented (equation
58) by 7r?/

2

(A2>),'

2

_|_ J-7ry

4A#
)
or by <7r

'ji?/V
2

4-J?/
4

J A#?; now the
whole moment I of inertia of ADBE about AB is evidently
equal to the sum of the moments of all such laminae,

.; = y
-b

*=a?x\ therefore ^V-f Jy
4

=Jj2&V 3^4+ ^4

j.

Substituting this value in the integral and integrating, we
have

-95 5

J* (TO)

THE ACCELERATION OF MOTION BY GIYEN
MOVING FOECES.

92. IF the forces applied to a moving body in the direc-

tion of its motion exceed those applied to it in the opposite
direction (both sets of forces being resolved in the direction

of a tangent to its path), the motion of the body will be ac-

celerated ; if they fall short of those applied in the opposite

direction, the motion will be retarded. In either case the

excess of the one set 'of forces above the other is called the

MOVING FORCE upon the body : it is measured by that single

pressure which being applied to the body in a direction op-

posite to the greater force, would just balance it
;
or which,

had it been applied to the body (together with the other

forces impressed upon it) when in a state of rest, would have
maintained it in that state

;
and which, therefore, if applied

when its motion had commenced, would have caused it to

pass from a state of variable to one of uniform motion. Thus
the moving force upon a body which descends freely by gra-

vity, is measured by its weight, that is, by the single force

which, being applied to the body before its motion had com-

menced in a direction opposite to
gravity,

would just have

supported it, and which being applied to it at any instant of

* Note (q) Ed. App.



80 RELATIONS OF

its descent, would have caused its motion at that instant to

pass from a state of variable to a state of uniform motion.

If the resistance of the air upon its descent be taken into

account, then the moving force upon the body at any instant

is measured by that single pressure which, being applied up-
wards, would, together with the resistance of the air at that

instant, just balance the weight of the body.
A moving force being thus understood to be measured by

& pressure* being in fact the unbalanced pressure upon the

moving body, the following relations between the amount of

a moving force thus measured, and the degree of acceleration

produced by it will become intelligible. These are laws of

motion which have become known by experiment upon the

motions of the bodies immediately around us, and by obser-

vation upon those of the planets.

93. "When the moving force upon a body remains con-

stantly the same in amount (as measured by the equivalent
pressure) throughout the motion, or is a uniform moving
force, it communicates to it equal additions of velocity in

equal successive intervals of time. Thus the moving force

upon a body descending freely by gravity (measured by its

weight) being constantly the same in amount throughout its

descent (the resistance of the air being neglected), the body
receives from it equal additions of velocity in equal succes-

sive intervals of time, viz. 32 feet in each successive second
of time (Art. 44.).

94. The increments of velocity communicated to equal
todies by unequal moving forces (supposed uniform as above)
are to one another as the amounts of those moving forces

(measured by their equivalent pressures).
Thus let P and P

1
be any two unequal moving forces upon

two equal bodies, and let them act in the directions in which
the bodies respectively move ;

let them be the only forces

tending to communicate motion to those bodies, and remain

constantly the same in amount throughout the motion. Also
let f and ft represent the additional velocities which these
two forces respectively communicate to those two equal
bodies in each successive second of time

;
then it is a law of

the motion of bodies, determined by observation and experi-
ment, that P : P! ::/:/;.

* Pressure and moving force are indeed but different modes of the operation
of the same principle of force.
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if one of the moving forces, as for instance Pn be the

weight "W of the body moved, then the value /j of the
increment of velocity per second corresponding to that

moving force is 32 l

(Art. 44.) represented by <?,

=/ (71).

95. If the amount or magnitude of the moving, force does
not remain the same throughout the motion, or if it be at

variable moving force, then the increments, of velocity com-
municated by it in equal successive interval^ of time are not

equal; they increase continually if the moving force-

increases, and they diminish if it diminishes..

If two unequal moving forces, one or both of them,, thus
variable in magnitude, become the moving- forces- of' two

equal bodies, the additional velocities which they would
communicate in the same interval of 'time to those bodies,
if at any period of the motion from variable they become

uniform, are to one another (Art. 94.) as the respective

moving forces at that period of the motion.

Thus letf andft represent the -additional velocities which
would thus be communicated to two equal bodies in one
second of time, if at any instant the pressures P and P

x ,

which are at that instant the moving forces of those bodies,
were from variable to become constant pressures, then

(Art. 94.),

This being true of any two moving forces, is evidently true,
if one of them become a constant force. Let P, represent
the weight W of the body, then will fv

be represented!

Let the moving force P be supposed to remain constant

during a number of seconds or parts of a second, repre-
sented by A, and let AY be the increment of velocity in

the time &t on this supposition. Now / represents the

increment of velocity in each second, and AY the increment

of velocity in A seconds : moreover the force P is supposed
constant (Tiring A, so that the motion is uniformly accele-

rated during that time (Art. 44.).

6
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"Now this is true (if the supposition, that P remains constant

during the time A
?
on which it is founded, be true), how-

ever small the time &t may be. But if this time be

infinitely small, the supposition on which it is founded is in

all cases true, for P may in all cases be considered to remain
the same during an infinitely small period of time, although
it does not remain the same during any time which is not

AY dV
infinitely small. Now when &t is infinitely small -=,-

;

:
A dt

generally thereforef= -^
.

If Y increase as the time t increases, or if the motion be
dV

accelerated, then -^- is necessarily a positive quantity. If,

on the contrary, Y diminishes as the time increases, then
dV
-57 is negative ;

so that, generally,

the sign being taken according as the motion is accele-

rated or retarded. Substituting mis value of f in the last

proportion we have in the case, in which P represents a
variable pressure,

The principles stated above constitute the fundamental rela-

tions of pressure and motion.

96. The velocity Y at any instant of a body moving with
a variable motion, being the space which it would describe
in a second of time, if at that instant its motion were to

become uniform, it follows, that if we represent by &t any
number of seconds or parts of a second, beginning from that

instant, and by AS, the space which the body would describe

* Note (r) Ed. App.
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in the time A, if its motion continued uniform from the com-
mencement of that time, then,

this is true if the motion remain uniform during the
time A, however small that time may be, and therefore if it

be infinitely small. But if the time &t be infinitely small,
the motion does remain uniform during that time, however
variable may be the moving force

;
also when &t is infi-

nitely small, --3=
-JTT.

Therefore, generally,

The equations (73) and (74) are the fundamental equations
of dynamics : they involve those dynamical results which
have been discussed on other principles in the preceding
parts of this work.*

THE DESCENT OF A BODY UPON A CURVE.

*97. If the movingforce P upon a ~body varies (Rreetly as its

distance at any tomefrom a given point towards which it

falls, then the whole time of the body's falling to that

point will be the same, whatever may be the distancefrom
which itfalls.

Let A be the point from which the body falls, and B a

point towards which it falls along the path

APB, which may be either curved or straight ;

also let the body be acted upon at each

point P of its path, by a force in the direc-

tion of its path at that point which varies as

* Thus if the latter equation be inverted, and multiplied by the former, we
obtain the equation

m t ya v
a=

which is identical with equation (47).
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its distance BP, measured along the path from B
;
the time

of falling to B will be the same, whatever may be the dis-

tance of the point A from which the body falls.

For let BP S, and let the force impelling the body
towards B be represented by dS, where c is a constant quan-

tity ; suppose the body, instead of falling from A towards

B, to be projected with any velocity from B towards A, and
let v be the velocity acquired at ?, and Y that at A, and
let BA=S 15

then by equation (47),

Suppose now the velocity of projection from B to have
been such as would only just carry the body to A, so that

V=0,

Now by equation (74),

dtl

and if T represent the whole time in seconds occupied in

the ascent of the body from B to A,

2'

It is clear that the time required for the body's descent
from A to B is equal to that necessary for the ascent from
B to A, so that the whole time required to complete the
ascent and descent is equal to T, and is represented by the
formula

(T6).
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Now this expression does not contain S
15 i. e. the distance

from which the body falls to B
; the time T is the same

therefore, whatever that distance may be.

THE SIMPLE PENDULUM.

98. If a heavy particle P ~be imagined to ~be suspendedfrom a
point C ~by a thread without weight, and allowed to oscillate

freely, but so as to deviate out little on either side of the

vertical, then will its oscillations, so long as they are thus

small, be performed in the same time whatever their ampli-
tudes may be.

For let the inclination PCB of CP to the vertical be repre-
sented by 6, and let the weight w of the particle
P, which acts in the direction of the vertical VP,
be resolved into two others, one of which is in the
direction CP, and the other perpendicular to that
direction : the former will be wholly counteracted

by the tension of the thread CP, and the latter will

Jbe represented by w sin. VPC=w sin. &
; and, act-

ing in the direction in which the particle P moves, this will

be the whole impressed moving force upon it (Art. 92.) Now
so long as the arc $ is small, this arc does not differ sensibly
from its sine, so that for small oscillations the impressed mov-

ing force upon P is represented by wb, or by ^--,
or by ,

I L

if I represent the length CP of the suspending thread, and S
the length of the arc BP. Now in this expression w and I

are constant throughout the oscillation, the moving force va-

ries therefore as S. Hence by the last proposition, the small

oscillations on either side of CB are isochronous, since so long
as they are thus small, the impressed moving force in the

direction of the motion varies as the length of the path BP
from the lowest point B. Since in the last proposition the

moving force was assumed equal to cS, and that here it is

represented by yS, therefore in this case
<?=y.

Substitut-

ing this value in equation (76),

A single particle thus suspended by a thread without
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weight,
is that which is meant by a SIMPLE PENDULUM. It is

evident that the time of oscillation increases with the length
I of the pendulum.

IMPULSIVE FORCE.

99. If any number of different moving forces be applied
to as many equal bodies, the velocities communicated to

them in the same exceedingly small interval of time, will be
to one another as the moving forces. For let P

1?
P

2 , repre-
sent the moving forces, and f\, /" the additional velocities

they would communicate per second if each moving force

remained continually of the same magnitude (Art. 93.), then
would tf^ tfv be the whole velocities communicated on this

supposition in t seconds
;

let these be represented by V,, Y2 ;

therefore by Art. 94.

P, :?,::/ :/,::# : */,::, :V,.

The proposition is therefore true on the supposition that P
t

and P2 remain constant during the interval of time t
;
but

if t be exceedingly small, then whatever the pressures P
t

and P2 may be, they may be considered to remain the same

during that time. Therefore the proposition is true generally,

when, as above, the moving forces are supposed to act on

equal bodies, or successively on the same body, through
equal exceedingly small intervals of time.

M oving forces thus acting through exceedingly small in-

tervals of time only, are called IMPULSIVE FORCES.

THE PARALLELOGRAM OF MOTION.

100. If two impulsive forces P1?
P2 ,

whose directions are AB
and AC. he impressed at the same time upon

^
a lody at A, which if made to act upon it

separately would cause it to move through
AB and AC in the same given time, then

will the hody he made, by the simultaneous action of these

impulsiveforces, to describe in that time the diagonal AD
of the parallelogram, of which AB and AC are adjacent
sides.

For the moving forces Pj and P3 acting separately upon
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the same body through equal infinitely small times, commu-
nicate to it velocities which are (Art. 99.) as those forces

;

therefore the spaces AB and AC described with these velo-

cities in any given time are also as those forces. Since then
AB and AC are to one another as the pressures "P

l
and P

a ,

therefore by the principle (Art. 2.) of the parallelogram of

pressures, the resultant K of P
t
and P

2 is in the direction of

the diagonal AD, and bears the same proportion to P
x
and

P
2
that AD does to AB and AC.
Therefore the velocity which the resultant K of P, and P

2

would communicate to the body in any exceedingly small

time is to the velocities which P, and P2 would separately
communicate to it in the same time as AD to AB and AC
(Art. 99.), and therefore the spaces which the body would
describe uniformly with these three velocities in any equal
times are in the ratio of these three lines. But AB and AC
are the spaces actually described in the equal times by rea-

son of the impulses of Pj and P
2
. Therefore AD is the space

described in that time by reason of the impulse of R, that is,

by reason of the simultaneous impulses of P
x
and Pa .

101. THE INDEPENDENCE OF SIMULTANEOUS MOTIONS.

It is evident that if the body starting from A had been

made to describe AB in a given time, and then

had been made in an equal time to describe

BD, it would have arrived precisely at the same

point D to which the simultaneous motions

AC and AB have brought it, so that the body is made to

move by these simultaneous motions precisely to the same

point to which it would have been brought by those motions,

communicated to it successively, but in half the time. The

following may be taken as an illustration of this principle of

the independence of simultaneous motions. Let a canal-boat

__ T* 3, be imagined to extend across the whole
=
width of the canal, and let it be supposed
that a person standing on the one bank at

A is desirous to pass to a point D on the

opposite bank, and that for this purpose, as the boat passes

him, he steps into it, and walks across it in the direction

AB, arriving at the point B in the boat precisely at the in-

stant when the motion of the boat has carried it through
BD

;
it is clear that he will be brought, by the joint effect
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of his own motion across the boat and the 'booths motion

along the canal, to the point D (having in reality described
the diagonal AD), which point he would have reached in

double the time if he had walked across a bridge from A to

B in the same time that it took him to walk across the boat,
and had then in an equal time walked from B to D along
the opposite side.

THE POLYGON OF MOTION.

102. Let any number of impulses be communicated simul-

taneously to a body at O, one of which
would cause it to move from A to O in a

given time, another from B to O in the
same time, a third from C to O in that time,
and a fourth from D to O. Complete the

parallelogram of which AO and BO are ad-

jacent sides
;
then the impulses AO and BO would simulta-

neously cause the body to move from E to O through the

diagonal EO in the time spoken of. Complete the parallelo-

gram EOCF, and draw its diagonal OF, then would the im-

pulses EO and CO, acting simultaneously, cause the body to

move through FO in the given time : but the impulse EO
produces the same eifect on the body as the impulses AO
and BO

;
therefore the impulses AO, BO, and CO, will

together cause the body to move through FO in the given
time. In the same manner it may be shown that the im-

pulses AO, BO, CO, and DO, will together cause the body to

move through GO in a time equal to that occupied by the

body's motion through any one of these lines.

It will be observed that GD is the side which completes
the polygon OAEFG, whose other sides OA, AE, EF, FG,
are respectively equal and parallel to the directions'OA, OB,
OC, and OD, of the simultaneous impulses.

Instead of the impulses AO, &c. taking place simultane-

ously.,
if they had been received successively, the body

moving first from O to A in a given time
;
then through

AE, which is equal and parallel to OB, in an equal time
;

then through EF, which is equal and parallel to OC, in that

time
;
and lastly through FG, which is equal and parallel to

OD, in that time, it would have arrived at the same point G.
to which these impulses have brought it simultaneously, but
after a period as many times greater as there are motions, so
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that the principle of the independence of simultaneous
motions obtains, however great may be the number of such
motions.

THE PRINCIPLE OF D'ALEMBERT.

103. Let Wj, W9 ,
W

8 ,
&c. represent the weights of any

number of bodies in motion, and P
15
P

2 ,
P8 ,

&c. the moving
forces (Art. 92.) upon these bodies at any given instant of

the motion, i. e. the unbalanced pressures, or the pressures
which are wholly employed in producing their motion, and

pressures equal to which, applied in opposite directions,
would bring them to rest, or to a state of uniform motion.WWW
Then (Art. 95.), P^-1

/, P. = --/., P. = ^'Ac.
y y y

where f^f^ /,, &c. represent the additions of velocity which
the bodies would receive in each second of time, if the

moving force upon each were to become, at the instant at

which it is measured, an uniform moving force. Suppose
these bodies, whose weights are "W

15
W

2 ,
W

3 ,
&c. to form a

system of bodies united together by any conceivable mecha-
nical connection, on which system are impressed, in any
way, certain forces, whence result the unbalanced pressures
P P

2 ,
P

3 ,
&c. on the moving points of the system. Now

conceive that to these moving points of the system there are

applied pressures respectively equal to P
x ,
P

2 ,
P

3 ,
&c. but

each in a direction opposite to that in which the motion of

the corresponding point is accelerated or retarded. Then
will the motion of each particular point evidently pass into

a state of uniform motion, or of rest (Art. 92.). The whole

system of bodies being thus then in a state of uniform

motion, or of rest, the forces applied to its different elements

must be forces in equilibrium.
"Whatever, therefore, were the forces originally impressed

upon the system, and causing its motion, they must, together
with the pressures P15

P
2 ,
P

s ,
&c. thus applied, produce a

state of equilibrium in the system ;
so that these forces (ori-

ginally impressed upon the system, and known in Dynamics
as the IMPRESSED FORCES) have to the forces Pj, P2 ,

P
3 , &c.,

when applied in directions opposite to the motions of their

several points of application, the relation of forces in equili-

brium. The forces Pn P2 ,
P

3 ,
&c. are known in Dynamics

as the EFFECTIVE FORCES. Thus in any system of bodies

mechanically connected in any way, so that their motions
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may mutually influence one another, if forces equal to the

effective forces were applied in directions opposite to their

actual directions, these would be in equilibrium with the

impressedforces, which is the principle of D'Alembert.

104. The work accumulated in\ a moving ~body through any
space is equal to the worJc which must be done upon it, in

an opposite direction, to overcome the effective force upon
it through that space.

This is evident from Arts. 68. and 69., since the effective

force is the unbalanced pressure upon the body.
If the work of the effective force be said to be done upon

the body,* then the work of the effective force upon it is

equal to the work or power accumulated in it, and this work
of the effective force may be all said to be actually accu-

mulated in the body as in a reservoir.

MOTION OF TRANSLATION.

DEFINITION. When a body moves forward in space, with-

out at the same time revolving, so that all its. parts move
with the same velocity and in parallel directions, it is said to

move with a motion of translation only.

105. In order that a body may move with a motion of trans-

lation only, the resultant of the forces impressed upon it

must have its direction through the centre of gravity of
the body.

For let Wtf w^, ws ,
&c. represent the weights of the parts

or elements of the body, and let f represent the additional

velocity per second, which any element receives or would
receive if its motion were at any instant to become uniformly
accelerated. Since the motion is one of translation only,
the value of f is evidently the same in respect to every
other element. The effective forces Pj, P2 ,

P
3 ,
&c. on the

different elements of the body are therefore represented by

^/>7/>7/>
&c - &c -

* This cannot perhaps be correctly said, since work supposes resistance.
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Now the forces P
a ,
P

9 ,
P

8 ,
&c. are evidently parallel pres-

sures. Let X be the distance of the centre (see Art. IT.) of
these parallel pressures from any given plane ;

and let
a?,,

#
3,

o?
8 ,
&c. be the perpendicular distances of the elements w wn

w
z ,
&c. that is, of the points of application of P

a ,
P

a ,
P

8 ,
&c.

from the same plane. Therefore (by equation 18),

But this is the expression (Art. 19.) for the distance of the
centre of gravity from the given plane ;

and this being true
of any plane, it follows that the centre of the parallel pres-
sures P

15
P

a ,
P

3 ,
&c. which are the effective forces of the

system, coincides with the centre of gravity of the system,
and therefore that the resultant of the effective forces passes

through the centre of gravity. Now the resultant of the
effective pressures must coincide in direction with the result-

ant of the impressed pressures, since the effective pressures
when applied in an opposite direction are in equilibrium
with the impressed pressures (by D'Alembert's principle).
The resultant of the impressed pressures must therefore have
its direction through the centre of gravity. Therefore, &c.

MOTION OF ROTATION ABOUT A FIXED Axis.

106. Let a rigid body or system be capable of motion
about the axis A. Let m

1?
m

a ,
w

3 ,
&c. represent the volumes

of elements of this body, and ^ the weight of each unit

of volume. Also let /,/,/, &c. represent the increments

of velocity per second, communicated to these elements

respectively by the action of the forces impressed upon the

system. Let P,, P2 ,
P

3 ,
&c. represent these impressed forces,

and Pup*, &c. the perpendicular distances from the axis at

which they are respectively applied.
Now since pm^ M-m2 , v<m3 ,

&c. are the weights of the ele-

ments, and/,/, &c. the increments of velocity they receive
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per second, it follows that^/, f^/,, ^/,, &c. are

the effective forces upon them (Art. 103.). Let p,, pa , p3 ,
&c.

represent the distances of these elements respectively from
the axis of revolution, then since their effective forces are

in directions perpendicular to these distances, the moments

of these effective forces about the axis are -
*-/$

- -f^ 9

9
'

g

!
/aP &c - Also PI^, P^a, PS^S? &c. are the moments of

g
the impressed forces of the system about the axis. Now the

impressed forces P,, P2 ,
P

3 , &c., together with the resistance

of the axis, which is indeed one of the impressed forces, are

in equilibrium with the effective forces by D'Alembert's

principle. Taking then the axis as the point from which the

moments are measured, the sum of the moments of P
15
P

2 ,

&c. must equal the sum of the moments of the effective

forces, or

"Now let/" represent that value off^fn &c. which corres-

ponds to a distance unity from the axis. Since the system
is rigid, and

/*, f^ / &c. represent arcs described about
it in the same time at the different distances 1, p 1? p2 ,

&c. it

follows that these arcs are as their distances, and therefore

that/^/p^^/pij/.^/p,, &c. Substituting these values

in tne preceding equation, we have

where I represents the moment of inertia of the mass about
its axis of revolution.*

* If a represent the angular velocity, or the velocity of an element at dis

tance unity, then by equation (72),/= -f ^,
. . a

-J
= -f

-y SPpa ;
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AG by G,

If the impressed forces P be the weights of the parts
of the body and 6 be, in any position of

_tf
the body, the inclination to the vertical

Ay of the line AG, drawn from A to the
centre of gravity G, then since the sum of

the moments of the weights of the parts is

equal to the moment of the weight of the
whole mass collected in its centre of

gravity (Art. 17.), we have, representing

Mfx . G. sin.

MG
therefore ^equation

I

78),f=g sin. (79).

108. To find the resultant of the effective forces on a l>ody
which revolves about a fixed axis.

The resultant of the effective forces upon a body which
revolves about a fixed axis, is evidently equal to that single
force which would just be in equilibrium with these if there

were no resistance of the axis. Let R, be that single force,
then the moment of R about any point must equal the sum
of the moments of the effective forces about that point.

Take a point in the axis for the point
about which the moments are measured,
and let L be the perpendicular distance

from A of the resultant R. Now, as in

Art. 106. it appears that the sum of the

moments of the effective forces about A is

ii

represented by f-

o

Now pa is the velocity of a point at distance p, therefore "Ppa is the work

(Art. 50.) of the force P per second ;
therefore / Ppadt is the work of P

(equation 40) in the time t,
which is represented by U, therefore ai* aa

a

=-f--^y-
which corresponds with the result already obtained. See equation

(51)7

*
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if*

(80).

To determine the value of E let it be observed that the

effective force -/m^ on any particle ma , acting in a direc-

tion n^m^ perpendicular to the distance Am, from the axis

A, may be resolved into two others, parallel to the two

rectangular axes Ay and Aa?, each of which is equal to the

product of this effective force, whose direction is n,m^ and
the cosine of the inclination of n,m, to the corresponding
axis. 'Now the inclination of mji, to Ax is the same as the

inclination of Am, to Ay, since these two last lines are per-

pendicular to the two former. The cosine of this inclination

equals therefore-i or ^i, if AN. y.. Similarly the cosine
Am, Pl

of the inclination of n^m, to Ay equals-! or ^1
,
if AM.

l
= x..

Am, Pl

The resolved parts in the directions of Ax and Ay of the

effective force - fmj, are therefore - fm^, ^ and - fm^
9 9 Pi 9

?X or - fm.y, and - fm.x,.
p, f g

Similarly the resolved parts in the directions of Ax and

Ay of the effective force upon ma are -/^2ys and - fm^
ts t/

and so of the rest.

The sums X and Y of the resolved forces in the directions

of Ax and Ay respectively (Art. 11.) are therefore

. . . =Y;
g ^ ff

and - / {m.x, +m^ + m8
a?

3 -f ..... }
= Y.

Now let G
x
and G, represent the distances G2G and G

:
G

of the centre of gravity of the body from Ay and Ax respec-

tively, and let the whole volume of the body be represented
byM,
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(equation 18), MG 2 m^

95

Now if G be the distance AG of the

centre of gravity from A, G= VGt* -fGa

a

,

/.K=-/MG (82).
y

Substituting in equation (82) the value off from equation

(78,) we have

And substituting in equation (80) for. R its value from

equation (82),

/-MGL=/-LJ
g

J
g

>

I

MG
where L is the distance of the point of application of the
resultant of the effective forces from the axis.

Now let A be the inclination of the resultant R to the
axis Aa?,

/. (Art. 11.), R cos. d=X, R sin. d=Y,

Y
/.tan.

&=x'<>
but by equations (81),

Y G

.-.tan. 4=tan. AGG /J=

The inclination of the resultant R to Ax is therefore

equal to the angle AGGX ,
but the perpendicular to AG is

evidently inclined to Ax at this same angle. Therefore the

direction of the resultant R is perpendicular to the line AG,
drawn from the axis to the centre of gravity. Moreover
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its magnitude and the distance of its point of application
from A have been before determined by equations (83)
and (84).

THE CENTRE OF PERCUSSION.

109. It is evident, that if at a point of the body through
which the resultant of the effective forces upon it passes,
there be opposed an obstacle to its motion, then there will

be produced upon that obstacle the same effect as though
the whole of the effective forces were collected in that

point, and made to act there upon the obstacle, so that the

whole of these forces will take effect upon the obstacle, and
there will be no effect of these forces produced else-

where, and therefore no repercussion upon the axis.

It is for this reason that the point O in the resultant,
where it cuts the line AG drawn from the axis to the

centre of gravity, is called the CENTRE OF PERCUSSION.

Its distance L from A is determined by the equation

I-=g- (85),

which is obtained from equation (84) by writing MK2
for I

(Art. 80.), K being the radius of gyration. If at the centre

of percussion the body receive an impulse when at rest,

then since the resultant of the effective forces thereby pro-
duced will have its direction through the point where the

impulse is communicated, it follows that the whole impulse
will take effect in the production of those effective forces,
and no portion be expended on the axis.

THE CENTRE OF OSCILLATION.

110. It has been shown (Art. 98.) that in the simple pen-
dulum, supposed to be a single exceedingly small element
of matter suspended by a thread without weight, the time
of each oscillation is dependent upon the length of this

thread, or the distance of the suspended element from the

axis about which it oscillates. If therefore we imagine a

number of such elements to be thus suspended at different
distances from the same axis, and if we suppose them, after

having been at first united into a continuous body, placed
in an inclined position, all to be released at once from this
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union with one another, and allowed to oscillate freely, it is

manifest that their oscillations will all be performed in
different times. Now let all these elements again be con-
ceived united in one oscillating mass. All being then com-

pelled to perform these oscillations in the same time, whilst
all tend to perform them in different times, the motions of
some are manifestly retarded by their connexion with the

rest, and those of others accelerated, the former being those
which lie near to the axis, and the others those more remote

;

so that between the two there must be some point in the

body where the elements cease to be retarded and begin to

be accelerated, and where therefore they are neither accele--

rated nor retarded by their connexion with the rest
;. an; elfe--

ment there performing its oscillations precisely in> the same
time as it would do, if it were not connected, with the- rest,,
but suspended freely from the* axis by at thread without:

weight. This point in the body, at the distance of whieh
from the axis a single particle, suspended freely, would per-
form its oscillations precisely in the same time that the body-
does, is called the CENTRE OF OSCILLATION.

The centre of oscillation coincides with the centre of
percussion.

111. For (by equation 79) the increment of angular velo-

city per secondf of a body revolving about an hori-

zontal axis, the forces impressed upon it being the

weights of its parts only, is represented by the for-

mula
^-y-sin. d, where d is the inclination to the ver-

tical of the line AG, drawn from the axis to its

centre of gravity. But (by equation 84), L=v, where L

is the distance AO of the centre of percussion from the

axis,

/. fL=g sin. 6

Now it has been shown (Art. 98.), that the impressed
moving force on a particle whose weight is w, suspended
from a thread without weight, inclined to the vertical at an

angle d, is represented by w sin. 6
;
moreover if/" represent

7
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the increment of velocity per second on this particle, then

f is the effective force upon it. Therefore by D'Alem-

bert's principle,

7/1

w Bin. =/", :.f=g sin. t, .; f=fl.

Now fL is the increment of velocity at the centre of

percussion, andy is that upon a single particle suspended
freely at any distance from the axis. If such a particle
were therefore suspended at a distance from the axis equal
to that of the centre of percussion, since it would receive,
at the same distance from the axis, the same increments of

velocity per second that the centre of percussion does, it

would manifestly move exactly as that point does, and per-
form its oscillations in the same time that the body does.

Therefore, &c.

112. The centres of suspension and oscillation are reci-

procal.

Let O represent the centre of oscillation of a body
when suspended from the axis A

;
also let G be its

centre of gravity. Let AO=L, AG G, OG^G, ;

also let the radius of gyration about A be repre-
sented by K2

,
and that about G by &2

. Therefore

(equation 59), K2=G2+&2

;

Ga+ 1 &2

(equation 85), L= =G+ ..... (8Y),

Now let the body be suspended from O instead of A ;

when thus suspended it will have, as before, a centre of

oscillation. Let the distance of this centre of oscillation

from O be L
1?

*

.*. by equation (8T), L^
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/. by equation (88), L^^r+G^L.

Since then the centre of oscillation in this second case is at
the distance L from O, it is in A'; what was before the
centre of suspension has now therefore become the centre
of oscillation. Thus when the centre of oscillation is con-
verted into the centre of suspension, the centre of suspen-
sion is thereby converted into the centre of oscillation.
This is what is meant, when it is said that the centres of
oscillation and suspension are reciprocal.

PROJECTILES.

113. To determine thepath of a body projected obliquely
in vacuo.

Suppose the whole time, T seconds, of the flight of the

body to any given point P
^--'''"|

T
of its path, to be divided

M.-"'''^,.---'?*
into equal exceedingly small

*ir""^.,--\v'. i intervals, represented by
'"* "^ "'"' :

-j AT, and conceive the whole
q\JB effect of gravity upon the

projectile during each one
of these intervals to be col-

lected into a single impulse at the termination of that inter-

val, so that there may be communicated to it at once, by
that single impulse, all the additional velocity which is in

reality communicated to it by gravity at the different periods
of the small time AT.

Let AB be the space which the projectile would describe,

with its velocity of projection alone, in the first interval of

time
;
then will it be projected from B at the commence-

ment of the second interval of time in the direction ABT
with a velocity which would alone carry it through the dis-

tance BK=AB in that interval of time
;
whilst at the same

time it receives from the impulse of gravity a velocity such

as would alone carry it vertically through a space in that in-

terval of time which may be represented by BF. By reason

of these two impulses communicated together, the body will

therefore describe in the second interval of time the diago-
nal BC of the parallelogram of which BK and BF are adja-
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cent sides. At the commencement of the third interval it

will therefore have arrived at C, and will be projected from
thence in the direction BOX, with a velocity which would
alone carry it through CX^BC in the third interval

;
whilst

at the same time it receives an impulse from gravity com-

municating to it a velocity which would alone carry it

through a distance represented by CG=BF in that interval

of time. These two impulses together communicate there-

fore to it a velocity which carries it through CD in the third

interval, and thus it is made to describe all the sides of the

polygon ABCD ... P in succession. Draw the vertical PT,
and produce AB, BC, CD, &c. to meet it in T, N, O . .

.,

and produce GC, HD, &c. to meet BT in K, L, &c.

Now, since BC is equal to CX, and CK is parallel to XL,
therefore KL is equal to BK or to AB.

Again, since CD is equal to DZ, and DL is parallel to ZM,
therefore LM is equal to KL or to AB

;
and so of the rest.

If therefore there be n intervals of time equal to AT, so

that there are n sides AB, BC, CD, &c. of the polygon, and

n divisions AB, BK, &c. of the line AT, then AT,=7iAB and

Similarly CET=(w-2)CX, therefore ]Sr6=(^-2)DX=

(n 2)BF; and so of the remaining parts of TP.

these parts of TP are (nT) in number, therefore

-3)W+ ... \(nl) terms};

Therefore, summing the series to (nV) terms.

TP={2(-l)-(-a)}=i . BF,

Now g represents the additional velocity which gravity
would communicate to the projectile in each second, if it

acted upon it alone. g&T is therefore the velocity which it

would communicate to it in each interval of AT seconds.

<?AT is therefore the velocity communicated to the body by
each of the impulses which it has been supposed to receive
from gravity.
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Now BF is the space through which it would be carried
in the time AT by this velocity,

Also AT=-,n

Now this is true, however small may be the intervals of

time AT, and therefore if they be infinitely small, that is, if

the impulses of gravity be supposed to follow one another at

infinitely small intervals, or if gravity be supposed to act, as

it really does, continuously.
But if the intervals of time AT be infinitely small, then

the number n of these intervals which make up the whole
finite time T, must be infinitely great. Also when n is infi-

nitely great, -=0.

In the actual case, therefore, of a projectile continually
deflected by gravity, the vertical distance TP between the

tangent to its path at the point of projection, and its position
P after the flight has continued T seconds, is represented by
the formula

TP=%gT ..... (89).

Moreover AT^TiAB, and AB is the space which the body
would describe uniformly with the velocity of projection in

the time AT, so that ?zAB is the space which it would de-

scribe in the time n . AT or T with that velocity. If there-

fore Y equal the velocity of projection, then

AT=Y . T . . . . (90) ;

so that the position of the body after the time T is the same
as though it had moved through that time with the velocity
of its projection alone, describing AT, and had then fallen

through the same time by the force of gravity alone, describ-

ing TP (see Art. 101.).

Let AM=x, MP=y, angle of

projection TAM^a, velocity of projec-

--*- *
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x tan. a y=MT MF=P=i/r ..... (91).

Substituting the value of T from the preceding equation,

.,
a?

2
sec.

2 a
tan. a =

<7 sec. a
a

.-.y=0tan. a~
2y2

Let H be the height through which a body must fall freely

by gravity to acquire the velocity Y, or the height due to

that velocity ;
then Y2

2gTL (Art. 47.), therefore 4H=--
;

therefore, by substitution,

(92).

115. To find the time of the fiight of a projectile.

It has been shown (equation 91), that if T represent the
time in seconds of the flight to a point whose co-ordinates
are x and y, then

2
x tan. a y, /.T= - \x tan. a y\ ,

(93).

..T=l^tan.
a y nearly.

If the projectile descend again to the horizontal plane from
which it was projected, and T be the whole time of its flight;
and X its whole

range upon the plane, then, since at the ex

piration of the time T, y=Q and a?=X,

-^X tan. a=Jy/Xtan.
a nearly.
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116. To find the greatest horizontal distance X, to which a
projectile ranges, having given the elevation a and the

velocity V of its projection.

When the projectile attains its greatest horizontal range,
its height y above the horizontal plane
becomes 0, whilst the abscissa x of the

/ ! point P, which it has then reached in

its path, becomes X. Substituting

S^s^i?^ these values and X, for y and x in

./ \
\ equation (92), we have 0=X tan. a

* JUi, ::> X2
sec.

2 a

4H
.*. X=4H tan. a cos.

2a=4H sin. a cos. a.

..X=2Hsin. 2 (94).

If the body be projected at different angular elevations,
but with th same velocity, the horizontal range will be the

greatest when sin. 2a is the greatest, or when 2a=-, or a=j-

117. To find the greatest height which a projectile will

attain in its flight if projected with a given velocity,
and

at a given inclination to the horizon.

Multiplying both sides of equation

(92) by 4H cos.
2

,
we have 4H cos.

2 a

. y^R cos.
2 a tan. a . x x?=2T3. (2

cos. a sin. a) xx*=2TL sin. 2a . xx*.
Subtracting both sides of this equa-

2 sm -

2

2S we have

H8
sin

2
2a 4H cos.

2 a . y=W sin.
2
2a 2H sin. 2a .

But sin.
2 2a=4: sin.

3 a cos.
2

a,

/.4H cos.
2

a{H sin.
2 a -y} --= JH sin. 2a-^

8
. . . . (95).

E"ow the second member of this equation is always a

positive quantity, being a square. The first member is

therefore always positive ;
therefore H sin.

2 a y is always

positive. "Whence it follows that y can never exceed H
sin.

2

a, so that it attains its greatest possible value when it

equals H sin.
2

a, a value which it manifestly attains when
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the first member of the above equation vanishes, or when
a?z=H sin. 2, that is, when x becomes equal to half the

greatest horizontal range, as is apparent from the last pro-

position; so that the
greatest height BD of the projectile

is represented by H sin.
a

a, a height which it attains when
AD equals half the horizontal range.

118. Thepath of a projectile in vacuo is a parabola.

Let B be the highest point in the

flight of the projectile, and BD its

greatest height. Draw PM
t perpen-

dicular to BD. Let BM
1
=a?

1 , MJP

.-. aj^BD M
1
D=BD PM=H sin.

2 a
y,

y1
=DM=AM AD= -H sin. 2.

Substituting these values in equation (95),

y^-iH cos.
2

. x, ..... (96),

which is the equation to a porabola whose vertex is in

B, whose axis coincides with BD, and whose parameter is

4H cos.
2

.

The path of a projectile in vacuo is therefore a parabola,
whose vertex is at the highest point attained by the pro-

jectile, and whose axis is vertical.

119. To find the range of a projectile upon an inclined

plane.

Let ~R represent the range AP of a projectile upon an
inclined plane AB, whose inclination is

i. Then H and a being taken to repre-
,

sent the same quantities as before, and"
c

x, y being the co-ordinates of P to the
horizontal azis AC, we"have

x=AM=AP cos. PAM=K cos.
i,

sin. PAM=R sin. .

^ Substituting these values of x and y in the general equa-
tion (92) of the projectile we have
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T, T-, Ra
cos.

3
i sec.

1 a
R sin. i=R cos. i tan. a---==-

.

Dividing by R, multiplying by cos.
,
and transposing

R cos.
8

* sec. a-
JTJ
-- =cos. i sin. a sm. cos. a=sm. (a i),

(97).

Now sin. (2a )
sin. =sin. {a+ (a i)|

sin. ja (a
.

i)j
=2 sin. (a )

cos. a.

Substituting this value of 2 sin. (a )
cos. a in the pre-

ceding equation, we have

._.
>

j

J^ow it is evident that if a be made to vary, < remaining
the same, R will attain its greatest value when sin. (2a )

is greatest, that is when it equals unity, or when 2a 1=

o, or when a=-+ -. This, then, is the angle of elevation

corresponding to the greatest range, with a given velocity

upon an inclined plane whose inclination is .

If in the preceding expression for the range we substitute

(
*

I

)
o~(a~') f

f r a
?
tne value of the expression will be found

to remain the same as it was before
;
for sin. (2 i) will, by

this substitution, become sin.
jtf 2(a ) }

=sin. \t (2

1){
=sin. (2a i).

The value of R remains therefore the
"Tf

same, whether the angle of elevation be a or s~(a~')-

And the projectile will range the same distance on the

plane, whether it be projected at one of these angles of

elevation or the other.

Let BAG be the inclination of the plane on which the

projectile ranges, and AT the direc-

tion of projection. Take DAS equal
to BAT. Then BAT=TAC-BAC
=a-i. And SAC=:DAC-DAS=
- BAT=~( )

The range AP
2 a

is therefore the same, whether TAG or SAO be the angle of
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elevation, and therefore whether AT or AS be the direction

of projection.
Draw AE bisecting the angle BAD, then the angle EAC

The angle EAC is therefore that corresponding to the

greatest range, and AE is the direction in which a body
should be projected to range the greatest distance on the

inclined plane AB.
It is evident that the directions of projection AS and AT,

which correspond to equal ranges, are equally inclined to

the direction AE corresponding to the greatest range.

120. The velocity of a projectile at different points of its

path. It has been shown (Art. 56.), that if a body move in

any curve acted upon by gravity, the work accumulated or

lost is the same as would be accumulated or lost, provided
the body, instead of moving in a curve, had moved in the

direction of gravity through a space equal to the vertical

projection of its curvilinear path.
thus a projectile moving from A to P will accumulate or

lose a quantity of work, which is equal to that which it would
accumulate or lose, had it moved vertically from M to P, or

from P to M, PM being the projection of its path on the

direction of gravity. 5"ow the work thus accumulated or

lost equals one half the difference between the vires vivce at

the commencement and termination of the motion.

Let Y equal the velocity at A, and v equal the velocity at

W "W
P, therefore the work -J Va

-J-
v*. Moreover, the work

9 9

done through PM=W . PM, therefore V ^-v*=

W . PM, therefore Y2
v

a

=2^MP. Let PM=y,
/. v

3 Ya

%gy (99),

which determines the velocity at any point of the curve.

CENTRIFUGAL FORCE.

121. Let a body of small dimensions move in any curvi-
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linear path AB, impelled continnally towards
a given point S (called a centre of force) by a

given force, whose amount, when the body
has reached the point P in its path, is repre-
sented by F.* Let PQ be an exceedingly
small portion of the path of the body, and
conceive the force F to remain constant and

parallel to itself, whilst this portion of its path is being de-

scribed. Then, if PR be a tangent at P, and QR be drawn

parallel to SP, PR is the space which the body would have
traversed in the time of describing PQ, if it had moved
with its velocity of projection from P alone, and had not been
attracted towards S, and RQ or PT (QT being drawn paral-
lel to RP) is the space through which it would have fallen

by its attraction towards S alone, or if it had not been pro-

jected at all from P.f Let v represent the velocity which
it would have acquired on this last supposition, when it

reached the point T. Therefore (Art. 66.), if w represent the

weight of the body,

Now the velocity v, which the body would have acquired in

falling through the distance PT by the action of the constant

1 orce F, is equal to double that which would cause it to de
scribe the same distance uniformly in the same time4

Representing therefore by Y the actual velocity of the

body in its path at P, we have

V~PE' 'PE'
9

Substituting this value of v in the preceding equation,

* The force here spoken of, and represented by F, is the moving force, or

pressure on the body (see Art. 92.), and is therefore equal to that pressure

which would just sustain its attraction towards S.

f See Art. 113. (equations 89 and 90) ;
what is proved there of a body acted

upon by the force of gravity which is constant, and whose direction is con-

stantly parallel to itself, is evidently true of any other constant force similarly

retaining a direction parallel to itself. To apply the same demonstration to

any such case, we have only indeed to assume g to represent another number

than 32*.
1 If / represent the additional velocity per second which F would com-

municate to the body, and t the time of describing PT, then (Art. 44.)

=/*; but (Art. 46.) PT=^9=
*=|<;

so that is the velocity with

which PT would be described uniformly in the time t.
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Now let a circle PQY be described having a common tan

gent with the curve AB in the point P, and passing through
the point Q. Produce PS to intersect the circumference of
this circle in Y, and join QY ;

then are the triangles PQY
and QPR similar, for the angle RQP is equal to the angle
QPY (QE and YP being parallel), and the angle QPR is

equal to the angle QYP in the alternate segment of the cir-

cle. Therefore = therefore QR=. Substi-

tuting this value of QR in the last equation, we have

QV

Now this is true, however much PQ may be diminished.
Let it be infinitely diminished, the supposed constant amount
and parallel direction of F will then coincide with the actual
case of a variable amount and inclination of that force, the

PQ
ratio ~~ will become a ratio of equality, and the circle

PQY will become the circle of curvature at P, and PY that

chord of the circle of curvature, which being drawn from P
passes through S. Let this chord of the circle of curvature
be represented by C,

The force or pressure F thus determined is manifestly
exactly equal to that force by which the body tends in its

motion continually to fly from the centre S, and may there-

fore be called its centrifugal force. This term is, however,
generally limited in its application to the case of a body re-

volving in a circle, and to the force with which it tends to

recede from the centre of that circle
;
or if applied to the

case of motion in any other curve, then it means the force

with which the body tends to recede from the centre of the

circle of curvature to its path at the point through which it

is, at any time, moving. When the body revolves in a cir-

cular path, the circle of curvature to the path at any one

point evidently coincides with it throughout, and the chord
of curvature becomes one of its diameters. Let the radius
of the circle which the body thus describes be represented
by R, then C=2R

;
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>

Since in whatever curve a body is moving, it may be con-
ceived at any point of its path to be revolving in the circle
of curvature to the curve at that point, the force F, with
which it then tends to recede from the centre of the circle
of curvature is represented by the above formula, B. being
taken to represent the radius of curvature at the point of its

path through which it is moving.
If a be the angular velocity of the body's revolution about

the centre of its circle of curvature, then V=R
5

/.F=-a'R ..... (102).
9

122. From equation (100) we obtain

/y

Now (Art. 94.)
^

represents the additional velocity per

second f, which would be communicated to a body falling
towards 6, if the body fell freely and the force F remained
constant. Moreover, by Art. 47. it appears, that Y is the
whole velocity which the body would on this supposition
acquire, whilst it fell through a distance equal to JC, or to

one quarter of the chord of curvature. Thus, then, the velo-

city of a body revolving in any curve and attracted towards
a centre of force is, at any point of that curve, equal to that
which it would acquire in falling freely from that ppint to-

wards the centre of force through one quarter of that chord
of curvature which passes through the centre of force, if the

force which acted upon it at that point in the curve re-

mained constant during its descent. It is in this sense that

the velocity of a body moving in any curve about a centre

of force is said to be THAT DUE TO ONE .QUARTER THE CHORD
OF CURVATRE.

123. The centrifugalforce of a mass offinite dimensions.

Let BC represent a thin lamina or slice

of such a mass contained between two planes

exceedingly near to one another, and both

perpendicular to a given axis A, about

which the mass is made to revolve.
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Through A draw any two rectangular axes Ax and Ay,
let m

1
be any element of the lamina whose weight is w^ and

let AM
X
and AN^ co-ordinates of m

1?
be represented by x

1

and yy Then by equation (102), if a represent the angular
velocity of the revolution of the body, the centrifugal force

on the element m
l
is represented by w^Am^ Let now this

J/

force, whose direction is Am
1
be resolved into two others,

whose directions are Ax and Ay. The former will be repre-

sentedby w^Am^ cos. xAm
l7
or by wp^ and the latter

g
2

g

by w
l
Am

l
cos. yAm1?

or by w$1 ;
and the centrifugal

9 <?

forces and all the other elements of the lamina being simi-

larly resolved, we shall have obtained two sets of forces,
those of the one set being parallel to A#, and represented

by w^ wjc^ WsPsi &c. and those of the other set
'

parallel to Ay
1

represented by w^^ __w,,y2,_i03y3 ,
&c.

ff 9 9
Now if X and Y represent the resolved parts parallel to

the directions of Ax and Ay, of the resultant of these two
sets of forces, then (Art. 11.)

if G-
a
and G2 represent the co-ordinates AG! and AG2 of the

centre of gravity G of the lamina, and W its weight
(Art. 18.).

Now the whole centrifugal force F on the lamina is the
resultant of these two sets of forces, and is represented by

*

(Art. 11.),

/.F= T-W'G/ + W2G2

3 = -W VG^ + eV, or

(103),

where G is taken to represent the distance AG of the centre
of gravity of the lamina from the axis of revolution.

Moreover, the direction of this resultant centrifugal force
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IB through A, since the direction of all its components are

through that point

124. From the above formula, it is apparent that if a body
revolving round a fixed axis be conceived to
be divided into laminae by planes perpendicu-
lar to the axis, then the centrifugal force of
each such laminae is the same as it would
have been if the whole of its weight had
been collected in its centre of gravity; so

o! that if the centres of gravity of all the laminae
be in the same plane passing through the

axis, then, since the centrifugal force on each lamina has its

direction from the axis through the centre of gravity of that

lamina, it follows that all the centrifugal forces of these
laminae are in the same plane, and that they are PARALLEL
forces, so that their resultant is equal to their sum, those

being taken with a negative sign which correspond to

laminae whose centres of gravity are on the opposite side of
the axis from the rest, and whose centrifugal forces are
therefore in the opposite directions to those of the rest.

Thus if F' represent the whole centrifugal force of such a

mass, then F'= 2WG. Now letW represent the weight

of the whole mass, and G' the distance of its centre of gra-

vity from the axis, therefore sWG=W'G';

/. F'=-WG' (104).

Li the case, then, of a revolving body capable of being
divided into laminae perpendicular to the axis of revolution,
the centres of gravity of all of which laminae are in the

same plane passing through the axis, the centrifugal force is

the same as it would have been if the whole weight of the

body had been collected in its centre of gravity, the same

property obtaining in this case in respect to the whole body
as obtains in respect to each of its individual laminos.

Since, moreover, the centrifugal forces upon the laminae are

parallel forces when their centres of gravity are all in the

same plane passing through the axis of gravity, and since

their directions are all in that plane, it follows (Art. 16.),

that if we take any point O in the axis, and measure the

moments of these parallel forces from that point, arid call

a? the perpendicular distance OA of any lamina BC from
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that point, and H the distance of their resultant from that

point, then

The equations (104:)
and (105) determine the amount and

the point of application of the resultant of the centrifugal
forces upon the mass, upon the supposition that it can be
divided into laminae perpendicular to the axis of revolution,
all of which have their centres of gravity in the same plane

passing through the axis.

It is evident that this condition is satisfied, if the body be

symmetrical as to a certain axis, and that axis be in the

same plane with the axis of revolution, and therefore if it

intersect or if it be parallel to the axis of revolution.

If, in the case we have supposed, 2WG O, that is, if the

centre of gravity be in the axis of revolution, then the cen-

trifugal force vanishes. This is evidently the case where a

body revolves round its axis of symmetry.

125. If the centres of gravity of the laminae into which
the body is divided by planes perpendicular to

the axis of revolution be not in the same plane
(as in the figure), then the centrifugal forces of

the different laminae will not lie in the same

plane, but diverge from the axis in different

directions round it. The amount and direction

of their resultant cannot in this case be deter-

mined by the equations which have been given
above.

THE PRINCIPLE OF VIRTUAL VELOCITIES.

126. If any pressure P, whose point of application A is

made to move
through

the straight line AB, ~be resolved

into three others X, Y, Z, in the directions of the three

rectangular axes, Ox, Oy, Qz / and if AC, AD, and AE,
be the projections ofAB upon these axes, then the work of
P through AB is equal to the sum of the works of X, Y, Z,

through AC, AD, and AE respectively, or X . AC-f-Y .

E5+Z . AE=P . AM.
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Let the inclinations of the direction

of P to the axes Ox, Oy, Oz respec-

tively, be represented by a, ft y, and
the inclniations of AB to the same
axes by an ft, yn

/. (Art. 12.) X=P cos. a, Y=P cos. ft Z=P cos. y ; also AC
=AB cos. a,, AD=AB cos. ft, AE=rAB cos. y15

/. X/AC=P. AB cos. a cos.
15
Y. AD^P. AB cos. /3 cos. ft,

Z . AE=P . AB cos. y cos. y,,

/.X . AC+Y . AD+ Z . AE=P . AB {cos.
a cos. a^cos. fr

cos. ft + cos. y cos. y^.
But by a well-known theorem of trigonometry, cos* eos.

Wj+ cos. /3 cos. ft + cos. y cos. 7,= cos. PAB,
/.X . AC+Y . AD+Z . AE=P . AB cos. PAB;

but AB cos. PAB=AM
;

.-. X . AC+Y . AD+ Z . AE=P . AM.

But (Art. 52.) the w^ork of P through AM is equal to its

work through AB. Therefore, &c.*

127. If any number offorces fie in equilibrium (being in

any way mechanically connected with one another), and if,

subject to that connection, their different points of appli-
cation "be made to move, each through any exceedingly small

distance, then the aggregate of the work of those forces,
whose points of application are made to move towards the

* This proposition may readily be deduced from Art. 53., for pressures equal
and opposite to X, Y, Z, would just be in equilibrium with P, and these tend-

ing to move the point A in one direction along the line AB, P tends to move
it in the opposite direction, therefore in the motion of the point A through AB,
the sum of the works of X, Y, Z, must equal the work of P. But the work of

X, as its point of application moves through AB, is equal (Art. 52.) to the

work of X through the projection of AB upon Aar, that is, through AC ;
simi- -

larly the work of Y, as its point of application moves through AB, is equal to ,

its work through the projection of AB upon Ay, or through AD; and so of Z.

The sum of the works of X, Y, and Z, as their point of application is made to

move through AB, is therefore equal to what would have been the sum of their -

works had their points of application been made to move separately through .

AC, AD, AE ;
this last sum is therefore equal to the work of P through AB,

which is equal to the work of P through AM, AM being the projection of AB ;

upon the direction of P.

8
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directions in which the several forces applied to them act
t

shall equal the aggregate of the work of those forces, the

motions of whose points of application are opposed to the

directions of theforces applied to them.

For let all the forces composing such a system be re-

solved into three sets of forces parallel to three rectangular
axes, and let these three sets of parallel forces be repre-
sented by A, B, and C respectively. Then must the result-

ant of the parallel forces of each set equal nothing. For if

any of these resultants had a finite value, then (by Art. 12.)
the whole three sets of forces would have a resultant, which

they cannot, since they are in equilibrium.
Now let the motion of the points of application of the

forces be conceived so small that the amounts and directions

-of tiie forces may be made to vary, during the motion, only
by aa exceedingly small quantity, and so that the resolved

forces upon any point of application may remain sensibly

unchanged. Also let u^ u^ u^ represent the works of these
resolved feces respectively on any point, and 2^ the sum
of all the works of the resolved forces of the set A, 2u^ the
;sam of all the works of the forces of the set 13, and 2u

s
of the

;set C. Now since the parallel forces of the set A have no

{resultant, therefore (Art. 59.) the sum of the works of those
forces of this set, whose points of application are moved
tom&rds the directions of their forces, is equal to the sum of

the works of those whose points of application are moved
jfrota> the directions of their forces, so that 2^=0, if the
values of u^ which compose this sum, be taken with the

positive or negative sign, according to the last mentioned
condition.

Similarly ,
2w

2
= and 2^

3
=

0, /. Zfa -\~u^+ ?/
3) 0.

Now let U represent the actual work of that force Pn the
works of whose components parallel to the three axes are

represented by u^ u^ u
3 ;

then by the last proposition,

(106);

in which expression U is to be taken positively or negatively
according to the same condition as u^ u u

3 ;
that is, accord-

ing as the work at each point is done in the direction of the

corresponding force, or in a direction opposite to it. Hence
therefore it follows, from the above equations, that the sum
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of the works in one of these directions equals their sum in

the opposite direction. Therefore, &c.
The projection of the line described by the point of appli-

cation of any force npon the direction of that 'force is called

its VIRTUAL VELOCITY, so that the product of the force by its

virtual velocity is in fact the work of that force
;
hence

therefore, representing any force of the system by P, and
its virtual velocity by p, we have Pp=tl, and therefore,

=iO, which is the principle of virtual velocities.*

128. If there be a system offorces such that their points of

application being moved through certain consecutive posi-

tions, thoseforces are in all such positions in equilibrium,
then in respect to any finite motion of the points of appli-
cation through that series ofpositions, the aggregate of the

work of those forces, which act in the directions in which
their severalpoints of application are made to move, is equal
to the aggregate of the work in the opposite direction.

This principle has been proved in the preceding proposi-

tion, only when the motions communicated to the several

points of application are exceedingly small, so that the work
done by each force is done only through an exceedingly
small space. It extends, however, to the case in which each

point of application is made to move, and the work of each

force to be done, through any distance, however great, pro-
vided only that in all the different positions which the points
of application of the forces of the system are thus made to

take up, these forces be in equilibrium with one another
;
for

it is evident that if there be a series of such positions

immediately adjacent to one another, then the principle
obtains in respect to each small motion from one of this set

of positions into the adjacent one, and therefore in respect
to the sum of all such small motions as may take place in the

system in its passage from any one position into any other,

that is, in respect to the whole motion of the system through
the intervening series of positions. Therefore, &c.

THE PRINCIPLE OF Yis YIVA.

129. If theforces of any system be not in equilibrium with

one another, then the difference between the aggregate work

* This proof of the principle of virtual velocities is given here for the first

time.
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of those whose tendency is in the direction of the motions

of their several points of application, and those whose ten-

dency is in the opposite direction, is equal to one half the

aggregate vis viva of the system.

In each of the consecutive positions which the bodies com-

ring
the system are made successively to take up, let there

applied to each body a force equal to the effective force
(Art. 103.) upon that body, but in an opposite direction;

every position will then become one of equilibrium.

Now, as the bodies which compose the system and the

various points of application of the impressed forces move

through any finite distances from one position into another,
let 2^ represent the aggregate work of those impressed
forces whose directions are towards the directions of the

motions of their several points of application, and let 2^
2

represent the work of those impressed forces which act in the

opposite directions
;

also let 2u
3 represent the aggregate

work of forces applied to the system equal and opposite to

the effective forces upon it
;
the directions of these forces

opposite to the effective forces are manifestly opposite also

to the directions of the motions of their several points of

application, so that on the whole 2^ is the aggregate work
of those forces whose directions are towards the motions of

their several points of application, and 2w
a+ 5to

8
the aggre-

gate work opposed to them. Since therefore, by D'Alem-
berfs principle, an equilibrium obtains in every consecutive

position of the system, it follows by the last proposition,
that

(107).

Now u
s
is taken to represent the work of a force equal and

opposite to the effective force upon any body of the system ;

but the work of such a force through any space is equal to

the work which the effective force (being unopposed) accu-

mulates in the body through that space (Art. 69.), or it is

equal to one half the difference of the vires vivse of the body
at the commencement and termination of the time during
which that space is described (Art. 67.). Therefore 2^3

equals one half the aggregate difference of the vires vivce of
the system at the two periods ;

-O ..... (108).
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Thus then it follows, that the difference between the aggre

gate
work 2 u, of those forces, the tendency of each of which

is towards the direction of the motion of its point of applica-
tion, and that 2w

2 of those the direction of each of which is

opposed to the motion of its point of application (or, in other
words the difference between the aggregate work of the

accelerating forces of the system and that of the retarding

forces),
is equal to one half the vis viva accumulated or lost

in the system whilst the work is being done, which is the
PRINCIPLE OF Yis VIVA.

130. One half the vis viva of the system measures its

accumulated work
;

the principle of vis viva amounts,
therefore, to no more than this, that the entire difference

between the work done by those forces which tend to accele-

rate the motions of the parts of the system to which they
are applied, and those which tend to retard them, is accu-

mulated in the moving parts of the system, no work
whatever being lost, but all that accumulated which is done

upon it by the forces which* tend to accelerate its motion,
above that which is expended upon the retarding forces.

This principle has been proved generally of any mechani-
cal system ;

it is therefore true of the most complicate 1

machin^. The entire amount of work done by the moving
power, whatever it may be, upon that machine, is yielde I

partly at its working points in overcoming the resistancos

opposed there to its motion (that is, in doing its useful

work), it is partly expended in overcoming the friction and
other prejudicial resistances opposed to the motion of the

machine between its moving and its working points, and all

the rest is accumulated in the moving parts of the machine,

ready to be yielded up under any deficiency of the moving
power, or to carry on the machine for a time, should the

operation of that power be withdrawn.

131. When theforces of any system (not in equilibrium in

every position which the parts of that
system^ may be

made to take up] pass through a position of equilibrium,
the vis viva of the system 'becomes a maximum or a

minimum.

For, as in Art. 129., let the aggregate work done in the

directions of the motions of the several parts of the system
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be represented by 2^
15 and the aggregate work done in

directions opposed to the motions of the several parts by
2u^ then (Art. 129.), one half the acquired vis viva of

system=2^2^. E~ow as the system passes from any one

position to any other, each of the quantities 2^ and 2?^
a
is

manifestly increased. If 2^ increases by a greater quan-
tity than 2^

2 ,
then the ms viva is increased in this change

of position ; if, on the contrary, it is increased by a less

quantity than 2^
2 ,
then the vis viva is diminished. Thus if

A2w
l
and A2?^

2 represent the increments of 2^ and 2^
a
in

this change of position, then (2^1+ A2^1) (2u9+A2u9),
or

(2^x
2^

2) -j- (A2u 1
A2t

2) 5 representing one half the vis

viva after this change of position, it is manifest that the vis

viva is increased or diminished by the change according a&

A2^ is greater or less than A2^
2 ;

and that if AI;^ be equa)
to A2^

2
then no change takes place in the amount of the

vis viva of the system as it passes from the one position to

the other.

Now from the principle of virtual velocities (Art. 127.),
it appears, that precisely this case occurs as the system
passes through a position of equilibrium, the aggregate
work of those forces whose tendency is to accelerate the

motions of their points of application then precisely equal-

ling that of the forces whose tendency is opposed to these

motions. For an exceeding small change of position there-

fore, passing through a position of equilibrium, A2^=A2^3J

an equality which does not, on the other hand, obtain,
unless the body do thus pass through a position of equili-
brium.

Since then the sum 2^ 2^
25
and therefore the aggregate

vis viva of the system, continually increases or diminishes

up to a position of equilibrium, and then ceases (for a cer-

tain finite space at least) to increase or diminish, it follows,
that it is in that position a maximum or a minimum.
Therefore, &c.

132. When theforces of any system pass through a position
of equilibrium, the vis viva "becomes a maximum or a

minimum, according as that position is one of stable or

unstable equilibrium.

For it is clear that if the vis viva be a maximum in any
position of the equilibrium of the system, so that after it

Has passed out of that position into another at some finite
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distance from it, the acquired vis viva may have become
less than it was before, then the aggregate work of the
forces which tend to accelerate the ^notion between these
two positions must have been less than that of the forces
which tend to retard the motion (Art. 131.). Now suppose
the body to have been placed at rest in this position of

equilibrium, and a small impulse to have been communi-
cated to it, whence has resulted an aggregate amount of
vis viva represented by 2mY

2
. In the transition from the

first to the second position, let this vis viva have become
2mv*

;
also let the aggregate work of the forces which have

tended to accelerate the motion, between the two positions,
be represented by 2U,, and that of the forces which have
tended to retard the motion by 2U2 ; then, for the reasons

assigned above, it appears that 2U
?
is greater than 21^.

Moreover, by the principle of vis viva,

in which equation the quantity 2(2TJ2 2U,) is essentially

positive, in respect to the particular range of positions

through which the disturbance is supposed to take place.*
For every one of these positions there must then be a

certain. value of 2mV2

,
that is, a certain original impulse

and disturbance of the system from its position of equili-

brium, which will cause the second member of the above

equation, and therefore its first member 2mv*, to vanish.

Now every term of the sum ^mvz
is essentially positive ;

this sum cannot therefore vanish unless each term of it

vanish, that is, unless the velocity of each body of the

system vanishes, or the whole be brought to- rest. This

repose of the system can, however, only be instantaneous
;

for, by supposition, the position into which it has been dis-

placed is not one of equilibrium. Moreover, the
displace-

ment of the system cannot be continued in the direction in

which it has hitherto taken place, for the negative term in

the second member of the above equation would yet fkrther

be increased so as to exceed the positive term, and the first

* The disturbance is of course to be limited to that particular range of

positions to which the supposed position of equilibrium stands in the relation

of a position of maximum vis viva. If there be other positions of equili-

brium of the system, there will be other ranges of adjacent positions, in

respect to each of which there obtains a similar relation of maximum or mini-

mum vis viva.
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member 2mv* would thus become negative, which ia

impossible.
The motion of the system can then only be continued by

the directions of the motions of certain of the elements
which compose it being changed, so that the corresponding
quantities by which SU, and 2U2 are respectively increased

may change their signs, and the whole quantity ^Uj 2U
2

which before increased continually may now continually
diminish. This being the case, 2mv* will increase again
until, when st^ 2U2=0, it becomes again equal to %mVs

;

that is, until the system acquires again the vis viva with
which its disturbance commenced.

Thus, then, it has been shown, that in respect to every
one of the supposed positions of the system* there is a cer-

tain impulse or amount of vis viva, which being communi-
cated to the system when in equilibrium, will just cause it

to oscillate as far as that position, remain for an instant at

rest in it, then return again towards its position of equili-

brium, and re-acquire the vis viva with which its displace-
ment commenced. Now this being true of every position
of the supposed range of positions, it follows that it is true

of every disturbance or impulse which will not carry the

system beyond this supposed range of positions ;
so that,

having been displaced by any such disturbance or impulse,
the system will constantly return again towards the position
of equilibrium from which it set out, and is STABLE in

respect to that position.
On the other hand, if the supposed position of equili-

brium be one in which the vis viva is a minimum, then the

aggregate work of the forces which tend to accelerate the

motion must, after the system has passed through that posi-

tion, exceed that of the forces which tend to retard the

motion
;
so that, adopting the same notation as before, 2U,

must be greater than 2U
25
and the second member of the

equation essentially positive. Whatever may have been the

original impulse, and the communicated vis viva 2mY2

,

Sm^2 must therefore continually increase
;
so that the whole

system can never come to a position of instantaneous repose ;f

but on the contrary, the motions of its parts must continu-

ously increase, and it must deviate continually farther from
its position of equilibrium, in which position it can never

* That is, of that range of positions over which the supposed position of

equilibrium holds the relation of a position of maximum vis viva.

f Within that range of positions over which the supposed position of

equilibrium holds the relation of minimum vis viva.
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rest. The position is thus one of unstable equilibrium
Therefore, &c.

DYNAMICAL STABILITY.*

If a body be made, by the action of certain disturbing
forces, to pass from one position of equilibrium into another,
and if in each of the intermediate positions these forces are
in excess of the forces opposed to its motion, it is obvious

that, by reason of this excess, the motion will be continually
accelerated, and that the body will reach its second position
with a certain finite velocity, whose eifect (measured under
the form of vis viva) will be to carry it beyond that position.
This however passed, the case will be reversed, the resist-

ances will be in excess of the moving forces, and the body's
velocity being continually diminished and eventually de-

stroyed, it will, after resting for an instant, again return
towards the position of equilibrium through which it had

passed. It will not however finally rest in this position until

it has completed other oscillations about it. Now the am-

plitude of the first oscillation of the body beyond the posi-
tion in which it is finally to rest, being its greatest ampli-
tude of oscillation, involves practically an important condi-

tion of its stability ;
for it may be an amplitude sufficient to

carry the body into its next adjacent position of equilibrium,
which being, of necessity, a position of unstable equilibrium,
the motion will be yet further continued and the body
overturned. Different bodies requiring moreover different

amounts of work to be done upon them to produce in all the

same amplitude of oscillation, that is (relatively to that am-

plitude) the most stable which requires the greatest amount
of work to be so done upon it. It is this condition of stabi-

lity, dependent upon dynamical considerations, to which, in

the following paper, the name of dynamical, stability is

given. *

I cannot find that the question has before been considered

in this point of view, but only in that which determines

whether any given position be one of stable, unstable, or

mixed equilibrium ;
or which determines what pressure is

necessary to retain the body at any given inclination from
such a position.

* Extracted from a paper
" On Dynamical Stability, and on the Oscillations

of Floating Bodies," by the author of this work, published in the Transactions

of the Royal Society, Part. II. for 1850. The remainder of the paper will be

found in the Appendix.
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1. To the discussion of the conditions of the dynamicaj
stability of a body the principle of vis viva readily lends
itself. That principle,* when translated into a language
which the labours of M. PONCELET have made familiar to

the uses of practical science, may be stated as follows :

"
When, being acted upon by given forces, a body or sys-

tem of bodies has been moved from a state of rest, the differ-

ence between the aggregate work of those forces whose
tendencies are in the directions in which their points of

application have been moved, and that of the forces whose
tendencies are in the opposite direction, is equal to one-half

the vis viva of the system."

Thus, if 2^ be taken to represent the aggregate work of

the forces by which a body has been displaced from a posi-
tion in which it was at rest, and 2^Q the aggregate work

(during this displacement) of the other forces applied to it
;

and if the terms which compose 2^ and 2^
2 be understood

to be taken positively or negatively, according as the ten-

dencies of the corresponding forces are in the directions in

which their points of application have been made to move
or in the opposite directions

;
then representing the aggre-

gate vis viva of the body by
- 2wv*.
t/

2^+2^ =^2^', (!').

Now 2i
2 representing the aggregate work of those forces

which acted upon the body in the position from which it has
been moved, may be supposed to the known

; 2^ may there-

fore be determined in terms of the vis viva, or conversely.
2. In the extreme position into which the body is made to

oscillate and from which it begins to return, it, for an instant,
rests. In this position, therefore, its vis viva disappears, and
we have

2^+2^=0 (2').

This equation, in which 2-^ and 2^
2 are functions of the

impressed forces and of the inclination, determines the ex-

treme position into which the body is made to roll by the

action of given disturbing forces
; or, conversely, it deter-

mines the forces by which it may be made to roll into a

given extreme position.

* See Art. 129.
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3. The position in. which it will finally rest is determined

by the maximum value of 2^+2^ in equation (I/) ; for, by
a well-known property, the vis viva of a system* attains a
maximum value when it passes through a position of stable,
and a minimum, when it passes through a position of unstable

equilibrium. The extreme position into which the body
oscillates is therefore essentially different from that in which
it will finally rest.

4. Different bodies, requiring different amounts of work to

be done upon them to bring them to the same given inclina-

tion, that is (relatively to that inclination) the most stable

which requires the greatest amount of work to be so done

upon it, or in respect to which ^u
{
is the greatest. If, in-

stead of all being, brought to the same given inclination, each
is brought into a position of unstable equilibrium, the corre-

sponding value of 2^ represents the amount of work which
must be done upon it to overthrow it, and may be considered

to measure its absolute, as the former value measures its

relative dynamical stability,f The absolute dynamical sta-

bility of a body thus measured I propose to represent by the

symbol U, and its relative dynamical stability, as to the

inclination 0, by U(0).
The measure of the absolute dynamical stability of a body

is the maximum value of its relative stability, or U the max-
imum of U(d) ;

for whilst the body is made to incline from
its position of stable equilibrium, it continually tends to

return to it until it passes through a position of unstable

equilibrium, when it tends to recede from it
;
the aggregate

amount of work necessary to produce this inclination must
therefore continually increase until it passes through that

position and afterwards diminish.

5. The work opposed by the weight of a body to any
change in its position is measured by the product of the

vertical elevation of its centre of gravity by its weight.;):

Kepresenting therefore by W the weight of the body, and

by AH the vertical displacement of its centre of gravity
when it is made to incline through an angle 0, and observ-

ing that the displacement of this point is in a direction oppo-
site to that in which the force applied to it acts, we have

,
and by equation (2'),

* Art. 132.

f It is obvious that the absolute dynamical stability of a body may be

greater than that of another, whilst its stability, relatively to a given inclina-

tion, is less
;

less work being required to incline it than the other at that

angle, but more, entirely to overthrow it.

f Art. 60.
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(3).

If therefore no other force than its weight be opposed to a

body's being overthrown, its absolute dynamical stability,
when resting on a rigid surface, is measured by theproduct
of its weight hy the height through which its centre of gravity
must he raised to bring it from a stable into an unstable

position of equilibrium.
6. The Dynamical Stability of Floating Bodies. The

action of gusts of wind upon a ship, or of blows of the sea,

being measured in their 'eifects upon it by their work, that

vessel is the most stable under the influence of these, or will

roll and pitch the least' (other things being the same), which

requires the greatest amount of work to be done upon it to

bring it to a given inclination
; or, in respect to which the

relative dynamical stability U (4) is the greatest for a given
value of 0. In another sense, that ship may be said to be the
most stable which would require the greatest amount of work
to be done upon it to bring it into a position from which it

would not again right itself, or whose absolute dynamical
stability U is the greatest. Subject to the one condition,
the ship will roll the least, and subject to the other, it will

be the least likely to roll over.

Thus the theory of dynamical stability involves a question
of naval construction. It will be found discussed in its ap-
plication to this question in the Appendix.

FBICTIOK

133. It is a matter of constant experience, that a certain

resistance is opposed to the motion of one body on the sur-

face of another under any pressure, however smooth may be
the surfaces of contact, not only at the first commencement,
but at every subsequent period of the motion

;
so that, not

only is the exertion of a certain force necessary to cause the

one body to pass at first from a state of rest to a state of mo-
tion upon the surface of the other, but that a certain force is

further requisite to keep up this state of motion. The resist-

ance thus opposed to the motion of one body on the surface
of another when the two are pressed together, is called fric-
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tion
;
that which opposes itself to the transition from a state

of continued rest to a state of motion is called the friction
of quiescence that which continually accompanies the state
of motion is called the friction of motion.
The principal experiments on friction have been made by

Coulomb*, Vince, G. Kennief, K "Wood;):, and recently
(at the expense of the French Government) by Morin.

They have reference, first, to the relation of the friction

of quiescence to the friction of motion
; secondly, to the

variation of the friction of the same surfaces of contact under

different pressures / thirdly, to the relation of the friction to
the extent of the surface of contact

; fourthly, to the relation
of the amount of the friction of motion to the velocity of the
motion

; fifthly, to the influence of unguents on the laws of

friction, and on its amount under the same circumstances of

pressure and contact. The following are the principal facts

which have resulted from these experiments ; they consti-

tute the laws of friction.

1st. That the friction of motion is subject to the same
laws with the friction of quiescence (about to be stated), but

agrees with them more accurately. That, under the same
circumstances of pressure and contact, it is nevertheless dif-

ferent in amount.

2ndly. That, when no unguent is interposed, the friction

of any two surfaces (whether of quiescence or of motion) is

directly proportional to the force with which they are pressed

perpendicularly together (up to a certain limit of that pres-
sure per square inch), so that, for any two given surfaces

of contact, there is a constant ratio of the friction to the per-
pendicular pressure of the one surface upon the other,

Whilst this ratio is thus the same for the same surfaces of

contact, it is different for different surfaces of contact. The

particular value of it in respect to any two given surfaces

of contact is called the CO-EFFICIENT of friction in re-

spect to those surfaces. The co-efficients of friction in respect
to those surfaces of contact, which for the most part form the

moving surfaces in machinery, are collected in a table, which
will be found at the termination of Art. 140.

3rdly. That, when no unguent is interposed, the amount
of the friction is, in every case, wholly independent of the

extent of the surfaces of contact, so that the force with which
two surfaces are pressed together being the same, and

Mem. des Sav. Etrang. 1781. t Phil- Trans - 1829.

A Practical Treatise on Rail-roads, 3d ed. chap. 76.

Mem. de 1'Institut. 1833, 1834, 1838.
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not exceeding a certain limit (per square inch), their friction

is the same whatever may be the extent of their surfaces of

contact.

4thly. That the friction of motion is wholly independent
of the velocity of the motion.*

Stilly. That where unguents are interposed, the co-efficient

of friction depends upon the nature of the unguent, and upon
the greater or less abundance of the supply. In respect to

the supply of the ungent, there are two extreme cases, that

in which the surfaces of contact are but slightly rubbed with
the unctuous matterf ,

and that in which, by reason of the
abudant supply of the unguent, its viscous consistency, and
the extent of the surfaces of contact in relation to the insist-

ent pressure, a continuous stratum of unguent remains con-

tinually interposed between the moving surfaces, and the
friction is thereby diminished, as far as it is capable of being
diminished, by the interposition of the particular unguent
used. In this state the amount of friction is found (as might
be expected) to be dependent rather upon the nature of the

unguent than upon that of the surfaces of contact
;
accord-

ingly M. Morin, from the comparison of a great number of

results, has arrived at the following remarkable conclusion,

easily fixing itself in the memory, and of great practical
value :

" that with unguents, hog's lard and olive oil, inter-

posed in a continuous stratum between them, surfaces of wood
on metal, wood on wood, metal on wood, and metal on metal

(when in motion), have all of them very nearly the same co-

efficient of friction, the value of that co-efficient being in all

cases included between '07 and '08.
" For the unguent tallow, the co-efficient is the same asfor

the other unguents in every case, except in that of metals upon
metals. This unguent appears,from the experiments of Mo-
rin, to be less suited to metallic substances than the others,
and givesfor the mean value of its co-efficient under the same
circumstances -10."

134. Whilst there is a remarkable uniformity in the results

thus obtained in respect to the friction of surfaces, between
which a perfect separation is effected throughout their whole
extent by the interposition of a continuous stratum of the

* This result, of so much importance in the theory of machines, is fully esta-

blished by the experiments of Morin.

\ As, for instance, with an oiled or greasy cloth.
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unguent, there is an infinite variety in respect to those states

of unctuosity which occur between the extremes, of which
we have spoken, of surfaces merely unctuous* and the most

perfect state of lubrication attainable by the interposition
of a given unguent. It is from this variety of states of the

unctuosity of rubbing surfaces, that so great a discrepancy
has been found in the experiments upon friction with ungu-
ents, a discrepancy which has not probably resulted so much
from a difference in the quantity of the unguent supplied to

the rubbing surfaces in different experiments, as in a diffe-

rence of the relation of the insistent pressures to the extent

of rubbing surface. It is evident, that for every description
of unguent there must correspond a certain pressure per
square inch, under which pressure a perfect separation of

two surfaces is made by the interposition of a continuous

stratum of that unguent between them, and which pressure

per square inch being exceeded, that perfect separation can-

not be attained, however abundant may be the supply of the

unguent.
The ingenious experiments of Mr. Nicholas Woodf, con-

firmed by those of Mr. G. Rennie^,. have fully established

these important conditions of the friction of unctuous surfaces.

It is much to be regretted that we are in possession of no

experiments directed specially to the determination of that

particular pressure per square inch, which corresponds in

respect to each unguent to the state of perfect separation,
and to the determination of the co-efficients of frictions in

those different states of separation which correspond to pres-
sures higher than this.

It is evident, that where the extent of the surface sustain-

ing a given pressure is so great as to make the pressure per
square inch upon that surface less than that which corres-

ponds to the state of perfect separation, this greater extent of

surface tends to increase the friction by reason of that adhe-

siveness of the unguent, dependent upon its greater or less

viscosity, whose effect is proportional to the extent of the

surfaces between wThich it is interposed. The experiments
of Mr. Wood exhibit the effects of this adhesiveness in a

remarkable point of view.

* Or slightly rubbed with the unguent.
t Treatise on Rail-roads, 3rd ed. p. 399.

i Trans. Royal Soc. 1829.

5 It is evident that, whilst by extending the unctuous surface which sustains

any given pressure, we diminish the co-efficient of friction up to a certain

limit, we at the same time increase that adhesion of the surfaces which results
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It is perhaps deserving of enquiry, whether in respect to

those considerable pressures under which the parts of the

larger machines are accustomed to move upon one another,
the adhesion of the unguent to the surfaces of contact, and
the opposition presented to their motion by its viscidity, are

causes whose influence may be altogether neglected as com-

pared with the ordinary friction. In the case of lighter

machinery, as for instance that of clocks and watches, these

considerations evidently rise into importance.

135. The experiments of M. Morin show the friction of

two surfaces which have been for a considerable time in con-

tact, to be not only different in its amount from the friction

of surfaces in continuous motion, but also, especially in this,

that the laws of friction (as stated above) are, in respect to

the friction of quiescence, subject to causes of variation and

uncertainty from which the friction of motion is exempt.
This variation does not appear to depend upon the extent of

the surfaces of contact, in which case it might be referred to

adhesion
;
for with different pressures the co-efficient of the

friction of quiescence was found, in certain cases, to vary
exceedingly, although the surfaces of contact remained the

same.* The uncertainty which would have been introduced
into every question of construction by this consideration, is

removed by a second very important fact developed in the

course of the same experiments. It is this, that by the

slightest jar or shock of two bodies in contact, their friction

is made to pass from that state which accompanies quiescence

from the viscosity of the unguent, so lhat there may be a point where the gain
on the one hand begins to be exceeded by the loss on the other, and where
the surface of minimum resistance under the given pressure is therefore

attained.

Mr. Wood considers the pressure per square inch, which corresponds to the
minimum resistance, to be 90lbs. in the case of axles of wrought iron turning
upon cast iron, with fine neat's foot oil. The experiments of Mr. Wood, whilst

they place the general results stated above in full evidence, can scarcely how-
ever be considered satisfactory as to the particular numerical values of the con-

stants sought in this inquiry. In those experiments, and in others of the same

class, the amount of friction is determined from the observed space or time

through which a body projected with a given velocity moves before all its

velocity is destroyed, that is, before its accumulated work is exhausted. This
is an easy method of experiment, but liable to many inaccuracies. It is much
to be regretted that the experiments of Morin were not extended to the fric-

tion of unctuous surfaces, reference being had to the pressure per square
inch.

* Thus in the case of oak upon oak with parallel fibres, the co-efficient of
the friction of quiescence varied, under different pressures upon the same sur-

face, from -55 to '76.
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to that which accompanies motion
;
and as every machine or

structure, of whatever kind, may be considered to be subject
to such shocks or imperceptible motions of its surfaces of

contact, it is evident that the state of friction to be made
the basis on which all questions of statics are to be deter-

mined, should be that which accompanies continuous motion.
The laws stated above have been shown, by the experiments
of Morin, to obtain, in respect to that friction which accom-

panies motion, with a precision and uniformity never before

assigned to them
; they have given to all our calculations in

respect to the theory of machines (whose moving surfaces

have attained their proper bearings and ; been worn to their

natural polish) a new and unlooked-for certainty, and; may
probably be ranked amongst the most accurate and:valuable-

of the constants of practical science.

It is, however, to be observed, that all these experiments;
were made under comparatively small insistent pressures a&

compared with the extent of the surface pressed (pressures,
not exceeding from one to two kilogrammes per square- cen>-

timeter, or from about 14*3 to 28*6 Ibs. per square'inch:.} In

adopting the results of M. Morin, it is of importance to bear
this fact in mind, because the experiments of Coulomb, and

particularly the excellent experiments of Mr. G\ Rennie, car-

ried far beyond these limits of insistent pressure*, have fully
shown the co-efficient of the friction of quiescence to increase

rapidly, from some limit attained long before the surfaces

abrade. In respect to some surfaces, as, for instance, wrought
iron upon wrought iron, the co-efficient nearly tripled itself

as the pressure advanced to the limits of abrasion. It is

greatly to be regretted that no experiments have yet been
directed to a determination of the precise limit about which
this change in the value of the co-efficient begins to take

place. It appears, indeed, in the experiments of Mr. Ren-
nie in respect to some of the soft metals, as, for instance, tin

upon tin, and tin upon cast iron
;
but in respect to the harder

metals, his experiments passing at once from a pressure of

32 Ibs. per square inch to a pressure of 1*66 cwt. per square

inch, and the co-efficient (in the case of wrought iron for in-

stance) from about -148 to '25, the limit which we seek is

lost in the intervening chasm. The experiments of Mr. Ren-

nie have reference, nowever, only to the friction of qui-

escence. It seems probable that the co-efficient of the fric-

* Mr. Rennie's
experiments

were carried, in some cases, to from 5 cwt. to

7 cwt. per square inch.

9



130 FRICTION.

tion of motion remains constant tinder a wider range of pres-
sure than that of quiescence. It is moreover certain, that

the limits of pressure beyond which the surfaces of contact

begin to destroy one another or to abrade, are sooner reached
when one of them is in motion upon the other, than when
they are at rest: it is also certain that these limits are not in-

dependent of the velocity of the moving surface. The dis-

cussion of this subject, as it connects itself especially with
the friction of motion, is of great importance ;

and it is to be

regretted, that, with the means so munificently placed at his

disposal by the French Government, M. Morin did not ex-

tend his experiments to higher pressures, and direct them
more particularly to the circumstances of pressure and velo-

city under which a destruction of the rubbing surfaces first

begins to show itself, and to the amount of the destruction

of surface or wear of the material which corresponds to the

same space traversed under different pressures and different

velocities. Any accurate observer who should direct his

attention to these subjects would greatly promote the inter-

ests of practical science.

SUMMARY OF THE LAWS OF FRICTION.

136. From what has here been stated it results, that if P
represent the perpendicular or normal force by which one

body is pressed upon the surface of another, F the friction of

the two surfaces, or the force, which being applied parallel
to their common surface of contact, would cause one of them
to slip upon the surface of the other, and/* the co-efficient of

friction, then, in the case in which no unguent is interposed,

f represents a constant quantity, and (Art. 133.)

F=/P (109);

a relation which obtains accurately in respect to the friction

of motion, and approximately in respect to the friction of

quiescence.

137. The same relation obtains, moreover, in respect to

unctuous surfaces when merely rubbed with the
unguent,

or

where the presence of the unguent has no other influence

than to increase the smoothness of the surfaces of contact

without at all separating them from one another.

In unctuous surfacespartially lubricated, or between which
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a stratum of unguent is partially interposed, the co-efficient

of friction/
1

is dependent for its amount upon the relation of
the insistent pressure to the extent of the surface pressed,
or upon the pressure per square inch of surface. This

amount, corresponding to each pressure per square inch in

respect to the different unguents used in machines, has not

yet been made the subject of satisfactory experiments.
The amount of the resistance F opposed to the sliding of

the surfaces upon one another is, moreover, as well in this

case as in that of surfaces perfectly lubricated, influenced by
the adhesiveness of the unguent, and is therefore dependent
upon the extent of the adhering surface

;
so that, if S repre-

sent the number of square units in this surface, and a the

adherence of each square unit, then aS represents the whole
adherence opposed to the sliding of the surfaces, and

(110);

where f is a function of the pressure per square unit
^-,

and

a is an exceedingly small factor dependent on the viscosity
of the unguent.

THE LIMITING ANGLE OF RESISTANCE.

We shall, for the present, suppose the parts of a solid body
to cohere so firmly, as to be incapable of separation by the
action of any force which may be impressed upon them.
The limits within which this suposition is true will be dis-

cusse,d hereafter.

It is not to this resistance that our present inquiry has

reference, but to that which results from the friction of the
surface of bodies on one another, and especially to the direc-

tion of that resistance.

138. Any pressure applied to the surface of an immoveable
solid body by the intervention of another body moveable

upon it, will be sustained
by^

the resistance of t/ie surfaces

of contact, whatever be its direction, provided only the an-

gle which that direction makes with the perpendicular to

the surfaces of contact do not exceed a certain angle called

the LIMITING ANGLE OF RESISTANCE of those SURFACES.
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This is true, however great the pressure may he. Also, if
the inclination of the pressure to the perpendicular exceed
the limiting angle of resistance, then this pressure will not
he sustained by the resistance of the surfaces of contact y
and this is true, however small the pressure may ~be.

Let PQ represent the direction in which the surfaces of

two bodies are pressed together at Q, and let

QA be a perpendicular or normal to the sur-

faces of contact at that point, then will the pres-
sure PQ be sustained by the resistance of the

surfaces, however great it may be, provided its

direction lie within a certain given angle AQB,
called the limiting angle of resistance

;
and it will not be sus-

tained, however small it may be, provided its direction lie

without that angle. For let this pressure be represented by
PQ, and let it be resolved into two others AQ and RQ, of

which AQ is that by which it presses the surfaces together

perpendicularly, and RQ that by which it tends to cause

them to slide upon one another, if therefore the friction F
produced by the first of these pressures exceed the second

pressure RQ, then the one body will not be made to slip

upon the other by this pressure PQ, however great it may
be

;
but if the friction F, produced by the perpendicular

pressure AQ, be less than the pressure RQ, then the one

body will be made to slip upon the other, however small PQ
may be. Let the pressure in the direction PQ be repre-
sented by P, and the angle AQP by 6, the perpendicular
pressure in AQ is then represented by P cos. d, and therefore

the friction of the surfaces of contact by/T cos. 0, f repre-

senting the co-efficient of friction (Art. 136.). Moreover, the

resolved pressure in the direction RQ is represented by P
sin. &. The pressure P will therefore be sustained by the

friction of the surfaces of contact or not, according as

P sin. & is less or greater than fP cos. 6
;

or, dividing both sides of this inequality by P cos. d, ac

cording as

tan. 6 is less or greater than f.

Let, now, the angle AQB equal that angle whose tangent is

f, and let it be represented by 0, so that tan. 0=/". Substi-

tuting this value off in the last inequality, it appears that

the pressure P will be sustained by the friction of the s^

faces of contact or not, according as
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tan. & is greater or less than tan. 0,

that is, according as

6 is less or greater than 0,

or according as

AQP is less or greater than AQB.

Therefore, &c. [Q. E. D.]

THE CONE OF RESISTANCE.

139. If the angle AQB be conceived to revolve about the
axis AQ, so that BQ may generate the surface of

a cone BQC, then this cone is called the CONE OP
RESISTANCE i it is evident, that any pressure, how-
ever great, applied to the surfaces of contact at

Q will be sustained by the resistance of the sur-

faces of contact, provided its direction be any
where within the surface of this cone

;
and that it will not

be sustained, however small it may be, if its direction lie any
where without it.

THE Two STATES BORDERING UPON MOTION.

140. If the direction of the pressure coincide with the sur-

face of the cone, it will be sustained by the friction of the
surfaces of contact, but the body to which it is applied will

be upon the point of slipping upon the other. The state of
the equilibrium of this body is then said to be that BORDER-
ING UPON MOTION. If the pressure P admit of being applied
in any direction about the point Q, there are evidently an

infinity of such states of the equilibrium bordering upon mo-

tion, corresponding to all the possible positions of P on the

surface of the cone.

If the pressure P admit of being applied only in the same

plane, there are but two such states, corresponding to those

directions of P, which coincide with the two intersections of

this plane with the surface of the cone
;
these are called the

superior and inferior states bordering upon motion. In the

case in which the direction of P is limited to the plane AQB,
BQ and CQ represent its directions corresponding to the
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two states bordering on motion. Any direction of P within
the angle BQC corresponds to a state of equilibrium ; any
direction, without this angle, to a state of motion.

141. Since, when the direction of the pressure P coincides

with the surface of the cone of resistance, the equilibrium is

in the state bordering upon motion
;

it follows, conversely,
and for the same reasons, that this is the direction of the

pressure sustained by the surfaces of contact of two bodies

whenever the state of their equilibrium is that bordering upon
motion. This being, moreover, the direction of the pressure
of the one body upon the other is manifestly the direction of

the resistance opposed by the second body to the pressure of

the first at their surface of contact, for this single pressure
and this single resistance are forces in equilibrium, and there-

fore equal and opposite. All that has been said above of the

single pressure and the single resistance sustained by two
surfaces of contact, is manifestly true of the resultant of any
number of such pressures, and of the resultant of any num-
ber of such resistances. Thus then it follows, that when any
number ofpressures applied to a body movedble upon another
which is fixed, are sustained by the resistance of the surfaces

of contact of the two bodies, and are in the state of equilibrium
bordering upon motion, then the direction of the resultant of
these pressures coincides with the surface of the cone of resist-

ance, as does that also of the resultant of the resistances of the

different points of the surfaces of contact*, that is, they are
both inclined to the perpendicular to the surfaces of contact

(at the point where they intersect it), at an angle equal to the

limiting angle of resistance.

* The properties of the limiting angle of resistance and the

ance, were first given by the author of this work in a paper published m the

Cambridge Philosophical Transactions, vol. v.
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TABLE I.

Friction of Plane Surfaces, when they have some time in Contact.

Surfaces in Contact.
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Nature of Bodies and Unguents.
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TABLE II.

friction of Plane Surfaces, in Motion one upon the other.

Surfaces in Contact.



FRICTION. 139

Surfaces in Contact.
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TABLE III.

friction of Gudgeons or Axle-ends, in Motion, upon their Bearings.

(From the experiments of Morin.)

Surfaces in Contact.
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THE RIGIDITY OF COEDS.

142. It is evident that, by reason of that resistance to

r~ ,
deflexion which constitutes the ri-

gidity of a cord, a certain force or

pressure must be called into action
whenever it is made to change its

rectilineal direction, so as to adapt
itself to the form of any curved sur-

face over which it is made to pass ;

as, for instance, over the circumfe-
rence of a pulley or wheel. Sup-

pose such a cord to sustain tensions represented by P a
and

P2 ,
of which P

x
is on the point of preponderating, and let

the friction of the axis of the pulley be, for the present,

neglected. It is manifest that, in order to supply the force

necessary to overcome the rigidity of the cord and to pro-
duce its deflection at B, the tension P

1
must exceed P

2 ;

whereas, if there were no rigidity, P, would equal P2 ;
so

that the effect of the rigidity in increasing the tension P, is

the same as though it had, by a certain quantity, increased

the tension P
2
. Now, from a very numerous series of

experiments made by Coulomb upon this subject, it appears
that the quantity by which the tension P

2 may thus be con-

sidered to be increased by the rigidity, is partly constant

and partly dependent on' the amount of P
2 ;

so as to be

represented by an algebraical formula of two terms, one
of which is -i constant quantity, and the other the product
of a constant quantity by P

2
. Thus if D represent the

constant part of this formula, and E the constant factor

of P2 ,
then is the effect of the rigidity of the cord the same

as though the tension P2 were increased by the quantity
D+E.P,.
When the cord, instead of being bent, under different

pressures, upon circular arcs of equal radii, was bent upon
circular arcs of different radii, then this quantity D+E . P

2 ;

by which the tension P2 may be considered to be increased

by the rigidity, was found to vary inversely as the radii

of the arcs
;

so that, on the whole, it may be represented
by the formula
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D+E . P,
R (HI),

where E represents the radius of the circular arc over which
the rope is bent. Tims it appears that the yielding tension

P
2 may be considered to have been increased by the rigidity

of the rope, when in the state bordering upon motion, so as

to become

This formula applies only to the bending of the same cord

under different tensions upon different circular arcs : for dif-

ferent cords, the constants D and E vary (within certain

limits to be specified) as the squares of the diameters or of the

circumferences
of the cords, in respect to new cords, wet or

dry / 111 respect to old cords they vary nearly as the power f

of the diameters or circumferences.
Tables have been furnished by Coulomb of the values of

the constants I) and E. These tables, reduced to English

measures, are given on the next page.*

* The rigidity of the cord exerts its influence to increase
resistance^ only at

that point where the cord winds upon the pulley ;
at the point where it leaves

the pulley its elasticity favours rather, and does not perceptibly affect, the

conditions of the equilibrium.
In all calculations of machines, in which the moving power is applied by the

intervention of a rope passing over a pulley, one-half the diameter of rope is

to be added to the radius of the pulley, or to the perpendicular on the direction

of the rope from the point whence the moments are measured, the pressure

applied to the rope producing the same effect as though it were all exerted

along the axis of the rope.
>
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TABLE V. RIGIDITY OF ROPES.

Table of the values of the constants D and E, according to the experiments of
Coulomb (reduced to English measures}. The radius R of the pulley is to be

taken in feet.

No. 1. New dry cords. Rigidity proportional to the square of the

circumference.

Circumference of

the Rope in Inches.
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No. 5. Tarred rope. Rigidity proportional to the number of strands.

Number of Strands.
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T III.

THE THEOEY OF MACHINES.

143. THE parts of a machine are divisible into those which
receive the operation of the movingpower immediately, those

which operate immediately upon the work to be performed,
and those which communicate between the two, or which
conduct the power or work from the moving to the working
points of the machine. The first class may be called RECEIV-

ERS, the second OPERATORS, and the third COMMUNICATORS of

work.

THE TRANSMISSION OF WORK BY MACHINES.

144. The moving power divides itself whilst it operates in

a machine, first, Into that which overcomes the prejudicial
resistances of the machine, or those which are opposed by
friction and other causes uselessly absorbing the work in its

transmission. Secondly, Into that which accelerates the

motion of the various moving parts of the machine
;
so long

as the work done by the moving power upon it exceeds that

expended upon the various resistances opposed to the motion
of the machine (Art. 129.). Thirdly, Into that which over-

comes the useful resistances, or those which are opposed to

the motion of the machine at the working point or points

by the useful work which is to be done by it. Thus, then,
the work done by the moving power upon the moving points
of the machine (as distinguished from the working points)
divides itself in the act of transmission, first, Into the work

expended uselessly upon the friction and other prejudicial
resistances opposed to its transmission. Secondly, Into that

accumulated in the various moving elements of the machine,
and reproducible. Thirdly, Into the useful work, or that
done by the operators, whence results immediately the useful

products of the machine.
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145. The aggregate number of units of useful works yielded
ly any machine at its working points is less than the num-
ber received upon the machine directly from the moving
power, ly the number of units

expended ujpon the prejudi-
cial resistances and ~by the number of units accumulated
in the movingparts of the machine whilst the work is being
done.*

For, by the principle of vis viva (Art. 129.), if 2U
1 repre-

sent the number of units of work received upon the machine
immediately from the operation of the moving power, %u
the whole number of such units absorbed in overcoming the

prejudicial resistances opposed to the working of the ma-
chine, 2U2 the whole useful work of the machine (or that
done by its operators in producing the useful effect), and

^-Zw^v*) one half the aggregate difference of the vires

vivae of the various moving parts of the machine at the
commencement and termination of the period during which
the work is estimated, then, by the principle of vis VIVA

(equation 108),

in which v
l
and v

9 represent the velocities at the commence-
ment and termination of the period, during which the work
is estimated, of that moving element of the machine whose

weight is w. Now one-half the aggregate difference of the
vires vivse of the moving elements represents the work accu-

mulated in them during the period in repect to which the
work is estimated (Art. 130.). Therefore, &c.

146. If the same velocity of every part of the machine re-

turn after any period of time, or if the motion ~be periodical,
then is the whole work receivedupon itfrom, the movingpower
during that time exactly equal to the sum of the useful work

done, and the work expended upon the prejudicial resistances.

For the velocity being in this case the same at the com-

mencement and expiration of the period during which the

work is estimated, 2w(v* -y
2

fl

)=0, so that

* Note (0 Ed. App.
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(113).

Therefore, &c.

The converse of this proposition is evidently true.

147. If the prime mover in a machine be throughout the

motion ^n equilibrium with the useful and the prejudicial

resistances, then the motion of the machine is uniform.
For in this case, by the principle of virtual velocities

(Art. 127.), 2U, 2U3 +2^; therefore (equation 112)

2w(v* v*)= 0; whence it follows that (in the case sup-

posed) the velocities v
l
and v2 of any moving element of the

machine are the same at the commencement and termi-

nation of any period of the motion however small, or that

the motion of every such element is a uniform motion.

Therefore, &c.

The converse of this proposition is evidently true.

THE MODULUS OF A MACHINE MOVING WITH A UNIFORM OR

PERIODICAL MOTION.

148. The modulus of a machine, in the sense in which the

term is used in this work, is the relation between the work

constantly done upon it by the movingpower',
and that con-

stantly yielded at the workingpoints, when it has attained

a state of uniform motion if it admit of such a state of
motion ; or if the nature of its motion be periodical, then

is its modulus the relation between the work done at its

moving and at its working points in the interval of time
which it occupies in passingfrom any given velocity to the

same velocity again.

The modulus is thus, in respect to any machine, the parti-
cular form applicable to that machine of equation (113), and

being dependent for its amount upon the amount of work ^u

expended upon the friction and other prejudicial resistances

opposed to the motion of the various elements of the ma-

chine, it measures in respect to each such machine the loss

of work due to these causes, and therefore constitutes a true

standardfor comparing the expenditure of movingpower ne-

cessary to the production of the same effects by different ma-
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chines: it is thus a measure of the working qualities of
machines.*

Whilst the particular modulus of
every^ differently con-

structed machine is thus different, there is nevertheless a

general algebraical type or formula to which the moduli of

machines are (for the most part and with certain modifica-

tions) referable. That form is the following,

U^A . U2+B . S (114),

where U
1
is the work done at the moving point of the ma-

chine through the space S, TJ
2 the work yielded at the work-

ing points, and A and B constants dependent for their value

upon the construction of the machine : that is to say, upon
the dimensions and the combinations of its parts, their

weights, and the co-efficients of friction at their various rub-

bing surfaces.

It would not be difficult to establish generally thisform of

the modulus under certain assumed conditions. As the mo-
dulus of each particular machine must however, in this work,
be discussed and determined independently, it will be better

to refer the reader to the particular moduli investigated in

the following pages. He will observe that they are for the

most part comprised under the form above assumed; sub-

ject to certain modifications which arise out of the discus-

sion of each individual case, and which are treated at length.

149. There is, however, one important exception to this

general form of the modulus : it occurs in the case of ma-

chines, some of whose parts move immersed in fluids. It is

only when the resistances opposed to the motion of the parts
of the machine upon one another are, like those of friction,

proportional to the pressures, or when they are constant re-

sistances, that this form of the modulus obtains. If
there^be

resistances which, like those of fluids in which the moving
parts are immersed (the air, for instance), vary with the velo-

city of the motion, and these resistances be considerable,

then must other terms be added to the modulus. This sub-

ject will be further discussed when the resistances of fluids

are treated of. It may here, however, be observed, that^if
the machine move uniformly subject to the resistance

of^a
fluid during a given time T, and the resistance of the fluid

* The properties of the modulus of a machine are here, for the first time,

discussed.
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be supposed to vary as the square of the velocity Y, then
will the work expended on this resistance vary as Y2

. S, or

as Y3
. T, since S=Y . T. If then II, and IT, represent the

work done at the moving and working points during the

time T, then does the modulus (equation 114) assume, in this

case, the form

TJ^A . Ua+B . Y . T-f C . Y3 /T (115).

THE MODULUS OF A MACHINE MOVING WITH AN ACCELERATED

OK RETARDED MOTION.

150. In the two last articles the work IT,, done upon the

moving point or points of the machine, has been supposed to

be just that necessary to overcome the useful and prejudi-
cial resistances opposed to the motion of the machine, either

continually or periodically ;
so that all the work may be ex-

pended upon these resistances, and none accumulated in the

moving parts of the machine as the work proceeds, or else

that the accumulated work may return to the same amount
from period to period. Let us now suppose this equality to

cease, and the workU
1
done by the moving power to exceed

that necessary to overcome the useful and prejudicial resist-

ances
;
and to distinguish the work represented by U 1

in the

one case from that in the other, let us suppose the former,

(that which is in excess of the resistances) to be represented

by U
1

;
also let U2 be the useful work of the machine, done

through a given space S
a ,
and which is supposed the same

whatever may be the velocity of the motion of the machine
whilst that space is being described

; moreover, let Sj be the

space described by the moving point, whilst the space Sa is

being described by the working point.
Now since Uj is the work which must be done at the

moving point just to overcome the resistances opposed to

the motion of that point, and U 1

is the work actually done

upon that point by the power, therefore U 1

U^ is the excess

of the work done by the power over that expended on the

resistances, and is therefore equal to the work accumulated
in the machine (Art. 130.) ;

that is, to one half of the

increase of the vis viva through the space S
t (Art. 129.) ;

so

that, if ^ represent the velocity of any element of the

machine (whose weight is w) when the work U 1

began to be

done, and v
9 its velocity when that work has been com-

pleted, then (Art. 129.),
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Now by equation (114) U^
.-. T?=A .

If instead of the work I? done by the power exceeding that

Uj expended on the resistances it had been less than it, then,
instead of work being accumulated continually through the

space S
1?

it would continually have been lost, and we should
have had the relation (Art. 129.),

so that in this case, also,

The equation (116) applies therefore to the case of a
retarded motion of the machine as well as to that of an
accelerated motion, and is the general expression for the
modulus of a machine moving with a variable motion.
Whilst the co-efficients A and B of the modulus are depen-
dent wholly upon the friction and other direct resistances to

the motion of the machine, the last term of it is wholly
independent of all these resistances, its amount being deter-

mined solely by the velocities of the various moving ele-

ments of the machines and their respective weights.

THE TELOCITY OF A MACHINE MOVING WITH A VARIABLE

MOTION.

151. The velocities of the different parts or elements of

every machine are evidently connected with one another by
certain invariable relations, capable of being expressed by
algebraical formulae, so that, although these relations are

different for different machines, they are the same for ail

circumstances of the motion of the same machine. In a

great number of machines this relation is expressed by a

constant ratio. Let the constant ratio of the velocity v, of

any element to that V 1
of the moving point in such a
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machine be represented by X, so that v
l
=\'V

l ,
and let v

9
and

V, be any other values of v
l
and Yj ;

then -y =XYa . Sub-

stituting these values of v
1
and v

a
in equation (116), we

have

TJ'=A . TT,+B . SI+ (Va
'-

in which expression 2i0X
a

represents the sum of the weights
of all the moving elements of the machine, each being mul-

tiplied by the square of the ratio X of its velocity to that of

the point where the machine receives the operation of its

moving power. For the same machine this co-efficient 2i0X
a

is therefore a constant quantity. For different machines it

is different. It is wholly independent of the useful or pre-

judicial resistances opposed to the motion of the machine,
and has its value determined solely by the weights and
dimensions of the moving masses, and the manner in which

they are connected with one another in the machine.

transforming this equation and reducing, we have

by which equation the velocity Y2 of the moving point of

the machine is determined, after a given amount of work
IP has been done upon it by the moving power, and a given
amount U2 expended on the useful resistances

;
the velocity

of the moving point, when this work began to be done

being given and represented by Yr
It is evident that the motion of the machine is more

equable as the quantity represented by 2wX2
is greater.

This quantity, which is the same for the same machine and
different for different machines, and which distinguishes
machines from one another in respect to the steadiness of

their motion, independently of all considerations arising out
of the nature of the resistances useful or prejudicial opposed
to it, may with propriety be called the CO-EFFICIENT OF

EQUABLE MOTION.* The actual motion of the machine is

more equable as this co-efficient and as the co-efficients A
and B (supposed positive) are greater.

* The co-efficient of equable motion is here, for the first time, introduced
into the consideration of the theory of machines.
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To DETERMINE THE Co-EFFICIENTS OF THE MODULUS OF A
MACHINE.

152. Let that relation first be determined between the

moving pressure P, upon the machine and its working pres-
sure P2 ,

which obtains in the state bordering upon motion by
the preponderance of P,. This relation will, in all cases
where the constant resistances to the motion of the machine

independently of P
2

are small as compared with P
2 ,

be
found to be represented by formulae of which the following
is the general type or form :

P,=P3 .*,+*, ..... (119);

where *, and $
2 represent certain functions of the friction

and other prejudicial resistances in the machine, of which
the latter disappears when the resistances vanish and the
former does not; so that if *j(> and *

a
()

represent the
values of these functions when the prejudicial resistances.

vanish, then $>W=Q and *
1
()= a given finite quantity

-

dependent for its amount on the composition of the machine...

Let P/> represent that value of the pressure Pj which wxmlftj

be in equilibrium with the given pressure P2 ,
if there- ware

no prejudicial resistances opposed to the motion off tbie

machine. Then, by the last equation, P/)=P2 . Qffi.
But by the principle of virtual velocities (Art.,12T:),\if

we suppose the motion of the machine to be unifdrm-j . so

that Pj and P2 are constantly in equilibrium upon it, and if

we represent by S, any space described by the point of

application of P,, or the projection of that space on . the

direction of P, (Art. 52.), and by S
2
the corresponding

space or projection of the space described by P2 ,
then

P/ )
. S

1
^P

2 . S
2
. Therefore, dividing this, equation by

the last, we have

Multiplying this equation by equation (119), ,
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which is the modulus of the machine, so that the constant
<f>

A in equation (114) is represented by j^,
and the constant

B by *r
The above equation has been proved for any value of S

15

provided the values of P, and P2
be constant, and the

motion of the machine uniform
;

it evidently obtains, there-

fore, for an exceedingly small value of S
15
when the motion

of the machine is variable.

GENERAL CONDITION OF THE STATE BORDERING- UPON MOTION
IN A BODY ACTED UPON BY PRESSURES IN THE SAME PLANE,
AND MOVEABLE ABOUT A CYLINDRICAL AxiS.

153. If any number of pressures P,, P2 ,
P

3 ,
<&c. applied in

the same plane to a body moveable about a cylindrical

axis, be in the state bordering upon motion, then is the

direction of the resistance of the axis inclined to its radius,
at the point where it intersects the circumference, at an

angle equal to the limiting angle of resistance.

For let R represent the resultant of P, P
2 ,

&c. Then,
since these forces are supposed to be upon the

11

point of causing the axis of the body to turn

upon its bearings, their resultant would, if made
to replace them, be also on the point of causing
the axis to turn on its bearings. Hence it fol-

lows that the direction of this resultant R cannot
be through the centre C of the axis

;
for if it

f were, then the axis would be pressed by it in the

direction of a radius, that is, perpendicularly

upon its bearings, and could not be made to turn upon them

by that pressure, or to be upon the point of turning upon
them. The direction of 11 must then be on one side of C,
so as to press the axis upon its bearings in a direction RL,
inclined to the normal CL (at the point L, where it inter-

sects the circumference of the axis) at a certain angle RLC.
Moreover, it is evident (Art. 141.), that since this force R
pressing the axis upon its bearings at L is upon the point of

causing it to -slip upon them, this inclination RLC of R to

the perpendicular CL is equal to the limiting angle of
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resistance of the axis and its bearings.* Now the resistance

of the axis is evidently equal and opposite to the resultant

R of all the forces P
1?
P

2 ,
&c. impressed upon the body.

This resistance acts, therefore, in the direction LR, and is

inclined to CL at an angle equal to the limiting angle of

resistance. Therefore, &c.

THE WHEEL AND AXLE.

154. The pressures P, and P
2 applied ver-

tically by means of parallel cords to a
wheel and axle are in the state bordering
upon motion by the preponderance of P15

it is required to determine a relation

between P, and P2 .

The direction LR of the resistance of the axis is on that

side of the centre which is towards P
15 and is inclined to the

perpendicular CL at the point L, where it intersects the

axis at an angle CLR equal to the limiting angle of resist-

ance. Let this angle be represented by <p,
and the radius

CL of the axis by p ;
also the radius CA of the wheel by a,,

and that CB of 1jie axle by &
2 ;

and let "W be the weight of

the wheel and axle, whose centre of gravity is supposed to

be C. Now, the pressures Pn P
2 ,

the weight W of the

wheel and axle, and the resistance R of the axis, are pres-
sures in equilibrium. Therefore, by the principle of the

equality of moments (Art. 7.), neglecting the rigidity of the

cord, and observing that the weight W may be supposed to

act through C, we have,

P, . CA=P2 . CB +R . Cm.

If, instead of P, preponderating, it had been on the point
of yielding, or P2 had been in the act of preponderating,
then R would have fallen on the other side of C, and we
should have obtained the relation P, . CA=P2

. CB
R . Cm; so that, generally, P, . CA=P2 . CBR .^Cm;
the sign being taken according as P, is in the superior or

inferior state bordering upon motion.

