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PEEFACE.

This book is designed as an Introduction to more abstruse works

on Engineering and Mechanics, and in particular to those of

the late Professor Rankine.

Its study demands only a previous acquaintance with the

ordinary Rules of Arithmetic, and with the Elementary Alge-

braical Notation. A few pages have been devoted to the

Differential and Integral Calculus, as these have been used in

different parts of the book, their application having been in every

instance explained.

Professor Rankine's Manual of Applied Mechanics has been

taken as the model for this work, the only alteration being the

treating of the Theory of Motion before that of Force, as more

in harmony with modern practice, and as proposed by himself for

the present purpose.

The general design of the work having been indicated, it only

remains for me to explain briefly how my name has been con-

nected with that of Professor Rankine on the Title-page, and

also in what condition it was left at the time of his recent

lamented death.

1 was Professor Rankine's Assistant, and lectured for him

during his illness, and it was whilst on a visit which his death

suddenly terminated, that the arrangement was made which

connected me with him in the task. My duty was simply to

assist him in its preparation. On my mentioning to him that

the amount of labour I should have to do hardly justified my
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name appearing with his as joint-author, he replied, that, owing

to his state of health, more of the work might devolve upon

me than I expected. The issue has proved the correctness of

his surmise.

As to the state of the MS. at the time of his death, two

hundred pages had been already completed, and the general scope

and plan of the work decided upon. I need hardly say that his

wishes have been implicitly carried out in every respect, so far

as lay in my power. The work has been completed at the request

of Professor Rankine's Executrix, and at that of the Publishers,

at whose desire also I have undertaken the superintendence of

New Editions of his other Scientific Manuals, some of which

have already been submitted to the Public.

E. F. B.

Glasgow, October, 1873.

PREFACE TO SECOND EDITION.

This Second Edition has been carefully revised, and some additions

have been made to the text.

E. F. B.

London, October, 1874.
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ARITHMETICAL RULES.

For convenience sake tlie following Arithmetical Rules are here

given : they will be referred to hereafter in the designing of toothed

gearing, under The Theory of Pure Mechanism, Part II.

Definition.
—A primt number is one which is only divisible by

the number 1.

L To find the Prime Factors of a Given Number.—Try the prime
numbers, 2, 3, 5, 7, 11, &c., as divisors in succession, until a prime
number has been found to divide the given number without a

remainder; then try whether and how many times over the quotient
is again divisible by the same prime number, so as to obtain a

quotient not divisible again by the same prime number; then try
the division of that quotient by the next greater prime number; and
so on until a quotient is obtained which is itself a prime number;
that is, a number not divisible by any other number except 1. This

final quotient and the series of divisors will be the prime factors of

the given number. To test the accuracy of the process, multiply
all the prime factors together; the product should be the given
number.

2. To find the Greatest Common Measure (otherwise called the

greatest common divisor) of Two Numbers.—Divide the greater
number by the less, so as to obtain a quotient, and a remainder less

than the divisor; divide the divisor by the remainder as a new

divisor; that new divisor by the new remainder; and so on, until a

remainder is obtained which divides the previous divisor without

a remainder. That last remainder will be the required greatest
common measure.

If the last remainder is 1, the two numbers are said to be "
prime

to each other."

Example.—Required, the greatest common measure of 1420 .and

1808.
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Divisor, 1420) 1808 (1, Quotient.
U20

Eeinainder, 388) 1420 (3, Quotient.
1164

Remainder, 256) 388
(1, Quotient.

256

Remainder, 132) 256 (1, Quotient.
132

Remainder, 124) 132
(1, Quotient.

124

Remainder, 8) 124 (15, Quotient.
120

Remainder, 4) 8 (2, Quotient.

The last remainder, 4, is the required greatest common measure.

Definition.
—Ratio is the mutual relation of two quantities in

respect of magnitude.
3. To reduce the Ratio of Two Numbers to its Least Terms,

divide both numbers by their greatest common measure.

1808-4 452
For example, ^^^^_^

=^.
4. To express the Ratio of Two Numbers in the form of a Con-

tinued Fraction.—Let A be the lesser of the two numbers, and B
the greater; and let a, h, c, d, &c., be the quotients obtained during
the process of finding the greatest common measure of A and B.

Then, in the equation

B=a + 1

A h +
l_

c + l

d + (fee,

the right-hand side is the continued fraction required.
To save space in printing, a continued fraction is often arranged

as follows :
—

a + J
— •

j
— &c.

6+ €+ d +

The ratio of two incommensurable quantities is expressed by an
endless continued fraction. For example, the ratio of the diagonal

to the side of a square is expressed by 1 + -7-
-— —

^
—

&c.,

without end.

5. To form a series of Approximations to a Given Ratio.—Express
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the ratio in the form of a continued fraction. Then write the

quotients in their order; and in a line below them write — to the

left of the first quotient, and ^ directly under the first quotient.

Then calculate a series of fractions by the following rule ::
—

Multiply
the first quotient by the numerator of the fraction that is below

it, and add the numerator of the fraction next to the left; the

sum will be the numerator of a new fraction : multip]}'- the first

quotient by the denominator of the fraction that is below it, and
add the denominator of the fraction that is next to the left; the

sum will be the denominator of the new fraction
;
then write that

new fraction under the second quotient, and treat the second

quotient, the fraction below it, and the fraction next to the left, as

before, to find a fraction which is to be >\^ritten under the third

quotient, and so on. For example :

Quotients, a, 5, c, d, &c.

^ ^. I n n' n"
Fractions, =^, r,

—
,

—
,

—
,;10 m m' m

n _0 + a a n _1 + bn^ n" _ n + cn' „

m~l + 0~P m~ + b m^ m"
~

jti + cm"
452

To take a particular case; let the given ratio be as before,
-^vv,

then we have the following series :
—

Quotients, 1 3 1 1 1 15 2

^ . ] 1 4 5 9 14 219 452
^''^^^^^^^'

1 i 3 4 7 n 172 355

Less or greater thanK G L G L G L G
given ratio, J

The fractions in a series formed in the manner just described are

called convergingfractions, and they have the following properties :
—

First, each of them is in its least terms; secondly, the difference

between any pair of consecutive converging fractions is equal to

unity divided by the product of their denominators; for example,

9^_ 5 _ 36 -35 1
.

9 _ 14 ^ 99^^^ 1
^^^^^^ ^^

7 4
~

7 X 4
"

28' 7 11 7 x 11 77'

are alternately less and greater than the given ratio towards which

they approximate, as indicated by the letters L and G in the

example; 2iT\d, fourthly, the difference between any one of them

and the given ratio is less than the difference between that one and

the next fraction of the series.

Fractions intermediate between the converging fractions may be
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found by means of the formula -= -,
—ri where — and -

, are
•^ hm + kjn. m m

any two of the converging fractions, and h and k are any two whole

numbers, positive or negative, that are prime to each other.

6. Logarithms. Definitions.—The power of a number is the

product of itself multiplied a certain number of times. The index
or exponent of the power is the small figure placed above the right-
hand corner, which denotes the number of times the multiplication
takes place. The Logarithm of a number to a given base is the

index of the power to which the base must be raised to be equal
to the given number. That number of which the indices of the

powers are the logarithms, is called the base of the system. A suffix

denotes the base of the logarithm ;
i^ a'' = n, x is the logarithm of

the number n to the base a, or log„ n
— x.

Logarithms to the base 10 are called common logarithms.
7. The logarithm of 1 is 0.

8. The common logarithm of 10 is 1, and that of any power of

10 is the index of that power; in other words, it is equal to the
number of noughts in the power; thus the common logarithm of

100 is 2; that of 1000, 3; and so on.

9. The common logarithm of -1 is - 1, and that of any power of

•1 is the index of that power with the negative sign; that is, it is

equal to one more than the number of noughts between the decimal

point and the figure 1, with the negative sign; for example, the
common logarithm of -01 is - 2

;
that of -001,

-
3; and so on.

10. The logarithms given in tables, are merely the fractional

parts of the logarithms, correct to a certain number of places of

decimals, without the integral parts or indices; which are supplied
in each case according to the following rules :

—
The index of the common logarithm of a number not less than

1 is one less than the number of integer places of figures in that

number; that is to say, for numbers less than 10 and not less than

1, the index is 0; for numbers less than 100 and not less than 10,
the index is 1

; for numbers less than 1000, and not less than 100,
the index is 2

;
and so on.

The index of the common logarithm of a decimal fraction less

than 1 is negative, and is one more than the number of noughts
between the decimal point and the significant figures; and the

negative sign is usually written above instead of before the index ;

that is to say, for numbers less than 1 and not less than •!, the

index is
1_;

for numbers less than -1 and not less than -01, the

index is 2
;
and so on.

The fractional part of a common logarithm is always positive,
and depends solely upon the series of figures of which the number
consists, and not upon the place of the decimal point amongst
them.
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Examples.

Number. Logarithms.

377000 6'57634
37700 4-57634
3770 3-57634
377 2-57634
37-7 1-57634
3-77 0-57634

•377 1-57634

•0377 2-57634

•00377 3-57634
and so on.

11. The logaritLm of a product is the sum of the logarithms of

its factors.

12. The logarithm of a power is equal to the logarithm of the

root multiplied by the index of the power.
13. The logarithm of a quotient is found by subtracting the

logarithm of the divisor from the logarithm of the dividend.

14. The logarithm of a root is found by dividing the logarithm
of one of its powers by the index of that power.

Note.—In applying these principles to logarithms of numbers
less than 1, it is to be observed that negative indices are to be

subtracted instead of being added, and added instead of being
subtracted.

15. To avoid the inconvenience which attends the use of nega-
tive indices to logarithms, it is a very common practice to put,

instead of a negative index to the logarithm of a fraction, the

complement (as it is called) of that index to 10; that is to say,

9 instead of 1, 8 instead of % 7 instead of 3, and so on. In such

cases, it is always to be understood that each such complementary
index has - 10 combined with it; and to prevent mistakes, it is

useful to prefix
- 10 + to it; for example,

xT„_-u„„ Logarithm witli Logarithm with
Is umber.

Negative Index. Complementary Index.

•377 1-57634 -10 + 9-57634

•0377 2-57634 -10 + 8-57634

•00377 3-57634 -10 + 7-57634

16. To find the fractional part of the common logarithm of a

number of five places of figures; take from the table the logarithm

corresponding to the first three figures, and the difference between

that logarithm and the next greater logarithm in the table; mul-

tiply that difference by the two remaining figures of the given

number, and divide by''lOO; the quotient will be a correction, to

be added to the logarithm already found.
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Example.
—Find the common logarithm of 37725.

Log. 377, 57634

Log. 378, 57749

Difference, 1L5
X 25 ^100

Correction 29

Add log. 377, .' 57634

Log. 37725, 57663 Answer.

17. To find the natural number, or antilogarithm^ corresponding
to a common logarithm of five places of decimals, which is not in

the table; find the next less, and the next greater logarithm in the

table, and take their difierence. Opposite the next less logarithm
will be the first three figures of the antilogarithm. Subtract the

next less logarithm from the given logarithm ;
annex two noughts

to the remainder, and divide by the before-mentioned difierence ;

the quotient will give two additional figures of the required anti-

logarithm. (The first of those figures may be a nought.)

Example.—Find the antilogarithm of the common logarithm
•57663.

Next less log. in table, 57634
Next greater...... 57749

Difference, 115

Given logarithm, 57663
Subtract log. 377, 57634

Divide by diff'erence, 115)2900
Two additional figures, 25

so that the answer is 37725.
Note.—The last two rules refer particularly to the tables in

Eankine's Useful Rules and Tables, but are equally applicable to

other tables. For instance, where the logarithm of a number of

5 figures is given in the tables; in these last two rules, for 3 read 5,

and for 5 read 7.

TRIGONOMETRICAL RULES.

The following is a summary of the Principles and Chief Rules of

Trigonometry :
—

Definition.
—Every expression which in any way contains a

number, or depends for its value upon the value of the number,
is said to be 2ifunction of that number, as 2x, x^, log. x, tan x are

all functions of x.

18. Trigonometrical Functions Defined.—Suppose that A, B, C



TRIGONOMETRICAL FUNCTIONS. 7

stand for the three angles of a right-angled triangle, C being the

right angle, and that a, b, c stand for the sides respectively opposite
to those angles, c being the hypothenuse; then the various names
of trigonometrical functions of the angle A have the following

meanings :
—

• A ^ A ^
sm A = - : cos A = -

:

c c

. c-h . . c - a
Tersin A = : coversm A = :

c
'

c

tan A =
-y : cotan A = -

:

a

A
^ A ^

sec A = 7 : cosec A = — .

a

The complement of A means the angle B, such that A + B = a

right angle; and the sine of each of those angles is the cosine of

the other, and so of the other functions by pairs.

19. Relations amongst the Trigonometrical Functions of One

Angle, A, and of its Supplement, 180°-A:—
• A n 2^ tan A 1

.sm A = Jl — cos^ A = T- = j-y'^ sec A cosec A
A /I ^"TT ^o*^^ ^ ^

.

COS A= Jl- sin^ A = T- = -——A >^ cosec A sec A
versin A = 1 - cos A ;

coversin A = 1 - sin A;

tan A = ^HL4: =_-L_=sin A-sec A= V^ec^A-l;
cos A cotan A

cotan A = -?^—r = r- = cos A • cosec A = Jcosec^ A - 1 ;

sm A tan A

sec A = T-= x/1 + tan2 A;
cos A ^

cosec A = -;—T- = ^1 + cotan2 ^.
sm A

sin (180°- A) = sin A;
cos (180°- A) = -cos A;
versin (180°

- A) - 1 + cos A =2 - versin A ;

coversin (1 80°
- A) = coversin A ;

tan (180°
- A) = -tan A;

cotan (180°
- A) =

- cotan A ;

sec (180°
- A) = -sec A;

cosec (180°
- A) = cosec A.
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20. The Circular Measure of an Angle.—If a right line as radius

by revolution about a fixed point at its extremity as centre, traces

out an angle from a fixed position, the angle may be measured by
the ratio of the arc to the radius; this mode of measurement is called

circular measure. The U7iit of circular measure is the angle whose
arc is equal to the radius, that is, 360° -- 2^ = (57° 17' 45" = 206265").
To compute sines, tfec, approximately by series; reduce the

angle to circular measure—that is, to radius-lengths and fractions

of a radius-length let it be denoted by A. Then

A* A^ A'^

A^ A* A^
cos A=l-^ +

2^:1-23^5:6
^'^•=-

21. Trigonometrical Functions of Two Angles :
—

sin
(
A ± B) = sin A cos B ± cos A sin B ;

cos (A ± B) = cos A cos B :p sin A sin B ;

'

J. / A J- T>\ t^^ ^ — tan B
tan (A ± B) =-. r =^.^ '

1 qp tan A tan B
22. FormulaB for the Solution of Plane Triangles.~Let A, B, C

be the angles, and a, h, c the sides respectively opposite them.

I. Relations amongst the Angles—
A + B + C =

180<';

or if A and B are given,

C = 180° - A - B.

II. When tlie Angles and One Side are given, let a be the given
side; then the other two sides are

, sin B sin C
sin A '

sin A
III. When Two Sides and the Included Angle are given, let a, b

be the given sides, C the given included angle ; then

Tofind the third side. First Method :

c= J{a^ + b^-2abco3C)',

Second Method : Make sin D = ^^^^ ' cos ^ . then
a + b ^

c = {a + b) cos B.

Third Method: Make tan E = hJj^. gin -
; thena-b 2

c = {a-b) sec E.
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Tofind the remaining Angles, A and B.

If the third side has been computed,

sin A = -'-sin C: sin B = --sin C.
c c

If the third side has not been computed,

._ A + B
^

C
^
A-B a-h , C

tan •— ~ = cotan —
; tan—^r

— = cotan ^ :

^ A Z a+b 2

. A+B A-B ^ A+B A-BA =-^— +-^; B==-^ —.

TV. When the Three Sides are given, to find any one of the

Angles, such as C—
a2 + 52_c2

cos C
2ah

or otherwise, let

a + h + c
j then

cos 0_ /s{s-c)^ C_ / (.-a)-(^-5)\2-V ah ^^"'2-V ^6 '

^
C ^ A(s-c) ^

C /{s-acotan 17
= A / 7^ ^ tt; tan

-5^
= A / ^ -

2 V (s
-
a) (s

-
6) 2 V s{s

){s-b).

s-c)

^ 2 Js{s-a){s-b){s-c)
v^ = .

ao

Note.—In all trigonometrical problems, it is to be borne in

mind, that small acute angles, and large obtuse angles, are most

accurately determined by means of their sirms, tangents, and

cosecants; and angles approaching a right angle by their cosines,

cotangents, and secants.

23. To Solve a Right-angled Triangle.—Let C denote the right

angle; c the hypothenuse; A and B the two oblique angles; a and
6 the sides respectively opposite them.

Given, the right angle, another angle B, the hypothenuse c.

Then
A = 90°-B; a-c-cosB; 6 = c-sinB.

Given, the right angle, another angle B, a side a,

A = 90° - B; h = a' tan B; c = a • sec B.

Given, the right angle, and the sides a, b,

tan A =
7- J tan B = -

; c = J a^ + b\
b a ^
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Given, the right angle, the hypothenuse c; a side a,

sin A = cos B = -; b= Jc^-a^.
c

Given the three sides, a, h, c, which fulfilling the equation

c2 = a2 + b-y the triangle is known to be right-angled at C,

• A <* • -D
^

sin A = -; sm B = ~.
c c

24. To Express the Area of a Plane Triangle in terms of its

Sides and Angles.

Given, one side, c, and the angles.
c^ sin A sin B

Area = -^
•

:
—

y^ .

2 sm C

Given, two sides, b, c, and the included angle A.

6 c
• sin A

Area =
^

.

Given, the three sides a, b, c. Let
^

= s; then

Area = J \ s(s-a){s-b) s -
g)> .

RULES OF THE DIFFERENTIAL AND INTEGRAL
CALCULUS.

25. Definitions.
—Afunction has already been defined. "When a

function of one quantity is assumed equal to another quantity,
both quantities are called variables, the one upon whose assumed

value the other depends being called the independent variable,

while the other, whose value depends upon it, is called the de-

pendent variable. The expression y = ^x for instance denotes that

the dependent variable y, depends for its value upon the independent
variable x, or y is &function of x.

A quantity, x, may be assumed to be made up of an infinite

number of infinitesimal parts, dx, this expression meaning simply
one of the small infinitesimal dififerences of which x is made up,
i.e., x = n'dx, where n is assumed to increase without limit, and
dx to diminish without limit, this process of considering a quantity
to be diminished without limit is called differentiation.
The quotient, if it has a limit formed by taking the difference of

the function of a quantity, and the function of that quantity with
a small increment, and dividing by the increment, is termed the

differential coefficient of the function, with regard to the quantity
dtix + dx) — (hx . , ,.«. . ,—-i~ 13 the differential coefficient of <^ x with respect to

X, this is generally written
<t>' x; or otherwise the small increment
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or decrement of the dependent variable divided by tliat of tlie

independent variable, the former being a function of the latter, is

called the differential coefficient, thus -^ is the diflferential co-
CISC

efficient of y with respect to x, it being always borne in mind that

dii

-J-
is one quantity, which cannot be divided into a numerator dy^

and a denominator dx.

26. Rules for finding differential coefficients,
—

If
2/
= C (a constant);

~ = 0.
di X

The Differential Coefficient of the sum of functions is equal
to the sum of the differential coefficients of the functions, or if

'v = w + y + z where all of these quantities are functions of Xj then

dv _ dw dy dz

dx
~
dx dx dx'

In the same way to find the differential coefficient of the differ-

ence, product, and quotient of functions of quantities.

liv=y- z, then —- = -^ - —, where v, y, z, are functions of x.^ ' dx dx dx'
' ^' '

,^ ^, dv dw  dy dz ,

liv =
wyz,t\.eu-^^^-^^-yz

+^-wz + ^-wy, where

Vj w, y, Zj are functions of x.

dif dz
Z ' —^ — y

7/ Cm 1^ tL CG d CG

If V = —, then —- = r
, where v, y, z. are functions of x.

z dx z^

If (t>x
= nx, <t>'x

= n; or otherwise let <px = y = nXf then -~- = n,

thus if (px = 7x, <t>'x = 7-

If
cjiX

=
x^^j (ji'x

— nso"
~

^,
thus if ^x = xJ, 4>'x = 7x^.

If 4>x = log^x, <i>'x =^^, thus if <t>x = logio X, <t>'x=^-10 =
1 _ -43429

°'

2-30258^" X ^
1 f L I B R A U Y

li^x = vo^x, d>'X=-. I

li<t^x = a\4>'x = a-\og,a.
!|
UN IYE li S I T Y OF

If <t^x = «^, <\>'x
= g^.

}j

YitZZlltZ^n..
i CALIFORxNIA.

If ^x = tan X, ct>'x

\ y
cos- X

Definition.
— By sine

"^ x is meant the angle whose sine is

X, thus if
2/
= sine ~^x, x = sine y.
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If f a; = sia
^

x^ (p'
x-

^ a; = cos
"

X, <^' X- -

1

^x = tan x^<P' x = -^

—
^.

l{v = <Px, and '4'V = xx, then x' oc = ^p'v <^' x, or otherwise;

^, dy dy dv

If ^ 05 = log. sin x, then f
'

a; = -;
* cos x ; here loa. sin x is first

*=• sin ic

differentiated with respect to sin x, and then sin x with respect to x.

Definition.
—The differential coefficient of the differential coeffi-

cient is called the second differential coefficient; the differential

coefficient of the second is called the third; and so on :
—

Thus let (px - x^y then ^' x = nQ(^~'^, <(>"
x = n (n

-
\)x^~^,

f'" x = n(n-l) {n-2) x""'^
;

where <!>" x stands for the second
differential coefficient, (p'" x for the third differential coefficient.

So let ^ £c = sin x, then
<p'
x = cos x, <p" x= — sin x, <p"' x— - cos x.

This process is called successive differentiation.

Another mode of representing this is the following :
— -- is the

differential coefficient of y with respect to x
; the second differ-

dy
y :.ential coefficient dx is represented by -y-^,

where ^-^ is a quan-
dx

tity which cannot be divided into a numerator d^y and deno-

minator d x^j as already stated of the quantity
dy^
dx'

27. The following is an illustration of the application of the differ-

ential calculus to Geometry. In fig. 1,

let X, O Y be two axes of co-ordi-

nates at right angles to each other.

Let A B be a curve, whose equation
is represented by y =

<px, i.e., each

point of the curve has ordinates and
abscissae bearing to each other the
ratio represented by the equation, and
all the points in the curve are known
when their ordinates and abscissae

(co-ordinates) are known. Let O C
= a be a particular value of a;, and A C
= b = (pa be a particular value of y;

Fi-. 1.
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also let A E be a small increment of ^ = Aa^, and E B a corre-

sponding increment of y = ^y. The trigonometrical tangent
A II

of the angle E A B = —-• Let there be a line, A T, lying

between A B and A E, which makes with A E an angle,

whose tangent is
-^--

= <^' x. Then as B approaches towards
(1/ X

A, the line A B will ultimately be the line A T
; that is,

its limiting value as soon as A and B coincide, will be A T.

JB.ence if x be an abscissa of a curve, and <px
= yhe diU ordinate.

the differential coefficient --,--= (t'x is the trigonometrical tangentdx ^ ^ ^

of the angle which the geometrical tangent of the curve makes
with the axis of x, at the point where the abscissa is x.

The differential calculus will occasionally be applied in an ele-

mentary manner to portions of the following work, as, for example,
in treating of the Varied Motion op Points (Part I., Section 3).

28. The integral calculus is the inverse of the differential; it

determines the whole magnitude of a quantity of which the dif-

ferentials are given.
If a number of points be taken in a curve, and chords drawn

joining the points, and also tangents drawn through the points

intersecting each other, the sum of the one will be less than, and that

of the other (intersected portions) will be greater than the length
of the curve; if the chords, and tangents are increased in number,

they will approximate to the length of the curve. The integral
calculus is used for finding the exact length of the curve. A
mechanical illustration is the computation of the space passed over

by a point having varied motion.

29. Approximate Computation of Integrals.
—The present article

is intended to afford to those who have not made that branch of

mathematics which treats of the process of integration a special

study, some elementary information respecting it.

The meaning of the symbol of an integral, viz. :
—

/ U d Xy

is of the following kind :
—

In fig. 2, let A C B D be a plane area, of which one boundary,
A B, is a portion of an axis of

abscissae OX,— the opposite

boundary, C D, a curve of any
figure,

— and the remaining
boundaries AC, B D, ordinates

perpendicular to O X, whose —
^

respective abscissse, or dis-
"""

-p-^^ 2,

tauces from the origin O, are
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O A =a; OB = h.

Let E F = wbe any ordinate whatsoever of the curve C D, and

O E-x the corresponding abscissa. Then the integral denoted

hy the symbol,

/:
u d Xj

means, (lie area of the figure A C B D. The abscissae a and h

which are the least and greatest values of a?, and which indicate

the longitudinal extent of the area, are called the limits of in-

tegration; but when the extent of the area is otherwise indicated,
the symbols of those limits are sometimes omitted.

When the relation between u and x is expressed by any ordinary

algebraical equation, the value of the integral for a given pair of

values ot' its limits can generally be found by means of formulae

which are contained in works on the Integral Calculus, or by
means of mathematical tables.

Cases may arise, however, in which u cannot be so expressed in

terms of x; and then approximate methods must be employed.
Those approximate methods, of which two are here described, are
founded upon the division of the area to be measured into bands

by parallel and equi-distant ordinates, the approximate computa-
tion of the areas of those bands, and the adding of them together;
and the more minute that division is, the more near is the result
to the truth.

First Approximation.

Divide the area A C D B, as in
fig. 3, into any convenient

number of bands by parallel or-

dinates, whose uniform distance

apart is A a?; so that if n be the
number of bands, n + 1 will be the
number of ordinates, and

h - a = n l\ Xy

the length of the fierure.
Fig. 3.

Let u', it", denote the two ordinates which bound one of the
bands : then the area of that band is

A X, nearly;

and consequently, adding together the approximate areas of all
the bands,

—
denoting the extreme ordinates as follows,

—
AG = w«; BD = «,;
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and the intermediate ordinates by n i, we find for the approximate
value of the integral (the symbol 2 denoting sum)

—

j\dx=(^^
+
'^
+ ^-u^ ^x, .(1.)

Ficr. 4.

Second Approximation.

Divide the area A C D B, as in fig. 4, into an even number of

bands, by parallel ordinates, whose
uniform distance apart is A x. The
ordinates are marked alternately by
plain lines and by dotted lines, so as

to arrange the bands in pairs. Con-

sidering any one pair of bands, such

as E F H G, and assuming that the3~

curve F H is nearly a parabola, it

appears from the properties of that curve, that the area of that

pair of bands is

iu' ^ 4:u" + u'") A £c

o , nearly;

in which u' and u" denote the plain ordinates EF^ and G H, and
u" the intermediate dotted ordinate; and consequently, adding
together the approximate areas of all the pairs of bands, we find,
for the approximate value of the integral

—

j
u d X ^ (u^ + Uj, + 2^ •

Ui (plain)

2 -Ui (dotted)j-^,.+ 4
.(2.)

It is obvious, that if the values of the ordinates u required in these

computations can be calculated, it is vmnecessary to draw the figure
to a scale, although a sketch of it may be useful to assist the memory.
When the symbol of integration is repeated, so as to make a

double integral, such as

/ \ u • d X d y,

or a triple integral, such as

u- dxdydz,

it is to be understood as follows :
—

Let r ,
V = \ wax

be the value of this single integral for a given value of y. Con-

///
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struct a curve whose abscissae are the various values of y within the

prescribed limits, and its ordinates the corresponding values of v.

Then the area of that curve is denoted by

\ V' dy= \ I w dxdy.

N«^*'l«^
t=jvdy

be the value of this double integral for a given value of z. Con-

struct a curve whose abscissae are the various values of z within the

prescribed limits, and its ordinates the corresponding values of t.

Then the area of that curve is denoted by

\t-dz=
I j
v dydz= j j jwdxdydz;

and so on for any number of successive integrations.

RULES FOR THE MENSURATION OF FIGURES AND
FINDING OF CENTRES OF MAGNITUDE.

Section 1.—Areas of Plane Surfaces.

30. Parallelogram. Ihde A.—Multiply the length of one of the

sides by the perpendicular distance between that side and the

op])osite side.

Rvle B.—Multiply together the lengths of two adjacent sides

and the sine of the angle which they make with each other.

(When the parallelogram is right-angled, that sine is =1.)
31. Trapezoid (or four-sided figure bounded by a pair of parallel

straight lines, and a pair of straight lines not parallel). Multiply
tlie lialf sum of the two parallel sides by the perpendicular distance

between them.

32. Triangle. Rule ^.—Multiply the length of any one of the

sides by one-half of its perpendicular distance from the opposite

angle.
Rvle B.—Multiply one-half of the product of any two of the

sides by the sine of the angle between them.
Rule C.—Multiply together the following four quantities : the

half sum of the three sides, and the three remainders left after

subtracting each of the three sides from that half sum
;
extract the

square root of the quotient ; that root will be the area required.
Note.—Any Polygon may be measured by dividing it into tri-

angles, measuring those triangles, and adding their areas together.
33. Parabolic Figures of the Third Degree.—The parabolic



ANY PLANE AREA. 17

Fig-. 5. Fig. 6.

figures to which the following rules apply are of the following kind

(see figs. 5 and 6.) One boundary is a straight line, A X, called the

base or axis; two other boundaries are

either points in that line, or straight
lines at right angles to it, such as

A B and X C, called ordinates ; and
the fourth boundary is a curve, B C,

of the parabolic class, and of the third

degree; that is, a curve whose ordinate

(or perpendicular distance from the base A X) at any point is

expressed by what is called an algebraical function of the third

degree of the abscissa (or distance of that ordinate from a fixed

point in the base). An algebraical function of the third degree of a

quantity consists of terms not exceeding four in number, of which

one may be constant, and the rest must be proportional to powers
of that quantity not higher than the cube.

Eule A.—Divide the base, as in fig. 5, into two equal parts or

intervals ;
measure the endmost ordinates, A B and X C, and the

middle ordinate (which is dotted in the figure) at the point of

divison; add together the endmost ordinates and four times the

middle ordinate, and divide the sum by six ; the quotient will be

the mean breadth of the figure, w^hich, being multiplied by the

length of the base, A X, will give the area.

Hule B.—Divide the base, as in fig. 6, into three equal intervals;

measure the endmost ordinates, A B and X C, and the two inter-

mediate ordinates (which are dotted) at the points of division; add

together the endmost ordinates and three times each of the inter-

mediate ordinates; divide the sum by eight; the quotient will be

the mean breadth of the figure, which, being multiplied by the

length of the base, A X, will give the area.

In applying either of those rules to figures whose curved

boundaries meet the base at one or both ends, the ordinate at each

such point of meeting is to be made = 0.

34. AnyPlaneArea.—Drawanaxisor base-line,AX,
in a convenient position. The most convenient position
is usually parallel to the greatest length of the area to

be measured. Divide the length of the figure into a

convenient number of equal intervals, and measure

breadths in a direction perpendicular to the axis at

the two ends of that length, and at the points of

division, which breadths will, of course, be one more
in number than the intervals. (For example, in fig.

7, the length of the figure is divided into ten equal

intervals, and eleven breadths are measured at &q, 6j,

&c.) Then the following rules are exact, if the sides

of the figures are bounded by straight lines, and by
c

Fig. 7.
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parabolic curves not exceeding the third degree, and are approxi-
mate for boundaries of any other figures.

Rule A.—
{'^ Simj^sorCs First Rule" to be used when the number

of intervals is even.)
—Add together the two endmost breadths,

twice every second intermediate breadth, andybwr times each of the

remaining intermediate breadths; multiply the sum by the common
interval between the breadths, and divide by 3; the result will be
the area required.

For two intervals the multipliers for the breadths are 1, 4, 1

(as in Kule A of the preceding Article); for four intervals,

1, 4, 2, 4, 1
;
for six intervals, 1,4, 2, 4, 2, 4, 1 ; and so on. These

are called "
Simpson's Multipliers."*

Example.—Length, 120 feet, divided into six intervals of 20
feet each.

Breadths in Feet Simpson's Prn(^not<*
and Decimals. Multipliers.

iroaucts.

17-28 1 17-28

16-40 4 65-60

14-08 2 28-16

10-80 4 43-20

7-04 2 14-08

3-28 4 13-12

1 0-00

Sum,, 181-44

X Common interval, 20 feet.

-- 3)3628-8

Area required, 1209-6 square feet.

Rule B.—
['' Simpson^s Second Rule^^ to be used when the

number of intervals is a multiple of 3.)
—Add together the two

endmost breadths, twice every third intermediate breadth, and
thrice each of the remaining intermediate breadths; multiply
the sum by the common interval between the breadths, and

by 3; divide the product by 8; the result will be the area

required.
"
Simpson's Multipliers

"
in this case are, for three intervals,

1, 3, 3, 1; for six intervals, 1, 3, 3, 2, 3, 3, 1; for nine intervals,

1, 3, 3, 2, 3, 3, 2, 3, 3, 1
;
and so on.

Example.—Length, 120 feet, divided into six intervals of 20
feet each.

• This rule has been given in symbols at page 15.
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Breadths in Feet Simpson's •d«„j.,„»
and Decimals. Multipliers.

IToductg.

17-28 1 17-28

16-40 3 49-20

14-08 3 42-24

10.80 2 21-60

7-04 3 21-12

3-28 3 9-84

1 000

Sum, 161-28

X Common interval, 20 feet.

3225-6

X 3

-8)9676-8

Area required, 1209-6 square feet.

Remarlcs.—Tlie preceding examples are taken from a parabolic

figure of the third degree, for which both Simpson's Rules are

exact; and the results of using them agree together precisely. For
other figures, for which the rules are approximate only, the first

rule is in general somewhat more accurate than the second, and is

therefore to be used unless there is some special reason for pre-

ferring the second.

Tlie probable extent of error in applying Simpson's First Kule
to a given figure is, in most cases, nearly proportional to the fourth

power of the length of an interval.

The errors are greatest where the boundaries of the figure are

most curved, and where they are nearly perpendicular to the axis.

In such positions of a figure the errors may be diminished by sub-

dividing the axis into smaller intervals.

Eule G.—(" MerrifielcTs Trapezoidal Rule," for calculating sepa-

rately the areas of the parts into which a figure is subdivided by
its equidistant ordinates or breadths.)

—Write down the breadths

in their order. Then take the differences of the successive breadths,

distinguishing them into positive and negative, according as the

breadths are increasing or diminishing, and write them oppo-
site the intervals between the breadths. Then take the dif-

ferences of those differences, or second differences, and write them

opposite the intervals between the first differences, distinguishing
them into positive and negative, according to the following

principles :
—
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First Differences. Second Difference.

Positive increasing, or )
p^^j^^^

^Negative diminishing, J

Negative increasing, or ) xr +•

Positive diminishing, /
"^ egative.

In the column of second differences there will now be two blanks

opposite the two endmost breadths; those blanks are to be filled

up with numbers each forming an arithmetical progression with
the two adjoining second differences, if these are unequal, or equal
to them, if they are equal.

Divide each second difference by 12; this gives a correction,
which is to be subtracted from the breadth opposite it if the second
difference is positive, and added to that breadth if the second
difference is negative.
Then to find the area of the division of the figure contained

between a given pair of ordinates or breadths; multiply the half
sum of the corrected breadths by the interval between them.
The area of the whole figure may be formed either by adding

together the areas of all its divisions, or by adding together the
halves of the endmost corrected breadths, and the whole of the
intermediate breadths, and multiplying the sum by the common
interval.

Example.—Length, 120 feet, divided into six intervals of 20 feet

each.

Breadths in
Feet and
Decimals.
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The last corrected breadth in the present example is negative,
and is therefore subtracted instead of added in the ensuing com-

putation.
Rule D.—(" Common Trapezoidal Rule,^ to be used when a

rough approximation is sufficient.) Add together the halves of

the endmost breadths, and the whole of the intermediate breadths,
and multiply the sum by the common interval.

Example.—The same as before.
Feet.

Half breadth at one end, 17'28 4- 2 = 8-64

f 16-40

I
14-08

Intermediate breadths, -j
10*80

7-04

3-28

Half breadth at the other end, . .0
60-24

X Common interval, , 20

Approximate area, . . . .1204-8 square feet.

True area as before computed, . . 1209*6

Error, —4-8 square feet.

35. Circle.—The area of a circle is equal to its circumference

multiplied by one-fourth of its diameter, and therefore to the square
of the diameter multiplied by one-fourth of the ratio of the circum-

ference to the diameter. The ratio of the area of a circle to the

square of its diameter (which ratio is denoted by the symbol -r)

i^ incommensurable ; that is, not expressible exactly in figures; but
it can be found approximately, to any required degree of precision.
Its value has been computed to 250 places of decimals; but the

following approximations are close enough for most purposes,
scientific or practical :

—
. ^^^.^ „ +„ ir„ 1 „„ ^f '«' Errors in Fractions of the
Approximate Values of V ^. ,

4- Circle, about

•7853981 634 - + one-300,000,000,000th.
•785398+ -one-5,000,000th.

^ -7854 - + one-400,000th.
355

-. vYo - + one-13,000,000th.4 X 113 ' '

Yi
- + one-2,500th.

The diameter of a circle equal in area to a given square is very
nearly 1-12838 x the side of the square. The following table gives

examples of this :
—
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Section 3.—Lengths op Curved Lines.

38. To Calculate the Lengths of Circular Arcs.—When the

proportion of the arc to an entire circumference is given, the

length of the arc, in terms of the radius, is to be calculated by-

multiplying that proportion by the well-known approximate value

of the ratio of the circumference of a circle to its radius : viz.,

circumference 710 , nooo-iop; i at, v x- •—
p =r^nruearly, = 6-283185 nearly: the above ratio is

radius 113 *^' "^

commonly denoted by the symbol 2 sr; the reciprocal of the above

113
ratio is very nearly ^y.

=0-159155 nearly; but it is often much

more convenient in practice to proceed by drawing ;
and then the

following rules are the most accurate yet known :
—*

I. (Fig. 9). To draw a straight Line approximately equal to a

given circular arc, A B. Draw the straight
chord B A

; produce A to C, makingA C = J B A ; about C, with the radius

C B =
1^
B A, draw a circle

;
then draw the

straight line A D, touching the given arc ^~ ^
in A, and meeting the last-mentioned circle Ficr, 9.

in D
;
AD will be the straight line required.

The error of this rule consists in the straight line being a little

shorter than the arc : in fractions of the length of the arc, it is

about xcrVo" ^^^ ^^ ^^'^ equal in length to its own radius ; and it

varies as the fourth power of the angle subtended by the arc ; so

that it may be diminished to any required extent by subdividing
the arc to be measured by means of bisections. For example, in

drawing a straight line approximately equal to an arc subtending
60°, the error is about ^J^ of the length of the arc ; divide the arc

into two arcs, each subtending 30°
; draw a straight line ai3proxi-

mately equal to one of these, and double it; the error will be
reduced to one-sixteenth of its former amount ;

that is, to about -^-^^^ of the length of the arc.

The greatest angular extent of the arcs to

which the rule is applied should be limited

in each case according to the degree of pre-
cision required in the drawing.
' 11. (Fig. 10). To draw a straight line ap-

proximately equal to a given ciixular arc, A B.

(Another Method.) Let C be the centre of

the arc. Bisect the arc A B in D, and the

arc A D in E; draw the straight secant

* These rules are extracted from Papers read to the British Association

in 1867, and published in the Philosophical Magazine for fcjeptember and
October of that year.
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C E F, and the straight tangent A F, meeting each other in F
;

draw the straight line F B
;
then a straight line of the length A F

+ F B will be approximately equal in length to the arc A B.

The error of this rule, in fractions of the length of the arc, is

just one-fourth of the error of Rule I., but in the contrary direction;
and it varies as the fourth power of the angle subtended by the arc.

III. To lay off upon a given circle an arc approximately equal in

length to a giveii straight' line. In fig. 11, let A D be part of the

circumference of the given circle, A one end of

the required arc, and A B a straight line of the

given length, drawn so as to touch the circle at

the point A. In A B take A C = J A B, and
about C, with the radius C B = J A B draw a

Fig. 11. circular arc B D, meeting the given circle in D.
A D will be the arc required.

The error of this rule, in fractions of the given length, is the

same as that of Bule I., and follows the same law.

IV. (Fig. 11.) To draw a circular arc which shall he approxi-

mately equal in length to the straight line A B, shall with one of its

ends touch that straight line at A, and shall suhteiid a given angle.
In A B take AG = \ A.^; and about C, with the radius C B
= j A B, draw a circle, B D. Draw the straight line A D,

making the angle BA D = one-half of the given angle, and meeting
the circle B D in B. Then D will be the other end of the required
arc, which may be drawn by well-known rules.

The error of this rule, in fractions of the given length, is the

same with that of Eules I. and III., and follows the same law,

V. To divide a circular arc, approximately, into any required
number of equal parts. By Bule I. or II., draw a straight line

approximately equal in length to the given arc ;
divide that straight

line into the required number of equal parts, and then lay off upon
the given arc, by Bule III., an arc approximately equal in length
to one of the parts of the straight line.

Bule V. becomes unnecessary when the number of parts is 2, 4,

8, or any other power of 2 ; for then the required division can
be performed exactly by plane geometry.

VI. To divide the whole circumference of a circle approximately
into any required number of equal arcs. When the required
number of equal arcs is any one of the following numbers, the
division can be made exactly by plane geometry, and the present
rule is not needed :

—any power of 2 ;
3 ; 3 x any power of 2

;
5

;

5 X any power of 2 ; 15 ; 15 x any power of 2.* In other cases

• It may be convenient here to state the methods of subdividing arcs and
whole circles by plane geometry. (1.) To bisect any circular arc On the
chord of the arc as a base, construct any convenient isosceles triangle, with
the summit pointing away from the centre of the arc ; a straight line from
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proceed as follows :
—Divide the circumference exactly, by plane

geometry, into such a number of equal arcs as may be required, in
order to give sufficient precision to the approximative part of the

process. Let the number of equal arcs in that preliminary division
be called n. Divide one of them, by means of Rule V., into the

required number of equal parts ; n times one of those parts will

be one of the required equal arcs into which the whole circumfer-
ence is to be divided.

Rules I., III., and Y., are applicable to arcs of other curves
besides the circle, provided the changes of curvature in such arcs

are small and gradual.
39. To Measure the Length of any Curve.—Divide it into short

arcs, and measure each of them by Rule I. of Article 38, page 23.

Section 4.—Geometrical Centres and Moments.

40. Centre of Magnitude—General Principles.—By the magni-
tude of a figure is to be understood its length, area, or volume,

according as it is a line, a surface, or a solid.

The centre of magnitude of a figure is a point such that, if the

figure be divided in any way into equal parts, the distance of the

centre of magnitude of the whole figure from any given plane is

the mean of the distances of the centres of magnitude of the several

equal parts from that plane.
The geometrical moment of any figure relatively to a given plane

is the product of its magnitude into the perpendicular distance of

its centre from that plane.
L Symmetrical figure.

—If a plane divides a figure into two

symmetrical halves, the centre of magnitude of the figure is in that

plane; if the figure is symmetrically divided in the like manner

by two planes, the centre of magnitude is in the line where those

planes cut each other; if the figure is symmetrically divided by
three planes, the centre of magnitude is their point of intersection;

and if a figure has a centre offigure (for example, a circle, a sphere,

the centre of the arc to that summit will bisect the arc. (2.) To mark
the sixth -part of the circumference of a circle. Lay off

a chord equal to the radius. (3. ) To mark the tenth

part of the circumference of a circle. In fig. 12,

draw the straight line AB=the radius of the circle;

and perplndicular to A B, draw B C = 4 A B. Join

A C, and from it cut off C D = C B. AD wiU be the

chord of one-tenth part of the circumference of the

circle. (4.) For the fifteenth part, take the difference Fig. 12.

between one-sixth and one-tenth. It may be added
that Gauss discovered a method of dividing the circumference of a circle by
geometry exactly, when the number of equal parts is any prime number that

is equal to 1 + a power of 2; such as l-i-2*=17; 1+2''= 257, &c.j but the
method is too laborious for use in designing mechanism.
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an ellipse, an ellipsoid, a parallelogram, &c.), that point is its centre

of magnitude.
II. Compound figure.

—To find the perpendicular distance from

a given plane of the centre of a compound figure made up of parts
"whose centres are known. Multiply the magnitude of each part

by the perpendicular distance of its centre from the given plane;

distinguish the products (or geometrical moments) into positive or

negative, according as the centres of the parts lie to one side or to the

other of the plane ;
add together, separately, the positive moments

and the negative moments : take the difference of the two sums,
and call it positive or negative according as the positive or negative
sum is the greater; this is the resultant moment of the compound
figure relatively to the given plane ;

and its being positive or nega-
tive shews at which side of the plane the required centres lies.

Divide the resultant moment by the magnitude of the compound
figure; the quotient will be the distance required.
The centre of a figure in three dimensions is determined by find-

ing its distances from three planes that are not parallel to each

other. The best position for those planes is perpendicular to each

other; for example, one horizontal, and the other two cutting each

other at right angles in a vertical line. To determine the centre

of a plane figure, its distances from two planes perpendicular to the

plane of the figure are sufficient.

41. Centre of a Plane Area.—To find, api3roximately, the centre

of any plane area.

Rule A.—Let the plane area be that represented in fig. 7 (of
Article 34, page 17). Draw an axis, AX, in a convenient posi-

tion, divide it into equal intervals, measure breadths at the ends
and at the points of division, and calculate the area, as in Article

34.

Then multiply each breadth by its distance from one end of the

axis (as A) ; consider the products as if they were the breadths of

a new figure, and proceed by the rules of Article 34 to calculate

the area of that new figure. The result of the operation will be
the geometrical moment of the original figure relatively to a plane
perpendicular to A X at the point A.

Divide the moment by the area of the original figure; the

quotient will be the distance of the centre required from the plane
perpendicular to A X at A.
Draw a second axis intersecting A X (the most convenient posi-

tion being in general perpendicular to A X), and by a similar pro-
cess find the distance of the centre from a i)lane perpendicular to

the second axis at one of its ends; the centre will then be completely
detei-mined.

Rule B.—If convenient, the distance of the required centre from
a plane cutting an axis at one of the intermediate points of divi-
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sion, instead of at one of its ends, may be computed as follows :
—

Take separately the moments of the two parts into which that

plane divides the figure ;
the required centre will lie in the part

which has the greater moment. Subtract the less moment from
the greater; the remainder will be the resultant moment of the
whole figure, wdiich being divided by the whole area, the quotient
will be the distance of the required centre from the plane of

division.

Remark.—When the resultant moment is==0, the centre is in

the plane of division.

Rule C.—To find the perpendicular distance of the centre from
the axis A X. Multiply each breadth by the distance of the

middle point of that breadth from the axis, and by the proper
"
Simpson's Multiplier," Article 34, page 18; distinguish the pro-

ducts into right-handed and left-handed, according as the middle

points of the breadths lie to the right or left of the axis; take

separately the sum of the right-handed products and the sum of

the left-handed products; the required centre will lie to that side

of the axis for which the sum is the greater; subtract the less sum
from the greater, and multiply the remainder by ^ of the common
interval if Simpson's first rule is used, or by |-

of the common
interval if Simpson's second rule is used ; the product will be the

resultant moment relatively to the axis A X, which being divided

by the area, the quotient will be the required distance of the centre

from that axis.*

42, Centre of a Volume.—To find the perpendicular distance of

the centre of magnitude of any solid figure from a plane perpen-
dicular to a given axis at a given point, proceed as in Rule A of

the preceding Article to find the moment relatively to the plane,

substituting sectional areas for breadths; then divide the moment
by the volume (as found by Article 37) ; the quotient will be the

required distance.

To determine the centre completely, find its distances from three

planes, no two of which are parallel. In general it is best that

those planes should be perpendicular to each other.

43. Centre of Magnitude of a Curved Line.—i^w^e A.—To find

approximately the centre of magni-
tude of a very ^at curved line.—
In fig. 13, let A D B be the arc.

Draw the straight chord A B, which
bisect in C; draw CD (the deflec-
tion of the arc) perpendicular to

AB; from D lay off DE = J CD; E will be very nearly the
centre required.

* The rules ofthis Article are expressed in symbols, as follows :
—Let x and

y be the perpendicular distances of any point in the plane area from two
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Fis;. 14.

This process is exact for a cycloidal arc whose chord, A B, is

parallel to the base of the cycloid. For other curves it is approxi-
mate. For example, in the case of a circular arc, it gives D E too

small ; the error, for an arc subtending 60°, being about ^J^ of the

deflection, and its proportion to the deflection varying nearly as

the square of the angular extent of the arc.

Rule B.— When the curved line is not very flat, divide it into

very flat arcs
; find their several centres of magnitude by Rule A,

and measure their lengths; then treat the whole curve as a com-

pound figure, agi'eeably to Rule II. of Article 40, page 26.

44. Special Figures.—I. Triangle (fig. 14).
—From any two of

the angles draw straight lines to the middle

points of the opposite sides; these lines will

cut each other in the centre required ;
— or

otherwise,
—from any one of the angles draw

a straight line to the middle of the opposite

side, and cut ofi" one-third part from that line

commencing at the side.

II. Quadrilateral (fig. 15).
—Draw the two diagonals A C and

B D, cutting each other in E. If the quadrilateral is a parallelo-

gram, E will divide each diagonal into two €qual parts, and will

itself be the centre. If not, one or both of the diagonals will be

divided into unequal parts by the point E. Let B D be a diagonal
that is unequally divided. From D lay off" D F in that diagonal
= B E. Then the centre of the triangle F A C, found as in the

preceding rule, will be the centre required.
III. Plane polygon.

— Divide it into tri-

angles; find their centres, and measure

their areas; then treat the polygon as a

compound figure made up of the triangles,

by Rule II. of Article 40, page 26.

IV. Prism or cylinder with plan^e par-
allel ends.—Find the centres of the ends;

Fiff. 15.
^ straight line joining them will be the axis

of the prism or cylinder, and the middle

p^int of that line will be the centre required.

planes perpendicular to the area and to each other, and x^ and y^ the per-

j)endicular distances of the centre of magnitude of the area from the same

planes; then

_/fxdxdy ^ _ f/y dxdy
.r/dxdy

* ^» //dxdy
'

See Article 29, page 16.
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Fig. 16.

V. TetraJiedron, or triangular pyramid (fig. 16).
— Bisect

any two opposite edges, as A D and
B C, in E and F; join E F, and bisect

it in G ; this point will be the centre

required.
"VI. Any pyramid or cone with a

plans base.—Find the centre of the

base, from which draw a straight line

to the summit ;
this will be the axis of

the pyramid or cone. From the axis

cut off one-fourth of its length, begin-

ning at the base ;
this will give the

centre required.
YII. Any polyliedron or plane-faced solid. — Divide it into

pyramids ; find their centres and measure their volumes ; then
treat the whole solid as a compound figure by Rule II. of Article

YIII. Circular arc.—In fig. 17, let A B be the arc, and C the

the centre of tlie circle of which it is part.
Bisect the arc in D, and join C D and A B.

Multiply the radius C D by the chord A B,
and divide by the length of the arc A D B

;

lay off the quotient C E upon C D ; E will be
the centre of magnitude of the arc.

IX. Circular sector, C A D B, fig. 17.—
Find C E as in the preceding rule, and
make C F = | C E ; F will be the centre re-

quired.
X. Sector of a flat ring.

—'Let r be the external and r' the
internal radius of the ring. Draw a circular arc of the same

Fig. 17.

angular extent with the sector, and of the radius 5

and find its centre of magnitude by Rule VIII.

2 r3
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MECHANICS.

ELEMENTARY MECHANICAL NOTIONS.

Definition of General Terms and Division of the Subject.

45. Mechanics is the science of rest, motion, and force.

The laws, or first principles of mechanics, are the same for all

bodies, celestial and terrestrial, natural and artificial.

The methods of applying the principles of mechanics to particular
cases are more or less different, according to the circumstances of
the case. Hence arise branches in the science of mechanics.

46. Matter (considered mechanically) is that which fills space.
47. Bodies are limited portions of matter. Bodies exist in three

conditions—the solid, the liquid, and the gaseous. Solid bodies
tend to preserve a definite size and shape. Liquid bodies tend to

preserve a definite size only. Gaseous bodies tend to expand inde-

finitely. Bodies also exist in conditions intermediate between the
solid and liquid, and possibly also between the liquid and the

gaseous.
48. A Material or Physical Volume is the space occupied by a

body or by a part of a body.
49. A Material or Physical Surface is the boundary of a body,

or between two parts of a body.
50. Line, Point, Physical Point, Measure of Length. —In

mechanics, as in geometry, a Line is the boundary of a surface, or
between two parts of a surface

;
and a Point is the boundary of a

line, or between two parts of a line; but the term ^^

Physical
Point'* is sometimes used by mechanical writers to denote an

immeasurably small body—^a sense inconsistent with the strict

meaning of the word "
point ;" but still not leading to error, so

long as it is rightly understood.

In measuring the dimensions of bodies, the standard British unit
of length is the yard, being the length at the temperature of 62°

Fahrenheit, and at the mean atmospheric pressure, between the
two ends of a certain bar which is kept in the office of the Ex-

chequer, at Westminster.
In computations respecting motion and force, and in expressing

the dimensions of large structures, the unit of length commonly
employed in Britain is the foot, being one-third of the yard.

In expressing the dimensions of machinery, the unit of length
commonly employed in Britain is the inch, being one-thirty-sixth
part of the yard. Fractions of an inch are very commonly stated

by mechanics and other artificers in halves, quarters, eighths, six-
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teeutlis, and thirty-second parts; but according to a resolution of

the Institution of Mechanical Engineers, passed at the meeting
held at Manchester in June, 1857, the practice has been introduced
of expressing fractions of an inch in decimals.

The French unit of length is the metre, being about 4000^0 o<? o ^^

the earth's circumference, measured round the poles.

51. Rest is the relation between two points, when the straight
line joining them does not change in length nor in direction.

A body is at rest relatively to a point, when every point in the

body is at rest relatively to the first mentioned point.
52. Motion is the relation between two points when the straight

line joining them changes in length, or in direction, or in both.

A body moves relatively to a point when any point in the body
moves relatively to the first mentioned point.

53. Fixed Point.—When a single point is spoken of as having
motion or rest, some other point, either actual or ideal, is always
either expressed or understood, relatively to which the motion or

rest of the first point takes place. Such a point is called 2^fixed

point.
So far as the phenomena of motion alone indicate, the choice of

a fixed point with which to compare the positions of other points

appears to be arbitrary, and a matter of convenience alone ; but
when the laws of force, as affecting motion, come to be considered,
it will be seen that there are reasons for calling certain points

fixed, in preference to others.

In the mechanics of the solar system, the fixed point is what is

called the common centre of mass of the bodies composing that

system. In applied mechanics, the fixed point is either a point
which is at rest relatively to the earth, or (if the structure or

machine under consideration be movable from place to place on
the earth), a point which is at rest relatively to the structure, or to

the frame of the machine, as the case may be.

Points, lines, surfaces, and volumes, which are at rest relatively
to a fixed point, are fixed.

54. Cinematics.—The comparision of motions with each other,
without reference to their causes, is the subject of a branch of

geometry called " Cinematics^
55. Force is an action between two bodies, either causing or

tending to cause change in their relative rest or motion.

The notion of force is first obtained directly by sensation; for

the forces exerted by the voluntary muscles can be felt. The
existence of forces other than muscular tension is inferred from
their eflfects.

56. Equilibrium or Balance is the condition of two or more
forces which are so opposed that their combined action on a body
produces no change in its rest or motion.
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The notion of balance is first obtained by sensation; for the

forces exerted by voluntary muscles can be felt to balance some-

times each other, and sometimes external pressures.
57. Dynamics—Statics and Kinetics.—Forces may take effect,

either by balancing other forces, or by producing change of motion.

The former of those effects is the subject of Statics; the latter that

of Kinetics, and the Science which treats of both is by modern

practice entitled Dynamics; these, together with Cinematics,

already defined, form the three great divisions of pure, abstract, or

general mechanics.

58. Structures and Machines.—The works of human art to

which the science of applied mechanics relates, are divided into

two classes, according as the parts of which they consist are

intended to rest or to move relatively to each other. In the

former case they are called Structures; in the latter, Machines.
Structures are subjects of Statics alone; Machines, when the
motions of their parts are considered alone, are subjects of Cine-

matics; when the forces acting on and between their parts are

also considered, machines are subjects of Dynamics.



PART I.

PEINCIPLES OF CIIS^EMATICS, OR THE COMPAIlISO:N'
OF MOTIONS.

59. Division of the Subject.—The Science of Cinematics, and
the fundamental notions of rest and motion to which it relates,

having akeady been defined among the Elementary Mechanical
Notions, Articles 51, 52, 53, 54, it remains to be stated, that

the principles of Cinematics, or the comparison of motions, will be
divided and arranged in the present part of this treatise in the

following manner :
—

I. Motions of Points.

TI. „
•

Rigid Bodies or Systems.
III. „ Pliable Bodies and Fluids.

CHAPTER I.

MOTIONS OF POINTS.

Section 1.—Motions of a Pair of Points.

60. Fixed and Nearly Fixed Directions.—From the definition

of motion given in Article 52, it follows, that in order to deter-

mine the relative motion of a pair of points, which consists in the

change of length and direction of the straight line joining them,
that line must be compared, at the beginning and ^^^fl^H
motion considered, with some fixed or standard lengthJ<|i^^^P
at least two fixed directions. Standard lengths have alreac^ been

considered in Article 50.

An absolutelyfixed direction may be ascertained by means whose

principles cannot be demonstrated until the subject of kinetics is

considered. For the present it is sufiicient to state, that when a

solid body rotates free from the influence of any external force

tending to change its rotation, there is an absolutely fixed direction

called that of the axis of angular momentum, which bears certain

relations to the successive positions of the body.
D
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A nearly fixed direction is that of a straight line joining a pair
of points in two bodies whose distance from each other is very-

great, such as the earth and a fixed star.

A linefixed relatively to the earth changes its absolute direction

(unless parallel to the earth's axis) in a manner depending on the

eartli's rotation, and returns periodically to its original absolute

direction at the end of each sidereal day of 86,164 seconds. This
rate of change of direction is so slow compared with that which
takes place in almost all pieces of mechanism to which cinematical
and kinetic principles are applied, that in almost all questions of

applied mechanics, directions fixed relatively to the earth may be
treated as sufiiciently nearly fixed for practical purposes.
When the motions of pieces of mechanism relatively to each

other, or to the frame by which they are carried, are under con-

sideration, directions fixed relatively to the frame, or to one of the

pieces of the machine, may be considered provisionally as fixed for

the purposes of the particular question.
Postulate.—Let it be granted that a line may represent a

motion, where the term motion is employed to represent the path
of motion, the direction and the velocity or length of motion in a
unit of time. This is a self-evidently possible problem, for a line

may be drawn to represent any path, in any direction to represent
any direction of motion, and of any length to represent any length
of motion, or velocity, limited always by the space within which
motions can take place or lines be drawn.

61. Motion of a Pair of Points.~Tn fig. 18, let A^ B^ repre-
sent the relative situation

of a pair of points at one

instant, and Ag Bo the

relative situation of the

same pair of points at a

later instant. Then the

change of the straight line

A B between those points,
from the length and direc-

Fig. 19. Fio-. 20. tioi^^ represented by Aj B^
to the length and direction

represented by Ag Bg, constitutes the relative motion of the pair of

points A B, during the interval between the two instants of time

considered.

To represent that relative motion by one line, let there be drawn,
from one point A, fig. 19, a pair of lines, A B^^,

A Bg, equal and

parallel to A^ B^, Ag B^, of fig. 18
;
then A represents one of the

pair of points whose relative motion is under consideration, and

B^, Bg, represent the two successive positions of the other point B
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relatively to A
;
and the line Bj^ Bg represents the motion oj B

relatively to A^ which, for the purposes of the representation, is

assumed to be fixed.

Or otherwise, as in fig. 20, from a single point B let there be

drawn a pair of lines, B Aj^,
B Ag, equal and parallel to Aj B^ Ag B2,

of fig. 18; then A
j^
A

2, represent the two successive positions of

A relatively to B; and the line A^ Ag, equal and parallel to B^ Bg
of fig. 19, but pointing in the contrary direction, represents the

motion ofA relatively to B.

62. Fixed Point and Moving Point.—In fig. 19, A is treated

as the fixed point, and B as the moving point; and in
fig. 20, B

is treated as the fixed point, and A as the moving point ;
and these

are simply two different methods of representing to the mind the
same relation between the points A and B (see Article 53).

63. Component and Resultant Motions.—Let O be a point
assumed as fi.xed, and A and B two
successive positions of a second point

relatively to O. In order to express

mathematically the amount and direction

of A B, the motion of the second point
relatively to O, that line may be com-

pared with three axes, or lines in fixed

directions, traversing the fixed point O,
such as O X, O Y, O Z.

Through A and B draw straight lines

A C, B D, parallel to the plane of O Y
and O Z, and cuttii^ the axis O X in C
and D. Then C^ is said to be the com- ^'^- ^^^

ponent of the motion of the second point relatively to 0, along, or

in the direction of the axis O X; and by a similar process are found

the components of the motion A B along O Y and O Z. The entire

motion A B is said to be the resultant of these components, and is

evidently the diagonal of a parallelopiped of which the components
are the sides.

The three axis are usually taken at right angles to each other ;

in which case A C and B D are perpendiculars let fall from A and

B upon O X ;
and if » be the angle made by the direction of the

motion A B with O X,

CD = AB • cos «.

64. The Measurement of Time is effected by comparing the

events, and especially the motions, which take place in intervals

of time.

Equal times are the times occupied by the same body, or by

equal and similar bodies, under precisely similar circumstances, ia

^o
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})erforming equal and similar motions. The standard unit of time

is the period of the earth's rotation, or sidereal day, which has been

proved by Laplace, from the records of celestial phenomena, not to

have changed by so much as one eight-millionth part &f its length
in the course of the last two thousand years.
A subordinate unit is the second, being the time of one swing of

a pendulum, so adjusted as to make 86,400 oscillations in 1-00273791
of a sidereal day; so that a sidereal day is 86164-09 seconds.

The length of a solar day is variable
;
but the mean solar day,

being the exact mean of all its different lengths, is the period

already mentioned of 1-00273791 of a sidereal day, or 86,400
seconds. The divisions of the mean solar day into 24 hours, of

each hour into 60 minutes, and of each minute into 60 seconds,
are familiar to all.

Fractions of a second are measured by the oscillations of small

pendulums, or of springs, or by the rotations of bodies so contrived

as to rotate through equal angles in equal times.

65. Velocity is the ratio of the number of units of length
described by a point in its motion relatively to another point, to

the number of units of time in the interval occupied in describing
the length in question; and if that ratio is the same, whether it be

computed for a longer or a shorter, an earlier or a later, part of the

motion, the velocity is said to be uniform. Velocity is expressed
in units of distance per unit of time. For different purposes, there

are employed various units of velocity, some of which, together
with their proportions to each other, are given in the following
table :—

Comparison of Differerd Measures of Velocity.

Miles

per hour.
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way with those motions, which have ah'eady been treated of in

Article 63.

66. Uniform Motion consists in the combination of uniform

velocity with uniform direction; that is, with motion along a

straight line whose direction is fixed.

Section 2.—Uniform Motion of Several Points.

67. Motion of Three Points.—Theorem. The relative motions

of three points in a given interval of time ^v^ j
are represented in direction and magni-
tude hy the three sides of a triangle. Let

O, A, B, denote the three points. Any
one of them may be taken as a fixed

point; let O be so chosen; and let O X,
O Y, O Z, fig. 22, be axes traversing
it in fixed directions. Let Aj and

B-^

be the positions of A and B relatively
to O at the beginning of the given interval of time, and Ag and Bg
their positions at the end of that interval. Then A^ Ag and Bj Bg
are the respective motions of A and B relatively to O. Complete
the parallelogram A^^ Bj 5 Ag ;

then because Ag b is parallel and

equal to A^ B^, 6 is the position which B would have at the end of

the interval, if it had no motion relatively to A
;
but Bg is the

actual position of B at the end of the interval
; therefore, h Bg is

the motion of B relatively to A. Then in the triangle B^ h Bg,

Bj 6 = Aj Ag is the motion of A relatively to O,

h Bg is the motion of B relatively to A,

Bj Bg is the motion of B relatively to O;

so that those three motions are represented by the three sides of a

triangle.—Q. E. B.

This Theorem might be otherwise expressed by saying, that if

three moving points he considered in any order, the motion of the

third relatively to the first is the resultant of the motion of the third

relatively to the second, and of the motion of the second relatively to

the first; the word ^^ resultant'' being understood as already ex-

plained in Article 63.

68. Motions of a Series of Points.—Corollary. If a series of

points he considen^ed in any order, and the motion of each point
determined relatively to that which precedes it in the series, and if
the relative motion of the last point and the first point he also deter-

mined, then will those motions he represented hy the sides of a closed
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polygon. Let O be the first point, A, B, C, &c., successive points

following it, M the last point but one, and N the last point ; and,

for brevity's sake, let the relative motion- of two points, such as B
and C, be denoted thus (B, C). Then by the Theorem of Article

67, (O, A), (A, B), and (O, B) are the three sides of a triangle;
also (O, B), (B, C), and (O, C), are the three sides of a triangle ;

therefore (O, A), (A, B), (B, C), and (O, C), are the four sides of a

quadrilateral ;
and by continuing the same process, it is shewn,

that how great soever the number of points, (O, N), is the closing
side of a polygon, of which (O, A), (A, B), (B, C), (C, D), &c.,

(M, N) are the other sides.—Q. E. I). In other words, the motion

of the last point relatively to the first is the resultant of the motions

of each point of the series relatively to that preceding it.

69. The Parallelopiped of Motions.—In lig. 23, let there be

four points, O, A, B, C, of which one, O,
is assumed as fixed, and is traversed by
three axes in fixed directions, O X, O Y,
O Z. In a given interval of time, let A
have the motion Aj Ag along or parallel
to O X; let B have, in the same interval,

the motion h B2 parallel to O Y, and rela-

tively to A
;
then B^^ ^2' *^® diagonal of

the parallelogram whose sides are B^ 6 =

Aj Ag and h Bg, is the motion of B rela-

Let C have, relatively to B, the motion c Cg parallel

to O Z
;
then Ci O2, the diagonal of the parallelopiped whose edges

are Aj Ag, b Bg, and c Cg, is the motion of C relatively to O, being
the resultant of the motions represented by those three edges.
This is a mechanical explanation of the composition of motions,

leading to results corresponding with the geometrical explanation
of Article 63.

70. Comparative Motion is the relation which exists between
the simultaneous motions of two points relatively to a third,
which is assumed as fixed. The comparative motion of two points
is expressed, in the most general case, by means of four quantities,
viz. :
—

(1.) The velocity ratio* or the proportion which their velocities

bear to each other, tliat is, the proportion borne to each other by
the distances moved through by the two points in the same interval
of time.

(2.). (3.) (4.) The directional relation* which is the relation be-

tween the directions in which the two points are moving at the
same instant, and which requires, for its complete expression, three

*
These terms are adopted from Prof. Willis's work on Mechanism.



VELOCITY AND DIRECTION OF VARIED MOTION. 39

angles. Those three angles may be measured in dijfferent ways,
and one of those ways is the following :

—
(2.) The angle made by the directions of the compared motions

with each other.

(3.) The angle made by a plane parallel to those two directions

with a fixed plane.

(4.)
The angle made by the intersection of those two planes with

a fixed direction in the fixed plane.

Thus, the comparative motion of two points relatively to a third,

is expressed by means of one of those groups of four elements which
Sir William Rowan Hamilton has called "

quaternions'^ In most
of the practical applications of cinematics, the motions to be com-

pared are limited by conditions which render the comparision more

simple than it is in the general case just described. In machines,
for example, the motion of each point is limited to two directions,

forward or backward in a fixed path; so that the comparative
motion of two points is sufficiently expressed by means of the velo-

city ratio, together with a directional relation expressed by + or -
,

according as the motions at the instant in question are similar or

contrary.

Section 3.—Yaried Motion op Points.

71. Velocity and Direction of Varied Motion.—The motion of

one point relatively to another may be

varied, either by change of velocity, or

by change of direction, or by both

combined, which last case will now be

considered, as being the most general.
In fig. 24, let O represent a point

assumed as fixed, X, O Y, O Z, fixed

directions, and A B part of the path or

orbit traced by a second point in its
^

p^^ 24.
varied motion relatively to O. At the

"*

instant when the second point reaches a given position, such as P
,

in its path, the direction of its motion is obviously that of P T, a

tangent to the path at P.

To find the velocity at the instant of passing P, let A t denote

an interval of time which includes that instant, and A s the dis-

tance traced in that interval. Then

A£
A«

is an approximation to the velocity at the instant in question,

which will approach continually nearer and nearer to the exact

velocity as the interval A t and the distance A s are made shorter
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acd shorter; and the limit towards which -—converges, asA «

and A t are indefinitely diminished, and which is denoted by

ds
'' =

Tt (^-^

is the exact velocity at the instant of passing P. In the language
of the differential calculus, the space is a function of the time and
the velocity is the differential coefficient of the space with respect

ds
to the time, thus s = (pt and

-— =
<^' ^ r= v. It will be seen here-

after that, the velocity (v) itself is a function of the time
{t).