Now CA=a
t ,
CB=#2 ,

Cm=CL sin. CLR=p sin. <p, and

* The nide of C on which RL falls is manifestly determined by the direction

towards which the motion is about to take place. In this case it is supposed
about to take place to the right of C. If it had been to the left,

the direc-

tion of R would have been on the opposite side of C.
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"W; the sign being taken according as the

weight W of the wheel and axle acts in the same direction

with the pressures Y 1
and P2 ,

or in the opposite direction
;

that is, according as the pressures P x
and P

a act vertically
downwards (as shown in the figure) or upwards /

P sn. 9,

/.PX^ p sin. 9)=Pa(#a+ p sin. <p)Wp sin. 9.

Now the effect (Art. 142.) of the rigidity of the cord BPa

is the same as though it increased the tension upon that cord

(~r\
i "U* ~p \

P,+
- a

): allowing, therefore, for the
#a

'

rigidity of the cord, we have finally

(T)-I-"R

P \

P
3+ -

-^~ -J ( 2+ p sin. <p)"W p sin. 9,

or reducing,

aa^ p sm. 9 a
l p sin. 9

which is the required relation between P
x
and Pa in the

state bordering upon motion.

p p

sin. 9 and sin. 9 are in all cases exceedingly small
;

a, a,
8 J

we may therefore omit, without materially affecting the

result, all terms involving powers of these quantities above
the first, we shall thus obtain by reduction

155. The modulus of uniform motion m the wheel and axle.

It is evident from equation (122), that, in the case of the

wheel and axle, the relation assumed in equation

/ E \&a 4- p sin. 9
obtains, if we take ^=1 1 -f I- -.

I
;1

V aja,o sm. e '
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and
a

l
-
p sin. 9

^observing that *
1
()

represents the value of $, when
the prejudicial resistances vanish (or when 9=0 andE=0)

T_ * /m ^we have &W=.

\ p sin.

Therefore by equation (121),

_/P\ sin. 9
'

\aj

(Si
sin-

1 sin. 9

P sin. 9 .(124),

which is the modulus of the wheel and axle.

Omitting terms involving dimensions of sin. 9, and
Cd

l

sin. 9, and above the first, we have
'

156. The modulus of variable motion in the wheel and axle.

If the relation of P, and P2 be not that of either state

bordering upon motion, then the motion will be continually
accelerated or continually retarded, and work will continu-

ally accumulate in the moving parts of the machine, or the
work already accumulated there will continually expend
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itself until tlie whole is exhausted, and the machine is

brought to rest. The general expression for the modulus in

this state of variable motion is (equation 116)

^
^Now in this case of the wheel and axle, if 'V

l
and Y

2
re-

present the velocities of P
l
at the

commencement and completion
of the space S,, and the angular
velocity of the revolution of the

wheel and axle
; if, moreover, the

pressures P
t
and P

2 be supposed
to be supplied by weights sus-

\ / pended from the cords
; then,

since the velocity of P2 is repre-

sented by -?
-, we have

a,

\ represent the moment of inertia of the revolving wheel,
and Ia that of the revolving axle, (Art. 75.), and if f\ repre-
sent the weight of a unit of the wheel and f*2 of the axle

;

since 2wv* represents the sum of the weights of all the mov-

ing elements of the machine, each being multiplied by the

square of its velocity, and that (by Art. 75.) a> 1
I

1 represents
this sum in respect to the wheel, and -V2

I
2
in respect to the

axle. Now, Y1
=a^

1 ,

a.

Y 3
!

lCt/l +r*a* "T

Similarly 2^v2

2=Ya

a

Substituting in the general expression (equation 116), we
have
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TJ'=AU,+BS 1 +1(V,"-V,')

which is the modulus of the machine in the state of variable
motion, the co-efficients A and B being those already deter-
mined (equation 124), whilst the co-efficient

ig the co.efficient SwX,

( tion
i

117) of equalle motion. If the wheel and axle be each ofthem
a solid cylinder, and the thickness of the wheel be & and the

length of the axle 52 ,
then (Art. 85.) I

l =faeb la\, I
2=i^2

&
2

4
.

Now if W
l
and W2 represent the weights of the wheel and

axle respectively, then W
l
=ifa

l

9
b

l^ W
2 =tf#2

2
&

2M<2 ; therefore

M-Ji 2-W^x
2

, M-aIa=i'W'aaa
*. Therefore the co-efficient of

equable motion is represented by the equation

or

(137),

157. To determine the velocity acquired through a given
space when the relation o the weights P, and P2 , suspended
from a wheel and axle, is not that of the state bordering
upon motion*

Let Sj be the space through which the weight Pa
moves

whilst its velocity passes from Y
x
to V2 : observing that

!?=?&, and that U
a
=P2Sa=P9

^-2

, substituting in equa-
a

l

tion (126), and solving that question in respect to Y
a ,
we

have

.0*);

* Note (w) Ed. App.
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making the same suppositions as in formula 127, and repre-

senting the ratio by ra, we have

THE PULLEY.

158. If the radius of the axle be taken equal to that of the

wheel, the wheel and axle becomes a pul-

ley. Assuming then in equation 122,
of the

state

when
the strings are parallel,

ill ^* Assuming then in equation

rfpk
M Ir I 1

=
3=,we obtain for the relation <

I
H Wk I moving pressures Y l

and P
2 ,

in the

rH C5 \
t) r(iermg upon motion in the pulley,

..(129);

and by equation 124 for the value of the modulus,

p
l + -sm. 9

a

w)P sin.
Ob I

? sn. 9
. . . (130);

in which the sign is to be taken according as the pressures
P

t
and P2 act downwards, as in the first pulley of the pre-

ceding figure ;
or upwards, as in the second. Omitting

p
dimension of - sin 9,

- sin. 9, and above the first, we have
a a a

by equations (123, 125)
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E 2 P sin.<- +TT TT .

,
,U

S =TT. 1+- + - +~
Also observing that ,=, and I,=0, the modulus of varia-
ble motion (equation 126) becomes

(133),
~ij

and the velocity of variable motion (equations 118, 128) is

determined by the equation

in which two last equations the values of A and B are those
of the modulus of equable motion (equation 125)..

SYSTEM OF ONE FIXED AND ONE MQIOJABUE

159. In the last article (equation 131) it was
shown that the relation between the tensions

P! and P
2 upon the two parts of a string pass-

ing over a pulley and parallel to one another,
was, in the state bordering upon motion by the

preponderance of P,, represented by an expres-
sion of the form P

l
=aP

9+ l>, where a and b are
constants dependent upon the dimensions of the

pulley and its axis, its weight, and the rigidity
of the cord, and determined in terms of these
elements by equation 131

;
and in which ex-

pression 5 has a different value according as the
tension upon the cord passing over any pulley

acts in the same direction with the weight of that pulley (as-.

in the first pulley of the system shown in the figure), or in.

the opposite direction (as in the second pulley) : let these

different values of 5 be represented by I and J,. Now it is,

evident that before the weight P2 can be raised by means of

a system such as that shown in the figure, composed of one
fixed and one moveable pulley, the state of the equilibrium
of both pulleys must be that bordering upon motion, which
is described in the preceding article

;
since both must be

upon the point of turning upon their axes before the weight
Pa can begin to be raised. If then T and t represent the

tensions upon the two parts of the string which pass round,

the moveable pulley, we have
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and T=
Now the tensions T and t together support the weight P,,

and also the weight of the moveable pulley,

Adding aT to both sides of the second of the above equa-

tions, and multiplying both sides by a, we have

Also multiplying the first equation by (1 + a\

Now if there were no friction or rigidity, a would evi-

dently become 1 (see equation 121), and <t>= * would

become-; the co-efficients of the modulus (Art. 148.) are

/ a? \
=2( 1 ),\l +ar

. -^therefore A=2( and B

which is the modulus of uniform motion to the single move-
able pulley.*

If this system of two pulleys had been

arranged thus, with a different string passing
over each, instead of with a single string, as

shown in the preceding figure, then, represent-

ing by t the tension upon the second part of

the string to which P
1

is attached, and by T
that upon the first part of the string to which
P

2
is attached, we have

* The modulus may be determined directly from equation (135); for it is

evident that if Si and S2 represent the spaces described in the same time by
PI and P 2 ,

then S 1
= 2S 2 . Multiplying both sides of equation (135) by this

equation, we have,

now P 1S 1 ==U 1 ,
and P 2S 2

= U2, therefore &c.
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Multiplying the last of these equations by #, and adding it

to the first, we have Y
l(I + a)+wa=Ta+b==a*'Pt+ (l+ ajb'9

and for the modulus (equation 121),

It is evident that, since the co-efficient of the second term
of the modulus of this systen is less than that of the first

system (equation 136) (the quantities a and b being essen-

tially positive), a given amount of work U
2 may be done by

a less expense of power TJ,, or a gived weight P2 may be
raised to a given height with less work, by means of this

system than the other
;
an advantage which is not due

entirely to the circumstance that the weight of the move-
able pulley in this case acts mfavour of the power, whereas
in the other it acts against it

;
and which advantage would

exist, in a less degree, were the pulleys without weight.

A SYSTEM OF ONE FIXED AND ANY J^UMBEK OF MOVEABLE
PULLEYS.

160. Let there be a system of n moveable

pulleys and one fixed pulley combined as

shown in the figure, a separate string passing
over each moveable pulley ;

and let the ten-

sions on the two parts of the string which

passes over the first moveable pulley be re-

presented by Tj and those upon the two

parts of the string which passes over the

second by T2 and ,,
&c. Also, to simplify

the calculation, let all the pulleys be sup-

posed of equal dimensions and weights, and

the cords of equal rigidity ;

/.T^^+ fct,
and Ti+W=T1+ *

1 ;

/.eliminating, T = (139).

Let the co-efficients of this equation be represented by
and /3
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Similarly, T
3=aT8 +/3, Ts=aT4 +/3, T4=aT6 +/3, &c.=&c..

Multiplying these equations successively, beginning from
the second, by ,

aa

,
a3

, &c., a**-1
, adding them together, and

striking out terms common to both sides of the resulting
equation, we have

.... -f a-l/3;

or summing the geometrical progression in the second

member,

(140);

Substituting for a and (3 their values from equation (139),
and reducing

\ j

Whence observing, that, were there no friction, a would

become unity, and(--^-j
=

(-)
. We have (equation 121)

for the modulus of this system,

161. If each cord, instead of having one of

its extremities attached to a fixed obstacle, had
been connected by one extremity to a move-
able bar carrying the weight P2

to be raised

(an arrangement which is shown in the second

figure), then, adopting the same notation as

before, we have

Adding these equations together, striking out

terms common to both sides, and solving in

respect to T
1?
we have
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in which equation it is to be observed, that the symbol b
does not appear ;

that element of the resistance (which is

constant), affecting the tensions t
l
and

2 equally, and there

fore eliminating with T, and T
2 . Let

^
be represented

by ,
then

a^ -W. Similarly, ,=*, -W,
(143).

Eliminating between these equations precisely as between
the similar equations in the preceding case (equation 140),

observing only that here (3 is represented by oW, and that

the equations (143) are n 1 in number intead of n, we have

Also adding the preceding equations (143) together, we have

aiW

Now the pressure P, is sustained by the tensions &,, &c.
of the different strings attached to the bar which carries it.

Including P2 , therefore, the weight of the bar, we have

Substituting this value of tn in equation (144),

nn^W
,i=(1

_aK_
lps+a%+(w_lf_w

Transposing and reducing,

2

W(
2
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= ,!+-;
r-1 an

f\ -
8 ~

g-ip. Wj
n

j

'""(l + a-1

)*-! a \(l + a-l

)

n-l
)

*

---al+b. . (145).a--i
Whence observing that when a=l, ^l + a"1

)
7*

1}
= 2W 1

;

we obtain for the modulus of uniform motion (equation

121),
'

A TACKLE OF ANY XUMBER OF SHEAVES.

162. If an number of pulleys (called in this case sheaves)
be made to turn on as many different centres in the same

block A, and if in another block B there be simi-

larly placed as many others, the diameter of each
of the last being one half that of a correspond-

ing pulley or sheave in the first
;
and if the same

cord attached to the first block be made to pass
in succession over all the sheaves in the two

blocks, as shown in the figure, it is evident that

the parts of this cord 1, 2, 3, &c. passing between
the two blocks, and as many in number as there

are sheaves, will be parallel to each other, and
will divide between them the pressure of a weight
P

2 suspended from the lower block : moreover,
that they would divide this pressure between
them equally were it not for the friction of the

** sheaves upon their bearings and the rigidity of

the rope ;
so that in this case, if there were n sheaves, the

tension upon each would be -Pa ;
and a pressure ^ l

of that
n
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amount applied to the extremity of the cord would be suffi-

cient to maintain the equilibrium of the state bordering upon
motion. Let T15

T
2 ,
T

3 ,
&c. represent the actual tensions

upon the strings in the state bordering on motion by the pre-

ponderance ofTj, beginning from that which passes from P
t

over the largest sheaf; then

P^o.T.+S,, T,=a,TI+ Js , T,=a ilT,+5,

&c.=&c.,Tlr_ 1=a.T.+ &.;

where a^ #
2 , &c., 5,, &

2 ,
&c. represent certain constant co-

efficients, dependent upon the dimensions of the sheaves and
the rigidity of the rope, and determined by equation (131).

Moreover, since the weight P
2
is supported by the parallel

tensions of the different strings, we have

P T 4-T-L
2
-

-Lj-f- J.
a

4-T-f i

It will be observed that the above equations are one more
in number than the quantities T,, T2 ,

T
3 ,
&c.

;
the latter may

therefore be eliminated among them, and we shall thus ob-

tain a relation between the weight P2
to be raised and that

Pj necessary to raise it, and from thence the

modulus of the system.
To simplify the calculation, and to adapt

it to that form of the tackle which is com-

monly in use, let us suppose another ar-

rangement of the sheaves. Instead of their

being of different diameters and placed all

in the same plane, as shown in the last

figure, let them be of equal diameter and

placed side by side, as in the accompanying

figure, which represents the common tackle.

The inconvenience of this last mode of ar-

rangement is, that the cord has to pass from

the plane of a sheaf in one block to the plane
of the corresponding sheaf in the other ob-

liquely, so that the parts of the cords be-

tween the blocks are not truly parallel to

one another, and the sum of their tensions is not truly equal

to the weight P2
to be raised, but somewhat greater than it.

So long, however, as the blocks are not very near to one an-

other, this deflection of the cord is inconsiderable, and the

error resulting from it in the calculation may be neglected.

Supposing the different parts of the cord between the blocks

then to be parallel, and the diameters of all the sheaves and
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their axes to be equal, also neglecting the influence of the

weight of each sheaf in increasing the friction of its axis,
since these weights are in this case comparatively small, the

co-efficients 15 a9 ,
az

will manifestly all be equal ;
as also

.., . , 23 , .

&c.=&c., T._ 1=aT.+ &
f

'

also P
2
=T

1+T2+T3+ ..... +Tn .

Multiplying equations (147) successively (beginning from the

second) by 0, #2

,

3

,
and an~l

;
then adding them together,

striking out the terms common to both sides, and summing
the geometric series in the second member (as in equation
140), we have

Cb-1

Adding equations (147), and observing that

. . . . +Tn=P3 ,
and that P

1+T1+Ta+ .... +Tir
_1=

2
Tw ,

we have

Eliminating Tn between this equation and the last,

To determine the modulus let it be observed, that, neglect-
ing friction and rigidity, a becomes unity ;

and that for this
^(/r_ ~\\

value of 0,
- - becomes a vanishing fraction, whose
d 1

value is determined by a well known method to be -*.

Hence (Art. 152.),

*
Dividing numerator and denominator of the fraction by (a 1) it becomes

a -i + a v i

--
:TI

which evidently equals
- when a=l. The modulus

may readily be determined from equation (148). Let Si and S2 represent the
spaces described by P x and P2 in any the same time

; then, since when the
blocks are made to approach one another by the distance S a ,

each of the n por-
tions of the cord intercepted between the two blocks is shortened by this dis-
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nban I

Hitherto no account lias been taken of the work expended
in raising the rope which ascends with the ascending weight.
The correction is, however, readily made. By Art. 60. it

appears that the work expended in raising this rope (diffe-
rent parts of which are raised different heights) is precisely
the same as though the whole quantity thus raised had been
raised at one lift through a height equal to that through
which its centre of gravity is actually raised. Now the cord
raised is that which may be conceived to lie between two
positions of P2 distant from one another by the space S

a ,
so

that its whole length is represented by nS^ ;
and if j* repre-

sent the weight of each foot of it, its whole weight is repre-
sented by fwS, : also its centre of gravity is evidently raised
between the first and second positions of P

2 by the distance
S

2 ;
so that the whole work expended in raising it is repre-

sented by JfwSa

*
or by i^-, since S

1
=7iS

a
. Adding this

work expended in raising the rope to that which would be

necessary to raise the weight P
2 ,

if the rope were without

weight, we obtain*

TT a (a 1)TT (
nban

u-^irr11^
i^i-

which is the MODULUS of the tackle.

THE MODULUS OF A COMPOUND MACHINE.

163. Let the work of a machine be transmitted from one
to another of a series of moving elements forming a com-

pound machine, until from the moving it reaches the
working

point of that machine. Let P be the pressure under which
the work is done upon the moving point, or upon the first

moving element of the machine
; Pj that under which it is

tance S2 ,
it is evident that the whole length of cord intercepted between the

two blocks is shortened by wS2 ;
but the whole of this cord must have passed

over the first sheaf, therefore Si=wS2 . Multiplying equation (148) by this

equation, and observing that TJ^PiS 1 and U2=P2S2 ,
we obtain the modulus

as given above.
* A correction for the weight of the rope may be similarly applied to the

modulus of each of the other systems of pulleys. The effect of the weight of
the rope in increasing the expenditure of work on the friction of the pulleys if

neglected as unimportant to the result.
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F*

elded from the first to the second element of the machine
;

t
from the second to the third element, &c.

;
and Pw the

pressure under which it is yielded by the last element upon
the useful product, or at the working point of the machine.

Then, since each element of the compound machine is a sim-

ple machine, the relation between the pressures applied to

that element when in the state bordering on motion will be
found to present itself under the form of equation (119)

(Art. 152), in all cases where the pressure under which the

work upon each element is done is great as compared with
the weight of that element (see Art. 166.).

Kepresenting, therefore, by 1? a^ a
3

. . . 5
15

5
2 ,

J3 . .
.,

cer-

tain constants, which are given in terms of the forms and
dimensions of the several elements and the prejudicial resist-

ances, we have

&c.=&c., ?_!=?.+&.

Eliminating the n 1 quantities P1?
PQ ,

P
s . .

.,
P

B_1 ,
between

these n equations, we obtain an equation, of the form,

P=P.+&'..... (151);

where a=^a^az
. . . an,

and

If the only prejudicial resistance to which each element is

subjected be conceived to be friction, and the limiting angle
of resistance in respect to each be represented by <p ;

then

considering each of the quantities a^ J
1?
a

a ,
5

2 ,
as a function

of 9, expanding each by Maclaurin's theorem into a series

ascending by powers of that variable, and neglecting terms
which involve powers of it above the first, we nave

\ C#P / V WP /

where, a(\ 5/ ), 2(), 52(), represent the values of a b a

62 , &c., when 9=0 and ( ^-| , (
-+-

} , &c. represent
\ d$ / \ d$ I

the similar values of their first differential co-efficients.
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Let

Therefore fl^tf^ (! + *,) &i=&i(0)
(1 +&)> 9=a,<> (1+aN

,=^>(l-fj$t), &c:=&c.; where a
J5 ft, f , /3f ,

&c ., each

involving the factor
<p,

are exceedingly small. Substituting
the values of a

19
a

25 &c. in the expression for
<z, and neglect-

ing terms which involve dimensions of a
1?
a

a) &c. above the

first, we have

a=a<P> aj . . . a^ Jl + al+ a
a+ a

3+ ----+ aj ---- (153).

Now the co-eficient of the first term of the modulus is

represented (equation 121) by -, a representing the co-

efficient of the first term of equation (119), also substituting
the value of a from equation (153), and observing that

a,(o) .... ^(o) ?
we have -.=

..U={l-f.a 1 + a
4+ a

1 4- .... +ajUn+5.S .... (154),
which is the modulus of a compound machine of n elements,
U representing the work done at the moving point, Uw

that at the working point, S the space described by the

moving point, and 5 a constant determined by equation

(152).

164. THE CONDITIONS OF THE EQUILIBRIUM OF ANY TWO PRES-

SURES Pj AND P2 APPLIED IN THE SAME PLANE TO A BODY
MOVEABLE ABOUT A FIXED AXIS OF GIVEN DIMENSIONS.

In. fig. 1. the pressure P 1
and Pa are shown acting on oppo-

site sides of the axis

whose centre is C, and
infig. 2. upon the same
side. Let the direc-

tion of the resultant

of P! and Pa be repre-

sented, in the first

case, by IR, and in

the second by El. It
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is in the directions of these lines that the axis is, in the two

cases, pressed upon its bearings. Suppose the relation

between P
1
and P

2 to be such that the body is, in both

cases, upon the point of turning in the direction in which

Pj acts. This relation obtaining between P, and P2 ,
it is

evident that, if these pressures were replaced by their re-

sultant, that resultant would also be upon the point of caus-

ing the body to turn in the direction of Pr The direction

TR of the resultant, thus acting alone upon the body, lies,

therefore, in the first case, upon the same side of the centre

C of the axis as P
l does, and in the second case it lies upon

the opposite side ;* and in both cases, it is inclined to the
radius CK at the point K, where it intersects the axis at an

angle CKK, equal to the limiting angle of resistance (see
Art. 153.). Now, the resistance of the axis acts evidently in

both cases in a direction opposite to the resultant of P, and
P8 ,

and is equal to it
;
let it be represented by R. Upon

the directions of P
15
P

2 ,
and R, let fall the perpendiculars

CA
15
CA2 ,

and CL, and let them be represented by a
l9
a

and \ Then, by the principle of the equality of moments,
since P

1?
P

2 ,
and R are pressures in equilibrium,

If Pj had been upon the point of yielding, or P2 on the

point of preponderating, then R would have had its direction

(in both cases) on the other side of C
;

so that the last equa-
tion would have become

According, therefore, as Pj is in the superior or inferior

state bordering upon motion,

And if we assume X to be taken with the sign -f or
,
ac-

cording as P! is about to preponderate or to yield, then

generally

Now, since the resistance of the axis is equal to the resultant

of P
x
and P2 ,

if we represent the angle PJP3 by if, we have

(Art. 13.)

* The arrows in the figure represent, not the directions of the resultants

but of the resistances of the axis, which are opposite to the resultants.

f Care must be taken to measure this angle, so that PI and P2 may have
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Substituting this value of R in the preceding equation, and

squaring both sides,

(PA-PA)r=x'(P 1

<+2P 1
P1 cos.

transposing and dividing by P2

2

,

W(a
'~x'

}
~2

(^)
(aA+x

'

cos-i)=
~

(a'~xs) ;

solving this quadratic in respect to
(

-^
)

,

\-t 2/

P
1_fa^a+^

a
cos,

i) 4/pA+ x2 cos.
*)* fa

8 -1 *8

)
Xa

)

P." a/-* ;

cos,
i)

X
4/(<^1

2+ 2^
1
^

2 cos. + <%2

a

)
Xa

sin.
a

<.

ISTow let the radius CK of the axis be represented by p,

and the limiting angle of resistance CKR by 9 ;
therefore

X=CL=CK sin. CKR:=p sin. 9. Also draw a straight line

from Aj to A
2
in both figures, and let it be represented by L ;

:.a^^a^ cos. A
l
CA

li -\-a^=lu. Now, since the angles at

A
x
and A

2 are right angles, therefore the angles AJA, and

AiCAj are together qqual to two right angles, or A^CAj+ i

=*; therefore AjCAa
*

,
and cos. AjCA2

= cos.
;

therefore L2=
1

3+ 2<x
1 2 cos. + ^2

2
: substituting these values

of L2 and X in the preceding equation,

p _(X<22+ p

3
cos. i sin. V) + p sin. 9 (L

2

p

a
sin.

2
sin.

*<p)*

( 1

a-
P
2
sin.

a

9)

. P
2 . . (156).

The two roots of the above equation are given by positive
and negative values of X, they correspond therefore (equa-
tion 155) to the two states bordering upon motion. These
two values of X are, moreover, given by positive and nega-
tive values of 9 ; assuming therefore 9 to be taken positively
or negatively, according as P, preponderates or yields, we

may replace the ambiguous by the positive sign. The

their directions both towards or both from the angular point I (as shown in the

figure), and not one of them towards that point and the other from it. Thus,
in the second figure, the inclination L of the pressures P t and P2 is not the

angle AjIPj, but the angle PJPi. It is of importance to observe this distinc-

tion (see note p. 194.).
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relation above determined between P
4
and P

2 evidently
satisfies the conditions of equation (119). We obtain there-

fore for the modulus (equation 121)

COS>

-
P sn.

U2
. . . (157).

If terms involving powers of
|

1 sin. <p above the first be

neglected, that quantity being in all cases exceedingly
small, we have

165. Jb determine the resultant R o/" any number of pres-
sures P

15
P

2 ,
P

3
. . .

.,
in terms of those pressures, and the

cosines of their inclinations to one another.

Let 15
a
25

a
g5 &c. represent the inclinations

IAC, IBC, &c. of the several pressures P,,
P2 ,

&c. to any given axis CA in the same

plane; arid let
12 ,

i
13 ,

i

aa ,
&c. represent the

inclinations of these pressures severally to one
another.

Now / AIB^ ZIBC- ZIAC (Euc. I. 32.) ;

/. 12 2
a

i5 /.cos. i
12
=cos. a

x
cos. a

3 -fsin. a
x
sin. a

a .

Similarly, cos. 13=cos. x
cos. 8+ sin. a

x
sin. a; ?

cos. i
23=cos. 2 cos. a

8 -fsin. a
2
sin. 3

.

Now E2

=(P 1
cos. ,+?, cos. a

2+P3
cos.

3+ . . .
)

2+ (P1

sin. ^4-P, sin. a
2+P3

sin.
3+ . . .

)

2

, (equation 9, Art. 11.).

Squaring the two terms in the second member, adding the

results, and observing that cos. X-j-sin. X=l,
Ea=P

a

2+P2

2+P3

2
. . . +2P.P, (cos. ,

cos. a
a+ sin.

a
sin. aa)

+2P,P8 (cos. x
cos. a

s -fsin. a
x
sin. 3)+ . . . .

;
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+2PaP8 cos. IM+ &c (160).

166. THE CONDITIONS OF THE EQUILIBRIUM OF THREE PRES

SURES, Pj, P2 ,
P

3 ,
IN THE SAME PLANE APPLIED TO A BOD?

MOVEABLE ABOUT A FIXED AXIS, THE DIRECTION OF ONE OF

THEM, P 3 ,
PASSING THROUGH THE CENTRE OF THE AXIS, AND

THE SYSTEM BEING IN THE STATE BORDERING UPON MOTION
BY THE PREPONDERANCE OF P.

represent the inclinations of the directions of

the pressures P,, P2 ,
P

3
to one

another, a^ and $2 the perpen-
diculars let fall from the cen-

tre of the axis upon P 1
and P2 ,

and X the perpendicular let

fall from the same point upon
the resultant R of P

1?
P

2 ,
P

3
.

Then, since R is equal and

opposite to the resistance of

the axis (Art. 153.), we have,

by the principle of the equality of moments, P,^ P
2
&

2

XR, for P
3 passes through the centre of the axis, and its

moment about that point therefore vanishes.

Substituting the value of Rfrom equation (160),

.. cos. i
lt+

2P
1
P

3 cos.i 13+2P2
P

3 cos. 23.p

Squaring both sides of this equation, and transposing,

P
1-(a1 -X-)-2P l JP^A-X'CP, cos.. 12+P3

cos. .)} =
-P>2

2+ ^2

JP2

2+P3

2+ 2P2
P

3
cos.

i,,}
.

If this quadratic equation be solved in respect to P and

* In which expression it is to be understood that the inclination j 12 of the

directions of any two forces is taken on the supposition that both the forces

act from or both act towards the point in which they intersect,

and not one towards and the other from that point; so that in

the case represented in the accompanying figure, the inclina-

tion tl2 of the two forces PI and P 2 represented by the arrows,
is not the angle PiIP 2 ,

but the angle QlPi, since IQ and IPi are

directions of these two forces, both tending from their point
of intersection

;
whilst the directions of P2I and I?! are one

of them towards that point, and the otherfrom it.
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terms which involve powers of X above the first be omitted,
we shall obtain the equation

2 cos.iw+O+P3V+2P2PA(>s cos.1,,4-^ cos. 23) ;

or representing (as in Art. 164.) the line which joins the
feet of the perpendiculars, a^ and &

3 by L, and the function

#, ( 2 cos.
*! + #! cos. i

33) by M, and substituting for X its

value p sin. 9,

p=

^Representing (as in Art. 152.) the value of P
t
when the

prejudicial resistances vanish, or when 9=0, by P^0)
,
we

haveP^^ I IP2
. Also by the principle of virtual velo-

\ d>
l
l

cities P/> . 8,=?, . S,. Eliminating P/ ) between these

equations, we have S
t
= I I S 3

. Multiplying equation (161) by

Substituting Ul
for P^, U2 for P2

S
2 ,

and observing that

}*.... (162.)

which is the MODULUS of the system.
If P3

be so small as compared with P2 that in the expan-
sion of the binomial radical (equation 161), terms involving

p
powers of

-p^
above the first may be neglected ; then,"

* It will be shown in the appendix, that this equation is but a particular
case of a more general relation, embracing the conditions of the equilibrium
of any number of pressures applied to a body moveable about a cylindrical
axis of given dimensions.
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which equation may be placed under the form

"Whence observing that the direction of P3 being always

through the centre of the axis, the point of application of

that force does not move, so that the force P3 does not work
as the body is made to revolve by the preponderance of P, ;.

observing, moreover, that in this case the conditions of

equation (119) (Art. 152.) are satisfied, we obtain for the?

modulus

167. The conditions of the equilibrium of two pressures ~P
l

andP
2 applied to a body moveable about a cylindrical axis,

taking into account the weight of the body and supposing it

to be symmetrical about its axis.

The body being symmetrical about its axis, its centre of

gravity is in the centre of its axis, and its weight produces
the same effect as though it acted continually through the

centre of its axis. In equation (161.) let then P2 be taken to

represent the weight W of the body, and i

ja ,
i
aa the inclina-

tions of the pressures P t
and P2 to the vertical. Then

P,= (%,+ (P:) | P,'L'+2P,WM+WV \
*. - (165.)

\<V \ a
1 I (

Also by the equation (162) we find for the modulus

U,=U.+

And in the case in which P2 is considerable as compared
with W, by equations (163, 164).

12
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/.\ J -. ,

LP '

,
=

1 I 1 1 H -am.
\aj ( a&

Ui=
1 1+^-sin.

9
|
U

2+
(J^)^nS,

sin. ... (168.)

168. A MACHINE TO-WHICH ABE APPLIED ANY TWO PRESSURES

P
t
AND P2 ,

AND WHICH IS MOVEABLE ABOUT A CYLINDRICAL

AXIS, IS WORKED WITH THE GREATEST ECONOMY OF POWER
WHEN THE DIRECTIONS OF THE PRESSURES ARE PARALLEL,
AND WHEN THEY ARE APPLIED ON THE SAME SIDE OF THE

AXIS, IF THE WEIGHT OF THE MACHINE ITSELF BE SO SMALL
THAT ITS INFLUENCE IN INCREASING THE FRICTION MAY BE

NEGLECTED.

For, representing the weight of such a machine by "W, and

neglecting terms involving W sin. 9, it appears by equation

(168) that the modulus is

whence it follows that the work U,, which must be done at

the moving point to yield a given amount TJ
2
at the working

point, is less as L is less.

Now L represents
the distance A^ be-

tween the feet of the

perpendiculars CA, and
CA2 ,

which distance is

evidently least when P,
and P2

act on the same
side of the axis, as in

fig. 2, and when CA
t

and CA2 are in the same straight line
;
that is, when Pt

and

P2 are parallel.

169. A MACHINE TO WHICH ARE APPLIED TWO GIVEN PRES-

SURES P! AND P2
AND WHICH IS MOVEABLE ABOUT A CYLIN-

DRICAL AXIS, IS WORKED WITH THE GREATEST ECONOMY OF

POWER, THE INFLUENCE OF THE WEIGHT OF THE MACHINE

BEING TAKEN INTO THE ACCOUNT, WEEN THE TWO PRESSURES
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ARE APPLIED ON THE SAME SIDE OF THE AXIS, AND WHEN
THE DIRECTION OF THE MOVING PRESSURE P

x
IS INCLINED TO

THE VERTICAL AT A CERTAIN ANGLE WHICH MAT BE DETER-
MINED.

Let P
3 be taken to represent the weight of the machine,

and let its centre of gravity coincide with the centre of its

axis, then is its modulus represented (equation 166.) by

^) +P3'S1V 1
*;

(Zj /

in which expression the work Uj, which must be done at the

moving point to yield a given amount U
2 of work at the

working point, is shown to be greater than that which must
have been done upon the machine to yield the same amount
of work if there had been no friction by the quantity

r^L
j u.-L'+aujp.s.Mh +P.-S.V 1

4

a^ \q,i

The machine is worked then with the greatest economy of

power to yield a given amount of work, U2 ,
when this func-

tion is a minimum. Substituting for L2
its value

0/4- 2^0, cos.
12+ #

2

2

,
and for M its value a, {#2 cos. i

18 -f

a^ cos. ag } (see Art. 166.), also for Sj )
its value S9 . it be-

\Cb
l
f

comes

(169.)

let us suppose that the perpendicular distance #2 from
the centre of the axis at which the work is done, and the in-

clination i
a8 of its direction to the vertical, are both

given,
as

also the space S 2 through which it is done, so that the work
is given in every respect ;

let also the perpendicular distance

j
at which the power is applied, and, therefore, the space S

x

though which it is done, be given ; and let it be required to

determine that inclination i
ia of the power to the work which

will under these circumstances give to the above function its

minimum value, and which is therefore consistent with the

most economical working of the machine.

Collecting all the terms in the function (169.) which con-
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tain (on the above suppositions) only constant quantities, and

representing their sum by C, it becomes

-55^ {
2aAU2(U2 cos. ,

12+P3S, cos. +
}

k

"Now C being essentially positive, this quantity is a mini-

mum when 20
1
a3TJs(Ua cos. '

19+P,S
?
cos. i

13 is a minimum
; or,

observing that U2 P3S3 and dividing by the constant factor

when

Pa cos. i
12+P3 cos. 13 is a minimum.

From the centre of the axis C let lines Cp1

Cps be drawn parallel to the directions of the

pressures P^ respectively ;
and whilst C/?2

and Cj?3 retain their positions, let the angle

^jCPg or
18 be conceived to increase until P

x

attains a position in which the condition

P
3 cos. i

ia+P3 cos. 13=a minimum is satisfied.

Now
^ ^jOP,=p1Cp1 #,CP3 ,

or
^

IM=IH
;
23 ;

Substituting which value of 23 this condition

becomes

P2 cos. 12+P8 cos.() a minimum,

or P2 cos. '
12+P3 cos. J2

cos. 23+P3 sin. <
13 sin. 23 a minimum,

or (Pa+P3 cos. i
23) cos. ia+P8

sin. i
28 sin. ia

a minimum.

P
3
sin. i

29Let now^^ ^-= = tan. 7,

/. (P2+P 3
cos. 23) cos. iM+ (Pt +P, cos. IM)

tan. 7 sin. i
12 is a mi-

nimum, or dividing by the constant quantity (P2+P3
cos. i

23)

and multiplying by cos. 7,

cos. i

12
cos. 7+ sin. 12

sin. 7=cos. ( 12 7) is a minimum.

i

To satisfy the condition of a minimum, the angle p$p*
must therefore be increased until it exceeds 180 by that

angle 7, whose tangent is represented byp
3

p
"

. To
Jr 2 -j- Jr 3 cos. 23

determine the actual direction of Pj produce then pfj to
<?,

make the angle qCr equal to 7 ;
and draw Cm perpendicular
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to O, and equal to the given perpendicular distance a
x
of

the direction of P, from the centre of the axis. If raP* be
then drawn through the point m parallel to O, it will be in
the required direction of P

x ;
so that being applied in this

direction, the moving pressure Px
will work the machine with

a greater economy of power than when applied in any other
direction round the axis.

It is evident that since the value of the angle 1U
or pf/pl9

which signifies the condition of the greatest economy of

power, or of the least resistance, is essentially greater than
two right angles, Pj and P2 must, TO SATISFY THAT CONDITION,
BOTH BE APPLIED ON THE SAME SIDE OF THE AXIS. It is then
a condition necessary to the most economical working of any
machine (whatever may be its weight) which is moveable about
a cylindrical axis under two given pressures, that THE MOV-
ING PRESSURE SHOULD BE APPLIED ON THAT SIDE OF THE AXIS
OF THE MACHINE ON WHICH THE RESISTANCE IS OVERCOME, OR
THE WORK DONE. It is a further condition of the greatest

economy of power in such a machine, that the direction in
which the moving pressure is applied should he inclined to

the vertical at an angle 12 ,
whose tangent is determined hy

equation (170.).

When i
a3=0, or when the work is done in a vertical

direction, tan. y 0; therefore ,=*, whence it follows that
the moving power also must in this case be applied in a ver-

tical direction and on the same side of the axis as the work.

"When '
23=o or when the work is done horizontally, tan.

P

The moving power must, therefore, in this case, be applied
on the same side of the axis as the work, and at an incli-

nation to the horizon whose tangent equals the fraction

obtained by dividing the weight of the machine by the

working pressure.
3*

Since the angle <
12

is greater than * and less than
-^

cos.
i, a is negative ; and, for a like reason, cos. 13

is also in

certain cases negative.
Whence it is apparent that the

function (169.) admits of a minimum value under certain
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conditions, not only in respect to the inclination of the

moving pressure, but in respect to the distance a
l
of its

direction from the centre of the axis. If we suppose the

space Sj through which the power acts whilst the given
amount of work U2 is done to be given, and substitute in

that function for the product S2^ its value S^, and then
assume the differential of the function in respect to a

t
to

vanish, we shall obtain by reduction

U2

a

,
cos. .

13+P3

2S
1

2

U2

2
cos. ^ (in.)

If we proceed in like manner assuming the space S 2 instead

of Sj to be constant and substituting in the function (169.)
for S #a its value Saa,, we shall obtain by reduction

=__ _
P2 COS. I

12+P3 COS. 13
.

It is easily seen that if,when the values of i
ia and 23 deter-

mined by equation (170.) are substituted in these equations,
the resulting values of a

:
are positive, they correspond in

the two cases to minimum values of the function (169.), and
determine completely the conditions of the greatest economy
of power in the machine, in respect to the direction of the

moving pressure applied to it.

170. THE PULLEY, WHEN THE TENSIONS UPON THE TWO
EXTREMITIES OF THE COED HAVE NOT VERTICAL DIRECTIONS.

L
In the case in which the two parts of the

string which pass over a pulley are not

parallel to one another, the relations estab-

lished in Article 158. no longer obtain
;

and we must have recourse to equation

(167.) to establish a relation between the

tensions upon them in the state bordering

upon motion. Calling "W the weight of

the pulley, a its radius, and observing
that the effect of the rigidity of the cord,
in increasing the tension P

1?
is the same

as though it caused the tension P2 to be-

"F i T)
come P2 (l+ I + (Art. 142.), we have

\ a j a
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D DL MW
-+-rpsiri.9+ -w .p sin. 9 ;
Gu Ob w it

or.

where L represents the chord AB of the arc embraced by
the string, and M=&2

(cos. i
ls+ cos. i

23), 13 and 23 represent-

ing the inclinations of P
1
and P2 to the vertical: which

inclinations are measured by the angles P^Pj and P
2
FP

3 ,

or their supplements, according as the corresponding pres-
sures Pj and P

2 act downwards, as shown in the figure, or

upwards (see note to Article 165.) ;
so that if both these

pressures act upwards: then the cosines of both the angles
become negative, and the value of M becomes negative ;

whilst if one only acts upwards, then one term only of the

value of M becomes negative.

Substituting this value for M, observing that L=20 cos.
,

where 2 represents the inclination of the two parts of the

cord to one another (so that 2i=
13 -H 23),

and omitting terms

which involve products of two of the exceedingly small

D E o
.

quantities , ,
and -sin. 9 we have

a a' a

E 2P D
cos.*

Wp(cos. i
ia 4-cos. <

23) sin

20 cos. i



184 THE PULLET.

which last equation is the modulus to the pulley, when the

two parts of the string are inclined to the vertical and to

one another.

171. If both the strings be inclined at equal angles to the

vertical, on opposite sides of it
;
or if i

13
=u

as=, so that cos.

i
]8+ cos. '

23=2 cos.
,
then equations (172.) and (173.) become

P,= sn. +i,,. 9 . . . (174),

U = |l+-+-
p
cos. sin. <e I U,+ |-+

P
sin. 9 [s, . . . (175.)

/ Ui Cti '

) {
(M Cb

J

172. If both parts of the cord passing over a pulley be in

the same horizontal straight line, so that the

pulley sustains no pressure resulting from the

tension upon the cord, but only bears its

weight) then <

^,
and the term involving

cos. * in each of the above equations vanishes. It is, how-

ever, to be observed that the weight bearing upon the axis

of the pulley is in this case the weight of the pulley
increased by the weight of cord which it is made to support.
So that if the length of cord supported by the pulley be

represented by s, and the weight of each foot of cord by ^,

then is the weight sustained by the axis of the pulley repre-
sented by "W+fxs. Substituting this value for "W in equa-
tion (175.), and assuming cos. <=0, we have

P sin. (176.)

173. Let us now suppose that there are n equal pulleys

sustaining each the same length
s of cord, and let Uw represent
the work yielded by the rope
(through the space S,) after it

has passed over the n**, or last

pulley of the system, U, being
that done upon it before it

passes over the first pulley ;

then by Art. 163., equations
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152. 154. and 176., neglecting terms involving powers of
"IP TV *

.
,
- sin. <p above the first, and observing that #.=#,=a a a

TT "R* ~\ (

&C.=1+-, a
i:
=a

a
:=&c.=

, ^=^=&c.=-\
Ctr Of Gi \

p sin. <p >
,
we have

Representing the whole weight of the cord sustained by the

pulleys by w, and observing that pns^=w, we have

)?
sin. 9

|
S, . . . (ITT.)

In the above equations it has been supposed, that although
the direction of the rope on either side of each pulley is so

nearly horizontal that cos. < may be considered = 0, yet that

it does so far lend itself over each pulley as to cause the

surface of the rope to adapt itself to the circumference of

the pulley, and thereby to produce the whole of that resist-

ance which is due to the rigidity of the cord. If the tension

were so great as to cause the cord to rest upon the pulley

only as a rigid rod or bar would, then must we assume E=0
and D in the preceding equations.

174. If one part of the cord passing over a pulley have a

horizontal, and the other a vertical direction, as, for instance,
when it passes into the shaft of a mine over the sheaf or

wheel which overhangs its mouth
;
then one of the

angles 13 or 23 (equation 173.) becomes -, and the

other or
or, according as the tension on the ver-

tical cord is downwards or upwards, so that cos.

13+ cos. a8=l, the sign being taken according
as the tension upon the vertical cord is downwards
or upwards. Moreover, in this case (Art. 169.)

=- and cos. - ;
therefore (equation 173.)

4 4/2

(W8),
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174. The modulus of a system of any number ofpulleys, over

one of which the rope passes vertically, and over the rest

horizontally.

Let Uj repre-
sent the work
done upon the

rope through
the space S

x
be-

fore it passes

horizontally
over the first

pulley of the

system, and let

it pass horizon-

tally over n such pulleys; and then, after having passed
over another pulley of different dimensions, let it take a
vertical direction, descending, for instance, into a shaft. Let
U2 be the work yielded by it through the space Sj immedi-

ately that it has assumed this vertical direction : also let u^

represent the work done upon it in the horizontal direction

immediately before it passed over this last pulley of the

system. Then, by equation (179.),

-+ sm. 9

Also, by equation (177.) representing the radius of each of

the pulleys which carry
the rope horizontally by #, the radius

of its axis by p,, and its weight by W1?
and obse

!
is here the power and u

:
the work, we have

observing that

sn.

Eliminating the value of u^ between these equations, and

neglecting powers above the first in
, &c., we have

a
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. . (180.)

.

)

175. If the strings be parallel, and their common
inclination to the vertical be represented by ,

so

that i
ia
= iM= i; then, since in this case L=2#, we

have (equation 172.), neglecting terms of more than

one dimension in and^.,
a a

in which equation * is to be taken greater or less than -, and
2i

therefore the sign of cos. is to be taken (as before explained)

positively or negatively, according as the tensions on the

cords act downwards or upwards. If the tensions are verti-

cal, =0 or *, according as they act upwards or downwards,
so that cos. i 1. The above equations agree in this case,

as they ought with equations (131.) and (132.). If the par-

allel tensions are horizontal, then i=-, and the terms inyolr-

ing cos. in the above equations vanish.

176. THE FKICTION OF A PIVOT.

When an axis rests upon its bearings,
not by its convex circumference, but by
its extremity,

as shown in the accompany-

ing figure, it is called a pivot. Let W
represent the pressure borne by such a

pivot supposed to act in a direction per-

pendicular to its surface, and to press
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equally upon every part of it
;

also let p x represent the
radius of the pivot ;

then will *?? represent the area of the

W
pivot, and - the pressure sustained by each unit of that

"?!

area. And iff represent the co-efficient of friction (Art.

133.),
Z will represent the force which must be applied

parallel to the surface of the pivot to overcome
the friction of each such unit. JSTow let the dot-

ted lines in the accompanying figure represent
an exceedingly narrow ring of the area of the pivot, and let

p and p+Ap represent the extreme radii of this ring; then
will its area be represented by *(p -f- Ap)

2

tfp

a

,
or by it

j2p(Ap) -f

(Ap)
a

j , or, since Ap is exceedingly small as compared with p,

by 2tfpAp. Now the friction upon each unit of this area is

W/
represented by ^

;
therefore the whole friction upon the

*fc

ring is represented by ^- . 2tfpAp )
or by ^-p^p, and the

^Pi
3

Pi

2

moment of that friction about the centre of the pivot by

at . p

a

A, and the sums of the moments of the frictions of
Pi

2

all such rings composing the whole area of the pivot by

V2W , 2W , 2W X ,2 f- . P

2A
P ,

or by ^-2p
aA

P ,
or by f- I P

2

4, or by
Pi Pi Pi %

i

3

,
or by |W/Pl ....... (183.);

whence it appears that thefriction of the pivot produces the

same effect to oppose the revolution of the mass which rests

upon it, as though the whole pressure which it sustains were
collected over a point distant ~by two-thirds of its radiusfrom
its centre.

If 6 represent the angle through which the pivot is made
to revolve, then $-p/ will represent the space described by
the point last spoken of

;
so that the work expended upon

the resistance Wf acting there, would be represented by
"fWpi/^ which therefore represents the work expended upon
the friction of the pivot, whilst it revolves through the angle
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6
;

so that the work expended on each complete revolution
of the pivot is represented by

ITT. If the pivot be hollow, or its surface be an annular
instead of a continuous circular area, then

representing its internal radius by pa , and

observing that its area is represented by
<7r
(pi

a

P3
a

)>
an(i therefore the pressure upon

each unit of it by .
a_ a , and the fric-

tion of each such unit by . a a ,
we obtain, as before,

*\Pi ~Pa )

for the friction of each elementary annulus the expression

r z-. pAp t
and for the sum of the moments of the frictions

Pi P2

of all the elements of the pivot
s-
/ ^ or

Let r represent the mean radius of the pivot, i. e. let

7
l

=i(p ] + pa) ;
and let I represent one half the breadth of the

ring, i. e. let l=^ l 2 ); therefore p l=r+l and vj=.rl.
These values of p t

and p2 being substituted in the above for-

mula, it becomes

or

(185.);

whence it follows that thefriction of an annular pivot pro-
duces the same effect as though the whole pressure were col-

lected over a point in it distant ly T*

| l+i(-j | from it*

centre, where r represent its mean radius and I one half its

fyreadth. From this it may be shown, as before, that the
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whole work expended upon each complete revolution of the
annular pivot is represented by the formula,

1Y8. To DETERMINE THE MODULUS OF A SYSTEM OF TWO PRES-

SURES APPLIED TO A BODY MOVEABLE ABOUT A FIXED AXIS,
WHEN THE POINT OF APPLICATION OF ONE OF THESE PRES-

SURES IS MADE TO REVOLVE WITH THE BODY, THE PERPEN-
DICULAR DISTANCE OF ITS DIRECTION FROM THE CENTRE RE-

MAINING CONSTANTLY THE SAME.

Let the pressures Pj and P
2 ,
instead of retaining constantly

T, (as we have hitherto supposed them to do)
the same relative positions, be now conceived

^ continually to alter their relative positions by
"

the revolution of the point of application of

P! with the body, that pressure nevertheless

retaining constantly the same perpendicular
distance a from the centre of the axis, whilst

the direction of P2
and its amount remain

constantly the same.

It is evident that as the point A1
thus continually alters its

position, the distance AjAjj or L will continually change, so

that the value of P, (equation 158.) will continually change.
]N"ow the work done under this variable pressure during one
revolution of P

a
is represented (Art. 51.) by the formula

^, if 6 represent the angle A X
CA described at

o

any time about C, by the perpendicular QA,, and therefore

aj, the space S described in the same time by the point of

application A 1
of P

l (see Art. 62.).

Substituting, therefore, for ~P
1

its value from equation
(158.), we have

27T
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Let now Ps be assumed a constant quantity ;

27T 27T

Now L=A
1A^= {a'+Sa^ cos.

2;r 2;r

o

27T

neglecting powers of (-_|_^)
'

above the first, since in all
'

cases its value is less than unity. Integrating this quantity
between the limits and 2* the second term disappears, so

that

1 f\, 1 1 IV*
J Ldd= -

3+-J 2* nearly;

.-.PA .

27T

o

since 2-au, is the space through which the point of applica-

tion of the constant pressure ra
is made to move in each re-
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volution. Therefore by equation (187), in the case in which
P

a is constant,

U
1
=U9

j
1+

(i+^a

)*P
Bin. 9

}
..... (188).

179. If the pressure P, be supplied by the tension of a

rope winding upon a drum whose radius is # (as in the cap-

Btan), then is the effect of the rigidity of the rope (Art. 142.)
the same as though Pa were increased by it so as to become

Now, assuming Pa to be constant, and observing that

Ua=2tfPaaa, we have, by equation (1ST),

Substituting in this equation the above value for Pa ,

( \ aj 2 ) 1 <V^ *^

Performing the actual multiplication of these factors, ob-

serving that is exceedingly small, and omitting the term

involving the product of this quantity and
,
we have

o

Whence performing the integration as before, we obtain

^+ lVp sin. 9
\a

l
a

l /

If this equation be multiplied by n, and if instead of U, and
Ua representing the work done during one complete revolu-

tion, they be taken to represent the work done through n
such revolutions, then
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) (189),

which is the MODULUS.

180. If the quantity (~+ 1 be not so small that terms
\ C*a U/

l I

of the binomial expansion involving powers of that quan-
tity above the first may be neglected, the value of the

^27T
definite integral /Ld& may be determined as follows .:-*

o

/27T /27T

J (a*+ SaucesJ+ a?y<ttJ {(a,+ay
i

%a*0

27T 27T

E
l(*), where

represents the complete elliptic function of the second order,
whose modulus is &* The value of this function is given
for all values of ^ in a table which will be found at the end
of this work.

Substituting in equation (187),

. E,(t)t . P,=TT.+

* See Encyc. Met. art. DBF. INT. theorem 2.

f An approximate value of EI(&) is given when & is small by the formula

=(] +K-
1

),
where K=T. (See Encyc. Met. art. DEP. INT. equation
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. . . . (190).

THE CAPSTAN.

181. The capstan, as used on shipboard, is represented in

the accompanying figure.
It consists of a solid timber

CO, pierced through the

greater part of its length by
an aperture AD, which
receives the upper portion
of a solid shaft AB of great

strength, whose lower ex-

tremity is prolonged, and

strongly fixed into the tim-

ber framing of the ship. The piece (DC, into the upper por-
tion of which are fitted the moveable
arms of the capstan, turns upon the shaft

AB, resting its weight upon the crown of

the shaft, coiling the cable round its cen-

tral portion CC, and sustaining the ten-

sion of the cable by the lateral resistance

of the shaft. Thus the capstan combines
the resistances of the pivot and the axis,

so that the whole resistance to its motion
is equal to the sum of the resistances due separately to the

axis and the pivot, and the whole work expended in turning
it equal to the whole work which would be expended in

turning it upon its pivot were there no tension of the cable

upon it, added to the whole work necessary to turn it upon
its axis under the tension of the cable were there no friction

of the pivot. Now, if U
1 represent the work to be done

upon the cable in n complete revolutions, the work which
must be clone upon the capstan to yield this work upon (he

cable is represented (equation 189.) by
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where a
i represents the length of the arm, and a

2 the radius
of that portion of the capstan on which the cable is winding.
Moreover (Art. 175.), the work due to the friction of the

4
pivot in n complete revolutions is represented by o^Pi/'W.

On the whole, therefore, it appears that the work Uj
expended upon n complete revolutions of the capstan is

represented by the formula

which is the MODULUS of the capstan.
A single pressure P

x applied to a single arm has been

supposed to give motion to the capstan ;
in reality, a num-

ber of such pressures are applied to its different arms when
it is used to raise the anchor of a ship. These pressures,

however, have in all cases, except in one particular case

about to be described, a single resultant. It is that single
resultant which is to be considered as represented by I*,
and the distance of its point of application from the axis

by flj, when more than one pressure is applied to move the

capstan.
The particular case spoken of above, in which the pres-

sures applied to move the capstan have no resultant, or can-

not be replaced by any single pressure, is that in which

they may be divided into two sets of pressure, each set hav-

ing a resultant, and in which these two resultants are equal,
act in opposite directions, on opposite sides of the centre,

perpendicular to the same straight line passing through the

centre, and at equal distances from it.*

Suppose that they may be thus compounded into the

equal pressures B^ and K
2 ,
and let them be replaced by

these. The capstan will then be acted upon by four pres-

sures, the tension P2 of the cable, the resistance K of the

shaft or axis, and the pressures K x
and Ka . Now these pres-

sures are in equilibrium. If moved, therefore, parallel to

their present directions, so as to be applied to a single point,

* Two equal pressures thus placed constitute a STATICAL COUPLE. The pro-

perties of such couples have been fully discussed by M. Poinsot, and by Mr.

Pritchard in his Treatise on Statical Couples ;
some account of them will be

found in the Appendix to this work.
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they would be in equilibrium about that point (Art. 8.),

But when so removed, Rj and R
a

will act in the same

straight line and in opposite directions. Moreover, they
are equal to one another

;
R

x
and R

2
will therefore sepa-

rately be in equilibrium with one another when applied to that

point ;
and therefore P2 and R will separately be in equili-

brium
;
whence it follows, that R is equal to P

2
or the whole

pressure upon the axis, equal in this case to the whole tension

P
2 upon the cable. So that the friction of the axis is repre-

sented in every position of the capstan by P2 tan. 9 (tan. 9

being equal to the co-efficient of friction (Art. 138.)), and
the work expended on the friction of the axis, whilst the

capstan revolves through the angle d by P2pd tan. 9, or by

I

J

tan. 9, or by U2
| j

tan. 9 ;
so that, on the whole,

introducing the correction for rigidity and for the friction of

the pivot, the modulus (equation 191) becomes in this case

j D+|p,/W }
. . . . (192).

This is manifestly the least possible value of the modulus,
being very nearly that given (equation 191) by the value

infinity of ar
*

Tims, then, it appears generally from equation (191), that

the loss by friction is less as a
l
is greater, or as P

x
is applied

at a greater distance from the axis
;
but that it is least of all

when the pressures are so distributed round the capstan as

to be reducible to a COUPLE, that case corresponding to the

value infinity of a
t
. This case, in which the moving pres-

sures upon the capstan are reducible to a couple, manifestly
occurs when they are arranged round it in any number of

pairs, the two pressures of each pair being equal to one an-

other, acting on opposite sides of the centre, and perpendi-
cular to the same line passing through it. This symmetrical
distribution of the pressures about the axis of the capstan is

therefore the most favourable to the working of it, as well

as to the stability of the shaft which sustains the pressure
upon it.

*
being exceedingly small, tan. # is very nearly equal to sin.

<f>>
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182. THE MODULUS OF A SYSTEM OF THREE PRESSURES APPLIED
TO A BODY MOVEABLE ABOUT A CYLINDRICAL AXIS, TWO OF
THESE PRESSURES BEING GIVEN IN DIRECTION AND PARAL-
LEL TO ONE ANOTHER, AND THE DIRECTION OF THE THIRD

CONTINUALLY REVOLVING ABOUT THE AXIS AT THE SAME
PERPENDICULAR DISTANCE FROM IT.

Let P3 and P3 represent the parallel pressures of the sys-

V^ tern, and 'P
l
the revolving pressure.

/f'\ From the centre of the axis C, let fall

/'/
v the perpendiculars CA^CA2 ,

CA
3 upon

H/d
the directions of the pressures, and let

L-U.
& represent the inclination of CA

X
to

CA
3
-at any period of the revolution of

t*. ai H
'

PI- Let P
x
be the preponderating

pressure, and let P2 act to turn the

system in the same direction as P
1?

and P3
in the opposite

direction
;
also let R represent the resultant of P2

and P
3 ,

and r the perpendicular distance CA of its direction from C.

Suppose the pressures P2
and P

8
to be replaced by R ;

the

conditions of the equilibrium of P
t throughout its revolu-

tion, and therefore the work of P
x
will remain unaltered by

this change, and the system will now be a system of two

pressures P, and R instead of three
;
of which pressures R

is given in direction. The modulus of this system is there-

fore represented (equation 187) by the formula

(193);

where Ur represents the work of R, and L represents the dis-

tance AA, between the feet of the perpendiculars r and al9

so that Va^Zay cosJ-^-r
t=(ar cos. d)

2

+7*
a
sin.

2
d

;

/. R2La

=(R^-R^ cos.

Now, R=

[Now if'the relations of a, to #3
are such that

| (P3+PaX_(P3
a3
-P

2<) cos. 6

|

2

>(P3 3
-P

2<)sin.
9
4

then the value of R2L2
will be represented by the sum of the
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squares of two quantities the first of which is greater than
the second. ED.] Therefore, extracting the square root by
Poncelet's theorem, (see Appendix B.)

RL=a}(PI+P1)al_(P1 l
_p

s 9)
cos. &} +/3(P 3

a
9
-P2A 2)

sin. 6

very nearly ; or,

-/3smJ). . . .(194).

\

-

cos. - sn.

o

e 6

(a cos. d /3 sin. fy#. . . . (195).

If P2
and P

3
be constant, the integral in the second member

of this equation becomes (~P a
a

3
P

2
&

2) (
sin. 6 + /3 cos. 0) ;

, . . -D P.a.d P,a,d TJ
3
U3whence observing that Psa3

P2<^2
= 8 3

^
2-^-= L.-

?;

also, that IJr==dEr==^Ptfl^-r-*P1at=IJ, TJ,, and substituting
in equation (193), we have

U.^TJ.-U^+p sin. 9 I (-+-')
-

( \a9
a

z I

(52\( sin. 4+/S cos. 6) \ . . . . (196) ;

\ df I

for complete revolution making 0=2*, we have

n-u.-u.+,-.

reducing,

which is the modulus of the system where a and j3 are to be

de'ermined, as in Note B, (Appendix.)
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183. If the pressure P3 be supplied by the tension of a cord

which winds upon a cylinder or drum at the point A3 ,
then

allowance must be made for the rigidity of the cord, and a

correction introduced into the preceding equation for that

purpose. To make this correction let it be observed

(Art. 142.) that the effect of the rigidity
^

of the cord at A8 is

the same as though it increased the tension there from

D

or (multiplying both sides of this inequality by a,, and inte-

grating in respect to d,)
as though it increased

27T 27T 27T

dA to l-f-

or,U3 to(l+-)U
\ &

z i

Thus the effect of the rigidity of the rope to which P 3
is ap-

plied upon the work U
a
of that force is to increase it to

(l
+

)
U

3+ 2*-D. Substituting this value for U 3
in equa-

tion (197), and neglecting terms which involve products of

,, ,. .. ,, .... E P sin. <p p sin. 9 __j pv
the exceedingly small quantities,^-,-

--,andlJ,

we have

To determine the modulus for n revolutions we must sub-

stitute in this expression w* for if.

THE CHINESE CAPSTAN.

184. This capstan is represented in the accompanying
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figure under an exceed-

ingly portable and con-

venientform.* The axle

or drum of the capstan
is composed of two parts
of different diameters.

One extremity of the

cord is coiled upon one
of these, and the other, in an oposite direction, upon the

other
;

so that when the axle is turned, and the cord is

wound upon one of these two parts of the drum, it is, at the

same time, wound off the other, and the intervening cord is

shortened or lengthened, at each revolution, by as much as

the circumference of the one cylinder exceeds that of the

other. In thus passing from one part of the drum to the

other, the cord is made to pass round a moveable pulley
which sustains the pressure to be overcome.
To determine the modulus of this machine, let u^ and u

3

represent the work done upon the two parts of the cord

respectively, whilst the work U^ is done at the moving point
of the machine, and U2 yielded at its working point.

Then, since in this case we have a body moveable about a

cylindrical axis, and acted upon by three pressures, two of

which are parallel and constant, viz. the tensions of the two

parts of the cord
;
and the point of application of the third

is made to revolve about the axis, remaining always at the

same perpendicular distance from it
;

it follows (by equation
198), that, for n revolutions of the axis,

(199);

where

in. 9(---) Land
\aa %najt] \

#2 and a
s representing the radii of the two parts of the drum,

#! the constant distance at which the power is applied, and p

the radius of the axis.

* A figure of the capstan with a double axle was seen by Dr. 0. Gregory
among some Chinese drawings more than a century old. It appears to have
been invented under the particular form shown in the above figure by Mr. G.

Eckhardt and by Mr. M'Lean of Philadelphia. (See Professor Robinson's Mech.
Phil. vol. ii. p. 255.)
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Also, since the two parts of the cord pass over a pulley,
and the pulley is made
to revolve under the ten-

sions of the two parts of

the cord, ?
3 being the

work of that tension

which preponderates, we
have (by equation 181),
if S represents the length
of cord which passes
over the pulley,

where
E
a

and

7

D . )m'* '

a representing the radius of the pulley, Pl the

axis, W its weight, and the inclination of the direction of

the tensions of the two parts of the cord to the vertical, the

axis of the pulley being supposed horizontal, and the two

parts of the cord parallel. Now t
3
= U

*

,
L=-^ . Sub-

2n*0. 2wr0a

stituting these values, and multiplying by 2n^a^ we have

''

,

te-v- .

-

(200).

Since the tensions 4 and t
s
of the two parts of the cord,

and the pressure P2 overcome by the machine, are pressures

applied to the pulley and in equilibrium, and that the points
of application of

?
and P

2 are made to move in directions

opposite to those in which those pressures act, whilst the

point of application of t
5
is made to move in the same direc-

tion
;
therefore (Art. 59.),

Eliminating u
z and

(200), we have
between this equation and equation
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Substituting these values in equation (199), and reducing,

a* \

Substituting their values for A, A,, B, B1? neglecting terms
"T^

involving more than one dimension of -
, ,

&c. and

reducing, we obtain for the MODULUS of the machine,

E
,

. (2a / 0v ft )
hpsm. <p \ (1

- V

!
<h (

a
3 \ aj %rw.f )

.,
a E 2p. .

1
-| (--^ sin. 9

-D
2p 1

sin.

.. (201).

From which expression it is apparent that when the radii #a

and $3 of the double axle are nearly equal, a great sacrifice

of power is made, in the use of this machine, by reason of

the rigidity of the cord.

THE HOUSE CAPSTAN, OR THE WHIM GIN.

185. The whim is a form of the capstan, used in the first

operations of mining, for raising materials from the shaft and
levels by the power of horses, before the quantity excavated
is so great as to require the application of steam power, or

before the valuable produce of the mine is sufficient to give
a return upon the expenditure of capital necessary to the

erection of a steam engine. The construction of this machine
will be sufficiently understood from the accompanying figure.
It will bo observed that there are two ropes wound upon the

drum in opposite directions, and which traverse the space
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between the capstan
and the mouth of the

shaft. One of these

carries at its extrem-

ity the descending
(empty) bucket, and is

continually in the act

of winding off the drum of the capstan as it revolves
;
whilst

the other, from whose extremity is suspended the ascending
(loaded) bucket, continually winds on the drum. The pres-
sure exerted by the horses is that necessary to overcome the

friction of the different bearings, and the other prejudicial

resistances, and to balance the difference between the weight
of the ascending load, bucket, and rope, and that of the

descending bucket and rope. The rope, in passing from the

capstan to the shaft, traverses (sometimes for a considerable

distance) a series of sheaves or pulleys, such as those shown
in the accompanying figure.

Let now #2 represent the radius of the drum on which the

rope is made to wind, and n the number of resolutions

which it must make to wind up the whole cord
;
also let f*

represent the weight of each foot of cord, and d the angle
which the capstan has described between the time when the

ascending
bucket has attained any given position in the

shaft and that when it left the bottom
;
then does a repre-

sent the length of the ascending rope wound on the drum,
and therefore of the descending rope wound off it. Also,
let "W represent the whole weight of the rope ;

then does

W pajb represent the weight of the ascending rope, and

f*0a
d that of the descending rope, both of which hang sus-

pended in the shaft. Let P
2 represent the load raised at

each lift in the bucket, and w the weight of the bucket
;

then is the tension upon the ascending rope at the mouth of

the shaft represented by W M-a^+x^+w, and that upon
the descending rope by pa+w.

Let, moreover, p3
and

j!?2 represent the tensions upon these

ropes after they have passed from the mouth of the shaft,

over the intervening pulleys, to the circumference of the

capstan.

Now, since the tension upon the ascending rope, which is

"V\T (x&2d-fPa -{-w at the mouth of the shaft, is increased to

ps at the capstan, and that the tension upon the descending

rope, which is p^ at the capstan, is increased to pa+w at

the mouth of the shaft, if we represent by (1 -f- A) and B the

constants which enter into equation 180 (Art. 174.), we have.
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by that equation (observing that U
1
=P

1
S

1
and U

a
=P

2Sj so

that S, disappears from both sides of
it),

^3=(l+A)(W+P2+w-^)+ B, . . . .(202),

and f*a1 +w=(l+A)j>1+B .... (203).

Multiplying the former of the above equations by
adding them, transposing, dividing by (1 -h A), and neglect-

ing terms of more than one dimension in A and B,

Now Ur in equation (193) represents the work of
J;he

resultant of pz
andpz during n revolutions of the capstan, it

therefore equals the difference between the work of p3
and

that of pz (see p. 198).

27T 2tt7T

9 p,) d6

2717T

o

{ (1 + A)(W+P2) 4- 2Aw+2B } (2wa.) f

observing that 2nrra2
=:S

2 ,
and that P

2
S

2
=U

2
.

Now, let it be observed that the pressures applied to the

capstan are three in number
;
two of them,ps

and p^ being
parallel and acting at equal distances a.2 from its axis

;
and

the third, P 1? being made to revolve at the constant distance

a
t
from the axis (P, representing the pressure of the horses,

or the resultant of the pressures of the horses, if there be
more than one, and a^ the distance at which it is applied) ;

BO that equation 193 (Art. 182.) obtains in respect to the

pressures P., p^pz ;
a

3 being assumed equal to av
Substituting^ and^?8

for P2 and P8
in equation (194),

a
i(^8 -j-^a)_a9(p3 p^) (a cos. p sin. 0) ;

(a cos. 6 (3 sin. 6) dO.
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Now, the terms of equation (180), represented in the above

equations by A and B, are all of one dimension in the exceed-

ingly small quantities D, E, sin. <p. If, therefore, the values
of p^ and pz given by these equations be substituted in the

27T

value of LSL$/EL<# (equation 193), then all the terms
a

v
t/
o

of that expression which involve the quantities A and B will

be at least of two dimensions in D, E, sin. 9, and may be ne-

glected. Neglecting, therefore, the values of A and B in

equations (202, 203), we obtain

Similarly,

f2 / (Pi jpyaeos.
/

c$ P,

representing by S2 the

space described by the

load, and by U3 the

useful work done upon
it, during n revolu-

tions of the capstan.

2n7T

-
)8 sin. 0)dO= a

(a cos. 0P sin. 6)de=

2nir

a cos. 6 (3 sin.

a cos. ^^ sin.



206 THE HORSE CAPSTAN.

Now Aa cos. 0(3 sin. 6)dO=(3, and Aa cos. (3 sin.

,jp, />,)(* cos. sin. fyZ0==00,

=/3a2^+^2(W-2fxS2) ; observing that P
2

2717T

Substituting this value, and also that of Ur (equation 204)
in equation (193), and assuming

and Ca
=

we have

00
/ /* /** For I 0cos. 0f?0=0sin. / sin. 0d0*=0sin.0 vers. 0; also I sin. 0d000

=0 cos. + /cos. 6dO*=6 cos. 0-f-sin. 0. Now, substituting 2w7r for 0,

these integrals become respectively and 2mr.

* Church's Diff. and Int. Cal. Art. 140.
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+ i- g _
a, I

'

,

which is the MODULUS of the machine, all the various ele-

ments, whence a sacrifice of power may arise in the working
of it, being taken into account.

THE FRICTION OF CORDS.

186. Let the polygonal line ABC . . . YZ, of an infinite

number of sides, be taken to represent
, the curved portion of a cord embracing
1

any arc of a cylindrical surface (whe-
ther circular or not), in a plane per-

pendicular to the axis of the cylinder ;

also let Aa, B5, Cc,- &c., be normals
or perpendiculars to the curve, inclined

to one another at equal angles, each

represented by Ad. Imagine the surface of the cylinder to

be removed between each two of the points A, B, &c., in

succession, so that the cord may be supported by a small

portion only of the surface remaining at each of those

points, whilst in the intermediate space it assumes the direc-

tion of a straight line joining them, and does not touch the

surface of the^cylinder. Let P, represent the tension upon
the cord before "it has passed over the point A ;

T
1
the ten-

sion upon it after it has passed over that point, or before it

passes over the point B ;
T

2
the tension upon it after it has

passed over the point B, or before it passes over C
;
T8 that

after it has passed over C
;
and let P2 represent the tension

upon the cord after it has passed over the nth or last

point Z.

Now, any point B of the cord is held at rest by the ten-

sions T
t
and T

2 upon it at that point, in the directions BC
and BA, and by the resistance K of the surface of the

Cylin-
der there

; and, if we conceive the cord to be there in the

state bordering upon motion, then (Art, 138.) the direction

of this resistance K is inclined to the perpendicular 5B to

the surface of the cylinder at an angle RB& equal to the

limiting angle of resistance <p.
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Now T,, T2 ,
and E are pressures in equilibrium ; there-

fore (Art. 14.)

T,_jaiiL TJBE
Ta~sin. T,BE

'

but T
1BE=AB5-EBJ=i(*-A^B)-EB5)= ~-~ -9,2 A

if Ad

sm.^-

"T

COS. \-7T

. Ad .

2 sin. sin. 9

Ad . Ad .

cos. cos. 9 sin. sin. 9

or dividing numerator and denominator of the fraction in the
Ad i

second member by cos. -~- cos. 9,

T.-T,

Ad
2 tan. tan. 9

"
a

1 tan.- tan. 9

Suppose now the angles A#5, BZ>C, &c., each of which

equals Ad, to be exceedingly small, and therefore the points

A, B, C, &c., to be exceedingly near to one another, and

exceedingly numerous. By this supposition we shall mani-

festly approach exceedingly near to the actual case of an in-

finite number of such points and a continuous surface
;
and
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if we suppose Ad
infinitely small, our supposition will coincide

with that case. Now, on the supposition that Ad is exceed-
Ad

ingly small, tan.
-^

. tan. 9 is exceedingly small, and may
be neglected as compared with unity ;

it may therefore be
neglected in the denominator of the above fraction. More-

over Ad being exceedingly small, tan. -^-
=

,- S*

Ta
= tan. 9 . Ad*

; .-. T1=T3 (1 + tan. 9 . Ad).

Now the number of the points A, B, C, &c. being repre-
sented by 7i, and the whole angle AdZ between the extreme*
normals at A and Z by d, it follows (Euclid, i. 32.) that

6n. Ad; therefore Ad=-;
7i

n

Similarly, P^T, (1 +-tan. 9)n

T,=T, (l+tan. ?),

^P, (1+tan. 9).

Multiplying these equations together, and striking out fac-

tors common to both sides of their product, we haye

* If we consider the tension T as a function of 6, of which any consecutive
values are represented by Tj and T2 ,

and their difference or the increment of
L

* rn -

AT*
T by AT, then

^
= tan. 0. A0 ;

therefore -
.

^
= tan.

; therefore,

passing to the limit - = tan. 0, and integrating between the limits

and 6, observing that at the latter Limit T=P2 ,
and that at the former it equals

PI, we have log. (
1 = - 6 tan. 0; therefore P 1=P^

6 tan "

*.

\TI/

H
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(

or P
1
=P

a \ 1
\

n In 26' \-
a
--r -tan.V+ &c.

f;

( !-;
orP1

=Pa |l+4 tan. 9+ ^a
tan.

a

<p+

Now this relation of P
x
and P3 obtains however small Ad

be taken, or however great n be taken. Let n be taken

infinitely great, so that the points A, B, C, &c. may be

infinitely numerous and infinitely near to each other. The

supposed case thus passes into the actual case of a con-
i 2 Q

tinuous surface, the fractions -, -, -, &c. vanish, and the

above equation becomes

6 tan. 9 d
a
tan. "9 &* tan. '<p )

But the quantity within the brackets is the well known ex-

pansion (by the exponential theorem) of the function efltaa-d,

** (205).

Since the length of cord S,, which passes over the point

A, is the same with that S2 -which passes over the point Z,
it follows that the modulus (Art.* 152.) of such a cylindrical
surface considered as a machine, and supposed to \>t fixed
and to have a rope pulled and made to slip over it, is

U^-Q^tan.0 ____ (206).

It is remarkable that these expressions are wholly inde-

pendent of the form and dimensions of the surface sustain-

ing the tension of the rope, and that they depend exclu-

sively upon the inclination 6 or AeZ of the normals to the

points A and Z, where the cord leaves the surface, and upon
the co-efficient of friction (tan. 9), of the material of which
the rope is composed and the material of which the surface

is composed. It matters not, for instance, so far as ihefric-



THE FKICTION OF CORDS. 211

t-ion of the rope or band is concerned, whether it passes
over a large pulley or drum, or a small one, provided the

angle subtended by the arc which it embraces is the same,
and the materials of the pulley and rope the same.

In the case in which a cord is made to pass m times round
such a surface, G=9m7r

;

T> p c2m TT tan. &
**) x <r r

And this is true whatever be the form of the surface, so
that the pressure necessary to cause a cord to slip when
wound completely round such a cylindrical surface a given
number of times is the same (and is always represented by
this quantity), whatever may be the form or dimension of
the surface, provided that its material be the same. It

matters not whether it be square, or circular, or elliptical.

1ST. If P/, P/', P/", &c.
represent

the pressures which
must be applied to one extremity of a rope to cause it to

slip when wound once, twice, three times, &c. round any
such surface, the same tension P2 being in each case sup-
posed to be applied to the other extremity of it, we have

So that the pressures P/, P/', P/", &c. are in a geome-
trical progression, whose common ratio is e^tan.^ which
ratio is always greater than unity. Thus it appears by the

experiments of M. Morin (p. 135.), that the co-efficient of
friction between hempen rope and oak free from unguent is

33, when the rope is wetted. In this case tan. 9= -33 and
27rtan. <p=2 x3-U159x -33=2-07345. The common ratio

of the progression is therefore in this case e2
'07345

,
or it is the

number whose hyperbolic logarithm is 2-07345. This num-
ber is 7*95

;
so that each additional coil increases the fric-

tion nearly eight times. Had the rope been dry, this

proportion would have been much greater. If an additional

half coil had been supposed continually to be put upon the

rope instead of a whole coil, the friction would have been
found in the same way to increase in geometrical progres-
sion, but the common ratio would in this case have
been e 71"**11-? instead of e27rtan.^ jn ^ne above example the
value of this ratio would for each half coil have been
2-82.

The enormous increase of friction which results from
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each additional turn of the cord upon a capstan or drum

may from these results be understood.

188. We may, from what has been stated above, readily

explain the reason why a knot connecting the two extremi-

ties of a cord effectually resists the action of any force

tending to separate them. If a wetted cord be wound round

Fig. i. mg. 2. Fig. s. a cylinder of oak as

in fig. 1., and its ex-

tremities be acted

upon by two forces P
and R, it has been
shown that P will not

overcome R, unless it

be equal to some-
where about eight times that force. Now if the string to

which R is attached be brought underneath the other string
so as to be pressed by it against the surface of the cylinder,
as at m,fig. 2.; then, provided the friction produced by
this pressure be not less than one eighth of P, the string will

not move even although the force R cease to act. And if

both extremities of the string be thus made to pass between
the coil and the cylinder, as in fig. 3., a still less pressure
upon each will be requisite. Now, by diminishing the
radius of the cylinder, this pressure can be increased to any
extent, since, by a known property of funicular curves, it

varies inversely as the radius.* We may, therefore, so far

diminish the radius of a cylinder, as that no force, however

great, shall be able to pull away a rope coiled upon it, as

represented in fig. 3., even although one extremity were

loose, and acted upon by no force.
Fig- 4t Let us suppose the rope to be

doubled as in fig. 4., and coiled

as before. Then it is apparent,
from what has been said, that

the cylinder may be made so

small, that no forces P and P'

applied to the extremities of

either of the double cords will

be sufficient to pull them from

it, in whatever directions these are applied.

* This property will be proved in that portion of the work which treats of
the THEORY OF CONSTRUCTION.
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Now let the cylinder be removed. The cord then being
drawn tight, instead of being coiled round the cylinder, wifl

be coiled round portions of itself, at the points m and n
;

and instead of being pressed at those points upon the cylin-

der, by a force acting on one portion of its circumference, it

will be pressed by a greater force acting all round its cir-

cumference. All that has been proved before, with regard
to the impossibility of pulling either of the cords away from
the coil when the cylinder is inserted, will therefore now
obtain in a greater degree ;

whence it follows that no forces

P and P' acting to pull the extremities of the cords asunder,

may be sufficient to separate the knot.

THE FRICTION BREAK.

189. There are certain machines whose motion tends, at

certain stages, to a destructive acceleration
; as, for instance,

a crane, which, having raised a heavy weight in one position
of its beam, allows it to descend by the action of gravity in

another
;
or a railway train, which, on a certain portion of

its line of transit, descends a gradient, having an inclination

greater than the limiting angle of resistance. In each of

these cases, the work done by gravity on the descending

weight exceeds the work expended on the ordinary resist-

ance due to the friction of the machine
;
and if some other

resistance were not, under these circumstances, opposed to

its motion, this excess (of the work done by gravity upon it

over that expended upon the friction of its rubbing surfaces)
would be accumulated in it (Art. 130.) under the form of

vis viva, and be accompanied by a rapid acceleration and a

destructive velocity of its moving parts. The extraordinary
resistance required to take up its excess of work, and to

prevent this accumulation, is sometimes supplied in the

crane by the work of the laborer, who, to let the weight
down gradually, exerts upon the revolving crank a pressure
in a direction opposite to that which he used in raising it.

It is more commonly supplied in the crane, and always in

the railway train, without any work at all of the laborer, by
a simple pressure of his hand or foot on the lever of the fric-

tion break, which useful instrument is represented in the

figure under the form in which it is com
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monly applied to the crane, a form of it which may serve
to illustrate the principle of its application nnder every

other. BC represents a wheel
fixed commonly upon that

axis of the machine to which
the crank is attached, and
which axis is carried round

by it with greater velocity
than any other. The peri-

phery of this wheel, which is

usually of cast iron, is em-
braced by a strong band* ABCE of wrought iron, fixed

firmly by its extremity A to the frame of the machine, and

by its extremity E to the short arm AE of a bent lever PAE,
which turns upon a fixed axis or fulcrum, at A, and whose
arm PA, being prolonged, carries a counterpoise D just
sufficient to overbalance the weight of the arm AP, and to

relieve the point E of all tension, and loosen the strap from
the periphery of the wheel, when no force P is applied to the

extremity of the arm AP, or when the break is out of

action.

It is evident that a pressure P applied to the extremity of

the lever will produce a pressure upon the point E, and a

tension upon the band in the direction ABCE, and that

being fixed at its extremity A, the band will thus be tight-
ened upon the wheel, producing by its friction a certain

resistance upon the circumference of the wheel.

Moreover, it is evident that this resistance of friction upon
the circumference of the wheel is precisely equal to the

tension upon the extremity A of the band, being, indeed,

wholly borne by that tension
;
and that it is the same

whether the wheel move, as in this case it does, under the

band at rest, or whether the band move (under the same
tensions upon its extremities, but in the opposite direction)
over the wheel at rest. Let R and Q represent the tensions

upon the extremities A and E of the band
;
then if we sup-

pose the wheel to be at rest, and the band to be drawn over

it in the direction ECB by the tension R, and & to represent
the angle subtended at the centre of the wheel by that part
of its circumference which the band embraces, we have

(equation 205)

* Blocks of wood arc interposed between the band, the periphery of the

break wheel. This case will be discussed in the Appendix.
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Let &J represent the length of the arm AP, and #a the

length of the perpendicular let fall from A upon the direc-

tion of a tangent to that point in the circumference of the

wheel where the end EC of the band leaves it.

Then, neglecting the friction of the axis A, we have

(Art. 5.)

P . a = .

(207).

If Pj represent any pressure applied to the circumference^
of

the break wheel, and P
2
a pressure applied to the working

point of the machine, whatever it may be, to which the

break is applied, and if Y
l=aP^-\-b (Art. 152.) represent the

relation between P
t
and P2

in the inferior state bordering

upon motion by the preponderance of P2 ; then, when P2 is

taken in this expression to represent the pressure W, whose

action upon the working point of the machine the break is

intended to control, 'P
l
will represent that value K of the

friction upon the break which must be produced by the

intervention of the lever to control the action of the pressure
W upon the machine; so that taking E to represent the

same quantity as in equation (207), we have

Eliminating E- between this equation and equation (207),

and solving in respect to P,

.... (208).
a.

%

THE BAND.

1 90. When the circular motion of any shaft in a machine,
and the pressure which accompanies that motion, consti-

tuting together with it the work of the shaft, are to be com-

municated to any other distant shaft, this communication is
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usually established by means of a band of

leather, which passes round drums fixed upon
the two shafts, and has its extremities drawn

together with a certain pressure and united,
so as to produce a tension, which should be

just that necessary to prevent the band from

slipping upon the drums, subject to the pres-
sure under which the work is transferred.

The facility with which this communication
of rotatory motion may be established or

broken at any distance and under almost

every variety of circumstance, has brought
the band so extensively into use in machinery,
that it may be considered as a principal chan-

nel through which work is made to flow in its distribution

to the successive stages of every process of mechanism,
carried on in the same workshop or manufactory.

191. The sum of the tensions upon the two parts of a hand
is the same, whatever he the pressure under which the hand
is d/riven, or the resistance overcome, the tension of the

drivingpart of the hand being always increased hyjust so

much as that of the driven part is diminished.

This principle was first given by M. Poncelet
;
it has since

been amply confirmed by the experiments of M. Morin.* It

may be proved as followsf : In the very commencement of

the motion of that drum to which the driving pressure is

applied, no motion is communicated by it to the other drum.
Before any such motion can be communicated to the latter,
a difference must be produced between the tensions of the
two parts of the band sufficient to overcome the resistance,
whatever it may be, which is opposed to the revolution of

the driven drum. Now, an increase of the tension on the

driving side of the band must be followed by an elongation
of that side of the band (since the band is elastic), and by
the revolution of the circumference of the driving drum

through a space precisely equal to this elongation. Sup-
posing, then, the other, or driven side of the band, to

remain extended, as before, in a straight line between its two

points of contact with the drums, this portion of the band

* Nouvelles Experiences sur le Froltement, &c. Metz.

f No demonstration appears to have been given of it by M. Poncelet,
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must evidently have contracted by precisely the length
through which the circumference of the driving drum has

revolved, or the driving side of the band elongated. Thus,
the elongation of the driving side of the band is precisely
equal to the contraction of the driven side. Now, the band

being supposed perfectly elastic, the increase or dimi-
nution of its tension is exactly proportional to the increase
or diminution of its length. The increase of tension on the
one side, produced by a given elongation, is therefore pre-

cisely equal to the diminution of tension produced by a con-
traction equal to that elongation on the other side. Thus,
if T represent the tension upon each side of the band before
the driving pressure, whatever it may be, was applied,
and if T, and T

2 represent the tensions upon the driving
and the driven sides of the band after that pressure is

applied; then, since T
x
T represents the increase of tension

on the one side, and T T2 the diminution of tension on the

other, ^-T^T-T,;
(209).

It is a great principle of the economy of power in the use

of the band to adjust this initial tension T, so that it may
just be sufficient to prevent the band from slipping upon
the drum under any pressure which it is required to transmit.

The means of making this adjustment will be explained
hereafter.

THE MODULUS OF THE BAND.

192. For simplifying the consideration of this important
element in machinery, we shall first consider a particular
case of its application. Let the two drums^ whose axis are

G! and C2 ,
be supposed equal to one another, so that the two

parts of the band which pass round them may be parallel.

Let, moreover, the centres of the

two drums be in the same verti-

cal straight line, so that the two

parts of the band may be verti-

cal.

Let Pj and P2 be pressures ap-

plied, in vertical directions, to

turn the drums, and at perpen-
dicular distances from their cen-

tres, represented by G
XP> and

C2
P

2 ;
of which pressures P

2 is

the working or driven pressure.

Fig 2
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or that which is upon the point of yielding by the prepon-
derance of the other P,. In fig. 1. P2 is seen applied on
the same side of the centre of the drums as P

15
and in jig.

2. on the opposite side. Let T
x
and T2 represent the tensions

upon the two parts of the band, Tx being that on the driving,
and T2 that on the driven side.

^=0^, 2=C2
P

2 ,

r=radius of each drum,W= weight of each drum,
p=radius of axis of each drum,
R! and R2

=resistances of axes of drums,
<p limiting angle of resistance.

Now, the parallel pressures P,, W, T
15
T

2 ,
Rn applied to the

lower drum, are in equilibrium ; therefore (Art. 16.),

or substituting for T^+T, its value 2T (equation 209),

E
1=(2T P

1 W) ..... (210).

The sign being taken according as 2T is greater or less

than Pj+Wj, or according as the axis of the lower drum
presses upon the upper surface of its bearings, as shown in

fig. 1., or upon the lower surface, as shown v&fig. 2. In like

manner, the pressures P2 , W, T
1?
T

2
R

2 , applied to the upper
drum, being in equilibrium,

or (equation 209) R2=2TTPa+W .... (211),

where the sign ^p is to be taken according as P2 is applied
on the same side of the axis as P,, or on the opposite side.

Since, moreover, Rj and R
2 act, in the state bordering

upon motion, at perpendicular distances from the centre of
the axis, which are each represented by p sin. <p (Art. 153.),
we have, by the principle of the equality of moments,

PA +T,r=Tlr+:R lpsm.9

observing that the resultant of all the pressures applied to

each drum (excepting only the resistance of its axis) must be
such as would alone communicate motion to it in the direc-

tion in which it actually moves, and therefore that the re

sistance of the axis, which is opposite to this resultant, must
tend to communicate motion to the drum in a direction oppo-
site to that in which it actually moves.
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Subtracting the above equations, and transposing,

P
1 ,-PA=(RI+R2) p sin. 9.

Substituting the values of R
x
and R

a
from equations (210)

and (211), we obtain, in the case in which the negative sign
of Rj is to be taken, or in which 2T is less than P

a +W, the

axis C
x resting upon the lower surface of its collar as shown

in fig. 2.,

sin. 9 ;

and in the case in which the positive sign of 3^ is to be

taken, 2T being greater than P
X+W, and the axis C

t press-

ing against the upper surface of its collar, as shown iRJtg. 1.,

sn. 9.

Transposing and reducing, we obtain for the relation be-

tween the driving and driven pressures in these two cases

respectively,

P P /sSL2i\ 2WP Bin.,>
. . (213),

\a1 p sin. 9; a
t psm. 9

p p .

(214)\a
1 + psm. 97

and therefore (by equation 121), for the moduli in the two
casesa

! p sn. 9

sin.

In all which equations the sign =F is to be taken according
as P

2 is applied on the same side of the line OjC,, joining the
axis as P

15
or on the opposite side.

193. To determine the initial tension*^ upon the land, so that

it may not slip upon the surface of the drum when sub-

jected to the given resistance opposed to its motion by the

work.
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Suppose the maximum resistance which may, during the
action of the machine, be opposed to the motion
of the drum to be represented by a pressure P
applied at a given distance a from its centre C2 .

Suppose, moreover, that the band has received

such an initial tension T as shall just cause it to

be on the point of slipping when the motion of

the drum is subjected to this maximum resist-

ance ;
and let ^ and t

z be the tensions upon
the two parts of the band when it is thus

Just
in the act of slipping and of overcoming the resistance

r. Now, the two parts of the band being parallel, it em
braces one half of the circumference of each drum

;
the rela-

tion between t
l
and 2 is therefore expressed (equation 205)

by the equation

TT tan. ^

t = t
a
e*-tan. 'whence we obtain -1 J-=--

~
. But . + ,=1 * ' -r I / ,

- to^ A. * *

2T (equation 209),

(TT

tan.

e ^
it tan. ^

e + I

Also, the relation between the resistance P, opposed to the

motion of the upper drum, and the tensions ^ and 2 upon
the two parts of the band, when this resistance is on the

point of being overcome, is expressed (equation 212) by the

equation

or substituting the value of R
a (equation 211), and transpos-

ing

P+(2T=f P-f W)p sin. 9=)^ t^r ;

whence, substituting the value of ^4, determined above,
and transposing, we have

{/e"-'\\ }

P(aqFpsin. 9)H-"Wpsin. 9=2T^ | -^^-^ \r psin.9 j. ;

e + I
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T_ -
J P(a=Fp sin. 0)+ Wpsin.0 )*
i / TT tan. \

I 8 1\
I -tS^ l^-psm. </>

221

(217).

194. The modulus of the band under its most general form,

The accompanying figure represents an. elastic band pass-

ing round drums of unequal radii, the
line joining whose centres 0, and C2

is inclined at any angle to the vertical,
and which are acted upon by any
given pressures P, and P

2 ,
P

1 being
supposed to be upon the point of giv-

ing motion to the system.
Let T

x
and T

a represent the tensions

upon the two parts of the band, Tx
be-

ing that on the driving side.

#
15
#

2 perpendiculars upon the directions of P
a
and Pa re-

spectively.

1? 2
the inclinations of the directions of P, and P2 to the

line 0,0,.

TV r
2 the radii of the drums.

W j,
W

2 the weights of the drums.

the inclination of the line Cfl9 to the vertical, and2ajthe
inclination of the two parts of the band to one another,

p! p2
the radii of the axes of the drums.

the limiting angle of resistance between the axis of the
drum and its collar.

K
15
R2 the resistances of the collars in which the axes of

the drums turn in the state bordering upon motion, or the
resultants of the pressures upon these axes. The perpendi-
cular distances at which these resistances act from the cen-

tres of the axes are (Art. 153.) p :
sin. and p2 sin. 0. Since

the pressures acting upon the lower drum are T
15
T2 ,

P
1?
W

iy

and Kj, and that these pressures are in equilibrium, Wl
act-

ing through the centre of the axis, and T, and E
t acting to

turn the drum in one direction about the axis, and P x
and T,

to turn it in the opposite direction
;
we have, by the princi-

ple of the equality of moments (Art. 153.),

PA+T^^T^ + K^sin. 9.

And since T
1?
T

2 ,
P2 ,
W

2 ,
E

a are similarly in equilibrium



222 THE BAND.

on the upper drum, W2 acting through the centre, and P
2 ,

R2 ,
T

2 acting to turn it in one direction, whilst T
l
acts to

turn it in the opposite direction,

sin. 9=

/.PA-^-T^K^sin.? )

pA_(Tl-T2K=-K2p2 sin. 9 T
Let Tj-T^B*, and T.+T^^T,

^^R^ sin. 9 ) ,01 c^-2r
f
=-R

2p, sin. 9 ('

To determine the values of 1^ and R
2
let the pressures

applied to each drum be resolved (Art. 11.) in directions

parallel and perpendicular to the line CjC, ;
tnose applied to

the lower drum which, being thus resolved, are parallel to

00 are

!
COS. 15 +Ta COS. a

i5 P! COS. ^, W
l
COS.

I,

those pressures being taken positively which tend to move
the axis of the drum from G

l
towards 2 ,

and those nega-

tively whose tendency is in the opposite direction.

In like manner the pressures resolved perpendicular to

0,0, are

T
x
sin. a

l? -j-T2 sin. a
l? -fP 4

sin. ^, "W
1
sin.

,

those pressures being taken negatively whose tendency
when thus resolved perpendicular to C^ is to bring that

line nearer to a vertical direction, and those positively whose

tendency is in the opposite direction.

Observing that K
1
is the resultant of all these pressures,

we have (Art. 11.)

os - ai-p i
cos - *i-Wi cos - '}*+

|P X
sin. ^-(T.-T^sin. a.-W, sin.

i}

2
.

Proceeding similarly in respect to the pressures applied to

the upper drum, we shall obtain

Ea

3= {(T.+T,) cos.
, P, cos. ^

a+W2 cos.
i}

f+

|P3 sin. ^+(T1
T3)

sin. a, W2 sin.
J

3
:

or substituting 2T for T^T,, and 2# for T, T
2

K^ |2T cos.
, P, cos. *! W, cos.

}

2

{P, sin. ^-2^ sin. ^-W, sin.
{

3

Ra

9= J2T cos. ^-P, cos. ^
a+W2

cos.
1} '+

'

}Pa sin. d
2+ 2 sin. a, W2 sin.

1}

2
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By eliminating R15
R

2 ,
and t between the four equations

(218) and (219), a relation is determined between the three

quantities P15
P2 ,

T. To simplify this elimination let us sup-

pose that the preceding hypothesis in respect to the direc-

tions in which the pressures are to be taken positively and

negatively is so made, that the expressions enclosed within
the brackets in the above equations (219) and squared may,
each of them, represent a positive quantity. Let us, more-

over, suppose t\iQ first of the two quantities squared in each

equation to be considerably greater than the second, or the

pressure upon the axis of each drum in the direction of the

line C
a
C

2 joining their centres, greatly to exceed the pres-
sure upon it in a direction perpendicular to that line

;
an

hypothesis which will in every practical case be realised.

These suppositions being made, we obtain, with a sufficient

degree of approximation, by Poncelet's Theorem*,

Ri:=aj2T cos. a
x
P

t
cos. 0,W, cos.

i{ +
/3 ? sin. 62t sin. a W sin.

R
2=a{2T cos. a

l
P

2 cos. 3+W3 cos.
1}

/3 JP2 sin. 2 +22 sin. a
x
W2 sin.

1}
.

Substituting these values of Rj and Ra in equation (218),
and reducing, we have

PA 2(r\ /3p l
sin. a

t
sin. 9)=

Pl |2T cos. ai-PA-WlTl l
sin. 9

P
2
a

2-2^2-/3p2 sin. ttl sin. 9)=
-p

9 {2a T cos. a.-PA+'W^I sin. 9

where ft=(a cos.
X ]8 sin.

X),

ft=(. co,
^_sin

*,),

y1= (a cos. i+P Sin.
<),

y3=(a cos. i sin.
i).

Eliminating # between these equations, and neglecting
terms above the first dimension in p 1

sin. 9 and p2 sin. 9,

( H-P^Xn pa sin. a
x
sin. 9) | _

( P^r, p a
sin. a, sin. 9) j

"

+ Plr,(2aT cos. ^-PA-W^) ) .

T,) [

Sm '

+ P2rX2aT cos. a.-

, being for the most part exceedingly small, the terms

* See Appendix.
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/3pj sin. ctj sin. 9 and /3pa
sin. a

z
sin. 9 may be neglected ;

we
shall then obtain by transposition and reduction

+2*T(p 1
ri H-pt

r
1)cos.

a
t

-sin. 9 ... (222).

If this equation be compared with equation (214), it will

be found to agree with it, mutatis mutandis, except
that

the co-efficient 2a is in that equation 2. This difference

manifestly results from the approximate character of the
theorem of Poncelet.

Substituting the latter co-efficient for the former, multiply-
p (3

ing both sides of the equation by (1
fsin. 9), neglecting

AI

terms of more than two dimensions in f

, ,
and sin. 9, and

reducing,

which is the relation between the moving and working
pressures in the state bordering upon motion. From this

relation we obtain for the MODULUS of the band (equation

121) '

If the angle a be conceived to increase until it exceed

x, P, will pass to the opposite side of C,0a ,
and (3t will

become negative; whence it is apparent, that equation
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(224) agrees with equation (214) in other respects, and in

the condition of the ambiguous sign. It is moreover appa-
rent, from the form assumed by the modulus in this case

and in that of the preceding article, that the greatest

economy of power is obtained by applying the moving and
the working pressures on the same side of the line C^ join-

ing the axes of the drums. This is in fact but a particular
case of the general principle established in Art. 168.

195. The initial tension T of the band may be deter-

mined precisely as in the former case (equation 217).

Representing by the angle sub-

tended by the circumference which
the band embraces on the second,
or driven drum, by P the maxi--

mum resistance opposed to its mo**

tion at the distance a, by $ t\&

limiting angle of resistance between
the band and the surface of the

drum, and by ^ and tt the tensions

upon the two parts of the band,
when its maximum resistance being opposed, it is upon the

point of slipping; observing, moreover, that in this case
e tan. $

2ft ,)
or 2 is represented (Art. 193.) by 2T ^~ ^; then

e +" 1

substituting in the second of equations (220) this value for

2, and P and a for Pa and # and neglecting the exceed-

ingly small term which involves the product sin. a, sin. 9,

we have

(0tan.

$ ^
e

-6^1TVa=-p9 {2aTco8. ai-P/3a+W2ra }
sin 9.

e + I/

Also, since a
a represents the inclination of the two parts of

the band to one another
; since, moreover, these touch the

surfaces of the drums, and that 6 represents the inclination

of the radii drawn from the centre of the lesser drum to the

touching points, therefore O=TC ar Substituting this value
of in the above equation, and solving it in respect to T, we
have

15
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P(<3 p2/32 sin.
</>)-f
W

2p272 sin.

((TT-OI)

tan. 4>\
7*a pa

a COS, a sin.
e - l

]
(Tr-aO tan. <|> I

(225),

196. The modulus of the hand when the two parts of it,

which intervene between the drums, are made to cross one
another.

If the directions of the two parts of the band be made
to cross, as shown in the accompanying
figure, the moving pressure Tj upon the

second drum is applied to it on the side

opposite to that on which it is applied
when the bands do not cross

;
so that in

this case, in order that the greatest eco-

nomy of power may be attained (Art.

168.), the working pressure or resistance

P
2 should be applied to it on the side

opposite to that in which it was applied
in the other case, and therefore on the side of the line CjCg,

opposite to that on which the moving pressure P t upon the

first drum is applied. This disposition of the moving and

working pressures being supposed, and this case being inves-

tigated by the same steps as the preceding, we shall arrive

at precisely the same expressions (equations 223 and 224)
for the relation of the moving and the working pressures,
and for the modulus.

In estimating the value of the initial tension T (equation

225) it will, however, be found, that the angle d, subtended
at the centre C

2
of the second drum by the arc KML, which

is embraced by the band, is no longer in this case repre-
sented by if

a, but by *+ ,.
This will be evident if we

consider that the four angles of the quadrilateral figure
C

2
KIL being equal to four right angles, and its angles at K

and L being right angles, the remaining angles KIL and
KC

2
L are equal to twro right angles, so that KC2

L=tf a
t ;

but the angle subtended by KML equals 2^ KC2L; it

equals therefore *+ ,.
If this value be substituted for ta

t

in equation (225) it becomes
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If P(a-pA sin. <p)+W2p2 sin. <p

2 A"' *1\
I ~, \ tTn PO ot cos. & sin
I CTT + CI; tan. (p > i^

V + i/

(226.)

Now the fraction in the denominator of this expression
being essentially greater in value than that in the denomi-
nator of the preceding (equation 225), it follows that the
initial tension T, which must be given to the band in order
that it may transmit the work from the one drum to the
other under a given resistance P, is less when the two parts
of the band cross than when they do not, and, therefore, that
the modulus (equation 224) is less; so that the band is

worked with the greatest economy of power (other things
'being the same) when the two parts of it which intervene
between the drums are made to cross one another. Indeed it

is evident, that since in this case the arc embraced by the
band on each drum subtends a greater angle than in the
other case, a less tension of the band in this case than in the
other is required (Art. 185.) to prevent it from slipping
under a given resistance, so that the friction upon the axis
of the drums which results from the tension of the band is

less in this case than the other, and therefore the work
expended on that friction less in the same proportion.

THE TEETH OF WHEELS.

197. Let A, B represent two circles in contact at D, and
moveable about fixed centres at C, and C

2
. It

is evident that if by reason of the friction of
these two circles upon one another at D any
motion of rotation given to A be communicated
to B, the angles PC^D and QC2

D described in

the same time by these two circles, will be such
as will make the arcs PD and QD which they

subtend at the circumferences of the circles equal to one
another. Let the angle PCjD* be represented by d,, and the

angle QC2
D by d

2 ;
also let the radii C^D and C2D of the cir-

cles be represented by ?\ and r9
. Now, arc PD=r^^ arc

r&; and since PD=QD, therefore ^A =/1A j

* Or rather the arc which this angle subtends to radius unity.
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(227).

The angles described, in the same time, by two circles

which revolve in contact are therefore inversely proportional
to the radii of the circles, so that their angular velocities

(Art. 74.) bear a constant proportion to one another
;
and if

one revolves uniformly, then the other revolves uniformly ;

if the angular revolution of the one varies in any proportion,
then that of the other varies in like proportion.
When the resistance opposed to the rotation of the driven

circle or wheel B is considerable, it is no longer possible to

give motion to that circle by the friction on its circum-
ference of the driving circle. It becomes therefore neces-

sary in the great majority of cases to cause the rotation of

the driven wheel by some other means than the friction of

the circumference of the driving wheel.
One expedient is the band already described, by means of

which the weels may be made to drive one another at any
distances of their centres, and under a far greater resistance

than they could by their mutual contact. When, however,
the pressure is considerable, and the wheels may be brought
into actual contact, the common and the more certain

method is to transfer the motion
from one to the other by means of

projections on the one wneel called

TEETH, which engage in similar pro-

jections on the other.

In the construction of these teeth

the problem to be solved is, to give
such shapes to their surfaces of mu-
tual contact, as that the wheels shall

be made to turn by the intervention

of their teeth precisely as they would by the friction of

their circumferences.

198. That it is possible to construct teeth which shall

answer this condition may thus be shown.
Let mn and m'n' be two curves, the one
described on the plane of the circle A, and
the other on. the plane of the circle B

;
and

let them be such that as the circle A re-

volves, carrying round with it the circle B,

by their mutual contact at D, these two
curves mn and m'n' may continually touch
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one another, altering of course, as they will do continually,
their relative positions and their point of contact T.

It is evident that the two circles would be made to

revolve by the contact of teeth whose edges were of the

forms of these two curves mn and m'nr

precisely as they
would by their friction upon the circumferences of one
another at the point D; for in the former case a certain

series of points of contact of the circles (infinitely near to

one another) at D, brings about another given series of points
of contact (infinitely near to one another) of the curves mn
and m'n' at T

;
and in the latter case the same series of

points in the curves mn and m'n' brought into contact neces-

sarily produces the contact of the same series of points in

the two circumferences of the two circles at D.

To construct teeth whose surfaces of contact shall possess
the properties here assigned to the curves mn and m'n' is

the problem to be solved. Of the solution of this problem
the following is the fundamental principle :

199. In order that two circles A and B may "be made to

revolve by the contact of the surfaces mn and m'n' of their

teeth, precisely as they would ly the friction of their cir-

cumferences, it is necessary, and it is suf-

ficient, that a line drawn from the point
of contact T of the teeth to the point of
contact D of the circumferences should, in

every position of the point T, he perpendi-
cular to the surfaces in contact there, i. e.,

a normal to loth the curves mn and m'n'.

To prove this principle, we must first establish the follow-

ing LEMMA : If two circles M and N be made to revolve

about the fixed centres E and F by their mu-
tual contact at L, and if the planes of these

circles be conceived to be carried round with

them in this revolution, and a point P on the

plane of M to trace out a curve PQ on the

plane of N" whilst thus revolving, then is this

curved line PQ precisely the same as would
have been described on the plane of N by the same point P,
if the latter plane, instead of revolving, had remained at

rest, and the centre E of the circle M having been released
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from its axis, that circle had been made to. roll (carrying its

plane with it) on the circumference of N. For conceive O
to represent a third plane on which the centres of E and F
are fixed. It is evident that if, whilst the circles M and K
are revolving by their mutual contact, the plane O, to which
their centres are both fixed, be in any way moved, no change
will thereby be produced in form of the curve PQ, which the

point P in the plane of M is describing upon the plane of !N",

such a motion being common to both the planes M and E".*

Now let the direction in which the circle N is revolving be
that shown by the arrow, and its angular velocity uniform

;

and conceive the plane O to be made to revolve about F with
an angular velocity (Art. 74) which is equal to that of N,

but in an opposite direction, communicating
this angular velocity to M and !N". these re-

volving meantime in respect to one another,
and by their mutual contact, precisely as they
did before.f

It is clear that the circle E" being carried

round by its own proper motion in one direc-

tion, and by the motion common to it and the plane O with
the same angular velocity in the opposite direction, will, in

reality rest in space ;
whilst the centre E of the circle M,

having no motion proper to itself, will revolve with the

angular velocity of the plane O, and the various other points
in that circle with angular velocities, compounded of their

proper velocities, and those which they receive in common
with the plane O, these velocities neutralising one another
at the point L of the circle, by which point it is in contact

with the circle N". So that whilst .M revolves round 1ST, the

point L, by which the former circle at any time touches the

other, is at rest
;
this quiescent point of the circle M never-

theless continually varying its position on the circumferences
of both circles, and the circle M being in fact made to roll

on the circle N at rest.

Thus, then, it appears, that by communicating a certain

common angular velocity to both the circles M and !N" about

* Thus for instance, if the circles M and N continue to revolve, we may
evidently place the whole machine in a ship under sail, in a moving carriage,
or upon a revolving wheel, without in the least altering the form of the curve,
which the point P, revolving with the plane of the circle M, is made to trace

on the plane of N, because the motion we have communicated is common to

both these circles.

f M and N may be imagined to be placed upon a horizontal wheel 0, first at

rest, and then made to revolve backwards in respect to the motion of N.
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the centre F, the former circle is made to Toll upon the other

at rest
; and, moreover, that this common angular velocity

does not alter the form of the curve PQ, which a point P in

the plane of the one circle is made to trace upon the plane
of the other, or, in other words, that the curve traced under
these circumstances is the same, whether the circles revolve

round fixed centres by their mutual contact, or whether the

centre of one circle be released, and it be made to roll upon
the circumference of the other at rest.

This lemma being established, the truth of the proposition
stated at the head of this article becomes evident

;
for if M

roll on the circumference of N, it is evident that P will, at

any instant, be describing a circle about their point of con-

tact L.*

Since then P is describing, at every instant, a circle about

L when M rolls upon N, !N" being fixed, and since the curve

described by P upon this supposition is precisely the same
as would have been traced by it if the centres of both cir-

cles had been fixed, and they had turned by their mutual

contact, it follows that in this last case (when the circles

revolve about fixed centres by their mutual contact) the

point P is at any instant of the revolution describing, during
that instant, an exceedingly small circular arc about the

point L ;
whence it follows that PL is always a perpendicu-

lar to the cur,ve PQ at the point P, or a normal to it.

ISTow let p be a point exceedingly near to T in the curve

raW, which curve is fixed upon the plane
of the circle A. It is evident that, as the

point p passes through its contact with the

curve mn at T (see Art. 195.), it will be

made to describe, on the plane of the circle

B, an exceedingly small portion of that

curve TTiTi. But the curve which it is

(under these circumstances) at any instant

describing upon the plane of B has been shown to be

always perpendicular to the line DT
;
the curve mn is there-

fore at the point T perpendicular to the line DT
;
whence it

follows that the curve m'n' is also perpendicular to that line,

and that DT is a normal to ~both those curves at T. This is

the characteristic property of the curves mn and raW, so that

they may satisfy the condition of a continual contact with

* For either circle may be imagined to be a polygon of an infinite number
of sides, on one of the angles of which the rolling circle will, at any instant,

be in the act of turning.
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one another, whilst the circles revolve by the contact of
their circumferences at D, and therefore conversely, so that
these curves may, by their mutual contact, give to the cir-

cles the same motion as they would receive from the contact
of their circumferences.

200. To describe, ~by means of circular arcs, the form of a
tooth on one wheel which shall work truly with a tooth of
any givenform on another wheel.

Let the wheels be required to revolve by the action of

their teeth, as they would by the
contact of the circles ABE and

ADF, called theirprimitive ovpitch
circles. Let AB represent an arc

of the pitch circle ABE, included
between any two similar points A.
and B of consecutive teeth, and let

AD represent an arc of the pitch
circle ADF equal to the arc AB, so

that the points D and B may come

simultaneously to A, when the cir-

cles are made to revolve by their

mutual contact. AB and AD are

called the pitches of the teeth of the two wheels. Divide
each of these pitches into the same number of equal parts
in the points a, b, &c., a', b', &c. ;

the points a and a', b and

b', &c., will then be brought simultaneously to the point A.
Let mn represent the form of the face of a tooth on the

wheel, whose centre is C,, with which tooth a corresponding
tooth on the other wheel is to work truly ;

that is to say,
the tooth on the other wheel, whose centre is C2 ,

is to be cut,
so that, driving the surface mn* or being driven by it, the

wheels shall revolve precisely as they would by the con-

tact of their pitch circles ABE and ADF at A. From A
measure the least distance A to the curve mn, and with

radius A and centre A describe a circular arc /3 on the

plane of the circle whose centre is Ca
. From a measure, in

like manner, the least distance a*', to the curve mn, and
with this distance a*' and the centre a, describe a circular

arc 7, intersecting the arc a/3 in ft. From the point b

measure similarly the shortest distanceW to mn, and with
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the centre V and this distance Wl describe a circular arc

7(?, intersecting 7 in 7, and so with the other points of

division. A curve touching these circular arcs a/3, ^7, 7^
&c., will give the true surface or boundary of the tooth.*

In order to prove this let it be observed, that the shortest

distance afl! from a given point a to a given curve mn is a
normal to the curve at the point a' in which it meets it ; and
therefore, that if a circle be struck from this point a with this

least distance as a radius, then this circle must touch the

curve in the point ',
and the curve and circle have a com-

mon normal in that point.
Now the points a and a will be brought by the revolution

of the pitch circles simultaneously to the point of contact A,
and the least distance of the curve mn from the point A will

then be #a', so that the arc ^7 will then be an arc struck

from the centre A, with this last distance for its radius. This
circular arc ^7 will therefore touch the curve mn in the point
a' and the line aa', which will then be a line drawn from
the point of contact A of the two pitch circles to the point
of contact

'

of the two curves mn and m'n
',
will also be a

normal to both curves at that point. The circles will there-

fore at that instant drive one another (Art. 196.) by the con-

tact of the surfaces mn and m'n'
, precisely as they would by

the contact of their circumferences. And as every circular

arc of the curve m'n similar to ^7 becomes in its turn the

acting surface of the tooth, it will, in like manner, at one

point work truly with a corresponding point of mn, so that

the circles will thus drive one another truly at as many
points of the surfaces of their teeth, as there have been taken

points of division a, 5, &c. and arcs a/3, 7. &c.f
* This method of describing, geometrically, the forms of teeth is given, without

demonstration, by M. Poncelet in his Mecanique Industrielle, 3me partie, Art. 60.

f The greater the number of these points of division, the more accurate the

form of the tooth. It appears, however, to be sufficient

in most cases, to take three points of division, or even

two, where no great accuracy is required. M. Poncelet

(Mee. Indust. 3me partie, Art. 60.) has given the following,

yet easier, method by which the true form of the tooth

may be approximated to with sufficient accuracy in most

cases. Suppose the given tooth N upon the one wheel to

be placed in the position in which it is first to engage or

disengage from the required tooth on the other wheel,
and let Aa and A6 be equal arcs of the pitch circles of

the two wheels whose point of contact is A. Draw Aa
the shortest distance between A and the face of the tooth

N
; join aa; bisect that line in m, and draw mn perpendi-

cular to aa intersecting the circumference Aa in n. If

from the centre, n a circular arc be described passing

through the points a and a, it will give the required form

of the tooth nearly.
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INVOLUTE TEETH.

201. The teeth of two wheels will work truly together if they
he hounded hy curves of theform traced out hy the extremity

of a flexible line, unwindingfrom the circumference of a

circle, and called the involute of a circle, provided that the

circles of which these are the involutes he concentric with
the pitch circles of the wheels, and have their radii in the

same proportion with the radii of the pitch circles.

Let OE and OF represent the pitch circles of two wheels,
AG and BH two circles concentric with
them and having their radii C

t
A and C.,B

in the same proportion with the radii C
X
O

and C2O of the pitch circles. Also let mn
and m'n' represent the edges of teeth on the

two wheels struck by the extremities of flexi-

ble lines unwinding from the circumferences
of the circles AG and BH respectively. Let
these teeth be in contact, in any position
of the wheels, in the point T, and from the

point T draw TA and TB tangents to the

generating circles GA and BH in the points
A and B. Then does AT evidently represent the position of

the flexible line when its extremity was in the act of gene-

rating the point T in the curve mn / w
rhence it follows, that

AT is a normal to the curve mn at the point T*
;
and in

like manner that BT is a normal to the curve m'n' at the

same point T. Now the two curves have a

common tangent at T; therefore their nor-

mals TA and TB at that point are in the same

straight line, being both perpendicular to their

tangent there. Since then ATB is a straight

line, and that the vertical angles at the point
o where AB and CjC, intersect are equal, as

also the right angles at A and B, it follows

that the triangles AoC^and B<?0
2
are similar,

and that 0,o : C
t
o :: C,A : C

2
B. But C,A :

C
Q
B :: 0,0 : C

2
O

;
.-. C

t
o : 0,0 :: 0,0:

C
2O ;

therefore the points O and o coincide,
and the straight line AB, which passes through the point of

* For if the circle be conceived a polygon of an infinite number of sides, it

is evident that the line, when in the act of unwinding from it at A, is turning
upon one of the angles of that polygon, and therefore that its extremity is,

through au infinitely small angle, describing a circular arc about that point.
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contact T of the two teeth, and is perpendicular to the sur-

faces of both at that point, passes also through the point of

contact O of the pitch circles of the wheels. Now this is

true, whatever be the positions of the wheels, and whatever,

therefore, be the points of contact of the teeth. Tims then
the condition established in Art. 199. as that necessary and
sufficient to the true action of the teeth of wheels, viz.

" that

a line drawn from the point of contact to the pitch circles tc

the point of contact of the teeth should be a normal to their

surfaces at that point, in all the different positions of the

teeth," obtains in regard to involute teeth.*

The point of contact T of the teeth moves along the straight-
line AB, which is drawn touching the generating circles BEL
and AG of the involutes

;
this line is what is called the locus

of the different points of contact. Moreover, this property
obtains, whatever may be the number of teeth in contact at

once, so that all the points of contact of the teeth, if there

be more than one tooth in contact at once, lie always in this

line
;
which is a characteristic, and a most important pro-

perty of teeth of the involute form. Thus in the above

* The author proposes the following illustration of the action of involute

teeth, which he believes to be new. Conceive AB to represent a band passing
round the circles AG and BH, the wheels would evidently be driven by this

band precisely as they would by the contact of their pitch circles, since the

radii of AG and BH are to one another as the radii of the pitch circles. Con-

ceive, moreover, that the circles BH and AG carry round with them their

planes as they revolve, and that a tracer is fixed at any point T of the band,

tracing, at the same time, lines mn and m'n', upon both planes, as they revolve

beneath it. It is evident that these curves, being traced by the same point,
must be in contact in all positions of the circles when driven by the band, and
therefore when driven by their mutual contact. The wheels would therefore

be driven by the contact of teeth of the forms mn and m'n' thus traced by the

point T of the band precisely as they would by the contact of their pitch cir-

cles. NoV it is easily seen, that the curves mn and m'n', thus described by the

point T of the band, are involutes of the circles AG and BH.
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figure, which represents part of two wheels with involute

teeth, it will be seen that the points r s of contact of the
teeth are in the same straight line touching the base* of one
of the involutes, and passing through the point of contact A
of the pitch circles, as also the points A and J in that touch-

ing the base of the other.

EPICYCLOIDAL AND HYPOOYCLOIDAL TEETH.

202. If one circle be made to roll externally on the cir-

cumference of another, and if, whilst this mo-
tion is taking place, a point in the circumfe-

rence of the rolling circle be made to trace

out a curve upon the plane of the fixed circle,
the curve so generated is called an EPICYCLOID,
the rolling circle being called the generating
circle of the epicycloid, and the circle upon
which it rolls its oase.

If the generating circle, instead of rolling
on the outside or convex circumference of its

base, roll on its inside or concave circumfe-

rence, the curve generated is called the HYPOCYCLOID.

Let PQ and Pit be respectively an epicycloid and a hypo-
cycloid, having the same generating circle APH, and

having for their bases the pitch circles AF and AE of two
wheels. If teeth be cut upon these wheels, whose edges
coincide with the curves PQ and PR, they will work truly
with one another

;
for let them be in contact at P, and let

their common generating circle APH be placed so as to

touch the pitch circles of both wheels at A
,
then will its cir-

cumference evidently pass through the point of contact P
of the teeth : for if it be made to roll through an exceed-

ingly small angle upon the point A, rolling there upon the

circumference of loth circles, its generating point will

traverse exceedingly small portions of both curves; since

then a given point in the circumference of the circle APII
is thus shown to be at one and the same time in th perime-
ters of both the curves PQ and PR, that point must of

necessity be the point of contact P of the curves
; since,

* The circles from which the involutes are described are called their

This cut and that at page 237. are copied from Mr. Hawkins' edition of Camus
on the Teeth of Wheels.
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moreover, when the circle APH rolls upon the point A, its

generating point traverses a small portion of the perimeter
of each of the curves PQ and PR at P, it follows that the

line AP is a normal to both curves at that point ;
for whilst

the circle APH is rolling through an exceedingly small

angle upon A, the point P in it, is describing a circle about
that point whose radius is AP.* Teeth, therefore, whose

edges are of the forms PQ and PR satisfy the condition

that the line AP drawn from the point of contact of the

pitch circles to any point of contact of the teeth is a normal
to the surfaces of both at that point, which condition has been
shown (Art. 199.) to be that necessary and sufficient to the

correct working of the teeth.f
Thus then it appears, that if an epicycloid be described

* The circle AFH may be considered a polygon of an infinite number of

sides, on one of the angles of which polygon it may at any instant be con-

ceived to be turning.

f The entire demonstration by which it has been here shown that the

curves generated by a point in the circumference of a given generating circle

APH rolling upon the convex circumference of one of the pitch circles, and

upon the concave circumference of the other are proper to form the edges of

contact of the teeth, is evidently applicable if any other generating curve be

substituted for APH. It may be shown precisely in the same manner, that

the curves PQ and PR generated by the rolling of any such curve (not being
a circle) upon the pitch circles, possess this property, that the line PA drawn
from any point of their contact to the point of contact of their pitch circles

is a normal to both, which property is necessary and sufficient to their correct

action as teeth. This was first demonstrated as a general principle of the con-

struction of the teeth of wheels by Mr. Airy, in the Cambridge Phil. Trans,

vol. ii. He has farther shown, that a tooth of any form whatever being cut

upon a wheel, it is possible to find a curve which, rolling upon the pitch circle

of that wheel, shall by a certain generating point traverse the edge of the

given tooth. The curve thus found being made to roll on the circumference
of the pitch circle of a second wheel, will therefore trace out the form of a

tooth which will work truly with the first. This beautiful property involves
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on the plane of one of the wheels with any generating
circle, and with the pitch circle of that wheel for its base

;

and if a hypocycloid be described on the plane of the other

wheel with the pitch circle of that wheel for its base
;
and

if the faces or acting surfaces of the teeth on the two
weeels be cut so as to coincide with this epicycloid and this

hypocycloid respectively, then will the wheels be driven

correctly by the intervention of these teeth. Parts of two
wheels having epicycloidal teeth are represented in the pre-

ceding figure.

203. LEMMA. If the diameter of the generating circle of a

hypocycloid equal the radius of its ~base, the hypocycloid
becomes a straight line having the direction of a radius of
its base.

Let D and d represent two positions of the centre of such
a generating circle, and suppose the

generating point to have been at A in

the first position, and join AC
;

then
will the generating point be at P in the

second position, i. e. at the point where
CA intersects the- circle in its second

position; for join Ca and P<#, then

/ Yda= Z PCW+ / CP^=2ACa. Also

ACa
;

.'. arc A#=arc P#. Since then the arc aP equals
the arc A, the point P is that which in the first position
coincided with A, i. e. P is the generating point ;

and this

is true for all positions of the generating circle
;
the gene-

rating point is therefore always in the straight line AC.
The edge, therefore, of a hypocycloidal tooth, the diameter

of whose generating circle equals half the diameter of the

pitch circle of its wheel, is a straight line whose direction

is towards the centre of the wheel.*

the theoretical solution of the problem which Poncelet has solved by the

geometrical construction given to Article 200. If the rolling curve be a

logarithmic spiral, the involute form of tooth will be generated.
* The following very ingenious application has been made of this property

of the hypocycloid to convert a circular into an alternate rectilinear motion.

AB represents a ring of metal, fixed in position, and having teeth cut upon ita
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To SET OUT THE TEETH OF WHEELS.

204. All the teeth of the same wheel are constructed of
the same form and of equal dimensions : it would, indeed,

evidently be impossible to construct two wheels with dif-

ferent numbers of teeth, which should work truly with one

another, if all the teeth on each wheel were not thus alike.

All the teeth of a wheel are therefore set out by the work-
man from the same pattern or model, and it is in determining
the form and dimensions of this single pattern or model of

one or more teeth in reference to the mechanical effects

which the wheel is to produce, when all its teeth are cut out

upon it and it receives its proper place in the mechanical
combination of which it is to form a part, that consists the
art of the description of the teeth of wheels.

The mechanical function usually assigned to toothed wheels
is the transmission of work under an increased or diminished

velocity. If CD, DE, &c., represent arcs of the pitch circle

concave circumference. C is the centre of
a wheel, having teeth cut in its circum-
ference to work with those upon the circum-

ference of the ring, and having the diame-
ter of its pitch circle equal to half that of
the pitch circle of the teeth of the ring.
This being the case, it is evident, that if the

pitch circle of the wheel C were made to

roll upon that of the ring, any point in its

circumference would describe a straight line

passing through the centre D of the ring;
but the circle C would roll upon the ring by
the mutual action of their teeth as it wo ild

by the contact of their pitch circles
;

if the

circle C then be made to roll upon the ring

by the intervention of teeth cut upon both, any point in the circumference of

C will describe a straight line passing through D. Now, conceive C to be thus

made to roll round the ring by means of a double or forked link CD, between
the two branches of which the wheel is received, being perforated at tlu-ii-

extremities by circular apertures, which serve as bearings to the solid axis of

the wheel. At its other extremity D, this forked link is rigidly connected
with an axis passing through the centre of the ring, to which axis is commu-
nicated the circular motion to be converted by the instrument into an alter-

nating rectilinear motion. This circular motion will thus be made to carry
the centre C of the wheel round the point D, and at the same time, cause it to

roll upon the circumference of the ring. Xow, conceive the axis C of the

wheel, which forms part of the wheel itself, to be prolonged beyond the collar

in which it turns, and to have rigidly fixed upon its extremity a bar CP. It is

evident that a point P in this bar, whose distance from the axis C of the wheel

equals the radius of its pitch circle, will move precisely as a point in the pitch circle

of the wheel moves, and therefore that it will describe continually a straight
line passing through the centre D of the ring. This point P receives, there

fore, the alternating rectilinear motion which it was required to communicate.
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of a wheel intercepted between similar points of consecutive
teeth (the chords of which arcs are called the pitches of the

teeth), it is evident that all these arcs must be equal, since

the teeth are all equal and similarly placed ;
so that each

tooth of either wheel, as it passes through its contact with a

corresponding tooth of the other, carries its pitch line through
the same space CD, over the point of contact C of the pitch
lines. Since, therefore, the pitch line of the one wheel is

carried over a space equal to CD, and that of the other over
a space equal to cd by the contact of any two of their teeth,
and since the wheels revolve by the contact of their teeth

as they would by the contact of their pitch circles at C, it

follows that the arcs CD and cd are equal. Now let T\ and
r

2 represent the radii of the pitch circles of the two wheels,
then will 2^ and 2irr

9 represent the circumferences of their

pitch circles
;
and if n^ and n

9 represent the numbers of

teeth cut on them respectively, then CD= l

and cd= -

2

,

,1
.

.

therefore,
---

>

na

(227);

Therefore the radii of the pitch circles of the two wheels
must be to one another as the numbers of teeth to be cut

upon them respectively.

Again, let m, represent the number of revolutions made
by the first wheel, whilst m2 revolutions are made by the

second
;
then will ^irr

l
m

l represent the space described by
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the circumference of the pitch circle of the first wheel while
these revolutions are made, and 27rr

2
m

2 that described by the

circumference of the pitch circle of the second; but the

wheels revolve as though their pitch circles were in contact,
therefore the circumferences of these circles revolve through
equal spaces, therefore 27ir

1
m

1
=2'nTam2 ;

(228).

The radii of the pitch circles of the wheels are therefore

inversely as the numbers of revolutions made in the same
time by them.

Equating the second members of equations (227) and; (223))

(229)..

The numbers of revolutions made by the wheel's in the same
time are therefore to one another inversely as the numbers
of teeth.

205. In a train of wheels, to determine how many revolutions

the last wheel makes whilst the first is making any given
number of revolutions.

When a wheel, driven by another, carries its axis round
with it, on which axis a third

wheel is fixed, engaging with and

giving motion to ^fourth, which,
in like manner, is fixed upon its

axis, and carries round with it a

fifth wheel fixed upon the same

axis, which fifth wheel engages
with a sixth upon another axis,

and so on as shown in the above figure, the combination
forms a train of wheels. Let n

l9
n n . . . n^ represent the

numbers of teeth in the successive wheels forming such a
train of p pairs of wheels

;
and whilst the first wheel is

makingm revolutions, let the second and third (which revolve

together, being fixed on the same axis) make m^ revolutions
;

the fourth and fifth (which, in like manner, revolve together)
w

2 revolutions, the sixth and seventh m^ and so on
;
and let

the last or 2p
th wheel thus be made to revolve mp times whilst

16
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the first revolves m times. Then, since the first wheel which
has n

t
teeth gives motion to the second which has n

t teeth,
and that whilst the former makes m revolutions the latter

makes m, revolutions, therefore (equation 229),
i =

;

and since, while thfe third wheel (which revolves with the

second, makes m
a revolutions, the fourth makes ra

2 revolu-

tions
; therefore,

2 = . Similarly, since while the fifth
im

l
n

4

wheel, which has n
6 teeth, makes ma revolutions (revolving

with the fourth), the sixth, which has n6 teeth, makes m, revo-

lutions
;
therefore -

3 = . In like manner
4 =

, &c. &c.m
a n

6
m

z nj

. Multiplying these equations together, and

striking out factors common to the numerator and denomi-
nator of the first member of the equation which results from
their multiplication, we obtain

mp n
t

. n
z

. n
6 . . . . nZp-i f= .... (230).m n^ . nA . n
6

. . . . n^p

The factors in the numerator of this fraction represent the
numbers of teeth in all the driving wheels of tfyis train,
and those in the denominator the numbers of teeth in the

driven wheels, or followers as they are more commonly
called.

If the numbers of teeth in the former be all equal and

represented by n^ and the numbers of teeth in the latter

also equal and represented by 7i
a ,
then

>- = . (231).m \n
z /

Having determined what should be the number of teeth

in each of the wheels which enter into any mechanical

combination, with a reference to that particular modification

of the velocity of the revolving parts of the machine, which
is to be produced by that wheel,* it remains next to consider,
what must be the dimensions of each tooth of the wheel, so

* The reader is referred for a more complete discussion of this subject (which

belongs more particularly to descriptive mechanics) to Professor Willis's Prin-

ciples of Mechanism, chap, vii., or to Camus on the Teeth of Wheels, by Haw-

kins, p. 90.
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that it may be of sufficient strength to transmit the work
which is destined to pass through it, under that velocity, or

to bear the pressure which accompanies the transmission of

that work at that particular velocity ;
and it remains further

to determine, what must be the dimensions of the wheel
itself consequent upon these dimensions of each tooth, and
this given number of its teeth.

206. To -determine the pitch of the teeth of a wheel, knowing
the work to be transmitted by the wheel.

Let U represent the number of units of work to be trans-

mitted by the wheel per minute, m the number of revolutions

to be made by it per minute, n the number of the teeth to

be cut iri it, T the pitch of each tooth in feet, P the pressure

upon each tooth in pounds.
Therefore nT represents the circumference of the pitch

circle of the wheel, and mnT represents the space in feet

described by it per minute. Now U represents the work

transmitted by it through this space per minute, therefore 1~

represents the mean pressure under which this work is trans-

mitted (Art. 50.) ;

The pitch T of the teeth would evidently equal twice the

breadth of each tooth, if the spaces between the teeth were

equal in width to the teeth. In order that the teeth of

wheels which act together may engage with one another and
extricate themselves, with facility, it is however necessary
that the pitch should exceed twice the breadth of the tooth

by a quantity which varies according to the accuracy of the

construction of the wheel from TVth to TVth of the breadth.*

Since the pitch T of the tooth is dependant upon its

breadth, and that the breadth of the tooth is dependant, by
the theory of the strength of materials, upon the pressure P
which it sustains, it is evident that the quantity P in the

above equation is a function of T. This functionf may be
assumed of the form

* For a full discussion of this subject see Professor Willis's Principles of

Mechanism, Arts. 107-112.

f See Appendix, on the dimensions of wheels.
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T=c 4/P (233) ;

where c is a constant dependant for its amount upon the
nature of the material out of which the tooth is formed.

Eliminating P between this equation and the last, and solving
in respect to T,

The number of units of work transmitted by any machine

per minute is usually represented in horses' power, one
horse's power being estimated at 33,000 units, so that the
number of horses' power transmitted by the machine means
the number of times 33,000 units of work are transmitted by
it every minute, or the number of times 33,000 must be
taken to equal the number of units of work transmitted by
it every minute. If therefore H represent the number of

horses' power transmitted by the wheel, then U=33,OOOH.
Substituting this value in the preceding equation, and repre-

senting the constant 33,000c
2

by C8

,
we have

'. . (234).mn

The values of the constant C for teeth of different mate-
rials are given in the Appendix.

207. To determine the radius of the pitch circle of a wheel
which shall contain n teeth of a given pitch.

Let AB represent the pitch T of a tooth,
and let it be supposed to coincide with its

chord AMB. Let E represent the radius AC
of the pitch circle, and n the number of teeth

to be cut upon the wheel.
Now there are as many pitches in the cir-

cumference as teeth, therefore the angle ACB

subtended by each pitch is represented by .

Also T=2AM=2AC sin. ACB=2Esin. -
;n

""

(235).
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208. To make the pattern of an epicycloidal tooth.

Having determined, as above,
the pitch of the teeth, and the

radius of the pitch circle, strike

an arc of the pitch circle on a
thin piece of oak board or me-
tal plate, and, with a fine saw,
cut the board through along
the circumference of this cir-

cle, so as to divide it into two

parts, one having a convex and
the other a corresponding con-

cave circular edge. Let EF
represent one of these portions

of the board, and GH another.

Describe an arc of the pitch circle upon a second board or

plate from which the pattern is to be cut. Let MN repre-
sent this arc. Fix the piece GH upon this board, so that its

circular edge may accurately coincide with the circumference
of the arc SOT. Take, then, a circular plate D of wood or

metal, of the dimensions which it is proposed to give to the

generating circle of the epicycloid ;
and let a small point of

steel P be fixed in it, so that this point may project slightly
from its inferior surface, and accurately coincide with its cir-

cumference. Having set off the width AB of the toothj so

that twice this width increased by from TVth to TVth of that

width (according to the accuracy of workmanship to be

attained) may equal the pitch, cause the circle D to roll upon
the convex edge GK of the board GH, pressing it, at the

same time, slightly upon the surface of the board on which
the arc IVCST is described, and from which the pattern is to he

cut, having caused the steel point in its circumference first

of all to coincide with the point A ;
an epicycloidal arc AP

will thus be described by the point P upon the surface MN".

Describe, similarly, an epicycloidal arc BE through the point

B, and let them meet in E.
Let the board GHnow be removed, and let EF be applied

and fixed, so that its concave edge may accurately coincide

with the circular arc MK With the same circular plate D
pressed upon the concave edge of EF, and made to roll upon
it, cause the point in its circumference to describe in like

manner, upon the surface of the board from which the pat-
tern is to be cut, a hypococloidal arc BH passing through the
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point B, and another AI passing through the point A. HEI
will then represent the form of a tooth, which will work cor-

rectly (Art. 202.) with the teeth similarly cut upon any other

wheel
; provided that the pitch of the teeth so cut upon the

other wheel be equal to the pitch of the teeth upon this, and

provided that the same generating circle D l)e used to strike

the curves upon the two wheels.

209. To determine the proper lengths of epicycloidal teeth.

The general forms of the teeth of wheels being determined

by tlie method explained in the preceding article, it remains
to cut them off of such lengths as may cause them succes-

sively to take up the work from one another, and transmit it

under the circumstances most favourable to the economy of

its transmission, and to the durability of the teeth.

In respect to the economy of the power in its transmission,
it is customary, for reasons to be assigned hereafter, to pro-
vide that no tooth of the one wheel should come into action

with a tooth of the other until both are in the act of passing

through the line of centres. This condition may be satisfied

in all cases where the numbers of teeth on neither of the

wheels is exceedingly small, by properly adjusting the

lengths of the teeth. Let two of the teeth of the wheels be
in contact at the point A in the line CD, joining the centres

of the two wheels
;
and let the wheel whose centre is C be

the driving wheel. Let AH be a portion of the circumfe-

rence of the generating circle of the teeth, then will the

points A and !>, where this circle intersects the edges of the
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with the edges of the teeth M and L of the driven wheel

(Art. 202.). JSTow, since each tooth is to come into action

only when it comes into the line of centres, it is clear that

the tooth L must have been driven by K from the time when
their contact was in the line of centres, until they have come
into the position shown in the figure, when the point of con-

tact of the anterior face of the next tooth O of the driving
wheel with the flank* of the next tooth M of the driven

wheel has just passed into the line of centres
;
and since the

tooth O is now to take up the task of impelling the driven

wheel, and the tooth K to
yield it, all that portion of the

last-mentioned tooth which lies beyond the point B may evi-

dently be removed
;
and if it ~be thus removed, then the tooth

K, passing out of contact, will manifestly, at that period of

the motion, yield all the driving strain to the tooth O, as it

k required to do. In order to cut the pattern tooth of the

proper length, so as to satisfy
the proposed condition, we have

only then to take A.a (see the

accompanying figure) equal to

the pitch of the tooth, and to

bring the convex circumference
of the generating circle, so as

to touch the convex circumfe-

rence of the arc MK in that

point a
;
the point of intersec-

tion e of this circle with the

N8
face AE of the tooth will be

the last acting point of the tooth
;
and if a circle be struck

from the centre of the pitch circle passing through that

point, all that portion of the tooth which lies beyond this cir-

cle may be cut off.f

The length of the tooth on the wheel intended to act with

this, may be determined in like manner.

210. In the preceding article we have supposed the same

generating circle to be used in striking the entire surfaces

of the teeth on both wheels. It is not however necessary to

* That portion of the edge of the tooth which is without the pitch circle is

called its face, that within it its flank.

f The point e thus determined will, in some cases, fall beyond the extremity
E of the tooth. In such cases it is therefore impossible to cut the tooth of

such a length as to satisfy the required conditions, viz. that it shall drive only
after it has passed the line of centres. A full discussion of these impossible

cases will be found in Professor Willis's work (Arts. 102-104.).
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the correct working of the teeth, that the same circle should
thus be used in striking the entire surfaces of ttwo teeth
which act together, but only that the generating circle of

every two portions of the two teeth which come into actual
contact should be the same. Thus the flank of the driving
tooth and the face of the driven tooth being in contact at

P in the accompanying figure,* this face of the one tooth

and flank of the other must be respectively an epicycloid
and a hypocycloid struck with the same generating circle.

Again, the face of a driving tooth and theflank of a driven

tooth being in contact at Q, these, too, must be struck by
the same generating circle. But it is evidently unnecessary
that the generating circle used in the second case should be
the same as that used in the first. Any generating circle

will satisfy the conditions in either case (Art. 202.), provided
it be the same for the epicycloid as for the hypocycloid
which is to act with it.

According to a
general (almost a universal) custom among

mechanics, two different generating circles are thus used for

striking the teeth on two wheels which are to act together,
the diameter of the generating circle for striking the faces
of the teeth on the one wheel being equal to the radius of

the pitch circle of the other wheel. Thus if we call the

wheels A and B, then the epicycloidal faces of the teeth on

A, and the corresponding hypocycloidal flanks on B, are

generated by a circle whose diameter is equal to the radius

of the pitch circle of B. The hypocycloidal flanks of the

teeth on B thus become straight lines (Art. 203.), whose
directions are those of radii of that wheel. In like manner,

* The upper wheel is here supposed to drive the lower.
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the epicycloidal faces of the teeth on B, and the correspond-
ing hypocycloidal flanks of the teeth on A, are struck by a
circle whose diameter is equal to the radius of the pitch cir-

cle of A
;
so that the hypocycloidal flanks of the teeth of A

become in like manner straight lines, whose directions are

those of radii of the wheel A. By this expedient of using
two different generating circles, the flanks of the teeth on
both wheels become straight lines, and the faces only are

curved. The teeth shown in the above figure are of this

form. The motive for giving this particular value to the

generating circle appears to be no other than that saving of

trouble which is offered by the substitution of a straight for

a curved flank of the tooth. A more careful consideration

of the subject, however, shows that there is no real economy
of labour in this. In the first place, it renders necessary
the use of two different generating circles or templets for

striking the teeth of any given wheel or pinion, the curved

portions of the teeth of the wheel being struck with a circle

whose diameter equals half the diameter of the pinion, and
the curved portions of the teeth of the pinion with a circle

whose diameter equals half that of the wheel. Now, one

generating circle would have done for both, had the work-
man been contented to make the flanks of his teeth of the

hypocycloidal forms corresponding to it. But there is yet a

greater practical inconvenience in this. method. A wheel
and pinion thus constructed will only work with one another /
neither will work truly any third wheel or pinion of a differ-

ent number of teeth, although it have the same pitch. Thus
the wheels A and B having each a given number of teeth,
and being made to work with one another, will neither of

them work truly with C of a different number of teeth of

the same pitch. For that A may work truly with C, the

face of its teeth must be struck with a generating circle,

whose diameter is half that of C : but they are struck with

a circle whose diameter is half that of B
;
the condition of

uniform action is not therefore satisfied. Now let us sup-

pose that the epicycloidal faces, and the hypocycloidal flanks

of all the teeth A, B, and C had been struck with the same

generating circle, and that all three had been of the same

pitch, it is clear that any one of them would then have

worked truly with any other, and that this would have been

equally true of any number of teeth of the same pitch.

Thus, then, the machinist may, by the use of the same gen-

erating circle, for all his pattern wheels of the same pitch, so

construct them, as that any one wheel of that pitch shall
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work with any other. This offers, under many circumstances

great advantages, especially in the very great reduction of

the number of patterns which he will be required to keep.
There are, moreover, many cases in which some arrange-
ment similar to this is indispensable to the true working of

the wheels, as when one wheel is required (which is often

the case) to work with two or three others, of different num-
bers of teeth, A for instance to turn B and C

; by the ordi-

nary method of construction this combination would be

impracticable, so that the wheels should work truly. Any
generating circle common to a whole set of the same pitch,

satisfying the above condition, it may be asked whether
there is any other consideration determining the best dimen-
sions of this circle. There is such a consideration arising
out of a limitation of the dimensions of the generating circle

of the hypocycloidal portion of the tooth to a diameter not

greater than half that of its base. As long as it remains
within these limits, the hypocycloidal generated by it is of

that concave form by which the flank of the tooth is made
to spread itself, and the base of the tooth to widen

;
when

it exceeds these limits, the flank of the tooth takes the con-

vex form, the base of the tooth is thus contracted, and its

strength diminished. Since then, the generating circle

should not have a diameter greater than half that of any of

the wheels of the set for which it is used, it will manifestly
be the greatest which will satisfy this condition when its

diameter is equal to half that of the least wheel of the set.

Now no pinion should have less than twelve or fourteen

teeth. Half the diameter of a wheel of the proposed pitch,
which has twelve or fourteen teeth, is then the true diame-

ter or the generating circle of the set. The above sugges-
tions are due to Professor Willis.*

* Professor Willis has suggested a new and very ingenious method of

striking the teeth of wheels by means of circular arcs. A detailed description
of this method has been given by him in the Transactions of the Institution

of Civil Engineers, vol. ii., accompanied by tables, &c., which render its prac
tical application exceedingly simple and easy.
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211. To DESCRIBE INVOLUTE TEETH.

Let AD and AG represent the pitch circles of

two wheels intended to work together. Draw a

straight line FE through the point of contact A
of the pitch circles and inclined to the line of

centres CAB of these wheels at a certain angle
FAG, the influence of the dimensions of which
on the action of the teeth will hereafter be ex-

plained, but which appears usually to be taken
not less than 80.* Describe two circles eEK

and /*FL from the centres B and C, each touching the

straight line EF. These circles are to be taken as the bases

from which the involute faces of the teeth are to be struck.

It is evident (by the similar triangles ACF and AEB) that

their radii CF and BE will be to one another as the radii

CA and BA of the pitch circles, so that the condition neces-

sary (Art. 201.) to the correct action of the teeth of the
wheels will be satisfied, provided their faces be involutes to

these two circles. Let AG and AH in the above figure

represent arcs of the pitch circles of the wheels on an

enlarged scale, and 0E, /X, corresponding portions of the

circles eEK and yFL of the preceding figure. Also let A.a

represent the pitch of one of the teeth of either wheel.

Through the points A and a describe involutes ef and mn.\

* See Camus on the Teeth of Wheels, by Hawkins, p. 168.

f Mr. Hawkins recommends the following as a convenient method of striking
involute teeth, in his edition of " Camus on the Teeth of Wheels," p. 166. Take
a thin board, or a plate of metal, and reduce its edge MX so as accurately to
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Let 5 be the point where the line EF intersects the involute

mn
;
then if the teeth on the two wheels are to be nearly of

the same thickness at their bases, bisect the line AJb in c
;
or

if they are to be of different thicknesses, divide the line Ab
in c in the same proportion*, and strike through the point c

an involute curve hg, similar to ef, but inclined in the oppo-
site direction. If the extremity^ of the tooth be then cut

off so that it may just clear the circumference of the circle

y*L, the true form of the pattern involute tooth will be
obtained/

There are two remarkable properties of involute teeth, by
the combination of which they are distinguished from teeth

of all other forms, and cceteris paribus rendered greatly pre-
ferable to all others. The lirst of these is, that any two
wheels having teeth of the involute form, and of the same

pitch,t will work correctly together, since the forms of the

teeth on any one sucli wheel are entirely independent of

those on the wheel which is destined to work with it (Art.

201.) Any two wheels with involute teeth so made to work

together will revolve precisely as they would by the actual

contact of two circles, whose radii may be found by divid-

ing the line joining their centres in the proportion of the

radii of the generating circles of the involutes. This pro-

perty involute teeth possess, however, in common with the

epicycloidal teeth of different wheels, all of which are struck

with the same generating circle (Art. 210.) The second no
less important property of involute teeth a property which

distinguishes them from teeth of all other forms is this,
that they work equally well, howeverfar the centres of the

coincide with the circular arc
-
JB

eE, and let a piece of thin

watch-spring OR, having two

projecting points upon it as

shown at P, and which is of a

width equal to the thickness of the plate, be fixed upon its edge by means of

a screw 0. Let the edge of the plate be then made to coincide with the arc

eE in such a position that, when the spring is stretched, the point P in it may
coincide with the point from which the tooth is to be struck

;
and the spring

being kept continually stretched, and wound or unwound from the circle, the

involute arc is thus to be described by the point P upon the face of the board
from which the pattern is to be cut.

* This rule is given by Mr. Hawkins (p. 170.); it can only be an approxima-
tion, but may be sufficiently near to the truth for practical purposes. It is to

be observed that the teeth may have their bases in any other circles than

those, /L and eE, from which the involutes are struck.

f The teeth being also of equal thicknesses at their bases, the method of

ensuring which condition has been explained above.
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wheels are removed asunder from one another / so that the

action of the teeth of two wheels is not impaired when
their axes are displaced by that wearing of their brasses or

collars, which soon results from a con-

tinued and a considerable strain. The
existence of this property will readily be

admitted, if we conceive AG and BH to

represent the generating circles o/bases
of the teeth, and these to be placed with
their centres Cj and C2 any distance

asunder, a band AB (p. 235., note) passing
round both, and a point T in this band

generating a curve mn, m' n' on the plane
of each of the circles as they are made to

revolve under it. It has been shown that

these curves mn and mr

n' will represent the faces of two
teeth which will work truly with one another

; moreover,
that these curves are respectively involutes of the two
circles AG and BH, and are therefore wholly independent
in respect to their forms of the distances of the centres of

the circles from one another, depending only on the dimen-

sions of the circles. Since then the circles would drive at

any distance correctly by means of the band
; since, more-

over, at every such distance they would be driven by the

curves mn and m'n' precisely as by the band
;
and since

these curves would in every such position be the same

curves, viz. involutes of the two circles, it follows that the

same involute curves inn and m'n' would drive the circles

correctly at whatever distances their centres were placed ;

and, therefore, that involute teeth would drive these wheels

correctly at whatever distances the axes of those wheels

were placed.

THE TEETH or A KAOK AND PINION.

212. To determine the pitch circle of the pinion. Let H
represent the distance through which the rack is to be

moved by each tooth of the pinion, and let these teeth be

N in number
;
then will the rack be moved through the

space N . H during one complete revolution of the wheel.

!N"ow the rack and pinion are to be driven by the action of

their teeth, as they would by the contact of the circum-
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ference of the pitch circle of the

pinion with the plane face of the

rack, so that the space moved through
by the rack during one complete
revolution of the pinion must pre-

cisely equal the circumference of the

pitch circle of the pinion. If, there-

fore we call R the radius of the

pitch circle of the pinion, then

213. To describe the teeth of the

pinion, those of the rack being

straight. The properties which have
been shown to belong to involute

teeth (Art. 201.) manifestly obtain,
however great may be the dimensions of the pitch circle

of their wheels, or whatever disproportion

may exist between them. Of two wheels
OF and OE with involute teeth which
work together, let then the radius of the

pitch circle of one OF become infinite, its

circumference will then become a straight
line represented by the face of a rack.

Whilst the radius C2
O of the pitch circle

OF thus becomes infinite, that C2
B of the

circle from which its involute teeth are

struck (bearing a constant ratio to the first)

will also become infinite, so that the invo-

lute m'n' will become a straight line* perpendicular to the
line AB given in position. The involute teeth on the

wheel OF will thus become straight teeth (see fig. 1.), hav-

ing their faces perpendicular to the line AB determined by
drawing through the point O a tangent to the circle AC,
from which the involute teeth of the pinion are struck. If

the circle AC from which the involute teeth of the pinion
are struck coincide with its pitch circle, the line AB becomes

* For it is evident that the extremity of a line of infinite length unwinding
itself from the circumference of a circle of infinite diameter will describe,

through a finite space, a straight line perpendicular to the circumference of
the circle. The idea of giving an oblique position to the straight faces of the
teeth of a rack appears first to have occurred to Professor Willis.
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parallel to the face of the rack, and the edges of the teeth

of the rack perpendicular to its face (fig. 2.).

Now, -the involute teeth of the one wheel have remained

unaltered, and the truth of their action with teeth of the
other wheel .has not been influenced by that change in the

dimensions of the pitch circle of the last, which has con-

verted it into a rack, and its curved into straight teeth.

Thus, then, it follows, that straight teeth upon a rack, work

truly with involute teeth upon a pinion. Indeed it is evi-

ct-) (2.)

dent, that if from the point of contact P (fig. 2.) of such an
involute tooth of the pinion with the straight tooth of a
rack we draw a straight line *PQ parallel to the face ab of

the rack, that straight line will be perpendicular to the

surfaces of both the teeth at their point of contact P, and
that being perpendicular to the face of the involute tooth,
it "will also touch the circle of which this tooth is the invo-

lute in the point A, at which the face ab of the rack would
touch that circle if they revolved by mutual contact. Thus,

then, the condition shown in Art. 199. to be necessary and
sufficient to the correct action of the teeth, namely, that a
line drawn from their point of contact, at any time, to the

point of contact of their pitch circles, is satisfied in respect
to these teeth. Divide, then, the circumference of the

pitch circle, determined as above (Art. 212.), into N equal
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parts, and describe (Art. 211.) a pattern involute tooth from
the circumference of the pitch circle, limiting the length of

the face of the tooth to a little more than the length 5P of

the involute curve generated by unwinding a length AP of

the flexible line equal to the distance H through which the
rack is to be moved by each tooth of the pinion. The

straight teeth of the rack are to be cut of the same length,
and the circumference of the pitch circle and the face ao of

the rack placed apart from one another by a little more
than this

length.
It is an objection to this last application of the involute

form of tooth for a pinion working with a rack, that the

point P of the straight tooth of the rack upon which it acts

is always the same, being determined by its intersection with
a line AP touching the pitch circle, and parallel to the face

of the rack. The objection does not apply to the preceding,
the case (fig. 1.) in which the straight faces of each tooth of

the rack are inclined to one another. By the continual

action upon a single point of the tooth of the rack, it is

liable to an excessive wearing away of its surface.

214. To describe the teeth of the pinion, the teeth of the rack

leing curved.

This may be done by giving to the face of the tooth of

the rack a cycloidal form, and making the face of the tooth

of the pinion an epicycloid, as will be apparent if we con-

K. ceive the diameter of the circle whose
centre is C (see fig. p. 236.) to become

infinite, the other two circles remain-

ing unaltered. Any finite portion of

the circumference of this infinite circle

will then become a straight line. Let
AE in the accompanying figure repre-
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sent such a portion, and let PQ and PR
represent, as

before, curves generated by a point P in the circle whose
centre is D, when all three circles revolve by their mutual
contact at A. Then are PR and PQ the, true forms of the
teeth which would drive the circles as they are driven by
their mutual contact at A (Art. 202). Moreover, the curve

PQ is the same (Art. 199.) as would be generated by the

point P in the circumference of APH
;

if that circle rolled

upon the circumference AQF, it is therefore an epicycloid /
and the curve PR is the same as would be generated by the

point P, if the circle APH rolled upon the circumference
or straight line AE, it is therefore a cycloid. Thus then it

appears, that after the teeth have passed the line of centres,
when the face of the tooth of the pinion is driving the flank

of the tooth of the rack, the former must have an epicy-
cloidal, and the latter a cycloidal form. In like manner, by
transferring the circle APH to the opposite side of AE, it

may be shown, that before the teeth have passed the line of

centres when the flank of the tooth of the pinion is driving
the face of the tooth of the wheel, the former must have a

hypocycloidal, and the latter a cycloidal form, the cycloid

having its curvature in opposite directions on the flank and
the face of the tooth. The generating circle will be of the
most convenient dimensions for the description of the teeth

when its diameter equals the radius of the pitch circle of
the pinion. The hypocycloidal flank of the tooth of the

pinion will then pass into a straight flank. The radius of
the pitch circle of the pinion is determined as in Art. 212.,
and the method of describing its teeth is explained in

Art. 208.

15. THE TEETH OF A WHEEL WORKING WITH A LANTERN OR
TRUNDLE.

In some descriptions of mill work the ordinary form of

the toothed wheel is replaced by a contrivance called a lan-

tern or trundle, formed by two circular discs, which are con-

nected with one another by cylindrical columns called

staves, engaging, like the teeth of a pinion, with the teeth

of a wheel which the lantern is intended to drive. This
combination is shown in the following figure.

It is evident that the teeth on the wheel which works with
the lantern have their shape determined by the cylindrical
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shape of the staves. Their forms may readily be found by
the method explained in Art. 200.

Having determined npon the dimensions of the staves in

reference to the strain they are to be subjected to, and upon
the diameters of the pitch circles of the lantern and wheel,
and also upon the pitch of the teeth

;
strike arcs AB and

AC of these circles, and set off upon them
the pitches A.a and A5 from the point of
contact A of the pitch circles (if the teeth

are first to come into contact in the line

of centres, if not, set them off from the

points behind the line of centres where
the teeth are first to come into contact).
Describe a circle #<?, having its centre in

AB, passing through #, and having its

diameter equal to that of the stave, and divide each of the

pitches Aa and A5 into the same number of equal parts

(say three). From the points of division A, a, /3 in the

pitch A#, measure the shortest distances to the circle #0, and
with these shortest distances, respectively, describe from the

points of division 7, <$ of the pitch A5, circular arcs inter-

secting one another
;
a curve ah touching all these circular

arcs will give the true face of the tooth (Art. 200.). The

opposite face of the tooth must be struck from similar cen-

tres, and the base of the tooth must be cut so far within the

pitch circle as to admit one half of the stave ae when that

stave passf*s the line of centres.
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216. THE RELATION BETWEEN TWO PRESSURES P
t
AND Pa

APPLIED TO TWO TOOTHED WHEELS IN THE STATE BORDER-
ING- UPON MOTION BY THE PREPONDERANCE OF P

a
.

Let the influence of the weights of the wheels be in the

first place neglected. Let B and C represent the centres of

the pitch circles of the wheels, A their point of contact, P
the point of contact of the driving and driven teeth at any
period of the motion, KP the direction of the whole
resultant pressure upon the teeth at their point of contact,
which resultant pressure is equal and opposite to the resist-

ance B- of the follower to the driver, BM and CN perpen-
diculars from the centres of the axes of the wheels upon IIP

;

and BD and CE upon the directions of P
l
and Pa .

p i5 p2
=radii of axes of wheels.

<p l5 <p2
=rlimiting angles of resistance between the axes of

the wheels and their bearings.

Then, since P
a
and B, applied to the wheel whose centre is
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B are in the state bordering upon motion by the preponder-
ance of Pj, and since a

t
and m^ are the perpendiculars on

the directions of these pressures respectively, we have (equa-
tion 158)

where L
x represents the length of the line DM joining the

feet of the perpendiculars BM and BD.

Again, since B. and P2 , applied to the wheel whose centre

is C, are in the state bordering upon motion by the yielding
of P3 (Art. 164.),

where L2 represents the distance NE between the feet of the

perpendiculars CE and GN. Eliminating B. between these

equations, we have

F.= (^H
'

.?

'

'k (238).

Now let it be observed, that the line AP, drawn from the

point of contact A of the pitch circles to the point of contact
P of the teeth is perpendicular to their surfaces at that point
P, whatever may be the forms of the teeth, provided that

they act truly with one another (Art. 199.) ; moreover, that
when the point of contact P has passed the line of centres,
as shown in the figure, that point is in the act of moving on
the driven surface Ppfrom the centre 0, or from P towards

p, so that the friction of that surface is exerted in the opposite
direction, or from p towards P

;
whence it follows that the

resultant of this friction, and the perpendicular resistance aP
of the driven tooth upon the driver, lias its direction rP
within the angle aPp and that it is inclined (Art. 141.) to the

perpendicular aP at an angle aPr equal to the limiting angle
of resistance. Now this resistance is evidently equal and

opposite to the resultant pressure upon the surfaces of the
teeth in the state bordering upon motion

;
whence it follows

that the angle EPA is equal to the limiting angle of resist-

ance between the surfaces of contact of the teeth. Let this

angle be represented by 9, and let AP=X. Also let the
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inclination PAC of AP to the line of centres BC be repre-
sented by 0. Through A draw An perpendicular to KP, and
sAt parallel to it. Then,

m
1
=EM=Kt+m==Et+An=BA sin. BArf+AP sin. APE-

Also BAz5=BOE=:PAC+APE=d+9 ;

/. mv r^ sin. (d+ 9)-f
X sin. 9 (239);

m,=CN=Cs-s^=Cs-An=CA sin. CAs-AP sin. APE.
But As is parallel to PE, therefore CAs=BOE=0+9;

/. ma=7*asin. (^4-9) X sin. 9 (240.).

Substituting these values of ra
x
and ra

a
in the preceding

equation,

-te\H
l

~\aj

. 9+
a,

Xsin.9 _?sin.93

217. In the preceding investigation the point of contact P
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of the teeth of the driving and driven wheels is supposed to

have passed the line of centres, or to be behind that line
;

let us now suppose it not to have passed the line of centres,
or to be before that line.

It is evident that in this case the point of contact P is ir

the act of moving upon the surface pPq of the driven tooth

towards the centre C, or from P towards
,
as in the other

case it isfrom the centre, or from P towards^. In this case,

therefore, the friction of the driven surface is exerted in the

direction qP ;
whence it follows, that in this state bordering

upon motion the direction of the resistance R of the driven

upon the driving tooth must lie on the other side of the

normal APQ, being inclined to it at an angle APN equal to

the limiting angle of resistance. Thus the inclination of B,

to the normal APQ is in both cases the same, but its position
in respect to that line is in the one case the reverse of its

position in the other case.*

The same construction being made as before,

m
1=BM=B+M;=:B +A^=BA. sin.BA+AP. sin. APO.
Also BA=BOK:=BAP APO=4 9 ;f

/. m
1
=r

1
sin. (6 <?)+* sin. <p,

m,=C'N=Cs-sN=Cs A.n=CA. sin. CAs AP. sin. APO.
But As is parallel to PN,

/. ma
=r

2 sin. (6 9)
X sin. 9.

Substituting these values of m
1
and ra

2
in equation (238),

^sin. (d 9)+Xsin. 9+ I
ijsin. <p 4

p _ /a,\ I
* . ;

x
~

fe/ r
a sin. (d 9) Xsin. 9 i^-^)sin. 92

\ ^2
'

This expression differs from the preceding (equation 241)
ily in the substitution of (d 9) foi

of the numerator and denominator.
only in the substitution of (d 9) for (d-f?) in the first terms

th

* Hence it follows, that when the point of contact is in the act of crossing
the line of centres, the direction of the resultant pressure R is passing from
one side to the other of the perpendicular APQ ;

and therefore that when the

point of contact is in the line of centres, the resultant pressure is perpendicu-
lar to that line, and the angle BOR a right angle ;

a condition which cannot
however be assumed to obtain approximately in respect to positions of any
point of contact exceedingly near to the line of centres.

f The angle 6 being here taken as before to represent the inclination BAP
of the line AP, joining the point of contact of the pitch circles with the point
of contact of the teeth, to the line of centres.
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Dividing numerator and denominator of the fraction in

the second member of that equation by sin. (0+ <p),
and

throwing out the factors r
l
and r

a ,
we have

X sin. 9+ J -

Xsin.9 +(^)sm. ?2

1
* a* '

r
2 sin. (0 + <p)
sin.

Now it is evident, that if in this fractional expression & 9
be substituted for $+<p the numerator will be increased and
the denominator diminished, so that the value of Pj corre-

sponding to any given value of P2 will be increased. Whence
it follows, that the resistance to the motion of the wheels by
the friction of the common surfaces of contact of their teeth

and of the bearings of their axes is greater when the contact

of their teeth takes place before than when it takes place,
at an equal angular distance, behind the line of centres a

principle confirmed by the experience of all practical me-
chanists.

218. To DETERMINE THE RELATION OF THE STATE BORDERING
UPON MOTION BETWEEN THE PRESSURE P

t
APPLIED TO THE

DRIVING WHEEL AND THE RESISTANCE P2 OPPOSED TO THE
MOTION OF THE DRIVEN WHEEL, THE WEIGHTS
WHEELS BEING TAKEN INTO THE ACCOUNT.

OF THE

Now let the influence of the weights Wl
and W

2 of the

two wheels be taken into the account. The pressures applied
to each wheel being now three in number instead of two, the

relations between P
x
and R, and P3 and K are determined

by equation (163) instead of equation (158). Substituting

"W, and W2 for P
3
in the two cases, we obtain, instead of

equations (236) and (237), the following,

-...(243);

in which equations M, and M, represent certain functions
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\

determined (Art. 166.) by the inclinations of the pressures
P

x
and P2

to the vertical.

Eliminating B, between the above equations, neglecting
terms above the first dimensions in sin. 9, and sin. 92 ,

and

multiplying by a^

,-^sin. 9. } -PA I mt+~i sin. ?, J
=

#2 I d>!

M
3
W

3

"Xpi sm. 9J+V mJ* sm - ^

Substituting the values ofm
l
and wa from equations (239)

and (240), and neglecting the products of sin. 9, sin. 9 1
and

sin. 99 ,
we obtain

x sin. 9-- sin. 93 \

n. 9+- sin. 9, =

A /-..sn.

sn.
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(245.)

M
Now (Art. 166.) -=m

l
cos. 'js+ flj

cos.
,
where

13 repre-
i

eents the inclination W,FP 1
of "P

l
to the vertical, and <

a3 the

inclination ErF of E to the vertical.*

Let the inclination W,BD of the perpendicular upon Px to

the vertical be represented by a
1?
that angle being so mea-

sured that the pressure P x may tend to increase it
;
let a, re-

present, in like manner, the inclination EGG of CE to the

vertical; and let (3 represent the inclination ABr of the

line of centred to the vertical,

.-. .

Ii
=W

l
FP

l
=W

1
BD-BDF=

1
-
J

i
23=E7-F=BOE OBr=d+9 ft ;

M
V l=m

l
sin. aj+flj cos. (0+9 /3).a

\

Similarly ?=ra
a cos. PaGH+ 2 cos. E^.f Now

;
and E^W^rf ErF, and

ErF was before shown to be equal to (04-9 (3

M
V -= wa sin. aa a cos. (4+ 9 p)

Substituting the values of m
:
and wa ,

from equations (239)
and (240),

M
=r

l
sin. (0+9) sin. a

t+X sm. a! sin. 9+
a,

M
/*.,

sin. (0 + 9) sin. aa+ A. sin. aa sin. 9

a, cos. (4+9

* See note, p. 172.

j-
It is to be observed that the direction of the arrow in the figure repre-

sents that of the resistance opposed by the driven wheel to the motion of the

driving wheel, so that the direction of the pressure of the driving upon the

driven wheel is opposite to that of the arrow.
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Let it be supposed that the distances DM and EN", repre-
sented by L, and L

2 ,
are of finite dimensions, the directions

of neither of the pressures P 1
and P

2 approaching to coinci-

dence with the direction of R, a supposition which has been

virtually made in deducing equation (163) from equation

(161), on the former of which equations, equations (243) de-

pend. And let it be observed that the terms involving sin. 9
in the above expressions (equations 246) will be of two di-

mensions in <p 1? 92 and 9, when substituted in equation (245),
and may therefore be neglected. Moreover, that in all cases

the direction of HP is BO nearly perpendicular to the line

of centres BC, that in those terms of equation (245), which
are multiplied by sin. <p x

and sin. 9,, the angle$+ 9, or BOK,

may be asssumed= -
; any error which that supposition in-

2i

volves, exceedingly small in itself, being rendered exceed-

ingly less by that multiplication. Equations (246> will then
become

M, M,
*=r. sin. c^-htfj sm. p, -= r3 sm. a

a
a

z sm. p.
a, a,

Substituting these values in the first factor of the second

member of- equation (245), and representing that factor byNr we have

.rjs'j^r^ (/\ sin. a.-i-a, sin.
(3)

sin. 9,
-L-i

w
-T-* ^iPafo sin. a

a -f- a, sin. /3) sin. 9, ;

^2

and dividing by r^

lsr*=-p

-i(sin. ,+- sin. /3)sin. 9,-

i(sin.a,^^ sin. /3) sin. 9, . . . . ( 247).

* If the direction of PI be that of a tangent at the point of contact A of

the wheels, a case of frequent occurrence, the value of In ^vanishing,
that of N

would appear to become infinite in this expression. The difficulty will however

be removed, if we consider that when aj becomes, as in this case, equal to rif

and the point M is supposed to coincide with A, Lj becomes a chord of the pitch
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Substituting NT/, for the factor, which it represents in

equation (245), we have

PAto sin. (d+9) x sin. 9 L
pasin. 9,} PAK sin.

X sin. 9+ sin. 9,} ='Nr1
r.

t
sin. (6 +9) (248).

Ob

Solving this equation in respect to P15

X sin. 9 H sin. 9 t

1 +

X sin. 9+ sin. 9.
a,

1
TV sin. (6+ 9)

a,

X sin. 9 H sin. 9a
Cbn

*

2 sin.

"Whence, performing actual division by the denominators of

the fractions in the second member of the equation, and

omitting terms of two dimensions in sin. 9 15
sin. <pa ,

sin. 9

(observing that !N" is already of one dimension in those vari-

ables), we have

r

circle, and is therefore represented by 2ri sin. $DBA, or 2ra sin. \ (ai-f-/?) s

sin. a\-\ - sin. 3
that in. 2 sin. cos. !(<Zi-{-/?)_

2r 1 sin. 2fi sin.

cos.

If, therefore, we take the angle ai= (3, so as to give to PI the direction of

a tangent at A, this expression will assume the value, cos. 0, or- ; so that
TI r

in this case

sin. 0i ein. /? sin.
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cosec. (4+<puPa+ (249).

la this expression it is assumed that the contact of the teeth

is behind the line of centres.

219. THE MODULUS OF A SYSTEM OF TWO TOOTHED WHEELS.

Let n^ and n^ represent the numbers of teeth in the

driving and driven wheels respectively, and let it be ob-

served that these number are one to another as the radii of

the pitch circles of the wheels
; then, multiplying both sides

v
of equation (249) by a

t ,
we shall obtain

cosec.

Now let A4> represent an exceedingly small increment of

the angle 4>, through which the driven wheel is supposed to

have revolved, after the point of contact P has passed the

line of centres
;
and let it be observed that the first member

M
/\-j. flf*

of the above equation is equal to PA -f ,
and that A-^

r
l A4 TI

represents the angle described by the driving wheel (Art.

204.), whilst the driven wheel describes the angle A^;

whence it follows (Art. 50.) that P^J A^l represents the
W

,
/

work AlJ
l
done by the driving pressure P1? whilst this angle

A^ is described by the driven wheel,

cosec.

Let now A-s^ be conceived infinitely small, so that the first

member of the above equation may become the differential

co-efficient of U,, in respect to 4^. Let the equation, then,
be integrated between the limits and 4/ ;

P
a , L,, and L2

.

and therefore ]$" (equation 247) being conceived to remain



OF TWO TOOTHED WHEELS. 269

constant, whilst the angle 4> is described; we shall then

obtain the equation

cosec. (6 +<p) ^+^T . S ____ (250),

where S is taken to represent the arc r^ described by the

pitch circle of the driven wheel, and therefore by that of the

driving wheel also, whilst the former revolves through the

angle 4/.

220. THE MODULUS OF A SYSTEM OF TWO TOOTHED WHEELS,
THE NUMBER OF TEETH ON THE DRIVEN WHEEL BEING CON-

SIDERABLE, AND THE WEIGHTS OF THE WHEELS BEING TAKEN
INTO ACCOUNT.

It is evident that the space traversed by the point of con-

tact of two teeth on the face of either of them is, in this case,
small as compared with the radius of its pitch circle, and
that the direction of the resultant pressure R (see ^(7. p. 259.)

upon the teeth is very nearly perpendicular to the line 01

centres BC, whatever may be the particular forms of the

teeth; provided only that they be of such forms as will

cause them to act truly with one another. In this case,

therefore, the angle BOK represented by d +9 is very nearly
if

equal to -, and cosec. (d+ <p)=l.
2i

Since, moreover, RP is very nearly perpendicular to the

line of centres at A, and that the point of contact P of the

teeth deviates but little from that line, it is evident that the

line AP represented by X differs but little from an arc of

the pitch circle of the driven wheel, and that it differs the

less as the supposition made at the head of this article more

nearly obtains. Let us suppose -^ to represent the angle
subtended by this arc at the centre C of the pitch circle of

the driven wheel, then will the arc itself be represented by
TV!', and therefore ^=r^ very nearly. Substituting this

value of X in equation (250), observing that cosec.

and that (equation 227), and integrating,

, I'iPi , I'a
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..... (251).

But the driven or working pressure P2 being supposed tc

remain constant, whilst any two given teeth are in action,
P3^24^ represents the work u

9 yielded by that pressure whilst

those teeth are in contact : also r^ represents the space S,
described by the circumference of the pitch circle of either

wheel whilst this angle is described. Now let 4/ be con-

ceived to represent the angle subtended by the pitch of one
of the teeth of the driven wheel, these teeth being supposed

2*
to act only behind the line of centres, then ^= ,

ny repre-

senting the number of teeth on the driven wheel, and J^

:. Ua
= J 1+*(-+-) sin. 9+ sin. 9,+ sin. <pa

1

| \njnj ay, a,r9

a

(

U.+ N. S ..... (252),

which relation between the work done at the moving and

working points, whilst any two given teeth are in contact, is

evidently also the relation between the work similarly done,
whilst any given number of teeth are in contact. It is there-

fore the MODULUS of any system of two toothed wheels, the

numbers of whose teeth are considerable.

221. THE MODULUS OF A SYSTEM OF TWO WHEELS WITH INVO-

LUTE TEETH OF ANY NUMBEES AND DIMENSIONS.

The locus of the points of contact of the teeth has been
shown (Art. 201.) to be in this case

a straight line DE, which passes

through the point of contact A of

the pitch circles, and touches the

circles (EF and DG) from which the

involutes are struck. Let P repre-
sent any position of this point of

contact, then is AP measured along
the given line DE the distance re-

presented by X in Art. 216., and the

angle CAD, which is in this case

constant, is that represented by 6. Since, moreover, the

point of contact of the teeth moves precisely as a point P
upon a flexible cord DE; unwinding from the circle EF and

winding upon DG, would (see note, p. 238.), it is evident
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that the distance AP, being that which such a point would
traverse whilst the pitch circle AH revolved through a cer-

tain angle 4^ measured from the line of centres is precisely

equal to the length of string which would wind upon DU
whilst this angle is described by it; or to the arc of that

circle which subtends the angle 4>. If, therefore, we repre-

sent the angle ACD by *j,
so that CD CA cos. ACD=ra

cos.
*),

then X=?"24' cos - i- Substituting this value for X in

equation (249), and observing that + <p
= -

*j -f <p
= -

) <p), and that =
,
we have

n

..... (253);

from which equation we obtain by the same steps as in

Art. 219, observing that n is constant,

IL \

(

)n
cos. v\ sn.

sec. ^- (254),

which is the modulus of a system of two wheels having any
given numbers of involute teeth.

222. THE ESTVOLTJTE TOOTH OF LEAST RESISTANCE.

It is evident that the value of Uj in equation (254), or of

the work which must be done

upon the driving wheel to cause

a given amount U2 to be yielded

by the driven wheel is dependent
for its amount upon the value of

the co-efficient of U2
in the

second member of that equation ;

and that this co-efficient, again, is

dependent for its value (other

things being the same) upon the

value of *j representing the angle

ACD, or its equal the angle DAI,



272 THE INVOLUTE TOOTH OF LEAST RESISTANCE.

which the tangent DE to the circles from which the invo-

lutes are struck makes with a perpendicular AI to the line

of centres. Moreover, that the co-efficient N not involving
this factor ij (equation 247), the variation of the value of

[Ju so far as this angle is concerned, is wholly involved in

the corresponding variation of the co-efficient of U2 and
becomes a minimum with it

;
so that the value of i which

gives to the function of f\ represented by this co-efficient, its

minimum value, is the value of it which satisfies the condi-

tion of the greatest economy of power, and determines that

inclination DAI of the tangent DE to the perpendicular to

the line of centres, and those values, therefore, of the radii

CD and BE of the circles whence the involutes are struck,
which correspond to the tooth of least resistance.

To determine the value of *\ which corresponds to a mini-

mum value of this co-efficient, let the latter be represented

by u
; then, for the required value of

*j,

du
-r=0, -r

an

Let * (- +-}=A, ^ii sin. 9,+ sin. 93
=B

;

Vf*j nj
' a^ a^

cos. ^ sin. 9+ B) sec. (i 9);

sec. (19)4-A sin. 9 cos. ij sec. (19);

.*. -y- =B sec. (q 9) tan. (n 9) A sin. 9 {
sin. v sec.

(*) 9}

cos. y tan. (>i9) sec. (^9)} ;

. /.
^r
=B sec. \v 9) sin.

(*j 9)

A sin. 9 sec. X1
? 9) {sin. ^ cos. (q 9) cos. 3 sin.

(>) -9)} ;

.'.

j-=sec. '(*) 9){B sin.
(>) <p)

A sin. '9} ..... (255).

In order, therefore, that -r-may vanish for any value of

*i, one of the factors which compose the second member of

the above equation must vanish for that value of >j
;
but

this can never be the case in respect to the first factor, for

the least value of the square of the secant of an arc is the

square of the radius. If, therefore, the function u admit of
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a minimum value, the second factor of the above equation
vanishes when it attains that value

;
and the corresponding

value of y is determined by the equation,

B sin.
(ij 9) A sin.

a9=0 (256).

or by sin.
(*] <p)= ^-sim

"9 or byi=<p+sin. (
-g-sin.

2

9J;

or substituting the values of A and: B,

1 1

(257)..yj=9+sn.
'sin. 9r+ sin. 92

Now the function u admits of a minimum, to> which this

value of v corresponds, provided that when, substituted in

-3-5 this value of *} gives to that second differential co-effi-

cient of u in respect to n & positive value..

Differentiating equation (255),, we have-

5=2 sec. "(q 9).
tan-, (i 9){Bsin. (>) 9)-

A sin., "9} +B;sec.
a

(*i ?) cos. (*j 9)

But the proposed value- of i (equation 256) has been
shown to be that which,, being substituted in the factor {B
sin.

(>) 9) A sin.
a

9}> will cause it to vanish, and therefore,

with it, the whole of the first term of the value of -y-j : it
Ojf\

corresponds, therefore, to a minimum, if it gives to the
second term B sec. \y 9) cos.

(11 9) a positive value
; or,

since sec.
3

(^--9) is essentially positive, and B does not
involve

*),
if it gives to cos. fy 9) a positive value, or if

if
~~1 /A \

if A
i 9 < or if sm - sin -

a

<P < or if sin.
8

9<1 ;
or if

A sin.
3

9<B ;
or if

sin -

This condition being satisfied, the value of tj. determined
18
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by equation (257), corresponds to a minimum, and deter-

mines the INVOLUTE TOOTH OF LEAST RESISTANCE.*

223. To DETERMINE IN WHAT PROPORTION THE ANGLE OF-

CONTACT OF EACH TOOTH SHOULD BE DIVIDED BY THE LINE

OF CENTRES
;
OR THROUGH HOW MUCH OF ITS PITCH EACH

TOOTH SHOULD DRIVE BEFORE AND BEHIND THE LINE OF

CENTRES, THAT THE WORK EXPENDED UPON FRICTION MAY
BE THE LEAST POSSIBLE.

Let the proportion in which the angle of contact of each
tooth is divided by the line of centres be represented by a?,

2*
so that x may represent the angular distance from the line

n
y

of centres of a line drawn from the centre of the driven
wheel to the point of contact of the teeth when they first

2*
come into action before the line of centres, and (1 a?) n

i

the corresponding angular distance behind the line of centres

when they pass out of contact
;
and let it be observed that,

on this supposition, if U
2 represent as before the work

yielded by the driven wheel during the contact of any two

teeth, a?Ut will represent the portion of that work done

before, and (1 c)(J2 that done behind, the line of centres.

Then proceeding in respect to equation (253) by the same
method as was used in deducing from that equation the

modulus (Equation 254), but integrating first between the

limits and x
,
in order to determine the work u. done by<

the driving pressure before the point of contact passes the

2*
line of centres, and then between the limits and (1 x) n

*

to determine the work u^ done after the point of contact has

passed the line of centres
; observing moreover, that in the

former case 9 is to be substituted in sec. (779) for 9 (Art.

217.), we have

* It may easily be shown by eliminating 77 between equations (254) and

(256) that the modulus corresponding to this condition of the greatest economy
of power, where involute teeth are used, is represented by the formula

U1=
|
l-j-*A sin. 20-f-(B

2-A2
sin. I U2+NS.
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-+ -)cos *)sin 4-^sm
n, nj

'

a,r

--^sin. <p2}sec. (11+9)

Or assuming

*( + /cos. v sin. 9=0, and sin. <pa+ -2-i sin. <pa
=i

\, V a^ V2

s
1 representing the space described by the pitch circle of

either wheel before the line of centres is passed ; similarly,

sec. 11-

Adding these equations together, and representing by Uj the
whole work t^H-if, done by the driving pressure during the
contact of the teeth, and by S the whole space described by
the circumference of either pitch circle, we have

sec.

. . (259)

by which equation is determined the modulus of two wheels
driven by involute teeth, when the contact takes place partly
before and partly behind the line of centres.

Let the portion of the work U^, which is expended upon
the friction of the teeth be represented by u. Then

u=.
I
(ax* -f- lx) sec. (q -f 9)+

the value of
a?, which gives to this function its mini-

mum, and which therefore determines that division of the

driving arc which corresponds to the greatest economy of

power, is evidently the value which satisfies the condition

^-0
dx~ dx*

But differentiating and reducing
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~r=
\ 2##{sec. (>j+9)+ sec. (n 9)} -f

5 {sec. (*i + 9) sec. Oi <p)}
2# sec.

(?) 9)
j-

Ua

cPu

Whence it appears that the second condition is always satis-

fied, and that the first condition is satisfied by that value of

a?,
which is determined by the equation

(q-f 9)+sec. (^9)} +5 {sec. (*]-f 9) sec. (^9)}

Whence we obtain by transposition and reduction

#=-
j
1 (in I tan. if] tan. </>

j-

.

So that the condition of the greatest economy of power is

satisfied in respect to involute teeth, when the teeth first

come into contact before the line of centres at a point whose

angular distance from it is less than one half the angle sub-
tended by the pitch by that fractional part of the last-men-

tioned angle, which is represented by the formula
-Jjl-j

I

tan. TJ tan. 9, or substituting for J and a their values by the
formula

1

2
"

i , a^i ,^

~/l 1\~~ r
tan ' ^ tan * 9 ' ^260)-

tfi
| icos.^ sin.

That division of the angle of contact of any two teeth by
the line of centres, which is consistent with the greatest

economy of power, is always, therefore, an unequal division,
the less portion being that which lies before the line of cen-

tres
;
and its fractional defect from one half the angle of con-

tact, as also the fractional excess of the greater portion above
one half that angle, is in every case represented by the above

formula, and is therefore dependent upon the dimensions of

the wheels, the forms and numbers of the teeth, and the cir-

cumstances under which the driving and working pressures
are applied to them.*

* The division of the arc of contact which corresponds to the greatest eco-

nomy of power in epicycloidal teeth, may be determined by precisely the same
steps.
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224. THE MODULUS OF A SYSTEM OF TWO WHEELS DRIVEN BY
EPIOYCLOIDAL TEETH.

The locus of the point of contact P of any two such teeth

is evidently the generating circle APH of

the epicycloidal face of one of the teeth, and
the hypocycloidal flank of the other (Art.

202.) ;
for it has been shown (Art. 199.),

that if the pitch circles of the wheel and the

generating circle APH of the teeth be con-

ceived to revolve about fixed centres B, C,
D by their mutual contact at A, then will a

point P in the circumference of the last-men-

tioned circle move at the same time upon
the surfaces of both the teeth which are in

contact, and therefore always coincide with their point of

contact, so that the distance AP of the point of contact P of
the teeth from A, which distance is represented in equation
(250) by X, is in this case the chord of the arc AP, which
the generating circle, if it revolved by its contact with
the pitch circles, would have described, whilst each of the

pitch circles revolved through a certain angle measured
from the line of centres. Let the angle which the driven
wheel (whose centre is C) describes between the period
when the point of contact P of the teeth passes the line of

centres, and that when it reaches the position shown in the

figure be represented as before by -^, the arc of the pitch
circle of that wheel which passes over the point A during that

period will then be represented by r^. ~Now the generating
circle APH having revolved in contact with this pitch circle,
an equal arc of that circle will have passed over the pointA ;

whence it follows that the arc AP=r24' ;
and that if the radius

of the generating circle be represented by r, then the angle
M

ADP subtended by the arc AP is represented by ^, or

7*

by 2^, if 20 be taken to represent the ratio of the radius

of the pi tcli circle of the driven wheel to the radius of the

generating circle. Now the chord AP=2AD sin. ADP;
/Y*

therefore \=2r sin. e-^ sin. e^. Substituting this value
C?

of X in equation (250) ; observing, moreover, that the angle
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PAD represented by 6 in that equation is equal to--
-J

2

ADP, or to
^ e\, and that the whole angle 4- through

which the driven wheel is made to revolve by the contact of

each of its teeth is represented by ,
we have

sn-

sn.<p2 }sec. <-<
tt-fi.

or, assuming Lx
and L

2 to remain constant during the con-

tact of any two teeth representing the constant 1 -f -^-sin.tpj -f
t
1
r

l

^sin. 9a by A, and observing that =
,

27T 2r

sn. e> sec,11,=?^
j
A / sec. (e-\> <p)^J/H (lH

^J
sin. 9/ si

o
'

o

Now the general integral, / sec. (^ 9)<^4
/

5
r

1 /*- / sec. (e^ $)d(e\ 0) being represented* by the function
17

1 /^cos.(^-0)c?(

~2e J 1+sin. (cV~

rcos.Wtydieiit) 1. ( . . . ,
,

.. ) 1.
I v y-1/. --^'rr: lo^ ^ 14- Sin. (ei/> 0) f log.J 1 sin. (V-0) 2e e ' M 2e

6

, , v I 1, ( 1+sin. (eV-0) ) i_
1 sin. (e^fy) \ -log. < -M e

b
e ( 1 sin.

(ei/> 0) )
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-log. tan. \ 7+4(^0) r >
its definite integral between the

6 e (
* )

limits and has for its expression,

ff)

tan. (--

27T

s* 74 y 2

Also/ sec.(^ 9) &in.e^d^==/ sec.(^ 9) sin. {(^9) +9} d\>

o o

27T

^^Ti^

=/sec. (e-^ 9) {sin. (6^9) cos. 9-f-cos. (e-^ 9) sin.

o

27T

/T2/2jcos.
9 tan. (e-^ 9)+ sin. 9}^

o

27T

"1 y^ ^*2
' ^^

= -cos. 9/ tan. (^9) ^ (^4
/

9)+ sin. 9.

Now the general integral/ tan. (0^9) <f(e^ 9) has for

its expression log. g
cos. (^9).* Taking its definite inte-

gral between the limits and
,
we have, therefore,

2
/
2^

\

/ 1 cos-\
-

~V) 2*
sec. (e^ 9) sin. #4'^= cos.9loff. _

x n* '

H-- sin.9.
e /^rka m OT.COS. 9

1*1., f JTTi ^Lxl
2 sin.

-j ~~rh (eipd) C cos.
)

- h(ey<l> f j 2
* , i ^* ' ^4
-Ion.

(
2 sin.

| j_i(^- J
cos.

| J



280 THE MODULUS OF A SYSTEM OF TWO WHEELS

Substituting these expressions in the modulus, representing

- - by 9', and observing that if Ua represent the work
4: 2

yielded by the driven wheel during the action of each tooth,

then Pa
aa.?5=Ua ,

so that Paaa=??2l?, we have

'*
cos. 9

. (261).

cos. 9

OOS/^m^ ( 20* ) 26*
JSTow log. __V?___/= log.

e ]
l+tan.--tan.9

[

cos.--=
e

cos. 9
a 2

log. cos. +log.
jl
+ tan.

tan.9[=log.
cos. +

tan. -tan. 9 tan.
a

. tan.
a

9 + &c. Substituting this

expression in the preceding equation, and neglecting terms

above the first dimension in tan. 9 and sin. 9,

cos. lJa+NS (262).
26*

225. If the radius r of the generating circle be equal to

one half the radius r^ of the pitch circle of the driven wheel,

according to the method generally adopted by mechanics

(Art. 203.), then e=^= J =1.n *
r r

In this case, therefore that is, where the flanks of the

driven wheel are straight (Art. 210.) the modulus becomes

. cos.-^
9

.

2*
(

6 * tan. 9 \ n

(263).
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226. Substituting (in equation 262.) for 9' its value - __ -
4: 2

lp
g-. tn! ' =log'<*** tan.U-i

If, therefore, we assume the teeth in the driven wheel to

be so numerous, or n^ to be so great a number, that the third

power and all higher powers of tan. I- -\ may be ne-

\n^ 2/

glected as compared with its first power, and if we neglect

powers of tan. - above the second,
2

which expression becomes if we suppose the two arcs

which enter into it to be so small as to equal their respec-
tive tangents.

!

Again, log.g cos. =
%\ J very nearly.*

* For assume log.e cos. x=a l x*-}-a<ix*-\-a*x*-+- . . . .
;
then differentiating,

tan. z=2a 1aH-4a2o;
3
4-6a8z

6
-}- ..... ;

2
but (Miller, Diff. Cal. p. 95.) tan. x= x $x* -x6 ---- ; equating,

therefore, the co-efficients of these identical series, we have

, ,

3

x* x* 2x
...log . COS.*=_T______
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Substituting these values in equation (262), and perform-

ing actual multiplication by the factor --2
-, we have

-i + -)sin. 29n
l nj

or substituting for A its value
;
and assuming -J-

sin. 2<p=
sin. 9, since 9 is exceedingly small,

n.<p U,+NS ..... (264),

which is the modulus of a wheel and pinion having epicy-
cloidal teeth, the number of teeth 7i

2
in the driven wheel

being considerable (see equation 252).
It is evident that the value of Uj in the modulus (equa-

tion 261), admits of a minimum in respect to the value of /
there is, therefore, a given relation of the radius of the

generating circle of the driving, to that of the driven wheel,
which relation being observed in striking the epicycloidal
faces and the hypocycloidal flanks of the teeth of two wheels
destined to work with one another, those wheels will work
with a greater economy of power than they would under any
other epicycloidal forms of their teeth. This value of e may
be determined by assuming the differential co-efficient of the

co-efficient of U2
in equation (261) equal to zero, and solving

the resulting transcendental equation by the method of

approximation.

227. THE MODULUS OF THE BACK AND PINION.

If the radius r9 of the pitch circle of the driven wheel be

supposed infinite (Art. 213.), that wheel becomes a rack, and
the radius r

l
of the driving wheel remaining of finite dimen-

sions, the two constitute a rack and pinion. To determine
the modulus of the rack and pinion in the case of teeth of

any form, the number upon the pinion being great, or in

the case of involute teeth and epicycloidal teeth of any
number and dimensions, we have only to give to r^ an
infinite value in the moduli already determined in respect
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to these several conditions. But it is to be observed in

respect to epicycloidal teeth, that n^ becomes infinite with
v

?* whilst the ratio remains finite, and retains its equalityni

to the ratio
^ (equation 227), so

that^= -^ =*^.=^ ;

T
if we represent the ratio by 2^. Making n^ and r

a
infinite

in each of the equations (252), (254:), and (261), and sub-

P P

stituting for in equation (262) ;
we have

1. For the modulus of the rack and pinion when the teeth

are very small, whatever may be their forms, provided that

they work truly.

'sin. 9x+ -sm. 9 ! U
a+NS ..... (265).

^i^"i ^i

2. For the modulus of a rack and pinion, with involute

teeth of any dimensions (see^. 1. p. 255),

11!= ] 1+ I cos. ?? sin. <H sin. 0J sec.
(rj <j>) [

U3+
(. \W'1 Gbfl*^ I

JSTS . . (266).

3. For the modulus of the rack and pinion, with cycloidal
and epicycloidal teeth respectively (equation 261),

.

tan. 9'

20j cos. 9 )

In each of which cases the value of N" is determined by
making r* infinite in equation (24:7).

2)I
(z
+^ (! +i)4 (1

+
l)

= i., becau8e

e is infinite. The friction of the rack upon its guides is not taken into account
in the above equations.



284 CONICAL WHEELS.

CONICAL OB BEVIL WHEELS.

228. These wheels are used to communicate a motion of

rotation to any given axis from another, inclined to the first

at any angle.
Let AF be an axis to which a motion of rotation is to be

communicated from another axis AE
inclined to the first at any angle EAF,
by means of bevil wheels.

Divide the angle EAF by the straight
line AD, so that DO and DN, perpen-
diculars from any point D in AD upon
AE and AF respectively, may be to

one another as the numbers of teeth

which it is required to place upon the

two wheels.*

Suppose a cone to be generated by the revolution of the

line AD about AE, and another by the revolution of the

line AD about AF. Then if these cones were made to

revolve in contact about the fixed axes AE and AF, their

surfaces would roll upon one another along their whole line

of contact DA, so that no part of the surface of one would
slide upon that of the other, and thus the whole surface

of. the one cone, which passes in a given time over the line

of contact AD, be equal to the whole surface of the other,
which passes over that line in the same time. For it is

evident that if n
v
times the circumference of the circle DP

be equal to n^ times that of the circle DI and these circles

be conceived to revolve in contact carrying the cones with

them, whilst the cone DAP makes n^ revolutions, the cone

* This division of the angle EAF may be made as follows : Draw ST and
UW from any points S and U in the straight lines AE and AF at right angles

to those lines respectively, and having their

lengths in the ratio of the numbers of teeth

which it is required to place upon the two wheels
;

and through the extremities T and W of these

lines draw TD and WD parallel to AE and AF
respectively, and meeting in D. A straight line

drawn from A through D will then make the

required division of the angle ;
for if DO and

DN be drawn perpendicular to AE and AF, they
will evidently be equal to UW and ST, and there-

fore in the required proportion of the numbers
of the teeth

; moreover, any other two lines

drawn perpendicular to AE and AF from any
other point in AD will manifestly be in the same proportion as F*0 and DN.
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DAI will make n^ revolutions; so that whilst any other

circle GH of the one cone makes n^ revolutions, the corre-

sponding circle HK of the other cone will make n^ revolu-

tions: but n^ times the circumference of the circle GH
is equal to n^ times that of the circle HK, for the diameters
of these circles, and therefore their circumferences, are to

one another (by similar triangles) in the same proportion as

the diameters and the circumferences of the circles DP and
DI. Since, then, whilst the cones make n

v
and n^ revolutions

respectively, the circles HG and HK are carried through n
l

and n^ revolutions respectively, and that n^ times the circum-

ference of HG is equal to n^ times that of HK, therefore

the circles HG and HK roll in contact through the whole of

that space, nowhere sliding upon one another. And the
same is true of any other corresponding circles on the cones

;

whence it follows that their whole surfaces are made to roll

upon one another by their mutual contact, no two parts

being made to slide upon one another by the rolling of the
rest.

The rotation of the one axis might therefore be communi-
cated to the other by the rolling of two such cones in con-

tact, the surface of the one cone carrying with it the surface

of the other, along the line of contact AD, by reason of the
mutual friction of their surfaces, supposing that they could
be so pressed upon one another as to produce a friction equal
to the pressure under which the motion is communicated, or

the work transferred. In such a case, the angular velocities

of the two axes would evidently be to one another (equation

227) inversely, as the circumferences of any two correspond-

ing circles DP and DI upon the cones, or inversely as their

radii ND and OD, that is (by construction) inversely as the
numbers and teeth which it is supposed to cut upon the

wheels.

When, however, any considerable pressure accompanies
the motion to be communicated, the friction of two such
cones becomes insufficient, and it becomes necessary to

transfer it by the intervention of bevil teeth. It is the cha-

racteristic property of these teeth that they cause the motion
to be transferred by their successive contact, precisely as it

would by the continued contact of the surfaces of the
cones.



286 CONICAL WIIICKLS.

229. To describe the teeth of bevil wheels.*

From D let FDE be wrawn at right angles to AD, inter-

secting the axes AE and AF of the two cones in E and F
;

suppose conical surfaces to be generated by the revolution

of the lines DE and DF about AE and AF respectively ;

and let these conical surfaces be truncated by planes LM
and XY respectively perpendicular to their axes AE and

AF, leaving the distances DL and DY about equal to the

depths which it is proposed to assign to the teeth. Let now
the conical surface LDPM be conceived to be developed
upon a plane perpendicular to AD, and passing through the

point D, and let the conical surface XIDY be in like

manner developed, and upon the same plane. When thus

developed, these conical surfaces will have be-

come the plane surfaces of two segmental annuli

l&Ppm and IXa^f, whose centres are in the

points E and F of the axes AE and AF, and
which touch one another in the point D of the

line of contact AD of the cones.

Let now plane or spur teeth be struck upon
the circles Pj? and K, such as would cause them

* The method here given appears first to have been published by Mr. Tred-

gold in his edition of Buchanan's Essay on Mill-work, 1823, p. 103.

f The lines MP and pm in the development, coincided upon the cone, as also

the lines IX and ix; the other letters upon the development in the above
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to drive one another as they would be driven by theii

mutual contact
;
that is, let these circles Yp and Ii be taken

as the pitch circles of such teeth, and let the teeth be

described, by any of the methods before explained, so that

they may drive one another correctly. Let, moreover, their

pitches be such, that there may be placed as many such
teeth on the circumference P> as there are to be teeth

upon the bevil wheel HP, and as many on Ii as upon the

wheel III.

Having struck upon a flexible surface as many of the first

teeth as are necessary to constitute a pattern, apply it to

the conical surface DLMP, and trace off the teetli from it

upon tli at surface, and proceed in the same manner with the

surface DIXY.
Take DH equal to the proposed lengths of the teeth, draw

ef through H perpendicular to AD, and terminate the wheels
at their lesser extremities by concave surfaces HGmZ and

HKxy described in the same way as the convex surfaces

which form their greater extremities. Proceed, moreover,
in the construction of pattern teeth precisely in the same

way in respect to those surfaces as the other
;
and trace out

the teeth from these patterns on the lesser extremities as on
the greater, taking care that any two similar points in the

teetli traced upon the greater and lesser extremities shall lie

in the same straight line passing through A. The pattern
teeth thus traced upon the two extremities of the wheels are

the extreme boundaries or edges of the teeth to be placed
upon them, and are a sufficient guide to the workman in

cutting them.

230. To prove that teeth thus constructed will work truly
with one another.

It is evident that if two exceedingly thin wheels had been
taken in a plane perpendicular to AD (fig. p. 286.) passing

figure represent points which are identical with those shown by the game let-

ters in the preceding figure. In that figure the conical surfaces are shown,

developed, not in a plane perpendicular to AD, but in the plane which contains
that line and the lines AE and AF, and which is perpendicular to the last-men-

tioned plane. It is evidently unnecessary, in the construction of the pattern
teeth, actually to develope the conical extremities of the wheels as above
described

;
we have only to determine the lengths of the radii DE and DF by

construction, and with them to describe two arcs, Pjo, It, for the pitch circles

of the teeth, and to set off the pitches upon them of the same lengths as the

pitches upon the circles DP and DI, which last are determined by the numbeifl
of teeth required to be cut upon the wheels respectively.
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through the point D, and having their centres in E and F,
and if teeth had been cut upon these wheels according to

the pattern above described, then would these wheels have
worked truly with one another, and the ratio of their angu-
lar velocities have been inversely tkat of ED to FD, or (by
similar triangles) inversely that ofND to OD

;
which is the

ratio required to be given to the angular velocities of the

bevil wheels.

Now it is evident that that portion of each of the conical

surfaces DPML and DIXY which is at any instant passing

through the line LY is at that instant revolving in the plane
perpendicular to AD which passes through the point D, the

one surface revolving in that plane about the centre E, and
the other about the centre F

;
those portions of the teeth of

the bevil wheels which lie in these two conical surfaces will

therefore drive one another truly, at the instant when they
arepassing through the line LY, if they be cut of the forms
which they must have had to drive one another

truly (and
with the required ratio of their angular velocities) had they
acted entirely in the above-mentioned plane perpendicular
to AD and round the centres E and F. Now this is pre-

cisely the form in which they have been cut. Those por-
tions of the bevil teeth which lie in the conical surfaces

DPML and DIXY will therefore drive one another truly at

the instant when they pass through the line LY
;
and there-

fore they will drive one another truly through an exceedingly
small distance on either side of that line. Now it is only
through an exceedingly small distance on either side of that

line that any two given teeth remain in contact with one
another. Thus, then, it follows that those portions of the
teeth which lie in the conical surfaces DM and DX work

truly with one another.

Now conceive the faces of the teeth to be intersected by an

infinity of conical surfaces parallel and similar to DM and
DX

; precisely in the same way it may be shown that those

portions of the teeth which lie in each of this infinite num-
ber of conical surfaces work truly with one another; whence
it follows that the whole surfaces of the teeth, constructed as

above, work truly together.

231. THE MODULUS OF A SYSTEM OF TWO CONICAL OB
BEVIL WHEELS.

Let the pressure P, and P
a be applied to the conical
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wheels represented in the accompanying figure at perpen-
dicular distances a

t
and #

2 from their axes CB and CG
;

let

the length AF of their teeth be represented by &
;
let the

distance of any point in this line from F be represented by
a?, and conceive it to be divided into an exceedingly great
number of equal parts, each represented by A#. Through
each of these points of division imagine planes to be drawn

perpendicular to the axes CB and CG of the wheels, dividing
the whole of each wheel into elements or laminae of equal
thickness

;
and let the pressures P, and P2 be conceived to be

equally distributed to these laminae. The pressure thus dis-

p
tributed to each will then be represented bv A# on the

o

p
one wheel, and ?Aa? on the other. Let^ and^>2 represent

the two pressures thus applied to the extreme laminae AH
and AK of the wheels, and let them be in equilibrium when
thus applied to those sections separately and independently
of the rest

;
then if R, represent the pressure sustained along

that narrow portion of the surface of contact of the teeth of

the wheels which is included within these laminaa, and if R,
and R

2 represent the resolved parts of the pressure R in the
directions of the planes AH and AK of these laminae, the

pressures^ and 3^ applied to the circle AH are pressures
in equilibrium, as also the pressures p^ and R2 applied to the
circle AK. If, therefore, we represent as before (Art. 216.)

by ml
and m2 ,

the perpendiculars from B and G upon the
19
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directions of K, and R
2 ,
and by L

t
and L

2 ,
the distances be-

tween the feet of the perpendiculars & m
t
and

,
m

a we
have (equation 236, 237), neglecting the weights of the

wheels,

1
f /Pi

L
i\ 1

l "&, + --
1 sm. 0, Y R,

'

p! and pa representing the radii of the axes of the two wheels,
and 9, and 92 the corresponding limiting angles of resistance.

Let 7j and y% represent the inclinations of the direction of E
to the planes of AH and AK respectively ;

then

R!= R cos. 715
R2
= R cos. ya

.

Now it has been shown in the preceding article, that the

action of that part of the surface of contact of the teeth which
is included in each of the laminse AH, AK, is identical with
the action of teeth of the same form and pitch upon two

cylindrical wheels AD and AL of the same small thickness,
situated in a plane EAD perpendicular to AC, and having
their centres in the intersections, l> and </,

with that plane of

the axes CB and CG produced. The reciprocal pressure R
of the teeth of the element has therefore its direction in the

plane EAD ;
and if its direction coincided with the line of

centres DL of the two circles EA and AD, then would its

inclinations to the planes of AH and AK be represented by
DAH and LAK, or by ACB and ACG.
The direction of R is however, in overy case, inclined to

the line of centres at a certain angle, which has been shown

(Art. 216.) to be represented in every position of the teeth,
after the point of contact has passed the line of centres by
(4 + 9) j

where & represents the inclination to AL of the line

X, which is drawn from the point of contact A of the pitch
circles to the point of contact of the teeth, and where 9 repre-
sents the limiting angle of resistance between the surfaces of

the teeth. To determine the inclination / t
of RA to the

plane of the circle AH, its inclination RAD to the line of

centres being thus represented by (0 + <p),
and the inclination

of the plane AD, in which it acts, to the plane AH being
DAH, which is equal to ACB, let this last angle be repre-
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sented by i, ;
and let Aa in the accom-

panying figure represent the intersection

of the planes AD and AH
;
Aard repre-

senting a portion of the former plane and
Aacfi of the latter. Let moreover AT
represent the direction of the pressure R

in the former plane and let Ad and Ah be portions of the

lines AD and AH of the preceding figure. Draw re per-

pendicular to the plane Aach, and rd and ch parallel to A#,
and join dh ; then rAc represents the inclination 7, of the

direction of R to the plane AD, dAr represents the inclina-

tion (9 + A) of AR- to AD, and dAh represents the inclination

i
x
of the planes AD and AH to one another. Also, since Aa

is perpendicular to the plane AM, therefore dr is perpen-
dicular to that plane,

/. re = Ar sin. 7, = Ad sec. (6 4-9) sin. 7^

Also hd= Ad sin. i
iy
but re = hd,

:. Ad sec. (d-f-9) sin. 7 1
=

/. sin. 7, cos. (d + <p)
sin.

In like manner it may be shown that sin. 72
= cos. (d-f 9)

sin. i
a ,

i

2 being taken to represent the inclination KAL of the

planes AE and AK, which angle is also equal to the angle
ACG.
From the above equations it follows that

!=R cos. 7,=E \/l cos.
2

(d+9) sin.

2
=R cos. 72

=R \/l cos.
2

(^ +9) sin.

From the centre b of the circle AD draw fim perpendicular
to RA, then is BM (the perpendicular let fall from the

centre of the circle AH upon the direction of R,) the projec-
tion of lym upon the plane of the circle AH. To determine
the inclination of bm to the plane AH, draw An parallel to

bm ; the sine of the inclination of An to the plane AH is

then determined to be cos. DArc/ . sin. precisely as the sine

of the inclination of Am to the same plane was before deter-

mined to be cos. DAm . sin. i e

Now T>An=Abm=
2

DAR =
^ (d+ <p) ;

therefore the

sine of the inclination of ATI, and therefore of bm, to the plane
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Cv%::

AH is represented by the formula sin. (0+9) sin.
i,,

and the

cosine of its inclination by 4/1 sin.
2

(0+ 9) sin. \ ;

. m
1
=BM=5m i/l sm.

2

(d+9)sin.
a

1
.

Now it has been shown (Art. 216.) that the perpendicular
~bm let fall from the centre of a spur wheel upon the direc-

tion of the pressure upon its teeth is, in any position of their

point of contact, represented (equation 239) by the formula,

r
l
sin. sn. 9,

where 0, 9,
X represent the same quantities which they have

been taken to represent in this article
;
but r

l represents the

radius 5A of the circle AD, instead of the radius 13A of the

circle AH; now 5A=rBA sec. DAH=7|

1
sec. ^5 substituting

this value for r^ in the preceding formula, we have

m=7\ sn. +<p sec. 1,+ sn. 9 ;

/. ml
=

\T! sin. (6 +9) sec. ^4-^ sin. 9}

Similarly it may be shown that

ra
a \r^ sin. (6 + 9) sec. 2

X sin. 9}

(269).

Substituting the values of in
l
and m^ above determined,

and also the values of R
t
and R2 (equations 268) in equations
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(267), and eliminating R between those equations, a relation
will be determined between^?, and p^ which is applicable to

any distance of the point of contact of the teeth from the
line of centres.

Let it now be assumed that the number of the teeth of

the driven wheel is considerable, so that the angle tra

n*
versed by the point of contact of each tooth may be small,
and the greatest value of the line X, the chord of an exceed-

ingly small arc of the pitch circle of the driven wheel. In

this case d+9 will very nearly equal -(Art. 220.); so that

cos.
8

(^+<p) will be an exceedingly small quantity and may
be neglected, and sin. (^ + 9) very nearly equal unity. Sub-

stituting these values in equations (268) and (269) we have

K
1=E, R2=R,

m
1
=r

1+X sin. 9 cos. i
a ,
m

2=/'2
X sin. 9 cos. 2 .

Substituting these values in equations (26Y) and dividing
those equations by one another so as to eliminate R,

^4-Xsin. 9 cos. ,+ I 1 sin. 9,
Pi _ <\

m_> ^1 /_.

1

r^ Xsin. 9 cos. <
3 1-^ M sin. 9a

\ $2 /

x
. /P,LA

1 H sm. 9 cos. j+ - sin. 9.

*i* 22 .** 1 -- sin. 9 cos. - - sin. 9,
rt \apj

"Whence performing actual division by the denominator of

the fraction, and neglecting terms involving dimensions
above the first in sin. 9, sin. 9,, sin. 92 ,

Now if 4/ represent the angle described by the driven
wheel or circle ELA, whilst any two teeth are in contact,
since X is very nearly a chord of that circle subtending this

small angle 4/ (Art. 220.) ;
/. X= r^. Let * represent the
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angle described by the conical wheel FK, whilst the circle

ELA describes the angle ^ ; then, since the pitch circle of
the thin wheel AK and the circle ELA revolve in contact at

A, they describe equal arcs whilst they thus revolve, respec-
tively, through the unequal angles 4< and *. Moreover, the

radius Ag of the circle AL=AG sec. GA.g=rt sec. *
a ,

there-

fore 4^3 sec. i
3
=ira ;

.-.,),=* cos. i
f (270).

Substituting the above valves of 4' and X, and observing
?"o 0*0

that = ,

r, n.

L. <p +

Multiplying both sides of this equation by p^
a

i
n*

y
and ob-

serving that p.a. = p,a,
2

A T ,
and that A* is the exceed-*

n^
l

T^A^' n^

ingly small angle described by the driving wheel AN, whilst
the driven wheel describes the angle Ai', so that if A^ repre-
sent the work done by the pressure^ upon the lamina AH,
whilst the angle A* is described by the driven wheel, then

p d A^izrA'w we haveX
cos. ^ cos. <

2 \

1 1 * cos. 3 sin. <p -f
n, nn I

or assuming Ai' infinitely small, and integrating between the

limits and (Art. 220.),

I. cos. 2

cos - 8ID -

sn. ^ + sn. 9.
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Now the above relation between the work u
l
done by the

pressure pt upon the extreme element AH of the driving
wheel whilst any two teeth are in contact, and the pressure

j?2 opposed to the motion of the corresponding element of

the driven wheel, is evidently applicable to any other two

corresponding elements
;
the values of p^ r^ r Lj and L

a

proper to those elements being substituted in the formula.

If, therefore, we represent by AU, that increment of the

whole work Uj done upon the driving wheel, which is due
to any one of the elements into which we have imagined
that wheel to be divided, and if we substitute for j?2 its

p
value -T?Aa?, assign to L

15
L

2 , r^ r^ their values proper to that

element, and represent those values by L, L', r, /,

or assuming A$ infinitely small, and integrating between the

limits and 5, and observing that P
2
#

2 represents the
n,

whole work U2 done upon the driven wheel under the con-

stant pressure P2 during the contact of any two teeth,

iBin.<p+

Now a+x being taken to represent the distance of the

point of contact of any two such elements from C, and a to

represent the distance OF, the radii r and / of these ele-

ments are evidently (by similar triangles) represented by
a+x I

so\ a+x / a?\

r, or
^

1 +
-|

/ and
j-ra

or
1

1 + -
j

rM r, and r, repre-

senting the radii of the extreme elements NF and OF, or of
the pitch circles of the lesser extremities of the wheels.

Also assuming, as we have done, the pressures R1
and R9
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to be perpendicular to the lines BA,
-ft
GA joining the centre of each ele-

ment with their point of contact A,
so that the points M and N (see fig.

p. 292.) coincide with the point A
(see accompanying figure)* ;

and re-

presenting the angles ABD and ACE
made by the perpendiculars DB and
CE with the line of centres by ^ and

^respectively; observing also that AD2=BAa 2BA. BD

cos. ABD+BD5

,
so that (^-r\ = 1 2 (^\ cos. ABD+

(

-
)

,
we have, substituting, in the second number of this

\-t)A/

equation, for BA or r its value r
l {

1 -f- - \

\ al

or expanding the binomials in this expression, observing

that - is an exceedingly small quantity, neglecting terms
Ob

involving powers of that quantity above the first, and

reducing,

<".

Now Lj representing the value of L when #=0, and 6 re

maining constant,

* The circles in this figure represent two of the corresponding laminae into
which wheels have been imagined to be divided

; they are not, therefore, in the
same planef Their planes intersect in AH.
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Let now the angle ADB, made in respect to the first ele-

ment of the driving wheel between the perpendicular BD or

#! and the chord AD or L, be represented by 7/1? and let
T/,

represent the corresponding angle in the driven wheel, then

, T , a

= r*
' -

,

L,
- 2LA cos. 77, + a? = r*, :.

(

'

L.a.-' cos. fl.+ r=;

O 1 *
1 I -1 1 I

1
1 O /_

Substituting these values of I I and 2 1

)
I cos. d 1

in equation (273) ;

\rj
""

{rj
~"" w

\ y,
2

/ \a)
cos< ^--

\7r)

Extracting the square root of the binomial, and neglecting

terms involving powers of - above the first,
a

L L
x

/ a, \ lx\ a, ( L, x
\-. -- i^j i_i

cos>7?= _^ ---- cos. 77. f ;T r, \rj \a/ r
l

( a
t

a

P. sn. 9.

. ... pa sin.92 fL' pa sin.9a
( La 5 )

Similarly-^-/ ? & = ^ \

- - $
- cos. r,,

\
.

Substituting these values in the modulus (equation 272),

TT TT S -, /cos -
'i

cos - '
3

U, = U, ] 1+n - +- cos. i, sin. 9 +
I \ 7l

l
7la

P.sin.^/L, 5~ - -os -
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Now let the angle BCG, or the inclination of the axes,
from one to the other of which motion is transferred by the

wheels, be represented by 2<
;
therefore

1 -Ha=2<. Also a
Bin. ^=7*! and a sin. <

a
=r

a ,

sin.
i, T*!

n
t

sin. a 7",
7i

a

'

sin. \ __ sin. \
^

1 cos. \ _ 1 cos. \

1 1
cos.\^cos.%_ /cos.

,
cos. i

a \ /cos.^ cos. i,\

(COS.*.

COS. i
a\ /I COS. I. 1\

1

J \ ^-j- rf]
COS. i

a

(COS.

<. COS. l
a\

W
i ^a

^H M cos. i
3
= ^ ^ .

n^ n^ 1
\_

cos. i
t

W, COS. a

" ^
a

^ cos. i, cos. j'+iO, 01 1 tan. -|(..) tan. i

JNow
cos. '

2

~~
cos. i i(, 2)

~
l + tan.-J 3)tan.

J

y^
sin. >,

sin.
{t+ K'i 0} _ tan - ' + tan.-j-^ <

2)
al80 n~ sin. i

a

~
sin. j'-K',-',)}

~~
tan. i

- tan. (,- a)

. cos.<

cos, .
yy-M, A

JL ~r~
- tan. i

1 cos. ',1 1 / cos.
i, \

,".
----

a
=:
-

1^-- n, ]
=

w-, cos. a
n n^ \

2
cos. a V

1 (n*nf)+(V yQtan^ _
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- 8ec - 1

.+!)_ (_1) tan.', A+ M cos,,_(!_!\ ginV
n, nj \n, nj \V </ \n^ nj

I cos.
!

cos. a /I 1
\. --- +--] cos. i

a
= ---- cos.

a

\ ,
n

t I *'*t ***'

/I 1\
,

/I 1\ 2sin.
9
i

I-- 1 sin. ' I + I
--

.

VT^ nj \n
1 nj n^

Substituting in the preceding relation, between Uj and Ua,

which is the modulus of the conical or hevil wheel, neglecting
the influence of the weight of the wheel.

If for cos. ?,
and cos. 17, we substitute their values (see

p. 297), we shall obtain by reduction

from which equation it is manifest that the most favourable
directions of the driving or working pressures are those

determined by the equations

232. It is evident, that if the plane of the revolution

of such a wheel be vertical, the influence of its weight must
be very nearly the same as that of a cylindrical or spur
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wheel of the same weight, having a radius equal to the mean
radius of the conical wheel, and revolving also in a vertical

plane. If the axis of the wheel be not horizontal, its weight
must be resolved into two pressures, one acting in the plane
of the wheel, and the other at right angles to it; the latter is

effective only on the extremity of the axis, where it is borne
as by a pivot, so that the work expended by reason of it may
be determined by Art. 175, and will be found to present
itself under the form ofN2 . S, where N

a is a constant and S
the space described by the pitch circle of the wheel, whilst

the work 'U
l

is done. The resolved weight in the plane
of the wheel must be substituted for the weight of the wheel
in equation (247), which determines the value of "N. Assum-

ing the value of K", this substitution being made, to be repre-
sented by Nj, the whole of the second term of the modulus
will thus present itself under the form (N t+ IST

2)S.

,)S ..... (276).

233. Comparing the modulus of a system of two conical

wheels with that of a system of two cylindrical wheels

(equation 252), it will be seen that the fractional excess

of the work U
2 lost by the friction of the latter over that

lost by the friction of the former is represented by the

formula

2* sin.
2
< sin, <p .,

5 /p. p. \

+- -j- -+ t-
(-cos.

^ sin. 9 a + -
cos.??2 sin.<p2j

. . .

The first term of this expression is due to the friction of

the teeth of the wheels alone, as distinguished from the fric-

tion of their axes
;
the latter is due exclusively to the friction

of the axes. Both terms are essentially positive, since ^
and % are in every case less than -.

2

Thus, then, it appears that the loss of power due to the
friction of bevil wheels is (other things being the same)
essentially less than that due to the friction of spur wheels,
so that there is an economy of power in the substitution of
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a bevil for a spur wheel wherever such substitution is
prac-

ticable. This result is entirely consistent with the experience
of engineers, to whom it is well known that bevil wheels run

lighter than spur wheels.

234. THE MODULUS OF A TRAIN OF WHEELS.

In a train of wheels such as that shown in the accompany-
ing figure, let the radii of their

pitch circles be represented in

order by r r r3 . . . r
t , begin-

ning from the driving wheel
;

and let a^ represent the perpen-
dicular distance of the driving

pressure from the centre of that

wheel, and a^ that of the driven

pressure or resistance from the centre of the last wheel of the

train
; U, the work done upon the first wheel, uy

the work

yielded by the second wheel to the third, us that yielded by
the fourth to the fifth, &c., and U2 the work yielded by the

last or nth wheel upon the resistance, then is the relation be-

tween Uj and u
t
determined by the modulus (equation 252),

it being observed that the point of application of the resist-

ance on the second wheel is its point of contact 5 with the

third wheel, so that in this case a^=^rs
.

These substitutions being made, and L
2 being taken to

represent the distance between the point Z> and the projection
of the point a upon the third wheel, we have

11,= j 1+W-+-W 9+^ sin. 9,+
( \n, nj a,rt

^ Bin. ?
j
,+*. 8,.

To determine, in like manner, the relation between u^ and

u^ or the modulus of the third and fourth wheels, let it be
observed that the work u^ which drives the third wheel has
been considered to be done upon it at its point of contact b

with the fourth
;
so that in this case the distance between the

point of contact of the driving and driven wheels and the

foot of the perpendicular let fall upon the driving pressure
from the centre of the driving wheel vanishes, and the term

* See note p. 266.
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which involves the value of L representing that line disap-
pears from the modulus, whilst the perpendicular upon the

driving pressure from the centre of the driving wheel be-
comes r

s
. Let it also be observed, that the work of the

fourth wheel is done at the point of contact c of the fifth and
sixth wheels, so that the perpendicular upon the direction of
that work from the axis of the driven wheel is /,. We shall

thus obtain for the modulus of the third and fourth wheels,

In which expression L3 represents the distance between the

point G and the projection of the point & upon the fifth

wheel.

In like manner it may be shown, that the modulus of the
fifth and sixth wheels, or the relation between u

3 and u# is

s> ;

and that of the seventh and eighth wheels, or the relation

between u
4 and u#

<=
\

and that, if the whole number of wheels be represented by
2p. or the number of pairs of wheels in the train by p, then
is the modulus of the last pair,

In which expressions the symbols !N",, !N",, N8
. . . "Np ,

are

taken to represent, in respect to the successive pairs of wheels

of the train, the values of that function (equation 247),
which determines the friction due to the weights of those

wheels
;
and each of the symbols L,, L

s ,
L

4 . . . 1^ ,
the dis-

tance between the point of contact of a corresponding pair
of wheels and the projection upon its plane of the point of

contact of the next preceding pair in the train
;

whilst the

symbols n^ n^ n
s

. . . n^p , represent the numbers of teeth in

the wheels
; r^ r r^ . . . r^P ,

the radii of their pitch circles
;

and S
15
Sa ,

S
8

. . . Sp ,
the spaces described by their points ot
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contact a, 5, c, &c. whilst the work TJj is done upon the first

wheel of the train.

Let us suppose the co-efficients of i*
a , u^ u . . . Ua ,

in these

moduli to be represented by (l+f\), (l+M-2)> (1+f*,) . . . .

(1-f fly) ; they will then become

Eliminating wa ,
w

8 ,
%

4 ...%,, between these equations, we
shall obtain an equation of the form

. S . . . (2TT),

where

p ..... (278).

Now let it be observed, that the space described by the first

wheel, at distance unity from its centre, whilst the space S
x

Q
is described by its circumference, is represented by ,

and
r,

o

that this same space is represented by if S represent the
<*i

space described in the same time by the foot of the per-

pendicular 15
or the space through which the moving

pressure may be conceived to work during that time
;
so

that = . Also let it be observed that the space de-
fi a

i

scribed by the third wheel, at distance unity from its centre,
is the same with that described at the same distance from

S S
its centre by the second wheel, so that =

;
in like

r
s r,

manner that the spaces described at distances unity from
their centres by the fourth and fifth wheels are the same, so

Q C Q Q
that

;
and similarly, that =

,
&c.=&c. ; and

^ r, r
,

rt

'

finally,
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Multiplying the two first of these equations together, then
the three first, the four first, &c., and transposing, \ve have

, .,
a, 0, . r, \aj \n,l

, n, . m,

g r..n.n.A g
/M (!'8,

0, . r
a

. r4 . T-. \V \

&c.=&c.

Substituting these values of S,, S
a ,
&c. in equation (278),

and dividing by S, we have

or if we observe that the quantities i^,, ^3 , f*3 ,
are composed

of terms all of which are of one dimension in sin. 9, sin. <p1?

sin. 92 ,
&c. and that the quantities !N"

15
N

3 , N",, &c. (equation

247) are all likewise of one dimension in those
exceedingly

small quantities ;
and if we neglect terms above the first

dimension in those quantities, then

'-* }">
If in like manner we neglect in equation (277) terms of

more than one dimension in M- a , f*a, ^8, &c. we have

Now 1^= *
(

j__
)
sin. 9 + ^ sin. 9, + 2^ si

\n, nj a,r, r.r,

a
f
= if I--

[_ )
sin. 9 + ^ sin. 9

\/i
8 nj r4 rt

. S.

sin.
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/* = if ( + ) sin. 9 + ^ sin. <p4,

\n^ nj r r,

&c.=&c.