This

is the process called "
differentiation."

Should the velocity at each instant of time be known, then the

distance Sj
-

5q,
described during an interval oi' time

t^
-

t^,
is found

by integration (see Article 29), as follows :
—

(2.)

72. Components of Varied Motion.—All the propositions of the

two preceding sections, respecting the composition and resolution

of motions, are applicable to the velocities of varied motions at a

given instant, each such velocity being represented by a line, such

as P T, in the direction of the tangent to the path of the point
which moves with that velocity, at the instant in question. For

example, if the axes O X, O Y, O Z, are at right angles to each

other, and if the tangent P T makes with their directions respec-

tively the angles a, i3^ y then the three rectangular components of

the velocity of the point parallel to those three axes are

V cos
et'j

V cos /3j V COS y.

Let X, y, z, be the co-ordinates of any point, such as P, in the path
A P B, as referred to the three given axes. If a point p be

assumed indefinitely near to the point P, its co-ordinates will be

x + dx, y + dy, z + dz, and if ds have the already assumed value,

dx, dy, dz, will be its projections on the three axes; that is, the

lengths bounded by perpendiculars let fall from the extremities of

ds on the three respective axes. Then it is well known that

dx „ dy dz
cos a = J- ;

cos ^ = -T^; cos 7 = -J-;ds ds ds

and consequently the three components of the velocity v l=~j are

dx ^ dy dz ._ ,

vcos:, =
-^^;vcm?

=
j-^;vcoBy=j-^; (3.)
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HOW by the Geometry of three dimensions

COS^ ex. + cos^ /3 + COS^ y = 1.

and hence these are related to their resultant by the equation

©'*©** e-3'=-- <'w
73. Uniformly-Varied Velocity.—Let the velocity of a point

either increase or diminish at an uniform rate; so that if t repre-
sents the time elapsed from a fixed instant when the velocity was

Vq, the velocity at the end of that time shall be

v = V(^^at\ (1.)

a being a constant quantity, which is the rate of variation of the

velocity, and is called acceleration when positive, and retardation

when negative. Then the mean velocity during the time t is

^^^^^j^^^^_
^2.)

'Oc^v V(.^Vr.-^at at

2-
=^ =

''<>+ 2

and the distance described is

at'^
8 = VQt + -j- (3.)

If there be no initial velocity, that is, if the body start from a
a (^

state of rest, then v = at and s =
-^, and these equations are illus-

trations of the use of the differential calculus; for first differentiate

at?'
s with respect to t in the equation s = —^, and there is obtained

-J-.
{=v) =—^— = atj which is the first equation, then differentiate

v = at, and there is obtained ~r. = ci. To find the velocity of a
cL t

point, whose velocity is uniformly varied, at a given instant, and
the rate of variation of that velocity, let the distances, A%, A^g,
described in two equal intervals of time, each equal to At, before
and after the instant in question, be observed. Then the velocity
at the instant between those intervals is

-^-Izt-^ (^o .

and its rate of variation is

Av As^-Asj^

""-A-r-^Atf-
' (^O
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where the variation of velocity = and the rate of varia-

. 25.

tion being either acceleration or retardation, as the velocity of the

point is being increased or diminished, is that quantity divided

by A^.
74. Graphical Representation of Motions,—Since in uniform

motion the space is equal to the product of the velocity and time,
and since in geometry a rectangular area is the product of a base
line and perpendicular, an uniform motion may be represented by
a rectangular area, as in

fig. 25, where A B represents a certain

number of units of time, and A C a certain

number of units of velocity per unit of

time. It will be noticed that in uniform

motion, the velocity or number of units of

velocity at each unit of time is the same,
as at A, B, E. Varied motion and uni-

formly varied motion may also be graphi-

cally represented: in the first, the line

C D will be a curve ;
and in the second,

the line CD will form a constant angle with AB; hence in

varied motion any ordinate, E F, depends upon the abscissa A E,
and the mean velocity is the mean ordinate of a figure so formed,

or is the quotient of the area

(space) divided by the base (time),
whereas in uniformly-varied mo-

tion, the space described depends
upon the initial and final velo-

cities alone, and not upon the

intermediate velocities. Pig. 26

represents varied motion where
the velocity at each point is re-

presented by the ordinate at that point, and the mean velocity is

equal to the area of the figure divided

by the base A B. Eig. 27 represents

uniformly-varied motion, and it is evi-

dent that, in order to estimate the area

of the figure ABCD, that is, the space,
it is only necessary to consider the

initial and final velocities. In these

figures, if the velocity be null at any
point, there will be no ordinate at

that point: if the direction of motion

change, this will be represented by a change of sign of the ordinate

or velocity.
There is another method of graphically representing the motion

of a point: in this the abscissae represent the time, and the ordinatea

D

Fior. 27.
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at each point the space passed over in the corresponding number

of units of time, or the distance of the point from a certain datum

point. In this case the space described in any number of units of

time is equal to the difference of the lengths of the ordinates at

the corresponding intervals, and the velocity is proportional to the

quotient of the difference of the ordinates divided by the difference

of the abscissse.

75. Varied Rate of Variation of Velocity.—When the velocity

of a point is neither constant nor uniformly-varied, its rate of

variation may still be found by applying to the velocity the same

operation of differentiation, which, in Article 73, was applied to

the distance described in order to find the velocity. The result of

this operation is expressed by the symbols,

^ .^*
dv _ dt _d^s ^

^^dTt^ dt "J^''

and is the limit to which the quantity obtained by means of the

formula 5 of Article 73 continually approximates, as the interval

denoted by A ^ is indefinitely diminished. In the fraction d t

~~dr'

ds'w, the limit of the difference of either of the spaces As in equa-
tion (5), Article 73, and d • d s, \s, the limit of the difference of that

difference, viz., Asg- A^^; that is, d in this fraction is represented

by the minus sign ( -) in the other, and dshy the limit of either

of the quantities Asp /\s^. Here in the language of the difierential

calculus, the velocity [v) is a function of the time {t), and the

acceleration {a) is the differential coefficient of the velocity with

respect to the time, thus v = <pt and a^4>'t, or = -r-. Also the

velocity, v, being the'differential coefficient of the space with respect
to the time, see Article 71; the acceleration a is the 2nd differ-

ential coefficient of the space with respect to the time, or v being

^'^, a = -4y" t.

76. Combination of Uniform and Uniformly Accelerated Motion.
—Assume a pair of rectangular axes of co-ordinates. Let the

uniform motion be represented by abscissse along O X, and the

uniformly accelerated motion by ordinates parallel to O Y; let

OB [
=
x)
= vt, represent the space described in the time ^ with

a t^
the velocity v, and let C

{
=
y)
= —o-> represent the space de-
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scribed witli a uniform rate of acceleration, a, in the same time t,

see Article 73, then a;'^ = v2^2 ^nd

y
—
—-', .'. x^ = y ^,

where the

square of any abscissa bears a con-

stant ratio to the corresponding ordi-

nate, and the path of the point is

known by Conic Sections to be a
^ig- 28. Parabola. The same follows for any

axes of co-ordinates; but if the direction of the uniformly accelerated

motion be that of the uniform motion or directly opposed to it,

the resultant direction will be the same as that of either motion,
or will be that of the greater component.

77. Uniform Deviation is the change of motion of a point which
moves with uniform velocity in a circular

path. The rate at which uniform deviation

takes place is determined in the following
manner :

—
Let C, fig. 29, be the centre of the cir-

cular path described by a point A with an

uniform velocity v, and let the radius U A be

denoted by r. At the beginning and end of

an interval of time A^, let A^^ and Ag be the

positions of the moving point. Then

the arc Aj Ag^t^A^;

the chord A^ Ag = yA^ * 'Fig. 29.

The velocities and directions at A^ and Ag are represented by the

equal lines Aj^ Y^ = AgVg = '^j touching the circle atA^and Ag respec-

tively. From Ag draw A, v equal and parallel to Aj Vj, and join

Yg-y. Then the velocity Ag Yg ^"^^7 ^® considered as compounded
of Ag-y and v Yg; so that v Yg is the deviation of the motion dur-

ing the interval A^; and because the isosceles triangles AaV Yg,
C Aj A2, are similar :

—
v^ ' At chord

r arc
'

deduced by substituting the value of Aj Ag already found; and the

approximate rate of that deviation being the deviation divided by
the interval of time in which it occurs, is

v^
^
chord

r arc
'
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but the deviation does not take place by instantaneous changes of

velocity, but by insensible degrees ;
so that the true rate of devia-

tion is to be found by finding the limit to which the approximate
rate continually approaches as the interval A^ is diminished

indefinitely. Now the factor — I'emains unaltered by that diminu-

tion ; and the ratio of the chord to the arc approximates continually
to equality ;

so that the limit in question, or true rate of deviation,
is expressed by

^.. (1.)r

78. Varying Deviation.—When a point moves with a varying

velocity, or in a curve not circular, or has both these variations of

motion combined, the rate of deviation at a given instant is still

represented by Equation 1 of Article 77, provided v be taken to

denote the velocity, and r the radius of curvature of the path, of

the point at the instant in question.
79. The Resultant Rate of Variation of the motion of a point

is found by considering the rate of variation of velocity and the

rate of deviation as represented by two lines, the former in the

direction of a tangent to the path of the point, and the latter in

the direction of the radius of curvature at the instant in question,
and taking the diagonal of the rectangle of which those two lines

are the sides, which has the following value :
—

the first term of the quantity under the first radical is the square of

d V 15

-1- in Article 73, and the second the square of -
, Equation (1),

Article 77.

80. The Rates of Variation of the Component Velocities of a

point parallel to three rectangular axes, are represented as follows:—
^ d^jf^

d?z

dt^' dt^
' dt^' ^ '^

and if a rectangular parallelopiped be constructed, of which the

edges represent these quantities, its diagonal, whose length is

v{(S)'*(sy-(S)'} •«
will represent the resultant rate of variation, already given in

another form in Equation 1 of Article 79.

81. The Comparison of the Varied Motions of a pair of points
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relatively to a third point assumed as fixed, is made by finding the

ratio of their velocities, and the directional relation of the tangents
of their paths at the same instant, in the manner already described

in Article 70, as applied to uniform motions. It is evident that

the comparative motions of a pair of points may be so regulated as

to be constant, although the motion of each point is varied, pro-
vided the variations take place for both points at the same instant,
and at rates proportional to their velocities.
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CHAPTER 11.

MOTIONS OF EIGID BODIES.

Section 1.—Rigid Bodies, and their Translation.

82. The term Rigid Body is to be understood to denote a body,
or an assemblage of bodies, or a system of points, whose ffgure

undergoes no alteration during the motion which is under con-

sideration.

83. Translation or Shifting is the motion of a rigid body rela-

tively to a fixed point, when the points of the rigid body have no
motion relatively to each other; that is to say, when they all move
with the same velocity and in the same direction at the same

instant, so that no line in the rigid body changes its direction.

It is obvious that if three points in the rigid body, not in the

same straight line, move in parallel directions with equal velocities

at each instant, the body must have a motion of translation.

The paths of the different points of the body, provided they are

all equal and similar, and at each instant parallel, may have any
figure whatsoever.

Section 2.—Simple Rotation.

84. Rotation or Turning is the motion of a rigid body when
lines in it change their direction. Any point in or rigidly attached

to the body may be assumed as a fixed point to which to refer the

motions of the other points. Such a point is called a centre of
rotation.

85. Axis of Rotation.—Tbeorem. In every possible change of

position of a rigid body, relatively to afixed centre, there is a line

traversing that centre whose direc-

tion is not changed. In fig. 30,

let O be the centre of rotation, and
let A and B denote any two other

points in the body, whose situa-

tions relatively to O are, before

the turning, Aj, B^, and after the

turning, Ag, Ba. Join Aj As, Yi^ ZO.

^

Bi B.2, forming the isosceles tri-

angles O Aj Ag, Bi Bg. Bisect the bases of those triangles in C
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and D respectively, and through the points of bisection draw two

planes perpendicular to the respective bases, intersecting each

other in the straight line O E, which must traverse O. Let E be

any point in the line O E ;
then E Aj Ao, and E Bi B^, are isosceles

triangles ;
and E is at the same distance from O, A, and B, before

and after the turning; therefore E is one and the same point in

the body, whose place is unchanged by the turning; and this

demonstration applies to every point in the straight line O E
;

therefore that line is unchanged in direction.—Q. E. D.
In fig. 31, the same construction and reasoning being applied,

the point E being supposed vertically
above or below the point O, it is evident
that the planes through O D, and

intersect, and the axis will be represented
by a straight line perpendicular to the

plane of the paper through O and E.

OoROLLARY. It is evident that every
Fig. 31. line in the body, parallel to the axis, has

its direction unchanged.
86. The Plane of Rotation is any plane perpendicular to the

axis, such as any plane parallel to the plane of the paper, in

fig. 31. The Angle of Rotation, or angular motion, is the angle
made by the two directions, before and after the turning, of a line

perpendicular to the axis, as A^ O Ag, or Bj O Bg, in fig. 31.

87. The Angular Velocity of a turning body is the ratio of the

angle of rotation, expressed in terms of radius, to the number of

units of time in the interval of time occupied by the angular
motion. Speed of turning is sometimes expressed also by the
number of turns or fractions of a turn in a given time. The rela-

tion between these two modes of expression is the following :
—

Let a be the angular velocity, as above defined, and T the turns
in the same unit of time ; then

T- ^
•

a=29rT;

(710\*2t= 6-2831852.
-y^J^.j

88. Uniform Rotation consists in uniformity of the angular

* The value of * may he easily remembered by taking the first three odd
numbers twice each, and placing the six in a row, using the lirst three as
the denominator, and the last three as the numerator of a fraction: we thus

355
obtain 113

|
355= .. _; this is a nearer approximation than 3-14159, and

ia generally much more easOy employed in calculation.
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velocity of the turning body, and constancy of tlie direction of its

axis of rotation.

89. Rotation common to all Parts of Body.—Since the angu-
lar motion of rotation consists in the change of direction of a

line in a plane of rotation, and since that change of direction is

the same how short soever the line may be, it is evident that the

condition of rotation, like that of translation, is common to every

particle, how small soever, of the turning rigid body, and that the

angular velocity of turning of each particle, how small soever, is

the same with that of the entire body. This is otherwise evident

by considering, that each part into which a rigid body can be

divided turns completely about in the same time with every other

part, and with the entire body.
90. Right and Left-Handed Rotation.—The direction of rota-

tion round a given axis is distinguished in an arbitrary manner
into right-handed and left-handed. One end of the axis is chosen,
as that from which an observer is supposed to look along the

direction of the axis towards the rotating body. Then if the body
seems to the observer to turn in the same direction in which the

sun seems to revolve to an observer north of the tropics, or in

that in which the hands of a watch or clock revolve, the rotation

is said to be right-handed; if in the contrary direction, left-handed:
and it is usual to consider the angular velocity of right-handed
rotation to be positive, and that of left-handed rotation to be

negative; but this is a matter of convenience. It is obvious that

the same rotation which seems right-handed when looked at from

one end of the axis, seems left-handed when looked at from the

other end.

91. Relative Motion of a Pair of Points in a Rotating Body.—
Let O and A denote any two points in a rotating body; and con-

sidering O as fixed, let it be required to determine the motion of

A relatively to an axis of rotation drawn through O. On that

axis let fall a perpendicular from A; let r be the length of that

perpendicular. Then the motion of A relatively to the axis

traversing O is one of revolution, or translation in a circular 'path

of the radius r; the centre of that circular path being at the point
where the perpendicular from A meets the axis. If a be the

angular velocity of the body, that is, the velocity of a point situate

at the distance unity from the axis of rotation, then the velocity of

A relatively to the axis -traversing O is

v = ar; (1-)

and the direction of that velocity is at each instant perpendicular
to the plane drawn through A and the axis. The rate of deviation

of A in its motion relatively to the given axis is

- = a^r; (2.)
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in which the first expression is that already found in Article 77,
and the second is deduced from the first by the aid of Equation 1 of

this Article. It is evident that for a given rotation the motion of
O relatively to an axis of rotation traversing A is exactly the same
with that of A relatively to a parallel axis traversing O

;
for it

depends solely on the angular velocity a, the perpendicular distance

r of the moving point from the axis, and the direction of the axis;
all which are the same in either case.

r is called the radius-vector of the moving point.
92. Cylindrical Surface of Equal Velocities.—If a cylindrical

surface of circular cross section be described about an axis of rota-

tion, all the points in that surface have equal velocities relatively
to the axis, and the direction of motion of each point in the cylin-
drical surface relatively to the axis is a tangent to the surface in a

plane perpendicular to the axis.

93. Comparative Motions of Two Points relatively to an Axis.—Let O, A, B, denote three points in a rotating rigid body ;
let O

be considered as fixed, and let an axis of rotation be drawn through
it. Then the comparative motions of A and B relatively to that

axis are expressed as follows:—The velocity-ratio is that of the radii-

vectores of the points, and the directional relation consists in the

angle between their directions of motion being the same with that

between their radii-vectores. Or symbolically : Let r-^, r^, be the per-

pendicular distances of A and B from the axis traversing O, and

v^ and v<2,
their velocities; then

V, r. A A
- ——

;
and v. Vo = r-.r^.

94. Components of Velocity of a Point in a Rotating Body.—
The component parallel to an axis of rotation, of the velocity of a

point in a rotating body relatively to that

axis, is null. That velocity may be re-

solved into components in the plane of

rotation. Thus let O, in fig. 32, represent
an axis of rotation of a body whose plane
of rotation is that of the figure ;

and let

A be any point in the body whose radius-

vector is O A = r. The velocity of that

point being v ^ ar {a representing the

^ig- 32.
velocity of a point situated at the distance

unity from the axis of rotation), let that velocity be represented by

the line AY perpendicular to A. Let B A be any direction in

the plane of rotation, along which it is desired to find the com-

ponent of the velocity of A; and let Z V A U = e be the angle

made by that line with A V. From V let fall Y XJ perpendicular
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to B A; then A U represents the component in question; and de-

noting it by u,

u =v cos & = ar ' cos 6 (1.)

From O let fall B perpendicular to B A. Then Z A O B =

Z Y A XJ = ^; and the right-angled triangles O B A and A U V
are similar; so that

AY : AU : : OX: O B'^r cos (2.)

Now the entio-e velocity of B relatively to the axis O is

a r cos e = u, (3. )

so that the component, along a given straight line in the plane oj

rotation, of the velocity of any point in that line, is equal to the velo-

city of the point where a perpendicularfrom the axis meets that line.

Section 3.—Combined Rotations and Translations.

95. Property of all Motions of Rigid Bodies.—The foregoing

proposition may be regarded as a particular case of the following,
which is true of all motions of a rigid body.

The components, along a given straight line ^?^ a rigid body, of the

velocities of the points in that line relatively to any point, whether in

or attached to the body or otherwise, are all equal to each other; for

otherwise, the distances between points in the given straight line

must alter, which is inconsistent with the idea of rigidity.

96. Helical Motion.—Rotation is the only movement which a

rigid body as a whole can have relatively to a point belonging to

it or attached to it. But if the motion of the body be determined

relatively to a point not attached to it, a translation may be com-
bined with the rotation. When that translation takes place in

the direction of the axis of rotation, the motion of the rigid body
is said to be helical, or screw-like, because each point in the rigid

body describes a helix or screw, or a part of a helix or screw.

Let Vx denote the velocity of translation, parallel to the axis of

rotation, which is common to all points of the body; this is called

the velocity of advance. The advance during one complete turn of

the rotating body is the pitch of each of the helical or screw-like

paths described by its particles; that is, the distance, in a direc-

tion parallel to the axis, between one turn of each such helix and

the next; and a being the angular velocity, so that — is the time

of one turn (2
-tt being the space traversed in one turn by a point

at the distance unity from the axis), the value of the pitch (or the

space passed over, which is equal to the product of the velocity
and time) is
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P= -^';
whence Vi= ^"^ (1.)

Let r, as before, be the radius-vector of any point in the body, and
let

V2
= ar (2.)

denote its velocity/ of revolution, or velocity relatively to the axis,

due to the rotation alone. Then the resultant velocity of that

point is

v=^/W^=cc-.^ {^, +
r^} (3.)

The inclination of the helix described by that point to the plane of

rotation is given by the equation

V 7)

i = arc * tan • — = arc • tan • ——
: (4.)

that is, an angle whose tangent is equal to v-^ divided by v^, or to

p divided by 2 s- r, the tangent of that angle beii?g the ratio of the

pitch to the circumference of the circle described by the point rela-

tively to the axis of rotation.

97. Problem.—To find the Motion of a Rigid Body from the
Motions of Three of its Points.—^

,^
Let A, B, C, fig. 33, be three

^
points in a rigid body, and at a

'^^ —
^ given instant let them have mo-
"
^ tions relatively to a point indepen-
dent of the body, which motions
are represented in velocity and

o -^———-U -p
direction by the three lines A V^,

^  
T— B Yj, C V^ It is required to find

\ the motion of the entire rigid
\ body relatively to the same fixed

Ac point.

r^.iC_ixr Through any point o, fig. 34,

^.
draw three lines oa, oh, oc, equal

^«' ' and parallel to the three lines

^ A V^, B Vj, C Vg. Through a, h, and c, draw a

plane a b c, on which let fall a perpendicular o n
from o. Then o n represents a component, which
is common to the velocities of all the three points

A, B, C, and must therefore be common to all the

Fig. 34.
points in the body ; that is, it is a velocity of

translation.

From the points V„, V„ Y„ draw lines Y^W,, YT^I V/fJ,,
equal and parallel to o n, but opposite in direction to it; and join
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n, 'v^v
A U„, B Uj, C Uc, which will all be parallel to the^ aa;6e planVJ)"^
that is, to the plane a b c. The last three lines will repr^^t the

component velocities which, along with the common velocity^of^
translation parallel to o n, make up the resultant velocities of tn*^
three points. Through the point A draw a plane perpendicular to

the component of its motion, which is parallel to a h c; that is, to

A U„, and through B draw a plane perpendicular to B Uj. These

two planes will intersect each other in a line ODE, which will

be parallel to o n. The perpendicular distances of that line from
the points A B being unchanged by the motion, it represents one

and the same line in or attached to the rigid body, and it is there-

fore the axis of rotation. A plane drawn through the third point,

C, perpendicular to C Up, will cut the other two planes in the same
axis : the three revolving component velocities

Au;, BUT, cxj;,

will be respectively proportional to the perpendicular distances, or

radii-vectores, A D, B E, C F,

of the three points from that axis
;
and the angular velocity will be

equal to each of the three quotients made by dividing the revolving

component velocities of the points by their respective radii-vectores.

This rotation, combined with a translation parallel to the axis,

with a velocity represented by o n, constitutes a hdical or screw-like

motion, being the required motion of the rigid body.
—Q. E. I.

98. Special Cases of the preceding problem occur, in which

either a more simple method of solution is sufficient, or the general
method fails, and a special method has to be employed.

I. When the motions of the points of
the body are known to be all parallel to

one plane, it is suflBcient to know the

motions of two points, such as A, B, fig.

35. Let A O, BO, be two planes tra-

versing A and B, and perpendicular to

the respective directions of the simul-

taneous velocities of those points ;
if those

planes cut each other, the entire motion
is a rotation

; the line of intersection of

the planes O, being the axis of rotation,
and the angular velocity, are found as in the last Article. If the
two planes are parallel, the motion is a translation.

II. If three points in the same plane have parallel motions oblique
to the plane, the motion is a translation.

III. If three points in the same plane move perpendicidarly to the

plane, as A B C, fig. 35 a, then if their velocities are equal, the

motion is a translation; and if their velocities are unequal, the
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motion is a rotation about the axis which is the intersection of the

plane of the three points with the plane drawn through the extre-

Fig. 36.

Fig. 35 a. -^ Fig. 35 c.

mities of the three lines which represent their velocities viz.,

through the points, V«, Yj, Y^\ the angular velocity being found

as in Article 97.

If the plane of rotation is known, then the simultaneous veloci-

ties of two points, as A and B in figs. 35 b and 35
c, are sufficient to

determine the axis O.

©9. Rotation Combined with Translation in the Same Plane.—
Let a body rotate about an axis C

(fig. 36), fixed

relatively to the body, with an angular velocity

a, and at the same time let that axis have a
motion of translation in a straight path perpen-
dicular to the direction of the axis, with the

velocity u, represented by the line C U, It is

required to find the velocity and direction of

motion of any point in the body. From the

moving axis draw a straight line C T perpendi-
cular to that axis and to C U, and in that direction into which the

rotation (as represented by the feathered arrow) tends to turn C U,
and make uCT = - ...., (1.)

Then the point T has, in virtue of translation along with the axis

C, a forward motion with the velocity u ;
and in virtue of rotation

about that axis, it has a backward motion with the velocity

a-OT=^u,
equal and opposite to the former; and its resultant velocity is 0.

Hence every point in the body, which comes in succession into the

position T, situated at the distance - from the axis C in the direc-
a

tion above described, is at rest at the instant of its arriving at that

position; that is, it has just ceased to move in one direction, and
is about to move in another direction; and this is true of every
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point which arrives at a liTie traversing T parallel to C. Conse-

quently the resultant motion of the body, at any given instant, is

the same as if it were rotating about the line which at the instant
in question occupies the position T, parallel to C, at the distance

-
; and that line is called the instantaneous axis. To find the

Cb

motion of any point A in the body at a given instant, let fall the

perpendicular A T from that point on the instantaneous axis; then
the motion of A is in the direction AY perpendicular to the plane
of the instantaneous axis and of the instantaneous radius-vector

A T, and the velocity of that motion is

v = a-AT
(2.)

100. Rolling Cylinder; Trochoid.—Every straight line parallel
to the moving axis C, in a cylindrical surface described about C

with the radius -, becomes in turn the instantaneous axis. Hence
a

the motion of the body is the same with that produced by the roll-

ing of such a cylindrical surface on a plane P T P parallel to C and

to C U, at the distance -.
a

The path described by any point in the body, such as A, which
is not in the moving axis C, is a curve well known by the name of

trocJioid. The particular form of trochoid called the cycloid, is

described by each of the points in the rolling cylindrical surface
;

being such a curve as is described by a nail in the tyre of a revolv-

ing wheel.

101. Plane Rolling on Cylinder; Spiral Paths.—Another mode
of representing the combination of rotation with translation in the

same plane as follows :
—Let O, fig. 37, be an axis assumed as fixed,

about which let the plane O C (containing the axis 0) rotate (right-

handedly, in the figure), with the angular

velocity a. Let a rigid body have, rela-

tively to tJie rotating plane, and in a direc-

tion perpendicular to it, a translation

with the velocity u. In the plane O C,
and at right angles to the axis O, take

O T = -, in such a direction that the
a

velocity

w = a-OT,
which the point T in the rotating plane
has at a given instant, shall be in the

contrary direction to the equal velocity
of translation Uj which the rigid body has relatively to the ro^fl-tini?
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plane. Then each point in the rigid body which arrives at the

position T, or at any position in a line traversing T parallel to the
lixed axis O, is at rest at the instant of its occupying that position ;

therefore the line traversing T j^arallel to the fixed axis O is the

instantaneous axis; the motion at a given instant of any point in
the rigid body, such as A, is at right angles to the radius-vector
A T drawn perpendicular to the instantaneous axis; and the

velocity of that motion is given by the equation

v^a-ATT.

All the lines in the rigid body which successively occupy the

position of instantaneous axis are situated in a plane of that body,
P T P, perpendicular to O C; and all the positions of the instan-

taneous axis are situated in a cylinder described about O with the

radius O T
;
so that the motion of the rigid body is such as is pro-

duced by the rolling of the i^lane P P o^^ the cylinder whose radius is

O T = — . Each point in the rigid body, such as A, describes a
a

plane spiral about the fixed axis O. For each point in the rolling

plane, P P, that spiral is the involute of the circle whose radius is

U T. The simplest method of understanding the nature of this

curve, is to wrap a cord round the perimeter of a cylinder, placed
on a sheet of paper, to attach a tracing point to any point in the

cord in juxtaposition with the cylinder, and then to unwrap the

cord from the cylinder, keeping the cord always in the same plane

parallel to the plane of the paper; the tracing point will trace the

involute of a circle on the sheet of paper. For each point whose

path of motion traverses the fixed axis O
;
that is, for each point

in a plane of the rigid body traversing O parallel to P P, the spiral
is Archimedean, having a radius-vector increasing by the length
u for each angle a through which it rotates; this spiral is traced

by a point moving uniformly from the centre along the radius,
while the radius itself revolves.

102. Combined Parallel Rotations.—In figs. 38, 39, and 40, let

O be an axis assumed as fixed, and O C a plane traversing that

axis, and rotating about it with the angular velocity a. Let C be
an axis in that plane, parallel to the fixed axis O; and about the

moving axis C let a rigid body rotate with the angular velocity b

7-elatively to the plane O C; and let the directions of the rotations

a and b be distinguished by positive and negative signs. The body
is said to have the rotations about the parallel axes O and C com-

bined or compounded, and it is required to find the result of that

combination of parallel rotations.

Fig. 38 respresents the case in which a and 6 are similar in

direction; fig. 39, that in which a and b are in opposite directions,
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and h is the greater; and fig. 40, that in which a and h are in

opposite directions, and a is the greater.

Fig. 40.

Let a common perpendicular O C to the fixed and moving axes

be intersected in T by a straight line parallel to both those axes, in

such a manner that the distances of T from the fixed and moving
axes respectively shall be inversely proportional to the angular
velocities of the component rotations about them, as is expressed

by the following proportion :
—

:6: :CT:OT. ,(1.)

When a and b are similar in direction, let T fall between O and C,

as in fig. 38 ; when they are contrary, beyond, as in figs. 39 and

40. Then the velocity of the line T of the plane O C is ct
• O T

;

and the velocity of the line T of the rigid body, relatively to the

plane O C, is 6 • C T, equal in amount and contrary in direction to

the former; therefore each line of the rigid body which arrives at

the position T is at rest at the instant of its occupying that position,
and is then the instantaneous axis. The resultant angular velocity

is given by the equation
c^a + h; (2.)

regard being had to the directions or signs of a and 6 ;
that is to

say, if we now take a and h to represent arithmetical magnitudes,
and affix explicit signs to denote their directions, the direction of

c will be the same with that of the greater ;
the case of fig.

38

will be represented by Equation 2, already given ;
and those of

figs. 39 and 40 respectively by

c = h-a'y c-=a — h (2 A.)

The relative proportions of a, b, and c, and of the distances

between the fixed, moving, and instantaneous axes, are given by
the equation

a:b:c: :CT:OT:OC (3.)

The motion of any point, such as A, in the rigid body, is at ea^^-
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instant at right angles to the radius-vector AT drawn from the

point perpendicular to the instantaneous axis; and the velocity of
that motion is

v^^c-AT (4.)

103. Cylinder Rolling on Cylinder; Epitrochoids.—All the lines
in the rigid body which successively occupy the position of instan-
taneous axis are situated in a cylindrical surface described about C
with the radius CT; and all the positions of the instantaneous
axis are contained in a cylindrical surface described about with

the radius O T ; therefore the resultant motion of the rigid body is

that which is produced by rolling the former cylinder, attached to
the body, on the latter cylinder, considered as fixed.

In fig. 38, a convex cylinder rolls on a convex cylinder; in fig.

39, a smaller convex cylinder rolls in a larger concave cylinder; in

fig. 40, a larger concave cylinder rolls on a smaller convex cylinder.
Each point in the rolling rigid body traces, relatively to the

fixed axis, a curve of the kind called epitrochoids. The epitrochoid
traced by a point in the surface of the rolling cylinder is an

epicycloid.
In certain cases, the epitrochoids become curves of a more

simple class. For example, each point in the moving axis C traces

a circle.

When a cylinder, as in
fig. 39, rolls witliin a concave cylinder

of double its radius, each point in the surface of the rolling cylinder
moves backwards and forwards in a straight line, being a diameter
of the fixed cylinder; each point in the axis of the rolling cylinder
traces a circle of the same radius with that cylinder, and each other

point in or attached to the rolling cylinder traces an ellipse of

greater or less eccentricity, having its centre in the fixed axis O.
In the examples shewn in figs. 41, 42, and 43 the ratio of the

rolling-circle to the base-circle* is -
,
so that the epitrochoids are

o

three-lobed. Each figure shews an external and an internal epitro-

choid, traced by rolling the rolling-circle outside and inside the

base-circle respectively. The centres of the base-circles are marked

A; those of the external rolling-circles, B; those of the internal

rolling-circles, 6; and the tracing points of the external and in-

ternal rolling-circles are marked C and c respectively.
In

fig. 41 the tracing-points are in the circumferences of the

rolling-circles; and the curves traced are epicycloids, distinguished

by having cusps at the points where the tracing-point coincides

with the base-circle. In fig. 42 the tracing points are inside the

rolling-circles; and the curves traced are prolate epitrochoids, dis-

tinguished by their wave-like form. In fig. 43 the tracing-points
• The fixed circle is called a base circle.
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Fig, 41.

Fii?. 42.
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are outside the rolling-circles; and the curves traced are airtate

epitrochoids, distinguished by their looped form.

An important property of curves traced by rolling is that at

Fig. 43.

every instant the straight line joining the tracing-point and the

pitch-point, or point of contact of the rolling-curve and base-curve,
is normal to the traced curve at the tracing point.
The distance B C or be may in each case be called the tracing-

arm.
In mechanism for the tracing of epitrochoids (used chiefly in

ornamental turning), the rolling and base-circles are the pitch-
circles of a pair of spur-wheels, made with great accuracy.

Elliptic paths traced by rolling form a particular case of internal

epitrochoids. In fig. 44 is represented a rolling-circle, which rolls

inside a base-circle of exactly twice its radius. Then (considering
a quarter of a revolution at a time), while the centre of the rolling-
circle traces a quadrant, B b, of an equal circle about A, a point
D in the circumference of the rolling-circle traces a straight line

traversing A, and a point C, inside the rolling-circle, traces a

quadrant, C c, of an ellipse whose semiaxes are A C =A B + B C,
and Ac = CI) =AB-BC; also a point C outside the rolling-
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but rigidly attached to it, traces a quadrant, C c', of an

whose semiaxes are A C = B C + A B, and A c' = C D =circle,

ellipse
B C' - A B. The former may be called an internal, and the latter

an external, ellipse. The proportions of the axes of either of them

Fig. 44.

may be indefinitely varied by adjusting the position of the tracing-

point; but in every internal ellipse the sum, and in every external

ellipse the difference, of the semiaxes is equal to the diameter of

the rolling-circle; that is, to the radius of the base-circle.

This is the principle of the mechanism commonly used for

turning ellipses.
It is evident that by having a number of tracing-points carried

by one rolling-circle, several ellipses differently proportioned and
in different positions may be traced at the same time.
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104. Equal and Opposite Parallel Rotations Combined.—Let a

plane O C rotate with an angular velocity a about an axis O con-
tained in the plane, and let a rigid body rotate about the axis C
in that plane parallel to O, with an angular velocity

-
a, equal and

opposite to that of the plane. Then the angular velocity of the

rigid body is nothing; that is, its motion is one of translation only,
all its points moving in equal circles of the radius OC, with the

velocity a • O C. This case is not capable of being represented by
a rolling action.

105. Rotations about Intersecting Axes Combined.—In fig. 45
let O A be an axis assumed as

fixed; and about it let the plane
A C rotate with the angular
velocity a. Let O C be an axis

in the rotating plane ;
and about

that axis let a rigid body rotate

with the angular velocity h re-

latively to the rotating plane. Yig. 45.

Because the point O in the

rigid body is fixed, the instantaneous axis must traverse that point.
The direction of that axis is determined, as before, by considering
that each point which arrives at that line must have, in virtue of

the rotation about O C, a velocity relatively to the rotating plane,

equal and directly opposed to that which the coincident point of

the rotating plane has. Hence it follows, that the ratio of the

perpendicular distances of each point in the instantaneous axis

from the fixed and moving axes respectively
—that is, the ratio of

the sines of the angles which the instantaneous axis makes with
the fixed and moving axes—must be the reciprocal of the ratio of

the component angular velocities about those axes; or symbolically,
if O T be the instantaneous axis,

sin AOT:sinCOT: :h'.a (1.)

This determines the direction of the instantaneous axis, which may
also be found by graphic construction as follows :

—On O A take

O a proportional to a; and on O C take O b proportional to h. Let
those lines be taken in such directions, that to an observer looking
from their extremities towards O, the component rotations seem
both right-handed. Complete the parallelogram Ohca; the dia-

gonal O c will represent the direction of the instantaneous axis.

The resultant angular velocity about this instantaneous axis is

found by considering, that if C be any point in the moving axis,

the linear velocity of that point must be the same, whether com-

puted from the angular velocity a of the rotating plane about the

fixed axis A, or from the resultant angular velocity c of the rigid
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body about the instantaneous axis. That is so say, let CD, C E,
be perpendiculars from C upon O A, O T, respectively; then

a''CT) = c-CE;
but CI) : CE : : sinZA O C : sinZC T; and therefore

sinZCOT :sinZAOC: laic,

and, combining this proportion with that given in Equation 1, we
obtain the following proportional equation:

—
sinZCOT rsinZAOT :sinZAOC

^
: : ja^ : h_ i

c_
> (2.)

: : Oa : 06 : Oc
j

that is to say, the angular velocities of the component and resultant

rotations are each proportional to the sine of the angle between the

axes of the other two; and the diagonal of the parallelogram O b c a

represents both the direction of the instantaneous axis and the angu-
lar velocity about that axis.

106. Rolling Cones.—All the lines which successively come into

the position of instantaneous axis are situated in the surface of a

cone described by the revolution of O T about O C
;
and all the

positions of the instantaneous axis lie in the surface of a cone

described by the revolution of O T about O A. Therefore the

motion of the rigid body is such as would be produced by the

rolling of the former of those cones upon the latter.

It is to be understood, that either of the cones may become a
flat disc, or may be hollow, and touched internally by the other.

For example, shouldZA O T become a right angle, the fixed cone
would become a flat disc

;
and should ZA T become obtuse,

that cone would be hollow, and would be touched internally by the

rolling cone; and similar changes may be made in the rolling cone.

The path described by a point in or attached to the rolling cone
is a spherical epitrochoid; but for the purposes of the present trea-

tise, ifc is unnecessary to enter into details respecting the properties
of that class of curves.

107. Comparative Motions in Compound Rotations.—The velo-

city ratio of two points in a rotating rigid body at any instant, is

that of their perpendicular distances from its instantaneous axis
;

and .the angle between the directions of motion of the two points
is equal to that between the two planes which traverse the points
and the instantaneous axis.

Section 4.—Varied Eotation.

108. Variation of Angular Velocity is measured like variation

of linear velocity, by comparing the change which takes place ia
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the angular velocity of a rotating body, A a, during a given
interval of time, with the length of that interval, A t, and the

rate of variatio7i is the value towards which the ratio of the change

of angular velocity to the interval of time, -^— , converges, as theA t

length of the interval is indefinitely diminished ; being represented

by -z-, and found by the operation of difierentiation.

109. Components of Varied Rotation.—The most convenient

way, in most cases, of expressing the mode of variation of a rotatory

motion, is to resolve the angular velocity at each instant into three

component angular velocities about three rectangular axes fixed in

direction. The values of these components, at any instant shew
at once the resultant angular velocity and the direction of the

instantaneous axis. For example, let a^, ay, a^, be the rectangular

components of the angular velocity of a rigid body at a given
instant,

—
rotation about x from y towards z,

about y from z towards x,

and about z from x towards y,

being considered as positive; then

a= JW + a^^ + a^^) (1.)

is the resultant angular velocity, and

cosoe = —
; cos/3=— ; cosy = ~; (2.)a a a

are the cosines of the angles which the instantaneous axis makes
with the axis of x, y, and z respectively.
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CHAPTER III.

MOTIONS OF PLIABLE BODIES, AND OF FLUIDS.

110. Division of the Subject.—The subject of the present

chapter will be considered under the following branches:—
I. The Motions of Flexible Cords.

11. The Motions of Fluids not altering in Yolurce.

111. The Motions of Fluids altering in Volume.

Section 1.—Motions of Flexible Cords.

111. General Principles.
—As those relative motions of the

points of a cord which may arise from its extensibility, belong to

the subject of resistance to tension, which is a branch of that of

strength and stiffness, the present section is confined to those

motions of which a flexible cord is capable when the length, not

merely of the whole cord, but of each part lying between two

points fixed in the cord, is invariable, or sensibly invariable.

In order that the figure and motions of a flexible cord may be

determined from cinematical considerations alone, independently of

the magnitude and distribution of forces acting on the cord, its

weight must be insensible compared with the tension on it, and it

must everywhere be tight; and when that is the case, each part of

the cord which is not straight is maintained in a curved figure by
passing over a convex surface. The line in which a tight cord lies

on a convex surface is the shortest line which it is possible to draw
on that surface between each pair of points in the course of the

cord. (It is a well-known principle of the geometry of curved

surfaces, that the osculating plane or tangential plane at each point
of such a line is perpendicular to the curved surface.)
Hence it appears, that the motions of a tight flexible cord of

invariable length and insensible weight are regulated by the follow-

ing principles :
—

I. The length between each pair ofpoints in the cord is constant.

II. That length is the shortest line which can be drawn between its

extremities over the surfaces by which the cord is guided.
112. Motions Classed.— The motions of a cord are of two

kinds—
I. Travelling of a cord along a track of invariable form; in

which case the velocities of all points of the cord are equal.
F
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II. Alteration of the figure of the track by the motion of the

guiding surfaces.

Those two kinds of motion may be combined.

The most usual problems in practice respecting the motions of

cords are those in. which cords are the means of transmitting
motion Vietween two pieces in a train of mechanism. Such pro-
blems will be considered in Part II. of this treatise.

Next in point of frequency in practice is the problem to be

considered in the ensuing Article.

113. Cord Guided by Surfaces of Revolution.—Let a cord in

some portions of its course be straight, and in others guided by the

surfaces of circular drums or pulleys, over each of which its track

is a circular arc in a plane perpendicular to the axis of the guiding
surface. Let r be the radius of any one of the guiding surfaces,

i the angle of inclination which the two straight portions of the

cord contiguous to that surface make with each other, expressed in

length of arc to radius unity. Then the length of the portion of

the cord which lies on that surface is r i; and if 5 be the length of

any straight portion of the cord, the total length between two given

points fixed in the cord may be expressed thus :
—

L = 2 -5 + 2 -ri (1.)

Let c be the distance between the centres of a given adjacent pair
of guiding surfaces, s the length of the straight portion of cord

which lies between them, and r, r', their respective radii; then

evidently
«= Jc^-(r±rf (2.)

the i yrn > of the radii being employed, according as the cord

r crosses I . i t c i.

< -, , > the line of centres c.

[
does not cross

j

The case most common in practice is that in which the plies^ or

straight parts of the cord, are all parallel to each other; so that

i = lSO° in each case, while a certain number, n, of the guiding
bodies or pulleys all move simultaneously in a direction parallel to

the plies of the cord with the same velocity, tt; where u represents
the velocity of translation of the guiding surfaces, and v the

longitudinal velocity of any point in the cord

v-2n u (3.)

Section 2.—Motions of Fluids of Constant Density.

114. Velocity and Flow.—The density of a moving fluid mass

may be either exactly invariable, from the constancy or the adjust-
ment of its temperature and pressure, or sensibly invariable, from
the smallness of the alterations of volume which the actual altera-
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tions of pressure and temperature are capable of producing. The
latter is the case in most problems of j)ractical mechanics affecting

liquids.
Conceive an ideal surface of any figure, and of the area A, to be

situated within a fluid mass, the parts of which have motion rela-

tively to that surface; and let u denote, as the case may be, the

uniform velocity, or the inean value of the varying velocity,
resolved in a direction perpendicular to A, with which the particles
of the fluid pass A. Then

Q =wA
(1.)

is the volume of fluid which passes from one side to the other of

the surface A in an unit of time, and is called the Jlow^ or rate of
flow, through A.
When the particks of fluid move obliquely to A, let 6 denote

the angle which the direction of motion of any particle passing A
makes with a normal to A, and v the velocity of that particle;
then

u =v cos d (2.)

115. Principle of Continuity.—Axiom. When the motion of a

fluid of constant density is considered relatively to an enclosed space

of invariable volume which is always filled with the fluid, the flow
into the space and thefloio out of it, in any one given interval of time,,

7}iust he equal
—a principle expressed symbolically by

2-Q =
(30

The preceding self-evident principle regulates all the motions of

fluids of constant density, when considered in a purely cinematical

manner. The ensuing articles of this section contain its most usual

applications.
116. Flow in a Stream.—A stream is a moving fluid mass,

indefinitely extended in length, and limited transversely, and

having a continuous longitudinal motion. At any given instant,
let A, A', be the areas of any two of its transverse sections, con-

sidered as fixed; w, it', the mean normal velocities through them;
Q, Q', the rates of flow through them ; then in order that the

principle of continuity may be fulfilled, those rates of flow must be

equal; that is,

1^ A = 2a' A' = Q = Q' = constant for all cross

sections of the channel at the given instant; (1.)

consequently,

u A""- * ^"'^

or, the normal velocities at a given instant at twofixed cross sections

are inversely as the areas of these sections.

117. Pipes, Channels, Currents, and Jets.—When a stream of
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fluid completely fills a ^n;;e or tube, the area of each cross section

is given by the figure and dimensions of the pipe, and for similar

forms of section varies as the square of the diameter. Hence the

mean normal velocities of a stream flowing in a full pipe, at

different cross sections of the pipe, are inversely as the squares of

the diameters of those sections.

A channel partially encloses the stream flowing in it, leaving the

npper surface free; and this description applies not only to channels

commonly so called, but to pipes partially filled. In this case the

area of a cross section of the stream depends not only on the figure
and dimensions of the channel, but on the figure and elevation of

the free upper surface of the stream.

A current is a stream bounded by other portions of fluid whose
motions are diflferent.

A jet is a stream whose surface is either free all round, or is

touched by a solid body in a small j3ortion of its extent only.
118. Steady Motion of a fluid relatively to a given space con-

sidered as fixed is that in which the velocity and direction of the

motion of the fluid at each jixed point is uniform at every instant

of the time under consideration; so that although the velocity and
direction of the motion of a given particle of the fluid may vary
while it is transferred from one point to another, that particle

assumes, at each fixed point at which it arrives, a certain definite

velocity and direction depending on the position of that point

alone; which velocity and direction are successively assumed by
each particle which successively arrives at the same fixed point.
The steady motion of a stream is expressed by the two conditions,

that the area of each fixed cross section is constant, and that the

flow through each cross section is constant, then the differential

coefficient of a constant being equal to (see Article 26, page 11),

'.t=«'t?=« (!•)

If u represents the normal velocity of a fluid moving steadily,
at a givenfixed point,

'ii-^-' (^•)

expresses the condition of steady motion.

119. Motion of Bistons.—Let a mass of fluid of invariable

volume be enclosed in a vessel, two portions of the boundary of

which (called pistons) are movable inwards and outwards, the rest

of the boundary being fixed. Then, if motion be transmitted

between the pistons by moving one inwards and the other out-

wards, it follows, from the invariability of the volume of the

enclosed fluid, that the velocities of the two pistons at each instant
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will be to each other in the inverse ratio of the areas of the respec-
tive projections of the pistons on planes normal to their directions

of motion. This is the principle of the transmission of motion in

the hydrauliG press and hydraulic crane.

The Jlow produced by a piston whose velocity is u, and the area

of whose projection on a plane perpendicular to the direction of its

motion is A, is given, as in other cases, by the equation

q^uA (1.)

Section 3.—Motions of Fluids of Yauying Density.

120. Flow of Volume and Flow of Mass.—In the case of a fluid

of varying density, the volume, which in an unit of time flows

through a given area A, with a normal velocity u, is still repre-

sented, as for a fluid of constant density, by

Q = An; (1.)

but the absolute quantity, or mass of fluid which so flows, bears no

longer a constant proportion to that volume, but is proportional
to the volume multiplied by the density. The density may be

expressed, either in units of weight per unit of volume, or in

arbitrary units suited to the particular case. Let g be the density;
then the^ow; of mass may be thus expressed :

—

^q = ^Au (2.)

121. The Principle of Continuity, as applied to fluids of varying

density, takes the following form :
—the flow into or out of any

fixed space of constant volume is that due to the variation of density
alone.

To express this symbolically, let there be a fixed space of the

constant volume V, and in a given interval of time let the density
of the fluid in it, which in the first place may be supposed uniform

at each instant, change from ^^ to ^2- Then the mass of fluid which
at the beginning of the interval occupied the volume V, occupies

Y o

at the end of the interval the volume—^
: and the difference of

those volumes is the volume which flows through the surface

bounding the space, outward if 53 is less than ei> inward if es is

greater than ^j. Let t^
-

t-^
be the length of the interval of time

',

then the rate of flow of volume is expressed as follows :—

Q= r\ '
 (!)
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THEORY OF MECHANISM.

CHAPTER I.

DEFINITIONS AND GENERAL PRINCIPLES.

122. Theory of Pure Mechanism J)eMed.—Machines are bodies,

or assemblages of bodies, which transmit and modify motion and
force. The word "

machine," in its widest sense, may be applied
to every material substance and system, and to the material uni-

verse itself; but it is usually restricted to works of human art, and
in that restricted sense it is employed in this treatise. A machine

transmits and modifies motion when it is the means of making one

motion cause another ; as when the mechanism of a clock is the

means of making the descent of the weight cause the rotation of

the hands. A machine transmits and modifies force when it is the

means of making a given kind of physical energy perform a given
kind of work; as when the furnace, boiler, water, and mechanism
of a marine steam engine are the means of making the energy of

the chemical combination of fuel with oxygen perform the work of

overcoming the resistance of water to the motion of a ship. The
acts of transmitting and modifying motion, and of transmitting and

modifying force, take place together, and are connected by a cer-

tain law
j
and until lately, they were always considered together

in treatises on mechanics ;
but recently great advantage in point

of clearness has been gained by first considering separately the act

of transmitting and modifying motion. The principles which re-

gulate this function of machines constitute a branch of Cinematics,
called the theory of pure mechanism. The principles of the theory
of pure mechanism having been first established and understood,
those of the theory of the work of machines, which will form the

subject of Part YI. of this work, which regulate the act of trans-

mitting and modifying force, are much more readily demonstrated

and apprehended than when the two departments of the theory
of machines are mingled. The establishment of the theory of

pui-e mechanism as an independent subject has been mainly ac-
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complished by the labours of Professor Willis, whose nomenclature
and metliods are, to a great extent, followed in this treatise.

123. The General Problem of the tlieory of pure mechanism

may be stated as follows :
—Given the jnode of connection of two

or more movable points or bodies with each other, and with certain

fixed bodies; required the comparative motions of the movable

points or bodies : and conversely, v^hen the comparative motions of
two or more movable points are given, tofind their proper mode of
connection.

The term "
comparative motion "

is to be understood as in

Articles 70, 81, 93, and 107. In those Articles, the comparative
motions of points belonging to one body have already been consid-

ered. In order to constitute mechanism, two or more bodies must
be so connected that their motions depend on each other through
cinematical principles alone.

124. Frame; Moving Pieces; Connectors; Bearings.—The/ram^
of a machine is a structure which supports the moving pieces, and

regulates the path or kind of motion of most of them directly. In

considering the movements of machines mathematically, the frame
is considered as fixed, and the motions of the moving pieces are

referred to it. The frame itself may have (as in the case of a ship
or of a locomotive engine) a motion relatively to the earth, and in

that case the motions of the moving pieces relatively to the earth

are the resultants of their motions relatively to the frame, and of

the motion of the frame relatively to the earth
;
but in all problems

of pure mechanism, and in many problems of the work of machines,
the motion of the frame relatively to the earth does not require to

be considered.

The moving pieces maybe distinguished into primary and second-

ary; the former being those which are directly carried by the

frame, and the latter those which are carried by other moving
jjieces. The motion of a secondary moving piece relatively to the

frame is the resultant of its motion relatively to the primary piece
which carries it, and of the motion of that primary piece relatively
to the frame.

Connectors are those secondary moving pieces, such as links,

belts, cords, and chains, which transmit motion from one moving
piece to another, when that transmission is not effected by imme-
diate contact.

Bearings are the surfaces of contact of primary moving pieces
with the frame, and of secondary moving pieces with the pieces
which carry them. Bearings guide the motions of the pieces
which they support, and their figures depend on the nature of those

motions. The bearings of a piece which has a motion of transla-

/tion in a straight line, must have plane or cylindrical surfaces,

exactly straight in the direction of motion. The bearings of rotat-
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ing pieces must have surfaces accurately turued to figures of revolu-

tion, such as cylinders, spheres, couoids, and flat discs. The bearing
of a piece whose motion is helictil, must be an exact screw, of a

pitch equal to that of the helical motion (Article 96). Those

parts of moving pieces which touch the bearings, should have

surfaces accurately fitting those of the bearings. They may be

distinguished into slides, for pieces which move in straight lines,

gudgeons, journals, bushes, and. pivots, for those which rotate, and
screws for those which move helically.

125. The Motions of Primary Moving Pieces are limited by the

fact, that in order that different portions of a pair of bearing sur-

faces may accurately fit each other during their relative motion,
those surfaces must be either straight, circular, or helical

;
from

which it follows, that the motions in question can be of three

kinds only, viz. :
—

I. Straight translation, or shifting, which is necessarily of limited

extent, and which, if the motion of the machine is of indefinite

duration, must be reciprocating ; that is to say, must take place

alternately in opposite directions. (See Part I., Chapter II.,

Section 1.)

II. Simple Quotation, or turning about a fixed axis, which motion

may be either continuous or reciprocating, being called in the

latter case oscillation. (See Part I., Chapter II., Section 2.)

III. Helical or screw-like motion, to which the same remarks

apply as to straight translation. (See Part I., Chapter IL, Section

3, Article 96.)
126. The Motions of Secondary Moving Pieces relatively to the

pieces which carry them, are limited by the same principles which

apply to the motions of primary pieces relatively to the frame. But
the motions of secondary moving pieces relatively to the frame may
be any motions which can be compounded of straight translations

and simple rotations according to the principles already explained
in Part I., Chapter TI., Section 3.

127. An Elementary Combination in mechanism consists of a

pair of primary moving pieces, so connected that one transmits

motion to the other.

The piece whose motion is the cause is called the driver ; that

whose motion is the effect, the follower. The connection between
the driver and the follower may be—

I. By 7'olling contact of their surfaces, as in toothless wheels.

II. By sliding contact of their surfaces, as in toothed wheels,

screws, wedges, cams, and escapements.
III. By bands or wrapping connectors, such as belts, cords, and

gearing-chains.
lY. By link-work, such as connecting rods, universal joints, and

clicks.
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"V. By reduplication of cords, as in the case of ropes and pulleys.

VI. By an intervening fluid, transmitting motion between two

pistons.
The various cases of the transmission of motion from a driver to

a follower are further classified, according as the relation between

their directions of motion is constant or changeable, and according
as the ratio of their velocities is constant or variable. This latter

principle of classification was employed by Professor Willis, in the

first edition of his Principles of Mechanism, as the foundation of a

])rimary division of the subject of elementary combinations in

mechanism into classes, which are subdivided according to the

mode of connection of the pieces. In the present treatise, elemen-

tary combinations will be classed ymmarily according to the mode
of connection

;
which is the classification employed by Professor

Willis in the Edition of 1870.

128. Line of Connection.—In every class of elementary combina-

tions, except those in which the connection is made by reduplica-
tion of cords, or by an intervening fluid, there is at each instant a

certain straight line, called the line of connection, or line of mutual
action of the driver and follower. In the case of rolling contact,

this is any straight line whatsoever traversing the point of contact

of the surfaces of the pieces; in the case of sliding contact, it is a

line perpendicular to those surfaces at their point of contact; in

the case of wrapping connectors, it is the centre line of that part
of the connector by whose tension the motion is transmitted; in

the case of link-work, it is the straight line passing through the

points of attachment of the link to the driver and follower.

129. Principle of Connection.—The line of connection of the

driver and follower at any instant being known, their comparative
velocities are determined by the following principle :

—The respec-

tive linear velocities of a point in the driver, and a point in the fol-

lower, each situated anywhere in the line of connection, are to each

other inversely as the cosines of the respective angles made hy the paths

ofthepoints with the lineofconnection. This principle might be other-

wise stated as follows :
—The components, along the line of connec-

tion, ofthe velocities ofany two points situated in that line, are equal.
130. Adjustments of Speed.—The velocity-ratio of a driver and

its follower is sometimes made capable of being changed at will, by
means of apparatus for varying the position of their line of con-

nection, as when a pair of rotating cones are embraced by a belt

which can be shifted so as to connect portions of their surfaces of

different diameters.

131. A Train of Mechanism consists of a series of moving pieces,
each of which is follower to that which drives it, and driver to that

which follows it.

132. Agregate Combinations in mechanism are those by which

compound motions are given to secondary pieces.
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CHAPTER 11.

OX ELEMENTAKY COMBINATIONS AND TRAINS OF
MECHANISM.

Section 1.—Rolling Contact.

133. Pitch Surfaces are those surfaces of a pair of moving pieces,
which touch each other when motion is communicated by rolling
contact. The line of contact is that line which at each instant

traverses all the pairs of points of the pair of pitch surfaces which
are in contact.

134. Smooth Wheels, Rollers, Smooth Racks.—Of a pair of pri-

mary moving pieces in rolling contact, both may rotate, or one may
rotate and the other have a motion of sliding, or straight transla-

tion. A rotating piece, in rolling contact, is called a smooth wheel,
and sometimes a roller; a sliding piece may be called a smooth

rack.

13o. General Conditions of Rolling Contact.—The whole of the

principles which regulate the motions of a pair of pieces in rolling
contact follow from the single principle, that each pair of points in

the pitch surfaces, which are in contact at a given instant, must at

that instant he moving in the same direction tvith the same velocity;
that this must be the case is evident from the rigidity of the bodies,
for did the pair of points vary in velocity, it would follow that

there was motion among the particles, or in a particle at least, of

the body, which is contrary to the hypothesis of rigidity.
The direction of motion of a point in a rotating body being per-

pendicular to a plane passing through its axis, the condition, that

each pair of points in contact with each other must move in the

same direction leads to the following consequences:
—

I. That when both pieces rotate, their axes, and all their points
of contact, lie in the same plane.

II. That when one piece rotates and the other slides, the axis of

the rotating piece, and all the points of contact, lie in a plane per-

pendicular to the direction of motion of the sliding piece.
The condition, that the velocities of each pair of points of con-

tact must be equal, leads to the following consequences :
—

III. That the angular velocities of a pair of wheels, in rolling

contact, must be inversely as the perpendicular distances of any
pair of points of contact from the respective axes.

TV. That the linear velocity of a smooth rack in rolling contact

with a wheel, is equal to the product of the angular velocity of the
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wheel by the perpendicular distance from its axis to a pair of points
of contact.

Respecting the line of contact, the above principles III. and IV.
lead to the following conclusions :

—
Y. That for a pair of wheels with parallel axes, and for a wheel

and rack, the line of contact is straight, and parallel to the axes or

axis; and hence that the pitch surfaces are either plane or cylin-
drical (the term "cylindrical" including all surfaces generated by
the motion of a straight line parallel to itself).

YI. That for a pair of wheels, with intersecting axes, the line of

contact is also straight, and traverses the point of intersection of

the axes; and hence that the rolling surfaces are conical, with a

common apex (the term " conical" including all surfaces generated

by the motion of a straight line which traverses a fixed point).
136. Circular Cylindrical Wheels are employed when an uniform

velocity-ratio is to be communicated between parallel axes. Figs.

38, 39, and 40, of Article 102, may be taken to represent pairs
of such wheels

;
C and O, in each figure, being the parallel axes of

the wheels, and T a point in their line of contact. In fig. 38,
both pitch surfaces are convex, the wheels are said to be in outside

gearing^ and their directions of rotation are contrary. In figs. 39

and 40, the pitch surface of the larger wheel is concave, and that

of the smaller convex
; they are said to be in inside gearing, and

their directions of rotation are the same.

To represent the comparative motions of such pairs of wheels

symbolically, let

OT-ri, CT-r^.

be their radii : let O C = c be the line of centres, or perpendicular
) that for

I gearing, c = ri±r2 (1.)

distance between the axes, so that for

outside

inside

Let a^, «2» be the angular velocities of the wheels, and v the common
linear velocity of their pitch surfaces

;
then

•y = «!

: r. : ^2 ± «i : «2 • ^i'} }

"

the sign ± applying to
| ^^^^^^^

\ gearing.

137. A Straight Rack and Circular Wheel, which are used when
an uniform velocity-ratio is to be communicated between a sliding

piece and a turning piece, may be represented by fig. 36 of Article

99, C being the axis of the wheel, FTP the plane surface of the

rack, and T a point in their line of contact. Let r be the radius
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of the wlieel, a its angular velocity, and v tlie linear velocity of tlie

rack; then

v-r a.

138. Bevel Wheels, whose pitch surfaces are frustra of regular
cones are used to transmit an uniform angular velocity-ratio
between a pair of axes which intersect each other. Fig. 45 of

Article 105 will serve to illustrate this case; O A and O C being
the pair of axes, intersecting each other in O, O T the line of con-

tact, and the cones described by the revolution of O T about O A
and O C respectively being the pitch surfaces, of which narrow
zones or frustra are used in i)ractice.

Let Oj, (Xg, be the angular velocities about the two axes respec-

tively; and let ii
= ZAOT, i2

= Z.C0T, be the angles made

by those axes respectively with the line of contact
;
then from.

'

the |)rinciple III. of Article 135 it follows, that the angular velocity-
ratio is

a.^ _ sin ^l
,^

.

' — '•
"

•
}

•
\ ')% sm ?2

Which equation serves to find the angular velocity-ratio when the

axes and the line of contact are given.

Conversely, let the angle between the axes,

Z A O C = % + *2
=
J,

be given, and also the ratio ~
; then the position of the line of

contact is given by either of the two following equations :
—

CTo sin / ~^sm ^1
==—

TT-^ :r
—r^ -, '}

J{ai + ai^'Ia^a^ cosj) i

^^

• • _ ^1 sin^ ^
jSill Co —-

T~:
—

5 o 2^^

~~ ^ 5 I

J(ai + a2 + 2 aj^a^ cosJ) J

which are formed from equation (1) by substituting for % its value
=

(j
-
i^, and for i^ its value — {j

-
Zj).

As this is the first instance of the use of Trigonometrical
analysis, the method of formation of these equations will be ex-

jjlaiued :
—

From Equation (1) it follows that-—

sin /i
• % = sin ?^

* %
= sin(/-*i)-«2
=

sin^*
• cos ij

•

^2
-
cosj

• sin i^
•

a^

= sin j
•

J{1
- sin^

^\)
•

a.2
-
cosj

•

sin
i-y

'

a^.

(See Trigonometrical Rules, Sections 19 and 21.)

Squaring both sides, and transposing
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siij-J
•

sin- ii
•

«| + (sin i^' 0^ + corJ
* sin ij

•

a^Y = sin-
^;-,^2

J '(^2
s2 nsin^ ij 6^2

-
co&^j

' sin^ z^
•

a| + sm'' z^
•

aj; + cos-^
•

sm=^ ^^
•

al
+ 2 sin

'ij

•

CTj
• cosJ

• % —
sin^J

•

al

sin2 i\
•

al + sin^ Zj
'

al+2 sin
?*i

•

a^
• cosJ

•

CTo = sin^^'
•

a?^

sin^J
•

/TT?tto

a£ + a| + 2 % •

a^' cosj

.*. sin
CT2

' sm ^

^(^af
+ a| + 2 % •

^2
'

co«i)'

o.Q

Graphically, the same problem is solved as follows :
—On the two

axes respectively, take lengths to represent the angular velocities

of their respective wheels. Complete the parallelogram of which
those lengths are the sides, and its diagonal will be
the line of contact. As in the case of the rolling
cones of Article 106, one of a pair of bevel wheels

may be a flat disc, or a concave cone.

139. Non-Circular Wheels are used to transmit
a variable velocity-ratio between a pair of parallel
axes. In

fig. 46, let Cj, Co, represent the axes of

such a pair of wheels
; Tj, T2, a pair of points which

at a given instant touch each other in the line of

contact (which line is parallel to the axes and in

the same plane with them) ;
and Ui, Ug, another

pair of points, which touch each other at another
instant of the motion

;
and let the four points, T^,

To, Ui, TJg, be in one plane perpendicular to the two axes, and to

the line of contact. Then for every such set of four points, the

two following equations must be fulfilled :
—

Fig. 4C.

Cj C2CiUi + C2U2 = CiTi + C2T2

arcTiUi^arcTsUa
and those equations shew the geometrical relations which must
exist between a pair of rotating surfaces in order that they may
move in rollino: contact round fixed axes.

Section 2.—Sliding Contact.

140. Skew-Bevel Wheels are employed to transmit an uniform

Fin;. 47. Ficr. 48.
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Fior. 49.

velocity-ratio between two axes which are neither parallel nor

intersecting. The pitch surface of a

skew-bevel wheel is a frustrum or

zone of a hyperholoid of revolution.

In fig. 47, a pair of large portions of

such hyperboloids are shewn, rotat-

ing about axes A B, C D. In fig. 48
are shewn a pair of narrow zones of

the same figures, such as are employed
in practice.
A hyperboloid of revolution is a

surface resembling a sheaf or a dice

box, generated by the rotation of a straight line round an axis from
which it is at a constant distance, and to whicli it is inclined at a

constant angle. If two such hyperboloids, equal or unequal, be

placed in the closest possible contact, as in fig. 47, they will touch

each other along one of the generating straight lines of each, which
will form their line of contact, and will be inclined to the axes

A B, C D, in opposite directions. The axes will neither be parallel,
nor will they intei-sect each other.

The motion of two such hyperboloids, rotating in contact with

each other, has some^times been classed amongst cases of rolling

contact; but that classification is not strictly correct
;
for although

the component velocities of a pair of points of contact in a direction

at right angles to the line of contact are equal, still, as the axes are

neither parallel to each other nor to the line of contact, the velo-

cities of a pair of points of contact have components along the line

of contact, which are unequal, and their difference constitutes a

lateral sliding.
The directions and positions of the axes being given, and the

required angular velocity-ratio, —, it is required to find the ohli-

quities of the generating line to the two axes, and its radii vectores,

or least perpendicular distances from these axes.

In fig. 49, let A B, C D, be the two axes, and G K their common

perpendicular.
On any plane normal to the common perpendicular G K h, draw

n 6
II
A B, c c?

11
C D, in which take lengths in the following i)ro-

portions :
—

complete the parallelogram hpeq, and draw its diagonal ehf; the

line of contact EHF will be parallel to that diagonal.
From p let fall p m perpendicular to h e. Then divide the

common perpendicular G K in the ratio given by the proportional

equation
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he:em:mh::GK:Gil:KB.;
then the two segaients thus found will be the least distances of
the line of contact from the axes.

The first pitch surface is generated by the rotation of the line

E H F about the axis A B with the radius vector G H = rj ; the

second, by the rotation of the same line about the axis C T> with

the radius vector H K =
rg.

To draw the hyperbola* which is the longitudinal section of a
skew-bevel wheel whose generating line has a given radius vector

and obliquity, let A G B, fig. 50, re-

present the axis, G H JL A G B, the

radius vector of the generating line,

and let the straight line E G F make
with the axis an angle equal to the

obliquity of the generating line. H
will be the vertex, and E G F one of

the asymptotes,t of the required hyper-
bola. To find any number of yjoints
in that hyperbola, proceed as follows :-

^(G H2 + X W2).

-Draw XW Y parallel to

G H, cutting G E in W, and make X~^
Then will Y be a point in the hyperbola.

141. Principle of Sliding Contact.—The line of action, or of con-

nection, in the case of sliding contact of two moving pieces, is the

common perpendicular to their surfaces at the point where they
touch; and the principle of their comparative motion is, that the

components, along that perpendicular, of tJie velocities of any two

points traversed hy it, are equal.
Case 1. Two shifting pieces, in sliding contact, have linear velo-

cities proportional to the secants of the angles which their directions

of motion make with their line of action.

Case 2. Two rotating pieces, in sliding contact, have angular
velocities inversely proportional to the perpendicular distances

from their axes of rotation to their line of action, each multiplied

by the sine of the angle which the line of action makes with the

particular axis on which the perpendicular is let fall.

In fig. 51, let Ci, C2, represent the axes of rotation of the two

pieces; Ai, A2, two portions of their respective surfaces; and Tj,

Ta, a pair of points in those surfaces, which, at the instant under

consideration, are in contact with each other. Let P^ Pa be the

common perpendicular of the surfaces at the pair of points Ti, Ta;

* The Hyperbola is the curve traced out by a point which moves in such

a manner that its distance from a given fixed point (I), continually bears the

same ratio greater than unity to its distance from a given fixed line (A B).

t An ^ symptote is a straight line whose distance from a curve diminishes

as the curve extends away from the origin.
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that is, the line of action; and let Ci Pi, C^ P2, be the common per-
pendiculars of the line of action and of the two axes respectively.

Then at the given instant, the components
along the line Pi Pg of the velocities of the

points Pi, P2, are equal. Let ?i, ^2, be the

angles which that line makes with the direc-

tions of the axes respectively. Let a^, a^, be
the respective angular velocities of the moving
pieces; then

«i
•

Ci Pi
• sin 2i = ^2

 

C2 Pa
•

sin 4;

consequently,

FicT. 51.

a2 _ Ci Pi sin ^l

«! Ca P2 sin 1*2

^ ,(1.)

which is the principle stated above.

When the line of action is perpendicular in direction to both

axes, then sin ix
= sin ^2 = 1 ;

and Equation 1 becomes

(U.)
^2 _ ^1 Pi

CIi Ca Pa

When the axes are parallel^ ?i
=

^2- Let I be the point where
the line of action cuts the plane of the two axes; then the triangles

Pi Ci I, P2 Ca I, are similar; so that Equation 1 a is equivalent to

the following :
—

I Ca
.(IB.)

Case 3. A rotating piece and a shifting piece, in sliding contact,
have their comparative motion regulated by the following prin-

ciple:
—Let C P denote the perpendicular distance from the axis of

the rotating piece to the line of action; i the angle which the direc-

tion of the line of action makes with that axis; a the angular

velocity of the rotating piece; v the linear velocity of the sliding

piece; ^ the angle which its direction of motion makes w^ith the

line of action
;
then

v^a' C P • ^\ni- ^QG j (2.)

AYhen the line of action is perpendicular in direction to the axis

of the rotating piece, sin i = 1 ; and

'y = a-CP-seci = a'rC; (2a.)

where I C denotes the distance from the axis of the rotating piece
to the point where the line of action cuts a perpendicular from that

axis on the direction of motion of the shifting piece.
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142. Teeth of Wheels.—The most usual method of communi-

cating motion between a pair of wheels, or a wheel and a rack,
and the only method which, by preventing the possibility of the
rotation of one wheel unless accompanied by the other, insures the

preservation of a given velocity-ratio exactlj^, is by means of the

projections called teeth.

The pitch surface of a wheel is an ideal smooth surface, inter-

mediate between the crests of the teeth and the bottoms of the

spaces between them, which, by rolling contact with the pitch sur-

face of another wheel, would communicate the same velocity-ratio
that the teeth communicate by their sliding contact. In designing
wheels, the forms of the ideal pitch surfaces are first determined,
and from them are deduced the forms of the teeth.

Wheels with cylindrical pitch surfaces are called spur wheels;
those with conical pitch surfaces, hevel wheels; and those with

hyperboloidal pitch surfaces, skew-bevel wheels.

The pitch line of a wheel, or, in circular wheels, the pitch circle,
is a transverse section of the pitch surface made by a surface per-
pendicular to it and to the axis; that is, in spur wheels, by a plane
i)erpendicular to the axis; in bevel wheels, by a sphere described
about the apex of the conical pitch surface; and in skew-bevel

wheels, by any oblate spheroid generated by the rotation of an
ellipse whose foci are the same with those of the hyperbola that

generates the pitch surface.

The pitch point of a pair of wheels is the point of contact of their

pitch lines; that is, the transverse section of the line of contact of
the pitch surfaces.

Similar terms are applied to racks.

That part of the acting surface of a tooth which projects beyond
the pitch surface is called theface; that which lies within the pitch
surface, the Jlank.
The radius of the pitch circle of a circular wheel is called the

geometrical radius; that of a circle touching the crests of the teeth
is called the real radius; and the difference between those radii,
the addendum.

143. Pitch and Number of Teeth.—The distance, measured

along the pitch line, from the face of one tooth to the face of the

next, is called the pitch.
The pitch, and the number of teeth in circular wheels, are regu-

lated by the following principles :
—

I. In wheels which rotate continuously for one revolution or

more, it is obviously necessary t/iat the pitch should be an aliquot

part of the circumference.
In wheels which reciprocate without performing a complete

revolution, this condition is not necessary. Such wheels are called

sectors.
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II. In order that a pair of wheels, or a wheel and a rack, may
work correctly together, it is in all cases essential that the pitch
should be the same in each.

III. Hence, in any pair of circular wheels which work together,
the numbers of teeth in a complete circumference are directly as

the radii, and inversely as the angular velocities.

IV. Hence also, in any pair of circular wheels which rotate

continuously for one revolution or more, the ratio of the numbers
of teeth, and its reciprocal, the angular velocity -ratio, must be

expressible in whole numbers.
V. Let n, N, be the respective numbers of teeth in a pair of

wheels, N being the greater. Let t, T, be a pair of teeth in the

smaller and larger wheel respectively, which at a particular instant

work together. It is required to find, first, how many pairs of

teeth must pass the line of contact of the pitch surfaces before t and
T work together again (let this number be called a); secondly,
with how many different teeth of the larger wheel the tooth t will

work at different times (let this number be called h) ;
and thirdly,

with how many different teeth of the smaller wheel the tooth T
will work at different times (let this be called c).

Case 1. If n is a divisor of N,

a = Nj 6 = ^; c-1 (1.)

Case 2. If the greatest common divisor of N and nh^d ix number
less than w, so that n — md, N = M c?, then

a =mN = M7i = Mmc?j 5 = M; c = m (2.)

Case 3. If N and n be prime to each other,

a = Nw; 6^N; c = n (3.)

It is considered desirable by millwrights, with a view to the

preservation of the uniformity of shape of the teeth of a pair of

wheels, that each given tooth in one wheel should work with as

many different teeth in the other wheel as possible. They, there-

fore, study to make the numbers of teeth in each pair of wheels
which work together such as to be either prime to each other, or to

have their greatest common divisor as small as is possible con-

sistently with the purposes of the machine.
YI. The smallest number of teeth which it is practicable to give

to a pinion (that is, a small wheel), is regulated by the principle,
that in order that the communication of motion from one wheel to

another may be continuous, at least one pair of teeth should always
be in action; and that in order to provide for the contingency of a
tooth breaking, a second pair, at least, should be in action also.

For reasons which will appear when the forms of teeth are con-

sidered, this principle gives the following as the least numbers of
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teetli which can be usually employed in pinions having teeth of the
three classes of figures named below, whose properties will be

explained in the sequel :
—

I. Involute teeth, 25.

II. Epicycloidal teeth, 12.

III. Cylindrical teeth, or staves, 6.

144. Hunting Cog.—When the ratio of the angular veloctios of
two wheels, being reduced to its least terras, is expressed by small

numbers, less than those which can be given to wheels in practice,
and it becomes necessary to employ multiples of those numbers by
a common multiplier, which becomes a common divisor of the
numbers of teeth in the wheels, millwrights and engine-makers
avoid the evil of frequent contact between the same pairs of teeth,

by giving one additional tooth, called a hunting cog, to the larger
of the two wheels. This expedient causes the velocity-ratio to be
not exactly but only approximately equal to that which was at

first contemplated; and therefore it cannot be used where the
exactness of certain velocity-ratios amongst the wheels is of impor-
tance as in clockwork.

145. A Train of Wheelwork consists of a series of axes, each

having upon it two wheels, one of which is driven by a wheel on
the preceding axis, while the other drives a wheel on the following
axis. If the wheels are all in outside gearing, the direction of
rotation of each axis is contrary to that of the adjoining axes. In
some cases, a single wheel upon one axis answers the purpose both
of receiving motion from a wheel on the preceding axis and giving
motion to a wheel on the following axis. Such a wheel is called

an idle wheel: it affects the direction of rotation only, and not the

velocity-ratio.
Let the series of axes be distinguished by numbers 1, 2, 3,

<fcc m; let the numbers of teeth in the driving wheels be
denoted by N's, each with the number of its axis affixed; thus,

Nj, ^2, &c ^m-i^ and let the numbers of teeth in the c^WvfiTi

ov following wheels be denoted by n's, each with the number of its

axis affixed; thus, n^, n^, &c n^. Then the ratio of the

angular velocity a^ of the 7ii^^ axis to the angular velocity a^ of the
first axis is the product of the m—1 velocity-ratios of the succes-

sive elementary combinations, viz. :
—

«! n^-n^'&c n^
' ^ *'

that is to say, the velocity-ratio of the last and first axes is the
ratio of the product of the numbers of teeth in the drivers to the

product of the numbers of teeth in the followers; and it is obvious
that so long as the same drivers and followers constitute the train,
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the order in which they succeed each other does not affect the

resultant velocity-ratio.

Supposing all the wheels to be in outside gearing, then as each

elementary combination reverses the direction of rotation, and as

the number of elementary combinations, m -
1, is one less than the

number of axes, m, it is evident that if m is odd, the direction of

rotation is preserved, and if even, reversed.

It is often a question of importance to determine the numbers of

teeth in a train of wheels best suited for giving a determinate

velocity-ratio to two axes. It was shewn by Young, that to do

this with the least total number of teeth, the velocity-ratio of each

elementary combination should approximate as nearly as possible
3'59. This would in many cases give too many axes; and as a

useful practical rule it may be laid down, that from 3 to 6 ought
to be the limit of the velocity-ratio of an elementary combination

in wheelwork.

Let w be the velocity-ratio required, reduced to its least terms,

and let B be greater than C.
T>

If Y\ is not greater than 6, and C lies between the prescribed

minimum number of teeth (which, may be called ^), and its double

2 1, then one pair of wheels will answer the purpose, and B and C
will themselves be the numbers required. Should B and C be

inconveniently large, they are if possible to be resolved into factors,

and those factors, or if they are too small multiples of them, used
for the numbers of teeth. Should B or C, or both, be at once

inconveniently large, and prime, then instead of the exact ratio

^, some ratio approximating to that ratio, and capable of resolu-
\j

tion into convenient factors, is to be found by the method of

continued fractions. See Mathematical Introduction, page 2,

Article 4.

Should
p,

be greater than 6, the best number of elementary

combinations is found by dividing by 6 again and again till a

quotient is obtained less than unity, when the number of divisions

will be the required number of combinations, m— 1.

Then, if possible, B and C themselves are to be resolved each
into m - 1 factors, which factors, or multiples of them, shall be not
less than t, nor greater than 6^; or if B and C contain incon-

veniently large prime factors, an approximate velocity-ratio, found
T>

by the method of continued fractions, is to be substituted for ^, as

before. When the prime factors of either B or C are fewer in
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number than m- 1, the required number of factors is to be made

up by inserting 1 as often as may be necessary. In multiplying
factors that are too small to serve for numbers of teeth, prime
numbers differing from those already amongst the factors are to be

preferred as multipliers; and in general, where two or more factors

require to be multiplied, different prime numbers should be used

for the different factors.

So far as the resultant velocity-ratio is concerned, the order of

the drivers N, and of the followers n^ is immaterial
;
but to secure

equable wear of the teeth, as explained in Article 143, Principle V.,
the wheels ought to be so arranged that for each elementary com-
bination the greatest common divisor of N and n shall be either

1, or as small as possible; and if the preceding rules have beeu
observed in the choice of multipliers, this will be insured by so

placing each driving wheel that it shall work with a following
wheel whose number of teeth does not coutain any of the same

multipliers; for the original numbers B and C contain no common
factor except 1.

The following is an example of a case requiring the use of

additional multipliers :
—Let the required velocity-ratio, in its least

terms, be

B_360
C~ 7

•

To get a quotient less than 1, this ratio must be divided by 6

three times, therefore m - 1 = 3. The prime factors of 360 are

2*2-2-3-3-5; these may be combined so as to make three

factors in various different ways; and the preference is to be given
to that which makes these factors least unequal, viz., 5 • 8 •

9.

Hence, resolving numerator and denominator into three factors

each, we have

B_5-89
C
~

1 •
1

•
7*

It is next necessary to multiply the factors of the numerator and
denominator by a set of three multipliers. Suppose that the wheek
to be used are of such a class that the smallest pinion has 12 teeth,
then those multipliers must be such that none of their products by
the existing factors shall be less than 12; and for reasons already
given, it is advisable that they should be different prime numbers.
Take the prime numbers, 2, 13, 17 (2 being taken to multiply 7);
then the numbers of teeth in the followers will be

13x1^:13; 17x1 = 17; 2x7 = 14.

In distributing the multipliers amongst the factors of the num-
erator, let the smallest multiplier be combined with the largest
factor, and so on; then we have
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17x5 = 85; 13x8 = 104; 2x9 = 18.

Finally, in combining the drivers with the followers, those

numbers are to be combined which have no common factor; the

result being the following train of wheels :
—

85
^ 18^ 104 _ 360

14*13* 17 "T*
146. Teeth of Spur-Wheels and Racks. General Principle.

—The

figures of the teeth of wheels are regulated by the principle, that

the teeth of a pair ofwheels shall give the same velocity-ratio by their

sliding contact, lohich the ideal smooth pitch surfaces would give hy
their rolling contact. Let B^, Bq, in fig. 51, be parts of the pitch
lines (that is, of cross sections of the pitch surfaces) of a pair of

wheels with parallel axes, and I the pitch point (that is, a section

of the line of contact). Then the angular velocities which would
be given to the wheels by the rolling contact of those pitch lines

are inversely as the segments I Ci, I Co, of the line of centres; and
this also is the proportion of the angular velocities given by a pair
of surfaces in sliding contact whose line of action traverses the point
I (Article 141, Case 2, Equation 1 b).

Hence the condition of

correct working for the teeth of wheels with parallel axes is, that

the line of action of the teeth shall at every instant traverse the line

of contact of the pitch surfaces; and the same condition obviously

applies to a rack sliding in a direction perpendicular to that of the

axis of the wheel with which it works.

147. Teeth Described by Rolling Curves.—From the principle of

the preceding Article it follows, that at every instant, the position
of the point of contact T^ in the cross section of the acting surface

of a tooth (such as the line Aj T^ in fig. 51), and the corresponding

position of the pitch point I in the pitch line I B^ of the wheel to

which that tooth belongs, are so related, that the line I T^ which

joins them is normal to the outline of the tooth Aj Tj at the point

Tj. Now, this is the relation which exists between tlie tracing-

point Tj, and the instantaneous axis or line of contact I, in a rolling
curve of such a figure, that being rolled upon the pitch surface Bj,
its tracing-point Tj traces the outline of the tooth. (As to rolling

curves, see Articles 100, 101, 103, and 106).
In order that a pair of teeth may work correctly together, it is

necessary and sufficient that the instantaneous radii vectores from
the pitch point to the points of contact of the two teeth should

coincide at each instant, as expressed by the equation

rT, = rT,; (1.)

and this condition is fulfilled if the outlines of the two teeth be traced

by the motion of the same tracing-point, in rolling the same rolling
curve on the saine side of the pitch surfaces of the respective icheels.
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T\\Q flank of a tooth is traced while the rolling curve rolls inside

of the pitch line ; the face, while it rolls outside. Hence it is

evident that the flanks of the teeth of the driving wheel drive the

faces of the teeth of the driven wheel; and that the faces of the

teeth of the driving wheel drive the flanks of the teeth of the

driven wheel. The former takes place while the point of contact

of the teetli is approachiyig the pitch point, as in fig. 51, supjDipsing
the motion to be from Pj towards P2 ; the latter, after the point of

contact has passed, and while it is receding from, the pitch point.
The pitch point divides the path of the point of contact of the teeth

into two parts, called the path of approach and the path of recess;

and the lengths of those paths must be so adjusted, that two pairs
of teeth at least shall be in action at each instant.

It is evidently necessary that the surfaces of contact of a pair
of teeth should either be both convex, or that if one is convex
and the other concave, the concave surface should have the flatter

curvature.

148. The Sliding of a Pair of Teeth on each Other, that is, their

relative motion in a direction perpendicular to their line of action,

is found by supposing one of the wheels, such as 1, to be fixed, the

line of centres C^ C2 to rotate backwards round Cj with the angular

velocity a^, and the wheel 2 to rotate round Cg as before with the

angular velocity a^ relatively to the line of centres Gi C2, so as to

have the same motion as if its pitch surface rolled on the pitch
surface of the first wheel. Thus the relative motion of the wheels

is unchanged; but 1 is considered as fixed, and 2 has the resultant

motion given by the principles of Article 102; that is, a rotation

about the instantaneous axis I with the angular velocity a^ + a^.

Hence the velocity of sliding is that due to this rotation, about I,

with the radius I T = r; that is to say, its value is

r{ai + 02); (1.)

so that it is greater, the farther the point of contact is from the

line of centres; and at the instant when that point, passing the

line of centres, coincides with the pitch point, the velocity of sliding
is null, and the action of the teeth is, for the instant, that of roll-

ing contact.

The roots of the teeth slide towards each other during the ap-

proach, and from each other during the recess. To find the amount
or total distance through which the sliding takes place, let ^1 be the

time occupied by the approach, and t^ that occupied by the recess;
then the distance of sliding is

s= / ^r{ai+ a^ dt +
/ ^r^a^^a^ dt; (2.)

•^0 -'0

or in another form, ii di denote an element of the change of angu-
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lar position of one wheel relatively to the other, ?\ the amount of

that change during the approach, and i^ during the recess, then

(ai + az) dt — di ; and

^rdi+ /
1Wdi+ / rdi , (3.)

-^

149. The Arc of Contact on the Pitch Lines is the length of that

portion of the pitch lines which passes the pitch point during the

action of one pair of teeth
;
and in order that two pairs of teeth at

least may be in action at each instant, its length should be at least

double of the pitch. It is divided into two parts, the arc of ap-

proach and the arc of recess. In order that the teeth may be of

length sufficient to give the required duration of contact, the dis-

tance moved over by the point I upon the pitch line during the

rolling of a rolling curve to describe the face and flank of a tooth,
must be in all equal to the length of the required arc of contact.

It is usual to make the arcs of approach and recess equal.
150. The Length of a Tooth may be divided into two parts,

that of the face and that of the flank. For teeth in the driving

wheel, the length of the flank depends on the arc of approach,
—

that of the face, on the arc of recess; for those in the following

wheel, the length of the flank depends on the arc of recess,
—that

of the face, on the arc of approach.
151. Involute Teeth for Circular Wheels.—In fig. 52, let Cj, C^,

be the centres of two circular wheels, whose pitch circles are B^, B2.

Through the pitch point I draw the intended line of action Pj, Pg,

making the angle C IP = ^ with the line of centres. Prom Cj, C2, draw

(!•)
CiPi^ICi'sin 0,

C^^ = Ta,'sm0,

perpendicular to P^ P2, with which two perpendiculars as radii,

describe circles (called base circles) Dj, Dg.

Suppose the base circles to be a pair of

circular pulleys, connected by means of a
cord whose course from jjulley to pulley is

Pi I Pg. As the line of connection of those

pulleys is the same with that of the proposed
teeth, they will rotate with the required

velocity-ratio. Now suppose a tracing-point
T be fixed to the cord, so as to be carried

along the path of contact P^ I Pg. That

point will trace, on a plane rotating along
with the wheel 1, part of the involute of

the base circle Dj, and on a plane rotating

along with the wheel 2, part of the involute

Fig. 52. of the base circle D2, and the two curves so
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traced will always toucli each other in the required point of contact

T, and will therefore fulfil the condition required by Article 14G.

All involute teeth of the same pitch work smoothly together.

To find the length of the path of contact on either side of the

pitch point I, it is to be observed that the distance between the

fronts of two successive teeth, as measured along P^ I P2, is less

than the pitch in the ratio sin 6 : 1, for the former is proportional
to r ' sin &, and the latter to r •

&, and consequently that if dis-

tances not less than the pitch x sin be marked off either way from

I towards Pj and Pg respectively, as the extremities of the path of

contact, and if the addendum circles be described through the

points so found, there will always be at least two pairs of teeth in

action at once. In practice, it is usual to make the path of contact

somewhat longer, viz., about 2^ times the pitch ;
and with this

length of path and the value of ^ which is usual in practice, viz.,

75 J°, the addendum is about
-^jj

of the pitch.

The teeth of a rack, to work correctly with wheels having invo-

lute teeth, should have plane surfaces, perpendicular to the line of

connection, and consequently making, with the direction of motion
of the rack, angles equal to the before-mentioned angle 0.

152. The Smallest Pinion with Involute Teeth of a given pitch

p, has its size fixed by the consideration that the path of contact

of the flanks of the teeth, which must not be less than p
- sin 6,

cannot be greater than the distance along the line of action from

I p
the pitch point to the base circle, I P = r • cos 6. Then r =

and substituting for I P its least possible value p * sin 6, hence the

least radius is

r=p tan 6; (1.)

which, for ^ = 75J°, gives for the radius r = 3-867/), and for the

circumference of the pitch circle, p x 3-867 x 2 ^ = 24-3 p; to

which the next greater integer multiple of jt?is 25^; and therefore

twenty-jive^ as formerly stated, in Article 143, is the least number
of involute teeth to be employed in a pinion.

153. Epicycloidal Teeth.—For tracing the figures of teeth, the

most convenient rolling curve is the circle. The path of contact

which a point in its circumference traces is identical with the circle

itself; the flanks of the teeth are internal, and their faces external

epicycloids, for wheels; and both flanks and faces are cycloids for

a rack.

Wheels of the same pitch, with epicycloidal teeth traced by the

same rolling circle, all work correctly with each other, whatsoever

may be the numbers of their teeth
;
and they are said to belong to

the same set.

Por a pitch circle of twice the radius of the rolling or describing
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circle (as it is called), the internal epicycloid is a straight line,

being in fact a diameter of the pitch circle
;
so that the flanks of

the teeth for such a pitch circle are planes radiating from the axis.

For a smaller pitch circle, the flanks would be convex, and in-

curved or under-cut, which would be inconvenient
;
therefore the

smallest wheel of a set should have its pitch circle of twice the

radius of the describing circle, so that the flanks may be either

straight or concave.

In
fig. 53, let B be part of the pitch circle of a wheel, C C the

line of centres, I the pitch-point,
E. the internal, and R' the equal
external describing circles, so placed
as to touch the pitch circle and each
other at I

;
let D I D' be the path

of contact, consisting of the path of
J^ approach D I, and the path of re-

cess I D'. In order that there may
always be at least two pairs of teeth

in action, each of those arcs should

be equal to the pitch.
The angle ^, on passing the line

of centres, is 90°; the least value

of that angle is 6 = /_01'D = A
C I D'.

It appears from experience that

the least value of 6 should be about 60°; therefore the arcs D I =
I D' should each be one-sixth of a circumference ;

therefore the

circumference of the describing circle should be six times the pitch.
It follows that the smallest pinion of a set, in which pinion the

flanks are straight, should have twelve teeth, as has been already
stated in Article 143.

154. Teeth of Wheel and Trundle.—A trundle, as in fig. 54,

has cylindrical pins called staves for teeth. The face of the teeth

I'ig. 54.
Fig. 55.

of a wheel suitable for driving it, in outside gearing, are described

by first tracing external epicycloids by rolling the pitch circle B^ of



DIMENSIONS OF TEETH. 91

the trundle on the pitch circle B^ of the driving wheel, with the

centre of a stave for a tracing point, as shewn by the dotted lines,

and then drawing curves parallel to and within the epicycloids, at

a distance from them equal to the radius of a stave. Trundles

having only six staves will work with large wheels.

To drive a trundle in iiiside gearing, the outlines of the teeth of

the wheel should be curves parallel to internal epicycloids. A
peculiar case of this is represented in fig. 55, where the radius of

the pitch circle of the trundle is exactly one-half of that of the

pitch circle of the wheel; the trundle has three equi-distant staves;

and the internal epicycloids described by their centres while the

pitch circle of the trundle is rolling within that of the wheel, are

three straight lines, diameters of the wheel, making angles of 60"

with each other. Hence the surfaces of the teeth of the wheel

form three straight grooves intersecting each other at the centre,

each being of a breadth equal to the diameter of a stave of the

trundle.

155. Dimensions of Teeth.—^Toothed wheels being in general
intended to rotate either way, the hacks of the teeth are made
similar to the fronts. The space between two teeth, measured on
the pitch circle, is made about one-fifth part wider than the thick-

ness of the tooth on the pitch circle : that is to say,

5
thickness of tooth = r-T pitch,

/»

width of space = — pitch.
'

The diflference of - of the pitch is called the hack-lash.

The clearance allowed between the points of teeth and the bot-

toms of the spaces between the teeth of the other wheel, is about
one-tenth of tlie pitch.
The thickness of a tooth is fixed according to the principles of

strength ;
and the hreadth is so adjusted, that when multiplied by

pitch, the product shall contain one square inch for each 160 lbs. of

force transmitted by the teeth.

156. The Teeth of a Bevel-Wheel have acting surfaces of the

conical kind, generated by the motion of a line traversing the apex
of the conical pitch surface, while a point in it is carried round the

traces of the teeth upon a spherical surface described about that

apex.
The operations of describing the exact figures of the teeth of

bevel-wheels, whether by involutes or by rolling curves, are in every

respect analogous to those for describing the figures of the teeth

of spur-wheels, except that in the case of bevel-wheels, all those

operations are to be performed on the surface of a sphere described
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about the apex, instead of oti a plane, substituting 2^oles for centres^

and great circles for straight lines.

In consideration of the practical difficulty, especially in the case

of large wheels, of obtaining an accurate spherical surface, and of

drawing upon it when obtained, the following approximate method,

proposed originally by Tredgold, is generally used :
—Let 0, fig. 5Q,

be the apex, and O C the axis of the pitch
cone of a bevel-wheel; and let the largest

pitch circle be that whose radius is C B.

Perpendicular to O B draw B A cutting
the axis produced in A, let the outer rim
of the pattern and of the wheel be made
a portion of the surface of the cone whose

apex is A and side A B. The narrow zone
of that cone thus employed will approach

Fig. 56.
sufficiently near to a zone of the sphere

described about O with the radius O B, to be used in its stead. On
a plane surface, with the radius A B, draw a circular arc B D

;
a

sector of that circle will represent a portion of the surface of the

cone ABC developed, or spread out flat. Describe the figures of

teeth of the required pitch, suited to the pitch circle B D, as if it

were that of a spur-wheel of the radius A B; those figures will be

the required cross sections of the teeth of the bevel-wheel, made by
the conical zone whose apex is A.

157. The Teeth of Non-Circular Wheels are described by rolling
circles or other curves on the pitch surfaces, like the teeth of cir-

cular wheels; and when they are small compared with the wheels

to which they belong, each tooth is nearly similar to the tooth of a

circular wheel, having the same radius of curvature with the pitch
surface of the actual wheel at the point where the tooth is situated.

158. A Cam or Wiper is a single tooth, either rotating continu-

ously or oscillating, and driving a sliding or turning-piece, either

constantly or at intervals. All the principles which have been
stated in Article 141, as being applicable to sliding contact, are

applicable to cams; but in designing cams, it is not usual to deter-

mine or take into consideration the form of the ideal pitch surface

which would give the same comparative motion by rolling contact

that the cam gives by sliding contact.

159. Screws. Pitch.—The figure of a screw is that of a convex
or concave cylinder with one or more helical projections called

threads winding round it. Convex and concave screws are dis-

tinguished technically by the respective names oi male and female,
or external and internal; a short internal screw is called a nut ;

and when a screw is not otherwise specified, external is understood.

The relation between the advance and the rotation, which com-

pose the motion of a screw working in contact with a fixed nut or
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helical guide, has already been demonstrated in Article 96, Equa-
tion 1; and the same relation exists between the rotation of a

screw about an axis fixed longitudinally relatively to the frame-

work, and the advance of a nut in which that screw rotates, the

nut being free to shift longitudinally, but not to turn. The advance

of the nut in the latter case is in the direction opposite to that of

the advance of the screw in the former case.

A screw is called right-handed or left-handed, according as its

advance in a fixed nut is accompanied
by right-handed or left-handed rotation, I

J^
A I

when viewed by an observeryrom whom „ .. J-"''*^! l^^^^-l
the advance takes place. Eig. 57 re-

;
\ ^„^^^ r'-^.^S\'^

presents a right-handed screw, and fig. p\ \J[
K \ \^ i

58 a left-handed screw. !

i^,,.^^^^ r^^^^^^^l
•'

The 'pitch of a screw of one thread, -^--r"^ \ I

^
\.v.

and the total pitch of a screw of any \<^\ \ ^J
number of threads, is the pitch of the N I ' P
helical motion of that screw, as ex- '

plained in Article 96, and is the dis- ^^S- ^7. Fig 58.

tance (marked p in figs. 57 and 58) measured parallel to the axis

of the screw, between the corresponding points in two consecutive

turns of the same thread.

In a screw of two or more threads, the distance measured parallel
to the axis, between the corresponding points in two adjacent
threads, may be called the divided pitch.

160. Noraial and Circular Pitch.—When the pitch of a screw is

not otherwise specified, it is always understood to be measured

parallel to the axis. But it is sometimes convenient for particular

purposes to measure it in other directions; and for that purpose a

cylindrical pitch surface is to be conceived as described about the

axis of the screw, intermediate between the crests of the threads

and the bottoms of the grooves between them.
If a helix be now described upon the pitch cylinder, so as to

cross each turn of each thread at right angles, the distance between
two corresponding points on two successive turns of the same

thread, measured along this normal helix, may be called the normal

fitch; and when the screw has more than one thread, the normal

pitch from thread to thread may be called the normal divided pitch.
The distance from thread to thread measured on a circle described

on the pitch cylinder, and called the pitch circle, may be called the

circular pitch ; for a screw of one thread it is one circumference;
for a screw of n threads

one circumference

The following set of formulae shew the relations amongst the differ-
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ent modes of measuring the pitch of a screw. The pitch, properly
speaking, as originally defined, is distinguished as the axial intch,
and is the same for all parts of the same screw : the normal and
circular pitch depend on the radius of the pitch cylinder.

Let r denote the radius of the pitch cylinder;
n, the number of threads;

z, the obliquity of the threads to the pitch circles, and of the
normal helix to the axis;

&=^°|"^°^'''^^'{dlridid pitch;
^

P„ V the normal < ?• ^ i \ •
 i-^

=p^ I
I
divided pitch;

j^ci the circular pitch ;

Then
o

Pc =Pa
' cotan i=pn' cosec i =

;
71/

2 -Trr
' tan i

Pa=Pn' sec l=p^'t'driil =

Pn=Pc

n
'^'ttv sin

Fig. 59 will make these formulae clear, in which the several

lines are lettered to represent the pitches : the hypotenuse
of the larger triangle is the linear development on the plane
of the paper of one coil of the screw which, it will be remarked,
=

\/{pJ +Pc^)) Pn t^^e normal pitch is normal to this: it is also

evident from the figure that with a constant axial pitch, the normal
and radial or circumferential pitch, as well as the angle of obliquity
of the threads to the pitch cylinders, vary with the radii of those

cylinders.
161. Screw Gearing.—A pair of convex screws, each rotating

about its axis, are used as an elementary combination, to transmit

motion by the sliding contact of their threads. Such screws are

commonly called endless screws. At the point of contact of the

screws, their threads must be parallel; and their line of connection

is the common perpendicular to the acting surfaces of the threads

at their point of contact. Hence the following principles:
— 

I. If the screws are both right-handed or both left-handed, the

angle between the directions of their axes is the sum of their obli-

quities:
—if one is right-handed and the other left-handed, that

angle is the difierence of their obliquities,
II. The normal pitch, for a screw of one thread, and the normal
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divided pitch, for a screw of more than one thread, must be the

same in each screw.

III. The angular velocities of the screws are inversely as their

number of threads.

162. The Wheel and Screw is an elementary combination of

two screws, whose axes are at right angles to each other, both

being right-handed or both left-handed. As the usual object of

this combination is to produce a change of angular velocity in a

ratio greater than can be obtained by any single pair of ordinary
wheels, one of the screws is commonly wheel-like, being of large
diameter and many-threaded, while the other is short and of few

threads; and the angular velocities are inversely as the number
of threads.

Fis. GO. Fi^. 61.

Fig. 60, represents a side view of this combination, and fig.
61

a cross section at right angles to the axis of the smaller screw. It

has been shewn by Prof. Willis, that if each section of both screws

be made by a plane perpendicular to the axis of the large screw or

wheel, the outlines of the threads of the larger and smaller screw

should be those of the teeth of a wheel and rack respectively : B^ Bj,
in

fig. 60 for example, being the pitch circle of the wheel, and

B^ Bg the pitch line of the rack.

The periphery and teeth of the wheel are usually hollowed to

fit the screw, as shewn at T, fig. 61.

To make the teeth or threads of a pair of screws fit correctly and
work smoothly, a hardened steel screw is made of the figure of the

smaller screw, with its thread or threads notched so as to form a

cutting tool
;
the larger screw, or wheel, is cast approximately of

the required figure ;
the larger screw and the steel screw are fitted

lip in their proper relative position, and made to rotate in contact

with each other by turning the steel screw, which cuts the threads

of the larger screw to their true figure.
163. The Relative Sliding of a Pair of Screws at their point of

contact is found thus :
—Let r-^, r^, be the radii of their pitch cylin-

ders, and «i, u, the obliquities of their threa'^s to their pitch circles,

one of w^hich is to be considered as negative if the screws are con-

trary-handed. Let u be the common component of the velocities

of a pair of points of contact along a line touching the pitch sur-
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faces and perpendicular to the threads at the pitch point, and v
the velocity of sliding of the threads over each other, where v may
be considered to be made up of the algebraical sum of two quantities,
Vi and V2, which act perpendicularly to u, and whose values are

^1 = % ^1 cos ii, and V2 = a^ r^ cos
1*2 the sum or difference being taken

as the screws are similar or contrary-handed. Then

so that

and

w = «! r^
• sin ii

= ^2 ^2
* sin h l

u u
tti
=

-.

—-
: CTo = :

—-
;

ri
• sin ^1 7-2

• sm
i.^

'

.(1.)

v = a^ rj
• cos

i-^ + ag ^2
* cos i^

= u (cotan i^ + cotan i^ (2.)

'

When the screws are contrary-handed, the difference instead of the
sum of the terms in Equation 2 is to be taken.

164. Oldham's Coupling.—A coupling is a mode of connecting a

pair of shafts so that they shall rotate in

the same direction, with the same mean
angular velocity If the axes of the shafts

are in the same straight line, the coupling
consists in so connecting their contiguous
ends that they shall rotate as one piece;
but if the axes are not in the same straight

line, combinations of mechanism are re-

quired. A coupling for parallel shafts

pj^ 02
which acts by sliding contact was invented

"'*
*

by Oldham, and is represented in fig. 62.

Cj, C2, are the axes of the two parallel shafts; Dj, Dg, two cross-

heads, facing each other, fixed on the ends of the two shafts

respectively; E^, E^, a bar, sliding in a diametral groove in the

face of Di; Eo, Eg, a bar, sliding in a diametral groove in the

face of T>^; those bars are fixed together at A, so as to form a

rigid cross. The angular velocities of the two shafts and of the

cross are all equal at every instant. The middle point of the

cross, at A, revolves in the dotted circle described upon the line

of centres Cj, Cg, as a diameter, twice for each turn of the shafts

and cross; the instantaneous axis of rotation of the cross, at any
instant, is at I, the point in the circle Cj O2, diametrically oppo-
site to A.

Oldham's coupling may be used with advantage where the axes
of the shafts are intended to be as nearly in the same straight line

as is possible, but where there is some doubt as to the practicability
or jjermanency of their exact continuity.
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Section 3.—Connection by Bands.

165. Bands Classed.—Bands, or wrapping connectors, for com-

municating motion between pulleys or drums rotating about fixed

axes, or between rotating pulleys and drums and shifting pieces,

may be thus classed :
—

I. Belts, which are made of leather or of gutta percha, are flat

and thin, and require nearly cylindrical pulleys. A belt tends to

move towards that part of a pulley whose radius is greatest;

pulleys for belts therefore, are slightly swelled in the middle, in

order that the belt may remain on the pulley unless forcibly

shifted. A belt when in motion is shifted off a pulley, or from one

pulley on to another of equal size alongside of it, by pressing

against that part of the belt which is moving towards the pulley.

II. Cords, made of catgut, hempen or other fibres, or wire, are

nearly cylindrical in section, and require either drums with ledges,

or grooved pulleys.

, III. Chains, which are composed of links or bars jointed together,

require pulleys or drums, grooved, notched, and toothed, so as to

fit the links of the chains.

Bands for communicating continuous motion are endless.

Bands for communicating reciprocating motion have usually their

ends made fast to the pulleys or drums which they connect, and
which in this case may be sectors.

166. Principle of Connection by Bands.—The line of connection

of a pair of pulleys or drums connected by means of a band, is the

central line or axis of that part of the band whose tension transmits

the motion. The principle of Article 129 being applied to this case,

leads to the following consequences :
—

I. For a pair of rotating pieces, let rj, rg, be the perpendiculars
let fall from their axes on the centre line of the band, ctj, a^, their

angular velocities, and i-^, i^, the angles which the centre line of the

band makes with the two axes respectively. Then the longitudinal

velocity of the band, that is, its component velocity in the direction

of its own centre line, is

u = r^ Oj sin
ir^
— r^a^ sin i^; (1.)

whence the angular velocity-ratio is

O'^ _ ^1 sin ^l

% ra sin 4

When the axes are parallel (which is almost always the case), {j

and

<h ^2

,(2.)

(3.)
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The same equation holds when both axes, whether parallel or not,
are perpendicular in direction to that part of the band which
transmits the motion; for then sin ii= sin 4=1.

II. I^or a rotating piece and a sliding piece, let r be the perpen-
cular from the axis of the rotating piece on the centre line of the

band, a the angular velocity, i the angle between the directions of

the band and axis, %i> the longitudinal velocity of the band, j the

angle between the direction of the centre line of the band and that

of the motion of the sliding piece, and v the velocity of the sliding

piece; then

u = r a sin i — v cos j; (4)

for r sin i is the projection on the plane of motion of r, and u the

longitudinal velocity of the band must necessarily be equal to

V cos J, the longitudinal velocity of the sliding piece owing to the

rigidity of the band; and

(5.)COS J

"When the centre line of the band is parallel to the direction of

motion of the sliding piece, and perpendicular to the direction of

the axis of the rotating piece, sin i (90°)
=

cos^' (0°)
= 1, and

v = u = T a
(6.)

167. The Pitch Surface of a Pulley or Drum is a surface to

which the line of connection is always a tangent; that is to say, it

is a surface parallel to the acting surface of the pulley or drum, and
distant from it by half the thickness of the band.

168. Circular Pulleys and Drums are used to commuicate a

Fig. 64.

constant velocity-ratio. In each of them, the length denoted by r

in the equations of Article 166 is constant, and is called the effec-

tive radivs, being equal to the real radius of the pulley or drum
added to half the thickness of the band.

A crossed belt connecting a pair of circular pulleys, as in fig. 63,

reverses the direction of rotation; an open belt, as in fig. 64, pre-
serves that direction.
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169. The length of an Endless Belt^onnectiQg a pair of pulleys

whose effective radii are C ĵ_

=
r^, O^T^^r^, with parallel axes

whose distance apart is Ci C^ = c, is given by formulae founded on

Equation 1 of Article 113, viz., L = 2•s+2•r^. Each of the two

equal straight parts of the belt is evidently of the length

s = Ti Ta = /c2 _ (r, + r.Y ^^^ ^ crossed belt j

"

,(1.)

s = Ti Ta = Jc^ - ir^
-
r^Y

for an open belt]
7*1 being the greater radius, and r^ the less. Let iy be the arc to

radius unity of the greater pulley, and 4 that of the less pulley,
with which the belt is in contact; then for a crossed belt

^ + 2 arc • sm -\
;

for the angle Vj C^ Wj at the centre is double of the angle at

the circumference Cj Tj Wj, and this is equal to the angle

Si Cg Ci as they both differ from a right angle by the same

angle Ti C^ V^; and for an open belt,

K2.)

1
= I TT + 2 arc • sin 1 ; i^=\is-'2 arc * sm I ;

and the introduction of those values into Equation 1 of Article 113

gives the following results :
—

For a crossed belt

L = 2 jG^-ir^ + r,f+{r^ + r,)
•

(x
+ 2 arc -sin

''i^) ;

"

and if similar reasoning be applied, it may be shewn that i /q \

for an open belt,
f \ v

L = 2 ^0^
-

(rj
-

r^)- + ^(r^ + r^ + 2{r^
-
r^

• arc • sin • ~
c

As the last of these equations would be troublesome to employ in

a practical application to be mentioned in the next Article, an

approximation to it, sufficiently close for practical purposes, is

obtained by considering, that if
r-^
-

r^ is small compared with c,

/"9 7 \? (^1
-

'^2)^ 1 1 . ''']

-
^2 ^1

-
'^'2

^c-
-

(r^
-
r^Y = c- -—

^
—-

nearly, and arc • sin • = -^——-

nearly; whence, for an open belt,

L nearly
= 2c + ^(r, + r,) +

^^^^^
(3a.)
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170. Speed-Cones (figs. 65, 66, 67, 68) are a contrivance for

Fig. 66. Ficr. 67. Ficr. 68.

varying and adjusting the velocity-ratio communicated between a

pair of parallel shafts by means of a belt, and may be either conti-

nuous cones or conoids, as in figs. 65, 66, whose velocity-ratio can
be varied gradually while they are in motion by shifting the belt

;

or sets of pulleys whose radii vary by stejis, as in figs. 67, 68, in

which case the velocity-ratio can be changed by shifting the belt

from one pair of pulleys to another.
In order that the belt may be equally tight in every possible

position on a pair of speed-cones, the quantity L in the equations
of Article 169 must be constant.

For a crossed belt, as in figs. 65 and 66, L depends solely on
c and on r^ -f- r^. Now c is constant, because the axes are parallel,
therefore the sum of the radii of the pitch circles connected in every

position of the belt is to be constant. That condition is fulfilled

by a pair of continuous cones generated by the revolution of two

straight lines inclined opposite ways to their respective axes at

equal angles, and by a set of pairs of pulleys in which the sum of

the radii is the same for each pair.
For an open belt, the following practical rule is deduced from the

approximate Equation 3a of Article 169 :
—

Let the speed-cones be equal and similar conoids, as in fig. 66,
but with their large and small ends turned opposite ways. Let 7\

be the radius of the large end of each, r^ that of the small end, rQ

that of the middle
;
and let y be the sagitta, measured perpendi-

cular to the axis, of the arc by whose revolution each of the conoids

is generated, or, in other words, the bulging of the conoids in the

middle of their length ;
then

y
rj + ^2 _ (rj

-
r^y

•(!•)

where the second value is obtained from the first by considering

that in Equation 3a, 2 ^r
^q
= ^

(r^ -f- rg) +
{r,-r,f

;
2 ^-6-2832; but

6 may be used in most practical cases without sensible error.
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The radii at the middle and ends being thus determin-ed, make
the generating curve an arc either of a circle or of a parabola.

For a pair of stepped cones, as in fig. 68, let a series of differ-
ences of the radii, or values of

r-y
—

r.2, be assumed; then for each

pair of pulleys, the sum of the radii is to be computed from the

difference by the formula

^^ + ,.,
=
2r.-fc^'; (2.)

2
7*0 being that sum when the radii are equal.

Section 4.—Linkwork.

171. Definitions.
—The pieces which are connected by linkwork,

if they rotate or oscillate, are usually called cranks, beams, and
levers. The link by which they are connected is a rigid bar, which

may be straight or of any other figure; the straight figure being
the most favourable to strength, is used when there is no special
reason to the contrary. The link is known by various names under
various circumstances, such as couj)ling rod, connecting rod, crank

rod, eccentric rod, &c. It is attached to the pieces which it con-

nects by two pins, about which it is free to turn. The eflfect of the

link is to maintain the distance between the centres of those pins

invariable; hence the line joining the centres of the pins is the line

of connection ; and those centres may be called the connected points.
In a turning piece, the perpendicular let fall from its connected

point upon its axis of rotation is the arm or crank arm.

172. Principles of Connection.— The whole of the equations

already given in Article 166 for bands, are applicable to linkwork.

The axes of rotation of a pair of turning pieces connected by a link

are almost always parallel, and perpendicular to the line of connec-

tion; in which case the angular velocity-ratio at any instant is the

reciprocal of the ratio of the common perpendiculars let fall from
the line of connection upon the respective axes of rotation (Article

166, Equation 3).

173. Dead Points.—If at any instant the direction of one of the

crank arms coincides with the line of connection, the common

perpendicular of the line of connection and the axis of that crank
arm vanishes, and the directional relation of the motions becomes
indeterminate. The position of the connected point of the crank

arm in question at such an instant is called a dead point. The

velocity of the other connected point at such an instant is null,

unless it also reaches a dead point at the same instant, so that the

line of connection is in the plane of the two axes of rotation, in

which case the velocity-ratio is indeterminate.

174. Coupling of Parallel Axes.~The only case in which an nni-
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form angular velocity-ratio (being that of equality) is communicated

by linkwork, is that in which two or more parallel shafts (such as

those of the driving wheels of a locomotive engine) are made to

rotate with constantly equal angular velocities, by having equal
cranks, which are maintained parallel by a coupling rod of such a

length that the line of connection is equal to the distance between
the axes. The cranks pass their dead points simultaneously. To
obviate the unsteadiness of motion which this tends to cause, the

shafts are provided with a second set of cranks at right angles to

the first, connected by means of a similar coupling rod, so that one
set of cranks pass their dead points at the instant when the other

set are farthest from theirs.

175. The Comparative Motion of the Connected Points in a piece
of linkwork at a given instant is capable of determination by the

method explained in Article 98; that is, by finding the instantan-

eous axis of the link
;
for the two connected points move in the

same manner with two points in the link, considered as a rigid

body.
If a connected point belongs to a turning piece, the direction of

its motion at a given instant is perpendicular to the plane contain-

ing the axis and crank arm of the piece. If a connected point

belongs to a shifting piece, the direction of its motion at any
instant is given, and a plane can be drawn perpendicular to that

direction.

The line of intersection of the planes perpendicular to the paths
of the two connected points at a given instant, is the instantaneous

axis of the link at that instant
;
and the velocities of the . connected

points are directly as their distancesfrom that axis.

In drawing on a plane surface, the two planes perpendicular to

the paths of the connected points are represented by two lines

(being their sections by a plane normal to them), and the instanta-

neous axis by a point; and should the length of the two lines

render it impracticable to produce them until they actually inter-

sect, the velocity-ratio of the connected points may be found by
the principle, that it is equal to the ratio of the segments which a
line parallel to the line of connection cuts ofl[' from any two lines

drawn from a given point, perpendicular respectively to the paths
of the connected points.

Example I. Two Rotating Pieces with Parallel Axes
(fig. 69)

—•

Let Ci, C2, be the parallel axes of the pieces; Ti, Tj, their con-

nected points; Ci Tj, Cg T3, their crank arms ; Ti Tg, the link. At
a given instant, let Vi be the velocity of Ti; V2 that of Tg.

To find the ratio of those velocities, produce Cj Ti, C2 T^, till

they intersect in K
;
K is the instantaneous axis of the link or

connecting rod, and the velocity ratio is

vi:v : : KTi ."KT^ (1.)
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Should K be inconveniently far off, draw any triangle with its

sides respectively parallel to Ci Tj, Cg T^, and Ti Ta; the ratio of

the two sides first mentioned will be the velocity-ratio required.
For example, draw Ca A parallel to Ci Tj, cutting Ti T2 in A, then

Vi.v^: : CaA rCgTa- .(2.)

Fig. 70.

Fig. 69.

Example II. Rotating piece and sliding piece (fig. 70).
— Let

Ca be the axis of a rotating piece, and Ti R the straight line along
which a sliding piece moves. Let Ti, Ta, be the connected points,

Ca Ta the crank arm of the rotating piece, and Tj Ta the link or

connecting rod. The point Ti, Tg, and the line Ti R, are supposed
to be in one plane, perpendicular to the axis C. Draw Ti K per-

pendicular to Ti K, intersecting Ca Ta in K ; K is the instantaneous
axis of the link

; and

^•i : va : : K Ti : K Ta

Or otherwise draw from a point Cg, Cg A perpendicular to Tj II the

direction of motion of the sliding piece, Ca Tg perpendicular to the

direction of motion of the rotating piece, then the line Tj Ta, or a
line parallel thereto cuts off the segments Ca A, Ca Tg, or segments
proportional thereto, and the velocity-ratio of the rotating piece
to the sliding piece is as Cj Tg to Ca A.

176. An Eccentric (fig. 71) being a circular disc keyed on a

shaft, with whose axis its centre does not coin-

cide, and used to give a reciprocating motion to

a rod, is equivalent to a crank whose con-

nected point is T, the centre of the eccentric

disc, and whose crank arm is C T, the distance

of that point from the axis of the shaft, called

the eccentricity.
Fig. 71.
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177. The Length of Stroke of a point in a reciprocating piece is

the distance between the two ends of the path in which that point
moves. When it is connected by a link with

OHJ a point in a continuously rotating piece, the

ends of the stroke of the reciprocating point

correspond with the dead points of the continu-

ously revolving piece (Article 173).
Let S = B C be the length of stroke of

the reciprocating piece, L = E C = D B the

length of the line of connection, and B =A E =
A I) the crank arm of the continuously turning

piece. Then if the two ends of the stroke be
in one straight line with the axis of the

crank,

S = 2B; (1.)

and if their ends be not in one straight line

with that axis, then S, L - B, and L + B, are

the three sides of a triangle, having the angle

opposite S at that axis; so that if be the

supplement of the arc between the dead points,
D and E,

S2 = (L
-
B)2 + (L + B)2

- 2 (L
- B)

(L + B) cos 6; >i

S2 = 2(L2 + B2)-2(L2-B^)cos 0: '

Fig. 72. cos
2 L^ + 2 B2—S2

2(L2
-
B2) r

.(2.)

178. Hooke's Universal Joint (fig. 73) is a contrivance for

coupling shafts whose axes intersect each other in a point.

Let O be the point of intersection of the axes O Ci, O Cg, and i

their angle of inclination to each

other. The pair of shafts C,, Cg,

terminate in a pair of forks, Fi, Fg,

in bearings at the extremities of

which turn the gudgeons at the

ends of the arms of a rectangular

cross, having its centre at O. This

cross is the link; the connected

points are the centres of the bear-

ings Fi, Fg. At each instant each

of those points moves at right angles
to the central plane of its shaft and fork, tlierefore the line of

intersection of the central planes of the two forks, at any instant,
is the instantaneous axis of the cross, and the velocity-ratio of the
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points Fi, Fa (which, as the forks are equal, is also the angular
velocity-ratio of the shafts), is equal to the ratio of the distances of

those points from that instantaneous axis. The r}iean value of that

velocity-ratio is that of equality; for each successive quarter turn
is made by both shafts in the same time; but its actual value

fluctuates between the limits,

- - =
-.

—
77^7^5
—;r = -—

-. when Fi is in the plane ]

«! r ' sm (90^
-

^) cos ^
^

|

of the axis;
a

a
= cos i when Fa is in that plane.

(!•)

179. The Double Hooke's Joint (fig. 74) is used to obviate the

vibratory and unsteady motion caused by the fluctuation of the

velocity-ratio indicated in the equa-
tion of Article 178. Between the
two shafts to be connected, Ci, Cg,

there is introduced a short interme-

diate shaft Cg, making equal angles
with Gi and Cg, connected with each
of them by a Hooke's joint, and ^^S- *'*-

having both its own forks in the same plane.

By this arrangement the angular velocities of the first and third

shafts are equal to each other at every instant.

180. A Click, being a reciprocating bar, acting upon a rachet

wheel or rack, which it pushes or pulls through a certain arc at

each forward stroke, and leaves at rest at each backward stroke, is

an example of intermittent linkwork. During the forward stroke,
the action of the click is governed by the principles of linkwork ;

during the backward stroke, that action ceases. A catch or pally

turning on a fixed axis, prevents the ratchet wheel or rack from

reversing its motion.

Section 5.—Reduplication of Cords.

181. Definitions
—The combination of pieces connected by the

several plies of a cord or rope consists of a pair of cases or frames
called blocks, each containing one or more pulleys called sheaves.

One of the blocks called the /all-block, Bi, is fixed
;
the other, or

running-block, Bg, is movable to or from the fall-block, with which
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it is connected by means of a rope of which one end is attached

either to the fall-block or to

the running-block, while the

other end, Tj, called the fall^

or tackle-folly is free j while

the intermediate, portion ol

the rope passes alternately
round the pulleys in the fall-

block and running-block. The
whole combination is called a

tackle or purchase.
182. TheVelocity-Ratio chief-

ly considered in a tackle is that

between the velocities of the

running-block, u, and of the

tackle-fall, v. That ratio is

given by Equation 3 of Article

Fig. 75a. 113 (which see), viz.

nu;.. (1.)

where n is the number of plies of rope by which the running-block
is connected with the fall-block. Thus, in fig. 75 w = 7 ; and in

fig. 75a w = 6.

182a. The Velocity of any Ply of the rope is found in the follow-

ing manner :
—

I. For a ply on the side of the fall-block next the tackle-fall,

such as 2, 4, 6, fig. 75, and 3, 5, fig. 75a, it is to be considered

what would be the velocity of that ply if it were itself the tackle-

fall. Let that velocity be denoted by v', and let n' be the number
of plies between the ply in question and the point of attachment by
which the first ply (marked 1 in the figures) is fixed to one or

other block. Then

,(1.)

II. For a ply on the side of the fall-block farthest from the

tackle-fall, the velocity is equal and contrary to that of the next

succeeding ply, with which it is directly connected over one of the

.sheaves of the fall-block.

III. If the first ply, as in fig. 75a, is attached to the fall-block,

its velocity is nothing; if to the running-block, its velocity is equal
to that of the block.

183. White's Tackle.—The sheaves in a block are usually made
all of the same diameter, and turn on a fixed pin; and they have,

consequently, different angular velocities. But by making the

diameter of each sheaf proportional to the velocity, relatively to the
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hloch, of the ply of rope which it is to carry, the angular velocities

of the sheaves in one block may be rendered equal, so that the

sheaves may be made all in one piece, and may have journals

turning in fixed bearings. This is called White's Tackle, from the

inventor, and is represented in figs. 75 and 75a.

Section 6.—Comparative Motion in the " Mechanical
Powers."

184. Classification of the Mechanical Powers.—"Mechanical

Powers" is a name given to certain simple or elementary machines,
all of which, with the single exception of the pulley, are more

simple than even an elementary combination of a driver and fol-

lower; for, with that exception, a mechanical power consists

essentially of only one primary n)oving piece; and the comparative
motion taken into consideration is simply the velocity-ratio either

of a pair of points in that piece, or of two components of the

velocity of one point. There are two established classifications of

the mechanical powers; an older classification, which enumerates

six; and a newer classification, which ranges the six mechanical

powers of the older system under three heads. The following table

shews both these classifications :
—

Nkwer Classification Older Classification.

The Lfvfp /
^^® ^^^®^*'IHE 1.EVER,

I r^^^ y^^^^^ ^^^ ^^^^^
( The Inclined Plane.

The Inclined Plane, < The Wedge.
(The Screw.

The Pulley, The Pulley.

In the present section the comparative motions in the mechanical

powers are considered alone. The relations amongst the forces

which act in those machines will be treated of in the kinetic

division of this Treatise.

In the lever and the wheel and axle of the older classification,
which are both comprehended under the lever of the newer classi-

fication, the primary moving piece turns about a fixed axis; and
the comparative motion taken into consideration is the velocity-
ratio of two points in that piece, which may be called respectively
the driving point and the following point. The principle upon
which that velocity-ratio depends has already been stated in Article

93, page 50—viz., that the velocity of each point is proportional
to the radius of the circular path which it describes; that is, to its

perpendicular distance from the axis of motion.
The distinction between the lever and the wheel and axle is
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this: that in the lever
,
the driving point, D, and the following

point, F, are a pair of determinate

points in the moving piece, as in

iigs. 7Ga to 76d; whereas in the
wheel and axle they may be any
pair of points which are situated

respectively in a pair of cylindrical

pitch-surfaces, D and F, described

about the axis A, fig. 76.

In each of these figures the plane
of projection is normal to the axis,

and A is the trace of the axis. In

fig. 76, D and F are the traces of

two cylindrical pitch-surfaces. In

figs. 76a to 76d, D and F are the

projections of the driving and

following points respectively.
The axis of a lever is often called the fulcrum.
A lever is said to be straight, when the driving point, D, and

following point, F, are in one plane traversing the axis A, as in

figs. 76a, 76b, and 76c. In other cases the lever is said to be hent,
as in

fig. 76d.

Fig. 76.

Ti%. 76a. Fig 7Cc.

\

Fig. 76c.

The straight lever is said to be of one or other of three kinds,

according to the following classification :
—

In a lever of the first kind, fig. 76a, the

driving and following points are at opposite
sides of the fulcrum A.

In a lever of the second kind, fig. 76b, the

driving and following points are at the same
side of the fulcrum, and the driving point is

the further from the fulcrum.

In Si, lever of the third kind, fig. 76c, the driving and following

points are at the same side of the fulcrum, and the following point
is the further from the fulcrum.

In the inclined plane, and in the wedge, the comj)arative motion
considered is the velocity-ratio of the entire motion of a straight-

sliding primary piece and one of the components of that motion ;

the principles of which velocity-ratio have been stated in Article

70, pages 38, 39.

Fior. 76d.
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III the inclined plane, fig. 76e, A A is the trace of a fixed plane;
B, a block sliding on that

plane in the direction BC;
the plane of projection being

perpendicular to the planeA A, and parallel to the
direction of motion of B>
B D is some direction oblique
to B C. From any convenient

point, C, in B 0, let fall C D
perpendicular to B D; then
B D -f- B C is the ratio of ^^S- 76e.

the component velocity in the direction B D to the entire velocity
ofB.

In
fig. 76f, a a is the trace of a fixed plane ;

B C D, the trace

of a wedge which slides on that plane. While the wedge advances

through the distance C c, its oblique face advances from the posi-
tion C D to the position c d

;
and if C e be drawn normal to the

plane C D, the ratio borne by the component velocity of the wedge

Fig, 76r.

in a direction normal to its oblique face to its entire velocity will

be expressed by C e : C c.

In the screw the comparative motion considered is the ratio

borne by the entire velocity of some point in, or rigidly connected

with, the screw, to the velocity of advance of the screw.

The helical path of motion of a point in, or rigidly attached to,

a screw may be developed (as has been already explained in Article

160, page 94) into a straight line : being the hypotenuse of a

right angled triangle whose height is equal to the pitch of the

screw, and its base to the circumference of a circle whose radius

is the distance of the given point from the axis of the screw. Then
if B D in

fig. 76e be taken to represent the pitch of the screw, and
D C, perpendicular to B D, the circumference of the circle described

by the point in question about the axis, B C will be the develop-
ment of one turn of the screw-line described by that point as it

revolves and advances along with the screw; and B C -^- B D will

be the ratio of its entire velocity to the velocity of advance; just
as in the case of a body sliding on an inclined plane, A A, parallel
to B C. This shews why the screw is comprehended under the
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general head of the inclined plane, in the newer classification of

tlie mechanical powers.
The terra pulley^ in treating of the mechanical powers, means

any purchase or tackle of the class already described in Section

5 of this Chapter, pages 105 to 107.

Section 7.—Hydraulic Connection.

185. The General Principle of the communication of motion
between two pistons by means of an intervening fluid of constant

density has already been stated in Article 119, viz., that the velo-

cities of the pistons are inversely as their areas, measured on planes
normal to their directions of motion.

Should the density of the fl.uid vary, the problem is no longer-
one of pure mechanism; because in that case, besides the communi-
cation of motion from one piston to the other, there is an additional

motion of one or other, or both pistons, due to the change of volume
of the fluid.

186. Valves are used to regulate the communication of motion

through a fluid, by opening and shutting passages through which
the fluid flows; for example, a cylinder may be provided with
valves which shall cause the fluid to flow in through one passage,
and out through another. Of this use of valves, two cases may be

distinguished.
I. When the piston moves the fluid, the valves may be what is

called self-acting; that is, moved by the fluid. If there be two

passages into the cylinder, one provided with a valve opening
inwards, and the other with a valve opening outwards; then

during the outward stroke of the piston the former valve is opened
and the latter shut by the inward pressure of the fluid, which
flows in through the former passage; and during the inward stroke

of the piston, the former valve is shut and the latter opened by the

outward pressure of the fluid, which flows out through the latter

passage. This combination of cylinder, piston, and valves, consti-

tutes a pump.
II. When the fluid moves the piston, the valves must be opened

and shut by mechanism, or by hand. In this case the cylinder is

a working cylinder.
187. In the Hydraulic Press, the rapid motion of a small piston

'n a pump causes the slow motion of a large piston in a working
cylinder. The pump draws water from a reservoir, and forces it

into the working cylinder: during the outward stroke of the pump
jjiston, the piston of the working cylinder stands still; during the

inward stroke of the pump piston, the piston of the working
cylinder moves outward with a velocity as much less than that ot

the pump piston as its area is greater. When the piston of the
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working cylinder has finished its outward stroke, which may be of

any length, it is permitted to be moved inwards again by opening
a valve by hand and allowing the water to escape.

188. In the Hydraulic Hoist, the slow inward motion of a large

piston drives water from a large cylinder into a smaller cylinder,
and causes a more rapid outward motion of the piston of the

smaller cylinder. When the latter piston is to be moved inward,
a valve between the two cylinders is closed, and the valve of an
outlet from the smaller cylinder opened, by hand, so as to allow

the water to escape from the smaller cylinder. The larger cylinder
is filled and its piston moved outward, when required, by means of

a pump, in a manner resembling the action of a hydraulic press.

Section 8.—Trains of Mechanism.

189. Trains of Elementary Combinations have been defined in

Article 131, and illustrated in the case of wheel work, in Article 145,
and in the case of a double Hooke's joint, in Article 179. The

general principle of their action is that the comparative motion of

the first driver and last follower is expressed by a ratio, which is

found by multiplying together the several velocity-ratios of the

series of elementary combinations of which the train consists, each
with the sign denoting the directional relation.

Two or more trains of mechanism may converge into one; as

when the two pistons of a pair of steam engines, each through its

own connecting rod, act upon one crank shaft. One train of

mechanism may diverge into two or more; as when a single shaft,

driven by a prime mover, carries several pulleys, each of which
drives a diflferent machine. The principles of comparative motion
in such converging and diverging trains are the same as in simple
trains.

LIBRARY ^^
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CHAPTER III.

ON AGGREGATE COMBINATIONS.

190. The General Principles of aggregate combinations have

already been given in Part L, Chapter IL, Section 3. The pro-
blems to which those principles are to be applied may be divided
into two classes.

I. Where a secondary moving piece is connected at three, or at
two points, as the case may be, with three or with two other pieces
whose motions are given ;

so tliat the problem is, from the motions

of three or of two points in the secondary piece, to find its motion as
a whole, and the motion of any point in it. The solution of this

problem is given in Articles 97 and 98.

IT. Where a secondary piece, C, is carried by another piece, B ;

and denoting the frame of the machine by A, there are given two
out of the three motions of A, B, and C, relatively to each other,
and the third is required. The motion of C relatively to A is the

resultant of the motion of C relatively to B, and of B relatively to

Aj and the problem is solved by the methods already explained in

Articles 99 to 107, inclusive.

Professor Willis distinguishes the effects of aggregate combina-
tions into aggregate velocities, whether linear or angular, produced
in secondary pieces by the combined action of different drivers, and

aggregate paths, being the curves, such
as cycloids and trochoids, epicycloids and
ei)itrochoids, described by given points in
such secondary pieces.

A/ The following Articles give examples
of two simple aggregate combinations.

191. Differential Windlass.—In
fig. 77,

the axis Aj carries two barrels of different

radii, r-^ being the greater, and r^^ the less.

A running block containing a single
pulley is hung by a rope which passes
below the pulley, and has one end wound
round the larger barrel, and the other
wound the contrary way round the
smaller barrel. When the two barrels

rotate together with the common angular velocity a, the division
of the rope which hangs from the larger barrel moves with the
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velocity a r-^, and the division wliicli hangs from the smaller barrel

moves in the contrary direction with the velocity -ar^ (whose
direction is denoted by the negative sign). These are also the

velocities of the two points at opposite extremities of a diameter of

the pulley, where it is touched by the two vertical divisions of the

rope. The velocity of the centre of the pulley is a mean between

those two velocities; that is, their half-difference, because their

signs are opposite; or denoting it by v,

a{r^-r^)
.(!•)

The instantaneous axis of the pulley may be found by the method

of Article 98, as follows:—In fig. 35c, let A and B be the two

ends of the horizontal diameter of the pulley, and let A.Y^ = a r^,

and B Vj = (xr2 represent their velocities; join Y^Yj, cutting AB
in O

;
this is the instantaneous axis. Now

A0-0B = AC + C0-0B = BC + C0-0B = 20C,
AO + OB : AO-OB::AV„ + BY,:AY,-BY„

AB: 20C:: a{r^ + T^: a{o\-r^);

and hence the distance of the instantaneous axis from the centre

or moving axis of the pulley is obviously

AB .(2.)
2(^1 + ^2)'

'

The motion of the centre of the pulley is the same with that of a

point in a rope wound on a barrel of the radius—
^
—

. The use of

the contrivance is to obtain a slow motion of the pulley without

using a small, and therefore a weak, barrel.

192. Compound Screws.—(Fig. 78). On the same axis let

there be two screws Sj Sj, and 85^83, of the respective pitches

o N/

Fig. 78.

Pi and P2, Pi being the greater, and let the screws in the first

instance be both right-handed or both left-handed. Let Nj and N2
be two nuts, fitted on the two screws respectively. When the com-

pound screw rotates with the angular velocity a, the nuts ap roach

towards or recede from each other with the relative velocity
I
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-"-%^; (1.)

being that due to a screw whose pitch is the difference of the two

pitches of the compound screw. (See Article 96, Equation 1.)

The object of this contrivance is to obtain the slow advance due to

a fine pitch, together with the strength of large threads.

rig. 79 represents a compound screw in which the two screws

are contrary-handed, and the relative velocity of the nuts Ni Ng is

that due to the sum of the two pitches ; or as they are usually

equal, to double the pitch of each screw. This combination is

used in coupling railway-carriages.
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PRINCIPLES OF STATICS.

CHAPTER I.

SUMMARY OF GENERAL PRINCIPLES.

Nature and Division of the Subject.

The present Chapter contains a summary of the Principles of

Statics.

193. Forces—Action and Re-action.—Every force is an action
exerted between a pair of bodies, tending to alter their condition
as to relative rest and motion; it is exerted equally, and in con-

trary directions, upon each body of the pair. That is to say, if A
and B be a pair of bodies acting mechanically on each other, the
force exerted by A upon B is equal in magnitude and contrary in
direction to the force exerted by B upon A. This principle is

sometimes called the equality of action and re-action. It is ana-

logous to that of relative motion, explained in Article 61, page 34.

194. Forces, how Determined and Expressed.—A force, as

respects one of the two bodies between which it acts, is deter-

mined, or made known, when the following three things are
known respecting it :—first, the place, or part of the body to which
it is applied; secondly, the direction of its action; thirdly, its

magnitude.
The Place of the application of a force to a body may be the

whole of its volume, as in the case of gravity; or the surface at

which two bodies touch each other, or the bounding surface

between two parts of the same body, as in the case of pressure,

tension, shearing stress, and friction.

Thus every force has its action distributed over a certain space,
either a volume or a surface; and a force concentrated at a single

point has no real existence. Nevertheless, in investigations respect-

ing the action of a distributed force upon the position and move-

ments, as a w^hole, of a rigid body, or of a body which without
error may be treated as rigid, like the solid parts of a machine,
fixed or moving, that force may be treated as if it were concen-
trated at a point or points, determined by suitable processes ; and
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such is the use of those numerous propositions in statics which
relate to forces concentrated at points; or single forces, as they
are called.

The Direction of a force is that of the motion which it tends

to produce. A straight line drawn through the points of applica-
tion of a single force, and along its direction, is the line op action
of that force.

The Magnitudes of two forces are equal when, being applied to

the same body in opposite directions along the same line of action,

they balance each other.

The magnitude of a force is expressed arithmetically by stating
in numbers its ratio to a certain unit or standard of force, which,
for practical purposes, is usually the weight (or attraction towards
the earth), at a certain latitude, and at a certain level, of a known
mass of a certain material. Thus the British unit of force is the

standard pound avoirdupois ; which is the weight, in the latitude

of London, of a certain piece of platinum kept in a public office.

For the sake of convenience, or of compliance with custom, other

units of weight are occasionally employed in Britain, bearing certain

ratios to the standard pound ; such

The grain = -j^^q of a pound avoirdupois.

The troy pound = 5,760 grains = 0-82285714 pound avoirdupois.

The hundredweight = 112 pounds avoirdupois.

The ton = 2,240 pounds avoirdupois.

The French standard of weight is the kilogramme, which is the

weight, in the latitude of Paris, of a certain piece of platinum kept
in a public office. It was originally intended to be the weight of

a cubic decimetre of pure water, measured at the temperature at

which the density of water is greatest
—

viz., 4°'l Cent., or 39°-4

Fahr., and under the pressure which supports a barometric column
of 760 millimetres of mercury; but it is in reality a little heavier.

A kilogramme is 2-20462125 lbs. avoirdupois.
A pound avoirdupois is 0-4535926525 of a kilogramme.

For scientific purposes, forces are sometimes expressed in

Absolute Units. The "Absolute Unit of Force" is a term used to

denote the force which, acting on an unit of mass for an unit of

time, produces an unit of velocity.
The unit of time employed is always a second.

The unity of velocity is in Britain one foot per second ; in

France one metre per second.