= r /-!_ + \ sin. 9 + 5^ si

W,P-I
'

n,p ] r,pa,

Substituting these values of f^, f*a, &c. in the preceding

equation,

jL+ .L+ -L ----L\ sin.9+^ sin.?!
n

l
nt

n n,p J a.r.,

which is a general expression for the modulus of a train of

any number of wheels.

235. The work IT, which must be done- upon the first

wheel of a train to
yield

a given amount U3.at the last wheel,
exceeds the work IJ2 , or, in other words, the work done upon
the driving point exceeds- that yielded at the working point,

by a quantity which is represented by the expression

+--h . ..- +- iwiM'.IL-fi-^ sm - 9 H sin. 9,^ r T

. . . (281).

In which expression the first term represents the expenditure
of work due to the friction of the teeth, and varies directly as

the work U
a ,
which is done by the machine. The second

term represents the expenditure of work due to the friction

of the axes of the wheels, and varies in like manner directly
as the work done. Whilst the third term represents the

expenditure of work due to the weights of the wheels of the

train, and is wholly independent of the work done, but only
upon the space S, through which that work is done at the

point where the driving pressure is applied to the train.

20
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236. The expenditure ofwork due to thefriction ofthe teeth.

The work expended upon the friction of the teeth is repre-
sented by the formula

r
j(

h
- - + +...+ } sin. 9 (282),

whose value is evidently less as the factor sin. 9 is less, or as

the coefficient of friction between the common surfaces of the
teeth is less

;
and as the numbers of the teeth in the different

wheels which compose the train are greater. The number
of teeth in any one wheel of the train may, in fact, be taken
so small, as to give this formula a considerable value as com-

pared with U2 ,
or to cause the expenditure of work upon the

friction of the teeth to amount to a considerable fraction of

the work yielded by the train : and the numbers of teeth
of two or more wheels of such a train might even be taken
so small as to cause the work expended upon their friction to

equal or to surpass by any number of times the work yielded
by the train at its working point. This will become the
more apparent if we consider that the surfaces of contact of
the teeth of wheels are for the most part free from unguent
after they have remained any considerable time in action, so

that the limiting angle of resistance assumes in most cases

a much greater value at the surfaces of the teeth of the
wheels than at their axes. From this consideration the

importance of assigning the greatest possible number of

teeth to the wheels of a train individually and collectively
is apparent.

23V. The expenditure of work due to thefriction of the axes.

This expenditure is represented by the formula

forming the second term of formula 280. Now, evidently, the

value of this formula is less as the quantities sin. 9,,. sin. 9,,

&c. are less, or ae the limiting angles of resistance between
the surfaces -of the axes and their bearings are less, or the
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lubrication of the axes more perfect ;
and it is less as the

fractions^-', ^, ^, Ac. are less.

flyy y
a 7y P4jy

Now, La being the distance between the point of contact 1>

of the third and fourth wheels

and the projection of-the point of

contact a of the first and second

upon the plane of those wheels,
it follows that, generally, L

2 is

least when the projection of a
falls on the same side of the axis

as the point 5 ;* and that it

is least of all when this line falls on that side and in the line

joining the axis with the point 5; whilst it is greatest of all

when it falls in this line produced to the opposite side of the

axis. In the former case its value is represented by /,/
and in the latter by ^t+ya ;

so that, generally, the maximum
and minimum values of La are represented by the expression

y
3

y
2 ,
and the maximum and minimum values of ^-2- by**

JL
| p2 . And similarly it appears that the maximum and

r rj

minimum values of ^ are represented by( 1

)
P
3 ;

and
TV \T T I'

4
'
5

V/ 4
'
6
'

so of the rest. So that the maximum and minimum values of

the work lost by the friction of the axes are represented

by the expression

from which expression it is manifest, that in every case the

expenditure of work due to the friction of the axes is less as

the radii of the axes are less when compared with the radii

of the wheels
; being wholly independent of actual dimensions

of these radii, but only upon the ratio or proportion of the
radius of each axis to that of its corresponding wheel : more-

* Thte important condition is but a particular case of the general principle
established in Art. 168.

;
from which principle it follows, that the driving

pressure on each wheel should be applied on the same side of the axis as the
driven pressure.
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over, that this expenditure of work is the least when the
wheels of the train are so arranged, that the projection of the

point of contact of any pair upon the plane of the next

following pair shall lie in the line of centres of this last pair,
between their point of contact and the axis of the driving
wheel of the pair ;

whilst the expenditure is greatest when
this projection falls in that line but on the other side of the
axis. The difference of the expenditures of work on the
friction of the axes under these two different arrangements
of the train is represented by the formula

A- sin. <P! + sin. 9, + sin. <p3 -f A Sm.<p 4+ . . i U
r, r

s
r

& r, )

which, in a train of a great number of wheels, may amount
to a considerable fraction of U2 ;

that fraction of Ua repre-

senting the amount of power which may be sacrificed by a

false arrangement of the points of contact of the wheels.

238. The expenditure ofwork due to the weights of the several

wheels of the train.

The third and last term !N" . S of the expression (280) repre-
sents the expenditure of work due to the weights of the
several wheels of the train; of this term the factor 1ST is

represented by an expression (equation -279), each of the
terms of which involves as a factor one of the quantities ~N

19N3, Ns , <fec., whose general type or form is that given in

equation (247), it being observed that the direction of the

driving pressure on any pair of the wheels being supposed
that of a tangent to their point of contact

;
the case is that

discussed in the note to page 266. The other factor of each
term of the expression (equation 279) for !N", is a fraction

having the product na
n

&
. . . of the numbers of teeth in all

the preceding drivers of the train, except the first, for its

numerator, and the product ny
. n4 . n

6
. .

,
of the numbers of

teeth in the preceding followers of tlie train for its denomi-
nator

;
so that if the train be one by which the motion is to

be accelerated, the numbers of teeth in the followers being
small as compared with those in the drivers, or if the multi-

plying power of the train be great, and if the qiiantities

Kj, N 9 ,
N

3 , &c., be all positive ;
then is the expenditure of

work by reason of the weights of the wheels considerable, as
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compared with the whole expenditure. Since, moreover, the

coefficients of N
13
N

a , !N",, &c., in the expression for N (equa-
tion 279) increase rapidly in value, this expenditure of work
is the greatest in respect to those wheels of the train which
are farthest removed from its first driving wheel : for which

reason, especially, it is advisable to diminish the weights
of the wheels as they recede from the driving point of the

train, which may readily be done, since the strain upon each

successive wheel is less, as the work is transferred to it under
a more rapid motion.

239. The modulus of a tram in which all the drivers cure

equal to one another and all the followers, and in which
the points of contact of the drivers and followers are all

similarly situated.

The numbers of teeth in the drivers of the train being in

this case supposed equal, and also the radii of these wheels,
n

1
=n

s
=n

6
=n

1=&c.j r
1
=r

3
=r

f>=?\=&c. The numbers of

teeth in the followers being also equal, and also the radii of
the followers n^n^n^&c., r^r^r^&c.

If, moreover, to simplify the investigation, the driving
work U

1
be supposed to be done upon the first wheel of the

9 train at a point situated in re-

spect to the point of contact a of

that wheel with its pinion pre-

cisely as that point of contact is

in respect to the point of contact
I of the next pair of wheels of
the train

;
and if a similar sup-

position be made in respect to

the point at which the driven work Ua is done upon the last-

pinion of the train, then, evidently, L,=L2
=:L

3
. . . =LP ,

and (see equation 247) 1^=^",= . . . =NP .

The modulus (equation 280) will become, these substitu-

tions being made in it, the axes being, moreover, supposed
all to be of the same dimensions and material, and equally
lubricated, and it being observed that the drivers and the

followers are eachp in number,

---- (284),

which is the modulus required.
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Moreover, the value of !N" (equation 27Y) will become by
the like substitutions,

THE TRAIN OF LEAST RESISTANCE.

240. A. train of equal driving wheels and equal followers

being required to yield at the last wheel of the train a

given amount of work U2 ,
under a velocitym times

greater
or less than that under which the work U, which drives the

train is done by the moving power upon the first wheel; it

is required to determine what should be the numberp of
pairs of wheels in the train, so that the work TJ, expended
through a given space S, in driving it, may be a minimum.

Since the number of revolutions made by the last wheel
of the train is required to be a given multiple or part of the

number of revolutions made by the first wheel, which mul-

tiple or part is represented by m, therefore (equation 231),

_

:. =
,
and =

;' * '

Substituting these values in the modulus (equation 284);

substituting, moreover, for N its value from equation (285),
we have
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(286X

It is evident that the question is solved by that value ofp
which renders this function a minimum, or which satisfies

the conditions -j-
2 = and -^ > 0. The first condition

dp dp
'

gives by the differentiation of equation (286),

Iog. E

(m

This equation may be solved in respect to p, for any given
values of the other quantities which enter into it, ly approxi-
mation. If, being differentiated a second time, the above

expression represents a positive quantity when the value of

p (before determined) is substituted in it, then does that

value satisfy both the conditions of a minimum, and sup-

plies, therefore, its solution to the problem.
If we suppose 9 1

=0 and'N^O, or, in other words, if we

neglect the influence of the friction of the axes and of the

weights of the wheels of the train upon the conditions of the

question, we shall obtain

,

gin. 9 H sin. 9=0 ;

p n^ 7i,

whence by reduction,

p= ^-'
m

i
* ...... (288).

* This formula was given by the late Mr. Davis Gilbert, in his paper on the
"
Progressive improvements made in the efficiency of steam engines in Corn-

wall," published in the Transactions of the Royal Society for 1830. Towards
the conclusion of that paper, Mr. Gilbert has treated of the methods best

adapted for imparting great angular velocities, and, in connection with that

subject, of the friction of toothed wheels
; having reference to the friction of

the surfaces of their teeth alone, and neglecting all consideration of the influ-
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THE INCLINED PLANE.

241. Let AB represent the surface of an inclined plane on
which is supported a body whose centre of

gravity
is C, and

its weight W , by means of a pressure acting in any direction,
and which may be supposed to be supplied by the tension of

a cord passing over a pulley and carrying at its extremity
a weight.

Let OR represent the direction of the resultant of P and
W. If the direction of this line be inclined to the perpen-
dicular ST to the surface of the plane, at an angle OST
equal to the limiting angle of resistance, on that side of ST
which is farthest from the summit B of the plane (as in

Jig. 1), the body will be upon the point of slipping upwards;
and if it be inclined to the perpendicular at an angle OST,

ence due to the weights of the wheels and to the friction of their axes. The
author has in vain endeavoured to follow out the condensed reasoning by which
Mr. Gilbert has arrived at this remarkable result

;
it supplies another example

of that rare sagacity which he was accustomed to bring to the discussion of

questions of practical science. Mr. Gilbert has given the following examples
of the solution of the formula by the method of approximation: If ra=120,
or if the velocity is to be increased by the train 120 times, then the value ofp
given by the above formula, or the number of pairs of wheels which should

c impose the train, so that it may work with a minimum resistance, reference

being had only to the friction of the surfaces of the teeth, is 3-745
;
and the value

<f the factor p(m
p

-f-1) (equation 286), which being multiplied by sin.
(f>
Ua

HI

i ^presents the work expended on the friction of the surfaces of the teeth, is in

this case 17'9
;
whereas its value would, according to Mr. Gilbert, be 121 if the

velocity were got up by a single pair of wheels. So that the work lost by the

friction of the teeth in the one case would only be one seventh part of that in

the other. In like manner Mr. Gilbert found, that if m=100, then p should

equal 3*6
;
in which case the loss by friction of the teeth would amount to the

sixth part only of the loss that would result from that cause if _p=l, or if the

required velocity were got up by one pair of wheels.

If m=40, then jt)=2'88, with a gain of one third over a single pair.
If 7tt=3-69, thenjt>=l.
If ra=12'85, then p=2.
If ra=46'3, then jt>=3.
If m=166'4, thenjo=4.
It is evident that when p, in any of the above examples, appears under the

form of a fraction, the nearest whole number to it, must be taken in practice.
The influence of the weights of the wheels of the train, and that of the friction

of the axes, so greatly however modify these results, that although they are

fully sufficient to show the existence in every case of a certain number of

wheels, which being assigned to a train destined to produce a given accelera-

tion of motion shall cause that train to produce the required effect with the

least expenditure of power, yet they do not in any case determine correctly
what that number of wheels should be.
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(i.)

equal to the limiting angle
of resistance, but on the side of

ST nearest to the summit B (as in fig. 2.), then the body will

be upon the point of slipping downwards (Art. 138.) ;
the

former condition corresponds to the superior and the latter

to the inferior state bordering upon motion (Art. 140.).
Now the resistance of the plane is equal and opposite to

the resultant of P and "W
;
let it be represented by K.

There are then three pressures P, W, and K in equili-
brium.

sn.

Let /BAC=i, ZOST=:lime. Z of resistance=9, let

represent the inclination PQB of the direction of P to the
surface of the plane, and draw OY perpendicular to AB ;

then,

mfig. 1,

and POK

in fig. 2., WOR=WOY-SOY=BAC-OST=i--9,

and

=PQB+-OST=^+*-9 ;

2 a

and

the upper or lower sign being taken according as the body
is upon the point of sliding up the plane, as in fig. 1, or

down the plane, as in fig. 2. Or if we suppose the angle 9
to be taken positively or negatively according as the body is

on the point of slipping upwards or downwards
;
then gene-

rally WOK=+<p
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P sin.
(1+ 9) __sin. (+<p) t

"W"~~~ lie ~\~ cos. (09 '

sin.
(-+0-9)

sn -

*

cos.(d 9)
(289).

If the direction of P be parallel to the plane, /PQB 01

1=0
;
and the above relation becomes

If i=0 the plane becomes horizontal (fig. 3)., and the re-

lation between P and W assumes the form

P=W sin. 9

9)
(291).

If 0=0, P=W . tan. 9, as it ought (see Art. 138.).
If the angle PQB or &

(fig. 1.) be increased so as to be-
come d, rQ will assume the direction shown in

fig. 4,
and the relation (equation 289), between P and "W will be-
come

sn.
(292).

cos. (d+ <p)

'

The negative sign showing that the direction of P must,
in order that the body may slip up the plane, be opposite to

that assumed in fig. 1.
;
or that it must be a pushing pres-

sure in the direction PO instead of a pulling pressure in the
direction OP.

If, however, the body be upon the point of slipping down
the plane, so that 9 must be taken negatively ;

and if, more-

over, 9 be greater than
i,

then sin. + 9), will become sin.

(19)^= sin. (91), so that P will in this case assume the

positive value

.

cos. (d 9)
(293),
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which determines the force just necessary under these cir-

cumstances to pull the body down the plane.
If i=<p, P 0, the body will therefore, in this case, be upon

the point of slipping down the plane without the application
of any pressure whatever to cause it to do so, other than its

own weight. The plane is under these circumstances, said

to be inclined at the angle of repose, which angle is there-

fore equal to the limiting angle of resistance.

242. The direction of least traction.

Of the infinite number of different directions in which the

pressure P may be applied, each requiring a different amount
to be given to that pressure, so as to cause the body to slide

up the plane, that direction will require the least value to be

assigned to P for this purpose, or will be the direction of
least traction, which gives to the denominator of the fraction

in equation (289) its greatest value, or

which makes 09=0 or d=<p. The di-

rection of P is therefore that of least

traction when the angle PQB is equal to

the limiting angle, a relation which ob-

tains in respect to each of the cases dis-

cussed in the preceding article.

243. THE MOVEABLE INCLINED PLANE.

Let ABC represent an inclined

plane, to the back AC of which
is applied a given pressure P,,
and which is moveable between
the two resisting surfaces GH and

KL, of which either remains fixed,
and the other is upon the point
of yielding to the pressure of the

plane.
If we suppose the resultants of the resistances upon the

different points of the two surfaces AB and BG of the plane
to be represented by T^ and R

3 respectively, it is evident
that the directions of these resistances and of the pressure P t
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will meet, when produced, in the same point O* ;
and that,

since the plane is upon the point of slipping upon each of

the surfaces, the direction of each of these resistances is

inclined to the perpendicular to the surface of the plane, at

the point where it intersects it, at an angle equal to the cor-

responding limiting angle of resistance.

So that if ET and FS represent perpendiculars to the

,
surfaces AB and BC of the plane at the points E and F and

91? 9a ,
the limiting angles of resistance between these surfaces

of the plane and the resisting surfaces GH and KL re-

spectively, then K.ET^, K2FS=9
?
.

Now the pressures P
15 3^, R2 being in equilibrium (Art.

W),

P, sin. EOF P^sin. EOF
K^sin.DOF'

* K3-~sin.DOE'

But the four angles of the quadrilateral figure BEOF
being equal to four right angles (Euc. 1'32), EOF 2*

EBF-OEB-OFB; but EBF=, OEB+9, OFB=

Similarly, DOE=2rr-ADO-AEO-DAE; but ADO=

J AEO=~ ?l , BAC=^-: .-.DOE=J+.+ 9l .

Since, moreover, DO is parallel to BC, both being per-

pendicular to AC, /.DOF=tf OFC; but OFC=^ <p, :

P. _sin. {((+ 9,+ 9,)} sin. Q+ 9.+ 9.) .

sn.

cos. 92

t_ sin,
{if Q+ 9i+ <p9){ _sin.

Since either is equal and opposite to the resultant of the other two.
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cos.

In the case in which the surface GH yields to the pressure
of the plane, KL remaining fixed, we obtain (equation 121.)
for the modulus (see Art. 148.) observing that P

1
()=K

1
sin. i

(equation 294),

u sin. 0+9,+yJ
_ (29g) _

sm. i . cos. <pa

In the case in which the surface KL yields, CH remaining
fixed, observing that P

1
()=Tl

a tan. i (equation 295), we have

sn.
(297) *

Equations (296) and (297) may be placed respectively un-

der the forms

and U =U CQS>
(<p * +(p* J

tan.i+ tan.(9 1 +9.) 1

sin.
j ( cot. 9 1

tan. ) tan. i )

*

The value of II, corresponding to a given value of U3 is in

the former equation a minimum when =-, and in the latter
2t

when

tan. i=.
\ A/-.

C
!'

<P

; , x
-l 1 tan. (9, +9.) .... (298).

f l sin. <p 1 sm.(<p 1 +<p,) )

From the former of these equations it follows, that the work
lost by friction (when the driving surface of the plane is its

hypothenuse) is less as the inclination of the plane is greater,
or as its mechanical advantage is less.

244. A system of two moveable inclinedplanes.

Let A and B represent two inclined planes, of which A
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P rests upon a horizontal surface, and
receives a horizontal motion from
the action of the pressure P, ;

com-

municating to B a motion which is

restricted to a vertical direction by
the resistance of the obstacle D,

^ \ ~^ which vertical motion of the plane^T3
i\.

"""
*s PP sed by the pressure P2 ap-

*
plied to its superior surface. It is

required to determine a relation between the pressures P x

and P2 ,
in their state bordering upon motion

;
and the mo-

dulus of the machine.
Let R

1 represent the pressure of the plane A upon the

plane B, or the resistance of the latter plane upon the former,
and R

3
the resistance of the obstacle D upon the back of the

plane B ;
then is the relation between Rj and P, determined

by equation (294). And since R
1?
R

3 ,
P

2 are pressures in

equilibrium, the relation between R
1
and P2 is expressed

(Art. 14.) by the relation^-
1=sm '

\ Now R
3Q is

inclined to a perpendicular to the back of the plane B, at an

angle equal to the limiting angle of resistance between the

surface of that plane and the obstacle D on which it is upon
the point of sliding. Let this angle be represented by 9,,

then is the inclination of R
3
to the back of the plane or P2Q

represented by^ 93 ;
so that P2QR3

-
9,.

And if R
8Q be produced so as to meet the surface of the

plane A in Y, and YS be drawn horizontally,

where i represents the inclination of the superior surface of
the plane A or the inferior surface of the plane B to the
horizon. Substituting these values of PaQRs and R^R,, we
obtain

cos.<p8

Multiplying this equation by equation (294), and solving in

respect to Pj,
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COS. (t+ P.+ 9.) COS. <f,

.-. (Art. 152.) U,=U,
sn.

,) cos.?s

cos.
3)

tan. t cos.<?2

_ (goo)

A system of three inclined planes, two of which are movea-

lie, and the thirdfixed.

245. The inclined plane A, in the accompanying figure, is

fixed in position, the plane B is

moveable upon A, having its upper
surface inclined to the horizon at a
less angle than the lower

;
and C is

an inclined plane resting upon B,
which is prevented from moving
horizontally by the obstacle D, but

may be made to slide along this

obstacle vertically. It is required
to determine a relation between

Pj and P
a , applied, as shown in the figure, when the system

is in the state bordering upon motion.
Let Rj, R2 ,

R
3 represent the resistances of the surfaces on

which motion takes place, <p a <P2 93
their limiting angles

of
resistance respectively, and i

l9 2 the inclinations of the two
surfaces of contact of B to the horizon. Since P K

1?
R

2 are

pressures in equilibrium, as also P2 ,
E2 ,

K8

.
P

} __sin1
R

2
OR

1
R

2 sin.P,QR3
' R

2

~
sin. P.OIV P2

-
sin. R2QR8

-

Multiplying these equations together,

P
1 _sin.Ea

OB
1
.8in.P

ilQB,
P

2 sin. P/JK, . sin. R2QR3

Draw OS and OT parallel to the faces of the plane B ;
then

-TOS; but R.OS^ --<?,, since OS is

parallel to the inferior face of the plane B, also QOT= <pa ,

2
since OT is parallel to the superior face of the plane B ;

and
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TOS = the inclination of the faces of the plane B to one

another= i
1 a .

/.K^OK^
(2

-<P>

Also P9QK3
=
I
-K3QM= |

-
9..

LetP.O be produced to Y; therefore P
1
OK

l
=*'-K

1
OY=

^-(I^OS-SOV)^-
j g ~9,)

-i,
|

=
I
+ i, + 9,- Lastly

K2QK3
= OQM+MQK3

'. Now, MQK3=9 3 ; also, OQM=

*-(QOT+TOY)=*-
j (9.) +',} =J-',+9

.%E9QE3
=r

i,+9,+98
= (',9, 9.).

a
sin.

(s+'i
+

Pi)
8^n -

] o ~(
t*V*V*)

f

, __p sin. j(9 1+ 9a)+ Qi Q} cos. 98

Whence we obtain for the modulus (Art. 152.), observing;

that^<)=
8in - ('~'')

.

COS. ,
COS. I,

TT ^-rr sin. (9,+9,+^-Qcos.^cos. i cos.9,
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THE WEDGE DRIVEN BY PRESSURE.

246. Let ACB represent an isosceles wedge, whose angle
ACB is represented by 2*, and which is

driven between the two resisting surfaces

DE and DF, by the pressure P,. Let R,
and R2 represent the resistances of these

surfaces upon the acting surfaces CA and
CB of the wedge when it is upon the

point of moving forwards. Then are the.

directions of R, and R
2 inclined respec-

tively to the perpendicular Gs and; R'
to the faces CA and CB of the wedge^ at

angles each equal to the limiting angle of
resistance 9. The pressures Rr

and Ra are

therefore equally inclined to the axis

of the wedge, and to the direction; of I\, whence it follows

that R^E,,, and therefore (Art. 13;) that P 1
=2R

1
cos. GOR.

Now, since CGOE is a quadrilateral figure, its four angles
are equal to four right angles ;

therefore GOR=2* GCR

OGC ORC. But GCR=2i; OGC^ORC = +9 :

a

(303).

Whence it follows (equation 121) that the modulus of the

wedge is

. (304).
sn. i

This equation may be placed under the form

11!=U3 jcot. 9 -f- cot. i\ sin. 9.

The work lost by reason of the friction of the wedge is

greater, therefore, as the angle of the wedge is less; and
infinite for a finite value of 9, and an infinitely small value
of*.

The angle of the wedge.

247. Let the pressure P instead of being that just suffi-

21
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cient to drive tlie wedge, be now supposed
to be that which is only just sufficient tc

keep it in its place when driven. The two
surfaces of the wedge being, under these

circumstances, upon the point of sliding
u backwards upon those between which the

wedge is driven, at their points of contact

G and R, it is evident that the directions

of the resistances if* and i^R upon those

points, must be inclined to the normals
6-G and tH at angles, each equal to the

limiting angle of resistance, but measured
on the sides of those normals opposite to

those on which the resistances RjG and R
2
R are applied.*

In order to adapt equation (303) to this case, we have

only then to give to 9 a negative value in that equation. It

will then become

P
l
=2E

1 sin.( 9) (305).

So long as i is greater than 9, or the angle C of the wedge
greater than twice the limiting angle of resistance, P

l
is

positive ;
whence it follows that a certain pressure acting in

the direction in which the wedge is driven, and represented
in amount by the above formula, is, in this case, necessary
to keep the wedge from receding from any position into

which it has been driven. So that if, in this case, the pres-
sure Pj be wholly removed, or if its value become less than
that represented by the above formula, then the wedge will

recede from any position into which it has been driven, or

it will be started. If i be less than 9, or the angle C of the

wedge less than twice the limiting angle of resistance, P,
will become negative ;

so that, in this case, a pressure, oppo-
site in direction to that by which the wedge has been driven,
will have become necessary to cause it to recede from the

position into wThich it has been driven
;
whence it follows,

that if the pressure P, be now wholly removed, the wedge
will remain, fixed in that position ; and, moreover, that it

will still remain fixed, although a certain pressure be applied
to cause it to recede, provided that pressure do not exceed
the negative value of P

1?
determined by the formula.

* This will at once be apparent, if we consider that the direction of the
resultant pressure upon the wedge at G must, in the one case, be such, that if

it acted alone, it would cause the surface of the wedge to slip downwards on
the surface of the mass at that point, and in the other case upwards ;

and that
the resistance of the mass is in each case opposite to this resultant pressure.
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It is this property of remaining fixed in any position into

which it is driven when the force which drives it is removed,
that characterises the wedge, and renders it superior to

every other implement driven by impact.
It is evidently, therefore, a principle in the formation of a

wedge to be thus used, that its angle should be less than
twice the limiting angle of resistance between the material

which forms its surface, and that of the mass into which it

is to be driven.

THE WEDGE DRIVEN BY IMPACT.

248. The wedge is usually driven by the impinging of a

heavy body with a greater or less velocity upon its back, in

the direction of its axis. Let W represent the weight of

such a body, and V its velocity, every element of it being
conceived to move with the same velocity. The work
accumulated in this body, when it strikes the wedge, will

then be represented (Art. 66.) by - V2
. Now the whole of

$
this work is done by it upon the wedge, and by the wedge
upon the resistances of the surfaces opposed to its motion

;

if the bodies are supposed to come to rest after the impact,
and if the influence of the elasticity and mutual compression
of the surfaces of the striking body and of the wedge are

neglected, and if no permanent compression of their surfaces

1 W V 3

follows the impact.* .*. Uj= - -
.

2 9

* The influence of these elements on the result may be deduced from the

principles about to be laid down in the chapter upon impact. It results from

these, that if the surfaces of the impinging body and the back of the wedge,
by which the impact is given and received, be exceedingly hard, as compared
with the surfaces between which the wedge is driven, then the mutual pressure
of the impinging surfaces will be exceedingly great as compared with the
resistance opposed to the motion of the wedge. Now, this latter being
neglected, as compared with the former, the work received or gained by the

wedge from the impact of the hammer will be shown in the chapter upon

impact to be represented by * ~r~ e
'-1--

,
where Wj represents the

"

weight of the hammer, W 2 the weight of the wedge, and e that measure of
'the elasticity whose value is unity when the elasticity is perfect. Equating
this expression with the value of Ui (equation 304), and neglecting the effect

of the elasticity and compression of the surfaces G and R, between which the

wedge is driven, we shall obtain the approximation

_ (l-f-g)
3W 1

aW aVa
sin, i

sin.
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Substituting
this value of U

l
in equation 303, and solving in

respect to U 2 , we have

sn..
.....

2 g sin. (* 4- 9)

by which equation the work U
2 yielded upon the resistances

opposed to the motion of the wedge by the impact of a given
weight "W with a given velocity Y is determined

;
or the

weight "W necessary to yield a given amount of work when
moving with a given velocity ; or, lastly, the velocity Y with
which a body of given weight must impinge to yield a given
amount of work.

If the wedge, instead of being isosceles, be of the form of
a right angled triangle, as shown
in the accompanying figure, the

relation between the work U, done

upon its back, and that yielded
upon the resistances opposed to

its motion at either of its faces, is

represented by equations (296)
and (297). Supposing therefore

this wedge, like the former, to be
driven by impact, substituting as before for Uj its value

1"W- Y2

,
and solving in respect to Ua ,

we have, in the c

which the face AB of the wedge is its driving surface

sn
2 g si

when the base BC of the wedge is its driving surface,

q.
__1WY2

tan, i cos.
8

2 g
'

8in.

From this expression it follows, that the useful work is the greatest, other

things being the same, when the weight of the wedge is equal to the weight
of the hammer, and when the striking surfaces are hard metals, so that the

value of e may approach the nearest possible to unity.
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I

249. If the power of th6 wedge
be applied by the intervention of

an inclined plane moveable in a
direction at right angles to the di-

rection of the impact*, as shown in

the accompanying figure, then sub-

stituting for U, in equation (300)

respect to U2 , we have

cos. (i -h 9 t +9,) tan. < cos. 9a

cos 98

half the vis viva of the impinging
body, and solving, as befoore, in

sn. (309).

If instead of the base of the

plane being parallel to the direc-

tion of impact, it be inclined to

it, as shown in the accompanying
figure, then, substituting as above
in equation 302, we have

a 9,) cos. sn. (t 1

3
2 g sin. fo i 2

cos. i, cos. *2 eos.<p8

^^
' '

THE MEAN PKESSUKE OF IMPACT.

250. It is evident from equations 306, 307, 308, that, since,
whatever may be the weight of the impinging body or the

velocity of the impact, a certain finite amount of work U2 is

yielded upon the resistances opposed to the motion of the

wedge ;
there is in every such case a certain mean resistance

H overcome through a certain space S, in the direction in

which that resistance acts, which resistance and space are

such, that

KS=U2 ,
and therefore E=

b̂

If therefore the space S be exceedingly small as compared

* This is the form under which the power of the wedge is applied for the

expressing of oil.
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with U
s ,

there will be an exceedingly great resistance E
overcome by the impact through that small space, however

slight the impact. From this fact the enormous amount of

the resistances which the wedge, when struck by the ham-

mer, is made to overcome, is accounted for. The power of

thus subduing enormous resistances by impact is not how-
ever peculiar to the wedge, it is common to all implements
of impact, and belongs to its nature

;
its effects are rendered

permanent in the wedge by the property possessed by that

implement of retaining permanently any position into which
it is driven between two resisting surfaces, and thereby op-

posing itself effectually to the tendency of those surfaces, by
reason of their elasticity, to recover their original form and

position. It is equally true of any the slightest direct impact
of the hammer as of its impact applied through the wedge,
that it is sufficient to cause any finite resistance opposed to

it to yield through a certain finite space, however great that

resistance may be. The difference lies in this, that the sur-

face yielding through this exceedingly small but finite space
under the blow of the hammer, immediately recovers itself

after the blow if the limits of elasticity be not passed ;

whereas the space which the wedge is, by such an impact,
made to traverse, in the direction of its length, becomes a

permanent separation.

THE SCKEW.

251. Let the system of two moveable inclined planes re-

presented in fig. p. 318. be formed of ex-

ceedingly thin and pliable laminse, and con-

ceive one of them, A for instance, to be
wound upon a convex cylindrical surface, as

shown in the accompanying figure, and the

other, B, upon a concave cylindrical surface

having an equal diameter, and the same axis

with the other; then will the surfaces

EF and GH of these planes represent truly
the threads or helices of two screws, one of them of the form
called the male screw, and the other the female screw. Let
the helix EF be continued, so as to form more than one spire
or convolution of the thread

; if, then, the cylinder which
carries this helix be made to revolve upon its axis by the

action of a pressure Pj applied to its circumference, and the

cylinder which carries the helix GH be prevented from re-
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volving upon its axis by the opposition of an obstacle D,
which leaves that cylinder nevertheless free to move in a

direction parallel to its axis, it is evident that the helix EF
will be made to slide beneath GH, and the cylinder which
carries the latter helix to traverse longitudinally ; moreover,
that the conditions of this mutual action of the helical sur-

faces EF and GrH will be precisely analogous to those of the

surfaces of contact of the two moveable inclined planes dis-

cussed in Art. 244. So that the conditions of the equili-

brium of the pressures P, and P, in the state bordering upon
motion, and the modulus of the system, will be the same in

the one case as in the other
;
with this single exception, that

the resistance R2 of the mass on which the plane A rests (see

fig. p. 318.) is not, in the case of the screw, applied only to

the thin edge of the base of the lamina A, but to the whole

extremity of the solid cylinder on which it is fixed, or to a

circular projection from that extremity serving it as a pivot.
Now if, in equation 299, we assume <?2=0, we shall obtain

that relation of the pressures P x
and P2

in their state border-

ing upon motion, which would obtain if there were no fric-

tion of the extremity of the cylinder on the mass on which it

rests
;
and observing that the pressure P2

is precisely that.

by which the pivot at the extremity of the cylinder is pressed

upon this mass, arid therefore the moment (see Art. 176,

equation 183) of the resistance to the rotation of the cylinder
2

produced by the friction of this pivot by -P
2p tan. <p2 ,

where

p represents the radius of the pivot ; observing, moreover,
that the pressure which must be applied at the circumfe-

rence of the cylinder to overcome this resistance, above that

which would be required to give motion to the screw if there

were no such friction, is represented by- P2
-tan. <p2 ,

r being

taken to represent the radius of the cylinder, we obtain for

the entire value of the pressure P
x
in the state bordering

upon motion

sin. (*+ ?,) cos. 9. 2 p+rt<

The pressure P x
has here been supposed to be applied to

turn the screw at its circumference ; it is customary, however,
to apply it at some distance from its circumference by the

intervention of an arm. If a represent the length of such an
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arm, measuring from the axis of the cylinder, it is evident
that the pressure P! applied to the extremity of that arm,
would produce at the circumference of the cylinder a pressure

represented by P^, which expression being substituted for

P! "in the preceding equation, and that equation solved in

respect to P
1? we obtain finally for the relation between P,

and P3
in their state bordering upon motion,

m
j

sin. (,+,.) COB , 8/j.V tan _

)

\af ( cos. (i+ Vi+Vi) 3\r/

If in like manner we assume in the modulus (equation 300)
92=0, and thus determine a relation between the work done
at the driving point and that yielded at the working point,
on the supposition that no work is expended on the friction

of the pivot ;
and if to the value of U, thus obtained we add

the work expended upon the resistance of the pivot which is

shown (equation 184) to be represented at each revolution

4.

by ^pP2 tan. 9,, and therefore during n revolutions byo

4.

-*^pPa ,
we shall obtain the following general expression for

o

the modulus
;
the whole expenditure of work due to the

prejudicial resistances being taken into account.

TT TT sn. i+ 9 cos. 9, ^U'=U- ' + ^ tan '

Representing by X the common distance between the threads

of the screw, i. e. the space which the nut B is made to

traverse at each revolution of the screw
;

and observ-

4 4 IT
that n^P2=U2 ,

so that ^wP3 tan. 9,=-*
2

p tan. 93
=

O O A.

*r P TT , . , .
*

- -.-.U 2 tan. 9, in which expression = cot. t, we
6 A. r **

obtain finally for the modulus of the screw

i sin, fr+ 9,) cos. 9 3
2

P_
J ^ (8

I cos. ^+ 9 1 -f-9 3 ) 3r }

It is evidently immaterial to the result at what distance

from the axis the obstacle D is opposed to the revolution of
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that cylinder which carries the lamina B
;
since the amount

of that resistance does not enter into the result as expressed
in the above formula, but only its direction determined by
the angle 98 ,

which angle depends upon the nature of the

resisting surfaces, and not upon the position of the resisting

point.

APPLICATIONS OF THE SCREW.

252. 'The accompanying figure represents an application
of the screw under the circumstances described in the pre-

ceding article, to the well known machine called the V ICE.

AB is a solid cylinder carrying on its surface the thread of a
male screw, and within the piece CD is a hollow cylindrical

surface, carrying the corresponding thread of a female

screw; this female screw is prevented from revolving with
the male screw by a groove in the piece CD, which carries

it, and which is received into a corresponding projection EF
of the solid frame of the machine, serving it as a guide ;

which guide nevertheless allows a longitudinal motion to

the piece CD. A projection from the frame of the instru-

ment at B, met by a pivot at the extremity of the male

screw, opposes itself to the tendency of that screw to tra-

verse in the direction of its length. The pressure P2
to be

overcome is applied between the jaws H and K of the vice,
and the driving pressure Pj to an arm which carries round
with it the screw AB.

It is evident that, in the state bordering upon motion, the

resistance R upon the pivot at the extremity B of the screw

AB, resolved in a direction parallel to the length of that

screw, must be equal to the pressure P
2 (see Art. 16.) ;

so

that if we imagine the piece CD to become fixed, and the
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piece
BM to become moveable, being prevented from revolv

ing, as CD was, by the intervention of a groove and guide,
then might the instrument be applied to overcome any given
resistance E opposed to the motion of this piece CD by the
constant pressure of its pivot upon that piece.
The screw is applied under these circumstances in the

common screw press. The piece
A, fixed to the solid frame of the

machine, contains a female screw
whose thread corresponds to that

of the male screw
;

this screw,
when made to turn by means of a
handle fixed across it, presses by
the intervention of a pivot B, at its

extremity, upon the surface of a
solid piece EF moveable verti-

cally, but prevented from turning
with the screw by grooves receiv-

ing two vertical pieces, which
serve it as guides, and form parts
of the frame of the machine.
The formulae determined in

Art. 251. for 'the preceding case

of the application of the screw, obtain ialso in this case, if

we assume 9 3 0. The loss of power due to the friction of

the piece EF upon its guides will, however, in this calcu-

lation, be neglected ;
that expenditure is in all cases exceed-

ingly small, the pressure upon the guides, whence their

friction results, being itself but the result of the friction of

the pivot B upon its bearings ;
and the former friction being

therefore, in all cases, a quantity of two dimensions in

respect to the coefficient of friction.

If, instead of the lamina A (p. 326.) being fixed upon the

convex surface of a solid cylinder, and B upon the concave
surface of a hollow cylinder, the order be reversed, A being
fixed upon the hollow and B on the solid cylinder, it is evi-

dent that the conditions of the equilibrium will remain the

same, the male instead of the female screw being in this case

made to progress in the direction of its length. If, however,
the longitudinal

'

motion of the male screw B (p. 326.) be,
under these circumstances, arrested, and that screw thus

become fixed, whilst the obstacle opposed to the longitudinal
motion of the female screw A is removed, and that screw
thus becomes free to revolve upon the male screw, and also

to traverse it longitudinally, except in as far as the latter
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motion is opposed by a certain resistance

R, which the screw is intended, tinder

these circumstances, to overcome
;
then

will the combination assume the well

known form of the screw and nut.

To adapt the formulae of Art. 251. to

this case, 93 must be made = 0, and
instead of assuming the friction upon the extremity, of the

screw (equation 311) to be that of a solid pivot, we must
consider it' as that of a hollow pivot, applying to it (by
exactly the same process as in Art. (251.), the formulas of

Art. (177.) instead of Art. (176.).

THE DIFFERENTIAL SCREW.

253. In the combination of three inclined planes discussed
in Art. 245., let the plane B be conceived of much greater
width than is given to it in the figure (p. 319.), and let it

then be conceived to be wrapped upon a convex cylindrical
surface. Its two edges ab and cd will thus become the

helices of two screws, having their threads of different incli-

nations wound round different portions of the same cylinder,

mm*

as represented in the accompanying figure, where the thread
of one screw is seen winding upon the surface of a solid

cylinder from A to C, and the thread of another, having a
different inclination, from D to B.

Let, moreover, the planes A and (p. 319.) be imagined
to be wrapped round two hollow cylindrical surfaces, of

equal diameters with the above-mentioned solid cylinder,
and contained within the solid pieces E and F, through
which hollow cylinders AB passes. Two female screws will
thus be generated within the pieces E and F, the helix of
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the one adapting itself to that of the male screw extending
from A to 0, and the helix of the other to that upon the

male screw extending from D to B. If, then, the piece E
be conceived to be fixed, and the piece F moveable in the
direction of the length of the screw, bnt prevented from

turning with it by the intervention of a guide, and if a pres-
sure Pj be applied at A to turn the screw AB, the action of

this combination will be precisely analogous to that of the

system of inclined planes discussed in Art. 245.,. and the

conditions of the equilibrium precisely the same
;
so that the

relation between the pressure P a applied to turn the screw

(when estimated at the circumference of the thread) and that

P2 ,
which it may be made to overcome, are determined by

equation (301), and its modulus by equation (302).
The invention of the differential screw has been claimed

by M. Prony, and by Mr. White of Manchester. A com-

paratively small pressure may be made by means of it to

yield a pressure enormously greater in magnitude.* It

admits of numerous applications, and, among the rest, of
that suggested in the preceding engraving.

HUNTER'S SCREW.

254. If we conceive the plane B (p. 319.) to be divided

by a horizontal line, and the upper part
to be wrapped upon the inner or concave
surface of a hollow cylinder, whilst the
lower part is wrapped upon the outer or

convex circumference of the same cylin-

der, thus generating the thread of a fe-

male screw within the cylinder, and a
male screw without it

;
and if the plane

C be then wrapped upon the convex sur-

face of a solid cylinder just fitting the in-

side or concave surface of the above-mentioned hollow cylin-

* It will be seen by reference to equation (301), that the working pressure
P2 depends for its amount, not upon the actual inclinations ii i% of the threads,
but on the diiference of their inclinations

;
so that its amount may be enor-

mously increased by making the threads nearly of the same inclination. Thus,

neglecting friction, we have, by equation (301), P 2=Pi 77 r-
;

which
sin. (ii h)

expression becomes exceedingly great when ^ nearly equals 3 .
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der, and the plane A upon a concave cylindrical surface just

capable of receiving and adapting itself to the outside or

convex surface of that cylinder, the male screw thus genera-
ted adapting itself to the thread of the screw within the hol-

low cylinder, and the female screw to the thread of that

without it
; if, moreover, the female screw last mentioned

be fixed, and the solid male screw be free to traverse in the

direction of its length, but be prevented turning upon its

axis by the intervention of a guide ; if, lastly, a moving pres-
sure or power be applied to turn the hollow screw, and a re-

sistance be opposed to the longitudinal motion of the solid

screw which is received into it ; then the combination will

be obtained, which is represented in the preceding engraving,
and which is well known as Mr. Hunter s screw, having been
first described by that gentleman in the seventeenth volume
of the Philosophical Transactions.

The theory of this screw is identical with that of the pre-

ceding, the relation of its driving and working pressures is

determined by equation (301), and its modulus by equation
(302).

THE THEORY OF THE SCREW WITH A SQUARE THREAD IN RE-

FERENCE TO THE VARIABLE INCLINATION OF THE THREAD AT
DIFFERENT DISTANCES FROM THE AxiS.

255. In the preceding investigation, the inclined plane
which, being wound upon the cylinder, generates the thread
of the screw, has been imagined to be an exceedingly thin

sheet, on which hypothesis every point in the thread may be
conceived to be situated at the same distance from the axis

of the screw
;
and it is on this supposition that the relation

between the driving and working pressure in the screw and
its modulus have been determined.

Let us now consider the actual case in which the thread
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of the screw is of finite thickness, and different elements of

it situated at different distance from its axis.

Let mb represent a portion of the square thread of a screw,
in which form of thread a line be, drawn from any point 5 on
the outer edge of the thread perpendicular to the axis ef,
touches the thread throughout its whole depth ~bd. Let AC
represent a plane perpendicular to its axis, and of the pro-

jection of 1)6 upon this plane. Take^? any point in bd, and
let q be the projection of p. Let ep=r, mean radius of

thread =R, inclination of that helix of the thread whose
radius is E*=I, inclination of the helix passing through p=t,
whole depth of thread =2D, distance between threads (or

pitch) of screw =L. Now, since the helix passing through
p may be considered to be generated by the enwrapping of

an inclined plane whose inclination is i upon a cylinder
whose radius is r, the base of which inclined plane will then
become the arc tq, we h&VB<j?=zfo . tan. i. But, if the angle

Afa be increased to 2*, pq will become equal to the com-
mon distance L between the threads of the screw, and tq
will become a complete circle, whose radius is r

;
therefore

L=2*r tan. t, and this being true for all values of r, there-

fore L= 2tfR tan. I. Equating the second members of these

equations, and solving in respect to tan.
*,

R tan. I
f ON

tan. i= (313).

From which expression it appears, that the inclination of the

thread of a square screw increases rapidly as we recede from
its

edg^e
and approach its axis, and would become a right

angle if the thread penetrated as far as the axis. Consider-

ing, therefore, the thread of the screw as made up of an in-

finite number of helices, the modulus of each one of which
is determined by equation (312), in terms of its correspond-

ing inclination
,
it becomes a question of much practical im-

portance to determine, if the screw act upon the resistance

at one point only of its thread, at what distance from its axis

that point should be situated, and if its pressure be. applied
at all the different points of the depth of its thread, as is

commonly the case, to determine how far the conditions of

its action are influenced by the different inclinations of the

thread at these different depths.

* This may be called the mean helix of the thread. The term helix is here
taken to represent any spiral line drawn upon the surface of the thread

;
the

distance of every point in which, from the axis of the screw, is the same.
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We shall omit the discussion of the former case, and pro-
ceed to the latter.

Let Pa represent the pressure parallel to its axis which is

to be overcome by the action of the screw. ~Now it is evi-

dent that the pressure thus produced upon the thread of the

screw is the same as though the whole central portion of it

within the thread were removed, or as though the whole

pressure P2
were applied to a ring whose thickness is As or

2D. 'Now the area of this ring is represented by * |(R+D)
a

(R D)
2

5 ,
or by 4<KD. So that the pressure of Pa , upon

p
every square unit of it, is represented by -p* Let &r

represent the exceedingly small thickness of such a ring
whose radius is r, and which may therefore be conceived to

represent the termination of the exceedingly thin cylindrical
surface passing through the point p ;

the area of this ring is

then represented by far^r, and therefore the pressure upon

it by V,-p-pv >
or by

'
.. Now this is evidently the

pressure sustained by that elementary portion of the thread
which passes through p, whose thickness is A/1

,
and which

may be conceived to be generated by the enwrapping of a
thin plane, whose inclination is

*, upon a cylinder whose ra-

dius is r
;
whence it follows (by equation 311) that the ele-

mentary pressure AP15
which must be applied to the arm of

the screw to overcome this portion of the resistance P2 ,
thus

applied parallel to the axis upon an element of the thread,
is represented by

AP _ .
r

\ f
sin. Q+ 9Q cos. 93 P

t \
.r ~

( cos..+9+9 ~~V
a 9*

i

'

cos.(.+9 1 +9.)

whence, passing to the limit and integrating, we have

R+D
sn.

'coS
R-D

Now
sin. + 9,) cos. 93 tan. -f tan. 9,

cos. ('+ 9,+9s) 1 tan. 9. tan. 9, tan. (tan. 9, 4- tan. $}\ ' 1 T^

tan, t+tan. 9 t
)

___

~(1 tan. 9, tan. 9,) {Itan. tan. (9^93) j

" : an* Pi+ra11 - '
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+tan. fo-f <p,)
tan. *t. Neglecting dimensions of tan. 9 1

and
tan. <p8

above the first*,

R+D

tan. <pj+ tan. i+ tan. (<pj -j- 98) tan. "A/"
9
-}-

R D

fp^ tan. y^dr (314).

Substituting in this expression for tan. i its value (equation

313), it becomes

R+D

'
a
tan. 9,+Rr tan. I+Ra

tan.
3
1 tan.

(<pj+ 9,)+
R-D

Integrating and reducing,

tan.
9
I tan. fo+cp,)

j
..... (315);

whence we obtain by (equation 121) for the modulus,

..... (316).

256. "Whence it follows that the best inclination of the

thread, in respect to the economv of power in the use of

the square screw, is that which satisfies the equation

The inclination of thread of a square screw rarely exceeds

7, so that the term tan.
2
I tan. (ft $$,) rarely exceeds *015

tan. (pi+pj,), and may therefore be neglected, as compared

* The integration is readily effected without this omission
;
and it might be

desirable so to effect it where the theory of wooden screws is under discussion,
the limiting angle of resistance being, in respect to such screws, considerable.

The length and complication of the resulting expression has caused the omis-

sion of it in the text.



THE BEAM OF THE STEAM ENGINE. 337

with the other terms of the expression; as also may the

term i( j
tan. 915

since the depth 2D of a square screw
\Iv

being usually made equal to about th of the diameter, this

term does not commonly exceed T^ tan. <p a
.

Omitting these terms, observing that L=2tfR tan. I, and

eliminating tan. I,

..... (317).

..... (318).

THE BEAM OF THE STEAM

257. Let P,, P,, P3 ,
P

4 represent the pressuo-es applied by
the piston rod, the crank rod, the air pump- rod, and the cold

water pump rod, to the beam of a steam engine ;
and sup-

pose the directions of all these pressures to be vertical.*

Let the rods, by which the pressures P
15
P

2 ,
P

3 ,
P

4 are

applied to the beam, be moveable upon solid axes or gud-
geons, whose centres are #, d, ~b, 6, situated in the same

straight line passing through the centre C of the solid axis

of the beam.
Let pj, p2 , p8 , p 4 represent the radii of these gudgeons, p the

radius of the axis of the beam, and <p,, <pa , <p9 , <p4 , p the limit-

ing angles of resistance of these axes respectively. Then, if

the beam be supposed in the state bordering upon motion

* A supposition which in no case deviates greatly from the truth, and any
error in which may be neglected, inasmuch as it can only influence the results

about to be obtained in as far as they have reference to the friction of the
beam

;
so that any error in the result must be of two dimensions, at least, in

respect to the coefficient of friction and the small angle by which any pressure
deviates from a vertical direction.

22
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by the preponderance of P,, each gudgeon or axis being
upon the point of turning on its bearings, the directions of
the pressures P 15

P
2 ,
P

3 ,
P

4 , R, will not be through the cen-

tres of their corresponding axes, but separated from them by
perpendicular distances severally represented by p t

sin. 9,, p2

sin. 92 , p,,
sin. <p a , p4 sin. <p4 ,

and p sin. 9, which distances, being
perpendicular to the directions of the pressures, are all

measured horizontally.

Moreover, it is evident that the direction of the pressure
Pj is on that side of the centre a of its axis which is nearest
to the centre of the beam, since the influence of the friction

of the axis a is to diminish the effect of that pressure to turn
the beam. And for a like reason it is evident that the
directions of the pressures P

2 ,
P

8 ,
P4 are farther from the

centre of the beam than the centres of their several axes,
since the effect of the friction is, in respect to each of these

pressures, to increase the resistance which it opposes to the
rotation of the beam

; moreover, that the resistance R upon
the axis of the beam has its direction upon the same side of

the centre C as P
15

since it is equal and opposite to the
resultant pressure upon the beam, and that resultant would,
by itself, turn the beam in the same direction as

l
turns it.

Let now a
l=Ga^ #2 C<#, a

a=Cb, a4=Ce. Draw the hori-

zontal line of/C<7, and let the angle aCf=&. Let, moreover,W be taken to represent the weight of the beam, supposed
to act through the centre of its axis. Then since P

1?
P

2 ,
P

3,

P
4, W, R are pressures in equilibrium, we have, by the

principle of the equality of moments, taking o as the point

from_which the moments are measured, P x
. 0/'=P2 .

P, .<^+P4 .0+W.0C.
Now of=CfCo=a1

cos. 8
p, sin. (p, p sin. 9, og

00=0,2 cos - ^+ p2 sin. 92+ p sin. 9, oh=Ch Co=a
s cos. d+

P8 sin. 93 p sin. 9, ok=Ck+ Co=at cos. d+ p 4 sin. 9 4+ p sin. 9.

.*. PJ&j cos. d (p^in. 9,-j-psin. 9)^
=

P
2 1&2 cos. 6 -f (p 2 sin. 9a+ p sin. 9)} +

)
3 sin. 9 3 P sin. 9) j + [

. . . (319).

i
+ p sin. 9) j + "Wp sin. 9

Multiplying this equation by ^, observing that af repre-
sents the space described by the point of application of P

15

so that Pj^ represents the work TJ
1
of Pj ;

and similarly
that P2<^2

^ represents the work U
2
of P2 ,

P
3&A that U

3
of P

8 ,

and P4&/, that U
4 of P4, also that a represents the space S,
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described by the extremity of the piston rod very nearly ;

we have

,.(320),

which is the modulus of the beam.
Its form will be greatly simplified if we assume cos. d=l,

since 6 is small,* suppose the coefficient of friction at each
axis to be the same, so that 9=^=9, =<p8=94 ,

and divide by
the coefficient of U M omitting terms above the first dimen-

sion in sin, 9, &c. ;
whence we obtain by reduction

-(321).

258. The best position of the axis of the foam.

Let a be taken to represent the length of the beam, and x
the distance aC of the centre of its axis from the extremity
to which the driving pressure is applied.

* In practice the angle 6 never exceeds 20, so that cos. 6 never differs from
unity by more than -060807. The error, resulting from which difference, in
the friction, estimated as above, must in all cases be inconsiderable.
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Let the influence of the position of the axis on the

economy of the work necessary to open the valves, to work
the air-pump, and to overcome the friction produced by the

weight of the axis, be neglected ;
and let it be assumed to

be that, by which a given amount of work U
2 may be

yielded per stroke upon the crank rod, by the least possible
amount u

,
of work done upon the piston rod. If, then, in

equation (321), we assume the three last terms of the second
member to be represented by A, and observe that a

l
in that

equation is represented by a?, and #a by a x, we shall

obtain

The best position of the axis is determined by that value
of x which renders this function a minimum

;
which value

of x is represented by the equation

x=_-_ . (322.)

If p2>p,, then!
J
>1 and a?<-|#; in this case, there-

fore, the axis is to be placed nearer to the driving than to

the working end of the beam. If p2 <pj, the axis is to be
fixed nearer to the working than to the driving end of the

beam.

259. It has already been shown (Art. 168.), that a

machine working, like the beam of a steam engine, under
two given pressures about a fixed axis, is worked with the

greatest economy of power when both these pressures are

applied on the same side of the axis. This principle is

manifestly violated in the beam engine; it is observed in

the engine worked by Crowther's parallel motion,* and in

the marine engines recently introduced by Messrs. Seaward,
and known as the Gorgon engines. It is difficult indeed to

defend the use of the beam on any other legitimate ground
than this, that in some degree it aids the fly-wheel to

equalise the revolution of the crank arm,f an explanation

* As used in the mining districts of the north of England.

f The reader is referred to an admirable discussion of the equalising power
of the beam, by M. Coriolis, contained in the thirteenth volume of the Journal
de VEcole Polytechnique.
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which does not extend to its use in pumping engines,

where, nevertheless, it retains its place; adding to the

expense of construction, and, by its weight, greatly increas-

ing the prejudicial resistances opposed to the motion of the

engine.

THE CKANK.

260. The modulus of the crank, the direction of the resist-

ance being parallel to that of the driving pressures.

Let CD represent the arm of the crank, and AD the con-

necting rod. And to simplify the

investigation, let the connecting
rod be supposed always to retain

its vertical position.* Suppose the

weight of the crank arm CD, act-

ing through its centre of gravity,
to be resolved into two other

weights (Art. 16), one of which W2

is applied at the centre C of its axis

and the other at the centre c of

the axis which unites it with the

connecting rod. Let this latter

weight, when added to the weight

of the connecting rod, be repre-
sented by Wj. Let P

2 represent a

/ pressure opposed to the revolution
x

-;. ^S of the crank, which would at any
instant be just sufficient to balance

the driving pressure P a
transmitted through the connecting

rod ; and to simplify the investigation, let us suppose the

direction of the pressure P2
to be vertical and downwards.

Let Cc=a, CA 1
=a

1 ,
CA2

=&
2 ,
<?CW2=d, radii of axes C

and c=p,, p 2 ,
lim. /s of resistance =<p,, <pa ,

W=whole weight
of crank arm and connecting rod=W 1 +Wa .

Since the crank arm is in the state bordering upon
motion, the perpendicular distance of the direction of the

resistance upon its axis C from the centre of that axis, is

* Any error resulting from this hypothesis affecting the conditions of the

question only in as far as the friction is concerned, and being of two dimen-
sions at least in terms of the coefficient of friction and the small angular devi-

ation of the connecting rod from the vertical.
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represented by p x
sin. <p t (Art. 153.). The resistance is also

equal toP
a (Pa+W) ;

P
x beingsupposed greater than P2+W ;

and the sign being taken

according as the direction of

P, is downwards or upwards,
or according as the crank arm
is describing its descending or

ascending arc. Whence it

follows, that the moment of

the resistance of the axis about

its centre is represented by
iP,(P,+ W)j Pl sin. 9,
Now the pressures P15

P
2 ,
and

the resistance of the axis, are

pressures in equilibrium.

Therefore, by the principle of

the equality of moments, ob-

serving that the driving pressure is represented by PjSfcW,,

according as the arm is descending or ascending,

(P,W,) ,=PA+ SP,(P,+ W)} Pl sin. ?,

Since moreover the axis 0, which unites the connecting
rod and the crank arm, is upon the point of turning upon
its bearings, the direction of the pressure P x

is not through
the centre of that axis, but distant from it by a quantity

represented by p2 sin. <pa ,
which distance is to be measured

on that side of the centre o which is nearest to C, since the

friction diminishes the effect of P
x
to turn the crank arm.

!=a sin. d
p3 sin. <p2 (323).

Substituting this value of #, in the preceding equation,

O (a sin. 0-p2
sin. 9,)=I>,+ {

(324).Pl sn. <p a

Transposing and reducing

P,{a sin. &
pa sin. ?2 p, sin. 9,} =P2Kp 1

sin. 9,}

"Wp 1
sin. 9 1=fW 1(# sin. $

pa sin. 9,);

which is the relation between P
t
and P2

in their state bor-

dering upon motion. JSTow if Ad represent an exceedingly
small angle described by the crank arm, a^b will represent
the space through which the resistance P

2 is overcome
whilst that angle is described, and P 2

#
2
A0 will represent the
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increment AtT
2
of the work yielded by the crank whilst that

small angle is described. Multiplying the above equation

by a^y we have

P^Ja sin. A
p2 sin. <p2 p, sin. ^ l\A&={a9 p l

sin. 9 1 }
A"D'3

"Wa2p x
sin. ^AdqpW^,, (

a sm - &
P* sin - ^)A^

(325)-

whence passing to the limit, integrating from 0=6 to d=
tf 0, and dividing by #2

P, |2acos.6 (* 28)

W <y_26) Pi sin. ^qpWj {2a cos. Pa (V 26) sin. <p2 }
. . (326).

Now, let it be observed that 2a cos. 6 represents the pro-

jection of the path of the point c upon the vertical direction

of P,, whilst the arm revolves between the positions 6 and
tf_6

;
so that P^a cos. 6 represents (Art. 52.) the work

Uj done by P, upon the crank whilst the arm passes from

one of these positions to the other, or whilst the work U2
is

TJ

yielded by the crank. Whence it follows that PI=^
Jf sec. 6.

Substituting this value of P 1? and reducing we obtain

sin. 9, U
2
W (-rr-26) Pl sin. V^W, [2a cos.

P2 (* 20) sin. 9a {
..... (327).

By which equation is determined the modulus of the crank
in respect to the descending or ascending stroke, according
as we take the upper or lower signs of the ambiguous terms.

Adding these two values of the modulus together, and

representing by Uj the whole work of P,, and by TJ
2 the

whole work of P2 ,
whilst the crank arm makes a complete

revolution, also by u
t
the work of P2 in the down stroke,

and i
2
in the up stroke, we obtain

- - e sin - sin - ? > =v,

K-^2)sin. 9, ..... (328),

which is the modulus of the crank in respect to a vertical
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direction of the driving pressure and of the resistance, the
arm being supposed in each half revolution, first, to receive
the action of the driving pressure when at an inclination of

to the vertical, and to yield it when it has again attained
the same inclination, so as to revolve under the action of

the driving pressure through the angle if 2.
In the double-acting engine, u^ u^=0 ;

in the single-act-

ing engine ^=0. The work expended by reason of the
friction of the crank is therefore less in the latter engine than
in the former, when the resistance P2 is applied, as shown
in the figure, on the side of the ascending arc.

If the arm sustain the action of the driving pressure con-

stantly, 9=0, and the modulus becomes, for the double-act-

ing engine,

or, dividing by the co-efficient of U, and neglecting dimen-
sions above the first in sin. 9 1?

sin. <p2 ,

The modulus not involving the symbol W which repre-
sents the weight of the crank, it is evident that so long as P

t

and P2 are vertical and P, greater than P
2+ "W, the economy

of power in the use of the crank is not at all influenced by
its weight and that of the connecting rod, the friction being
upon the whole as much diminished by reason of that weight
in the ascending stroke as it is increased by it in the descend-

ing stroke.

It is evident, moreover, that if the friction produced by
the weight of the crank be neglected, the modulus above de-

duced, for the case in which the directions of the pressures
P, and P3 are vertical, applies to every case in which the

directions of those pressures are parallel.
The condition P,>P2 -f-W evidently obtains in every other

position of the crank arm, if it obtain in the horizontal position.

Now, in this position, P2
= P

15
if we neglect friction. The

ai

required condition obtains, therefore, if ?,>?! -f-W. To
a

*

satisfy this condition, #2 must be greater than #, or the

resistance be applied at a perpendicular distance from the
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axis greater than the length of crank arm, and so much

greater, that P
l (1

--
j may exceed "W. These conditions

\ #2/

commonly obtain in the practical application of the crank.

261. Should it, however, be required to determine the mo-
dulus in the case in which P

x
is not, in every position of the

arm, greater than P,-fW, let it be observed, that this condi-

tion does not affect the determination of the modulus (equa-
tion 327) in respect to the descending, but only the ascend-

ing stroke
;
there being a certain position of the arm as it

ascends in which the resultant pressure upon the axis repre-
sented by the formula {P, (P2+W)j , passing through zero,
is afterwards represented by |(P2 -f- W) P^ ;

and when the
arm has still further ascended so as to be again inclined to the

vertical at the same angle, passes again through zero, and is

again represented by the same formula as before. The value
of this angle may be determined by substituting P

a
for

Pa+W inequation (324), and solving that equation in re-

spect to A. Let it be represented by ^ ;
let equation (325)

be integrated in respect to the ascending stroke from 0=0
to 0==^, the work of P2 through this angle being represented
by u

l ;
let the signs of all the terms involving p x

sin.
<pj then

be changed, which is equivalent to changing the formula re-

presenting the pressure upon the axis from {P x (P2+W)
to {(P2+ W) P

a }; and let the equation then be integrated

from 6=6
l
to 0=5, the work of Pa through this angle being re-

presented by u^\ 2(1^+ w
a)

will then represent the whole
work U

2
done by P2

in the ascending arc. To determine
this sum, divide the first integral by the co-efficient of u

l9

and the second by that of u
9 ,
add the resulting equations,

and multiply their sum by 2
;
the modulus in respect to the

ascending arc will then be determined
;
and if it be added

to the modulus in respect to the descending arc, the modu-
lus in respect to an entire revolution will be known.

THE DEAD POINTS IN THE QRANK.

362. If equation (324) be solved in respect to P, it be-

comes
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p _p ( ^PiSJn. 9,_ )

2
1 a-am. 6

p2 sin. <pa p 1
sin. ?, f

'Wp 1 sin.^ 'WXflBin.d pa sin. 98)

a sin. 4
pa sin. <p2 p :

sin. 9 t

In that position of the arm, therefore, in which

sin.O=
f''

sin-^+ p-
sin-'P - .... (330),

the driving pressure P, necessary to overcome any given re-

sistance P2 opposed to the revolution of the crank, assumes
an infinite value. This position from which no finite pres-
sure acting in the direction of the length of the connecting
rod is sufficient to move the arm, when it is at rest in that

position, is called its dead point.
Since there are four values of 6, which satisfy equation

(330) two in the descending and two in the ascending semi-
revolution of the arm, there are, on the whole, four dead

points of the crank.* The value of P
l being, however, in all

cases exceedingly great between the two highest and the two
lowest of these positions, every position between the two
former and the two latter, and for some distance on either

side of these limits, is practically a dead point.

THE DOUBLE CRANK.

263. To this crank, when applied to the steam engine, are

affixed upon the same solid shaft, two arms at right angles
to one another, each of which sustains the pressure of the

steam in a separate cylinder of the engine, which pressure is

transmitted to it, from the piston rod, by the intervention of

a beam and connecting rod as in the marine engine, or a

guide and connecting rod as in the locomotive engine.

* It has been customary to reckon theoretically only two dead points of the

crank, one in its highest and the other in its lowest position. Every practical
man is acquainted with the fallacy of this conclusion.
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Fig. 1.

In either case, the connecting rods

may be supposed to remain con-

stantly parallel to themselves, and
the pressures applied to them in

different planes to act in the samg

plane,* without materially affecting
the results about to be deduced.f

Let the two arms of the crank be

supposed to be of the same length a
;

let the same driving pressure P l
be

supposed to be applied to each
;
and

let the same notation be adopted in

other respects as was used in the

case of the crank with a single arm;
and, first, let us consider the case

represented in fig. 1, in which both
arms of the crank are upon the same
side of the centre C.

Let the angle W^B^d ;
therefore W

1CE=^+^ : whence

it follows by precisely the same reasoning as in Art. 260.,
that the perpendicular upon the direction of the driving

pressure applied by the connecting rod AB is represented
(see equation 323) by a sin. 6

p2 sin. <pa ,
and the per-

pendicular upon the pressure applied by the rod ED by

a cos - &
P2 sin. 9,. Let now

be taken to represent the perpendicular distance from the
axis C, at which a single pressure, equal to 2P,, must be ap-

plied, so as to produce the same effect to turn the crank as

is produced by the two pressures actually applied to it by
the two connecting rods

; then, by the principle of the equa-
lity of moments,

2P
1 1
=P

1 ( sin. &
pQ sin. 9a)+P 1 ( cos. &

pa sin. 9,) ;

/. a
l=^a (sin.

6 -f- cos. d) pa sin. 9, ;

* This principle will be more fully discussed by a reference to the theory of
statical couples. (See Pritchard on Statical Couples.)

f The relative dimensions of the crank arm and connecting rod are here sup-
posed to be those usually given to these parts of the engine ; the supposition
does not obtain in the case of a short connecting rod.
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a I
.

if *\
/. #,= I sin. & cos. j+cos.d sin. -r I pa sin. <pa

=

which expression becomes identical with the value of #n de-

termined by equation (323), if in the latter equation a be

replaced by -fL, and 6 by 6 +-. "Whence it follows that the
4/2

.

*

conditions of the equilibrium of the double crank in the
state bordering upon motion, and therefore the form of the

modulus, are, whilst both arms are on the same side of the

centre, precisely the same as those of the single crank, the
direction of whose arm bisects the right angle BCE, and
the length of whose arm equals the length of either arm of

the double crank divided by |/2.

Now, if 6
l
be taken to represent the inclination W

X
CF of

this imaginary arm to "W^C, both arms will be found on the

same side of the centre, from that position in which 6
t
= _

to that in which it equals ( * -I. If, therefore, we substi-

tute - for 6, in equations (326), and for &, , and add these
4/2

equations together, the symbol 2 U
2
in the resulting equa-

tion will represent the whole work yielded by the working
pressure, whilst both arms remain on the same side of the

centre, in the ascending and the descending arcs. We thus

obtain, representing the sum of the driving pressures upon
the two arms by P : ,

2P>- (pa sin.<p2+ Pl 8^.901=211, ..... (331).*

Throughout the remaining two quadrants of the revolution

of the crank, the directions of the two equal and parallel

pressures applied to it through the connecting rods being
opposite, the resultant pressure upon the axis is represented
by (P.+ W), instead of |P, (P2+W) { ; whilst, in other

respects, the conditions of the equilibrium of the state bor

* Whewell's Mechanics, p. 25.
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dering upon motion remain the same as before
;
that is, the

same as though the pressure P :
were

applied to an imaginary arm, whose

length is
-

t and whose position co-

incides with OF. Now, referring to

equation (324), it is apparent that

this condition will be satisfied if, in

that equation, the ambiguous sign of

(P2+W) be suppressed, and the

value of P! in the second member,
w^hich is multiplied by p, sin. 9 a ,

be
assumed =0

; by which assumption
the term p x

sin. 9, will be made to

disappear from the left-hand member
of equation (325), and the ambiguous
signs which affect the first and second

terms of the right-hand member will become positive. Now,
these substitutions being made, and the equation being then

integrated, first, between the limits and -, and then be-

tween the limits and
ir, the symbol U3

in it will evidently

represent the work done during each of those portions of a

semi-revolutiou of the imaginary arm in which the two real

arms of the crank are not on the same side of the centre.

Moreover, the integral of that equation between the limits

and j? is evidently the same with its integral between the

limits -j- and if. Taking, therefore, twice the former inte-

gral, we have

P. sin. 9,

sn. - sn.

Dividing this equation by (0a+ p x
sin. 9,), or by #a

(1 H
- sin. 9, )>

and neglecting terms above the first dimen-
G>

9
'

Bion in sin. 9! and sin. 92 ,
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- sin. 9l )-

j p2 sin. <pa
I

;

in which equation 2U2 represents the work done in the

descending or ascending arcs of the imaginary arm, accord-

ing as the ambiguous sign is taken positively or negatively.

Taking, therefore, the sum of the two values of the equation

given by the ambiguous sign, and representing by 4U2
the

whole work done in the descending and ascending arcs, dur-

ing those portions of each complete revolution when both of

the arms are not on the same side of the centre, we have

or, observing that cos. 7 = ~~F>

2P, 0(|/2-l)-X 4/2-1) sin. 9l
-

Pa sin. 9, =

p 1
sin. <pj.

Adding this equation to equation (331), and representing by
U

2 the entire work yielded during a complete revolution of

the imaginary arm,

2P, a 4/2
-

a(|/2 - 1) sin. 9,
-

(2 Pi sin.?,+^

But if U
1 represent the whole work done by the driving

pressures at each revolution of the imaginary arm, then

4 P
1
=U

1
. Since 2 p is the projection of the space
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described by the extremity of the arm during the ascending

and descending strokes respectively, therefore 2P
l
=

j=.

Substituting this value for 2P
X ,

IT l-=
sin.^.. ..(332),

which is the modulus of the double crank, the directions of

the driving pressure and the resistance being both supposed
vertical; or if the friction resulting from the weight of the

crank be neglected, and W be therefore assumed =0, then
does the above equation represent the modulus of the

double crank, whatever may be the direction of the driving

pressure, provided that the direction of the resistance be

parallel to it. Dividing by the coefficient of Uj, and

neglecting terms of more than one dimension in sin. 9 1
and

sin. <pf ,

^ sin.
?,) | (333).

THE CRANK GUIDE.

264. In some of the most important applications of the

steam engine, the crank is made to receive* its continuous

rotatory motion, from the alternating rectilinear motion of

the piston rod, directly through the connecting rod of the

crank, without the intervention of the beam or parallel
motion

;
the connecting rod being in this case jointed at one

extremity, to the extremity of the piston rod, and the oblique

pressure upon it which results from this connexion being
sustained by the intervention of a cross piece fixed upon it,

and moving between lateral guides.*

* This contrivance is that well known as applied to the locomotive carriage.
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Let the length CD of the connecting rod be represented

by J, and that BD of the crank arm by a, and let ft and Pa

in the above figure be taken respectively, to represent the

pressure upon the piston rod of the engine and the connect-

ing rod of the crank, and RS to represent the direction of

the resistance of the guide in the state bordering upon
motion by the excess of the driving pressure P a

. Then is

RS inclined to a perpendicular to the direction of the guides,
or of the motion of the piston rod, at an angle equal to the

limiting angle of resistance (Art. lil) of the surfaces of con-

tact of the guides.

Since, moreover, P1?
P2 ,

R are pressures in equilibrium,

B
P3 sin. P,CS

Let /BCD=4 ; limiting angle of resistance of guide =9;

therefore, ^08=5-9, paCS=^+9-4;

-FT t j-a^Fi) V*
sm.j-

(4 <pU

Let BD = a, CD= &, and DBC= 4n and assume P, to

remain constant, Pj being made to vary according to the

conditions of the state bordering upon motion
;

^P, . AAC= P, . ABC= P, . A ( cos. &,+b cos. 4)=

P
2 sec. 9 cos. (49) (a sin. ^A^-j-5 sin.

AUa=-Pa (ABC)cos. 4=P2 (asin.6^
7T

..U I=P,sec.9| / sin.4
l cos.(4 9)^^^ / sin. 4 cos. (4 9)$}.
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<k

U,=P3 {aJ sin. ^ cos. &d&
1+ 1J sin. & cos.

o o

The second integral in each of these equations vanishes

between the prescribed limits ; also sin. & = T sin. ^ ;
there-

a?
fore cos. d = (1 sin.

3

^)*;

7T 7T

.*. U,=Pa# / sin. 6
l
cos.^

1
=P2 / (1 -TS sin.

a

^,)* sin. ^^=s

TJ^Pa^sec. 9 / sin. 6
l
cos. (^ 9)^ 1

=P
a
^ / sin. ^ cos. ^,

o o

7T 7T

P,a tan. 9 / sin. 6 sin. ^
1
^

1
=Ua+Pa ^-tan. 9 / sin.

9

^^=
l

whence eliminating P8 and reducing, we obtain

which is the modulus of the crank guide.

THE FLY-WHEEL.

265. TA0 angular velocity of the fly-wheel.

Let P
x
be taken to represent a constant pressure applied

through the connecting rod to the arm of the crank of a

* Church's Diff. and Int. Gal. Art. 199.

23
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steam engine; suppose the direction of this pressure to

remain always parallel to itself, and let P2 represent a con-

stant resistance opposed to the revolution of the axis which
carries the fly-wheel, by the useful work done and the pre-

judicial resistances interposed between the axis of the

fly-wheel and the working points of the machine.

Let the angle ACB=$, CB=&, CP2
=

2
.

Now the projection, upon the direction of P
15
of the path

of its point of application B to the crank arm, whilst that

arm describes the angle ACB, is AM, therefore (Art. 52.),

the work done by Y l upon the crank, whilst this angle is

described, is represented by P, . AM, or by P, a vers. d.

And whilst the crank arm revolves through the angle $, the

resistance P2 is overcome through the arc of a circle sub-

tended by the same angle 4, but whose radius is
2 ,

or

through a space represented by aj. So that, neglecting the

friction of the crank itself, the work expended upo'i the

resistances opposed to its motion is represented by P 2
#

a0, and
the excess of the work done upon it through the angle ACB
by the moving power, over that expended during the same

period upon the resistances, is represented by

Pavers. 4 P
2^ (336).

Now 2#Pj represents the work done by the moving pressure

P, during each effective stroke of the piston, and 2tf<22P2
the

work expended upon the resistance during each revolution

of the fly-wheel; so that if m represent the number of

strokes made by the piston whilst the fly-wheel makes one
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revolution, and if the engine be conceived to have attained

its state of uniform or steady action (Art. 146.), then

..J
>.=*Pi ..... (337).

Eliminating from equation (336) the value of #3P2 deter-

mined by this equation, we obtain for the excess of the work
done by the power (whilst the angle 6 is described by the

crank arm), over that expended upon the resistance, the

expression

P^jvers. *-^j ..... (338).

But this excess is equal to the whole work which has been

accumulating in the different moving parts of the machine,
whilst the angle 6 is described by the arm of the crank (Art.

145). Now, let the whole of this work be conceived to have
been accumulated in the fly-wheel, that wheel being pro-

posed to be constructed of such dimensions as sufficiently to

equalise the motion, even if no work accumulated at the

same time in other portions of the machinery (see Art. 150.),
or if the weights of the other moving elements, or their

velocities, were comparatively so small as to cause the work
accumulated in them to be exceedingly small as compared
with the work accumulated during the same period in the

fly-wheel. Now, if I
frepresent the moment of inertia of the

fly-wheel, ^ the weight of a cubic foot of its material, a
1
its

angular velocity when the crank arm was in the position

CA, and a its angular velocity when the crank arm has

passed into the position CB ;
then will % (a

2

a^) represent

the work accumulated in it (Art. 75.) between these two

positions of the crank arm, so that

..... (339).

266. The positions of greatest and least angular velocity of
the fly-wheel.

If we conceive the engine to have acquired its state of

steady or uniform motion, the aggregate work done by the
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power being equal to that expended upon the resistances,
then will the angular velocity of the fly-wheel return to the

same value whenever the wheel returns to the same position ;

so that the value of OL
I
in equation (339) is a constant, and

the value of a a function of 6
;
a assumes, therefore, its mini-

mum and maximum values with this function of d, or it is a

minimum when --= 0, and ->0> and a maximum when

da? A , d?a? _

-^-=0,
andw<

therefore
-^-=0,

when

-r, , da? .

But-=s

. m
sin. d

. m , (Pa? ._ -, and w= cos. I,

(340.)

Now this equation is evidently satisfied by two values of

d, one of which is the supplement of the other, so that if ^

represent the one, then will (*>]) represent the other;
which two values of 9 give opposite signs to the value cos.

6 of the second differential co-efficient of a
2

,
the one being

positive or >0, and the latter negative or <0. The one
value corresponds, therefore, to a minimum and the other
to a maximum value of a. If, then, we take the angle ACB

Wit

in the preceding figure, such that its sine may equal

(equation 340), then will the position CB of the crank arm
be that which corresponds to the minimum angular velocity
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of the fly-wheel ;
and if we make the angle ACE equal to

the supplement of ACB, then is CE the position of the
crank arm, which corresponds to the maximum angular

velocity of the fly-wheel.

267. The greatest variation of the angular velocity of the

fly-wheel.

Let a
a be taken to represent the least angular velocity of

the fly-wheel, corresponding to the position CB of the crank

arm, and a
a its greatest angular velocity, corresponding to

the position CE ;
then does

^- (a3

8
a

2

2

) represent the work

accumulated in the fly-wheel between these positions, which
accumulated work is equal to the excess of that done by the

power over that expended upon the resistances whilst the

crank arm revolves from the one position into the other,
and is therefore represented by the difference of the values

given to the formula (338) when the two values K ^ and
i, determined by equation (340), are substituted in it for 0.

Now this difference is represented by the formula

_. ( m
(TT 11

*})
)

P,#
-j

vers. (if ?])
vers. q

-
r,

( / 2>]\ )

or by Pjfl
|
2 cos. v m 1 1

J p
U.T ( / 2'i\ )

. /_. 2 a\ ~p A l a pno
y, ^,1 i I y .

o V s a /
~~

i i
^v>to. ') //ti j. if)

^0' \ \ it i }

/.a3

2
a2

2=
j^

i 2 cos. n--*n 7) |
(341);

in which equation *j is taken (equation 340) to represent

that angle whose sine is .

268. The dimensions of the fly-wheel, such that its angular
velocity may at no period of a revolution deviate beyond
prescribed limitsfrom the mean.

Let $N be taken to represent the mean number of revo-

u
lutions made by the fly-wheel per minute; then will -JoU
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represent the mean number of revolutions or parts of a

N NV
revolution made by it per second, and fcr^, or

-^-,
the

mean space described per second by a point in the fly-wheel
whose distance from the centre is unity, or the mean angular
velocity of the fly-wheel. Now, let the dimensions of the

fly wheel be supposed to be such as are sufficient to cause
its angular velocity to deviate at no period of its revolution

by more than -th from its mean value
;
or such that the max-J n

imum value as of its angular velocity may equal-^r
I 1 + -

I

and that its minimum value a
2 may equal -^H 1 -

I
;
then

Substituting in equation (341),

2*]

Let H be taken to represent the horses' power of the

engine, estimated at its driving point or piston ;
then will

33000H represent the number of units of work done per
minute, upon the piston. But this number of units of work
is also represented by%Nm . 2?^ ;

since %Nm is the number
of strokes made by the piston per minute, and 2P^ is the

work done on the piston per stroke,
TT

:.&,a=6600(%-.Era

Substituting this value for 2P
:
a in the above equation, we

obtain, by reduction,

66000.30V)-^ f

Let & be taken to represent the radius of gyration of the

wheel, and M its volume; then (Art. 80.) MAf^I, therefore

M-M.^
2

=^I. But M-M represents the weight of the wheel
in Ibs.

;
let W represent its weight in tons

; therefore,

aM=2240W. Substituting this value, and solving in

respect to "W,
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66000.30^) <
/, to\\ H

Substituting their values for * and g, and determining the

numerical value of the co-efficient,

W=86491
{

1 cos. ,-
(l
-
5) [ g- ..... (343).

If the influence of the work accumulated in the arms of

the wheel be given in, for an increase of the equalising

power beyond the prescribed limits, that accumulated in the

heavy rim or ring which forms its periphery being alone

taken into the account;* then (Art. 86.) H&9=I=2flrfaK

(R
2

4~Jc
2

),
where b represents the thickness, c the depth, and

R the mean radius of the rim. But by Guldiims's first

property (Art. 38.), 2^K=M; therefore &2

=(R
2 + ic

2

).

Substituting in equation (343)

W=86491
)

1 co, ,-

If the depth c of the rim be (as it usually- is) small as

compared with the mean radius of the wheel, Jc
j2 may be

neglected as compared with R2

,
the above equation then

becomes
i 2 / 2>)\ ) H?&

W=86491
{

- cos. ,-(l
-
-] |^ . . . . (345) ;

by which equation the weight "W in tons of a fly-wheel of a

given mean radius R is determined, so that being applied to

an engine of a given horse power H, making a given num-
ber of revolutions per minute JN", it shall cause the angular

velocity of that wheel not to vary by more than -th from its

mean value. It is to be observed that the weight of the

wheel varies inversely as the cube of the number of strokes

made by the engine per minute, so that an engine making
twice as many strokes as another of equal horse power,

* If the section of each arm be supposed uniform and represented by /c, and
the arms be p in number, it is easily shown from Arts. 79., 81., that the

momentum of inertia of each arm about its extremity is very nearly repre-
sented by i/c(R ic)

3

,
where c represents the depth of the rim; so that the

whole momentum of inertia of the arms is represented by ^/c(R jc
1

)

3

,
which

o

expression must be added to the momentum of the rim to determine the whole
momentum I of the wheel. It appears, however, expedient to give the inertia

of the arms to the equalising power of the wheeL
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would receive an equal steadiness of motion from a fly-

wheel of one eighth the weight; the mean radii of the

wheels being the same.

If, in equation (342), we substitute for I its value 2tffoR
3

,

or 2tfKH3

(representing by K the section be of the rim), and
if we suppose the wheel to be formed of cast iron of mean

quality, the weight of each cubic foot of which may be
assumed to be 450 lb., we shall obtain by reduction

R^= 68521 i- cos. ^-(l--)l^... .(346);
(
m \ if I j

N K

by which equation is determined the mean radius R of a fly-
wheel of cast iron of a given section K, which being applied
to an engine of given horse power H, making a given num-
ber of revolutions J-N" per minute, shall cause its angular

velocity not to deviate more than th from the mean
;

or

conversely, the mean radius being given, the section K may
be determined according to these conditions.

269. In the above equations, m is taken to represent the
number of effective strokes made by the piston of the engine
whilst the fly-wheel makes one revolution, and ?i to represent

<779

that angle whose sine is .

Let now the axis of the fly-wheel be supposed to be a
continuation of the axis of the crank, so that both turn with
the same angular velocity, as is usually the case

;
and let its

application to the single-acting engine, the double-acting
engine, and to the double crank engine, be considered sepa-
rately.

1. In the single-acting engine, but one effective stroke of
the piston is made whilst the fly-wheel makes each revolution.

In this case, therefore, m=l, and sin. *)= =0-3183098 =

sin. 18 33'; therefore, cos. ?] = -9480460, also - =
it

103055
; therefore, 1 = -793888.

co* ,-- =
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Substituting in equations (345) and (346),

W= 95330-64^5,
rr~

(347);

by which equations are determined, according to the pro-

posed conditions, the weight W in tons of a fly-wheel for a

single-acting engine, its mean radius in feet R being given,
and its material being any whatever; and also its mean
radius R in feet, its section (in square feet) K being given,
and its material being cast iron of mean quality ;

and lastly,

the section K of its rim in square feet, its mean radius K
being given, and its material being, as before, cast iron.

2. In the double-acting engine, two effective strokes are

made by the piston, whilst the fly-wheel makes one

revolution. In this cases therefore, m = 2 and sin. ij=-=
if

0-636619 = sin. 39 32'; therefore, cos. *] = -7712549 j
=

39O 0' / Oy, v

= -21963
;
therefore

(

1 -
-^ )

= '56074 ;

- cos. *i
- l - = -21051.m
-

(l
-

)
=

\ * i

Substituting in equations (345) and (346),

24-3593 'EM T E.nR= S V -, =14424^^-
..... (348);

by which equations the weight of the fly-wheel in tons, the

mean radius in feet, and the section of the rim in square
feet are determined for the double-acting engine.

3. In the engine working with two cylinders and a double

crank, it has been shown (Art. 263.) that the conditions of

the working of the two arms of a double crank are precisely
the same as though the aggregate pressure 2P t upon their

extremities, were applied to the axis of the crank by the

intervention of a single arm and a single connecting rod;
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the length of this arm being represented by = instead of #,
1/2

' and its direction equally dividing the inclination of the arms
of the double crank to one another.

Now, equations (345) and (346) show the proper dimen
sions of the fly-wheel to be wholly independent of the

length of the crank arm
;
whence it follows that the dimen-

sion of a fly-wheel applicable to the double as well as a

single crank, are determined by those equations as applied
to the case of a double-acting engine, the pressure upon
whose piston rod is represented by 2Pj. But in assuming
Nm . ^P1 =S3000H, we have assumed the pressure upon

the piston rod to be represented by Pj ;
to correct this error,

and to adapt equations (345) and (346) to the case of a
double crank engine, we must therefore substitute -JH for H
in those equations. "We shall thus obtain

19-3339

by which equations the dimensions of a fly-wheel necessary
to give the required steadiness of motion to a double crank

engine are determined under the proposed conditions.

THE FKICTION OF THE FLY-WHEEL.

270. "W representing the weight of the wheel and 9 the

limiting angle of resistance between the surface of its axis

and that of its bearings, sin. <p will represent its coefficient

of friction (Art. 138.), and "W" sin.
<p, the resistance opposed

to its revolution by friction at the surface of its axis. Now,
whilst the wheel makes one revolution, this resistance is

overcome through a space equal to the circumference of the

axis, and represented by 2tfp, if p be taken to represent the

radius of the axis. The work expended upon the friction of

the axis, during each complete revolution of the wheel, is

therefore represented by 2^pW sin. <p ;
and if IS" represent

the number of strokes made by the engine per minute, and
vr

therefore the number of revolutions made by the fly-wheel
2
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per minute, then will the number of units of work expended

per minute, upon the friction of the axis be represented by
N*pW sin. 9 ;

and the number of horses' power, or the frac-

tional part of a horse's power thus expended, by

. (350).
33000

If in this equation we substitute for W the weight in Ibs.

of the fly-wheel necessary to establish a given degree of

steadiness in the engine, as determined by equations (347),

(348), and (349), we shall obtain for the horse power lost by
friction of the fly-wheel, in the single-acting engine, the

double-acting engine, and the double crank engine, respec-

tively, the formulae

THE MODULUS OF THE CRANK AND FLY-WHEEL.

271. If Sj represent the space traversed by the piston of
the engine in any given time, and a the radius of the crank,W the weight of the fly-wheel in Ibs., and p the radius of its

Q
axis, then will 2a represent the length of each stroke, the

2$
Ql

number of strokes made in that time, and %fpW sin. <p .
*

'

or ifWSj sin. <p the work expended upon the friction of the
a

fly-wheel during that time, which expression being added to

the equation (329) representing the work necessary to cause
the crank to yield a given amount of work U

2 to the ma-
chine driven by it (independently of the work expended on
the friction of the fly-wheel), will give the whole amount of
work which must be done upon the combination of the crank
and fly-wheel, to cause this given amount of work to be

yielded by it, on the machine which tiie crank drives. Let
this amount of work be represented by U^ then in the case
in which the directions of the driving pressure and the re-

sistance upon the crank are parallel (equation (329), and the
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friction of the crane guide is neglected, we obtain for the

modulus of the crank and fly-wheel in the double-acting

engine

U = | 1 + fc sin. 9, + 1 sin. 9, ) } U, + *WS, f sin. 9 (352).
( 2\# a / ) a

THE GOVERNOR.

272. This instrument is represented in the figure, under
that form in which it is most commonly applied tp the steam

engine. BD and CE are rods jointed
at A upon the vertical spindle AF,
and at D and E upon the rods DP
and EP, which last are again jointed
at their extremities to a collar fitted

accurately to the surface of the spin-
dle and moveable upon it. At their

extremities B and C, the rods DB
and EC carry two heavy balls, and

being swept round by the spindle
which receives a rapid rotation al-

ways proportional to the speed of the

machine, whose motion the governor
is intended to regulate these arms

by their own centrifugal force, and
that of the balls, are made to separate, and thereby to cause

the collar at P to descend upon the spindle, carrying with it,

by the intervention of the shoulder, the extremity of a lever,
whose motion controls the access of the moving power to

the driving point of the machine, closing the throttle valve

and shutting off the steam from the steam engine, or closing
the sluice and thus diminishing the supply of water to the

water-wheel. Let P be taken to represent the pressure of

the extremity of the lever upon the collar, Q the strain

thereby produced upon each of the rods DP and EP in the

direction of its length, W the weight of each of the balls, w
the weight of each of the rods BD and CE, AB=a, AD=&,
DP=c, FAB=d, APDr=^. Now upon either of these rods

as BD, the following pressures are applied : the weight of

the ball and the weight of the rod acting vertically, the

centrifugal force of the ball and the centrifugal force of the
rod acting horizontally, the strain Q of the rod DP, and
the resistance of the axis A. If a represent the angular
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W "W
velocity of the spindle, a

a
. FB, or a

9

0sinJ, willrepre-
y &

sent the centrifugal force upon the ball (equation 102),

and V sin. 6 cos. & its moment about the point A ;
also

9
the centrifugal force of the rod BD produces the same effect

as though its weight were collected in its centre of gravity

(Art. 124.), whose distance from A is represented by \(cib\
so that the centrifugal force of the rod is represented by
ID

J ot?(a 5) sin. 6, and its moment about the point A by

1JO

J a*(a 5)
3
sin. & cos. 6. On the whole, therefore, the sum of

the moments of the centrifugal forces of the rod and ball are

represented by {~Wa?-\-%w(a 5)
3

j
sin. 6 cos. 6. Now if f*

t/

represent the weight of each unit in the length of the rod,
w= f*(+ &) ;

therefore Wa* + %w(a- &)
3 = W a9

(a b). Let this quantity be represented by
"

- (-5) .... (353);

then will "W^* sin. 6 cos. 6 represent the sum of the moments
9

of the centrifugal forces of the rod and ball about A. More-

over, the sum of the moments of the weights of the rod and

ball, about the same point, is evidently represented by Wa
sin. b + w$(a V) sin. 6, or by \Wa+^(a? 5

2

)} sin. 6
;

let this

quantity be represented by W2 # sin. 6,

Also the moment of Q about A=Q . AH=Q3 sin.

Therefore, by the principle of the equality of moments, ob-

serving that the centrifugal force of the rod and ball tend to

communicate motion in an opposite direction from their

weights and the pressure Q,

WX sin. 6 cos. t=Qb sin. (d+fiJ+Wji sin. 6.
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Now P is the resultant of the pressures Q acting in the
directions of the rods PD and PE, and inclined to one
another at the angle 20, ;

therefore (equation 13),

P=2Q cos. 6
l ;

.'. Q sin.
(/) + &,)

= JP
-- =frp j

sin . 6+ cos . 6 tan . ^ .

COS.
fig

But since the sides 5 and <? of the triangle APD are oppo-

site to the angles 6 and 6, therefore
sin *

1 =-
;

therefore
sin. A c

cos

'

. 6
t
=

(l-l'sin.
2
*) V;

= sn. + - sn. cos. -

Substituting this value in the preceding equation, dividing

by sin. 0, and writing (1 cos.
2

d) for sin.
2

$, we obtain

aa. ..(355);

which equation, of four dimensions in terms of cos. 0, being
solved in respect to that variable, determines the inclination

of the arms under a given angular velocity of the spindle.
It is, however, more commonly the case that the inclination

of the arms is given, and that the lengths of the arms,
or the weights of the balls, are required to be determined,
so that this inclination may, under the proposed conditions,
be attained. In this case the values of W, and W

2 must be
substituted in the above equation from equations (353) and

(354), and that equation solved in respect to a or "W.

The values of b and c are determined by the position on
the spindle, to which it is proposed to make the collar

descend, at the given inclination of the arms or value of 0.

If the distance AP, of this position of the collar from A, be

represented by ^, we have h=b cos. b-\-e cos. ^,

-^$m.*4 V---- (356);
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from which equation and the preceding, the value of one

of the quantities 1) or c may be determined, according to the

proposed conditions, the value of the other being assumed to

be any whatever.
If N" represent the number of revolutions, or parts of a

revolution, made per second by the fly-wheel, and /N the

number of revolutions made in the same time by the spindle
of the governor, then will fyirylS represent the space a de-

scribed per second by a point, situated at distance unity from

the axis of the spindle. Substituting this value for a in

equation (355), and assuming &
<?,
we obtain

4ffV
2N8

-? WXcos. 0=PJ+W2
a ____ (357) :

t/

also by equation (356),

h=2b cos. A .....(358).

Eliminating cos. d between these equations, and solving in

respect to A,

Let P (1-f) and P (l-~) represent the values of P
corresponding to the two states bordering upon motion

(Art. 140) and let N (l + )
and N (1^) be the correspond-

ing values of N
;
so that the variation either way of ^th from

the mean number N" of revolutions, may be upon the point
of causing the valve to move. If these values be respectively
substituted for P and N in the above formula, it is evident

that the corresponding values of fi will be equal. Equating
those values of h and reducing, we obtain

By which equation there is established that relation between
the quantities W2 , &, P, m which must obtain, in order that a
variation of the number of revolutions, ever so little greater



368 THE CAKKIAGE-WHEEL.

than the ^th part, may cause the valve to move. Neglect-

ing \ as small when compared with n.

/ w
I

Jl

which expression, representing that fractional variation in the
number of revolutions which is sufficient to give motion to

the valve, is the true measure of the SENSIBILITY of the

governor.

273. The joints E and D are sometimes
fixed upon the arms AB and AC as in the

accompanying figure, instead of upon the

prolongations of those arms as in the pre-

ceding figure. All the formulae of the
last Article evidently adapt themselves
to this case, if b be assumed =0 (in equa-
tions 353, 354). The centrifugal force of

the rods EP and DP is neglected in this

computation.

THE CARRIAGE-WHEEL.

274:. Whatever be the nature of the resistance opposed to

the motion of a carriage-wheel, it is evidently equivalent to

that of an obstacle, real or imaginary, which the wheel may
be supposed, at every instant, to be in the act of surmount-

ing. Indeed it is certain, that, however yielding may be the
material of the road, yet by reason of its compression before

the wheel, such an immoveable obstacle, of exceedingly small

height, is continually in the act of being presented to it.

275. The two-wheeled carriage.

Let AB represent one of the wheels of a two-wheeled

carriage, EF an inclined plane, which it is in the act of as-

cending, O a solid elevation of the surface of the plane, or an
obstacle which it is at any instant in the act of passing over,
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P the corresponding trac-

tion, W the weight of the

wheel and of the load which
it supports.
Now the surface of the lox

of the wheel being in the

state bordering upon motion
on the surface of the axle,
the direction of the resist-

ance of the one upon the

other is inclined at the limit-

ing angle of resistance, to a
radius of the axle at their,

point of contact (Art. 14rl.)i.

This resistance has,, more-

over, its direction; through
the point of contact O of

the tire of the wheel with the obstacle on which it is in the
act of turning. If, therefore, OK be drawn intersecting the

circumference of the axis in a point <?,
such that the angle

CcR may equal the limiting angle of resistance
<p,,

then will

its direction be that of the resistance of the obstacle upon
the wheel.
Draw the vertical GH representing the weight "W, and

through H draw HK parallel to OK, then will this line

represent (to the same scale) the resistance K, and GK the
traction P (Art. 14.) ;

,

P_GK sin. GHK sin.. GHK
' W~GH-sm. GKH-sin. (PGH-GHK)=

sin. WsO
sin. (PLW-W*Oy

Let K=radius of wheel, p= radius of axle, AGO =77, ACTW
i=inclination of the road to the horizon, ^inclination of

direction of the traction to the road. Now WsO=WCO-f-

COs, but =*+ iy,
and Let CO* be re-

presented by a, then WsO=i

sin. a^^sin. 9 .... (360).

Also
PLW=^+*+d;

therefore ~PLW-WsO=:--(ri+a-6)-9

24:
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.-.P=W- ^r-^ (361);
COS. (*)+ a 6)

when the direction of traction is parallel to the road, d=0,

..P=W{sin. 1+ cos. i tan. (*i+a)} .... (362).

If the road and the direction of traction be both horizontal

6=i=Q, and

P=W tan. (ij+a) (363).

In all cases of traction with wheels of the common dimen-

sions upon ordinary roads, AGO or v\ is an exceedingly small

angle ;
a is also, in all cases, an exceedingly small angle

(equation 360); therefore tan. (77+ a) 77+ a very nearly.
Now if A be taken to represent the arc AO, whose length
is determined by the height of the obstacle and the radius

of the wheel, then

1=5 (364)-

Substituting the value of a from equation (360),

p w (A+ p sin. 9) ,P=W.- -^
i

(365).

276. It remains to determine the value of the arc A inter-

cepted between the lowest point to which the wheel sinks in

the road, and the summit of the obstacle, which it is at

every instant surmounting. Now, the experiments of Cou-

lomb, and the more recent experiments of M. Morin,* ap-

pear to have fully established the fact, that, on horizontal

roads of uniform quality and material, the traction P, when
its direction is horizontal, varies directly as the load W, and

inversely as the radius B, of the wheel
;
whence it follows

(equation 365), that the arc A is constant, or that it is the

same for the same quality of road, whatever may be the

weight of the load, or the dimensions of the wheel.f The

*
Experiences sur le Tirage des Voitures, faites en 1837 et 1888. (See AP-

PENDIX.)

f In explanation of this fact let it be observed, that although the wheel

sinks deeper beneath the surface of the road as the material is softer, yet the

obstacle yields, for the same reason, more under the pressure of the wheel, the

arc A being by the one cause increased, and by the other diminished. Also,
that although by increasing the diameter of the wheel the arc A would be ren-

dered greater if the wheel sank to the same depth as before, yet that it does

not sink to the same depth by reason of the corresponding increase of the sur-

face which sustains the pressure.
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constant A may therefore be taken as a measure of the re-

sisting quality of the road, and may be called the modulus

of its resistance.

The mean value of this modulus being determined in re-

spect to a road, whose surface is of any given quality, the

value of
7)

will be known from equation (364), and the rela-

tion between the traction and the load upon that road, under
all circumstances

;
it being observed, that, since the arc A

is the same on a horizontal road, whatever be the load, if the

traction be parallel, it is also the same under the same cir-

cumstances upon a sloping road
;
the effect of the slope be-

ing equivalent to a variation of the load. The same substi-

tution may therefore be made for tan. (?)+a) in equation
(362), as was made in equation (363),

= sn. <+ cos.

277. The lest direction of traction in the two-wheeled

carriage.

This best direction of traction is evidently that which gives
to the denominator of equation (361) its greatest value

;
it

is therefore determined by the equation

.... (367).

278. The four-wheeled carriage.

Let W
1?
W

a represent the loads borne by the fore and
hind wheels, together with their own weights, K Ka their

radii, p,, p2 the radii of their axles, and <p l5 <pa the limiting an-

gles of resistance. Suppose the direction of the traction P
parallel to the road, then, since this traction equals the sums
of the tractions upon the fore and hind wheels respectively,
we have by equation (366)
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or

3 sn.

^) sin. 9l+W2

(^)sin.9
2

jcos.
. . . (368).

279. The work accumulated in the carriage-wheel.*

Let I represent the moment of inertia of the wheel about
its axis and M its volume; then will MR2+I represent its

moment of inertia (Art. 79.) about the point in its circum-
ferences about which it is, at every instant of its motion, in

the act of turning. If, therefore, a represent its angular
velocity about this point at any instant, U the work at that

instant accumulated in it, and p the weight of each cubical

unit of its mass, then (Art. 75.), U=Ja
a

-(MR
a

+I)= |-M
y y

M*

(aR)
a

-f-Ja
a
-I. Now if Y represent the velocity of the axis

of the wheel, aE=Y;

whence it follows, that the whole work accumulated in the

rolling wheel is equal to the sum obtained by adding the
work which would have been accumulated in it if it had
moved with its motion of translation only, to that which
would have been accumulated in it if it had moved with its

motion of rotation only. If we represent the radius of gyra-
tion (Art. 80.) by }, I=MKa

;
whence substituting and

reducing,

..... (369).

The accumulated work is therefore the same as though the
wheel had moved with a motion of translation only, but with

a greater velocity, represented by the expression 1
1 +

-pa
1 Y.

* For a further discussion of the conditions of the rolling of a wheel, see a

paper in the Appendix on the Rolling Motion of a Cylinder.

f The angular velocity of the wheel would evidently be a, if its centre were
fixed, and its circumference made to revolve with the same velocity as now.
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280. ON THE STATE OF THE ACCELERATED OR THE RETARDED
MOTION OF A MACHINE.

Let the work Ul
done upon the driving point of a machine

be conceived to be in excess of that U 3 yielded upon the

working points of the machine and that expended upon its

prejudicial resistances. Then we have by equation (117)

11,=AU.+ BS,+^(V-V^tox' ;

where Y represents the velocity of the driving point of the

machine after the work 'U
l
has been done upon it, Y4

that

when it began to be done, and 2i0X
a
the coefficient of equable

motion. ]Now let S
x represent the space through which Uj

is done, and S2 that through which U
,
is done

;
and let the

above equation be differentiated in respect to Sn

.ZU,_ dU. dB 1 dV
dS,- dS,

'

3
l

+
"*9

r <m** *
,

but TT"
1

PI (Art. 51.) if P, represent the driving pressure.

Also -SOT= Pa ,
if P

a represent the working pressure ;
also

'

dV dt dV 1 dVV ''-----=f (equation 72).

If, therefore, we represent by A the relation- 1
,
between the

spaces described in the same exceedingly small time by the

driving and working points, we have

-2wXa ..... (370);
9

where/" (Art. 95.) represents the additional velocity actually
acquired per second by the driving point of the machine, if

Pj and P2 be constant quantities, or, if not, the additional

velocity which would be acquired in any given second, if

these pressures retained, throughout that second, the values
which they had at its commencement.
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281. To determine the coefficient of equable motion.

a

represents the sum of the weights of all the moving
elements of the machine, each being multiplied by the ratio

of its velocity to that of the driving point, which sum has

been called (Art. 151.) the coefficient of equable motion. If

the motion of each element of the machine takes place #bout
a fixed axis, and a

1}
a,n &c., represent the perpendiculars

from their several axes upon the directions in which they
receive the driving pressures of the elements which precede
them in the series, and ^, J2 ,

Z>
3 , &c., the similar perpen-

diculars upon the tangents to their common surfaces at the

points where they drive those that follow them
; then,

while the first driving point describes the small space AS
15

the point of contact of the p\h and p+ 1th elements of the

series will be made (Art. 234.) to describe a space repre-
sented b

**M ^

a^a^ ...
ct>p

so that the angular velocity of the ^?th element will be

represented by

.

ap

and the space described by a particle situated at distance f

from the axis of that element by

and the ratio X of this space to that described by the driving

point of the machine will be represented by

a.
t

The sum 2wX2 wiH therefore be represented in respect to

this one element by

Or if Ip represent the moment of inertia of the element, and

PP the weight of each cubic unit of its mass, that portion of

the value of 2wXa which depends upon this element will be

represented by
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And the same being true of every other element of the

machine, we have

which is a general expression for the coefficient of equable
motion in the case supposed. The value of A in equation

(3T1) is evidently represented by

To determine the pressure upon the point of contact of
any two elements of a machine moving with an accelerated

or retarded motion.

Let j?4
be taken to represent the resistance upon the point

of contact of the first element with the second, j92 that upon
the point of contact of the second element of the machine
with the third, and so on. Then by equation (3TO), observ-

ing that, P! and pl representing pressures applied to the
same element, ^w^ is to be taken in this case only in

respect to that element, so that it is represented by p.,!^

whilst A is in this case represented by , we have, neglect-

ing friction,

Substituting the value off from equation (371), and solving
in respect to j?,,

_! p _! / p _ Ap \ j^L
b,

1

"!>,[
l V 2wK

where the value of A is determined by equation (373), and
that of 2i0X

a

by equation (37^). Proceeding similarly in

respect to the second element, and observing that the

impressed pressures upon that element are jpl
and p we

have
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fi representing the additional velocity per second of the

point of application of p which evidently equals /.

Substituting, therefore, the value of/ from equation (3T1)
as before,

Substituting the value of ^ from equation (374), and solv-

ing in respect tojpa ,
we have

And proceeding similarly in respect to the other points of

contact, the pressure upon each may be determined. It is

evident, that by assuming values of A and B in equations

(370) and (371) to represent the coefficients of the moduli in

respect to the several elements of the machine, and to the

whole machine, the influence of friction might, by similar

steps, have been included in the result.



PART IV.

THEOEY OF THE STABILITY OF STKUCTUKES.

GENERAL CONDITIONS OF THE STABILITY OF A STRUCTURE OF
UNCEMETED STONES.*

A STRUCTURE may yield, under the pressures to which it is

subjected, either by the slipping of certain of its surfaces of

contact upon one another, or by their turning over upon the

edges of one another ;
and these two conditions involve the

whole question of its stability.

THE LINE OF KESISTANCE.

283. Let a structure MNLK, composed of a single row of

uncemented stones of any forms,

s
and placed under any given circum-

f stances of pressure, be conceived to

,
be intersected by any geometrical
surface 1 2, and let the resultant a A
of all the pressures which act upon
one of the parts MN21, into which
this intersecting surface divides the

structure, be imagined to be taken.

Conceive, then, this intersecting
surface" to change its form and posi-
tion so as to coincide in succession

with all the common surfaces of

contact 8 4, 5 6, T 8, 9 10, of the

stones which compose the structure :

and let R, cO, dD, eE be the re-

* Extracted from a memoir on the Theory of the Arch by the author of this
work in the first volume of the " Theoretical and Practical Treatise on Bridges,"
by Professor Hosking and Mr. Hann of King's College, published by Mr. Weale.
These general conditions of the equilibrium of a system of bodies in contact
were first discussed by the author in the fifth and sixth volumes of the " Cam-
bridge Philosophical Transactions."

871
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sultants, similarly taken with &A, which correspond to these

several planes of intersection.

In each such position of the intersecting surface, the result-

ant spoken of having its direction produced, will intersect

that surface either within the mass of the structure, or, when
that surface is imagined to be produced, without it. If it

intersect it without the mass of the structure, then the whole

pressure upon one of the parts, acting in the direction of

this resultant, will cause that part to turn over upon the

edge of its common surface of contact with the other part ;

if it intersect it within the mass of the structure, it will not.

Thus, for instance, if the direction of the resultant of the
forces acting upon the partNM 1 2 had been &'A', not inter-

secting the surface of contact 1 2 within the mass of the

structure, but when imagined to be produced beyond it to a'
;

then the whole pressure upon this part acting in a'A! would
have caused it to turn upon the edge 2 of the surface of con-

tact 1 2
;
and similarly if the resultant had been in a" A",

then it would have caused the mass to revolve upon the

edge 1. The resultant having the direction #A, the mass
will not be made to revolve on either edge of the surface of

contact 1 2.

Thus the condition that no two parts of the mass should be

made, by the insistent pressures, to turn over upon the edge
of their common surface of contact, is involved in this other,
that the direction of the resultant, taken in respect to every
position of the intersecting surface, shall intersect that sur-

face actually within the mass of the structure.

If the intersecting surface be imagined to take up an infi-
nite number of different positions, 1 2, 3 4, 5 6, &c., and the
intersections with it, #, J, <?, d, &c., of the directions of all

the corresponding resultants be found, then the curved line

cikcdef, joining these points of intersection, may with pro-

priety be called the LINE OF RESISTANCE, the resisting points
of the resultant pressures upon the contiguous surfaces lying
all in that line.

f>
.

This line can be completely determined by the methods of

analysis, in respect to a structure of any given geometrical
form, having its parts in contact by surfaces also of given
geometrical forms. And, conversely, the form of this line

being assumed, and the direction which it shall have through
any proposed structure, the geometrical form of that struc-

ture may be determined, subject to these conditions
;
or

lastly, certain conditions being assumed, both as it regards
the form of the structure and its line of resistance, all that is
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necessary to the existence of these assumed conditions may
be found. Let the structure ABCD have for its line of re-

sistance the line PQ. Now
it is clear that if this line

cut the surface MN of any
section of the mass in a point
n without the surface of the

mass, then the resultant of

the pressures upon the mass
CMN will act through n,
and cause this portion of the

mass to revolve about the

nearest point IS" of the in-

tersection of the surface of

secton K with the surface of the structure.

Thus, then, it is a condition of the equilibrium that the

line of resistance shall intersect the common surface of con-

tact of each two contiguous portions of the structure actually
within the mass of the structure / or, in other words, that it

shall actually go through each joint of the structure, avoid-

ing none : this condition being necessary, that no two po5>
tions of the structure may revolve on the edges of their

common surface of contact.

THE LINE OF PRESSURE.

284. But besides the condition that no two parts of the
structure should turn upon the edges of their common sur-

faces of contact, which condition is involved in the determi-

nation of the LINE OF RESISTANCE, there is a second condition

necessary to the stability of the structure. Its surfaces of

contact must no where slip upon one another. That this

condition may obtain, the resultant corresponding
to each

surface of contact must have its direction within certain

limits. These limits are denned by the surface of a right
cone (Art. 1.39.), having the normal to the common surface

of contact
v
at the above-mentioned point of intersection of

the resultant) for its axis, and having for its vertical angle
twice that whose tangent is the co-emcient of friction of the
surfaces. If the direction of the resultant be within this

cone, the surfaces of contact will not slip upon one another
;

if it be without it, they will.