The unit of mass is the mass of so touch matter as weighs one
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unit of weiglit near the level of the sea, and in some
definite latitude.

In Britain the latitude chosen is that of London
;
in France,

that of Paris.

In Britain the unit of weight chosen is sometimes a grain,
sometimes a pound avoirdupois; and it is equal to 32-187

of the corresponding absolute units of force. In France the

unit of weight chosen is either a gramme or a kilogramme,
and it is equal to 9-8087 of the corresponding absolute

units of force. Each of those coefficients is denoted by the

letter g.

195. Measures of Force and Mass.—If by the unit of force

is understood the weight of a certain standard, such as the

avoirdupois pound, then the mass of that standard is 1-^g', and
the unit of mass is g times the mass of the standard; and this

is the most convenient system for calculations connected with

mechanical engineering, and is therefore followed in the present
work.

But if we take for the unit of mas?, the mass of the standard

itself, then the unit of force is the absolute unit; and the weight of

the standard in such units is expressed by g; for g is the velocity
which a body's own weight, acting unbalanced, impresses on it

in a second. This will be specially treated of in Part V. This is

the system employed in many scientific writings, and in particular,
in Thomson and Tait's Natural Philosophy. It has great advan-

tages in a scientific point of view; but its use in calculations for

practical purposes would be inconvenient, because of the prevailing
custom of expressing forces in terms of the standard of weight.

196. Representation of Forces by Lines.—A single force may be

represented in a drawing by a straight line; an extremity of the

line indicating the point of

application of the force,
—the

lirection of the line, the direc-

tion ofthe force,
—and the length

of the line, the magnitude of the

force, according to an arbitrary
3

'

"^"--3&
scale.

Yig. 80.

For example, in
fig. 80, the

fact that the body B B B B is acted upon at the point Oi by a

given force, may be expressed by drawing from Oj a straight line

Oi Fi in the direction of the force, and of a length representing the

magnitude of the force.

If the force represented by Oi F^ is balanced by a force applied
either at the same point, or at another point O2 (which must be in

the line of action L L of the force to be balanced), then the second

force will be represented by a straight line Og Fg, opposite in direc-
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tion, and equal in length to Oi h\, and lying in the same line of

action L L.

If the body B B B B (fig. 81), be balanced by several forces acting
in the same straight line LL, applied at points Oi O2, &c., and

represented by lines O^ \^\, O^Fa, &c. j then either direction in the
line L L (such as the direc-

tion towards + L) is to be
^' considered as positive, and

the opposite direction (such
as the direction towards
— L) as negative ; and if the

sum of all the lines repre-

senting forces which point

pjg gj; positively be equal to the

sum of all those which point

negatively, the algebraical sum of all the forces is nothing, and the

body is balanced.

197. Resultant and Component Forces—Their Magnitude.—
The Besultant of any combination of forces applied to one body
is a single force capable of balancing that single force which
balances the combined forces; that is to say, the resultant of the

combined forces is equal and directly opposed to the force which
balances the combined forces, and is equivalent to the combined
forces so far as the balance of the body is concerned. The com-
bined forces are called components of their resultant.

The resultant of a set of mutually balanced forces is nothing.
The magnitudes and directions of a resultant force and of its

components are related to each other exactly in the same manner
with the velocities and directions of resultant and component
motions.

As to the position of the resultant, if the components act through
one point, the resultant acts through that point also; but if the

components do not act through one point, the position of the re-

sultant is to be found by methods which will be stated further on.

198. Equilibrium or Balance is the condition of two or more
forces which are so opposed that their combined action on a body
produces no change in its rest or motion, and that each force

merely tends to cause such change, without actually causing it.

In treatises on statics, the word pressure is often used to denote

any balanced force; although in the pojmlar sense that word is

used to denote a force, of the nature of a thrust or push, distributed

over a surface.

199. Parallel Forces are forces whose directions of motion are

parallel, excepting couples and directly opposed forces.

200. Couples.—Two forces of equal magnitude applied to the

same body in parallel and opposite directions, but not in the same
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line of action (such as F, F, in fig. 82), constitute what is called a
"
GowpUy
The arm or leverage of a couple (L, fig. 82) is the perpendicular

distance between the lines of action of the two equal forces.

The tendency of a couple is to turn the body to which it is

applied in the plane of the couple
—that is, the plane which con-

tains the lines of action of the two
forces. (The plane in which a body
turns is any plane parallel to those

planes in the body whose position is not

altered by the turning). The turning
of a body is said to be right-handed
when it appears to a spectator to take

place in the same direction with that of °*

the hands of a watch, and left-handed when in the opposite direc-

tion; and couples are designated as right-handed or left-handed

according to the direction of the turning which they tend to pro-
duce. The couple represented in

fig. 82 appears right-handed to

the reader.

The Moment of a couple means the product of the magnitude of

its force by the length of its arm (F L) ;
and may be represented

by the area of a rectangle whose sides are F and L. If the force

be a certain number of pounds, and the arm a certain number of

feet, the product of those two numbers is called the moment in

foot-pou7ids, and similarly for other measures. The moment of a

couple may also be represented by a single line on paper, by setting
off upon its axis (that is, upon any line perpendicular to the plane
of the couple) a length proportional to that moment (O M, fig. 82)
in such a direction, that to an observer looking from O towards M
the couple shall seem right-handed.

201. The Centre of Parallel Forces is the single point
referred to in the following principle. The forces to which that

principle is applied are in general either weights or pressures;
and the point in question is then called the Cent/re of Gravity or

the Cent7'e of Pressure, as the case may be.

If there be given a system of points, and the mutual ratios of a

system ofparallelforces applied to those points, which forces have a

single resultant, then there is one point, and one only, which is tra-

versed hy the line of action of the resultant of every system ofparallel

forces haviyig the given mutual ratios and applied to the given system

ofpoints, whatsoever may he the absolute magnitudes of those forces
and the angular position of their lines of action.

202. Distributed Forces in General.—In Article 194, page 115,
it has already been explained, that the action of every real force is

distributed throughout some volume, or over some surface. It is

always possible, however, to find either a single resultant, or a
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resultant couple, or a combination of a single force with a couple, to

which a given distributed force is equivalent, so far as it affects

the equilibrium of the body, or part of a body, to which it is

applied.
In the application of Mechanics to Structures, the only force dis-

tributed throughout the volume of a body which it is necessary to

consider, is its weight, or attraction towards the earth
; and the

bodies considered are in every instance so small as compared with
the earth, that this attraction may, without appreciable error, be
held to act in parallel directions at each point in each body. More-

over, the forces distributed over surfaces are either parallel al/ each

point of their surfaces of application, or capable of being resolved

into sets of parallel forces
; hence, parallel distributed forces have

alone to be considered ;
and every such force is statically equivalent .

either to a single resultant, or to a resultant couple.
The intensity of a distributedforce is the ratio which the magni-

tude of that force, expressed in units of weight, bears to the space
over which it is distributed, expressed in units of volume, or in

units of surface, as the case may be. An unit of intensity is an
unit of force distributed over an unit of volume or of surface, as

the case may be; so that there are two kinds of units of intensity.
For example, one pound per cubicfoot is an unit of intensity for a
force distributed throughout a volume, such as weight; and one

pound per square foot is an unit of intensity for a force distributed

©ver a surface, such as pressure or friction.

203. Specific Gravity—Heaviness— Density— Bulkiness.—I.

Specific Gravity is the ratio of the weight of a given bulk of a

given substance to the weight of the same bulk of pure water at

a standard temperature. In Britain the standard temperature
is 62° Fahr. = 16° -67 Cent. In France it is the temperature of

the maximum density of water = 3°-94 Cent. = 39°-l Fahr.

In rising from 39°-l Fahr. to 62° Fahr., pure water expands in

the ratio of 1*001118 to 1
;
but that difference is of no consequence

in calculations of specific gravity for engineering purposes.
II. The heaviness of any substance is the weight of an unit of

volume of it in units of weight. In British measures heaviness is

most conveniently expressed in lbs. avoirdupois to the cubicfoot ;

in French measures, in hilogrammes to the cubic decimetre (or to

the litre). The values of the heaviness of water at 39°-l Fahr.,
and at 62° Fahr., are respectively 62425 and 62-355 lbs. to the

cubic foot.

III. The density of a substance is either the number of units of

mass in an unit of volume, in which case it is equal to the heavi-

ness,
—or the ratio of the mass of a given volume of the substance

to the mass of an equal volume of water, in which case it is equal
to the specific gravity. In its application to gaseSy the term
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"
Density" is often used to denote the ratio of the heaviness of a

given gas to that of air, at the same temperature and pressure.
IV. The bulkiness of a substance is the number of units of

volume which an unit of weight fills
;
and is the reciprocal of the

heaviness. In British measures bulkiness is most conveniently
expressed in cubic feet to the lb. avoirdupois ; in French measures,
in cubic decimetres (or in litres) to the Mlogramme. Rise of temper-
ature produces (with certain exceptions) increase of bulkiness.

The linear expansion of a solid body is one-third of its expansion
in bulk.

204. The Centre of Gravity of a body or of a system of bodies,
is the point always traversed hj the resultant of the weight of the

body or system of bodies,
—in other words, the centre of parallel

forces for the weight of the body or system of bodies.

To support a body, that is, to balance its weight, the resultant of

the supporting force must act through the centre of gravity.
When the centre of gravity of a geometrical figure is spoken of,

it is to be understood to mean the point where the centre of

gravity would be, if the figure were formed of a substance of

uniform heaviness.

205. The Centre of Pressure in a plane surface is the point
traversed by the resultant of a pressure that is exerted at that

surface. When the intensity is uniform, the centre of pressure is

at the centre of magnitude of the pressed surface.

206. The Centre of Buoyancy of a solid wholly or partly im-

mersed in a liquid is the centre of gravity of the mass of liquid

displaced. The resultant pressure of the liquid on the solid is

equal to the weight of liquid displaced, and is exerted vertically

upwards through the centre of buoyancy.
207. The Intensity of Pressure is expressed in units of weight

on the unit of area; as pounds on the square inch, or kilogrammes
on the square metre

;
or by the height of a column of some fluid ;

or in atmospheres, the unit in this case being the average pressure
of the atmosphere at the level of the sea.
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CHAPTER II.

COMPOSITION, RESOLUTION, AND BALANCE OF FORCES.

Section 1.—Forces Acting Through One Point.

208. Resultant of Forces Acting in One Straight Line.—The
resultant of any number of forces acting on one body in the same

straight line of action, acts along that line, and is equal in magni-
tude to the sum of the component forces; it being understood, that

when some of the component forces are opposed to the others, the

word "sz*m" is to be taken in the algebraical sense; that is to say,
that forces acting in the same direction are to be added to, and
forces acting in opposite directions subtracted from each other.

When a system of forces acting along one straight line are

balanced, the sum of the forces acting in one direction is equal to

the sum of the forces acting in the opposite direction.

209. Resultant and Balance of Inclined Forces—Parallelogram
of Forces.—The smallest number of inclined forces which can
balance each other is three. Those three forces must act through
one point, and in one plane. Their relation to each other depends
on the following theorem, called the " Parallelogram of Forces,"
from which the whole science of statics may be deduced.

If two forces whose lines of action traverse one point he repre-
sented in direction and magnitude hy the sides of a parallelogram,
their resultant is represented hy the diagonal.
For example, through the point O (fig. 83) let two forces act,

represented in direction and magnitude by O A and O B. The re-

sultant or equivalent single force of

those two forces is represented in

direction and magnitude by the

diagonal O C of the parallelogram
O A C B. Its magnitude is given

algebraically by the equation.

0C=\/ |0A2 + 0B2^ ^
. h (1.)

20A-OBcosAOB
Fig. 83.

210. Triangle of Forces.—To balance the forces O A and OB,
a force is required equal and directly opposed to their resultant

C. This may be expressed by saying, that if the directions and
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angle

magnitudes of three forces he reirresented hy the three sides of a

triangle, taJcen in the same order (sucli as O A, A C, C O), then those

three forces, acting through one point, balance each other, or in other

words, that three forces in the same plane balance each other at
one point, -when each is proportional to the sine of the
between the other two.

211. Polygon of Forces.—If a numher of forces acting through
the same point he represented hy lines

equal and parallel to the sides of a
closed polygon, taken in the same order,
those forces halance each other. To fix

the ideas, let there be five forces

acting through the point O (fig. 84),
and represented in direction and

magnitude by the lines Fj, Fg, Fg,

F^, Fg, which are equal and parallel to the sides of the closed poly-

gon O ABC DO; viz.:—

Fi^and II O A; Fo^and ii AB; Fg = and BC;
F4 = and CD; Fg^andllDO.

Then, by the principle of the parallelogram of forces, the resultant

of F^ and Fg is O B; the resultant of F^, Fg, and F3 is O C
;
the

resultant of F^, Fg, Fg, and F^ is O D, equal and opposite to F^,

gauche"
—that is,

so that the final resultant is nothing.
The closed polygon may be either plane or

not in one plane.
212. Principles of the Parallelepiped of Forces.—The simplest

gauclie polygon is one of four sides. Let AOBCEFGrH (fig.

85), be a parallelopiped whose diagonal is O H.
Then any three successive edges so placed as

to begin at O and end at H, form, together
with the diagonal H O, a closed quadrilateral;

consequently, if three forces Fj, Fg, Fg, acting

through 0, be represented by the three edges

A O, O B, O C, of a parallelopiped, the dia-

gonal O H represents their resultant, and a

fourth force F^ equal and opposite to

O H balances them. /%
213. Resolution of a Force into two /

Components.—In order that a given V
single force may be resolvable into two '^

components acting in given lines in-

clined to each other, it is necessary, first, that the lines of action

of those components should intersect the line of action of the

given force in one point ;
and secondly, that those three lines of

action should be in one plane.

Fis. 85.
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Returning then to
fig. 83, let O represent the given force,

which it is required to resolve into two component forces, acting in
the lines O X, O Y, which lie in one plane with O C, and intei-sect
it in one point 0.

Though C draw C A li O Y, cutting O X in A, and C B li O X,
cutting O Y in B. Then will O A and O B represent the com-
ponent forces required.

Two_ forces respectively equal to and directly opposed to O A
and O B will balance 0.

The magnitudes of the forces are in the following proportions:
—

00:OA:OB
::sinAOB:sinBO0 :sinAOO

(1.)

214. Resolution of a Force into three Components.—In order
that a given single force may be resolvable into three components
acting in given lines inclined to each other*, it is necessary that the
lines of action of the components should intersect the line of action
of the given force in one point.

Returning to fig. 85, let O H represent the given force which
it is required to resolve into three component forces, acting in the

lines O X, Y, O Z, which intersect O H in one point O.

Through H draw three planes parallel respectively to the planes
Y O Z, Z O Y, X O Y, and cutting respectively O X in A, O Y in

B, O Z in 0. Then will O A, O B, O 0, represent the component
forces required.

Three forces respectively equal to, and directly opposed to O A,

OB, and O "0, will balance Oil.
215. Resolution of a Force. Rectangular Components.—The

rectangular components of a force are those into which it is resolved

when the directions of their lines of action are at right angles to

each other.

For example, in fig. 85, suppose O X, O Y, O Z, to be three

axes of co-ordinates at right angles to each other. Then O H is

resolved into three rectangular components, A O, O B, O C, simply
by letting fall from H perpendiculars on O X, O Y, O Z, cutting
them at A, B, C, respectively.

Let the three rectangular components be denoted respectively by
X, Y, Z, the resultant by R, and the angles which it makes with
the components by a, /3, y, respectively ;

then the relations between
the three rectangular components and their resultant are expressed
by the following equations :

—
X = Rcosa; Y = Rcos/3; Z = Rcosy; (2.)

R2 = X2 + Y2 + Z2 (3.)
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When the resultant is in the same plane with two of its com-

ponents (as X and Y), the third component is null, and the

Equations 2 and 3 take the following form :
—

X = R cos a = R sin/3; Y = R cos /3=:E- sin «j Z =
0j...(4.)

R2 = X2 + Y2 (5.)

In using Equations 2, 3, 4, and 5, it is to be remembered that

cosines of obtuse angles are negative.
216. Resultant and Balance of any number of inclined Forces

acting through one Point.—To find this resultant by calculation,

assume any three directions at right angles to each other as axes;
resolve each force into three components (X, Y, Z) along those

axes, and consider the components along a given axis which act in

one direction as positive, and those which act in the opposite direc-

tion as negative; take the algebraical sums of the components

along the three axes respectively (S
•

X, E •

Y, 2 •

Z); these will be

the rectangular components of the resultant of all the forces; and its

magnitude and direction will be given by the following equations :
—

E-2 = (2-X)2 + (2-Y)^ + (2-Z)2; (1.)

2X ^2Y 2Z ,_cos tt =r
;

cos, (i
= -—-

-^ COSy = —:p- (2.)

If the forces all act in one plane, two rectangular axes in that

plane are sufficient, and the terms containing Z disappear from the

equations.
If the forces balance each other, the components parallel to each

axis balance each other independently; that is to say, the three

follow^ing conditions are fulfilled :
—

2-X = 0; S-Y = 0; 2-Z =
(3.)^

If the forces all act in one plane, these conditions of equilibrium
are reduced to two.

Section 2.—Resultant and Balance of Couples.

217. Equivalent Couples.—If the moments of two couples acting
in the same direction and in the same or parallel planes are equal,
those couples are equivalent : that is, their tendencies to turn the

body to which they are applied are the same.

The following propositions are the chief consequences of the

principle just stated :
—

218. Resultant of Couples.—-The resultant of any number of

couples acting in the same or parallel planes is equivalent to a

couple whose moment is the algebraical sum of the moments of the

combined couples.
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219. Equilibrium of Couples with same Axis.—Two opposite

couples of equal moment in the same or parallel planes balance

each other. Any number of couples in the same or parallel planes
balance each other when the moments of the right-handed couples
are together equal to the moments of the left-handed couples; in

other words, when the resultant moment is nothing
—a condition

expressed algebraically by

2-FL =
(1.)

220. Parallelogram of Couples.—If the two sides of a parallelo-

gram represent the axes and moments of two couples acting on

the same body in planes inclined to each other, the diagonal of the

parallelogram will represent the axis and moment of the resultant

couple, which is equivalent to those two.

In other words, three couples represented by the three sides of a

triangle, taken in the same order, balance each other.

221. Polygon of Couples.—If any number of couples acting on
the same body be represented by a series of lines joined end to end,

and taken in the same order so as to form sides of a polygon, and
if the polygon is closed, those couples balance each other.

These propositions are analogous to corresponding propositions

relating to single forces; and couples, like single forces, can be

resolved into components acting about two or three given axes.

222. Resultant of a Couple and Single Force in Parallel Planes.

—Let M denote the moment of a couple applied to a body (fig. 86);
and at a point O let a single force F be applied, in a plane parallel

to that of the couple. For the

given couple substitute an equi-
valent couple, consisting of a

force - F equal and directly op-

posed to F at O, and a force F
acting through the point A, the

arm A O perpendicular to F
M

being = ^, and parallel to the

Fig. S6. plane of the couple M. Then
the forces at O balance each

other, and F acting through A is the resultant of the single force

F applied at O, and the couple M ;
that is to say, that if with a

single force F there be combined a couple M whose plane is parallel
to the force, the efifect of that combination is to shift the line of

M
action of the force parallel to itself through a distance O A =^ ;

—
to the left ifM is right-handed

—to the right if M is left-handed.
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223. Moment of Force with respect to an Axis.

let the straight line F represent a force. Let
O X be any straight line perpendicular in direc-

tion to the line of action of the force, and not

intersecting it, and let A B be the common per-

pendicular of those two lines. At B conceive a

pair of equal and directly opposed forces to be

applied in a line of action parallel to F, viz.:—
F' = F, and - F' = - F. The supposed application
of such a pair of balanced forces does not alter the

statical condition of the body. Then the original ^

single force F, applied in a line traversing A, is ^
equivalent to the force F' applied in a line travers-

ing B, the point in O X which is nearest to A,
combined with the couple composed of F and -

F',

whose moment is F * A B. This is called the moment of the force
F relatively to the axis O X, and sometimes also, the moment of the

force F relatively/ to the plane traversing O X, parallel to the line

of action of the force.

If from the point B there be drawn two straight lines B D and
B E, to the extremities of the line F representing the force, the

area of the triangle B D E being = J F • A B, represents one-half of

the moment of F relatively to O X.

Fia. 87.

Section 3.—Resultant and Balance of Parallel Forces.

224. Magnitude of Resultant of Parallel Forces.—A balanced

system of parallel forces consists either of pairs of directly opposed
equal forces, or of couples of equal forces, or of combinations of

such pairs and couples.
Hence the following propositions as to the relations amongst the

magnitudes of systems of parallel forces.

I. In a balanced system of parallel forces the sums of the forces

acting in opposite directions are equal ;
in other words, the alge-

braical sum of the magnitudes of all the forces taken with their

proper signs is nothing.
II. The magnitude of the resultant of any combination of parallel

forces is the algebraical sum of the magnitudes of the forces.

The relations amongst the positions of the lines of action of

balanced parallel forces remain to be shewn; and in this inquiry
all pairs of directly opposed equal forces may be left out of con-

sideration; for each such pair is independently balanced whatso-
ever its position may be

; so that the question in each case is to be
solved by means of the theory of couples.
The following is the simplest case :

—
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•225. Direction of Eesultant of Parallel Forces—Principle of the

Lever.—If three parallel forces

applied to one body balance each

other, they must be in one plane;
the two extreme forces Tnust act

in the same direction; the middle

force must act in the opposite

direction; and the magnitude of
each force TRUst be proportional
to the distance between the lines

of action of the other two. Let
a body (fig. 88) be maintained

in eqnilibrio by two opposite couples acting in the same plane, and
of equal moments,

and let those couples be so applied to the body that the lines of

action of two of those forces,
- F^ - F^, which act in the same

direction, shall coincide. Then those two forces are equivalent to

the single middle force F^ = -
(F^ + F^), equal and opposite to the

sum of the extreme forces + F^, + F^, and in the same plane with
them

;
and if the straight line A C B be drawn perpendicular to

the lines of action of the forces, then

AC
and consequently

L,; CB = L3; AB==L, + L,

F, :F3 :F, ::CB : AC : AB;. .(!•)

This proposition holds also when the straight line A C B crosses

the lines of action of the three forces obliquely.
226. To find the Resultant of Two Parallel Forces.—The

resultant is in the same jDlane with, and parallel to, the com-

ponents. It is their sum or difference, according as they act in

the same or contrary directions; and in the latter case its direction

is that of the greater component. To find its line of action by
construction, proceed as follows :

—
Fig. 89 representing the case

in which the components act in the same direction, fig.
90 that in

which they act in contrary directions. Let A D and B E be the

components. Join A E and B D, cutting each other in F. In
BD (produced in

fig. 90) take BG = DF. Through G draw a
line parallel to the components; this will be the line of action of

the resultant. To find its magnitude by construction : parallel to

A E, draw B C and D H, cutting the line of action of the result-

ant in C and H; C H will represent the resultant required; and a
force equal and opposite to C H will balance A D and B E.

To find the line of action of the resultant by calculation ; make
either
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BG =ADDB DG
Fig. 90.

BED B

Fig. 91.

H ^ C H
When the two given parallel forces are opposite and equal, they

form a couple, and have no single resultant.

227. To find the Relative Proportions of

Three Parallel Forces which Balance each

other, Acting in One Plane: their Lines of

Action being given.—Across the three lines

of action, in any convenient position, draw
a straight line A C B, lig. 91, and measure
the distances between the points where it

cuts the lines of action. Then each force

will be proportional to the distance between
the lines of action of the other two. The
direction of the middle force, C, is contrary
to that of the other two forces, A and B.

In symbols, let A, B, and C be the forces; then,

A + B + C = 0; AB:BC:CA::C:A:B.
Each of the three forces is equal and opposite to the resultant of

the other two; and each pair of forces are

equal and opposite to the components of the

third. Hence this rule serves to resolve a

given force into two parallel components
acting in given lines in the same plane.

228. To find the Relative Proportions of

Four Parallel Forces which Balance each

other, not Acting in One Plane: their Lines
of Action being given.

—Conceive a plane to

cross the lines of action in any convenient

position; and in fig. 92 or fig. 93, let A, B,

Fig. 92.

C, J) reprc'
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sent the points where the four lines of action cut the plane.
Draw the six straight lines joining those four

points by pairs. Then the force which acts through
each point will be proportional to the area of the

triangle formed by the other three points.
In fig. 92 the directions of the forces at A, B,

and C are the same, and are contrary to that of

the force at D. In fig. 93 the forces at A and D
act in one direction, and those at B and C in the

contrary direction.

In symbols, A + B + C + D = 0;

BCD:CD A:D AB:ABC
C D.

Each of the four forces is equal and opposite to the resultant

of the other three ; and each set of three forces are equal and oppo-
site to the components of the fourth. Hence the rule serves to resolve

a force into three parallel components not acting in one plane.
229. Moments of a Force with respect to a Pair of Rectangular

Axes.—In fig. 94, let F be any single force; O an arbitrarily-
assumed point, called the "

origin
of co-ordinates;"

- X O + X,
- Y O + Y, a pair of axes travers-

ing 0, at right angles to each

other and to the line of action

of F. Let A B =
?/, be the com-

mon perpendicular of F and
O X; let A C = x, be the common

perpendicular of F and O Y. x
and y are the "rectangular co-

ordinates" of the line of action

of F relatively to the axes
- X O + X, - Y O + Y, respec-

tively. According to the arrange-
ment of the axes in the figure,

X is to be considered as positive
to the right, and negative to the

Y O + Y; and y is to be considered as positive to the left,

and negative to the right, of - X O + X; right and left referring
to the spectator's right and left hand. In the particular case

represented, x and y are both positive. Forces, in the figure, are

considered as positive upwards, and negative downwards ; and in

the particular case represented, F is positive.
At B conceive a pair of equal and opposite forces, F' and -

F',
to be applied ;

F' being equal and parallel to F, and in the same
direction. Then, as in Article 223, F is equivalent to the single force

Fig. 94.

left, of
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F' = F applied at B, combined with the couple constituted by F and
- F' with the arm y, whose moment is ?/ F ; being positive in the
case represented, because the couple is right-handed. Next, at the

origin O, conceive a pair of equal and opposite forces, F" and -
F",

to be applied, F" being equal and parallel to F and F', and in the
same direction. Then the single force F' is equivalent to the

single force F" = F' = F applied at O, combined with the couple
constituted by F' and - F" with the arm OB =

£c, whose moment is
- a? F; being negative in the case represented, because the couple

is left-handed.

Hence, it appears finally, that a force F acting in a line whose
co-ordinates with respect to a pair of rectangular axes perpendicular
to that line are x and y, is equivalent to an equal and parallel
force acting through the origin, combined with two couples whose
moments are,

y F relatively to the axis O X, and - x'¥ relatively to the axis

OY right-handed couples being considered positive ;
and + Y lying

to the left of + X, as viewed by a spectator looking from 4- X
towards O, with his head in the direction of positive forces.

230. Balance of any System of Parallel Forces in one Plane.—
In order that any system of parallel forces whose lines of action

are in one plane may balance each other, it is necessary and
sufficient that the following conditions should be fulfilled :

—
First—(As already stated) that the algebraical sum of the forces

shall be nothing.

Secondly
—That the algebraical sum of the moments of the forces

relatively to any axis perpendicular to the plane in which they
act shall be nothing,
two conditions which are expressed symbolically as follows :

—
Let F denote any one of the forces, considered as positive or

negative, according to the direction in which it acts; let y be the

perpendicular distance of the line of action of this force from an

arbitrarily assumed axis O X, 3/ also being considered as positive
or negative, according to its direction

; then,

2-F^ 0; 2-^F = 0.

In summing moments, right-handed couples are usually con-

sidered as positive, and left-handed couples as negative.
231. Let II denote the Resultant of any System of Parallel

Forces in one Plane, and
3/^, the distance of the line of action of

that resultant from the assumed axis O X to which the positiona
of forces are referred; then,

B = 2-F;

Vt 2 • F
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In some cases the forces may have no single resultant, 2 • F
being =

;
and then, unless the forces balance each other com-

pletely, their resultant is a couple of the moment 2 •

?/ F.

232. Balance of any System of Parallel Forces.—In order that

any system of parallel forces, whether in one plane or not, may
balance each other, it is necessary and sufficient that the three

following conditions shall be fulfilled :
—

First—(As already stated) that the algebraical sum of the forces

shall be nothing.

Secondly and Thirdly—That the algebraical sums of the moments
of the forces, relatively to a pair of axes at right angles to each

other, and to the lines of action of the forces, shall each be nothing,
two conditions which are expressed symbolically as follows :

—
Let O X and O Y denote the pair of axes

;
let F be the magnitude

of any one of the forces; y its perpendicular distance from O X,
and X its perpendicular distance from O Y ; then,

2-F = 0; S-2/F = 0; 2-ajF = 0;

233. Let R denote the Resultant of any System of Parallel

Forces, and x^ and y^ the distances of its line of action from two

rectangular axes; then,

In some cases the forces may have no single resultant, 2 • F
being =

;
and then, unless the forces balance each other com-

pletely, their resultant is a couple, whose axis, direction, and

moment, are found as follows :
—

Let M^ = 2'2/F; Mj,
= -2-^F;

be the moments of the pair of partial resultant couples about the

axes O X and O Y respectively. From O, along those axes, set off

two lines representing respectively M^. and M^, ;
that is to say, pro-

portional to those moments in length, and pointing in the direction

from which those couples must respectively be viewed in order that

they may appear right-handed. Complete the rectangle whose
sides are those lines; its diagonal will represent the axis, direction,
and moment of tlie final resultant couple. Let M,. be the moment
of this couple ; then

and if d be the angle which its axis makes with X,
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234. To find the Centre of Parallel Forces.—Let O in
fig. 95

be any convenient point, taken as the origin of co-ordinates, and
O X, O Y, O Z, three axes of co-ordinates at right angles to each

other.

Let A be any one of the points to which the system of parallel

forces in question is applied. From A draw x parallel to X,
and perpendicular to the plane Y Z,

y parallel to O Y, and perpendicular
to the plane Z X, and z parallel to

O Z, and perpendicular to the plane
XY. .cc, 2/,

and 2; are the rectangu-
lar co-ordinates of A, which, being
known, the position of A is deter-

mined. Let F denote either the

magnitude of the force applied at A,
or any magnitude proportional to

that magnitude, x, y, z, and F are

supposed to be known for every point of the given system of

points.
The position of the centre of parallel forces depends solely on

the proportionate magnitudes of the parallel forces, not on their

absolute magnitudes, nor on the angular positions of their lines of

actions; so that for any system of parallel forces another may be

substituted in any angular position : this is the statement of the

principle of the centre of parallel forces given at Article 201,

page 119. This is evident since, in considering the relations of

parallel forces, they are not considered with reference to any parti-

cular plane, and hence these relations must hold for any plane.

First, conceive all the parallel forces to act in lines parallel to

the plane Y Z. Then the distance of their resultant, and of the

centre of parallel forces from that plane is

Fig. 95.

2F * CO

Secondly, conceive all the parallel forces to act in lines parallel

to the plane Z X. Then the distance of their resultant, and of the

centre of parallel forces from that plane is

2-2/F
.(2.)

Thirdly, conceive all the parallel forces to act in lines parallel to

the plane X Y. Then the distance of their resultant, and of the

centre of parallel forces from that plane is

z,= 2-F .(3.)
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If the forces have no single resultant, so that S • F =
0, there is

no centre of parallel forces. This may be the case with pressures,
but not with weights.

If the parallel forces applied to a system of points are all equal
and in the same direction, it is obvious that the distance of the

centre of parallel forces from any given plane is simply the mean
of the distances of the points of the system from that plane.

Section 4.—Op any System op Forces.

235. Resultant and Balance of any BfsUm of Forces in One
Plane.—Let the plane be that of the axes O X and O Y in fig. 95;
and in looking from Z towards O, let Y lie to the right of X, so

that rotation from X towards Y shall be right-handed. Let a? and

y be the co-ordinates of the point of application of one of the

forces, or of any point in its line of action, relatively to the assumed

origin and axes. Resolve each force into two rectangular com-

ponents X and Y, as in Article 215, page 125; then the rectangular

components of the resultant are S * X and; S • Y
;

its magnitude is

given by the equation

R2 = (S-X)U(2-Y)2, (1.)

and the angle »^ which it makes with X is found by the equations

2-X . 2-Y
.,,

cosa, =-^—; sin«,= -^ (2.)

This angle is acute or obtuse according as 2 • X is positive or nega-

tive; and it lies to the right or left of O X according as 2 • Y is

positive or negative.
•

The perpendicular distance from of the line of action of any
force is X sin a. -y cos «, and hence the resultant moment of the

system of forces about the axis O Z is

M = 2(ajY-2/X), (3.)

and is right or left-handed according as M is positive or negative.
The perpendicular distance of the resultant force R from is

-4- (^•)

Let x^ and y^ be the co-ordinates of any point in the line of

action of that resultant; then the equation of that line is*

x,^'Y-y,^-X = M
(5.)

* The method of obtaining this result by Co-ordinate Geometry is the
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IfM = the resultant acts througli the origin O; if M has

magnitude, and R = (in which case 2 • X = 0, 2 • Y =
0) the

resultant is a couple. The conditions of equilibrium of the system
of forces are

S-X = Oj 2-Y = 0; M =
(6.)

236. Resultant and Balance of any System of Forces.—To
find the resultant and the conditions of equilibrium of any
system of forces acting through any system of points, the forces

and points are to be referred to three rectangular axes tof co-

ordinates.

As before, let O in fig. 95, p. 133, denote the origin ^f co-or-

dinates, and O X, O Y, O Z, the three rectangular axes : and let

then* be arranged so that in looking from

X] (Y towards 211
Y > towards 0, rotation from < Z towardsX y
Z }

shall appear right-handed.

( X towards Y }

Let X, Y, Z, denote the rectangular components of any one
of the forces; x, y, z, the co-ordinates of a point in its line of

action.

Taking the algebraical sums of all the forces which act along the

same axes, and of all the couples which act round the same axes,

following :-Let C=L, A B=E, ZXAB ==«,.; and let B G=a> and

0G=2^rhe the co-ordinates of the

point E. Then by Trigonometry x
sin or-sinO AC=cos CO A= sin X
DOG=cosDGO=sinEGF and
- cos ar=cos A C= sin C A
=cosDOG.

L=DC+OD=FE+OD
=EG-sinEGF +

O G • cos D G
= Xr'Sm.Uf,

-
llr

 

COSa,

multiplying by R

L •

E,=M=a;r 'B 'sin a^.-

^/y
• B *

cos or
= Xr •'2,Y-yr"2,X.

Fig. 96.

by substituting the values in Equation 2 supra.
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the six following quantities are found, which compose the resultant

of the given system of forces :
—
Forces.

2-X; 2'Y; S'Z; (!•)

Couples.

. about OX; M, =2 (2/Z-;s Y); )

„ OY; M,=^^{zX-xZ);\ .(2.).

found as already explained in Article 235.

The three forces are equivalent to a single force

R=a/ |(2-X)2
+ (2-Y)2 + (2-Z)2l -.(3.)

acting through O in a line which makes with the axes the angles

given by the equations

2-X ^ 2-Y S-Z ,,,cos cc =
-^--;

cos /3=—̂ ; COS y=
-J,

(4.)

The three couples, M^, Mg, Mg, are equivalent to one couple,
whose magnitude is given by the equation

M= J{Ml + M.l + M^, (5.)

and whose axis makes with the axes of co-ordinates the angles
given by the equations

. ^1 Mo Mo ,-,

1
• T- I I denote respectively the angles I /-^ ^^ Im winch

I ^j
^^^^ ^^y J^ ^^.^

y
jj ^j^^=

I

Y
I

The conditions of equilibrium of the system of forces may be

expressed in either of the two following forms :
—

2-X = 0; 2- Y = 0; 2-Z=0; Mi=:0;M2 = 0; M3-O; (7.)
or

E = 0; M =
(8.)

When the system is not balanced, its resultant may fall under
one or other of the following cases :

—
Case I.— When M =

0, the resultant is the single force E, acting
through O.
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Case II.—When the axis ofM is at right angles to the direction of

R,—a case expressed by the following equation :
—

cos ec cos "^ + cos /3 COS /^ + COS y cos ^ =
j (9.)

(an equation of Co-ordinate Geometry)

the resultant of M and H is a single force eqiial and parallel to R,

acting in a plane perpendicular to the axis of M, and at a perpen-
dicular distance from O given by the equation

M
L =f (10.)

Case III. Wheii E = 0, there is no single resultant; and the

only resultant is the couple M.
Case IY. When the axis of ]M is parallel to the line of action of

R, that is, when either

A = «; ^ =
/3; p^y, (11.)

or

X= -u; f^= -/3; u= -y; (12.)

there is no single resultant; and the system of forces is equivalent
to the force E, and the couple M, being incapable of being farther

simplified.
Case V.— When the axis of M is oblique to the direction of R,

making with it the angle given by the equation

cos ^ = COS A cos et + COS fC COS /3 + COS j, COS y,....(13.)

the couple M is to be resolved into two rectangular components,
viz :
—
M sin 6 round an axis perpendicular to R, and in

the plane containing the direction of R and of

the axis of M;
M cos 6 round an axis parallel to R.

(14.)

The force R and the couple M sin ^ are equivalent, as in Case

II., to a single force equal and parallel to R, whose line of action

is in a plane perpendicular to that containing R and axis of M,
and whose perpendicular distaflce from O is

L =^S^ (15.)
JX

The couple M cos
ff,
whose axis is parallel to the line of action of

R, is incapable of further combination.

Hence it appears finally, that every system of forces which is not

self-balanced, is equivalent either, (A); to a single force, as in
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Cases I. and II. (B); to a couple, as in Case III. (C); tea
force, combined with a couple whose axis is parallel to the line of

action of the force, as in Cases IV. and Y. This can occur with
inclined forces only; for the resultant of any number of parallel
forces is either a single force or a couple.

237, Parallel Projections or Transformations in Statics.—If two

figures be so related, that for each point in one there is a corre-

sponding point in the other, and that to each pair of equal and

parallel lines in the one, there corresponds a pair of equal and

parallel lines in the other, those figures are said to be parallel
PROJEiCEriONS of each other.

The lotions between such a pair of figures is expressed alge-
Jbfai^caJIy as follows :

—Let any figure be referred to axes of co-

otdinalRB, whether rectangular or oblique ;
let x, y, z, denote the

(?o-ordinates of any point in it, which may be denoted by A : let a
second figure be constructed from a second set of axes of co-ordinates,
either agreeing with, or difiering from, the first set as to rectangu-
larity or obliquity; let x', y\ z, be the co-ordinates in the second

^[giir^j, of the point A' which corresponds to any point A in the
firsti figure, and let those co-ordinates be so related to the co-ordi-

nates of A, that for each pair of corresponding points, A, A', in
the two figures, the three pairs of corresponding co-ordinates shall

bear to each other three constant ratios, such as

x' y' J z'
- =a; - =6; - =c:
X y z

then are those two figures parallel projections of each other.

For example, all circles and ellipses are parallel projections of

each other; so are all spheres, spheroids, and ellipsoids; so are all

triangles; so are all triangular pyramids; so are all cylinders; so

are all cones.

The following are the geometrical properties of parallel projec-
tions which are of most importance in statics :

—
I. A parallel projection of a system of three points, lying in one

straight line and dividing it in a given proportion, is also a system
of three points, lying in one straight line and dividing it in the
same proportion.

II. A parallel projection of a system of parallel lines, whose

lengths bear given ratios to each other, is also a system of parallel
lines whose lengths bear the same ratios to each other.

III. A parallel projection of a closed polygon is a closed

polygon.
IV. A parallel projection of a parallelogram is a parallelogram.
V. A parallel projection of a parallelepiped is a parallelopiped.

' VI. A parallel projection of a pair of parallel plane surfaces,
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whose areas are in a given ratio, is also a pair of parallel plane
surfaces, whose areas are in the same ratio.

VII. A parallel projection of a pair of volumes having a given
ratio, is a pair of volumes having the same ratio.

The following are the mechanical properties of parallel projec-
tions in connection with the principles set forth in this section :

—
YIII. If two systems of points be parallel projections of each

other; and if to each of those systems there be applied a system of

parallel forces bearing to each other the same system of ratios, then
the centres ofparallel forces for those two systems of points will be

parallel projections of each other, mutually related in the eame
manner with the other pairs of corresponding points in the two

systems.
IX. If a balanced system of forces acting through any .system of

points be represented by a system of lines, then will any parallel

projection of that system of lines represent a balanced system of

forces; and if any two systems of forces be represented by lines

which are parallel projections of each other, the lines, or sets of

lines, representing their resultants, are corresponding parallel pro-

jections of each other,
—it being observed that couples are to be

represented by pairs of lines, as pairs of opposite forces, or by areas,
and not by single lines along their axes.
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CHAPTER III.

DISTRIBUTED FORCES.

Section 1.—Centres of Gravity.

238. Centre of Gravity of a Symmetrical Homogeneous Body.—If a body is homogeneous, or of equal specific gravity througliout,
and so far symmetrical as to have a centre of figure ; that is, a

point within the body, which bisects every diameter of the body
drawn through it, that point is also the centre of gravity of the

body.

Amongst the bodies which answer this description, are the

sphere, the ellipsoid, the circular cylinder, the elliptic cylinder,

prisms whose bases have centres of figure, and parallelopipeds,
whether right or oblique.

239. The Common Centre of Gravity of a Set of Bodies whose
several centres of gravity are known, is the centre of parallel forces
for the weights of the several bodies, each considered as acting

through its centre of gravity. (See Article 234, p. 133.)
240. Planes of Symmetry—Axes of Symmetry.—If a homogeneous

body be of a figure which is symmetrical on either side of a given
plane, the centre of gravity is in that plane. If two or more such

planes of symmetry intersect in one line, or axis of symmetry, the

centre of gravity is in that axis. If three or more planes of

symmetry intersect each other in a point, that point is the centre

of gravity.
241. To find the Centre of Gravity of a Homogeneous Body of

any Figure, assume three rectangular co-ordinate planes in any
convenient position, as in fig. 95, p. 133.

To find the distance of the centre of gravity of the body from
one of those planes (for example, that of Y Z), conceive the body
to be divided into indefinitely thin plane layers parallel to that

plane. Let s denote the area of any one of those layers, and d x
its thickness, so that sclxi^ the volume of the layer, and

=
\sd.

the volume of the whole body, being the sura of the volumes of
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the layers. Let x be the perpendicular distance of the centre of

the layer sdx from the plane of Y Z. Then the perpendicular
distance x^ of the centre of gravity of the body from that plane is

giveii by the equation

J~
(!•)

Find, by a similar process, the distances 2/oj ^ot of the centre of

gravity from the other two co-ordinate planes, and its position will

be completely determined.

If the centre of gravity is previously known to be in a particular

plane, it is sufficient to find by the above process its distances from
two planes perpendicular to that plane and to each other.

If the centre of gravity is previously known to be in a particular

line, it is sufficient to find its distance from one plane, perpendicular
to that line.

242. If the Specific Gravity of the Body Varies, let w be the

mean heaviness of the layer sdx, so that

W =
j
wsdx,

is the weight of the body. Then

xwsdxf-
w (2-)

243. Centre of Gravity found by Addition.—When the figure of

a body consists of parts, whose resj)ective centres of gravity are

known, the centre of gravity of the whole is to be found as in

Article 239.

244. Centre of Gravity found by Subtraction.—When the figure
of a homogeneous body, whose centre of

gravity is sought, can be made by taking

away a figure whose centre of gravity is

known from a larger figure whose centre

of gravity is known also, the following
method may be used :

—
Let A C D be the larger figure, Gj its

known centre of gravity, Wj its weight.
Let A B E be the smaller figure, whose
centre of gravity Gg is known, Wg its

weight. Let E B C D be the figure whose
centre of gravity Gg is sought, made by taking away ABE from
A C D, so that its weight is

W3 = W,-W2.
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Join Gi G2'} Gts ^^^^ be in tlie prolongation of that straight line

beyond G^. In the same straight line produced, take any point O
as origin of co-ordinates. Make O G^
unknown quantity)

=
^a-

Then

h'j
^ ^2 = ^2) O G3 (the

X,
x,W,
Wj - w, ,(3.)

245. Centre of Gravity Altered by Transposition.—In fig. 98,
let A B C D be a body of the weight Wo,
whose centre of gravity Gq is known. Let
the figure of this body be altered, by trans-

posing a part whose weight is Wj, from the

position E C F to the position ¥ D H,
so that the new figure of the body is A B
H E. Let Gi be the original, and Gg
the new position of the centre of gravity
of the transposed part. Then the centre

of gravity of the whole body will be shifted

to G3, in a direction Go G3 parallel to

G2 Gi, and through a distance given by
the formula.

Fm. 98.

Go Gg = Gi Gj
W,

.(4.)

246. Centre of Gravity found by Projection or Transformation.—If the figures of two homogeneous bodies are parallel projections
of each other, the centres of gravity of those two bodies are corres-

ponding points in those parallel projections.
To express this symbolically,

—as in Article 237, let x, y, z, be

the co-ordinates, rectangular or oblique, of any point in the figure
of the first body; x', y', z', those of the corresponding point in the

second body ; x^, yo, ^o) ^^^ co-ordinates of the centre of gravity of

the first body; x\

second body, then
y^ those of the centre of gravity of the

Xo ^' Vo y' ^0 ^' .(5.)

This theorem facilitates much the finding of the centres of gravity
of figures which are parallel projections of more simple or more

symmetrical figures.
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For example, let it be supposed that tlie centre of gravity of a
sector of a circular disc has been
found (Case IX. Article 44), and let

it be required to find the centre of

gravity of a sector of an elliptic
disc. In fig. 99, let A B' A B' be
the ellipse, A O A = 2 a, and
B' B' = 2 6, its axes, and C O D'
the sector whose centre of gravity
is required. About the centre of

the ellipse, O, describe the circle,

A B A B, whose radius is the semi-
axis major a. Through C and D'

respectively draw E C C and FD'D,
parallel to O B, and cutting the
circle in C and D respectively ;

the circular sector C O D is the

parallel projection of the elliptic sector C D'. Let G- be the
centre of gravity of the sector of the circular disc, its co-ordinates

being

Then the co-ordinates of the centre of gravity G' of the sector of

the elliptic disc are

(6.

247. Centre of Gravity found Experimentally.—The centre of

gravity of a body of moderate size may be found approximately by
experiment, by hanging it up successively by a single cord in two
different positions, and finding the single point in the body which
in both positions is intersected by the axes of the cord.

Section 2.—Of Stress.

248. Stress—its Intensity.
—The word Stress has been adopted

as a general term to comprehend various forces which are exerted
between contiguous bodies, or parts of bodies, and which are dis-

tributed over the surface of contact of the masses between which

they act.

The Intensity of a stress is its amount in units of weight,
divided by the extent of the surface over which it acts, in units
of area.
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The following taLle gives a comparison of various units in which
the intensity of stress is expressed :

—
,

Pounds on the Pounds on the

square foot. square inch.

One pound on the square inch,.... 144 1

One pound on the square foot, 1 yij-
One inch of mercury (that is, weight

of a column of mercury at 32**

Fahr., one inch high), 70-73 0-4912

One foot of water (at 39^-1 Fahr.), 62-425 0-4335

One inch of water (at 39°-l Fahr.), 5-2021 0-036125

One foot of water (at 62° Fahr.),... 62-355 0-43302

One inch of water (at 62° Fahr.
),

. . . 5-19625 0036085
One atmosphere, of 29*922 inches

of mercury, or 760 millimetres, 2116-4 14-7

One foot of air, at 32° Fahr., and
under the pressure of one atmo-

sphere, 0-080728 0-0005606

One kilogramme on the square
metre, 0-20481 0-00142228

One kilogramme on the square
millimetre, 204810 1422-28

One millimetre of mercury, 2-7847 0-01934

249. Classes of Stress.—The various kinds of stress may be thus

classed :
—

I. Thrust, or Pressure, is the force which, acts between two con-

tiguous bodies, or parts of a body, when each pushes the other from
itself.

II. Pull, or Tension, is the force which acts between two con-

tiguous bodies, or parts of a body, when each draws the other

towards itself.

Pressure and tension may be either normal or oblique, relatively
to the surface at which they act.

III. Shear, or Tangential Stress, is the force which acts between
two contiguous bodies, or parts of a body, when each draws the

other sideways, in a direction parallel to their surface of contact.

In expressing a Thrust and a Pull in parallel directions alge-

braically, if one is treated as positive, the other must be treated as

negative. The choice of the positive or negative sign for either is

a matter of convenience.

The word "Pressure," although, strictly speaking, equivalent to

"thrust,'^ is sometimes applied to stress in general; and when this

is the case, it is to be understood that thrust is treated as positive.
The following are the processes for finding the magnitude of the

resultant of a stress distributed over a plane surface, and the centre
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of stress; that is, the point where the line of action of that resultant

cuts the plane surface :
—

250. In Stress of Uniform Intensity, the magnitude of the re-

sultant is the product of that intensity and the area of the surface
;

and the centre of stress is at the centre of magnitude of the surface.

Or in symbols, let S be the area of the surface, p the intensity of

the stress, P its resultant, then—
P=pS.

25L In Stress of Varying Intensity, but of One Sign, there is

all tension, or all pressure, or all shear in one direction.

In fig. 100, let A A be the given plane surface at which the stress

acts; X, O Y, two rectangular axes of co-ordinates in its plane;

^ O Z, a third axis perpendicular to that plane.
Conceive a solid to exist, bounded at one end

by the given plane surface A A, laterally by a

cylindrical or prismatic surface generated by
the motion of a straight line parallel to O Z
round the outline of A A, and at the other

end by a surface B B, of such a figure, that its

^^'  

ordinate z at any point shall be proportional to

the intensity of the stress at the point a of the surface A A from

which that ordinate proceeds, as shewn by the equation

z = P^
(1.)

where p represents the intensity of the stress and w the heaviness,
or weight per unit.

Conceive the surfaceA A to be divided into an indefinite number
of small rectangular areas, each denoted hy dxdy, and so small

that the stress on each is sensibly uniform; the entire area being

B= I I dxdy.

The volume of the ideal solid will be

Y= f fz'dxdy (2.)

So that if it be conceived to consist of a material whose heaviness

isw^~, the amount of the stress will be equal to the weight of the
z

solid ;
that is to say,

-£ =
j jpdxdy

=wY (3.)
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The centre of stress is the point on the surface A A perpendicu-

larly opposite the centre of gravity of the ideal solid.

The simplest, and at the same time the commonest, case of this

kind is where the stress is uniformly-varying; that is, where its

intensity at a given point is simply proportional to the per-

pendicular distance of that point from a given straight line in

the plane of the surface A A. To express this symbollically,
take the straight line in question for the axis Y; conceive

the substance to be divided into bands by lines jDarallel toO Y;
let y denote the length of one of these bands, and d x its breadth,

so that y dx h its area, and S = ydx the area of the whole

surface. Let x be the perpendicular distance of the centre of

a band from the line of no stress Y, and let the intensity of the

stress there be

P = ax; (4.)

a being a constant coefficient; then the amount or resultant of

the stress is

'P = jpydx = a fxydx', (5.)

and the perpendicular distance of the centre of stress from O Y is

I pxydx j
x^ydx;

j pydx
.(6.)

252. In Stress of Contrary Signs, for example, pressure at

one part of the surface and tension at another, the resultants

and centres of stress of the pressure and tension are to be

found separately. Those partial resultants are then to be treated

as a pair of parallel forces acting through the two respective

centres of stress; their final resultant will be equal to their

difference, if any, acting through a point found as in Article 226,

page 128.

If the total pressure and total tension are equal to each other,

they have no single resultant and no single centre of stress : their

resultant being a couple, whose moment is equal to the total

stress of either kind multiplied by the perpendicular distance

between the resultant of the pressure and the resultant of the

tension.
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Section 3.—Principles of Hydrostatics and Internal
Stress of Solids.

253. Pressure and Balance of Fluids: Principles of Hydro-
statics.—Fluid is a term opposed to solid, and comprehending the

liquid and gaseous conditions of bodies. The property common to

the liquid and the gaseous conditions is that oinot tending topreserve
a definite shape, and the possession of this property by a body in

perfection throughout all its parts, constitutes that body a perfect

fiuid.
A necessary consequence of that property is the following prin-

ciple, which is the foundation of the whole science of hydro-
statics:—

I. In a perfect fiuid, when still, the pressure exerted at a given

point is normal to the surface on which it acts, and of equal intensity/

for all positions of tJiat surface.
The following are some of the most useful consequences of that

principle :
—

II. A surface of equal pressure in a stillfiuid mass is everywhere

perpendicular to the direction of gravity ; that is, horizontal through-
out. In other words, the pressure at all points at the same level is

of equal intensity.
III. The intensity of the pressure at the lower of tvm points in a

still fiuid mass is greater than the intensity at the higher point, hy
an amount equal to the weight of a vertical column of thefiuid whose

height is the difference of elevation of the points, and base an unit of
area.

To express this symbolically, let p^ denote the intensity of the

pressure at the higher of two points in a fluid mass, and p^ the

intensity at a point whose vertical depth below the former point is

X. Let w be the mean heaviness of the layer of fluid between those

two points; then

Pl=P(i+V)X (1.)

In a gas, such as air, w varies, being nearly proportional to p ;
but

in a liquid, such as water, the variations of w are too small to be
considered in practical cases.

For example, let the upper of the two points be the surface of a
mass of water where it is exposed to the air j

then p^ is the atmos-

pheric pressure; let the depth x of the second point below the

surface be given in feet, and let the temperature be 39°-l
;
then

j?i in lbs. on the square foot=j(?o + 62*425 x (2.)

In many questions relating to engineering, the pressure of the

atmosphere may be left out of consideration, as it acts with sensibly

equal intensity on all sides of the bodies exposed to it, and so

balances its own action. The pressure calculated, in such cases, is
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the excess of the pressure of the water above the atmospheric
pressure, which may be thus expressed,

—
p'=/?i -^0 = 62-425 a; nearly (3.)

ly. The pressure of a liquid on a floating or immersed body, is

equal to the weight of the volume of fluid displaced by that body;
and the resultant of that pressure acts vertically upwards through
the centre of gravity of that volume; which centre of gravity is

called the ^^ centre of buoyancy
"

V. The pressure of a liquid against a plane surface immersed in
it is perpendicular to that surface in direction '. its magnitude is

equal to the weight of a volume of the liquid, found by multiplying
the area of the surface by the depth to which its centre of gravity
is immersed.

VI. The centre of pressure on such a surface, if the surface is

horizontal, coincides with its centre of gravity; if the surface is

vertical or sloping, the centre of pressure is always below the centre
of gravity of the surface, and is found by considering that the

pressure is an uniformly-varying stress, whose intensity at a given
point varies as the distance of that point from the line where the

given plane surface (produced if necessary) intersects the upper
surface of the liquid.
To express the last two principles by symbols in the case in

which the pressed surface is vertical or sloping, let the line where
the plane of that surface cuts the upper surface of the liquid be
taken as the axis Y. Let 6 denote the angle of inclination of

the pressed surface to the horizon. Conceive that surface to be
divided by parallel horizontal lines into an indefinite number of

narrow bands. Let y be the length of any one of those bands, d x
its breadth, x the distance of its centre from O Y

;
then ydx is its

area, x sin $ the depth at which it is immersed; and if w be the

weight of unity of volume of the fluid, the intensity of the pressure
on that band is

p = wxBmff (4.)

The whole area of the pressed surface, being the sum of the areas

of all the bands, is S = jydx; the whole pressure upon it is

P= jpydx =W8m filxydx; (5.)

the mean intensity of the pressure is

p \ py ^^ I ^y dx- z^wBinS ; (6.)

dx
j
ydx\y
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and the distance of the centre of pressure from Y is

Ixpydx ix^ydx
Xf\ —

j xydx
.(7.)

For example, let the sloping pressed surface be rectangular, like

a sluice, or the back of a reservoir-wall
;
and in the first instance,

let it extend from the surface of a mass of water down to a distance

x-^,
measured along the slope, so that its lower edge is immersed to

the depth x-^^
sin 6. Then its centre of gravity is immersed to the

depth x^ sin ^ -^ 2, and the mean intensity of the pressure in lbs. on
the square foot, is

P 62-4 X. sin 4
,_ ^

s= 2
;

(^>

The breadth y is constant; so that the area of the surface is

^ = x-^y; and the total pressure is

p _ 62-4 a?fy sin <>

^

The distance of the centre of pressure from the upper edge is

2
a^o
=
3 ^1" (1^)

Next, let the upper edge, instead of being at the surface of the

water, be at the distance x^ from it, so as to be immersed to the

depth x^ sin 6. Then the centre of gravity of the pressed surface

is immersed to the depth {x^ + x^ sin ^-r2, and the mean intensity
of the pressure upon it, in lbs. on the square foot, is

P _ 62-4 {x^ + x^ sin 6 .

S" 2
^

^^'\

the area of the surface is {x^
~

x.^ y, and the total pressure on it

p ^
62-4 (a^-apy sin <?

^^

The distance of the centre of pressure from the line O Y is

O X-^ x^

254. Compound Internal Stress of Solids.—Tf a body be con-

ceived to be divided into two parts by an ideal plane traversing it

in any direction, the force exerted between those two parts at the

plane of division is an internal stress.
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According to the principles stated in the preceding article, the
internal stress at a given point in a fluid is normal and of equal
intensity for all positions of the ideal plane of division. In a solid

body, on the other hand, the stress may be either normal, oblique,
or shearing; and it may vary in direction and intensity, as the

position of the ideal plane of division varies.

255. Conjugate Stresses—Principal Stresses.—If two planes
traverse a point in a body, and the direction of the stress on the
first plane is parallel to the second plane, then the direction of the
stress on the second plane is parallel to the first plane. Such a

pair of stresses are said to be conjugate; and if they are both
normal to their planes of application (and consequently perpendi-
cular to each other) they are called principal stresses. Three con-

jugate stresses, or three principal stresses, may act through one

point; but in the present treatise it is suflicient to consider two.

Fig. 101 represents a pair of conjugate oblique tensions acting
in the direction XX and Y Y through
a prismatic particle A B C D.
The rectangular directions in which

principal stresses—that is, direct pulls
and thrusts—act, through a given point
in a solid, are called axes of stress.

In a fiuid, the stress at a given point

being of equal intensity in all directions,

every direction has the property of an
axis of stress. A solid may be in the

same condition with a fluid as to stress ;

but it may also have the principal stresses at a given point of

difierent intensities. In a mass of loose grains, the ratio of those

intensities has a limit depending on friction :
—in a firm continuous

solid, the principal stresses at a point may bear any ratio to each

other, and may be either of the same or of opposite kinds.

256. The Shearing Stress, on two planes traversing a point in a

solid at right angles to each other, is of equal intensity.

257. A Pair of Equal and Opposite Principal Stresses
;
that is,

a pull and a thrust of equal intensity acting through a particle of a

solid in directions at right angles to each other, are equivalent to

a pair of shearing stresses of the same intensity on a pair of planes
at right angles to each other, and making angles of 45° with the

first pair of planes.
258. Combination of any Two Principal Stresses.

Problem.—A pair of principal stresses of any intensities, and of

the same or opposite kinds, being given, it is required to find the

direction and intensity of the stress on a plane in any position at

right angles to the plane parallel to which the two principal
stresses act.
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Let OX and Y (figs. 102 and 103) be the directions of the

two principal stresses; OX being the direction of the* greater
stress.

Let p^ be the intensity of the greater stress;
and P2 that of the less.

The kind of stress to which each of these belongs^ pull or thrust,
is to be distinguished by means of the algebraical signs. If a pull
is considered as positive, a thrust is to be considered as negative,
and vice versd. It is in general convenient to consider that kind of

stress as positive to which the greater principal stress belongs.

Fig. 102 represents the case in which
p-^

and jOg ^^® of the same

kind; fig. 103 the case in which they are of opposite kinds. In all

the following equations, the sign of pg is held to be implied in that

symbol ;Hhat is to say, when p2 is of the contrary kind to p^, the

sign applied to its arithmetical value, in computing by means of

the equations, is to be reversed.

Let A B be the plane on which it is required to ascertain the

direction and intensity of the stress, and O N a normal to that

plane, making with the axis of greatest stress the angle

AZXON = a;w.

On 0]SrtakeOM =P1+P2 this will represent a normal stress

on A B of the same kind with the greater principal stress, and of

an intensity which is a mean between the intensities of the two

principal stresses.

Through M draw P M Q, making with the axes of stress the

same angles which N makes, but in the opposite direction ; that
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is to say, take M P =irQ =M O. On the line thus found set off

from M towards the axis of greatest stress, MK =
-^^~^'

Join O K. Then will that line represent the direction and

intensity of the stress on A B.

In fig. 102, pi and p^ are represented as being of the same kind
;

and M R is consequently less than O M, so that O R falls on the

same side of O X with N; that is to say, nr<C.xn. In fig. 103,

Pi and
jt?2

are of opposite kinds, M R is greater than O M, and O R
A A

falls on the opposite side of O X to O M ;
that is to say, 7ir>xn.

The locus of the point M is a circle of the radius
,
and

that of the point R, an ellipse whose semi-axes are jOj
and p^, and

which may be called the Ellipse of Stress, because its semi-

diameter in any direction represents the intensity of the stress in

that direction.

259. Deviation of Principal Stresses by a Shearing Stress.—
Problem. Let p^ and p^ denote the original intensities of a pair
of principal stresses acting at right angles to each other through
one particle of a solid. Suppose that with these there is combined
a shearing stress of the intensity q, acting in the same plane with
the original pulls or thrusts

;
it is required to find the new inten-

sities and new directions of the principal stresses.

To assist the conception of this problem, the original stresses

referred to are represented in fig. 104, as acting through a particle

^-E,
of the form of a square prism. The principal

stresses, both original and new, are represented
as tensions, although any or all of them might
be pressures. In the formulae annexed, tensions

are considered positive, pressures negative ;

angles lying to the right of A A are considered

as positive, to the left as negative; and a shear-

ing stress is considered as positive or negative

according as it tends to make the upper right-

hand and lower left-hand corner of the square

particle acute or obtuse.

The arrows A A represent the greater original
Fig. 104.

tension p^; the arrows B B, the less original

tension;?^; C, C, D, D, represent the positive shear of the inten-

sity q, as acting at the four faces of the particle. The combination

of this shear with the original tensions is equivalent to a new pair

of principal tensions, oblique to the original pair. The greater new
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principal tension, p^, is represented by the arrows E, E ;
it deviates

to the right of p^ through an angle which will be denoted by 6.

The less new principal tension p^ is represented by the arrows F, F ;

it deviates through the same angle to the right of
p^,.

Tljen the intensities of the new principal stresses are given by
the equations,

and the double of the angle of deviation by either of the following,

tan2<>= -^^
', orcotan2^=^"„^ (4.)

The greatest value of ^ is 45°, when p^ = Py.
The new principal stresses are to be conceived as acting normally

on the faces of a new square prism.
260. Parallel Projection of Distributed Forces.—In apjjlying

the principles of parallel projection to distributed forces, it is to be

borne in mind that those principles, as stated in Article 237, are

applicable to lines representing the amounts or resultants of distri-

buted forces, and not their intensities. The relations amongst the

intensities of a system of distributed forces, whose resultants have
been obtained by the method of projection, are to be arrived at by
a subsequent process of dividing each projected resultant by the

projected space over which it is distributed.

261. Friction is that force which acts between two bodies at

their surface of contact so as to resist their sliding on each other,
and which depends on the force with which the bodies are pressed

together. It is a kind of shearing stress. The following law

respecting the friction of solid bodies has been ascertained by
experiment :

—
The friction which a given pair of solid bodies, with their surfaces

in a given condition, are capable of exerting, is simply proportional
to the force with which they are pressed together.

If a body be acted upon by a force tending to make it slide on

another, then so long as that force does not exceed the amount
fixed by this law, the friction will be equal and opposite to it, and
will balance it.

There is a limit to the exactness of the above law, when the

pressure becomes so intense as to crush or indent the parts of the

bodies at and near their surface of contact. At and beyond that

limit the friction increases more rapidly than the pressure; but
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that limit ought never to be attained in any structure. For some

substances, especially those whose surfaces are sensibly indented

by a moderate pressure, such as timber, the friction between a pair
of surfaces which have remained for some time at rest relatively
to each other, is somewhat greater than that between the same

pair of surfaces when sliding on each other. That excess, how-

ever, of the friction of rest over the friction of motion, is instantly

destroyed by a slight vibration; so that the friction of motion is

alone to be taken into account, as contributing to the stability of

a structure.

The friction between a pair of surfaces is calculated by multiply-

ing the force with which, they are directly pressed together, by a

factor called the coefficient of friction, which has a special value

depending on the nature of the materials and the state of the
,

surfaces. Let F denote the friction between a pair of sur-

faces; N, the force, in a direction perpendicular to the surfaces,
with which they are pressed together ; and / the coeflB.cient of

friction; then

F=/N (1.)

The coefficient of friction of a given pair of surfaces is the

tangent of an angle called the angle of repose, being the greatest

angle which an oblique pressure between the surfaces can make
with a perpendicular to them, without making them slide on aceh

other.

Let P denote the amount of an oblique pressure between two

plane surfaces, inclined to their common normal at the angle of

repose <p; then

F=/]Sr = Ntan^ = Psin^= - /== (2.)

The angle of repose is the steepest inclination of a plane to the

horizon, at which a block of a given substance will remain bal-

anced on it without sliding down.
The intensity of the friction between two surfaces bears the same

proportion to the intensity of the pressure that the whole friction

bears to the whole pressure.
The following is a table of the angle of repose <p, the coefficient

of friction /= tan
(p,

and its reciprocal 1 : /, for various materials—
condensed from the tables of General Morin, and other sources, and

arranged in a few comprehensive classes. The values of those

constants which are given in the table have reference to the friction

of motion.
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Surfaces.

Dry masonry and brickwork, ....

Masonry and brickwork with wet

mortar,

Masonry and brickwork, with

slightly damp mortar,
Wood on stone,
Iron on stone,

Masonry on dry clay,

,, on moist clay,
Earth on earth,

,, ,, dry sand, clay,
and mixed earth,

Earth on earth, damp clay,

„ » wet clay,

,, ,, shingle and gravel,
Wood on wood, dry,

„ soai
Metals on oak, dry,

» wet, .........

„ soapy,
Metals on elm, dry,
Bronze on lignum vitee, constantly )

wet,. i

Hemp on oak, dry,

„ wet,
Leather on oak,
Leather on metals, dry,

» wet,

gi-easy,

oily,

Metals on metals, dry,....:

,, ,, wet and clean,..

,, ,, damp and slimj'-,

Smooth surfaces, occasionally )

greased )

Smooth surfaces, continually )

greased, \

Smoothestand best greased surfaces,

31° to 35°

36i°

22°

35° to 161°
27°

I8i°
14° to 45°

2P to 37°

45°

17°

35° to 48"^

14° to 264°
lUoto2o
26|o to 31°

13fo to 14^0
lUo

114« to 14

28°

184°
15° to 194°

294°
20°

13°

S^tollf
164°
8°

4° to 4^0

3°

l|o to 2o

/

0-6 to 0-7

0-47

0-74

about 0*4

0-7 to 0-3
0-51

0-33

0-25 to 10

0-38 to 0-75

10
0-31

0-7 to 1-11

•25 to -5

•2 to -04

•5 to -6

•24 to ^26

•2

.2 to ^25

•05?

38

•53

•33

•27 to

•56

•36

•23

•15

•15 to

•14

•07 to •OS

•05

•03 to -036

1-67 to 143

21

1-35

2-5

143 to 333
1-96

3
4 to 1

2-63 to 133

1

3-23

r43to0^9
4 to 2
5 to 25
2tol^67

417 to 3^85

5
5 to 4

20?

1-89

3
3-7 to 2-86

179
2^78
4-35

6-67

6^67 to 5
3-33

7^14

14'3tol2-5

20

33-3 to 27^6



PART lY.

THEOEY OF STRUCTURES.

CHAPTER I.

SUMMAEY OF PRINCIPLES OF STABILITY AND STRENGTH.

Section 1.—Of Structures in General.

262. A Structure consists of portions of solid materials, put
together so as to preserve a definite form and arrangement of parts,
and to withstand external forces tending to disturb such form and

arrangement. As the parts of a structure are intended to remain
at rest relatively to each other, the forces which act on the whole

structure, and on each of its parts, should be balanced, so that the

mechanical principles on which the permanence and efficiency of

structures depend for the most part belong to Statics, or the

science of balanced forces.

The materials of a structure may be more or less stiff, like stone,

timber, and metals, or loose, like earth.

In the present chapter are given a summary of mechanical

principles applicable to structures.

263. Pieces— Joints— Supports— Foundations.—A structure

consists of two or more solid bodies, called its pieces, which touch

each other and are connected at portions of their surfaces, called

joints. This statement may appear to be applicable to structures

of stiff materials only; but, nevertheless, it comprehends masses

of earth also, if they are considered as consisting of a very great
number of very small pieces, touching each other at innumerable

joints.

Although the pieces of a structure are fixed relatively to each

other, the structure as a whole may be either fixed or movable

relatively to the earth.

A fixed structure is supported on a part of the solid material of

the earth, called the foundation of the structure; the pressures by
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which the structure is supported, being the resistance-s of the

various parts of the foundation, may be more or less oblique.

A movable structure may be supported, as a ship, by floating in

water, or as a carriage, by resting on the solid ground through
wheels. When such a structure is actually in motion, it partakes
to a certain extent of the properties of a machine; and the deter-

mination of the forces by which it is supported requires the con-

sideration of kinetic as well as of statical principles; but when
it is not in actual motion, though capable of being moved, the

pressures which support it are determined by the principles of

statics
;
and it is obvious that they have their resultant equal and

directly opposed to the weight of the structure.

264. The Conditions of Equilibrium of a Structure are the three

following :
—

I. That theforces exerted on the whole structure hy external bodies

shall halan^ce each other.—The forces to be considered under this

head are—(1.) the Attraction of the Earth—that is, the weight of

the structure; (2.) the External Load, arising from the pressures
exerted against the structure by bodies not forming part of it nor

of its foundation ; (these two kinds of forces constitute the gross or

total load)', (3.) the Supporting Pressures, or resistance of the

foundation. Those three classes of forces will be spoken of together
as the External Forces.

II. That the forces exerted on each piece of the structure shall

balance each other.—These consist of—(1.) the Weight of the piece,

and
(2.)

the External Load on it, making together the Gross Load;
and (3.) the Resistances, or forces exerted at the joints, between the

piece under consideration and the pieces in contact with it.

III. That the forces exerted on each of tJie parts into which each

piece of the structure can be conceived to be divided shall balance each

other.—Suppose an ideal surface to divide any part of any one of

the pieces of the structure from the remainder of the piece ;
the

forces which act on the part so considered are— (1.) its weight, and

(2.) (if it is at the external surface of the piece) the external force

applied to it, if any, making together its gross load; (3.) the stress,

or force, exerted at the ideal surface of division, between the part
in question and the other parts of the piece.

265. Stability, Strength, and Stiffness.—It is necessary to the

permanence of a structure, that the three foregoing conditions of

equilibrium should be fulfilled, not only under one amount and
one mode of distribution of load, but under all the variations of

the load as to amount and mode of distiibution which can occur

in the use of the structure.

Stability consists in the fulfilment of the^rs^ and second condi-

tions of equilibrium of a structure under all variations of the load

within given limits. A structure which is deficient in stability
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gives way by the displacement of its pieces from their proper posi-
tions.

When a structure, or one of its parts, is flexible, like the chain
of a suspension bridge, or in any other way free to move, its

stability consists in a tendency to recover its original figure and
position after having been disturbed.

Strength consists in the fulfilment of the third condition of equi-
librium of a structure for all loads not exceeding prescribed limits

;

that is to say, the greatest internal stress produced in any part of

any piece of the structure, by the prescribed greatest load, must be
such as the material can bear, not merely without immediate

breaking, but without such injury to its texture as might endanger
its breaking in the course of time.

A piece of a structure may be rendered unfit for its purpose, not

merely by being broken, but by being stretched, compressed, bent,
twisted, or otherwise strained out of its proper shape. It is neces-

sary, therefore, that each piece of a structure should be of such
dimensions that its alteration of figure under the greatest load

applied to it shall not exceed given limits. This property is called

stiffness, and is so connected with strength that it is necessary to
consider them together.

Section 2.—Balance and Stability of Frames, Chains,
AND Blocks.

266. A Frame is a structure composed of bars, rods, links, or

cords, attached together or supported by joints, such as occur in

carpentry, in frames of metal bars, and in structures of ropes and
chains, fixing the ends of two or more pieces together, but offering
little or no resistance to change in the relative angular positions of
those pieces. In a joint of this class, the centre of resistance, or

point through which the resultant of the resistance to displacement
of the pieces connected at the joint acts, is at or near the middle of
the joint, and does not admit of any variation of position consis-

tently with security.
The line of resistance of a frame is a line traversing the centres

of resistance of the joints, and is in general a polygon, having its

angles at these centres.

267. A Single Bar in a frame may act as a Tie, a Strut, or a
Beam.

I. A tie has equal and directly opposite forces applied to its two
ends, acting outwards, o'r from each other. The bar is in a state

of tension, and the stress exerted between any two divisions of it

is a pull, equal and opposite to the applied forces. A rope or
chain will answer the purpose of a tie.

TJie equilibrium of a movable tie is stable; for if its angular posi-
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tion be deviated, the forces applied to its ends, which originally
were directly opposed, now constitute a couple tending to restore

the tie to its original position.
II. A strut has equal and directly opposite forces applied to its

two ends, acting inwards, or towards each other. The bar is in a
state of compression, and the stress exerted between any two divi-

sions of it is a thrust equal and opposite to the applied forces. It

is obvious that a flexible body will not answer the purpose of a
strut.

The equilibrium of a movable strut is unstable; for if its angular
position be deviated, the forces applied to its ends, which originally
were directly opposed, now constitute a couple tending to make it

deviate still farther from its original position.
In order that a strut may have stability, its ends must be pre-

vented from deviating laterally. Pieces connected with the ends
of a strut for this purpose are called stays.

III. A beam is a bar supported at two points, and loaded in a
direction perpendicular or oblique to its length.
Case I.—Let the supporting pressures be parallel to each

other and to the direction of the load ; and let the load act between
the points of support, as in fig. 105; where P n^

represents the resultant of the gross load, in- T t,

eluding the weight of the beam itself; L, the
-^j

t

point where the line of action of that resultant ^ I

intersects the axis of the beam; E^, Kg' *^® .^

two supporting pressures or resistances of the -^^S- 10^-

props parallel to, and in the same plane with P, and acting through
the points Sj, Sg, in the axis of the beam.

Then, according to the principle of the lever. Article 225^

page 128, each of those three forces is proportional to the distance

between the lines of action of the other two
;
and the load is equal

to the sum of the two supporting pressures ; that is to say,

P : Pj^ : P2
* '

S-j^ S2 I L S2 '. J-i
Sj^; (1.)

andP^R^ + Ra (2.)

Case II.—Let the load act beyond the points of support, as in

fig. 106, which represents a cantilever or project- . 31/

ing beam, held up by a wall or other prop at Sp d
held down by a notch in a mass of masonry or sMz__
otherwise at Sg, and loaded so that P is the re- 1

0i.

sultant of the load, including the weight of the ^
-^

beam. Then the proportional Equation 1. re- %^^
mains exactly as before; but the load is equal to

the difference of the supporting pressures ; that is to say,

106.

P = Ri-Ptta.
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In these examples the beam is represented as horizontal; but the
same principles would hold if it were inclined.

Case III.—Let the directions of the supporting forces Rj, Rj,
be now inclined to that of the resultant of

the load, P, as in fig. 107. This case is that

of the equilibrium of three forces treated of

in Article 209, page 122, and consequently
the following principles apply to it :—
The lines of action of the supporting

forces and of the resultant of the load must
be in one plane.

Tot
^

They must intersect in one point (C,- •

fig. 107).
Those three forces must be proportional to the three sides of a.

triangle A, respectively parallel to their directions.

Problem.—Given, the resultant of the load in magnitude and

position, P, the line of action of one of the supporting forces, Rj,
and the centre of resistance of the other, Sg; required, the line

of action of the second supporting force, and the magnitudes of

both.

Produce the line of action of R^, till it cuts the line of action of

P at the point C; join C S^; this will be the line of action of Rg;
construct a triangle A with its sides respectively parallel to those

three lines of action; the ratios of the sides of that triangle will

give the ratios of the forces.

To express this algebraically, let i^, i^, be the angles made by the

lines of action of the supporting forces with that of the resultant

of the load; then

P : Ri : Ra : : sin
(i^

+
i^)

: sin i^ : sin Zj (4.)

The same piece in a frame may act at once as a beam and tie, or

as a beam and strut
;
or it may act alternately as a strut and as a

tie, as the action of the load varies.

The load tends to break a tie by tearing it asunder, a strut by
crushing it, and a beam by breaking it across. The power of

materials to resist those tendencies will be considered in a later

section.

268. Distributed Loads.—Before applying the principles of

the present .section to frames in which the load, whether external

or arising from the weight of the bars, is distributed over their

length, it is necessary to reduce that distributed load to an equiva-
lent load, or series of loads, applied at the centres of resistance.

The steps in this process are as follows :
—

I. Find the resultant load on each single bar.

II. Resolve that load, as in Article 267, Equation 1, page 159,
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into two parallel components acting through the centres of resist-

ance at the two ends of the bar.

III. At each centre of resistance where two bars meet, combine
the component loads due to the loads on the two bars into one

resultant, which is to be considered as the total load acting through
that centre of resistance.

IV. When a centre of resistance is also a point of support, the

component load acting through it, as found by step II. of the pro-

cess, is to be left out of consideration until the supporting force

required by the system of loads at the other joints has been deter-

mined; with this supporting force is to be compounded a force

equal and opposite to the component load acting directly through
the point of support, and the resultant will be the total supporting
force.

In the following Articles of this section, all the frames will be

supposed to be loaded only at those centres of resistance which
are not points of support; and, therefore, in those cases in which

components of the load act directly through the points of support
also, forces equal and opposite to such components must be com-
bined with the supporting forces as determined in the following
Articles, in order to complete the solution.

269. Frames of Two Bars.—Figures 108, 109, and 110, repre-
sent cases in which a frame- of two bars, jointed to each at the

point L, is loaded at that point with a given force, P, and is sup-

Fig. 108. Fig. 109. Fig. 110.

ported by the connection of the bars at their farther extremities,

Si, Sa, with fixed bodies. It is required to find the stress on each

bar, and the supporting forces at Si and 83.

Resolve the load P (as in Article 213, page 123) into two com-

ponents, E-i, Raj acting along the respective lines of resistance of

the two bars. Those components are the loads borne by the two

bars respectively ;
to which loads the supporting forces at Sj, Sg,

are equal and directly opposed.
The symbolical expression of this solution is as follows:—Let

^l, ^2, be the respective angles made by the lines of resistance of the

bars with the line of action of the load; then

P : Ri : R2 : : sin (ij
+ i^ : sin 4 : sin i^.
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The inward or outward direction of the forces acting along each

bar indicates that the stress is a thrust or a pull, and the bar a strut

or a tie, as the case may be. Fig. 108 represents the case of two

ties; fig. 109 that of two struts (such as a pair of rafters abutting

against two walls); fig. 110 of a strut, L Sj, and a tie, L Sg (such
as the jib and the tie-rod of a crane).
A frame of two bars is stable as regards deviations in the plane

of its lines of resistance.

With respect to lateral deviations of angular position, in a

direction perpendicular to that plane, a frame of two ties is stable;
so also is a frame consisting of a strut and a tie, when the direction

of the load inclines from the line Sj 83, joining the points of sup-

port.
A frame consisting of a strut and a tie, when the direction of

the load inclines towards the line Si Sg, and a frame of two struts

in all cases, are unstable laterally, unless provided with lateral

stays.
These principles are true o^ any pair ofadjacent bars whose farther

centres of resistance are fixed; whether forming a frame by them-

selves, or a part of a more complex frame.

270. Triangular Frames.—Let fig. Ill represent a frame, con-

sisting of three bars. A, B, C, connected at the

three joints 1, 2, 3,
—

viz., C and A at 1, A and B
at 2, B and C at 3. Let a load P^^ be applied at

the joint 1 in any given direction; let supporting

-p.^
,,,

'^

forces, Pg, Pg, be applied at the joints 2, 3; the
"' '

lines of action of those two forces must be in the

same plane with that of P^, and must either be parallel to it or

intersect it in one point. The latter case is taken first, because its

solution comprehends that of the former.

c The three external forces balance each other,

and are therefore proportional to the three sides

of a triangle respectively parallel to their direc-

tions. In
fig. 112, let A B C be such a triangle,

in which

C A
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Fig. 113.

in fig. 113, divided into two segments by the point B. Let straight
lines radiate from O to A, B, 0, respectively parallel

to the bars of the frame; then if the load C A be

applied at 1 (fig. Ill), A B applied at 2, and B C

applied at 3, are the supporting forces required to

balance it
;
and the radiating lines O A, O B, O C,

represent the stresses on the bars A, B, C, respec-

tively, as before.

From O let fall O H perpendicular to C A, the

common direction of the external forces. Then that

line will represent a component of the stress, which is

of equal amount in each bar. When C A, as is usually the case, is

vertical, O H is horizontal ;
and the force represented by it is called

the ^^ horizontal thrust" of the frame. Horizontal Stress or Resist-

ance would be a more precise term; because the force in question
is a pull in some parts of the frame, and a thrust in others.

In fig. Ill, A and C are struts, and B a tie. If the frame were

exactly inverted, all the forces would bear the same proportions to

each other; but A and C would be ties, and B a strut.

The trigonometrical expression of the relations amongst the forces

acting in a triangular frame, under parallel forces, is as follows :
—

Let a, b, c, denote the respective angles of inclination of the bars

A, B, C, to the line O H (that is, in general, to a horizontal line);

viz., the angles A O H, B O H, G H of
fig. 113, then

Horizontal Stress H load C A
tan c ± tan a

' •(!•)

.(2.)

The sign

Supporting J A B = O H •

(tan a + tan h) ; 1

Forces \ B C = O H •

(tan b ± tan c); j

{

+ ) is to be used when the two 1 opposite directions,
-

j,
inclinations are in

J
the same direction.

A = H • sec

Stresses {O B = O H • sec

(O = H-sec

a)
.(3.)

271. Polygonal Frame.—In fig. 114, let A, B, 0, D, E, be the

lines of resistance of the bars of

a frame connected together at

the joints, whose centres of re-

sistance are, 1 between A and B,
2 between B and 0, 3 between

and D, 4 between D and E^
and 5 between E and A. In the
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Fig. 115.

figure, tlie frame consists of five bars; but the principle is appli-
cable to any number. From a point O, in

fig. 115,

(which may be called the Diagram of Forces), draw

radiating lines O A, O B, O C, D, O E, parallel

respectively to the lines of resistance of the bars;
and on those radiating lines take any lengths
whatsoever, to represent the stresses on the
several bars, which may have any magnitudes
within the limits of strength of the material.

Join the points thus found by straight lines, so as

to form a closed polygon A B C D E A
;
then the

sides of the polygon will represent a system offerees,

which, being applied to the joints of the frame, will

balance each other; each such force being applied to the joint
between the bars whose lines of resistance are parallel to the pair
of radiating lines that enclose the side of the polygon of forces

representing the force in question.
When the external forces are parallel to each other, the polygon

of forces of fig. 115 becomes a straight line AD,
as in fig. 116, divided into segments by the radiating

lines; and each segment represents the external force

which acts at the joint of the bars whose lines of

resistance are parallel to the radiating lines that

bound the segment. Moreover, the segment of the

line A D which is intercepted between the radiating
lines parallel to the lines of resistance of any two
bars whether contiguous or not, represents the re-

sultant of the external forces which act at points
hetvjeen the bars.

Thus, A D represents the total load, consisting
of the three portions A B, B C, CD, applied at

1, 2, 3, respectively. DA represents the total supporting force,

equal and opposite to the load, consisting of the two portions D E,
E A, applied at 4 and 5 respectively. A C represents the resultant

of the load applied between the bars A and C; and similarly for

any other pair of bars.

From O draw O H perpendicular to AD; then that line repre-
sents a component of the stress, whose amount is the same in each

bar of the frame. When the load, as is usually the case, is verti-

cal, that component is called the " horizontal thrust*^ of the frame,

and, as in Article 270, might more correctly be called horizontal

stress or resistance, seeing that it is a pull in some of the bars and
a thrust in others.

The trigonometrical expression of those principles is as follows :
—

Let the force O H be denoted simply by H.
Let i, i', denote the inclinations to O H of the lines of resistance

of any two bars, contiguous or not.

Fig, 116.
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Let R, K', be the respective stresses which act along those bars.

Let P be the resultant of the external forces acting through the

joint or joints between those two bars.

Then
P = H (tani± tan ^'); (1.)

11 = 11' sect; W = H'seci'
(2.)

The < T/A > of the tanf?ents of the inclinations is to be
(
difterence

J
^

used, according as the inclinations are < •

-i . r

272. Open Polygonal Frame.—When the frame, instead of being
closed, as in fig. 114, is converted into an open frame, by the omis-

sion of one bar, such as E, the corresponding modification is made
in the diagram of "inclined forces, fig. 115, by omitting the lines

O E, D E, E A, and in the diagram of parallel forces, fig. 116, by
omitting the line E. Then, in both diagrams, D O and O A
represent the supporting forces respectively, equal and directly

opposed to the stresses along the extreme bars of the frame, D and

A, which must be exerted by the supports (called in this case

abutments), at the points 4 and 5, against the ends of those bars,
in order to maintain the equilibrium.

In the case of parallel loads, the following formulae give the

horizontal stress and supporting pressures.
Let ia and i^ denote the angles of inclination of the bars D and A

respectively.
Let R^ = O D and P„ = O A be the stresses along them.
Let 2 • P = A D denote the total load on the frame; then,

jj_
2 • P .

tan i^ + tan'i^
' ^ ''

E^ =H -sec 4; Pa = H -seci^ (2.)

273. Polygonal Frame—Stability.—The stability or instability
of a polygonal frame depends on the principles stated in Article

207, page 159, viz., that if a bar be free to change its angular position,
then if it is a tie it is stable, and if a strut, unstable; and that a
strut may be rendered stable by fixing its ends.

For example, in the frame of fig. 114, E is a tie, and stable; A, B,
C, and D, are struts, free to change their angular position, and
therefore unstable.

But these struts may be rendered stable in the plane of the
frame by means of stays; for example, let two stay-bars connect the

joints 1 with 4, and 3 with 5; then the points 1, 2, and 3, are all

fixed, so that none of the struts can change their angular posi-
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tions. The same effect might be produced by two stay -bars con-

necting the joint 2 with 5 and 4.

The frame, as a whole, is unstable, as being liable to overturn

laterally, unless provided with lateral stays, connecting its joints
with fixed points.

Now, suppose the frame to be exactly inverted, the loads at 1,2,
and 3, and the supporting forces at 4 and 5, being the same as

before. Then E becomes a strut; but it is stable, because its ends
are fixed in position ;

and A, B, C, and D becomes ties, and are

stable without being stayed.
An open polygon consisting of ties, such as is formed by A, B, C,

and D, when inverted, is called by mathematicians, a funicular

polygon, because it may be made of ropes.
It is to be observed, that the stability of an unstayed polygon of

ties is of the kind which admits of oscillation to and fro about the

position of equilibrium. That oscillation may be injurious in

practice, and stays may be required to prevent it.

274. Bracing of Frames.—A brace is a stay-bar on which there

is a permanent stress. If the distribution of the loads on the

joints of a polygonal frame, though consistent with its equilibrium
as a whole, be not consistent with the equilibrium of each bar,

then, in the diagram of forces, when converging lines respectively

parallel to the lines of resistance are drawn from the angles of the

polygon of external forces, those converging lines, instead of meet-

ing in one point, will be found to have gaps between them. The
lines necessary to fill up those gaps will indicate the forces to be

supplied by means of the resistance of braces.*

The resistance of a brace introduces a pair of equal and opposite

forces, acting along the line of resistance of the brace, upon the

pair of joints which it connects. It therefore does not alter the

resultant of the forces applied to that pair of joints in amount nor

in position, but only the distribution of the components of that

resultant on the pair of joints.

To exemplify the use of braces, and the mode of determining the

stresses on them, let
fig. 117 represent a frame such as frequently

*
This method of treating braced frames contains an improvement sug-

gested by Prof. Clerk Maxwell in 1867.
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TJ.C.D

occurs in iron roofs, consisting of two struts or rafters, A and E,
and three tie-bars, B, C, and T>, form-

ing a polygon of five sides, jointed at

1, 2, 3, 4, 5, loaded vertically at 1, and

supported by the vertical resistance of

a pair of walls at 2 and 5. The joints
3 and 4 having no loads applied to

them, are connected with 1 by the

braces 1 4 and 1 3.

To make the diagram of forces (fig. 118), draw the vertical line

E, A, as in Article 271, to represent the direction of the load and of

the supporting forces.

The two segments of that line, A B and D E, are to be taken to

represent the supporting forces at 2 and 5
;
and the whole line E A

will represent the load at 1. From the ends, and from the point
of division of the scale of external forces, E A, draw straight lines

parallel respectively to the lines of resistance of the frame, each
line being drawn from the point in E A that is marked with the

corresponding letter. Then A a and B h, meeting at a, b, will

represent the stresses along A and B respectively ;
and E e and

D d, meeting in D e, will represent the stresses along D and E
respectively ;

but those four lines, instead of meeting each other

and C c parallel to C in one point, leave gaps, which are to be filled

up by drawing straight lines parallel to the braces: that is to say,
from a, b, to c, parallel to 1 3; and from d, e, to c parallel to 4 1.

Then those straight lines will represent the stresses along the braces

to which they are respectively parallel; and C c will represent the

tension along C. To each joint in the frame, fig. 117, there corre-

sponds, in fig. 118, a triangle, or other closed polygon, having its

sides respectively parallel, and therefore proportional, to the forces

that act at that joint. For example,

Joints, 1, 2, 3, 4, 5,

Polygons, EAaceE; ABbA; BcbB; Bdcl); D E eD.

The order of the letters indicates the directions in which the forces

act relatively to the joints.
Another method of treating simple cases of bracing is illu^Cr9«<;ed

by fig. 119. A and B are two struts, forming
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one straight bar; C and D are two equal tie-rods
; E, a stmt brace.

A vertical rod P is applied at the joint 1, between A and B; two
vertical supporting pressures, eacli denoted by R = P h- 2, act at

the joints 4 and 2. The joint 3 has no external load.

Fig. 120 is the diagram of forces, constructed as follows:—
Through a point O draw O B A parallel to A and B, O C parallel
to C, and O D parallel to D. Make O D = C; join CD; this

line will be parallel to the brace E, and perpendicular to O A.

Through D and C draw vertical lines I) B, C A; these, being
equal to each other, are to be taken to represent the two sup-

porting pressures E; and their sum D B + A C will represent
the load P. The equal tensions on C and D will be represented
by C and O B, and the thrusts along A, B, and E, by O A, O B,
and C D.
The polygon of external forces in this case is the crossed quad-

rilateral A C D B, in which C A and B D represent (as already

stated) the supporting pressures, and D C and A B the components
of the load P respectively parallel and perpendicular to the brace

E. When A and B are horizontal, and E vertical, A B in fig. 120

vanishes, and B D and C A coincide with the two halves of C D.
275. Rigidity of a Truss.—The word truss is applied in car-

pentry to a triangular frame, and to • a polygonal frame to which

rigidity is given by staying and bracing, so that its figure shall be

incapable of alteration by turning of the bars about their joints.
If each joint were like a hinge, incapable of offering any resistance

to alteration of the relative angular position of the bars connected by
it, it would be necessary, in order to fulfil the condition of rigidity,
that every polygonal frame should be divided by the lines of

resistance of stays and braces into triangles and other polygons,
so arranged that every polygon of four or more sides should be

surrounded by triangles on all but two sides and the included angle
at farthest : for every unstayed polygon of four sides or more, with
flexible joints, is flexible, unless all the angles except one be fixed

by being connected with triangles.

Sometimes, however, a certain amount of stiffness in the joints
of a frame, and sometimes the resistance of its bars to bending, is

relied upon to give rigidity to the frame, when the load upon it is

subject to small variations only in its mode of distribution. For

example, in the truss of fig. 121, the

tie-beam A A is made in one piece, or

in two or more pieces so connected

together as to act like one piece; and

part of its weight is suspended from

the joints C, C, by the rods C B, C B,
^^^' ^^^' These rods also serve to make the re-

sistance of the tie-beam A A to being bent act so as to prevent the

/\
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struts A C, C C, C A, from deviating from their proper angular
positions, by turning on the joints A, C, C, A. If A B, B B, and
B A, were three distinct pieces, with flexible joints at B B, it is

evident that the frame might be disfigured by distortion of the

quadrangle B C C B.

The object of stiffening a truss by braces is to enable it to sustain

loads variously distributed; for were the load always distributed in

one way, a frame might be designed of a figure exactly suited to

that load, so that there should be no need of bracing.
The variations of load produce variations of stress on all the

pieces of the frame, but especially on the braces; and each piece
must be suited to withstand the greatest stress to which it is liable.

Some pieces, and especially braces, may have to act sometimes as

struts and sometimes as ties, according to the mode of distribution

of the load.

276. Secondary and Compound Trussing.—A secondary truss

is a truss which is supported by another truss.

When a load is distributed over a great number of centres of

resistance, it may be advantageous, instead of connecting all those
centres by one polygonal frame, to sustain them by means of several

small trusses, which are supported by larger trusses, and so on, the
whole structure of secondary trusses resting finally on one large

truss, which may be called the primary truss. In such a combina-
tion the same piece may often form part of different trusses

;
and

then the stress upon it is to be determined according to the follow-

ing principle :
—

When the same bar forms at the same time part of two or more

different frames, the stress on it is the resultant of the several stresses

to which it is subject by reason of its position in the severalframes.
In a Compound Truss, several frames, without being distinguish-

able into primary and secondary, are combined and connected in

such a manner that certain pieces are common to two or more of

them, and require to have their stresses determined by the principle
above stated.

Example.—Fig. 122, represents a kind of secondary trussing
common in the framework of iron roofs.

Fis. 122.

The entire frame is supported by pillars at 2 and 3, each of which
sustains in all, half the weight.
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1 2 3 is the primary truss, consisting of two rafters 1 3, 1 2, and
a tie-rod 2 3.

The weight of a division of the roof is distributed over the

rafters.

The middle point of each rafter is supported by a secondary truss;
one of those is marked 14 3; it consists of a strut, 1 3 (the rafter

itselfj, two ties 4 1, 4 3, and a strut-brace, 5 4, for transmitting the

load, applied at 5, to the point where the ties meet.

Each of the two larger secondary trusses just described supports
two smaller secondary trusses of similar form and construction to

itself; two of those are marked 1 7 5, 5 6 3; and the subdivision of

the load might be carried still farther.

In determining the stresses on the pieces of this structure, it is

indifferent, so far as mathematical accuracy is concerned, whether
we commence with the primary truss or with the secondary trusses;
but by commencing with the primary truss, the process is rendered

more simple.

(1.) Primary Truss 12 3. LetW denote the weight of the roof;
then

I"
W is distributed over each rafter, the resultants acting

through the middle points of the rafters. Divide each of those

resultants into two equal and parallel components, each equal to

\ W, acting through the ends of the rafter; then
;|
W is to be

considered as directly supported at 3, J W at 2, and :j
W +

;^
W

= ^ W at 1
;
therefore the load at the joint 1 is

P =
J W.

Let i be the inclination of the rafters to the horizon
;
then by the

equations of Article 270.

H- ^ =
vv

, .J.
2 tan ?^ 4 tan i'

^ '

This is the pull upon the horizontal tie-rod of the primary truss,

2 3
;
and the thrust on each of the rafters 1 3, 1 2, is given by the

equation
. W cosec i 1^R = H sec 1 = , (2.)

(2.) Secondary Truss 14 3 5. The rafter 1 3 has the load J W
dsstributed over it; and reasoning as before, we are to leave two

quarters of this out of the calculation, as being directly supported
at 1 and 3, and to consider one-half, or \ W, as being the vertical

load at the point 5. The truss is to be considered as consisting of

a polygon of four pieces, 5 1, 1 4, 4 3, 3 5, two of which happen to

be in the same straight line, and of the strut-brace, 5 4, which

exerts obliquely upwards against 5, and obliquely downward?
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against 4, a thrust equal to the component perpendicular to the

rafter of the load J W j which thrust is given by the equation

I^54
= i "W COS i, (3.)

Then we easily obtain the following values of the stresses on the

rafter and ties, in which each stress is distinguished by having affixed

to the letter R the numbers denoting the two joints between which
it acts.

Pulls / R,. 1

on ties
I
^43 = ^41 =2^ i

"
8
^ ^^*^^ ^'

Thrusts
I Ro, = o-^^ + IW sin ^ =

^,
W cosec i, V (4.)

^^
^

30 2tan* & 8

^
^

rafter
j

^ ^ _R,,_ _
^ w sin z = JW (cosec i - 2 sin

i) ;

[
^^ 2 tan ^ 8 8 ^ ^

J

The difference between the thrusts on the two divisions of the

rafter,

1^35
-

1^51
= i^^ sin i,

is the coniponent along the rafter of the load at the point 5.

(3.) Smaller Secondare/ Trusses, 1 7 5, 5 6 3.—These trusses are

similar in every respect to the larger secondary trusses, except
that the load on each point is one-half, and consequently each of

the stresses is reduced to one-half of the corresponding stress in the

Equations 3 and 4.

(4.) Resultant Stresses. The pull on the middle division of the

great tie-rod 2 3 is simply that due to the primary truss, 12 3. The

pull on the tie 4 7 is simply that due to the secondary truss 14 3.

The pulls on the ties 5 7, 5 6, are sitoply those due to the smaller

secondary trusses, 1 5 7, 5 6 3. But agreeably to the Theorem stated

at the commencement of this article, the pull on the tie 1 7 is the

sum of those due to the larger secondary truss 14 3, and the smaller

secondary truss 17 5. The pull on 6 4 is the sum of those due to

the primary truss 12 3, and to the larger secondary truss 14 3. The

pull on 6 3 is the sum of those due to the primary truss 1 2 3, to the

larger secondary truss 14 3, and to the smaller secondary truss 5 6 3.

The thrust on each of the four divisions of the rafter 1 3, is the sum
of three thrusts, due respectively to the primary truss, the larger

secondary truss, and one or other of the smaller secondary trusses.

277. Resistance of a Frame at a Section The labour of calcu-

lating the stress on the bars of a frame may sometimes be abridged
by the application of the following principle :

—
If aframe be acted upon by any system, of externalforces, and if

thatframe be conceived to be coinpletely divided into two parts by an
ideal surface, the stresses along the bars which are intersected by that
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surface, hala?ice the external forces which act on each of the two i^arts

of the frame.
In most cases which occur in practice, the lines of resistance of

the bars, and the lines of action of the external forces, are all in one
vertical plane, and the external forces are vertical. In such cases

the most convenient position for an assumed plane of section is

vertical, and perpendicular to the i)lane of the frame. Take the

vertical line of intersection of these two planes for an axis of co-

ordinates,
—

say for the axis of y, and any convenient point in it

for the origin O; let the axis of x be horizontal, and in the

plane of the frame, and the axis of z horizontal, and in the plane of

section.

The external forces applied to the part of the frame at one side

of the plane of section (either may be chosen), being combined, as

in Article 235, page 134, give three data—viz., the total force along
57 = 2 • X; the total force along 2/

= 2 • Y j and the moment of

the couple acting round 2; = M; and the bars which are cut by
the plane of section must exert resistances capable of balancing
those two forces and that couple. If not more than three bars

are cut by the plane of section, there are not more than three

unknown quantities, and three relations between them and given
quantities, so that the problem is determinate; if more than
three bars are cut by the plane of section, the jDroblem is or may
be indeterminate.

The formulre to which this reasoning leads are as follows :
—Let

X be positive in a direction from the plane of section towards the

part of the structure which is considered in determining S
•

X, 2 •

Y,
and Mj let \-y\)% measured upwards; let angles measured from
Ox towards + y, that is, upwards, be positive; and let the lines of

resistance of the three bars cut by the jjlane of section make the

angles ?j, ^2, ?3,
with x. Let w^, n^, n^, be the perpendicular dis-

tances of those three lines of resistance from O, distances lying

f upwards ) n r\ ^
- •

i j f positive )

< ,
^

1 > from O X bemff considered as <
^

,
. V

\
downwards

j i negative. J

Let E^, Rgj 1^3'
^® ^^^® resistances, or total stresses, along the

three bars, pulls being positive, and thrusts negative. Then we
have the following three equations :

—
2 • X =

Rj^ cos
i^ + Rg ^^^^ h + -^3 ^^^ h '} )

2 •

Y=:Rj sin
i^
+ ^2. ^i" ^2"^ ^3 ^i^^

'''3; f (!•)
- M =

itj TZj
+ Rg ^^2

"^
-^^3 '^h } /

from which the three quantities sought, 11^, Rg' ^^3 ^^^ ^® found.

Si)eaking with reference to the given plane of section, 2 • X may
be called the normal stress, 2

•

Y, the shearing stress, and M, the
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moment offlexure, or lending stress; for it tends to bend the frame

at the section under consideration. M is to be considered as

< P '

. > according; as it tends to make the frame become con-
( negative j

°

J upwards )

(
downwards.

J

The following is one of the simplest examples of the solution of

a problem by the method of polygons, and the method of sections.

Fig. 121 represents a truss of a form very common in carpentry

(already referred to in Article 275), and consisting of three struts,

A C, C C, C A, a tie-beam A A, and two suspension-rods, C B, C B,
which serve to suspend part of the weight of the tie-beam from
the joints C C, and also to stiffen the truss in the manner men-
tioned in Article 275.

Let i denote the equal and opposite inclinations of the rafters

AC, C A, to the horizontal tie-beam A A; and leaving out of

consideration the portions of the load directly supported at A, A,
let P, P, denote equal vertical loads applied at C, C, and -

P, - P,

equal upward vertical supporting forces applied at A, A, by the

resistance of the props. Let H denote the pull on the tie-beam,
K the thrust on each of the sloping rafters, and T the thrust on
the horizontal strut C C

Proceeding by the method of polygons, as in Article 271, we find

at once,

H = - T = P cotan i
; )

\ (2.)

E, = - P cosec i. )

(Thrusts being considered as negative.)
To solve the same question by the method of sections, suppose a

vertical section to be made by a plane traversing the centre of the

right hand joint C ; take that centre for the origin of co-ordinates;
let X be positive towards the right, and y positive downwards; let

£C]^, 2/i,
be the co-ordinates of the centre of resistance at the right

hand point of support A, When the plane of section traverses the

centre of resistance of a joint, we are at liberty to suppose either

of the two bars which meet at that joint on opposite sides of

the plane of section to be cut by it at an insensible distance from
the joint.

First, consider the plane of section as cutting C A. The forces

and couple acting on the part of the frame to the right of the

section are

r, = 0;F,= -PM = - Vx,.
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Then, observing that for the strut AC, n-O, and that for the tie

A A, w = 1/^,
we have, by the equations 1 of this Article

Ecos^ + H = ^, = 0;
E/ sin i = - P

;

H?/i= -M= +Fxj^;
whence we obtain, from the last equation,

H==?^ = Pcotan^ 1

2/1 I

from the first, or from the second
J> (3.)

E. = -.

= - P cosec i
cos I J

Next, conceive the section to cut C C at an insensible distance

to the left of C. Then the equal and opposite applied forces + P
at C, and - P at A, have to be taken, into account ; so that

from the first of which equations we obtain

H + T=:P^ = 0, and

T= -H= -Pcotant
(4.)

In the example just given, the method of sections is tedious and

complex as compared with the method of polygons, and is intro-

duced for the sake of illustration only.
278. Balance of a Chain or Cord.—A loaded chain may be looked

upon as a polygonal frame whose pieces and joints are so numerous
that its figure may without sensible error be treated as a continuous
curve. Q'he following are the princijjles respecting the equilibrium
of loaded chains and cords which are of most importance in practice.

I. Balance of a Chain in general.
—Let D A C, in fig. 123, repre-

sent a flexible cord or chain supported at the points C and D, and
loaded by forces in any
direction, constant or vary-

ing, distributed over its

whole length with constant

or varying intensity.
Let A and B be any

_ two points in this chain ;

lig. 123. from those points draw

tangents to the chain, A P and B P, meeting in P. The load acting
on the chain between the points A and B is balanced by the pulls

along the chain at those two points respectively; those pulls must

respectively act along the tangents A P, B P; hence the resultant

of the load between A and B acts through the point of intersection

of the tangents at A and B; and that load, and the tensions on the
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Fi^. 121

cliain at A and B, are respectively proportional to the sides of a

triangle parallel to their directions.

II. Chain under Vertical Load.—Curve of Equilibrium.
—If the

direction of the load be everywhere parallel and vertical, draw a

vertical straight line, CD, fig. 124, to represent the total load, amd
from its ends draw C O and D O, parallel to two tangents at the

points of support of the chain, and meeting in O
;

those lines will represent the tensions on the chain

at its points of support.
Let A, in fig. 123, be the lowest point of the

chain. In fig. 124, draw the horizontal line O A;
this will represent the horizontal component of the

tension of the chain at every point, and if O B be

parallel to a tangent to the chain ^t B (fig. 123),
A B will represent the portion of the load sup-

ported between A and B, and O B the tension at B.

To express this algebraically, let

H = A = horizontal tension along the chain at A;
E. = O B =

pull along the chain at B;

P = A B = load on the chain between A and B;

i= ZX P B
(fig. 123) = Z A O B fig. 124) = inclination of

chain at B;
then,

P-Htan^;B= J {F^ + 11^)=IL seci (1.)

To deduce from these formulae an equation by which the form of

the curve assumed by the chain can be determined when the dis-

tribution of the load is known, let that curve be referred to rect-

angular, horizontal, and vertical co-ordinates, measured from the

lowest point A, fig. 123, the co-ordinates of B being, A^ = x,

X B =
?/, then tan i =-—=—

,
a differential equation, which enables

ClX JlL

the form assumed by the cord (or
" curve of equilibrium") to be

determined when the distribution of the load is known.
279. Stability of Blocks.—The conditions of stability of a single

block supported upon another body at a plane joint may be thus

summed up :
—

In fig. 125, let A A represent the upper block,
B B part of the supporting body, e E the joint,
C its centre of pressure, P C the resultant of

the whole pressure distributed over the joint,
N C, T C, its components perpendicular and

parallel to the joints respectively. Then the

conditions of stability are the following :
—

I. In order that the block may not slide, the obliquity of the

Fig. 125.
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pressure must not exceed the angle of repose (Article 231, page 154),
that is to say,

ZPCN^^ (1.)

II. In order that the block may he in no danger of overturning, the

ratio which the deviation of the centre of pressure from the centre of

figure of the joint hears to the length of the diameter of the joint

traversing those two centres, must not exceed a certainfraction. The
value of that fraction varies, according to circumstances, from one-

eighth to three-eighths.
The first of these conditions is called that oi stahility ofJriction^

the second, that of stability ofposition.
In a structure composed of a series of blocks, or of a series of

courses so bonded that each may be considered as one block, which
blocks or courses press against each other

,'^'^ at plane joints, the two conditions of

stability must be fulfilled at each joint.
Let fig. 126 represent part of such a

structure, 1, 1, 2, 2, 3, 3, 4, 4, being
some of its plane joints.

Suppose the centre of pressure Cj of

the joint 1, 1, to be known, and also the

amount and direction of the pressure, as

indicated by the arrow traversing Cj.

"With that pressure combine the weight of the block 1, 2, 2, 1,

together with any other external force which may act on that block;
the resultant will be the total pressure to be resisted, at the joint

2, 2, which will be given in magnitude, direction, and position, and
will intersect that joint in the centre of pressure Cg. By continu-

ing this process there are found the centres of pressure Cg, C4, &c.,

of any number of successive joints, and the directions and magni-
tudes of the resultant pressures acting at those joints.

The magnitude and position of the resultant pressure at any

joint whatsoever, and consequently the centre of pressure at that

joint, may also be found simply by taking the resultant of all the

forces which act on one of the parts into which that joint divides

the structure.

The centres of pressure at the joints are sometimes called centres

of resistance. A line traversing all those centres of resistance, such

as the dotted line R R, in fig. 126, has received from Mr., Moseley
the name of the " line of resistance ;

" and that author has also

shewn how in many cases the equation which expresses the form of

that line may be determined, and applied to the solution of useful

problems.
The straight lines representing the resultant pressures may be

all parallel, or may all lie in the same straight line, or may all
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intersect in one point. The more common case, however, is that

in which those straight lines intersect each other in a series of

points, so as to form a polygon. A curve, such as P P, in
fig. 126

touching all the sides of that polygon, is called by Mr. Moseley
the " line ofprtssuresy
The properties which the line of resistance and line of pressures

must have, in order that the conditions of stability may be fulfilled,

are, as already stated, the' following :
—

To insure stability of position, the line of resistance must not

deviate from the centre offigure of any joi7it hy mo7'e than a certain •

fraction of the diameter of the joint, measured in the direction of
deviation.

To insure stability of friction, the normal to each joint must not

make an angle greater than the angle of repose with a tangent to

the line ofpressures drawn through the centre ofresistance ofthatjoint.
Conceive a line to pass tlirough all the limiting positions of the

centre of resistance of the joint, so as to enclose a space beyond
which that centre must not be found.

The product of the weight of the structure into the horizontal dis-

tance of a point in this linefrom a vertical line traversing the centre

of gravity of the structure is the moment of stability of the struc-

ture, when the applied thrust acts in a vertical plane parallel to that

horizontal, distance, and tends to overturn the structure in the direc-

tion of the given point in the line limiting the position of tJie centre of
resistance; for that, according to Article 222, is the moment of the

couple, which, being combined with a single force equal to the

weight of the structure, transfers the line of action of that force

parallel to itself through a distance equal to the given horizontal

distance of the centre of resistance from the centre of gravity of

the structure. The applied couple usually consists of the thrust of

a frame, or an arch, or the pressure of a fluid, or of a mass of earth,

against the structure, together with the equal, opposite, and parallel,
but not directly opposed, resistance of the joint to that lateral

force.

To express this symbolically, let t be the length of the diameter
of the joint where it is cut by the vertical plane traversing the

centre of gravity of the structure and parallel to the applied thrust;
let J be the inclination of that diameter to the horizon; let qthQ
the distance of the given limiting centre of resistance from the
middle point of that diameter, and q' t the distance from the same
middle point to the point where the diameter is cut by the vertical

line through the centre of gravity of the structure, and let W be
the weight of the structure. Then the moment of stability is

W {q± q') t cos;; (1.)

the sign \ _ > being used according as the centre of resistance.
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and the vertical line through the centre of gravity, lie towards

I xf -J !-
of the middle of the diameter.

(
the same side

J

Let h denote the height of the structure above the middle of the

plane joint which is its base, b the breadth of that joint in a direc-

tion perpendicular or conjugate to the diameter t, and w the weight
of an unit of volume of the material. Then we shall have

W = n'whhf (2.)

where w is a numerical factor depending on the figure of the

structure, and on the angles which the dimensions, h, b, t, make
with each other; that is, the angles of obliquity of the co-ordinates

to which the figure of the structure is referred. Introducing this

value of the weight of the structure into the formula 1, we find the

following value for the moment of stability :
—

n (q ± q') cos J
•w hb fi (3.)

This quantity is divided by points into three factors, viz. :
—

'(1.) n{q ± q) cos J, a numericolfactor, depending on thefigure
of the structure, the obliquities of its co-ordinates, and the direction

in which the applied force tends to overturn it.

(2.) ID, the specific gravity of the material.

(3.) hb t^, a geometrical factor, depending on the dimensions of

the structure.

Now the first factor is the same in all structures having figures
of the same class, with co-ordinates of equal obliquity, and exposed
to similarly applied external forces; that is say, to all structures

whose figures, together with the lines of action of the applied forces,

are ^;a?'«^/e^ j^'^'^j^^^'^ons of each other, with co-ordinates of equal obli-

quity; hence for any set of structures which fulfil that condition,
the moments of stability are proportional to—

I. The specific gravity of the material;
II. The height;

III. The breadth;
IV. The square of the thickness; that is, of the dimension of

the base which is parallel to the vertical plane of the applied force.

280. Transformation of Blockwork Structures.—If a structure

composed of blocks have stability of position when acted on by
forces represented by a given system of lines, then will a structure

whose figure is a parallel projection of the original structure have

stability of position when acted on by forces represented by the

corresponding parallel projection of the original system of lines;

also, the centres of pressure in the new structure will be the

corresponding projections of the centres of pressure in the original
structure.

The question, whether the new structure obtained by transfor-

mation will possess stability offriction is an independent problem.
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CHAPTEE II.

PRINCIPLES AND RULES RELATING TO STRENGTH AND
STIFFNESS.

281. The Object of this Chapter is to give a summary of the

principles, and of the general rules of calculation, which are

applicable to problems of strength and stiffness, whatsoever the

particular material may be.

Section I.—Of Strength and Stiffness in General.

282. Load, Stress, Strain, Strength.—The load, or combination
of external forces, which is applied to any piece, moving or fixed,
in a structure or machine, produces stress amongst the particles
of that piece, being the combination of forces which they exert in

resisting the tendency of the load to disfigure and break the

piece, accompanied by strain, or alteration of the volumes and

figures of the whole piece, and of each of its particles.
If the load is continually increased, it at length produces either

fracture or (if the material is very tough and ductile) such a

disfigurement as is practically equivalent to fracture, by rendering
the piece useless.

The Ultimate Strength of a body is the load required to produce
fracture in some specified way. The Proof Strength is the load

required to produce the greatest strain of a specific kind con-

sistent with safety; that is, with the retention of the strength of

the material unimpaired. A load exceeding the proof strength of

the body, although it may not produce instant fracture, produces
fracture eventually by long-continued application and frequent
repetition.
The Working Load on each piece of a machine is made less than

the ultimate strength, and less than the proof strength, in certain

ratios determined partly by experiment and partly by practical

experience, in order to provide for unforeseen contingencies.
Each solid has as many different kinds of strength as there are

different ways in which it can be strained or broken, as shewn in

the following classification :—
Strain. Fracture.

Elementary {
Extension Tearing.

•'

( Compression (Jrushing.
i Distortion Shearing.

Compound -^ Twisting Wrenching.

( Bending Breaking across
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283. Coefficients or Moduli of Strength are quantities expressing
the intensity of the stress under which a piece of a given material

gives way when strained in a given manner; such intensity being

expressed in units of weight for each unit of sectional area of the

layer of particles at which the body first begins to yield. In

Britain, the ordinary unit of intensity employed in expressing the

strength of materials is the pound avoirdupois on the square inch.

Coefficients of strength are of as many difierent kinds as there

are diflferent ways of breaking a body. Their use will be explained
in the sequel.

Coefficients of strength, when of the same kind, may still vary

according to the direction in which the stress is applied to the

body. Thus the tenacity, or resistance to tearing, of most kinds of

wood is much greater against tension exerted along than across

the grain.
284. Factors of Safety.

—A factor of safety, in the ordinary sense,
is the ratio in which the load that is just sufficient to overcome

instantly the strength of a piece of material is greater than the

greatest safe ordinary working load.

The proper value for the factor of safety depends on the nature
of the material; it also depends upon how the load is applied.
The load upon any piece in a structure or in a machine is distin-

guished into dead load and live load. A dead load is a load which
is put on by imperceptible degrees, and which remains steady; such
as the weight of a structure, or of the fixed framing in a machine.

A live load is one that is or may be put on suddenly, or accom-

panied with vibration
;
like a swift train travelling over a railway

bridge; or like most of the forces exerted by and upon the moving
pieces in a machine.

It can be shewn that in most cases which occur in practice a

live load produces, or is liable to produce, twice, or very nearly

twice, the effect, in the shape of stress and strain, which an equal
dead load would produce. The inean intensity of the stress pro-
duced by a suddenly applied load is no greater than that produced
by the same load acting steadily; but in the case of the suddenly

applied load, the stress begins by being insensible, increases to

double its mean intensity, and then goes through a series of

fluctuations, alternately below and above the mean, accompanied
by vibration of the strained body. Hence the ordinary practice is

to make the factor of safety for a live load double of the factor

of safety for a dead load.

A distinction is to be drawn between real and apparent factors

of safety. A real factor of safety is the ratio in which the ultimate

or breaking stress is greater than the real working stress at the

time when the straining action of the load is greatest. The

apparent factor of safety has to be made greater than the real
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factor of safety in those cases in winch the calculation of strength
is based, not upon the greatest straining action of the load, but

upon a mean straining action, which is exceeded by the greatest

straining action in a certain proportion. In such cases the apparent
factor of safety is the product obtained by multiplying the real

factor of safety by the ratio in which the greatest straining action

exceeds the mean.
Another class of cases in which the apparent exceeds the real

factor of safety is when there are additional straining actions

besides that due to the transmission of motive power, and when
those additional actions, instead of being taken into account in

detail, are allowed for in a rough way by means of an increase of

the factor of safety. A third class of cases is when there is a

possibility of an increased load coming by accident to act upon the

piece under consideration. For example, a steam engine may
drive two lines of shafting, exerting half its power on each; one

may suddenly break down, or be thrown out of gear, and the

engine may for a short time exert its whole power on the other.

The following table shews the ordinary values of real factors of

safety :
—

Eeal Factors op Safett.
Dead Load. Live Load

Perfect materials and workmanship,— 2 4

Ordinary materials and workmanship-
Metals, 3 6

Wood, Hempen Ropes, ,from 3 to 5 10

Masonry and Brickwork, 4 8

The following are examples of apparent factors of safety ;
—

Ratio in which . ^„„ *
Greatest Effort ^^Pflf"?

Real Factor of Safety, 6 exceeds Mean eiV^A,^^
Effort, nearly.

^^^^^y-

Steam engines acting against a constant

resistance—
Single engine, 1'6 9"6

Pair of engines driving cranks at right ) -. ^
^,p

aiagles,... j

Three engines driving equiangular )
-j ^^ P o

cranks, j

Ordinary cases of varying effort and )

^.q -lij.r^

resistance,

Lines of shafting in millwork; apparent
factor of safety for twisting stress

due to motive power, to cover allow- y from 18 to 36

ances for bending actions, accidental
|

extra load, &c., J
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Almost all tlie experiments hitherto made on the strength of

materials give coefficients or moduli of ultimate strength; that is,

coefficients expressing the intensity of the stress exerted by the

most sev^erely strained particles of the material just before it gives

way. In calculations for the purpose of designing framework or

machinery to bear a given working load, there are two ways of

using the factor of safety,
—one is, to multiply the working load

by the factor of safety, so as to determine the breaking load, and
use this load in the calculation, along with the modulus of ultimate

strength : the other is, to divide the modulus of ultimate strength

by the factor of safety, and thus to find a modulus or coefficient

of working stress, which is to be used in the calculation, along
with the working load. It is obvious that the two methods are

mathematically equivalent, and must lead to the same result;
but the latter is on the whole the more convenient in designing
machines,

285. The Proof or Testing by experiment of the strength of a

piece of material is conducted in two different ways, according to

the object in view.

I. If the piece is to be afterwards used, the testing load must be

so limited that there shall be no possibility of its impairing the

strength of the piece; that is, it must not exceed the proof strength,

being from one-third to one-half of the ultimate strength. About
double or treble of the working load is in general sufficient. Care
should be taken to avoid vibrations and shocks when the testing
load approaches near to the proof strength.

II. If the piece is to be sacrificed for the sake of ascertaining the

strength of the material, the load is to be increased by degrees imtil

the piece breaks, care being taken, especially when the breaking

point is approached, to increase the load by small quantities at a

time, so as to get a sufficiently precise result.

The proof strength requires much more time and trouble for its

determination than the ultimate strength. One mode of approxi-

mating to the proof strength of a piece is to apply a moderate load

and remove it, apply the same load again and remove it, two or

three times in succession, observing at each time of application of

the load the strain or alteration of figure of the piece when loaded,

by stretching, compression, bending, distortion, or twisting, as the

case may be. If that alteration does not sensibly increase by re-

peated applications of the same load, the load is within the limit

of proof strength. The effects of a greater and a greater load being

successively tested in the same way, a load will at length be reached

whose successive applications produce increasing disfigurements of

the piece; and this load will be greater than the proof strength,
which will lie between the last load and the last load but one in

the series of experiments.
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It was formerly supposed tliafc the production of a set—that is, a

disfigurement which continues after the removal of the load—was
a test of the proof strength being exceeded

;
but Mr. Hodgkinson

shewed that supposition to be erroneous, by proving that in most
materials a set is produced by almost any load, how small soever.

The strength of bars and beams to resist breaking across, and of

axles to resist twisting, can be tested by the application of known

weights either directly or through a lever.

To test the tenacity of rods, chains, and ropes, and the resist-

ance of pillars to crushing, more powerful and complex mechanism
is required. The apparatus most commonly employed is the

hydraulic press. In computing the stress which it produces, no
reliance ought to be placed on the load on the safety valve, or on
a weight hung to the pump handle, as indicating the intensity of

the pressure, which should be ascertained by means of a pressure

gauge. This remark applies also to the proving of boilers by water

pressure. From experiments by Messrs. Hick and Liithy it appears

that, in calculating the stress produced on a bar by means of a

hydraulic press, the friction of the collar may be allowed for by
deducting a force equivalent to the pressure of the water upon an
area of a length equal to the circumference of the collar, and one-

eightieth of an inch broad.

For the exact determination of general laws, although the load

may be applied at one end of the piece to be tested by means of a

hydraulic press, it ought to be resisted and measured at the other

end by means of a combination of levers.

286. Stiffness or Rigidity, Pliability, their Moduli or Coefficients.

—
Rigidity or stiffness is the property which a solid body possesses

of resisting forces tending to change its figure. It may be expressed
as a quantity, called a modulus or coefficient of stiffness, by taking
the ratio of the intensity of a given stress of a given kind to the

strain, or alteration of figure, with which that stress is accom-

panied
—that strain being expressed as a quantity by dividing the

alteration of some dimension of the body by the original length of

that dimension. In most materials which are used in machinery,
the moduli of stiffness, though not exactly constant, are nearly
constant for stresses not exceeding the proof strength.
The reciprocal of a modulus of stiffness may be called a " modulus

ofpliability
"

that is to say,

-,/r 1 1 fci.-,-,' Intensity of Stress
• Modulus of Stiffness = -^^^^ ;

Strain

Modulus of Pliability = ^ .

^^^"
.,

.
•^

Intensity of fetress

287. The Elasticity of a Solid consists of stiffness, or resistance

to change of figure, combined with the T)ower of recovering the
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original figure when the straining force is withdrawn. If that

recovery is complete and immediate, the body is perfectly elastic;

if there is a set, or permanent change of figure, after the removal
of the straining force, the body is imperfectly elastic. The elasticity
of no solid substance is absolutely perfect, but that of many sub-

stances is nearly perfect when the stress does not exceed the proof
strength, and may be made sensibly perfect by restricting the stress

within small enough limits.

Moduli or Coefficients of Elasticity are the values of moduli of

stifi'ness when the stress is so limited that the value of each of

those moduli is sensibly constant, and the elasticity of the body
sensibly perfect.

288. Resilience or Spring is the quantity of mechanical work*

required to produce the proof stress on a given piece of material,
and is equal to the product of the proof strain, or alteration of

figure, into the mean load which acts during the production of

that strain
;
that is to say, in general, very nearly one-half of the

proof load.

289. Heights or Lengths of Moduli of Stiffness and Strength.—
The term height or length, as applied to a modulus or coefficient of

strength or of stiflfness, means the length of an imaginary vertical

column of the material to which the modulus belongs, whose

weight would cause a pressure on its base equal in intensity to

the stress expressed by the given modulus. Hence
Height of a modulus in feet'&"

Modulus in lbs, on the square foot

Heaviness of material in lbs. to the cubic foot'

Modulus in lbs. on the square inch

Weight of 12 cubic inches of the material'

Height of a modulus in inches

Modulus in lbs. on the square inch

Heaviness of material in lbs. to the cubic inch'

Height of a modulus in metres

Modulus in kilogrammes on the square metre

Heaviness of material in kilogrammes to the cubic metre
*

Section 2.—Of Resistance to Direct Tension.

290. Strength, Stiffness, and Resilience of a Tie.—The word tie

is here used to denote any piece in framing or in mechanism, such

* Mechanical Work, which will be fully treated of in Part VI., may be
defined as the product of o.force into the space through which it acts.
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as a rod, bar, band, cord, or chain, which is under the action of a

pair of equal and opposite longitudinal forces tending to stretch

it, and to tear it asunder. The common magnitude of those two
forces is the load

;
and it is equal to the product of the sectional

area of the piece into the intensity of the tensile stress. The
values of that intensity, corresponding to the immediate breaking
load, the proof load, and the working load, are called respectively
the moduli or coefficients of ultimate tenacity/, of proof tension, and
of working tension.

In symbols, let P be the load, S the sectional area, and p the

intensity of the tensile stress; then

i'=i'S (1.)

If the sectional area varies at different points, the least area is to

be taken into account in calculations of strength.
The elongation of a tie produced by any load, P, not exceeding

the proof load, is found as follows, provided the sectional area is

uniform :
—

Let X denote the original length of the tie, A x the elongation,
A ^

and a = the extension ;
that is, the proportion which that

elongation bears to the original length of the bar, being the

numerical measure of the strain.

Let E denote the modulus of direct elasticity, or resistance to

stretching. Then

« =
|^ A^ = «^ =

| ^' (2-)

Let/' denote the proof tension of the material, so that/' S is the

proof load of the tie; then the proof extension is/' -f- E.

The Resilience or Spring of the tie, or the work done in stretch-

ing it to the limit of proof strain, is computed as follows. The

length, as before, being x, the elongation of the tie produced by the

proof load is/ aj -=- E. The force which acts through this space has

for its least value 0, for its greatest value P =/ S, and for its mean

value/' S-^2; so that the work done in stretching the tie to the

proof strain, tliat is, its resilience or spring ,
is

/S fx /2 ^X .^.

"2"-E -"E-F ^""'^

The coefficient /2-^E, by which one-half of the volume of the

tie is multiplied in the above formula, is called the Modulus of
Resilience.
A sudden pull of / S -r- 2, or one-half of the proof load, being

applied to the bar, will produce the entire proof strain of /'-r-E,

which is produced by the gradual application of the proof load

itself; for the work performed bv the action of the constant force
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/' S -^ 2, tLrongli a given space, is the same with the work per-
I'ormed by the action, through the same space, of a force increasing
at an uniform rate from up to/' S. Hence a tie, to resist with

safety the sudden application of a given pull, requires to have twice
the strength that is necessary to resist the gradual application and

steady action of the same pull. This is an illustration of the

principle, that the factor of safety for a live load is twice that for a
dead load.

291. Thin Cylindrical and Spherical Shells.—Let r denote the
radius of a thin hollow cylinder, such as the shell of a liigh-pressure
boiler

;

t, the thickness of the shell ;

/, the ultimate tenacity of the material, in pounds per square
inch

;

p, the intensity of the pressure, in pounds per square inch, re-

quired to burst the shell. This ought to be taken at six times the
effective working pressure

—
effective pi^essure meaning the excess of

the jjressure from within above the pressure from without, which
last is usually the atmospheric pressure, of 14-7 lbs. on the square
inch or thereabouts.

Then

P = l,> (!•)

and the proper proportion of thickness to radius is given by the

formula,—

i^p
„..(2.)

*• / ^^

Thin spherical shells are twice as strong as cylindrical shells of

the same radius and thickness.

The tenacity ofgood wrought-iron boiler-plates is about 50,000 lbs.

Section 3.—Of Besistance to Distortion and Shearing.

292. Distortion and Shearing Stress in General.—In framework
and mechanism many cases occur in which the principal pieces, such

as plates, links, bars, or beams, being themselves subjected to ten-

sion, pressure, twisting, or bending, are connected with each other

at their joints by rivets, bolts, pins, keys, or screws, which are

under the action of a shearing force, tending to make them give

way by the sliding of one part over another.

Every shearing stress is equivalent to a pair of direct stresses of

the same intensity, one tensile and the other compressive, exerted
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in directions making angles of 45° with the shearing stress. Hence
it follows that a body may give way to a shearing stress either by
actual shearing, at a plane parallel to the direction of the shearing

force, or by tearing, in a direction making an angle of 45° with that

force. The manner of breaking depends on the structure of the

material, hard and brittle materials giving way by tension, and soft

and tough materials by shearing.
When a shearing force does not exceed the limit within which

moduli of stiffness are sensibly constant, it produces distortion of

the body on which it acts. Let q denote the intensity of shearing
stress applied to the four lateral faces of an originally square

prismatic particle, so as to distort it; and let » be the distortion,

expressed by the tangent of the difference between each of the distorted

angles of the prisjn and a right Ojngle; then

q = c, (1.)

is the modulus of transverse elasticity, or resistance to distortion.

One mode of expressing the distortion of an originally square

prism is as follows :
—Let « denote the proportionate elongation of

one of the diagonals of its end, and — a the proportionate shorten-

ing of the other J then the distortion is

V=2 Ot.

C
The ratio

-^
of the modulus of transverse elasticity to the modulus

of direct elasticity defined in Article 287, page 184, has different

values for different materials, ranging from to
77.

For wrought-
. . 1

^

iron and steel it is about
^.

Section 4.—Of Resistance to Twisting and Wrenching.

293. Twisting or Torsion in General.—Torsion is the condition
of strain into which a cylindrical or prismatic body is put when a

pair of couples of equal and opposite moment, tending to make it

rotate about its axis in contrary directions, are applied to its two
ends. Such is the condition of t^hafts which transmit motive power.
The moment is called the tivisting moment, and at each cross-

section of the bar it is resisted by an equal and opposite moment of
stress. Each particle of the shaft is in a state of distortion, and
exerts shearing stress.

In British measures, twisting moments are expressed in inch-lbs.

294. Strength of a Cylindrical Shaft.~A cylindrical shaft, A B,
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fig. 127, being subjected to the twisting raoment of a pair of eqnal
and opposite couples applied to the

cross-sections, A and B, it is required
to find the condition of stress and
strain at any intermediate cross-sec-

tion, such as S, and also the angular
displacement of any cross-section rela-

^^S* 127.
tively to any other.

From the uniformity of the figure of the bar, and the uniformity
of the twisting moment, it is evident that the condition of stress

and strain of all cross-sections is the same; also, because of the

circular figure of each cross-section, the condition of stress and
strain of all particles at the same distance from the axis of the

cylinder must be alike.

Suppose a circular layer to be included between the cross-section

S, and another cross-section at the longitudinal distance d x from
it. The twisting moment causes one of those cross-sections to

rotate relatively to the other, about the axis of the cylinder, through
an angle which may be denoted by d 6. Then if there be two

points at the same distance, r, from the axis of the cylinder, one in

the one cross-section and the other in the other, which points
were originally in one straight line parallel to the axis of the

cylinder, the twisting moment shifts one of those points laterally,

relatively to the other, through the distance r d 6. Consequently,
the part of the layer which lies between those points is in a con-

dition oi distortion, in a plane perpendicular to the radius r; and
the distortion is expressed by the ratio

'^''d-.' (^-^

which varies proportionally to the distance from the axis. There
is therefore a shearing stress at each point of the cross-section,

whose direction is perpendicular to the radius drawn from the axis

to that point, and whose intensity is proportional to that radius,

being represented by

?=<^'=«:-£ (2-)

The STRENGTH of the shaft is determined in the following man-
ner:—Let q^ be the limit of the shearing stress to which the

material is to be exposed, being the ultimate resistance to wrench-

ing if it is to be broken, the pi^oof resistance if it is to be tested,

and the working resistance if the working moment of torsion is to

be determined. Let r^ be the external radius of the axle. Then
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^1 is the value of q at the distance r-^
from the axis

;
and at any

other distance, r, the intensity of the shearing stress is

2=-^2ii: (3.)

Conceive the cross-section to be divided into narrow concentric

rings, each of the breadth d r. Let r be the mean radius of one of

these rings. Then its area is 2 -r r cZr; the intensity of the shear-

ing stress on it is that given by Equation 3, and the leverage of

that stress relatively to the axis of the cylinder is r; consequently
the moment of the shearing stress of the ring in question, being
the product of the three quantities,

^^, r, and ^ -^ r dr is
'^'^

 
• r^ d

which being integrated for all the rings from the centre to the

circumference of the cross-section, gives for the moment of torsion,

and of resistance to torsion,

M=^gir^
=
y^giA!; (4.)

ii h = 2
r-^

be the diameter of the shaft,

(^^
1-5708 ; ^ = 0-196

nearly).

If the axle is hollow, h^ being the diameter of the hollow, the

moment of torsion becomes

^^=i-G-*'-Ar ('-^

The following formulae serve to calculate the diameters of shafts

when the twisting moment and stress are given ;
solid shafts :

—

'''=i^ ' ^^-^

hollow shafts—

h. = \

( 5-i iVi_
\ 1

(7.)

Section 5.—Of Resistance to Bending and Cross-Breaking.

295. Resistance to Bending in General.—In explaining the prin-

ciples of the resistance which bodies oppose to bending and cross-

breaking, it is convenient to use the word beam as a general term



190 THEORY OF STRUCTURES.

to denote the body under consideration
;
but those principles are

applicable, not only to beams for supporting weights, but to levers,

cross-heads, cross-tails, shafts, journals, cranks, and all pieces in

machinery or framework to which forces are applied tending to

bend them and to break them across ; that is to say, forces trans-

verse to the axis of the piece.

Conceive a beam which is acted upon by a combination of

parallel transverse forces that balance each other, to be divided

into two parts by an imaginary transverse section
;
and consider

separately the conditions of equilibrium of one of those parts. The
external transverse forces which act on that part, and constitute

the load on it, do not necessarily balance each other. Their result-

ant may be found by the rule of Article 233, \iSLge 132. That
resultant is called the Shearing Load at the cross-section under con-

sideration, and it is balanced by the Shearing Stress exerted by the

particles which that cross-section traverses. The resultant moment
of the same set of forces, relatively to the same cross-section, may
be found by the same rule ;

it is called the Bending Moment at that

cross-section, and it is balanced (if the beam is stroug enough) by
the Moment ofStress exerted by the particles which the cross-section

traverses, called also the Moment of Resistance. That moment of

stress is due wholly to longitudinal stress, and it is exerted in the

following way:
—The bending of the beam causes the originally

straight layers of particles to become curved; those near the

concave side of the beam become shortened
;
those near the convex

side, lengthened ;
the shortened layers exert longitudinal thrust ;

the lengthened layers, longitudinal tension; the resultant thrust and
the resultant tension are equal and ojDposite, and compose a couple,
whose moment is the moment of stress, equal and opposite to the

bending moment.
In the solution of problems respecting the transverse strength of

beams, it is necessary to determine the shearing load and bending
moment produced by the transverse external forces at different

cross-sections, and especially at those cross-sections at which they
act most intensely, and the relations between the dimensions and

figure of a cross-section of the beam, and the moment of stress

which that cross-section is capable of exerting, so that each cross-

section, and especially that at which the bending moment is

greatest, may have sufficient strength.
296. Calculation of Shearing Loads and Bending Moments.—

In the formulae which follow, the shearing load at a given cross-

section will be denoted by F, and the bending moment by M. In

British measures it is most convenient to express the bending
moment in inch-lbs., because of the transverse dimensions of pieces
in machines being expressed in inches.

The mathematical process for finding F and M at any given



CALCULA.TION OF SHEARING LOADS. 191

cross-section of a beam, though always the same in principle, may
be varied considerably in detail. The following is on the whole

the most convenient way of conducting it :
—

Fig. 128 represents a beam supported at both ends, and loaded

between them. Fig. 129 represents a bracket; that is, a beam

supported 'dnd^fixed at one end, and loaded on a projecting portion.

P, Q, represent in each case the supporting forces; in fig. 128, Wj,

Fig. 128. Fig. 129.

W^, W3, (fee, represent portions of the load; in fig. 129, Wq re-

presents the endmost portion of the load, and W^, W5, Wg, other

portions; in both figures, Aooi, A0C2, Ax^, &c., denote the lengths of

the intervals into which the lines of action of the portions of the

load divide the longitudinal axis of the beam. The forces marked
W may be the weights of parts of the beam itself, or of bodies

carried by it
;
or they may be forces exerted by moving pieces in a

machine on each other; or, in short, they may be any external

transverse forces. If the body called the beam is a shaft, P and

Q will be the bearing pressures.
The figures represent the load as applied at detached points ;

but when it is continuously distributed, the length of any inde-

finitely short portion of the beam may be denoted by d x, the

intensity of the load upon it per unit of length by w, and the

amount of the load upon it by lo d x.

The process to be gone through will then consist of the follow-

ing steps :
—

Step I. To find the Supporting Forces or Bearing Pressures, P
and Q.—Assume any convenient point in the longitudinal axis as

origin of co-ordinates, and find the distance x^ of the resultant of

the load from it, by the rule of Article 233, page 132
;
that is

to say,

2W or

fxwdx

j
wdx

.(2.)
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Then, by the rule of Article 227, page 129, find the two sup-

porting forces or bearing pressures, P and Q; that is to say, let R
be the resultant load, and P R and E, Q its distances from the

points of support; and make

PQ:PR:QR
:R : Q : P^} (3.)

Step II. Tofind the shearing loads at a series of sections.—In

what position soever the origin of co-ordinates may have been

during the previous step, assume it now, in a beam supported at

both ends, to be at one of the points of support (as A, fig. 128), and
in a bracket to be at the loaded point farthest from the fixed end

(as A, fig. 129). Consider P as positive and W as negative.
Then the shearing load in any given interval of the length of

the beam is the resultant of all the forces acting on the beam from

the origin to that interval ; so that it has the series of values,

In Fig. 128.

r,,^p-w,;
F.23

= P-W,-W,;
F3^

= P_Wi-W2-W3; &c.

and generally,
F = P-2-W; (4.)

In Fig. 129.

Foi = Wo,;

-F,3 = Wo + Wl + ^Y,;

-F3, = Wo + Wi + W, + W3,&c.;
and generally,

-F-2-W; (5.)

so that the shearing loads which act in a series of intervals of the

length of the beam can be computed by successive subtractions or

successive additions, as the case may be.