Thus, then, the directions of the consecutive resultants in
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THE STABILITY OF A SOLID BODY.

respect to the normal to the point, where each intersects its

corresponding surface of contact, are to be considered as im-

portant elements of the theory.
Let then a line ABODE be taken, which is the locus of

the consecutive intersections of the
resultants #A, &B, cC, dD, &c. The
direction of the resultant pressure
upon every section is a tangent to

this line
;

it may therefore with pro-

priety be called the LINE OF PRESSURE.
Its geometrical form may be deter-

mined under the same circumstances
as that of the line of resistance. A
straight line cC drawn from the point
0, where the LINE OF RESISTANCE abed
intersects any joint 5 6 of the struc-

ture, so as to touch the LINE OF PRES-

SURE ABCD, will determine the
direction of the resultant pressure

upon that joint: if it lie within the cone spoken of, the
structure will not slip upon that joint ;

if it lie without it,

it will.

Thus the whole theory of the equilibrium of any structure

is involved in the determination with respect to that struc-

ture of these two lines the line of resistance, and the line

of pressure : owe of these lines, the line of resistance, de-

termining the point of application of the resultant of the

pressures upon each of the surfaces of contact of the system ;

and the other, the line of pressure, the direction of that

resultant.

The determination of both, under their most general forms,
lies within the resources of analysis ;

and general equations
for their determination in that case, in which all the surfaces
of contact, or joints, are planes the only case which offers

itself as & practical case have been given by the author of
this work in the sixth volume of the "

Cambridge Philo-

sophical Transactions."

THE STABILITY OF A SOLID BODY.

285. The stability of a solid body may be considered to be

greater or less, as a greater or less amount of work must be
aone upon it to overthrow it

;
or according as the amount
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of work which must be done upon it to bring it into

that position in which it will fall over of its own accord is

greater or less. Thus the stability of the solid represented
in fig. 1. resting on a horizontal

Plg ^ Kjj 2

plane is greater or less, according
as the work which must be clone

upon it, to bring it into the position

represented in^g. 2., where its cen-

tre of gravity is in the vertical

passing through its point of sup-

port, is greater or less. Now this

work is equal (Art. 60.) to that

which would be necessary to raise its whole weight, verti-

cally, through that height by which its centre of gravity
is raised, in passing from the one position into the other.

Whence it follows that the stability of a solid body resting

upon a plane is greater or less, as the product of its weight
by the vertical height through which its centre of gravity is

raised, when the body is brought into a position in which it

will fall over of its own accord, is greater or less.

If the base of the body be a plane, and if the vertical

height of its centre of gravity when it rests upon a horizontal

plane be represented by A, and the distance of the point or

the edge, upon which it is to be overthrown, from the point
where its base is intersected by the vertical through its

centre of gravity, by &
;
then is the height through which its

centre of gravity is raised, when the body is brought into a

position in which it will fall over, evidently represented by
(A

2+ #')* A; so that if "W represent its weight, and U the

work necessary to overthrow it, then

U=W \(V+lcJ-h\ .... (376).

U is a true measure of the stability of the body.

THE STABILITY OF A STRUCTURE.

286. It is evident that the degree of the stability of a
*

structure, composed of any number of separate but contigu-
ous solid bodies, depends upon the less or greater degree of

approach which the line of resistance makes to the extrados
or external face of the structure

;
for the structure cannot be

thrown over until the line of resistance is so del. ected as to
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intersect the extrados : the more remote is its direction frora

that surface, when free from any extraordinary pressure, the

less is therefore the probability that any such pressure will

overthrow it. The nearest distance to which the line of re-

sistance approaches the extrados will, in the following pages,
be represented by m, and will be called the MODULUS OF
STABILITY of the structure.

This shortest distance presents itself in the wall and but-

tress commonly at the lowest section of the structure. It is

evidently beneath that point where the line of resistance in-

tersects the lowest section of the structure that the greatest
resistance of the foundation should be opposed. If that point
be firmly supported, no settlement of the structure can take

place under the influence of the pressures to which it is ordi-

narily subjected.*

THE WALL OR PIER.

287. The stability of a wall.

If the pressure upon a wall be uniformly distributed along
its length,! and if we conceive it to be intersected by verti-

cal planes, equidistant from one another and perpendicular
to its face, dividing it into separate portions, then are the

conditions of its stability, in respect to the pressures applied
to its entire length, manifestly the same with the conditions

the stability of each of the individual portions into which it

is thus divided, in respect to the pressures sustained by that

portion of the wall
;
so that if every such columnar portion

or pier into which the wall
i,s

thus divided be constructed so

as to stand under its insistent pressures with any degree of

firmness or stability, then will the whole structure stand with
the like degree of firmness or stability ;

and conversely.
In the following discussion these equal divisions of the

length of a wall or pier will be conceived to be made one
foot apart ;

so that in every case the question investigated
will be that of the stability of a column of uniform or varia-

* A practical rule of Vauban, generally adopted in fortifications, brings the

point where the line of resistance intersects the base of the wall, to a distance

from the vertical to its centre of gravity, of -|ths the distance from the latter

to the external edge of the base. (See Poncelet, Memoire sur la Stabilite des

Hevetemens, note, p. 8.)

f In the wall of a building the pressure of the rafters of the roof is thua

uniformly distributed by the intervention of the wall plates.
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ble thickness, whose width measured in the direction of the

length of the wall is one foot.

288. When a wall is supported by buttresses placed at

equal distances apart, the conditions of the stability will be
made to resolve themselves into those of a continuous wall,

if we conceive each buttress to be ex-

tended laterally until it meets the adja-
cent buttress, its material at the same
time so diminishing its specific gravity
that its weight when thus spread along
the face of the wall may remain the

same as before. There will thus be ob-

tained a compound wall whose external

and internal portions are of different

specific gravities ;
the conditions of

whose equilibrium remain manifestly

unchanged by the hypothesis which has

been made in respect to it.

THE LINE OF KESISTANCE IN A PIEK.

289. Let ABEF be taken to repre-

/'' sent a column of uniform dimensions.
/ Let PS be the direction of any pres-

' & sure P sustained by it, intersecting its

axis in O. Draw any horizontal sec-

tion IK, and take ON to represent
the weight of the portion AKIB of

the column, and OS on the same scale

to represent the pressure P, and com-

plete the parallelogram ONES
;
then

will OK- evidently represent, in mag-
nitude and direction, the resultant of

the pressures upon the portion AKIB
of the mass (Art. 3.), and its point of

intersection Q with IK will represent
a point in the line of resistance.

Let PS intersect BA (produced if necessary) in G, and let~ ~ "

~i\/r/^ "p/~\/"^ - *

\-\4- P

each cubic foot of the material of the mass. Draw RL per-

pendicular to CD
; then, by similar triangles,
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QM_EL
OM""OL

But QM=y, OM=CM-CO=z-& cot._o, EL=EN
sin. ENL=P sin.

, OL=ON+NL=ON+EN cos. ENL
=; +P cos. a;

y P sin. a

"xk cot. a~>#a?H-P cos. a '

riB. .-* COB. .
.....

cos. a

which is the general equation of the line of resistance of a

pier or wall.

290. The conditions necessary that the stones of the pier may
not slip on one another.

Since in the construction of the parallelogram ONES,
whose diagonal OE determines the direction of the resultant

pressure upon any section IK, the side OS, representing the

pressure P in magnitude and direction, remains always the

same, whatever may be the position of IK
;
whilst the side

ON, representing the weight of AKIB, increases as IK de-

scends : the angle EOM continually diminishes as IK de-

scends. Now, this angle is evidently equal to that made by
OE with the perpendicular to IK at Q ; if, therefore, this

angle be less than the limiting angle of resistance in the

highest position of IK, then will it be less in every subjacent

position. But in the highest position of IK, ON=0, so that

in this position EOM=a. Now, so long as the inclination

of OE to the perpendicular to IK is less than the limiting

angle of resistance, the two portions of the pier separated by
that section cannot slip upon one another (Art. 141.). It is

therefore necessary', and sufficient to the condition that no
two parts of the structure should slip upon their common
surface of contact, that the inclination a of P to the vertical

should be less than the limiting angle of resistance of the

common surfaces of the stones. All the resultant pressures

passing through the point O, it is evident that the line of
pressure (Art. 284.) resolves itself into that point.



THE LINE OF RESISTANCE IN A PIER. 3S5

291. The greatest height ofthe pier.

At the point where the line of resistance intersects the

external face or extrados of the pier, y=%a\ if, therefore, H
represents the corresponding value of

,
it will manifestly

represent the greatest height to which the pier can be built,

so as to stand under the given insistent pressure P. Substi-

tuting these values for a? and y in equation (377), and solving
in respect to H,

Psin. a

If P sin. a
-J-JX&

2

,
H m/mYy y whence it follows that in

this case the pier will stand under the-given pressure P how-
ever great may be the height to which it is raised.

292. The line of resistance is an equilateral hyperbola.

Multiplying both sides of equation ($77) by the don >mi-

nator of the fraction in the second member,

y(pax-\-P cos. a)=Px sin. a P& cos. a
;

dividing by pa, transposing, and changing the signs of all the

terms,

Psin. a Pcos.a Pcos.a/ cos.a\ cos.a T

V I # H-- 1 =-- k :M N / M-a

adding

Psin.a/
'

Pcos.a\ / Pcos.a PcOS.a/ Psin.a/

'

cos.a\ / cos.a\ PcOS.a/^ Psin.a\

\ pa I
y

\ fx / M-a \ pa r

Psin. a Pcos.a Pcos.a Psin

en equa o
pa

VQ=y,, TV=a),,

Let Cil be taken equal to ifl nT=
;
and let

pa pa

25
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Pcos.a/ 7 rsm.a\
/. x,yl

= 1 k + 1 = a constant quantity.

This is the equation of a rectangular hyperbola, whose

asymtote is TX.* The line of resist-

'f / ance continually approaches TX
therefore, but never meets it

;
whence

it follows, that if TX lie (as shown
in the figure) within the surface of
the mass, or if CH < CB or

Psin.ct
., 013 .

.. _ . <# or 2P sin. a<f*a. then
&'' ^a

j

, -'/
the line of resistance will no where
cut the extrados, and the structure

will retain its stability under the in-

sistent pressure P, however high it

may be built
;

which agrees with
the result obtained in the preceding
article.

ii/frf

293. The thickness of the pier, so that when raised to a given

height it may have a given stability.

Let m be taken to represent the nearest distance to which
the line of resistance is intended to approach the extrados of

the pier, which distance determines the degree of its stability,
and has been called the modulus of stability (Art. 286.). It

is evident from the last article that this least distance will

present itself in the lowest section of the pier. At this

lowest section, therefore, y=^am. Substituting this value

for y in equation (377), and also the height h of the pier for

cc, and solving the resulting quadratic equation in respect to

a, we shall thus obtain
rP cos. a

2P

fr

Church's Analyt. Geom., Art. 161.

\
{

)cos.a[..(379).
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294. To vary the point of application of the pressure P, so

that any required stability may he given to the pier.

It is evident, that if in equation (377) we substitute \a,m
for y, and k for

a?, the modulus of stability m
may be made to assume any given value for

a given thickness a of the pier, by assigning
a corresponding value to k

;
that is, by mov-

ing the point of application G- to a certain

distance from the axis of the pier, deter-

mined by the value of Jc in that equation.
This may be done by various expedients,-
and among others by that shown in the

figure. Solving equation (377) in respect to

& we have

. . . . (380),

It is necessary to the equilibrium of the pier, under these

circumstances, that the line of resistance should no where
intersect its intrados below the point D.

\

THE STABILITY OF A WALL SUPPORTED BY SHORES.

295. Let the weight of the portion of the wall supported
by each shore or prop, and the

>T? pressure insistent upon it, be im-
/ agined to be collected in a single

foot of the length of the wall
;
tho

conditions of the stability of tho
wall evidently remain unchanged
by this hypothesis. Let ABCD
represent one of the columns or

piers into which the wall will thus
be divided, EF the corresponding
shore, P the pressure sustained upon
the summit of the wall, Q the
thrust upon the shore EF, 2w its

weight, x the point, where the line

of resistance intersects the base of
the wall, Csc=m, CJ?=b, FEC=:

and let the same notation be taken in other respects as in
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the preceding articles. Then, since a? is a point in the direc

tion of the resultant of the resistances by which the base of

the column is sustained, the sum of the moments about that

point of the pressure P and half the weight of the shore,

supposed to be placed at E*, is equal to the sum of the

moments of the thrust Q, and the weight pah of the column;
or drawing soM. and %N perpendiculars upon the directions

of P and Q,

P.

Now #M = xs sin. a?*M=(HK Ht) sin. a ^
cot. a} sin. a=A sin. a (k+^a mj cos. a, %~N=(b+m) cos.

m)cos. aj +

wm=Q(b+m) cos. P+pahQa m)

Solving this equation in respect to Q, and reducing, we
obtain.

+"* cos.

This expression may be placed under the form

Q=(P cos. a+pah+w) sec. (3

Pjfrcos. a A sin, a+ (&+-|#) cos, a

If the numerator of the fraction in the second member of

this equation be a positive quantity (as in all practical cases

it will probably be found to be) the value of Q manifestly
diminishes with that of m. Now the least value of m, con-

sistent with the stability of the wall, is zero, since the line

of resistance no where intersects the extrados; the least

value of Q (the shore being supposed necessary to the sup-

port of the wall) corresponds, therefore, to the value zero of

m
;
moreover this least value of the thrust upon the shore

consistent with the stability of the wall is manifestly that

which it sustains when the wall simply rests upon it, the

* The weight 2w of the shore may be conceived to be divided into two equal
parts and collected at its extremities.

}
The expression (b-\-m) cos. ft may be placed under the form b cot ft sin.

3-if-m cos. 0=c sin. ft-\-m cos. 3, where c represents the height CE of the point
against which the prop rests.



WALL SUPPORTED BY SHORES. 389

shore not being driven so as to increase the thrust sustained
by it Beyond that just necessary to support the wall.*

This least thrust is represented by the formula

rt__FjAsm.q" cos. a

The thrust which must be given to the prop in order that
there may be given to the wall any required stability, deter-

mined by the arbitrary constant m, is determined by equa-
tion (381). The stability will diminish as the value of m is

increased beyond <z, and the wall will be overthrown
inwards when it exceeds a.

296. The stability of a wall sustained lyy more than one
shore in the same plane.

Let EF, ef be shores in the same plane, sustaining the
wall ABCD, and both necessary to

its stability; so that if EF were re-

moved, the wall would turn over upon
/", and if ef were removed, upon some
point between F and C.

If the thrust of the shore EF be

only that just necessary to sustain
the tendency of the wall to overturn

upon /, it is evident that the line of
resistance must pass through that

point ;
but if the thrust exceed that

just necessary to the equilibrium, or
if the shore be driven then the line

of resistance will intersect fg in some

points. ~Letfx=m; then represent-

ing the thrust upon EF by Q, the dis-

tances fD and fi by h and &, and the angle EFC by /3, the

value of Q is evidently determined by equation (381).
If z be taken in like manner to represent the point where

the line of resistance intersects the base of the wall, and
Cz=m

l ,
CE b, ;

Ce=b Cfe^P^ GD= A,, the thrust upon
the prop ef by Q t

and its weight by 2w
l ;

then the sum of
the moments about the point z of Q and Q 1?

and the weight

* This case presents an application of the principle of least resistance.

Theory of the Arch.)
(See
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J
of the wall, equals the sum of the moments of P, w,

and i0j ;
or

QX&i+ff^) cos. ft+Q (#1+^1) cos. (3+pahi (%am^)=
P{A! sin. a (&-fia m^ cos. a}' + (^0+^) m, ...... (382.)

Substituting the value of Q in this equation, from equation
(381), and solving in respect to Q,, the thrust upon the prop
cf will be determined, so that the stability of the wall, upon
its section fg and upon its base CB, may be m and m

t

respectively.
If m

1
=m

t
the portions of the wall above and below fg

are equally stable.

If m
1=m=Q, the thrust upon each shore is only that

which is just necessary to support the wall, or which is pro-
duced by its actual tendency to overturn. In this case we
have

(P sin, a-^a
3

) foft- ft)
cos, a~

bb
t cos. ft

the value of k being determined by equation (380).

Let

297. The stability of a structure having parallel walls, one

of which is supported l)y means of struts resting on the

summit of the other.

AB and CD be taken to represent the walls, and EF
one of the struts

;
the thrust Q upon the

strut may be determined precisely as in

Art 295. So that the line of resistance

may intersect the base of the wall AB at

a given distance m from the extrados

(see note, p. 388.)
Let m, represent the distance Dx from

the extrados at which the line of resist-

ance intersects the base of the wall CD
;

then taking the moments of the pressures

applied to the wall CD about the point

a?, as in Art. 295, and observing that

besides the pressure Q the weight w of

one half the strut is applied at E, we
have

X
sin.
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in which equation h^ and a
t
are taken to represent the

height and thickness of the wall CD, \ the distance of the

point E on which the strut rests from the axis of the wall, (3

the inclination of the strut to the vertical, and ^ the weight
of a cubic foot of the material of the wall.

Substituting for Q its value from equation (381), and

reducing,

P{Asin. (k+%a) cos. aj ^c?h+m(F cos, a -f

c sin. ft+m cos. ft

sin. ft

/OOON

By this equation is determined that relation between the

dimensions of the two walls and the amount of the insistent

pressure P, by which any required stability may be assigned
to each wall of the structure. If m=0, the pressure upon
the strut will be that only which is produced by the ten-

dency of AB to overturn
;
and the value of m^ determined

from the above equation will give the stability of the exter-

nal wall on this supposition.
* If m=0 and m

1=0, both walls will be upon the point of

overturning, and the above equation will express that rela-

tion between the dimensions of the wall and the amount of

the insistent pressure, which corresponds to the state of the

instability of the structure.

The conditions of the stability, when the wall AB is sup-

ported by two struts resting upon the summit of the wall

CD, may be determined by a method similar to the above

(see Art. 296).
The general conditions of the stability of the structure

discussed in this article evidently include those of a GOTHIC
BUILDING having a central nave, whose walls are supported,
under the thrust of its roof, by the rafters of the roof of its

side aisles. By a reference to the principles of the preceding
article, the discussion may readily be made to include the

case in which a further support is given to the walls of tho

nave by flying buttresses, which spring from the summits of
the walls of the aisles. The influence of the buttresses

which support the walls of the aisles upon the conditions of

the stabiiity of the structure forms the subject of a subse-

quent article.



392 THE WALL OF A DWELLING.

298. The stability of a wall sustaining the floors of a

dwelling.

The joists of the floors of a dwelling-house rest at their

extremities upon, and are sometimes
notched into, pieces of timber called

wall-plates, which are imbedded in

the masonry of the wall. They
serve thus to bind the opposite sides

of the house together ;
and it is upon

the support which the thin walls of

modern houses receive from these

joists, that their stability is some-
times made to depend.*

Representing
that portion oi

rests upon the portion ABCD of the

wall, and the distance BE by <?,

taking a?, as before, to represent the

point where the line of resistance

intersects the base of the wall, and

measuring the moments from thig

by w the weight of

the flooring which

point, we have

whence, taking the same notation as in the preceding arti-

cles, and substituting,

<)Q+ (%am)pah+(am)w= {
Asm. a (k+^a m) cos. a} P ;

,VQc= \h sin. a (k+$a) cos. a} P J^
2A

m (P cos. a+iiah+w) ..... (384) ;

from which expression it appears that Q is less as m is less.

"When, therefore, the strain upon the joints is that only
which is just necessary to preserve the stability of the wall,
or which it produces by its tendency to overturn, then

m=0. In this case, therefore,

* A house thus constructed evidently becomes unsafe when its wall-plates or

the extremities of its joists begin to decay.
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\h Sill, a (&-J--J-&) COS. a} P \\L(ji?h~W(L /oosrs
2= -

G
~

(doo).

If 13 be assumed a right angle, and if (am)w be substi-

tuted for mw, the case discussed in Art. 295. will

evidently pass into that which is the subject of

the present article, and the preceding equation

may thus be deduced from equation (381) (see

note, p. 388.).
In like manner, if the wall sustain the pres-

sure of two floors, and A be taken to represent
the distance from its summit to the lower floor,

and AJ its whole height ; then, representing by m
arid ra

x
the distances from the extrados at which

the line of resistance intersects the sections EG
and eg, and substituting (w + w^) (a m^ for

(w+w1)m 1 ,
the value of the strain Q on the

joists of the lower floor may be determined by
equation (382), it being observed that for the

coefficient of Q t
in that equation must be substi-

tuted (as was shown above) the height (hl h] of

the lower floor from the bottom of the wall. If the strain

be only that produced by the tendency of the wall

turn at g and C, then

W Cd
. 0,+wa

P sin. a

The value of Q is determined by equation (385), G being
taken to represent the distance E0 between the floors. If

the joists be not notched into the wall-plates, the friction of

their extremities upon them, produced per foot of the length
by the weight which they support, must at least equal Q and

Qi respectively.

299. The stability of a wall supported by piers or buttresses

of uniform thickness.

Let the piers be imagined to extend along the whole
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length of the wall, as explained in Art. 288.
;

and let ABCD represent a section of the com-

pound wall thus produced. Let the weight of
each cubic foot of the material of the portion
ABFE be represented by f*1? and that of each
cubic foot of GFCD by f*f ,

EA=
1 ,
GD = a

BC=a, AB = A15 CD = A
2 ,

distance from CD,
produced, of the point where P intersects

AE=Z, x the intersection of the line of resist-

ance with CB, Cx=m. By the principle of the

equality of moments, the moment of P about
the point x is equal to the sum of the moments
of the weights of GO and AF about that point.
But (Art. 295.) moment of P=P \h, sin. a

(lm) cos. aj ;
also moment of weight of AF

(az m +-J#1)A1
&

1M- 1 ;
moment of weight of GC=

P {At
sin. a (lm) cos. *} =(,

..... (387)

If the material of the pier be the same with that of the
wall

; then, taking b to represent the breadth of each pier,
and c the common distance of the piers from centre to

centre (Art. 288.), ca^=ba^ therefore c^=b^l
. Repre-

si

senting =- by n, eliminating the value of ^ between this

equation and equation (387), writing ^ for i^, and reducing,

^ sin. a I cos. )=if* (afh^ + 20,0^+ -
2

2A
3

1

\ 7l> I

ra-JPcos. a+M< \al
h

l +-ajit ] \. . . .(388);
/

\ n V \

by which equation a relation is determined between the
dimensions of a wall supported by piers, having a given
stability m, and its insistent pressure P. Solving it in

respect to &
2 ,
the thickness of the pier necessary to give any

required stability to the wall will be determined. (See
APPENDIX.)

If #2 be assumed to represent that width of the pier by
which the wall would just be made to sustain the given
pressure P without being overthrown; then taking ra=0,
and solving in respect to #a ,
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sin. -Z cos. )+ ( -1)) *.... (389).Aa \ Aa /

300. .7^0 stability of a pier or buttress swr*

mounted by a pinnacle.

Let "W represent the weight of the pinnacle,
and e the distance of a vertical through its cen-

tre of gravity from the edge of the pier : then

assuming x to be the point where the line of

resistance intersects the base of the pier, and tak-

ing the same notation as before, equation (387)
will evidently become

P {k, sin. (lm) cos. *}
=

\a%

+(em)W.

Substituting for /xa its value-^ or
, writing p for f^, and

reducing,

P(A! sin. a I cos. *)=if*|a1

>A1 -f2fl1
ofA1 -ht-al'At j

+

If a
9 represent the thickness of that pier by which the wall

will just be sustained under the pressure, taking m=0, and

solving in respect to a
a , a^=nal-^-

+

fP(A, Bin. .-I cos. .)_-W| + '-l
,' (391).
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THE GOTHIC BUTTRESS.

301. In Gothic buildings the thickness of

a buttress is not unfrequently made to vary
at two or three different heights above its

base. Such buttress is represented in the

accompanying figure.
The conditions by which any required sta-

bility may be assigned to that portion of it

whose base is ~be may evidently be determined

by equation (390). To determine the condi-

tions of the stability of the whole buttress

upon CD, let the heights of the points Q, a,

and b above CD be represented by A,, A2 and
7*

3 ;
let DE=^, DY=a FC=a

3 ,
Cx=m

1 ;

then adopting, in other respects, the same
notations as in Arts. 299 and 300. Since the

distances from x of the verticals through the

centres of gravity of those portions of the

buttress whose bases are DE, DF, and FC
respectively, are (a^+a^^a.m^ (0,-fi0a_m^ and (

:

kas
'm

1)
we have, by the equality

of moments,

P {AJ sin. a (I m,) cos. a} =(^+^4-^ m,) AAM-+

(^-m1) (392).

This equation establishes a relation between the dimen-

sions of the buttress and its stability, by which any one of

those dimensions which enter into it may be so determined
as to give to m

t any required value, and to the structure any
required degree of stability. (See APPENDIX.)

It is evident that, with a view to the greatest economy of

the material consistent with the given stability of the but-

tress, the stability of the portion which rests upon the base

be should equal that of the whole buttress upon CE
;
the

value of m^ in the preceding equation should therefore equal
that of m in equation (390) If m be eliminated between
these two equations, it being observed that h

l
and A2

in equa>
tion (390) are represented by A, A

3
and A2 A

3
in equation

(392), a relation will be established between a
1?
# a

3
A

1? A,,

A
8 , which relation is necessary to the greatest economy of



THE STABILITY OF WALLS SUSTAINING KOOFS. 397

material ; and therefore to the greatest stability of the struc-

ture with a given quantity of material.

THE STABILITY OF WALLS SUSTAINING ROOFS.

302. Thrust upon the feet of the rafters of a roof, the tie-

beam not being suspended from the, ridge.

If f^ be taken to represent the weight of each square foot

of the roofing, 2L the span, i the

inclination BAG of the rafters to

the horizon, q the distance between
each two principal rafters, and a

h1 the inclination to the vertical of

the resultant pressure P on the

foot of each rafter
;
then will L sec. i represent the length of

each rafter, and f^L^ sec. i the weight of roofing borne by
each rafter. Let the weights thus borne by each of the

rafters AB and BC be imagined to be collected in two equal

weights at its extremities
;
the conditions of the equilibrium

will remain unchanged, and there will be collected at B the

weight supported by one rafter and represented by f^L^
sec. t, and at A and C weights, each of which is represented

by -J^L^ sec. i. Now, if Q be taken to represent the thrust

produced in the direction of the length of either of the

rafters AB and BC, then (Art. 13.) ^Lq sec. * = 2Q cos.

|ABC: but ABC^tf 2t; therefore cos. JABC= sin. *;

therefore 2Q sin. i=p 1
~Lo

i
sec. i

;

. o- T .

8ec'* M^Lg f^Lg'

""^V^! sin. L

~~
2 sin. i cos. i

~~
sin. 2*'

The pressures applied to the foot A of the rafter are the

thrust Q and the weight -J^L^ sec. i
;
and the required pres-

sure P is the resultant of these two pressures. Resolving Q
vertically and horizontally, we obtain Q sin. i and Q cos.

,

or ^^Lq sec. L and j^L^ cosec. i. The whole pressure applied

vertically at A is therefore represented by p^Lq sec. t, and
the whole horizontal pressure by ^^Lq cosec. i

;
whence it

follows (Art. 11.) that

P = V' sec.
1

*+Jf* I
'L cosec. '<=

i t/l+icot.
2
* ..... (393).
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(394) "

If the inclination i of the roof be made to vary, the span
remaining the same, P will attain a minimum value when

tan. i = -, or when
4/2

=35 16' ..... (395).

It is therefore at this inclination of the roof of a given
span, whose trusses are of the simple form shown in the

figure, that the least pressure will be produced upon the feet

of the rafters. If <p represent the limiting angle of resistance

between the feet of the rafters and the surface of the tie, the
feet of the rafters would not slip even if there were no mor-
tice or notch, provided that a were not greater than <p (Art.

141.), or \ cot. i not greater than tan. 9, or

i not less than cot.-1 (2 tan. ?>)* ..... (396).

303. The thrust upon the feet of the rafters of a roof in

which the tie-beam is suspended from the ridge l>y a

king-post.

It will be shown in a subsequent portion of this work

(see equation 558) that, in this case,
the strain upon the king-post BD is

equal to fths of the weight of the

tie-beam with its load. Represent-
ing, therefore, the weight of each
foot in the length of the tie-beam

by f*a ,
and proceeding exactly as in

the last article, we shall obtain for the pressure P upon the

feet of the rafters, and its inclination to the vertical, the

expressions
+ 5

M'2)

2
cot.

2

^^ ---- (397).

'

. .(398).-

* If the surfaces of contact be oak, and thin slips of oak plank be fixed

under the feet of the rafters, so that the surfaces of contact may present par-
allel fibres of the wood to one another (by which arrangement the friction will

be greatly increased), tan. <j>=-48 (see p. 133.); whence it follows that the
rafters will not slip, provided that their inclination exceed cot." 1

-96, or
46 10'.
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304. The stability of a wall sustaining the thrust of a roof,

having no tie-beam.

Let it be observed, that in the equation to the line of

resistance of a wall (equation

377), the terms P sin. a and P
cos. a represent the horizontal

and vertical pressures on each

foot of the length of the summit
of the wall

;
arid that the former

of these pressures is represented
in the case of a roof (Art. 302.)

by i^L cosec.
,
and the latter

by M-jL sec. i
; whence, substitu-

ting these values in equation

(377), we obtain for the equation
to the line of resistance in a wall

sustaining the pressure of a roof,

without a tie-beam

I I

H*!/

_

in which expression a represents the thickness of the wall,
k the distance of the feet of the rafters from the centre of

the summit of the wall, L the span of the roof, ^ the weight
of a cubic foot of the wall, and /*,

the weight of each square
foot of the roofing. The thickness a of the wall, so that,

being of a given height A, it may sustain the thrust of a

roof of given dimensions with any given degree of stability,

may be determined precisely, as in Art. 293, by substituting
h for x in the above equation, and \a m for y, and solving
the resulting quadratic equation in respect to a.

If, on the other hand, it be required to determine what
must be the inclination i of the rafters of the roof, so that

being of a given span L it may be supported with a given

degree of stability by w^alls of a given height h and thick-

ness a/ then the same substitutions being made as before,
the resulting equation must be solved in respect to i instead

of a.

The value of a admits of a minimum in respect to the

variable i. The value of t, which determines such a mini-

mum value of a, is that inclination of the rafters which is
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consistent with the greatest economy in the material of the

wall, its stability being given.

305. The stability of a wall supported ~by buttresses, and
sustaining the pressure of a roof without a tie-beam.

The conditions of the stability of such a wall, when sup-

ported by buttresses of uniform thickness, will evidently be

determined, if in equation (388) we substitute for P cos. a
and P sin. a their values f^L sec. i and -J^L consec. i

;
we

shall thus obtain

cosec. i I sec. *)=Jf* (01

iA
1+2alo8M a?h^mn

fsL sec. I+P (#A + - <*A
f (400).

From which equation the thickness a
z of the buttresses

necessary to give any required stability m to the wall may
b# determined.

If the thickness of the buttresses be different at different

heights, and they be surmounted by pinnacles, the con-

ditions of the stability are similarly determined by substi-

tuting for P sin. a and P cos. a the same values in equations

(390) and (392).
To determine the conditions of the stability of a Gothic

building, whose nave, having a roof without a tie-beam, is

supported by the rafters of its two aisles, or by flying but-

tresses, which rest upon the summits of the walls of its

aisles, a similar substitution must be made in equation (383).
If the walls of the aisles be supported by buttresses,

equation (383) must be replaced by a similar relation

obtained by the methods laid down in Arts. 299 and 301
;

the same substitution for P sin. a and P cos. a must then be
made.

306. The conditions of the stability of a wall supporting a

shed roof.

Let AB represent one of the rafters of such a roof, one ex-
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tremity A resting against the face of

the wall of a building contiguous to

the shed, and the other B upon the

r summit of the wall of the shed.

It is evident that when the wall

BH is upon the point of being over-

thrown, the extremity A will be upon
the point of slipping on the face of

the wall DC
;

so that in this state of

the stability of the wall BH, the direc-

tion of the resistance K of the wall

DC on the extremity A of the rafter,

will be inclined to the perpendicular AE to its surface at.ani

angle equal to the limiting angle of resistance. Moreover;,
this direction of the resistance R which corresponds to the-

state bordering upon motion is common to every other state ;

for by the principle of least resistance (see Theory of the

Arch) of all the pressures which might be supplied by the
resistance of the wall so as to support the extremity of the

rafter, its actual resistance is the least.. Now this least re-

sistance is evidently that whose direction is most nearly ver-

tical
;
for the pressure upon the rafter is wholly a vertical

pressure. But the surface of the wall supplies no resistance

whose direction is inclined farther from the horizontal line

AE than AR
;
AR is therefore the direction of the resist-

ance.

Resolving R vertically and horizontally, it becomes R sin.

9 and R cos. 9. Representing the span BF by Lv
the incli-

nation ABE by i, the distance of the rafters by ,
and the

weight of each square foot of roofing by f\ (Art. 10.), R sin.

9+P cos. a,=t*< l Lq sec. i and Reos. 9 P sin. a=0
;
also the

perpendiculars let fall from A on P and upon the vertical

through the centre of AB, are represented by

L cos. (a,+ i) sec. i and -JL ;
therefore (Art. 7).

PL cos. (a+ *)sec. i=^L . L^ q sec. t, and hence
P cos. (a+ i)=^'L^l q. Eliminating between these equa-

tions, we obtain

cot. a=tan. 9+ 2 tan. t (401);

sin.(9+ 0' cos. t(tan. 9+ tan.
i)

26
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If the rafter, instead of resting at A
against the face of the wall, be received

into an aperture, as shown in the figure,

so that the resistance of the wall may be

applied upon its inferior suface instead of

at its extremity: then drawing AE per-

pendicular to the surface of the rafter,

the direction AR of the resistance is evi-

dently inclined to that line at the given

limiting angle 9. Its inclination to the hori-

zon is therefore represented by
-^

Substituting this angle for 9 in equations (401) and (402),

cot. a=cot. (* 9)+ 2 tan. i (403).

,2 sec. i

cos. (i . (i 9)tan. i
'

cos.t{cot.(t-9)+tan.i

.

Substituting in equations (377) and (379) for Psin. a, P cos. a,

their values determined above, all the conditions of the sta-

bility of a wall supporting such a roof will be determined.

307. THE PLATE BANDE OR STRAIGHT ARCH.

Let MN represent any joint of

the plate bande ABCD, whose

points of support are A and B
;

PA the direction of the resistance

at A, WQ a vertical through the
centre of gravity of AMND, TR
the direction of the resultant pres-
sure upon M.'N

;
the directions of

TR, WQ, and PA intersect, therefore, in the same point O.
Let OAD= a

, AM=aj, MR=y, AD=H, AB=2L, weight
of cubic foot of material of apca==^,, Draw ~Rm a perpen-
dicular upon PA produced; then by the principle of the

equality of moments,

Em . P=MQ . (weight of DM).
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But Rm = x cos. a y sin. a, MQ = -Ja?, weight of DM=
Hf^ ;

also resolving P vertically,

PcoB.*=LHf* I (405).

Whence we obtain, by substitution in the preceding equa-
tion, and reduction,

L(x y tan. a)
=' (406),

which is the equation to the line of resistance, showing it to

be a parabola. If, in this equation, L be substituted for a?,

and the corresponding value of y be represented by Y, there

will be obtained the equation Y tan. a = |L, whence it

appears that a is less as Y is greater ;
but by equation (405),

P is less as a is less. P, therefore, is less as Y is greater ;

but Y can never exceed H, since the line of resistance can-

not intersect the extrados. The least value of P, consistent

with the stability of the plate bande, is therefore that by
which Y is made equal to H, and the line of resistance

made to touch the upper surface of the plate bande in F.

Now this least value of P is, by the principle of least

resistance (see Theory of the Arch\ the actual value of the

resistance at A,

/.tan.a^ijj (40Y).

Eliminating a between equations (405) and (407),

(408).

Multiplying equations (405) and (407) together,

P sin. a^-JLX (409).

Now P sin. a represents the horizontal thrust on the point
of support A. From this equation it appears, therefore, that

the horizontal thrust upon the abutments of a straight arch
is wholly independent of the depth H of the arch, and that

it varies as the square of the length L of the arch
;
so that

the stability of the abutments of such an arch is not at all

diminished, but, on the contrary, increased, by increasing
the depth of the arch. This increase of the stability of the
abutment being the necessary result of an increase of the
vertical pressure on the points of support, accompanied by
no increase of the horizontal thrust upon them.
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308. The loadedplate lande.

It is evident that the effect of a loading, distributed

uniformly over the extrados of the

plate bande, upon its stability, is in

every respect the same as would be

produced if the load were removed,
and the weight of the material of

the bande increased so as to leave
the entire weight of the structure

unchanged. Let ^3 represent the

weight of each cubic foot when thus

increased, M-2 the weight of each
cubic foot of the load, and H

x
the height of the load

;
then

H (410).

The conditions of the stability of the loaded plate bande
are determined by the substitution of this value of ^ for ^ 1

in the preceding article.

309. Conditions necessary that the voussoirs of a plate lande

may not slip upon one another.

It is evident that the inclination of every other resultant

pressure to the perpendicular to the surface of its corres-

ponding joint, is less than the inclination of the resultant

pressure or resistance P, to the

perpendicular to the joint AD.
If, therefore, the inclination be
not greater than this limiting an-

gle of resistance, then will every
other corresponding inclination

be less than it, and no voussoir

will therefore slip upon the sur-

face of its adjacent voussoir. Now the tangent of the incli-

nation P to the perpendicular to AD is represented by cot. a

2H
or by -j- (equation 407) ;

the required condition is therefore

determined by the inequality,

?5<tan.9 (411).
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It is evident that the liability of the arch to failure by the

slipping of its voussoirs, is less as its depth is less as com-

pared to its length. In order the more effectually to pro-
tect the arch against it, the voussoirs are sometimes cut of

the forms shown by the dotted lines in the preceding figure,
their joints converging to a point. The pressures upon the

points A and B are dependent upon the form of that portion
of the arch which lies between those points, and indepen-
dent of the forms of the voussoirs which compose it

;
these

pressures, and the conditions of the equilibrium of the piers
which support the arch, remain therefore unchanged by this

change in the forms of the voussoirs.

310. To determine the conditions of the equilibrium of

the upright piers or columns of masonry which form the

abutments of a straight arch, supposing them to be termi-

nated, as shown in the figure, on a different level from the

extrados CD of the arch, let b be taken t*o represent the

elevation of the top of the pier above the point A ;
then will

Z> tan. a, or
|^j (equation 407), represent the distance AG

(p. 383), or the value of Ic \a). Substituting for k in equa-
tion (377) and also the values of P sin. a, P cos. a, from

equations (409) and (405), we have

(412);

which is the equation to the line of resistance of the pier, a

representing its thickness, 5 the height of its summit above
the springing A of the arch, L the length of the arch, f* the

weight of a cubic foot of the material of the arch or abut-

ment (supposed the same).
The conditions of the stability may be determined from

this equation as in the preceding articles. If the arch be

uniformly loaded, the value of ^3 given by equation (410)
must be substituted for f.

311. THE CENTRE OF GRAVITY OF A BUTTRESS WHOSE FACES
ARE INCLINED AT ANY ANGLE TO THE VERTICAL.

Let the width AB of the buttress at its summit be repre-
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sented by #, its width CD at the base by lj

its vertical height AF by <?,
the inclination

of its outer face or extrados BC to the

vertical by a
l9

that of its intrados AD by
aa

.

Let II represent the centre of gravity of

the parallelogram ADEB, and K that of

the triangle BCE, and G that of the but-

tress
;
draw HM, GL, ICN", perpendiculars

upon AF. Then representing GL by \
and observing that the area ADEB is represented by
the area EBC by %(b a}c, and the area ADCB by f

Now HM=

n. a2) ;

Substituting these values and reducing,

a+b
tan. a^^a+ c tan. a

a),

tan. a,=

J=CD=CF DF=c tan. a^a c tan. a2 ;
also (a

3+ ab+ 6
2

)

(ba)*+ Sab= <?

2

(tan.a, tan.a2)

2+ 3ac(tan.a 1
tan.a2)+ 3^

2

,

(a+ 25)<?tan. a
a
=

|2c(tan. a,
1

tan.a2 )+ 3( c tan. a
a

c tan. a
a

=2c2

(tan. OL
I

tan. a
2)

tan. a
2+ 3ac tan. a

2 ;

+ 2) e tan. a
2
=c2

(tan.*^ tan.
3
a 2)

+ 3ac tan. aj+ 3^2
.

' 8ai~tan.
2
a

2)+ ac tan. a
x

a! tan. a2)

. . . (414).

312. THE LINE OF RESISTANCE IN A BUTTRESS.

Let LM represent any horizontal section of the buttress,
TK a vertical line through the centre of

.Ji gravity of that portionAMLB of the but-

tress which rests upon this section. Pro-

duce LM to meet the vertical AE in V,
and let KY=^ and AV=a?

;
then is the

value of X determined by substituting x

for c in equation (414). Let PO be the

direction in which a single pressure P is

applied to overturn the buttress. Take

* This equation is, of course, to be adapted to the case in which the inclina-

tion of AD is on the other side of the vertical, as shown by the dotted line

Ac? by making 2 ,
and therefore tan. a 2 negative.
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OS to represent P in magnitude and direction, and ON to

represent the weight of the portion AMLB of the buttress
;

complete the parallelogram SN, and produce its diagonal
OR to Q ;

then will OR evidently be the direction 01 the

resultant pressure upon AMLB5
and Q a point in the line of

resistance.

Let YQr=y, AG=&, /GOT i, (*:=weight of each cubic

foot of material
;
and let the same notation be adopted in

other respects as in the last article. By similar triangles,

QK_RI
OK" 01

OK=TK TO=TK TG cot. GOT=ra; (X+&) cot. i,.

HI EN sin. ROT=P sin.
i,

OI=OISr+OT=iaAV(AB+LM)-fRN cos. RNI=
Jf*aj{2a4-iB (tan. c^ tan. a2)J +P cos.

;

y X P sin, t

"x (X+ #) cot. i ^px{%a-}-x(t&n. a
x

tan. a
a)}-f-P cos. i

Transposing and reducing,

_jXfxa? \%a+x (tan, otj tan. a
2)^ +P (a? sin, i 7c cos. 1

1

J^{2-fa?(tan. ,
tan. a.2)\ +P cos. t

~'

but substituting x for <? in equation (414), and multiplying
both sides of that equation by the denominator of the frac-

tion in the second member, and by the factor 4a#5
we have

(tan. a, tan. a2)} =^x3

(tan.Vj tan.
2

tan.

n.^! tan.'q^-j-^atan. x -f-//a;a
2
4-2P(a; sin, f ^ cos, i)

Hx
I2a4-actan.d-tan.aa)! -f-2P cos. i

which is the equation to the line of resistance in a buttress.
If the intrades AD be vertical, tan. a

2 is to be assumed =0.
If AD be inclined on the opposite side of the vertical to that
shown in the figure, tan.

2 is to be taken negatively. The
line of resistance being of three dimensions in x, it follows

that, for certain values of y, there are three possible values
of x

;
the curve has therefore a point of contrary flexure.

The conditions of the equilibrium of the buttress are deter-
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mined from its Hne of resistance precisely as those of the

wall.

Thus the thickness a of the buttress at its summit being
given, and its height c, and it being observed that the dis-

tance CE is represented by a+c tan. a
1?
the inclination o^ of

its extrados to the vertical may be determined, so that its

line of resistance may intersect its foundation at a given dis-

tance m from its extrados, by solving equation (415) in re-

spect to tan.
1? having first substituted c for x and a+ c tan.

^m for y\ and any other of the elements determining the

conditions of the stability of the buttress may in like manner
be determined by solving the equation (the same substitu-

tions being made in
it)

in respect to that element.

313. A WALL OF UNIFORM THICKNESS SUSTAINING THE FEES-
SURE OF A FLUID.

If E be taken to represent the surface of the fluid, IK any
section of the wall, and EP two thirds

Isss^ ~=r= t^le dePtn EK ;
then will P be the cen-

tre of pressure* of EK, the tendency
of the fluid to overturn the portion
AKIB of the wall being the same as

would be produced by a single pressure

applied perpendicular to its surface at

P, and being equal in amount to the

weight of a mass of water whose base

is equal to EK, and its height to the

depth of the centre of gravity of EK, or

to ^EK. Let AK=#, AE=e, weight of each cubic foot of

the fluid f*

Let the direction of P intersect the axis of the wall in O
;

let it be represented in magnitude by OS
;

take ON to

represent the weight of the portion AKIB of the wall
;
com-

plete the parallelogram SIN", and produce its diagonal to

meet IK in Q ; then will Q be a point in the line of resist-

ance. Let QM=y, AB=#, weight of each cubic foot of

material ofwall=fA. By similar triangles, r = :. Now

* Treatise on "
Hydrostatics and Hydrodynamics," by the author of this

work, Art. 38. p. 26.



PRESSURE OF A FLUID. 4()9

e)',
NO=weight

Dividing numerator and denominator of this equation by
M,

jxl5 and observing that the fraction represents the ratio o
*i

of the specific gravities of the material of the wall and the

fluid, we have

which is the equation to the line of resistance in a wall of

uniform thickness, sustaining the pressure of a fluid.

314. To determine the thickness, a, of the wall, so that its

height, h, being given, the line of resistance may intersect

itsfoundation at a given distance, m, within the extrados.

Substituting, in equation (416), h for a?, and \a m for y,
and solving the resulting equation in respect to a, we obtain

|/~ i ^~ 6
)

3

Equation (416) may be put under the form y=
1 / e\

3

~ a?
2

1 1 -1
;
whence it is apparent that y increases con-

tinually with x
;
so that the nearest approach is made by

the line of resistance, to the extrados of the pier, at its

lowest section, m therefore represents, in the above expres-
sion, the modulus of stability (Art. 286).

315. The conditions necessary that the wall should not be

overthrown by the slipping of the courses of stones on one
another.

The angle SEO represents the inclination of the resultant

pressure upon the section IK to the perpendicular ; the pro-
posed condition is therefore satisfied, so long as SRO is less

than the limiting angle of resistance 9.
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Now, tan.

WALL SUSTAINING THE

OS
;
the proposed con*

(x tf)

2

dition is therefore satisfied, so long as ^ < tan. <p ; or,

reducing this inequality, so long as

316. THE STABILITY OF A WALL OF (VARIABLE THICKNESS

SUSTAINING THE PRESSURE OF A FLUID.

Let us firsteuppose the internal face AB of the wall to be
vertical

;
let XY be any section of it,

P the centre of pressure of EX, and
SM a vertical through the centre of

gravity of the portion AXYD of the

wall. Produce the horizontal direc-

tion of the pressure P of the fluid,

supposed to be collected in its centre

of pressure, to meet MS in S, and let

SK be taken to represent it in mag-
nitude, and ST to represent the weight
of the portion AXYD of the wall,

and complete the parallelogram STRK
;

then will its

diagonal SR represent the direction and amount of the

resultant pressure upon the mass AXYD, and if it be pro-
duced to intersect XY in Q, Q will be a point in the line of

resistance.

Let AX=#, XQ=2/, MX=X, AE=0, AD=a, inclination

of DC to vertical a, f*=weight of cubical foot of wall,

fji l
=weight of cubical foot of fluid. By similar triangles,

QM_RT~*
'
W

RT=pressure of fluid on EX=iEX.f* 1EX=i* I(

ST=weight of mass AY=-|-{2#+a? tan. a\x\*>.

* The centre of pressure of a rectangular plane surface sustaining the

pressure of a fluid is situated at two thirds the depth of its immersion.

Hydrostatics, p. 26.

f The pressure of a heavy fluid on any plane surface is equal to the weight
of a prism of the fluid whose base is equal in area to the surface pressed, and
its height to the depth of the centre of gravity of the surface pressed.

Hydrostatics, Art. 31.
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M,

Let =0; then, if the fluid be water, a represents the

specific gravity of the material of the wall
;
and if not, it

represents the ratio of the specific gravities of the fluid and
wall.

(x-ef._-
tan. a*

K"ow making a
a
=0 in equation (414), and substituting a

for aa and x for
<?,

^a?
2
tan.

2
a 4- ax tan. a+ a* _-J#>

8
tan.

2
a+ aw* tan. a+ #

2#

x tan. a+ 2# %OjX+ a?
2
tan. a

Adding this equation to the preceding,

o-(aj e)
3

-}-^x
s
tan.V+ ^a?

2
tan. a+ofte

which is the equation to the line of resistance to the wall,
the conditions of whose stability may be determined from it

as before (see Arts. 291. 293.).

31T. The conditions necessary iJiat no course of stones com-

posing the wall may slip upon the subjacent course.

This condition is satisfied when the inclination of SQ to

the perpendicular to the surface of contact at Q is less than
the limiting angle of resistance 9 ;

that is, when QSM <<p,
or when

ET
tan. 9>tan. QSM, or >, or >

or tan. 9 > I-

ISTo course of stones will be made by the pressure of the
fluid to slip upon the subjacent course so long as this condi-

tion is satisfied.

It is easily shown that the expression forming the second
member of the above inequality increases continually with
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a?,
so that the obliquity of the resultant pressure upon each

course, and the probability of its being made to slip upon
the next subjacent course, is greater in respect to the lower

than the upper courses, increasing with the depth of each
course beneath the surface of the fluid.

EARTH WORKS.

318. The natural slope of earth.

It has been explained (Art. 241.) that a mass, placed upon
an inclined plane and acted upon by no other forces than its

weight and the resistance of the plane, will just be supported
when the inclination of the plane to the horizon equals the

limiting angle of resistance between the surface of the plane
and that of the mass which it supports ;

so that the limiting

angle of resistance between the surfaces of the component
parts of any mass of earth might be determined by varying
continually the slope of its surface until a slope or inclination

was attained, at which particular slope small masses of the

same earth would only just be supported on its surface, or

would just be upon the point of slipping down it. Now this

process of experiment is very exactly imitated in the case of

embankments, cuttings, and other earth-works, by natural

causes. If a slope of earth be artificially constructed at an
inclination greater than the particular inclination here

spoken of, although, at first, the cohesion of the material

may so bind its parts together as to prevent them from slid-

ing upon one another, and its surface from assuming its

natural slope, yet by the operation of moisture, penetrating
its mass and afterwards drying, or under the influence of

frost, congealing, and in the act of congelation expanding
itself, this cohesion of the particles of the mass is continually
in the process of being destroyed ;

and thus the particles, so

long as the slope exceeds the limiting angle of resistance,
are continually in the act of sliding down, until, when that

angle is at length reached, this descent ceases (except in so

far as the particles continue to be washed down by the rain),
and the surface retains permanently its natural slope.
The limiting angle of resistance 9 is thus'detennined by

observing what is the natural slope of each description of

earth.
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The following table contains the results of some such
observations * :

NATURAL SLOPES OF DIFFERENT KINDS OF EARTH.

Nature of Earth.
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any results deduced in respect to

the dimensions of the wall, these
._.* elements of the calculation being

.*; neglected, will be in excess^ and
err on the safe side.

? Now the mass of earth which

presses upon AX may yield in the
direction of any oblique section

XY, made from X to the surface

AE of the mass. Suppose YX to

be the particular direction in which
it actually tends to yield ;

so that

if AX were removed, rupture
would first take place along this

section, and AXY be the portion of the mass which would
first fall. Then is the weight of the mass AYX supported
by the resistances of the different elements of the surface AX
of the wall, whose resultant is P, and by the resistance of

the surface XY on which it tends to slide. Suppose, now,
that the mass is upon the point of sliding down the plane
XY, the pressure P being that only which is just sufficient

to support it
;

the resultant SE of the resistances of the
different points of XY is therefore inclined (Art. 241.) to the
normal ST, at an angle RST equal to the limiting angle of
resistance 9 between any two contiguous surfaces of the
earth.

Now the pressure P, the weight "W of the mass AXY, and
the resistance E, being pressures in equilibrium, any two of
them are to one another inversely as the sines of their incli-

nations to the third (Art. 14.).

**w
sin. WSE

:

sin. PSE
sin. WSE
sin. PSE

'

But
WSE=WST-EST=AYX-EST=^-<-<p T

=<; PSE=PST+EST==AXY+KST=*+<p.

.... (42.1).

if

Also W=-J^AX . AY^J-^a?
3
tan. i

;
if^l=weight of each

cubic foot of earth, and AX=a?
;

..P^z-Jfjo^
8
tan. i cot. (*+ <?)

. . . . (422).

Now it is evident that this expression, which represents
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the resistance of the wall necessary to sustain the pressure of

the wedge-shaped mass of earth AXY, being dependent for

its amount upon the value of * (so that different sections,
such as XY, being taken, each different mass cut off by such
section will require a different resistance of the wall to sup-

port it), may admit of a maximum value in respect to that

variable.* And if the wall be made strong enough to supply
a resistance sufficient to support that wedge-shaped mass of

earth whose inclination i corresponds to the maximum value
of P, and which thus requires the greatest resistance to sup-

port it
;
then will the earth evidently be prevented by it from

slipping at any inclination whatever, for it will evidently not

slip at that angle, the resistance necessary to support it at

that angle being supplied ;
and it will not slip at any other

angle, because more than the resistance necessary to prevent
it slipping at any other angle is supplied.

If, then, the wall supplies a resistance equal to the maxi-
mum value of P in respect to the variable

i>,
it will not be

overthrown by the pressure of the earth on AX. Moreover,
if it supply any less resistance, it will be overthrown

;
there

not being a sufficient resistance supplied by it to prevent the

earth from slipping at that inclination i which corresponds
to the maximum value of P.

To determine the actual pressure of the earth on AX, we
have then only to determine the maximum value of P in re-

spect to i.

This maximum value is that which satisfies the conditions

dP

But differentiating equation (422) in respect to t, we obtain

by reduction

, .

U cos. i sin. (1+9)

Let the numerator and denominator of the fraction in the

* The existence of this maximum will subsequently be shown : it is, how-
ever, sufficiently evident, that, as the angle i is greater, the wedge-shaped mass
to be supported is heavier; for which cause, if it operated alone, P would be-

come greater as L increased. But as i increases, the plane XY becomes less

inclined; for which cause, if it operated alone, P would become less as L in

creased. These two causes thus operating to counteract one another, deter-

mine a certain inclination in respect to which their neutralising influence is the

least, and P therefore the greatest.

f Church's Diff. and Int. Cal., Art. 41.
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second member of this equation be represented respectively

byp and q ;
therefore

-^r=i^1
ar' . -, i^-q ~~-/p\ ;

but when

=- =0,p=0 ;
in this case, therefore, -=-5-= J(* a?

8

--^. Whence
w> cLi di

it follows, by substitution, that for every value of i by which
the first condition of a maximum is satisfied, the second dif-

ferential co-efficient becomes

Now it is evident from equation (423) that the condition

-y-=0 is satisfied by that value of t which makes 2(*-j-(p)=:
(il

* 2, or

<=H w
And if this value be substituted for i in equation (424), it

becomes

J 9\ ./* <P

cos -

(4-2)
^

b+i

which expression is essentially negative, so that the second
condition is also satisfied by this value of L. It is that, there-

fore, which corresponds to the maximum value of P
;
and

substituting in equation (422), and reducing, we obtain for

this maximum value of P the expression

which expression represents the actual pressure of the earth

on a surface AX of the wall, whose width is one foot and its

depth x.

REVETEMENT WALLS.

320. If, instead of a revetement wall sustaining the pres-
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sure of a mass of earth, the weight
Y K of each cubic foot of which is re-

tt:.r?t?r^wp:$jg:*jl presented by f^, it had sustained

$1 the pressure of a fluid, the weight
/ |) of each cubic foot of which was re.

$*/ F presented by f*r tan.
2

1
- -

1
,
then

\ ! / \4r 2if

"fi?
|i would the pressure of that fluid

'

| V $ upon the surface AX have been

S! represented* by J|mXtan -

a

(
- -1

>**. \ 4: 4'A

.";?=g?.;ftv,ugjs^ go ijj^ ^g pressure of a mass o^
earth upon a revetement wall (equation 427), when its, sur-

face is horizontal (and when its horizontal surface extends,,
as shown in the figure, to the very surface' of the wall)^is
identical with that of an imaginary fluid whose specific gra
vity is such as to cause each culic foot of it to have a weight
M-j, represented in pounds by the formula

Substituting this value far ^ in equations (416) and (419),
we determine therefore, at once, the lines of resistance in

revetement walls of uniform and variable thickness, under
the conditions supposed, to be respectively

tan.
a

I -_
| J(x e)

a

-h-^'tan.V+ aa?
a
tan.a -f cfx

11-=.& O/v/vj I /vj2 4-^.-n
..(430);

where a represents the ratio of the specific gravity of the
material of the wall to that of the earth. The conditions of
the equilibrium of the revetement wall may be determined
from the equation to its line of resistance, as explained in
the case of the ordinary wall.

27
Hydrostatics, Art. 31.
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321. The conditions necessary that a revetement wall may
not le overthrown ~by the slipping of the stones of any
course upon those of the subjacent course.

These are evidently determined from the inequality (420)

by substituting /* (equation 428) for ^ in that inequality ;

we thus obtain, representing the limiting angle of resistance

of the stones composing the wall by <PI
to distinguish it from

that 9 of the earth,

where a represents the ratio of the specific gravity of the

material of the wall to that of the earth.

As before, it may be shown from this expression that the

tendency of the courses to slip upon one another is greater
in the lower courses than the higher.

322. The pressure of earth whose surface is inclined to the

horizon.

Let AB represent the surface of such a mass of earth, YX
the plane along which the

rupture of the mass in

contact with the surface

AX of a revetement wall

tends to take place, AX=
a, AXY=*, XAB=/3.
Then if W be taken to

represent the weight of

the mass AXY, it may be

shown, as in Art, 319,

equation (421), that P=
W cot,

tTT
fore W=

=fr l
AX. AY. sin. 0,

#a
sin. i sin. /3

;
there-

cot.

Now the value of i in this function is that which renders
it a maximum (Art, 31^). Expanding cot, (1+ 9), and dif-
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ferentiating in respect to tan. t,
this value of i is readily

determined to be that which satisfies the equation

cot. t=tan. (p+ sec. 9 4/r+cot7/3 cot. 9 .... (433).

Substituting in equation (432), and reducing,

{COS
(p I

l +sin.^l + cot.gcot.M
..... (43*>

From which equation it is apparent, that the pressure of the

earth is, in this case, identical with that of a fluid, of such a

density that the weight j*a , of each cubic foot of it, is repre-
sented by the formula

1 + sin. 9 v 1+cot. <f> cot. /3
(435).

The conditions of the equilibrium of a revetement wall

sustaining the pressure of such a mass of earth are therefore

determined by the same conditions as those of the river wall

(Arts. 313 and 316).

323. THE RESISTANCE or EAKTH.

Let the wall BDEF be supported by the resistance of a
mass of earth upon its sur-

face AD, a pressure P, ap-

plied to its opposite face,

tending to overthrow it. Let
the surface AH of the earth
be horizontal

;
and let Q

represent the pressure which,
being applied to AX, would

just be sufficient to cause the
mass of earth in contact
with that portion of the wall

to yield ;
the prism AXY

slipping backwards upon the
surface XY. Adopting the same notation as in Art. 319,
and proceeding in the same manner, but observing that US
is to be measured here on the opposite side of TS (Art. 241),
since the mass of earth is supposed to be upon the point of

slipping upwards instead of downwards, we shall obtain

^-l^aj
8
tan. i cot. (49) (436).
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Now it is evident that XY is that plane along which rup-
ture may be made to take place by the least value of Q ;

/

in the above expression is therefore that angle which gives
to that expression its minimum value. Hence, observing
that equation (436) differs from equation (422) only in the

sign of
<p,

and that the second differential (equation 426) is

rendered essentially positive by changing the sign of 9, it is

apparent (equation 427) that the value of Q necessary to

overcome the pressure of the earth upon AX is represented

324. It is evident that a fluid would oppose the same
resistance to the overthrow of the wall as the resistance of
the earth does, provided that the weight f*4 of each cubic
foot of the fluid were such that

(V=Man.' + ....(438);

so that the point in AX at which the pressure Q may be
conceived to be applied, is situated at fds the distance AX.

325. The stability of a wall of uniform thickness which a
given pressure P tends to overthrow, and which is sus-

tained by the resistance of earth.

Let y be the point in whidi any section XZ of the wall
would be intersected by the
resultant of the pressures

upon the wall above that sec-

tion, if the whole resistance

Q, which the earth in con-
tact with AX is capable of

supplying, were called into

action. Let BX=a?, ~Ky=y,
BA = e, BE=0, Bp = jfc,

weight of cubic feet of ma-
terial of wall

fA, inclination

of P to vertical^. Taking
the moments about the point

y of the pressures applied to BXZE, we have, by the prin-
ciple of the equality of moments, observing that

"'~ "



WALLS BACKED BY EARTH. 421

(a? e), and that the perpendicular from y, upon P is repre-
sented by x sin. &(ky) cos. d,

r \x sin. d
(fc y) cos. e\ =$(x(

or substituting for Q its value (equation 437), and solving in

respect to y,

irM'4(aJ e}*+^a?x P(a? sin. 6 Jc, cos. 6)
y=. =r (4o9).

JL cos. o -j- \*<ax

Now it is evident that the wall will not be overthrown

upon any section XZ, so long as the greatest resistance Q,
which the superincumbent earth is capable of supplying, is

sufficient to cause the resultant pressure upon EX to inter-

sect that section, or so long as y in the above equation has
a positive value

; moreover, that the stability of the wall is

determined by the minimum value of y in respect to x in
that equation, and the greatest height to which the wall can
be buut, so as to stand, by that value of x which makes y=0.

326. The stability of a wall which a given pressure tends to

overthrow, and which is supported lyy a mass of earth
whose surface is not horizoni

"

Let (3 represent the inclination of the surface AB of earth

to the horizon. By reasoning
similar to that of Art. 322., it is

apparent that the resistance Q
of the earth in contact with any
given portion AX of the wall to

displacement, is determined by
assigning to 9 a negative value
in equation (434). Whence it

follows, that this resistance is

equivalent to that which would
be produced by the pressure of

a fluid upon the wall, the weight
^6

of each cubic foot of which
was represented by the formula

%

A i/

icos.
9 )

2

T
Y

1 sin. 9 1/1 cot. 9 cot. j3 )

(440).

The conditions of the stability of an upright wall sub-

jected to any given pressure P tending to overthrow it, and
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sustained by the pressure of such a mass of earth, are there-

fore precisely the same as those discussed in the last article
;

the symbol ^4 (equation 439) being replaced by |u-5 (equation
440).

327. The stability of a revetement wall whose interior face
is inclined to the vertical at any angle ; taking into account
thefriction of the earth upon theface of the wall.

Let 2 represent the inclination of the face BD of such a

wall to the vertical, <p2
the limiting angle of resistance

between the mass of earth and the surface of the wall
;
and

let the same notation be adopted as in the last article in

respect to the other elements of the

question, and the same construction

made. Draw PQ perpendicular to BD
;

then is the direction PS of the resist-

ance of the wall upon the mass of earth,

evidently inclined to QP at an angle
QPS equal to the limiting angle of

resistance <?2 ,
in the state bordering

upon motion by the overthrow of the
wall* (Art. 241.).
Draw Pn horizontally and X$ verti-

cally, produce TS and ES to meet it in

m and n, and let

P
W

sin. WSE sin. (WST-TSE)
sin. PSK sin. (EmP+ SPm).

But =AYX= - = - -t, TSE=<p,
2

Also W=
sn. t+ 9+ 9a+ a2

sn. ^

^^X (tan. i+ tan. a
a) ;

if X=a?,

* It is not only in the state of the wall bordering upon motion that thia
direction of the resistance obtains, but in every state in which the stability of
the wall is maintained. (See the Principle of 'Least Resistance.)
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a
a)

; ;

Assuming aa -f-9+9a=/3, then differentiating in respect to t,
7T>

and assuming -^-
=

0, we -obtain by reduction

(tan. i+ tan. aa)
cos. ( 9) -f

cos. (t-f (p)sin. (*+/3)sec.
a

*=0; or,

(tan. i + tan. aa) (1 + tan. (3 tan. (p) -f-

(1 tan. i tan.
(p) (tan. i+ tan. /3)=0 ;

.'. tan.
3

1 + 2 tan. i tan. /3 tan. (3 cot. 9 +
(cot. 9 + tan. /3) tan. aa

= 0.

Solving this quadratic in respect to tan.
, neglecting the

negative root, since tan. i is essentially positive, and reducing,

tan. i (tan. /3 tan. a,)*(tan. + cot. 9)* tan. /3 . . . (442.)

Now the value of t determined by this equation, when
substituted in the second differential coefficient of P in

respect to
, gives to that coefficient a negative value

;
it

therefore corresponds to a maximum value of P, which
maximum determines (Art. 319.) the thrust of the earth

upon the portion AX of the wall. To obtain this maximum
value of P by substitution in equation (441), let it be
observed that

cos. (*+ <p)_l tan. i tan. 9 /cos. <p \

sin. (i+ $)~~ (tan - i+tan. /3) \cos. j8'/

1 tan. i tan. 9=1+ tan. /3 tan. 9 tan. 9 (tan. /3

tan. a2)*(tan. /3-fcot. 9)*,

=tan. 9 (tan. /3 + cot. 9)M(tan -
1
s + cot. 9)* (tan. /3 tan.

tan. i+tan. ^=(tan. /3 + cot. 9)
f
(tan. /3 tan. a

a)*;

cos. (t.+ 9) sin. 9
j

/ tan. /3 -f cot. 9 \ * )

'"sin. (t+ /3

=
cos. /3 ( \tan. /3 tan. a)

"

)

'

Also tan. i+ tan. a2=(tan. /3-fcot. 9)*(tan. /3

tan. aa)
}

(tan. /3 tan. aa)

(tan. /3 tan. a,)* {(tan. ^+ cot. 9)* (tan. p tan.

^y-Ktan. /3+ cot. 9)*-(tan. -tan. ,)*{

a

;COS. /3
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which expression may be placed under the following form,
better adapted to logarithmic calculation,

P_i sin - 9
\

/cos. (ff-<p)\ *_ /sin. (/3-q,)\
*

)
8

.~
tM/1

cos.
2

/3 ( \ sin. 9 / \ cos. aa / f

or substituting for (3 its value a3 +<P+<p2?

P=l ^ sin - <P
J /COS.(aa+ 9,)\*_~

2
\ sin. 9 /

-

>(

By a comparison of this equation with equation (427) it

is apparent, that the pressure of a mass of earth upon a
revetement wall, under the supposed conditions, is identical

with that which it would produce if it were perfectly fluid,

provided that the weight of each cubic foot of that fluid had
a value represented by the coefficient of -Jar

2

in the above

equation ;
so that the conditions of the stability of such a

revetement wall are identical (this value being supposed)
with the conditions of the stability of a wall sustaining the

pressure of a fluid, except that the pressure of the earth is

not exerted upon the wall in a direction perpendicular to its

surface, as that of a fluid is, but in a direction inclined to

the perpendicular at a given angle, namely, the limiting

angle of resistance.

328. THE PRESSURE OF EARTH WHICH SURMOUNTS A REVETE-
MENT WALL AND SLOPES TO ITS SUMMIT.

Hitherto we have supposed the surface of the earth whose

ippose
vated above the summit of the wall,
and to descend to it by the natural

slope ;
the wall is then said to be

surcharged, or to carry a parapet.
Let EF represent the natural slope
of the earth, FY its horizontal sur-

face, BX any portion of the internal

face or intrados of the wall, P the

horizontal pressure just necessary
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f
to support the mass of earth HXYF, whose weight is W,
upon the inclined plane XY. Produce XB and YF to meet
in A, and let AX^a?, AH=, AXY=u, ^= weight of each

cubic foot of the earth, 9 the natural slope of its surface

FE. Now it may be shown, precisely by the same reason-

ing as before, that the actual pressure of the earth upon the

portion BX of the wall is represented by that value of P
which is a maximuni in respect to the variable i

; moreover,
that the relation of P and i is expressed by the function P
=W cot. 0+9); where W^f^area HXYF)=^(AXY

|-c

a
cot. 9);

/.P ^(a?
8
tan. i <? cot. 9) cot. (4+9) ..... (4M).

Expanding cot. (^+9),

P__JL (#
a
tan. i c* cot. 9) (1 tan, i tan. 9)

~"*V tan. i+ tan. 9

To facilitate the differentiation of this function, let

tan. *-f tan. 9 be represented by z, and let it be observed
that whatever conditions determine the maximum value of P
in respect to z determine also its maximum value in respect
to i.* Then tan. i=z tan. 9 ;

therefore 1 tan. i tan. 9=
1z tan. 9+ tan.

29= z tan. 9+ sec. "9. Also, a?
a
tan. <

c* cot. q>=a?z (a? tan. 9+ca
cot. 9).

Substituting these values in the preceding expression for

P, and reducing,

j (?" tan. 9+ c
2
cot. 9) sec. '9

P=i^i
\

z ^n. 9 ----l--+

..... (445).

dl* (
(a;

8
tan. 9+ c

a
cot. 9) sec. *9 )

a

-p-
-

\
,

^_ dP dPdz , d*P rfTP/&\ rfP<f dz , t* For -r =-T-
-j-. and =__( -f

-
;
now - =sec. *f. there-

dt dz dt dt
1

dz*\dt ) dz dt* dt

7T> /JT>

fore -j-= -=- sec.
3
i; and for all values of i less than -, sec.

2
i has a finite

dt dz 2'

value, so that -3- = when =0.
<w efe

</P <i
aP d*P idz\* d*P

When, moreover, -T-=O, -TT=-rr ( -7- ) 5
so tnat when -r-r- is negative.

az at dz \di / dz

-; is also negative.
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<?P_ (j* tan, 9+ c
9
cot. 9) sec. '9~~

The first condition of a maximum is therefore satisfied by
the equation

(a;

2
tan. 9 +<?

8
cot. 9) sec. "9 A ,.,,

a?
a

tan.9+ ---
9
- -=0 . . . . (446);

or, solving this equation in respect to z, and reducing, it is

satisfied by the equation

/ <?
2 \*

'<=
I sec. 9 + a cosec. 9 1 .

E"ow the second condition of a maximum is evidently
satisfied by any positive value of z, and therefore by the

positive root of this equation. Taking, therefore, the posi-
tive sign, substituting for z its value, and transposing,

/ c
2

\*
tan. i= I sec. \ -f cosec.

2

<p 1 tan. 9 ..... (447) ;

which equation determines the tangent of the inclination

AXY to the vertical, of the base XY of that wedge-like
mass of earth HXYF, whose pressure is borne by the sur-

face BX of the wall. To determine the actual pressure

upon the wall, this value of tan. i must be substituted in the

expression for P (equation 445). Now the two first terms
of the expression within the brackets in the second member
of that equation may be placed under the form

(

z I
(a?

2
tan. 9+c

2
cot. 9) sec.

3

<p

a?
2

tan. 9+ ^- --"-
But it appears by equation (446) that the two terms which

compose this expression are equal, so that the expression is

equivalent to 2^
2
tan. 9 ; or, substituting for the value of

Z) to 2ft
2
tan. 9 (sec.

a

9+-j cosec. *<p)*,
or to 2a? sec. 9

(a?

2
tan.

2

9 + c
2

)
*

. Substituting in equation (445),

P ^{ 2a?sec. 9(#
3
tan.

a

9+ c
a

)* +(a?
a
tan.

2

9+ c
a

)+ar
l

sec. '9}

;.P=lfi. l {jB
sec. 9 (#

2
tan.

2

9+ <?

2

)^
2..... (448);

by which expression is determined the actual pressure upon
a portion of the wall, the distance of whose lowest point
from A is represented by x.
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329. The conditions necessary that a revetement wall carry-

ing a parapet may not be overthrown by the slipping of
any course of stones on the subjacent course.

Let
<pj represent the limiting angle of the resistance of the

stones of the wall upon one another
;
and let OQ represent

the direction of the resultant pressure
on the course XZ. The proposed
conditions are then involved (Art.

141.) in the inequality 9 1>QOM, or

tan. 9j > tan. QOM, or tan. 9, >
T^> ^tnr-^ov*; or substitutingOS weight of BZ*
for P its value (equation 448), and

fx(2#a?-fa?
2
tan. a) for the weight of

BZ, it appears that the proposed
conditions are determined by the

inequality

tan.
tan. a

330. of resistance in a revetement wall carrying a

parapet.

Let OT be taken to represent the pressure P, and OS the

weight of BZ. Complete the parallelogram ST, and pro-
duce its diagonal OR to Q ;

then will Q be a point in the

line of resistance. Let AX=#, QX=/, AB=5, AP=X,

=X, W = weight of BZf. By similar triangles, r?=

g ;
but QM=(y-X), OM=aj-X, KS=P, OS=

y-X P Wx+Paj-PX~

Now the value of X is determined from equation (414), by

* The influence, upon the equilibrium of the wall, of 'the small portion of
earth BHE is neglected in this and the subsequent computation.

f The influence of the weight of the small mass of earth BEH which rests

on the summit of the wall is here again neglected.
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substituting in that equation (x 1) for c: whence we obtain,
observing that tan. a

a=0, and substituting a for a
1?

. _i(# &)
a
tan.

a
a+#(#) tan. a

(a? 5)tan.aH-2#

Also W=JKa-5){(a-&)tan.a+ 2a{ ..... (451);

/.WX= Jf*( &) $(o? &)
a
tan.

2
a+ a(aj 5) tan. a

It remains, therefore, only to determine the value of the
term P . X. Now it is evident (Art. 16.) that the product
P . X is equal to the sum of the moments of the pressures
upon the elementary surfaces which compose the whole sur-

face BX. But the pressure upon any such elementary sur-

face, whose distance from A is a?,
is evidently represented

by -J-AX* ;
its moment is therefore represented by -r-ajAo?,

and the sum of the moments of all such elementary pressures

by 2
-ccAaj, or when AX is infinitely small, by

/ -T-xdx ;
therefore P . X= /

b b

But differentiating equation (448),

2

<p

Performing the actual multiplication of the factors in the

second member of this equation, observing that -^
--~

-^-yr

3
,

, c
a

=(x tan.V+^y / rr-a , av ,
and re-y 2a aJ

ducing we obtain

* P being a function of #, let it be represented by f(x); then will f(x) repre-
Bent the pressure upon a portion of the surface BX terminated at the distance
x from A, and /(a-f-Az) that upon a portion terminated at the distance x-\-Ax ;

therefore /(x-f-Aic) fx will represent the pressure upon the small element Aa?

of the surface included between these two distances. But by Taylor's theorem,

/(ar-f-Aa;) fx= -- As -f-
^-~-

-f, &c.
; therefore, neglecting terms ii>

ux dx 1*2

volving powers of A# above the first, pressure on element = -j-A*.
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dx~
<? sec. 9

Multiplying this equation by a?, and integrating between the

limits 6 and a?,

'i(sec.
a

9+tan.
2

9)(a?
8

5
8

) | sec. 9 cot. '9 |(a?

a
tan.

a

9

P.X^^-I +ca

)f (V
2 tan.

a

9+ <?

a

)f} +c
2
sec. 9 cot.

2

9

.... (452).

This value of P . X
being

substituted in equation (450),
and the values of W\ W, P, from equations (448) and

(451), the line of resistance to the revetement wall will be

determined, and thence all the conditions of its stability

may be found as before.*

THE ARCH.

331. Each of the structures, the conditions of whose sta-

bility (considered as a system of bodies in contact), have
hitherto been discussed, whatever may have been the pres-
sures supposed to be insistent upon it, has been supposed to

rest ultimately upon a single resisting surface, the resultant

of the resistances on the different elements of which was at

once determined in magnitude and direction by the resultant

of the given insistent pressures! being equal and opposite
to that resultant.

The arch is a system of bodies in contact which reposes

ultimately upon two resisting surfaces called its abutments.
The resistances of these surfaces are in equilibrium with the

* The limits which the author has in this work imposed upon himself do not
leave him space to enter further upon the discussion of this case of the
revetement wall, the application of which to the theory of fortification is so

direct and obvious. The reader desirous of further information is referred to
the treatise of M. Poncelet, entitled

" Memoire sur la Stabilite des Revete-
ments et do lours Fondations." He will there find the subject developed in all

ith practical relations, and treated with the accustomed originality and power
of that illustrious author. The above method of investigation has nothing in
common with the method adopted by M. Poncelet except Coulomb's principle
of the wedge of maximum pressure.

f The weight of the structure itself is supposed to be included among these

pressures. .
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given pressures insistent upon the arch (inclusive of its

weight), but the direction and amount of the resultant pres-
sure upon each surface is dependent upon the unknown
resistance of the opposite surface

;
and thus the general

method applicable to the determination of the fine of

resistance, and thence of the conditions of stability, in that

large class of structures which repose on a single resisting

surface, fails in the case of the arch.

332. THE PRINCIPLE OF LEAST RESISTANCE.

If there ~be a system ofpressures in equilibrium amona which
are a given number of resistances, then is each of these a

minimum, subject to the conditions imposed by the equili-
brium of the whole*

Let the pressures of the system, which are not resistances,
be represented by A, and the resistances by B ;

also let any
other system of pressures which may be made to replace the

pressures B and sustain A, be represented by C.

Suppose the system B to be replaced by C
;
then it is

apparent that each pressure of the system C is equal to the

pressure propagated to its point of application from the

pressures of the system A ;
or it is equal to that pressure,

together with the pressure so propagated to it from the
other pressures of the system C. In the former case it is

identical with one of the resistances of the system B ;
in the

latter case it is greater than it. Hence, therefore, it appears
that each pressure of the system B is a minimum, subject
to the conditions imposed by the equilibrium of the whole.

If the resultant of the pressures applied to a body, other
than the resistances, be taken, it is evident from the above
that these resistances are the least possible so as to sustain
that resultant

;
and therefore that if each resisting point be

capable of supplying its resistance in any direction, then are
all the resistances parallel to one another and to the result-

ant of the other pressures applied to the body.

* The principle of least resistance was first published by the author of thia

work in the Philosophical Magazine for October, 1833.
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333. Of oil the pressures which can le applied to the highest
voussoir of a semi-arch, different in their amounts and

points of application, hut all consistent with the equili-

orium of the semi-arch, that which it would sustain from
the pressure of an opposite and equal semi-arch is the least.

Let EB represent the surface by which an arch rests upon

either of its abutments
;
then are the resistances upon the

different points of that surface (Art. 331.) the least pressures,

which, being applied to those points, are consistent with the

equilibrium of the arch. They are, moreover, parallel to one
another : their resultant is therefore the least single pressure,

which, being applied to the surface EB, would be sufficient

to maintain the equilibrium of the arch, if the abutment were
removed.

Now, if this resultant be resolved vertically and horizon-

tally, its component in a vertical direction will evidently be

equal to the weight of the semi-arch : it is therefore given in

amount. In order that the resultant may be a minimum, its

vertical component being thus given, it is therefore necessary
that its horizontal component should be a minimum

;
but

this horizontal component of the resistance upon the abut-

ment is evidently equal to the pressure P of the opposite
semi- arch upon its key-stone : that pressure is therefore a

minimum; or, if the semi-arches be equal in every respect,
it is the least pressure which, being applied to the side of the

key-stone, would be sufficient to support either semi-arch
;

which was to be proved.
The following proof of this property may be more intelli-

gible to some readers than the preceding. It is independent
of the more general demonstration of the principle of least

resistance.*

* See Memoir by the author of this work in Mr. Harm's "
Treatise on the

Theory of Bridges," p. 10.
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The pressure which an opposite semi-arch would produce
upon the side AD of the key-stone, is equal to the tendency
of that semi-arch to revolve forwards upon the inferior edges
of one or more of its voussoirs. Now this tendency to motion
is evidently equal to the least force which would support the

opposite semi-arch. If the arches be equal and equally
loaded, it is therefore equal to the least force which would

support the semi-arch ABED.

334:. GENERAL CONDITIONS OF THE STABILITY OF AN

Suppose the mass ABDO to be acted upon by any number
of pressures, among which
is the pressure Q, being the

resultant of certain resist-

ances, supplied by different

points in a surface BD
;

common to the mass arid to

an immoveable obstacle

BE.
Now it is clear that un-

der these circumstances we
may vary the pressure P,
both as to its amount, di-

rection, and point of appli-
cation in AC, without disturbing the equilibrium, provided

only the form and direction of the line of resistance continue

to satisfy the conditions imposed by the equilibrium of the

system.
These have been shown (Art. 283) to be the following :

that it no where cut the surface of the mass, except at P,
and within the space BD ;

and that the resultant pressure

upon no section MN of the mass, or the common surface BD
of the mass and obstacle, be inclined to the perpendicular to

that surface, at an angle greater than the limiting angle of

resistance.

Thus, varying the pressure P, we may destroy the equi-

librium, either, first, by causing the resultant pressure to

take a direction without the limits prescribed by the resist-

ance of any section MN through which it passes, that is,

without the cone of resistance at the point where it inter-

* Theoretical and Practical Treatise on Bridges, vol. i.
;
Memoir by the au-

thor of this work, p. 11.
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sects that surface
; or, secondly, by causing the point Q to

fall without the surface BD, in which case no resistance can
be opposed to the resultant force acting in that point ; or,

thirdly, the point Q lying within the surface BD, we may
destroy the equilibrium by causing the line of resistance to

cut the surface of the mass somewhere between that point
and P.

Let us suppose the limits of the variation of P, within

which the first two conditions are satisfied, to be known
;
and

varying it, within those limits, let us consider what may be
its least and greatest values so- as- to satisfy the third condition,,

Let P act at a given point in AC, and in a given direc-

tion. It is evident that by diminishing it under these

circumstances the line of resistance will be- made continually
to assume more nearly that direction which it would have
if P were entirely removed.

Provided, then, that if P were thus removed, the line of

resistance would cut the surface, that is, provided the

force P be necessary to the equilibrium, it follows that by
diminishing it we may vary the direction and curvature of

the line of resistance, until we at length make it touch some

point or other in the surface of the mass.
And this is the limit

;
for if the diminution be carried

further, it will cut the surface, and the equilibrium will be

destroyed. It appears, then, that under the circumstances

supposed, when P, acting at a given point and in a given
direction, is the least possible, the line of resistance touches

the interior surface or intrados of the. mass.

In the same manner it may be shown that when it is the

greatest possible, the line of resistance touches the exterior

surface or extrados of the mass.
The direction and point of application of P in AC have

here been supposed to be given ;
but by varying this direc-

tion and point of application, the contact of the line of

resistance with the intrados of the arch may be made to

take place in an infinite variety of different points, and each
such variation supplies a new value of P. Among these,

therefore, it remains to seek the absolute maximum and
minimum values of that pressure.

In respect to the direction of the pressure P, or its incli-

nation to AC, it is at once apparent that the least value of
that pressure is obtained, whatever be its point of applica-
tion, when it is horizontal.

There remain, then, two conditions to which P is to be

subjected, and which involve its condition of a minimum.
28
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The first is, that its amount shall ~be such as will give to the

line of resistance a point of contact with the intrados ; the

second, that its point of application in the key-stone AC
shall be such as to give it the least value which it can receive,

subject to the first condition.

335. PRACTICAL CONDITIONS OF THE STABILITY or AN AECH
OF TJNCEMENTED STONES.

The condition, however, that the resultant pressure upon
the key-stone is subject, in respect to the position of its

point o'f application on the key-stone, to the condition of a

minimum, is dependent upon hypothetical qualities of the

masonry. It supposes an unyielding material for the arch-

stones, and a mathematical adjustment of their surfaces.

These have no existence in the uncemented arch. On the

striking of the centres the arch invariably sinks at the

crown, its voussoirs there slightly opening at their lower

edges, and pressing upon one another exclusively by their

upper edges. Practically, the line of resistance then, in an
arch of uncemented stones, touches the extrados at the crown

;

so that only the iirst of the two conditions of the minimum
stated above actually obtains : that, namely, which gives to

the line of resistance a contact with the intrados of the

arch. This condition being assumed, all consideration of

the yielding quality of the material of the arch and its

abutments is eliminated.

The form of the solid has hitherto been assumed to be

given, together with the positions of the different sections

made through it
;
and the forms of its lines of resistance and

pressure, and their directions through its mass have thence

been determined.
It is manifest that the converse of this operation is pos-

sible.

Having given the form and position of the line of resist-

ance or of pressure, and the positions of the different sections

to be made through the mass, it may, for instance, be

inquired what form these conditions impose upon the surface

which bounds it.

Or the direction of the line of resistance or pressure and
the form of the bounding surface may be subjected to certain

conditions not absolutely determining either.

If, for instance, the form of the intrados of an arch be

given, and the direction of the intersecting plane be always
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perpendicular to it, and if the line of pressure be supposed
to intersect this plane always at the same given angle with

the perpendicular to it, so that the tendency of the pressure
to thrust each from its place may be the same, we may
determine what, under these circumstances, must be the

extrados of the arch.

If this angle equal constantly the limiting angle of resist-

ance, the arch is in a state bordering upon motion, each
voussoir being upon the point of slipping downwards, or up-

wards, according as the constant angle is measured above or

below the perpendicular to the surface of the voussoir.

The systems of voussoirs which satisfy these two con-

ditions are the greatest and least possible.
If the constant angle be zero, the line of pressure being

every where perpendicular to the joints of the voussoirs, the

arch would stand even if there were no friction of their sur-

faces. It is then technically said to be equilibriated ;
and

the equilibrium of the arch, according to this single con-

dition, constituted the theory of the arch so long in vogue,
and so well known from the works of Emerson, Hutton, and
"Whewell. It is impossible to conceive any arrangement of

the parts of an arch by which its stability can be more

effectually secured, sofar as the tendency of its voussoirs to

slide upon one another is concerned: there is, however,
probably, no practical case in which this tendency really
affects the equilibrium. So great is the limiting angle of
resistance in respect to all the kinds of stone used in the

construction of arches, that it would perhaps be difficult to

construct an arch, the resultant pressure upon any of the

joints of which above the springing should lie without this

angle, or which should yield by the slipping of any of its

voussoirs.

Traced to the abutment of the arch, the line of resistance

ascertains the point where the direction of the resultant

pressure intersects it, and the line of pressure determines the

inclination to the vertical of that resultant ;* these elements
determine all the conditions of the equilibrium of the abut-

ments, and therefore of the whole structure
; they associate

themselves directly with the conditions of the loading of the

arch, and enable us so to distribute it as to throw the points
of rupture into any given position on the intrados, and give
to the line of resistance any direction which shall best con-

* The inclination of the resultant pressure at the springing to the vertical

may be determined independently of the line of pressure, as will hereafter be
shown
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duce to the stability of the structure
;
from known

^dimen-
sions, and a known loading of the arch, they determine the

dimensions of piers which will support it ; or conversely,
from known dimensions of the piers they ascertain the

dimensions and loading of the arch, which may safely be

made to span the space between them.

336. To DETERMINE THE LINE OF RESISTANCE IN AN ARCH
WHOSE INTRADOS 18 A CIRCLE, AND WHOSE LOAD IS COL-

LECTED OVER TWO POINTS OF ITS EXTRADOS SYMMETRICALLY
PLACED IN RESPECT TO THE CROWN OF THE ARCH.

Let ADBF represent any portion of such an arch, P a

pressure applied at its extreme

voussoir, and X and Y the ho-

rizontal and vertical compo-
nents of any pressure borne

upon the portion DT of its ex-

trados, or of the resultant of

any number of such pressures ;

let, moreover, the co-ordinates,
from the centre C, of the point
of application of this pressure,
or of this resultant pressure, be
x and y.

Let the horizontal force P
be applied in AD at a vertical distance p from C

;
also let

CT represent any plane which, passing through 0, intersects

the arch in a direction parallel to the joints of its voussoirs.

Let this plane be intersected by the resultant of the pres-
sures applied to the mass ASTD in R. These pressures are

the weight of the mass ASTD, the load X and Y, and the

pressure P. Now if pressures equal and parallel to these,
but in opposite directions, were applied at K, they would of

themselves support the mass, and the whole of the subjacent
mass TSB might be removed without affecting the equili-
brium. (Art. 8.) Imagine this to be done

;
call M the weight

of the mass ASTD, and k the horizontal distance of its cen-

tre of gravity from C, and let CR be represented by p, and
the angle ECS by 0, then the perpendicular distances from
C of the pressures M+Y and P X, imagined to be applied
to R, are p sin. 6 and p cos. 6

;
therefore by the condition of

the equality of moments,
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(M+Y) p sin. d+ (P X) p cos.a=MA+Y-Xy+Pp ;

P
~~

(M+Y) sin.d-f(P-X) cos. 6
. . . (453),

which is the equation to the line of resistance.

M and h are given functions of &
;
as also are X and Y, if

the pressure of the load extend continuously over the surface
of the extrados from D to T.

It remains from this equation
to determine the pressure P, be-

ing that supplied by the opposite
semi-arch. As the simplest case,
let all the voussoirs of the arch
be of the same depth, and let the
inclination ECP of the first joint
of the semi-arch to the vertical be

represented by 0, and the radii

of the extrados and intrados by
R and r. Then, by the known

principles of statics.*

R e

= / J r
3
sin. &d&dr= i(R

s

^(cos. 6 cos. 0) ;

r 6

also, M=-KR
f

r>)(a e) ;

/. p $(R
8-ra

X0-0) sin. 6+Y sin. d-X cos. d+P cos. A]
=

which is the general equation to the line of resistance.

THE ANGLE OF RUPTURE.

337. At the points of rupture the line of resistance meets
the intrados, so that there p=r : if then Y be the correspond-

ing value of d,

r $(R
2

r*)(v ) sin. Y+Y sin. Y X cos. Y+P cos. Y} =-

3

/)(cos. cos.)+Y# Xy+ P^? (455).

See Note 1 at end of PART IV. ED.
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Also at the points of rupture the line of resistance toucJws

the intrados, so that there -1=-^= 5 assuming then, tu
OJO U/a

simplify the results, that the pressure of the load is wholly
in a vertical direction, so that X=0, and that it is collected

/7~V

over a single point of the extrados, so that =0, and dif-

ferentiating equation (454), and assuming -^=0, when
d=Y

and p=r, we obtain

r {i(K
2-r2

) (v 0) cos. Y+ (E
a

r
a

) sin. Y+
Y cos. Y P sin. ^J =4(K

3-O sin. Y
;

hence, assuming R^T1

(1+a),

(456).

Eliminating (Y 0) between equations (455) and (456), we
have

(457).

Eliminating P between equations (455) and (456), and

reducing.

sin. Y {(+'+$') cos. (Ja'+a) cos.Yj gin.Y

..... (458).

* This equation might have been obtained by differentiating equation (454)
7T>

in respect to P and 6, and assuming - = when r and are substituted for

p and 0; for if that equation be represented by w 0, u being a function of

is

therefore obtained, whether we assume- = 0, or- =0, which last supposi-
dv da

tion is that made in equation (456), whence equation (458) has resulted. The
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Let

(1+X) cos. .

value of
,

T

;
therefore -=

Substituting this

cos.

jl-(l+X) cos. cos. }(--

-1 =(ia
a+ a)

. cos.)sin.Y I

by which equation the angle of rupture Y is determined.
If the arch be a continuous segment the joint AD is ver-

tically above the centre, and CD coinciding with CE, =0;
if it be a broken segment, as in the Gothic arch, has a

given value determined by the character of the arch. In the

pure or equilateral Gothic arch, = 30. Assuming 0=0,
and reducing,

(460.)

It may easily be shown that as Y increases in this equa-
tion, Y increases, and conversely ;

so that as the load is

increased, the points of rupture descend. When Y=0, or

there is no load upon the extrados,

..... (461).

7T>

hypotheses -=0, p = r, determine the minimum of the pressures P, which
do

being applied to a given point of the key-stone will prevent the semi-arch from

turning on any of the successive joints of its voussoirs.
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When 05=0, or the load is placed on the crown of the

arch,

Y/ 1 2

\^-a -f

?r
~"

Y
l'

x
"When - /

( tan.
-^

cot.
\ Y
I =

0,-^-
becomes infinite

;

an infinite load is therefore required to give that value to the

angle of rupture which is determined by this equation.
Y

Solved in respect to tan.
,
it gives,

2

tan
2

. . (463).

No loading placed upon the arch can cause the angle of rup-
ture to exceed that determined by this equation.

THE LINE OF RESISTANCE IN A CIRCULAR ARCH WHOSE
VOUSSOIRS ARE EQUAL, AND WHOSE LOAD IS DISTRIBUTED
OVER DIFFERENT POINTS OF ITS EXTRADOS.

338. Let it be supposed that the pressure of the load is

wholly vertical, and such that any
portion FT of the extrados sustains

the weight of a mass GFTY imme-

diately superincumbent to it, and
bounded by the straight line GY
inclined to the horizon at the an-

gle t; let, moreover, the weight
of each cubical unit of the load be

equal to that of the same unit of

the material of the arch, multiplied
by the constant factor ^ ; then, re-

presenting AD by K/3, ACF by @,
ACT by 0, and DZ by z, we have,

area GFTY=/w.
e

dz:
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but TY= MZ-(MT+ YZ), and MZ= CD = E-hE/3, MT=
E cos. 0, YZ = DZ tan. * =E sin. 6 tan. t. Therefore MT+
YZ E cos. 0+E sin. 6 tan. i = E {cos.

6 cos. *+sin. sin. 1}

sec. t=E cos. (0i) sec. *
;

/. TY= E{1 + /3-cos. (0-*) sec.
1} ;

also, s=DZ=E sin. 0;

.-.

areaGFTY=y*TY
.

^de=wJ*{l+(3-
e

cos. (0*) sec.
*}

cos. 0d0
;

e

.-. Y=weight of mass GFTY=f*Ea

C{1 +/3 see.* cos.(0)f

e

cos. 0^0= fxE
3

1
(1 +)8) (sin. sin. 0) i sec. *

{sin. (2 Bi)

sin.(20-t)} J(0-0) ... (464).*

e

= moment of GFTY= ^E3
/*

{(1 +13) sec. t cos. (0

sin. cos. 0^0=fxE
3

{i(l+/3)(cos.
30-cos. 2

0) J(cos. '0

cos. '0)-1 tan. i (sin.
8

sin.
8

0) . . . 465).*

A SEGMENTAL ARCH WHOSE EXTRADOS IS HORIZONTAL.

-v a 339. As the simplest case, let us first
1

i

||

1 1^| |

' i-H suppose DY horizontal, the material of
'"'

'i ! I 'J^TfTTlA the loading similar to that of the arch,
and the crown of the arch at A, so

that i=0, f*=l, and 0=0. Substi-

tuting the values of Y and Ya? (equa-
tions 464, 465) which result from these

suppositions, in equation (455), solving

that equation in respect to _, and re-

ducing, we have, =
r.

* See Note 2, at end of PART IY. ED.
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Assuming -= =0 (see note, page 438.), and X= a
,
and

reducing,

1(1 -2a) cos.
3T _ {(l_ a l + /3 + l+ a i_2a cos.

COS.

In the case in which the line of resistance passes through
the bottom of the key-stone, so that X

0, equation (466)
becomes

(l + cos. Y) cos. T ^Ycot. JY+J=0 ____ (468);

whence assuming _4_ 0, we have

Sill, i

-a COS.

=0. . . .(469.)

GOTHIC AECH, THE EXTRADOS OF EACH SEMI-ARCH BEING-

A STRAIGHT LINE INCLINED AT ANY GIVEN ANGLE TO THE

HORIZON, AND THE MATERIAL OF THE LOADING DIFFERENT
FROM THAT OF THE ARCH.

340. Proceeding in respect to this general case of the

stability of the circular arch, by precisely the same steps as

in the preceding simpler case, we obtain from equation
(455),

|cos.i--(l-|-A)co8.e}
...(470)



THE GOTHIC ARCH. 44:3

in which equation the values of Y and Ya? are those deter-

mined by substituting
Y for 6 in equations (464) and (465).

Differentiating it in respect to Y, assuming-^-
=0 (note,

p. 438.), and X a
,
we obtain

'-ia
3

K) cos. sin. T_( a
2+ a

)
sin. Y cos. *

-(l+a) COS. COS. {(* 0)

Y ~Yx

}1 (1 + a) cos. ^ cos.
}-^
+ a sin. ^+ {cos.

Y

.
j
1 d(Yx) sin. Y <ZY)

(l + )
cos. 0}

I

-
3 -^--^-^=0 . . . (471).

Y YOJ
Substituting in this equation the values of -5 and 5 ,

de

termined by equations (464) and (465) the following equa
tion will be obtained after a laborious reduction : it deter

mines the value of Y :

A+B cos. T C cos.
3 Y+D cos.

3 T+E sin. Y

F sin. Y cos. T G sin.
3 Y H cot.

I(1-K cos. T) +a =0 .... (472)

where

") tan f sin
8

0-(l+/3) J2-(l+)

|(l+a) COS.
8

i +(2a+ a
2

a
8

fa
4

)
COS.

COS. 0-(l~f*)} +1.
l-2a COS. .

a
)

2

(l 2a) tan. i=fD tan. i.

a
)

3

(l 2a) tan. i COS. =E(l+a) COS. 0.

a
)

2

(l 2a) tan. i=~D tan. i.

/3-sec. t cos. -* sin. 20.

K=(l+a) COS. .

L=M-(l + a
)

2

{2(H-/3) sec. i cos. ( )}sin. .

Tables might readily be constructed from this or any of
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the preceding equations by assuming a series of values of
,

and calculating the corresponding values of (3 for each given
value of a, *, M-,

. The tabulated results of such a series of

calculations would show the values of Y corresponding to

given values of a, /3, t, (*, . These values of Y being sub-

stituted in equation (470), the corresponding values of the

horizontal thrust-would,be determined, and thence the polar

equation to the line of resistance (equation 454).

A CIRCULAR ARCH HAVING EQUAL VOUSSOIRS AND SUSTAINING
THE PRESSURE OF 'WATER.

341. Let us next take a case of oblique pressure on the

extrados, and let us suppose it to be
the pressure of water, whose surface

stands at a height /3R above the sum-
mit of the key-stone. The pressure of

this water being perpendicular to the
extrados will everywhere have its di-

rection through the centre C, so that its

motion about that point will vanish,
and Y# Xy=0; moreover, by the

principles of hydrostatics,* the vertical

component Y of the pressure of the water, superincumbent
to the portion AT of the extrados, will equal the weight of

that mass of water, and will be represented by the formula

(464), if we assume i=0. The horizontal component Xf of

the pressure of this mass of water is represented by the
formula

-cos . sn. =^ + + / cos. -

cos. 0) J(cos.
2

cos.
2

4)J ..... (473).

Assuming then =0, we have (equation 464), in respect
to that portion of the extrados which lies between the crown
and the points of rupture,

Y
sin. T- sin. 2 Y-

and (equation 473) =^(1 + a
)

9

{(1+/3) vers. Y -J sin.

* See Hydrostatics and Hydrodynamics, p. 30, 31.

| See Note 3, end of PART IV. ED.



AN AIICR SUSTAINING THE PRESSURE OF WATER. 445

... sin. y_ cos. Y=Kl+ a)l+/ vers. Y_T sn. v
...... (474).

Substituting this value in equation (455), makingYx Xy=0,
P #>

solving that equation in respect to and making =1+X,

we have

a_|_vers. *

If, instead of supposing the pressure of the water to be
borne by the extrados, we suppose it to

take effect upon the intrados, tending to

blow up the arch, and if /3 represent the

__^^_ __ height of the water above the crown of

the intrados, we shall obtain precisely
the same expressions for X and Y as

M before, except that r must be substituted
m

for (1 + aV, and X and Y must be taken
Y X

negatively ; in this case, therefore, -5- sin. Y ,-
cos. =

f*}(l + /3) vers. |T sin. Y} ; whence, by substitution in

equation (455), and reduction,

P (-ia'+ a-f-^Ysin.Y ja _f- a
3

-f ia
s

-f fA(l_f-/3)}vers.Y ,

>
. (4:70)

Now by note, page 438, -^ =0
; differentiating equa-

tions (475) and (476), therefore, and reducing, we have,

tan. Xcot.^ vers. Y+Ax=0 ..... (477);

which equation applies to both the cases of the pressure of a
fluid upon an arch with equal voussoirs

;
that in which its

pressure is borne by the extrados, and that in which it is

borne by the intrados
;
the constant A representing in the

, ,.,
first case the quantity

---
1 3~7 v~7T~7 \* j

and in the
20. +a tjf^l-l-a)

K+X+KH-/3
) .1 rsecond case --* . If the line of resistance

Ja +-f"t*

pass through the summit of the key-stone, X must be taken=a,
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If it pass along the inferior edge of the key-stone,
Y

> ^=0. In this second case, tan. {Y sin. "} 0, therefore,

1=0; so that the point of rupture is at the crown of the
arch. For this value of Y equations (475) and (476) become

vanishing fractions, whose values are determined by known
methods of the differential calculus to be, when the pressure
is on the extrados,

<*)'.... (4T8);

when the pressure is on the intrados,

=-f,'-ft ..... (479).

It is evident that the line of resistance thus passes through
the inferior edge of the key-stone, in that state of its equili-
brium which precedes its rupture, by the ascent of its crown.
The corresponding equation to the line of resistance is deter-

, P
mined by substituting the above values of in equation

(454). In the case in which the pressure of the water is

sustained by the intrados, we thus obtain, observing that

X X
sinJ--3 cos. &= (*|(1 +/3) vers. 6^6 sin. dj;

_ a
a+ 2a-/fy-( a

8+ a
a+ a)cos. 6

=r2----^ - '- * ' * ( '*

If for any value of 6 in this equation, less than the angle
of the semi-arch, the corresponding value of p exceed

(l+ay, the line of resistance will intersect the extrados, c

the arch will blow up.

THE EQUILIBRIUM OF AN ARCH, THE CONTACT OF WHOSE

VOUSSOIRS IS GEOMETRICALLY ACCURATE.

342. The equations (459) and (456) completely determine
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N|

the value of P, subject to the first

of the two conditions stated in

Art. 333., viz. that the line of re-

sistance passing through a given
point in the key-stone, determined

by a given value of \ shall have a

point of geometrical contact with
the intrados. It remains now to

determine it subject to the second

condition, viz. that its point of ap-

plication P on the key-stone shall

be such as to give it the least va-

lue which it can receive subject to

the first condition. It is evident

that, subject to this first condition, every different value of
X will give a different value of "V

;
and that of these values of

"Y that which gives the least value of P, and which corres-

ponds to a positive value of X not greater than a, will be the
true angle of rupture, on the hypothesis of a mathematical

adjustment of the surfaces of the voussoirs to one another.

To determine this minimum value of P, in respect to the va-

riation of Y dependent on the variation of X or ofp, let it be
observed that X does not enter into equation (456) ;

let that

equation, therefore, be differentiated in respect to P and Y,

and let -=- be assumed=0, and Y constant, we shall thence
du *

obtain the equation

sec. *=

whence, observing that

sec.

we obtain by elimination in equation (456)

4T
sin. 2Y 2Y= : 20 (482),

from which equation Y may be determined. Also by equa-
tion (481)
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---- (483);

and by eliminating sec. Y between equations (457) and (481),
and reducing,

cos. e=
)
|/a(a +2)

{

Yi )

.--prl
>. . . (484).

The value of X given by this equation determines the actual

direction of the line of resistance through the key-stone, on
the hypothesis made, only in the case in which it is a positive

quantity, and not greater than a
;

if it be negative, the line

of resistance passes through the bottom of the key-stone, or
if it be greater than a, it passes through the top.

Such a mathematical adjustment of the surfaces of contact

of the voussoirs as is supposed in this article is, in fact, sup-

plied by the cement of an arch. It may therefore be con-

sidered to involve the theory of the cemented arch, the influ-

ence on the conditions of its stability of the adhesion of its

voussoirs to one another being neglected. In this settlement,
an arch is liable to disruption in some of those directions in

which this adhesion might be necessary to its stability. That
old principle, then, which assigns to it such proportions as

would cause it to stand firmly did no such adhesion exist,
will always retain its authority with the judicious engineer.

APPLICATIONS OF THE THEORY OF THE ARCH.

343. It will be observed that equation (459) or (472)
determines the angle "f of rupture in terms of the load Y,
and the horizontal distance x of its centre of gravity from
the centre C of the arch, its radius r, and the depth &r of its

voussoirs
; moreover, that this determination is wholly inde-

pendent of the angle of the arch, and is the same whether
its arc be the half or the third of a circle

; also, that if the

angle of the semi-arch be less than that given by the above

equation as the value of Y, there are no points of rupture,
such as they have been defined, the line of resistance passing
through the springing of the arch and cutting the iiitradoa

there.
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The value of Y being known from this equation, P is

determined from equation (456), and this value of P being
substituted in equation (454), tne line of resistance is com-

pletely determined
;
and assigning to d the value ACB

(p. 437.), the corresponding value of p gives us the position
of the point Q, where the line of resistance intersects the

lowest voussoir of the arch, or the summit of the pier.

Moreover, P is evidently equal to the horizontal thrust on
the top of the pier, and the vertical pressure upon it is the

weight of the arch and load: thus all the elements are

known, which determine the conditions of the stability of a

pier or buttress (Arts. 293. and 312.) of given dimensions

sustaining the proposed arch and its loading.

Every element of the theory of the arch and its abutments.
is involved, ultimately, in the solution in respect to- V of

equation (459) or equation (472). Unfortunately this solu-

tion presents great analytical difficulties.. In the- failure of

any direct means of solution, there are, however, various

methods by which the numerical 1 relation of Y and Y may
be arrived at indirectly. Among thei% one of the simplest
is this :

Let it be observed that that equation is readily soluble in

respect to Y
; instead, then, of determining the value of Y

for an assumed value of Y, determine conversely the value
of Y for a series of assumed values of Y. Knowing the dis-

tribution of the load Y, the values of as will be known in

respect to these values of Y, and thus the values of Y may
be numerically determined, and may be tabulated. From
such tables may be found, by inspection, values of Y corres-

ponding to given values of i .

The values of Y, P, and r are completely determined by
equations (482, 483, 484), and all the circumstances of the

equilibrium of the circular arch are thence known, on the

hypothesis, there made, of a true mathematical adjustment
of the surfaces of the voussoirs to one another

;
and although

this adjustment can have no existence in practice when,
the voussoirs are put together without cement, yet may it

obtain in the cemented arch. The cement, by reason of

its yielding qualities when fresh, is made to enter into so

intimate a contact with the surfaces of the stones between
which it is interposed that it takes, when dry, in respect
to each joint (abstraction being made of its adhesive proper-

ties), the character of an exceedingly thin voussoir, having
its surfaces mathematically adjusted to those of the adjacent

v^ussoirs ;
so that if we imagine, not the adhesive properties

29
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of the cement of an arch, but only those which tend to tho

more uniform diffusion of the pressures through its mass, to

enter into the conditions of its equilibrium, these equations
embrace the entire theory of the cemented arch. The hypo-
thesis here made probably includes all that can be relied

upon in the properties of cement as applied to large struc-

tures.

An arch may FALL either by the sinking or the rising of

its crown. In the former case, the line of resistance passing

through the top of the key-stone is made to cut the extrados

beneath the points of rupture ; in the latter, passing through
the bottom of the key-stone, it is made to cut the extrados

between the points of rupture and the crown.
In the first case the values of X, Y, and P, being deter-

mined as before and substituted in equation (454), and p
being assumed = (!+)?, the value of d, which corresponds
to p=(l-f-a)r, will indicate the point at which the line of
resistance cuts the extrados. If this value of d be less than
the angle of the semi-arch, the intersection of the line of

resistance with the extrados will take place above the

springing, and the arch will fall.

In the second case, in which the crown ascends, let the

maximum value of p be determined from equation (454),p
being assumed =r

;
if this value of p be greater than R, and

the corresponding value of & less than the angle of rupture,
the line of resistance will cut the extrados, the arch will

open at the intrados, and it will fall by the descent of the

crown.
If the load be collected over a single point of the arch,

the intersection of the line of resistance with the extrados
will take place between this point and the crown

;
it is that

portion only of the line of resistance which lies between these

points which enters therefore into the discussion. Now if

we refer to Art. 336., it will be apparent that in respect to

this portion of the line, the values of X and Y in equations

(453) and (454) are to be
neglected ;

the only influence of

these quantities being found in the value of P.
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Example 1. Let a circular arch of equal voussoirs have
the depth of each voussoir equal to

I

TVth the diameter of its intrados, so

r that a=*2, and let the load rest upon
_^ it by three points A, B, D of its

JA extrados, of which A is at the crown
and B D are each distant from it 45

;

and let it be so distributed that -fths

of it may rest upon each of the points
B and D, and the remaining J upon
A ; or let it be so distributed within

60 on either side of the crown as to

produce the same effect as though it

rested upon these points.
Then assigning one half of the load

upon the crown to each semi-arch,
and calling x the horizontal distance

of the centre of gravity of the load upon either semi-arch

from C, it may easily be calculated that - = sin. 45 =
5303301. Hence it appears from equation (463) that no

loading can cause the angle of rupture to exceed 65.
Assume it to equal 60; the amount of the load necessary to

produce this angle of rupture, when distributed as above,
will then be determined by assuming in equation (460),

^=60, and substituting a for X, -2 for a, and -5303301 for?.

Y Y
"We thus obtain -^=-0138. Substituting this value of -,, and

also the given values of a and T in equation (457), and

observing that in this equation - is to be taken =1+ a and
r

P P
0=0, we find -5 = -11832. Substituting this value of in

the equation (454), we have for the final equation to the line

of resistance beneath the point B

2426 vers.^H- -1493

0138 sin. & + -1183 cos. &+ -22 & sin. 0*
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If the arc of the -arch be a com-

plete semicircle, the value of p in this

equation corresponding to d = - will
a

determine the point Q, where the

line of resistance intersects the abut-

ment; this value is p=~L'Q9r.
If the arc of the arch be the third

o of a circle, the value of p at the

abutment is that corresponding to

& = -
;
this will be found to be r, as

o
it manifestly ought to be, since the

points of rupture are in this case at

the springing.
In the first case the volume of the semi-arch and load is

represented by the formula
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where H is the greatest height to which a pier, whose width
is a, can be built so as to support the arch.