For a continuously distributed load, these equations become

respectively,

In a beam supported at both ends, F = P - / w dx',...{^.)

In a bracket,
- F = I wdx; (7.)

in which expressions, x denotes the distance from the origin. A, to

the plane of section under consideration.

The positive and negative signs distinguish the two contrary
directions of the distortion which the shearing load tends to

produce.
The Greatest Shearing Load acts in a beam supported at both

ends, close to one or other of the points of support, and its value

is either P or Q. In a bracket, the greatest shearing load on the

projecting part acts close to the outer point of support, and its

value is equal to the entire load.

In a beam supported at both ends the Shearing Load vanishes,
or changes from positive to negative at some intermediate section,
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"whose position may be found from Equation 4 or Equation 6,

by making F = 0. At the second point of support, F = - Q.
Step III. Tofind the bending moments at a series of sections.—

At the origin A there is no bending moment. Multiply the

length of each of the intervals A a; of the longitudinal axis of the

beam by the sliearing load F, which acts throughout that interval;

the first of the products so obtained is the bending moment at

the inner end of the first interval
;
and by adding to it the other

j)roducts successively, there are obtained the bending moments at

the inner ends of the other intervals in succession.*

That is to say,
—

bending moment

at the origin A ; Mq =
;

at the line of action of W^; M-^
= Fqi

•

£\x^,

W^; Mg = Foi
•

A^i + Fi2 A ^gJ

„ „ „ Wg; M3 = Foi-A^i + -Fi2Aa;2 + F23-Aa73;
&c. &c.

and generally, M = S • ¥ Ax (8-)

If the divisions A x are of equal length, this becomes

M = Aa;-2F; (9.)

and for a continuously distributed load,

M = f^Fdx (10.)
-'

The three preceding Equations 8, 9, and 10, are applicable to

beams whether supported at both ends or fixed at one end. By
substituting for F in Equation 10 its values as given by Equations
6 and 7 respectively, we obtain the following results :

—
For a beam supported at both ends,

M = ?!«;'- f' [''wdx^
•' •'

= Tix'- I
(x -x)wdx) (11.)J

For a beam fixed at one end,

-M=
]''
r wdx^= i" {x'-x)wdx; (12.)

in the latter of which equations the symbols
—M denotes that the

bending moment acts downwards.

* This process is substantially the same with that employed by Mr.
Herbert Latham, in his work On Iron Bridges, to compute the stress in a
half-lattice girder.

O
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The Greatest Bending Moment acts, in a bracket, at the outer

point of support; and in a beam supported at both ends, at the

section where the shearing load vanishes; found, as already stated

in Step IL, from the Equation F = 0.

"When the transverse forces applied to a beam supported at both
ends are symmetrically distributed relatively to its middle section,
the Greatest Bending Moment acts at that section

;
and it is some-

times convenient to assume a point in that section as the origin of

co-ordinates.

Step IV. To deduce the shearing load and bending moment in

one beam from those m another beam similarly supported and
loaded.—This is done by the aid of the following principle :

—
When beams differing in length and in the amounts of the loads

upon them are similarly supported, and have their loads similarly

distributed, the shearing loads at corresponding sections in tliem vary
as the total loads, and the bending moments as the products of the

loads and lengths.
This principle may be expressed by symbols in either of the two

following ways:—
First, Let I, V, denote the lengths of two beams, similarly sup-

ported ;
let "W, W, denote their total loads, similarly distributed ;

let F, F', be the shearing forces, and M, M', the bending moments,
at sections similarly situated in the two beams

;
then

W: W : :F :F'; (13.)

ZW : ^'W : : M : M'.... (14.)

Secondly, Let k and m be two numerical factors, depending on
the way in which a beam is supported, the mode of distribution of

its load, and the position of the cross-section under consideration;
then

F = A;W; (15.)

M = 7?zWZ (16.)

The length between the points of support of a beam supported
at the ends, as in

fig. 128, is often called the span.
297. Examples.—In the following formulae, which are examples

of the application of the principles of the preceding Article to the
cases which occur most frequently in practice, W denotes the total

load;

w, when the load is distributed, the load per unit of length of

the beam
;

c, in brackets, the length of the free part of the bracket ;

c, in beams either loaded or supported at both ends, the half

span, between the extreme points of load or support and the

middle
;

M, the greatest bending moment.
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I. Bracket fixed at on end and loaded) M =cW (1.)
at the other, j

II. Bracket fixed at one end and imi- ) „ ^ cW^ _ -w^^

formerly loaded, / 2 2 ""^'^'^

III. Beam supported at both ends and \

loaded at an intermediate point, V j^ _ (<^^
-

^^)^
/^

^

whose distance from the middle of r 2c ""^ ''

the span is £c, /

lY. Beam supported at both ends and)
-iv/r

^^
/>< \r^

loaded in the middle, /
^=

~2~ ^^^

V. Beam supported at both ends and |Tiyi-_cW w c^

uniformly loaded, J "T""'2~ ^^

di X
In Example III. the greatest force exerted is ——W, and the

^ c

leverage with which it acts is c + x; and Examples IV. and Y.
follow from it by making x = o.

YI. If a beam has equal and opposite couples applied to its two

ends; for example, if the beam in fig. 130 has the couple of equal
and opposite forces Pj applied at A and B, and the couple of

equal and opposite forces Pg at C and D,
and if the opposite moments Pj'A B *

''

jp^= Pa
* C D =M are equal, then each of

the endmost divisions, A B and C D, is ^=]^
^r —^

in the condition of a bracket fixed at one
end and loaded at the other (Example 1.);

'^'^^
^^s

and the middle division B C is acted upon
^^'

by the uniform bending moment M, and by no shearing load.

VII. Let a beam of the half span c be loaded with an uniformly
distributed load of w units of weight per unit of span; and at a

point whose distance from the middle of the span is a, let there
be applied an additional load W. It is required to find x, the dis-

tance from the middle of the span at which the greatest bending
moment is exerted, and M, that greatest moment.
Make

W
z =m ;
2 cm;

then the solutions are as follows :
—

Case 1.—When - = or^^, : x-m (c -
a) ; and
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TIT ^^
2

Case 2.—When = or ^i^:. : x = a : and
c 1 +m'

M=?^'(lH-2»)(l-J) (7.)

In the following case both sets of formulae give the same result;

when -^ = = : x = a =m (c — d) ; and

Vtt^J (^^M=^
298. Bending Moments produced by Longitudinal and Oblique

Forces.—When a bar is acted upon at a given cross-section by any-

external force, whose line of action, whether transverse, oblique, or

parallel to the axis of the bar, does not traverse the centre of

magnitude of that cro'ss-section, that force exerts a moment upon
that cross-section equal to the product of the force into the perpen-
dicular distance of its line of action from the centre of the cross-

section, and that moment is to be balanced by the moment of

longitudinal stress at the cross-section.

The external force may be resolved into a longitudinal and a

transverse component. The longitudinal component is balanced

by an uniform longitudinal tension or pressure, as the case may be,

exerted at the cross-section, and combined with the stress which
resists the bending moment; and the transverse component is re-

sisted by shearing stress.

299. Moment of Stress—Transverse Strength.—The bending
moment at each cross-section of a beam bends the beam so as to make

any originally plane longitudinal layer of the beam perpendicular
to the plane in which the load acts, become concave in the direction

towards which the moment acts, and convex in the opposite
direction. Thus, fig. 131 represents a side view of a short portion

of a bent beam
;
C C is a layer, origin-

ally plane, which is now bent so as to

become concave at one side and convex
at the other.

The layers at and near the concave

side of the beam, A A', are shortened,

Fig. 131. and the layers near the convex side,

B B' lengthened, by the bending action
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of the load. There is one intermediate surface, 0', which is

neither lengthened nor shortened ; it is called the " neutral surface'^
The particles at that surface are not necessarily, however, in a state

devoid of strain
; for, in common with the other particles of the

beam, they are compressed and extended in a pair of diagonal

directions, making angles of 45° with the neutral surface, by the

shearing action of the load, when such action exists.

The condition of the particles of a beam, produced by the com-
bined bending and shearing actions of the load, is illustrated by fig.

132, which represents a vertical longitudinal section of a rectangular
beam, supported at the ends, and loaded at intermediate points.
It is covered with a network consist-

ing of two sets of curves cutting each

other at right angles. The curves

convex upwards are lines of direct

thrust ; those convex downwards are
Fig. 132.

lines of direct tension. A pair of

tangents to the pair of curves which traverse any particle are the
axes of stress of that particle. The neutral surface is cut by both
sets of curves at angles of 45°. At that vertical section of the

beam where the shearing load vanishes, and the bending moment
is greatest, both sets of curves become parallel to the neutral

surface.

When a beam breaks under the bending action of its load, it

gives way, either by the crushing of the compressed side, A A', or

by the tearing of the stretched side, B B'.

In
fig. 133, A represents a

beam of a granular material, like

cast iron, giving way by the

crushing of the compressed side, i?- i qo
^

out of which a sort of wedge is ^°*

forced. B represents a beam giving way by the tearing asunder of

the stretched si^e.

The resistance of a beam to bending and cross-breaking at any
given cross-section is the moment of a couple, consisting of the
thrust along the longitudinally-compressed layers, and the equal
and opposite tension along the longitudinally-stretched layers.

It has been found by experiment, that in most cases which occur
in practice, the longitudinal stress of the layers of a beam may,
without material error, be assumed to be uniformly varying, its

intensity being simply proportional to the distance of the layer
from the neutral surface.

Let fig. 134 represent a cross-section of a beam (such as that

represented in
fig. 131), A the compressed side, B the extended

side, C any layer, and O O the neutral axis of the section, being
the line in which it is cut by the neutral surface. Let p denote
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the intensity of the stress along the layer C, and y the distance

of that layer from the neutral axis. Because theA .
''

.f, ,

stress IS unitormiy varying, p -^ y \s a constant

quantity. Let that constant be denoted for the

present by a.

Let z be the breadth of the layer C, and d y its

thickness;
Then the amount of stress along it is

pzdy = ayzdy]

the amount of the stress along all the layers at the given cross-

section is

ijyzdy]

and this amount must be nothing,
—in other words, the total thrust

and total tension at the cross-section must be equal,
—because the

forces applied to the beam are wholly transverse ; from which it

follows that

j yzdy
= 0, (1.)

and the neutral axis traverses the centre of magnitude of the cross-

section. This principle enables the neutral axis to be found by the

aid o^the methods explained in Section 1, Chapter III, Part IIL
To find the greatest value of the constant p -^ y consistent with

the strength of the beam at the given cross-section, let y^ be the

distance of the compressed side, and ^/^
that of the extended side

from the neutral axis; /„ the greatest thrust, and /j the greatest
tension which the material can bear in the form of a beam

;
com-

pute/^ -f-
2/a) and/j-^^/j, and adopt the less of those two quantities

as the value of p -^ y, which may now be denoted hyf-^y^^;
f being f^ or f, and

3/1 being y^ or
y^,, according as the beam is

liable to give way by crushing or by tearing.
For the best economy of material, the two quotients ought to be

equal; that is to say,

— =z~ = '~^= -^ "^ "^ . n A ^

yi Va 2/6 h ' ^

and this gives what is called a cross-section of equal strength.

The moment relatively to the neutral axis, of the stress exerted

along any given layer of the cross-section, is

y pzdy = ^y'^zdy;



MOMENT OP STRESS. 199

and the sum of all such moments, being the moment of stress, or

MOMENT OP RESISTANCE of the given cross-section of the beam to

breaking across, is given by the formula,

=
\pyzdy=—Jy^zdy] (2.)

M

or makingj y'^zdy = lf

M=f^ (2 a.)

"When the breaking load is in question, the coefficient / is what
is called the modulus op rupture of the material.

When the proof load or working load is in question, the co-

efficient / is the modulus of rupture divided by a suitable factor

of safety, which, for the working stress in parts of machinery that

are made of metal, is usually 6, and for the parts made of wood, 10.

Thus, the working modulus f is usually 9,000 lbs. on the square
inch for wrought iron, 4,500 for cast iron, and from 1,000 to 1,200
for wood.
The factor denoted by I in the preceding equation is what is

called the ^'geometrical moment of inertia" of the cross-section of

the beam. For sections whose figures are similar, or are parallel

projections of each other, the moments of inertia are to each other

as the breadths, and as the cubes of the depths of the sections, and
the values of 2/i

are as the depths. If, therefore, b be the breadth

and h the depth of the rectangle circumscribing the cross-section of

a given beam at the point where the moment of stress is greatest,
we may put

I=n'bh^, (3.)

yi
= 'm'h, (4.)

n and m' being numerical factors depending on the form of section,

and making n'-i-m'=^n, the moment of resistance may be thus

expressed,
—

M. = nfbh^ (5.)

Hence it appears that the resistances of similar cross-sections to

cross-breaking are as their breadths and as the squares of their depths.
The relation between the load and the dimensions of a beam is

found by equating the value of the greatest bending moment in

terms of the load and span of the beam, as given in Article 296,

Equations 10, 11, 12, 16, to the value of the moment of resist-

ance of the beam, at the cross-section where that greatest bending
moment acts, as given in Equation 5 of this Article.

The depth h is usually fixed by considerations of stiffioess, and
then the unknown quantity is the breadth, b. Sometimes, as when
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the cross-section is circular or square, we have h — h] and then we
have h^, instead of b h^ in Equation 5, which is solved so as to

give h by extraction of the cube root,

formulae for these calculations:—
The following are the

and when h = b,

b =
M

nfh2^'

m-
...(6.)

.(6 a.)

Examples op the Numerical Factors in Equations 3, 4,
5 AND 6.

Form of Cross-Sections.
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heain. of uniform cross-section. Let W' be the external working
load, Si its factor of safety, ^g a factor of safety suited to a steady

load, like the weight of the beam.
Let b' denote the breadth of any part of the beam, as computed

by considering the external breaking load alone, s^ W. Compute
the weight of the beam from that provisional breadth, and let it be

s W
denoted by B/ Then —^, ^ is the proportion in which the

S^ W —
^2 1j

gross breaking load exceeds the external part of that load. Conse-

quently, if for the provisional breadth 6' there be substituted the

exact breadth,
b' SjW

* =
«,W'-.,B" (!•)

the beam will now be strong enough to bear both the proposed
external load W, and its own weight, which will now be

B- B'%W-
,

^-s,W'-s,B" ^^-I

and the true gross breaking load will be

w=^^w'^'^^=vI5f (3)

As the factor of safety for a steady load is in general one-half of

that for a moving load, s^ may be made = 2 Sgi ia which case the

preceding formulae become

2b'W_^
^~9 W' Ti" \^-)2W - B'

2B W^
2W'-B'^
2B'W'

In all these formulae, both the external load and the weight of

the beam are treated as if uniformly distributed—a supposition
which is sometimes exact, and always sufficiently near the truth

for the purposes of the present Article.

The gross load of beams of similar figures and proportions, vary-

ing as the breadth and square of the depth directly, and inversely
as the length, is proportional to the square of a given linear

dimension. The weights of such beams are proportional to the
cubes of corresponding linear dimensions. Hence the weight
increases at a faster rate than the gross load ; and for each parti-
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cular figure of a beam of a given material and proportion of its

dimensions, there must be a certain size at which the beam will

bear its own weight only, without any additional load.

To reduce this to calculation, let the uniformly distributed gross

breaking load of a beam of a given figure be expressed as follows:—

^^ _^^ ^ M SnfhA
.(7.7n I I

the value of m for an uniformly distributed load and rectangular

cross-section being ^ ;
and n/h A being = n/b It^, Equation 6,

Article 299; I, h said A being the length, depth, and sectional

area of the beam, / the modulus of rupture, and n a factor depend-
ing on the form of cross-section. The weight of the beam will be

expressed by

B = kw'lA; (8.)

W being the weight of an unit of volume of the material, and k a
factor depending on the figure of the beam. Then the ratio of

the weight of the beam multiplied by its proper factor of safety to

the gross breaking load is

SjB _ S2 k w P'

W ~
8 nfh ' ^ -^

which increases in the simple ratio of the length, if the proportion
Ixh is fixed. When this is the case, the length L of a beam,
whose weight (treated as uniformly distributed) is its working load,
is given by the condition §2 B =W ; that is,

L= ., -, (10.)

This limiting length having once been determined for a given class

of beams, may be used to compute the ratios of the gross breaking
load, weight of the beam, and external working load to each other,
for a beam of the given class, and of any smaller length, I, according
to the following proportional equation :

—

L:- :— ::W:B:W'; (11.)
^2 *i

Section 6.—Of Resistance to Thrust or Pressure.

301. Resistance to Compression and Direct Crushing.—Resist-
ance to longitudinal compression^ when the proof stress is not
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exceeded, is sensibly equal to the resistance to stretching, and is

expressed by the same modulus of elasticity, denoted by E. When
that limit is exceeded, it becomes irregular.
The present Article has reference to direct and simple crushing

only, and is limited to those cases in which the pillars, blocks,

struts, or rods along which the thrust acts are not so long in pro-

portion to their diameter as to have a sensible tendency to give way
by bending sideways. Those cases comprehend—

Stone and brick pillars and blocks of ordinary proportions ;

Pillars, rods, and struts of cast iron, in which the length is not

more than five times the diameter, approximately;
Pillars, rods, and struts of wrought iron, in which the length is

not more than ten times the diameter, approximately;
Pillars, rods, and struts of dry timber, in which the length is not

more than about five times the diameter.

In such cases the rules for the strength of ties (Article 290) are

approximately applicable, substituting thrust for tension, and using
the proper modulus of resistance to direct crushing instead of the

tenacity.
Blocks whose lengths are less than about once-and-a-half their

diameters ofier greater resistance to crushing than that given by the

rules; but in what proportion is uncertain.

The modulus of resistance to direct crushing often differs con-

siderably from the tenacity. The nature and amount of those

differences depend mainly on the modes in which the crushing
takes place. These may be classed as follows :

—
I. Crushing hy splitting (fig. 135) into a number of nearly pris-

matic fragments, separated by smooth surfaces whose general
direction is nearly parallel to the direction of the load, is character-

istic of very hard homogeneous substances, in which the resistance

to direct crushing is greater than the tenacity; being in many
examples about double.

Fig. 135. Fig. 136. Fig. 137. Fig. 138.

II. Crushing hy shearing or sliding of portions of the block along
oblique surfaces of separation is characteristic of substances of a

granular texture, like cast iron, and most kinds of stone and brick.

Sometimes the sliding takes place at a single plane surface, like

A B in
fig. 136; sometimes two cones or pyramids are formed, like

'c, c in fig, 137, which are forced towards each other, and split or

drive outwards a number of wedges surrounding them, like w, w,
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in the same figure. Sometimes the block splits into four wedges,
as in fig. 138. In substances which are crushed by shearing,
the resistance to crushing is always much greater than the tenacity;
for example, in cast iron it is from four times to six times.

Ill, Crushing hy bulging, or lateral swelling and spreading of

the block which is crushed, is characteristic of ductile and tough
materials, such as wrought iron. Owing to the gradual manner in

which materials of this nature give way to a
crushing^ load, it is

difficult to determine their resistance to that load exactlye That
resistance is in general less, and sometimes considerably less, than

the tenacity. In wrought iron, the resistance to the direct crush-

ing of pillars or struts of moderate length, as nearly as it can be

2 4
ascertained, is from

,,
to - of the tenacity, i

O

TV. Crushing by buckling or crippling is characteristic of fibrous

subtances, such as wood, under the action of a thrust along the

fibres. It consists in a lateral bending and wrinkling of the fibres,

sometimes accompanied by a splitting of them asunder-

V. Crushing by cross-breaking is the mode of fracture of columns
and struts in which the length greatly exceeds the diameter,
under the breaking load they yield sideways, and are broken
across like beams under a transverse load.
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CHAPTER I.

SUMMARY OF GENERAL PRINCIPLES.

NATURE AND DIVISION OF THE SUBJECT.

The present Chapter contains a siimmaiy of the Principles of

Kinetics.

302. Effort
;
Resistance

;
Lateral Force.—Let F denote a force

applied to a moving point, and 6 the angle made by the direction

of that force with the direction of the motion of the point. Then,

by the principles of Article 215, the force F may be resolved into

two rectangular components, one along, and the other across, the

direction of motion of the point, viz :
—

The direct force, F cos 6.

The lateral force, F sin 6.

A direct force is further distinguished, according as its acts vnth or

against the motion of the point (that is, according as 6 is acute or

obtuse), by the name of effort, or of resistance, as the case may be.

Hence, each force applied to a moving point may be thus decom-

posed :
—

Effort, P = F cos 6, if & is acute
;

Resistance, R = F cos (t
-

e)
if ^ is obtuse ;

Lateral Force, Q = F sin 6.

303. The Conditions of Uniform Motion of a pair of points are,

that the forces applied to each of them shall balance each other ;

that is to say, that the lateral forces applied to each point shall

balance each other, and that the efforts applied to each point shall

balance the resistances.

The direction of a force being, as stated in Article 194, that of

the motion which it tends to produce, it is evident that the balance

of lateral forces is the condition of uniformity of direction of

motion, that is, of motion in a straight line
;
and that the balance

of efforts and resistances is the condition of uniformity of velocity.
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304. Work consists in moving against resistance. The work is

said to be performed^ and the resistance overcome. Work is mea-
sured by the product of the resistance into the distance through
which its point of application is moved. The unit of work com-

monly used in Britain is a resistance of one pound overcome

through a distance of one foot, and is called a foot-pound.
305. Energy means capacity for performing work. The energy

of an effort, or potential energy, is measured by the product of the
effort into the distance through which its point of application is

capable of being moved. The unit of energy is the same with the
unit of work.

When the point of application of an effort has been moved through
a given distance, energy is said to have been exerted to an amount
expressed by the product of the effort into the distance through
which its point of application has been moved.

306. The Conservation of Energy, in the case of uniform motion,
means the fact, that the energy exerted is equal to the work per-
formed.

307. The Principle of Virtual Velocities is the name given to

the application of the principle of the conservation of energy to the
determination of the conditions of equilibrium amongst the forces

externally applied to any connected system of points.
308. The Mass, or Inertia, of a body, is a quantity proportional

to the unbalanced force which is required in order to produce a

given definite change in the motion of the body in a given interval
of time.

It is known that the weight of a body, that is, the attraction

between it and the earth, at a fixed locality on the earth's surface,

acting unbalanced on the body for a fixed interval of time
(e. g.,

for a second), produces a change in the body's motion, which is the
same for

all^
bodies whatsoever. Hence it follows, that the masses

of all bodies are proportional to their loeights at a given locality on
the eartNs surface.

This fact has been learned by experiment; but it can also be
shewn that it is necessary to the permanent existence of the uni-

verse
;
for if the gravity of all bodies whatsoever were not propor-

tional to their respective masses, it would not produce similar and

equal changes of motion in all bodies which arrive at similar posi-
tions with respect to other bodies, and the different parts which
make up stars and systems would not accompany each other in their

motions, never departing beyond certain limits, but would be dis-

persed and reduced to chaos. Neither an imponderable body, nor
a body whose gravity, as compared with its mass, differs in the

slightest conceivable degree from that of other bodies, can belong
to the system of the universe.*

•
See the Rev. Dr. Whewell's demonstration ** that all matter gravitates."
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309. The Centre of Mass of a body is its centre of gravity, found
in the manner explained in Part III., Chapter III., Section 1.

310. The Momentum of a body means, the product of its mass
into its velocity relatively to some point assumed as fixed. The
momentum of a body, like its velocity, can be resolved into com-

ponents, rectangular or otherwise, in the manner already explained
for motions in Part I., Chapter I.

311. The Resultant Momentum of a system of bodies is the

resultant of their separate momenta, compounded as if they were
motions or statical couples.

312. Variations and Deviations of Momentum are the products
of the mass of a body into the rates of variation of its velocity
and deviation of its direction, found as explained in Part I.,

Chapter I., Section 3.

313. Impulse is the product of an unbalanced force into the time

during which it acts unbalanced, and can be resolved and com-

pounded exactly like force. If F be a force, and d t an interval of

time during which it acts unbalanced, F c? ^ is the impulse exerted

by the force during that time. The impulse of an unbalanced
force in an unit of time is the magnitude of the force itself.

314. Impulse, Accelerating, Retarding, Deflecting.—Correspond-

ing to the resolution of a force applied to a moving body into effort

or resistance, as the case may be, and lateral force as explained
in Article 302, there is a resolution of impulse into accelerating
or retarding impulse, which acts with or against the body's motion,
and deflecting impulse, which acts across the direction of the body's
motion. Thus, if ^, as before, be the angle which the unbalanced
force F makes with the body's path during an indefinitely short

interval, d t.

V dt = F cos 6 • dt\% accelerating impulse if & is acute;
Re? ^ = F cos {-TT- 6)

' dti^ retarding impulse if 6 is obtuse ;

Q,dt = 'F &m 6 ' d t\^ defiecting impulse.

315. A Deviating Force is one which acts unbalanced in a direc-

tion perpendicular to that of a body's motion, and changes that

direction without changing the velocity of the body.
316. Centrifugal Force is the force with which a revolving body

reacts on the body that guides it, and is equal and opposite to the

deviating force with which the guiding body acts on the revolving

body.
In fact, as has been stated in Article 193, every force is an action

between two bodies ; and deviating force and centrifugal force are

but two different names for the same force, applied to it according
as its action on the revolving body or on the guiding body is under
consideration at the time.

317. The Actual Energy of a moving body relatively to a fixed
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point is the product of the mass of the body into one-half oi the

square of its velocity, that is to say, it is represented by

2 2g

The product m v'^, the double of the actual energy of a body, was

formerly called its vis-viva. Actual energy, being the product of

a weight into a height, is expressed, like potential energy and work,
in foot-pounds (Articles 304, 305.)

318. Energy Stored and Restored.—A body alternately acceler-

ated and retarded, so as to be brought back to its original speed,

performs work by means of its retardation exactly equal in amount
to the potential energy exerted in producing its acceleration; and
that amount of energy may be considered as stored during the

acceleration, and restored during the retardation.

319. The Transformation of Energy is a term applied to such

processes as the expenditure of potential energy in the production
of an equal amount of actual energy, and vice versa.

320. Periodical Motion.—If a body moves in such a manner
that it periodically returns to its original velocity, then at the end
of each period, the entire variation of its actual energy is nothing;
and in each such period the whole potential energy exerted is equal
to the whole work performed, exactly as in the case of a body
moving uniformly (Article 306.)

321. A Reciprocating Force is a force which acts alternately as

an effort and as an equal and opposite resistance, according to the

direction of motion of the body. The work which a body performs
in moving against a reciprocating force is employed in increasing
its own potential energy, and is not lost by the body.

322. Collision is a pressure of inappreciably short duration be-

tween two bodies.

323. The Moment of Inertia of an indefinitely small body, or
"
physical point," relatively to a given axis, is the product of the

mass of the body, or of some quantity proportional to the mass,
such as the weight, into the square of its perpendicular distance

from the axis.

324. The Radius of Gyration of a body about a given axis is

that length whose square is the mean of all the squares of the dis-

tances of the indefinitely small equal particles of the body from the

axis, and is found by dividing the moment of inertia by the mass.

325. The Centre of Percussion of a body, for a given axis, is a

point so situated, that if part of the mass of the body were con-

centrated at that point, and the remainder at the point directly

opposite in the given axis, the statical moment of the weight so

distributed, and its moment of inertia about the given axis, would
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be the same as those of the actual body in every position of the

body.
326. The subjects to which the principles of kinetics relate will

be classed in the following manner :
—

I. Uniform Motion.

'I. Varied Translatio

[I. Rotations of Rigi
IV. Motions of Pluid».

II. Varied Translation of Points and Rigid Bodies.

III. Rotations of Rigid Bodies.
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CHAPTER II.

ON UNIFORM MOTION UNDER BALANCED FORCES.

327. First Law of Motion.—A body under the action of no force,

or of balanced forces, is either at rest, or moves uniformly. (Uni-
form motion has been defined in Article 66.)

Such is the first law of motion as usually stated
;
but in that

statement is implied something more than the literal meaning of

the words; for it is understood, that the rest or motion of the body
to which the law refers, is its rest or motion relatively to another

body which is also under the action of no force or of balanced forces.
Unless this implied condition be fulfilled, the law is not true.

Therefore the complete and explicit statement of the first law of

motion is as follows :
—

If a pair of bodies be each under the action of no force, or of
balanced forces, the motion of each of those bodies relatively to the

other is either none or uniform.
The first law of motion has been learned by experience and

observation: not directly, for the circumstances supposed in it

never occur; but indirectly, from the fact that its consequences,
when it is taken in conjunction with other laws, are in accordance

with all the phenomena of the motions of bodies.

The first law of motion may be regarded as a consequence of the

definitions of/orce and of 5a^a72ce (Articles 55, 56); at the same
time it is to be observed, that the framing of those definitions has

been guided by experimental knowledge.
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CHAPTER III.

ON THE VARIED TRANSLATION OF POINTS AND RIGID
BODIES.

Section 1.—Law of Varied Translation.

328. Second Law of Motion.—Change of momentum is propor-
tional to the impulse 'producing it. In this statement, as in that of

the first law of motion, Article 327, it is implied that the motion
of the moving body under consideration is referred to a fixed point
or body whose motion is uniform. In questions of applied me-

chanics, the motion of any part of the earth's surface may be

treated as uniform without sensible error in practice. The units

of mass and of force may be so adapted to each other as to make

change of momentuin equal to the impulse producing it. (See
Articles 330, 331.)

329. General Equations of Dynamics.—To express the second

law of motion algebraically, two methods may be followed : the

first method being to resolve the change of momentum into direct

variation and deviation, and the impulse into direct and deflecting

impulse; and the second method being to resolve both the change
of momentum and the impulse into components parallel to three

rectangular axes.

First method, m being the mass of the body, v its velocity, and
r the radius of curvature of its path, it follows from Articles 73
and 75 that the rate of direct variation of its momentum is

dv d^s

and from Articles 77 and 78, that the rate of deviation of its

momentum is

m—.

r

Equating these respectively to the direct and lateral impulse per
unit of time, exerted by an unbalanced force F, making an angle 6

with the direction of the body's motion, we find the two following

equations (see Article 314):
—

T» T-.-rn/i dv d^s .^ .

P or -E = r (OS 6 =m •

y-.
= w^-2i (1.)at dv ^

2

Q = P sin Q^~ (2.)
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The radius of curvature r is in the direction of the deviating
force Q.

Second metJiod. As in Article 80, let the velocity of the body
(L QC (J IJ d ^

be resolved into three rectangular components, -^-, -~, -7- ;
so that

the three component rates of variation of its momentum are

d'^ X d^ y d^ z

.(3.)

Also let the unbalanced force F, making the angles a, /3, y, with
the axes of co-ordinates, and its impulse per unit of time, be

resolved into three components, Y^, F^, F^. Then we obtain

-n •

•!-!
d^X

-n. -r.
^^ ^

F, =: JB COS y = m -7-^ :

three equations, which are substantially identical with the Equa-
tions 1 and 2.

330. Mass in Terms of Weight.—A body's own weight, acting
unbalanced on the body, produces velocity towards the earth,

increasing at a rate per second denoted by the symbol g, whose
numerical value is as follows:—Let x denote the latitude of the

place, h its elevation above the mean level of the sea,

^j
= 32*1695 feet, or 9-8051 metres, per second;

being the value of ^ for A = 45° and h = 0, and

R = 20900000 feet, or 6370000 metres, nearly,

being the earth's mean radius; then

^ = ^^ .(1
_ 0-00284 cos 2

?i)

•

(l
"

^) (!•)

For latitudes exceeding 45°, it is to be borne in mind that cos 2 x

is negative, and the terms containing it as a factor have their signs
reversed.

For practical purposes connected with ordinary machines, it is

sufficiently accurate to assume

g= 32*2 feet, or 9-81 metres, per second nearly (2.)

If, then, a body of the weightW be acted upon by an unbalanced
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force F, the change of velocity in the direction of F produced in a

second will be

F_F^

whence

m =— (3.)
9

is the expression for the mass of a body in terms of its weight,
suited to make a change of momentum equal to the impulse pro-

ducing it. m being absolutely constant for the same body, g and
W vary in the same proportion at different elevations and in

different latitudes.

331. An Absolute Unit of Force is the force which, acting during
an unit of time on an arbitrary unit of mass, produces an unit of

velocity. In Britain, the unit of time being a second (as it is else-

where), and the unit of velocity one foot per second, the unit of

mass employed is the mass whose weight in vacuo at London and
at the level of the sea is a standard avoirdupois pound.
The weight of an unit of mass, in any given locality, has for its

value, in absolute units of force, the coefficient g. When the unit

of vjeight is employed as the unit of force, instead of the absolute

unit, the corresponding unit of mass becomes g times the unit just
mentioned: that is to say, in British measures, the mass of 32-2

lbs.; or in French measures, the mass of 9*81 kilogrammes.
332. The Motion of a Falling Body, under the unbalanced action

of its own weight, a sensibly uniform force, is a case of the uni-

formly varied velocity described in Article 73. In the equations
of that Article, for the rate of variation of velocity a, is to be sub-

stituted the coefficient g, mentioned in the last Article. Then if

Vq be the velocity of the body at the beginning of an interval of

time tf its velocity at the end of that time is

v = VQ + gt, .(1.)

the mean velocity during that time is

and the vertical height fallen through is

^-^0^ + ^/ (3.)

The preceding equations give the final velocity of the body, and the
height fallen through, each in terms of the initial velocity and the
time. To obtain the height in terms of the initial and final velo-

cities, or vice versa, Equation 2 is to be multiplied hy v-VQ = gt,
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the acceleration, and compared witli Equation 3
j giving the follow-

ing results :
—

^-^"  ^''' =gh^

^9

When the body falls from a state of rest,

that the following equations are obtained

\ (4.)

J

is to be made =
;
so

v = gt; h,-
2 2^'

,(3.

The height h in the last equation is called the height or fall due to

the velocity v; and that velocity is called the velocity due to the height
or fall h.

Should the body be at first projected vertically upwards, the

initial velocity Vq is to be made negative. To find the height to

which it will rise before reversing its motion and beginning to fall,

V is to be made =0 in the last of the Equations 4; then

h- ^
.(6.)

being a rise equal to the fall due to the initial velocity Vq.

333. An Unresisted Projectile, or a projectile to whose motion
there is no sensible resistance, has a motion compounded of the

vertical motion of a falling borly, and of the horizontal motion due
to the horizontal component of its velocity of projection. In fig.

139, let represent the point from which the projectile is originally

projected in the direction O A, making the angle X O A = 6 with
a horizontal line O X in the same vertical plane with O A. Let

horizontal distances parallel to

O X be denoted by cc, and verti-

cal ordinates parallel to Z by z,

positive upwards, and negative
downwards. In the equations of

vertical motion, the symbol h of

the equations of Article 332 is to

be replaced by
-

z, because of h

and z being measured in opposite
directions.

Let Vq be the velocity of projection. Then at the instant of pro-

jection, the components of that velocity are,

horizontal, -j-
=

Vq cos d; vertical, -y-
=

Vq sin ff;

Fig. 139.
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and after the lapse of a given time t, tliose components have become

dx

.(1.)

Hence the co-ordinates of the body at the end of the time t are

horizontal, x = Vq cos Q '

t, \

a t^ > (2)
vertical, z^^v^sin 6 't- —^ ; i

^ '

the Equations 2 being those of which the differential coefficients

X
are Equations 1, and because t = -, those co-ordinates are^ '

Vq cos 6'

thus related,

S! = x'taiii3-^r-^^-^'x^; (3.)
2vl cos^ &

^ ^

an equation which shews the path O B C of the projectile to be a

parabola with a vertical axis, touching O A in O.

The total velocity of the projectile at a given instant, being the

resultant of the components given by Equation 1, has for the value
of its square (remembering that sin^ + cos^ ^ = 1)>

v^ =^^ + ^^
= vl-2v,sme'gt + gU^ = vl-2gz', (4.)

from the last form of which is obtained the equation

-^^ (^o

which, being compared with Equation 4 of Article 332, shews that

the relation between the variation of vertical elevation, and the varia-

tion of the square of the resultant velocity, is the same, whether the

velocity is in a vertical, inclined, or horizontal direction.

The resistance of the air prevents any actual projectile near the

earth's surface from moving exactly as an unresisted projectile.
The approximation of the motion of an actual projectile to that of

an unresisted projectile is the closer, the slower is the motion, and
the heavier the body, because of the resistance of the air increasing
with the velocity, and because of its proportion to the body's weight
being dependent upon that of the body's surface to its weight.

334. An Uniform Effort or Resistance, unbalanced, causes the

velocity of a body to vary according to the law expressed by this

equation,

Trfr> (1.)
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where f is the constant ratio which the unbalanced force bears to

the weight of the moving body, positive or negative according to

the direction of the force; so that by substituting/^ for g in the

equations of Article 332, those equations are transformed into the

equations of motion of the body in question, h being taken to

represent the distance traversed by it in a positive direction.

In the apparatus known by the name of its int'-entor, Attwood,
for illustrating the effect of uniform moving forces, this principle
is applied in order to produce motions following the same
law with those of falling bodies. Two weights, P and E, of

which P is the greater, are hung to the opposite ends of a cord

passing over a finely constructed pulley. Considering the masses

of the cord and pulley to be insensible, the weight of the mass to

be moved is P + R, and the moving force P - E, being less than the

weight in the ratio,

P-E
-^"P + E*

consequently the two weights move according to the same law
with a falling body, but more slowly in the ratio of/ to 1.

335. Deviating Force of a Single Body.—It is part of the first

law of motion, that if a body moves under no force, or balanced

forces, it moves in a straight line.

It is one consequence of the second law of motion, that in order

that a body may move in a curved path, it must be continually
acted upon by an unbalanced force at right angles to the direction

of its motion, the direction of the force being that towards which
the path of the body is curved, and its magnitude bearing the same
ratio to the weight of the body that the height due to the body's

velocity bears to half the radius of curvature of its path.
This principle is expressed symbolically as follows :

—
Half radius of Height due Body's Deviating
curvature. to velocity. weight. force.

\ : t-  W = Q ="
(!)2 2^ gr
^ '

or otherwise that the acceleration produced by gravity, bears

the same ratio to the rate of deviation, that the weight bears to

the magnitude of the deviating force, which may be symbolically

expressed g \
-

: : W ; Q = .

In the case of projectiles, just described, and of the heavenly
bodies, deviating force is supplied by that component of the mutual
attraction of two masses which acts perpendicular to the direction

of their relative motion. In machines, deviating force is supplied

by the strength or rigidity of some body, which guides the deviating

mass, making it move in a curve.
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A pair of free bodies attracting each other have both deviated

motions, the attraction of each guiding the other; and their devia-

tions of momentum are equal in equal times; that is, their devia-
tions of motion are inversely as their masses.

In a machine, each revolving body tends to press or draw the

body which guides it away from its position, in a direction from
the centre of curvature of the path of the revolving body; and that

tendency is resisted by the strength and stiffness of the guiding
body, and of the frame with which it is connected.

336. A Revolving Simple Pendulum consists

of a small mass A, suspended from a point by
a rod or cord C A of insensibly small weight as

compared with the mass A, and revolving in a
circle about a vertical axis C B. The tension of
the rod is the resultant of the weight of the
mass A, acting vertically, and of its centrifugal
force, acting horizontally; and therefore the rod
will assume such an inclination that

Fi.cr. 140.

height B C _
radius ATB centrifugal force

~
v^

weight gr
•(!•)

where r = A B. Let n be the number of turns per second of the

pendulum; then
= z 'Trnr:

and therefore, making B C = 7i,

=
(in the latitude of London) '^ =

9-7848 inches
....(2.;

When the speed of revolution varies, the inclination of the pendu-
lum varies so as to adjust the height to the varying speed.

337. Deviating Force in Terms of Angular Velocity.—If the
radius of curvature of the path of a revolving body be regarded as

a sort of arm of constant or variable length at the end of which
the body is carried, the angular velocity of that arm is given by
the expression,

a= -
T •(!•)

Let ar be substituted for v in the value of deviating force of
Article 335, and that value becomes

Q
W«2

•(2-)
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In the case of a body revolving with tiniform velocity in a circle,
like the bob A of the revolving pendulum of Article 336, a = 2 «• n,
where n is the number of revolutions per second, so that

^-
g

y W
from which equation the height of a revolving pendulum might be
deduced with the same result as in the last Article.

338. A Simple Oscillating Pendulum consists of an indefinitely
small weight A, fig. 141, hung by a cord or rod of in-

sensible weight A C from a point C, and swinging in a
vertical plane to and fro on either side of a central point
D vertically below C. The path of the weight or bob

is a circular arc, A D E.

The weight W of the bob, acting vertically, may be
resolved at any instant into two components, viz. :

—

W-cosZDCA = W-2J2,
CA'

acting along C A, and balanced by the tension of the

Fig. 141. rod or cord, and

W-sinZDCA = W-4£,
c a'

acting" in the direction of a tangent to the arc, towards D, and un-

balanced. The motion of A depends on the latter force.

When the arc A D E is small compared with the length of the

pendulum A C, it very nearly coincides with the chord ABE; and
the horizontal distance A B, to which the moving force is propor-

tional, is very nearly equal to the distance of the bob from D, the

central point of its oscillations. Then if the length of the pendu-

lum, C A, be denoted by I,
we have approximately, for small arcs

of oscillation,

and

(1)

1 = 2.a/n V

and the following statement shews the connection between a simple
oscillating and revolving pendulum, viz., that the leiigth of a simple
oscillating pendulum, making a given number of small double oscilla-

tions in a second, is sensibly equal to the height of a revolving pendu-
lum^ making the same number of revolutions in a second.
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Section 2.—Varied Translation of a System of Bodies.

339. Conservation of Momentum.— Theorem. The mutual

actions of a system, of bodies cannot change their resultant momentum.

(Resultant momentum has been defined in Article 311.) Every
force is a pair of equal and opposite actions between a pair of

bodies ;
in any given interval of time it constitutes a pair of equal

and opposite impulses on tliose bodies, and produces equal and

opposite momenta. Therefore the momenta produced in a system
of bodies by their mutual actions neutralize each other, and have

no resultant, and cannot change the resultant momentum of the

system.
340. Motion of Centre of Gravity.

—Corollary. The variations

of the motion of the centre of gravity of a system of bodies are wholly

produced by forces exerted by bodies external to the system; for the

motion of the centre of gravity is that which, being multiplied by
the total mass of the system, gives the resultant momentum, and

this can be varied by external forces only.
It follows that in all dynamical questions in which the mutual

actions of a certain system of bodies are alone considered, the centre

of gravity of that system of bodies may be correctly treated as a

point whose motion is none or uniform ; because its motion cannot

be changed by the forces under consideration.

341. The Angular Momentum, relatively to a fixed point, of a

body having a motion of translation, is the product of the momen-
tum of the body into the perpendicular distance of the fixed point
from the line of direction of the motion of the body's centre of

gravity at the instant in question. Let m be the mass of the body,
V its velocity, I the length of the before-mentioned perpendicular;
then

,
Wvlmv 1 =

9

is the angular momentum relatively to the given point.

Angular momenta are compounded and resolved like forces,

each angular momentum being represented by a line whose length
is proportional to the magnitude of the angular momentum, and
whose direction is perpendicular to the plane of the motion of the

body and of the fixed point, and such, that when the motion of the

body is viewed from the extremity of the line, the radius vector of

the body seems to have right-handed rotation. The direction of

such a line is called the axis of the angular momentum which it

represents. The resultant angular momentum of a system of bodies

is the resultant of all their angular momenta relatively to their

common centre of gravity; and the axis of that resultant angular
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momentum is called the axis of angular momentum of tlie system.
The term angular momentum was introduced by Mr. Hayward.

342. Angular Impulse is the product of the moment of a couple
of forces (Article 200) into the time during which it acts. Let F
be the force of a couple, I its leverage, and d t the time during
which it acts, then

^Idt

is the angular impulse. Angular impulses are compounded and
resolved like the moments of couples.

343. Relations of Angular Impulse and Angular Momentum.—
Theorem. The variation, in a given time, of the angular momentum
of a body, is equal to the angular impulse producing that variation,

and has the same axis. This is a consequence which is deduced
from the second law of motion in the following manner :

—Conceive
an unbalanced force F to be applied to a body m, and an equal,

opposite, and parallel force, to a fixed point, during the interval d t
;

and let I be the perpendicular distance from the fixed point to the

line of action of the first force. Then the couple in question exerts

the angular impulse
'Fldt

At the same time, the body m acquires a variation of momentum
in the direction of the force applied to it, of the.amount

mdv^'F dt-j

so that relatively to the fixed point, the variation of the body's

angular momentum is

m ldv = F Idt;

being equal to the angular impulse, and having the same axis.—
Q. E. D.

344. Conservation of Angular Momentum.—Theorem. The
resultant angular momentum of a system of bodies cannot be changed
in magnitude, nor in Hie direction of its axis, by the mutual actions

of the bodies.

Considering the common centre of gravity of the system of bodies

as a fixed point, conceive that for each force with which one of the

bodies of the system is urged in virtue of the combined action of all

the other bodies upon it, there is an equal, opposite, and parallel
force applied to the common centre of gravity, so as to form a

couple. The forces with which the bodies act on each other are

equal and opposite in pairs, and their resultant is nothing; there-

fore, the resultant of the ideal forces conceived to act at the common
centre of gravity is nothing, and the supposition of these forces does

not efiect the equilibrium or motion of the system. Also, the

resultant of all the couplts thus formed is nothing; therefore, the
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resultant of their angular impulses is nothing; therefore, the
resultant of the several variations of angular momentum produced
by those angular impulses is nothing; therefore, the resultant

angular momentum of the system is invariable in amount and in

the direction of its axis.—Q. E. D.
345. Collision.—The most useful problem in cases of collision is,

when two bodies whose masses are given move before the collision

in one straight line with given velocities, and it is required to find

their velocities after the collision. The two bodies form a system
whose resultant momentum and internal energy are each unaltered

by the collision ; but a certain fraction of the internal energy
disappears as visible motion, and appears as vibration and heat.
If the bodies are equal, similar, and perfectly elastic, that fraction
is nothing.

Let m^, mg, be the masses of the two bodies, and w^, u<^, their

velocities before the collision, whose directions should be indicated

by their signs. Then the velocity of their common centre of

gravity is

UiTni + u^m^ ,- .

Uq = ; (1.)

and this is not altered by the collision.
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CHAPTER IV.

KOTATIONS OF RIGID BODIES.

346. The Motion of a Rigid Body, or of a body wliicH sensibly

preserves the same figure, has already been shewn in Part I.,

Chapter II., to be always capable of being resolved at each instant

into a translation and a rotation; and by the aid of the principles

explained in Section 3 of that chapter, the component rotation can

always be conceived to take place about an axis traversing the

centre of gravity of the body, and to be combined, if necessary,
with a translation of the whole body in a curved or straight path

along with its centre of gravity. The variations of the momentum
of the translation, whether in amount or in direction, are due to

the resultant force acting through the centre of gravity of the body,
and are exactly the same with those of the momentum of the

entire mass if it were concentrated at that centre; the variations

of the angular momentum of the rotation are due to the resultant

couple which is combined with that resultant force. The varia-

tions of actual energy are due to both causes.

When the translation of the centre of gravity of a rotating body,
and its rotation about an axis traversing that centre, are known,
the motion of every point in the body is determined by cinematical

principles, which have been explained in Part I., Chapter IL,
Section 3.

Section 1.—On Moments of Inertia, Radii of Gyration,
AND Centres of Percussion.

347. The Moment of Inertia of an indefinitely small body, or
"
physical point," relatively to a given axis, is the product of the

mass of the body, or of some quantity proportional to the mass,
such as the weight, into the square of its perpendicular distance

from the axis : thus in the following equation :
—

=m r^ =
, (1.)

9 9
^ '

r is the perpendicular distance of the mass m, whose weight is W,
from a given axis; and the moment of inertia, according to the

unit employed, is either I, or I-^-<7; the former, when the unit is

the moment of inertia of an unit of weight at the end of an arm
whose length is unity; and the latter, when the unit is the moment
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of inertia of an unit of mass at the end of the same arm. The
former is the more convenient unit, and will be employed in this

treatise.

By an extension of the term " moment of inertia," it is applied
to the product of any quantity, such as a volume, or an area, into

the square of the distance of the point to which that quantity
relates from a given axis; but in the remainder of this treatise the

term will be used in its strict sense, and according to the unit of

measure already specified; that is, in British measures, moment of

inertia will be expressed by the product of a certain number of

pounds avoirdupois into the square of a certain number oifeet.

The geometrical relations amongst moments of inertia, to which
the present section refers, are independent of the unit of measure.

348. The Moment of Inertia of a System of Physical Points,

relatively to a given axis, is the sum of the moments of inertia

of the several points; that is,

I-2-W-2 (1.)

349. The Moment of Inertia of a Rigid Body is the sum of the

moments of inertia of all its parts, and is found by integration; that

is, by conceiving the body to be divided into small parts of regular

figure, multiplying the mass of each of those parts into the square
of the distance of its centre of gravity from the axis, adding the

products together, and finding the value towards which their sum

converges when the size of the small parts is indefinitely diminished.

For example, let the body be conceived to be built up of rectangular

molecules, whose dimensions are d x, d y, and d z, the volume of

each d X d y d Zy and the mass of unity of volume w. Then

1= / / ir^w'dxdydz (1.)

Hence follows the general principle that propositions relative to

the geometrical relations amongst the moments of inertia of systems
of points are made applicable to continuous bodies by substituting

integration for ordinary summation ;
that is, for example, by putting

/ / / for 2, and w d x d y d ziov W.
350. The Radius of Gyration of a body about a given axis is that

length whose square is the mean of all the squares of the distances

of the indefinitely small equal particles of the body from the axis,

and is found by dividing the moment of inertia by the mass, thus,

* 2-W~ 2W '^ '



224 PRINCIPLES OF KINETICS.

When symbols of integration are used, this becomes

/ / li^wdxdydz
e^ =—T-f-r (^'^

j I
Iw'dxdydz

351. Components of Moment of Inertia.—Let the positions of

the particles of a body be referred to three rectangular axes, one of

which, O X, is that about which the moment of inertia is to be
taken. Then the square of the radius vector of any particle is

so that the moment of inertia round the axis of aj is

I, = 2 -W 2/2 + 2 -W^s^; (1.)

that is to say, the moment of inertia of a body round a given axis

Tnay be found by adding together the sum of the products of tJie

masses of the particles, each multiplied by the square of each of its

distances from a pair of plaries cutting each other at right angles in

the given axis.

In the same manner it may be shewn that the moments of

inertia of the same body round the other two axes are given by
the equations

I^
= 2-W;s2 + 2-Wai2; 1,

= ^- W ay' + ^'W y"" (2.)

352. Moments of Inertia Round Parallel Axes Compared.—
Theorem. The moment of inertia of a body about any given axis

is equal to its moment of inertia about an axis traversing its centre

of gravity parallel to the given axis, added to the moment of inertia

about the given axis due to the whole mass of the body concentrated

at its centre of gravity.
This theorem may be expressed as follows:—Let lo be the

moment of inertia of a body about an axis traversing its centre of

gravity in any given direction, and I the moment of inertia of the

same body about an axis parallel to the former at the perpendicular
distance r^] then

I =r^2W + Io (1.)

Corollary I. The radius of gyration (?)
of a body about any

axis is equal to the hypotenuse of a right-angled triangle, of which

the two sides are respectively equal to the radius of gyration of the

body about an axis traversing the centre of gravity parallel to the
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given axis {pq), and to tlie perpendicular distance between these

axes
(vq).

That is to say,

i'
= rl + il (2.)

Corollary II. The moment of inertia of a body about an axia

traversing its centre of gravity in a given direction, is less than the

moment of inertia of the same body about any other axis parallel
to the first.

Corollary III. The moments of inertia of a body about all

axes parallel to each other, which lie at equal distances frora its

centre of gravity, are equal.
353. Combined Moments of Inertia.—Theorem. The combined

moment of inertia of a rigidly connected system of bodies about a

given axis, is equal to the combined moment of inertia which the sys-
tem would have about the given axis, if each body were concentrated

at its own centre of gravity^ added to the sum of the several moments

of inertia of the bodies, about axes traversing their respective centres

of gravity, parallel to the given axis.

Let W now denote the mass of one of the bodies, Iq its moment
of inertia about an axis traversing its own centre of gravity parallel
to the given common axis, and ^othe distance of its centre of gravity
from that common axis. Then the moment of inertia of that body
about the common axis, according to Article 352, Equation 1, is

I=:Wr^ + Io.

Consequently, the combined moment of inertia of the system of

bodies is

3I = 2-Wr^4-2Io; .'

(1).

—Q. E. D.
354. Examples of Moments of Inertia and Radii of Gyration of

homogeneous bodies of some of the more simple and ordinary
figures, are given in the following tables. In each case, the axis is

supposed to traverse the centre of gravity of the body; for the

principles of Article 352 enable any other case to be easily solved.

The axes are also supposed, in each case, to be axes of symmetry of
the figure of the body.
The column headed W gives the mass of the body; that headed

lo gives the moment of inertia
;
that headed ^l, the square of the

radius of gyration. The mass of an unit of volume is in each case

denoted by w.
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Body.

I. Sphere of radius r,

II. Spheroid of revolution—
polar semi-axis a, equa-
torial radius r......

III.

IV.

V.

VI.

VII.

VIII.

IX.

X.

XI.

XII.

Ellipsoid— semi-axes, a,

h, c

Spherical shell—external

radius r, internal /,....

Spherical shell, insensibly
thin— radius r, thick-

ness dr,

Circular cylinder
—

length

2a, radius r,

Elliptic cylinder
—length

2a, transverse semi-axes

b,c,

Hollow circular cylinder-
length 2a, external ra-

dius r, internal r',

Hollow circular cylinder,

insensibly thin— length

2a, radius r, thickness Jr,

Circular cylinder
—

length

2a, radius r,

Elliptic cylinder
—

length

2a, transverse semi-axes

&. c,

Hollow circular cylinder-

length 2a, external ra-

dius r, internal r',

XIII. Hollow circular cylinder,

insensibly thin— radius

r, thickness dr,

XIV. Rectangular prism— di-

mensions 2a, 2b, 2c,

XV. Rhombic prism— length

2a, diagonals 25, 2c,....

XVI. Rhombic prism, as above.

Diameter

Polar axis

Axis, 2a

Diameter

Diameter

Longitudinal

axis, 2a

Longitudinal

axis, 2a

Longitudinal

axis, 2a

Longitudinal

axis, 2a

Transverse

diameter

Transverse

axis, 2b

Transverse

diameter

Transverse

diameter

Axis, 2a

Axis, 2a

Diagonal, 2b

4:<TWr

A-TTwahc

A^wr^dr

2<rtvar^

2grwabc

^Twardr

2yrwar^

2<rwahc

2rwa(f—^^)

Aftwardr

Swabc

Aiuahc

Awahc

15

^rwnr*

A^wabcQ)^ + c^)

fcwcibc(^ + c^)

2

inoa(r*—r'*)

A^ewar^dr

^war\Zr^ + Aa'')

6

3-wa5c(3c'' + 4a'')

6

+ Aa\r--r"')\

4
-rioa(2r'^ + -d^r)d)

o

8wabc(b^ + c^
3

2wabc(blW)
3

2ioabc(c'' + 2d^
3

d

2rf
5

2r2

"T

&^ + c^

5

2(r«—r'O

5(r3_r'3)

b-' + c'

4

r^_+r^
2

4 3

~4~'*'3

2'^3'

3

^!±£'
6

c' a»

6-+3



CENTRE OF PERCUSSION.

355. The Centre of Percussion of a hodj, for a given axis, is a

point so situated, that if part of the mass of the body were concen-

trated at that point, and the remainder at the point directly oppo-

site in the given axis, the statical moment of the weight so distri-

buted (Article 223), and its moment of

inertia about the given axis, would be

the same as those of the actual body
in every position of the body.

In fig.
142 let X X be the given

axis, and G the centre of gravity of

the body. It is evident, in the first

place, that the centre of percussion
must be somewhere in the perpendi-
cular C G B let fall from the centre of

gravity on the given axis. Secondly,
in order that the statical moment of

the whole mass, concentrated partly at

C, and partly at the centre of percus-
sion B (still unknown), may be the same with that of the actual

body, the centre of gravity must be unaltered by that concen-

tration of mass; that is to say, the masses concentrated at B and

C must be inversely as the distances of those points from G.

Hence denoting the weights of those masses by the letters B and
C respectively, and the weight of the whole body by W, we have

the proportion

Fig. 142.

W:C
r-

BC:GB:GC. (10

Lastly, in order that the moment of inertia of the mass as supposed
to be concentrated at B and C, about the axis X X, may be the

same with that of the actual body, we must have

B'BG^ = W(i^ =W (eo + rl). .(2.)

where r^ = G C, and eo is the radius of gyration of the body about

an axis parallel to X X and traversing G; and substituting for B
its value from Equation 1, viz., B = Wr^ ^ B C, we find, for the dis-

tance of the centre of percussion from the axis,

BC = ^ = -^" + r,Or (3.)

and for its distance from the centre of gravity,

G^ = BC" r.^i. (i-y
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The last equation may also be expressed in the form

GB-GrC =
e^; (5.)

which preserves the same value when G B and GO are inter-

changed ;
thus shewing, that if a new axis parallel to the original

axis X X be made to traverse the original centre of percussion, the
new centre of percussion is the point C in the original axis.

The proportion in which the mass of the body is to be considered
as distributed between B and C takes the following form, when
each of the last three terms of the proportion 1 is multiplied by

ro
= GC:-

W:C:B: :
(^l + rl : d : rl (6.)

The preceding solution is represented by the following geometrical
construction -.—Draw GD perpendicular to C G and =

e^; join
C D, perpendicular to which draw D B cutting C G produced in

B; this point is the centre of percussion.

Also, D =
f, the radius of gyration about X X

;
and D B is the

radius of gyration about an axis traversing B parallel to X X.
If C E be taken = CD, E is sometimes called the Centre of Gyra-

tion of the body for the axis X X.

Section 2.—On Uniform Kotation.

356. The Momentum of a body rotating about its centre of

gravity is nothing, according to the principle of Article 344. As
every motion of a rigid body can be resolved into a translation,
and a rotation about its centre of gravity, the rotation will be

supposed to take place about the centre of gravity of the body
throughout this section.

357. The Angular Momentum is found in the following manner:—Let X denote the axis of rotation, and y and z any two axes fixed
in the body, perpendicular to it and to each other. Let a be the

angular velocity of rotation. Then the velocity of any particle W,
whose radius vector is »• = Jy^ + z^, is

ar = a Jy^ + z^,

and the angular momentum of that particle, relatively to the axis of
rotation, is

9 g
^ '

being the 'product of its moment of inertia into its angular velocity
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divided by g, because of the weights of the particles having been
used in computing the moment of inertia.

358. The Actual Energy of Rotation of a body rotating about its

centre of gravity, being the sum of the masses of its particles, each

multiplied into one-half of the square of its velocity, is found as

follows :
—a being the angular velocity of rotation, the linear velo-

city of any particle whose distance from the axis of rotation is r, is

v = ar',

and the actual energy of that particle, its weight being W, is

Tg-'-^g^'' (1.)

being the moment of inertia of the particle multiplied by ^. Hence

for the whole body the actual energy of rotation is

23' ^-I

that is to say, actual energy hears the same relation to angular velo-

city and moTnent of inertia that it does to linear velocity and weight.
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CHAPTER V.

MOTIONS OF FLUIDS.

359. Division of the Subject.—The mode of division that will

be employed in this chapter iu treating of the motions of fluids is

founded on the distinction between motions not sensibly afiected

by friction, and those which are so afiected. The motions of fluids

not sensibly affected by friction, and therefore governed by pressure
and weight only, take place according to laws which are exactly
known

;
so that any difficulty which exists in tracing their conse-

quences, in particular cases, arises from mathematical intricacy
alone. The laws of the friction of fluids, on the other hand, are

only known approximately and empirically ;
and the mode of

operation of that force amongst the particles of a fluid is not yet

thoroughly understood ; so that the solution of a particular problem
has often to be deduced, not from first principles representing the

condensed results of all experience, but from experiments of a

special class, suited to the problem under consideration.

The following is the division of the subject of this chapter :
—

I. Motions of Liquids under Gravity and Pressure alone.

II. Motions of Liquids afiected by Friction.

Section 1.—Motions of Liquids without Friction.

360. Dynamic Head.—Let -p denote the intensity of the pressure
of the liquid at a given point and g the weight of an unit of volume;

then the quotient
- is what is called the height^ or head, due to tlie

e

pressure; that is, the height of a column of the liquid, of the

uniform specific gravity e, whose weight per i.nit of base would be

equal to the pressure p. Now, let a vertical ordinate z be measured

positively downwards from a datum horizontal plane, ^ ^ is the

weight of a column of liquid per unit of base extending down from

that plane to a particle under consideration; p- ^zis, the difierence

between the intensity of the actual pressure at that particle and
the pressure due to its depth below the datum horizontal plane ;

and

^-z = h (1.)
e

is the height or head due to that difference of intensity, being what
will be termed the dynamic head. When z is measured positively
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vpjoards from a datum horizontal plane, its sign is to be changed ;

so that the expression for the dynamic head in that case becomes

^
+ * = /' (2.)

361. Law of Dynamic Head for Steady Motion.—This principle

may be stated thus :
—In steady motion, the sum of the height due to

the velocity of a particle and of its dynamic head is constant^ or

symbolically
Y2-— + h = constant.

This equation applies to the particles which successively occupy the

same jSxed point, as well as to each individual particle.
362. The Total Energy of a particle of a moving liquid without

friction is expressed by multiplying the expression in the previous

equation by the weight of the particle W, thus :
—

in which —
^
— is the actual energy of the particle, and W h is its

«/

potential energy; because, from the last Article it appears, that by
WY2

the diminution oiWh, —^
— may be increased by an equal amount,

and vice versa; so that the dynamic head of a particle is its potential

energy per unit of weight. In the case of steady motion, the total

energy of each particle is constant
;
and the total energy of each of

the equal particles which successively occupy the same position is

the same.

363. The Free Surface of a moving liquid mass, being that which
is in contact with the air only, is characterized by the pressure

being uniform all over it, and equal to that of the atmosphere.
Let />i be the atmospheric pressure, Zi the vertical ordinate, mea-
sured positively upwards from a given horizontal plane, of any point
in the free surface of the liquid, and h^ the dynamic head at the

same point; then it appears from Article 360, Equation 2, that for

that surface,

h^-z^ =— = constant (1.)
e

364. A Surface of Equal Pressure is characterized by an ana-

logous equation,

^-;2;== — = constant; (1.)
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and all surfaces of equal pressure fulfil the differential equation,

dh^dz; (2.)

for the differential coefficient of a constant being equal to dh
- dz — Equation 1, and .-. d h = dz which, for steady motioji,
becomes

dz = dh= -d-~; (3.)

found by differentiating the equation of Article 361, expressing
that the variations of actual energy are those due to the variations

of level simply.
365. Motion in Plane Layers is a state which is either exactly

or approximately realized in many ordinary cases of liquid motion;

Fi^. 143. Fig. 144.

and the assumption of which is often used as a first approximation
to the solution of various questions in hydraulics. It consists in

the motions of all the particles in one

plane being parallel to each other, per-

pendicular to the plane, and equal in

velocity. It is illustrated by the three

figures 143, 144, and 145, each of which

represents a reservoir containing liquid

up to the elevation OZ^ = z-^ above a given
datum, and discharging the liquid from

an orifice Ao at the smaller elevation O Z^
=

Zq. The liquid moves exactly or nearly
in plane layers at the upper surfuce Ai and at the orifice A^.

Let these symbols denote the areas of the upper surface and of the

issuing stream respectively.
Let Q denote the rate of flow per second, v-^ the velocity of descent

of the liquid at the upper surface, v^ its velocity of outflow from the

Fis. 145.
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orifice; then, according to Article IIG, tlie equaCioxrfof contiiiuk;^ i3

^iAi = 2;oAo-Q; "1

 

-V^Vi.
^"

Q Q
"^'^^ =

A,^^«=^Ao'

The pressures at the upper surface and at the orifice respectively
are each equal to the atmospheric pressure; hence the difference of

dynamic head is simply the difference of elevation j that is to say,

"^1
~

"o — ^1
~

^0 ^

therefore, according to Article 361 and Article 364, Equations 2

and 3,

25^ A0-®--^o ^^\

This gives for the velocity of outflow,

.)

from which can be computed the rate of flow or discharge by means
of Equation 1.

366. The Contracted Vein is the name given to a portion of a

jet of fluid at a short distance from an orifice in a plate, which is

smaller in diameter and in area than the orifice, owing to a spon-
taneous contraction which the jet undergoes after leaving the

orifice.

The area of the. narrowed part of the contracted vein is in every
case to be considered as the virtual or effective outlet^ and used for

Aq in the equations of the last Article.

The ratio of the area of the contracted vein, or effective orifice,

to that of the actual orifice, is called the coefficient of contraction.

For sharp edged orifices in thin plates, it has different values for

different figures and proportions of the orifice, ranging from about

0-58 to 0-7, and being on an average about f. It diminishes some-

what for great pressures, and for dynamic heads of six feet and

upwards may be taken at about 0-6. The mo,5t elaborate table of

those coefficients is that of Poncelet and Lesbros.

For orifices with edges that are not sharp and thin, the discharge
is modified sensibly by friction.

Section 2.—Motions op Liquids with Friction.

367. General Laws of Fluid Friction.—It is known by experi-

m(3nt, that between a fluid, and a solid surface over which it glides,
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there is exerted a resistance to tlieir relative motion which is pro-

portional to their surface of contact, and to the density of the fluid,
and is approximately proportional to the square of the velocity of
the relative motion; that is, the resistance is approximately pro-

portional to the weight of a prism of the fluid, whose base is the sur-

face of contact, and its height the height due to the relative velocity.
Let S be the surface of contact, v the velocity, ^ the weight of an

unit of volume of the fluid, and/ a factor called the coefficient of
friction; then

R=/eS|^. (1-)

is the amount of the friction at the surface S.

The coefficient /is not absolutely constant at different velocities.

The mode of calculation employed in practice, where the velocity
is one of the unknown quantities to be determined, is to find an

approximate value of the velocity from the mean value of /; then
to compute the value of / corresponding to that approximate
velocity, and use it to compute the velocity more exactly.
The following are some of the values of the coefficients of

friction, according to different authorities, for streams of water,
gliding over various surfaces; v being the mean velocity of the

stream, in feet per second :
—

Iron pipes (Darcy). Let c? = diameter of pipe in feet; then,

or for velocities that are not very small.

Iron pipes, value of/ for first approximation, 0-0064

Beds of rivers (Weisbach), f — a + -; a = 0-0074.

h = 0-00023 foot.

Beds of rivers, value of / for first )
o-DOTfi

approximation, j

A collection of numerous formulae for fluid friction, proposed by
different authors, together with tables of the results of the best

formulae, is contained in Mr. Neville's work on hydraulics. The
formulae of many authors, though differing in appearance, are

founded on the same, or nearly the same, experimental data, being

chiefly those of Du Buat, with additions by subsequent inquirers;
and their practical results do not materially differ. The two
formulae given above, on the authority of Darcy, for iron pipes,
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are based on his experiments as recorded in his treatise du Mouve-
ment de VEau dans les Tuyaux.

368. Internal Fluid Friction.—Although the particles of fluids

have no transverse elasticity
—that is, no tendency to recover a

certain figure after having been distorted—it is certain that they
resist being made to slide over each other, and that there is a

lateral communication of motion amongst them; that is, that there

is a tendency of particles which move side by side in parallel lines

to assume the same velocity. The laws of this lateral communica-
tion of motion, or internal friction of fluids, are not known exactly;
but its eflTects are known thus far :

—that the energy due to differ-

ences of velocity, which it causes to disappear, is replaced by heat

in the proportion of one thermal unit of Fahrenheit's scale for 772
foot pounds of energy, and that it causes the friction of a stream

against its channel to take effect, not merely in retarding the film

of fluid which is immediately in contact with the sides of the

channel, but in retarding the whole stream, so as to reduce its

motion to one approximating to a motion in plane layers perpen-
dicular to the axis of the channel (Article 365).

369. Friction in an Uniform Stream.—It is this last fact which
renders possible the existence of an open stream of uniform section,

velocity, and declivity. In hydraulic calculations respecting the

resistance of this, or any other stream, the value given to the

velocity is its mean value throughout a given cross-section of the

stream A,

"1 <')

The greatest velocity in each cross-section of a stream takes place
at the point most distant from the rubbing surface of the channel.

Its ratio to the mean velocity is given by the following empirical
formula of Prony, where V is the greatest velocity in feet per
second :

—

V 10-25 + V ^ '

In an uniform stream, the dynamic head which would otherwise
have been expended in producing increase of actual energy, is

wholly expended in overcoming friction. Consider a portion of
the stream whose length is I, and fall z. The loss of head is equal
to the fall of the surface of the stream, according to Article 363;
and the expenditure of potential energy in a second is accordingly

zzQ, = z z'v A..