If \tf -11832^=0, or =-4864r, then in either case the

pier may be built to any height whatever, without being
overthrown. In this case the breadth of the pier will be

nearly equal to Jth of the span.

The height of the pier being given (as is commonly the

case), its breadth, so that the arch may just stand firmly

upon it, may readily be determined. As an example, let us

suppose the height of the pier to equal the radius of the

arch. Solving the above equations in respect to a, we shall

then obtain in the first case en= 'SOTS/1

,
and in the second

a='3r.

If the span of each arch be the same, and r
l
and r

2 repre-
sent their radii respectively, then r

l
=r

9 sin. 60*
; supposing

then the height of the pier in the second arch to be the same
as that in the first, viz. r^ then in the second equation we
must write for H, r^ sin. 60. We shall thus obtain for a the
value "28/v

The piers shown by the dark lines in the preceding
figures are of such dimensions as just to be sufficient to

sustain the arches which rest upon them, and their loads,
both being of a height equal to the radius of the semicircular

arch. It will be observed, that in both cases the load
Y='0138r2

, being that which corresponds to the supposed
angle of rupture 60, is exceedingly small.

Example 2. Let us next take the example of a Gothic

arch, and let us suppose, as in the last examples, that the

angle of rupture is 60, and that a='2; but let the load in

this case be imagined to be collected wholly over the

crown of the arch, so that - = sin. 30. Substituting in equa-

tion (459), 30 for 0, and 60 for T, and -2 for a, and sin. 30

for -, we shall obtain the value *21015 for -
; whence bv

T r*
' J

p
equation (457)-^-

= -2405, and this value being substituted,
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equation (454) gives 1*1457' foi

the value of p when = _. "We
2

have thus all the data for deter-

mining the width of a pier of

given height which will just

support the arch. Let the

height of the pier be supposed,
as before, to equal the radius
of the intrados

; then, since the

weight of the semi-arch and its

load is 5556r2

,
and the horizon-

tal thrust -2405712

,
the width a

of the pier is found by equation
(379) to be 4195r.

The preceding figure represents this arch
;
the square,

formed by dotted lines over the crown, shows the dimensions
of the load of the same materials as the arch which will cause
the angle of the rupture to become 60

;
the piers are of the

required width ^l&S/1

,
such that when their height is equal

to AB, as shown in the figure, and the arch bears this insist-

ent pressure, they may be on the point of overturning.

TABLES OF THE THRUST OF ARCHES.

344. It is not possible, within the limits necessarily

assigned to a work like this, to enter further upon the dis-

cussion of those questions whose solution is involved in the

equations which have been given ;
these can, after all, be-

come accessible to the general reader, only when tables shall

be formed from them.
Such tables have been calculated with great accuracy by

M. Garidel in respect to that case of a segmental arch* whose

loading is of the same material as the voussoirs, and the ex-

trados of each semi-arch a straight line inclined at any given
angle to the horizon. These tables are printed in the Ap-
pendix (Tables 2, 3).

* The term segmental arch is used, here and elsewhere, to distinguish that

form^of
the circular arch in which the intrados is a contiguous segment from

that in which it is composed of two segments struck from different centres, aa
in the Gothic arch.
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Adopting the theory of Coulomb*, M. Garidel has arrived

at an equationf which becomes identical with equation (472)
in respect to that particular case of the more general condi-

tions embraced by that equation, in which ^=1 and 0=0.

By an ingenious method of approximation, for the details

of which the reader is referred to his work, M. Garidel has

determined the values of the angle of rupture Y, and the

p
quantity ,

in respect to a series of different values of a and

(3. The results are contained in the tables which will be
found at the end of this volume.

p
The value of -^ being known from the tables, and the

values of Y and Ya? from eouations (464), (465), the line of

resistance is determined by the substitution of these values

in equation (454). The line of resistance determines the

point of intersection of the resultant pressure with the sum-
mit of pier ;

the vertical and horizontal components of this

resultant pressure are moreover known, the former being the

weight of the semi-arch, and the other the horizontal thrust

on the key. All the elements necessary to the determina-
tion of the stability of the piers (Arts. 289 and 312) are

therefore known.
It will be observed that the amount of the horizontal

thrust for each foot of the width of the soffit is determined

p
by multiplying the value of

a ,
shown by the tables, by the

square of the radius of the intrados in feet, and by the

weight of a cubic foot of the material

* See Mr. Hann's Theory of Bridges, Art. 16.
;
also p. 24. of the Memoir on

the Arch by the author of this work, contained in the same volume,

f Tables des Poussees des Voutes, p. 44. Paris, 1837. Bachelier.
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NOTE 1. PART IY.

The length of an elementary arc ds of the intrados AS subtending the angle

dd is expressed by rdd
;
an elementary volume of the arch will therefore be

expressed by rdftdr ;
the perpendicular distance of the centre of gravity of

this volume from the vertical line CE is r sin.
;
the moment of this volume,

with regard to CE, is therefore rdddr^r sin.0=rVr sin. 6d6; then from (Art.

31.) equation (20) there obtains

R

Wi=fr*drjlm.
Odd.

NOTE 2. PART IV. General integrals of equations 464, 465.

^Phe general integral, (equation 464)

y{l-|__co8. (0-fr) sec. i
} cos. 6dd=f(l+(3) cos. 6dff

/sec. i (cos. cos. i+sin. 6 sin. i) cos. W0= /(l-f-0) cos. Odd

j sec. i cos. i cos.
2
0oR9 / see. i sin. i sin. 6 cos. 0d0.

But^y (l-f-/3) cos. 0o?0=(l-f-/?) sin. 0; /sec. t cos. t cos. *6dd=

. t cos.
i^y (- |

OS

2 )c?0=sec.
t cos.t(-0-f- sin. 20); /sec. t sin t

/j
j

-sin. 20cf(20)= sec. i sin. t cos. 20;4 4

,-.J |
1+/3-COS. (0-t) sec. i

j-cos.
0c?0=(l-j-/?) sin. 0-i sec. z

(sin. 20 cos. t sin.t cos.
20)-^0=:(l+)8)

sin.
0-^sec.

tsin. (20- 4)-^

The general integral, / {(1 -}-/?) sec. t cos. (0 t)} sin. cos. 0<f0, (equation

465), =y(l -f/3) sin. cos. Odd i* sec. i {cos.Pcos. f-f-sin.08in. i}sin.0 cos.0^0.

sec

cos. 20=
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/%ec.
tj

cos. 6 cos. t-fsin. 0sin. 1
j
sin. 6 cos. fid .

0==y
co8.

2
0sin.

/tan. i sin.
U0cos. 6dd . /cos. 20dcos. 0-f-/tan. * sin -

2^ sin - 0=

_L COS . "0_f_I sin. "0
3 o

... f
|

(14.5) -see. i cos. (0-0
j-

sin. cos. 0rf . -|-(f0= -^(1-f/?)
cos.

3

L
(l-|-/3)4- J- cos.

30-i- tan. t sin.
8

. tan t.

4 o o

NOTE 3. PART IV.

In equation (427), (Art. 319), by making 0=0, we obtain P= Hi x*
; since

tan. r=l, and this answers to the case of the horizontal pressure of a perfect

fluid like water. From this expression there obtains dl*=/j.ixdxj
to express

the elementary pressure at any depth x below the surface. This depth in

(Art. 341), equation (473), is TV=AD+AB=AD-fAC-BC=/3R-fR-Rcos.0,

.-. dP=iiR(l4-{3 cos. 6)Rd (1-f-/? cos. 0)=//R
2
J1+/3 cos. 0f sin.

* *
)

.-. P=X= y
uR2

>
/

>

Jl-f/3-cos. } sin. 0d0.

e



T V.

THE STRENGTH OF MATERIALS.

ELASTICITY.

345. From numerous experiments which have been made

upon the elongation, flexure, and torsion of solid bodies

under the action of given pressures, it appears that the

displacement of their particles is subject to the following
laws.

1st. That when this displacement does not extend beyond
a certain distance, each particle tends to return to the place
which it before occupied in the mass, with a force exactly

proportional to the distance through which it has been

displaced.

2dly. That if this displacement be carried beyond a
certain distance, the particle remains passively in the new
position which it has been made to take up, or passes finally
into some other position different from that from which it

was originally moved.
The effect of the first of these laws, when exhibited in

the joint tendency of the particles which compose any finite

mass to return to any position in respect to the rest of the

mass, or in respect to one another, from which they have
been displaced, is called elasticity. There is every reason to

believe that it exists in all bodies within the limits, more or

less extensive, which are imposed by the second law stated

above.

The force with which each separate particle of a body
tends to return to the position from which it has been

displaced varying as the displacement, it follows that the

force with which any aggregation of such particles, consti-

tuting a finite portion of the body, when extended or

compressed within the limits of elasticity, tends to recover
its form, that is the force necessary to keep it extended or
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compressed, is proportional to the amount of the extension

or compression ;
so that each equal increment of the extend-

ing or compressing force produces an equal increment of its

extension or compression. This law, which constitutes

perfect elasticity, and which obtains in respect to fluid and

gaseous bodies as well as solids, appears first to have been
established by the direct experiments of S. Gravesande on
the elongation of thin wires.*

It is, however, by its influence on the conditions of

deflexion and torsion that it is most easily recognized as

characterizing the
elasticity

of matter, under all its solid

forms,f within certain limits of the displacement of its

particles or elements, called its elastic limits.

ELONGATION.

346. To determine tTie elongation or compression of a bar of
a given section under a given strain.

Let K be taken to represent the section of the bar in

square inches, L its length in feet, I its elongation or com-

pression in feet under a strain of P pounds, and E the strain

or thrust in pounds which would be required to extend a
bar of the same material to double its length, or to compress

* For a description of the apparatus of S. Gravesande, see Illustrations of
Mechanics, by the Author of this work, 2d edition, p. 30. In one of his

experiments, Mr. Barlow subjected a bar of wrought iron, one square inch in

section, to strains increasing successively from four to nine tons, and found the

elongations corresponding to the successive additional strains, each of one ton,
to be, in millionths of the whole length of the bar, 120, 110, 120, 120, 120.
In a second experiment, made with a bar two square inches in section, under
strains increasing from 10 tons to 30 tons, he found the additional elongations,

produced by successive additional strains, each of two tons, to be, in millionths

of the whole length, 110, 110, 110, 110, 100, 100, 100, 100, 95, 90. From an
extensive series of similar results, obtained from iron of different qualities, he
deduced the conclusion that a bar of iron of mean quality might be assumed
to elongate by 100 millionth parts, or the 10,000th part, of its whole length,
under every additional ton strain per square inch of its section. (Report to

Directors of London and Birmingham Railway. Fellowes, 1835.)
The French engineers of the Pont des Invalides assigned 82 millionth parts

to this elongation, their experiments having probably been made upon iron of
inferior quality. M. Vicat has assigned 91 millionth parts to the elongation
of cables of iron wire (No. 18.) under the same circumstances, MM. Minard
and Desormes, 1,176 millionth parts to the elongation of bars of oak.

(lllust. Mech., p. 393.)

f The experiments of Prof. Robison on torsion show the existence of this

property in substances where it might little be expected; in pipe-clay, for

instance.
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it to one half its length, if the elastic limit of the material

were such as to allow it to be so far elongated or compressed.
the law of elasticity remaining the same.*

Now, suppose the bar, whose section is K square inches,
to be made up of others of the same length L, each one inch
in section

;
these will evidently be K in number, and th'3

p
strain or the thrust upon each will be represented by ^.

Moreover, each bar will be elongated or compressed, by this

strain or thrust, by I feet
;
so that each foot of the length of

it (being elongated or compressed by the same quantity as

each other foot of its length) will be elongated or compressed

by a quantity represented, in feet, by y. But to elongate

or compress a foot of the length of one of these bars, by one

foot, requires (by supposition) E pounds strain or thrust
;
to

elongate or compress it by
- feet requires, therefore,

j

pounds. But the strain or thrust which actually produces
P P I

this elongation is
=^ pounds. Therefore,^

=
E^-.

PT

347. To find the number of units of work expended upon the

elongation ly a given quantity (I) of a bar whose section is

K and its length L.

If x represent any elongation of the bar (x being a part
of l\ then is the strain P corresponding to that elongation

KE
represented (equation 485) by -y-#;

therefore the work

done in elongating the bar through the small additional

KE
space A#, is represented by -y-a?A# (considering the strain

to remain the same through the small space Aa?) ;
and the

* The value of E in respect to any material is called the modulus of its elas-

ticity. The value of the moduli of elasticity of the principal materials of con-
struction have been determined by experiment, and will be found in a table at
the end of the volume.
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whole work U done is, on this supposition, represented by
-= 2&A&, or (supposing A#J to be infinitely small) by

KE / . KE
7,

-f-J
d% or by ITT^

(486).

TTT?

348. By equation (485) P=-pZ, therefore U =
whence it follows that the work of elongating the bar is one
half that which would have been required to elongate it by
the same quantity, if the resistance opposed to its elongation
had been, throughout, the same as its e'xtreme elongation I.

If, therefore, the whole strain P corresponding to the

elongation I had been put on at once, then, when the elonga-
tion I had been attained, twice as much work would have
been done upon the bar as had been expended upon its

elasticity. This work would therefore have been accumu-
lated in the bar, and in the body producing the strain under
which it yields ;

and if both had been free to move on (as,

for instance, when the strain of the bar is produced by a

weight suspended freely from its extremity), then would
this accumulated work have been just sufficient yet further

to elongate the bar by the same distance Z,* which whole

elongation of 2Z coulcl not have remained; because the

strain upon the bar is only that necessary to keep it

elongated by I. The extremity of the bar would therefore,
under these circumstances, have oscillated on either side of

that point which corresponds to the elongation I.

* The mechanical principle involved in this result has numerous applica-
tions

;
one of these is to the effect of a sudden variation of the pressure on a

mercurial column. The pressure of such a column varying directly with its

elevation or depression, follows the same law as the elasticity of a bar;
whence it follows that if any pressure be thrown at once or instantaneously
upon the surface of the mercury, the variation of the height of the column
will be twice that which it would receive from an equal pressure gradually
accumulated. Some singular errors appear to have resulted from a neglect of
this principle in the discussion of experiments upon the pressure of steam,
made with the mercurial column. No such pressure can of course be made to

operate, in the mathematical sense of the term, instantaneously ; and the term

gradually has a relative meaning. All that is meant is, that a certain relation

must obtain between the rate of the increase of the pressure and the amplitude
of the motion, so that when the pressure no longer increases the motion may
cease.
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349. Eliminating I between equations (485) and (486), we
obtain

U=ig (487);

whence it appears that the work expended upon the elonga-
tion of a bar under any strain varies directly as the square
of the strain and the length of the bar, and inversely as the

area of its section.*

THE MODULI OF RESILIENCE AND FRAGILITY.

(7

v a

y 1 KL (equation 486), it is evident

that the different amounts of work which must be done upon
different bars of the same material to elongate them by equal

fractional parts I

y),
are to one another as the product KL.

Let now two such bars be supposed to have sustained that

fractional elongation which corresponds to their elastic limit;
let U represent the work which must have been done upon
the one to bring it to this elongation, and Ma that upon the

other : and let the section of the latter bar be one square
inch and its length one foot

;
then evidently

Ue=M,KL ..... (488).

M is in this case called the modulus of longitudinal resili-

ence.^
It is evidently a measure of that resistance which the

material of the bar opposes to a strain in the nature of an

impact, tending to elongate it beyond its elastic limits.

If M/be taken to represent the work which must be simi-

larly done upon a bar one foot long and one square inch, in

section to produce fracture, it will be a measure of that

resistance which the bar opposes to fracture under the like

circumstances, and which resistance is opposed to its fra-

* From this formula may be determined the amount of work expended pre-

judicially upon the elasticity of rods used for transmitting work in machinery,
under a reciprocating motion pump rods, for instance. A midden effort of the

pressure transmitted in the nature of an impact may make the loss of work
double that represented by the formula

;
the one limit being the minimum, and

the other the maximum, of the possible loss.

f The term "modulus of resilience" appears first to have been used by
Mr. Tredgold in his work on " the Strength of Cast Iron," Art. 304.
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gility ;
it may therefore be distinguished from the last men-

tioned as the modulus offragility. If TJ/ represent,the work
which must be done upon a bar whose section is K square
inches and its length L fee* to produce fracture; then, as

before,

U/=M/KL ..... (489).

If Pe and P/ represent respectively the strains which
would elongate a bar, whose length is L feet and

section^
K

inches, to its elastic limits and to rupture ; then, equation

(487),

" M<=1 Similarly Mr=i ..... (490).

These equations serve to determine the values of the

moduli Me and M/by experiment.*

351. The
elongation of a lor

suspended^ vertically, and sus-

taining a given strain in the direction of its length, the

influence of its own weight being taken into the account.

Let x represent any length of the bar before its elonga-

tion, &x an element of that length, L the whole length of the

bar before elongation, w the weight of each foot of its

length, and K its section. Also let the length x have become
a?

x
when the bar is elongated, under the strain P and its own

weight. The length of the bar, below the point whose dis-

tance from the point of suspension was x before the elonga-

tion, having then been L a?,
and the weight of that portion

of the bar remaining unchanged by its elongation, it is still

represented by (L a?) w. Now this weight, increased by P,
constitutes the strain upon the element AOJ; its elongation
under this strain is therefore represented (equation 485) by

-rr-n A
#> and the length ^xl

of the element when thus

* The experiments required to this determination, in respect to the princi-

pal materials of construction, have been made, and are to be found in the

published papers of Mr. Hodgkinson and Mr. Barlow. A table of the moduli
of resilience and fragility, collected from these valuable data, is a desideratunc

in practical science.
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I

elongated, by &x-\
T^- ^^5 whence dividing by A#,

and passing to the limit, we obtain

db
1 _

1
P+(L-aQM

dx~ KE

Integrating between the limits and L, and representing
by Lx

the length of the elongated rod,

If the strain be converted into a thrust, P must be made
to assume the negative sign; and if this thrust equal one
half the weight of the bar, there will be no elongation at all.

352. THE VERTICAL OSCILLATIONS OF AN ELASTIC ROD OK
COED SUSTAINING A GIVEN WEIGHT SUSPENDED FROM ITS

EXTREMITY.

Let A represent the point of suspension of the rod (fig. 1.

on the next page), L its length AB before its elongation, and

\l the elongation produced in it by a given weight "W sus-

pended from its extremity, and C the corresponding position
of the extremity of the rod.

Let the rod be conceived to be elongated through an
additional distance CD=e by the application of any other

given strain, and then allowed to oscillate freely, carrying
with it the weight "W; and let P be any position of its

extremity during any one of the oscillations which it will

thus be made to perform. If, then, CP be represented by a?,

the corresponding elongation BP of the rod will be repre-
sented by iZ-ho?, and the strain which would retain it perma-

KE
nently at this elongation (equation 485) by -(i^+a?); the

unbalanced pressure or moving force (Art. 92.) upon the

weight W, at the period of this elongation, will therefore be
Trnn

TT-p

represented by -^-(%l+x) W, or by -y-; since W, being

the strain which would retain the rod at the elongation -J-Z,
is

~

represented by -y~JZ (equation 485).

* Whewell's Analytical Statics, p. 113.
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The unbalanced pressure, or moving force, upon the mass
"W varies, therefore, as the distance x of the point P from the

given point ;
whence it follows by the general principle

established in Art 97., that the oscillations of the point P
extend to equal distances on either side of the point C, as a

centre, and are performed isochronously, the time T of each
oscillation being represented by the formula

T-/WLU
\JBSt

. (493).

The distance from A of the centre C, about which th$>

oscillations of the point P' take place, is represented b$-

L+-JZ; so that, representing this distance by L and substi-

tuting for %l its value, we have

f

i

353'. Let us now suppose that when in

making its first oscillation about C
(fig. 2.) the weight W has attained its

highest position d^ and is therefore, for

an instant, at rest in that position, a
second weight w is added to it

;
a second

series of oscillations will then be com-
menced about a new centre C

15
whose

distance L
2 from A is evidently repre-

sented by the formula

So that the distance CO, of the two centres is ^ ;
and the

ixiij

greatest distance CJ)^ beneath the centre 0,, attained in the
second oscillation, equal to the distance, C^ at which the
oscillation commenced above that point. Now C

1
D

J
=

the second oscillation is therefore %c -f-

30

1=o+ ;
the amplitude df), of
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Let the weight w be conceived to be removed when the

lowest point ~D
t
of the second oscillation is attained, a third

series of oscillations will then be commenced, the position of

whose centre being determined by equation (494), is identical

with that of the centre C, about which the first oscillation

was performed. In its third oscillation the extremity of the
rod will therefore ascend to a point <#2 as far above the point
C as D

:
is below it

;
so that the amplitude of this third oscil-

lation is represented by 2TCD,, or by 2CJD~TrCC
! ,

or by

^J). When the highest point dz of this third oscil-

lation is attained, let the weight w be again added
;
a fourth

oscillation will then be commenced, the position of whose
centre will be determined by equation (495,) and will there-

fore be identical with the centre C,, about which the second
oscillation was performed ;

so that the greatest distance C,D?

beneath that point attained in this fourth oscillation will be

equal to CA or to CC^ -f CDj ;
and its amplitude will be

represented by 2 I <?+__). And if the weight w be thus
\ K.Jii /

conceived to be added continually, when the highest point
of each oscillation is attained, and taken off at the lowest

point, it is evident that the amplitudes of these oscillations

will thus continually increase in an arithmetical series
;

so

that the amplitude A^ of the nili oscillation will be repre-
sented by the formula

The ascending oscillations of the series being made about
the centre C, and the descending oscillations about C

1?

if n be an even number, the centre of the nih oscillation is

Cj ;
the elongation cn of the rod corresponding to the lowest

point of this oscillation is therefore equal to BQ+^A^ or

substituting for BCj its value given by equation (495), and
for A n its value from equation (496),

Thus it is apparent that by the long continued and
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periodical addition and subtraction of a weight w, so small

as to produce but a slight elongation or contraction of the

rod when first added or removed from it, an elongation cn

may eventually be produced, BO great as to pass limits of its

elasticity, or even to break it. Numerous observations have
verified this fact: the chains of suspension bridges have
been broken by the measured tread of soldiers ;* and M.
Savart has shown, that by fixing an elastic rod at its centre,
and drawing the wetted finger along it at measured inter-

vals, it may, by the strain resulting from the slight friction

received thus periodically upon its surface, be made with

great ease to receive an oscillatory movement of sufficient

amplitude to be measured,f M. Poncelet has compared the

measurement of M. Savart with theoretical deductions

analogous to those of the preceding article, and has shown
their accordance with it.

DEFLEXION.

354. The neutral surface of a deflected beam.

One surface of a beam becoming, when deflected, convex,
and the other concave, it is evident that the material form-

ing that side of the beam which is bounded by the one
surface is, in the act of flexure, extended, and that of the

other compressed. The surface which separates these two

portions of the material being that where its extension ter-

minates and its compression begins, and which sustains,

therefore, neither extension nor compression, is called the

NEUTRAL SURFACE.

355. THE POSITION OF THE NEUTRAL SURFACE OF A BEAM.

Let ABCD be taken to represent any thin lamina of the

* Such was the fate of the suspension bridge at Broughton near Manchester,
the circumstances of which have been ably detailed by Mr. E. Hodgkinson in

the fourth volume of the Manchester Philosophical Transactions. M. Navier
has shown, in his treatise on the theory of suspension bridges (Sur les Fonts

Suspendus, Paris, 1823), that the duration of the oscillations of the chains of
a suspension bridge may in certain cases extend to nearly six seconds

; there

might easily, in such cases, arise that isochronism at each interval, or after

any number of intervals, between the marching step of the troops and the
oscillations of the bridge, whence would result a continually increasing elon-

gation of the suspending chains.

f Mecanique Industrielle, p. 437, Art. 331. ED.
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beam contained by planes

parallel to the plane of its

deflexion, and P
1? P,, P8 the

resultants of all the pres-
sures applied, to it

;
acb that

portion of the neutral sur-

iace of the beam which is

contained within this la-

mina, and may be called its

neutral line; PT and QY
planes exceedingly near to

one another, and perpen-
dicular to the neutral line at the points where they intersect

it
;
and O the intersection of PT and QY when produced.
Now let it be observed that the portion ArTD of the

beam is held in equilibrium by the resultant pressure P
1?

and by the elastic forces called into operation upon the sur-

face PT
;
of which elastic forces those acting in PR (where

the material of the beam is extended) tend to bring the

points to which they are severally applied nearer to the

plane SQ, and those acting in RT (where the material is

compressed), to carry their several points of application
farther from the plane SY.

Let aR=x, SR=A#, and imagine the lamina PQYT to be

made up of fibres parallel to SR
;
then will Aa? represent

the length of each of these fibres before the deflexion of the

beam, since the length of the neutral fibre SR has remained
unaltered by the deflexion. Let dx represent the quantity

by which the fibre pq has been elongated by the deflexion

of the beam, then is the actual length of that fibre repre-
sented by AaH-cSa?. Whence it follows (equation 485), that

the pressure which must have operated to produce this

dx

elongation is represented by E A&, A& being taken to repre-

sent the section of the fibre, or an exceedingly small element

of the section PT of the lamina. Now PT and QY being
normals to SR, the point O in which they meet, when

produced, is the centre of curvature to the neutral line in

R. Let the radius of curvature OR be represented by R,

Op
and the distance ~Rp by p. By similar triangles, Q^=
pq R-fp Aa?+da? p

<fo
Al

^jL.j
or __/==

9
or !+:-= 1 + ;

therefore.
p
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. Substituting this value of in the expression for the

pressure which must have operated to produce the elonga-
tion of the fibre pq, and representing that pressure by AP,
we have

AP=*|A&
____ (498).

If, therefore, KP be represented by ^ and ET by &,, then
the sum of the elastic forces developed by the extension of

E kl

the fibres in RPQS is represented by ^-2 pA&; and, similarly,

the sum of those developed by the compression of the fibres

E *2

in RTVS is represented by =-2 pA&. Now let it be observed

that (since the pressures applied to APTD, and in equili-

brium, are the forces of extension and compression acting
in KP and RT respectively, and the pressure PJ, if the

pressure P x
be resolved in a direction perpendicular to the

plane PT, or parallel to the tangent to the neutral line in R,
this resolved pressure will be equal (Art. 16.) to the differ-

ence of the sums of the forces of extension and compression
applied (in directions perpendicular to that plane, but oppo-
site to one another) to the portions RP and RT of it respec-

tively. Representing, therefore, by 6 the inclination R0P,
of the direction of Pj to the normal to the neutral line in R,
we have

~p* k l

P
a
sin. 4=-2 pA&_

JK. K

But if Jc be taken to represent the whole section PT, and h
the distance of the point R from its centre of gravity, then

(Art. 18.)

.-. P, sin. 4=

RP
...^-^sin.4 ..... (499);

which expression represents the distance of the neutral line
from the centre of gravity of any section PT of the lamina,
that distance being measured towards the extended or the

compressed side of the lamina according as d is positive or
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negative; so that the neutral line passes from one side to

the other of the line joining the centres of gravity of the
cross sections of the lamina, at the point where d

0, or at

the point where the normal to the neutral line is parallel to

the direction of P.

356. Case of a rectangular beam.

If the form of the beam be such that it may be divided

into laminae parallel to ABCD of similar forms and equal
dimensions, and if the pressure P, applied to each lamina

may be conceived to be the same
;
or if its section be a rec-

tangle, and the pressures applied to it be applied (as they
usually are) uniformly across its width, then will the distance
h of the neutral line of each lamina from the centre of gra-

vity of any cross section of that lamina, such as PT, be the

same, in respect to corresponding points of all the laminae,
whatever may be the deflection of the beam

;
so that in thig

case the neutral surface is always a cylindrical surface.

357. Case in which the deflecting pressure P 1
is nearly per-

pendicular to the length of the learn.

In this case 0, and therefore sin. 0, is exceeding small, so

long as the deflexion is small at every point R of the neutral
line

;
so that h is exceedingly small, and the neutral line

of the lamina passes very nearly, or accurately, through the
centre of gravity of its section PT.

358. THE RADIUS OF CURVATURE OF THE NEUTRAL SURFACE

OF A BEAM.

Since the pressures applied to the portion APTD of the

lamina ABCD are in equilibrium, the principle ofthe equality
of moments must obtain in respect to them

; taking, there-
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fore, the point R, where the neutral axis of the lamina inter-

sects PT, as the point from which the moments are measured,
and observing that the elastic pressures developed by the

extension of the material in RP and its compression in RT
both tend to turn the mass APTD in the same direction

about the point R, and that each such pressure upon an

element &k of the section PT is represented (equation 498) by

_pA&5
and therefore the moment of that pressure about the

R
E

point R by p

a

A&, it follows that the sum of the moments
R

about the point R of all these elastic pressures upon PT is

represented by =-2p
2A&

5
or by --, if I be taken to representR R

the moment of inertia of PT ^bout R. Observing, moreover,
that if p represent the length of the perpendicular let fall

from R upon the direction of any pressure P applied to the

portion APTD of the beam, fp will represent its moment,
and SPp will represent the sum of the moments of all the
similar pressures applied to that portion of the beam

;

we have by the principle of the equality of moments,

359. The neutral surface of the beam is a cylindrical sur-

face, whatever may be its deflection or the direction of its

deflecting pressure, provided that its section is a rectangle
(Art. 356.) ;

or whatever may be its section, provided that its

deflection be small, the direction of the deflecting pressure
nearly perpendicular to its length, and its form before de-

flexion symmetrical in respect to a plane perpendicular to the

plane of deflexion. In every such case, therefore, the neutral
lines of all the laminae similar to ABCD, into which the
beam may be divided, will have equal radii of curvature at

points similar to R lying in the same right line perpendicular
to the plane of deflection ; taking, therefore, equations simi-

lar to the above in respect to all the laminae, multiplying
both sides of each by I, adding them together, and observ-

ing that R and E are the same in all, we have __ P
mR E

In this case, therefore, I may be taken in equation (COO) to
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represent the moment of inertia of the whole section of the

beam, and P the pressure applied across its whole width.

360. The radius of curvature of a beam whose deflexion is

small, and the direction of me deflecting pressures nearly

perpendicular to the length of the beam.

In this case the neutral line is very nearly a straight line,

perpendicular to the directions of the deflecting pressures ;

so that, representing its length by a?, we have, in this case,

jp=x ;
and equation (500) becomes

which relation obtains, whatever may be the form of the

transverse section of the beam, I representing its moment of

inertia in respect to an axis passing through its centre of

gravity and perpendicular to the plane of deflexion.

361. The moment of inertia I of the transverse section of a
beam about the centre of gravity of the section.

In treating of the moments of inertia of bodies of different

geometrical forms in a preceding part of this work (Art. 82,

&c.), we have considered them as solids
;
whereas the mo-

ment of inertia I of the section of a beam which enters into

equation (500) and determines the curvature of the beam
when deflected, is that of the geometrical area of the section.

Knowing, however, the moment of inertia of a solid about

any axis, whose section perpendicular to that axis is of a

given geometrical form, we can evidently determine the
moment of the area of that section about the same axis, by
supposing the solid in the first place to become an exceed-

ingly thin lamina (i. e. by making that dimension of the
solid which is parallel to the axis exceedingly small in the

expression for the moment of inertia), and then dividing
the resulting expression by the exceedingly small thickness
of this lamina. We shall thus obtain the following values
of I:-
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362. For a beam with a rectangular section, )

whose breadth is represented by b and its depth V&a
by G (equation 61), )

363. For a beam with a triangular ) ic

section, whose base is b and its height c > I=
~^r

(equation 63), )

364. For a beam or column with a circular )

section, whose radius is c (equation 66), j

365. To determine the moment of inertia I in respect to a

A B
beam whose transverse section is of the

1 n f
-' form represented in the accompanying

figure, about an axis ab passing through
its centre of gravity ;

let the breadth of

the rectangle AB be represented by b
l
and

its depth by d^ and let &2 and dz be simi-

larly taken in respect to the rectangle EF,
and ba and d3

in respect to CD
;
also let I

t

represent the moment of inertia of the section about the axis

cd passing through the centre of CD, A 1? A,, A,, the areas

of the rectangles respectively, and A the area of the whole
section.

Now the moments of inertia of the several rectangles,
about axes passing through their centres of gravity, are

represented by yV^A'i A^A3

? rV^AN an(^ tne distances of

these axes from the axis cd are respectively
0. Therefore (equation 58),

but A,=M A,=M A
S
=

Also if h represent the distance between the axes ab and cd,

then (Art. 18) AA=i(da+ rf,)Aa i^+^^o and (equation

58) Irnl.-A'A.

If d
l
and d^ be exceedingly small as compared with <2

8 ,
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neglecting their values in the two last terms of the equation
and reducing, we obtain

(503).

If the areas AB and EF be equal in every respect,

1=1 {d*+*&+ %)*} At+JsAj; ..... (504).

366. THE WORK EXPENDED UPON THE DEFLEXION OF A BEAM
TO WHICH GIVEN PRESSURES ARE APPLIED.

If AP represent the pressure which must have operated
to produce the elongation or

compression which the ele-

mentary fibre pq receives,

by reason of the deflexion

of the beam, AOJ the length
of that fibre before the de-

flexion of the beam, and &k
its section; then the work
which must have been done

upon it, thus to elongate
or compress it, is repre-

sented, equation (487) by

498) Ap=&4jfcE Aft'

pended upon the extension or compression of pq is there-

fore represented by

And the same being true of the work expended on the

compression or extension of every other fibre composing the

elementary solid VTPQ, it follows that the whole work

expended upon the deflexion of that element of the beam

is represented by J-^j- 2p
3

A&, or by i A#
5

for 2p
2A& repre-

sents the moment of inertia I of the section PT, about an
axis perpendicular to the plane ofABCD, and passing through
the point K. If, therefore, t

be taken to represent the

length of that portion of the beam which lies between D
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and M before its deflexion, and therefore the length of the

portion ac of its neutral line after deflexion, then the whole
work expended upon the deflexion of the part AM of the

01 1 1
beam is represented lyy % E2 ^-2Aa?. But (equation 500) ^=

o-tv J*>

yara" j whence, by substitution, the above expression

P 22i# a

becomes j~4r o y
Aa?- Passing to the limit, and represent-

ing the work expended upon the deflexion of the part AM
of the beam by u^

P,
a

o

367. TA0 work expended upon the deflexion of a learn of
uniform dimensions, when the deflecting pressures are

nearly perpendicular to the surface of the beam.

In this case I is constant, and^=8?; whence we obtain

by integrating (equation 505) be-

tween the limits and a
1?

u>=^if (506)>

where u
v represents the work ex-

pended upon the deflexion of the

portion AM of the beam. Simi-

larly, if bc=a^ the work expended
upon the deflexion of the portion BM of the beam is repre-
sented by

so that the whole work Us expended upon the deflexion of
the beam is represented by

P 2
//

8

\
a

\

6EI

But by the principle of the equality of moments, if a
represent the whole length of the beam,
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Eliminating P 1
and Pa

between these equations and the pre-

ceding, we obtain by reduction

(507).

If the pressure P3
be applied in the centre of the beam,

368. THE LINEAR DEFLEXION OF A BEAM WHEN THE DIRECTION
OF THE DEFLECTING PRESSURE IS PERPENDICULAR TO ITS

SURFACE.

Let the section MK remain fixed, the deflexion taking
place on either side of that section

;

then u^ representing the work ex-

pended upon the deflexion of the

portion AM of the beam, and D
1

the deflexion of the point to which

P! is applied, measured in a direc-

tion perpendicular to the surface, we

(e(luatio11 40
)> ^i

du, du, dP*
',

therefore P. = -~r-

But by equation (506),
= l ;

therefore P, -

-jf^ 5
therefore -^- = ^Wy ;

whence we obtain by integration

3EI (509).

If the whole work of deflecting the beam be done by the

pressure P3 ,
the points of application of P and P2 having no

motions in the directions of these pressures (Art. 52.), then

proceeding in respect to equation (507) precisely as before in

respect to equation (506), and representing the deflexion

* Church's Diff. Cal. Art. 1Y.
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perpendicular to the surface of the beam at the point of

application of P3 by D3 ,
we shall obtain

If the pressure P
8
be applied at the centre of the beam

Eliminating P, between equations (506) and (509), and P,
between equations (507) and (510), we obtain

by which equations the work expended upon the deflexion

of a beam is determined in terms of the deflexion itself, as

by equations (506) and (507) it was determined in terms of

the deflecting pressures.

369. CONDITIONS OF THE DEFLEXION OF A BEAM TO WHICH ARE
APPLIED THREE PRESSURES, WHOSE DIRECTIONS ARE NEARLY
PERPENDICULAR TO ITS SURFACE.

Let AB represent any lamina of the beam parallel to its

H

plane of deflexion, and acb the neutral line of that lamina
intersected by the direction of P

8
in the point c.

Draw xx
1 parallel to the length of the beam before its

deflexion, and take this line as the axis of the abscissae, and
the point o as the origin ; then, representing by x and y the

* This result is identical with that obtained by a different method of inves-

tigation by M. Navier (Resume de Lemons de Construction, Art. 359.).
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co-ordinates of any point in ac, and by ~R the radius of curva-

ture of that point, we have *

Now the deflexion of the beam being supposed exceed-

ingly small, the inclination to ex of the tangent to the

neutral line is, at all points, exceedingly small, so that I

-^J

may be neglected as compared with unity ;
therefore^ -^.

Substituting this value in equation (501), and observing that

in this casejp is represented by (a, a?)
instead of #,

(513).

the direction of the pressure P a being supposed nearly per
pendicular to the surface of the beam, and I constant. Let
the above equation be integrated between the limits and

a?, /3 being taken to represent the inclination of the tangent

at c to B, so that the value off at c may be represented by
GuX

tan. 13,

-tan./SXo,-^ ...(514).

Integrating a second time between the limits and
a?, and

observing that when a?=0, y=0,

y= l̂
\fatf-ia?}+a>teai.P .... (515).

Proceeding similarly in respect to the portion ~bc of the neu-
tral line, but observing that in respect to this curve the value

of - at the point c is represented by tan. /3, we have

dx*~~ El

./3 ==^M^-^} . . (516).
jL

Church's Diff. Cal. Art. 105.
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If D
l
and D2 be taken to represent the deflexions at the

points a and
,
and ca and cb be assumed respectively equal

to cd and ce,

by equation (515), D 1
= l-A +gt

tan. /3,

P # 3

by equation (517), D5
= ^~ 2 tan. .

If the pressures P 1
and P2 be supplied by the resistances

of fixed surfaces, then T>
l =T>,l

. Subtracting the above equa-
tion we obtain, on this supposition,

tan.

Now FA'-PA'= ''-~'=P
8a.^(gl

-a
.) ; ob-

serving that P
1a=P,<*,, ?,=?, and ,+,:= a,

If /3 15 /32 represent the inclinations of the neutral line to
xx

l
at the points a and J, then by equations (514) and (516)

tan./3,_tan./3=, tan. ^

Substituting for tan. /3 its value from equation (518), elimi-

nating and reducing,

_Pia.g,(g I + 2g.) . _P.g,
1D - ^1- a ' ^2

"

To determine the point m where the tangent to the neutral
line is parallel to cxx^ or to the undeflected position of the

fiii

beam, we must assume -/-=0 in equation (516)* ;
if we

fftx

then substitute for tan. (3 its value from equation (518),
substitute for P2 its value in terms of P

3 ,
and solve the

* Church's Diff. Cal. Art. 78.
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resulting equation in respect to a?, we shall obtain for the

distance of the point m from c the expression

370. THE LENGTH OF THE NEUTRAL LINE, THE BEAM BEING
LOADED IN THE CENTRE.

Let the directions of the resistances upon the extremities

of the beam be supposed nearly perpendicular to its surface
;

then if x and y be the co-ordinates of the neutral line from
the point #, we have (equation 501), representing the hori-

zontal distance AB by 20, and observing that in this case

-=-5-5, and that the resistance at A or B = JP,

Integrating between the limits x and 0, and observing that
d/u

at the latter limit - = Or

Now if * represent the length of the curve ac,

Church's Int. Cal. Art. 197.
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the deflexion being small, -T-> is exceedingly small at every

point of the neutral line.

:.a=f |

'.*= + 60ET-... (521).

Eliminating P between this equation and equation (511), and

representing the deflexion by D,

Da *
-.

371. A BEAM, ONE PORTION OF WHICH IS FIRMLY INSERTED IN

MASONRY, AND WHICH SUSTAINS A LOAD UNIFORMLY DISTRI-

BUTED OVER ITS REMAINING PORTION.

Let the co-ordinates of the neutral line be measured from

* The following experiments were made by Mr. Hatcher, superintendant of
the work-shop at King's College, to-verify this result, which is identical with
that obtained by M. Navier (Resume des Lemons, Art. 86.). Wrought iron

rollers -7 inch in diameter were placed loosely on wrought iron bars, the sur-

faces of contact being smoothed with the file and well oiled. The bar to be
tested had a square section, whose side was '7 inch, and was supported on the
two rollers, which were adjusted to 10 feet apart (centre to centre) when the

deflecting weight had been put on the bar. On removing the weights-care-

fully, the distance to which the rollers receded as the bar recovered its hori-

zontal position was noted.

Deflecting Weight
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the point B where the beam
is inserted in the masonry,
and let the length of the

portion AD which sustains

the load be represented by
#, and the load upon each
unit of its length by p ;

then, representing by x and

y the co-ordinates of any
point P of the neutral line,
and observing that the pres-
sures applied to AP, and in

equilibrium, are the load ^(ax) and the elastic forces

developed upon the transverse section at P, we have by the

principle of the equality of moments, taking P as the point
from which the moments are measured, and observing that

since the load p(ax) is uniformly distributed over AP it

produces the same effect as though it were collected over the
centre of that line, or at distance \(a x) from P ; observing,
moreover, that the sum of the moments of the elastic forces

upon the section at P, about that point, is represented (Art.

358.) by
5 or by ElJ (Art. 369.) ;

Integrating twice between the limits and
a?,

and observing
CM iV/

that when x=Q,-^-=Q and y=0, since the portion BC of the

beam is rigid, we obtain

which is the equation to the neutral line.

Let, now, a be substituted for x in the above equation ;

and let it be observed that the corresponding value of y
represents the deflexion D at the extremity A of the beam

;

we shall thus obtain by reduction
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Representing by P the inclination to the horizon of the tan-

gent to the neutral line at A, substituting a for x in equation

(523), and observing that when x=a, -/^= tan. /8, we obtain

tan. /3=|^ . . . . (526).

372. A BEAM SUPPORTED AT ITS EXTREMITIES AND SUSTAINING
A LOAD UNIFORMLY DISTRIBUTED OVER ITS LENGTH.

Let the length of the beam be represented by 20, the load

upon each unit of length by p ;
take

x and y as the co-ordinate of any
point P of the neutral line, from the

origin A; and let it be observed
that the forces applied to AP, and in

equilibrium, are the load px upon that

portion of the beam, which may be

supposed collected over its middle

point, the resistance upon the point A, which is represented
by pa, and the elastic forces developed upon the section

atP; then by Art. 360.,

Integrating this equation between the limits x and #, and

observing that at the latter limit -^ = 0, since y evidentlydx
attains its maximum value at the middle C of the beam,

= ifx(^-
8)-4K a- 9

) ____ (528).

Integrating a second time between the limits and
a?, and

observing that when oj*=0, y=0,

3

-a'x) ____ (529),

which is the equation to the neutral line. Substituting a for
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x in this equation, and observing that the corresponding
value of y represents the deflexion D in the centre of the

beam, we have by reduction

Representing by /3 the inclination to the horizon of the tan-

gent to the neutral line at A or B, and observing that when

a?=0 in equation (528),^= tan. /3,
ax

= L ..... (531).

Let it be observed that the length of the beam, which in

equation (511) is represented by #, is here represented by
2w, and that equation (530) may be placed under the form

D=j- . AQ-FT ?
whence it is apparent that ihe deflexion

of a beam, when uniformly loaded throughout, is the same
as though -fths of that load (2^) were suspended from its

middle point.

373. A BEAM IS SUPPORTED BY TWO STRUTS PLACED SYM-

METRICALLY, AND IT IS LOADED UNIFORMLY THROUGHOUT
ITS WHOLE LENGTH; TO DETERMINE ITS DEFLEXION.

Let CD=2&, CA= a
1,
load upon each foot of the length
of the beam^fx ;

then load on
each point of support=v-a. Take
C as the origin of the co-ordinates

;

then, observing that the forces

impressed upon any portion CP
of the beam, terminating between
C and A, are the elastic forces

upon the transverse section of the

beam at P, and the weight of the

load upon CP ;
and observing that the weight M-CP of the

load upon CP, produces the same effect as though it were
collected over the centre of that portion of the beam, so that

its moment about the point P is represented by p. CP.
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or by -|^CP
a

;
we obtain for the equation to the neutral line

in respect to the part CA of the beam (Art. 360)

(532).

Since, moreover, the forces impressed upon any portion CQ
of the beam, terminating between A and E, are the elastic

forces developed upon the transverse section at Q, the
resistance pa of the support at A, and the load upon CQ,
whose moment about Q is represented by J-^CQ

2

,
we have

(equation 501), representing CQ by a?,

EI =f(e-Ka'-0,) ..... (533).

Representing the inclination to the horizon of the tangent to

the neutral line at A by /3, dividing equation (532) by v*,

integrating it between the limits x and a
15
and observing

ffll

that at the latter limit
-^=tan. /3, we have, in respect to the

portion CA of the beam,

Integrating equation (533) between the limits x and
,
and

observing that at the latter limit
^=sO, since the neutral

line at E is parallel to the horizon,

-7-=|#
s

\a(x a^ a*+%a(a a$ (535);
|X (JUvu

which equation having reference to the portion AE of the

beam, it is evident that when #=#., -y-=tan. P.IJ dx

8-1

.... (536).

Substituting, therefore, for tan. P in equation (534), and

reducing, that equation becomes
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Integrating equation (535) between the limits a, and
a?, and

equation (537) between the limits and a?, and representing
the deflexion at C, and therefore the value of y at A, by D
El

(y-DO

(538);

the former of which equations determines the neutral line

of the portion AE, and the latter that of the portion CA of

the beam. Substituting a
t
for x in the latter, and observing

that y then becomes D
: ;

then substituting this value of D
1

in the former equation, and reducing,

'-&-ad\ (539);

El
ay-c?}x ---- (540).

f**

The latter equation being that to the neutral line of the por-
tion AE of the beam, if we substitute a in it for a?, and

represent the ordinate of the neutral line at E by y^ we
shall obtain by reduction

<*-,)-3
s

5
.... (541).

If a^O, or if the loading commence at the point A of the

beam, the value of y^ will be found to be that already deter-

mined for the deflexion in this case (equation 530).

Now, representing the deflexion at E by D2 ,
we have evi-

dently D2 D
x yr

(542).

374. THE CONDITIONS OF THE DEFLEXION OF A BEAM LOADED
UNIFORMLY THROUGHOUT ITS LENGTH, AND SUPPORTED AT
ITS EXTREMITIES A AND D, AND AT TWO POINTS B AND C
SITUATED AT EQUAL DISTANCES FROM THEM, AND IN THE
SAME HORIZONTAL STRAIGHT LINE.

Let AB=^, AD=20.
Let A be taken as the origin of the co-ordinates

;
let the
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pressure upon that point be

represented by P
15

and the

pressure upon B by P2 ;
also

the load upon each unit of

the length of the beam by p.

If F be any point in the

neutral line to the portionAB
of the beam, whose co-ordi-

nates are x and y, the pres-
sures applied to AP, and in equilibrium, are the pressure
P

1
at A, the load px supported by AP, and producing the

same effect as though it were collected over the centre of

that portion of the beam, and the elastic forces developed
upon the transverse section of the beam at P

;
whence it

follows (Art. 360.) by the principle of the equality of

moments, taking P as the point from which the moments
are measured, that

=W-I> .... (6*8).

Integrating this equation between the limits a^ and #, and

representing the inclination to the horizon of the tangent to

the neutral line at B by /32,

El(-tan. /3,)

= -<) .... (544).

Integrating again between the limits and
a?,

. (545),

Whence observing that when x=a
l , y=

El tan.pa P 2

(546).

Similarly observing, that if x and y be taken to represent
the co-ordinates of a point Q in the beam between B and C,
the pressures applied to AQ are the elastic forces upon the
section at Q, the pressures P, and P

a
and the load ^x}

we
have

Integrating this equation between the limits a
l
and

a?, and
fl'tl

observing that at the former limit the value of -/- is repre-

sented by tan. /3a ,
we have



4:88 THE DEFLEXION OF A BEAM

Big-tan. 0.) =Hrf-O-ff.('*-<

.... (548).

Now it is evident that, since the props B and C are placed

symmetrically, the lowest point of the beam, and therefore

of the neutral line, is in the middle, between B and C
;
so

/m/M

that -/ = 0, when x=a. Making this substitution in equa-

tion (548),

-El tan. p^ipW-afi-tPW-a^-lY^a-aJ . . (549).

Since, moreover, the resistances at C and D are equal to

those at B and A, and that the whole load upon the beam is

sustained by these four resistances, we have

P.+P^f** ..... (550).

Assuming a
i
=na

j
and eliminating P1?

P
a ,

tan. ft, between
the equations (546), (549), and (550), we obtain

-D pa (

3

-f-127i
a

24/1+ 8

8

24EI

(5^a 16^+8)
'

1 2*-8 "f

Making a?=0 in equation (544); and observing that the cor-

responding value of -y- is represented by tan. /3 1? we have

El (tan. ft tan. ft)== |i*a 1

$+iP 1
a

1

i
.

Substituting for tan. ^2 and P
x
their values from equations

(553) and (551), and reducing,

)

[....(554).

Representing the greatest deflexions of the portions AB and
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BC of the beam, respectively, by D l
and D2 ,

and by a?, the

distance from A at which the deflexion Dj is attained, we
have, by equations (544) and (545),

-El tan. /3i== jf* (x*-a*)-<,

x a^tan. /32)=-

The value of Dj is determined by eliminating a?, between
these equations, and substituting the values of P

a
and tan. J3t

from equations (551) and (553).

Integrating equation (548) between the limits a
t
and 0,

and observing that at the latter limit y=D2 ,
we have

^EI^-^) tan.

Substituting in this equation for the values of tan. )8S , P,, Pa,

and reducing, we obtain

(556).

Representing BC by 2#t , and observing that ^
2
= AE

AB=a na=(l ri)a,

^
-Ua~48EI

'

3-2ril-n

375. A BEAM, HAVING A UNIFORM LOAD, SUPPORTED AT EACH
EXTREMITY, AND BY A SINGLE STRUT IN THE MIDDLE.

If, in the preceding article, a^ be assumed equal to a, or

w=l, the two props B and
C will coincide in the centre

;

and the pressure P2 upon
the single prop, resulting
from their coincidence, win
be represented by twice the

corresponding value of Pa in

equation (552) ;
we thus ob-

tain
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The distance x
l
of the point of greatest deflexion of either

portion of the beam from its extremities A or D, and the

amount D, of that greatest deflexion, are determined from

equations. (555). Making tan. /3 2
=0 in those equations,

substituting for P, its value, solving the former in respect to

0J, and the latter in respect to D we obtain

16
#=4215350 (559).

48EI 48EI (560).

376. A BEAM WHICH SUSTAINS A UNIFORM LOAD THROUGHOUT
ITS WHOLE LENGTH. AND WHOSE EXTREMITIES ARE SO FIRMLY
IMBEDDED
RIGID.

IN A SOLID MASS OF MASONRY AS TO BECOME

Let the ratio of the lengths of the two portions AB and
AE of a beam, supported by two props (p. 487), be assumed
to be such as will satisfy the condition 5^2

16?i+ 8=0 ; or,

solving this equation, let

n=- (561).

The value of tan. (equation 553) will then become
zero

;
so that when this re-

lation obtains, the neutral

line will, at the point B, be

parallel to the axis of the

abscissae
; or, in other words,

the tangent to the neutral

line at the point B will retain,

after the deflexion of the beam, the position which it had'

before; i. e., its position will be that which it would have
retained if the beam had been, at that point, rigid. Now
this condition of rigidity is precisely that which results from
the insertion of the beam at its extremities in a mass of

masonry, as shown in the accompanying figure ;
whence it

follows that the deflexion in the middle of the beam is the

same in the two cases. Taking, therefore, the negative sign

in equation (561), and substituting for n its value f(4 1/6)
or -6202041 in equation (557), and observing that, in that
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equation, 2#
a represents the distance BC in the accompany-

ing figure, we obtain

2EI (562).

By a comparison of this equation with equation (530), it

appears that the deflexion of a learn sustaining a pressure

uniformly distributed over its whole length, and having its

extremities prolonged and firmly imbedded, is only one-fifth

of that which it would exhibit if its extremities werefree.*
If the masonry which rests upon each inch of the portion

AB of the beam be of the same weight as that which rests

upon each inch of BC, the depth AB of the insertion of each
end should equal '62 of AE, or about three ten.hs of the
whole length of the beam.

1
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=P,(K-a!)-P,( 1

-
!B) ---- (563),

between D and A

^-P^-*) . . . (584).

.Representing by the inclination of the tangent at B to the
axis of the abscissae, and integrating the former of these

equations twice between the limits and #,

ii. ft .... (565);

tan- -

Substituting ^al
for x in these equations, and representing

by D! the value of y, and by 7 the inclination to the horizon
of the tangent at the point D, we obtain

El tan. y=P2
a

1

2

-fI
)A2

+EItan./3 .... (567),

Ero^APA'-APA'+iEL*, tan. . . . . (568).

Integrating equation (564) between the limits -^ and x

tan.

Eliminating tan. y between this equation and equation (567)
and reducing,

EI^^-PX^-^+EI^-^+iPA
2

(569).

Integrating again between the limits - and a?, and elimi-

nating the value of D, from equation (568),

]S"ow it is evident that the equation to the neutral line in

respect to the portion CE of the beam, will be determined

by writing in the above equation P
5 and P4 for P

x
and P,

respectively.

Making this substitution in equation (570), and writing
-tan. /3 for +tan. (3 in the resulting equation ;

then assum-
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ing x=a1
in equation (570), and a?=#a in the equation thus

derived from it, and observing that y then becomes zero in

both, we obtain

0=-iPA'+ s PA'+EI^ tan. ft

A8-EIa2 tan. (3.

Also, by the general conditions of the equilibrium of parallel

pressures (Art. 15.),

Eliminating between these equations and the preceding, as-

suming a
1+ a.

t=a^ and reducing, we obtain
.

1600,

By equation (568),

D
.=7

Similarly,

-9I>A1 ..... (5T5);

'By equation (567),

..... (577).

If a, be substituted for x in equation (569), and for P, and
tan. /3 their values from equations (571) and (576) ;

and if

the inclination of the tangent at A to the axis of x be repre-
sented by p,j we shall obtain by reduction
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..... (578).

Similarly, if /32 represent the inclination of the tangent at

C to the axis of a?,

..... (579).

378. If the pressures P2 and P4 ,
and also the distances 0,

tnd a
a ,
be equal,

P,=P5=AP5 , P,= VPtan. 0=0, tan. ft=tan. 0.=

379. If the distances ^ and a2 be equal, and P
4=3Pa ,

P,=iP,, P.=VP P.=tP tan. /3=-^fi, tan./3,=0.*

380. If ,=, and 3P,=13Pa , P,=0, P ^ ', P,,.P5=fP,.

* The following experiments were made by Mr. Hatcher to verify this result.

The bar ACB, on which the experiment was to be tried, was supported on
knife edges of wrought iron at A, C, and B, whose distances AC and CB were
each five feet. The angles of the knife edges were 90, and the edges were
oled previous to the experiments. The weights were suspended at points D

and E intermediate between the points of support. In measuring the angles
of deflexion the instrument (which was a common weighted index-hand turn-

ing on a centre in front of a graduated arc) was placed so that the angle c

of vhe parallelogram of wood carrying the arc was just over the knife-edge B,
the side cd of the parallelogram resting on the deflected bar. This position

gave the angle at the point of support.
1st Experiment. A bar of wrought iron half an inch square, being loaded

at E with a weight of 18 Ib. 13 oz., and at D with 52 Ib. 3 oz., assumed a per-

fectly horizontal position at B, as shown by the needle. The proportion of

these weights is 2 -77 : 1.

2d Experiment. A bar -7 inches square, being loaded at E with a weight of

87 '3 Ib., and at D with a weight of 112 Ib., assumed a perfectly horizontal

position at B. The weights were in this experiment accurately in the propor-
tion 3 : 1.

3d Experiment. A round bar, '75 inch in diameter, being loaded at E with

37 '3 Ib., and at D with 112 Ib., showed a deviation from the horizontal position
at B amounting to not more than 20'. The weights were in the proportion of

8:1.
The influence of the weight of the bar is not taken into account.
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381. CURVATURE OF A RECTANGULAR BEAM, THE DIRECTION OF
THE DEFLECTING PRESSURE AND THE AMOUNT OF THE DE-

FLEXION BEING ANY WHATEVER.

The moment of inertia I (Art. 358.) is to be taken, about
an axis perpendicular to the plane of deflexion, and passing
through the neutral line, the distance h of which neutral
line from the centre of gravity of the section is determined

by equation (499).
Now y^fo

3

representing (Art. 362.) the moment of inertia

of the rectangular section of the beam about an axis pass-

ing through its centre of gravity, it follows (Art. 79.) that

the moment I about an axis parallel to this passing through
a point at distance h from it is represented by

Substituting, therefore, the value of h from equation

(499),

Substituting this value in equation (500), and reducing,

1_ 12P,E^
R~~12RfP

1

1
sin.

1
d+EW '

Draw ax parallel to the

position of the beam be-

fore deflexion; take this

line as the axis of the
abscissae and a as the

origin ;
thenpl

=Jlm=It,n

+nm=MJR cos.

aM. sin.

-\-x sin. M&m.
Let, now, the inclination

DaP
l
of the direction of

P! to the normal at a be

represented by d,, and the inclination Mat of the tangent to

the neutral line at a to a%, by f3 1 ;
then

^ cos -

:.p,=y sn.
1 +/ 1 -f cos.

Substituting this value of pl
in the preceding equation,
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.
in. ft +ft)+a cos. (*.+,){ ._..

K~ 12RT 2
sin.

2^+E^V
where represents (Art. 355.)

the inclination Rqa of the
normal at the point K to the direction of P,.

382. Case in which the deflexion of the beam is small.

If the deflexion be small, and the inclination d,, of the
direction of P

t
to the normal at its point of application, be

not greater than j ;
then y sin. (^+/3 a) is exceedingly small,

and may be neglected as compared with x cos. (^ 1 +/3 1); in
this case, moreover, 6

is, for all positions of R, very nearly
equal to 6

im Neglecting, therefore, ,
as exceedingly small,

we have

!._ ..
R~12RT

1

2
sin.

f

^+E'JV
'

Solving this equation, of two dimensions, in respect to
=p ,

and

taking the greater root,

1 6P
t

.

a

^ ic
a
sin.

2

^} ---- (584).

383. THE WOKE: EXPENDED UPON THE DEFLEXION OF A UNI-

FORM RECTANGULAR BEAM, WHEN THE DEFLECTING PRES-
SURES ARE INCLINED AT ANY ANGLE GREATER THAN HALF A
RIGHT ANGLE TO THE SURFACE OF THE BEAM.

If u^ represent work expended on the deflexion of the

portion AM of the beam, then (equation 505)

but by equation (500)%s=p
.

-g
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p, 6P~

by equation (584), observing that the deflexion being small,

p^x cos. 6
l very nearly. Now the value of ^ (equation

584) becomes impossible at the point where a? cos. ^becomes

less than c sin. &.
;
the curvature of the neutral line com-

1/3

mences therefore at that point, according to the hypotheses;
on which that equation is founded. Assuming, then, the

corresponding value 7=0 tan. d, of a? to be represented by x
t>

the integral (equation 585) must be taken between the limits

a?, and a instead of and a
t ;

SP/cosX/! -7-i *z i i ** ) j
/. uj= ^j 9 / \x cos. O.+x Vx cos. L wr sin. ",Jo J

J^y(? */
i

P a
cos

2
<M 1 3

1

/,^= x
' H^ 3 - C

3
tan.

3
t). + (^

a ^a
tan.

a

^)
2
h*(586).

xLOC l
,-i >4/o

i/
j

\ /

And a similar expression being evidently obtained for the

work expended in the deflexion of the portion BM of the

beam, it follows, neglecting the term involving o
3
as exceed-

ingly small when compared with &,
3

,
that the whole work TJ^

expended upon the deflexion is represented by the equation

C08 ' '*
i- tan. +

But if ^
3 be taken to represent the inclination of P3 to the-

normal to the surface of the beam, as 6
l
and d

a represent the
similar inclinations of P

l
and P

2 , then, the deflexion being
small,

* Church's Int. Cal. Art. 149.

32
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^ COS. =,aa
COS. ,, 2& COS. 2

=
3 1

COS. ,.

Eliminating P
t
and P2 between these equations and the

preceding,

(587).

If the pressure Ps be applied perpendicularly in the centre

of the beam, and the pressures P
x
and P2 be applied at its

extremities in directions equally inclined to its surface
;
then

^=(1^=^^ 6
l
=6

t=6^ and d
g
=0. Substituting these values

in the preceding equations, and reducing,

.... (588).

384. THE LINEAR DEFLEXION OF A RECTANGULAR BEAM.

Dj being taken as before (Art. 368.) to represent the de-

flexion of the extremity A measured in a direction perpen-
dicular to the surface of the beam, we have (Art. 52.)

^I cos.

But by equation (586), neglecting the term involving c
8

,

CC(/Cv 1 -^ j_ , QAf ^./ Q 10, O*\"Oia2

Dividing both sides by P15 reducing, and integrating,

9P 2.

D.^^cos^.j^+ K-ic'tan. 'O,)
2

}
---- (589)

Proceeding similarly in respect to the deflection D8

perpen
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dicnlar to the surface of the beam at the point of application
of P

3 ,
we obtain from equation (587)

. . . . (590)

In the case in which P, and P3 are equally inclined to the
extremities of the beam and the direction of P3 bisects it,

this equation becomes

385. The work expended upon the deflexion of a beam sub-

jected p the action ofpressures applied to its extremities,
and to a single intervening point, and also to the action

of a system of parallel pressures uniformly distributed

over its length.

Let - represent the aggregate amount of the parallel

pressures distributed over each unit of the length of the

beam, and a their common inclination to the perpendicular
to the surface

;
then will px represent the aggregate of those

distributed uniformly over the surface DT, and these will

manifestly produce the same effect as though they were
collected in the centre of DT. Their moment about the

point R is therefore represented by M-OJJOJ cos. a, or by ^x3

cos. a
;
and the sum of the moments of the pressures applied

to AT is represented by (P^ cos. d
a Jjxaj* cos. a). Substi-

tuting
this value of the sum of the moments for Pj?a

in

equation (505), we obtain

_ 1
/*(?,# COS. tjjwi? COS. a)

a

' ~~ ~
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386. If the pressures le allperpendicular to the surface of
the ~beam, ^=0, a=0, and I is constant (equation 499);
whence we obtain, by integration and reduction,

(592).

If the pressure P3 be applied in the centre of the beam,
P^-JP.+i^fl, and a

1=^aj
also the whole work U3 of

deflecting the beam is equal to 2^; whence, substituting
and reducing,

(593)-

387. A RECTANGULAR BEAM IS SUPPORTED AT ITS EXTREMITIES
BY TWO FIXED SURFACES, AND LOADED IN THE MIDDLE I IT

IS REQUIRED TO DETERMINE THE DEFLEXION, THE FRICTION

OF THE SURFACES ON WHICH THE EXTREMITD3S REST BEING
TAKEN INTO ACCOUNT.

It is evident that the work which produces the deflexion

of the beam is done upon it partly by the deflecting pressure

P, and partly by the friction of the surface of the beam

upon the fixed points A and B, over which it moves whilst

in the act of deflecting. Representing by 9 the limiting

angle of resistance between the surface of the beam and
either of the surfaces upon which its extremity rests, the

friction Q, or Q 2 upon either extremity will be represented

by fP tan. 9 ;.
and representing by s the length of the

curve ca or cb, and by %a the horizontal distance between
the points of support ;

the space through which the surface

of the beam would have moved over each of its points of

support, if the point of support had been in the neutral line,

is represented by s a, and therefore the whole work done

upon the beam by the friction of each point of support by

i tan. <p/P<&. Moreover,. I> representing the deflexion of
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the beam under any pressure P, the whole work done by P

is represented by /P^D. Substituting, therefore, for the

work expended upon the elastic forces opposed to the

deflexion of the beam its value from equation (588), and ob-

serving that the directions of the resistances at A and B are

inclined to the normals at those points at angles equal to

the limiting angle of resistance, we have

/But

e(luati011

Substituting these values in the above equation, and dif-

ferentiating in respect to P, we have

T>dD_PK+ 2

|c
a
tan.

a

<p)f| PV
"

~30ETtan ' 9'

Dividing by P, and integrating in respect to P,

PK+(^-^tan.^ PV
3 "60ET 9 '

388. THE SOLID OF THE STRONGEST FORM WITH A GIVEN
QUANTITY OF MATERIAL.

The strongest form which can be given to a solid body in

the formation of which a given quantity of material is to be

used, and to which the strain is to be applied under given
circumstances, is that form which renders it equally liable to

rupture at every point. So that when, by increasing the

strain to its utmost limit, the solid is brought into the state

bordering upon rupture at one point, it may be in the state

bordering upon rupture at every other point. For let it be

supposed to be constructed of any other form, so that its

rupture may be about to take place at one point when it is

not about to take place at another point, then may a portion
of the material evidently be removed from the second point
without placing the solid there in the state bordering upon
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rupture, and added at the first point, so as to take it out
of the state bordering upon rupture at that point ;

and thus
the solid being no longer in the state bordering upon
rupture at any point, may be made to bear a strain greater
than that which was before upon the point of breaking it,

and will have been rendered stronger than it was before.

The first form was not therefore the strongest form of which
it could have been constructed with the given quantity of

material; nor is any form the strongest which does not

satisfy the condition of an equal liability to rupture at every

point.
The solid, constructed of the strongest form, with a given

quantity of a given material, so as to be of a given strength
under a given strain, is evidently that which can be con-

structed, of the same strength, with the least material
;
so

that the strongest form is also the form of the greatest

economy of material.

RUPTURE.

389. The rupture of a bar of wood or metal may take

place either by a strain or tension in the direction of its

length, to which is opposed its TENACITY
;
or by a thrust or

compressing force in the direction of its length, to which is

opposed its resistance to COMPRESSION
;

or each of these
forces of resistance may oppose themselves to its rupture
transversely, the one being called into operation on one side
of it, and the other on the other side, as in the case of
a TRANSVERSE STRAIN.

TENACITY.

390. The tenacities of different materials as they have
been determined by the best authorities, and by the mean
results of numerous experiments, will be found stated in a

table at the end of this volume. The unit of tenacity is that

opposed to the tearing asunder of a bar one square inch in

section, and is estimated in pounds. It is evident that the

tenacity of a fascile of n such bars placed side by side, or
of a single bar n square inches in section, would be equal
to n such units, or to n times the tenacity of one bar.
To find, therefore, the tenacity of a bar of any material

in pounds, multiply the number 'of square inches in its sec-
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tion by its tenacity per square inch, as shown by the

table.
'

391. A BAR, CORD, OR CHAIN IS SUSPENDED VERTICALLY, CAR-

RYING A WEIGHT AT ITS EXTREMITY I TO DETERMINE THE
'CONDITIONS OF ITS RUPTURE.

First. Let the bar be conceived to have a uniform section

represented in square inches by K ;
let its length in inches

be L, the weight of each cubic inch
|u<,

the weight suspended
from its extremity W, the tenacity of its material per square
inch r

;
and let it be supposed capable of bearing m times

the strain to which it is subjected. The weight of the bar
will then be represented by juJLK, and the strain upon its

highest section by ^LK-hW. Now the strain on this section

is evidently greater than that on any other
;

it is therefore at

this section that the rupture will take place. But the resist-

ance opposed to its rupture is represented by Kr ;
whence it

follows (since this resistance is m times the strain) that

(595).

By which equation is determined the uniform section K of a

bar, cord, or chain, so that being of a given length it may be

capable of bearing a strain m times greater than that to

which it is actually subjected when suspended vertically.
The weight Wj. of the bar is represented by the formula

392. Secondly. Let the section of the rod be variable
;
and

let this variation of the section be such that its strength, at

every point, may be that which would cause it to bear,
without breaking, m times as great a strain as that which it

actually bears there. Let K represent this section at a point
whose distance from the extremity which carries the weightW is x

;
then will the weight of the rod beneath that point

be represented by I &~Kdx ; or, supposing the specific gravity
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of the material to be every where the same, by f/Kdfo? : also

the resistance of this section to rupture is Kr.

Differentiating this expression in respect to a?, observing that

K is a function of a?, and dividing by Kr, we obtain

1 dK _ mp
K ^~

= : T ;

Integrating this expression between the limits and #, and

representing by Ko the area of the lowest section of the rod,

:

But the strain sustained by the section KO is W, therefore

(597).

The whole weight W2
of the rod, cord, or chain, is repre-

sented by the formula

-l . (598).

A rope or chain, constructed according to these conditions,
is evidently as strong as the rope or chain of uniform section

whose weight TV\ is determined by equation (596), the value
of 77i being taken the same in both cases. The saving of ma-
terial effected by giving to the cord or chain a section vary-

ing according to the law determined by equation (598) is

represented by "Wj W
2 ,

or by the formula

T^-T i^rriL v^_W ~~1 (599).rm^L V* /

* Church's Int. Cal. Art. 159.
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THE SUSPENSION BRIDGE.

393. General conditions of the equilibrium of a loaded

chain.

Let AEH represent a chain or cord hanging freely from
two fixed points A and H,
and having certain weights
w.

\

f I T 7 .-

*
t

rods
M wn &c., suspended by
or cords from given

points B, C, D, &c., in its

length. Through the lowest

point E of the chain draw
the vertical E#, containing
as many equal parts as there

are units in the weight of

the chain between E and any
point of suspension B, to-

gether with the suspending
rods attached to it, and the weights which they severally

carry ;
draw aP parallel to the direction of a tangent to the

curve at B, and produce the tangent at E to meet aP in P
;

then will aP and EP contain as many equal parts as there

are units in the tensions at B and E respectively ;
and if E&

and EC be taken to represent the whole weights sustained by
EC and ED, and P5 and PC be joined, these lines will in

like manner represent the tensions upon the points C and D.
For the pressures applied to EB, and in equilibrium, being
the weight of the chain, the weights of the suspending rods,
the weights attached to the rods, and the tensions upon B
and E, the principle of the polygon of pressures (Art. 9.)
obtains in respect to these pressures. Now the lines drawn
to complete this polygon, parallel to the weights, form

together the vertical line E&, and the polygon (resolving
itself into a triangle) is completed by the lines aP and EP
drawn parallel to the tensions upon B and E. Each line

contains, therefore, as many equal parts (A^. 9.) as there

are units in the corresponding tension. Also, the pressures

applied to the portion EC of the curve, being the weights
whose aggregate is represented by E&, and the tensions upon
E and C, of which the former is represented in direction
and amount by EP, it follows (Art. 9.) that the latter is

represented also in direction and amount by the line P5,
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which completes the triangle aPb
;
so that 5P is parallel to

the tangent at C.

In like manner it is evident that the tension upon D is

represented in magnitude and direction by cP
;
so that cP is

parallel to the tangent to the curve at D.

THE CATENARY.

394. If a chain of uniform section be suspended freely
between two fixed points A and B, being acted upon by no
other pressures than the weights of its parts, then it will

assume the geometrical form of a curve called the

Let PT be a tangent to any point P of the curve inter-

secting the vertical CD passing through its lowest point D

in T
;
draw the horizontal line DM intersecting PT in Q ;

take this line as the axis of the abscissae
;
and let DM =a?,

MP=y, DP=5, weight of each unit in the length of the

chain =f*, tension at D <?. Now DT being taken to repre-
sent the weight w of DP, it has been shown (Art. 393.)
that DQ will represent the tension c at D, and TQ that

at P.

/7v/ DT .

Also, jg=
tan. PQM = tan. DQT=j)Q=y ,

"
dx (600).

dx
be-



THE CATENARY. 507

tween the limits and s,* and observing that when $=0,

By addition and reduction,

i*x

..... (602>
/ ^ i*x\

=*?(/_.")
Substituting this value for s in equation (600), and inte-

grating between the limits and a?,

~~
+s _2 f*

s _ s

which is the equation to the catenary.

395. The tension (c) on the lowest point of the catenary.

Let 2S represent the whole length of the chain, and 2a
the horizontal distance between the points of attachment.
Now when x=a, s=S

;
therefore (equation 602),

/ f*a f*a\

s=| T ~l (so*);

for which expression the value of c may be determined by
approximation.

396. The tension at anypoint of the chain.

The tension T at P is represented by TQ=
Church's Int. Cal. Art. 144.
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(605).

Now the value of c has heen determined in the preceding
article

;
the tension upon any point of the chain whose dis-

tance from its lowest point is s is therefore known.

397. The inclination of the curve to the vertical at any
point.

Cl ?/

Let i represent this inclination, then cot.
i=-jr

(
~^x\

c c
]

(606).
- /

The inclination may be determined without having first

determined the value of
<?, by substituting cot. i for in

equation (601) ;
we thus obtain, writing also a and S for x

and #,

a

q=tan.
i log. (cot. i+ cosec. *)=tan. i log. cot. Jt;

a

8
/. tan. i log. tan. j^s== (607).

This equation may readily be solved by approximation ;
a

the value of c may then be determined by the equati

and

equation
=^ tan. i.

398. A. chain of given length being suspended between two

given points in the same horizontal line : to determine the

depth of the lowest point beneath the points of attachment y

and, conversely, to determine the length of the chain whose
lowest point shall hang at a given depth below its points
of attachment.

The same notation being taken as before,
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Integrating between the limits and s, and observing that

y=0 when s=0,

Solving this equation in respect to *,

+ j ..... (609).

IfH represent the depth of the lowest point, or the versed
sine of the curve, then y=H when =S.

(610).

-
(611).

399. The centre of gravity of the catena/ry.

If Gr represent the height of the centre of gravity above
the lowest point, we have (Art. 32.)

S.G=fyds=fy~dx.

erefore, for y am

tions (602) and (603), we have :

Substituting, therefore, for y and - their values from equa-
cux

L.
fix

+s +2 2 ^
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But by equation (604) B=^-l c c
)

and by equation
V 'g S I

603),

-p
s 4'+ '

.-. 0=iH-l- (613).

400. THE SUSPENSION BEIDGE OF GREATEST STRENGTH, THE
WEIGHT OF THE SUSPENDING RODS BEING NEGLECTED.

Let ADB represent the chain, EF the road-way ;
and let

the weight of a bar of the material of the chain, one square
inch in section and one foot long, be represented by f*,, the

weight of each foot in the length of the road-way by f*a ,
the

aggregate section of the chains at any point P (in square

inches) by K, the co-ordinates DM and MP of P by a? and y,
and the length of the portion DP of the chain by s. Then

will the weight of DP be represented by ^ I K<&, and the

weight of the portion CM of the roadway by ^x ;
so that

the whole load (u) borne by the portion DP of the chain
will be represented (neglecting the weight of the suspending
rods) by

(614).
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Let this load (w), supported by the portion DP of the

chain, be represented by the line D#, and draw Dp in the
direction of a tangent at D, representing on the same scale

the tension c at that point ;
then will ap be parallel to a

tangent to the chain at P (Art. 393).

..
dx (615).

Now let it be assumed that the aggregate section of the
chains is made so to vary its dimensions, that their strength
may at every point be equal to m times the strain which

they have there to sustain. But this strain is represented in

magnitude by the line ap (Art. 393.), or by (c
a

-fV)*; if,

therefore, r be taken to represent the tenacity of the mate-
rial of the chain, per square inch of the section, then

(616).

Therefore Kr=mc(l +
~j

= me
(l
+ ^J* (equation 615)

=mc-j- ; therefore-/
1

". Also / ~Kds= /K-^-dx dx mo J J dx

(equation 616) ;

/.(equation 6I4:)u=-2

Differentiating in respect to a?, and observing that -r-

du dy u du .

Ty a*r- Ty (eiuatlon 615
).

du u du

u u
re r du r T udu
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Integrating these expressions,* we obtain

+

Substituting in this equation the value of u given by the

preceding equation, and reducing,

which is the equation to the suspension chain of uniform
strength, and therefore OF THE GREATEST STRENGTH WITH A
GIVEN QUANTITY OF MATERIAL.

401. To determine the variation of the section K of the

chain of the suspension bridge of the greatest strength.

Let the value of u determined by equation (617) be sub-

stituted in equation (616) ;
we shall thus obtain by reduction

(l + ^-)* }*
. (819).tr \ cmpj

It is evident from this expression that the area of the sec-

tion of the chains, of the suspension bridge of uniform

strength, and therefore of the greatest economy of material^
increases from the lowest point towards the points of suspen-

sion, where it is greatest.

* Church's Int. Cal. Art. 133, Case IV.

f =
;

.-. s= /Kdx. Now the function K (equation 619) may be
1 dx me' mcj

integrated in respect to x by known rules of the integral calculus
,
the value

of s may therefore be determined in terms of #, and thence the length in

terms of the span. The formula is omitted by reason of its length.
Church's Int. Cal. Art. 1 29, Case II.
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402. To determine the weight "W of the chain of the suspen-
sion bridge of the greatest strength.

Let it be observed that W=f*1
/ ~K.ds=u ^x (equation

614) ; substituting the value of u from equation (617), we
have

^-'-)*tan. I ^(l+-
TA\^ I -w . . (620).mwj ( r \ cmpj (

v '

403. To determine the tension c upon the lowest point D of'
the chain of uniform strength.

Let H be taken to represent the depth of the lowest point
D, beneath the points of suspension, and 2& the horizontal
distance of those points : and let it be observed that H and
a are corresponding, values of y and x (equation 618) ;

TT T
1 ( W 1

,

,VH= log. sec. \
-

m^ (
r

Solving this equation in respect to
<?,

c=-
-1

sec.

-1

..(621).

404. THE SUSPENSION BRIDGE OF GREATEST STRENGTH, THE
WEIGHT OF THE SUSPENDING RODS BEING TAKEN INTO AC-
COUNT.

Conceive the suspending rods to be replaced by a con-
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tinuous flexible lamina or plate connecting the roadway with
the chain, and of such a uniform thickness that the material

contained in it may be precisely equal in weight to the ma-
terial of the suspending rods. It is evident that the condi-

tions of the equilibrium will, on this hypothesis, be very
nearly the same as in the actual case. Let f/<8 represent the

weight of each square foot of this plate, then will j*8 / yd%

represent the weight of that portion of it which is suspended
from the portion DP of the chain, and the whole load u upon
that portion of the chain will be represented by

.... (622).

It may be shown, as before (Art. 400.), that

(623).

fKds= f(c*+u*)d%. Substituting in equation (622),

differentiating in respect to a?, and observing that =-=-
,ax c a/y

du udu m
tereTy^

Transposing, reducing, and assuming,

=

-j
ay

A linear equation in u*, the integration of which by a well

known method gives

2ay

Assuming the length of the shortest connecting rod DC to

be represented by &, integrating between the limits b and y,

and observing that when y=&, ^=0,

* Church's Int. Cal. Art. 176.



OF GREATEST STRENGTH. 515

-2a& -2ayv

-y)+ +*H-ls ( -1) (626).

Substituting this value of u* in equation (623), and

reducing,

by which expression the variation of the section of the chain

of uniform strengtli is determined.

Differentiating the equation -^=- in respect to a?, and

ci?/

substituting for -r- its value from equation (624:).

Substituting for wa
its value from equation (626),

//7/

Multiplying both sides of this equation by jag,
and integrat-

ing between the limits 5 and y, observing that when y=5,

Now let it be observed, that the value of T, being in all

practical cases exceedingly great as compared with the

values of f*, and m, the value of a (equation 625) is exceed-

ingly small
;
so that we may, without sensible error, assume

those terms of the series s2a(y~&) which involve powers of

2a(y b) above the first, to vanish as compared with unity,

* Church's Int. Cal. Art. 140.
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This supposition being made, we have s
2a(y-&)_l=2a(y 5),

whence, by substitution and reduction,

\WMf

Extracting the square root of both sides, transposing, and

integrating.integrating

the equation to a parabola whose vertex is in D, and its

axis vertical.*

The values a and H of a? and y at the points of suspension

being substituted in this equation, and it being solved in

respect to 0, we obtain

by which expression the tension c upon the lowest point of

the curve is determined, and thence the length y of the sus-

pending rod at any given distance x from the centre of the

span, by equation (628), and the section K of the chain at

that point by equation (627), which last equation gives by a
reduction similar to the above

(630).

405. The section of the chains being of uniform dimensions^
as in the common suspension bridge, it is required to

determine the conditions of the equilibrium.^

The weight of the suspending rods being neglected, and
the same notation being adopted as in the preceding arti-

cles, except that JA, is taken to represent the weight of one
foot in the length of the chains instead of a bar one square
inch in section, we have by equation (614), since K is here

constant,

(631).

* Church's Analyt. Geom. Art. 191.

f This problem appears first to have been investigated by Mr. Hodgkinson
in the fifth volume of the Manchester Transactions

;
his investigation extends

to the case in which the influence of the weights of the suspending rods is

included.
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Differentiating this equation in respect to
a?,

and observing

that ~=(l +
)*=(l

+ 7)* (equation 615), and that

du_du cty__du u _==~~-^- "

/cdu r udM

fs(c>+<0*+fV>'
y = -/ f^+tO'+lV'

Tlie former of these equations may be rationalised by
assuming (tf+tf^G + zu, and the latter by assuming

u*y=z ;
there will thus be obtained by reduction

The latter equation may be placed under the form

which expression being integrated and its value substituted
for z, we obtain

y=-

The method of rational fractions (Church's y .

Art. 135) being applied to the function under the integral
sign in the former equation, it becomes

The integral in the first term in this expression is repre-

sented by i log. s (j- J,
and that of the second term by
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f*, i ng .

-* 1 * 8'

according as ^ is greater or less than M-2 ,
or according as the

weight of each foot in the length of the chains is greater or

less than the weight of each foot in- the length of the road-

way.
Substituting for z its value, we obtain, therefore, in the

two cases,

_ e ( . fo-c)-H^+o
a
)* _ ^

~Ji
\

g>e KM-K+'')* W-fi

(M-A*0*H-fr-Ai)* {(u'+c^-c] )

'

(M^i^-^-^i^iV-H
1

)*-*}" )

(638).

g

If the given values, ^ and H, of a? and y at the points of

suspension, be substituted in equations (633) and (632),

equations will be obtained, whence the value of the constant

c and of u at the points of suspension may be determined by
approximation. A series of values of w, diminishing from
the value thus found to zero, being substituted in equations

(633) and (632), as many corresponding values of x and y
will then become known. The curve of the chains may thus
be laid down with any required degree of accuracy.

This common method of construction, which assigns a
uniform section to the chains, is evidently false in principle ;

the strength of a bridge, the section of whose chains*varied

according to the law established in Art. 401. (equation 619),
would be far greater, the same quantity of iron being
employed in its construction.

KTTPTURE BY COMPRESSION.

406. It results from the experiments of Mr. Eaton Hodg-
kinson,* on the compression of short columns of different

heights but of equal sections, first, that after a certain height
is passed the crushing pressure remains the same, as the

* Seventh Report of the British Association of Science.
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heights are increased, until another height is attained, when

they begin to break
;
not as they have done before, by the

sliding of one portion upon a subjacent portion, but by
bending. Secondly, that the plane of rupture is always
inclined at the same constant angle to the base of the

column, when its height is between these limits. These two
facts explain one another

;
for if K represent the transverse

section of the column in square inches, and a the constant

inclination of the plane of rupture to the base, then will

K sec. a represent the area of the plane of rupture. So that

if 7 represent the resistance opposed, by the coherence of
the material, to the sliding of one square inch upon the sur-

face of another,* then will 7K sec. a represent the resistance

which is overcome in the rupture of the column, so long as

its height lies between the supposed limits
;
which resist-

ance being constant, the pressure applied upon the summit
of the column to overcome it must evidently be constant.

Let this pressure be represented by P, and let CD
be the plane of rupture. Now it is evident that

the inclination of the direction of P to the perpen-
dicular QK to the surface of the plane, or its

equal, the inclination a of CD to the base of the

column, must be greater than the limiting angle
of resistance of the surfaces

;
if it were not, then

would no pressure applied in the direction of P
be sufficient to cause the one surface to slide upon the other,
even if a separation of the surfaces were produced along
that plane.

Let P be resolved into two other pressures, whose direc-

tions are perpendicular and parallel to the plane of rupture ;

the former will be represented by P cos. a, and the friction

resulting from it by P cos. a tan. 9 ;
and the latter, repre-

sented by P sin. a, will, when rupture is about to take place,
be precisely equal to the coherence K/ sec. a of the plane of

rupture increased by its friction P cos. a tan. 9, or P sin.

a=K/ sec. a+P cos. a tan. 9, whence by reduction

p_ K? cos. 9 _ 2K/ cos. 9

sin. (a 9) cos. a sin. (2a 9) sin. 9

It is evident from this expression that if the coherence of
the material were the same in all directions, or if the unit of

* The force necessary to overcome a resistance, such as that here spoken
of, has been appropriately called by Mr. Hodgkinson the force necessary to
shear it across.
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coherence 7 opposed to the sliding of one portion of the

mass upon another were accurately the same in every direc-

tion in which the plane CD may be imagined to intersect

the mass, then would the plane of actual rupture be inclined

to the base at an angle represented by the formula

since the value of P would in this case be (equation 634)
a minimum when sin. (2a $) is a maximum, or when

If If 0)

2a 9=-, or 0,=--}-- ;
whence it follows that a plane in-

4: 2i

clined to the base at that angle is that plane along which the

rupture will first take place, as P is gradually increased be-

yond the limits of resistance.

The actual inclination of the plane of rupture was found
in the experiments of Mr. Hodgkinson to vary with the ma-
terial of the column. In cast iron, for instance, it varied

according to the quality of the iron from 48 to 58*, and
was different in different species. By this dependence of

the angle of rupture upon the nature of the material, it is

proved that the value of the modulus of sliding coherence

7 is not the same for every direction of the plane of rup-
ture, or that the value of 9 varies greatly in different quali-
ties of cast iron.

Solving equation (634) in respect to 7 we obtain

P
7=07- sin. (a 9) cos. a sec. 9 ..... (636) ;

from which expression the value of the modulus 7 may be
determined in respect to any material whose limiting angle
of resistance 9 is known, the force P producing rupture,
under the circumstances supposed, being observed, and also

the angle of rupture.f

THE SECTION OF RUPTURE IN A BEAM.

407. When a beam is deflected under a transverse strain,

* Seventh Report of British Association, p. 349.

f A detailed statement of the results obtained in the experiments of Mr.

Hodgkmson on this subject is contained in the Appendix to the " Illustrations

of Mechanics "
by the author of this work.



GENERAL CONDITIONS OF RUPTURE. 521

the material on that side of it on which it sustains the strain

is compressed, and the material on the opposite side

extended. That imaginary surface which separates the

compressed from the extended portion of the material is

called its neutral surface (Art. 354.), and its position has
been determined under all the ordinary circumstances of

flexure. That which constitutes the strength of a beam is

the resistance of its material to compression on the one side

of its neutral surface, and to extension on the other
;
so that

if either of these yield the beam will be broken.

The section of rupture is that transverse section of the

beam about which, in its state bordering upon rupture, it is

the most extended, if it be about to yield by the extension

of its material, or the most compressed if about to yield by
the compression of its material.

In a prismatic beam, or a beam of uniform dimensions, it

is evidently that section which passes through the point of

greatest curvature of the neutral line, or the point in

respect to which the radius of curvature of the neutral line

is the least, or its reciprocal the greatest.

GENERAL CONDITIONS OF THE RUPTUKE OF A BEAM.

408. Let PQ be the section of rupture in a beam sustain-

ing any given pressures, whose
resultants are represented, if

they be more in number than

three, by the three pressures P1?

P
2 ,
P

3
. Let the beam be upon

the point of breaking by the

yielding of its material to exten-

sion at the point of greatest ex-

tension P
;
and let R represent,

in the state of the beam border-

ing upon rupture, the intersection of the neutral surface
with the section of rupture ;

which intersection being in

the case of rectangular beams a straight line, and being in

fact the neutral axis, in that particular position which is

assumed by it when the beam is brought into its state bor-

dering upon rupture, may be called the axis of rupture ;AK the area in square inches of any element of the section
of rupture, whose perpendicular distance from the axis of

rupture R is .represented by p ;
S the resistance in pounds
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opposed to the rupture of each square inch of the section at

P
; ^ and ca the distances PR and QR in inches.

The forces opposed per square inch to the extension and

compression of the material at different points of the sec-

tion of rupture are to one another as their several perpen-
dicular distances from the axis of rupture, if the elasticity
of the material be supposed to remain perfect throughout
the section of rupture, up to the period of rupture.
Now at the distance c

l
the force thus opposed to the

extension of the material is represented per square inch by
S

;
at the distance p the elastic force opposed to the exten-

sion or compression of the material (according as that

distance is measured on the extended or compressed side), is

R
therefore represented per square inch by p, and the elastic

c
i

force thus developed upon the element AK of the section of

S
rupture by pAK, so that the moment of this elastic force

G
i

o

about R is represented by p

a

AK, and the sum of the mo-
c

i

ments of all the elastic forces upon the section of rupture
Q

about the axis of rupture by 2p
2AK ;* or representing the

moment of inertia of the section of rupture about the axis

of rupture by I, the sum of the moments of the elastic

forces upon the section of rupture about its axis of rupture
Q-r

is represented, at the instant of rupture, by ,f Now the
c

i

elastic forces developed upon PQ are in equilibrium with
the pressures applied to either of the portions APQD or

BPQC, into which the beam is divided by that section
;
the

sum of their moments about the point P is therefore equal
to the moment of R> about that point. Representing,
therefore, bypl

the perpendicular let fall from the point B
upon the direction of Pn we have

* It will be observed, as in Art. 358., that the elastic forces of extension
and those of compression tend to turn the surface of rupture in the same
direction about the axis of rupture.

f This expression is called by the French writers the moment of rupture ;
the beam is of greater or less strength under given circumstances according
as it has a greater or less value.
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409. If the deflexion "be small in the state bordering upon
rupture, and the directions of all the deflecting pressures be

perpendicular to the surface of the beam, the axis of rupture

passes through the centre of gravity of the section, and the

value of o
l
is known. Where these conditions do not obtain,

the value of c
l might be determined by the principles laid

down in Arts. 355. and 381. This determination would,

however, leave the theory of the rupture of beams still in-

complete in one important particular. The elasticity of the

material has been supposed to remain perfect, at every point
of the section of rupture, up to the instant when rupture is

about to take place. Now it is to be observed, that by rea-

son of its greater extension about the point P than at any
other point of the section of rupture, the elastic limits are

there passed before rupture takes place, and before they are

attained at points nearer to the axis of rupture ;
the forces

opposed to the extension of the material cannot therefore be
assumed to vary, at all points of PR, accurately as their dis-

tances from the point R, in that state of the equilibrium of

the beam which immediately precedes its rupture ;
and the

sum of their moments cannot therefore be assumed to be ac-
QT

curately represented by the expression . This remark af-

fects, moreover, the determination of the values of h and R
(Arts. 355. and 381.), and therefore the value of c

l

To determine the influence upon the conditions of rupture

by transverse strain of that unknown direction of the insistent

pressures, and that variation from the law of perfect elasti-

city which belongs to the state bordering upon rupture, we
must fall back upon experiment. From this it has resulted,
in respect to rectangular beams, that the error produced by
these different causes in equation (637) will be corrected if

a value be assigned to c
t bearing, for each given material, a

constant ratio to the distance of the point P from the centre

of gravity of the section of rupture ;
so that c representing

the depth of a rectangular beam, the error will be corrected,
in respect to a beam of any material, by assigning to c

l
the

value rajc, where m is a certain constant dependent upon
the nature of the material. It is evident that this cor-

rection is equivalent to assuming c,=ic, and assigning
to S the value ^S instead of that which it has hitherto
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been supposed to represent, viz. the tenacity per square inch

of the material of the beam.
It is customary to make this assumption. The values of S

corresponding to it have been determined, by experiment,
in respect to the materials chiefly used in construction, and
will be found in a table at the end of this work. It is to

these tables that the values represented by S in all subse-

quent formulae are to be referred.

410. From the remarks contained in the preceding article,

it is not difficult to conceive the existence of some direct re-

lation between the conditions of rupture by transverse and by
longitudinal strain. Such a relation of the simplest kind ap-

pears recently to have been discovered by the experiments
of Mr. E. Hodgkinson*, extending to the conditions of rup-
ture by compression, and common to all the different varie-

ties of material included under each of the following great
divisions timber, cast iron, stone, glass.
The following tables contain the summary given by Mr.

Hodgkinson of his results :

Description of Material.
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411. THE STRONGEST FORM OF SECTION AT ANY GIVEN POINT

IN THE LENGTH OF THE BEAM.

Since the extension and the compression of the material

are the greatest at those points which are most distant from
the neutral axes of the section, it is evident that the mate-

rial cannot be in the state bordering upon rupture at every
point of the section at the same instant (Art. 388.), unless all

the material of the compressed side be collected at the same
distance from the neutral axis, and likewise all the material

of the extended side, or unless the material of the extended
side and the material of the compressed side be respectively
collected into two geometrical lines parallel to the neutral

axis : a distribution manifestly impossible, since it would

produce an entire separation of the two sides of the beam.
The nearest* practicable approach to this form of section is

that represented in the accompanying figure, where the

material is shown collected in two thin but wide flanges,
united by a narrow rib.

13 That which constitutes the strength of the

beam being the resistance of its material to com-

pression on the one side of its neutral axis, and
its resistance to extension on the other side, it is

evidently (Art. 388.) a second condition of the

3 strongest form of any given section that when
the beam is about to break across that section by

extension on the one side, it may be about to break by com-

pression on the other. So long, therefore, as the distribution

of the material is not such as that the compressed and
extended sides would yield together, the strongest form of

section is not attained. Hence it is apparent that the

strongest form of the section collects the greater quantity
of the material on the compressed or the extended side of

the beam, according as the resistance of the material to

compression or to extension is the less. Where the material

of the beam is cast iron*, whose resistance to extension is

greatly less than its resistance to compression, it is evident
that the greater portion of the material must be collected on
the extended side.

Thus, then, it follows, from the preceding condition and

* It is only in cast iron beams that it is customary to seek an economy of
the material in the strength of the section of the beam

;
the same principle of

economy is surely, however, applicable to beams of wood.
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this, that the strongest form of section in a cast iron beam is

that by which the material is collected into two unequal
flanges joined by a rib, the greater flange being on the

extended side
;
and the proportion of this inequality of the

flanges being just such as to make up for the inequality of

the resistances of the material to rupture by extension and

compression respectively.
Mr. Hodgkinson, to whom this suggestion is due, has

directed a series of experiments to the determination of that

proportion of the flanges by which the strongest form of

section is obtained.*

The details of these experiments are found in the following
table:-

Number of

Experiment.
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412. THE SECTION OF RUPTURE.

The conditions of rupture being determined in respect to

any section of the beam by equation (637), it is evident that

the particular section across which rupture will actually take

place is that in respect to which equation (637}
is first satis-

fied, as P, is continually increased
;
or that section in respect

to which the formula

(638)
ftft

is the least.

If the beam be loaded along its whole length, arid x repre-
sent the distance of any section from the extremity at which
the load commences, and f* the load on each foot of the

length, then (Art. 371.) Pj?, is represented by 4*aj
a
. The

section of rupture in this case is therefore that section in

respect to which M- is first made to satisfy the equation.
QT

;
or in respect to which the formula

is the least.

If the section of the beam be uniform, is constant
;
the

G
\

section of rupture is therefore evidently that which is most
distant from the free extremity of the beam.

4:13. THE BEAM OF GREATEST STRENGTH.

The beam of greatest strength being that (Art. 388.) which

presents an equal liability to rupture across every section, or

in respect to which every section is brought into the state

bordering upon rupture by the same deflecting pressure, is

evidently that by which a given value of Pis made to satisfy

equation (637) for all the possible values of I, pl9
and c

l9 or
in respect to which the formula

^T (64 )

is constant.
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If the beam be uniformly loaded throughout (Art. 371.),

this condition becomes

or constant, for all points in the length of the beam.

414. ONE EXTREMITY OF A BEAM is FIRMLY IMBEDDED IN

MASONRY, AND A PRESSURE IS APPLIED TO THE OTHER
EXTREMITY IN A DIRECTION PERPENDICULAR TO ITS LENGTH!
TO DETERMINE THE CONDITIONS OF THE RUPTURE.

If x represent the distance of any section of the beam
from the extremity A to which the load P
is applied, and a its whole length, and if the
section of the beam be everywhere the

same, then the formula ( 638 ) is least

at the point B, where x is greatest: at

this point, therefore, the rupture of the
beam will take place. Representing by
P the pressure necessary to break the

beam, and observing that in this case the

perpendicular upon the direction of P
from the section of rupture is represented
by #, we have (equation 637)

P=-|^ (642).

If the section of the beam be a rec-

tangle, whose breadth is & and its depth 0,
j 1 T - "" ~

then 1=

(643).

If the beam be a solid cylinder, whose radius is 0, then

(Art. 364.) I=frc\ c.c.
G

*

. . (644).a

If the beam be a hollow cylinder, whose radii are r
l
and

r,, I=^f(r*r*) ;
which expression may be put under the

form fliw^-f ic*) (see Art. 86.), r representing the mean
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radius of the hollow cylinder, and c its thickness. Also

.-.P=rS (645).

415. The strongest form of beam under the conditions sup-
posed in the last article.

1st. Let the section of the beam be a
rectangle, and let y be the depth of
this rectangle at a point whose distance-

from its extremity A is represented by
#, and let its breadth 5 be the same

throughout. In this case I rV^V
c

l=^y: therefore (equation 637) P=.
SI jf=Sb . If therefore, P be taken
CjC X
to represent the pressure which the
beam is destined just to support, then
the form of its* section ABC is deter-

mined (Art. 413.) by the equation

6P

it is therefore a parabola, whose vertex

is at A.*
If the portion DO of the beam: do not rest against

masonry at every point, but only at its

extremity D, its form; should; evidently be
the same with that of ABC:

2d. Let the section, be a circle, and
let y represent its radius at distance x
from its extremity A, then I=

y'
c^=y\ therefore P=J*S~ so that the

oc

geometrical form of its longitudinal
section is determined by the equa-
tion

* The portion of the beam imbedded in the masonry should have the form
described in Art. 417.

34
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(647),

P representing the greatest pressure to which it is destined
to be subjected-

416. THE CONDITIONS OF THE RUPTURE OF A BEAM SUPPORTED
AT ONE EXTREMITY, AND LOADED THROUGHOUT ITS WHOLE
LENGTH.

Kepresenting the weight resting upon each inch of its

length a by M., and observ-

ing that the moment of the

weight upon a length < of
the beam from A, about the

corresponding neutral axis,
is represented (Art. 371.)

by %we\ it is apparent (Art.

412.) that, if the beam be
of uniform dimensions, its

section of rupture is BD.
Its strength is determined

by substituting ^a? forPj^
in equation (637), and solving in respect to ^ ;

we thus obtain

2SI
(648);

by which equation is determined the uniform load to which
the beam may be subjected, on each inch of its length.
For a rectangular beam, whose width is 5 and its depth

c, this expression becomes

417. To determine the form of greatest strength (Art. 413.)
in the case of a beam having a rectangular section of uni-

form breadth ^a?
2 must be substituted for P

Jp 1
in equation

(637), and
reduction

for I, and \y for c
l ;

whence we obtain by

(650.
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The form of greatest strength is therefore, in this case, the

straight line joining the points A and B
;
the distance DB

being determined by substituting the distance AD for x in

the above equation.
That portion BED of the beam which is embedded in the

masonry should evidently be of the same form with DBA.*

418. If, in addition to the uniform load upon the beam, a

given weight "W" be suspended from A, Jf*aj*-|-"Waj must be

substituted for Pj>, in equation (637) ;
we shall thus obtain

lor the equation to the form of greatest strength

which is the equation to an hyperbola having its vertex

at A.f

* It is obvious that in all cases the strength of a beam at each point of its

length is dependent upon the dimensions of its cross section at that point, and
that its general form may in any way be changed without impairing its strength
provided those dimensions of the section be everywhere preserved.

f Church's Anal. Geom. Art. 124.
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419. THE BEAM OF GREATEST STRENGTH IN REFERENCE TO THE
FORM OF ITS SECTION AND TO THE VARIATION OF THE
DIMENSIONS OF ITS SECTION, WHEN SUPPORTED AT ONE
EXTREMITY IN A HORIZONTAL POSITION, AND LOADED UNI-

FORMLY THROUGHOUT ITS LENGTH,

The general form of the section must evidently be that

described in Art. 411. Let
the same notation be taken
as in Art. 365., ^xcept that

the depth MQ of the plate

or^ rib joining the two

flanges is to be represented

by 2/,
and its thickness by c.

therefore by equation (503),

so that d
z=y, and A3=cy ;

Also representing by c
l
the distance of the centre of gravity

of the whole section from the upper surface of the beam,
we have c

l(A J +Az+ cy)=(jiy+d,)cy+(y+ d,+%d1)A l +%dt
A

a
. Substituting for I and c

l
in equation (637), and for

lp l
its

value -J-fAa?

2

,
x being taken to represent the distance AM, and

M. the load on each inch of tliat length, we have (Art.

413.)
3f* f

In =

)

d,(y+ Zdjoy+ 2(y+ d, 4-K)A,+A&
..... (652).

Let the area cy of the section of the rib now be neglected,
as exceedingly small when compared with the areas of the

sections of the flanges, an hypothesis which assigns to the

beam somewhat less than its actual strength ;
let also the

area of the section of the upper flange be assumed equal to

n times that of the lower, or A
a
=^A

1 ,

(653).

If the flanges be exceedingly thin, d
l
and d^ are exceed-

ingly small and may be neglected. The equation will then
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become that to a parabola whose vertex is at A and its axis

vertical. This may therefore be assumed as a near approxi-
mation to the true form of the curve AQC.
Where the material is cast iron, it appears by Mr. Hodg-

kinson's experiments (Art. 411.) that n is to be taken=6.

420. A BEAM OF UNIFORM SECTION IS SUPPORTED AT ITS

EXTREMITIES AND LOADED AT ANY POINT BETWEEN THEM!
IT IS REQUIRED TO DETERMINE THE CONDITIONS OF RUPTURE.

The point of rupture in the case of a uniform section

is evidently (Art. 412.) the point
C, from which the load is sus-

pended; representing AB, AC,
EC, by a, a^ and #a ;

and ob-

serving that the pressure P
t

Wa
upon the point B of the beam =

-,
so that the moment

of Pj, in respect to the section of rupture C =
*, we

SI
have, by equation (637),

" ~
1
^

a=_
a G

I

(654).

If the beam be rectangular,
I=-^50*, <?!=<?,

VW==5 T- (655);O tJjQ/2

where "W represents the breaking weight, S the modulus of

rupture, a the length, b the breadth, c the depth, and a
l9
a%

the distances of the point C from the two extremities, all

these dimensions being in inches.

If the load be suspended in the middle, a
1=a,t=^ay

"W=^ .....(656).

If the beam be a solid cylinder, whose radius =<?, then 1=
Jtf<?

4

, <?!=<?; therefore, equation (654),

W=^ -^
. . (657).
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If the beam be a hollow cylinder, whose mean radius is r,

and its thickness c, I=tcr(r
i

+%c*), c
1 ^=r-\-^c] therefore,

equation (654),

(

If the section of the beam be that represented in Art. 411.,

being everywhere of the same dimensions, then, observing
that Ac

l=^d3
A

a -}-dsA^ nearly, we have, (equations 503 and

654) l12
-T~ (2A 1+A,)a 1a,4

where A15
A

3 represent the areas of the sections of the upper
and lower

flanges,
and A

3
that of the connecting rib or plate,

and dv d da their respective depths.

421. A BEAM IS SUPPORTED AT ITS EXTREMITIES, AND LOADED
AT ANT GIVEN POINT BETWEEN THEM

J
ITS SECTION IS OF A

GIVEN GEOMETRICAL FORM, BUT OF VARIABLE DIMENSIONS :

IT IS REQUIRED TO DETERMINE THE LAW OF THIS VARIA-

TION, SO THAT THE STRENGTH OF THE BEAM MAY BE A
MAXIMUM.

W representing the breaking load upon the beam, and
# 2

the distances of its point
of suspension C, from A and

B, the pressure P, upon A is

represented by
2
. If, there-a

fore (Art. 388.), x represent
the horizontal distance of any section MQ from the point of

support A, and I its moment of inertia, and ^ the distance
from its centre of gravity to the point where rupture is about
to take place (in this case its lowest point) ; then by equa-
tion (637)

W"<~- SI
. (660).a

1st. Let the section be rectangular ; let its breadth b be

constant; and let its depth at the distance x from A be
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represented by y ;
therefore I=i-V^y'> ci%y- Substituting

in the above equation and reducing,

The curve AC is therefore a parabola, whose vertex is at

A, and its axis horizontal. In like manner the curve EC is

a parabola, whose equation is identical with the above, ex-

cept that a
l
is to be substituted in it for a

y
2d. Let the section of the beam be a circle. Represent-

ing the radius of a section at distance x from A by y, we
have I^Jtf^

4

,
c

1=y.)
therefore by equation (660)

(662>

3d. Let the section of the beam be circular
;
but let it be

hollow, the thickness of its material being every where the

same, and represented by o. If y= mean radius of cylinder
at distance x from A, then I=<7r<3?/(y

2

-f Jc
2

),
c

1
=

422. THE BEAM OF GREATEST ABSOLUTE STRENGTH WHEN
LOADED AT A GIVEN POINT AND SUPPORTED AT THE EXTRE-
MITIES.

Let the section of the beam be that of greatest strength

rt. 411.). Substituting in equation (66

as before in equation (652), and reducing,

(Art. 411.). Substituting in equation (660) the value of

&. . (664).

If the section cy of the rib be every where exceedingly
small as compared with the sections of the flanges, and if

j^B= OH-9w+^o+i*/
(

There is a value of x in this equation for which y becomes
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impossible. For values less than this, the condition of uni-

form strength cannot therefore obtain. It is only in respect
to those parts of the beam which lie between the values of

SB (measured from the two points of support) for which y
thus becomes impossible, that the condition of greatest

strength (Art. 388.) is possibly. If its proper value be

assigned to n (Art. 411.), this may be assumed as an approxi-
mation to the true form of beam of THE GREATEST ABSOLUTE
STRENGTH. When the material is cast iron, it appears by the

experiments of Mr. Hodgkinson (Art. 411.) that n=6. A
2

represents in all the above cases the section of the extended

flange ;
in this case, therefore, it represents the section of

the lower flange.
The depth CD at the point of suspension may be deter-

mined by substituting a^ for x in equation (665) ;
its value is

thus found to be represented by the formula

(666),

423. If instead of the depth of the beam being made to

vary so as to adapt itself to the condition (Art. 388.) of uni-

form strength, its breadth b be made thus to vary, the depth
c remaining the same

; then, assuming the breadth of the

upper flange at the distance x from the point of support A
to be represented by y, and the section of the lower flange
to be n times greater than that of the upper; observing,
moreover, that in equation (503) A t

=yd^ Az=nA. 1=nyd1 ;

neglecting also A
3
as exceedingly small when compared with

A, and A
a ,
and writing c for <#3 ,

we have by reduction,

ftrr.l

Also
<?, being the distance of the lower surface of the beam

from the common centre of gravity of the sections of the
two fl^iges, we have c

l(n-\-\)=c. Eliminating, therefore,
the values of I and c, from equation (660),

=
\
A(+l) (d^nd.^+ncd, y ..... (667),

the equation to a straight line. Each flange is therefore in
this case a quadrilateral figure, whose dimensions are deter-
mined from the greatest breadth

;
this last being known, foi
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the upper flange, by substituting ^ for x in the above equa-

tion, and solving in respect of y, and for the lower flange
from the equation nb^b^ in which &j, 9 represent the

greatest breadths of the two flanges, and aa d^ their depths

424. A BEAM IS LOADED UNIFORMLY THROUGHOUT ITS WHOLfl

LENGTH, AND SUPPORTED AT ITS EXTREMITIES I IT IS REQUIRED
TO DETERMINE, 1. TfiE CONDITIONS OF ITS RUPTURE WHEN ITS

CROSS SECTION IS UNIFORM THROUGHOUT
;

2. THE STRONGEST

FORM OF BEAM HAVING EVERY WHERE A RECTANGULAR CROSS

SECTION
;

3. THE BEAM OF GREATEST STRENGTH IN REFER-

ENCE BOTH TO THE FORM AND THE VARIATION OF ITS CROSS

SECTION.

1. If the section of the beam be uniform, its point of rup-
ture is determined by formula (639)
to be its middle point. Kepresenting,
therefore, in this case, the length of

the beam by 2, the weight on each

inch of its length by ^ and its breadth

by &
;
and observing that in this case

p^ /xa
2

^a?=%t*<a\ we have by
equation (637)

n:

281
(668),

where f* represents the load per inch of the length of the

beam necessary to produce rupture. In the case of a rectan-

gular beam, this equation becomes

P =%. ..(669).

2. To determine the form of the beam of greatest strength

having a rectangular section of

given breadth &, let y be taken to

represent its depth PQ at a point P,
and x its horizontal distance from
the point A. Then I = T\fy/\
c

1 =^/'j also Pj? x (equation 637)

representing the moment of the resultant of the pressures

upon AP about the centre of gravity of ~PQ=^ax
therefore by equation (637) pax -



538 THE STRENGTH OF BEAMS.

the equation to an ellipse, whose vertex is in A, and its

centre at C.

3. To determine the beam of absolute maximum strength,
let it be assumed, as in Art. 422, that the area of the section

of the rib is exceedingly small as compared with the areas

of the sections of the flanges ;
and let the area of the section

of the lower or extended flange be n times that of the upper ;

A 4 AW I -A-i J (7l+ l) (d?+nd*) + 12ny* )

then, as in Art. 422, -=-JT )

-
\_

, ,

also Pj? 1 =M-oa? if^B
8

; whence, by equation (637),

SA
'+2K

4. If it be proposed to make the rib or plate uniting the

two flanges everywhere of the same depth,* and so to vary
the breadths of the flanges as to give to the beam a uniform

strength at all points under these circumstances
; represent-

ing by y the breadth of the upper flange at a horizontal

distance x from the point of support, we shall obtain, as in

Art. 423,

Moreover, ~P
lp1=^ax J^*==-Jfw?(2a a?); whence we obtain

by substitution in equation (637), and reduction,

}y ..... (673) ;

the equation to a parobola,f whose axis is in the horizontaJ

line bisecting the flange at right angles, its parameter repre-

* As in Mr. Hodgkinson's construction.

j-
Church's Anal. Geom. Art. 171.
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sented by the coefficient of y in the preceding equation, and
half the breadth of the flange in the middle determined by
the formula

(674)

The equation to the lower flange is determined by substi-

tuting for y, in equation (673), ^ ;
whence it follows that

the breadth of the lower flange in the middle is equal to

that of the upper multiplied by the fraction -~ .

425. A RECTANGULAR BEAM OF UNIFORM SECTION, AND UNI-

FORMLY LOADED THROUGHOUT ITS LENGTH, IS SUPPORTED BY
TWO PROPS PLACED AT EQUAL DISTANCES FROM ITS EXTREM-
ITIES : TO DETERMINE THE CONDITIONS OF RUPTURE.

It is evident from formula (639) that the section of rup-
ture of the portion CA of the
beam is at A, and therefore that

the conditions of its rupture are
determined (Art. 416.) by the

equation

TO- -(675);

where ^, represents, as before, the
load upon each inch of the length of the beam, b its

breadth, c its depth, and a, the length of the portion AC.
Again, it is evident that the point of rupture of the por-

tion AB of the beam is at E. Now the value of P^,
(equation 637) is, in respect to the portion AE of the beam,
\^^a(a $j) i"^^

2

5
^a representing the whole length of the

beam ^ the load upon each inch of the length of the beam
which would produce rupture at E, and therefore ^a the
resistance of each prop in the state bordering upon rupture }

also -=:|fo
a

. Whence, by equation (637),
0,
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4

426. THE BEST POSITIONS OF THE PROPS.

If the load i^ be imagined to be continually increased, it

is evident that rupture will eventually take place at A or at

E according as the limit represented by equation (675), or

that represented by equation (676), is first attained, or

according as f* t
or f*2 is the less.

Let M-! be conceived to be tue less, and let the prop A be
moved nearer to the extremity C ;

#
t being thus diminished,

ju-j
will be increased, and ^ diminished, Now if, after this

change in the position of the prop, f\ still remains less than

fxa ,
it is evident that the beam will bear a greater load than

it would before, and that when by continually increasing
the load it is brought into the state bordering upon rupture
at A it will not be in the state, bordering upon rupture at E.

The beam may therefore be strengthened yet further by
moving the prop A towards C; and thus continually, so

that the beam evidently becomes the strongest when the

prop is moved into such a position that i^ 1 may just equal
f*2 . This position is readily determined from equations (675)
and (676) to be that in which

~

(677).

427. A RECTANGULAR BEAM OF UNIFORM SECTION AND UNI-

FORMLY LOADED IS SUPPORTED AT ITS EXTREMITIES, AND BY
TWO PROPS SITUATED AT EQUAL DISTANCES FROM THEM : TO
DETERMINE THE CONDITIONS OF RUPTURE.

Adopting the same notation as in Art. 374., it appears by
equation (543) that the dis-

tance x, of the point of great-
est curvature of the neutral

line, and therefore of the sec-

tion of rupture in AB from
== A (Art, 407.) being that

where -T-,
-

t

*
is the greatest, is

^ CUtHj

determined by the equation

* The curvature of the neutral line being everywhere exceedingly small,

^ may be assumed =1. The expression for the radius of curvature in terms

of the rectangular co-ordinates resolves itself therefore, in this case, into the
second differential coefficient.
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f/tf^P, it being observed that, at the section of rupture, the

neutral line is concave to the axis of #, and therefore the
second differential coefficient (equation 543) negative. The
value of P is that determined by equation (551) ;

so that

n(8-8)
(678)'

where a represents the distance AE, and na the distance AB.
Let P represent the intersection of the neutral line with

the plane of rupture, and i^ the load per inch of the whole

length of the beam which would produce a rupture at P.
Now the sum of the moments of the forces impressed on
AP (other than the elastic forces on the section of rupture)
is represented in the state bordering upon rupture, by

P^ i^a?,
8

; or, since P
1 =i*1

aj
1 ,

it is represented by^ P
a

2

;

J/xi

whence it follows by equation (637) that the conditions of

the rupture of the beam between A and B are determined

by the eq nation ?- P.
2

=jSfo
2

, or,
2f* t

.... (679).

Eliminating the value of

(679), we obtain

between equations (551) and

8n(2-3)
r (680).

Substituting this value of
f*,

in equation (679), and

reducing

'-3)

}
(681).

If the points B and C
coincide, or the beam be

supported by a single prop
in the middle, n=l; there-

fore, by equations (680) and

(681),

(682);
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Similarly, it appears by equation (547) that the point of

greatest curvature between B and C is E
;

if the rupture of

the beam take place first between these points, it will there-

fore take place in the middle. Let ^ represent the load,

per inch of the length, which would produce a rupture at E.

Now, the sum of the moments about E of the forces im-

pressed upon AE is P
l($-hP2 (a no) foi>9a*=(P

'

rjia iiv&
9=M-X (^a P,)^a if^X (since P 1+

Therefore by equation (637)

+ I
>

i^=iS5c
a ..... (684).

Substituting for ~P
l

its value from equation (551), and

solving in respect to ^2 ,

S6c' 271-3 ,

(

If the load be continually increased, the beam will break
between A and B, or between B and C, according as f*,

(equation 680) or f*a (equation 685) is the less.

428. THE BEST POSITIONS OF THE PROPS.

It may be shown, as in Art. 426., that the positions in

which the props must be placed so as to cause the beam to

bear the greatest possible load distributed uniformly over its

whole length, are those by which the values of f*, (equation

680) and ^ (equation 685) are made equal ;
the former of

these quantities representing the load per inch of the length,
which being uniformly distributed over the whole beam
would just produce rupture between A and B, if it did not
before take place between B and C

;
and the latter that

which would, under the same circumstances, produce rup-
ture between B and C if it had not before taken place
between A and B.

Let, then, na represent the distance at which the prop B
must be placed from A to produce this equality ;

and let the
value of

M-, given by equation (679) be substituted for (xa in

equation (684) ;
we shall thus obtain by reduction

*

3(1-27*)- 9(1-27*)

Solving this quadratic in respect to P,a,
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The negative sign must be taken in this expression, since

the positive would give P1 =f* 1
a by equation (679), and cor-

responds therefore to the case n=Q. Assuming the negative

sign, and reducing, we have 3(2n l)P l
a=Sbc*. Substitut-

ing in this expression for P
x
its value from equation (681),

and reducing,

1) (2n 3)~

The three roots of this equation are 1-57087, '61078, and
26994. The first and last are inadmissible

;
the one carry-

ing the point B beyond E, and the other assigning to Pj a

negative value.* the best position of the prop is therefore

that which is determined by the value

n= -61078 ..... (686).

429. THE CONDITIONS OF THE RUPTURE OF A RECTANGULAR
BEAM LOADED UNIFORMLY THROUGHOUT ITS LENGTH, AND
HAVING ITS EXTREMITIES PROLONGED AND FIRMLY IMBEDDED
IN MASONRY.

It has been shown (Art. 376.) that the conditions of the
deflexion of the beam are, in this case, the same as though
its extremities, having been prolonged to a point A (see Jig.

p. 540.), such that AB might equal '6202AE, had been sup-
ported by a prop at B, and by the resistance of any fixed

surface at A. The load which would produce the rupture
of the beam is therefore, in this case, the same as that which
would produce the rupture of a beam supported by props
(Art. 427.) between the props, and is determined by that

value of f*a (equation 685) which is given by the value '6202
of n. It is, however, to be observed that the symbol a

* We may, nevertheless, suppose the extremity A, instead of being sup
ported from beneath, to be pinned down by a resistance or a pressure acting
from above. This case may occur in practice, and the best position of the

props corresponding to it is that whic^h is determined by the least root of the

equation, viz. '26994.
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represents in that equation
the distance AE (Jig. Art.

427.) ;
and that if we take

it to represent the distance

BE in that or the accompa-
nying figure, we must sub-

stitute =-- for a in equa-1n
tion (685), since 0=BE=AE AB=(1 w)AE ;

so that

AE=:j
-. This substitution being made, equation (685),

becomes

|Cj
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The following are the principal results obtained in the

valuable series of experimental inquiries recently instituted

by Mr. Eaton Hodgkinson.*

FORMULAE REPRESENTING THE ABSOLUTE STRENGTH OF A CYL-

INDRICAL COLUMN TO SUSTAIN A. PRESSURE IN THE DIRECTION

OF ITS LENGTH.

D=external diameter or side of the square of the column
in inches.

D
1
=internal diameter of hollow cylinder in inches..

L length in feet.

W=breaking weight in tons.

Nature of the Column.
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and thirty times ths diameter when they arc flat. In

shorter columns fracture takes place partly by the crushing
and partly by the bending of the material. To these shorter

columns the following rule was found to apply with suf-

ficient accuracy :

" If W, represent the weight in tons

which would break the column by bending alone (or if it

did not crush) as given by the preceding formula, and W2

the weight in tons which would break the column by crush-

ing alone (or if it did not bend) as determined from the

preceding table, then the actual breaking weight "W of the

column is represented in tons by the formula

Columns enlarged in the middle. It was found that the

strengths of columns of cast iron, whose diameters were from
one and a half times to twice as great in the middle as at

the extremities, were stronger by one seventh than solid

columns, containing the same quantity of iron and of the

same length, when their extremities were rounded; and

stronger by one eighth or one ninth when their extremities

were flat and rendered immoveable by discs.

431. EELATIVE STRENGTH OF LONG COLUMNS OF CAST

WROUGHT IRON, STEEL, AND TIMBER OF THE SAME DIMENSIONS.

Calling the strength of the cast iron column 1000, the

strength of the wrought iron column wi
ll, according to these

experiments, be 1745, that of the cast steel column 2518, of

the column of Dantzic oak 108*8, and of the column of red
deal 78-5.

Effect of drying on the strength of columns of timber.

It results from these experiments, that the strength of short

columns of wet timber to resist crushing is not one half that

of columns of the same dimensions of dry timber.

TORSION.

432. The elasticity of torsion.

Let ABCD represent a solid cylinder, ou<e -of whose trans-



TORSION, 54:7

verse sections AEB is immoveably fixed,
and every other displaced in its own plane,
about its centre, by the action of a pres-
sure P applied, at a given distance a from
the axis, to the section CD of the cylinder
in the plane of that section and round its

centre
;
the

t cylinder is said, under these

circumstances, to be subjected to torsion,

and the forces opposed to the alteration of

its form, and to its rupture, constitute its

resistance to torsion.

Let aabfi be any section of the cylinder
whose distance from the section AEB is

represented by a?,
and let a/3 represent that

diameter of the section aabfi which was

parallel to the diameter AB before the torsion commenced :

let ab be the projection of the diameter AB upon the sec-

tion aalfi, and let the angle aca be represented by 6.

Now the elastic forces called into action upon the section

aaibfi are in equilibrium with the pressure P. But these

elastic forces result from the displacement of the section

aab@ upon its immediately subjacent section. Moreover,
the actual displacement of any small element AK of the

section aabfi, upon the subjacent section, evidently depends
partly upon the angular displacement of the one section

upon the other, and partly upon the distance p of the

element in question from the axis of the cylinder. Now the

angle oca or 6 is evidently the sum of the angular displace-
ments of all the sections between aabfi and AEB upon their

subjacent sections
;
and the angular displacement of each

upon its subjacent section is the same, the circumstances

affecting the displacement of each being obviously the same :

also the number of these sections varies as a?, and the sum
of their angular displacements is represented by 6

;
there-

fore the angular displacement of each section upon its sub-

&

jacent section varies as -, and the actual displacement of

&

the small element AK of the section a&bfi varies as -p. Now

the material being elastic, the pressure which must be

applied to this element in order to keep it in this state of

displacement varies as the amount of the displacement

(Art. 345.), or as -p. Let its actual amount, when referred
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8

to a unit of surface, be represented by G-p, where G is a

certain constant dependant for its amount on the elastic

qualities of the material, and called the modulus of torsion
;

then will the force of torsion required to keep the element

&

AK iii its state of displacement be represented by G-pAK, and

$

its moment about the axis of the cylinder by G- p

aAK. So

that the sum of the moments of all such forces of torsion in

respect to the whole section aubfi will be represented by
A A

G -
2p

2

AK, or by G -I, if I represent the moment of inertia

of the section about the axis of the cylinder. Now these

forces are in equilibrium with P
; therefore, by the principle

of the equality of moments,

P0=GI- (689).
<KJ

If r represent the radius of the cylinder, I=farr* (Art.

85.). Substituting this value, representing by L the whole

length of the cylinder, and by the angle through which
its extreme section CD is displaced or through which OP is

made to revolve, called the angle of torsion, and solving in

r,espect to
,

Thus, then, it appears that when the dimensions of the

Y" cylinder are given, the angle of torsion varies

directly as the pressure P by which the torsion

is produced ; whence, also, it follows (Art. 97.)
that if the cylinder, after having been deflected

through any distance, be set free, it will oscil-

late isochronously about is position of repose,
the time T of each oscillation being represented
in seconds (equation 76) by the formula

since
/*T\

by equation (690) P= I H-FT I (0) j
m which expression
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(#) represents the length of the path described by the

point P from its position of repose, so that the moving force

upon the point P, when the pressure prducing torsion is

removed, varies as the path described by it from its position
of repose.
The above is manifestly the theory of Coulomb's Torsion

Balance.* "W represents in the formula the weight of the

mass supposed to be carried round by the point P, and the

inertia of the cylinder itself is neglected as exceedingly
small when compared with the inertia of this weight.
The torsion of rectangular prisms has been made the sub-

ject of the profound investigations of MM. Cauchyf, Lame,
et Clapeyron, and Poisson.g It results from these investi-

gations 1
that if 5 and c be taken to represent the sides of the

rectangular section of the prism, and the same notation be

adopted in other respects as before, then

M. Cauchy has shown the values of the constant G to

be related to those of the modulus of elasticity E by the

formula

G=fE (693).

In using the values of G deduced by this formula from
the table of moduli of elasticity, all the dimensions must be
taken in inches, and the weights in pounds.

433. ELASTICITY OF TORSION IN A SOLED HAVING A CIRCULAR

SECTION OF VARIABLE DIMENSIONS.

Let db represent an element of the solid contained by

* Illustrations of Mechanics, Art. 37.

j Exereices de Mathematiques, 4e annee.

i Crelle's Journal. Memoires de 1'Academic, tome viii.

f Navier, Resume des Lecons, &c., Art. 159.
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planes, perpendicular to the axis, whose dis-

tance from one another is represented by
the exceedingly small increment A&> of the

distance x of the section ab from the fixed

section AB, and let its radius be repre-
sented by y ;

and suppose the whole of the

solid except this single element to become

rigid, a supposition by which the conditions

of the equilibrium of this particular element
will remain unchanged, the pressure P re-

maining the same, and being that which

produces the torsion of this single element.

Whence, representing by A& the angle of

torsion of this element, and considering it

a cylinder whose length is AOJ, we have by equation (689),

substituting for I its value

Passing to the limit, and integrating between the limits

and L, observing that at the former limit 0=0, and at the

latter 0=0.

2P0 r
=-^

-
. . (694.)

If the sides AC and BD of the solid be straight lines, its

form being that of a truncated cone, and if r
v
and rz repre-

sent its diameters AB and CD respectively ;
then

Also,

dx

dy

i
ryt

1 'a

..
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4:34. THE RUPTURE OF A CYLINDER BY TORSION.

It is evident that rupture will first take place in respect
to those elements of the cylinder which are nearest to its

surface, the displacement of each section upon its subjacent
section being greatest about those points which are nearest

to its circumference. If, therefore, we represent by T the

pressure per square inch which will cause rupture by the

sliding of any section of the mass upon its contiguous sec-

tion,* then will T represent the resistance of torsion per
square inch of the section, at the distance r from the axis, at

the instant when rupture is upon the point of taking place,
the radius of the cylinder being represented by r. Whence
it follows that the displacement, and therefore the resistance

to torsion per square inch of the section, at any other dis-

tance p from the axis, will be represented at that distance by

,
the resistance upon any element AK, by - p^K, -and the

r
.

r
sum of the moments about the axis, of the resistances of all

T T
such elements, by - 2p

2

AK, or by -
I, r substituting for I

r r

its value (equation 64) by -JTV. But these resistances are

in equilibrium with the pressure P, which produces torsion,

acting at the distance a from the axis
;

/.Pa=JTW ____ (696).

It results from the researches of M. Cauchy, before referred

to, that in the case of a rectangular section whose sides are

represented by ~b and
<?,

the conditions of rupture are deter-

mined by the equation

(697).

The length of a prism subjected to torsion does not -affect

the actual amount of the pressure required to produce rup-

ture, but only the angle of torsion (equation 690) which

precedes rupture, and therefore the space through which

* Or the pressure per square inch necessary to shear it across (Art. 406.).

\ Navier, Resume d'un Cours, &c. Art. 167.
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the pressure must be made to act, and the amount of WORK
which must be done to produce rupture.

According to M. Cauchy, the modulus of rupture by tor-

sion T is connected with that S of rupture by transverse

strain by the equation

T=|S (698).



r vi.

IMPACT*

435. THE IMPACT OF TWO BODIES WHOSE CENTRES OF GRAVITS

MOVE IN THE SAME RIGHT LINE, AND WHOSE POINT OF CON-

TACT IS IN THAT LINE.

From the period when a body first receives the impact of

another, until that period of the impact when both move for

an instant with the same velocity, it is evident that the sur-

faces must have been in a state of continually increasing

compression : the instant when they acquire a common velo-

city is, therefore, that of their greatest compression. When
this common velocity is attained, their mutual pressures will

have ceased if they be inelastic bodies, and they will move
with a common motion

;
if they be elastic, their surfaces

will, in the act of recovering their forms, be mutually
repelled, and the velocities will, after the impact, be dif-

ferent from one another.

436. A BODY WHOSE WEIGHT 18 W,, AND WHICH IS MOVING
IN A HORIZONTAL DIRECTION WITH A UNIFORM VELOCITY
REPRESENTED BY "V,, IS IMPINGED UPON BY A SECOND BODY
WHOSE WEIGHT IS Wa ,

AND WHICH IS MOVING IN THE SAME
STRAIGHT LINE WITH THE VELOCITY Ya : IT IS REQUIRED TO
DETERMINE THEIR COMMON VELOCITY V AT THE INSTANT OF

GREATEST COMPRESSION.

Let/, represent the decrement per second of the velocity
of W, at any instant of the impact (Art. 94.), or rather the

decrement per second which its velocity would experience
if the retarding pressure were to remain constant

;
then will

* Note (u\ Ed, App.
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l
fi represent (Art. 95.) the effective force uponW1 ;

and if

j be taken to represent, under the same circumstances, the

increment of velocity received by W,, then will ?/a repre-

sent the effective force upon "W,. Whence it follows, by the

principle of D'Alembert (Art. 103.), that if these effective

forces be conceived to be applied to the bodies in directions

opposite to those in which the corresponding retardation

and acceleration take place, they will be in equilibrium with
the other forces applied to the bodies. But, by supposition,
no other forces than these are applied to the bodies : these

are therefore in equilibrium with one another,

w W
W,=^/. ..... (699).
y &

Let now an exceedingly small increment of the time from
the commencement of the impact be represented by A, and
let A^ and A^

2 represent the decrement and increment of

the velocities of the bodies respectively during that time,

.-.(Art.

/.(equation 699) Wl
. A-y

1
=Ws . Av

a ;

and this equality obtaining throughout that period of the

impact which precedes the period of greatest compression, it

follows that when the bodies are moving in the same direc-

tion

W
1(V,-V)=W,(V-VO ..... (700);

since Y, -Y represents the whole velocity lost by W, during
that period, and Y Y, the whole velocity gained by "W,.

If the bodies be moving in opposite directions, and their

common motion at the instant of greatest compression be in

the direction of the motion of W,, then is the velocity lost

by W x represented as before by (Yx Y) ;
but the sum of

the decrements and increments of velocity communicated to

"W
2 ,
in order that its velocity Y2 may in the first place be

destroyed, and then the velocity Y communicated to it in an

opposite direction, is represented by (Ya -f Y).

Solving these equations in respect to Y, we obtain
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V

the sign being taken according as the motions of tlu

bodies before impact are both in the same direction or in

opposite directions.

If the second body was at rest before impact, Ya=0, and

wyv=^rtt
If the bodies be equal in weight,

The demonstration of this proposition is wholly indepen-
dent of any hypothesis as to the nature of the impinging
bodies or their elastic properties ;

the proposition is there-

fore true of all bodies, whatever may be their degrees of

hardness or their elasticity, provided only that at the
instant of greatest compression every part of each body
partakes in the common velocities of the bodies, there being
no relative or vibratory motion of the parts of either body
among themselves.

437. To DETERMINE THE WORK EXPENDED UPON PRODUCING
THE STATE OF THE GREATEST COMPRESSION OF THE SUR-

FACES OF THE BODIES.

The same notation being taken as before, the whole work
accumulated in the bodies, before impact, is represented

"W W
2

by -J

*Y
x

a

4-
?Y2

a

;
and the work accumulated in them

y y

at the period of greatest compression, when they move with

"W
the common velocity Y, is represented by -J-

"Now the difference between the amounts of work accumu-
lated in the bodies in these two states of their motion has
been expended in producing their compression ; if, there-

fore, the amount of work thus expended be represented bj
v, we have WW

u V,'+ V.'-f
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or substituting for V its value from equation (701), and

reducing,

U=7T-\

This expression represents the amount of work permanently
lost in the impact of two inelastic bodies, their common
velocity after impact being represented by equation (T01).
If W, be exceedingly great as compared with W

x ,

,)'
.... (704).

438. TWO ELASTIC BODIES IMPINGE UPON ONE ANOTHER : IT IS

REQUIRED TO DETERMINE THE VELOCITY AFTER IMPACT.

If the impinging bodies be perfectly elastic, it is evident
that after the period of their greatest compression is passed,

they will, in the act of expanding their surfaces, exert

mutual pressures upon one another, which are, in corres-

ponding positions of the surfaces, precisely the same with
those which they sustained whilst in the act of compression ;

whence it follows that the decrements of velocity expe-
rienced by that body whose motion is retarded by this

expansion of the surfaces, and the increments acquired by
that whose velocity is accelerated, will be equal to those
before received in passing through corresponding positions,
and therefore the whole decrements and increments thus

received during the whole expansion equal to those received

during the whole compression.
Now the velocity lost by W, during the compression is

represented by (Y, Y) ;
that lost by it during the expan-

sion, or from the period of greatest compression to that

when the bodies separate from one another, is therefore

represented by the same quantity. But at the instant of

greatest compression both bodies had the velocity Y ;
the

velocity v
l
of W, at the instant of separation is therefore

Y (Y! Y), or 2Y Y,. In like manner, the velocity

gained by W2 during compression, and therefore during
expansion, being represented by (Y^Y2),

and its velocity
at the instant of greatest compression by Y,'its velocity v

t

at the instant of separation is represented by Y+ (Y=Fv 2),

or by 2Y=pYa ,
the sign =F being taken according as the
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motion of the bodies before impact was in the same or

opposite directions.

Substituting for Y its value in these expressions (equation

701), and reducing, we obtain

i

_ ii ,

w.+w,

w.+w,

If the bodies be perfectly elastic and
ep,ual

in
weight,

v,=Y,, u
a=Y1 ; they therefore, in this case, interchange their

velocities by impact ;
and if either was at rest before impact,

the other will be at rest after impact.
If W

3 be exceedingly great as compared with "W,, v^=
Y

1
2Y

2 , a
=V

a
. In this case v

1
is negative, or the

motion of the lesser body alters its direction after impact,
when their motions before impact were in opposite direc-

tions
;
or when they were in the same direction, provided

that 2Y, be not greater than Yr

439. If the elasticities of the balls be imperfect, the force

with which they tend to separate at any given point of the

expansion is different from that at the corresponding point
of the compression ;

the decrements and increments of the

velocities, produced during given corresponding periods of
the compression and expansion, are therefore different

;

whence it follows that the whole amounts of velocity, lost

by the one and gained by the other during the two periods,
are different : let them bear to one another the ratio of 1 to e.

~Now the velocity lost during compression by "W, is under
all circumstances represented by (Ya Y); that lost during
expansion is therefore represented, in this case, by e (Yj Y);
therefore, v

l
=Y e(V l Y) (1 + 0)Y eVr In like man-

ner, the velocity gained by W2 during compression is in all

cases represented by (Y=FYa) ;
that gained during expansion

is therefore represented by ^(Y^Y,,); therefore, a=Y-f-
e(V qp Y,)= (1 + e}Y =F eYa . Substituting for Y, and reducing,

.
,

7(m .
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440. IN THE IMPACT OF TWO ELASTIC BODIES, TO DETERMINE
THE ACCUMULATED WORK, OR ONE HALF THE VIS VIVA, LOST

BY THE ONE AND GAINED BY THE OTHER.

The vis viva lost by W\ during the impact is evidently

represented by LY
1

2
-v*= -fVY v*) = -

\ Y.
a

g 9 g g \

Kl + ,)Y_,YirJ^ Kl-

Substituting in this expression its value for Y (equation

701) reducing and representing by u^ one half the vis viva
lost byWl

in its impact, or the amount by which its accumu-
lated work is diminished by the impact (Art. 67.),

1=

,V,j ....(709).

Similarly, if u^ be taken to represent one half the vis viva

gained byW2 ,
or the amount by which its accum ulated work

is increased by the impact, then

(710).

441. Let u be taken to represent the whole amount of the
work accumulated in the two bodies before their impact,
which is lost during their impact. This amount of work is

evidently equal to the difference between that gained by the
one body and lost by the other; so that u=u

1
u.

l
. Substi-

tuting the values of u^ and u^ from the preceding equations,
and reducing, we obtain

_

This expression is equal to one half the vis viva lost during
the impact of the bodies. If the bodies be perfectly elastic,

6=1, and i=0. In this case there is no real loss of vis viva
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in the impact, all that which the one body yields, during the

impact, being taken up by the other.*

442. In the preceding propositions it has been supposed
that the motions of the impinging body, and the body im-

pinged upon, are opposed by no resistance whatever during
the period of the impact. There is no practical case in

which this condition obtains accurately. If, nevertheless,
the resistance opposed to the motion of each body be small,
as compared with the pressure exerted by each upon the

other, at any period of the impact, then it is evident that all

the circumstances of the impact as it proceeds, and the mo-
tion of each body at the instant when it ceases, will be very
nearly the same as though no resistance were opposed to the

motion of either,f

443. As an illustration of the principle established in the

last article, let it be required to determine the space through

* It has been customary, nevertheless, to speak of a loss of vis viva in the

impact of perfectly elastic bodies. This loss is in all such cases to be under-
stood only as a loss experienced by one of the bodies, and not as an absolute
loss. When the impinging bodies are perfectly elastic, it is evident that the
one flies away with all the vis viva which is lost in the impact by the other.

f Let PI and P2 represent resistances opposed to the motions of two im-
TTT -m-

pinging bodies whose weights are Wi and W2 ;
also let -/lf and -ft re-

y y

present the effective forces upon the two bodies at any period of the impact ;

then, by D'Alembert's principle,

or representing by t the time occupied in the impact, up to the period of

greatest compression, by V their common velocity at that period, and by Vi

and v 2 their velocities at any period of the impact, and substituting for fi and

/2 their values (equation 72),

W l dv l W,dv 2

~i~dt~
Fl~ Y'd

Transposing and integrating between the limits and t,

t

Now if PI and P 2 be not exceedingly great, the integral in the second member
of the equation is exceedingly small as compared with its other terms, and may
be neglected ;

the above equation will then become identical with equation

(700).
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which a nail will be driven by the blow of a hammer
;
and

let it be supposed that the resistance opposed to the driving
of the nail is partly a constant resistance overcome at its

point, and partly a resistance opposed by the friction of the

mass into which it is driven upon its sides, varying in amount

directly with the length of it #, at any time imbedded in the

wood. Let this resistance be represented bya-f/fo; then

will the work which must be expended in driving it to a

depth D be represented (Art. 51.) by

J(a+Px)dx,
or by (a

LetW, represent the weight of the nail, and Y the velocity
with which a hammer whose weight is "W, must impinge
upon it to drive it to this depth, and let the surfaces of the

nail and hammer both be supposed inelastic
;
then will the

work accumulated in the hammer before impact be repre-W
sented by 'Y2

,
and the amount of this work lost during

y

the impact by the compression of the surfaces of contact will

1 / "WW \

be represented (equation 711) by l^-i-^-JY
2

. The work

remaining, and effective to drive the nail, is therefore repre-
sented by the difference of these quantities ;

and this work

being that actually expended in driving the nail, we have

1 YaW 2

-^ ^.=2aP+^P
a .... (712);

by the solution of which quadratic equation, D may be deter-

mined.

444. TWO SOLID PRISMS HAVE A COMMON AXIS; THE EXTREM-
ITY OF ONE OF THEM RESTS AGAINST A FIXED SURFACE, AND
ITS OPPOSITE EXTREMITY RECEIVES THE IMPACT, IN A HORI-

ZONTAL DIRECTION, OF THE OTHER PRISM : IT IS REQUIRED
TO DETERMINE THE COMPRESSION OF EACH PRISM, THE LIMITS

OF PERFECT ELASTICITY NOT BEING PASSED IN THE IMPACT.

Let "W represent the weight of the impinging prism, and
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Y its velocity before impact ;
L

x
and: L3 the- lengths of the

prisms before compression ;
E

t
and E2 their moduli of elas-

ticity ; Kj and K2 their sections
; ^ and Z

2
the greatest com-

pressions produced in them respectively by the impact ;

then will the amounts of work which must have been done

upon the prisms to produce these compressions be repre-
sented (equation (486) by the formulae

_
)

and the whole work thus expended by

w
But this work has been done by the work -J Y*,, accumu-

lated (Art. 66) before impact in the impinging body, and
that work has been exhausted in doing it

;

Moreover, the mutual pressures upon the surfaces of con-
tact are at every period of the impact equal, and at the
instant of greatest compression they are represented respec-

K E I K E I

tively (equation 485) by t
' '

and I
* 2

;

Eliminating Z2 between this equation and the preceding, and
reducing,

in which expressions Z, represents the greatest compression
36
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of the prism whose section is K,, and P the driving pressure
at the instant of greatest compression.

445. The mutualpressures P of the surfaces of contact at

anyperiod of the impact.

Let I represent the space described by that extremity of

the impinging prism, by which it does not impinge : it is

evident that this space is made up of the two corresponding

compressions of the surfaces of impact of the prisms ;
so that

if these be represented by ^ and 199 then 1=^+ 1^ But

(equation 713) ^=^-^,4=^; therefore 1= ^*1-

L,

446. A measure of the compressibility of the prisms.

If X be taken to represent the space through which that

extremity of the impinging prism by which it does not

impinge will have moved when the mutual pressure of the
surfaces of contact is 1 Ib.

; or, in other words, if X repre-
sent the aggregate space through which the prisms would
be compressed by a pressure of 1 Ib.

; then, by the preced-
ing equation,

^

X may be taken as a measure of the aggregate compressi-
bility of the prisms, being the space through which their

opposite extremities would be made to approach one another

by a pressure of 1 Ib. applied in the direction of their

length.
If \ and \ represent the spaces through which the

prisms would severally be compressed by pressures of 1 Ib.

applied to each, then \=w-^-. X
2 ^- ;

therefore X=X -f

\, or the aggregate compressibility of the two prisms is

equal to the sum of their separate compressibilities.
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447. The work u expended upon the compression of the

prisms at any period of the impact.

The work expended upon the compression Z
t

is repre-
TT Tp

sented by -J- -r
l

^
9

;
or substituting its value for ^ (equation

-U

713), it is represented by ig-g-P
2
. And, similarly, the work

expended on the compression ,
is represented by

8

therefore u i(f^ +^4^ )P
8

;
or substituting for P its

M^iLj J\.
2
ii(

a /

value from equation (716),

448. The velocity of the impinging body at anyperiod of the

impact, the impact being supposed to takeplace vertically.

It is evident that at any period of the impact, when the

velocity of the impinging body is represented by -y, there
will have been expended, upon the compression of the two

bodies, an amount of work which is represented by the
work accumulated in the impinging body before impact,
increased by the work done upon it by gravity during the

impact, and diminished by that which still remains accu-

W W
mulated in it, or by Y2+Wl \ v\

y y

Representing, therefore, by u the work expended uponW
the compression of the bodies, we have -J Ya

-f"W7

\ ^u.
V

Substituting, therefore, for u its value from equation

(718),
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Or substituting for I its value in terms of P (equation 716),

THE PILE DEIVEB.

449. It is evident that the pile will not begin to be
driven until a period of the impact is at-

tained, when the pressure of the ram upon
its head, together with the weight of the

pile, exceeds the resistance opposed to its

motion by the coherence and the friction of

the mass into which it is driven. Let this

resistance be represented by P ;
let Y repre-

sent the velocity of the ram at the instant of

impact, and v its velocity at the instant when
the pile begins to move, and W

15
W

2 the

weights of the ram and pile ; then, since the

pile will have been at rest during the whole
of the intervening period of the impact, since

moreover, the mutual pressures Q of the sur-

faces of contact are at the instant of motion

represented by P W
2J
we have by equation

(720)

If the value of v determined by this equation be not a

possible quantity, no motion can be communicated to the

pile by the impact of the ram
;
the following inequality is

therefore a condition necessary to the driving of the pile,

After the pile has moved through any given distance, one

portion
of the work accumulated in the ram before its

impact will have been expended in overcoming, through
that distance, the resistance opposed to the motion of the
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pile; another portion will have been expended upon the

compression of the surfaces of the ram and pile ;
and the

remainder will be accumulated in the moving masses of the
ram and pile. The motion of the pile cannot cease until

after the period of the
greatest compression of the ram and

pile is attained
;
since the reaction of the surface of the pile

upon the ram, and therefore the driving pressure upon the

pile, increases continually with the compression. If the
surfaces be inelastic, having no tendency to recover the
forms they may have received at the instant of greatest

compression, they will move on afterwards with a common
velocity, and come to rest together ;

so that the whole work
expended prejudicially during the impact will be that

expended upon the compression of the inelastic surfaces of

the ram and pile. If, however, both surfaces be elastic,
that of the ram will return from its position of greatest

compression, and the ram will thus acquire a velocity rela-

tively to the pile, in a direction opposite to the motion of
the pile. Until it has thus reached the position in respect to

the pile in which it first began to drive it, their mutual
reaction Q will exceed the resistance P, and the- pile will

continue to be driven. After the ram has, in its return,

passed this point, the pile will still continue to be driven

through a certain space, by the work which has been accu-

mulating in it during the period in which Q has been in

excess of P. When the motion of the pile ceases, the ram
on its return will thus have passed the point at which it

first began to drive the pile : if it has not also then passed
the point at which its weight is just balanced by the elas-

ticity of the surfaces, it will have been continually acquiring
velocity relatively to the pile from the period of greatest

compression; it will thus have a certain velocity, and a
certain amount of work will be accumulated in it when the

motion of the pile ceases : this amount of work, together
with that which must have been done to produce that com-

pression which the surfaces of contact retain at that instant,
will in no respect have contributed to the driving of the

pile, and will have been expended uselessly. If the ram in

its return has, at the instant when the motion of the pile

ceases, passed the point at which its weight would just be
balanced by the elasticity of the surfaces of contact, its

velocity relatively to the pile will be in the act of diminish-

ing ;
or it may, for an instant, cease at the instant when the

pile ceases to move. In this last case, the pile and ram, for

an instant, coming to rest together, the whole work accumu-
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lated in the impinging ram will have been usefully expended
in driving the pile, excepting only that by which the remain-

ing compression of the surfaces has been produced ;
which

compression is less than that due to the weight of the rara.

This, therefore, may be considered the case in which a maxi-
mum useful effect is produced by the ram. The following
article contains an analytical discussion of these conditions

under their most general form.

450. A prism impinged upon ~by another is moveable in the

direction of its axis, and its motion is opposed by a con-

stant pressure P ; it is
required to determine the con-

ditions of the motion during the period of impact, the

circumstances of the impact being in other respects the
same as in Article 448.

Let yj and f^ represent the additional velocities which
would be lost and acquired per second (see Art.

95) by the impinging prism and the prism
impinged upon, if the pressures, at any instant

operating upon them, were to remain from that

W W
instant constant

;
then will -

1

/., VI represent
g
j

g
t

j

the effective forces upon the two bodies (Art. 103)
or the pressures which would, by the principle of

D'Alembert, be in equilibrium with the unbal-

anced pressures upon them, if applied in opposite
directions.

Now the unbalanced pressure upon the system
BP composed of the two prisms is represented by
(W1+W2-P),

"W
1

W
2

"~g~ y*

~
* 2

~~

also the unbalanced pressure upon the prism PQ=W2 -f-

Q P, where Q represents the mutual pressure of the prisms

atQ;

Let A have been the position of the extremity B of the

impinging prism at the instant of impact ;
and let x

l repre-
eent the space through which the aggregate length BP of

the two prisms has been diminished since that period of the
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impact, and a?3 the space through which the point P has

moved
;
then (equation 716)

L
'

L 1 ^

Also AB=2^+0?,,; therefore velocity of point B=

(Art. 96); therefore f*=-j-++-j-=-j-+-\MV WV WV

Substituting these values offt
and Q in equations (723) and

(724), and eliminating/^ between the resulting equations,

Integrating this equation by the known rules,t we obtain

aj^A sin. /+B cos. 7^+-r- ..... (727);

in which expression the value of 7 is determined by the

equation

^(W+WJ =9
| L/Kl^+Sk)-' f

' ' ' '

and A and B are certain constants to be determined by the
conditions of the question. Substituting in equation (724)
the value of Q from equation (725), and solving in respect

to/*

(729).

Substituting for x
l
its value from equation (727), and forft

its value
-r^, and reducing,

<#X Ag . B<7^=
w? sin - 7*+w> cos -

Integrating between the limits and
,
and observing that

yy/v

when tf=0, -77=0 ;
the time being supposed to commence

CM

with the motion of the prism PQ,

* Art. 96. Equations (72) and (74).

f Church's Int. Cal. Art. 183.
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sn -

Integrating a second time between the same limits,

* =vw^~ 8in* 7f} + ~ cos *

Now when the motion of the second prism ceases -^7=0 ;

d/t

whence, if the corresponding value of t be represented by T,

A(l-cos. yT)+B8in. 7 T + 1-

To determine the constants A and B, let it be observed
that the motion of the prism QP cannot commence until the

pressure Q of the impinging prism upon it, added to its own

weightW2 ,
is equal to the resistance r opposed to its motion.

So that if c be taken to represent the value of x
l (i.

e. the

aggregate compression of the two prisms) at that instant,

then, substituting for Q its value from equation (725),
- +
X

W,=P;

.... (732).

Now since the time t is supposed to commence at the
instant when this compression is attained, and the prism PQ
is upon the point of moving, substituting the above value of
c for x

l
in equation (727), and observing that when x=c,

t=Q, we obtain (P W
a)X=:B+ 3^. ; whence by substitu-

7 "s
tion from equation (728), and reduction,

So long as the extremity P, of the prism impinged upon,
is at rest, the whole motion of the point B arises from the

compression of the two prisms, and is represented by -^.
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The value of *

? when t=0, is represented therefore by v
dt

(equation 721). Differentiating, therefore, equation (727),

assuming =0, and substituting v
for-^-

1
; we obtain v=yA;

whence it appears that the value of A is determined by
dividing the square root of the second number of equation

(721) by r
Substituting for A and B their values in equations (731-3)

-lsin. rT+

Reducing, and dividing by the common factor of the two
last terms,

Substituting for A and B their values in equation (730), and

representing by D the value of a?
a ,
when =T,

.... (735).

The value of T determined by equation (734) being sub-
stituted in equation (735), an expression is obtained for the
whole space through which the second prism is driven by
the impact of the first.*

* The method of the above investigation is, from equation (726), nearly the
same with that given by Dr. Whewell, in the last edition of his Mechanics*; the

principle of the investigation appears to be due to Mr. Airey. If the value
of y, as determined by equation (734), were not exceedingly great, then, since

the value of T is in all practical cases exceedingly small, the value of yT would
in all cases be exceedingly small, and we might approximate to the value of
T in equation (735), by substituting for cos. yT and sin. yT, the two first terms
of the expansions of those functions, in terms of yT.
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NOTE (a).

BESIDES its direction defined (Art. 1), we have also to take

into consideration, in estimating the effects of a force, its

point of application, or the point of the body where it acts,

either directly or through the medium of some other body,
as a rigid bar, or an inextensible cord in its line of direction

;

the point on its line of direction towards which the point of

application has a tendency to move
;
and finally the inten-

sity, or magnitude of the force as expressed in terms of some
settled unit of measure.

NOTE (b\

This result of experiment also admits of the following
proof: Let A be the point of appli-

* * *> > <P cation of a force P, and let this point
be invariably connected with another

point B, in the line of direction towards which A tends to

move from the action of P
; suppose now two other forces

P, and P2 ,
each equal to P, to be applied ;

the one at A, in

a direction opposite to P, and the other at B, in the same
direction as P

;
the introduction of these two equal forces,

acting in opposite directions,will evidently in no wise change
the direction or intensity of P

;
but as P

a
is equal and oppo-

site to P its eifect will be to balance the action of P at A,
whilst it leaves P2 to exert an action at B precisely the same
as P was exerting at A before the introduction of J?, and Pa .

NOTE
(c).

Suppose two forces P
1
and Pa applied to the same point A,

571
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the direction of the one being AB, that of the

other AC
;
no was these forces make an angle

with each other, it is evident, as the point of

application can move but in one direction, and
as it is solicited to move towards B and C at

the same time, that it must move in some
direction which is coincident with neither of

these; this direction, it is equally evident,
must be in the same plane as the directions AB and AC, for

there is no argument in favor of a direction assumed exterior

to the plane and on one side of it which would not equally

apply to a symmetrical direction assumed on the other side
;

it is also evident that this direction must be some one AF
within the angle formed by AB and AC, for the point, if

solicited by Pj alone, would take the direction AB, and as it

cannot take a direction to the left of BD, as there is no force

that solicits it on that side, and, for like reasons, cannot take

one to the right of CE, it must therefore take the one

assigned somewhere within the angle BAC.
]Now suppose further that P

x
and P

3 are equal, it is evi-

dent that the direction assigned to their resultant, or that of

the motion of their point of application, must be the one
which bisects the angle BAC, for the argument for any
direction on the left of this line would be equally cogent for

the like position on the other side.

If Pj and P
2 are unequal then will the direction of their

resultant divide the angle BAC unequally, the

smaller portion being next to the greater force
;

for suppose Pj divided into two portions, one
of which P shall be equal to P2 ;

P and P
2
can

be replaced by their resultant Rj, the direction

of which AF bisects the angle BAC ;
we shall

then have two forces K
t
and the remaining

portion of P
1?
the resultant of which R must lie

somewhere within the angle BAF, and there-

fore nearer to P
x
than to P2 ;

but It is the resultant of the

two forces P
l
and P2

. Therefore, &c.
Hence it is seen that two forces wrhose directions form an

angle between them and meet, 1st, have a resultant
; 2nd, that

the direction of this resultant lies in the plane of the two
forces

; 3d, that it passes through the point where the direc-

tions meet, and lies within the angle contained between
them

; 4th, that it bisects this angle when the forces are

equal ; 5th, that when the forces are unequal it divides this

angle unequally, the smaller portion being next to the greater
force.



EDITOKIAL APPENDIX.

Now as the two forces P
x
and P2 can be replaced by their

resultant R, and as the effect of this will be the
same if applied at any point F in its line of
direction as at the point of application of the
two forces, it is evident, if we transfer P, and P

7

also to F, preserving their new parallel to theii

original directions, that they, in turn, can be made
to replace R. It thus appears that the point of

application of two forces may be transferred to

any point of the line of direction of their result-

ant without changing the effects of these forces, provided
their new directions are kept parallel to their original ones.

It is upon the preceding propositions, in themselves self-

evident, that the mode of demonstration, known as Duchay-
la's, of the proposition, termed the parallelogram of forces,
or of pressures, is based.

NOTE (d).

When two parallel forces are applied to two points inva-

riably connected, their resultant can be found by applying
the propositions in (Arts. 1, 2, 3).

Let P, and P
2 be two parallel forces applied at the pointsA and B invariably connected, as by a

rigid bar. Let two equal forces Q x
and

Q 2 be so applied, the one at A the other
at B, as to act in opposite directions

along AB. These two will evidently
have no effect to change the action of

P, and P
2

. Now the two forces P, and

Q, applied at A will have a resultant R
1?

the intensity and direction of which can
be found by the preceding method. In like manner the
resultant R

2
of P2 and Q 2

can be obtained. Now the forces

being replaced by their resultants, the equilibrium will still

subsist, and the effect will remain the same whether R
x
and

R
2 act at A and B, or at o their point of meeting. But as

R
t
and R

2
can each be replaced by their components at any

point of their direction, let these components be transferred

to the point o. In this position Q x
and Q2

will destroy each

other, whilst P, and P3 will act in the same direction along
<?C and parallel to their original ones, with an intensity equal
to their sum Pj-fP2 .

Now from the similar triangles A#C, rom / and B0C, son,
there obtains,
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om : mr : : oC : CA, or P
x

: Q, : : oC : CA.

ns : on :: CB : 00, or Q, : P2 :: CB : 00.

Multiplying the two last proportions, there obtains,

I\ : P2 : : CB : CA,

and

P, : Pa : P,+ Pa :: CB : CA : CB+CA or AB.

From this we see that two parallel forces acting in the

same direction, 1st, have a resultant which is equal to their

sum
; 2nd, that the direction of this resultant is parallel to

that of the forces; 3d, that it divides the line joining the

points of application of the two forces into parts reciprocally

proportional to the forces
; 4th, that either force is to the

resultant as the portion of the line between the resultant and
the other force is to the total distance between the points of

application ; 5th, that the foregoing propositions hold true

for any position of the line AB with respect to the two

parallel forces and their resultant.

When the two forces act in opposite directions at the

pointsA and B, by following

\:;;:f* a like process, we obtain the

--"'"* two resultants E
x
and E

2 ,

...--"'" which being prolonged to

their point of meeting o we
can again replace them by

/ / \ their components P 1? Q x ,
and

klJ P2 , Q2 ;
of which P

t
and P2 ,

acting parallel to their ori-

ginal positions but in opposite directions, will have for their

resultant P, P2 .

Now prolonging the direction of this resultant until it

meets AB prolonged at C, there obtains as in the preceding
case, from the similar triangles A0C, rom* and B0C, son,

om : mr : : 0C : CA, or P
a : Q, : : 00 : CA,

ns : on :: CB : 00, or Q3 : P, :: CB : 0C,

hence,

P, : Pa : P.-P, :: CB : CA : CB-CA or AB.
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Remark. Although it may be assumed, as self-evident,
that any resultant can be replaced

by two equivalent components,
without disturbing the equilibrium,
and that each of these in turn

may be replaced by two other

equivalent components, and so on
for any number of components ;

still like compositions and
resolutions of forces are of such frequent occurrence in esti-

mating the pressures, or strains on the various points of any
mechanical contrivance, as a machine, a frame of timber,

&c., arising from a resultant pressure, that the student can-

not be too familiar with the processes of effecting such com-

positions and resolutions.

To show by a simple illustration this truth, let the result-

ant AR be replaced by its two equivalent components AP,
and AP2

in any assumed positions ;
and let each of these

components be resolved into two others, AQ 15 AE^ for APj ;

and AQ 2 ,
AR

2
for AP

2 ,
taken respectively perpendicular and

parallel to AR. Now it is evident, from the figure, that the

two components AQ 1? AQ2 of this last resolution are equal
and opposite in direction, and therefore destroy each other

;

whilst the two AR
15
AR

2 act in the direction of AH, and
their sum is equal to AH. The same may in like manner be
shown for any number of sets of components by which AH
might be replaced.

NOTE (e).

If the point o from which perpendiculars are drawn to the

directions of two forces P
:
and P

2 ,
is

taken on the direction of their re-

sultant, then will mtP
1
=mtP2 .

For from o draw the perpendicu-
lars om, on, to P

a
and "r,, and join

the points m and n of their inter-

section. The quadrilateral A.mon,

having the angles at m and n right

angles, can be inscribed in a circle, therefore the two angles
at m and A, subtended by the chord on, will be equal. In
the triangles mon and ABC, the angle o is the supplement
of the angle A of the quadrilateral, and B, being the adja-
cent angle of the parallelogram, is also the supplement of A

;
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the two triangles, having two angles equal, are similar,

therefore,

AB : BC : : om : on, or P3 : P
:

: : om : on
;

hence

=~Pi x on. Therefore, &c.

From this proposition the relations of two parallel forces

to their resultant can be readily deduced from the
limiting

case of the angle mon of the triangle ;
for from the two simi-

lar triangles there obtains as before

P3 : P
1

: R or AC : : om : on : mn.

Now as this is true for any value of the angle 0, when it

becomes 180, the forces P,, P2 having the same direction,
and their resultant E become parallel; the perpendiculars
om and on become portions of the line mn

; and, as mn=om
+ on, it follows, from the above proportion, that R Pj+ P,.
When Pj and P

2 have opposite directions, we can suppose
the force P

a ,
for example, and its perpendicular turned about

the point o in the plane of the forces until the point m falls

on the prolongation of on on the opposite side from 0, in

which position P x
and P2 again become parallel, but act in

opposite directions. During this rotation of P
1? the resultant

still passes through o, and there still obtains

P
a : P! : : R : om : on : mn

;

but, as mn now is equal to omon, it follows, from the

proportion, that R=P
a Pr Hence the same relations

between P,, Pa and R as already established, NOTE (d).

^
Otherwise, since in any number of forces in equilibrium

either of them is equal and directly opposed to the resultant
of all the rest, the whole may be replaced by these two
without disturbing the equilibrium. If now through the

point of application of these two we draw any two lines at

right angles to each other, and then resolve each of the two
forces into two components parallel to these two lines, it

will be at once seen, from the diagram, that the like com-
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portents will be equal and opposite to each other, and this

would evidently be the same for the components of the ori-

ginal forces resolved in the same manner, otherwise there
would be a resultant for all the forces, which is contrary to

the supposition of an equilibrium.
.Remark. As this method of resolving a system of forces

into sets of components parallel to any assumed rectangular
axes, in order to determine their algebraical values, is of

frequent use, in simplifying the numerical calculations

necessary in the applications of the principles of statics, the
student should make himself perfectly familiar with the pro-
positions that precede and follow Art. 11.

(g).

Otherwise, join DE which will be parallel to AC^thus
forming with it and the lines AD and CE two equi-angular
triangles, from which there obtains

DE:DG:: AC: AG;

but DE=fAC, therefore DG=4AG=DA.

NOTE (A).

Otherwise, join GH which, as AG and CH intersect, will

be in the same plane with them and with the line AC. As
AH and CG are respectively -f of the lines drawn from A
and C to the middle of BD, it follows that GH is parallel to
AC and forms with it and the lines AG and CH, by their

intersection at K, the two equi-angular triangles CKH and
and AKC, from- which there obtains

GH:GK:: AC : AK,

but GH=|AC, therefore GK= AK=iAG.

As the methods employed in (Art. 45, &c.) to represent,
by geometrical diagrams, what are termed the laws of

motion, or the relations which exist at any two given
37
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instants between the velocity, the space, and the time of a

body's motion, although very simple in themselves, are

sometimes found to offer difficulties to the student, particu-

larly as to the representation of spaces by areas, a few addi-

tional marks on this point may not be here misplaced.

Taking, in the first place, the case of a body M moving in

D a rectilinear path fromA towards
IB with a uniform motion. Ac-

cording to the definition, the

body will move over the suc-

5. cessive equal portions Ab, be, cd,

&c., of its path in equal succes-

sive portions of time, however small or great these portions

may be. Taking now any portion of time as a unit, as a second,
a minute, &c., and supposing Ab the portion of its path, or

the space through which the body has moved during this

unit, Ab will represent what is termed the velocity, or rate

of motion of the body ;
and when the path itself is expressed

in terms of any linear unit, as a foot, a yard, a mile, &c., the
number of these units in Ab will measure the velocity ;

for

example, if the unit of path, or space is a foot, and there
were four of these units in Ab, and the unit of time is a

second, then the velocity would be termed a velocity of four
feet per second, &c. Supposing the body to start from A,
with this velocity, it will successively move over distances,
each of four feet in length, along its path, in successive

seconds of time
; consequently any distance, or space, as Ad,

will be equal to Ab taken as many times as the number of

seconds elapsed from the time the body started from A until

it reached d\ or, in other words, the number of units in the

space Ad is expressed by the abstract number obtained by
multiplying the number of units in the velocity by the num-
ber of units in the time. This, like all other similar pro-
ducts, can be expressed algebraically, or geometrically ;

but

by whatever symbol expressed, the signification is the same.
For example, on any two lines, as AB and AC, taken at

right angles, set off any number of equal parts as Ab, be,

cd, &c., as units of time, and on AC any number also of

equal, parts, which may be the same in length, or otherwise,
as those on AB, to represent the units in wnich the velocity
is expressed. Suppose the latter to be composed of the four
units Am, mn, &c.

;
and that the number of units of time

considered is three
;
on the lines Ad, AC construct the

rectangle AD; then is the area of the rectangle said to

express the space corresponding to the velocity and time
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here assumed
;

that is, the number of units in area of this

rectangle, expressed in terms of the unit of area on Ab and
Am for example, is equal to the number of units of space.
In like manner the area of the rectangle AE expresses the

space corresponding to the velocity and the time Ae, &c.

In uniformly varied motion, as the velocity increases in

the same proportion as the time

increases, or, in other words, as

the augmentations of the velocity
for equal intervals of time is the

same, these relations between the

B times, velocities and spaces, can,
in like manner, be expressed by

a geometrical diagram as follows : On any line, as AB, set

oft a number of equal parts as Ab, be, ed, &c., to represent

equal intervals of time
;
at the points J, c, d, &c., having

drawn perpendiculars to AB, set off on them distances b?n,

en, do, &c., to represent the corresponding velocities
;

in

which cn%bm do3bm
;
or Ad : Ac : Ab :: do : en : bm,

&c. Now, as the same relations obtain between all the dis-

tances set off on AB and their corresponding perpendicu-
lars, it follows that the line AC, drawn through the points

in, n, o, &c., is a right line, and that the triangles Abm, Aon,
&c., are therefore similar. As the relations between the

times and velocities are true, however great, or however
small the equal portions of time may be assumed, let us sup-

pose these portions, as Ab, "be, cd, to be taken so small that

the velocity of the body during any one of them may be
considered uniform, and as a mean between what it actually
is at the commencement and end of this portion ;

tkat is en
and do, for example, representing the actual velocities at the

beginning and end of the interval of time represented by cd,

then J (en+ do) represents^ the mean, or uniform velocity

during this interval. This being premised, the number of

units of space over which the body will pass whilst moving
with a uniform velocity, expressed by % (cn+ do), during the

interval cd, will be represented, according to the preceding
proposition, by cdx% (cn+ do), but this also expresses the

area of the trapezoid cdno
;
and as the same is true for all

the like trapezoids it will also be true for their sums, or for

the triangles, as Ado and Afq for example, the areas of which
are equal to the sum of the areas of the trapezoids of which

they are composed. Supposing the body to move from a

state of rest with a uniformly accelerated motion, and that

at the intervals of time, represented by Ad and Af, its
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respective velocities are do andjfy, then will tlie number of

units of space which the body will have moved over in these

two intervals be respectively expressed by the number of

units of area in the triangles Ado and Afq. As the trian-

gles are similar their areas are as the squares of their like

sides
;

it therefore follows that in uniformly varied motion,
the spaces are as the squares of the times, or as the squares
of the velocities.

As do represents the velocity acquired during the time

A<#, supposing the body to have moved from a state of rest,

and the number of units of area in the triangle Ado repre-
sents the corresponding number of units of space, it follows,
that if the body had moved, during the same interval, with
the velocity do which it actually acquired in it, the number
of units of space it would then have passed overVould have
been represented by the number of units of area in the rect-

angle A0, constructed on Ad and do. But, as the area of

the rectangle is double that of the triangle, the space that

would have been passed over in the supposed case would
have been double that passed over in the actual case.

If we take any portion, as A0, to represent the unit of

time, then the corresponding perpendicular ep will represent
the velocity, or the quantity f used in (Arts. 46. 47) fol-

lowing.

NOTE (j).

As the propositions under this head, and those under the

heads of Accumulation of Work in a Moving Body (Art. 64)
and Principle of Yis Yiva (Art. 129) constitute the basis of

what may be termed Industrial Mechanics, or the applica-
tions of the principles of abstract mechanics to the calcula-

tion of the effects of motive power transmitted by machines
and employed to produce some 'useful mechanical end, it is

very important that the student should have a clear and
definite apprehension of their signification in this point of

view. Work, as here defined, supposes two conditions as

essential to its production : a continued resistance, or obstacle

removed by the action of a force, and a motion of the point
of application of the force in a direction opposite to that in

which the resistance acts. Its measure is expressed by the

product arising from multiplying the number of units of the

resistance, or of its equivalent force directly opposed to it,

by the number of units of path which the point of applica-
tion of this force has described during the interval consi-
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dered, in which the force acts to overcome the resistance.

It follows that the work will be when this .product is
;

that is, when either of the factors, the resistance, or its equi-
valent force, or the path described, is 0.

In estimating work, that which is external and which alone

generally we have the means of measuring, is alone consi-

dered. For example, if with a flexible bar a person attempts
to push before him any obstacle, the first effect observed will

be a certain deflection of the bar, during which the hand, at

one end of the bar, .will have moved forward a certain dis-

tance in the direction of the point of application at the other,

producing an amount of work which is expressed by the

product of the pressure, or force exerted by the hand, sup-

posing this pressure to remain constant during this period,
and the path described, in the line of direction of this pres-

sure, by the point where it is applied. During this period,
as the obstacle to be moved has remained at rest, no path
has been described by the point where the bar rests against
it, therefore, according to our definition, no work has been
done upon the resistance. The effect produced by the

pressure has been simply to bend the bar, and the work is

therefore due only to the resistance offered by the molecular
forces of the material composing the bar to the force that

tends to bend it. This portion of the work, although in this

case we have the means of measuring it, being what may be
termed internal, is not taken into the account in estimating
that due to the resistance to be overcome, which would have
been the same had a perfectly rigid bar been used instead of
the flexible one.

In like manner, when an animal carries a burthen on his

back from one point to another on a horizontal plane no
work is produced according to our definition

;
for no resist-

ance has been overcome in the direction in which the bur-
then has been carried, and therefore the product that repre-
sents the work is 0. The work in this case, as in that of the
flexible bar, is internal

;
and similar to that arising from a

burthen borne by an animal whilst standing still
;
and there-

fore although both of them may be very useful operations
and have a marketable value, still they can neither be mea-
sured by the standard by which it is agreed to estimate
work.

Every mechanical operation performed by machinery pre-
sents a case of work. Take for example the simple opera-
tion of planing, in which the hand moves a plane, which is

but a rigid bar to which is fixed an iron tool like a chisel for



582 EDITORIAL APPENDIX.

removing successive thin portions from the edge, or surface

of a board. In this case the resistance offered, and which is

sensibly in the same direction as the power applied, is that

arising from the cohesion of the fibres of the material, and
is measured by the pressure applied ;

the path which the

point of application of the iron tool describes is the same as

that described by the hand
;
and the work will be expressed

by the product of these two elements, each estimated in

terms of its own unit of measure. The case of the common

grindstone presents an example of a rather more complicated
character. Here the instrument to be ground is pressed

against the periphery of the stone with sufficient force to

cause a certain resistance to any power however applied to

put the stone in motion. The direction however in which
this resistance acts at the point of application is in the

direction of the tangent to the periphery at this point, and,
in one revolution of the stone, it will describe a path equal
in length to the circle described by the point of application.
The work therefore for each revolution will be the product
of the resistance, estimated in the direction of the tangent,
and the circumference described by the point of application.

It may be as well to remark, in this place, that although
the work done in overcoming the molecular resistances of
the materials by means of which the action of a force or

pressure is transmitted, as in the example above cited of a
flexible bar, is not taken into account in estimating the
external work, there are cases in which this work constitutes

the entire work done, and which again is reproduced in

external work
;
as for example in the cases of the common

bow used for projecting arrows, and the springs by which
the machinery of some time-pieces is moved. In each of
these the resistance offered by the molecular forces of the
material is overcome by the action of some external force,
whose point of application is made to describe a given path ;

by this action a certain amount of work is expended in

bringing the spring to a certain degree of tension which,
when the force is withdrawn, will reproduce the same amount
of external work in an opposite direction to that in which the
force acted.

NOTE (&).

The work of a pressure of constant intensity acting in the
same direction as the path described by its point of applica-
tion may be represented by a geometrical diagram in the
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same way as that used for representing the space described

by a body moving with a uniform velocity in any given
time

; by constructing a rectangle, one side of which repre-
sents the number of units of force, the other the number of

units of path ;
the number of units of area of the rectangle

will express the number of units of work.

NOTE (I).

The method given (Art. 51) for estimating, by a geometri-
cal diagram, the work of a pressure which varies in inten-

sity at different points of the path described in its line of

direction by its point of application, finds its application and
has to be used whenever there is no geometrical law of con-

tinuity by which the pressure can be expressed in terms of

the path ; and, even when such a law obtains, it is some-
times found to be a more convenient method of obtaining an

approximate value of the amount of work than the more

rigorous one expressed by the formula

s

S,

in which U can be rigorously found whenever P, which being
a function of S can be expressed algebraically in terms
of it.

As an example of these two methods of estimating the

work of a variable pressure, acting^
in the

direction of the rectilinear path described by
its point of application, let the familiar case

of the action of steam on the piston of the

steam-engine be taken.

Let ABCD represent the steam-tight cy-
linder in which the piston is driven from the

position at #, at one end, to c at the other, in

the direction of the axis ac, of the cylinder,

by means of the pressure of the steam on the

end of the piston. Let us suppose that the
A~~ ~~B steam acts with a constant pressure, repre-

sented by Pj, whilst the piston is driven through the portion
ba of the path, and, having reached this point, the commu-
nication between the cylinder and the boiler being then cut
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off, that the steam already admitted acts, through the re-

mainder of the path described by the piston, by what is

termed its expansive force, in which the pressure continually
decreases as the piston approaches the point c. Let us sup-

pose that the law of variation of this pressure on the piston
at different points is such that the pressures at any two

points are inversely proportional to their distances from the

point a. P, then denoting the pressure when the piston is

at &, let P denote the pressure when it has reached another

point o at a distance S from #, and S
3
and S

x
denote the

lengths ac and ab, then according to the above law there

obtains

P> : P :: S : S
1? therefore P=P

X
^.

Let the elementary portion of the path be denoted by <#S,

then by multiplying the variable force by the elementary
path there obtains

P^S=P
a |^S,b

which may be termed the elementary work, or in other

words, the work done whilst the variable pressure acts

through the elementary path, during which period the vari-

able pressure may be regarded as constant.

To obtain the total work whilst the variable pressure acts

from I to Cj or through the path S
2 S

1?
there obtains

S, 8,

. 8 s,-iog. s,).

s, s,

k

If instead of the exact work due to the expansive force of
the steam, and which is given by the foregoing formula, an

approximate value only was required, it could be obtained by
a geometrical diagram as follows.

Having set off to any scale a num-
ber of units representing the path
fo, calculate the pressures at the

points , <?,
and at the middle point

0, for a first approximation. That
at l> will be simply P

1 ;
that at c,

P,, and that at o, P,
S

> '

2 S,)

TO.

X

T--or
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Having drawn perpendiculars to ~bc at &, <?,
and

<?,
set off on

them the distances m, on and cp respectively equal to the

corresponding pressures, estimated in terms of the unit of

pressure, and according to any given scale. Join mn and

np ; the number of units of area, in the figure thus formed,
estimated in units of path and pressure, will be an approxi-
mate value of the required number of units of work.
The greater the number of parts into which T>c is divided and

the corresponding pressures calculated, the nearer will the
enclosed area approach to the true value of the work.
The mean pressure, or. that force which, acting with a

constant
intensity along the same path as that described by

the point of application of the variable pressure, would give
the same work, is found either by dividing the result of the

integration by 838^ or by dividing the area in tlie last

method by ~bc.

NOTE (m).

As an example of the manner of obtaining the work done

^. A.. by a constant pressure acting always
/''' ^\ in parallel directions whilst its inclina-

p ^ tion to the path described by its point
of application is continually varying,
let the well known mechanism of the
crank arm and connecting rod be taken.

Let O be the centre around which the
crank arm is made to revolve, by the

application of a constant pressure P x ,

transmitted through a connecting rod

CD, all of whose positions during the motion are parallel to

the diameter AB. The path described by the point of ap-

plication C will be the circumference of which OC is the

radius, and the inclination of P
a
to this path will be the

variable angle DCN, between its direction and the tangent
to the circle at C, of which the variable angle AOC, that

measures the inclination of the crank arm to the diameter

AB, is the complement. Denote this last angle by a, and
the length of the crank arm OC by ~b. Now decomposing
P! into components in the direction of the tangent CN and
the radius OC, we obtain for the first Pj sin. a, and for the
second P

1
cos. a, of which P

a
sin. a is alone effective to pro-

duce work, since Pj cos. a acts constantly towards the fixed

point O without describing any path in the direction of its

f/
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action. But the elementary path described by the point
of application is evidently Ida, the infinitely small arc Cn of

the circle. The elementary work of the variable component
P, sin. a will therefore be expressed by

Pj sin. a x Ma.

The total work for any portion of the path, as AC, will

therefore be

.a

\ sin. a bda=T>

J>(lco8. a)=PJ) ver. sin. a.

o

and for O=TT, it becomes

P
a x25, orP,xAB;

a result which might have been foreseen, since AB is the

path described by the point of application of P, in its line

of direction, whilst the actual path is the semi-circumfe-
rence ACB.
As Cn=bda, if through n a perpendicular nm is drawn to

CD, the line of direction of P
1}
the distance Cm is evidently

the projection of the elementary path actually described on
the line of direction of P,, and is therefore the corresponding
elementary path of P

x
in its line of direction

;
but Cm=C?

sin. a=bda sin. a. Denoting AB by A, then Cm=dh
;
and

there obtains

dh=bda sin. TT
;
and P

1
dh=P

1
Ida sin. a

;

and

r
J

A result the same as is shown to obtain by the preceding
proposition.
To find the mean, or constant pressure which, acting in

the direction of the circular path, would produce the same
amount of work as the variable force does in acting through
the semi-circumference

;
call Q this mean force, its path

being TT&, its work will be Q x tib
;
and as this is to be equal

to the work of P
t
sin. a, there obtains

Q x n^=P
l
x 2ft, hence Q^P, - =0*6366 P, nearly,

for the value of the force.
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It may be well to observe here that the mean pressures
have no farther relations to the actual pressures than as

numerical results which are frequently used instead of the

actual pressures to facilitate calculations; and also as a

means of comparing results, or work actually obtained from
a force of variable intensity, at different epochs of its action,

with what would have been yielded at the same epochs by
the equivalent mean force.

To show the manner of making the comparison in this

case, let us take the two expressions for the quantity of work
due the mean force, and also to the variable component, for

a portion of the path corresponding to any angle a. Since

2
Q^Pj-, its work corresponding to a will be

The corresponding work of the variable component Y l
sin. a

will be

P^CL-cos. a).

The difference therefore between these two amounts of work
will be

.

a).

Now this difference will be for the following values of o,

a=0, a= -, and a=7r.
2

The maximum value of this difference can be found by the
usual method of differentiation and placing the first differ-

ential coefficient equal to 0. Performing this operation,
there obtains

sin. a=-= 0-6366;
<r

the corresponding values of a being respectively

a 0-21964 ?r,and a = TT 0-21964 n.

Substituting these values of a and the corresponding values
of cos. a in the preceding expression for the difference there

obtains, for the first,
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PJ, (^_l + cos.
a)
=?$ (2x0-21964-1+

+ 0-21039^6;

and for the second,

PJ>
(^-1-f-cos. a)=PJ> (2x0-21964-1-1/1-1)

=
- 0-21039 PA

From these two expressions it is seen that the greatest excess

of the work of the mean force over that of the other would
be + 0-21039P

1&=+ 0-1052 xP,2J, or about
TV of the total

work of Pj corresponding to the path 25
;
whilst that of the

work of P, over the mean force, represented by 0'21039P
1 ,

is the same in amount.
If now we suppose the direction of the constant force P

a

to be changed, when its point of application reaches the point
B, so as to act parallel to the direction BA until the point of

application arrives at A, it is clear that the work
r
of P^ due

to the path described from B to A will also be expressed by
P

t
x 25, so that the work due to an entire revolution of the

point of application will be P
t
x 45. As the mean force will

evidently be the same for the entire revolution of the point
of application, it follows that the greatest positive, or nega-
tive excess, as stated above, will be 0-0526 xPj4J, or 2

1 of

the work for one entire revolution.

It is thus seen that although the work of the effective

variable component P, sin. a ofr
l
is not, like that of the mean

force, uniform for equal paths, still it at no time falls short

of nor exceeds the work of the mean force by more than
about V of the entire work for each revolution. Were any
mechanism, as that for pumping water for example, so

arranged that either the constant force P15 or a mean force

equal to 0*6366 P
15 acting as above described, were applied

to it, the quantity of water delivered by the one would at no
time exceed, in any one revolution, that delivered by the
other by more than V of the total quantity delivered by
either during the entire revolution.

NOTE (n).

If P2 ,
for example, were the resultant of the other pres-

sures, its component P3 cos. a
a would be equal to the alge-
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braic sum of the components P! cos. a
l5
P

3 cos. 3 , &c., of the

other pressures P 15
P

3 ,
&c.

;
the work therefore of Pa ,

esti-

mated in the direction of the given path AB, and corres-

ponding to any portion of this path, will be equal to the

algebraic sum of the work of the other pressures PM P3 , &c.,

corresponding to the same portion of the given path.

NOTE (0).

Since at the point E, taken as the point of application, the

line of direction of the pressure becomes a tangent to the
arc described with the radius OE, it follows that the infi-

nitely small arc described with the radius OE may be taken
for the infinitely small path described by the point of appli-
cation in the direction of the tangent. Denoting by da the

infinitely small angle described by the radius OE, then
OE x da will express the infinitely small path, or arc

;
and

P x OE<^a will represent the elementary work of the

pressure.
'

If the pressure remains constant in intensity and direction

during an entire revolution of the body about 0, then will

the work of P for this revolution be represented by
P x circum. OE.

(p).

The term living force is more generally used with us by
writers on mechanics instead of its Latin equivalent vis vwa,
to designate the numerical result arising from multiplying
the quantity denominated the mass of a body by the square
of the velocity with which the body is moving at any
instant. It will be readily seen that this product does not

represent a pressure, or force, but the numerical equivalent
of the product of a certain number of units of pressure and a
certain number of units of path. The one magnitude being
of as totally a distinct order from the other as an area is

different from a line, and therefore having no common unit
of measure.

Besides this expression, which serves no other really use-
ful purposes than as a name to designate a certain numerical

magnitude which is of constant occurrence in the subject of

mechanics, there is another also of frequent use, termed



590 EDITORIAL APPENDIX.

quantity of motion, wnich is the product of the mass and
w

the velocity, or v. This is also termed the dynamical

measure of a force in contradistinction to pressure, as usually

estimated, which is termed the statical measure of a force.

In estimating the accumulated work in the pieces of a

machine which have either a continuous or a reciprocating
motion of rotation it is necessary to find expressions for the

moments of inertia of these pieces with respect to their axis

of rotation, and this may, in all cases, be done, within a cer-

tain degree of approximation to the true valu, by calculat-

ing separately the moment of inertia of each of the compo-
nent parts of each piece and taking their sum for its total

moment of inertia, on the principle that these moments may
be added to or subtracted from each other in a manner
similar to that in which volumes, or areas are found from
their component parts.

In making these approximate calculations, which in many
cases are intricate and tedious, it will be well to keep in view
the two or three leading points following, with the examples
given in illustration ol some of the more usual forms of

rotating pieces.
1st. The general form for the moment of inertia of a body

rotating around an axis parallel to the one passing through
its centre of gravity as given in equation 58, (Art. 79) is

Now if the distances of the extreme elements of the body
from the axis passing through its centre of gravity are small

compared with that of A, the distance between the two axes,
the second term I of the second member of this equation
may be neglected with respect to the first, and A2M be taken
as the approximate value of the required moment. This
consideration will find its application in many of the cases
referred to, as, for example, in that of finding the moment of
inertia of the portion of a solid, like the exterior flanch of the
beam of a steam-engine, the volume of which may be approx-
imately obtained by the method of Guldinus (Art. 39.). In
this case, A representing the area of the cross section of the
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flanch, and s the path which its centre of gravity would

describe in moving parallel to itself in the direction of the

flanch around the beam, any elementary volume of the

flanch between two parallel planes of section will be ex-

pressed by Ads. Now the moment of inertia of this elemen-

tary volume from equation 58 is

in which the first term of the second member, which

expresses the sum of the elementary volumes Ads into the

squares of their respective distances r from the axis of rota-

tion, may be taken as the approximate value required ;
inas-

much as I, the sum of their moments of inertia with respect
to the parallel axes through their centres of gravity, may be

neglected witn respect to the first term. The problem will

therefore reduce to finding the moment of inertia of the line

represented by s, which would be described by the centre of

gravity of A, with respect to the assumed axis of rotation,
and then multiplying the result by A.

2nd. As the line s is generally contained in a plane per-

pendicular to the axis of rotation, and is given in kind, as

well as in position with respect to this axis, being also gene-

rally symmetrically placed with respect to it, its required
moment of inertia may, in most cases, be most readily
obtained by finding the moment of inertia of s separately,
with respect to two rectangular axes contained in its plane,
and taken through the point in which the given axis ofrotation

pierces this plane, and then adding these two moments.
The moment of inertia of a line taken in this way with

respect to a point in its plane has been called by some
writers the polar moment of inertia.

This method is also equally applicable to finding the mo-
ment of inertia of a plane thin disk revolving around an axis

perpendicular to its plane, and to solids which can be divided
into equal laminae by planes passed perpendicular to the axis

of rotation.

(a
1

)
The moment of inertia of the arc of a parabola with

respect to an axis perpendicular to the plane of the curve at

a given point on the axis of the curve.

Let BAG be the given arc
;
A the vertex of the parabola
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R the point on its axis at which the

axis is taken. Through R draw
the chord PQ. Represent the

D chord BC of the given arc by 5;
its corresponding abscissaAD by a\
and AR by c. Let y represent the

ordinate pq, and x the correspond-

ing abscissa of any element dz of the arc.

From the preceding remarks, the moment of inertia of dz

with respect to the axis AD will be expressed by y*dz ;
and

that of the entire arc BAG by

as from the equation of the parabola, y*= ^ x.

By integration f

in which Z is the length of the arc BAG.
In like manner the moment of inertia of dz with respect

to the chord PQ is

and for the entire arc BAG,

i& *z

= 2 ^-fA= .-
which integrated as above,

6l?^9
/
^Z U

* Church's Int. Cal. Art. 199. f Ibid. Art. 150.
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From the preceding remarks, the moment of inertia of Z,
with respect to the axis at the point E perpendicular to the

plane of Z, is

32

\

/

"

The value of Z in the above expressions is

Each of the preceding expressions may be simplified, and
an approximate value obtained, sufficiently near for practical

applications, when the ratios of I and c to a are given* For

example, when b /_ \a there obtains

the terms omitted, being small fractions with respect to.

unity, do not materially affect the result.

Having found the moment of inertia of a parabolic curve, .

that of a parabolic ring of uniform cross section, taken per-

pendicular to the direction of the curve at any point, and

having its centre of gravity at its point of intersection with
the curve, can be obtained by simply multiplying Ij+I, by
S the area of the given cross section.

(A
1

)
The moment of inertia of the segment of aparabola with

respect to an axis perpendicular to its plane at a given
point of the axis of the curve.

Let BAG be the given segment ;
A the vertex

;
AD the

* Church's Int. Cal. Art. 199.

38
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axis of the curve
;
and D the point on

the axis with respect to which the mo-
ments of inertia are estimated. Denote
the chord BC by 5; the abscissa AD
by a.

By (Art. 81) the moment of inertia of

an elementary area pq with respect to AD is T̂ (pq)*dx=
' That of the segment therefore will be

~

In like manner the moment of inertia of an elementary
area asps, with respect to the axis BC, is -J (ps)

3

dy= -J(a a?)

8

dy. That of the segment therefore will be

16 *&

= f f(a
-

From this last expression we readily obtain the moment
of inertia of a disk having the segment for its base and its

thickness represented by c, with respect to an axis at D per-

pendicular to its base by simply multiplying I
x+ 1

2 by c
;

ft+ 1.) c = A fo + T% 0'fo = I^
in which f Zc = Y, the volume of the disk.

or

l

)
The moment of inertia of a parabolic disk, or prism,,

with respect to an axis parallel to the chords which termi-

nate the upper and lower bases and midway between the

chords.

Let pq be an elementary volume of the disk contained
between two planes parallel to the base

BC of the disk. Adopting the same
notation as in the preceding article, the

volume pq is expressed by

2t/ . c . dx.

The moment of inertia of this elemen-

tary volume with respect to an axis

through its centre of gravity and parallel
to BC is (Art, 83)
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W . 2v . c . dx

595

and the moment of inertia of the same volume with respect
to the axis, parallel to the one through its centre of gravity,
taken on the base BC of the disk and midway between the

upper and lower chords is (Art. 79 Eq. 58)

. c . dx . c . dx (axf ;

the moment of inertia of the entire disk with respect to the
same axis is

.-. I= Tv C 2y . G . dx {c* + (dx)*\ + f Zy . c . dx (ax)\

Substituting for x and dx in terms of y, omitting the term

containing (dx)
3

, and integrating as indicated, there obtains,

a

in which V=

(d
r

)
The moments of inertia of a right prism with a trape*

zoidal "base with respect to axes perpendicular andparallel
to the base at the middle point oj theface terminated by the

broader side of the trapezoid.

Let AG-HC be the trapezoid forming the base of the prism.
Represent the altitude EF of the trape-
zoid by a

;
AG by I

;
CH by b

1

;
and the

height GB of the prism by c. Let^ be an

elementary volume of the prism between
two planes parallel to the face AB and
at a distance Ee=x from the face CD.
From C drawing Cc parallel to HG there

obtains

A /I
pr= ==-

. Ac = -
(bEF a

=pr V.
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The elementary volumepq is therefore

The moment of inertia ofpy with respect to an axis
through

its centre of gravity and perpendicular to the base of the

prism is (Art. 83).

and that of the entire prism with respect to an axis at F, the
middle point of AGr, and parallel to the preceding axis, is

= A f |
- Q-V)+V [

c.
/ I #

omitting the term containing (dx}\ and integrating, as indi-

cated, there obtains

in which F=

By a like series of operations the moment of inertia of the
entire prism, with respect to an axis perpendicular to the

preceding one at its middle point between the upper and
lower bases of the prism, will be
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(e) The moment of inertia of a right prismoid with rectan-

gular bases with respect to an axis XY through the centre

o gravity of the tower base and parallel to one of its

sides.

Let AB = J, BC = c be the sides of the rectangle of the
lower base

;
ab = b\ be= c

l

the sides

of the upper base. Let pqrs be any
section of the prismoid parallel to

the lower base and at a distance x
from it* and let a be the altitude of

the prismoid, or the distance between
its upper and lower bases.

From the relations between the
dimensions of the prismoid there ob-

tains (Art. f
')

a

x. x(c c
l

)+ ac
l

2r=-(c-c
l

)+c
l=- ^ ;

and to express the elementary solid contained between two

planes parallel to the base of the prismoid and at the height
x above it,

x(b b
l

) + ab
1

x(c c
l

) + ac
1

x * -
. dx.

The moment of inertia of this solid, with respect to an
axis xy through its centre of gravity and parallel to XY, is

(Art. 83)

x (b b
1

) + afr x(c c
l

}+atf-- -*

The moment of inertia of the prismoid (Art. 79 Eq. 58) is

\ (*c-^+
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o

fxg>-J a

omitting
the term containing (d)* and integrating as indi

cated, there obtains,

By integrating the expression for the elementary volume
between the same limits, there obtains to express the volume
of the prisinoid

which is the formula usually given in mensuration.

In each of the preceding examples, the quantities I, I
15
&c.

are expressed only in terms of certain linear dimensions
;
to

obtain therefore the moments of inertia proper these results

must be multiplied by the quantity -, or the unit of mass

corresponding to the unit of volume, in which ^ represents
the weight of the unit of volume of the material and

g = 32 feet.

Each of the above values of I may be placed under more

simple forms for the greater readiness of numerical calcula-

tion by throwing out such terms as will visibly affect the

result in only a slight degree. But as such omissions depend
upon the numerical relations of the linear dimensions of the

parts no rule for making them can be laid down which will

be applicable to all cases. .

(/"') The moment of inertia of a trip hammer.

These hammers consist of a head of iron of which A repre-

sents a side and A' a

front elevation; of a

handle of wood B,
which is either of the

shape of a rectangular

parallelepiped, or of
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two rectangular prismoids, having a common base at the
axis of rotation C where the trunnions, upon which the
hammer revolves, are connected firmly with the handle by
an iron collar. Another iron collar is placed at the end of

the handle, and is acted on by that piece of the mechanism
which causes the hammer to rotate.

To obtain the moment of inertia of the whole, that of each

part with respect to the axis is separately estimated and
the sum then taken.

The head A, A' may be regarded as a parallelopiped of

which the side A', reduced to its equivalent rectangle by
drawing two lines parallel to the vertical line that bisects

the figure, is the end, and the breadth of the side A is the

length. If then from the moment of inertia of this parallel-

opiped that of the void a, or eye of the -hammer, which is

also a parallelopiped, be taken, the difference will be the
moment of inertia of the solid portion of the head. The
moments of inertia of these parallelepipeds may be calcu-

lated, with respect to the axis C, by first estimating them
with respect to the axes through their respective centres of

gravities G and ^, parallel to C, by (Art. 83) and then witli

respect to C by (Art. 79. Eq. 58). Or if the moments of
inertia with respect to G and g are small with respect to the

product of their volumes and the squares of the distances

GO and ^C, then the difference of the latter products may
be taken as the approximate value.

The moment of inertia of the handle, if also a parallelo-

piped, will be found with respect to C by (Arts. 79, 83). If

it is composed of two rectangular prismoids, then the mo-
ment of the parts on each side of the axis must be found by
(') and their sum taken.

The moment of inertia of the trunnions and the iron hoop
to which they are attached may be found by (Arts. 85, 87)
and their sum taken. But as this quantity will be generally
small with respect to the others it may be omitted.

That of the hoop at the end of the handle may be taken

approximately as equal to the product of its volume and the

square of the distance between the axis through its centre
of gravity and that of rotation.

(g
f

)
The moment of inertia of a cast iron wheel.

These wheels usually consist of an exterior rim A A' of
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uniform cross section con-

nected with the boss, or nave

C, C', which is a hollow

cylinder, by radial pieces, or

arms B, B', the cross section

of which is in the form of a

cross. Each arm having the

same breadths at top and
bottom in the direction of

the axis of the wheel as those of the rim and nave which it

connects; the thickness perpendicular to the axis being
uniform. The projection or ribs on the side of each arm,
and which give the cross form to the section, being of uni-

form breadth and thickness
;
or else of uniform thickness

but tapering in -breadth from the nave to the rim. These
ribs join another of the same thickness that projects from the

inner surface of the rim.

Eepresent by E the mean radius of the rim, estimated from
the axis to the centre of gravity of its cross section

;
J its

breadth, and d its mean thickness
;
V its volume, and I its

moment of inertia with respect to the axis; ^ the weight of

its unit of volume, and y=3%% feet
;
then by (Art. 86)

V=totW>d andl=^ FE2

,

V

omitting J^
2
as but a small fractional part of E2

.

Eepresenting by b
l
the breadth of the arm at the axis,

supposing it prolonged to this line
;
J

2
its breadth at the rim,

supposing it prolonged also to the mean circle of the rim, d
1

its thickness
;

V. its volume
; I, its moment of inertia, then

2

Eepresenting by a^ the breadth at bottom, 2
the breadth at

top of the ribs, or projections on the sides of each arm, esti-

mated also at the axis and mean circle of the rim
; d^ their

thickness
;
F2 their volume

;
I
2 their moment of inertia

;

then by (a')

F.=B* ?dp and !.=

The sum I +1,4-1, will be the moment of inertia of the
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entire wheel approximately, since the moment of inertia of

the portions of the boss between the arms is omitted, this

being compensated for by supposing the arms prolonged to

the axis and to the mean circle of the rim. As the quanti-
ties Fj, F"

2 , Ij and I
2
are taken but for one arm, they must

be multiplied by the number of arms to have the entire

moment.

(h
f

)
The moment of inertia of a cast iron steam engine beam.

These beams usually consist of two equal arms symmetri-
cal with respect to a
line a a' through the

axis of rotation o.

Each arm, a V a' and
a 1) a', consists of a

parabolic disk of uniform thickness
;

b and V being the ver-

tices of the exterior bounding curves, a a' their common
chord, and ob, ob' their axes. The disk is terminated on the

exterior by a flanch B of uniform breadth and thickness. A
rib C, either of uniform breadth and thickness, or else of

uniform thickness, and tapering in breadth from the centre o

to the ends &, 5', projects from each face of the plane disk

along the axis b b'. The beam is perforated at the centre,
near the two extremities and at intermediate points, to

receive the short shafts, or centres around which rotation

takes place. Around each of these perforations, projections,
or bosses D', D", &c., are' cast, to add strength and give a
more secure fastening for the shafts.

The beam being symmetrical with respect to a a', it will

be only necessary to calculate the moments of inertia of the

component parts of each arm with respect to the axis o and
take double their sum for the total moment of inertia of the

beam. These component parts are 1st, the parabolic flanch
;

2nd, the parabolic disk of uniform thickness enclosed by the

flanch
; 3d, the rib on each side of the disk, running along

the centralline bb
f

; 4th, the projections, or bosses D' &c.,
around the centres.

The moment of inertia of the flanch will be calculated by
(') as its thickness is small compared with the other linear

dimensions. That of the disk will be calculated by (&').

That of the rib by (d
f

).
Those of the projections may be

obtained within a sufficient degree of approximation by
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taking the product of their volumes and the squares of their

respective distances from the axis o.

The sum of these quantities being taken it must be multi-

plied by - as in the preceding cases
; v> being the weight of

the unit of volume of the material.

NOTE (s).

The increase of tension due to rigidity and which ig ex-

pressed by - - - - may be placed under the following

form,
cm . a+cm . I . Pa cm (a+l . Fa)

K R

by writing cm . a for D, and cm . ~b for E, in which c repre-
sents the circumference of the rope, and m the power to

which c is raised.

The increase of tension of any other rope whose circumfer-

ence is c
l
bent over the same pulley and subjected to the

same tension Pa is, in like manner, expressed by

E
Now representing by T and T

l
the two values above for the

respective increase of tension for c and c
l
there obtains, by

dividing the one by the other,

which expresses the rule given above for using the tables in

calculating the increase of rigidity due to a cord whose cir-

cumference is different from those in the tables.

NOTE (t).

As one of the chief ends of every machine designed for

industrial purposes is, under certain restrictions as to the
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quality, to yield the greatest amount of its products for the

motive power consumed, it becomes a subject of prime
importance to see clearly in what way the work yielded by
the motive power to the receiver, at its applied point, is

diminished by the various prejudicial resistances, in its

transmission through the material elements of the machine
to the operator, or tool by which the products in question
are formed.
The most convenient method for doing this will be to

place (equation 112, Art. 145) which expresses the relation

between the work 2U
1
of the motive power at the applied

point and that 2U3 the work of the operator at the working

point, with the portion 2U+ - - 2w (v*v*) which repre-

sents the work consumed by the prejudicial resistances and
the inertia, under a form such that the work of each preju-
dicial resistance shall be separately exhibited, for the pur-

pose of deducing, from this new form of the equation, the

influence which each of these has in diminishing the work

yielded at the applied point and transmitted to the operator.
To effect this change of form in (equation 112) designate by
P! the motive power, and S

x
the path passed over by its

point of application in its line of direction between any two
intervals of time, during which Pj may be regarded as vari-

able both in intensity and direction
;
P

2
and S

a
the resistance

and corresponding path at the working point ;
R the various

prejudicial resistances which, like friction, the stiffness of

cordage, &c., act with a constant intensity, or are propor-
tional to P

1?
and S their path ;

w
l
the weight of the parts the

centre of gravity of which has changed its level during the

period considered, and H its path ;
and w (v.?v*)= %m

2<7

(v^v^) the half of the difference between the living forces

or the accumulated work of the material elements in motion,

of which m - - is the mass, during the same period, in

which the velocity has changed from v
1
to vv

Now for an elementary period dt of time, during which
the forces P, &c., may be regarded as constant, and their

points of application to have described the elementary paths
dS

l &c., in their lines of direction, (equation 112) will take
the form,

h, . . . (A),
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in which the 1st member of the equation expresses the incre-

ment of the living force, or the elementary accumulated
work for the interval dt at any instant when the velocity of

the mass m, is v\ and the 2nd member the corresponding

algebraic sum of the elementary work of Pn R, &c. This

equation being integrated between the limits ^ and
2 in

which v changes from v
l
to v^ there obtains,

2lm -O =

2
fw.dh

..... (B).

This equation (B) is the same as (equation 112). The
symbol 2 designating the aggregate of the work of the

various forces of the same kind
;
and that as / P^Sj &c.

the work of each force as P,, supposing it to be either con-
stant or variable. In either case whenever P

x &c., can be

expressed in terms of B! the value of / Y
1
dS

1
can be found

by one of the methods in (Notes I and m) ;
and supposing P 1

&c., to represent their mean values, and S
x &c., the paths

described in their true directions during the interval con-

sidered, equation (B) may be written under the following form
for the convenience of discussion,

. . . .(0).

In this last equation 2 / w
l
dh=WH (Art. 60) represents

the work of the total weight of the parts whose centre of

gravity has changed its level during the interval considered,
and it takes the double sign ,

as the path H may be
described either in the same, or a contrary direction to that
in which W always acts.

Before proceeding to discuss the terms of (equation C),
it may be well to remark that the term RS does not take
into account the work expended by P, in overcoming the
molecular forces brought into play by the deflection, torsion,
extension, &c., of the parts of the machine

; for, owing to
the rigidity of these parts, this forms but a very small .frac-
tional part of the total work of the exterior forces whilst the
machine operates continuously for some time; as, during
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this time, the tension of the parts, or the molecular resist

ances remain sensibly the same, and the molecular displace
ments are for the most part inappreciable, or else very small

compared with the paths described by the points of applica-
tion of the other forces.

This remark, however, does not apply to the expenditure
of work by the motive power where the operation of the

machine requires that some of the parts in motion shall be

brought into contact with others which are either at rest, or

moving with a slower velocity so as to produce a shock.

In this case there may be a very appreciable amount of

living force, or accumulated work destroyed by the shook,

owing to the constitution of the material of which the parts
are composed where the shock takes place ; and, if the shocks

are frequent during the interval considered, and in which
the other forces continue to act, the accumulated work

destroyed during this interval may form a large portion of

the work expended, or to be supplied by the motive power.
In calculating this amount of accumulated work destroyed,
we admit what is in fact frue in such machines, that the

interval in which the shock takes place is infinitely small

compared with the interval in which the other forces act

continuously, and therefore, in estimating the accumulated
work destroyed in each shock, that we can leave out of

account the work of the other forces during this infinitely
small interval. In this way, considering also that the parts
where the shock takes place are usually formed of materials

which undergo an almost inappreciable change of form from
the shock, and that therefore the mechanical combinations
of the machine are sensibly the same after the shock as

before it, we readily see that, to obtain the total expenditure
of work by the motive power, for any finite interval, we must
calculate that which is consumed by all the other resistances

during this interval, and add to this that destroyed by the

shocks during the same interval, the latter being calculated

irrespective of the work of the other forces during the short

duration in which each shock occurs.

We thus see that, except in some cases where the great

velocity of the parts in motion may give rise to an appreci-
able expenditure of work caused by the resistance of the

medium in which these parts may be moving, as the air, &c.,
the forces which act upon any machine in motion are the

motive power ;
the resistances, such as friction, stiffness of

cordage, &c., which act either with a constant intensity

during the motion, or are proportional to the motive power ,
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the weight of the parts whose centres of gravity do not remain

on the same level during this interval
;
the

useful^
resistance

arising from the mechanical functions the machine is designed
for

;
and the forces of inertia which either give rise to accu-

mulated work, or the reverse, as the velocity increases, or

decreases during the interval considered.

Eesuming equation (C) we obtain, by transposition,

P&=P& I^WH-Jwv.' +iw^1
.

That is the useful work, or that yielded at the working point
and which it is generally the object of the machine to make
as great as possible consistently with the quality of the

required products, will be the greater as the terms in the

second member of the equation affected with the negative

sign are the smaller.

Taking the term ES, it is apparent that all that can be
done is to endeavor in the case of each machine to give
such forms, dimensions and velocities to those parts where
these resistances are developed as will make it the least

possible.
With respect to WH it will entirely disappear from the

equation when H=o ;
in which case the centre of gravity of

the entire system will remain at the same level
;
or else

only that portion of this term will disappear which belongs
to those parts of the machine whose centres of gravity either

remain at rest, as in the case of wheels exactly centered, end-
less bands and chains, &c.

;
or in the case of those pieces

which receive a motion simply in a horizontal direction.

This term will also disappear in whole, or in part, in those

cases where the centre of gravity ascends and descends

exactly the same vertical distance in the interval correspond-
ing to the work Pfi l ;

for during the ascent, as the direction

of the path H is opposite to that of the weight "W", the work
consumed will be WH, whereas, in the descent, it will

restore the same amount or -f-WH, and the sum of the two
will therefore be 0. This takes places in the parts of many
machines, for example in crank arms, and in wheels which
are not, accurately centered; in both of which cases the
centre of

gravity ascends and descends the same distance

vertically in the interval corresponding to each revolution
of these parts whilst in motion

;
also in those parts of a ma-

chine, like the saw and its frame in the saw mill, which rise

and fall alternately the same distance.
In all of these cases then the useful work P

2
Sa

will not be
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affected by the work due to the weight of the parts in

question.
It may be well to observe that the preceding remarks refer

only to the direct influence of the weight of the parts on the

amount of useful work
;
but whilst directly it may produce

no effect however great its amount, the weight, indirectly,

may cause a considerable diminution of this work, by
increasing the passive resistances and thus the term US.
The same holds with regard to the accumulated work, repre-
sented by the term %mv*, from which a considerable dimi-

nution may be made in P
2
S

2
if this accumulated work cannot

be converted into useful work, and thus be made to form a

portion of P2S2 ,
when the action of the motive power is either

withdrawn, or ceases, by variations in its intensity, to yield
an amount of work which shall suffice for the work consumed

by the resistances.

These last remarks naturally lead us to the consideration

of the two terms fawv*, and -~
jmi>2

2

,
or half the living forces.

or accumulated work at the commencement and end of the

interval considered. As the machine necessarily starts from
a state of rest under the action of the motive power P l5

it

follows that fynv*, the accumulated work due to this action

tends to increase P2S2 ,
whilst that fynv* is so much accu-

mulated in the moving parts by which P
2
S

2 is lessened.

This diminution of P
2
S

2
is but inconsiderable in comparison

with the total useful work when the interval in question, and

during which the machine operates without intermission, is

great ;
also in cases where the velocity attained by the parts

in motion is inconsiderable, as for example in machines em-

ployed for raising heavy weights, in which &nv* will in

most cases be but a small fraction of the useful work which
is the product of the weight raised and the vertical height it

passes through. In this last example we also see the incon-

veniences which would result from allowing bodies raised by
machinery to acquire any considerable amount of velocity ;

or to quit the machine with any acquired velocity, as, in

this case, the accumulated work generally would be entirely
lost so far as the required useful effect is concerned.

Except in the case where the accumulated work fynv*
can be usefully employed in continuing the motion of the

machine and gradually bringing it to a state of rest when the

motive power P, has either ceased to act, or has so far

decreased in intensity as to be incapable of overcoming the

resistances, whatever tends to any augmentation of living
force should be avoided, for the teim which represents this
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being composed of two factors the one representing the mass

of the parts in motion and the other the square of its velo-

city, it is evident that the prejudicial resistances such as

friction on the one hand and the resistance of the air on the

other will increase as either of these factors is increased, and
thus a very appreciable amount of this accumulated work

may be consumed in useless work caused by the very in-

crease in question. If, moreover, the machine from the nature

of its operations is one that requires to be brought suddenly
to a state of rest, any considerable amount of accumulated
work might so increase the effects' of shocks at the points of

articulation as to endanger the safety of the parts.
The foregoing remarks apply only to those parts of a ma-

chine where the direction of motion remains the same whilst

the machine is in operation. Where any of the parts have
a reciprocating motion, in which case whilst the part is

moving in one direction the velocity increases from up to

a certain limit and then decreases until it again becomes
at the moment when the change in the direction of motion
takes place, and so on for each period of change, it will be

readily seen that where the velocity varies by insensible

degrees, the accumulated work of these parts for each period
of change will be and will therefore have no influence on
the amount P

2
S

2
of useful work.

The avoidance of abrupt changes of velocity in any of the

parts of a machine is of great importance. The mechanism
therefore should, as a general rule, be so contrived that there

shall be the least play possible at the articulations of the

various parts, and that the articulations shall receive such
forms as to procure a continuous motion. In cases also

where any of the parts have a reciprocating motion such
mechanical contrivances should be used as will cause the
variations of velocity in these parts, within the range of

their paths, to take place in a very gradual manner
;
such

for examples as what obtains in the cranks and eccentrics
which are mostly employed to convert the continuous circu-

lar motion of one part into reciprocating motion in another,
or the reverse.

There are some industrial operations however which are

performed by shocks, as in stamping machines, trip ham-
mers, &c., and in these cases the useful work is due to the
work developed by the motive power in raising the pestle
of the stamping machine, or the head of the trip hammer
through a certain vertical distance from which it again falls

upon the matter to be acted on, having acquired in its
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descent an amount of living force, or accumulated work due
to the height through which it has been raised. In such
cases it is to be noted that, independently of the work due
to the motive power consumed by the resistances whilst the

hammer or pestle is kept in motion by the other parts of the

mechanism, and which is so much uselessly consumed so for

as the useful work is concerned, there will be a portion of

the accumulated work in the pestle, or hammer also uselessly

consumed, arising from the want of perfect rigidity and

elasticity in the material of which these two pieces are

usually composed. Besides this, both the pestle and matter
acted on may and generally do have relative velocities after

the shock between them, which as they are foreign to the

purpose of the operation, will also represent an amount o*
accumulated work lost to the useful work. From this, w$-

may infer that, as a general rule, other industrial modes, of

operating a change of form in matter will be preferable; to-

those by shocks, whenever they can be employed ;
and that

such modes are moreover advantageous, as they avoid those

jars to the entire mechanism which accompany abrupt
changes in the velocity of any of the parts, and which, by
loosening the articulations more and more, increase the evil,
and ultimately render the machine unfit for service.

Having examined the influence of all the various hurtful

resistances brought into action in the motion of machines

upon the work PjS, expended by the motive power, and

pointed out generally how the consumption of the work may
be lessened, and the useful work to the same extent increased,
we readily infer that like observations are applicable to the

term P
2
S

2
the work of the resistance at the working point.

As the prime object in all industrial operations performed by
machinery is to produce the greatest result of a certain kind
for the amount of work expended by the motive power, it

will be necessary to this end that the velocity, the form, &c.,
of the operator, or tool by which the result sought is to be

obtained, should be such as will not cause any useless expen-
diture of work. On this point experiment has shown that

for certain operators there is a certain velocity of motion

by which the result produced will be the most advantageous
both as to the quality and quantity.
With respect to the work of the motive power itself repre-

sented by the product PjS, it admits of a maximum value
;

for when the receiver to which Pj is applied is at rest, 'P
l
will

act with its greatest intensity, but the velocity then being
the product P l

S
l
will also be ; but as the velocity increases

39
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after the receiver begins to move the intensity of the action

of P
x upon it decreases, until finally the velocity of the

applied point may receive such a value Y that P
1
will become

0, and the product P^ in this case will then also he 0. As
the work PjS, thus becomes in these two states of the velo-

city, it is evident that there is a certain value of the velo-

city which will make FjS, a .maximum. To attain this

maximum the mode of action of the motive power selected

on each form of receiver to which it is applicable will require

to be studied, and such an arrangement of its mechanism

adopted as will prevent any decompositions of the motive

power that would tend in any manner to increase the hurt-

ful resistances and thus diminish the useful work.

It will be very easy to show that the laws of motion of all

machines, that is the relations between the times, spaces and

velocities of the motion of any one of the moving parts are

implicitly contained in the general equation of living forces

as applied to machines wThich has just been discussed.

Resuming (equation B) with this view, and representing by
dm any elementary mass in motion whose velocity is v

9
at

any instant wrhen it has described the path, or space s, if we
take any other elementary mass dm in a given position and

denote by u its velocity at tke same instant, we shall have
i'

a
=M

a (9,9),
and v

l
=u

l ($$t) ;
in which 95 is a purely geome-

trical function, since, from the connection of the parts of a

machine, in which, any motion given to one part is trans-

mitted in an invariable manner to the other, the space passed
over by any one point can always be expressed in terms of

that passed over by any other assumed at pleasure.
From the relations vt

=ut (95), and v^ dtds, we obtain

v* and u^ d^ ^

(tt

Substituting these values of v? and i>
2
dvt

in (equations B and

A), and letting m still represent the sum of the elementary
masses as dm, there obtain the two equations

tf^ /^P^S, 2 fudS -

fP2dS2 zfwdh. (B')
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ds =sP^-sRdS -

. (A'),

the first showing the relations between any two states of the

velocities u^ and u
t
for any definite interval, and the second

for the infinitely small interval dt. ]STow as the relations

between the quantities dS^ dS &c., or the elementary
paths described by the points of application of P

15
P

2 , &c.,
and the elementary space ds, from the connection of the

parts of the machine, can be expressed in functions of s and
of the constants that determine the relative magnitudes and

positions of those parts ;
and as, moreover, P 15

P2 , &c., are

either constant, or vary according to certain laws by which

they are given in functions of the paths S
1? S 2 , &c., we see

that all the relations in question are implicitly contained in

the two preceding equations.
Let us examine the kinds of motion of which a machine is

susceptible and the conditions attendant upon them. We
observe, in the first place, supposing the machine to start

from a state of rest, that the elementary work ^
l
d^>

l
of the

motive power must be greater than that of the resistances

combined, or P^Sj R^S &c. >0, so long as the velocity
is on the increase. The living force is thus increased at

each instant by a quantity d (mv*)=2mvdv, or by an amount
which is equal to twice the elementary work of the motive

power and resistances combined
;
and this increase will go

on so long as the elementary work of the motive power is

greater than that of the resistances. But, from the very
nature of the question, this increase cannot go on indefinitely,
for the point of application of the motive power would in the
end acquire a velocity so great that P

1
would exert no effort

on the receiver, whereas the resistances still act as at the

commencement, and some of them even increase in intensity
with the velocity. The living force therefore will, at some

period of the motion, attain a limit beyond which it will not

increase, a fact which the operation of all known machines

confirms, and, having thus reached this state, it must either

continue the same during the remainder of the time that the
machine continues in motion, or else it must commence to

decrease until the velocity attains some inferior limit from
which it will again commence to increase, and so on for each
successive period of motion, during which the action of the
forces remains the same.
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Supposing
the machine to continue its motion with the velo-

city it has attained at this maximum state of the living force,

we shall then have

and

inasmuch as the motion being now uniform the difference

between the living forces corresponding to any finite inter-

val of time is 0. Considering the manner in which the parts
of machines are combined to transmit motion from point to

point, we infer that this condition with respect to the

increase of living force, and which constitutes uniform

motion, can only obtain when the velocities of all the differ-

ent parts bear a constant ratio to each -other. Representing
by t/, v", /", &c., these velocities which are respectively

equal to
, _, -, &c., we see that the ratios of ds,

dt dt dt

ds", ds'", &c., will also be constant when those of
-y', v", &c.,

are so
;
that is, this constancy of the ratio of the effective velo-

cities and of the quantities ds', ds", &c., must subsist together
for all positions of the parts of machines to which they refer

;

but as the latter, which are the virtual velocities, or ele-

mentary paths described, depend entirely on the geometrical
laws that govern the motion of the parts, a little consideration
of the various mechanical combinations by which motion is

transmitted will show that, in order that their ratios shall

respectively remain constant, no pieces having a reciprocat-

ing motion can enter into the composition of the machine,
as the velocities of such pieces evidently cannot be anade to

bear a constant ratio to the others. This condition it will be
seen refers exclusively to the mechanism of the machine, or

the geometrical conditions by which the parts are connected,
and has nothing to do with the action of the forces them-
selves.

But when the condition of uniform motion is satisfied

there obtains also

that is, according to the principle of virtual velocities, an
equilibrium obtains between the forces which act on the
machine irrespective of the inertia of the parts. As a gene-
ral rule this condition requires that not only must the forces
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P
15 11, &c., be constant both in intensity and direction and

act continuously, but that the term Wc$tl must be sepa-

rately equal to 0, or the centre of gravity of each part must

preserve the same level during the motion
;
for were this

not so any piece whose weight is w would evidently impress
an elementary work represented by wdh which would be
variable in the different positions of the mechanism

;
unless

w, having itself a uniform velocity, formed, as might be the

case, a part of the motive power P^ or of the useful resist-

ance P2
.

It thus appears that to obtain uniform motion not only
must the mechanism used for transmitting the motion con-

tain no reciprocating pieces, and therefore consist solely
of rotating parts, as wheels, &c., and parts moving continu-

ously in the same direction, as endless bands, and chains, &c.
;

but that the centres of gravity of these pieces shall remain
at the same level during the motion, which will require that

the wheels and other rotating pieces shall be accurately cen-

tered so as to turn truly about their axes.

The difficulty of obtaining a strictly uniform motion in

machines is thus apparent, for it involves conditions in them-
selves practically unattainable, that is, applied forces acting
continuously and with a constant intensity and direction, and
that the ratio of the virtual velocities of the different parts
should be constant and independent of the positions of the

mechanism, a condition which requires that the terms ($s)
and I,d7n(s)'

2

in the preceding equations shall also be con.

stant for all of these positions. But even were these condi-

tions satisfied, it can be shown that rigorously speaking a
machine starting from a state of rest will attain a uniform

velocity only in a time infinitely great. This will appear
from geometrical considerations of a very simple character,
or from the form taken by equation. By the first method,
_ let OT, OY be two co-ordinate

axes, along the one set off the

abscissas Qt'^ O", &c .
?
to re-

present the times elapsed from
the commencement of the mo-

tion, and the ordinates V, t"v',

-f &c., the corresponding veloci-

ties, the curve Qv'v", &c., will

give the relation between the times and the velocities. Now,
from the circumstances of the motion, the increments of the

velocities will continually decrease, and the curve, from the

law of continuity, will approach more nearly to a right line
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as the time increases
; having for its assymptote a right line

parallel
to OT, drawn at a distance Ov from it, which is the

limit the velocity attains when the motion becomes uniform.

We moreover see from the form the curve may assume that

this limit will be approached more or less rapidly.
From (equation B'), representing by c the quantity

we obtain

#* dv* - vT> ^L V-P ^ P ^-~~
l

' * r**

Now, from the preceding discussion, the forces being sup-

posed to act continuously, and with a constant intensity and
7Q 70

direction, and the quantities -1
, -^-

2

being constant, the
ds ' ds

function expressed by the second member -of this equation
has its greatest value when ^

2 0, or when the machine is

about to move, and that after motion begins it decreases

more or less rapidly as the velocity increases, until it be-

comes for a certain finite value of the velocity. Hence it

follows that the function must be of the following, or some

equivalent form,

in which ~k is essentially positive and a function of t>
2
and

certain constants, and V is the limit of the velocity in ques-
tion. We shall therefore obtain from (equation B'), by sub-

stituting this function for the second member,

v
dvz

r cdv^
c
~dt ^v^Vty 5

and t J kTVv Y '

The second member of this last equation, when integrated
between the limits v

9=Q, arid
9
= y.

,
must contain, according

to the known rules applicable to it, at least one term of the
form of a log. (Vvt)

if the exponent n is odd
;

or

a(Y /y
2)~

w+1
,
if n is even; either of which functions will

become infinite for V v^= 0, or when v
2
attains its limit.