Equating this to the work performed in a second in overcoming
fiiction, viz., v E, Equation 1, Article 367, we find
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or dividing by common factors, and by the area of section A, we
find for the value of the fall in terms of the velocity

-f'
S

.(3.)A 2^"
Let s be what is called the wetted perimeter of the cross-section

of the stream; that is, the cross-section of the rubbing surface of

the stream and channel; then

and dividing both sides of Equation 3 by I, we find for the relation

between the rate of declivity and the velocity,

,(4.)sin ^^-^ =/— ^ —-

I A. 2 g

— is what is called the "hydraulic mean depth" of the stream;
s

and as the friction is inversely proportional to it, it is evident that

the figure of cross-section of channel which gives the least friction

is that whose hydraulic mean depth is greatest, viz., a semicircle.

When the stability of the material limits the side-slope of the

channel to a certain angle, Mr. Neville has shewn that the figure
of least friction consists of a pair of straight side-slopes of the given
inclination connected at the bottom by an arc of a circle whose
radius is the depth of liquid in the middle of the channel; or, if a

flat bottom be necessary, by a horizontal line touching that arc.

Por such a channel, the hydraulic mean depth is half of the depth
of liquid in the middle of the channel.

370. Varying Stream.—In a stream whose area of cross-section

varies, and in which, consequently, the mean velocity varies at

different cross-sections, the loss of dynamic head is the sum of that

expended in overcoming friction, and of that expended in producing
increased velocity, when the velocity increases, or the difference of

those two quantities when the velocity diminishes, which difference

may be positive or negative, and may represent either a loss or a gain
of head. The following method of representing this principle sym-

bolically is the most convenient
for practical purposes. In fig.

146, let the origin of co-or-

dinates be taken at a point O
completely below the part of the

stream to be considered; let ho-

rizontal abscissae x be measured

against the direction of flow,

and vertical ordinates to the

Fig 146. surface of the stream, z, up-

wards. Consider any indefinitely short portion of the stream whose



THE FRICTION OF A PIPE RUNNING FULL. 2o7

horizontal length is d x; in practice this may almost always be con-

sidered as equal to the actual length. The fall in that portion of

the stream is d z, and the acceleration -d v, because of v being

opposite to X. Then modifying the expression for the loss of head
due to friction in Equation 3 of Article 369 to meet the present

case, and adding the loss of head due to acceleration, we find

^ sdx v^ vdv ,- .

dz - /•—T" *

o (1-)

In applying this differential equation to the solution of any parti-
cular problem, for v is to be put Q -f- A, and for A and s are to be

put their values in terms of x and z. Thus is obtained a differential

equation between z and x, and the constant quantity Q, the flow

per second. If Q is known, then it is sufficient to know the value
of z for one particular value of x, in order to be able to determine
the integral equation between z and x If Q is unknown, the

dz
values of z for two particular values of x, or of z and

-j~~ (the

declivity), for one particular value of x, are required for the solu-

tion, which comprehends the determination of the value of O.

371. The Friction in a Pipe Running Full produces loss of

dynamic head according to the same law with the friction in a

channel, except that the dynamic head is now the sum of the ele-

vation of the pipe above a given level, and of the height due to the

pressure within it. The differential equation which expresses this

is as follows :
—Let d I he the length of an indefinitely short

portion of a pipe measured in the direction of flow, s its internal

circumference, A its area of section, z its elevation above a given
level, p the pressure within it, h the dynamic head. Then the loss

of head is

,, , dp vdv . sdl v^ ._.-dh= -dz--^ = +/• • -—
(1.)

The ratio -y-, is called the virtual or hydraulic declivity, being the

rate of declivity of an open channel of the same flow, area, and

hydraulic mean depth. This may differ to any extent from the

dz
actual declivity of the pipe, -j-j.

CO

When the pipe is of uniform section, dv-0, and the first term
of the right-hand side of Equation 1 vanishes.

When the section of the pipe varies, s and A are given functions

of L If Q is given, v^Q^A is also a given function of I; and
to solve the equation completely, there is only required in addition
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the value of h for one particular value of I. If Q is unknown, the

values of h for two particular values of I, or of h and -—- for one

particular value of I, are required for the solution, which compre-
hends the determination of Q.

372. Resistance of Mouthpieces.—A mouthpiece is the part of

a channel or pipe immediately adjoining a reservoir. The internal

friction of the fluid on entering a mouthpiece causes a loss of head

equal to the height due to the velocity multiplied by a constant

depending on the figure of the mouthpiece, whose values for

certain figures have been found empirically; that is to say, let

- A ^* he the loss of head ;
then

-^'-V ^'-^

/' being a constant.

For the mouthpiece of a cylindrical pipe, issuing from the flat

side of a reservoir, and making the angle i with a normal to the

side of the reservoir, according to Weisbach,

/' = 0-505 + 0-303 sin ^ + 0-226 sin2i (2)

373. The Resistance of Curves and Knees in pipes causes a loss

of head equal to the height due to the velocity multiplied by a

coefficient, whose values, according to Weisbach, are given by the

following formulae :
—For cui'ves, let i be the arc to radius unity, r

the radius of curvature of the centre line of the pipe, and d its

diameter.

Then for a circular pipe,

/" =
i{0-131.1-847(^J};

and for a rectangular pipe, |" (!•)

for hnees, or sudden bends, let i be the angle made by the two por-
tions of the pipe at either side of the knee with each other,; then

/" = 0-9457 sin2 ^ + 2-047 sin4 \ (2.)

374. A Sudden Enlargement of the channel in which a slream

of liquid flows, causes a sudden diminution of the mean velocity in

the same proportion as that in w^hich the area of section is in-
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creased. Thus, let v^ be tlie velocity in the narrower portion of

the channel, and let m be the number expressing the ratio in which
the channel is suddenly enlarged: the velocity in the enlarged part

is A Now it appears from experiment, that the actual energy

due to the velocity of the narrow stream relatively to the wide

stream, that is, to the difference
-y^

f 1
j,

is expended in over-

coming the internal fluid friction of eddies, and so producing heat;
so that there is a loss of total head, represented by

ftO-D- 0)

375. The General Problem of the flow of a stream with friction

vl v^
is thus expressed :

—Let h. + -r—, and Ao + ~, be the total heads at
^g ^9  

the beginning and end of the stream respectively; then the loss of

total head is represented by

;,-4+!|--^
=
2-Fi^ (1-)

where the right-hand side of the equation represents the sum of

all the losses of head due to the friction in various parts of the
channel.
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PART VI.

THEORY OF MACHINES.

CHAPTER I.

DEFINITIONS AND GENERAL PRINCIPLES.

376. Nature and Division of the Subject.—In the present Part
of this work, machines are to be considered not merely as modify-

ing motion, but also as modifying force, and transmitting energy
from one body to another. The theory of machines consists

chiefly in the application of the principles of dynamics to trains

of mechanism; and therefore much of the present Part of this

treatise will consist of references back to Parts 11. and V.
There are two fundamentally different ways of considering a

machine, each of which must be employed in succession, in order

to obtain a complete knowledge of its working,
I. In the first place is considered the action of the machine

during a certain period of time, with a view to the determination
of its efficiency; that is, the ratio which the useful part of its

work bears to the whole expenditure of energy. The motion of

every ordinary machine is either uniform or periodical; and there-

fore the principle of the equality of energy and work is fulfilled,

either constantly, or periodically at the end of each period or cycle
of changes in the motion of the machine.

II. In the second place is to be considered the action of the

machine during intervals of time less than its period or cycle, if

its motion is periodic, in order to determine the law of the periodic

changes in the motions of the pieces of which the machine con-

sists, and of the periodic or reciprocating forces by which such

changes are produced.
377. A Prime Mover is an engine, or combination of moving

pieces, which serves to transfer energy from those bodies which

naturally develop it, to those by means of which it is to be enj-

ployed, and to transform energy from the various forms in which
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it may occur, such as cliemical affinity, heat, or electricity, into the

form of mechanical energy, or energy of force and motion. The
mechanism of a prime mover compreliends all those parts by means
of which it regulates its own operations.
The useful work of a prime mover is the energy which it trans-

mits to any machine driven by it; and its efficiency is the ratio of

that useful work to the whole energy received by it from a natural

source of energy.
The effect or available power of a prime mover is its useful work

in some given unit of time, such as a second, a minute, an hour,
or a day.

378. The Regulator of a prime mover is some piece of apparatus
by which the rate at which it receives energy from the source of

energy can be varied.

379. A Governor is a self-acting adjusting apparatus, usually

consisting of a pair of rotating pendulums, whose angle of devia-

tion from their axis depends upon the speed.
380. Fluctuations of Speed in a machine are caused by the

alternate excess of the energy received above the work performed,
and of the work performed above the energy received, which pro-
duce an alternate increase and diminution of actual energy.

381. A Fly-Wheel is a wheel with a heavy rim, wliose great
moment of inertia reduces the coefficient of fluctuation of speed
to a certain fixed amount.

382. A Brake is employed to stop a machine in a shorter time

than can be done by simply suspending the efibrt of the prime
mover.

383. Useful and Lost Work.—The whole work performed by a

machine is distinguished into useful work^ being that performed in

producing the effect for which the machine is designed, and lost

work being that performed in producing other effects.

384. Useful and Prejudicial Resistance are overcome in per-

forming useful work and lost work respectively.
385. The Efficiency of a machine is a fraction expressing the

ratio of the useful work to the whole work performed, which is

equal to the energy expended. The limit to the efficiency of a

machine is unity, denoting the efficiency of a perfect machine in

which no work is lost. The object of improvements in machines

is to bring their efficiency as near to unity as possible.
386. Power and Effect; Horse Power.— The power of a

machine is the energy exerted, and the effect, the useful work

performed, in some interval of time of definite length.
The unit of power called conventionally a horse power, is 550

foot pounds per second, or 33,000 foot pounds per minute, or

1,980,000 foot pounds per hour. The effect is equal to the power
multiplied by the efficiency.
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387. Driving Point; Train; Working Point.—The driving point
is that througli which the resultant effort of the prime mover acts.

The train is the series of pieces which transmit motion and force

from the driving point to the working point, through which acts

the resultant of the resistance of the useful work.
388. Points of Resistance are points in the train of mechanism

through which the resultants of prejudicial resistances act.

389. Efficiencies of Pieces of a Train.—The useful work of an
intermediate piece in a train of mechanism consists in driving the

piece which follows it, and is less than the energy exerted iipon it

by the amount of the work lost in overcoming its own friction.

Hence the efficiency of such an intermediate piece is the ratio of

the work performed by it in driving the following piece, to the

energy exerted on it by the preceding piece ; and it is evident that

the efficiency of a machine is the product of the efficiencies of the series

of moving pieces which transmit energy from the driving point to the

working point. The same principles apply to a train of successive

machines^ each driving that which, follows it.
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CHAPTER II.

OF THE PERFORMANCE OF WORK BY MACHINES.

Section 1.—Of Work.

390. The Action of a Machine is to produce motion against
Resistance. For example, if the machine is one for lifting solid

bodies, such as a crane, or fluid bodies, such as a pump, its action

is to produce upward motion of the lifted body against the resist-

ance arising from gravity ;
that is, against its own weight : if

the machine is one for propulsion, such as a locomotive engine, its

action is to produce horizontal or inclined motion of a load against
the resistance arising from friction, or from friction and gravity
combined : if it is one for shaping materials, such as a planing

machine, its action is to produce relative motion of the tool and of

the piece of material shaped by it, against the resistance which that

material ofiers to having part of its surface removed; and so of

other machines.

391. Work.—The action of a machine is measured, or expressed
as a definite quantity, by multiplying the motion which it pro-
duces into the resistance, or force directly opposed to that motion,
which it overcomes; the product resulting from that multiplication

being called work.
In Britain, the distances moved through by pieces of mechanism

are usually expressed in feet ; the resistances overcome, in pounds
avoirdupois; and quantities of work, found by multiplying dis-

tances in feet by resistances in pounds, are said to consist of so

many foot-pourwis. Thus the work done iij lifting a weight of one

pound, through a height of one foot, is one foot-pound; the work
done in lifting a weight of twenty pounds, through a height of one

hundred feet, is 20 x 100 = 2,000 foot-pounds.
In France, distances are expressed in metres, resistances over-

come in kilogrammes, and quantities of work in what are called

hilogrammetres, one kilogrammetre being the work performed in

lifting a weight of one killogramme through a height of one

m6tre.

392. The Rate of Work of a machine means, the quantity of work
which it performs in some given interval of time, such as a second,
a minute, or an hour. It may be expressed in units of work (such
as foot-pounds) per second, per minute, or per hour, as the case
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may be; but tliere is a peculiar unit of power appropriated to its

expression, called a horse-power, which is, in Britain,

550 foot-pounds per second,
or 33,000 foot-pounds per minute,

or 1,980,000 foot-pounds per hour.

in France, the term Force de Cheval is applied to the following
rate of work:—

Foot-ponnds.

75 kilogramm^tres per second = 542J
or 4,500 kilogrammetres per minute = 32,549  

or 270,000 kilogrammetres per hour = 1,952,932

being about one-seventieth part less than the British horse-power.
393. Velocity.—If the velocity of the motion which a machine

causes to be performed against a given resistance be given, then the

j)roduct of that velocity into the resistance obviously gives tbe rate

of work, or effective power. If the velocity is given in feet per
second, and the resistance in pounds, then their product is the rate

of work in foot-pounds per second, and so of minutes, or hours, or

other units of time.

It is usually most convenient, for purposes of calculation, to

express the velocities of the parts of machines either in feet per
second or in feet per minute. For certain kinetic calculations

the second is the more convenient unit of time • in stating the

performance of machines for practical purposes^ the minute is the

unit most commonly employed.
394. Work in Terms of Angular Motion.—When a resisting

force opposes the motion of a part of a machine which moves round
a fixed axis, such as a wheel, an axis, or a crank, the product of

the amount of that resistance into its leverage (that is, the perpen-
dicular distance of the line along which it acts from the fixed axis)
is called the moment, or statical moment, of the resistance. If the

resistance is expressed in pounds, and its leverage in feet, then its

moment is expressed in terms of a measure which may be called

2i foot-pound, but which, nevertheless, is a quantity of an entirely
difierent kind from a foot-pound of work.

Suppose now that the body to whose motion the resistance is

opposed turns through any number of revolutions, or parts of a

revolution; and let T denote the angle through which it turns,

expressed in revolutions, and parts of a revolution
, also, let

710
2 x = 6-2832 =

|i^

denote, as is customary, the ratio of the circumference of a circle to
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its radius. Then the distance through which the given resistance

is overcome is expressed by

the leverage x 2 ^ x T;

that is, by the product of the circumference of a circle whose radius

is the leverage, into the number of turns and fractions of a turn

made by the rotating body.
The distance thus found being multiplied by the resistance over^

come, gives the work performed ;
that is to say,

The work 'performed

=ihe resistance x the leverage x 2 ^ x T:

But the product of the resistance into the leverage is what is called

the inoment of the resistance, and the product 2 « T is called the

angular motion of the rotating body ; consequently,

The work performed
= the moment of the resistance x the angular motion.

The mode of computing the work indicated by this last equation
is often more convenient than the direct mode already explained in

Article 391.

The angular motion 2 ^r T of a body during some definite unit of

time, as a second or a minute, is called its angular velocity; that is

to say, angular velocity is the product of the turns and fractions of a
turn made in an unit of time into the ratio of the circumference

of a circle to its radius. Hence it appears that

The rate of work

= the momeiit of the resistance x the angular velocity.

395. Work in Terms of Pressure and Volume.—If the resistance

overcome be a pressure uniformly distributed over an area, as when
a piston drives a fluid before it, then the amount of that resistance

is equal to the intensity of the pressure, expressed in units of force

on each unit of area (for example, in pounds on the square inch,

or pounds on the square foot) multiplied by the area of the sur-

face at which the pressure acts, if that area is perpendicular to

the direction of the motion; or, if not, then by the projection of

that area on a plane perpendicular to the direction of motion. In

practice, when the area of a piston is spoken of, it is always
imderstood to mean the projection above mentioned.

Now, when a plane area is multiplied into the distance through
which it moves in a direction perpendicular to itself, if its motion
is straight, or into the distance through which its centre of gravity

moves, if its motion is curved, the product is the volume of the

space traversed by the piston.
Hence the work performed by a piston in driving a fluid before
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it, or by a fluid in driving a piston before it, may be expressed in

either of the following ways :
—

Resistcmce x distance traversed

=
intensity ofpressure x area x distance travefsed;

=:: intensity ofpressure x volume traversed.

In order to compute the work in foot-pounds, if the pressure is

stated in pounds on the square foot, the area should be stated in

square feet, and the volume in cubic feet
;
if the pressure is stated in

pounds on the square inch, the area should be stated in square inches,
and the volume in units, each of which is a prism of one foot in

length, and one square inch in area
;
that is, of j^j ^^ ^ cubic fpot

in volume.

396. Algebraical Expressions for Work.—To express the results

of the preceding articles in algebraical symbols, let

s denote the distance in feet through which a resistance is over-

come in a given time
;

E, the amount of the resistance overcome in pounds.
Also, supposing the resistance to be overcome by a piece which
turns about an axis, let

T be the number of turns and fractions of a turn made in the

given time, and i = 2 cr T = 6'2832 T the angular motion in the

given time
;
and let

? be the leverage of the resistance
;
that is, the perpendicular

distance of the line along which it acts from the axis of motion
;

so that s = il, and R Z is the statical moment of the resistance.

Supposing the resistance to be a pressure, exerted between a piston
and a fluid, let A be the area or projected area of a piston, and j3
the intensity of the pressure in pounds per unit of area.

Then the following expressions all give quantities of work in the

given time in foot-pounds :
—

Rs; i'Rl; p As ; ipA.1.

The last of these expressions is applicable to a piston turning on
an axis, for which I denotes the distance from the axis to the centre
of gravity of the area A.

397. Work against an Oblique Force.—The resistance directly
due to a force which acts against a moving body in a direction

oblique to that in which the body moves, is found by resolving
that force into two components, one at right angles to the direction

of motion, which may be called a lateral force, and which must be
balanced by an equal and opposite lateral force, unless it takes

efiect by altering the direction of the body's motion, and the other

component directly opposed to the body's motion, which is the
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resistance required. That resolution is effected by means of the

well-known principle of the parallelogram of forces as follows :
—

In fig. 147, let A represent the point at which a resistance is over-

come, A B the direction in which ^ ^ ^ ^ 33

that point is moving, and let A F
be a line whose direction and

length represent the direction and

magnitude of a force obliquely Yw. 147.

opposed to the motion of A.

From F upon B A produced, let fall the perpendicular F K; the

length of that perpendicular will represent the magnitude of the

lateral component of the oblique force, and the length A R will

represent the direct component or resistance.

The w^ork done against an oblique resisting force may also

be calculated by resolving the motion into a direct component
in the line of action of the force, and a transverse component,
and multiplying the whole force by the direct component of the

motion.

398. Summation of Quantities of Work.—In every machine,
resistances are overcome during the same interval of time, by
different moving pieces, and at different points in the same moving
piece ; and the whole work performed during the given interval is

found by adding together the several products of the resistances

into the respective distances through which they are simultaneously
overcome. It is convenient, in algebraical symbols, to denote the

result of that summation by the symbol—
2-Rsj..., , (1.)

in which 2 denotes the operation of taking the sum of a set of

quantities of the kind denoted by the symbols to which it is pre-
fixed.

When the resistances are overcome by pieces turning upon axes,
the above sum may be expressed in the form—

2 iRZj (2.)

and so of other modes of expressing quantities of work.

The following are particular cases of the summation of quantities
of work performed at different points :

—
I. In a shifting piece, or one which has the kind of movement

called translation only,' the velocities of every point at a given
instant are equal and parallel ; hence, in a given interval of time,
the motions of all the points are equal ; and the work performed
is to be found by multiplying the sum of the resistances into the

motion as a common factor ;
an operation expressed algebraically

thus—
s2E; (3.)
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II. For a turning piece, the angular motions of all the points

during a given interval of time are equal; and the work performed
is to be found by multiplying the sum of the moments of the resist-

ances relatively to the axis into the angular motion as a common
factor—an operation expressed algebraically thus—

iS-R/; (4.)

The sum denoted by 2
• R Hs the total moment of resistance of the

piece in question.
III. In every tnrain of mechanism, the proportions amongst the

motions performed during a given interval of time by the several

moving pieces, can be determined from the mode of connection of

those pieces, independently of the absolute magnitudes of those

motions, by the aid of the Theory of Pure Mechanism, Part II.

This enables a calculation to be performed which is called

reducing the resistances to the driving point; that is to say,

determining the resistances, which, if they acted directly at the

point where the motive power is applied to the machine, would

require the same quantity of work to overcome them with the

actual resistances.

Suppose, for example, that by the principles of pure mechanism
it is found, that a certain point in a machine, where a resistance R
is to be overcome, moves with a velocity bearing the ratio w : 1 to

the velocity of the driving point. Then the work performed in

overcoming that resistance will be the same as if a resistance n R
were overcome directly at the driving point. If a similar calcula-

tion be made for each point in the machine where resistance is

overcome, and the results added together, as the following symbol
denotes :

—
2-nR, (5.)

that sum is the equivalent resistance at the driving point ; and if in

a given interval of time the driving point moves through the dis-

tance s, then the work performed in that time is—
s2-nR (6.)

The process above described is often applied to the steam engine,

by reducing all the resistances overcome to equivalent resistances

acting directly against the motion of the piston.
A similar method may be applied to the moments of resistances

overcome by rotating pieces, so as to reduce them to equivalent
moments at the driving axle. Thus, let a resistance R, with the

leverage I, be overcome by a piece whose angular velocity of rota-

tion bears the ratio n :! to that of the driving axle. Then the

equivalent moment of resistance at the driving axle is n R Z ;
and

if a similar calculation be made for each rotating piece in the

machine which overcomes resistance, and the results added to-

gether, the sum—
^-n'Rl (7.)



WORK AGAINST VARYING RESISTANCE, 249

is the total equivalent moment of resistance at the driving axle; and
if in a given interval of time the driving axle turns through the
arc 2) to radius unity, the work performed in that time is—

i^ • n'Rl.
.(8.)

IV. Ce7itre of gravity.
—The work performed in lifting a body

is the product of the weight of the body into the height through which
its centre of gravity is lifted.

If a machine lifts the centres of gravity of several bodies at once
to heights either the same or different, the whole quantity of work
performed in so doing is the sum of the several products of the

weights and heights; but that quantity can also be computed by
multiplying the sum of all the

weights into the height through
which their common centre of

gravity is lifted.

399. Representation of Work
by an Area.—As a quantity of

work is the product of two

quantities, a force and a motion,
it may be represented by the -^^S- 148.

area of a plane figure, wliich is the product of two dimensions.
Let the base of the rectangle A, fig. 148, represent one foot of

motion, and its height one pound of resistance; then will its area

represent one foot-pound of work.

In the larger rectangle, let the base O S represent a certain

motion s, on the same scale w^ith the base of the tinit-area A; and

let the height O K represent a certain resistance R, on the same
scale with the height of the unit-area A ; then will the number of

times that the rectangle O S • O R contains the unit-x-ectangle A,
express the number of foot-pounds in the quantity of work E, s,

which is performed in overcoming the resistance R through the

distance s.

400. Work against Varying Resistance.—In fig. 149, let dis-

tances, as before, be represented
Y

by lengths measured along the

base line O X of the figure; and
let the magnitudes of the resist-

ance overcome at each instant be

represented by the lengths of
ordinates drawn perpendicular to
O X, and parallel to Y :—For
example, when the working body

^^'

has moved through the distance represented by OS, let the resiirt-

ance be represented by the ordinate S ii.

7^

A R
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If the resistance were constant, the summits of those ordinates
would lie in a straight line parallel to O X, like E, B in

fig. 148;
but if the resistance varies continuously as the motion goes on, the
summits of the ordinates will lie in a line, straight or curved, such
as that marked ERG, fig. 149, which is not parallel to O X.
The values of the resistance at each instant being represented by

the ordinates of a given line ERG, let it now be required to deter-

mine the work performed against that resistance during a motion

represented by O F = s.

Suppose the area O E G F to be divided into bands by a series of

parallel ordinates, such as A C and B D, and between the upper
ends of those ordinates let a series of short lines, such as C D, be
drawn parallel to O X, so as to form a stepped or serrated outline,

consisting of lines parallel to O X and O Y alternately, and approxi-

mating to the given continuous line E G.

Now conceive the resistance, instead of varying continuously, to

remain constant during each of the series of divisions into which
the motion is divided by the parallel ordinates, and to change
abruptly at the instants between those divisions, being represented
for each division by the height of the rectangle which stands on
that division : for example, during the division of the motion

represented by A B, let the resistance be represented by A C, and
so for other divisions.

Then the work performed during the division of the motion re-

presented by A B, on the supposition of alternate constancy and

abrupt variation of the resistance, is represented by the rectangle
A B • A C

j
and the whole work performed, on the same supposition

during the whole motion O F, is represented by the sum of all the

rectangles lying between the parallel ordinates; and inasmuch as

the supposed mode of variation of the resistance represented by the

stepped outline of those rectangles is an approximation to the real

mode of variation rej)resented by the continuous line E G, and is a

closer approximation the closer and the more numerous the parallel
ordinates are, so the sum of the rectangles is an approximation to

the exact representation of the work performed against the conti-

nuously varying resistance, and is a closer approximation the closer

and more numerous the ordinates are, and by making the ordinates

numerous and close enough, can be made to difier from the exact

representation by an amount less than any given difference.

But the sum of those rectangles is also an approximation to the

area O E G F, bounded above by the continuous line E G, and is

a closer approximation the closer and the more numerous the ordi-

nates are, and by making the ordinates numerous and close enough,
can be made to dififer from the area O E G F by an amount less

than any given difference.

Therefore the area O E G F, hounded hy the straight line F, which
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represents the motion, hy the line E G, whose ordinates represent the

values of the resistance, and hy the two ordinates O E and F G, repre-
sents exactly the work performed. (See Article 34, page 17).
The MEAN RESISTANCE during the motion is found by dividing

the area O E G F by the motion CTF.
401. Useful Work and Lost Work.—The useful work of a ma-

chine is that which is performed in effecting the purpose for which
the machine is designed. The lost work is that which is performed
in producing effects foreign to that purpose. The resistances over-

come in performing those two kinds of work are called respectively

useful resistance and prejudicial resistance.

The useful work and the lost work of a machine together make

up its total or gross work.

In a pumping engine, for example, the useful work in a given
time is the product of the weight of water lifted in that time into

the height to which it is lifted : the lost work is that performed in

overcoming the friction of the water in the pumps and pipes, the

friction of the plungers, pistons, valves, and mechanism, and the

resistance of the air pump and other parts of the engine.
For example, the useful work of a marine steam engine in a

given time is the product of the resistance opposed by the water to

the motion of the ship, into the distance through which she

moves : the lost work is that performed in overcoming the resist-

ance of the water to the motion of the propeller through it, the

friction of the mechanism, and the other resistances of the engine,
and in raising the temperature of the condensation water, of the

gases which escape by the chimney, and of adjoining bodies.

There are some cases, such as those of muscular power and of

windmills, in which the useful work of a prime mover can be

determined, but not the lost work,
402. The Work Performed against Friction in a given time,

between a pair of rubbing surfaces, is the product of that friction

into the distance through which one surface slides over the other.

When the motion of one surface relatively to the other consists

in rotation about an axis, the work performed may also be cal-

culated by multiplying the relative angular motion of the surfaces

to radius unity into the moment offriction; that is, the product of

the friction into its leverage, which is the mean distance of the

rubbing surfaces from the axis.

For a cylindrical journal, the leverage of the friction is simply
the radius of the journal.

For a flat pivot, the leverage is two-thirds of the radius of the

pivot.
For a collar, let r and r be the inner and outer radii; then the

leverage of the friction is

3
•

^2 _ ^'2
\^')
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In the cup and hall pivot, the end of the shaft, and the step on
which it presses, present two recesses facing each other, into which
are fitted two shaljow cups of steel or hard bronze. Between the
concave spherical surfaces of those cups is placed a steel ball, being
either a complete sphere, or a lens having convex surfaces of a some-
what less radius than the concave surfaces of the cups. The
moment of friction of this pivot is at first almost inappreciable,
from the extreme smallness of the radius of the circles of contact
of the ball and cups; but as they wear, that radius and the moment
of friction increase.

By the rolling of two surfaces over each other without sliding, a
resistance is caused, which is called sometimes "

rolling friction,"
but more correctly rolling resistance. It is of the nature of a couple

resisting rotation
;

its moment is found by multiplying the normal

pressure between the rolling surfaces by an arm whose length
depends on the nature of the rolling surfaces; and the work lost

in an unit of time in overcoming it is the product of its moment,
by the angular velocity of the rolling surfaces relatively to each
other. The following are approximate values of the arm in decimals

of a foot:
—

Oak upon oak, 0*006 (Coulomb).
Lignum-vitse on oak, 0-004 „
Cast-iron on cast-iron, 0-002 (Tredgold).

The work lost in friction produces heat in the proportion of one

British thermal unit, being so much heat as raises the temperature
of a pound of water 1° of Fahr., for every 772 foot-pounds of

lost work.
The heat produced by friction, when moderate in amount, is

useful in softening and liquefying unguents; but when excessive

it is prejudicial by decomposing the unguents, and sometimes even

by softening the metal of the bearings, and raising their tempera-
ture so high as to set fire to neighbouring combustible matters.

Excessive heating is prevented by a constant and copious supply
of a good unguent. When the velocity of rubbing is about four

or five feet per second, the elevation of temperature is found to

be, with good fatty and soapy unguents, 40° to 50° Fahr., witli

good mineral unguents, about 30°. The effect of friction upon the

efficiency of machines will be considered at the end of this Part.

403. Work of Acceleration.—In order that the velocity of a body's
motion may be changed, it must be acted upon by some other body
with a force in the direction of the change of velocity, which force

is proportional directly to the change of velocity, and to the mass
of the body acted upon, and inversely to the time^occupied in pro-

ducing the change. If the change is an acceleration or increase of

velocity, let the first body be called the driven body, and the second
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the driving hody. Then the force miTst act upon the driven body
in the direction of its motion. Every force being a pair of equal
and opposite actions between a pair of bodies, the same force which
accelerates the driven body is a resistance as respects the driving

body.
For example, during the commencement of the stroke of the

piston of a steam engine, the velocity of the piston and of its rod is

accelerated; and that acceleration is produced by a certain part of

the pressure between the steam and the piston, being the excess of

that pressure above the whole resistance which the piston has to

overcome. The piston and its rod constitute the driven body; the

steam is the driving body ;
and the same part of the pressure which

accelerates the piston, acts as a resistance to the motion of the

steam, in addition to the resistance which would have to be over-

come if the velocity of the piston were uniform.

The resistance due to acceleration is computed in the following
manner :

—It is known by experiment, that if a body near the

earth's surface is accelerated by the attraction of the earth,
—that

i3, by its own weight, or by a force equal to its own weight, its

velocity goes on continually increasing very nearly at the rate of

32'2 feet per second of additional velocity, for each second during
which the force acts. This quantity varies in different latitudes,

and at different elevations, but the value just given is near enough
to the truth for purposes of mechanical engineering. For brevity's

sake, it is usually denoted by the symbol g', so that, if at a given
instant the velocity of a body is v^ feet per second, and if its own

weight, or an equal force, acts freely on it in the direction of its

motion for t seconds, its velocity at the end of that time will have

increased to

V2 = v^ + gt (1.)

If the acceleration be at any different rate per second, the force

necessary to produce that acceleration, leing the resistance on the

driving body due to the acceleration of the driven body, bears the

same proportion to the driven body's weight which the actual rate of
acceleration bears to the rate of acceleration produced by gravity

acting freely. (In metres per second, ^ = 9-81 nearly.)
To express this by symbols, let the weight of the driven body be

denoted by W. Let its velocity at a given instant be
v-^^

feet per
second; and let that velocity increase at an uniform rate, so that

at an instant t seconds later, it is v^ feet per second.

Let /denote the rate of acceleration ;
then

/=^^; ..........(2.)
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and the force R necessary to produce it will be given by the pro-

portion,

that is to say,

^^/W^W (..-..)
_

g gt
^ ^

w
The factor—

,
in the above expression, is called the mass of the

driven body; and being the same for the same body, in what place
soever it may be, is held to represent the quantity of matter in the

body. (See Article 195, page 117.)W V
The product of the mass of a body into its velocity at any

instant, is called its momentum ;
so that the resistance due to a

given acceleration is equal to the increase of momentum divided hy
the time which that increase occupies.

If the product of a force by which a body is accelerated, equal
and opposite to the resistance due to acceleration, into the time

during which it acts, be called impulse, the same principle may be

otherwise stated by saying, that the increase of momentum is equal
to the impulse by which it is caused.

If the rate of acceleration is not constant, but variable, the force

K varies along with it. In this case, the value, at a given instant

of the rate of acceleration, is represented by / = -j— ,
and the cr-

ct t

responding value of the force is

K=^ =
^-.J4.. (4.)

g g d t
^ '

The WORK performed in accelerating a body is the product of

the resistance due to the rate of acceleration into the distance

moved through by the driven body while the acceleration is going
on. The resistance is equal to the mass of the body, multiplied by
the increase of velocity, and divided by the time which that
increase occupies. The distance moved through is the product of
the mean velocity into the same time. Therefore, the work per-
formed is equal to the mass of the body multiplied by the increase
of the velocity, and by the mean velocity ; that is, to the mass of
the body, multiplied hy the increase of the half-square of its velocity.
To express this by symbols, in the case of an uniform rate of

acceleration, let s denote the distance moved through by the driven

body during the acceleration j
then

-''-^:"''; (5.)
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whicli being multiplied by Equation 3, gives for the work of accele-

ration,

xis =— —-— —
^
— t =— —

^
— (0.)

In the case of a variable rate of acceleration, let v denote the

mean velocity, and d s the distance moved through, in an interval

of time dt &o short that the increase of velocity dvi^ indefinitely
small compared with the mean velocity. Then

ds = vdt; (7,)

which being multiplied by Equation 4, gives for the work of accele-

ration during the interval d t,

^. W dv .

9 dt
W

=— ' vdv \ (8.)
g

' ^

and the integration of this expression (see Article 29) gives for

the work of acceleration during a finite interval.

\^d,
=
-\vdv^ '-^^ (9.)
g J g

being the same with the result already arrived at in Equation 6.

From Equation 9 it appears that the work performed in producing
a given acceleration depends on the initial and final velocities, Vj and

Va, and not on the intermediate changes of velocity.

If a body falls freely under the action of gravity from a state of

rest through a height k, so that its initial velocity is 0, and its final

velocity v, the work of acceleration performed by the earth on the

body is simply the product W A of the weight of the body into the

height of fall. Comparing this with Equation 6, we find—

^=1^ (!«•)

This quantity is called the height, or fall, due to the velocity v
;

and from Equations 6 and 9 it appears that the work performed in

j)roducing a given acceleration is the same with that performed in

lifting the driven body through the difference of the heights due to its

initial andfinal velocities.

If work of acceleration is performed by a prime mover upon
bodies which neither form part of the prime mover itself, nor of the

machines which it is intended to drive, that work is lost; as when
a marine engine performs work of acceleration on the water that is

struck by the propeller.
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Work of acceleration performed on the moving pieces of the

prime mover itself, or of the machinery driven by it, is not neces-

sarily lost, as will afterwards appear. (Article 413.)
404. Summation of Work of Acceleration.—If several pieces of

a machine have their velocities increased at the same time, the
work performed in accelerating them is the sum of the several

quantities of work due to the acceleration of the respective pieces;
a result expressed in symbols by

If-*-?"}- <)

The process of finding that sum is facilitated and abridged in
certain cases by special methods.

I. Accelerated Rotation.—Let a denote the angular velocity of a
solid body rotating about a fixed axis;

—that is, as explained in
Article 87, the velocity of a point in the body whose radius-

vector, or distance from the axis, is unity.
Then the velocity of a particle whose distance from the axis

is r is

v = a r; (2.)

and if in a given interval of time the angular velocity is accelerated
from the value CTj, to the value a^, the increase of the velocity of the

particle in question is

v^-v^ = r{a^-a;) (3.)

Let w denote the weight, and — the mass of the particle in ques-

tion. Then the work performed in accelerating it, being equal to

the product of its mass into the increase of the half-square of its

velocity, is also equal to the product of its mass into the square of its

radius-vector, and into the increase of the half-square of the angular
velocity; that is to say, in symbols,

w vl
-

vl w r-2
^ al

- of

g'~^' '~~gi '"'2" ^^

To find the work of acceleration for the whole body, it is to be con-

ceived to be divided into small particles, whose velocities at any
given instant, and also their accelerations, are proportional to their

distances from the axis; then the work of acceleration is to be found
for each particle, and the results added together. But in the sum
so obtained, the increase of the half-square of the angular velocity
is a common factor, having the same value for each particle of the

body; and the rate of acceleration produced by gravity, g = 32*2 is

a common divisor. It is therefore sufficient to add together the
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jyroducts of the weight of each particle (w) into the square of its

radius-vector (v^), and to multiply the sum so obtained (D
• w r^) by

the increase of the half-square of the angular velocity Lj(al
-
al)!,

and divide by the rate of acceleration due to gravity (g). The

result, viz.:—

2{^.^^iU^4z^.2^r2 (5.)

is the woi'k of acceleration sought. In fact, the sum 2 w r^ is the

iveight of a body, which, if concentrated at the distance unity from
the axis of rotation, would require the same work to produce a given
increase of angular velocity which the actual body requires.

405. Reduced Inertia.—If in a certain machine, a moving piece
whose weight is W has a velocity always bearing the ratio n : 1 to

the velocity of the driving point, it is evident that when the driving

point undergoes a given acceleration, the work performed in pro-

ducing the corresponding acceleration in the piece in question is

the same with that which would have been required if a weight
9^2 W had been concentrated at the driving point, the work per-
formed in producing the acceleration depending on the square of

the velocity.
If a similar calculation be performed for each moving piece in the

machine, and the results added together, the sum

2-w2W (1.)

gives the weight which, being concentrated at the driving point,
would require the same work for a given acceleration of the driving

point that the actual machine requires; so that if v-^ is the initial,

and v^ the final velocity of the driving point, the work of accelera-

tion of the whole machine is

-^—^ -^-n^W (2.)
2g

^ ^

This operation may be called the reduction of the inertia to tJie

driving point. Mr. Moseley, by whom it was first introduced into

the theory of machines, calls the expression (1.) rhe ^^coefficient of

In finding the reduced inertia of a machine, the mass of each

rotating piece is to be treated as if concentrated at a distance from
its axis equal to its radius of gyration j; so that if v represents the

velocity of the driving point at any instant, and a the corresponding
angular velocity of the rotating piece in question, we are to make

»^="y (3.)

in performing the calculation expressed by the formula (1.)
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406. Summary of Various Kinds of Work.—In order to present
at one view the symbolical expression of the various modes of per-

forming work described in the preceding articles, let it be supposed
that in a certain interval of time d t the driving point of a machine
moves through the distance ds; that during the same time its

centre of gravity is elevated through the height dh', that resist-

ances, any one of which is represented by E,, are overcome at

points, the respective ratios of whose velocities to that of the

driving point are denoted by n
; that the weight of any piece of

the mechanism is W, and that n' denotes the ratio of its velocity

(or if it rotates, the ratio of the velocity of the end of its radius of

gyration) to the velocity of the driving point ;
and that the driving

point, whose mean velocity is v = -y , undergoes the acceleration

d V. Then the wJioU work performed during the interval in ques-
tion is

dA-2 W + c^s•27^R +'^•2 7^,'2W (1.)
9

The mean total resistance, reduced to the driving point, may be

computed by dividing the above expression by the motion of the

driving point ds = vdt, giving the following result :
—

^•2W + 27^R + ^•S7^'2W (2.)a 8 gdt .

^ '

Section 2.—Of Energy, Power, and Efj'iciency.

407. Condition of Uniform Speed.—According to the first law
of motion, in order that a body may move uniformly, the forces

applied to it, if any, must balance each other; and the same

j)rinciple holds for a machine consisting of any number of bodies.

When the direction of a body's motion varies, but not the velocity,,

the lateral force required to produce the change of direction depends
on the principles set forth in Article 335; but the condition ofbalance
still holds for the forces which act along the direction of the body's
motion, that is, for the efforts and resistances ; so that, whether for

a single body or for a machine, the condition of uniform velocity is,

that the efforts shall balance the resistances.

In a machine, this condition must be fulfilled for each of the

single moving pieces of which it consists.

It also follows, from the principles of statics, that in any
body, system, or machine, that condition is fulfilled when the sum
of the products of the efforts into the velocities of their respective

points of action is equal to the sum of the products of the resistances

into the velocities of the points where they are overcome.
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Thus, let V be the velocity of a driving point, or point where an.

effort P is applied ;
v' the velocity of a working point, or point where

a resistance R is overcome ;
the condition of uniform velocity for

any body, system, or machine is

2 • Pi; = 2 • R V'. (1.)

If there be only one driving point, or if the velocities of all the

driving points be alike, then P being the total effort, the single

product P V may be put in in place of the sum 2 • P i;
; reducing

the above equation to

Vv = ^'^v'.... (2.)

Referring now to Article 398, let the machine be one in which
the comparative or proportionate velocities of all the points at a

given instant are known independently of their absolute velocities,

from the construction of the machine ;
so that, for example, the

velocity of the point where the resistance R is overcome bears to

that of the driving point the ratio

V
V

then the condition of uniform speed may be thus expressed :
— -

P = 2 -TiR; (3.)

that is, the total effort is equal to the sum of the resistances reduced to

the drivi7ig point.
408 Energy—Potential Energy.—Energy means capacity for

performing work, and is expressed, like work, by the product of a

force into a space.
The energy of an effort, sometimes called ^^

potential energy" (to

distinguish it from another form of energy to be referred to in Article

414), is the product of the effort into the distance through which it is

capable of acting. Thus, if a weight of 100 pounds be placed at an
elevation of 20 feet above the ground, or above the lowest plane
to which the circumstances of the ease admit of its descending,
that weight is said to possess potential energy to the amount of

100 X 20 = 2,000 /oo^/?OMnc?s; which means, that in descending
from its actual elevation to the lowest point of its course, the

weight is capable ofperforming work to that amount.
To take another example, let there be a reservoir containing

10,000,000 gallons of water, in such a position that the centre of

gravity of the mass of water in the reservoir is 100 feet above the

lowest point to which it can be made to descend while overcoming
resistance. Then as a gallon of water weighs 10 lbs., the weight of

the store of water is 100,000,000 lbs., which being multiplied by
the height through which that weight is capable of acting, 100 feet,

gives 10,000,000,000 foot-pounds for the potential energy of the

weight of the store of water.
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409. Equality of Energy Exerted and Work Performed, or the
Conservation of Energy.—When an efFort actually does drive
its point of application tbrongli a certain distance, energy to the
amount of the product of the effort into that distance is said to
be exerted ; and the potential energy, or energy which remains

capable of being exerted, is to tliat amount diminished.
When the energy is exerted in driving a machine at an uniform

speed, it is equal to the work performed.
To express this algebraically, let t denote the time during which

the energy is exerted, v the velocity of a driving point at which an
effort P is applied, s the distance through which it is driven, v' the

velocity of any working point at which a resistance K is overcome,
s' the distance through which it is driven; then

8 = vt; s' = v' t;

and multiplying Equation 1 of Article 407 by the time t, we obtain
the following equation :

—
2'Pt?^ = 2-Ilv'j5 = 2-Ps = 2Ils'; (1.)

which expresses the equality of energy exerted, and work per-

formed, for constant efforts and resistances.

When the efforts and resistances vary, it is sufficient to refer to

Articles 400 and 29, to shew that the same principle is expressed
as follows :

—
:fVds = 2 fRds'; (2.)

where the symbol f expresses the operation of finding the work

performed against a varying resistance, or the energy exerted by a

varying effort, as the case may be; and the symbol 2 expresses the

operation of adding together the quantities of energy exerted, or work

performed, as the case may be, at different points of the machine.

410. Various Factors of Energy.—A quantity of energy, like a

quantity of work, may be computed by multiplying either a force

into a distance, or a statical moment into an angular motion, or

the intensity of a pressure into a volume. These processes have

already been explained in detail in Articles 394 and 395, pages
244 to 246.

411. The Energy Exerted in Producing Acceleration is equal to

the work of acceleration, whose amount has been investigated in

Articles 403 and 404, pages 252 to 257.

412. The Accelerating Effort by which a given increase of

velocity in a given mass is produced, and which is exerted by the

driving body against the driven body, is equal and opposite to the

resistance due to acceleration which the driven body exerts against
the driving body, and whose amount has been given in Articles
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403 and 404. Referring, therefore, to Equations 4 and 8 of Article

403, we find the two following expressions, the first of which gives
the accelerating efibrt required to produce a given acceleration d v

in a body whose weight is W, when the time dt in. which that

acceleration is to be produced is given, and the second, the same

accelerating effort, when the distance ds = vdt in which the ac-

celeration is to be produced is given :
—

p
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both of which are derived from the equation 'P ds =Tv'dt =
vdv

2

9

413. Work During Retardatioil—Energy Stored and Restored.—
In order to cause a given retardation, or diminution of the velocity
of a given body, in a given time, or while it traverses a given dis-

tance, resistance must be opposed to its motion equal to the effort

which would be required to produce in the same time, or in the
same distance, an acceleration equal to the retardation.

A moving body, therefore, while being retarded, overcomes re-

sistance and performs work; and that work is equal to the energy
exerted in producing an acceleration of the same body equal to the

retardation.

It is for this reason that it has been stated, in Article 403, that

the work performed in accelerating the speed of the moving pieces
of a machine is not necessarily lost

;
for those moving pieces, by

returning to their original speed, are capable of performing an

equal amount of work in overcoming resistance
;
so that the per-

formance of such work is not prevented, but only deferred. Hence

energy exerted in acceleration is said to be stored; and when by a

subsequent and equal retardation an equal amount of work is per-

formed, that energy is said to be restored.

The algebraical expressions for the relations between a retarding

resistance, and the retardation which it produces in a given body
by acting during a given time or through a given space, are ob-

tained from the equations of Article 412 simply by putting K, the

symbol for a resistance, instead of P, the symbol for an effort, and

-dv, the symbol for a retardation, instead of dv, the symbol for

an acceleration.

414. The Actual Energy of a moving body is the work which
it is capable of performing against a retarding resistance before

being brought to rest, and is equal to the energy which must be
exerted on the body to bring it from a state of rest to its actual

velocity. The value of that quantity is the product of the weight
of the body into the height from which it must fall to acquire its

actual velocity ; that is to say,

Jl^ (1.)

The total actual energy of a system of bodies, each moving with
its own velocity, is denoted by

~~^^' ^^^

and when those bodies are the pieces of a machine, whose velocities
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bear definite ratios (any one of whicli is denoted by n) to tbe velo-

city of the driving point v, their total actual energy is

|^-2«2W,
(3.)

being the product of the reduced inertia (or coefficient of steadiness,

as Mr. Moseley calls it) into the height due to the velocity of the

driving point.
The actual energy of a rotating body whose angular velocity is a,

and moment of inertia 2W r^ = I, is

«'i. (4)

that is, the product of the moment of inertia into the height due to the

velocityy a, of a pointy whose distance from the axis of rotation is

unity.
When a given amount of energy is alternately stored and restored

by alternate increase and diminution in the speed of a machine,
the actual energy of the machine is alternately increased and
diminished by that amount.

Actual energy, like motion, is relative only. That is to say, in

computing the actual energy of a body, which is the capacity it

possesses of performing work upon certain other bodies by reason

of its motion, it is the motion relatively to those other bodies that is

to be taken into account.

For example, if it be wished to determine how many turns a

wheel of a locomotive engine, rotating with a given velocity, would

make, before being stopped by the friction of its bearings only, sup-

posing it lifted out of contact with the rails,
—the actual energy of

that wheel is to be taken relatively to the frame of the engine to

which those bearings are fixed, and is simply the actual energy due
to the rotation. But if the wheel be supposed to be detached from
the engiee, and it is inquired how high it will ascend up a perfectly
smooth inclined plane before being stopped by the attraction of the

earth, then its actual energy is to be taken relatively to the earth;
that is to say, to the energy of rotation already mentioned, is to be

added the energy due to the translation or forward motion of the

wheel along with its axis.

415. A Reciprocating Force is a force which acts alternately as

an efibrt and as an equal and opposite resistance, according to the

direction of motion of the body. Such a force is the weight of a

moving piece whose centre of gravity alternately rises and falls
;

and such is the elasticity of a perfectly elastic body. The work
which a body performs in moving against a reciprocating force is

employed in increasing its own potential energy, and is not lost by
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the body; so that by the motion of a body alternately against and
with a reciprocating force, energy is stored and restored, as well as

by alternate acceleration and retardation.

Let 2W denote the weight of the whole of the moving pieces of

any machine, and h a height through which the common centre of

gravity of them all is alternately raised and lowered. Then the

quantity of energy
—

is stored while the centre of gravity is rising, and restored while it

is falling.
These principles are illustrated by the action of the plungers

of a single-acting pumping steam engine. The weight of those

plungers acts as a resistance while they are being lifted by the

pressure of the steam on the piston: and the same weight acts as

effort when the plungers descend and drive before them the water
with which the pump barrels have been filled. Thus the energy
exerted by the steam on the piston is stored during the up-stroke
of the plungers; and during their down-stroke the same amount of

energy is restored, and employed in performing the work of raising
water and overcoming its friction.

416. Periodical Motion.—If a body moves in such a manner
that it periodically returns to its original velocity, then at the end
of each period, the entire variation of its actual energy is nothing;
and if, during any part of the period of motion, energy has been
stored by acceleration of the body, the same quantity of energy
exactly must have been during another part of the period restored

by retardation of the body.
If the body also returns in the course of the same period to the

same position relatively to all bodies which exert reciprocating
forces on it—for example, if it returns periodically to the same
elevation relatively to the earth's surface—any quantity of energy
which has been stored during one part of the period by moving
against reciprocating forces must have been exactly restored during
another part of the period.
Hence at the end of each period^

the equality of energy and work,
and the balance of mean effort and mean resistance, holds with

respect to the driving effort and tJie resistances, exactly as if the sp>eed
were uniform and the reciprocating forces null; and all the equa-
tions of Articles 407 and 409 are applicable to periodic motion, pro-
vided that in the equations of Article 407, and Equation 1 of

Article 409, P, R, and v are held to denote the mean values of the

efforts, resistances, and velocities,
—that s and s are held to denote

spaces moved through in one or more entire periods,
—and that in

Equation 2 of Article 409, the integrations denoted by \ be held

to extend to one or more entire periods.
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These principles are illustrated by the steam engine. The velo-

cities of its moving parts are continually varying, and those of

8ome of them, such as the piston, are periodically reversed in direc-

tion. But at the end of each period, called a revolution, or double-

stroke, every part returns to its original position and velocity; so

that the equality/ of energy and worh, and the equality of the mean
effort to the w,ean I'esistance reduced to the driving point,

—that is,

the equality of the mean effective pressure of the steam on the

piston to the mean total resistance reduced to the piston
—hold for

one or any whole number of complete revolutions, exactly as for

uniform speed.
It thus appears that (as stated at the commencement of this

Part) there are two fundamentally different ways of considering a

periodically moving machine, each of which must be employed in

succession, in order to obtain a complete knowledge of its working.
"

I. In the first place is considered the action of the machine

during one or more whole periods, with a view to the determination

of the relation between the mean resistances and mean efforts, and
of the EFFICIENCY; that is the ratio which the useful part of its

work bears to the whole expenditure of energy. The motion of

every ordinary machine is either uniform or periodical.
" II. In the second place is to be considered the action of the

machine during intervals of time less than its period, in order to

determine the law of the periodic changes in the motions of the

pieces of which the machine consists, and of the periodic or recip-

rocating forces by which such changes are produced."
417. Starting and Stopping.—The starting of a machine consists

in setting it in motion from a state of rest, and bringing it up to

its proper mean velocity. This operation requires the exertion,
besides the energy required to overcome the mean resistance, of an
additional quantity of energy equal to the actual energy of the

machine when moving with its mean velocity, as found according
to the principles of Article 414, page 262.

If, in order to stop a machine, the effort of the prime mover is

simply suspended, the machine will continue to go until work has

been performed in overcoming resistances equal to the actual energy
due to the speed of the machine at the time of suspending the

effort of the prime mover.
In order to diminish the time required by this operation, the

resistance may be increased by means of the friction of a brake.

Brakes will be further described in the sequel.
418. The Efl&ciency of a machine is a fraction expressing the

ratio of the useful work to the whole work, which is equal to the

energy expended. The Counter-efficiency is the reciprocal of

the efficiency, and is the ratio in which the energy expended is

greater than the useful work. The object of improvements in
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machines is to bring their efficiency and counter-efficiency as near
to unity as possible.
As to useful and lost work, see Article 401. The algebraical

expression of the efficiency of a machine having uniform or perio-
dical motion, is obtained by introducing the distinction between
useful and lost work into the equations of the conservation of energy,
Article 409. Thus, let P denote the mean effort at the driving point;
s, the space described by it in a given interval of time, being a
whole number of periods of revolutions; E.^, the mean useful resist-

ance; Sj,
the space through which it is overcome in the same

interval; Eg, any one of the wasteful resistances; s.2,
the space

through which it is overcome; then

Fs = Bs, + 2':R^s^;... (1.)

and the efficiency of the machine is expressed by

5lii^__J?i_fi__ (o\
Fs Ri^i-hS

•

RgSg
^"'^

In many cases the lost work of a machine, 'Re, Sg' consists of a con-

stant part, and of a part bearing to the useful work a proportion

depending in some definite manner on the sizes, figures, arrange-
ment, and connection of the pieces of the train, on which also

depends the constant part of the lost work. In such cases the
whole energy expended and the efficiency of the machine are

expressed by the equations

Ps =
(l + A)Ri5i + B; ]

^=—'—^ \ (3)

1 + A-I--—
and the first of these is the mathematical expression of what Mr.

Moseley calls the " modulus" of a machine.
The useful work of an intermediate piece in a train of mechanism

consists in driving the piece which follows it, and is less than the

energy exerted upon it by the amount of the work lost in over-

coming its own friction. Hence the efficiency of such an inter-

mediate piece is the ratio of the work performed by it in driving
the following piece, to the energy exerted on it by the preceding
piece; and it is evident that the effi^ciency of a machine is the product
of the efficiencies of the series of 7noving pieces which transmit energy
from the driving point to the working point. The same principle

applies to a train of successive machines, each driving that M'^hich

follows it
;
and to counter-efficiency as well as to efficiency.

419. Power and Effect—Horse Power.—Th^ power of a machine
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is the energy exerted, and the effect^ the useful work performed, in

some interval of time of definite length, such as a second, a minute,
an hour, or a day.
The unit of power called conventionally a horse-power, is 550

foot-pounds per second, or 33,000 foot-pounds per minute, or

1,980,000 foot-pounds per hour. The eJBfect is equal to the power

multiplied by the efficiency; and the power is equal to the eflfect

multiplied by the counter-efficiency. The loss of power is the dif-

ference between the efifect and the power. As to the French
" Force de Cheval," see Article 392, page 244. It is equal to

0*9863 of a British horse-power; arid a British horse-power is

1*0139 of a French force de cheval.

420. General Equation.—The following general equation pre-
sents at one view the principles of the action of machines, whether

moving uniformly, periodically, or otherwise :
—

where W is the weight of any moving piece of the machine
;

h, when positive, the elevation, and when negative, the depres-

sion, which the common centre of gravity of all the moving pieces

undergoes in the interval of time under consideration; v-^ the

velocity at the beginning, and v^ the velocity at the end, of the

interval in question, with which a given particle of the machine of

the weight W is moving;
g, the acceleration which gravity causes in a second, or 32*2 feet

per second, or 9*81 metres per second.

j^ds', the work performed in overcoming any resistance during

the interval in question ;

I
P ds, the energy exerted during the interval in question.

The second and third terms of the right-hand side, when positive,
are energy stored; when negative, energy restored.

The principle represented by the equation is expressed in words
as follows :

—
The energy exerted, added to the energy restored, is equal to the

energy stored added to the work performed.
421. The Principle of Virtual Velocities, when applied to the

uniform motion of a machine, is expressed by Equation 3 of Article

407, already given in page 259; or in words as follows :
—The effort

is equal to the sum of the resistances reduced to the driving point ;

that is, each multiplied by the ratio of the velocity of its working
point to the velocity of the driving point. The same principle,
when applied to reciprocating forces and to re-actions due to

varying speed, as well as to passive resistances, is expressed by
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means of a modified form of tbe general equation of Article 420,
obtained in the following manner:—Let n denote either the ratio

torne at a given instant by the velocity of a given working point,
where the resistance R is overcome, to the velocity of the driving

point, or the mean value of that ratio during a given interval of

time; let n" denote the corresponding ratio for the vertical ascent

or descent (according as it is positive or negative) of a moving
piece whose weight is W; let tl denote the corresponding ratio

for the mean velocity of a mass whose weight is W, undergoing

acceleration or retardation, and —7— either the rate of acceleration
at

of that mass, if the calculation relates to an instant, or the mean
value of that rate, if to a finite interval of time. Then the effort

at the instant, or the mean effort during the given interval, as the

case may be, is given by the following equation :
—

gdt
•

If the ratio 71, which the velocity of the mass W bears to that of

the drivin<? point, is constant, we may put -r- = —^ -, where -r-*^ ^ ' •' ^ dt dt ' dt
denotes the rate of acceleration of the driving point ;

and then the

third term of the foregoing expression becomes —
j-
2 •

n'"^ W, as

in formula 2 of Article 406, page 258.

422. Forces in the Mechanical Powers, Neglecting Friction—
Purchase,—The mechanical powers, considered as means of modi-

fying motion only, have been considered in Section 6, Part II.,

pages 107 to 110. When friction is neglected, any one of the

mechanical powers may be regarded as an uniformly-moving simple

7)iachine, in which one effort balances one resistance; and in which,

consequently, according to the principle of virtual velocities, or

of the equality of energy exerted and work done, the effort and
resistance are to each other inversely as the velocities along their lines

of action of the points where they are applied.
In the older writings on mechanics, the effort is called the

power^
and the resistance the weight; but it is desirable to avoid

the use of the word "
power

"
in this sense, because of its being

very commonly used in a different sense—viz., the rate at whicli

energy is exerted by a prime mover; and the substitution of
" resistance

"
for "

weight
"

is made in order to express the fact,

that the principle just stated applies to the overcoming of all sorts

of resistance, and not to the lifting of weights only.
The weight of the moving piece itself in a mechanical power

may either be wholly supported at the bearing, if the piece is
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balanced; or if not, it is to be regarded as divided into two

j)arallel components, one supported directly at the bearing, and

the other being included in the effort or in the resistance, as the

case may be.

The relation between the effort and the resistance in any
mechanical power may be deduced from the principles of statics;

viz.:—In the case of the lever (including the wheel and axle),

from the balance of couples of equal and opposite moments ;
in the

case of the inclined plane (including the wedge and the screw),
from the parallelogram of forces; and in the case of the pulley,
from the composition of parallel forces. The principle of virtual

velocities, however, is more convenient in calculation.

The total load in a mechanical power is the resultant of the

effort, the resistance, the lateral components of the forces acting at

the driving and working points, and the weight directly carried at

the bearings; and it is equal and directly opposed to the re-action

of the bearings or supports of the machine.

By the purchase of a mechanical power is to be understood the

ratio borne by the resistance to the effort, which is equal to the

ratio borne by the velocity of the driving point to that of the

working point. This term has already been employed in connec-

tion with the pulley.
The following are the results of the principle of virtual velocities,

as applied to determine the purchase in the several mechanical

powers :
—

I. Lever.—The effort and resistance are to each other in the

inverse ratio of the perpendicular distances of their lines of action

from the axis of rotation or fulcrum; so that the purchase is the

ratio which the perpendicular distance of the effort from the axis

bears to the perpendicular distance of the resistance from the axis.

Under the head of the lever may be comprehended all turning
or rocking primary pieces in mechanism which are connected with
their drivers and followers by linkwork.

II. Wheel and Axle.—The purchase is the same as in the case

of the lever; and the perpendicular distances of the lines of action

of the effort and of the resistance from the axis are the radii of the

pitch-circles of the wheel and of the axle respectively.
Under the head of the wheel and axle may be comprehended

all turning or rocking primary pieces in mechanism which are

connected with their drivers and followers by means of rolling

contact, of teeth, or of bands. By the " wheel "
is to be understood

the pitch-cylinder of that part of the piece which is driven
; and by

the "
axle," the pitch-cylinder of that part of the piece which drives.

III. Inclined Plane, and lY. Wedge.—Here the purchase, or
ratio of the resistance to the effort, is the ratio borne by the whole

velocity of the sliding body (represented by B C in
fig. 76e,
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and C c in fig. 76f, page 109) to that component of the

velocity (represented by B D in fig. 76e, and C e in fig. 76f,

page 109) which is directly opposed to the resistance : it being
understood that the efibrt is exerted in the direction of motion
of the sliding body.
The term inclined plane may be used when the resistance to

the motion of a body that slides along a guiding surface consists

of its own weight, or of a force applied to a point in it by means
of a link; and the term wedge, when that resistance consists of a

pressure applied to a plane surface of the .moving body, oblique
to its direction of motion.

V. Screw. Let the resistance (E,) to the motion of a screw
be a force acting along its axis, and directly opposed to its advance;
and let the effort (P) which drives the screw be applied to a point

rigidly attached to the screw, and at the distance r from the axis,
and be exerted in the direction of motion of that point. Then,
while the screw makes one revolution, the working point advances

against the resistance through a distance equal to the pitch {p) ;

and at the same time the driving point moves in its helical path
through the distance J (4 ^2^.2+^2^^ therefore the purchase of

the screw, neglecting friction, is expressed as follows :
—

K _ ^ 4 ^2 ^2 ^ ^2

_ length of one coil of path of driving point

pitch

VI. Pulley.—In the pulley without friction, the purchase is

the ratio borne by the resistance which opposes the advance of

the running block to the efibrt exerted on the hauling part of
the rope ;

and it is expressed by the number of plies of rope by
which the running block is connected with the fixed block.

YII. The Hydraulic Press, when friction is neglected, may
be included amongst the mechanical powers, agreeably to the
definition of them given at the beginning of this Article. By the
resistance is to be understood the force which opposes the outward
motion of the press-plunger; and by the effort, the force which
drives inward the pump-plunger. The intensity of the jjressure
exerted between each of the two plungers and the fluid is the

same; therefore the amount of the pressure exerted between
each plunger and the fluid is proportional to the area of that

j)lunger; so that the purchase of the hydraulic press is expressed
as follows :

—
B, _ transverse area of press-plunger ^

P transverse area of pump-plunger'
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and this is the reciprocal of the ratio of the velocities of those

plungers, as already shewn in Article 185, page 110.

The purchase of a train of mechanical powers is the product of

the purchases of the several elementary parts of that train.

The object of producing a purchase expressed by a number

greater than unity is, to enable a resistance to be overcome by
means of an eflfort smaller than itself, but acting through a greater

distance; and the use of such a purchase is found chiefly in

machines driven by muscular power, because of the effort being
limited in amount.

Section 3.—Of Dynamometers.

423. Dynamometers are instruments for measuring and record-

ing the energy exerted and work performed by machines. They
may be classed as follows:—

I. Instruments which merely indicate the force exerted between

a driving body and a driven body, leaving the distance through
which that force is exerted to be observed independently.

II. Instruments which record at once the force, motion, and
work of a machine, by drawing a line, straight or curved, as the

case may be, whose abscissae represent the distances moved through,
its ordinates the resistances overcome, and its area the work per-
formed (as in fig. 149, page 249).
A dynamometer of this class consists essentially of two principle

parts : a spring whose deflection indicates the force exerted between
a driving body and a driven body ;

and a band of paper, or a card,

moving at right angles to the direction of deflection of the spring
with a velocity bearing a known constant proportion to the velo-

city with which the resistance is overcome. The spring carries a

pen or pencil, which marks on the paper or card the required
line. The Steam Engine Indicator is an example of this class of

instruments.

III. Instruments called Integrating Dynamometers, which re-

cord the work performed, but not the resistance and motion

separately.
424. Steam Engine Indicator.—This instrument was invented

by Watt, and has been improved by other inventors, especially

M'Naught and Eichards. Its object is to record, by means of a

diagram, the intensity of the pressure exerted by steam against one

of the faces of a piston at each point of the piston's motion, and so

to afford the means of computing, according to the principles of

Articles 395 and 400, first, the energy exerted by the steam in

driving the piston during the forward stroke; secondly, the work
lost by the piston in expelling the steam from the cylinder during
the return stroke; and thirdly, the difierence of those quantities,
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which is the available or effective energy exei'ted by the steam on
the piston, and which, being multiplied by the number of strokes

per minute and divided by 33,000 foot-pounds, gives the indicated
HORSE-POWER.
The indicator in a common form is represented by fig, 150. A B

is a cylindrical case. Its lower end, A, contains a smaller cylinder,
fitted with a piston, which cylinder, by means of the screwed
nozzle at its lower end, can be fixed in any convenient position
on a tube communicating with that end of the engine-cylinder
where the work of the steam is determined. The communication
between the engine-cylinder and the indicator-cylinder can be

opened and shut at will by means of the cock K.
When it is open, the intensity of the pressure of
the steam on the engine-piston and on the indi-

cator-piston is the same, or nearly the same.

The upper end, B, of the cylindrical case con-

tains a spiral spring, one end of which is at-

tached to the piston, or to its rod, and the other
to the top of the casing. The indicator-piston
is pressed from below by the steam, and from
above by the atmosphere. When the pressure
of the steam is equal to that of the atmosphere,
the spring retains its unstrained length, and the

piston its original position. When the pressure
of the steam exceeds that of the atmosphere,
the piston is driven outwards, and the spring

compressed; when the pressure of the steam is

less than that of the atmosphere, the piston is

driven inwards, and the spring extended. The

compression or extension of the spring indicates

the diflference, upward or downward, between the pressure of the

steam and that of the atmosphere.
A short arm, C, projecting from the indicator piston-rod carries at

one side a pointer, D, which shews the pressure on a scale whose
zero denotes th.Q pressure of the atmosphere, and which is graduated
into pounds on the square inch both upwards and downwards
from that zero. At the other side the short arm has a longer arm
jointed to it, carrying a pencil, E.

¥ is a brass drum, which rotates backward and forward about a
vertical axis, and which, w^hen about to be used, is covered with a

piece of paper called a " card." It is alternately pulled round in

one direction by the cord H, which wraps on the pulley G, and

pulled back to its original position by a spring contained within
itself. The cord H is to be connected with the mechanism of the
steam engine in any convenient manner which shall ensure that
the velocity of rotation of the drum shall at every instant bear a

Fig. 150.
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constant ratio to that of the steam engine piston : the back and
forward motion of the surface of the drum representing that of the
steam engine piston on a reduced scale. This having been done,
and before opening the cock K, the pencil is to be placed in con-

tact with the drum during a few strokes, when it will mark on the
card a line which, when the card is afterwards spread out flat,

becomes a straight line. This line, whose position indicates the

pressure of the atmosphere, is called the atmospheric line. In
fig.

151 it is represented by A A.
The cock K is opened, and the pencil, moving up and down

with the variations of the pressure
of the steam, traces on the card

during each complete or double
stroke a curve such as B C D E B.

The ordinates drawn to that curve
from any point in the atmospheric

line, such as H K and H G, indi-

cate the differences between the

pressure of the steam and the at-

mospheric pressure at the corre-

sponding point of the motion of the

piston. The ordinates of the part B C D E represent the pres-
sures of the steam during the forward stroke, when it is driving
the piston ,

those of the part E B represent the pressures of the
steam when the piston is expelling it from the cylinder.
To found exact investigations on the indicator-diagrams of steam

engines, the atmospheric pressure at the time of the experiment
ought to be ascertained by means of a barometer; but this is

generally omitted; in which case the atmospheric pressure may be
assumed at its mean value, being 14 '7 lbs. on the square inch, or
2116-3 lbs. on the square foot, at and near the level of the sea.

Let A O =H F be ordinates representing the pressure of the

atmosphere. Then O F V parallel to A A is the absolute or true

zero line of the diagram, corresponding to no pressure; and ordi-

nates drawn to the curve from that line represent the absolute

intensities of the pressure of steam. Let B and L E be ordi-

nates touching the ends of the diagram ;
then

O L represents the volume traversed by the piston at each single
stroke

(
= s A, where s is the length of the stroke and A the area

of the piston) ;

The area O B C D E L represents the energy exerted by the
steam on the piston during the forward stroke;
The area O B E L O represents the work lost in expelling the

steam during the return stroke;
The area B C D E B, being the difference of the above areas,

T
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represents the effective work of the steam on the piston during the

complete stroke.

Those areas can be found bj the rules of Article 34, page

17; and the common trapezoidal rule, D, page 21, is in general

sufficiently accurate. The number of intervals is usually ten, and
of ordinates eleven.

The meanforward pressure, the mean hack pressure, and the mean

effective pressure, are found by dividing those three areas respec-

tively by the volume s A, which is represented by O L.