From the conditions requisite to attain uniformity of mo-
tion in a machine, the advantages attendant upon it, so far

as it aifects the mechanism are self-apparent ;
not only will

there be none of that jarring which attends abrupt transi-

tions in the velocity, but, from the manner in which the
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forces act, the strains on all the parts- will be equable, and
the respective form and strength of each can thus be regu-
lated in accordance with the strain to be brought upon it,

thus reducing the bulk and weight of each to what is strictly

requisite for the safety of the machine. But advantages not

less important than these result from the use of mecnanism

susceptible of uniform motion, owing to the fact that for

each receiver and operator there is a velocity for the applied
and working points with which the functions of the machine
are best performed as respects the products ;

and these

respective velocities can be readily secured in uniform
motion by a suitable arrangement of the mechanism inter-

mediate between these two pieces.
The advantages resulting from uniform motion in machines

has led to the abandonment of mechanism that necessarily
causes irregularity of motion, in many processes where the

character of the operation admits of its being done
;
and

where, from the manner in which the motive power acts on
the receiver and is transmitted to the operator, parts with a

reciprocating motion have to be introduced, every possible
care is taken to so regulate the action of these parts and to

confine the working velocity within the narrowest limits that

the character of the operation may seem to demand. Many
ingenious contrivances have been resorted to for this pur-

pose, but as they belong to the descriptive part of mechanism
rather than to the object of this discussion, and, to be under-

stood, would require diagrams and explanations beyond the
limits of this work, they can only be here alluded to. There
is one however of general application, the fly wheel, the

general theory and application of which to one of the sim-

plest cases of irregularity are given in (Arts. 75, 76, 265, &c.)
The functions of this piece are to confine the change of velo-

city, arising from irregularities caused either by the mechan-
ism, or the mode of action of the motive power within certain

limits
; absorbing, by the resistance offered by its inertia,

or accumulating work whilst the motion is accelerated, and
the work of the motive power is therefore greater than that

of the other resistances, and then yielding it w^hen the reverse
obtains

;
thus performing in machinery like functions to

those of regulating reservoirs in the distribution of water.
It should however not be lost sight of that whatever resources
the fly wheel may offer in this respect they are accompanied
with drawbacks, inasmuch as the weight of the wheel, its

bulk and the great velocity with which it is frequently
required to revolve, add considerably to the prejudicial
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resistances, as friction and the resistance of the air, and thug

cause a useless consumption of a portion of the work of the

motive power. Whenever therefore, by a proper adjustment
of the motive power and the resistances, and a suitable

arrangement of the mechanism, a sufficient degree of regu-

larity can be attained for the character of the operation, the

use of a fly wheel would be injudicious. In cases also where,
from the functions of the machine, its velocity is at times

rapidly diminished, or sudden stoppages are requisite, the

fly wheel might endanger the safety of the machine, or be

liable itself to rupture, it should either be left out, or else

the mass of the material should be concentrated as near as

practicable around the axis of rotation
;
thus supplying the

requisite energy of the fly wheel by an augmentation of its

mass. In all other cases the matter should be thrown as far

from the axis as safety will permit, as the same end will be
attained with less augmentation of the prejudicial resist-

ances.

From this general discussion some idea may be gathered
of the relations between the work of the power and that of

the resistances in machines, and of the means by which the

latter may be so reduced as to secure the greatest amount of

the former being converted into useful work. It must not

however be concealed that the problem, as a practical one,

presents considerable difficulty, and requires, for its satis-

factory solution, a knowledge of the various operators and
receivers of power, as to their forms and the best modes of

their action. This knowledge it is hardly necessary to

observe must, for the most part, be the result of experiment;
theory serving to point out the best roads for the experi-
menter to follow. Both of these have shown that the work
of the motive power consumed by the resistances, caused by
the parts through which motion is communicated from the
receiver to the operator, is but a small fractional part of the
total work uselessly consumed, whenever the mechanism has
been arranged with proper attention to the functions required
of it

;
but that the principal loss takes place at the receiver

and operator, and this is owing to the difficulty of so arrang-
ing the receiver that the motive power shall expend upon it

all its work without loss from any cause
;
and in like manner

of causing the operator to act in the most advantageous way
upon the resistance opposed to it. Some of the general con-
ditions to which these two pieces must be subjected, as to

uniformity and continuity of action of the motive power and
the resistances, and the avoidance of jarring and shocks have
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been pointed out. as well as the fact that to each corresponds
a certain velocity by which the greatest amount of useful

effect will be attained.

This discussion will make apparent that, comparatively

speaking, but a small amount of the work due to the motive

power is expended on the useful resistance, or the matter to

be operated on. In some of the best contrived receivers, as

the water wheel, for example, where the motive power can
be made to act with the greatest regularity, and the receiver

be brought to as near an approach to uniformity of motion
as attainable, the quantity of work it is capable of yielding
seldom exceeds eight tenths of that due to what the water

expends upon it, under the most careful arrangement of the

wheel and the velocity of its motion.

As an example under this head (Art. 149) equation (115),
and an illustration of the circumstances attending the attain-

ment of uniformity of motion Note (t)
in machines

; suppose
the axle A carrying two arms B, B, to the

extremities of which two thin rectangular
disks C, C, are attached, their planes pass-

ing through the axis of rotation, to be put
in motion by the descent of a weight P, at-

tached to a cord wound round the axle.

In this case the resistances to the moving
force during the acceleration will be
that of the air acting against the disks and
the two arms, the inertia of the parts in

motion, and the friction on the gudgeons
of the axle.

Represent by A the sum of the areas of

the two disks, a the distance of their centres from the axis,

dm an elementary mass of the machine at the distance r

from the axis, w the angular velocity of the system, a
1
the

radius of the axle measured to the axis of the cord, p the

radius of the gudgeon, 9 the limiting angle of resistance,
l

v
the total length of the cord, I the length of the part

unwound, w the weight of the unit in length of the cord, W
the total weight of the machine excepting Pr
From experiment we have for the resistance of the air to

the motion of the two discs cA-y
2 cAw2

<2
2

,
in which v=d)O>
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expresses the velocity of the centre of the disk and c a con-

stant determined by experiment. The resistance offered by
the inertia of dm during the acceleration of the motion is

represented (Art. 95) equations (Y2) (73) by dmr
^-,

in
Cut

which
^

is the acceleration of the angular velocity in the
dt

element of time dt, the resistances offered by the inertia of

the weight P
x
and that of the pendant portion of the cord

represented by wl are, in like manner, expressed -i"1"^ a
l

***

,

g dt

the total pressure upon the gudgeons will evidently be ex-

pressed by Pj+W- l -
0,1 =-, since, during the accele-

9 dt

ration of the motion, the resistance of the inertia of the

weights Pj and wl act in an opposite direction to these

weights.
In the state bordering upon motion at each instant there

obtains

(-p

. wr
x 4- W

dt g dt

du \
a, --- I p sm. 9.

g dt J

Representing by n^ the coefficient of wa

, by m2

that of 1
dt

and by <f the algebraic sum of the other terms, there obtains

dt

<i.i)

From this last equation we se that w approaches rapidly the

limit i which it only attains when fcoo . As this limit cor-n

responds to that in which the motion would become uni-
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form, it might have been deduced directly from .the first of

these equations; for when w becomes constant =0,
cLt

(v).

Manner of estimating the amount of work consumed Tyy the

trip hammer.

The trip hammer is used in forging heavy iron work,
motion being given to it for this purpose by teeth, termed

cams, hrmly fixed in an axle A, termed the cam shaft,
around which they are arranged at equal intervals apart.
The tail of the hammer is furnished with an iron band, the

upper surface of which receives a suitable form to work

truly with the surface of the cam whilst the two remain in

contact during the ascent of the head of the hammer, on the

same principle as the teeth are fashioned in other cases.

The interval between the cams is so calculated that each
cam shall take the band at rest at the point t on the hori-

zontal line C
2C, joining the centres of rotation of the cam

shaft and hammer.
To estimate the work consumed in the play of this ma-

chine, it must be observed that it consists of three distinct

parts ;
the first is that consumed by the impact or shock

;

the second that due to the period after the shock, in which
the cam and tail of the hammer remain in contact

;
the third

that consumed by the cam shaft in the interval between the

separation of the cam and hammer and the moment when
the succeeding cam takes the hammer.
Denote by R2

the radius of the primitive circle C
2

of the

cams
; by 2

the angular velocity of the cam shaft at any
period of the shock; by p a the radius of the gudgeon on



620 EDITOKIAL APPENDIX.

which the shaft revolves
; by <pa

the limiting angle of resist-

ance for the surfaces of the gudgeon and its bed
; by m an

elementary mass of the shaft
; by r the distance of m from

Ca ; by R^C/, w
l5 p l5 p x

m
l9
and T

I
the corresponding quan-

tities for the hammer.
Now if we represent by P the mutual pressure between

the surfaces of the cam and band at any period of the impact,
there must be an equilibrium at each instant between P and
the forces of inertia and the passive resistances developed
in the play of the machine. Considering the equilibrium
around the axis of rotation C

x
of the hammer in the first

place, we have for the velocity of any element ra
t ,

at any
instant, 7-^, and for the increment of velocity impressed
upon it by the cam rjlu l ;

the force of inertia therefore deve-

loped by this increment is expressed by

and its moment with respect to the axis Q
l
is

and the sum of the moments of all the forces of inertia is

(Arts. 95, 106)

To obtain the friction on the trunnions of the hammer due

to P and the resultant of the forces of inertia m.r.^. we
at

have for the resultant of the latter (Art. 108) equation (82)

in which M represents the mass of the hammer, its handle,

&c., and G the distance of its centre of gravity from Cj the

axis of rotation. Now, decomposing this resultant into two

components perpendicular and parallel to the line CaC I repre-

senting by a the angle between this line and the one C,G
through the centre of gravity of the hammer, &c., we have
for the perpendicular component
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cos. a
at

and for the parallel one

sn. #.

The total pressure on the trunnions, from P and the forces

of inertia, will therefore be

As however, in most cases of practice, the angle a is either 0,

or very small, the value of the quantity under the radical

may be taken without sensible error

The equation of equilibrium about the axis G
l
is therefore

^'(P + -'-MG) Pl sin. ?,

.

~
dt

'

B
I-p 1 sin.<p l

Now with respect to the cam shaft we have, to express the

sum of the moments of the forces of inertia with respect to

the axis Ca ,

As the pressure on the trunnions of this shaft is due to the

force P alone, the moment of the friction on them will be

expressed by P p sin. <p2
.

The equation of equilibrium of all the forces with respect
to C2 will therefore be

. sin. <(,,.... (B).

Eliminating P between equations (A) and (B) there obtains
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.^ . : . .(0)

Hie coefficient of can be written as follows,
dt

placing K for the coefficient of MjRjRj. Making these sub-

stitutions in equation (C) there obtains

in which ft represents the greatest, and w
2 the least angular

velocity of the cam shaft
;
and w

1=0, 6)1= ^-^j the angu-
-"i

lar velocities of the hammer ; since before the impact it is

at rest, and finally attains the same velocity as the cam has,
in which, from the circumstance of the mechanism, w

1
R

1
=

JL
From the preceding equation there obtains

"*= ^

Now, as a general rule, the quantities
p2 sin '

^ pl sm> (pl and
R

2 Rj

P-"
S1

M-b are ver^ sma^ W^tn Aspect to unity, and may
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therefore be disregarded, and'the quantity K will differ but

very little from unity also. From this it will be seen that
w

2
will differ the less from 12 as M

?
is greater than M^ But,

as the mass of the cam shaft ordinarily very much exceeds
that of the hammer, wre can assume, without liability to any
great error, that the mean angular velocity of the cam shaft.

deduced from observing the number of revolutions made by
it in a given time, is sensibly the arithmetical mean of 12

and w
2

. Designating this mean by 12, we have Q
t
= + G)

\

From this relation and equation (D) there obtains

_2a.(M.+gM.). dfc)
20.M.

2M,+KM, "'-2M.+ KM,-

From these two relations the living force destroyed by the

impact can be deduced as follows. Before the impact the

living force of the cam shaft was 12
2M

2
R

Q ;
after the impact,

as the point of contact of the cam and band moved with the
same velocity, the living force of the whole machine is

The living force destroyed therefore is expressed by

a'M.B.'-u.'I^OM.+M,);

or, substituting for w
2 from equation (D), by

finally, substituting for 12 and w
a their values in 12,, there

obtains

It is now readily seen, from the form of this last expression
for the loss of living force by the impact, that, since K may
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be assumed as sensibly equal to unity, the numerical value

of this expression will depend upon the ratio L. Taking

M^M, the value of the expression becomes fC^MjB,*; and
for Ma

=oo it becomes i2j

2

M,R2

2
. Therefore between these

limits the difference is | only of the living force lost under
the supposition of M

2
=o> .

In the ordinary arrangement of this machine it rarely
occurs that M, is not less than TVM2

. Assuming this as the

limit, and substituting in the preceding expression IDIM^ for

M2 , there obtains for the required loss of living force

O'OTT^VMjIV. It is therefore seen that, in all usual cases,
M2 may be assumed as infinite without causing any notice-

able error in the result.

To estimate the accumulated work expended by the cam
shaft for each shock, fi,

a>
2 and fi, being the same as in the

preceding expression, this work is expressed by

As the cam shaft expends this amount of accumulated work
at each impact, a quantity of work equal to the half of this

must be yielded by the motive power at each impact, or

If therefore there are N cams on the shaft, and it makes n
revolutions in one minute, then the work consumed by the

number of shocks in one second will be expressed by

Nn 2n
i

2

MJVI 1
R

2

2K
60

''

This then is the work consumed by the impact in one second
fov the first period of the play of the machine

;
and it has

been calculated according to what was laid down in Note (t)

on the subject of shocks, by disregarding the work of the

other forces as inappreciable during the short interval of the

impact.
To estimate now the work expended during the second

period, or whilst the cam and band are in contact after the

,
let C

1
G

1
be any position of the line C,G, during this
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period, making an angle G^G^a with its position when
the hammer is at rest. Represent by Pj the normal pressure
at the surface of contact of the cam and band which will

balance all the resistances developed in the motion of the

hammer, leaving out of consideration that of inertia, as the

change of velocity between the end of the impact and when
the cam disengages from the band is so small that the living
force due to this interval may be neglected in comparison
with the work of the other forces

; by W x
the weight of the

hammer, its handle, &c.
When the line GC

t
is in the position G^, the line C

t
t will

oe in that C^ making the angle 0^ a with its original

position. The force Pj acting at ^ in this position and per-

pendicular to the line t
l
C

l
since the surface of the band

produced passes through the axis Cn the surface of the cam

being an epicycloid has for its vertical and horizontal com-

ponents P, cos. a and P
x
sin. a. The pressure on the trun-

nions of the hammer, which is the resultant of P
l
and W^

therefore will be expressed by

, + P x
cos. a)

2 + P
t

*
sin.

2
a

;

and since the first term of the radical is in all cases greater
than the second, the value of the radical itself Haav, be

expressed by (KOTE B)

!
cos. a + 4

sn. a.

The equation of equilibrium between ~P
l
and the other forces^

will therefore be

PjB^WjGcos. (+)+ {/(W.+P^os.^H-^sin.^psin.^.

The moment of the friction at the point 15 due.-to P x
with

respect to the point C 15
in this case from the form .of the cam

and band, being 0.

As the pressure P, varies with the angle a, we can -, only
obtain its mean value by first finding its quantity of work
for the angle OL=OL

I
described whilst the cam and band are an

contact. Multiplying the last equation by da, and then

integrating between a=0 and a ^ there obtains

cos. a+ m ?1 sn.

40



62G EDITORIAL APPENDIX.

representing by POT the mean value of P, or tne constant

force applied vertically at
tf,
which multiplied by !, the

path described by the point of application, will give the

amount of work of the variable pressure R for the same

path ;
and introducing this mean value into the term of the

preceding equation that represents the moment of the fric-

tion on the trunnions, as this will not produce any sensible

error in the results.

Now observing that the quantity G jsin. (#+ a) sin. aj is

the vertical height through which the centre of gravity of

the hammer, &c. is raised during the period in question, and
that PmR^ is the work of the mean force

; calling this ver-

tical height A, and substituting the work of the mean for

that of the variable force in the last equation ;
there obtains

m sn. ai
- m cos. a,

Pl sin. <p.

^ \y sin. c^ + fi (1 cos.a,) \ ^ sin.
<p,

^ ^

/
'

If we now multiply the second member of equation (E) by
Rjttj we shall obtain the approximate value of the work of

the variable force P
l during the period in question ;

or the

value of PmH 1
a

1
as determined from equation (E).

To find now the work that the motive power must supply
to the cam shaft for this expenditure P^R^-due to the
motion given to the hammer during the period in question,
and also that/ arising from the resistances developed by the
motion of the cam shaft itself during this period, represent
by P3

a force which, acting at a distance R
3
from the axis C

2

of the cam shaft, will balance all the resistances around C2 ;

byW2 the weight of the cam shaft and its fixtures : by 6 any
angle described by the cam shaft during the period con-

sidered
;
and 9 the limiting angle of resistance at the point

of contact of the cam and band.
The pressure on the tnmnions of the cam shaft is evidently

expressed by

W
2 -fP3-P;

and the equation that expresses the work of P
8
for the ele-

mentary angle dO is
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tan.

Now representing by PM the mean value of P
s ,
and substi-

tuting it for P8 in the last term of the second member of thia

equation, which may be done without causing any sensible

error in the result; observing, from the conditions of the

mechanism that R^^E^ ;
and integrating this equation

between the limits = and 0=^ _^b.; there obtains, to
K

a

express the total work of P3
for the angle 15

*
Omitting the work consumed by the friction of the axles in equation (251)

(Art. 220), that which is expended on the teeth in contact whilst the arc r^ is

described is represented by the term of the equation

Now if we suppose a2=r a ,
or that P2 acts at the point of contact and normal

to the surface, this term, modified to suit the supposition, becomes

tan. 0=

2

Dividing this last expression by r2i/>,
there obtains,

P 2 (
ri+r

*\
r^L tan. 4>

as the value of a mean or constant force which applied tangentially to the

circumference having the radius r2 will expend, whilst the point of application
describes the arc r2 i/>,

the same quantity of work as that consumed by the fric-

tion of the teeth in contact whilst this arc is described. In this expression
the value of P 2 is less than the true value.

The foregoing is the theorem of M. Poncelet referred to on page xii.

Author's Preface. The direct manner of deducing it is found on page 192
Navier. Resume des Lefons^ &c. Troisieme Partie. Paris, 1838.
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(F).

R3-p2 sm.<pa .

The work therefore that the motive power must supply to

the cam shaft during this period is found by multiplying the

second member of equation (F) by R3 1
:=:R

3
-j|-

i or the path

passed over by the point of application of the mean force Pn

during this period.

Representing in like manner, by -^- the number of times

the hammer is raised per second, the quantity of work that

the motive power must supply for this expenditure will be

expressed by

.(2).S

60 60
8

R,

During the last period, or whilst the hammer is down, the

motive power will only have to supply the expenditure of

work caused by the friction on the trunnions of the cam
shaft, arising from the weight of this shaft and its fixtures

and the power ; any accumulation of work in this shaft

during this period being neglected as small in amount.

Representing byj?=N the number of cams on the shaft, their

distance apart on the primitive circumference whose radius

is R
2
is evidently

- -> and, as the arc described on this

circumference whilst the cam shaft and hammer are engaged

is R
20j, that described whilst the hammer is down is --a

P
RjCtj. Calling Pp the power which acting at the distance R,
will balance the friction arising from the weight W2

of the
cam shaft and fixtures and P2 ,

the value of Pp will be found

according to the conditions stated as follows,

The work of Pp is

W
2 p2 sin. 9,

trl
2

Riai)
R,\ P I



EDITORIAL APPENDIX. 629

as the path passed over by its point of application is evi-

dentlythearc

The work which the motive power must supply therefore

per second during this last period is expressed by

By taking the sum of the quantities expressed by the

formulas (1), (2), and (3) there obtains

K
3

to express the total work that the motive power must yield
to the cam shaft per second to supply the work consumed

by all the resistances.

Tiiat consumed by the useful resistances, which consist of

half the living force transmitted to the hammer and the

work consumed in raising the centre of gravity of the ham-

mer, &c., through the vertical height h is represented by

o^MJV w . _2n i

2

M,M 1
R ' w ,

-(2M8+KM 1)

+

From the preceding expressions, it is easy to deduce the

work which must be expended in producing a given depth
of indentation by the hammer upon the metal when brought
to a given state of heat. For this purpose, we observe that

to half the living force acquired by the hammer there cor-

responds a certain amount of work, estimated in terms of

the weight of the hammer and a certain height h
l
to which

its centre of gravity has been raised, and expressed by

0)
aM,R,

2

TTT 7

2

the total work therefore expended by the hammer in

indenting the metal is expressed by W^-fW^ ; since, from
the state of the metal the molecules which are displaced by
the impact acquire velocities which are not appreciable from
their smallness

;
the resistances therefore offered by the

metal to indentation may be regarded as independent of the
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velocity and, from the laws of the penetration of solids into

different media, proportional simply to the area of the inden-

tation. Representing then by a and ~b the sides of the area

of the indentation, supposed rectangular, at the surface of

the metal impinged on, d the depth of the indentation, and
C the constant ratio of the resistance and the area of the

indentation, the following relation obtains between the work

expended by the hammer in its fall and that offered by the
resistance of the metal

an equation from which C may be determined by experi-
ment 'in any particular case.

It will be readily seen that the preceding expressions will
be rendered applicable to the cases where the cam catches
the hammer on the same side of its axis of rotation as its

centre of gravity, by writing ^L MG for + ^-MG, and
at at

moreover in this case when P 5_L MG=0, there will be no
dt

shock on the trunnions (Arts. 108, 109), and there then
obtains, to find the point where the cam should catch the
hammer corresponding to this case,

E=MG

*
Morin, Suite des Nouvelles Experiences sur le Frottenient, p. 67. Paris, 1836.
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NOTE A.

THEOBEM. The definite integralJ fxdx is the limit of the sums of tht

a

values severally assumed by the product fx . Ax, as x is made to vary by
successive equal increments of Ax, from a to b, and as each such equal

increment is continually and infinitely diminished, and their number there-

fore continually and infinitely increased.

To prove this, let the general integral be represented by Fa;
;

let us sup-

pose that fx does not become infinite for any value of x between a and b,

and let any two such values be x and x + Ax
; therefore, by Taylor's the-

orem, F (x + Ace)
= Fx + Axfx + (Ax) '+XM, where the exponent 1 + a, is

given to the third term of the expansion instead of the exponent 2, that the

case may be included in which the second differential coefficient of Fa;,
-^

,

dx

is infinite, and in which the exponent of Aa; in that term is therefore a

fraction less than 2.

Let the difference between a and b be divided into n equal parts ;
and

let each be represented by Aa;, so that

& a= Aa;.
n

Giving to a;, then, the successive values a, a+ Aa;, a + 2 A a; . . a+(n 1)

A
a;,

and adding,

.'. F& Ya=Ax% l*f{a+ (n l)Ax}

Now none of the values of M are infinite, since for none of these values is

fx infinite. If, therefore, M be the greatest of these values, then is SM, less

than riM. : and therefore

F&_Ya Aa;2tf{a + (n 1) Aa;} < (oa)M (Aa;)X.

The difference of the definite integral F5 Fa, and the sum JZi
n

(Ax)f{a-{'

(n 1) Aa;} is always, therefore, less than (b a)M (A#)A. Now M is finite,

and (& a) is given, and as n is increased Aa; is diminished continually ;

and therefore (Aa;)x is diminished continually, a, being positive.

Thus by increasing n indefinitely, the difference of the definite integral



32 APPENDIX.

and the sum may be diminished indefinitely, and therefore, in the limit, the

definite integral is equal to the sum (i. e.)

FJF0= limit 2 t

B
(Atf) ./{a + (n 1) Az} ;

or, interpreting this formula, F5 F<z is the sum of the values of AJK ./a?,

when x is made to pass hy infinitesimal increments, each represented by

Afc from a to &.

NOTE B.

PONOELET'S FIEST THEOEEM.

* The values of a and & in the radical -v/^
2+ ^

a

being linear and rational,

let it be required to determine the values of two indeterminate quantities

a and ]5,
such that the errors which result from assuming v/a

a + &*= a# + j3&,

f-\
through a given range of the values of the ratio ( & ), may be the least pos-

sible in reference to the true value of the radical
;
or that

*** + &> a*_
+ V

or -
. =1-

i^ may be the least possible in respect to all that range of

values which this formula may be made to assume between two given

extreme values of the ratio T. Let these extreme values of the ratio
^

be represented by cot. ifo and cot. ^2,
and any other value by cot. 4. Sub-

d __
stituting cot. 4- for T in the preceding formula, and observing thaty a2

-f&
a

= -v/&
2
cot..

2
4/ + &2= & cosec. 4, also that a+|3& = a& cot. 4/+|3&=(a cos.

sin. 4)& cosec. 4, the corresponding error is represented by

a cos. 4-+ 18 sin. 41 ..... (1);

which expression is evidently a maximum for that value <//3 of i//
which is

determined by the equation
a

cot.T//,=jg
..... (2);

so that its maximum value is

-V/^HS
2

1 ..... (3).

Moreover, the function admits of no other maximum value, nor of any
minimum value. The values of a and being arbitrary, let them be

assumed to be such that
-
or cot. i//3 may be less than cot. ^ and greater

* The method of this investigation is not the same as that adopted by M.
Poncelet

;
the principle is the same.
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than cot. 4/a . Now, so long as all the values of the error (formula 1)

remain positive, between the proposed limits, they are all manifestly di-

minished by diminishing a and j3 ;
but when by this diminution the error

is at length rendered negative in respect to one or both of the extreme
values

4,!, or 4/2 of 4, and to others adjacent to them, then do these nega-
tive errors continually increase, as a and |3 are yet farther diminished,
whilst the positive maximum error (formula 3) continually diminishes.

Now the most favorable condition, in respect to the whole range of the

errors between the proposed limits of variation, will manifestly be attained

when, by thus diminishing the positive and thereby increasing the negative

errors, the greatest positive error is rendered equal to each of the two

negative errors; a condition which will be found to be consistent with
that before made in respect to the arbitrary values of a arid

j3, and which

supposes that the values of the error (formula 1) corresponding to the

values 4, and 42 are each equal, when taken negatively, to the maximum
error represented by formula 3, or that the constants a and ]3 are taken

so as to satisfy the two following equations.

1 (a cos. *,+]3 sin. ,)= V'aM-jS
8

1.

1 (a cos. *,+ sin. *,)=! (a cos. V^p sin. *).

The last equation gives us by reduction

and a= j8 cot. (*, + *).

Substituting these values in the first equation, and reducing,

2 sin. K*i+^) sin, j+y,
1+008. *(*, *,) COS.

2

i(,
2 COS -

1 + cos. i(% ,) cos. H(*i ,)

"

These values of a and ]3 give for the maximum error (formula 3) the ex-

pression

tan. '*(*! *0 ..... (6).

Thus, then, it appears that the value of the radical vV + 53 is represented,

in respect to all those values of
j-
which are included between the limits

cot. , and cot. by the formula

with a degree of approximation which is determined by the valu of

tan.'K*. ^)-
If in the proposed radical the value of a admits of being increased in-

finitely in respect to 5, or the value of 5 infinitely diminished in respect to

a, then cot.
,
=

infinity ;
therefore ,

= 0. In this case the formula of

approximation becomes
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a (I

and the maximum error

(9).

If the values of a and & are wholly unlimited, so that a may be infinitely

small or infinitely great as compared with &, then cot. ^ =
infinity,

cot. ,
=

;

therefore ^i=0, =o- Substituting these values, the formula of approx-

imation becomes
82840+ -82845 ..... (10);

and the maximum error

1716, or |th nearly.

'If & is essentially less than a, but may be of any value less than it, so

that T is always greater than unity, but may be infinite, then cot. ^= in-

finity, cot. ^2=1 5
therefore ^r=0, ^2=0' Substituting these values in the

formula of approximation, and reducing, it becomes

960460+ -39783& ..... (11);

and the maximum error

03945, or ^\th nearly.

It is in its application to this case that the formula has been employed in

the preceding pages of this work.

The following table, calculated by M. Gosselin, contains the values of

the coefficients a, and ]3 for a series of values of the inferior limit cot. the

superior limit being in every case infinity.

EelationofatoJ.
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PONCELET'S SECOND THEOEEM.

To approximate to the value of Va? &
2

,
let aa 35 be the formula of

approximation, then will the relative error be represented by

Now, let it be observed that aa

being essentially greater than &*->!;

let
j, therefore, be represented by cosec. 4/, then will the relative error ba

(a cosec. 4/ 3)
represented by 1 - ~, or by

V cosec. "4-1
1 asec.4/+3tan. 4/ ..... (12),

which function attains its maximum when sin. 4 = -. Substituting this
a

value in the preceding formula, and observing that a sec. 4/+ 6 tan. 4/
=

(-9
sec.4* (a 3 sin4)= . _= \^L.^ we obtain for the maximum

1-

error the expression

1V3=& ..... (13),

Assuming 4/, and 4/2 to represent the values of 4, corresponding to the

greatest and least values of -, and observing that in this case, as in the

preceding, the values of a and 3, which satisfy the conditions of the

question, are those which render the values of the error corresponding to

these limits equal, when taken with contrary signs, to the maximum error,

we have

1 +a sec. 4, 3 tan. 4, = 1 tV 3
a ---- (14).

1 a sec. 4, + 3 tan. 4,,=! asec.4/,+3tan.4/, .... (15).

The latter equation gives, by reduction,

cos. i(4/. 4*) /-^

_ 2~
'

And a sec.
, + /3 tan. //,= cot. i (^i + <//,) . . . . (17).

Substituting these values in equation (14), and solving in respect to j(?
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cos. i (//, + i/>2) + Vcos. />, cos. </>j

2 cos. i (?//, ^2)a := i

cos. i (^, + 1^2) + r cos. i//i cos. ?//,

The maximum error is represented by the formula

2 4/cos. T//J
cos. t//2

These formulaa will be adapted to logarithmic calculation, if we assume

d (^t + ^)="^n and
c

.

08 '

; ;
= cosec. 2 ;

we shall thus obtain from
sin. % (j^i + t//2)

equations (16) and (17) a= j3 cosec. ^2, Vo? j3

2 =
j3 cot. ^2, and a sec. ^

j3 tan. i//i
= 3 cot. ^i ; therefore, by equation (14),

2 2 sin.
'

cot. ^r
l + cot. ^2 sin. (^ + a/

2 cosec. ^2 2 sin. "SP",

cot. ^, + cot. ,

=
sin. (

VK
1 + ^

sn. ,Max,mum errror =
sn + _ _ _ _

The form under which this theorem has been given by M. Poncelet is

different from the above. Assuming, as in the previous case, the limiting

values of - to be represented by cot. ^, and cot. i/^ and proceeding by a
&

geometrical method of investigation, he has shown that if we assume

tan. h = cos. tan. i//z
= cos. 2, ! + w2

=
2y,, ! u>2

=
25, and cos. y8

=

;
then

cos. 5

2 COS. y, 2 COS.
2
y, sin. (y, y2)

a -. ^ &=-. -,

-r-=- , maximum error = - --~.
Sin. (y, + y2y Sin. (y, + y2) COS. 8 Sin. (y , + y2)

If the least possible value of a be lT
l

o&? and its greatest possible value

be infinite as compared with 5, M. Poncelet has shown the formula of

approximation to become

Va? &8 = 1-13190 0-72636& (23),

with a possible error of 0-1319 or | nearly.

If the least possible value of a be 25, and its greatest possible valua

infinite compared with 5
;
then

4/^Zy = 1-0186230 0-2T2944& (24),

with a possible error of -0186 or ^d nearly.
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NOTE 0.

ON THE ROLLING OF SHIPS.

(First published ty the Author in the Transactions of the Royal Society

for 1850, Part //.)

Let a body be conceived to float, acted upon by no other forces than its

weight "W, and the upward pressure of the water (equal to its weight) ;

which forces may be conceived to be applied respectively to the centre of

gravity of the body and to the centre of gravity of the displaced fluid
;

and let it be supposed to be subjected to the action of a third force whose

direction is parallel to the surface of the fluid. Let AHi represent the ver-

tical displacement of the centre of gravity of the body thereby produced*,
and AH, that of the centre of gravity of its immersed part. Let more-

over the volume of the immersed part be conceived to remain unaltered f

whilst the body is in the act of displacement. If each centre of gravity
be assumed to ascend, the work of the weight of the body will be repre-

sented by W.AH,, and that of the upward pressure of the fluid by +
W.AH2,

the negative sign being taken in the former case because the force

acts in a direction opposite to that in which the point of application is

moved, and the positive sign in the latter, because it acts in the same direc-

tion, so that the aggregate work 2u2 (see equation 1, p. 122.) of the forces

which constituted the equilibrium of the body in the state from which it

has been disturbed is represented by

Moreover, the system put in motion includes, with the floating body, the

particles of the fluid displaced by it as it changes its position, so that if

the weight of any element of the floating body be represented by to,, and

of the fluid by wz,
and if their velocities be 0, and 2, the whole vis viva is

represented by

* "When a floating body is so made to incline from any one position into any
other as that the volume of fluid displaced by it may in the one position be

equal to that in the other, its centre of gravity is also vertically displaced ;

for if this be not the case, the perpendicular distance of the centre of gravity
of the body from its plane of flotation must remain unchanged, and the form

of that portion of its surface, which is subject to immersion, must be determined

geometrically by this condition
;
but by the supposition the form of the body

is undetermined. It is remarkable what currency has been given to the error,

that whilst a vessel is rolling or pitching, its centre of gravity remains at rest

I should not otherwise have thought this note necessary.

f This supposition is only approximately true.

\ If the centre of gravity of the body or of the displaced fluid descends (

property which will be found to characterise a large class of vessels), AH, in

the one case, and ^ILj in the other, will of course take the negative sign.
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~2w,f>?+-5Wi>

and we have by equation 1 (p. 122),

W(AH AH^=S I ! + Sw1 ; .... (25).

In the extreme position into which the body is made to roll and IE

which Xw,flJ=0,

or if the inertia of the displaced fluid be neglected,

U(5)=W.(AH1 AH2) ..... (27).

Whence it follows that the work necessary to incline a floating body

through any given angle is equal to that necessary to raise it bodily through

a height equal to the difference of the vertical displacements of its centre

of gravity and of that of its immersed part ; so that other things being

the same, that ship is the most stable the product of whose weight by this

difference is the greatest.

In the case in which the centre of gravity of the displaced fluid descends,

the sum of the displacements is to be taken instead of the difference.

This conclusion is nevertheless in error in the following respects :

1st. It supposes that throughout the motion the weight of the displaced

fluid remains equal to that of the floating body, which equality cannot

accurately have been preserved by reason of the inertia of the body and

of the displaced fluid.*

From this cause there cannot but result small vertical oscillations of the

body about those positions which, whilst it is in the act of inclining, cor-

respond to this equality, which oscillations are independent of its principal

oscillation.

2ndly. It involves the hypothesis of absolute rigidity in the floating

body, so that the motion of every part and its vis viva may cease at once

when the principal oscillation terminates. The frame of a ship and its

masts are, however, elastic, and by reason of this elasticity there cannot

* The motion of the centre of gravity of the body being the same as though
all the disturbing forces were applied directly to it, it follows, that no elevation

of this point is caused in the beginning of the motion, by the application of a

horizontal disturbing force, or by a horizontal displacement of the weight of

the body, which, if it be a ship, may be effected by moving .its ballast. The
motion of rotation thereby produced takes place therefore, in the first instance,

about the centre of gravity, but it cannot so take place without destroying the

equality of the weight of the displaced fluid to that of the body. From this

inequality there results a vertical motion of the centre of gravity, and anothei

axis of rotation.
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but result oscillations, which are independent of, and may not synchro-
nise with, the principal oscillation of the ship as she rolls, so that the VIA

viva of every part cannot be assumed to cease and determine at one and
the same instant, as it has been supposed to do.

3rdly. No account has been taken of the work expended in communi-

cating motion to the displaced fluid, measured by half its vis viva and

represented by the term ^w^vl in equation 26.

From a careful consideration of these causes of error, the author was
led to conclude that they would not affect that practical application of the

formula which he had principally in view in investigating it, especially as

in certain respects they tended to neutralise one another. The question

appeared, however, of sufficient importance to be subjected to the test of

experiment, and on his application, the Lords Commissioners of the Admi-

ralty were pleased to direct that such experiments should be made in Her

Majesty's Dockyard at Portsmouth, and Mr. FINCHAM, the eminent Master

Shipwright of that dockyard, and Mr. KAWSON, were kind enough to

undertake them.

These experiments extended beyond the object originally contemplated

by him
;
and they claim to rank as authentic and important contributions

to the science of naval construction, whether regard be had to the prac-
tical importance of the question under discussion, the care and labor

bestowed upon them, or the many expedients by which these gentlemen
succeeded in giving to them an accuracy hitherto unknown in experiments
of this kind.

That it might be determined experimentally whether the work which
must be done upon a floating body to incline it through a given angle be

that represented by equation 27, it was necessary to do upon such a body
an amount of work which could be measured

;
and it was further neces-

sary to ascertain what were the elevations of the centres of gravity of the

body and of its immersed part thus produced, and then to see whether

the amount of work done upon the body equalled the difference of these

elevations multiplied by its weight.
To effect this, the author proposed that a vessel should be constructed

of a simple geometrical form, such that the place of the centre of gravity
of its immersed part might readily be determined in every position into

which it might be inclined, that of its plane of flotation being supposed to

be known
;
and that a mast should be fixed to it, and a long yard to this

mast, and that when the body floated in a vertical position a weight

suspended from one extremity of the yard should suddenly be allowed to

act upon it causing it to roll over; that the position into which it thus

rolled should be ascertained, together with the corresponding elevations

of its centre of gravity and the centre of gravity of its immersed part,

and the vertical descent of the weight suspended from the extremity of

its arm. The product of this vertical descent by the weight suspended
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from the arm ought then, by the formula, to be found nearly equal to the

difference of the elevations of the two centres of gravity multiplied by
the weight of the body ;

and this was the test to which it was proposed
that the formula should be subjected, with a view to its adoption by prac-

tical men as a principle of naval construction.

To give to the deflecting weight that instantaneous action on the ex-

tremity of the arm which was necessary to the accuracy of the experiment,

a string was in the first place to be affixed to it and attached to a point

vertically above, in the ceiling. When the deflecting weight was first

applied this string would sustain its pressure, but this might be thrown

at once upon the extremity of the arm by cutting it. A transverse sec-

tion of the vessel, with its mast and arm, was to be plotted on a large

scale on a board, and the extreme position into which the vessel rolled

being by some means observed, the water-line corresponding to this

position was to be drawn. The position of the yard, in respect to the

surface of the water in that position, would then be known, and the vertical

descent of the deflecting weight could be measured, and also the vertical

ascent of the centre of gravity of the immersed part or displacement.

To determine the position of the centre of gravity of the vessel, it was

to be allowed to rest in an inclined position under the action of the deflect-

ing weight ;
and the water-line corresponding to this position being drawn

on the board, the corresponding position of the deflecting weight and of

the centre of gravity of the immersion were thence to be determined.

The determination of the position of the vertical passing through the

centre of gravity of the body would thus become an elementary question

of statics
;
and the intersection of this line, with that about which the

section was symmetrical, would mark the position of the centre of gravity.

This determination might be verified by a second similar experiment with

a different deflecting weight.

These suggestions received a great development at the hands of Mr.

RAWSON, and he adopted many new and ingenious expedients in carrying
them out. Among these, that by which the position of the water-line

was determined in the extreme position into which the vessel rolls, is

specially worthy of observation. A strip of wood was fastened at right

angles to that extremity of the yard to which the deflecting weight was

attached, of sufficient length to dip into the water when the vessel rolled
;

on this slip of wood, and also on the side of the vessel nearest to it, a

strip of glazed paper was fixed. The highest points at which these strips

of paper were wetted in the rolling of the vessel, were obviously points

in the water line in its extreme position, and being plotted upon the board,

a line drawn through them determined that position with a degree of

accuracy which left nothing to be desired.

Two forms of vessels were used
;
one of them had a triangular and the

other a semicircular section. The following table contains the general
results of the experiments.
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are subject to immersion and emersion) are circular,

a common axis.

Fig.l.

in

Fig. 2.

Let EDF, fig. 1. or 2., be an athwart section of such a vessel, the

parts of whose periphery ES and FR, subject to immersion and emersion,

are parts of the same circular arc ETF, whose centre is 0. Let G, repre-

sent the projection of the centre of gravity of the vessel on this section,

and G2 that of the centre of gravity of the space whose section is SDRT,

supposing it filled with water. The space lies wholly within the vessel in

fig. 1. and without it in fig. 2. Let

A, = CG,, Jit
= CG,.

W, = weight of vessel.

W2
= weight of water occupying, or which would occupy, the space

whose section is STRD.
6 = the inclination from the vertical.

Since in the act of the inclination of the vessel the whole volume of

the displaced fluid remains constant, and also that volume of which STRD
is the section,* it follows that the volume of that portion of which the

circular area PSRQ is the section remains also constant, and that the

water-line PQ, which is the chord of that area, remains at the same dis-

tance from 0, so that the point neither ascends nor descends. Now the

forces which constituted the equilibrium of the vessel in its vertical posi-

tion were its weight and that of the fluid it displaced. Since the point

is not vertically displaced, the work of the former force, as the body
inclines through the angle 0,

is represented by Wj A, vers. 8. The work
of the latter is equal to that of the upward pressure of the water which

would occupy the space of which the circular area PTQ is the section

increased, in the case represented in fig. 1., by that of the water which

would occupy STRD; and diminished by it in the case represented in

fig. 2.

But since the space, of which the circular area PTQ is the section,

remains similar and equal to itself, its centre of gravity remains always
at the same distance from the centre 0, and therefore neither ascends

nor descends. "Whence it follows that the work of the water which

would occupy this space is zero ; so that the work of the whole displaced
fluid is equal to that- of the part of it which occupies the space STRD,

* It will be observed that the space STRD is supposed always to be under

water.
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taken in the case represented in fig. 1 . with the positive, and in that re-

presented in fig. 2. with the negative sign. It is represented, therefore,

generally by the formula W, A2 vers. 0. On the whole, therefore, the

work 2u2 of those forces, which in the vertical position of the body con-

stituted its equilibrium, is represented by the formula

SUz = W, A, vers. 6 W2 A2 vers. 8.

Representing, therefore, the dynamical stability 2^ by U (0), we have by

equation (2. p. 122.)
U (9)

= (W, A, T W2 &2) vers. 9,

in which expression the sign ~-f is to be taken according as the circular

area ATB lies wholly within the area ADB, as in fig. 1
,
or partially with-

out it, as in fig. 2. Other things being the same, the latter is therefore a

more stable form than the other.

13. The work of the upward pressure of the water upon the vessel

represented in fig. 2. being a negative quantity, W2 AZ vers. 0, it follows

that the point of application of the pressure must be moved in a direction

opposite to that in which the pressure acts
;
but the pressure acts upwards,

therefore its point of application, i. e. the centre of gravity of the displaced

fluid, descends. This property may be considered to distinguish mechani-

cally the class of vessels whose type is fig. 1., from that class whose type is

fig. 2.
;
as the property of including wholly or only partly, within the area

of any of their athwart sections, the corresponding circular area ETF, dis-

tinguishes them geometrically.

The dynamical stability of a vessel of any givenform subjected to a roll-

ing or pitching motion.

Conceive the vessel, after having completed an oscillation in any given

direction being then about to return towards its vertical position to

be for an instant at rest, and let RS represent the

intersection of its plane of flotation then, and PQ
of its flotation when in its vertical position, with

a section CAD of the vessel perpendicular to the

mutual intersection of these planes. The sec-

tion CAD will then be a vertical section of the

vessel.

Let G be the projection upon it of the vessel's

centre of gravity when in its vertical position.

H, that of the centre of gravity of the fluid displaced by the vessel in the

vertical position.

g, that of the fluid displaced by the portion of the vessel of which QOS
is a section. *

h, that of the fluid which would be displaced by the portion, of which

FOR is a section, if it were immersed.

GM, HN, gm, Jin, KL, perpendiculars upon the plane RS.

W = weight of vessel or of displaced fluid.

to = weight of water displaced by either of the equal portions of the

vessel of which FOR and QOS are sections.
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H! = depth of centre of gravity of vessel in vertical position.

H, = depth of centre of gravity of displaced water in vertical

position.

Hj = elevation of centre of gravity of vessel.

Hj = elevation of centre of gravity of displaced water.

P = area of plane PQ.
= inclination of planes PQ and RS.

*l
= inclination of line in which planes PQ and RS intersect,

to that line about which the plane PQ is symmetrical.

h = perpendicular distance of line O from centre of gravity of

plane PQ.
= inclination to horizon of line about which the plane PQ is

symmetrical.
x = distance of section CAD, measured along the line whose

projection is O, from the point where that line intersects

the midship section.

y, = RS.

z = Tin + mg.
jt = KL.
I = moment of inertia of plane PQ about axis 0.

A and B = moments of inertia of PQ about its principal axes.

p,
= weight of a cubic unit of water.

Suppose the water actually displaced by the vessel to be, on the contrary,

contained by it; and conceive that which occupies the space QOS to pass

into the space POR, the whole becoming solid. Let AH3 represent the

corresponding elevation of the centre of gravity of the whole contained

fluid. Then will AH2 + AH3 represent the total elevation of the centre of

gravity of this fluid as it passes from the position it occupied when the

vessel was vertical into the position PAQ. But this elevation is obviously

the same as though the fluid had assumed the solid state in the vertical

position of the body, and the latter had revolved with it, in that state, into

its present position. It is therefore represented by KH NH
;

/. AH2 + AH3
= KH NH and AH3 = KH NH AH2 .

Since, moreover, by the elevation of the fluid in QOS, whose weight is o,

into the space OPR, and of its centre of gravity through (gm + Tin\ the

centre of gravity of mass of fluid of which it forms a part, and whose weight
is W, is raised through the space AH3 ;

it follows, by a well-known property
of the centre of gravity of a system,* *that

* The line joining the centres of gravity of the vessel and its immersed part,

in its vertical position, is parallel to the plane CAD, for it is perpendicular to

the plane PQ, to vhose intersection with the plane RS the plane CAD is per-

pendicular ;
. . GK = H, and HK = H*
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W. A H3
= w (gm+ hri)

.-. W(KH NH~A H,)= w (gm+ hri).

Bnt
NH = KHcos.0 KL=H2 cos.021 ;

.-.KH N"H=H2 vers. 9 + *,

and

.-.W (H2 vers. + ?i AH2)
= wz

;

.-. W. A H,= W (H2 vers. +x) wz . . . . (28).

Also A H! = KG MG = H, (H, cos. ji)
= H, vers. + x

;

/.W (A H, A H2)
= W (H, H2) vers. +wz

;

/. (equation 2T.) U (0, ?)
= W (H, Ha) vers. +;... (29).

If aj3 be a vertical prismatic element of the space QOS, whose base

is dx dy cos. 0, and height y sin. then will w .mg be represented, in

respect to that element, by p,y sin. 0. c c?y cos.
0-%y sin. 0, or by ^ ju sin.

a

cos. 6 y*dx dy ;
and wz will be represented, in respect to the whole space

of which PrsQ is the section, by

2 p
sin.

8
e cos. Qjjy^ dy,

or by 2^ sm-

a
cos - e - 1-

If therefore we represent by $ the value of wz, in respect to the spaces

of which the mixtilinear areas PRr and QSs are the sections, we have

wz =
^fil

sin.* e cos. e+
<j,.

But the axis O, about which the moment of inertia of the plane PQ is

I, is inclined to the principal axes of that plane at the angles y and
^ tj,

about which principal axes the moments of inertia are A and B,

/. I = A cos.
2

n +B sin.
2

tj
+PA2

,

W (Ht H2) vers. + '

2> (A cos.
2

^ +B sin.
2

;
+PA2

) sin
2 9 cos. + 9 ... (30).

It has been shown by M. DUPIN* that when 6 is small the line in

* Sur la Stabilite des Corps Flottarits, p. 32. In calculations having refer-

ence to the stability of ships, it is not allowable to consider extremely small,

except in so far as they have reference to the form of the ship immediately
about the load-water line. The rolling of the ship often extends to 20 or 30,
and is therefore largely influenced by the form of the vessel beyond these

limits. Generally, therefore, equation 30. is to be taken as that applicable to

the rolling of ships, those which follow being approximations only applicable

to small oscillations, and not sufficiently near (excepting equation 37) for

practical purposes
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which the planes PQ or RS intersect passes through the centre of gravity

of each
;
in this case

/. I = A cos.
2

q +B sin.
2

q ;

therefore by equation (30),

If e be so small that the spaces PrR and QsS are evanescent in compari-

son with POr and QO, then, assuming <j>

= and cos. =
1,

U (0, rj)
= W (H, H2) vers. e + -

p (A cos.
2

n +B sin.
2

n} sin.
2
0, ... (3 1),

which may be put under the form

U (0, if)
=

j
W (H, H2) + JK (A cos.

2

n +B sin.
2

*?)
j

vers. 0.

Again, since

sin. = sin. flsin.j?, .... (32),

and (A cos.
2
^ +B sin.

2

17)
sin.

2 = {A + (B A)sin.
8
;}sm.

2

0,

.-. (A cos.
2

n +B sin.'jf) sin.
2 = A sin.

2
e -f (B

- A) sin.
a
C ;

/.by equation 31,

H2)vers.0-f >{Asin.
2 + (B A)sin.

2

^}, ---- (33),

ty whichformula the dynamical stability of the ship is represented, loth

as it regards a pitching and a rolling motion.

If in equation 31. y = -, the line in which the plane PQ (parallel to the
2

deck of the ship) intersects its plane of flotation is at right angles to the

length of the ship, and we have, since in this case = (see equation 32.),

U(0= W(H, HO vers+ I^Bsin^ ..... (34),

which expression represents the dynamical stability, in regard to a pitch-

ing motion alone, as the equation

U(0) = W(H, H2) vers 0+ ~p Asin
2 ..... (35),

represents it in regard to a rolling motion alone.

16. If a given quantity of work represented by TJ() be supposed to

be done upon the vessel, the angle through which it is thus made to

roll may be determined by solving equation 35. with respect to sin.-.

We thus obtain

2

2^ A.U(0). . . (36).
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17. If PR and QS be conceived to be straight lines, so that POR and

QOS are triangles, then w. z, taken in respect to an element included

between the section CAD, and another parallel to it and distant by the

small space dx, is represented by

or, since mg+nh=- y l sin.0,

3

by _
12

.-.wz= p sin.
2 I y]

12 J
and, equation 29

U(0,)=W(Hj H2) vers.o+ n&v.?e fy]y$x, . . . (37),
24 v

which formula may be considered an approximate measure of the stability

of the vessel under all circumstances.

If, as in the case of the experiments of Messrs. FINCHAM and RAWSON,
the vessel b| prismatic and the direction of the disturbance perpendicular

to its axis,

y= constant= a, and z= a sin.fi
;

3

..wz = a/w sin. 0, and
3

!ow> sinA
3

A rigid surface on which the vessel may ~be supposed to rest whilst in the

act of rolling.

If we imagine the position of the centre of gravity of a vessel afloat

to be continually changed by altering the positions of some of its con-

tained weights without altering the weight of the whole, so as to cause

the vessel to incline into an infinite number of different positions dis-

placing, in each, the same volume of water, then will the different planes

of flotation, corresponding to these different positions, envelope a curve 1

surface, called the surface of the planes of flotation (surface des flotaisons),

whose properties have been discussed at length by M. DUPIN in his ex-

cellent memoir, Sur la Stabilite des Corps Flottants, which forms part of

his Applications de Geometric.* So far as the properties of this surface

concern the conditions of the vessel's equilibrium, they have been ex-

hausted in that memoir, but the following property, which has reference

* BACHBLIEB, Paris, 1822.
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rather to the conditions of its dynamical stability than its equilibrium, is

not stated by M. DUPIN :

If we conceive the surface of the planes of flotation to become a rigid

surface, and also the surface of the fluid to become a rigid plane without

friction, so that theformer surface may rest upon the latter and roll and

slide upon it, the other parts of the vessel being imagined to be so far im-

material as not to interfere with this motion, but not so as to take away
their weight or to interfere with the application of the upward pressure of

the fluid to them, then will the motion of the vessel, when resting by this

curved surface upon this rigid but perfectly smooth horizontal plane, be

the same as it was when, acted upon by the sameforce, it rolled and pitched

in the fluid.

In this general case of the motion of a body resting by a curved sur-

face upon a horizontal plane, that motion may be, and generally will be,

of a complicated character, including a sliding motion upon the plane,

and simultaneous motions round two axes passing through the point of

contact of the surface with the planes and corresponding with the rolling

and pitching motion of a ship. It being however possible to determine

these motions by the known laws of dynamics, when the form of the

surface of the planes of flotation is known, the complete solution of the

question is involved in the determination of the latter surface.

The following property*, proved by M. DUPIN in the memoir before

referred to (p. 32), effects this determination :

" The intersection of any two planes of flotation, infinitely near to each

other, passes through the centre of gravity of the area intercepted upon
either of these planes by the external surface of the vessel."

If, therefore, any plane of flotation be taken, and the centre of gravity

of the area here spoken of be determined with reference to that plane of

flotation, then that point will be one in the curved surface in question,

called the surface of the planes of flotation, and by this means any number
of such points may be found and the surface determined.

The axis about which a vessel rolls may be determined, the direction in

which it is rolling being given.

If, after the vessel has been inclined through any angle, it be left to

itself, the only forces acting upon it (the inertia of the fluid being neglected)
will be its weight and the upward pressure of the fluid it displaces ;

the

motion of its centre of gravity will therefore, by a well-known principle

of mechanics, be wholly in the same vertical line.

Let HE represent this vertical line, PQ the surface of the fluid, and

aMb the surface of the planes of flotation. As the centre of gravity G
traverses the vertical HK, this surface will partly roll and partly slide

by its point of contact M on the plane PQ.
If we suppose, therefore, PRQ to be a section of the vessel through

* This property appears to have been first given by EULBR.
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the point M, and perpendicular to the axis about which it is rolling, and
if we draw a vertical line MO through the point M, and through G a

horizontal line GO parallel to the plane PRQ, then

the position of the axis will be determined by a line

perpendicular to these, whose projection on the plane

PRQ is O.

For since the motion of the point G is in the verti-

cal line HK, the axis about which the body is revolv-

ing passes through GO, which is perpendicular to

HK
;
and since the point M of the vessel traverses

the line PQ, the axis passes also through MO, which

is perpendicular to PQ ;
and GO is drawn parallel to, and MO in the

plane PRQ, which, by supposition, is perpendicular to the axis, therefore

the axis is perpendicular to GO and MO.
If HK be in the plane PRQ, winch is the case whenever the motion is

exclusively one of rolling or one of pitching, the point is determined by
the intersection of GO and MO.

The time of the rolling through a small angle of a vessel whose athwart

sections are (in respect to the parts subject to immersion and emersion)

circular, and have their centres in the same longitudinal axis.

Let EDF (fig. 1. or fig. 2J> represent the midship section of such a

vessel, in which section let the centre of gravity GI be supposed to be situ-

ated, and let HK be the vertical line traversed by G, as the vessel rolls.

Imagine it to have been inclined from its vertical position through a given

angle QI and the forces which so inclined it then to have ceased to act

upon it, so as to have allowed it to roll freely back again towards its posi-

tion of equilibrium until it had attained the inclination OOD to the verti-

cal, which suppose to be represented by 0.

Referring to equation 1. page 123. let it be observed that in this case

2w2=0, so that the motion is determined by the condition

Zu^ Zwv* (38).

But the forces which have displaced it from the position in which it

was, for an instant, at rest are its weight and the upward pressure of the
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water; and the work of these, U(0,) U(0), done between the inclinations

6 and 0, when the vessel was in the act of receding from the vertical, was
shown to be represented by (WA =F Wz^j) (vers. vers. 0,) ;

therefore

the work, between the same inclinations, when the motion is in the

opposite direction, is represented by the same expression with the sign

changed ;

(vers. 0, vers. 0),

and since the axis about which the vessel is revolving is perpendicular to

the plane EDF, and passes through the point O, if W,&
2

represents its

moment of inertia about an axis perpendicular to the plane EDF, and

passing through its centre of gravity G1}

Substituting in equation 38. and writing for OG, its value A, sin.
<?,
we

have

vers. 0, vers. fl)= -1

(*+Amn.0) ( ) ;

. . . (39).

or assuming to be so small that the fourth and all higher powers ol

sin. may be neglected, and observing that, this being the case,

y * sec.
2

.
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~ lc

\J
1 + ~V~ sin-V-'

W r tfnr^ I '

/ d sin. i

.

8-^ sin.
a -

and

4

/

The sign + being taken according as the centre of gravity of the displaced

fluid ascends or descends.

The time of a vessel's rolling or pitching through a small angle, itsform
and dimensions ~being any whatever.

Let EDF (figs. 1. or 2.) represent the midship section of such a vessel,

supposed to be rolling about an axis whose projection is
;
and let

represent the centre of the circle of curvature of the surface of its planes

of flotation at the point M where that surface is touched by the plane PQ,

being above the load water-line AB in fig. 1, and beneath it in fig. 2. Let

the radius of curvature CM be represented by p ;
then adopting the same

notation as in the last article, and observing that the axis O about which

the vessel is turning is perpendicular to EDF, we shall find its moment of

inertia to be represented by

where H, represents the depth of the centre of gravity in the vertical posi-

tion of the vessel.
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Also, by equation 35.

^i=U0i)__U(0)=WI(H1 H2)(cos.0 cos.eO + -

..by equation 38.

IP+ (H, p)
2
sin.

2

(H,-H2) (cos. 0-cos. e
t)+: cos.

8
cos.

1
*,)

p)
a
8iD.'Q

j
H! H2+^% (COS. + COS. 0,) U COS. COS. 0,

j.

Assuming and 9
l to be so small that cos. + cos. e

l
=

2, and observing

that

cos> e cos. 0j
= vers. 0! vers. 0,

Supposing, moreover, p to remain constant between the limits 0, and

and integrating as in equation 39.

iD,, . . . (41).

Since the value of sin.*
~ Q

l is exceedingly small, the oscillations are
A .

nearly tautochronous, and the period of each is nearly represented by the

formula

.... (42.)
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The following method is given by M. DTJPIN for determining the value

ofp*:
" If the periphery of the plane of flotation be imagined to be loaded at

every point with a weight represented by the tangent of the inclination of

the sides of the vessel at that point to the vertical, then will the moments

of inertia of that curve, so loaded, about its two principal axes, when
divided by the area of the plane of flotation, represent the radii of greatest

and least curvature of the envelope of the planes of flotation."

If p be taken to represent the radius of greatest curvature, the formula

41. will represent the time of the vessel's rolling; if the radius of least

curvature (B being also substituted for A), it will represent the time of

pitching.

NOTE D.

On the conditions of the equilibrium of any number of pressures in the

same plane, applied to a body movedble about a cylindrical axis in the state

"bordering upon motion. (From a memoir on the Theory of Mechanics,

printed in the second part of the Transactions of the Royal Society for 1841.)

LET PI, P2, P3, &c. represent these pressures, and R their resultant. Also

let a
l:
a2 , 3, represent the perpendiculars let fall upon them severally from

the centre of the axis, those perpendiculars being token with the positive

signs whose corresponding pressures tend to turn the system in the same

direction as the pressure P,, and those negatively which tend to turn it in

the opposite direction. Also let A, represent the perpendicular distance of

the direction of the resultant R from the centre of the axis, then, since R
is equal and opposite to the resistance of the axis, and that this resistance

and the pressures P,, P2 ,
P3 ,

&c. are pressures in equilibrium, we have by
the principle of the equality of moments,

PII+ P2 2 +P^3+ &c.= *,R.

Representing, therefore, the inclinations of the directions of the pressures

PI, P2,
P3, &c. to one another by < r2 , ,

. i23, f, &c., &c., and substituting

for the value of R.J

*
Applications de Geometrie, p. 47.

f The inclination
i,.a of the directions of any two pressures in the above ex-

pression is taken on the supposition that both the pressures act from, or both

towards the point in which they intersect, and not one towards, and the other

from, that point ;
so that in the case represented in the figure in the note at p.

171., the inclination
,.,

of the pressures P, and P2 , represented by the arrows,

is not the angle P, IP
2 , but the angle P,IQ, since IQ and IP, are directions of

these pressures, both tendingfrom this point of intersection, whilst the direc-

tions of P2T and IP, are one of them towards that point, and the other from it

\ POISSON, Mecanique, Art. 33.



APPENDIX.

.p.=

+ 2 P,P2 cos. t 1<2+ 2 PjPs cos. i,.,+
+ 2 P2P3 cos. i2 .3+ 2 P2P4 cos. t2M+
+ &C. &C.

f P,
2+ 2 P! (P2 COS. ,.,+P3 COS.

+ &C. &C.

If the value of P, involved in this equation be expanded by Lagrange's

theorem *, in a series ascending by powers ofa,, and terms involving powers

above the first be omitted, we shall obtain the following value of that

quantity :

P _

1 *

a,

or reducing,

P,=

(P2 COS.t,.2

+ 2PaP3 cos. i2 .3+ 2P2P4 cos. <2.4

+2P3P4 cos. 3 .

4+ ----

. tr2+ a,,
2
)

P2
2

(,
2

+ &c. &c.

+ 2 P, P3{02 3 ,(, cos.t2 .3+ 2 cos. t,.8+ 3 cos. i,

4-2PtP4{aa4

+ &C. &C.

Now a7 2,a2 cos. ,.2 + 2 represents the square of the line joining the

feet of the perpendiculars <z, and 2 let fall from the centre of the axia

upon Pj and P2 ; similarly a\ 2a,a3 cos. 1,.,+ ag represents the square of

the line joining the feet of the perpendiculars let fall upon P! and P3,
and

* This expansion may be effected by squaring both sides of the equation,

solving the quadratic in respect to P,, neglecting powers of > above the first

and reducing ;
this method, however, is exceedingly laborious.
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BO of the rest. Let these lines be represented by LL2,
Lt 3, L,.4, &c., and let

the different values of the function

a
l #, cos.

be represented by M2 .3,
M2 .4 ,

M3 .4,
&c.

NOTE E.

ON THE KOLLING MOTION OF A CYLINDER.

(From a memoir printed in the Transactions of the Royal Society for

1851, part II.)

THE oscillatory motion of a heterogeneous cylinder rolling on a horizontal

plane has been investigated by EULER.* He has determined the pressure

of the cylinder on the plane at any period of the oscillation, and the time

of completing an oscillation when the arcs of oscillation are small.

The forms under which the cylinder enters into the composition of

machinery are so various, and its uses so important, that I have thought it

desirable to extend this inquiry, and in the following paper I have sought
to include in the discussion the case of the continuous rolling of the cylin-

der, and to determine

1st. The time occupied by a heterogeneous cylinder in rolling continu-

ously through any given space.

2ndly. The time occupied in its oscillation through any given arc.

Srdly. Its pressure, when thus rolling continuously, on the horizontal

plane on which it rolls.

Under the second and third heads this discussion has a practical appli-

cation to the theory of the pendulum ; determining the time occupied in

the oscillations of a pendulum through any given arc, whether it rests

on a cylindrical axis or on knife-edges, and the circumstances under

which it will jump or slip on its bearings ;
and under the first and third,

to the stability and the lateral oscillations of locomotive engines in rapid

motion, whose driving-wheels are, by reason of their cranked axles, untruly

balanced.

* Nova Acta Acad. Petropol. 1788.
" De motu oscillatorio circa axcm cylin-

dricum piano horizontal! incumbentem."
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Let AMB represent the section of a heterogeneous cylinder through

its centre of gravity G and perpendicular to its axis
;
and let M be its

point of contact, at any time, with the hori-

zontal plane BD on which it is rolling.

Assume

a = AC, h = CG, = ACM.
W = weight of cylinder. W&*= momen-

tum of inertia of the cylinder ahout

an axis passing through G and

parallel to the axis of the cylinder.

w =- given value of the angular velocity (
)
when e has the given

. \ dt /
value 0j.

y, = given value of 6 when the angular velocity has the given value .

I = given value of GM corresponding to the value 0, of 9.

Then W (#* + GM2

)
= W(P + a? + h* 2ah cos. 0)

= moment of inertia

ahout M. Since moreover the cylinder may be considered to be in the act

of revolving about the point M by which it is in contact with the plane,

one-half of its vis viva is represented by the formula

and one-half of the vis viva acquired by it in rolling through the angle

0, 0,by

_ 2aA cos. +#)*

But the vertical descent of the centre of gravity while the cylinder is

passing from the one position into the other, is represented by
h (cos. cos. 0j).

Therefore, by the principle of vis viva,*

I -j (V+ a9 2ah cos. e+F/
-) (F+ 1

7
) w

2
i= W (cos. e - cos. 0,),

whence we obtain

(cos. 6 cos. 0Q + (ff+ P) co
8&V _

dt/
~

cos. e
(cos. 0,

^-1 w2

fff\ V
*

2gh
\aj I (ft a h\

*
POK60N, Dynamique, 2me partie, 565. ; PONCELET, Mecanique Induatrielle,

or Art. (129.) of this Work.
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^
.3

where t represents the time of the body's passing from the inclination 0j to

zero.

Now let it be observed that in this function a>3 so long as a is less than

g, since

#+ ?>_(# + p)M ?
or ff + a* 2ah cos. 0, +#>

and . . #*+ a2+ A8>2A cos. (F + Z>8

,

a h
and

1+a 1 a a COS.

1_0 cos.0 p

Then when = 0, #
2
sec.

8 = 7
- =

?*, .
'

. sec. = 1 and = 0.
1 p

When 9 = 0! let =
0,,

af Tfc4
_ a cos. 0i

also

.__l-q_=

a cos.
And since -

t
2 cos.

(a j8) ~cos.0 + ?

(a+ 3)(cos.
8
^ + g

2

) + (a J3)(C08.'9f)
-.2008.0=

(COS.
2 ^^2

)
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2 . (cos.
2

y + g*)
2

-(<* cos.
2

(cos.* + * a cos.
2

Now

^0 _ <Z0 <? cos. <? cos. ^ _ sin. ^ <? cos. 5

^ ~~^ cos.
*

d cos. 9
'

^>
~

sin.
"

^ cos. $
' ' " " ' *'

Also by equation (6.),

2(aC03.
2

+j3^
2
) COS. ?>_2(a- 13)^008.

^ cos. $~~ (g* + cos.
2

. . by equations (7.) and (8.),

<?9__ 2(g 3)g
2

<^~ (1

2(g J3)g COS.

/a COS. ')

y^_2fg j3)^
2

j_1_ I
' '

V cos. j3 ) Tt>~ (1 j3*)*"

'

( (^4-cos.
2

?.) (^
2
+^>

2
cos.

8
0)j j

2(a p)g
2

j_1_ |

(1 (3

2

)J

'

j^ + l-sin.^X^+p
2

^
2
sin.

2

^)i j"

2(>-p)g'
j_1_ )

~(1 3'O
i(^ + ?

2K1 + ^)( (1 wsin.
2

^)(l c
2
sin.

2
^)i f

and
1 +a
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0i

y'
/a cos. 0\*'<

( ~0~^T# )

"

2(a /,_

n sin.
2
0)(1 c

2
sin.

2

o

2(a %2

where n( nc^) is that elliptic function of the third order whose par*
meter is n and modulus c.

1 /T-^"

# a

. . by equations 11. and 4.

where (9.) (2.) (3.)

1 cos. 0,

* I cannot find that this function has before been integrated, except in the
case in which is exceedingly small.
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and (10.) (2.) (3.)

.j

(a/?)

The value of n( TMJ^) being determinable by known methods

DBE, Fonctions Elliptiques, vol. i. chap, xxxiii.), the time of rolling is given

by equation 13.

In the case in which the rolling motion is not continuous but oscillatory,

we have w=
;
and therefore (equation 5.) $,

= -
;
n ( nc<p^) becomes

therefore in this case a complete function.

To express the value of this complete elliptic function of the third order

in terms of functions of the first and second orders, let

Then*

Eepresenting therefore the time of a semi-oscillation by

*!=

where (15.) t = JvZn vers -
i (18).

Since the values of elliptic functions of the first and second orders,

having given amplitudes and moduli, are given by the tables of LEGENDEE,-
it follows that the value of t is given by this formula for all possible values

of <j and 4,.

If the angle of oscillation 0, be very small e is very small, so that its

square may be neglected in comparison with unity. In this case

*
LBOBNDRE, Calcus des Fonctions Elliptiques, vol. i. chap, xxni Art. 116.
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= Ee* = 4, and Fc ? = Ec^ =
2 22

/. Fe - 04, Ec - Fo^ = 0.
2 2

For small oscillations therefore

2

If the pendulum oscillate on knife-edges a = 0, I h, and we obtain the
well-known theorem of LEGENDEK (Fonctions Elliptiques, vol. i. chap.
viii.)

where (18.) <?, =
|

vers." 0, = sin.
3

i

. . c = sin. - BI . . . . (21).

In the case of the small oscillations of a pendulum resting on knife-edge,

equation 20. becomes

which is the well-known formula applicable to that case.

If the pendulum be one which for small arcs beats seconds (21.),

.-.(20.) 2* =
, (23).

by which equation the time of the oscillation through any arc, of a pen-
dnluni which oscillates through a small arc in one second, may be deter-

mined. I have caused the following table to be calculated from it.
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Table of the time occupied in oscillating through every two degrees of a

complete circle, by a pendulum which oscillates through a small arc in

one second.

Arc of oscillation

on each side of

the vertical
in degrees.
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dy _ . dd

d'e

>
. . . . (29).

. . by equation (29.),

=MA cos. ISta sin.
;

by equation (28.),

X=
| |

cos.eU

(30).

But by equation (1.), substituting and B
l for and

QQB.gQ + (y+P)o
a

2a& cos. + A2
'

* ; *

2afc(cos. cos. 0,) + (7c
2+ V}

g_
2ah cos. 9 + h2

*
k2+ a? 2ah cos. + h2

' ~ ..(32).

Observing that a2 + ft
1 2ah cos. 0,

= I
2
.

Differentiating this equation and dividing Ibtfl \

Ism.

_
(F + a

7 + 7?-2aA cos. 0)
2

C33X
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Substituting these values ofM and N in equation (30.), and reducing,

_. WAsm.0( (F+ Z'X&'+ A
2

ahcos.e)(g+ au>
T
)>

~t~~ * * "

Whia
'- 2oA ooa.

The rotation of a "body about a cylindrical axis of small diameter.

Assuming a = in equations (31.), (33.), and 0!=0, we have

2gft(cos.0 1) 2 gr^ sin, e

2
=

>

Therefore, by equation (30.),

WAjgr^ 3cos.e)X=Y \

The last equation may be placed under the form

If --I , w2
1

J
be numerically less than unity, whether it be positive

or negative, there will be some value of between and n for which this

expression will be equalled, with an opposite sign, by cos. 0, and for which

the first term under the bracket in the value of Y will vanish. This cor-

responds to a minimum value of Y represented by the formula

But if -/ w2
1

J
be numerically greater than nnity, then the

minimum of Y will be attained when =
*, and when
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The Jump of an Axis.

If Y be negative in any position of the body, the axis will obviously

jump from its bearings, unless it be retained by some mechanical expe-
dient not taken account of in this calculation. But if Y be negative in

any position, it must be negative in that in which its value is a minimum.
If a jump take place at all, therefore, it will take place when Y is a mini-

mum; and whether it will take place or not, is determined by finding

whether the minimum value of Y is negative. If therefore the expression

(42.) or (43.) be negative, the axis will jump in the corresponding case.

An axis of infinitely small diameter, such as we have here supposed,

becomes a fixed axis; and the pressure upon a fixed axis, supposed to

turn in cylindrical bearings without friction, is the same, whatever may
be its diameter; equations (40.) and (41.) determine therefore that pres-

sure, and equation (42.) or (43.) determines the vertical strain upon the

collar when the tendency of the axis to jump from its bearings is the

greatest.

The Jump of a Rolling Cylinder.

Whether a jump will or will not take place, has been shown to be deter-

mined by finding whether the minimum value of Y be negative or not.

Substituting a for-/ + -+ f |
and reducing, equation (35.) becomes

Z\ah a hi

y-W/1 *> WF+ C+a*8
cos.

2 e-2acos.0 + lWl-

.-.-^=0,
Is

^ ^ ^

Srdly, when = 0.

The first condition evidently yields a positive value of
-r^-,

since it
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causes the first term of the preceding equation to vanish
;
and the second

term is essentially positive, a being always greater than unity.

If, therefore, the first condition be possible, or if there be any value of

6 which satisfies it, that value corresponds to a position of minimum pres-

sure. Solving, in respect to cos. 0,
we obtain

The first condition will therefore yield a position of minimum pres-

sure, if

o i / ~rrz ^ . i or if

or if

or if

J*\ ( iv ^ (i* _L 7-^ ^ il ^t^a 1J ^AJ + I ) (a, I) a

and

or

whence, substituting for a and reducing, we obtain finally, the conditions'

\ {&
2 + (a+A)T Sg\ (g\ {#+( &)'}' fQ\k^m^^-)^^

Of these inequalities the second always obtains, because

whatever be the values of &, a and A. And the first is always possible,
since

{F+ (a+ )<}* >(&*+ ?*) }#+ (<, _&)}.

^

If the/rsi obtain, there are two corresponding positions of OA on either
ide of the vertical, determined by equation (46.), in which the pressure Y
of the cylinder upon the plane is a minimum.
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Substituting the other two values (rt and 0) of 6 which cause -j- to

vanish in the value of ^-^ we obtain the valuesw
< h

a 2ga\*+ 1)
2 la 2gd\a I)

2

or

_ a . oa
2

I)
2

$'*

which expressions are both negative if the inequalities (47.) obtain. The

same conditions which yield minimum values of Y in two corresponding

oblique positions of CA, yield, therefore, maximum values in the two ver-

tical positions ;
so that if the inequalities (48.) obtain, there are two posi-

tions of maximum and two of minimum pressure.

Substituting the values of cos. (equation 46.) in equation (44.), and

reducing, we obtain for the minimum value of Y in the case in which the

inequalities (48.) obtain,

+3

If this expression be negative the cylinder will jump.
In the case in which =

0, which is that of a,pendulum having a cylin-

drical axis of finite diameter, it becomes

Y 5

If the first of the inequalities (48.) do not obtain, no position of mini-

mum pressure corresponds to equation (46.) ;
and the inequalities (47.) do

not obtain, so that the values (49.) of -=-5-, given respectively by the sub-

stitution of rt and for 0, are no longer both negative, but the second only.

In this case the value rt of is that, therefore, which corresponds to a posi-

tion of minimum pressure, which minimum pressure is determined by

substituting rt for in equation (35.), and is represented by

* When the pendulum oscillates on knife-edges a=0, and this expression

assumes the form of a vanishing fraction, whose value may be determined by
the known rules. See the next article.
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. . . (51).
g

' w+ (a+h)*

The cylinder will jump if this expression be negative, that is, if

i

or, substituting and reducing, if

If the angular velocity be assumed to be that acquired in the highest

position of the centre of gravity, 0i=rt, and cos.
-

81 = 0. In this case,

therefore (equation 61.)

and there will be a jump if w!>
|

. . . (53).

The Pendulum oscillating on Knife-edges.

In this case a is evanescent, and w=0. Equations (31.) and (33.)

become, therefore,

s. cos. 0,) __-
* + #

Substituting these values ofM and K" in equation (30.),

_ ~Wh* r \

#+# ]
2 (cos ' 9 cos ' ') sm ' cos - 9 sin ' 9

1

Y=W+ F+A7
|

(cos - 9~ cos ' e^ cos '
~ sin '20

}
?

.". X =
-^T^-2 (2

cos. 0, 3 cos. 0) sin. ... (54).
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P\
.

2

2008.0008.0,+-!
* ' ' (55) '

Y is a minimum when cos. 9 = -cos. 0,, in which case
3

There will therefore be a jump of the pendulum upon its b'earings at

each oscillation if the amplitude 0, of the oscillation be such, that

1 Z* Q 1*
icos.

2
0, > _, or cos.

2
0,>riL.

8 A2 A8

of thefalsely-balanced Carriage-wheel.

The theory of the falsely-balanced carriage-wheel differs from that of

the rolling cylinder, 1st, in that the inertia of the carriage applied at its

axle influences the acceleration produced by the weight of the wheel, as

its centre of gravity descends or ascends in rolling; and, 2ndly, in that

the wheel is retained in contact with the plane by the weight of the car-

riage. The first cause may be neglected, because the displacement of the

centre of gravity is always in the carriage-wheel very small, and because

the angular velocity is, compared with it, very great.

If W, represent that portion of the weight of the carriage which must

be overcome in order that the wheel may jump (which weight is supposed

to be borne by the plane), and if Y! be taken to represent the pressure

upon the plane, then (equation 52.)

Y1
=W,+Y=W 1+ w(l ) (57).V ff

'

In order that there may be a jump, this expression must be negative,

or
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The Driving-Wheel of a Locomotive Engine.

The attention of engineers was some years since directed to the effects

which might result from the false balancing of a wheel by accidents on

railways, which appeared to be occasioned by a tendency to jump in the

driving-wheels of the engines. The cranked axle in all cases destroys the

balance of the driving-wheel unless a counterpoise be applied ;
at that time

there was no counterpoise, and the axle was so cranked as to displace the

centre of gravity more than it does now. Mr. GEOKGE HEATON, of Bir-

mingham, appears to have been principally instrumental in causing the

danger of this false-balancing of the driving-wheels to be understood. By
means of an ingenious apparatus*, which enabled him to roll a falsely-

balanced wheel round the circumference of a table with any given velocity,

and to make any required displacement of the centre of gravity, he showed

the tendency to jump, produced even by a very small displacement, to be

so great, as to leave no doubt on the minds of practical men as to the

danger of such displacement in the case of locomotive engines, and a coun-

terpoise is now, I believe, always applied. To determine what is the

degree of accuracy required in such a counterpoise, I have calculated from

the preceding formulae that displacement of the centre of gravity of a

driving-wheel of a locomotive-engine, which is necessary to cause it to

jump at the high velocities not unfrequently attained at some parts of the

journey of an express train
;
from such information as I have been able to

obtain as to the dimensions of such wheels, and their weights, and those

of the engines f. The weight of a pair of driving-wheels, six feet in

diameter, with a cranked axle, varies, I am told, from 2 to 3 tons
;
and

that of an engine on the London and Birmingham Kailway, when filled with

water, from 20 to 25 tons. If n represent the number of miles per hour

at which the engine is travelling, it may be shown by a simple calculation,

that the angular velocity, in feet, of a six-feet wheel is represented by -=1

or by -n very nearly. In this case we have, therefore, since "W represents

the weight of a single wheel and its portion of the axle, and "VV, represents
the weight, exclusive of the driving-wheels, which must be raised that

* This apparatus was exhibited by the late Professor CoWPEK to illustrate his

Lectures on Machinery at King's College. It has also been placed by General

MORIN among the apparatus of the Conservatoire des Arts et Metiers at Paris.

\ I have not included in this calculation the inertia of the crank rods, of the

slide gearing, or of the piston and piston rods. The effect of these is to increase

the tendency to jiimp produced by the displacement of the centre of gravity
of the wheel

;
and the like effect is due to the thrust upon the piston rod,

The discussion of these subjects does not belong to my present paper.
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either side of the engine may jump*, that is, half the weight of the engine
exclusive of the driving-wheels, W= ! to H tons, W, = 8f to Hi tons,

w = -TO, ^= 32-19084 whence I have made the following calculations from

formula (59.).

Height of
the engine in

tons, includ-

ing the driv-

ing wheels.
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If the weight "W of the wheel be supposed to vary as the square of its

diameter and be represented by pd*, this formula will become

h>(M
still showing the displacement of the centre of gravity necessary to pro-

duce a jump to diminish with the diameter of the wheel. These conclu-

sions are opposed to the use of light engines and small driving-wheels;

and they show the necessity of a careful attention to the true balancing of

the wheels of the carriages as well as the driving-wheels of the engine.

It does not follow that every jump of the wheel would be high enough to

lift the edge of the flange off the rail
;
the determination of the height of

the jump involves an independent investigation. Everyjump nevertheless

creates an oscillation of the springs, which oscillation will not of necessity

be completed when the jump returns
;
but as the jumps are made alter-

nately on opposite sides of the engine, it is probable that they may, and

that after a time they will, so synchronise with the times of the oscillations,

as that the amplitude of each oscillation shall be increased by every jump,
and a rocking motion be communicated to the engine attended with

danger.

Whilst every jump does not necessarily cause the wheel to run off the

rail, it nevertheless causes it to slip upon it, for before the wheel jumps
it is clear that it must have ceased to have any hold upon the rail or any
friction.

The Slip of the Wheel.

If /be taken to represent the coefficient of friction between the surface

of the wheel and that of the rail, the actual friction in any position of the

wheel will be represented by Y, /. But the friction which it is necessary

the rail should supply, in order that the rolling of the whel maybe main-

tained, is X. It is a condition therefore necessary to the wheel not slip-

ping that

If, therefore, taking the maximum value of in any revolution, we find

that/exceeds it, it is certain that the wheel cannot have slipped in that

revolution; whilst if, on the other hand, /falls short of it, it must have

sition for jumping, it is in an unfavourable position on the other side, so that

It can only jump on one side at once, and the efforts on the two sides alternate-
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slipped.* The positions between which the slipping will take place con-

tinually, are determined by solving, in respect to cos. 0,, the equation

/=?.... (61).

The application of these principles to the slip of the carriage-wheel is

rendered less difficult by the fact, that the value of h is always in that case

so small, as compared with the values of Tc and a, that - may be neglected
a

in formulae (34.) and (35.), as compared with unity. Those equations
then become

1 X.2+
7
l (62).

and

H I+^-[,
= --cos. a+

(A

whence we obtain

X

Assume

/i + !L'W
(

+
wj^+cos.

e d?u__{ j3 (jS + C03. 0) +2 (1 +|8 cos. &)} sin.~"
d9 (3 + cos. 0)

2 ^2
~

03 + cos. e )
3

Now if j3> 1, there will be some value of e for which
^
+ cos. = 0, and

therefore 1+3 cos. = 0; and since for this value of 0,
_ =

0, and ^
ad ojr

* Of course, the slipping, in the case of the driving-wheels of a locomotive,

is diminished by the fact, that whilst one wheel IB not biting upon the rail

the other is.

43
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= t

M
-

3 it follows that it corresponds to a maximum value of u, and

therefore of 5.
Y,

But if (3 < 1, then there is some value of cos. for which |3 + cos. =
0,

and therefore for which u infinity, which value corresponds therefore in

this case to the maximum of5
Y,

Thus then it appears that according as

the maximum value of = is attained when cos. 0= j3 or= ^ ;
that

is, when

Y
In the one case the maximum value ofy will be infinity, .... (67).

and in the other case it will be represented by the formula

(68).

<

In the first case, i. e. when /3< 1, the wheel will slip every time that it

revolves, whatever may be the value of f. In the second case, or when

3 > 1, it will slip if /do not exceed the number represented by formula

(68.). The conditions (65.) are obviously the same with those (59.) which

determine whether there be a jump or not, which agrees with an obser-

vation in the preceding article, to the effect, that as the wheel must cease

to bite upon the rail before it can jump, it must always slip before it

can jump. "When the conditions of slipping obtain, one of the wheels

always biting when the other is slipping, and the slips of the two wheels

alternating, it is evident that the engine will be impelled forwards, at

certain periods of each revolution, by one wheel only, and at others, by
the other wheel only; and that this is true irrespective of the action of

the two pistons on the crank, and would be true if the steam were thrown
off. Such alternate propulsions on the two sides of the train cannot but



DESCENT UPON INCLINED PLANE. 675

communicate alternate oscillations to the buffer-springs, the intervals

between which will not be the same as those between the propulsions;

but they may so synchronise with a series of propulsions as that the

amplitude of each oscillation may be increased by them until the train

attains that fish-tail motion with which railway travellers are familiar.

It is obvious that the results shown here to follow from a displacement of

the centres of gravity of the driving-wheels, cannot fail also to be pro-

duced by the alternate action of the connecting rods at the most favorable

driving points of the crank and at the dead points,* and that the operation

of these two causes may tend to neutralize or may exaggerate one another.

It is not the object of this paper to discuss the question under this point

of view.

NOTE F.

ON THE DESCENT UPON AN INCLINED PLANE OF A BODY SUBJECT TO VARIA-

TIONS OF TEMPERATURE, AND ON THE MOTION OF GLACIERS.

IF we conceive two bodies of the same form and dimensions (cubes, for

instance), and of the same material, to be placed upon a uniform horizon-

tal plane and connected by a substance which alternately extends and

contracts itself, as does a metallic rod when subjected to variations of

temperature, it is evident that by the extension of the intervening rod

each will be made to recede from the other by the same distance, and,

by its contraction, to approach it by the same distance. But if they be

placed on an inclined plane (one being lower than the other) then when

by the increased temperature of the rod its tendency to extend becomes

sufficient to push the lower of the two bodies downwards, it will not have

become sufficient to push the higher upwards. The effect of its exten-

sion will therefore be to cause the lower of the two bodies to descend

whilst the higher remains at rest. The converse of this will result from

contraction
;
for when the contractile force becomes sufficient to pull the

upper body down the plane it will not have become sufficient to pull

the lower up it. Thus, in the contraction of the substance which inter-

venes between the two bodies, the lower will remain at rest whilst the

upper descends. As often, then, as the expansion and contraction is

repeated the two bodies will descend the plane until, step by step, they

reach the bottom.

* A slip of the wheel may thus be, and probably is, produced at each revo-

lution.
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Suppose the uniform bar AB placed on an inclined plane, and subject

to extension from increase of temperature, a por-

tion XB will descend, and the rest XA will ascend
;

the point X where they separate being determined

by the condition that the force requisite to push
XA up the plane is equal to that required to push
XB down it.

Let AX =
a?,
AB= L, weight of each linear unit =

/*,
t= inclination

of plane, $ = limiting angle of resistance.

.-.(jix
= weight of AX.

Now, the force acting parallel to an inclined plane which is necessary

to push a weight W up it, is represented by W li^JLyj and that ne-
COS.

eessary to push it down the plane byW . (Art. 241.)

COS.

^.

sin. (? Q
COS.

<f> COS.
<p

.-.x {sin. (0+ t) + sin. (0 t)}
= L sin. (p

. . 2 x sin. cos. t= L sin. (^ t)

_. L
sm.

<j>
cos.

,
_

f= iL <

(

tan. t

tan.

When contraction takes place, the converse of

the above will be true. The separating point X
will be such, that the force requisite to pull XB up

__^________ the plane is equal to that required to pull AX
down it. BX is obviously in this case equal to AX
in the other.

Let a. be the elongation per linear unit under any variation of tempera-
ture; then the distance which the point B (fig. l.)will be made to descend

by this elongation = x.BX
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If we conceive the bar now to return to its former temperature, con-

tracting by the same amount (X) per linear unit; then the point B
(fig. 2.) will by this contraction be made to ascend through the space~

Total descent I of B by elongation and contraction is therefore determined

by the equation

To determine the pressure upon a nail driven

through the rod at any point P fastening it to the

plane.

It is evident, that in the act of extension the part BP of the rod will

descend the plane and the part AP ascend; and conversely in the act of

contraction
;
and that in the former case the nail B will sustain a pressure

upwards equal to that necessary to cause BP to descend, and a pressure

downwards equal to that necessary to cause PA to ascend
;
so that, as-

suming the pressure to be downwards, and adopting the same notation as

before, except that AP is represented by p,
AB by a, and the pressure

upon the nail (assumed to be downwards) by P, we have in the case of

extension

_ sin. (0 + e,) . sin.

and in the case of contraction,

p=,(*-p)
sin -

Reducing, these formulae become respectively,

p_ J
2p sin. cos. i a sin. (0 i) > (8).

COS.
<f> ( j

P = < a sin. (<p + 1) 2p sin. <t> cos. >.- '

(4).
COS. ( J

EXAMPLE OF THE DESCENT OF THE LEAD ON THE ROOF OF BEISTOL

CATHEDEAL.

My attention was first drawn to the influence of variations in tempera-

ture to cause the descent of a lamina of metal resting on an inclined plane
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by observing, in the autumn of 1853, that a portion of the lead which

covers the south side of the choir of Bristol Cathedral, which had been

renewed in the year 1851, but had not been properly fastened to the ridgo

beam, had descended bodily eighteen inches into the gutter; so that if

plates of lead had not been inserted at the top, a strip of the roof of that

length would have been left exposed to the weather. The sheet of lead

which had so descended measured, from the ridge to the gutter, 19ft. 4in.,

and along the ridge 60ft. The descent had been continually going on

from the time the lead had been laid down. An attempt made to stop it

by driving nails through it into the rafters had failed. The force by
which the lead had been made to descend, whatever it was, had been

found sufficient to draw the nails.* As the pitch of the roof was only

164- it was sufficiently evident that the weight of the lead alone could not

have caused it to descend. Sheet lead, whose surface is in the state of

that used in roofing, will stand firmly upon a surface of planed deal when
inclined at an angle of 30f, if no other force than its weight tends to

cause it to descend. The considerations which I have stated in the pre-

ceding articles, led me to the conclusion that the daily variations in the

temperature of the lead, exposed as it was to the action of the sun by its

southern aspect, could not but cause it to descend considerably, and the

only question which remained on my mind was, whether this descent

could be so great as was observed. To determine this I took the follow-

ing data :

Mean daily variation of temperature at Bristol in the

month of August ;
assumed to be the same as at Leith

(Kcemtz Meteorology, by Walker, p. 18.)
- - - 8 21' Cent.

Linear expansion of lead through 100 Cent. - - - '0028436.

Length of sheets of lead forming the roof from the ridge

to the gutter
- - 232 inches.

Inclination of roof 16 32'.

Limiting angle of resistance between sheet lead and deal - 80

Whence the mean daily descent of the lead, in inches, in the month of

August, is determined by equation (2.) to be

* The evil was remedied by placing a beam across the rafters, near the ridge,

and doubling the sheets round it, and fixing their ends with spike-nails.

j-
This may easily be verified. I give it as the result of a rough experiment

of my own. I am not acquainted with any experiments on the friction of lead

made with sufficient care to be received as authority in this matter. The

friction of copper on oak has, however, been determined by General MORIN

(see a table in the preceding part of this work) to be 0'62, and its limiting angle
of resistance 31 48'

;
so that if the roof of Bristol Cathedral had been inclined

at 31 instead of 16", and had been covered with sheets of copper resting on

oak boards, instead of sheets of lead resting on deal, the sheeting would not

have slipped by its weight only.



DESCENT UPON INCLINED PLANE. 679

Z=-027848 inches.

This average daily descent gives for the whole month of August a descent

of -863288. If the average daily variation of temperature of the month
of August had continued throughout the year, the lead would have

descended 10-19148 inches every year. And in the two years from

1851 to 1853 it would have descended 20-38296 inches. But the daily

variations of atmospheric temperature are less in the other months of the

year than in the month of August. For this reason, therefore, the cal-

culation is in excess. For the following reasons it is in defect: 1st.,

The daily variations in the temperature of the lead cannot but have been

greater than those of the surrounding atmosphere. It must have been

heated above the surrounding atmosphere by radiation from the sun in

the day-time, or cooled below it by radiation into space at night. 2ndly.,

One variation of temperature only has been assumed to take place every

twenty-four hours, viz. that from the extreme heat of the day to the

extreme cold of the night; whereas such variations are notoriously of

constant occurrence during the twenty-four hours. Each cannot but have

caused a corresponding descent of the lead, and their aggregate result

cannot but have been greater than though the temperature had passed

uniformly (without oscillations backwards and forwards) from one extreme

to the other.

These considerations show, I think, that the causes I have assigned are

sufficient to account for the fact observed. They suggest, moreover, the

possibility that results of importance in meteorology may be obtained

from observing with accuracy the descent of a metallic rod thus placed

upon an inclined plane. That descent would be a measure of the aggre-

gate of the changes of temperature to which the metal was subjected

during the time of observation. As every such change of temperature is

associated with a corresponding development of mechanical action under

the form of work,* it would be a measure of the aggregate of such changes

and of the work so developed during that period. And relations might be

found between measurements so taken in different equal periods of time

successive years for instance tending to the development of new

meteorological laws.

* Mr. JOULE has shown (Phil. Trans., 1850, Part I.) that the quantity of heat

capable of raising a pound of water by 1 Fah. requires for its evolution 772

units of work.
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THE DESCENT OF GLAOIEES.

The following are the results of recent experiments
* on the expansion

of ice :

Linear Expansion of Ice for am, Interval of 100 of the Centigrade
Thermometer.

0-00524 Schumacher.

0-00513 Pohrt.

0-00518 Moritz.

Ice, therefore, has nearly twice the expansibility of lead
;
so that a

sheet of ice would, under similar circumstances, have descended a plane

similarly inclined, twice the distance that the sheet of lead referred to in

the preceding article descended. Glaciers are, on an increased scale,

sheets of ice placed upon the slopes of mountains, and subjected to

atmospheric variations of temperature throughout their masses by varia-

tions in the quantity and the temperature of the water, which, flowing

from the surface, everywhere percolates them. That they must from this

cause descend into the valleys, is therefore certain. That portion of the

Mer de Glace of Chamouni which extends from Montanvert to very near

the origin of the Glacier de Lechaud has been accurately observed by
Professor James Forbes.t Its length is 22,600 feet, and its inclination

varies from 4 19' 22" to 5 5' 53". The Glacier du Geant, from the

Tacul to the Col du Geant, Professor Forbes estimates (but not from his

own observations, or with the same certainty) to be 24,700 feet in length,

and to have a mean inclination of 8 46' 40".

According to the observations of De Saussure, the mean daily range
of Reaumur's thermometer in the month of July, at the Col du Geant, is

4 -257}, and at Chamouni 10 -09 2. The resistance opposed by the

rugged channel of a glacier to its descent cannot but be different at dif-

ferent points, and in respect to different glaciers. The following passage
from Professor Forbes's work contains the most authentic information I

am able to find on this subject. Speaking of the Glacier of la Brenva

he says :
u The ice removed, a layer of fine mud covered the rock, not

composed, however, alone of the clayey limestone mud, but of sharp sand

derived from the granitic moraines of the glacier, and brought down with

it from the opposite side of the valley. Upon examining the face of the

ice removed from contact with the rock, we found it set all over with

sharp angular fragments, from the size of grains of sand to that of a

cherry, or larger, of the same species of rook, and which were so firmly

Vide Archir. , Wissenschaftl. Kunde v. Russland, Bd. vii s. 883.

Travels through the Alps of Savoy. Edinburgh, 1853.

Quoted by Professor FORBES, p. 231.
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fixed in the ice as to demonstrate the impossibility of such a surface being

forcibly urged forwards without sawing any comparatively soft body
which might be below it. Accordingly, it was not difficult to discover in

the limestone the very grooves and scratches which were in the act of

being made at the time by the pressure of the ice and its contained frag-

ments of stone." (Alps of the Savoy, pp. 203 4.) It is not difficult

from this description to account for the fact that small glaciers are some-

times seen to lie on a slope of 30 (p. 35.). The most probable supposition

would indeed fix the limiting angle of resistance between the rock and

the under surface of the ice set all over, as it is described to. be, with

particles of sand and small fragments of stone, at about 30
;
that being

nearly the slope at which smooth surfaces of calcareous stone will rest on

one another. If we take then 30 to be the limiting angle of resistance

between the under surface of the Mer de Glace and the rock on which it

rests, and if we assume the same mean daily variation of temperature

(4-257 Keaumur, or 5'321 Centigrade) to obtain throughout the length

of the Glacier du Geant, which De Saussure observed in July, at the

Col du Geant
; if, further, we take the linear expansion of ice at 100

Centigrade to be that ('00524) which was determined by the experiments

of Schumacher, and, lastly, if we assume the Glacier de Geant to descend

as it would if its descent were unopposed by its confluence with the

Glacier de Lechaut; we shall obtain, by substitution in equation (2.)

for the mean daily descent of the Glacier du Geant at the Tacul, the

formula

1= 24700 X 5-321 x '^24
tan- 8 46'

100 tan. 30

1= 1-8395 feet.

The actual descent of the glacier in the centre was T5 feet. If the

Glacier de Lechaut descended, at a mean slope of 5, singly in a sheet of

uniform breadth to Montanvert without receiving the tributary glacier of

the Talefre, or uniting with the Glacier du Geant, its diurnal descent would

be given by the same formula, and would be found to be -95487 feet.

Eeasoning similarly with reference to the Glacier du Geant
; supposing it

to have continued its course singly from the Col du Geant to Montanvert

without confluence with the Glacier de Lechaut, its length being 40,420

feet, and its mean inclination 6 53', its mean diurnal motion I at Montan-

vert would, by formula (2.) have been 2'3564* feet. The actual mean

daily motion of the united glaciers, between the 1st and the 28th July, was

at Montanvert,f

* On the 1st of July the centre of the actual motion of the Mer de Glace at

Montanvert was 2*25 feet.

f Forbes' "
Alps of Savoy," p. 140.
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Near the side of the glacier
- - 1-441 feet.

Between the side and the centre - 1 '750
"

Near the centre 2-141 "

The motion of the Glacier de Lechaut was therefore accelerated by their

confluence, and that of the Glacier du Geant retarded. The former is

dragged down by the latter.

I have had the less hesitation in offering this solution of the mechanical

problem of the motion of glaciers, as those hitherto proposed are con-

fessedly imperfect. That of De Saussure, which attributes the descent of

the glacier simply to its weight, is contradicted by the fact that isolated

fragments of the glacier stand firmly on the slope on which the whole

nevertheless descends. It being obvious that if the parts would remain at

rest separately on the bed of the glacier, they would also remain at rest

when united.

That of Professor J. Forbes, which supposes a viscous or semirfiuid

structure of the glacier, is not consistent with the fact that no viscosity is

to be traced in its parts when separated. They appear as solid fragments,

and they cannot acquire in their union properties in this respect which

individually they have not.

Lastly, the theory of Oharpentier, which attributes the descent of the

glacier to the daily congelation of the water which percolates it, and the

expansion of its mass consequent thereon, whilst it assigns a cause which,

so far as it operates, cannot, as I have shown, but cause the glacier to

descend, appears to assign one inadequate to the result
;
for the congelation

of the water which percolates the glacier does not, according to the obser-

vations of Professor Forbes,* take place at all in summer more than a few

inches from the surface. Nevertheless, it is in the summer that the daily

motion of the glacier is the greatest.

The following remarkable experiment of Mr. Hopkins of Cambridge,!
which is considered by him to be confirmatory of the sliding theory of

De Saussure as opposed to De Oharpentier's dilatation theory, receives

a ready explanation on the principles which I have laid down in this

note. It is indeed a necessary result of them. Mr. Hopkins placed a

mass of rough ice, confined by a square frame or bottomless box, upon
a roughly chiselled flag-stone, which he then inclined at a small angle ;

and found that a slow but uniform motion was produced, when even it

was placed at an inconsiderable slope. This motion, which Mr. Hopkins
attributed to the dissolution of the ice in contact with the stone, would,
I apprehend, have taken place if the mass had been of lead instead of ice

;

* "Travels in the Alps," J>.
413.

f I have quoted the following account of it from Professor Forbes's book,

p. 419.
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and it would have been but about half as fast, because the linear expan-
sion of lead is only about half that of ice.

NOTE G.

THE BEST DIMENSIONS OF A BTJTTBESS.

IF mi (Art. 299.) represent the modulus of stability of the portion AG of

the wall, it may be shown, as before, that

P{ (&, A2) sin. a (I a3 m,)cos. a} = (a, w,) (A, A2)a,^t ;

. . P{(^i A2)sin. a (I a2)cos. a}

== K&i ^2)^1V wi{P C08 - + (^i A*X/*}

If m l=m^ the stability of the portion AG of the structure is the same

with that of the whole AC
;

an arrangement by which the greatest

strength is obtained with a given quantity of material (see Art. 388.).

This supposition being made, and m eliminated between the above equa-

tion and equation (392.), that relation between the dimensions of the

buttress and those of the wall which is consistent with the greatest

economy of the material used will be determined. The following is that

relation :

, + ~afhz} P (A, sin. a I cos. a)

P cos. a+ nt(aA + ~A)

AsK* P{(Ai A) sin, a (I a,) cos, a}

P cos. a+^ (hi h3)

It is necessary to the greatest economy of the material of the Gothic

buttress (Art. 301.) that the stability of the portions Qa and Q5, upon

their respective bases ao and fo, should be same with that of the whole

buttress on its base EC. If, in the preceding equation, h l
h3 be

substituted for A,, and 7i2 h3 for A2 ,
the resulting equation, together

with that deduced as explained in the conclusion of Art. 301., will deter-

mine this condition, and will establish those relations between the dimen-

sions of the several portions of the buttress which are consistent with the

greatest economy of the material, or which yield the greatest strength to

the structure from the use of a given quantity of material.
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NOTE H.

DIMENSIONS OP THE TEETH OF WHEELS.

THE following rules are extracted from the work of M. Morin, entitled

Aide Memoire de Mecanique Pratique : If we represent by a the width

in parts of a foot of the tooth measured parallel to the axis of the wheel,

and by I its breadth or thickness measure* parallel to the plane oi

rotation upon the pitch circle
; then, the teeth being constantly greased,

the relation of a and 5 should be expressed, when the velocity of the pitch

circle does not exceed 5 feet per second, by a= 45
;
when it exceeds

5 feet per second, by a= 55 : if the wheels are constantly exposed to wet,

by a=6&.
These relations being established, the width or thickness of the tooth

will be determined by the formulae contained in the columns of the follow-

ing table:

Material
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The following are the pitches commonly in use among mechanics :

in. in. in. in. in. in. in.

1, li, li, H, 2, 2i, 3.

Prof. Willis considers the following to be sufficient below inch pitch :

in. in. in. in. in.

i, t, *, *, *-

Having, therefore, determined the proper pitch to be given to the tooth

from formula 234., the nearest pitch is to be taken from the above series

to that thus determined.

NOTE I.

EXPERIMENTS OF M. MOKIN ON THE TRACTION OF OAEBIAGES.

THE following are among the general results deduced by M. Morin from

his experiments :

1. The traction is directly proportional to the load, and inversely pro-

portional to the diameter of the wheel.

2. Upon a paved or a hard Macadamised road, the resistance is independ-

ent of the width of the tire when it exceeds from 3 to 4 inches.

3. At a walking pace the traction is the same, under the same circum-

stances, for carriages with springs and without them.

4. Upon hard Macadamised and upon paved roads the traction increases

with the velocity ;
the increments of traction being directly proportional

to the increments of velocity above the velocity 3'28 feet per second, or

about 2i miles per hour. The equal increment of traction thus due to

each equal increment of velocity is less as the road is more smooth, and

the carriage less rigid or better hung.

4. Upon soft roads of earth, or sand or turf, or roads fresh and thickly

graveled, the traction is independent of the velocity.

5. Upon a well-made and compact pavement of hewn stones the traction

at a walking pace is not more than three-fourths of that upon the beat

Macadamised road under similar circumstances; at a trotting pace it

is equal to it.

6. The destruction of the road is in all cases greater as the diameters

of the wheels are less, and it is greater in carriages without than with

springs.
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NOTE K.

ON THE STKENGTH OF COLUMNS.

MB. HODGKINSON has obligingly communicated the following observations

on Art. 430. :

1. The reader must be made to understand that the rounding of the

ends of the pillars is to make them moveable there, as if they turned by
means of a universal joint ;

and the flat-ended pillars are conceived to be

supported in every part of the ends by means of flat surfaces, or otherwise

rendering the ends perfectly immoveable.

2. The coefficient (13) for hollow columns with rounded ends is deduced

from the whole of the experiments first made, including some which were

very defective on account of the difficulty experienced in the earlier

attempts to cast good hollow columns so small as were wanted. The

first castings were made lying on their side
;
and this, notwithstanding

every effort, prevented the core being in the middle
;
some of the columns

were reduced, too, in thickness, half way between the middle and the

ends, and near to the ends, and this slightly reduced the strength. These

causes of weakness existed much more among the pillars with rounded

ends than those with flat ones
; they are alluded to in the paper (Art. 47.).

Had it not been for them, the coefficient (13) would, I conceive, have

been equal to that for solid pillars (or 14- 9).

3. The fact of long pillars with flat ends being about three times as

strong as those of the same dimensions with rounded ends is, I conceive,

well made out, in cast iron, wrought iron, and timber; you have, how-

ever, omitted it, being perhaps led to do it through the low value of the

coefficient (13) above mentioned.

The same may be mentioned with respect to the near approach in

strength of long pillars with flat ends, and those of half the length with

rounded ends. It may be said that the law of the 1*7 power of the length
would nearly indicate the latter

;
but this last, and the other powers 3 '76

and 3'55, are only approximations, and not exactly constant, though

nearly so, and I do not know whether the other equal quantities are not,

with some slight modifications, physical facts.

4. The strength of pillars of similar form and of the same materials

varies as the 1*865 power, or near as the square of their like linear

dimensions, or as the area of their cross section.
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TABLE I.

The Numerical Values of COMPLETE Elliptic Functions of the FIRST and
SECOND Ordersfor Values of the Modulus k corresponding to each Degree
of the Angle sin. '&.

Sin. 1*.
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THE TABLES OF M. GAEIDEL.

TABLE II.

Showing the Angle of Rupture of an Arch whose Loading is of the same

Material with its Voussoirs, and whose Extrados is inclined at a given

Angle to the Horizon. (See Art. 344.)'

a= ratio of lengths of voussoirs to radius of intrados.

c = ratio of depth of load over crown to radius of intrados, so thut

e = /3(l+a). (Art. 838.)

t = inclination of extrados to horizon.

a
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= 15'.

a
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= 37 30'.

a
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THE TABLES OF M. GARIDEL.

TABLE III.

Showing the Horizontal Thrust of an Arch, the Radiw of whose Intrados

is Unity, and the weight of each Cubic Foot of its Material and that of
its Loading, Unity. (See Art. 344.)

N.B. To find the horizontal thrust of any other arch, multiply that given
in the table by the square of the radius of the intrados and by the weight
of a cubic foot of the material.

= 0.

a
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a
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,=370 30'.

693
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TABLE IY.

Mechanical Properties of the Materials of Construction.

2fote.The capitals affixed to the numbers In

B. Barlow, Report to the Commissioners of
the Navy, &c.

Be. Bevan.
Br. Belidor, Arch, ffydr.
Bru. Brunei.
C. Couch.
D. W. Daniell and Wheatstone, Report on the

Stonefor the Houses ofParliament.
F. Fairbairn.
H. Hodgkinson, Report to the British As-

sociation ofScience. &c.
K. Kirwan.

this table refer to the following authorities:

La. Lame.
M. Muschenbroek, Inirod. ad Phil. Nat. i.

Mi. Mitis.

Mt. Mushct.
Pa. Colonel Pasley.
R. Eondelet, VArt de Eatir, iv.

Re. Rennie, Phil. Trans. &e.
T. Thomson, Chemistry.
Te. Telford.
Tr. Tredgold, Essay on the Strength oj

Cast Iron.
W. Watson.

Names of Material!.
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1

N*met of Material..
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1

Names of mat. r al>.
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TABLE V.

Useful Numbers.

it .

Log.*

Log. rt

1

ft

x* . .

1_

*'_'

4/*

4^
4/2

=3-1415927

=0-4971499

:1-1447299

=0-3183099

=9-8696044

=0-1013212

=1-7724538

=0-5641896

:1-4142136

1

V5

71

Vi

V!

=0-7071068

=4-4428829

=2-2214415

=0-4501582

=1-2533141

=0-7978846

. =2-7182818

Log. c . . . =0-4342945

Modulus of common logarithms =-434294482

Log. of ditto =9-6377843

g =32-19084

4/0 =5-67363

Log. g =1-5077222

Inches in a French m^tre =39*37079

Log. of ditto =1-5951741

Feet in ditto =3-2808992

Log. of ditto =0-5159929

Square feet in the square metre =10*764297

Acres in the Are =0-024711

Lbs. in a kilogramme =2-20548

Log. of ditto =0-3435031

Imperial gallons in a litre =0-2200967

Lbs. per square inch in 1 kilogramme per square millimetre =1422
Owts. ditto, ditto =12'7
Volume of a sphere whose diameter is 1 ... =0-5235988

Arc of 1 to rad. 1 =0-017453293

Arc of 1' to rad. 1 =0-000290888
Arc of 1" to rad. 1 =0-000004848

Degree in an arc whose length is 1 =57-295780
Grains in 1 oz. avoirdupois =437i
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Grains in 1 Ib. ditto =7000
Grains in a cubic inch of distilled water, Bar. 30 in., Th. 62 =252-458

Cubic inches in an ounce of water =1*73298

Cubic inches in the imperial gallon =277'276

Feet in a geographical mile =6075*6

Log. of ditto =3-7835892

Feet in a statute mile =5280

Log. of ditto =3-7226339

Length of seconds' pendulum in inches ..... =39-19084

Cubic inches in 1 cwt. of cast iron =430-25

Bar iron . . . . . =397'60 .

Cast brass .... =368-88

Cast copper .... =352'41

Cast lead =272-80

Cubic feet in 1 ton of paving stone ..... =14-835

Granite =13'505

Marble =13-070

Chalk =12-874

Limestone ..... =11-273

Elm =64-460

Honduras mahogany . . . =64-000

Mar Forest fir .... =51-650

Beech =51-494

Kigafir =47'762

Ash and Dantzic oak . . . =47'158

Spanish mahogany . . . =42*066

English oak =36-205

To find the weight in Ibs. of 1 foot of common rope, multi-

ply the square of its circumference in inches by . *044 to -04C

Ditto for a cable -027

Note. The numerical values of the function of * in this table were calcu-

lated by Mr. Goodwin. These, together with the numbers of cubic inches and

feet per cwt. or ton of different materials, are taken from the late Dr. Gregory's

excellent treatise, entitled Mechanics for Practical Men. The other numbers

of the table are principally taken from Mr. Babbage's Tables of Logarithm*
and the Aide Memoire of M. Morin.

THE END.
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