Those mean pressures, however, can be found by a direct process,
without first measuring the areas, viz. :

—having multiplied each

ordinate, or breadth, of the area under consideration by the proper

multiplier, divide the sum of the products by the sum of the

multipliers, which process, when the common trapezoidal rule is

used, takes the following form: add together the halves of the

endmost ordinates, and the whole of the other ordinates, and
divide by the number of intervals. That is, let h^ be the first, h„

the last, and h^, h^, &c., the intermediate breadths; then let n hQ

the number of intervals, and h^ the mean breadth
;
then

h^ =l(^^ + 5, + 5, + &c.); (1.)

and this represents the mean forward pressure, mean back pressure,
or mean effective pressure, as the case may be. Let p^ be the

mean effective pressure; then the effective energy exerted by the

steam on the piston during each double stroke is the product of

the mean effective pressure, the area of the piston, and the length
of stroke, or

AAs; (2.)

and if N be the number of double strokes in a minute, the indicated

power infoot-pounds per minute, in a single-acting engine, is

^,AN5; (3.)

from which the indicated horse-power is found by dividing by 33,000.
In a double-acting engine the steam acts alternately on either

side of the piston ;
and to measure the power accurately, two indi-

cators should be used at the same time, communicating respectively
with the two ends of the cylinder. Thus a pair of diagrams will

be obtained, one representing the action of the steam on each face

of the piston. The mean effective pressure is to be found as above
for each diagram separately, and then, if the areas of the two faces

of the piston are sensibly equal, the mean of those two results is to

be taken as the general mean effective pressure; which being multi-

plied by the area of the piston, the length of stroke, and twice the
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number of double strokes or revolutions in a minute, gives the

indicated power per minute ;
that is to say, if p'' denotes the general

mean effective pressure, the indicated power per minute is

p" A-21^s; (4.)

If the two faces of the piston are sensibly of unequal areas

(as in " trunk engines"), the indicated power is to be computed

separately for each face, and the results added together.
If there are two or more cylinders, the quantities of power

indicated by their respective diagrams are to be added together.
The reactions of the moving parts of the indicator, combined

with the elasticity of the spring, cause oscillations of its piston.
In order that the errors thus produced in the indicated pressures
at particular instants may be as small as possible, and may
neutralize each other's effects on the whole indicated power, the

moving masses ought to be as small as practicable, and the spring
as stiff as is consistent with shewing the pressures on a visible

scale. In Richard's indicator this is effected by the help of a train

of very light linkwork, which causes the pencil to shew the move-

ments of the spring on a magnified scale.

The friction of the moving parts of the indicator tends on
the whole to make the indicated power and indicated mean
effective pressure less than the truth, but to what extent is un-

certain.

Every indicator should have the accuracy of the graduation of its

scale of pressures frequently tested by comparison with a standard

pressure gauge.
The indicator may obviously be used for measuring the energy

exerted by any fluid, whether liquid or gaseous, in driving a

piston; or the work performed by a pump, in lifting, propelling,
or compressing any fluid.
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CHAPTER III.

OF REGULATING APPARATUS.

425. Regulating Apparatus Classed—Brake—Fly—Governor.—
The effect of all regulating apparatus is to control the speed of

machinery. A regulating instrument may act simply by con-

suming energy, so as to prevent acceleration, or produce re-

tardation, or stop the machine if required; it is then called a

brake; or it may act by storing surplus energy at one time, and

giving it out at another time when energy is deficient: in this

case it is called 2ifly; or it may act by adjusting the power of the

prime mover to the work to be done, when it is called a governor.

The use of a brake involves waste of power. A fly and a governor,
on the other hand, promote economy of power and economy of

strength.

Section 1.—Of Brakes.

426. Brakes Defined and Classed.—The contrivances here com-

prehended under the general title of Brakes are those by means of

which friction, whether exerted amongst solid or fluid particles,

is purposely opposed to the motion of a machine, in order either to

stop it, to retard it, or to employ superfluous energy during uniform

motion. The use of a brake involves waste of energy, which is in

itself an evil, and is not to be incurred unless it is necessary to

convenience or safety.
Brakes may be classed as follows :

—
I. Block-brakes, in which one solid body is simply pressed against

another, on which it rubs.

II. Flexible brakes, which embrace the periphery of a drum or

pulley.
III. Pump-brakes, in which the resistance employed is the

friction amongst the particles of a fluid forced through a narrow

passage.
IV. Fan-brakes, in which the resistance employed is that of a

fluid to a fan rotating in it.

427. Action of Brakes in General.—The work disposed of by a

brake in a given time is the product of the resistance which it pro-
duces into the distance through which that resistance is overcome
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To stop a macTiine, the brake must employ work to the amount
of the whole actual energy of the machine, as already stated in

Article 417. To retard a machine, the brake must employ work
to an amount equal to the difference between the actual energies
of the machine at the greater and less velocities respectively.
To dispose of surplus energy, the brake must employ work equal

to that energy; that is, the resistance caused by the brake must
balance the surplus effort to which the surplus energy is due; so

that if n is the ratio which the velocity of rubbing of the brake

bears to the velocity of the driving point, P, the surplus effort at

the driving point, and K the resistance of the brake, we ought to

have—
pR = -

(1.)

It is obviously better, when practicable, to store surplus energy,
or to prevent its exertion, than to dispose of it by means of a

brake.

When the action of a brake composed of solid material is long-

continued, a stream of water must be supplied to the rubbing
surfaces, to abstract the heat that is produced by the friction,

according to the law stated in Article 402, page 252.

428. Block-Brakes.—When the motion of a machine is to be

controlled by pressing a block of solid material against the rim of

a rotating drum, it is advisable, inasmuch as it is easier to renew
the rubbing surface of the block than that of the drum, that the

drum should be of the harder, and the block of the softer material—the drum, for example, being of iron, and the block of wood.
The best kinds of wood for this purpose are those which have con-

siderable strength to resist crushing, such as elm, oak, and beech.

The wood forms a facing to a frame of iron, and can be renewed
when worn.
When the brake is pressed against the rotating drum, the direc-

tion of the pressure between them is obliquely opposed to the

motion of the drum, so as to make an angle with the radius of the

drum equal to the angle of repose of the rubbing surfaces (denoted
by <p; see page 154). The component of that oblique pressure in

the direction of a tangent to the rim of the drum is the friction

(E,) ; the component perpendicular to the rim of the drum is the

normal pressure (N) required in order to produce that friction, and
is given by the equation

^=f' ^'-^

f being the coefficient of friction, and the proper value of R being
determined by the principles stated in Article 427.
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It is in general desirable that the brake should be capable of

effecting its purpose when pressed against the drum by means of

the strength of one man, pulling or pushing a handle with one
hand or one foot. As the required normal pressure N is usually

considerably greater than the force which one man can exert, a

lever, or screw, or a train of levers, screws, or other convenient

mechanism, must be interposed between the brake block and the

handle, so that when the block is moved towards the drum, the
handle shall move at least through a distance as many times greater
than the distance by which the block directly approaches the drum,
as the required normal pressure is greater than the force which
the man can exert.

Although a man may be able occasionally to exert with one
hand a force of 100 lbs., or 150 lbs., for a short time, it is desirable

that, in working a brake, he should not be required to exert a force

greater than he can keep up for a considerable time, and exert re-

peatedly in the course of a day, without fatigue
—that is to say,

about 20 lbs. or 25 lbs.

429. The Brakes of Carriages are usually of the class just de-

scribed, and are applied either to the wheels themselves or to

drums rotating along with the wheels. Their effect is to stop or to

retard the rotation of the wheels, and make them slip, instead of

rolling on the road or railway. The resistance to the motion of a

carriage which is caused by its brake may be less, but cannot be

greater, than the friction of the stopped or retarded wheels on the

road or rails under the load which rests on those wheels. The
distance which a carriage or train of carriages will run on a level

line during the action of the brakes before stopping, is found by
dividing the actual energy of the moving mass before the brakes

are applied, by the sum of the ordinary resistance and of the addi-

tional resistance caused by the brakes; in other words, that dis-

tance is as many times greater than the height due to the speed as

the weight of the moving mass is greater than the total resistance.

The skid, or slipper-drag, being placed under a wheel of a carriage,
causes a resistance due to the friction of the skid upon the road or

rail under the load that rests on the wheel.

Section 2.—Of Fly-Wheels.

430. Periodical Fluctuations of Speed in a machine are caused

by the alternate excess and deficiency of the energy exerted above
the work performed in overcoming resisting forces, which produce
an alternate increase and diminution of actual energy, according to

the law explained in Article 413, page 262.
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To determine the greatest fluctuation of speed in a machine

moving periodically, take ABC, in fig. 152,
to represent the motion of the driving point

during one period; let the efibrt P of the prime
mover at each instant be represented by the

ordinate of the curve D G E I F
;
and let the

sum of the resistances, reduced to the driving

point as in Article 398, at each instant, be
denoted by E,, and represented by the ordinate

of the curve D H E K F, which cuts the former curve at the

ordinates A D, B E, F. Then the integral,

Fig. 152.

j (P-B)ds,

being taken for any part of the motion, gives the excess or defi- .

ciency of energy, according as it is positive or negative. For the
entire period ABC, this integral is nothing. For A B, it (lenotes

kn excess of energy received, represented by the area D G E H
;
and

for B C, an equal excess of work performed, represented by the equal
area E K F I. Let those equal quantities be each represented by
A E. Then the actual energy of the machine attains a maximum
value at B, and a minimum value at A and C, and A E is the

difference of those values.

Now let V(^ be the mean velocity, v-^ the greatest velocity, v^ the
least velocity of the driving point, and 2  n^ W the reduced inertia

of the machine (see Article 405, page 257); then

v\ 2-7i2W = AE;. .(1.)

which, being divided by the mean actual energy,

gives
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to the whole energy exerted in one period or revolution, j
T d s,

has been determined by General Morin for steam engines under

various circumstances, and found to be from -tt: to ^ ^or single-

cylinder engines. For a pair of engines driving the same shaft,
with cranks at right angles to each other, the value of this ratio

is about one-fourth, and for three engines with cranks at 120°,
one-twelfth of its value for single-cylinder engines.

The following table of the ratio, A E ~ / P cZ 5, for one revolution

of steam engines of different kinds is extracted and condensed from
General Morin's works :

—

Non-Expansive Engines.

Length of connecting rod q a r a

Length of crank
~

AE-i-jl^ds = -105 -118 -125 -132

Expansive Condensing Engines.

Connecting rod = crank x 5.

Fraction of Stroke at ) 111111
which steam is cut off, j 845678

AE-T-/Vds - -163 -173 -178 -184 -189 -191

Expansive Non-Condensing Engines.

Steam cut off at ^ ^
-- -

2 3 4 5

A E -^ Jp cZ s = -160 -186 -209 -232

For double-cylinder expansive engines, the value of the ratio

A E -^
I
F d s may be taken as equal to that for single-cylinder

non-expansive engines.
For tools working at intervals, such as punching, slotting, and

plate-cutting machines, coining presses, tkc, A E is nearly equal to

the whole work performed at each operation.
431. Fly-Wheels.—A fly-wheel is a wheel with a heavy rim,

whose great moment of inertia being comprehended in the
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reduced moment of inertia of a macliine, reduces the coefficient

of fluctuation of speed to a certain fixed amount, being about ,y for

ordinary machinery, and ^ oi^ ^ for machinery for fine purposes.

Let — be the intended value of the coefficient or fluctuation ofm
speed, and A E, as before, the fluctuation of energy. If this is to

be provided for by the moment of inertia, I, of the fly-wheel alone,
let

«(,
be its mean angular velocity ; then Equation 3 of Article

430 is equivalent to the following :
—

m~ all
' ^ f

_ m .(y A E"
al

' ^"'^

the second of which equations gives the requisite moment of inertia

of the fly-wheel.
The fluctuation of energy may arise either from variations in the

effort exerted by the prime mover, or from variations in the resist-

ance, or from both those causes combined. When but one fly-

wheel is used, it should be placed in as direct connexion as

possible with that part of the mechanism where the greatest
amount of the fluctuation originates; but when it originates at

two or more points, it is best to have a fly-wheel in connection

with each of those points.
For example, let there be a steam engine which drives a shaft

that traverses a workshop, having at intervals upon it pulleys for

driving various machine-tools. The steam engine should have a

fly-wheel of its own, as near as practicable to its crank, adapted to

that value of A E which is due to the fluctuations of the effort

applied to the crank-pin above and below the mean value of that

effort, and which may be computed by the aid of General Morin's

tables, quoted in Article 430
;
and each machine tool should also

have a fly-wheel, adapted to a value of A E equal to the whole
work performed by the tool at one operation.
As the rim of a fly-wheel is usually heavy in comparison with

the arms, it is often sufficiently accurate for practical purposes to

take the moment of inertia as simply equal to the weight of the

rim multiplied by the square of the mean between its outside and
inside radii—a calculation which may be expressed thus :

—
I = Wr2; (3.)

w^ience the weight of the rim is given by the formula—
^^ mgrAE ^mgrAE

if V be the velocity of the rim o^ the flv-wheel.
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In millwork the ordinary values of the product 7ng, the unit

of time being the second, lie between 1,000 and 2,000 feet, or

approximately between 300 and 600 metres. In pumping-
machinery it is sometimes only about 300 feet, or 90 metres.

The rim of the fly-wheel of a factory steam engine is very often

provided with teeth, or with a belt, in order that it may directly
drive the machinery of the factory.

Section 3.—Of Governors.

432. The Regulator of a prime mover is some piece of apparatus

by which the rate at which it receives energy from the source of

energy can be varied; such as the sluice or valve which adjusts
the size of the orifice for supplying water to a water-wheel, the

apparatus for varying the surface exposed to the wind by windmill

sails, the throttle-valve which adjusts the opening of the steam pipe
of a steam engine, the damper which controls the supply of air to

its furnace, and the expansion gear which regulates the volume of

steam admitted into the cylinder at each stroke of the piston.
In prime movers whose speed and power have to be frequently

and rapidly varied at will, such as locomotives and winding
engines for mines, the regulator is adjusted by hand. In other

cases the regulator is adjusted by means of a self-acting instrument

driven by the prime mover to be regulated, and called a Governor.
The special construction of the different kinds of regulators is a

subject for a treatise on prime movers. In the present treatise it

is sufficient to state that in every governor there is a moving piece
which acts on the regulator through a suitable train of mechanism,
and which is itself made to move in one direction or in another

according as the prime mover is moving too fast or too slow.

The object of a governor, properly so called, is to preserve a

certain uniform speed, either exactly or approximately; and such

is always the case in millwork. There are other cases, as in

marine steam engines, where it may be considered sufficient to

prevent sudden variations of speed, without preserving an uniform

speed; and in those cases an apparatus may be used possessing

only in part the properties of a governor : this may be called a

Jiy-governor, to distinguish it from a governor proper.
Governors proper may be distinguished into posiiion-governors,

disengagement-governors, and differential governors: a position-gov-
ernor being one in which the moving piece that acts on the regu-
lator assumes positions depending on the speed of motion, as in

the common steam engine governor, v/hich consists of a pair of

revolving pendulums acting directly on a train of mechanism which

adjusts the throttle-valve : a disengaging-governor being one which,
when the speed deviates above or below its proper value, throws
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the regulator into gear with one or other of two trains of

mechanism which move it in contrary directions so as to diminish

or increase the speed, as the case may require, as in water-mill

governors; and a differential-governor being one which, by means
of an aggregate combination, moves the regulator in one direction

or in another with a speed proportional to the difference between
the actual speed and the proper speed of the engine.

In almost all governors the action depends on the centrifugal
force exerted by two or more masses which revolve round an axis.

By another classification, different from that which has already
been described, governors may be distinguished into gravity-

governors, in which gravity is the force that opposes the centrifugal

force; and balanced-governors^
in which the actions of gravity on

the various moving parts of the governor are mutually balanced,
and the centrifugal force is opposed by the elasticity of a spring.

Governors may be further distinguished into those which are

truly isochronous—that is to say, which remain without action on
the regulator at one speed only ;

and those which are nearly
isochronous—that is to say, which admit of some variation of the

permanent or steady speed when the resistance overcome by the

engine varies; and lastly, governors may be distinguished into

those which are specially adapted to one speed, and those which
can be adjusted at will to different speeds.

433. Pendulum-Governors.—A pendulum-governor is the simplest
kind of gravity-governor. It has a vertical spindle, driven by the

engine to be regulated; and from that spindle there hang, at

opposite sides, a pair of revolving pendulums, which, by the posi-
tions that they assume at different speeds, act on the regulator.
The relation between the height of a simple revolving pendulum

and the number of turns which it makes per second has already
been stated in Article 336; but for the sake of convenience it

may here be repeated :
—Let h denote the height or altitude of the

pendulum (
= O H in

fig. 153), and T the number of turns per
second; then

k= ^ - '^^^ foot _ 9-78 inches _ 0-248 metre

If the rods of the revolving pendulums are jointed, as in fig.

154, not to a point in the vertical axis, but to a pair of points,
such as C, c, in arms projecting from that axis, the height is to be
measured to the point O, where the lines of tension of the rods cut
the axis.

In most cases which occur in practice, the balls are so heavy, as

compared with the rods, that the height may be measured without
sensible error from the level of the centres of the balls to the point
O, where the lines of suspension cut the axis. This amounts to
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neglecting the effects both of the weight and of the centrifugal
force of the rods.

The ordinary steam engine governor invented by Watt, which

is represented in fig. 153, is a position-governor, and acts on the

c<^-^c

Ficr. 154.

regulator by means of the variation of its altitude, through a train

of levers and linkwork. That train may be very much varied in

detail. In the example shewn in the figure, the lever O C forms
one piece with the ball-rod O B, and the lever O c with the ball-

rod O &; so that when the speed falls too low, the balls B, b, by
approaching the spindle, cause the point E to rise; and when the

speed rises too high, the balls, by receding from the spindle, cause

the point E to fall. At the point E there is a collar, held in the

forked end of the lever E F, which compiunicates motion to the

regulator.
The ordinary pendulum-governor is not truly isochronous ; for

when, in order to adapt the opening of the regulator to difierent

loads, it rotates with its revolving pendulums at diflferent angles
to the vertical axis, the altitude h assumes different values, corre-

sponding to different speeds.
As in Article 431, let the utmost extent of fluctuation of the

speed of the engine between its highest and lowest limits be the

fraction — of the mean speed ;
let h be the altitude of the governor

corresponding to the mean speed; and let k be the utmost extent

of variation of the altitude between its smaller limit, when the

regulator is shut, and its greater limit, when the regulator is full

open. Then we have the following proportion :
—

\ 2 7)1/ \ ImJ
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and consequently

J=^ (3.)

434. Loaded Pendulum-Governor.—From the balls of the com-
mon governor, whose collective weight is (say) A, let there be

hung by a pair of links of lengths equal to the ball-rods, a loa(

B, capable of sliding up and down the spindle, and having its

centre of gravity in the axis of rotation. Then the centrifugal
force is that due to A alone

; and the effect of gravity is that due
to A + 2 B; for when the ball-rods shift their position, the load

B moves through twice the vertical distance that the balls move

through, and is therefore equivalent, to a double load, 2 B, acting

directly on the balls. Consequently the altitude for a given speed
is greater than that of a simple revolving pendulum, in the ratio

2 B
1+-T-; a given absolute variation of altitude in moving the

regulator produces a proportionate variation of speed smaller than

A
in the common governor, in the ratio -r—^-^ ;

and the governor

is said to be more sensitive than a common governor, in the ratio of

A : A + 2 B. Such is the construction of Porter's governor.
The links by which the load B is hung may be attached, not

to the balls themselves, but to any convenient pair of points in

the ball-rods; the links, and the parts of the ball-rods to which

they are jointed, always forming a rhombus, or equilateral par-

allelogram. Let q be the ratio borne by each of the sides of that

rhombus to the length on the ball-rods from the centre of a ball

to the point where the line of suspension cuts the axis; then in

the preceding expressions 2
g-
B is to be substituted foi' 2 B.

In the one case 2 B, and in the other 2
5' B, is the weight,

applied directly at A, which would be statically equivalent to the

load B, applied where it is.
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CHAPTER lY.

OF THE EFFICIENCY AND COUNTER-EFFICIENCY OF PIECES,
COMBINATIONS, AND TRAINS IN MECHANISM.

435. Nature and Division of the Subject.—The terms Efficiency
and Counter-efficiency have already been explained in Article 418,

page 265; and the laws of friction, the most important of the

wasteful resistances which cause the efficiency of a machine to

be less than unity, have been stated in Articles 261 and 402, pages
153 and 251. In the present chapter are to be set forth the effects

of wasteful resistance, and especially of friction, on the efficiency
and counter-efficiency of single pieces, and of combinations and trains

of pieces, in mechanism. In practical calculations the counter-

efficiency is in general the quantity best adapted for use; because

the useful work to be done in an unit of time, or effective power, is

in general given; and from that quantity, by multiplying it by the

counter-efficiency, of the machine—that is, by the continued product
of the counter-efficiencies of all the successive pieces and combina-
tions by means of which motion is communicated from the driving-

point to the useful working-point
—is to be deduced the value of the

expenditure of energy in an unit of time, or total power, required
to drive the machine. In symbols, let U be the useful work to be
done per second; c, c', c", &c., the counter-efficiencies of the several

parts of the train; T, the total energy to be expended per second;
then

T-c-c'-c''-&c. ..IT (1.)

"When the mean effort required at the driving-point can con-

veniently be computed by reducing each resistance to the driving-

point, and adding together the reduced resistances (as in Article

407, page 253, and Article 421, page 267), the ratio in which the
actual effort required at the driving-point is greater than what the

required effort would be, in the absence of wasteful resistance, is

expressed by the continued product of the counter-efficiencies of
the parts of the train, as follows : let Pq be the effort required, in
the absence of wasteful resistance; P, the actual effort required;
then

P = c-c'-c''-&c....Po; (2.)

and in determining the efficiency or the counter-efficiency of a

single piece, the most convenient method of proceeding often con-
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sists in comparing together the efforts required to drive that piece,

with and without friction, and thus findins the ratios

p„ ... . p
p

*&

=
efficiency; ^ = counter-efficiency (3.)

In the ensuing sections of this chapter, the efficiency of single

primary pieces is first treated of, and then that of the various

modes of connexion employed in elementary combinations.

Section 1.—Efficiency and Counter-efficiency of Primary
Pieces.

436. Efficiency of Primary Pieces in General.—A primary piece
in mechanism, moving with an uniform velocity, is balanced under
the action of four forces, viz. :

—
I. The re-action of the piece which it drives : this may be called

the Useful Resistance, and denoted by R;
II. The weight of the piece itself: this may be denoted by W;
III. The effort by which the piece is driven : this may be

denoted by P; and its values with and without friction by Pq and

Pj respectively;
IV. The resultant pressure at the bearings, or hearing-pressure^

which may be denoted by Q; and which of course is equal and

directly opposed to the resultant of the first three forces.

In the absence of friction, the bearing-pressure would be normal
to the bearing surface. The effect of friction is, that the line of

action of the bearing-pressure becomes oblique to the bearing-

surface, making with the normal to that surface the angle of

repose (<p),
whose tangent (/=tan (p)

is the coefficient of friction

(see Article 261, page 154); and the amount of the friction is

expressed by Q sin
<p, or very nearly by f Q, when the coefficient

of friction is small.

In the class of problems to which this chapter relates, the first

two forces—that is, the useful resistance P, and the weight W—
.
are given in magnitude, position, and direction ;

and in most cases

it is convenient to find their resultant, in magnitude, position, and

direction, by the rules of statics: that is to say, if the line of

action of R is vertical, by Article 226, page 128; and if inclined,

by the rules given or referred to in Article 209, page 122. In
what follows, the resultant of the useful resistance and weight
will be called the givenforce, and denoted by K'.

The third force—that is, the effort required in order to drive
the piece at an uniform speed

—is given in position and direction ;

for its line of action is the line of connection of the piece imder
consideration with the piece that drives it. The magnitude of the
effort is one of the quantities to be found.

The fourth force—that is, the bearing-pre&sure
—has to be found
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in ])osition, direction, and magnitude. The general principles

according to which it is determined are the following :
—

First, That if the lines of action of the given force and the effort

are parallel to each other, the line of action of the resultant

bearing-pressure must be parallel to them both
;
and that if they

are inclined to each other, the line of action of the resultant

bearing-pressure must traverse their point of intersection.

Secondly, That at the centre of pressure, where the line of action

of the resultant bearing-pressure cuts the bearing surfaces, it makes
an angle with the common normal of those surfaces equal to their

angle of repose, and in such a direction that its tangential

component (being the friction) is directly opposed to the relative

sliding motion of that pair of surfaces over each other.

Thirdly, That the given force, the effort, and the bearing-

pressure, form a system of three forces that balance each other
;

and are therefore proportional to the three sides of a triangle

parallel respectively to their directions.

437. Efficiency of a Straight-sliding Piece.—In fig. 155, let A A
be a straight guiding-surface, upon which there slides, in the direc-

Fig. 155.

tion marked by the feathered arrow, the moving piece B. Let
C D represent the given force, being the resultant of the useful

resistance and of the weight of the piece B. (The figure shews
the motion of B as horizontal ;

but it may be in any direction.
)

Let C J be the line of action of the effort by which the piece B is

driven.

Praw C N" perpendicular to A A; and C F making the angle
N C F = the angle of repose. Through D, parallel to C J, draw
the straight line D H Q, cutting C N in H, and C F in Q; and
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through H and Q, and parallel to D C, draw H Kq and Q K,,

cutting C J in Kq and Kj respectively. Produce H C to H', and

Q C to Q', making C H' =H C, and C Q' = Q C.

Then, in the absence of friction, C H' will represent the resultant

bearing-pressure exerted upon B by A A; and CKo = DHwill
represent the force in the given direction C J required to drive B
at an uniform speed ;

and when friction is taken into account, C Q'
will represent the resultant bearing-pressure, and C K^ the actual

driving force required ;
and we shall have

n XT OK
the efficiency

= 7^-^; and the counter-efficiency = yvjf^

If from D, Ko, and Ki there be let fall upon A A the perpen-
diculars D R, Ko Po, and Kj Pj, C E, will represent the direct

resistance to the advance of B; C Po, the direct effort in the

absence of friction; and C Pj, the direct effort taking friction into

account; so that the distance Po Pj will represent the friction

itself; which is also represented by Q N j)erpendicular to C N.
To express these results by symbols, let C D = R' (the given

force) ; let the acute angle A C D be denoted by «, and the acute

angle A C J by /3; and let (p denote the angle of repose N C Q.

Then, in the triangle C D H, we have ZDCH = ^ -
«, and

CHD =
^-/3;

and in the triangle C Q D, we have Z DCQ
cr

= J
- » + (p,

and zCQD=^-/3-^; consequently

COS /3
' ^

cos
(/3
+ ^)

'

whence it follows that the efficiency and counter-efficiency are

given by the following equations :
—

T^ „ . Po D H cos ee
• cos (H + <p)

1 -/tan /3 ,, .

Efficiency =
p^

=
j^q

=
eos ^ - cos (»

-
^)

=
iT/lan-*

^^•>

Counter-efficiency
=
p-
=
^-—^^^^^. (2.).

It is to be remarked, that the efficiency diminishes to nothing
when cotan /3 =y ; that is to say, when /3 is the complement of the

,angle of repose, (p. In other words, if the oblique effort is applied
in the direction C Q, no force, how great soever, will be sufficient

to keep the piece B in motion.

438. Efficiency of an Axle.—In fig. 156, let the circle A A A
represent the trace of the bearing-surface of an axle on a plane

perpendicular to its axis of rotation,
—in other words, the trans-

u
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verse section of that surface. Let the arrow near the letter N
represent the direction of rotation. Let C D be the given force

;

that is, as before, the resultant of the weight of the whole piece
that rotates with the axle, and of the useful resistance or re-action

exerted on that piece by the piece which it drives
;
C J, the line of

action of the effort by which the rotating piece is driven.

m-—

Fig. 156.

Let r denote the radius of the bearing-surface.
About O describe the small circle B B, with a radius =

r sin
<p =f r, very nearly. Draw the line of action, C T Q, of the

resultant bearing-pressure, touching the small circle at that side

which will make the bearing-pressure resist the rotation. In the

case in which C D and C J intersect each other in a point, C, as

shewn in the figure, C T Q will traverse that point also; and in

the case in which the lines of action of the given force and the

effort are parallel to each other, C T Q will be parallel to both.

The centre of bearing-pressure is at Q; and O QT=:^, the angle
of repose.

In the former case the efficiency may be found by parallelo-

grams of forces, as follows i^Draw the straight line CON; this

would be the line of action of the resultant bearing-pressure in the

absence of friction, and N would be the centre of bearing-pressure.

Through D, parallel to C J, draw D H E, cutting C O N in H,
and C T Q in E. Through H and E, parallel to D C, draw H Pq
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and E Pi- Then, in the absence of friction, H C would represent

the bearing-pressure, and CPo = r>H the effort; the actual bear-

ing-pressure is represented by E C, and the actual effort by C Pi =

D E. Hence the eflSciency and counter-efficiency are as follows :
—

Po_DH.Pi_DE
Pi~DE^ Po"I>H

^^

Another method, applicable whether the forces are inclined or

parallel, is as follows :
—From the axis of rotation O, let fall O L^

and O Mq perpendicular respectively to the lines of action of the

given force and of the effort. Then, by the balance of moments,
the effort in the absence of friction is

From a convenient point in the actual line of action, C Q, of

the bearing-pressure (such, for example, as T, where it touches the

small circle B B), let fall T L^ and T Mj perpendicular respec-

tively to the same pair of lines of action; then the actual effort

will be

^^-^ tm;
Hence the efficiency and the counter-efficiency have the following
value :

—

.(2.)

P„_OL<,
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made both positive or both negative, according as /3 is less or greater
than a

; so that the efficiency may be always expressed by a frac-

tion less than unity. That is to say,

fr
p 1 -*^ - sin /3

If/3>.;^o^ ^ (3 a.)

1 --J- sm »
L

-n 1 +— sm /3

If/3<«;p^= ;> .

' (3b.)

1 + -, sin ct

When the lines of action intersect, let O C be denoted by c;

then I = c cos a, and m = c cos /3; and consequently the three

preceding equations take the following form ;
—

fr
1 -"^-' tan /3

^0--^ •

(4.)/8 and <« of contrary signs; p"
=

^ ;^
1 + '- tan «

c

fi and « of the same sign;

1 --^ tan /3

''>''^r:=^-^^
(^-)

1 tan a
c

fr
1 ^--^ tan /3

^<'''^T=''—fr ^ (^^-^
^

1 + — tan a
c

When the lines of action of the forces are parallel, we have sin fi

and sin a= +1 or— 1, as the case may be; and the formulae

take the following shape :
—

When I and m lie at contrary sides of O, the piece is a " lever

of the first kind;
" and

i^rrz^ ^^-^

When I and m lie at the same side of 0;
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If w > /, the piece is a " lever of the second kind;" and

^" ""

(5a.)
Pi-i_yv

I

l{m<_l, the piece is a " lever of the third kind;" and

(As to levers of the first, second, and third kinds, see Article

184, page 108.)
The following method is applicable whether the forces are inclined

or parallel; in the former case it is approximate, in the latter

exact. Through O, perpendicular to O C, draw XJ O Y, cutting
the lines of action of the given force and of the effort in XJ and V
respectively. The point where this transverse line cuts the small

circle B B coincides exactly with T when the forces are parallel,
and is very near T when they are inclined

;
and in either case the

letter T will be used to denote that point. Then

OJJ TY
O Y

 

T XJ*
.(6.)

It is evident that with a given radius and a given coefficient of

friction, the efficiency of an axle is the greater the more nearly
the effort and the given force are brought into direct opposition to

each other, and also the more distant their lines of action are from
the axis of rotation.

439. Efficiency of a Screw.—The efficiency of a screw acting as

a primary piece is nearly the same with that of a block sliding on
a straight guide, which represents the development ofa helix situated

midway between the outer and inner edges of the screw-thread ;

the block being acted upon by forces making the same angles with
the straight guide that the actual forces do with that helix. . As to

the development of a helix, see Article 160, page 94; and as to the

efficiency of a piece sliding along a straight guide, see Article 437,

page 288.

Section 2.—Efficiency and Counter-efficiency of Modes of

Connection in Mechanism.

440. Efficiency of Modes of Connection in General.—In an ele-

mentary combination consisting of two pieces, a driver and a
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follower, there is always some work lost in overcoming wasteful

resistance occasioned by the mode of connection
j
the result being

that the work done by the driver at its working-point is greater
than the work done upon the follower at its driving-point, in a

proportion which is the counter-efficiency of the connection ; and the

reciprocal of that proportion is the efficiency of the connection. In

calculating the efficiency or the counter-efficiency of a train of

mechanism, therefore, the factors to be multiplied together comprise
not only the efficiencies, or the counter-efficiencies, of the several

primary pieces considered separately, but also those of the several

modes of connection by which they communicate motion to each
other.

441. Efficiency of Rolling Contact.—The work lost when one

primary piece drives another by rolling contact is expended in

overcoming the rolling resistance of the pitch-surfaces, a kind of

resistance whose mode of action has been explained in Article 402,

page 251; and the value of that work in units of work per second
is given by the expression a 6 N

;
in which N is the normal pressure

exerted by the pitch-surfaces on each other; 6, a constant arm, of a

length depending on the nature of the surfaces (for example 0*002
of a foot = 0*6 millimetre for cast iron on cast iron, see page 252);
and a the relative angular velocity of the surfaces.

The useful work per second is expressed by ^^/JS", in which y* is

the coefficient of friction of the surfaces, and u the common velocity
of the pitch lines. Hence the counter-efficiency is

-ah .- .

c = l+—-> .(1.)

Let />! and 'p^ be the lengths of two perpendiculars let fall from
the two axes of rotation on the common tangent of the two pitch-

lines; if the pieces are circular wheels, those perpendiculars will

be the radii. Then the absolute angular velocities of the pieces

are respectively
- and

; and their relative angular velocity is

therefore

which value being substituted in Equation 1, gives for the counter-

efficiency the following value ;
—

e.l^l(A^l\ (2.)

It is assumed that the normal pressure is not greater than is
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necessary in order to give sufficient friction to communicate the

motion.

It is evident, from the smallness of h, that the lost work in this

case must be almost always a very small fraction of the whole.

442. Efficiency of Sliding Contact in General.—In fig. 157, let T
be the point of contact of a pair of

moving pieces connected by sliding
contact. Let the plane of the figure
be that containing the directions of

motion of the two particles which
touch each other at the point T ;

and
let T V be the velocity of the driving-

particle, and TW the velocity of the

following particle ;
whence VW will

represent the velocity of sliding, and
T U, perpendicular to Y W, the

common component of the velocities

of the two particles along their line of

connection RTF. C T C, parallel to

Y "W, and perpendicular to R T P, is

a common tangent to the two acting
surfaces at the point T j the arrow A
represents the direction in which the

driver slides relatively to the follower;
and the arrow B, the direction in

which the follower slides relatively to

the driver. ^ig- 1^7.

Along the line of connection, that is, normal to the acting sur-

faces at T, lay off T P to represent the effort exerted by the driver

on the follower, and T K
(
= - T P) to represent the equal and

opposite useful resistance exerted by the follower against the driver.

Draw S T Q, making with R T P an angle equal to the angle of

repose of the rubbing surfaces, (see Article 261, page 154), and
inclined in the proper direction to represent forces opposing the

sliding motion; draw P Q and II S parallel to C C. Then T Q
will represent the resultant pressure exerted by the driver on the

follower, and T S (
= — T Q), the equal and opposite resultant

pressure exerted by the follower against the driver, and P Q = - R S
will represent the friction which is overcome, through the dis-

tance Y W, in each second ; while the useful resistance, T R,
is overcome through the distance T U. Hence the useful work

per second is T U
counter-efficiency is

T R; the lost work is Y W • R S; and the

YW-RS
T U • T R* .(1.)
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Let the angle U T V = a, the angle U TW =
/3, and let/ be the

coefficient of friction. Then we have—

-^p^=tan«
+ tan^; TR"-^^

and consequently

c = l +/(tan a + tan /3) (2.)

443. Efficiency of Teeth.—It has already been shewn, in Article

148, page 87, that the relative velocity of sliding of a pair of

teeth in outside gearing is expressed at a given instant by

(aj + a^ t;

where t denotes the distance at that instant of the point of contact

from the pitch-point. (In inside gearing the angular velocity of

the greater wheel is to be taken with the negative sign.)
The distance t is continually varying from a maximum at the

beginning and end of the contact, to nothing at the instant of

passing the pitch-point. Its mean value may be assumed, with

sufficient accuracy for practical purposes, to be sensibly equal
to one-half of its greatest value

;
and in the formulae which

follow, the symbol t stands for that mean value.

Let P be the mutual pressure exerted by the teeth; f, the

coefficient of friction
;
then the work lost per second through

the friction of the teeth is

(% + a^) tfY.

Let u be the common velocity of the two pitch-circles ; ,
the

mean obliquity of the line of connection to the common tangent of

the pitch-circles ; then u cos ^ is the mean value of the common
component of the velocities of the acting surfaces of the teeth along
the line of connection ; and the useful work done per second is

expressed by
P u cos 6.

St) that the counter-efficiency is

,^l+K±«2)i/.
(1.)u cos ^ '

Let r^ and rg be the radii of the two pitch circles; then we have

_
u _u

and consequently

l+pseca{i
+
i} (2.)
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If two pairs of teeth at least are to be in action at each instant

(as in the case of involute teeth, and of some epicycloidal teeth),

and if the pitch be denoted by^, we have ^ see e = «; and therefore

where Wj and n^ are the number of teeth in the two wheels.

In many examples of epicycloidal teeth, especially where small

2 3

pinions are used, the duration of the contact is only ^
or r of that

assumed in Equation 3
j
and the work lost in friction is less in the

same proportion.
444. EflBciency of Bands.—A band, such as a leather belt or a

hempen rope, which is not perfectly elastic, requires the expenditure
of a certain quantity of work—first to bend it to the curvature of

a pulley, and then to straighten it again; and the quantity of work
so lost has been found by experiment to be nearly the same as

would be required in order to overcome an additional resistance,

varying directly as the sectional area of the band, directly as its

tension, and inversely as the radius of the pulley. In the follow-

ing formulae for leather belts, the stiffness is given as estimated by
Keuleaux {Constructionslehrefilr Maschinenhau, § 307).

Let T be the mean tension of the belt; S, its sectional area;

r, the radius of the pulley; h, a constant divisor determined by

experiment; R', the resistance due to stiffness; then

E' = |^ (1-)
r

h (for leather)
= 3-4 inch = 87 millimetres.

To apply this to an endless belt connecting a pair of pulleys of

the respective radii r^ and r^, let Tj and Tg be the tensions of the

two sides of the belt. Then the useful resistance is Tj
-

Tg,. the

T +T
mean tension is -^-^

—
^; and the additio»al resistance due to

stifiness is

T, + T,Sri 1 \.
2 bir^^rj'

consequently the counter-efficiency is

Ti + Tg S f 1 Hi
1 -JLlL?/1 _h

.(2.)
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TN denoting ~. The sectional area, S, of a leather belt is given

by the formula

^-p' (3.)

where p denotes the safe working tension of leather belts, in units

of weight per unit of area; its value being, according to Morin,

0'2 kilogi'arame on the square millimetre, or

285 lbs. on the square inch.

The ordinary thickness of the leather of which belts are made is

about 0-16 of an inch, or 4 millimetres; and from this and from
the area the breadth may be calculated. A double belt is of double

thickness, and gives the same area with half the breadth of a single
belt.

When a band runs at a high velocity, the centrifugal tension,
or tension produced by centrifugal force, must be added to the

tension required for producing friction on the pulleys, in order to

find the total tension at either side of the band, with a view to

determining its sectional area and its stiffness. The centrifugal
tension is given by the following expression :

—

-^'' <'•)

in which w is the heaviness (being, for leather belts, nearly equal to

that of water); S, the sectional area; v, the velocity; and g, gravity

(
= 32-2 feet, or 9-81 metres per second).
When centrifugal force is taken into consideration, the following

formula is to be used for calculating the sectional area; T^ being
the tension at the driving-side of the belt, exclusive of centrifugal
fension :—

S

^"T
.(5.

and the following fomiula for the counter-efficiency :
—

2 wv^ .

T, + T
c = l + •|.ji.l| (6.)

2(T,-T,)

For calculating the efficiency of hempen ropes used as bands, it

is unnecessary in such questions as that of the present article to

use a more complex formula than that of Eytelwein
—

viz.,

D2T
«' =W' (^•)
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where D is the diameter of the rope, and h' - 54 millimetres =
2-125 inches.

D2 g
In all the formulae, -^r is to be substituted for -^ .

6 6

value of D^ is given by the formula

T

The proper

(8.)

where p'
= i,000 for measures in inches and lbs.

;
and

j9'= 0-7 for measures in millimetres and killogrammes.
445. Efficiency of Linkwork.—In fig. 158, let C^ T^, Cg T2 be two

levers, turning about parallel axes at Cj and Gg, and connected with
each other by the link Tj Tgj Ti and Tg being the connected points.

Ficr. 158.

The pins, which are connected with each other by means of the

link, are exaggerated in diameter, for the sake of distinctness.' Let

C^ Ti be the driver, and Cg Tg the follower, the motion being as

shewn by the arrows. From the axes let fall the perpendiculars

^1 1*1) p2 1*2) upon the, line of connection. Then the angular,
velocities of the driver and follower are inversely as those perpen-
diculars

;V' and, in the absence of friction, the driving moment of the

first leve'rland the working moment of the second' are ^ directly as'

those perpendiculars; the driving pressure being exerted along the'

line of connection T^ Tg. Let Mg be the working moment; and
let Mq be the driving moment in the absence of friction; then we
have

M„ =
M„ CiP,
Co Pq
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To allow for the friction of the pins, multiply the radius of each

pin by the sine of the angle of repose; that is, very nearly by the

coefficient of friction
;
and with the small radii thus computed,

Tj Ai and Tg Ag, draw small circles about the connected points.
Then draw a straight line, Qi Aj Bj Q2 Ag Bg, touching both the

small circles, and in such a position as to represent the line of

action of a force that resists the motion of both pins in the eyes of

the link. This will be the line of action of the resultant force

exerted through the link. Let fall upon it the perpendiculars

Cj Qi, C2 Q2; these will be proportional to the actual driving
moment and working moment respectively; that is to say, let

JVI^

be the driving moment, including friction; then

M,=^
Mo •

Ci Qi

C2Q2
•

Comparing this with the value of the d,riving moment without

friction, we find for the counter-efficiency

M,_ C,Qi'C,P2 .
, .

'-Mo~C,Q,-C,F./
^"-'^

and for the efficiency

c~Mi CiQi-C^Pa*
^^

446. Efficiency of Blocks and Tackle.—(See Articles 181, 182,

pages 105 and. 106.)
—In a tackle composed of a fixed and a running

block containing sheaves connected together by means of a rope, let

the number of plies of rope by which the blocks are connected with
each other be n. This is also the collective number of sheaves in.

the two blocks taken together, and is the number expressing the

jmrchase, when friction is neglected.
Let c denote the counter-efficiency of a single sheave, as depend-

ing on its friction on the pin, according to the principles of Article

373, page 290. Let c denote the counter-efficiency of the rope,
when passing over a single sheave, determined by the principles

of Article 444, the tension being taken as nearly equal to — ;

where R is the useful load, or resistance opposed to the motion of

the running block. B -f- n is also the effi^rt to be exerted on the

hauling part of the rope, in the absence of friction. Then the

counter-efficiency of the tackle will V)e expressed approximately by

(ccV; ' (1.)

so that the actual or effective purchase, instead of being expressed

by w, will be expressed by

«(<'«')-" (2.)
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447. Efficiency of Connection by means of a Fluid.—Whea
motion is communicated from one piston to another by means of an

intervening mass of fluid, as described in Articles 185 to 188,

pages 110 and 111, the efficiencies and counter-efficiencies of the two

pistons have in the first place to be taken into account; that is

to say, with ordinary workmanship and packing, the efficiency of

each piston may be taken at 0-9 nearly; while with a carefully
made cupped leather collar the counter-efficiency of a plunger may
be taken at the following value :

—

-'^^  (..1

in which d is the diameter of the plunger; and h a constant, whose
value is from 0*01 to 0015 of an inch, or from 0-25 to 0*38 of a
millimetre. For if c be the circumference of the plunger, and ^
the effective pressure of the liquid, the whole amount of the pres-

sure on the plunger is
—j^- i and the pressure required to overcome

the friction is pcb.
The efficiency and counter-efficiency of the intervening mass of

fluid remain to be considered; and if that fluid is a liquid, and

may therefore be regarded as sensibly incompressible, these quan-
tities depend on the work which is lost in overcoming the resist-

ance of the passage which the liquid has to traverse.

To prevent unnecessary loss of work, that passage should

be as wide as possible, and as nearly as possible of uniform

transverse section; and it should be free from sudden enlarge-
ments and contractions, and from sharp bends, all necessary

enlargements and contractions which may be required being made

by means of gradually tapering conoidal parts of the passage,
and all bends by means of gentle curves. When those conditions

are fulfilled, let Q be the volume of liquid which is forced through
the passage in a second; S, the sectional area of the passage;

then,

"I <^>

is the velocity of the stream of fluid. Let b denote the wetted

border or circumference of the passage ; then,

m =
^,

(3-)

is what is called the hydraulic mean depth of the passage. In a

cylindiical pipe, m = ^ diameter. Let I be the length of the
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passage, and w tlie heaviness of the liquid. Then the loss of pres-

sure in overcoming the friction of the passage is

^-^•-i-g'
(*•)

in which g denotes gravity, and f a coefficient of friction whose

value, for water in cylindrical cast-iron pipes, according to the

experiments of Darcy, is

/=0005(l+^^);* (5.)

d being the diameter of the pipe in feet.

Let p be the pressure on the driven or following piston ;
then

the pressure on the driving piston is p + p'y and the counter-

efficiency of the fluid is

i-f;
(«•)

which, being multiplied by the product of the counter-efficiencies

of the two pistons, gives the counter-efficiency of the
'

intervening

liquid.
When the intervening fluid is air, there is a loss of work

through friction of the passage, depending on principles similar to

those of the friction of liquids; and there is a further loss through
the escape by conduction of the heat produced by the compression
of the air.

The friction which has to be overcome by the air, and which
causes a certain loss of pressure between the compressing pumps
and the working machinery, consists of two parts, one occasioned

by the resistance of the valves, and the other by the friction along
the internal surface of pipes. ,

To overcome the resistance of valves, about five per cent, of the

effective pressure may be allowed.

The friction in the pipes depends on their length and diameter,
and on the velocity of the current of air through them. It is

nearly proportional to the square of the velocity of the air.

A velocity of about forty feet per second for the air in its com-

pressed state has been found to answer in practice. The diameter

of pipe required in order to give that velocity can easily be com-

puted, when the dimensions of the cylinders of the machinery to be

driven, and the number of strokes per minute, are given.
When the diameter of a pipe is so adjusted that the velocity of

the air is 40 feet per second, the pressure expended in overcoming
its friction may be estimated at one per cent, of the total or absolute

1 25*4• When the diameter is expressed in millimetres, forr^ substitute -t-*
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pressure of the air, for every Jive hundred diameters of the pipe that

its length contains.

Although the abstraction from the air of the heat produced by
the compression involves a certain sacrifice of motive power (say
from 30 to 35 per cent.) still the effects of the heated air are so

inconvenient in practice, that it is desirable to cool it to a certain

extent during or immediately after the compression. This may be

effected by injecting water in the form of spray into the com-

pressing pumps j
and for that purpose a small forcing pump of

about xJijth of the capacity of the compressing pumps has been

found to answer in practice. The air may thus be cooled down to

about 104'' Fahr. or 40° Cent.

The factor in the counter-efficiency due to the loss of heat

expresses the ratio in which the volume of air as discharged from
the compressing pump at a high temperature is greater than the

volume of the same air when it reaches the working machinery at

a reduced temperature; which ratio may be calculated approxi-

mately by taking two-sevenths of the logarithm of the absolute

working pressure of the compressed air in atmospheres, andfinding
the corresponding natural number. That is to say, let p^ denote

one atmosphere (
= at the level of the sea 14*7 lbs. on the square

inch, or 10,333 kilogrammes on the square m^tre); let p^ be the

absolute working pressure of the air, so that j^i-jOo is the effective

pressure; then the counter-efficiency due to the escape of heat is,

'© (7.)

From examples of the practical working of compressed air,

when used to transmit motive power to long distances, it appears
that in order to provide for leakage and various other imperfec-
tions in working, the capacity of the compressing pumps should be

very nearly double of the net volume of uncompressed air required;
and it has also been found necessary, in working the compressing

pumps, to provide from three to four times the power of the

machinery driven by the compressed air.
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Absolute unit of force, 213.

Acceleration, work of, 252.

Accelerating effect of gravity, 213.

force, 213.

impulse, 207.

Action and re-action, 115.

Actual energy, 207.

Addendum of a tooth, 81.

Aggregate combinations, 73, 112.

Angle of repose, 154.

of rotation, 48.

Angular impulse, 220.

momentum, 219, 228.

momentum, conservation of, 220.

momentum and angular impulse
relation of, 220.

velocity, 48.

velocity, variation of, 63.

Arch, line of pressures in, 177.

Arcs, measurement of, 23, 24.

Areas, centre of, 26.

mensuration of, 16, 17.

Axis, instantaneous, 55.

of rotation, 47, 48,

Axle, strength of, 187
torsion of, 187.

Axles and shafts, efficiency of, 289.
friction of (see Efficiency).

Balance, 31, 118.

of any system of forces, 135, 136,
137.

of any system of forces in one

l^lane, 134.

of chain or cord, 174.

of couples, 126.

of forces in one line, 118.

of inclined forces, 122.
of parallel forces, 131, 132.
of structures, 157.

Balanced forces, motion under, 210.

Bands, classed, 97.

connection by, 72, 97, 98.

efficiency of, 297.

length of, 99.

motion of, 97.

principle of connection by, 97.

Bar, 158.

Beam, 158.

allowance for weight of, 200.

limiting length of, 200.

in linkwork, 101.

Bearings, 71.

friction of, 251.

Belt, with speed cones, 100.

Bending moment, at a series of sec-

tions, 193.

Bending moment, greatest, 194.

Bending moments, calculation of,

190.

Bending, resistance to, 189.

moment of, 190.

Bevel-wheels (see Wheels).
Blocks and tackle, 105.

efficiency of, 300.

Blocks, stability of a series of, 158,
175.

Bodies, 30.

rigid, 47.

Bracing of frames, 166, 167, 108.

Brake, 241.

Brakes, 276.

block, 277.

Bulkiness, 12L

Buoyancy, centre o£, 121.

Cam or Wiper, 92.

Centre of area, 26.

of a curved line, 27.

of a plane area, 26.

of buoyancy, 121.

of gravity, 121, 140.

of magnitude, 25, 26, 27, 28, 29.

of mass, 207.

of oscillation or percussion, 208,
227.

of parallel forces, 119, 133.

of pressure, 121.

of resistance, 176.

of special figures, 28.

of volume, 27.

Centrifugal force, 207 (see also De-

viating Force).

Chains, equilibrium of, 158, 174.

Channel, 68.

Cinematics, 31.
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Cinematics, principles of, 33.

Circle, involute of (see Involute).
area of, 21.

Circular arcs, measurement of, 23.

Circular measure, 8.

sector, area of, 22,

arcs, length of, 23, 24.

Click, 105.

Coefficient of stiffness, 183.

of elasticity, 184.

of pliability, 183.

Cog, hunting, 83.

Collar, friction of, 251.

Collision, 208, 221.

Combinations, aggregate (see Aggre-
gate).

elementary (see Elementary).
Comparative motion, 38, 45, 50, 63.

Components, 123.

of motion, 35,

of varied motion, 40.

Compression, resistance to, 202.

Cones, x>itch (see also Wheels, bevel).

rolling, G3.

speed, 100.

Connected points, motion of, 102,

Connecting-rod, 101 (see Linkwork).
Connection, line of, 73.

principle of, 73.

Connectors, 71.

Conservation of energy, 206, 260.

of angular momentum, 220.

of momentum, 219.

Continued fractions, 2.

Continuity, equations of, in liquids,

67, 69.

Contracted vein, 233.

Contraction, coefficient of, 233.

Cord, equilibrium of, 158, 174.

guided by surfaces of revolution,
66.

motion of, 65.

Counter-efficiency, (see Efficiency).

Cou])led parallel shafts, 101.

Couples, 118, 119.

equivalent, 125.

parallelogram of, 126.

polygon of, 126.

resultant of, 125.

with parallel axes, 126.

Coupling, double, Hooke's, 105.

Hooke's, 104.

Oldham's, 96.

Coupling-rod, 101 (see Linkwork).
Crank-rod, 101 (see Linkwork).
Crosp-br-paJiiDcr. resistance to 389.

Crushing, direct resistance to, 202.

Curved lines, measurement of, 23.

Curves, measurement of the length
of, 23, 24, 25.

Cycloid, 55.

Cylinders, strength of, 186, 187.

Dead points in linkwork, 101.

Dead load, 180.

Density, 120.

Deviating force, 207, 216.

in terms of angular velocity, 217.
Deviation (of motion), uniform, 44.

varying, 45.

Differential and integral calculus, 10.

coefficients, 11, 12.

calculus, geometrical illustration

of, 12.

Direction, fixed and nearly fixed,
33.

Directional relation, 38.

Distributed forces, 119, 120, 140.

loads, 160.

Driving-point, 242,

Dynamics, 32.

general equations of, 211.

Dynamometer, 271.

Eccentric, 103.

rod, 101.

Effect and power, 241, 266.
_

Efficiency'- and counter-efficiency,

241, 265, 286.

of a machine, 265, 266.

of a shaft or axle, 2S9.

of a sliding piece, 288.

of modes o^ connection in mechan-

ism, 293.

of primary pieces, 287.

of bands, 297.

of linkwork, 299.

of blocks and tackle, 300.

of fluid connection, 301.

of a screw, 293.

of rolling contact, 294.

of sliding contact, 295.

of teeth,'' 296.

Effort, 205._

accelerating, 260.

when speed is uniform, balances

resistances, 215.

Elasticity, 183.

coefficients of, 184.

modulus of, 184.

1 Elementary combinations, 72.
' classed generally, 72.
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Energy, 206, 259.

actual (or kinetic), 207, 262.

and work, general equation of, 267.

exerted and work done, equality
of, 260.

potential, 259.

stored and restored, 208, 262.

conservation of, 206, 260.

transformation of, 208.

Epicycloid, 58.

Epicycloidal teeth, 89, 90.

Epitrochoid, 58.

curtate, 60.

prolate, 59.

Equilibrium (see Balance).

Face of a tooth, 81.

Factors of safety, 180.

prime, of a number, 1.

Falling body (see Gravity).
Fixed direction, 33.

point, 31.

Flank of a tooth, 81.

Flow of liquid, 66, 67.

in a stream, 67.

Fluctuations of speed, 241.

Fluid, motion of, 66, 68, 69, 230.

pressure of, 147.

steady motion of, 68.

velocity and flow of, 66.

Fluids, flow of volume of, 69.

balance of, 147.

flow of mass of, 69.

Fly-wheels, 241, 278, 280.

Foot-pound, 243.

Force, 31,
absolute unit of, 116, 213.

centrifugal (see Deviating Force).

deviating (see Deviating Force).
direction of, 116.

distributed, 119, 120, 140.

magnitude of, 116.

measure of, 117.

moments of, 127, 130.

rectangular components of, 124.

representation of, 115, 116.

reciprocating, 208, 263.

Forces, action and reaction, 115.

how determined and expressed,
115.

inclined, resultant and balance

of, 122, 125.

parallel, 118.

parallel, magnitude ofresultant of,

127.

direction of, 128.

Forces, parallelogram of, 122.

parallelepiped of, 123.

polygon of, ] 23.

representation of by line, 117.
resolution of, 122, 123, 124.

resultaftt and component of, llg,

triangle of, 122.

Fractions, continued, 2.

Frames, 71.

bracing of, 166.

equilibrium and stability of, 15S.
of two bars, 161.

polygonal, 163, 164, 165.

resistance of, at a section, 171*

triangular, 162, 163.

Friction, 153, 154.

coefficient of, 154.

moment of, 251.

of liquid, 235.

of solid bodies, law of, 153.
tables of, 155.

work done against, 251.

Frictional stability, 176.

Function, 6.

Governors, 241, 282.

pendulum, 283.

loaded, 285.

Gravity, accelerating effect of, 213.
centre of, 121, 140.

motion under, 213.

specific, 120.

Greatest common measure, 1.

Gyration, radius of, 208, 223.

table of radii of, 226.

Head, dynamic, of liquid, 230,
Heat of friction, 252.

Heaviness, 120.

Helical motion, 51, 52.

Helix (see Screw-line).

normal, 93.

Horse-power, 241, 266.

Hunting-cog, 83.

Hydraulic connection, 110.

efficiency of, 301.

hoist. 111.

Hydraulic press, 110.

Hydrostatics, principles of, 147, 148,
149.

Impulse, 207.

and momentum, law of, 254.

Inclined plane, 107.

Indicator, 271.
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Indicator diagram, 273.

Inertia, or mass, 206.

moment of (see Moment).
reduced, 257.

Integrals, approximate computation
of, 13, 14, 15.

Intensity of distributed force, 120.

of pressure, 121.

of stress, 143.

Intervening fluid, connection by, 73.

Involute, 56.

Joints, of a structure, 156.

Journal, friction of, 251.

Kinetics, 32, 205.

general equations of, 211.

Lateral force, 205.

Length, measure of, 30, 31.

Lever, 101, 107, 128.

Line, 30.

Link, ,101.

Linkwork, connection by, 72, 101.

comparative motion of the con
nected points in, 102.

efi&ciency of, 299.

Liquid, dynamic head of, 230.

equilibrium of, 147.
free surface of, 231.

motion of, 230, 233.

motion of, in plane layers, 232.
motion of, vv^ith friction, 233.

surface of equal pressure in, 231.

without friction, motion of, 230.

Live load, 180.

Load, 179.

dead, 180.

Hve, 180.

working, 179.

Logarithms, common, 4, 5, 6.

Machine, eflaciency of (see Efl&-

ciency).
action of, 243.

general equation of the action of,
267.

moving pieces in, jjrimary and

secondary, 72.

Machines, 32.

theory of, 240.

Magnitude, centre of, 25.

Mass, 206.

centre of, 207.
in terms of weight, 212.
measure of, 117.

Matter, 30.

Measure, greatest common, 1.

Measures offeree and mass, 117.
of

length, 30,

Mechanical powers, comparative mo-
tion in, 107.

forces in, 268.

Mechanics, 30.

Mechanism, theory of, 70.

aggregate combinations in, 73.

elementary combinations in, 72.

principle of connection in, 73.

Mensuration of areas, 17.

of curved lines, 23.

of geometrical moments, 25
of volumes, 22.

Merrifield's trapezoidal rule, 19, 20.

Modulus of elasticity, 184.

height or length of, 184.

of i)liability, 183.

of resilience, 185.

of stiffness, 183.

of transverse elasticity, 187.

Moment, bending, 190.

geometrical, 25.

geometrical, of inertia, 199.

greatest, 194.

of a couple, 127.

of a force, 127, 130.

of inertia, 208, 222.

of inertia, table of, 226.

of stability, 177.

of stress, 196.

Momentum, 207.

and impulse, law of, 254.

angular (see Angular Momentum).
conservation of, 219.

of a rotating body, 228.

resultant, 207.

variation and deviation of, 207.

Motion, 31.

combination of uniform, and uni-

formly accelerated, 43.

comparative, 38, 39, 50, 63.

component and resultant, 35.

first law of, 210.

graphical representation of, 42.

of a falling body, 213.

of fluid of constant density, 66.

of pistons, 68.

of points, 34, 37.

of points, varied, 39, 40.

of pliable bodies and fluids, 65.

of rigid bodies, 47.

of varying density, 69.

periodical, 208, 264, 278.
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Motion, second law of, 21 1.

uniform, 37, 205.

uniform, dynamical principles of,

210.

Neutral surface, 197.

Parabolic curves, 16, 17.

Parallel forces, 118, 127.

centre of, 119, 133.

forces, resultant of, 127, 128, 129,

131, 132.

projection (see Projection,Parallel).

Parallelogram, area of, 16.

Parallelopiped of motions, 38.

Pendulum, rotating, 217.

simple oscillating, 218.

simple revolving, 217.

Percussion, centre of (see Centre).
Periodic motion, 208, 264, 278.

Periodical motion of machines, 208.

Pieces, moving, 71.

of a structure, 156.

Pinion, smallest, with involute teeth,
89.

Pipes, friction in, 237.

resistance caused by sudden en-

largement in, 238.

resistance of curves and knees in,

238.

resistance of mouthpieces of, 238.

Piston, 110.

action of a fluid upon, 110.

motion of, 68.

Piston-rod, 101.

Pitch of a screw, axial, 94.

divided, 93.

normal, 93.

of teeth, 81 (see Teeth).
Pitch-circles, 81.

Pitch-lines, 81.

Pitch-point, 81.

Pitch-surfaces, 74, 81 (see Wheels).
Pivot, friction of, 251.

Plane of rotation, 48.

Pliability, 183.

coefficients of, 183.

Point, 30.

fixed, 31, 35.

motions of, 34.

moving, 35.

physical, 30.

Power, 241.

and effect, 241, 266.

horse, 241, 266.

Powers, mechanical (see Mechanical

powers).

Press, hydraulic (see Hydraulic
press).

Pressure, 144.

centre of, 121.

intensity of, 121.

Primary moving pieces, efficiency of,

287.

motions of, 72.

Prime factors, 1.

Prime movers, 240.

Projection, paraUel, 138, 153, 178.

Projectile, unresisted, 214.

Proof strength, 182, 183.

Pull (see Tension).

Pulley-blocks (see Tackle).

Pulley (mechanical power), 107.

Racks, toothless, 74.

smooth, 74.

st^-aight and circular wheels, 75.

Eadius, geometrical, 81.

of gyration, 208.

real, 81.

Eatio, 2.

approximation to, 2.

Reaction and action, 115.

Reciprocating force, 208, 263.

Reduced inertia, 257.
Reduction of forces and couples in

machines to the driving point,
257.

Reduplication (see Tackle).

Regulating apparatus, 276.

Regulator of a prime mover, 241.

Repose, angle of (see Angle).
Resilience, 184.

Resistance, 205.

centre of, 176.

line of, 176.

points of, 242.

of curves and knees, 23S.
of mouthpieces, 238.

of rolling, 252.

useful and prejudicial, 241.
Resolution offerees, 122.

Rest, 31.

Resultant, 118.

momentum, 207.
of any system of forces, 135.

of any system of forces in one

plane, 134.

of couples, 125.

of inclined forces, 125.

motions, 35.

of parallel forces, 127, 128, 129.

131, 132.
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Kigid body, motion of, 47, 222 (see

Rotation).

.Rigidity or stiffness, 183.

coefficients of, 183.

Rod (see Crauk-rod, Coupling-rod,

Connecting-rod, Eccentric-rod,

Link, Piston-rod).
Rolled curves (see Cycloid, Epicy-

cloid, Epitrochoid, Involute,

Spiral, Trochoid).
Rollers, 74.

Rolling contact, connection by, 72.

cones, 63.

efficiency of, 294.

general conditions of, 74.

of cylinder on plane, 55.

of cylinder on cylinder, 58.

of plane on cylinder, 55.

resistance, 252.

Rotating body, comparative motion
of points in, 50,

components of velocity of a point
in, 50.

relative motion of a pair of points
in, 49.

Rotation, 47.

actual energy of, 229.

angle of, 48.

angular velocity of, 48.

axis of, 47, 48.

combined with translation, 51, 54.

combined parallel, 56, 57, 62.

components of, varied, 64.

instantaneous axis of, 55.

plane of, 48;

right and left handed, 49.

uniform, 48, 228.

varied, 63, 64.

Rotations about intersecting axes

combined, 62.

Safety, factors of, 180.

Screw, 92.

circular, pitch of, 93.

efficiency of, 293.

mechanical power, 107.

pitch of, 92, 93.

Screw-gearing, 94.

axial pitch of, 94.

development of, 94.

divided pitch of, 93.

Screw-like or helical motion, 51, 52.

Screw-line, normal pitch of, 93.

Screws, compound, 113.

relative sliding of a pair of, 95.

right and left handed, 93.

Secondary moving pieces, 72.

efficiency of, 289.

Sections, method of, applied to frame-

work, 171.

Shaft, strength of (see Axle).
Shear, 144.

Shearing load, greatest, 192.

at a series of sections, 192.

Shearing loads, calculation of, 190.

Shearing, resistance to, 186.

Sheaves, 105.

Shifting, or translation, 47.

Simpson's Rules, 18, 19.

Skew-bevel wheels (see Wheels).
Sliding contact, connection by, 72.

efficiency of, 295.

principle of, 79, 80.

Sliding piece, efficiency of, 288.

Solid, 30.

Solids, mensuration of, 22.

Specific gravity (see Gravity,

Specific).

Speed (see Velocity).

Speed, adjustments of, 73.

cones, 100.

fluctuations of, 241.

periodic fluctuations of (see
Periodic motion).

uniform, condition of, 258.

Spheres, strength of, 186.

Spiral, 55, 56.

Spring, 184.

Stability, 156.

frictional, 176.

of position, 176.

Standard measure of length, 30.

measure of weight, 116.

Starting a machine, 265.

Statics, 32.

principles of, 115.

Stiffness, 157, 179.

Stopping a machine, 265.

Strain, 179.

Stream of liquid, friction of, 235.

hydraulic, mean depth o^ 236.

varying, 236.

Strength, 156, 179,
coefficients or moduli of, 180.

proof, 179.

transverse, 196.

ultimate, 179.

Stress, 143, 179.

classes of, 144.

compound internal, 149.

intensity of, 143.

internal, 147.
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Stress, moment of, 196.

shearing, 150.

tangential, 144.

uniform, 145.

varying, 145.

Stresses, conjugate, principal, 150.

Stretching, resistance to, 184.

Structures, 32.

equilibrium of, 157.

theory of, 156.

Stroke, length of, in linkwork, 104.

Struts, 158.

Supports, 156.

Surface, 30.

System of parallel forces, 131.

Tackle, 105.

connection by, 73, 105.

eflBciency of, 300.

Tearing, resistance to, 184.

Teeth, arc of contact of, 88.

dimensions of, 91.

efficiency of, 296.

epicycloidal, 89.

involute, for circular wheels, 88,

89.

of mitre or bevel-wheels, 91, 92.

of non-circular wheels, 92.

of spur wheels and racks, 86.

of wheels, 81.

of wheel and trundle, 90.

pitch and number of, 81.

sliding of, 87.

traced by rolling curves, 86.

Tension, 144, 184.

Testing, 182.

Thrust, 144.

Tie, 158.

strength of, 1 84.

Time, measure of, 35.

Tooth, face of, 81.

flank of, 81.

Torsion (see Wrenching).
Trains of mechanism, 73, 111.

of wheelwork, 83, 84, 85.

Transformation (see Projection).
Transformation of energy, 208.

Translation or shifting, 47.

varied, 211, 219.

Transverse strength, 196.

table, 200.

Trapezoid, area of, 16.

Trapezoidal rule, Merrifield's, 19, 20.

common, 21.

Triangles, area of, 10, 16.

solution of plane, 8, 9.

Trigonometrical rules, 6,

functions of one angle, 7.

functions of two angles, 8.

Trochoid, 55.

Trundle, 90.

Truss, 168.

compound, 169.

Trussing, secondary, 169, 170, 171-

Turning (see Eotation).

Twisting (see Wrenching).

Unguents, 252.

Uniform motion, 37, 205.

deviation, 44.

effort or resistance, effect of, 215.

motion under balanced forces, 210.

rotation, 48.

stress, 145.

velocity, 36.

Universal joint, 104.

double, 105.

Valves, 110.

Velocities, virtual, 206, 267.

Velocity, 36, 244.

angular, 48.

angular, variation of, 63.

ratio, 38.

uniform, 36.

uniformly-varied, 41.

varied, 39.

varied rate of variation of, 43.

Virtual velocities, 206, 267.

Volume, 30.

Volumes, measurement of, 22.

Wedge (mechanical power), 107.

Weight, 116.

mass in terms of, 212.

Wheel and axle, 107.

and rack, 75.

and screw, 95.

Wheels, bevel, 76, 81.

circular, in general, 75.

non-circular, 77.

pitch-surfaces, pitch-lines, pitch-

points of, 81.

skew-bevel, 77, 78, 81.

spur, 81.

Wheelwork, train of, 83.

White's tackle, 106.

Windlass, differential, 112.

Wooley's rule, 22.

Work, 206, 243.

against an oblique force, 246.

against friction, 251.
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Work,against varying resistance, 249,
250.

algebraical expressions for, 246.

and energy, general equation of,

267.

done, and energy exerted, equality
of, 260.

done during retardation, 262.

in terms of angular motion, 244.

in terms of pressure and volume,
245.

measures of, 243.

of acceleration, 252.

Work, of acceleration, summation of,

256.

of machines, 243.

rate of, 243.

represented by an area, 249.

summary of various kinds of, 258.
summation of, 247, 248, 256.
useful and lost, 241, 251.

Working point, 242.

Working stress, working load, 179.

Wrenchmg, resistance to, 187.

Yard, standard, 30.

THE END.
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